
Communication
Service Group

Communication Service Group

 1

Communication Overview

AppleTalk

AppleTalk: Guides

AppleTalk: Functions

AppleTalk: Structures

Asynchronous I/O

Asynchronous I/O: Guides

Asynchronous I/O: Functions

Asynchronous I/O: Structures

BSD Sockets

BSD Socket: Guides

BSD Socket: Functions

BSD Socket: Structures

Diagnostic

Diagnostic: Guides

Diagnostic: Functions

Diagnostic: Structures

Internet Network Library

Internet Network Library: Guides

Internet Network Library: Functions

Internet Network Library: Structures

IPX/SPX

IPX/SPX: Guides

IPX: Functions

SPX: Functions

IPX/SPX and TLI IPX: Structures

Message

Message: Guides

Communication Service Group

 2

Message: Functions

NCP Extension

NCP Extension: Guides

NCP Extension: Functions

NCP Extension: Structures

NWSIPX

NWSIPX: Guides

NWSIPX: Functions

NWSIPX: Structures

SAP

SAP: Guides

SAP: Functions

SAP: Structures

TCP/IP and TCP/IPX

TCP/IP and TCP/IPX: Guides

TLI

TLI: Guides

TLI: Functions

TLI: Structures

WinSock 2

See the http://www.stardust.com URL for more information.

Communication Service Group

 3

AppleTalk

Communication Service Group

 4

AppleTalk: Guides

AppleTalk: General Guide

Native AppleTalk Functions

AppleTalk Version Function

ASP and NetWare

ATP and NetWare

DDP and NetWare

NBP and NetWare

PAP and NetWare

ZIP and NetWare

AppleTalk Overview

ADSP

DDP

NBP

ZIP

ATP

ASP

PAP

Notes on the AppleTalk Interface, both TLI and Native

TLI Implementation Notes for AppleTalk

AppleTalk TLI Structures

ADSP Performance Notes

TLI Functions: AppleTalk Notes

AppleTalk Services Restrictions on TLI

AppleTalk: Functions

Communication Service Group

AppleTalk: Guides 5

AppleTalk: Structures

Communication Service Group

AppleTalk: Guides 6

AppleTalk: Concepts

About Receiving Data in General

When it comes time to receive any kind of data from the protocol layer, call
the ATAtpGet function. There are four events that can come up from the
protocol: one for an arriving request (ATP_EVENT_RCV_REQ), one for an
arriving response (ATP_EVENT_RCV_RSP), one for an error in sending a
request (ATP_EVENT_SND_REQ), one for an error in sending a response
(ATP_EVENT_SND_RSP). An application that uses ATP should frequently
call ATAtpGet to receive events, then act on the events. For example, an
ATP based service like AFP would call ATAtpGet waiting for a request
(ATP_EVENT_RCV_REQ), do the action requested (for example, a disk
request), then send a response with ATAtpSendRsp.

Parent Topic: ATP and NetWare

About Sockets and ATP

Unlike DDP, ATP accepts only one listening socket per file descriptor.

AppleTalk sockets fall into two categories: statically assigned and
dynamically assigned. Statically assigned sockets have numbers 1 through
127; dynamically assigned sockets have numbers 128 through 254.

Apple Computer Inc. reserves the use of sockets 1 through 63; you can use
sockets 64 through 127 experimentally but not in released products.

Parent Topic: ATP and NetWare

About This PAP Interface

This interface is unique among PAP interfaces in that the read function,
ATPapGet, allows a client to do without a look function to see what kind of
data is coming up the pipe, which is more efficient. Also, with this interface,
it is possible to have a single thread servicing all incoming requests.

In terms of the amount of time it takes for PAP functions to complete, you
can count on the connect, read (ATPapGet), and write functions to take
time. The others are very quick, involving no blocking of significant
duration.

Communication Service Group

AppleTalk: Concepts 7

Read Inside AppleTalk to get a full description of PAP and the basic
functionality of a PAP implementation. Bear in mind that, although they are
called "workstation-side" and "server-side" functions, an NLM could call
either type of function.

Parent Topic: PAP and NetWare

About Transaction IDs

Remember that there are two transaction IDs. The first is the transaction ID
on the wire (network). The second, the subject of the following discussion, is
created by the ATP implementation for matching up requests and responses
across the API boundary.

The transaction ID is created by the side that created the request. The side
that received the request must present the same transaction ID when it
presents the reply. The end that receives the reply can then match the
response with the request. Thus, when the client receives a request from
ATP (in ATAtpGet), it must send the response with the same transaction ID
(ATAtpSendRsp). Likewise, when the client sends a request (
ATAtpSendReq), it can specify a transaction ID which is returned when
ATP receives a reply (in ATAtpGet).

Transaction IDs are also used to cancel transactions, and since the ones
generated by the client may be nonunique, multiple cancellations could
possibly occur. Note, however, that in ALO mode the transaction ID of
received requests is the first, or wire, type. Therefore, multiple responses
can be made reusing this transaction ID.

Parent Topic: ATP and NetWare

ADSP

ADSP is a connection-oriented protocol that provides reliable, full-duplex,
byte-stream service between sockets. It guarantees that data bytes are
delivered in the same order as they were sent, and that they are free of
duplicates.

Using TLI, you can access ADSP to carry out these tasks:

Create a connection end

Bind

Request a connection with another protocol client

Wait for a connection request from another protocol client

Communication Service Group

AppleTalk: Concepts 8

Accept a connection request

Send and receive bytes of data over a connection by segmenting data into
variable length messages

Send priority messages that do not disrupt the existing byte stream

Receive notification that a connection has been closed

Unbind

Close a connection

For information on using TLI functions to access ADSP, see TLI Functions:
AppleTalk Notes.

Parent Topic: AppleTalk Overview

ADSP Performance Notes

A number of factors affect performance when your application accesses
ADSP through TLI. This chapter provides guidelines for making changes to
your application in order to maximize performance.

The sections that follow provide guidelines for an application whose data
flow follows one of these patterns:

The application transfers large amounts of data. Data flow in a backup or
file-transfer application may follow this pattern. ADSP is presently
engineered to serve this type of application best.

The application transfers variable amounts of data in alternating
directions. Data flow in a database or terminal emulation application
may follow this pattern.

This chapter does not apply to optimizing an application whose data
transfer follows one of these patterns:

The application transfers data that must arrive within an extremely
narrow window of time. Data flow in a videoconferencing application
follows this pattern.

The application involves the simultaneous transfer of large amounts of
identical data to a large number of remote stations. Data flow in a
broadcast application follows this pattern.

Connection-oriented protocols such as ADSP are not well-suited to these
types of applications.

Related Topics

Transferring Data in ADSP

Communication Service Group

AppleTalk: Concepts 9

Using the T_MORE Bit

Parent Topic: TLI Implementation Notes for AppleTalk

AppleTalk Byte Ordering

The AppleTalk protocol family specifies that data be represented in network
byte order, in which integers are stored most-significant-byte-first.
However, the NetWare platform is built on the I86 family of processors,
which uses Intel byte order, in which integers are stored
least-significant-byte-first.

Except for the user bytes area of the ATP header (userdata field of the
ATAtpPass_t structure), all structures and parameters defined by this
interface assume host order. On the other hand, the data areas are
considered byte arrays (C char *) and data buffers are put on the wire
exactly as passed in to the interface. When sending numeric information in
the data area, the decision must be made whether to pass the information in
host or network order. If all hosts were of the same processor type, it would
be possible to use host order. In today's heterogenous networking
environments, it is more typical to use network order.

Suppose you wanted to send a packet to a node residing on destination
network number 10. An example of bytes whose order you wouldn't need to
swap are the destination network number (dst_net field in the ATDdp_t
structure). You would set this field to 10 and the interface would swap the
bytes to reflect network ordering. On the other hand, if you had a four-byte
integer in the data area of the packet, it would result in the bytes 01 00 00 00
being sent out over the wire (1 in Intel host order):

int *data;
data = (int*) data; /* data is a char * */
*data=1;

Therefore, if you want to send 00 00 00 01 (1 in network order), you must
add hton32(*data):

int *data;
data = (int*) data; /* data is a char * */
*data=1;
hton32(*data);

Perhaps the biggest challenge in regard to byte order is presented by the
ATP interface, the userdata field of the ATAtpPass_t structure. Most
protocols will want to use this field on a byte-by-byte basis yet it is defined
as data type long. Given that this field is in host order, if you simply set
userdata to the value of 15, the four following bytes would be sent out over
the wire: 00 00 00 15.

To set each individual byte of the userdata field, use the following C code:

Communication Service Group

AppleTalk: Concepts 10

userdata = hihibyte << 24 + hilobyte << 16 + lohibyte <<
8 + lolobyte;

This code will produce the following byte order on the wire:

 hihibyte hilobyte lohibyte lolobyte

There is another ordering convention you must consider before sending
structures across a network. Be sure to check the structure-packing
conventions of your compiler.

Parent Topic: Notes on the AppleTalk Interface, both TLI and Native

AppleTalk Internet Addresses

The size of an AppleTalk Phase I or Phase II internet address is always 4
bytes.

An AppleTalk internet address uses the ATInet_t structure. This structure
and the type definitions it uses are defined in appletlk.h. See also ATInet_t.

Parent Topic: Notes on the AppleTalk Interface, both TLI and Native

AppleTalk Notes: t_accept

NOTE: Applies to ADSP only.

The t_accept function enables your application to accept a connection
request on a transport endpoint:

t_accept(int fh, int resfh, struct t_call *call)

If fh is a listening endpoint and resfh is the transport endpoint where the
connection is established, fh cannot equal resfh. In other words, an endpoint
listening for a connect request with t_listen cannot accept a connect request
with t_accept.

In addition, ADSP does not support the transfer of data during a t_accept
function. If t_alloc is used to allocate the t_call structure, no buffer is
allocated for data. If you allocate a data buffer yourself and set call->udata
.buf and call->udata.len, t_accept ignores the data.

Parent Topic: TLI Functions: AppleTalk Notes

AppleTalk Notes: t_bind

Communication Service Group

AppleTalk: Concepts 11

In AppleTalk, all opened transport endpoints on a node have the same
network and node number. t_bind (Function) enables you to associate a
protocol address with a specified transport endpoint in order to allocate a
socket for use by it.

AppleTalk sockets fall into two categories: statically assigned sockets and
dynamically assigned sockets. Statically assigned sockets are denoted by
numbers 1 through 127; dynamically assigned sockets are denoted by
numbers 128 through 254. Apple Computer, Inc. reserves the use of sockets
1 through 63; you can use sockets 64 through 127 experimentally, but not in
released products.

Dynamic sockets are assigned when a transport client specifies zero for
req->addr.len or sets req to NULL when calling t_bind. The transport
provider returns the internet address of the socket in ret->addr.buf. Attempts
to bind to a specific socket in the dynamic socket range result in the error
TBADADDR.

If no more sockets are available, t_open succeeds, but t_bind fails and
generates the error TNOADDR.

IMPORTANT: If you pass in zero (0) as qlen, you get a connection
endpoint and if you pass in a nonzero value, you get a listener. It is best
to decide up front (at the point of binding) whether you want a
connection endpoint or a listener. Then, if that changes later, we
recommend that you unbind and rebind.

It is possible for a single socket to be used for more than one connection.
However, it cannot be used for more than one listener.

Parent Topic: TLI Functions: AppleTalk Notes

AppleTalk Notes: t_close

The AppleTalk protocols do not support an orderly release mechanism.
Therefore, before you issue t_close for an ADSP transport endpoint, make
sure that all data to be received or sent on that endpoint has been
transmitted. When you issue t_close, the endpoint should be in the
T_UNBND state. If the endpoint is in the T_DATAXFER state when you
issue t_close, all queued data is discarded.

Parent Topic: TLI Functions: AppleTalk Notes

AppleTalk Notes: t_connect

NOTE: Applies to ADSP only.

An endpoint listening for a connect request with t_listen cannot issue

Communication Service Group

AppleTalk: Concepts 12

t_connect.

In addition, ADSP does not support the transfer of data during a call to
t_connect. If t_alloc is used to allocate the t_call structure, no buffer is
allocated for data. If you allocate a data buffer yourself and set
call->udata.buf and call->udata.len, t_connect ignores the data.

Parent Topic: TLI Functions: AppleTalk Notes

AppleTalk Notes: t_getinfo

t_getinfo returns the current characteristics of the underlying transport
protocol. For the values returned (in the t_info structure) by t_getinfo when
your application is accessing DDP, see the t_info Values for DDP table. For
the values returned (in the t_info structure) by t_getinfo when your
application is accessing ADSP, see the t_info Values for ADSP table.

If the size of the option or address buffer changes for a future version of
DDP or ADSP, so are the corresponding values in the t_info structure (addr
and options).

Parent Topic: TLI Functions: AppleTalk Notes

AppleTalk Notes: t_listen

NOTE: Applies to ADSP only.

The transport client must complete the NBP registration procedure before
calling t_listen in blocking mode. When t_listen is in blocking mode, control
does not return to the application until the listening endpoint receives a
connection request. However, because the listening endpoint is not
registered on the network, it does not receive a connection request. It
therefore listens endlessly. For information on NBP registration, see NBP
Function List.

In addition, ADSP does not support the transfer of data during a call to
t_listen. If t_alloc is used to allocate the t_call structure, no buffer is
allocated for data. If you allocate a data buffer yourself and set
call->udata.buf and call->udata.len, t_listen ignores the data.

When an application no longer wants to listen, it should complete the NBP
deregistration procedure and t_unbind.

Parent Topic: TLI Functions: AppleTalk Notes

AppleTalk Notes: t_open

Communication Service Group

AppleTalk: Concepts 13

Call t_open to initialize a transport endpoint using this syntax:

t_open(char *path, int oflag, struct t_info
*info)

Specify either of these files in the path argument:

"/dev/ddp" Identifies DDP, the connectionless transport service.

"/dev/adsp" Identifies ADSP, the connection-oriented transport
service.

You can specify NULL for info.

If info is not NULL, it contains (on returning) the current characteristics of
the underlying transport protocol. For the values returned by t_open when
your application is accessing DDP, see the t_info Values for DDP table. For
the values returned by t_open when your application is accessing ADSP, see
the t_info Values for ADSP table.

Parent Topic: TLI Functions: AppleTalk Notes

AppleTalk Notes: t_optmgmt

This function enables a transport client to retrieve, verify, or negotiate
protocol options with the transport provider. See How to Determine the
ADSP Interface Version.

Parent Topic: TLI Functions: AppleTalk Notes

AppleTalk Notes: t_rcv

NOTE: Applies to ADSP only.

When t_rcv receives data with the T_EXPEDITED flag set, the flag indicates
that the data is part of an expedited transport service data unit (ETSDU),
also known as an ADSP Attention message. Attention messages enable two
transport clients to signal each other outside the regular flow of data
between them. The Attention message consists of a 2-byte attention code
and up to 570 bytes of data. When a client sends an Attention message with
t_snd, the message is delivered to buffer space outside the target client's
receive queue.

Only one Attention message in each direction may be outstanding.

Communication Service Group

AppleTalk: Concepts 14

Although the buffer space for expedited data is separate, this data may get
"caught behind" normal data during processing of the data by STREAMS.

Message boundaries are supported in ADSP when an optional
end-of-message (EOM) bit is set in the ADSP header. Because message
boundaries are optional in ADSP, there is no limit to the size of a transport
service data unit (TSDU). Therefore, it is possible that every call to t_rcv
returns with the T_MORE flag set. The presence of this flag does not
necessarily indicate that more data is available for t_rcv; rather, it may
simply mean that the EOM indicator does not appear in the ADSP data
stream.

Parent Topic: TLI Functions: AppleTalk Notes

AppleTalk Notes: t_rcvconnect

NOTE: Applies to ADSP only.

ADSP does not support the transfer of data during a call to t_rcvconnect. If
t_alloc is used to allocate the t_call structure, no buffer is allocated for data.
If you allocate a data buffer yourself and set call->udata.buf and
call->udata.len, t_rcvconnect ignores the data.

Parent Topic: TLI Functions: AppleTalk Notes

AppleTalk Notes: t_rcvdis

NOTE: Applies to ADSP only.

If a connection terminates, ADSP tells the transport client why the
termination occurred by using the reason field in the t_discon structure.

When your application accesses ADSP, the possible values for reason are
these:

ETIMEDOUT The connection partner failed to acknowledge the
connection after repeated queries from ADSP.

ECONNREFU
SED

During the connection establishment phase, the target
connection end refused the request to connect. This
failed connection may be due to a resource problem at
the target.

ECONNRESE
T

The connection was terminated by the connection
partner.

Communication Service Group

AppleTalk: Concepts 15

In addition, ADSP does not support the transfer of data during a call to
t_rcvdis. If t_alloc is used to allocate the t_call structure, no buffer is
allocated for data. If you allocate a data buffer yourself and set
call->udata.buf and call->udata.len, t_rcvdis ignores the data.

Parent Topic: TLI Functions: AppleTalk Notes

AppleTalk Notes: t_rcvrel

DDP and ADSP do not support an orderly release of a connection.
Therefore, this function is not supported. An attempt to call t_rcvrel results
in the error TNOTSUPPORT.

Parent Topic: TLI Functions: AppleTalk Notes

AppleTalk Notes: t_rcvudata

NOTE: Applies to DDP only.

The maximum amount of data a transport client can receive with a single
call to t_rcvudata is the maximum size of the data area in a DDP packet,
which is 586 bytes.

Parent Topic: TLI Functions: AppleTalk Notes

AppleTalk Notes: t_snd

NOTE: Applies to ADSP only.

When you use t_snd with the T_EXPEDITED flag, the data is sent as an
expedited transport service data unit (ETSDU), also known as an ADSP
Attention message. Attention messages enable two transport clients to
signal each other outside the regular flow of data between them. The
Attention message consists of a 2-byte attention code and up to 570 bytes of
data. When a client sends an Attention message with t_snd, the message is
delivered to buffer space outside the target client's receive queue.

Only one Attention message in each direction may be outstanding

Although the buffer space for expedited data is separate, this data may get
"caught behind" normal data during processing of the data by STREAMS.

Message boundaries are supported in ADSP by setting an optional
end-of-message (EOM) bit. Because message boundaries are optional in
ADSP, there is no limit to the size of a transport service data unit (TSDU).
Therefore, it is possible that every t_snd call sets the T_MORE flag. The

Communication Service Group

AppleTalk: Concepts 16

presence of this flag does not necessarily indicate that more data is available
for t_snd; it may simply mean that the EOM indicator does not appear in the
ADSP data stream.

Conversely, (as mentioned in ATInet_t (appletlk.h)) if you do not set the
T_MORE flag during a call to t_snd, ADSP sets the EOM bit for the packet
containing the data going out on that t_snd call. Because an EOM indicator
must logically be found at the end of an ADSP packet, the use of the
T_MORE flag may influence the size of each packet. For example, if you
send 100 bytes five times, and you do not set the T_MORE flag each time,
ADSP sends the data in five packets, each containing 100 bytes of user data;
the EOM indicator appears at the logical end of each packet. However, if
you send 100 bytes five times using the T_MORE flag on the first four sends,
ADSP may send the data as a single packet; in this case, the EOM indicator
appears at the logical end of the final packet. Keep in mind the performance
benefits of using the T_MORE flag when using t_snd.

Parent Topic: TLI Functions: AppleTalk Notes

AppleTalk Notes: t_snddis

NOTE: Applies to ADSP only.

ADSP does not support the transfer of data during a call to t_snddis. If
t_alloc is used to allocate the t_call structure, no buffer is allocated for data.
If you allocate a data buffer yourself and set call->udata.buf and
call->udata.len, t_snddis ignores the data.

When a transport endpoint on one side of a connection issues t_snddis, any
data queued for that connection or in transit over that connection is
discarded. Therefore, make sure there is no longer any data to send or
receive before you issue t_snddis. t_snddis sends a notification of the
disconnection to the connection partner.

Parent Topic: TLI Functions: AppleTalk Notes

AppleTalk Notes: t_sndrel

DDP and ADSP do not support an orderly release of a connection.
Therefore, this function is not supported. An attempt to call t_sndrel results
in the error TNOTSUPPORT.

Parent Topic: TLI Functions: AppleTalk Notes

AppleTalk Notes: t_sndudata

Communication Service Group

AppleTalk: Concepts 17

NOTE: Applies to DDP only.

When you use t_sndudata with the AppleTalk protocols, keep these points
in mind:

The maximum amount of data a transport client can send with a single
call to t_sndudata is the maximum data size of a DDP packet, which is
586 bytes.

DDP supports two transport options, checksum and ddp_type.

If the opt.buf->checksum field is nonzero, DDP generates a checksum for
the datagram. (The default is zero.)

The opt.buf->ddp_type field should be set to a nonzero value. The default
is 128. A zero value is invalid. Also, remember that Apple* Computer,
Inc. reserves numbers 1 through 15 for its own use.

Parent Topic: TLI Functions: AppleTalk Notes

AppleTalk Notes: t_unbind

After you disconnect a connection endpoint with t_rcvdis or t_snddis, you
can re-use it, but only as a connection endpoint, not as a listener. To use a
connection endpoint as a listener, or vice versa, you need to unbind and
bind again. You need not close the connection endpoint with t_close and
open it again with t_open, or even unbind it.

Parent Topic: TLI Functions: AppleTalk Notes

AppleTalk Overview

This guide is written for NLM programmers using Transport Level Interface
(TLI) functions to communicate with Macintosh clients across the network.
It focuses on the interface to the AppleTalk protocol stack, not on the
internals of the stack. Knowledge of TLI and the AppleTalk network system
are assumed. This guide describes Novell's implementation of TLI and
AppleTalk. Therefore, although a glossary is provided and every attempt
has been made to clarify TLI and AppleTalk concepts, you should rely on
the following sources for TLI and AppleTalk information:

The TLI chapters in this manual

Inside AppleTalk (AppleTalk design and function descriptions)

AppleTalk Services is for NLM™ programmers who want to communicate
over the network with Macintosh clients using the AppleTalk protocol suite.
The following figure shows the general purpose of the protocols in the

Communication Service Group

AppleTalk: Concepts 18

AppleTalk suite. The following table shows the relative equivalency of
NetWare and AppleTalk protocols.

Figure 1. NetWare and AppleTalk Protocols with OSI Layers

Table auto. Comparability of Protocols

NetWare AppleTalk

NCP AFP, ASP, ATP, PAP

SAP NBP

Communication Service Group

AppleTalk: Concepts 19

SPX ADSP

RIP RTMP

IPX DDP

Novell® provides two ways to access the AppleTalk protocols, Transport
Level Interface (TLI).

TLI provides a single interface through which you can access multiple
protocol families, for example IPX/SPX, TCP/IP, and, in the AppleTalk
family, the following two protocols:

Datagram Delivery Protocol (DDP)

AppleTalk Data Stream Protocol (ADSP)

The native AppleTalk functions, exported by APPLETLK.NLM, provide
more direct access to DDP as well as the following five protocols:

Name Binding Protocol (NBP)

Zone Information Protocol (ZIP)

AppleTalk Transaction Protocol (ATP)

AppleTalk Session Protocol (ASP)

Printer Access Protocol (PAP)

IMPORTANT: The information in this chapter provides only an
introduction to the AppleTalk protocols; you are encouraged to read
Inside AppleTalk, Second Edition for complete information on them.

Related Topics

ADSP

DDP

NBP

ZIP

ATP

ASP

PAP

Notes on the AppleTalk Interface, both TLI and Native

AppleTalk Services Restrictions on TLI

Communication Service Group

AppleTalk: Concepts 20

ADSP: This implementation of TLI does not support a forward-reset
mechanism to allow an ADSP client to abort the delivery of outstanding
data to the connection partner.

Parent Topic: TLI Implementation Notes for AppleTalk

AppleTalk TLI Structures

Seven structures are described in this section:

ATInet_t

t_optmgmt (Structure) (used with t_optmgmt (Function))

netbuf

ATAdspOpt_t

ATADdpOpt_t

t_info

t_unitdata

In addition, the TLI chapters in this manual contain descriptions of the TLI
structures above as well as others:

t_bind (Structure)

t_call (t_accept, t_connect, t_listen, t_rcvconnect, and t_snddis functions)

t_discon

t_sndudata

t_rcvudata

t_uderr (used with the t_rcvuderr function)

They are defined in tiuser.h.

Related Topics

Synopsis of the Structures' Functions

ATAdspOpt_t (adsp.h)

t_optmgmt (adsp.h)

netbuf (tiuser.h)

t_info (tiuser.h)

Communication Service Group

AppleTalk: Concepts 21

ATInet_t (appletlk.h)

ATDdpOpt_t (ddp.h)

Parent Topic: TLI Implementation Notes for AppleTalk

AppleTalk Version Function

ATAppletalkVersion, defined in the appletlk.h file, allows your NLM to
request a particular level of interface service and find out which version of
the native AppleTalk interface is running on the local server. The version
described in this manual is 2.0. If you write your NLM to this version of the
interface, call ATAppletalkVersion with major as 2 and minor as 0. If version
2.0 is not running on your server, the function returns 0 (FALSE). (Please
note that although functions usually return 0 to indicate success, in this
function 0 denotes FALSE, and 1 is TRUE.)

AppleTalk Version Functions

Your NLM™ application can now determine which versions of the
AppleTalk TLI interfaces to ADSP are running on the server. By calling
t_optmgmt (Function), you can compare the version you wrote your NLM
for to the one returned by the function. It is essential that you check the
interface version on the server for the following reason: Although Novell
has taken great care to leave the fields of the options structures in the same
position relative to the beginning of the structures, even after they have
become obsolete, as the TransThresh and TransTimerIntrvl options have,
the overall size of these structures has changed. They are larger in this
release than in the previous one. Therefore, before your NLM begins its
normal work, have it check the interface version.

You can use the new ATAppletalkVersion function to find out which
version of the AppleTalk Interface for NLM applications is running on the
local server so that your NLM can select the right function. For example, if
you are using this release of the interface (and using ATAtpGet), call
ATAppletalkVersion, requesting this release (2.0). If it is not running on
your server, an error is returned. (Although functions usually return a
nonzero value to indicate an error, this function returns 1 to indicate no
error.)

Parent Topic: Notes on the AppleTalk Interface, both TLI and Native

ASP

AppleTalk provides a reliable transaction service, via ATP, that can be used

Communication Service Group

AppleTalk: Concepts 22

for transporting workstation commands to servers. However, ATP does not
provide the full range of transport functions needed by many higher-level
network services. AppleTalk Session Protocol (ASP) was designed
specifically for the use of these higher-level services.

ASP is a client of ATP; it adds value to ATP, providing the level of transport
service needed for higher-level workstation-to-server interaction.

ASP provides the following services:

Setting up (opening) and tearing down (closing) sessions

Sending commands on an open session to the server and returning
command replies (which might include a block of data)

Writing blocks of data from the workstation to the server end of the
session

Sending an attention from the server to the workstation

Retrieving service status information from the server without opening a
session

The concept of a session is central to ASP. Two network entities, one in a
workstation and the other in a server, can set up an ASP session between
themselves. A session is a logical relationship (connection) between two
network entities; it is identified by a unique session identifier (session ID).
For the duration of the session, the workstation entity can (through ASP)
send a sequence of commands to the server entity. ASP ensures that the
commands are delivered without duplication in the same order as they
were sent and conveys the results of these commands (known as a
command reply or reply) back to the workstation entity.

The process of setting up a session is always initiated by the workstation
entity when it wants to use the server entity's advertised service. Once the
session is established, the workstation client of ASP sends commands, and
the server client of ASP replies to the commands. ASP does not allow its
server client to send commands to the workstation client. However, ASP
provides an attention mechanism by which the server can inform the
workstation of a need for attention.

More than one workstation can establish a session with the same server at
the same time. ASP uses the session ID to distinguish between commands
received during these various sessions. The session ID is unique among all
the sessions established with the same server.

A server entity that needs to make its service known on the AppleTalk
network calls ASP to open an ASP responding socket and then calls the
Name Binding Protocol (NBP) to register a unique name on this socket. ASP
then starts listening on the socket for session-opening commands coming
over the network. A workstation that wants to use the advertised service
uses NBP to identify the service's socket address. Then the workstation
client calls ASP to open a session.

Communication Service Group

AppleTalk: Concepts 23

Setting up a responding socket and looking for the socket's address through
NBP are done outside the scope of ASP. The participation of ASP starts with
the process of setting up a session.

ASP does not provide a user authentication mechanism. If needed, this
mechanism must be supplied by a higher-level protocol than ASP. In
addition, ASP does not provide any mechanism to allow the use of a
particular session by more than one server entity. Such multiplexing of a
session can be done by the ASP clients if higher-level protocols divide the
function codes into ranges and manage them completely outside the scope
of ASP. The use of a single session to gain access to various services on the
same node is not recommended.

The ATAspCloseSession function has not been implemented. This is
because each file descriptor is a session, so when a close is wanted,
ATAspClose should be called on that file descriptor.

For a full description of the ASP functions, see AppleTalk: Functions.

Parent Topic: AppleTalk Overview

ASP and NetWare

ASP is a transaction-oriented, reliable session protocol. Novell offers an
interface to the server side of this protocol that is different from that
suggested in Inside AppleTalk, so a brief discussion of the interface is in order.
Follow along on the following figure.

IMPORTANT: An interface to the workstation side is not provided.

Figure 2. ASP Flowchart

Communication Service Group

AppleTalk: Concepts 24

Communication Service Group

AppleTalk: Concepts 25

ASP, like most session protocols, has listeners for opening sessions, and
regular sockets for data transfer. Listeners are Server Listener Sockets, or
SLSs, and the data transfer sockets are Server Session Sockets, or SSSs.

First you need an SLS. All sockets and sessions reside on NetWare CLIB file
descriptors, so create a new ASP file descriptor by calling ATAspOpen.

Next decide how you want to cope with the status requests that come in. The
options are to reply to each status message individually or to set the status
message once and have all requests be answered with that response.
Usually the latter suffices. An example of how the former could be useful
would be if, for security reasons, you wanted to show a busy status to
requests from a particular network, but idle status to other networks.

Having made that decision, call ATAspSLSInit to make this file descriptor
into an SLS, and set the stat_flag parameter appropriately. Call ATAspGet
and wait for the event ASP_EVENT_SLS_INIT to come up. Look in the
pass->ret field to make sure the initialization succeeded. In the single-status
case, now call ATAspSetStat with the status string you desire.

The SLS is properly initialized now. You wait for events to come up by
calling ATAspGet. When an event comes up, service it, then go back to
calling ATAspGet to get the next event. In this way, the interface is
event-oriented. If you want to not have a process block on this file
descriptor, poll for readability with the CLIB poll function. The two valid
events in this state are ASP_EVENT_OPEN_REQ and
ASP_EVENT_SLS_STATUS_REQ. The ASP_EVENT_SLS_STATUS_REQ
event is received in cases when you indicated the desire to respond to each
status request individually. You should respond with ATAspSendStat.
When an ASP_EVENT_OPEN_REQ comes up, decide if you want to accept
the connection. Possible reasons for rejecting it would be that there are too
many connections already (licencing) or a connection request arrived from
an unauthorized address (in pass->U.OpenReq.addr). If you want to reject the
connection request, call ATAspSLSReject, handing back the address and ID
that came up in the pass structure of the ATAspGet.

To accept the session, you create an SSS. Thus, you need to create a new file
descriptor that becomes the SSS by calling ATAspOpen. On this new file
descriptor, call ATAspSSSInit with the address and ID that came up in the
pass structure on the ATAspGet call on the SLS file descriptor. The other
parameter, fastwrite, refers to how write requests are handled and is
explained shortly. The ASP_EVENT_SLS_OPEN_REQ becomes fulfilled,
and ATAspGet should be called to get another event.

But now you have an SSS to process. Since ASP is an asynchronous
protocol, the server side receives requests and rarely generates transactions.
Thus, ATAspGet should be called in a loop, over and over, satisfying the
requests that come in. There are two major kinds of requests, command
requests (ASP_EVENT_SSS_CMD_REQ) and write requests
(ASP_EVENT_SSS_WRITE_REQ). Command requests probably make up
the bulk of requests and are simple to satisfy; when you know the answer to

Communication Service Group

AppleTalk: Concepts 26

the request, call ATAspCmdReply to send it to the workstation.

Write requests involve the complex inverted double transaction explained
best in Inside AppleTalk. After receiving the ASP_EVENT_SSS_WRITE_REQ
event and the associated data, you can decide if the request is in error and, if
so, call ATAspWReply with an error code, terminating the write before the
second transaction. However, if it appears to be good or if you can't tell yet
if there is an error, call ATAspWCont with the write buffer size you are
willing to accept, and call ATAspGet, waiting for an
ASP_EVENT_SSS_WRITECONT_REPLY. This event has the write data, the
second part of the write transaction. After receiving the full write data, call
ATAspWReply with either success or failure to terminate the write. Go back
to reading ATAspGet for the next request.

Notice that a significant optimization can be made here. The only data to the
ATAspWCont call was the buffer size to be accepted. Most applications
want this to be as large as possible, such as ASPQuantumSize (retrieved
using the ATAspGetParms function). If this is true of your application,
when you initialize the session using ATAspSSSInit you can activate the
Fastwrite option. In this option, the protocol doesn't wait for the application
to call ATAspWCont. It sends to the workstation the write continue request
immediately, with a buffer size of ASPQuantumSize.

The action that occurs completely out of band is the Attention message. The
server end is allowed to initiate actions by sending attention messages. An
example of this use is to send the AFP client notification that a message has
arrived that should be displayed on the screen, such as imminent shutdown
of the file server. Previously, workstations had to poll the server, which
could create large load on mostly idle, large node networks. The server
sends an Attention message by calling ATAspAttn, using an SSS file
descriptor. The acknowledgment that the attention arrived comes up as an
ASP_EVENT_SSS_ATTN_REPLY and occurs at any time. A complication of
this process arises in the write request handling. After calling
ATAspWCont, wait for ASP_EVENT_SSS_WRITECONT_REPLY, but an
ASP_EVENT_ATTN_REPLY may come up instead. Beware.

In order to close any socket, SLS or SSS, call ATAspClose. Calling
ATAspClose causes rather drastic, abort-like closes. When an SLS is closed,
all SSSs created from that SLS is aborted as well. On an SSS, there is no
guarantee that outstanding data is delivered, and although an attempt is
made to notify the client, the system doesn't wait for the client to
acknowledge the close. Therefore, it is good for the application to provide
close semantics as well. (AFP does this with the AFPLogout command.)
When the workstation wants to close a session, an
ASP_EVENT_SSS_CLOSE comes up. On the server side, the session isn't
closed then but when ATAspClose is called, so call it soon.

Low Memory and AppleTalk: Low memory conditions create some
noteworthy challenges. The general goal of the interface is to attempt to
survive resource limitation spikes but start closing connections when the
limitations become chronic. How much is enough for the interface to do in
this regard is still an open issue. In general, Novell attempts to deliver

Communication Service Group

AppleTalk: Concepts 27

whatever possible; however, we have no control over STREAMS policies for
delivering the data.

Buffer Tips: Be aware that most buffers can be passed in as zero pointers if
you want to pass in no buffer. You also need to pass in a length of 0.

Making the Right ASP Call at the Right Time: Because ASP is a
state-oriented protocol, making the wrong call at the wrong time could
result in errors. The ASP Flowchart shows which functions to call at which
time. ASP sends the message up to the Stream head and it is then out of
ASP's jurisdiction; it's at that point that the state changes. It is good practice
to receive events in a timely fashion, that is, to read off the Stream head
quickly. Do not make assumptions about which state exists, such as "I will
receive a message, thus I will be in abc state, therefore xyz function is OK to
call now."

Related Topics

Parent Topic: ASP and NetWare

ASP Function List

Table auto. AppleTalk Services ASP Functions

Function Purpose

ATAspAttn Sends an attention request to the remote WSS
(workstation session socket).

ATAspClose Closes the session

ATAspCmdRe
ply

Sends a command reply.

ATAspGet Reads an event from the ASP protocol.

ATAspGetPar
ms

Allows a client to find particular constants befpre a
session is active

ATAspGetWor
kstation

Returns the AppleTalk address of the workstation to
which this file descriptor is connected.

ATAspOpen Opens a file descriptor for reading and writing, but
does not bind a session to this file descriptor.

ATAspSendSta
t

Replies to a GetStatus request received through an
ATAspGet function.

ATAspSetStat Sets the status string on an SLS (session listening
socket) when an ATAspGetStatus packet is received.

ATAspSLSInit Makes the specified file descriptor into an SLS
(session listening socket)

ATAspSLSReje
ct

Rejects a request to open a connection.

Communication Service Group

AppleTalk: Concepts 28

ATAspSSSInit Creates a new SSS (server session socket) when a
request comes in.

ATAspWCont Sends a write continue request.

ATAspWReply Sends a write reply.

ATAdspOpt_t (adsp.h)

typedef struct ATAdspOpt {
 char Major;
 char Minor;
 char Revision;
 unsigned char reserved1;
 unsigned short TransThresh; /* Obsolete */
 unsigned TransTimerIntrvl; /* Obsolete */
 unsigned char reserved2[118];
} ATAdspOpt_t;

Major AppleTalk interface major version number. See
Synopsis of the Structures' Functions for details.

Minor AppleTalk interface minor version number. See
Synopsis of the Structures' Functions for details.

Revision AppleTalk interface revision version number. See
Synopsis of the Structures' Functions for details.

IMPORTANT: Please note that you must retrieve the defaults before
changing any values.

Parent Topic: AppleTalk TLI Structures

ATDdpOpt_t (ddp.h)

You can set five fields in this structure, the DDP options checksum and data
type and the AppleTalk version number. Checksum and data type are
described below. See Synopsis of the Structures' Functions for an
explanation of version number fields.

The t_unitdata and t_uderr structures have an opt field, which lets you access
protocol options. opt points to a netbuf structure, which contains the *buf
field, which in turn points to the ATDdpOpt_t structure:

typedef struct ATDdpOpt {
 u_short checksum; /* optional */

Communication Service Group

AppleTalk: Concepts 29

 u_char ddp_type; /* required */
 char major; /* a read-only option */
 char minor; /* a read-only option */
 char revision; /* a read-only option */
} ATDdpOpt_t;

checksum Enables the sending client to indicate whether DDP
should calculate a checksum for a packet it sends out.
The DDP header contains a checksum field, in which
the value of the checksum appears.

ddp_type The DDP header contains a DDP type field, an
unsigned byte field that identifies the protocol
contained in the data section of the datagram.

major AppleTalk interface major version number. See
ATAdspOpt_t (adsp.h) and Synopsis of the Structures'
Functions for further explanation.

minor AppleTalk interface minor version number. See
ATAdspOpt_t (adsp.h) and Synopsis of the Structures'
Functions for further explanation.

revision AppleTalk interface revision version number. See
ATAdspOpt_t (adsp.h) and Synopsis of the Structures'
Functions for further explanation.

A nonzero value in the checksum field of the ATDdpOpt_t structure causes
DDP to generate a checksum when a transport client sends a datagram. If
the checksum field of a DDP datagram is nonzero when the datagram arrives
at its destination, DDP verifies the checksum. If the checksum is valid, DDP
passes the packet on to the next protocol layer. If the checksum is in error,
DDP discards the packet.

The checksum option also enables a receiving client to verify whether the
sender has used a checksum. Therefore, if a transport client receives data
with t_rcvudata, and the checksum field of ATDdpOpt_t is nonzero, it is
considered "polite" to send subsequent datagrams using a checksum.

If the checksum field of ATDdpOpt_t is 0, DDP does not calculate a
checksum. The default value is 0.

The checksum option controls the use of checksums only on send, and does
not automatically affect the use of checksums on other transport endpoints.
The use of checksums is not universal, because it does add some overhead
to the handling of a packet. However, we recommend the use of checksums
in large internets where packets may become corrupted when crossing
multiple repeaters or routers.

NOTE: Even if you do not specify the use of checksums in this way,
they may be turned on for the AppleTalk stack as a whole. This is true
for DDP and ADSP.

Communication Service Group

AppleTalk: Concepts 30

Apple Computer, Inc. has established the following universally known
values for the data_type field of the DDP packet:

0 Invalid (do not use)

1 Routing Table Maintenance Protocol (RTMP)
response or data packet

2 Name Binding Protocol (NBP) packet

3 AppleTalk Transaction Protocol (ATP) packet

4 AppleTalk Echo Protocol (AEP) packet

5 RTMP request packet

6 Zone Information Protocol (ZIP) packet

7 AppleTalk Data Stream Protocol (ADSP) packet

Values 8 through 255 are valid but not universally known. Apple
Computer, Inc. has reserved values 1 through 15 for its own use.

When a transport client receives a datagram with t_rcvudata, the ddp_type
field of ATDdpOpt_t is set to the DDP type field in the DDP header.

When a client sends a datagram with t_sndudata, the DDP type field of the
DDP header is set to the value specified by the ddp_type field of
ATDdpOpt_t.

The default value is 128.

Parent Topic: AppleTalk TLI Structures

ATInet_t (appletlk.h)

For information about these address designations, see Inside AppleTalk.

typedef u_short ATNet;
typedef u_char ATNode;
typedef u_char ATSocket;
typedef struct ATInet {
 ATNet net;
 ATNode node;
 ATSocket socket;
} ATInet_t;

net Network (cable) number

node Node number

socket Socket number

Communication Service Group

AppleTalk: Concepts 31

IMPORTANT: Remember that this structure is in Intel byte order.

Parent Topic: AppleTalk TLI Structures

ATP

ATP operates at the transport layer of the OSI model. It adds reliability to
lower-layer services by providing loss-free delivery of packets from a source
socket to a destination socket.

Central to ATP is the concept of a transaction. One socket client, called a
requester, requests a service from another socket client using a Transaction
Request (TReq) packet. The target socket client, called the responder,
executes the request and reports the outcome to the requester in one or more
Transaction Response (TResp) packets. The interaction between the
requester and the responder constitutes the transaction.

Because the requester can send out several TReq packets, the socket client
must have a way of distinguishing which response corresponds to each
request. To identify each unique request, the requester generates a 2-byte
transaction identifier (TID) in the header of the TReq packet.

Further, because the responder can send out multiple TResp packets as part
of a single TResp message, each TResp packet contains a sequence number
to identify the sequential position of the packet in the TResp message. The
ATP header provides a 1-byte bitmap/sequence field to hold this sequence
number. The value of this field in the TResp packet is an integer in the range
0 through 7, because up to 8 TResp packets can constitute a single TResp
message.

In a TReq packet, the bitmap/sequence field contains the transaction
bitmap. The transaction bitmap indicates the number of buffers reserved by
the requester for the packets that make up the TResp message. The
transaction bitmap also indicates which packets in a message the requester
has received. The responder can examine the TReq packet's bitmap and
determine the number of TResp packets the requester is expecting.

If a TReq is lost in the internet, or if a TResp is delayed in transit, the
transaction process must have a way of recovering. ATP uses two recovery
methods, each one corresponding to a different transaction type. The
transaction types are these:

At-least-once (ALO) transaction

Exactly-once (XO) transaction

An ALO transaction implements a recovery mechanism that ensures a
request is executed at least once. This recovery mechanism is appropriate
for a request that can be executed more than once without serious

Communication Service Group

AppleTalk: Concepts 32

consequences, such as a request for a node to identify itself.

An XO transaction implements a recovery mechanism that ensures a request
is executed only once. This recovery mechanism is appropriate for a request
that cannot be executed more than once without causing serious
consequences, such as a request to open a file.

In an XO transaction, the responder uses a transactions list in order to filter
out duplicate requests. Each request is time-stamped when it enters the list.
When a requester receives a TResp packet showing that the request was
serviced, the requester should send a Transaction Release (TRel) packet to
the responder. The TRel packet signals the responder to remove the request
from the transactions list. If the TRel packet is not sent, or if it is lost in
transit, the responder still has a mechanism for removing an obsolete
request from the list. The responder checks the list periodically, and
removes any request that has been in the list longer than the time specified
by the release timer.

For a full description of the ATP functions, see AppleTalk: Functions.

Parent Topic: AppleTalk Overview

ATP and NetWare

Inside AppleTalk provides the definitive explanation of the ATP protocol.
This discussion briefly describes the NetWare interface and how it differs
from the one suggested in Inside AppleTalk.

ATP is a reliable, connectionless, transaction-oriented protocol. The basic
semantics of ATP are the request and the response. ATP would be used in a
connectionless environment where reliability is necessary or where the
work being done is transaction-oriented. In some custom environments, the
relative simplicity of implementing ATP on another platform could lead to
choosing ATP over other protocols.

ATP is the foundation of the ZIP, ASP, and PAP protocols. If the ASP and
PAP protocols do not fill your exact needs, it would not be difficult to create
your own session-oriented protocol over ATP.

Related Topics

XO or ALO?

Opening a File Descriptor for ATP

About Receiving Data in General

Sending Requests in ATP

Sending Replies in ATP

About Transaction IDs

Communication Service Group

AppleTalk: Concepts 33

About Sockets and ATP

ATP Function List

Table auto. AppleTalk Services ATP Functions

Function Purpose

ATAtpCancelRe
cvReq

Allows you to terminate a received XO request
prematurely.

ATAtpCancelSe
ndReq

Allows a request transaction generated by the local
endpoint to be terminated earlier.

ATAtpClose Closes a previously opened socket that this file
descriptor is associated with.

ATAtpGet Retrieves the next event from the protocol client.

ATAtpOpen Opens a socket that listens for packets from the file
descriptor that is returned by this function.

ATAtpSendReq Sends a request to a remote endpoint. Its answers
return in ATAtpGet.

ATAtpSendRsp Sends a response to a remote requesting endpoint.

Blocking in NBP

Although it would have been possible for Novell to write a nonblocking
NBP interface, it is the basic nature of NBP to wait for a certain amount of
time. Therefore, all NBP functions are blocking (threads are sent to a queue)
while they are waiting to receive information. Because an NBP lookup has
to wait until the retry is exhausted before returning results (if the buffer
hasn't filled up before that), this could be a significant amount of time.

WARNING: Beware of a problem inherent in a blocking interface,
that is, the issue of who is able to close file descriptors. For example
in Netware, if an NLM is unloaded while one of these functions is in
progress, CLIB cleans up the resources in use, including the file
descriptors. If this is not desirable, your NLM must not let itself be
unloaded while an NBP function is in progress.

The NBP functions described in AppleTalk: Functions are approximately
(but not exactly) equal to UNIX SVR4* functions and the last version of this
AppleTalk interface, v1.3.

Parent Topic: NBP and NetWare

Communication Service Group

AppleTalk: Concepts 34

Client-End Connection: Opening a WSS

PAP is based on CLIB, and all sessions are referred to with CLIB file
descriptors, which lead to STREAMS underneath. Therefore, first you must
call ATPapOpen to get a file descriptor.

Next, to attempt to open a connection, call ATPapConnect and pass in the
following data: the file descriptor (fd), the AppleTalk address to connect to (*
addr), the waittime value (waittime_waited), and the time, in seconds, to
attempt the connection (retry_time). The AppleTalk address is the address of
the server, and is usually discovered with the NBP protocol. The
waittime_waited value is a number of seconds you give to the server that the
server uses to enforce fairness among those trying to connect. The principle
is that those who have waited the longest time should be connected first;
hence, requests with the highest waittime_waited values are connected before
those with lower values. Set this value to the total length of time, in seconds,
that you have been attempting to connect.

Next, call ATPapGet with a 256-byte buffer, waiting for a
PAP_EVENT_OPENSESS_REPLY event. If you don't want to block your
thread while waiting for this reply, use the CLIB poll function to determine
when the file descriptor is readable. The pass->ret field, returned by
ATPapGet, contains whether the connection attempt succeeded or failed,
and the status message is placed in the buffer. If the function succeeded,
you now have an open WSS and can continue into the data transfer phase.
If the function failed, you must decide whether to continue attempting to
connect, in which case you would either repeat the first part of the
connection process, incrementing the waittime field with the amount of time
you've been waiting, or give up and report an error to your user.

Finding the status of the server is part of establishing connections. Many
implementations display the status to the user while attempting to connect.
To get the status, call ATPapGetStatus on any available file descriptor.
Often it is reasonable to use the file descriptor you have opened for the
connection. If you are attempting to find the status on multiple printers,
they can all share the same file descriptor. Use ATPapGet with a buffer of
256 bytes to receive the PAP_EVENT_GETSTAT_REPLY message. The
buffer is filled with the status. You can de-multiplex among many
outstanding replies by looking at the pass->U.GetStat.id and
pass->U.GetStat.addr fields.

Parent Topic: Opening a Connection in PAP

Closing a Connection in PAP

If you want to close a connection, you might want an orderly close, which
waits for all data written into PAP to be written to the remote endpoint, or
you might want to abort the connection. If you want an orderly close, call

Communication Service Group

AppleTalk: Concepts 35

ATPapDisconnect. After this, ATPapWrite is no longer be valid even
though PAP_EVENT_DATA messages can continue to come in. When all
data has been written to the remote endpoint, the PAP_EVENT_DISCONN
event flows up, indicating that it is safe and desirable to call ATPapClose.
To effect an abortive close, simply call ATPapClose.

Parent Topic: PAP and NetWare

DDP

DDP operates at the network layer of the OSI model. It provides best-effort
delivery of data across an AppleTalk internet.

DDP provides each protocol client in a node with an addressable entity
known as a socket. Protocol clients can associate themselves with one or
more sockets within their nodes and exchange packets through them. The
packets exchanged through this DDP service are called datagrams.

Using the services of TLI, you can access DDP to carry out these tasks:

Create a transport endpoint (file descriptor)

Bind the transport endpoint to an AppleTalk address

Send datagrams

Receive datagrams

Receive an error associated with a sent datagram

Unbind

Close a transport endpoint

For details on using native functions to access DDP, see DDP.

For information on using TLI functions to access DDP, see TLI Functions:
AppleTalk Notes.

Parent Topic: AppleTalk Overview

DDP and NetWare

ATDdpOpen now returns the file descriptor as a parameter, not as the
return code from the function.

ATDdpOpen no longer allocates the socket. This is done with
ATDdpRegisterListener.

Communication Service Group

AppleTalk: Concepts 36

Packets sent must have the src_socket field filled in properly.

Although the send routine has been changed from write to ATDdpWrite,
write still works.

Related Topics

Opening a File Descriptor for DDP

Registering Listeners

Sending DDP Packets

Receiving DDP Packets

DDP Function List

Table auto. AppleTalk Services DDP Functions

Function Purpose

ATDdpClose Closes a socket opened by ATDdpOpen.

ATDdpDeregister
Listener

Removes a listener on the specified file
descriptor.This file descriptor stops receiving all
DDP packets destined to that socket.

ATDdpNetinfo Gets information about this interface.

ATDdpOpen Opens a file descriptor on the local host for
reading and writing but does not bind an
AppleTalk socket to this file descriptor.

ATDdpRead Reads a packet.

ATDdpRegisterLi
stener

Allows a DDP client to begin listening on a
particular socket.

ATDdpWrite Sends a packet.

Differences in NBP between Versions 1.x and 2.0

The NBP interface has four new functions. For the functions that already
existed, the changes are minimal in that they concern a small number of
parameters. These changes are summarized for you below.

ATRetry_t Structure: First, the ATRetry_t structure has changed. An
additional field has been added, backoff. It allows you to increase the interval
between successive retries. And the interval between retries is now
measured in milliseconds, not seconds.

Here is the new structure:

Communication Service Group

AppleTalk: Concepts 37

typedef struct ATRetry {
 u_long interval; /* Retry interval in
 milliseconds */
 short retries; /* Maximum number of
 retries */
 u_char backoff; /* Retry backoff, must
 be 0 through 4 */
} ATRetry_t;

However, all the functions that use the ATRetry_t structure allow the
passing in of 0 instead of a pointer to the retry structure. If you pass in 0,
everything still works. For a discussion of this structure, see ATRetry_t.

The more flag is used to control whether the function returns as soon as the
buffer fills or waits until max+1 replies return. Input of 1 means to wait.
more returns whether the buffer overflowed or not; 1 means the buffer
overflowed. TheATNbpLookup function uses a ATRetry_t structure. Those
changes are as noted above.

Parent Topic: NBP and NetWare

Fastwrite

Fastwrite is an option that simplifies the ASP write dialogue. The
ATAspWCont function need not be called. You activate this option with the
ATAspSSSInit function, on a per-session basis.

The only data in ATAspWCont is the size of the buffer expected back, but
normally this is the ASP quantum size. Many clients may want to wait for
the ASP_EVENT_WRITE_CONT data before committing to success or
failure of the transaction, and thus rarely call ATAspWReply after the
ASP_EVENT_SSS_WRITE_REQ. For these applications, Novell® offers
Fastwrite.

The normal flow for the server side of a write transaction follows this
sequence:

1. Get an ASP_EVENT_SSS_WRITE_REQ

2. Call ATAspWCont

3. Get an ASP_EVENT_SSS_WRITECONT_REPLY

4. Call ATAspWReply

With Fastwrite, the ATAspWCont must not be called. The size of the buffer
is automatically sent to the workstation as the ASP quantum size. The
ATAspWReply must be called after the
ASP_EVENT_SSS_WRITECONT_REPLY arrives and any error can be
indicated then.

Communication Service Group

AppleTalk: Concepts 38

Also note that since two events arrive at the same time, it is possible to
receive them out of order in NetWare if there are multiple threads servicing
the same file descriptor.

ASP and NetWare

How to Determine Structure Sizes for AppleTalk

You can get ADSP- or DDP-specific information by calling t_open, which
returns a t_info structure. This structure contains the sizes of the address
and options structures for each protocol.

Parent Topic: Synopsis of the Structures' Functions

How to Determine the ADSP Interface Version

Because t_optmgmt (Function) doesn't involve any network traffic, it allows
you to take care of version management prior to launching into the normal
work of your NLM. This explanation uses the ATAdspOpt_t structure but
the ATDdpOpt_t structure works the same way.

As shown in the following figure, the t_optmgmt function points to two
t_optmgmt (Structure) structures, req and ret. The t_optmgmt structures
include a netbuf structure and a flags field. The netbuf structure contains a
pointer to an ATAdspOpt_t structure (adsp.h).

Figure 3. t_optmgmt Structures

Communication Service Group

AppleTalk: Concepts 39

The major, minor, and revision version numbers are defined as shown in
the following figure.

Figure 4. Version Numbers

Communication Service Group

AppleTalk: Concepts 40

The major number of the ADSP interface is "revved" (increased in value)
when a release contains one or more new functions, the minor number is
revved when options have changed, and the revision number is revved
when the size of an options buffer has changed.

The flags field of t_optmgmt (Structure) gives you the choice of negotiating
an option, checking compatibility, or retrieving the default option. These

Communication Service Group

AppleTalk: Concepts 41

settings are defined in the t_optmgmt (Function) description as follows:

T_NEGOTIATE---This action enables the user to negotiate the values of
the options specified in req with the transport provider. The provider
evaluates the requested options and negotiates the values, returning the
negotiated values through ret.

T_CHECK---This action enables the user to verify whether the options
specified in req are supported by the transport provider. On return, the
flags field of ret has either T_SUCCESS or T_FAILURE set, to indicate to
the user whether the options are supported. These flags are only
meaningful for the T_CHECK request.

T_DEFAULT---This action enables a user to retrieve the default options
supported by the transport provider into the opt field of ret. In req, the len
field of opt must be zero and the buf field may be NULL.

Because the version is implemented as a read-only option, the first choice is
not useful. The second choice returns T_SUCCESS only if the version
numbers match exactly. Therefore, use the T_DEFAULT choice.

In the netbuf of req, set len to zero and buf to NULL. When the function
completes, ret still has the T_DEFAULT flag set, len is nonzero, and buf
points to a char* buffer that you have to cast to the type struct ATAdspOpt
(see adsp.h) in order to access its contents. (STREAMS and TLI are unaware
of the type of information in the buffer; therefore, you need to type cast it to
separate the data into the fields of ATAdspOpt_t.) Compare the Major and, if
desired, the Minor and Revision fields returned with the following #define
values in adsp.h:

#define ADSP_MAJOR 2
#define ADSP_MINOR 0
#define ADSP_REVISION 0

Parent Topic: Synopsis of the Structures' Functions

Internationalization and AppleTalk

Internationalization is a pertinent issue in all the AppleTalk protocols,
especially in the NBP and ZIP protocols, where the strings are part of the
actual protocol (object and zone names). The status strings of ASP and PAP
must also be considered.

Even though AppleTalk is built to transport byte strings without making
sense of them, in most cases the lower 7 bits of ASCII will be valid.
Therefore, special characters like * and = will be noticed correctly.

The decision of which character set to use to send out strings falls to the API
client. In most cases it will be obvious that the character set called MacASCII
should be used. It is specified in Inside AppleTalk. The other commonly used
character set is MacKanji, a SHIFT-JIS implementation.

Communication Service Group

AppleTalk: Concepts 42

Parent Topic: Notes on the AppleTalk Interface, both TLI and Native

Loaded But Unbound Stack

In this version of the interface, it is possible for the stack to be active but not
yet bound to a net and node number when higher-level services try to use it.
The services are allowed to bind and open sockets and file descriptors
anyway, even though the stack is not bound to any node. DDP is in charge
of issuing error messages to the system console, stating that services are
registered but the stack is not bound.

Similarly, APPLETLK.NLM can now be directly on the wire; therefore, its
node and net number can change. When the net number alone changes, the
services will not be notified. When the node number changes, the stack will
become unconfigured, then reconfigured again. This is the same as
unbinding and then rebinding from the console. Upper-level services will be
notified by their protocol layer. In general, listeners will not close, and will
keep whatever NBP registration they had made in hopes that the situation is
transitory. Open sessions will close, most likely with an ENETDOWN error.

Parent Topic: Notes on the AppleTalk Interface, both TLI and Native

Loading ADSP.NLM

To use ADSP, you must have ADSP.NLM and TLI.NLM loaded.
ADSP.NLM contains the AppleTalk Data Stream Protocol (ADSP), so in
order for your application to access ADSP, you must load ADSP.NLM
before you load your application. TLI.NLM contains the TLI interface
functions that access ADSP.

Parent Topic: Notes on the AppleTalk Interface, both TLI and Native

Loading APPLETLK.NLM

APPLETLK.NLM contains the AppleTalk protocol stack and the AppleTalk
router. In order for your application to access the AppleTalk protocol stack,
you must load APPLETLK.NLM before you load your application.

Further, because you must load APPLETLK.NLM with a configuration
specific to each network on which it runs, your NLM should never
"autoload" APPLETLK.NLM using the NLM link utility's MODULE
command.

Parent Topic: Notes on the AppleTalk Interface, both TLI and Native

Communication Service Group

AppleTalk: Concepts 43

NBP

When you develop an NLM to provide a service to Macintosh clients, you
must register the service with the internet. The Name Binding Protocol
(NBP) exists for this purpose.

Central to an understanding of NBP is the concept of a network-visible
entity, or NVE. An NVE is any entity accessible over an AppleTalk internet.
Each NVE has an entity name. An entity name consists of three
fields---object name, type, and zone.

Each node maintains a names table containing name-to-internet address
mappings of all entities in that node; these mappings are known as
name-address tuples. The names directory is a distributed database of all
the name-to-address mappings in the AppleTalk internet.

NBP uses the names directory to perform name binding; that is, NBP uses
the names directory to map each entity name to its AppleTalk internet
address. Using NBP, a socket providing services can register its entity name
in the names table, or delete its name from the names table. A client can use
NBP to look up a server's AppleTalk internet address before sending a
request for service.

For a full description of the NBP functions, see AppleTalk: Functions.

Parent Topic: AppleTalk Overview

NBP and NetWare

See the following for information about NBP:

Differences in NBP between Versions 1.x and 2.0

NBP Structures

Blocking in NBP

NBP Function List

Table auto. AppleTalk Services NBP Functions

Function Purpose

ATNbpConfirm Verifies that the network address of the specified
NBP entity is still valid.

ATNbpDirected Directs a lookup query to a particular node.

Communication Service Group

AppleTalk: Concepts 44

ATNbpDirected
Lookup

Directs a lookup query to a particular node.

ATNbpLookup Searches of the names directory and returns a
mapping of the specified entity's name to its
internet address(es).

ATNbpMakeEnt
ity

Creates a complete three-part NBP entity.

ATNbpMakeEnt
ityXlate

Has the same uses as ATNbpMakeEntity, but also
translates the incoming object, type, and zone
strings from the local code page to the MacASCII
code page.

ATNbpParseEnt
ity

Converts a string from the "object:type@zone" form
to the three-part NBP entity form.

ATNbpRegister Registers a service by file descriptor so that it
becomes visible on the internet.

ATNbpRegByA
ddr

Registers a service by its AppleTalk socket number
alone.

ATNbpRemove Removes an NBP registration from the local names
table

ATNbpRemove
ByAddr

Removes an NBP registration from the local names
table.

NBP Structures

NBP has defined three data structures, an NVE (network visible entity), an
entity, and a tuple. All these are discussed at the beginning of this chapter
under "Structures."

An NVE is a single network string defined as follows:

Uses the MacASCII character set

Is less than or equal to 32 characters in length

Is length-preceded (P string)

An entity is a set of three of these strings, the object, type, and zone strings.
This entity is also thought of as a service "name," and is unique across an
internet. An NBP tuple is the combination of the entity name and the
AppleTalk internet address that corresponds to the net,node,socket where
that name is.

Parent Topic: NBP and NetWare

netbuf (tiuser.h)

Communication Service Group

AppleTalk: Concepts 45

In TLI, netbuf structures are buffers that are used for passing three types of
information: addresses, options, and data. Both DDP and ADSP use the
netbuf structure for addresses and options, but only DDP uses it for data.
(ADSP uses function parameters.)

struct netbuf {
 unsigned maxlen;
 unsigned len;
 char *buf;
};

maxlen Maximum bytes the buffer can hold

len Number of valid bytes of data in the buffer

buf Points to an options structure, ATDdpOpt_t or
ATAdspOpt_t

There can be two types of data, the type that is passed when connecting or
disconnecting and the type that is passed when sending or receiving (
transferring) data. AppleTalk only allows the second type.

Since DDP is a connectionless protocol, it relies upon having a maximum
length of data that can be transferred. Hence it uses netbufs to transfer data.
For transferring data, DDP uses the t_unitdata structure, which includes
three netbufs:

struct t_unitdata {
 struct netbuf addr;
 struct netbuf opt;
 struct netbuf udata;
};

To allocate netbufs, call t_alloc, which figures out the right maxlen for you.
It allocates a buffer of size maxlen, sets maxlen to this length, and sets buf to
point to the buffer. You need only fill in the len field to indicate the number
of valid bytes in the buffer. With addresses and options, len usually is the
same each time, but with DDP data, len could vary.

For all functions using addr, the data referenced by addr.buf is in the
structure ATInet_t (defined in appletlk.h). Therefore, to interpret the
address, cast addr.buf to (ATInet_t *).

On the other hand, AppleTalk did not set a maximum amount of transfer
data on ADSP; connection-oriented protocols commonly have no maximum.
Hence, TLI provides direct data-length parameters in its connection-mode
send and receive functions.

Parent Topic: AppleTalk TLI Structures

Communication Service Group

AppleTalk: Concepts 46

Notes on the AppleTalk Interface, both TLI and
Native

Important issues to be aware of are summarized in the following:

AppleTalk Version Functions

Loaded But Unbound Stack

AppleTalk Byte Ordering

Referencing Zones

Referencing Names

Loading APPLETLK.NLM

Loading ADSP.NLM

The Internal AppleTalk Network

AppleTalk Internet Addresses

Internationalization and AppleTalk

Parent Topic: AppleTalk Overview

Opening a Connection in PAP

To open the connection dialogue, you open either a Workstation Session
Socket (WSS) or, on the server end, a Server Session Socket (SSS). This
discussion covers opening a WSS first, then an SSS. You can locate the
points in the discussion on the following figure. Unfortunately, the details
of sending and receiving data, as well as sending and receiving
ATPapGetStatus requests, are not shown in the figure. Nevertheless, these
procedures are outlined in PAP State Tables. You can refer to these tables as
well.

Figure 5. PAP Flowchart

Communication Service Group

AppleTalk: Concepts 47

Communication Service Group

AppleTalk: Concepts 48

Related Topics

Client-End Connection: Opening a WSS

Opening an SSS

Parent Topic: PAP and NetWare

Opening a File Descriptor for ATP

Since ATP is not a connection-oriented protocol, the concept of "opening an
ATP session" does not apply. Instead, requests and responses are sent to and
from a particular file descriptor. Each file descriptor corresponds to one
socket. To open a file descriptor, call ATAtpOpen. A CLIB file descriptor
and DDP socket is allocated for your use. The file descriptor is now ready
for sending and receiving requests and responses. You probably want to
register this socket with NBP as a service provider.

Parent Topic: ATP and NetWare

Opening a File Descriptor for DDP

ATDdpOpen no longer allocates a socket. It opens a file descriptor for
reading and writing but does not bind a socket to that file descriptor.

In addition, ATDdpOpen now returns the file descriptor as a parameter
(fd), not as the return code of the function.

Parent Topic: DDP and NetWare

Opening an SSS

On the server end, connections are listened for and the process is more
involved. To prepare to receive connections, you first create a listening
socket and establish how many connections you are willing to accept. After
receiving a connection request, you create an SSS for it.

Opening a Session Listening Socket (SLS): Like most protocols, PAP
establishes a listener socket to receive connection requests. This socket is
known as the Session Listening Socket, or SLS. To create an SLS, call
ATPapOpen to get a file descriptor, then call ATPapSLInit to make that file
descriptor into an SLS. Next call ATPapGet, waiting for the
PAP_EVENT_SLS_INIT event to indicate success or failure of the
initialization. If it succeeded, call ATPapSetStatus to set the values of the

Communication Service Group

AppleTalk: Concepts 49

two automatic statuses: one that is generated in response to a status inquiry
and one that is generated in response to a connection request. Now that the
SLS has been initialized and is ready to accept connections, you probably
should call NBP to register this service on the net.

When you are ready to accept connections, or jobs, call ATPapGetNextJob
and indicate how many jobs you will accept. LaserWriter printers only
accept one job at a time but, given the resources on a NetWare server, you
might want to accept 5, 10, or many more jobs at a time. PAP keeps a count
of the number of jobs you have indicated you will accept and, for each
PAP_EVENT_OPENSESS_REQ event that arrives, decrements this counter
by one. Thus, to avoid having a connection request rejected because of
insufficient get-next-job credit on a particular SLS, be sure to continue
increasing the credit by calling ATPapGetNextJob. To revoke this credit,
just call ATPapGetNextJob with a negative value as num_jobs.

Now you are ready to call ATPapGet and wait for the
PAP_EVENT_OPENSESS_REQ events to come up. Open session requests
need to be serviced as they come in. As mentioned before, you have the
option of accepting or rejecting them. To reject, call ATPapReject with the
address and ID that was passed up in the pass->U.ConnReq.addr and .id
fields. Also, specify the status string that should be included in this
rejection. To accept, on the other hand, you must make ready an SSS;
accepting a job means creating a new SSS.

Creating an SSS: Call ATPapOpen to get a new file descriptor, then call
ATPapAccept on the new file descriptor, with the address and ID fields
mentioned above. This new file descriptor becomes the new SSS and is open
for reading and writing in the data transfer phase.

As long as you want to continue accepting jobs, call ATPapGetNextJob and
ATPapGet. Remember, as long as there is get-next-job credit available, you
must keep checking with ATPapGet for PAP_EVENT_OPENSESS_REQ
events. (PAP does not automatically check for you.) If you don't continually
check, connection requests go unanswered and time out. After getting a
PAP_EVENT_OPENSESS_REQ event, call either ATPapAccept or
ATPapReject.

Parent Topic: Opening a Connection in PAP

PAP

PAP is a session-level protocol that enables communication between
workstations and servers. It is a connection-oriented protocol that handles
these functions:

Connection setup

Connection maintenance

Connection closure

Communication Service Group

AppleTalk: Concepts 50

Connection closure

Data transfer over the connection

PAP allows multiple connections at both the workstation and server ends.

PAP envisions a server node as containing one or more processes that are
accessible to workstations through PAP. In this chapter, these processes are
referred to as servers. A server makes itself visible over the network by
opening a session listening socket (SLS) on which it registers its name.

The use of the word printer in the name of this protocol is purely historical.
Although the protocol was originally designed for the specific purpose of
communication with print servers, it has no special features for printing and
can be used by a wide variety of other kinds of servers.

The following figure illustrates the protocol architecture used for
communication between a user's computer (workstation) and a print server
on a network. PAP is a client of the Appletalk Transaction Protocol (ATP)
and the Name Binding Protocol (NBP). Both of these protocols use the
Datagram Delivery Protocol (DDP). PAP is an asymmetric protocol; the
PAP code in the workstation is different from the PAP code in the printer.

Figure 6. PAP Protocol Architecture

Communication Service Group

AppleTalk: Concepts 51

NOTE: Only the server-side functions are presented in this guide. Be
sure to read the description of PAP in Inside AppleTalk for a complete
introduction to PAP concepts and terms.

The commands and data sent through the PAP connection are
printer-dependent. For example, for the LaserWriter* printer the dialog is in
PostScript* format.

For a full description of the PAP functions, see AppleTalk: Functions.

Parent Topic: AppleTalk Overview

PAP and NetWare

PAP is a bidirectional, streaming byte protocol. Built for printers, it is very
simple in its data transfer but includes a few features in the open sequence
not seen in other protocols and an out-of-band means of gathering status.
Novell offers both the client end (called "workstation side" in Inside
AppleTalk) and server end of this protocol. After the open connection phase,
the protocol becomes symmetric, that is, server sessions and workstation
sessions are the same.

The following introduction to PAP discusses the open-connection dialogue
first, then the data transfer phase, then the processes of closing a connection
and shutting down a service. Although much of this information is covered
in Inside AppleTalk, there are some important ways in which Novell's
implementation diverges from the sample API discussed in Inside AppleTalk.

Related Topics

Opening a Connection in PAP

Transferring Data in PAP

Closing a Connection in PAP

Shutting Down a Service in PAP

About This PAP Interface

PAP State Tables

PAP Function List

Table auto. AppleTalk Services PAP Functions

Function Purpose

Communication Service Group

AppleTalk: Concepts 52

ATPapAccept Makes an SSS (server session socket) out of an unused
file descriptor and links a connection request on the
SLS (session listening socket) to this SSS.

ATPapClose Destroys the file descriptor and frees all memory,
closing any sessions open on this file descriptor.

ATPapConne
ct

A workstation-side (NLM requesting connection to a
server) function that changes the specified new file
descriptor into a WSS (workstation session socket).

ATPapDiscon
nect

Notifies PAP that you want to close the connection
but want all data already sent with ATPapWrite to be
delivered.

ATPapGet Retrieves a message from the PAP protocol client.

ATPapGetNe
xtJob

After initializing the server side, this function is called
when the server side is ready to accept a job, to set the
number of jobs the SLS (Server Listening Socket) is
willing to accept.

ATPapGetSta
tus

A workstation function that finds out the status of any
given remote PAP server endpoint.

ATPapOpen Opens a PAP file descriptor.

ATPapReject Called on the SLS (session listening socket) when a
connection request comes in that you want to deny.

ATPapSetStat
us

Sets the current status of the SLS after initialization.

ATPapSLInit Makes the specified file descriptor into a server
listening socket (SLS).

ATPapWrite Sends data over the connection, which must have
been established first.

PAP State Tables

Two types of PAP events are described in the following tables, the kind
returned by PAP, which begin with PAP_EVENT, and the PAP library
functions. The first table tells you which state your NLM is in when PAP
events are received. The second table is a more dynamic, state transition
table. It starts with a state and tells you how to transition to the next state, if
appropriate.

Table auto. States and Corresponding PAP Events

Event State

PAP_EVENT_CLOSEC
ONN

Only while in data transfer (open) state on
WSS or SSS

Communication Service Group

AppleTalk: Concepts 53

PAP_EVENT_GETSTAT
_REPLY

Only when you have an outstanding
ATPapGetStatus request. Since the
get-status request and reply are out of
band, this event could occur in any state if
you have called ATAtpGetStatus

PAP_EVENT_SLS_INIT Only after you have called ATPapSLInit on
a file descriptor. No other event comes up
before this one comes up.

PAP_EVENT_OPENSES
S_REPLY

Only when you have an ATPapConnect
outstanding on this file descriptor, thus, in
the WSS-opening state

PAP_EVENT_DATA Only when you are in the data transfer
(open) state on a WSS or SSS

PAP_EVENT_CONN_D
IED

Only when you are in the data transfer
(open) state on a WSS or SSS

PAP_EVENT_OPENSES
S_REQ

While in the SLS listening state

PAP_EVENT_DISCON
N

While in the closing state. This is after
calling ATPapDisconnect on a WSS or SSS.

Table auto. PAP State Transition Table

State/Event Next State

Uninitialized

ATPapSLInit Opening SLS

ATPapConnect Opening WSS

ATPapAccept Open---Data Transfer. Must have an
outstanding open connection request
(ATPapConnect) on an SLS.

Listening on SLS The following events are received but do not cause a
state transition; the state can only move to ATPapClose.

ATPapSetStatus

ATPapGetNextJob

ATPapReject

PAP_EVENT_OPENSESS_RE
Q

Open, Data Transfer---SSS or WSS

ATPapWrite

ATPapDisconnect Closing WSS or SSS

ATPapClose

PAP_EVENT_DATA

PAP_EVENT_CONN_DIED Go to Closed state.

Communication Service Group

AppleTalk: Concepts 54

PAP_EVENT_CLOSECONN_R
EQ

Go to Closed state.

Closing---WSS or SSS

PAP_EVENT_DISCONN Go to Closed state.

Opening SLS

PAP_EVENT_SLS_INIT Go to Listening SLS state.

Opening WSS

PAP_EVENT_OPENSESS_REP
LY

Go to Open if no error, closed if
error.

Closed

Call ATPapClose to dispose of
file descriptor.

Parent Topic: PAP and NetWare

Receiving DDP Packets

To receive a DDP packet on an open socket, use ATDdpRead.

Parent Topic: DDP and NetWare

Referencing Names

On the other hand, the human-readable names of network entities, such as
those returned by ATNbpLookup, are C strings and are referenced as an
array. For more information on referencing names, see ATEntity_t.

Parent Topic: Notes on the AppleTalk Interface, both TLI and Native

Referencing Zones

Human-readable AppleTalk zones, such as those returned by
ATZipGetZoneList and ATZipGetNBPZones, are returned in the packed
format described in Inside AppleTalk. This format is a list of ATNveStr_t
structures. Each of these structures is a P string, which has a different format
than the C string you may have expected. A P string is a Pascal-formatted
string; it is length-preceded rather than being NULL-terminated as C strings
are. The following figure depicts a list of zones as a series of P strings in
packed format.

Communication Service Group

AppleTalk: Concepts 55

Figure 7. Packet Format of Zone List

Each P string consists of two parts:

1. A length byte

2. Data that is length byte long

Remember, these are lists, not arrays. Therefore, do not try to reference the
zones in the list as you would an array. For more information on referencing
zones, see ATNveStr_t.

Parent Topic: Notes on the AppleTalk Interface, both TLI and Native

Registering Listeners

In order to receive packets on a socket, the client must register listeners. Use
ATDdpRegisterListener to allocate a socket from which you can begin
receiving and sending packets.

More than one listener can be opened per file descriptor, but then
ATNbpRegister (fd) does not work.

Parent Topic: DDP and NetWare

Sending DDP Packets

You create a DDP packet for sending with the ATDdp_t structure. This
structure contains fields for the DDP packet's extended header and data.
The header consists of a checksum, the source and destination
net,node,socket, and the protocol type. The fields in the ATDdp_t structure
are explained in depth in the "AppleTalk Services" section in the Structure
Reference book.

In keeping with the AppleTalk model, a DDP session allows you to send
DDP packets anywhere, but you must also choose which socket to send a
packet from. This is specified in the DDP packet by setting the src_socket

Communication Service Group

AppleTalk: Concepts 56

number. No checking is possible on this socket number, and no default is
allowed.

IMPORTANT: When you send a DDP packet, DDP overwrites the
source network ID and source node ID of the address you specify with
the correct net and node. It does not, however, overwrite the socket ID;
you must specify the correct source socket number.

The ddp.h file contains a macro to access the length field of the DDP packet.
DDP_LENGTH. DDP_LENGTH(ddp) returns the value in the length field
of a DDP packet that you read or write. The ddp argument is a pointer to an
ATDdp_t structure.

Sending DDP short or multicast packets is not allowed.

To send a DDP packet to an open socket, use ATDdpWrite.

Notice that the new function interface does not use STREAMS write. This is
to allow the possibility of a transparent move away from STREAMS in the
future, possibly the near future.

IMPORTANT: Like other datagram protocols, DDP does not
guarantee delivery. Likewise, when it is not able to deliver packets for
some reason, DDP does not return errors (most of the time). This is true
even when the error occurred in the server and, therefore, could be
returned.

Parent Topic: DDP and NetWare

Sending Replies in ATP

Replies are sent using the ATAtpSendRsp function. The request that you
are responding to has received in an ATAtpGet call. The most important
fields in the ATAtpPass_t structure to fill when sending a reply are those
listed below:

Table auto. Reply Fields in the ATAtpPass_t Structure

Purpose Field

a. Extra four bytes that are provided by the ATP protocol in case the
user needs to specify information. It is usually used for a connection
ID, request type, sequence number, or other information of a similar
kind.

Matches the response to the request TransID

Data you are sending in the response data

data_len

Four bytes of request dataa usersdata[0]

Communication Service Group

AppleTalk: Concepts 57

Parent Topic: ATP and NetWare

Sending Requests in ATP

Requests are sent using the ATAtpSendReq function. Set the information
regarding the request in the ATAtpPass_t structure that you pass in. You
send requests to an AppleTalk address (net, node, socket) that your
application either determined with NBP or gleaned from a preceding
transaction.

The fields in the ATAtpPass_t structure are explained in depth in the
structure description. The most important fields to fill when sending a
request are those listed below:

Table auto. Request Fields in the ATAtpPass_t Structure

Purpose Field

a. Extra four bytes that are provided by the ATP protocol in case the
user needs to specify information. It is usually used for a connection
ID, request type, sequence number, or other information of a similar
kind.

Who you are sending the request to at_addr

What data you are sending in the request data, data_len

Four bytes of request data a usersdata[0]

Whether you are request XO or ALO service. (XO is
most common.)

xo

Parent Topic: ATP and NetWare

Shutting Down a Service in PAP

When you want to stop receiving jobs, there are two methods for shutting
down a service, the first is abortive and the second is orderly. The first
method is to close the file descriptor associated with the SLS with
ATPapClose, which aborts all current jobs. Each SSS receives a
PAP_EVENT_CLOSECONN_REQ event and ATPapClose must be called.

The second method is to de-register the SLS with NBP and wait until all SSS
connections close. This probably is within a short period of time since each
connection usually lasts for a single print job. After removing the entity
from the network with NBP, deregister the SLS by calling
ATPapGetNextJob with a negative value, revoking the ability of the SLS to
accept jobs. It is a good idea to keep a count of all current SSSs so you can

Communication Service Group

AppleTalk: Concepts 58

make sure the count reaches 0 before actually closing the SLS with
ATPapClose.

Parent Topic: PAP and NetWare

Synopsis of the Structures' Functions

The one structure that you must always use is ATAdspOpt_t. In conjunction
with t_optmgmt (Function) and the t_optmgmt (Structure) and netbuf
structures, it retrieves the version of the ADSP interface that is running on
the server. Please note that the DDP interface version is retrieved by the
ATAppletalkVersion function and may be different from the ADSP
interface version.

Some of the structures described in this section are used to find out
protocol-specific information like structure sizes (t_info).

DDP options can be set and retrieved when data is sent or received with the
ATDdpOpt_t structure. The t_unitdata and netbuf structures also figure into
the process of setting DDP options.

Last but by no means least, the ATInet_t structure is the three-part address
of an AppleTalk internet entity (net,node,socket).

Related Topics

How to Determine the ADSP Interface Version

How to Determine Structure Sizes for AppleTalk

Parent Topic: AppleTalk TLI Structures

The Internal AppleTalk Network

The internal network has no physical components; it is entirely contained
within APPLETLK.NLM.

The internal network is configured with an AppleTalk network number and
zone name, just as any physical, external network. The internal network
always supports two nodes: the protocol stack and the router. The stack is
node #1 and the router is node #2 on the internal network. A service using
the AppleTalk stack is logically part of the node on the internal network.

Parent Topic: Notes on the AppleTalk Interface, both TLI and Native

t_info (tiuser.h)

Communication Service Group

AppleTalk: Concepts 59

This structure is used by t_open and t_getinfo to return protocol-specific
values to the application using the protocol. The values specify the size, and
one specifies the type, of information handled by the protocol.

struct t_info {
 long addr;
 long options;
 long tsdu;
 long etsdu;
 long connect;
 long discon;
 long servtype;
}; t_info;

addr Maximum size of a transport address

options Maximum bytes of protocol-specific options that may
be passed between the transport user and transport
provider

tsdu Maximum message size that may be transmitted in
either connection mode or connectionless mode

etsdu Maximum expedited data message size that may be
sent over a transport connection

connect Maximum bytes of user data that may be passed
between users during connection establishment

discon Maximum bytes of user data that may be passed
between users during the abortive release of a
connection

servtype Type of service supported by the transport provider
(connection-mode or connectionless-mode service)

The following two tables list the information that t_info returns for DDP and
ADSP.

Table auto. t_info Values for ADSP

Field Value

addr sizeof(ATInet_t)

options sizeof(ATAdspOpt_t)

tsdu -1 (no limit)

etsdu 570 bytes

connect -2 (not supported)

discon -2 (not supported)

servtype T_COTS (connection-oriented service)

Communication Service Group

AppleTalk: Concepts 60

Table auto. t_info Values for DDP

Field Value

addr sizeof(ATInet_t)

options sizeof(ATDdpOpt_t)

tsdu 586 bytes

etsdu -2 (not supported)

connect -2 (not supported)

discon -2 (not supported)

servtype T_CLTS (connectionless transport service)

Parent Topic: AppleTalk TLI Structures

TLI Functions: AppleTalk Notes

These notes cover issues specific to using TLI functions with the AppleTalk
protocols. (For reference pages on the TLI functions, see TLI: Functions.)
Notes are provided about the following:

AppleTalk Notes: t_accept (applies to ADSP only)

AppleTalk Notes: t_bind

AppleTalk Notes: t_close

AppleTalk Notes: t_connect (applies to ADSP only)

AppleTalk Notes: t_getinfo

AppleTalk Notes: t_listen (applies to ADSP only)

AppleTalk Notes: t_open

AppleTalk Notes: t_optmgmt

AppleTalk Notes: t_rcv (applies to ADSP only)

AppleTalk Notes: t_rcvconnect (applies to ADSP only)

AppleTalk Notes: t_rcvdis (applies to ADSP only)

AppleTalk Notes: t_rcvrel

AppleTalk Notes: t_rcvudata (applies to DDP only)

AppleTalk Notes: t_snd (applies to ADSP only)

Communication Service Group

AppleTalk: Concepts 61

AppleTalk Notes: t_snddis (applies to ADSP only)

AppleTalk Notes: t_sndrel

AppleTalk Notes: t_sndudata (applies to DDP only)

AppleTalk Notes: t_unbind

Parent Topic: TLI Implementation Notes for AppleTalk

TLI Implementation Notes for AppleTalk

IMPORTANT: Because of the way TLI accesses NetWare® services,
you must have a thorough understanding of the chapters on TLI in this
manual. Treat this chapter as an appendix to those chapters.

This chapter discusses issues you should be aware of when using TLI
functions to access DDP and ADSP.

The first section, Synopsis of the Structures' Functions, mentions all of the
structures used by TLI and describes the ones that touch upon the following
AppleTalk issues:

Determining which version of the AppleTalk ADSP or DDP interface is
running on the local server with t_optmgmt (Function)

Retrieving protocol-specific structure sizes with the t_open and t_getinfo
functions

Specifying DDP options, checksum and ddp_type. (The ADSP options,
TransThresh and TransTimerInterval, have been disabled.)

The second section, ADSP Performance Notes, gives some advice on
achieving higher performance using ADSP.

The third section, TLI Functions: AppleTalk Notes, discusses issues that
arise from using TLI specifically with AppleTalk.

The fourth section, AppleTalk Services Restrictions on TLI, mentions
limitations on certain TLI functions.

New sample code is provided. It shows how to use TLI functions, including
the new version feature.

Related Topics

AppleTalk TLI Structures

ADSP Performance Notes

TLI Functions: AppleTalk Notes

Communication Service Group

AppleTalk: Concepts 62

AppleTalk Services Restrictions on TLI

t_optmgmt (adsp.h)

This structure is explained in How to Determine the ADSP Interface Version
.

struct t_optmgmt {
 struct netbuf opt;
 long flags;
};

Parent Topic: AppleTalk TLI Structures

Transferring Data in ADSP

You can think of data transfer as occurring over a pipe---from the local
application, through TLI, STREAMS, and ADSP protocols, over the physical
wires, through any intervening router, to the remote application. When the
amount of data you send or receive approaches the amount of data that can
be stored in other sections of the pipe or sent at one time, you may find that
throughput is limited. Therefore, you must be aware of the size of send and
receive buffers, both local and remote, at various points in the data transfer
process.

You must be especially aware of the sizes of these buffers:

The send and receive buffers for ADSP at both ends of the connection

The send and receive buffers for the applications at both ends of the
connection

The local send buffer is the one you pass to t_snd; the local receive buffer is
the one you pass to t_rcv. Each buffer should be as large as possible, at least
2 K in size. You cannot control the size of the send and receive buffers of
ADSP directly, but this implementation uses send and receive buffers of
8192 bytes.

You must also take the maximum size of a STREAMS message into
consideration; this size is determined by the version of STREAMS.NLM you
are using and the parameters you specify on the load line.

Once you have taken all the buffer sizes into account, do your best to avoid
sending or receiving small amounts of data at a time. The smaller the
amount of data you send or receive, the more memory, packet-receive
buffers and time per byte used. This situation holds especially true for large
bandwidth-delay product connections, such as across WANs and satellite
links.

Communication Service Group

AppleTalk: Concepts 63

Parent Topic: ADSP Performance Notes

Transferring Data in PAP

Now that you have a file descriptor (WSS or SSS) in the data transfer phase,
you can call ATPapWrite or ATPapGet to read and write data. PAP has a
flow control mechanism, so ATPapWrite can block while waiting for buffers
to clear. If you don't want to block, use the CLIB poll function to poll the file
descriptor for writeability.

PAP attempts to gather out-going data into the fewest number of
transactions, so if you want data to be written immediately, use the flush
parameter. In some printing protocols, it is necessary to not just get the data
out now, but also to know that certain data ends a transaction. If this is
desired, use the EOT (End Of Transaction) parameter. If you want to set the
EOF bit in a particular transaction, set the EOF parameter.

IMPORTANT: It can be useful to call ATPapWrite with NULL data
and length and EOF set to generate a transaction with EOF set but no
data.

To read data, call ATPapGet, expecting the PAP_EVENT_DATA message.
Set the buffer to 4096 bytes. The data is copied into the buffer. Each
PAP_EVENT_DATA message corresponds to exactly one data transaction,
so no data in the message would reflect an implied transaction. To
determine if the EOF flag was set on a particular transaction, examine the
pass->U.Data.eof field.

Another event that could be returned in ATPapGet at this phase is
PAP_EVENT_CONN_CLOSED. This indicates that the remote endpoint has
closed the connection. In this case you must close the file descriptor with
ATPapClose.

Yet another possible event is PAP_EVENT_CONN_DIED. This implies that
the connection was invalidated due to a lack of packets received. Again,
close the file descriptor with ATPapClose.

Parent Topic: PAP and NetWare

Using the T_MORE Bit

When using ADSP, an application often sends a certain amount of data
before waiting for a reply or further communication (another query, in the
case of a database server). This data can constitute a single ADSP message.
However, the application need not send all the data in the message at the
same time. It can accomplish the file transfer by sending large blocks of
data, one after the other; each block of data is transferred with a call to t_snd.

Communication Service Group

AppleTalk: Concepts 64

Your application should set the T_MORE bit when sending a packet, unless
the packet being sent completes the message. In the last packet, do not set
the T_MORE bit. Use these guidelines:

Set the T_MORE bit when you are sure that application continues to send
data.

Do not set the T_MORE bit when the application has completed its data
transfer and is waiting to receive a reply or further communication from
the remote connection end.

If your application fails to set the T_MORE bit in any packet except the last
one, throughput may suffer. The cost depends upon the number of bytes
you transfer in a packet. When you transfer less than one or two kilobytes of
data and do not set T_MORE, throughput is adversely affected. The smaller
the size of the data transferred, the worse the effect. As you increase the
amount of data transferred, the effect disappears.

This behavior can be explained in the following manner. It takes nearly the
same amount of time to process a packet with only a few bytes as it does to
process a packet with the maximum number of bytes. The number of bytes
processed per unit of time goes down for packets with fewer bytes, and the
data transfer is very slow.

If you do not set the T_MORE flag during a t_snd call, ADSP sets the EOM
bit for the packet containing the data going out on that t_snd call. Because
an EOM indicator must logically be found at the end of an ADSP packet, the
use of the T_MORE flag may influence the size of each packet. For example,
if you send 100 bytes five times, and you do not set the T_MORE flag each
time, ADSP sends the data in five packets, each containing 100 bytes of user
data; the EOM indicator appears at the logical end of each packet. However,
if you send 100 bytes five times using the T_MORE flag on the first four
sends, ADSP may send the data as a single packet; in this case, the EOM
indicator appears at the logical end of the packet. Keep in mind the
performance benefits of using the T_MORE flag when using t_snd.

So, if your message is smaller than the maximum number of bytes ADSP
can fit in a packet, performance suffer. Be aware, however, that even if your
message is larger than a single packet, the last packet in the message
probably is not full.

Advice to Backup and File-Transfer Application Developers: Set the
T_MORE bit for each block of data you send, except the block of data that
completes your bulk transfer. If you do not set the T_MORE bit within the
bulk transfer, throughput suffers.

Advice to Database Developers: When returning multiple records to a
query, set the T_MORE bit at the field or record boundaries. Do not set the
T_MORE bit when you come to the end of the whole response to the query.
Send data in blocks of at least one or two kilobytes.

Advice to Terminal-Emulation Developers: You probably do not want to
set the T_MORE bit in these situations:

Communication Service Group

AppleTalk: Concepts 65

At the end of every line (for line-oriented echo)

After every character (for character-oriented echo

When you come to the end of a whole screen or update

Parent Topic: ADSP Performance Notes

XO or ALO?

When choosing between eXactly Once (XO) and At Least Once (ALO)
transaction mode, remember that XO guarantees only one delivery of the
data. In most circumstances, like file service, this is quite important.
However, in some circumstances, such as network management, multiple
requests are acceptable as long as the response succeeds. XO mode is by far
the more common. (For a thorough discussion of XO and ALO transaction
modes, see pages 9-5 through 9-9 of Inside AppleTalk, Second Edition.)

Parent Topic: ATP and NetWare

ZIP

ZIP provides two major services:

ZIP enables each router to share and maintain zone information for an
AppleTalk internet.

ZIP enables each nonrouter node to obtain zone information maintained
by the routers.

On an AppleTalk internet, a zone is simply a name for groups of nodes; for
example, a file server used for office administration might be in the
"Administration" zone.

Each router on an AppleTalk internet maintains
network-number-to-zone-name mappings in the Zone Information Table.
This table consists of one entry for each network in the AppleTalk internet,
and defines a mapping between networks and zone names. The information
in this table is constantly updated to ensure reliable mappings.

The ZIP utility functions available through APPLETLK.NLM enable each
node on the network to obtain this information from a router's Zone
Information Table:

The zone in which the current node resides

The list of zones on the local network

Communication Service Group

AppleTalk: Concepts 66

The list of zones on the AppleTalk internet

For a full description of the ZIP functions, see AppleTalk: Functions.

Parent Topic: AppleTalk Overview

ZIP and NetWare

The following describes the differences between versions 1.x and 2.0.

The ATZipGetLocalZones and ATZipGetZoneList have changed. Both
functions have similar parameter changes. start is the number of the first
zone to hand in, like it was in the old function. zones is a pointer to the
buffer to fill in. This is in a packed format. z_size is passed in and out as the
size of the buffer IN BYTES. last is set if the router told us it was the end of
the list (new feature). The router field is used as follows.

If there are multiple requests, you must talk to the same router. Set the net,
node, and socket to zero the first time you call the function, and it is
returned with the router you are talking to. Don't reset the values, and you
always get the same router.

Two new functions have been added, ATZipGetNBPZones and
ATZipZoneXlate. ATZipGetNBPZones gives the list of zones that can be
explicitly registered on. ATZipZoneXlate translates a packed zone list from
the AppleTalk code page to the local code page.

ZIP is a client of ATP and receives its packets from there. These functions
are the ZIP client, and thus send packets out over the net to get the answers
to their questions. Because each function opens a file descriptor, sets up an
ATP client, sends a request, and waits for a response, it can be an expensive
proposition. Since most operations are a single ATP transaction to the
nearest router, which is always on the local net, and they involve one reply
packet, the functions should not take a long time. But they do involve
network access, and multiple context switches, as do those in the previous
interface (v1.x).

This interface is roughly equal to the one in "AppleTalk APIs for UNIX*
System V* Release 4". It is a needed upgrade to v1.x, which was equal to the
zip(3N) AUX 2.0 interfaces.

ZIP passes the zone list upward as it was received from a router, in
whatever character set that might be. It probably is in MacASCII, but could
be in Kanji. The Macintosh uses SHIFT-JIS as its encoding method, thus all
lower ASCII are kept intact.

This interface includes a NetWare specific function that translates a zone list
from the MacASCII code page into the code page being used by the local
server.

Notice that all of the replies to functions change as the network

Communication Service Group

AppleTalk: Concepts 67

Notice that all of the replies to functions change as the network
configuration changes. Since some of the functionality can require multiple
nonatomic requests, configuration changes during this operation can have
unpredictable results. It should be assumed that AppleTalk networks are
fairly stable, except in the time that a node is learning its configuration
(seconds after coming on line). ZIP does its best to recognize this case and
either delay a request or error it out.

ZIP Function List

ATZipGetLocalZones

Obtains a complete list of all the zone names defined on the local
network (the network the calling node is bound to).

ATZipGetMyZone

Finds the name of the zone the node is in.

ATZipGetNBPZones

Finds the zones that are valid for you to register explicitly an entity in.

ATZipGetZoneList

Obtains all the zones on the internet.

ATZipZoneXlate

Translates, in place, a zone list from the MacASCII code page into the
code page being used by the local server.

Communication Service Group

AppleTalk: Concepts 68

AppleTalk: Functions

Communication Service Group

AppleTalk: Functions 69

ATAppletalkVersion

Returns AppleTalk* Interface version information
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <appletlk.h>

int ATAppletalkVersion (
 char *major,
 char *minor,
 char *revision);

Parameters

major

(IN/OUT) Points to the major version number you are requesting. The
return confirms the presence of the presence of the major version on
the server or returns zero (0).

minor

(IN/OUT) Points to the minor version number you are requesting. The
return confirms the presence of the presence of the minor version on
the server or returns zero (0). You can pass in his pointer as NULL.

revision

(IN/OUT) Points to the revision version number you are requesting.
The return confirms the presence of the presence of the revision
version on the server or returns zero (0). You can pass in his pointer as
NULL.

Return Values

0 No match, or you passed in NULL for major

1 Match

Remarks

ATAppletalkVersion allows your NLM™ application to request a

Communication Service Group

AppleTalk: Functions 70

particular level of interface service and returns whether or not the
version of native AppleTalk interface you requested is running on the
local server. If you are only interested in the major version number, you
can pass NULL pointers for minor and revision.

After you pass in the version numbers of the interface that you want, this
function returns 1 if that version is supported by the server, and 0 if it is
not (or if you passed in NULL for major).

For example, the version described in this manual is 2.0. If you write your
NLM to this version of the interface, call ATAppletalkVersion with major
as 2 and minor as 0. If version 2.0 is not running on your server, the
function returns 0 (FALSE).

NOTE: Please note that although functions usually return 0 to indicate
success, in this function 0 denotes FALSE, and 1 is TRUE.

Communication Service Group

AppleTalk: Functions 71

ATAspAttn

Sends an attention request to the remote WSS (workstation session socket)
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <asp.h>

int ATAspAttn (
 void *fd,
 void *id,
 u_short attn,
 ATRetry_t *Retry);

Parameters

fd

(IN) Indicates the file descriptor.

id

(IN) Indicates the attention ID.

attn

(IN) Indicates a two-byte attention code. Must not be zero.

Retry

(IN) Indicates the retry specification for the attention request. For a
discussion of the structure, see ATRetry_t.

Acknowledgment or error comes in ATAspGet.

Return Values

0 Success

EBADF Invalid file descriptor

EINVAL Illegal socket type or state, or zero attention code

ENOBUFS Resource limitation

ECONNABO
RTED

Request was aborted by a close socket call

Communication Service Group

AppleTalk: Functions 72

Remarks

The Attention ID is created by the client for use in demultiplexing
responses. It is handed back up in ATAspGet. If only one request at a
time is going to be outstanding, you could simply set the ID to 0. Note
that attention requests are ALO (at-least-once) requests, so the problems
with multiple requests possible in ALO transactions can happen with
ASP Attention messages. (For a thorough discussion of this subject, see
pages 9-5 through 9-9 of Inside AppleTalk, Second Edition.)

IMPORTANT: Remember the attention message is outside the usual
state diagram for ASP. It is communication against the usual flow; the
server initiates a request. The response could come at any time,
potentially disrupting any event you thought would come in.

Communication Service Group

AppleTalk: Functions 73

ATAspClose

Closes the session, freeing up any internal structures and discarding all
undelivered packets, making all other calls complete
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <asp.h>

int ATAspClose (
 int *fd);

Parameters

fd

(IN) Points to a file descriptor.

Return Values

0 Success

EBADF Someone else closed the file descriptor, you should
stop trying

STREAMS
error

Try again

Remarks

ATAspClose can close more than one session if the file descriptor is the
session listening socket (SLS) fd.

Notice that ATAspCloseSession has not been implemented. Each file
descriptor is a session, so when a close is desired, ATAspClose should be
called on that file descriptor. Outstanding calls complete with an error (to
be supplied).

See Also

ATAspOpen

Communication Service Group

AppleTalk: Functions 74

ATAspCmdReply

Sends a command reply
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <asp.h>

int ATAspCmdReply (
 int fd,
 u_long req_result,
 char *reply,
 int replylen);

Parameters

fd

(IN) Indicates the file descriptor.

req_result

(IN) Indicates the 4-byte command result.

reply

(IN) Points to a response buffer.

replylen

(IN) Indicates the length of the response buffer.

Return Values

0 Success

Remarks

Call ATAspCmdReply after receiving an ASP_EVENT_SSS_CMD_REQ
event.

After receiving a command request event, the server responds with a
4-byte error code and a buffer size of QuantumSize (value pointed to by
quantum in ATAspGetParms upon return).

Communication Service Group

AppleTalk: Functions 75

There can be only one command request at a time, so no extra identifier is
necessary.

ATAspCmdReply does not wait for network access; hence, it is quick.

Communication Service Group

AppleTalk: Functions 76

ATAspGet

Reads an event from the ASP protocol
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <asp.h>

int ATAspGet (
 int fd,
 ATAspPass_t *pass,
 char *buf,
 int *len);

Parameters

fd

(IN) Indicates the file descriptor.

pass

(OUT) Points to the ATAspPass_t structure. Information is passed back
in that pointer. For a discussion of the structure, see ATAspPass_t.

buf

(OUT) Points to a buffer.

len

(IN/OUT) Points to the size of the buffer. The number of bytes
actually read into the buffer is returned in that pointer.

Return Values

0 Success or received close request

EBADF Invalid file descriptor

EBUFTOOSM
ALL

Try again with larger buffer

ECONNABO
RTED

This session is in the closed state

EINVAL Bad parameter or bad state for this call

Communication Service Group

AppleTalk: Functions 77

ENOBUFS Not enough memory to send reply

ESHUTDOW
N

SLS that spawned this session was closed

ENETRESET Network has been reconfigured

ETIMEDOUT No packets received for a long time, probably dead

Remarks

ATAspGet understands any type of ASP data arriving---request,
response, or error---and returns the meaning of the data.

ATAspGet reads an event from the ASP protocol. This is the way that the
protocol communicates with the client. Example events include
ASP_SSS_CMD_REQ, which indicates that a command request has
arrived on this SSS, and ASP_EVENT_SLS_INIT, which indicates that a
session listening socket (SLS) has been initialized and is ready to go.

ATAspGet does not take long if the poll function is called on this file
descriptor, and it has data. Otherwise, this function waits until data
arrives.

If ATAspGet fails to receive the event properly, a nonzero value is
returned. This is different from a protocol error, which is returned in the
ATAspPass_t.ret field. Thus, this function could fail due to a lack of buffer
space, which would be returned as the return value. In contrast, the
protocol error EADDRNOTAVAIL, indicating an SLS initialization
failure, would be found in the ATAspPass_t.ret field.

In most cases, the caller knows the state of ASP and be able to guess the
size of the buffer. A buffer size of QuantumSize (value pointed to by
quantum in ATAspGetParms upon return) is sufficient for any possible
case.

The possible events are listed in the following table. This table lists the
name of the event, the way the event should be interpreted, and the
parameters filled in with information about the event in the ATAspPass_t
structure. See ATAspPass_t. For your convenience, this structure is also
listed below.

IMPORTANT: Do not rely on a number associated with an event;
this number can change. Rather, select functions based on the "#define"
statements themselves.

Event Interpretation Parameter

SLS

ASP_EVENT_SLS_OPEN_
REQ

Received a request
for connection.
Reply with

No errors
 OpenReq.addr
---address of

Communication Service Group

AppleTalk: Functions 78

ATAspSSSInit or
ATAspSLSReject.

requestor
OpenReq.id---ID
used by the
protocol. Hand it
back in acceptance
or rejection.

ASP_EVENT_SLS_STATU
S_REQ

If you have asked
to reply to each
status request
individually, this
event shows that a
status request has
come in. Reply to
it with
ATAspSendStat.

No errors
StatReq.addr
---Address of
requestor. Pass it
back with the reply.

ASP_EVENT_SLS_INIT Returns that the
SLS has been
initialized on this
descriptor, or
returns an error as
to why the
initialization
failed.

No data
ret---Error (out of
sockets, out of
memory)

ASP_EVENT_SLS_SETST
AT

Returned if the set
status command
was in error

No data
ret---EINVAL,
ENOBUFS

ASP_EVENT_SLS_SENDS
TAT

Sent up if the
ATAspSendStat
command failed.

ret---EINVAL,
ENOBUFS

ASP_EVENT_SLS_CLOSE Usually due to
some kind of fatal
error, the SLS
connection has
been terminated.
Close the SLS.

No return, no data

SSS

ASP_EVENT_SSS_CMD_R
EQ

Received when
the SSS receives a
command request
on the open
session. Reply
with
ATAspCmdReply
.

No errors
Nothing in pass
structure Data is the
command request,
of ASP_MAXCMD
maximum size

ASP_EVENT_SSS_WRITE
_REQ

Received a write
request. If
Fastwrite is not in
effect, reply with
ATAspWCont or

No errors
Nothing in pass
structure Data is the
write request data,

Communication Service Group

AppleTalk: Functions 79

ATAspWCont or
ATAspWReply. If
Fastwrite is in
effect, this
message contains
the write request
data but needs no
ATAspWCont
reply.

of CmdSize
maximum size

ASP_EVENT_SSS_WRITE
CONT_REPLY

Received a write
continue reply.
Reply with
ATAspWReply.

No errors Data is the
write data received,
of QuantumSize
maximum size

ASP_EVENT_SSS_ATTN_
REPLY

Received the
acknowledgment
of reply to an
outstanding
send_attention, or
the Attention
transaction timed
out. No reply is
necessary.

ret---0, ETIMEDOUT
Attn.id---ID code
that client passed in
No data

ASP_EVENT_SSS_SND_A
TTN

Was trying to send
the Attention
request, but an
error got in the
way; the Attention
request never
made it onto the
wire. Try again, if
you want.

ret---EINVAL,
ENOBUFS Attn.id
---ID code that client
passed in No data

ASP_EVENT_SSS_CLOSE The SSS session
has been
closed.Call
ATAspClose.

ret---Possible errors:
ESHUTDOWN: SLS
that spawned the
SSS was closed
ENETRESET:
network has been
reconfigured 0:
Received a close
request from remote
endpoint
ETIMEDOUT: No
packets received for
a long time,
probably dead

ASP_EVENT_SSS_WRITE
_REPLY

ATAspWReply
was called, but the
system could not
send the reply.

ret---Possible errors:
ECONNABORTED:
This session is in the
closed state
EINVAL: Bad

Communication Service Group

AppleTalk: Functions 80

EINVAL: Bad
parameter or bad
state for this call
ENOBUFS: Not
enough memory to
send reply

ASP_EVENT_SSS_WRITE
CONT_REQ

ATAspWCont
request was called
but the system
could not send the
request.

ret---Possible errors:
EINVAL: Bad
parameter or bad
state for this call
ENOBUFS: Not
enough memory to
send request

typedef struct
ATAspPass {
 u_short cmd;
 long ret;
 union {
 struct Attn_s { /* Used externally */
 short attn_code; /* 13 bytes */
 ATRetry_t retry;
 u_long id;
 } Attn;
 struct StatReq_s { /* Used externally */
 ATInet_t addr;
 } StatReq;
 struct OpenReq_s {
 ATInet_t addr;
 u_long id;
 u_short fastwrite;
 } OpenReq;
 } U;
} ATAspPass_t ;

See Also

ATAtpGet, ATPapGet

Communication Service Group

AppleTalk: Functions 81

ATAspGetParms

Allows a client to find particular constants, the maximum size of an ASP
command and the maximum size of an ASP response before a session is
active
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <asp.h>

int ATAspGetParms (
 int fd,
 int *maxcmd,
 int *quantum);

Parameters

fd

(IN) Indicates the file descriptor.

maxcmd

(IN/OUT) Points to an integer. Maximum command size is returned.

quantum

(IN/OUT) Points to an integer. ASP quantum size is returned.

Return Values

0 Success

EBADF Bad file descriptor

Remarks

In reality, all ASP implementations use a maximum command size of 578
bytes and an ASP quantum size of 4624 bytes. There is no negotiation
between endpoints about the size to use. For maximum compatibility,
call ATAspGetParms anyway.

ATAspGetParms can be called from a server or a workstation. It is

Communication Service Group

AppleTalk: Functions 82

allowed on any ASP file descriptors.

ATAspGetParms is a blocking function, but is nevertheless quick.

Communication Service Group

AppleTalk: Functions 83

ATAspGetWorkstation

Returns the AppleTalk address of the workstation to which this file
descriptor is connected
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <asp.h>

int ATAspGetWorkstation (
 void fd,
 ATInet_t *addr);

Parameters

fd

(IN) Indicates the file descriptor.

addr

(OUT) Points to an AppleTalk address in the pointer that you passed
in.

Return Values

0 Success

EBADF Invalid file descriptor

EINVAL No session created yet through this file descriptor

Remarks

ATAspGetWorkstation is a blocking function, but is quick (no network
access).

Communication Service Group

AppleTalk: Functions 84

ATAspOpen

Opens a file descriptor for reading and writing, but does not bind a session
to this file descriptor
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <asp.h>

int ATAspOpen (
 int *fd);

Parameters

fd

(OUT) Points to the file descriptor returned in the pointer that you
passed in.

Return Values

0 Success

ENOBU
FS

Insufficient buffer space

Remarks

ATAspOpen involves no network traffic.

See Also

ATAspClose

Communication Service Group

AppleTalk: Functions 85

ATAspSendStat

Replies to a GetStatus request received through the ATAspGet function
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <asp.h>

int ATAspSendStat (
 int fd,
 char *buf,
 int len,
 ATInet_t addr);

Parameters

fd

(IN) Indicates the file descriptor.

buf

(IN) Points to the status string. Maximum size of the status buffer is
MAXCMDSIZE.

len

(IN) Indicates u_short, length of status string.

addr

(IN) Points to the remote AppleTalk address of the sender of the
request.

Return Values

0 Success

EINVAL Buffer too long, StatusID invalid

Remarks

ATAspSendStat is a quick function.

Communication Service Group

AppleTalk: Functions 86

ATAspSetStat

Sets the status string on an SLS (session listening socket) when an
ATAspGetStatus packet is received
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <asp.h>

int ATAspSetStat (
 int fd,
 char *buf,
 int len);

Parameters

fd

(IN) Indicates the file descriptor.

buf

(IN) Points to the status string.

len

(IN) Indicates the length of the status string.

Return Values

0 Success

ENOBU
FS

Could not allocate buffer to copy into. Try again later or
abandon the SLS.

Remarks

If a status is already set, ATAspSetStat resets the status.

IMPORTANT: If you, the client, want to reply to each individual
get-status request packet, set the stat_flag parameter of ATAspSLSInit to
the value of 1 when calling instead of this function.

Communication Service Group

AppleTalk: Functions 87

If the buffer passed in is zero length | zero pointer, that is what the status
string is.

Maximum size is MAXCMDSIZE.

ATAspSetStat is a quick function.

Communication Service Group

AppleTalk: Functions 88

ATAspSLSInit

Makes the specified file descriptor into an SLS (session listening socket)
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <asp.h>

int ATAspSLSInit (
 int fd,
 int stat_flag);

Parameters

fd

(IN) Points to the file descriptor.

stat_flag

(IN) Indicates to ASP either to handle all get status requests internally
or to pass each one to your application:

0 = internal
1 = application

Return Values

0 Success

Remarks

ASP allocates two sockets, one for the incoming open request, and one for
the sessions spawned from this SLS. After this function completes, that is,
after the ATAspGet comes back, ATNbpRegister can be called.

If stat_flag is 0, the application must set the status. ATAspSetStatus must
be called. Otherwise, status requests come to the application, and each
one should be replied to individually, with ATAspSendStat.

Errors are returned in an ATAspGet, as are notification that the
operation succeeded. Possible errors are "out of sockets" or "out of

Communication Service Group

AppleTalk: Functions 89

memory."

ATAspSLSInit is a quick function.

Communication Service Group

AppleTalk: Functions 90

ATAspSSSInit

Creates a new SSS (server session socket) when a request comes in
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <asp.h>

int ATAspSSSInit (
 int SSSfd,
 void *sss_id,
 ATInet_t *wss_addr,
 int fastwrite);

Parameters

SSSfd

(IN) Indicates the file descriptor of the SSS.

sss_id

(IN) Indicates the OpenConn request identifier.

wss_addr

(IN) Indicates the network address of the workstation attempting to
connect.

fastwrite

(IN) Indicates the Fastwrite option, set (1). Otherwise, clear (0).

Return Values

0 Success

Remarks

Use U.OpenReq.id (of the ATAspPass_t structure) passed up in the
ASP_EVENT_SLS_OPEN_REQ event.

ATAspSSSInit is a quick function; it does not wait for any replies.

Communication Service Group

AppleTalk: Functions 91

ATAspWCont

Sends a write continue request
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <asp.h>

int ATAspWCont (
 int fd,
 int len);

Parameters

fd

(IN) Indicates the file descriptor.

len

(IN) Indicates an integer specifying the number of bytes your
application accepts in the write continue reply.

Return Values

0 Success

Remarks

Call ATAspWCont after receiving a write request event, if the write
request isn't in error and the Fastwrite option is off.

ATAspWCont specifies to the workstation the buffer size that the server
accepts.

See Fastwrite for an explanation of how to avoid using this function.

ATAspWCont does not wait for network access.

Communication Service Group

AppleTalk: Functions 92

ATAspWReply

Sends a write reply
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <asp.h>

int ATAspWReply (
 int fd,
 u_long result,
 char *buf,
 int len);

Parameters

fd

(IN) Indicates the file descriptor.

result

(IN) Indicates the 4-byte write result.

buf

(IN) Points to write reply buffer.

len

(IN) Indicates the length of write reply buffer.

Return Values

0 Success

EBADF File descriptor is invalid

Remarks

Call ATAspWReply after receiving an ASP_EVENT_SSS_WRITE_REQ
event to indicate success or failure of the write request.

Because of the inverted, two-transaction nature of an ASP write,

Communication Service Group

AppleTalk: Functions 93

ATAspWReply can be called either after receiving the
ASP_EVENT_SSS_WRITE_REQ, which would preclude the write
continue transaction, or after the ASP_EVENT_WRITE_CONT_REPLY if
the write continue is entered into. By convention, the first case is an error
case and the result should be nonzero, but not necessarily always. For
further discussion of this point, see ASP, including the flowchart.

There can be only one write continue request at a time, so no extra
identifier is necessary.

ATAspWReply does not wait for network access.

Communication Service Group

AppleTalk: Functions 94

ATAtpCancelRecvReq

Allows you to terminate a received XO request prematurely
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <atp.h>

int ATAtpCancelRecvReq (
 int fd,
 void *TransID);

Parameters

fd

(IN) Specifies the file descriptor associated with the socket sending the
TReq packet. The file descriptor is returned by the function
ATAtpOpen, which opens the socket.

TransID

(IN) Points to a void-sized pointer. The transaction ID (TID) of the
ATAtpSendReq you are cancelling is returned in that pointer. In
contrast to its counterpart in ATAtpCancelSendReq, this is the
computer-generated TID, which is unique.

Return Values

0 Success

EBADF File descriptor is invalid

EINVAL There is no such transaction ID on this fd.

Remarks

IMPORTANT: Do not cancel an ALO request. The ALO Transaction
ID space is not unique, so canceling an ALO request could end up
canceling an XO request (but more likely would return a "transaction
not found" error). There is no memory stored of ALO requests, so they
don't need to be canceled.

Communication Service Group

AppleTalk: Functions 95

If you receive an XO request and have no intention of replying, it is
necessary to cancel the request to free system resources. The memory
used to store the XO request is freed, along with all other buffers. If the
remote endpoint retries, you receive the request indication again. No
packets are sent out over the wire. The transaction ID here (TransID) is
the ATP-generated one, which is unique.

Since ATAtpCancelRecvReq and ATAtpCancelSendReq functions are
synchronous and the interface uses STREAMS, only one
ATAtpCancelRecvReq or ATAtpCancelSendReq can be outstanding at
a time. Thus, multiple threads accessing the same file descriptor could get
hung.

Example

ATAtpCancelRecvReq

#include <atp.h>

main()
{
 int my_fd, err;
 ATAtpPass_t pass;
 /* Open the my_fd file descriptor */
 pass.data = malloc(ATP_DATA_SIZE * 8);
 if (!pass.data)
 return;
 pass.data_len = ATP_DATA_SIZE * 8;
 /* Call ATAtpGet to get an OpenConnection request */
 err = ATAtpGet(my_fd, pass);
 if (err || pass.ret)
 return;
 if (pass.event == ATP_EVENT_RCV_REQ)
 {
 /* Try to do some action, like read from disk... but it fails */
 if (pass.xo)
 ATAtpCancelRecvReq(my_fd, pass.TransID);
 }
}

Communication Service Group

AppleTalk: Functions 96

ATAtpCancelSendReq

Allows a request transaction generated by the local endpoint to be
terminated earlier than normal
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <atp.h>

int ATAtpCancelSendReq (
 int fd,
 void *TransID);

Parameters

fd

(IN) Specifies the file descriptor associated with the socket that sent the
TReq packet.

TransID

(IN) Points to a void-sized pointer. The transaction ID (TID) of the
ATAtpSendReq that you are cancelling is returned in that pointer.

Return Values

0 Success

EBADF File descriptor is invalid

EINVAL There is no such transaction ID on this fd.

Remarks

Normally, a request transaction is terminated when the reply comes in or
the retry structure says to do so. ATAtpCancelSendReq allows a request
transaction generated by the local endpoint to be terminated earlier.

NOTE: Because the transaction ID here is created by the API client, it
is not necessarily unique. So it is possible for unintentional cancellations
to occur since this function cancels all requests with the specified
transaction ID.

Communication Service Group

AppleTalk: Functions 97

ATAtpCancelSendReq is necessary with ALO because ALO requests
stay outstanding until the correct reply comes back.

Note that an ATAtpClose automatically cancels all transactions, so under
normal operation, this function need not be used. Also, because the ATP
transaction database is not indexed on the void pointer transaction ID,
ATAtpCancelSendReq can be relatively slow.

Note also that, because ATAtpCancelSendReqn and
ATAtpCancelRecvReq are synchronous, and the interface uses
STREAMS, only one ATAtpCancelSendReq or ATAtpCancelRecvReq
can be outstanding at a time. Thus, multiple threads accessing the same
file descriptor could get hung.

Example

ATAtpCancelSendReq

#include <atp.h>

main()
{
 int my_fd, err;
 ATAtpPass_t pass;
 ATInet_t where_to_send_request;

 /* Open the my_fd file descriptor */
 /* Call ATNbpLookup to set where_to_send_request */
 pass.at_addr = where_to_send_request;
 pass.data = 0;
 pass.data_len = 0;
 pass.xo = 1;
 pass.xo_relt = ATP_XO_DEF_REL_TIME;
 pass.retry.interval = 0; /* Gets default retry settings. */
 pass.bitmap = 0x01;
 pass.packetize = 0;
 pass.userdata[0] = 0x42;
 pass.TransID = 0x42726942;

 /* Send out the request */
 err = ATAtpSendReq(my_fd, pass);
 if (err) return;

 /* Decided you don't care about the answer. Cancel that request. */
 ATAtpCancelSendReq(my_fd, 0x42726942);
}

Communication Service Group

AppleTalk: Functions 98

ATAtpClose

Closes a previously opened socket with which this file descriptor is
associated, freeing up any internal structures and discarding all undelivered
requests and responses, making all other calls complete
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <atp.h>

int ATAtpClose (
 int fd);

Parameters

fd

(IN) Specifies the file descriptor that was returned by ATAtpOpen
when the socket was opened.

Return Values

0 Success

ENOEN
T

You specified an invalid entity (in this case, a file
descriptor)

STREA
MS error

Try again.

Remarks

ATAtpClose frees the allocated DDP socket.

ATAtpClose closes a previously opened socket with which this file
descriptor is associated, freeing up any internal structures and discarding
all undelivered requests and responses, making all other calls complete. It
frees the allocated DDP socket.

IMPORTANT: ATAtpClose sends no closing notification to any
"connected" protocol clients (because there are no connections in ATP).

Communication Service Group

AppleTalk: Functions 99

See Also

ATAtpOpen

Example

ATAtpClose

#include <atp.h>

main()
{
int my_fd, sock, err;

/*
 Open a socket.
*/
 sock = 0; /* Get a dynamic socket. */
 if(err = ATAtpOpen(&my_fd,&sock))
 {
 printf("ATAtpOpen failed: err = %x\n",err);
 exit(__LINE__);
 }
.
.
. Do some work.
.
.
/* Gracefully close the connection. */
 if(err = ATAtpClose(my_fd))
 {
 printf("ATAtpClose failed: err = %x\n",err);
 exit(__LINE__);
 }
}

Communication Service Group

AppleTalk: Functions 100

ATAtpGet

Retrieves the next event from the protocol client
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <atp.h>

int ATAtpGet (
 int fd,
 ATAtpPass_t *pass);

Parameters

fd

(IN) Specifies the file descriptor to retrieve the event from. The file
descriptor is returned by the function ATAtpOpen, which opens the
socket.

pass

(OUT) Points to an ATAtpPass_t structure, which points to the data
being transferred and the specifics of what arrived. See ATPapPass_t.

Return Values

0 Success

EBADF You specified an invalid file descriptor.

ENOBUFS Insufficient buffer space is available.

ETIMEDOUT Your request timed out.

ERANGE Data remains to be read the second time.

Remarks

ATAtpGet retrieves the next event from the protocol client. Unlike its
predecessors (atp_getreq), this function retrieves all events, not just a
request or a response, allowing multiple requests and responses to be
outstanding at a time.

Communication Service Group

AppleTalk: Functions 101

WARNING: Note that the data and data_len fields must be
initialized in the ATAtpPass_t structure, at least to zero, or the
machine will crash.

The data and data_len parameters have remained in the ATAtpPass_t
structure instead of being moved to the "get" functions as they were in
ASP and PAP. (In some ways, the ATAspPass_t and ATPapPass_t
structures are like parameters to their respective get functions.)

ATAtpGet does not take long if poll is called on this file descriptor, or it
has data. Otherwise, it waits until data arrives.

Because ATAtpGet can decipher multiple kinds of data, it provides the
advantage of retrieving any kind of data---request or response or
error---without needing to know, in advance, what kind of data is
waiting.

The currently defined event types are listed in the following table. This
table lists the name of the event, the way the event should be interpreted,
and the parameters that are filled in with information about the event in
the ATAtpPass_t structure. See ATAtpPass_t and the listing below.

IMPORTANT: Do not rely on a number associated with an event;
this number can change. Rather, select your functions based on the
"#defines" themselves.

Event Interpretation Parameter

All ret---Error code (ENOBUFS,
ERANGE)
at_addr---Address of the remote
endpoint referred to in this
transaction
TransID---associates between
request and response. For
transactions started by the
network, it passes the same
TransID you received. For
transactions generated by you,
the response has whatever
TransID you specified in the
request.
xo---Refers to whether the
transaction is exactly-once or
at-least- once.

ATP_EVENT_RCV_
REQ

Received a
request

xo_relt---Set to the xo_relt field
in the incoming request. This is
informational only; the ATP
protocol sets the timer and all.
userdata[0]---Contains the ATP
userdata field of the request

Communication Service Group

AppleTalk: Functions 102

packet_len[0]---Contains the
length of the request data
bitmap---Points to the bitmap
received in the request. Use
this to determine the maximum
size of response you can send.
data and data_len---Note that
these must be initialized in the
structure, at least to zero, or the
machine will crash. Maximum
is ATP_DATA_SIZE

ATP_EVENT_RCV_
RSP

Received a
response

bitmap---Maps which packets
were received in the response
userdata[0...7]---The userdata
array contains the userdata field
from each packet associated
with the corresponding bitmap.
packet_len[0...7]---Contains the
length of data received in each
packet
data and data_len---Note that
these must be initialized in the
structure, at least to zero, or the
machine will crash. The
maximum data is a rcv_resp
and be limited to
ATP_DATA_SIZE * (bits set in
its requesting bitmap). So, if
bitmap is set to 1, max data is
ATP_DATA_SIZE, bitmap
0x03 = 2 bits set, thus
ATP_DATA_SIZE * 2.

ATP_EVENT_SND
_REQ

Request sent
did not
complete due
to an error.

ret---Possible errors:
ETIMEDOUT, EINVAL,
ENOBUFS

ATP_EVENT_SND
_RSP

Response sent
did not
complete due
to an error

ret---Possible errors:
ETIMEDOUT, EINVAL,
ENOBUFS

typedef struct ATAtpPass {
 u_short event;
 int ret;
 ATInet_t at_addr;
 void *TransID;
 u_char xo;
 u_char xo_relt;
 u_char bitmap;

Communication Service Group

AppleTalk: Functions 103

 u_char packetize;
 ATRetry_t retry;
 void *data;
 u_short data_len;
 u_long userdata[8];
 u_short packet_len[8];
} ATAtpPass_t;

See Also

ATAspGet, ATAtpSendReq, ATAtpSendRsp, ATPapGet

Example

ATAtpGet

#include <atp.h>

main()
{
ATAtpPass_t rcv_pass;
int err;
.
.
. Do some work.
.
.
/*
 Allocate memory for the receive buffer.
*/
 rcv_pass.data = (void *)malloc(ATP_DATA_SIZE);
 rcv_pass.data_len = ATP_DATA_SIZE *8;
 printf("Waiting for request...\n\n");
 do
 {
 if(err = ATAtpGet(my_fd,&rcv_pass))
 {
 printf("ATAtpGet failed: err = %x\n",err);
 ATAtpClose(my_fd);
 exit(__LINE__);
 }
/*
 Check for an error.
*/
 if(rcv_pass.ret)
 printf("rcv_pass.ret returned error (%x)\n",rcv_pass.ret);
}

Communication Service Group

AppleTalk: Functions 104

ATAtpOpen

Opens a socket that listens for packets from the file descriptor that is
returned by ATAtpOpen

Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <atp.h>

int ATAtpOpen (
 int *fd,
 ATSocket *socket);

Parameters

fd

(OUT) Points to the file descriptor.

socket

(IN/OUT) Points to an ATSocket (defined in appletlk.h).

Return Values

0 Success

ENOBUFS Could not allocate per socket structure; try again.

EADDRNOT
AVAIL

No sockets are available.

EADDRINUS
E

Another protocol client is using the socket you
specified.

EINVAL You specified a socket in the dynamic range.

ENOENT You specified an invalid entity (in this case, a socket).

STREAMS
error

Try again.

NOTE: If you specified an invalid socket, ATAtpOpen can return
either EBADF or ENOENT.

Communication Service Group

AppleTalk: Functions 105

Remarks

ATAtpOpen opens a socket that listens for packets from the file
descriptor that it returns. You can either pass a socket number to ATP (
static socket assignment) or you can pass 0 or a NULL pointer and the
socket number is returned to you (dynamic socket assignment). To close
the socket, call ATAtpClose.

To open a statically assigned socket, socket must be a pointer to a number
within the static range of 1 through 127. (See ATDdpRegisterListener for
more about static and dynamic sockets.)

To open a dynamically assigned socket, socket must either point to socket
number zero or be a NULL pointer:

socket Input Result

socket = 0 socket returns the socket that has been opened

socket = 0 socket does not return information about which socket
has been opened

When opening this socket, you are, in effect, opening a "transaction
listening socket." Unlike DDP, the ATP interface accepts only one
listening socket per file descriptor.

See Also

ATAtpClose

Example

ATAtpOpen

#include <atp.h>

main()
{
 int my_fd, sock, err;
 /*
 Open a socket.
 */
 sock = 0; /* Get a dynamic socket. */
 if(err = ATAtpOpen(&my_fd,&sock))
 {
 printf("ATAtpOpen failed: err = %x\n",err);
 exit(__LINE__);
 }
.
.

Communication Service Group

AppleTalk: Functions 106

. Do some work.
}

Communication Service Group

AppleTalk: Functions 107

ATAtpSendReq

Sends a request to a remote endpoint
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <atp.h>

int ATAtpSendReq (
 int fd,
 ATAtpPass_t *pass);

Parameters

fd

(IN) Specifies the file descriptor associated with the socket sending the
TReq packet. The file descriptor is returned by ATAtpOpen, which
opens the socket.

pass

(IN) Points to a pass structure, which points to the data being
transferred and tells how and where to send the request. For a
discussion of the structure, including packetizing and retry options,
see ATAtpPass_t.

Return Values

0 Success

EBADF You specified an invalid file descriptor.

EINVAL The packet is larger than the ATP maximum of
ATP_DATA_SIZE bytes.
Or you specified a negative number of retries. Or you
specified an invalid destination address.

ENOBUFS Insufficient buffer space is available.

ETIMEDOUT Timed out (returned in ATAtpGet)

Remarks

Communication Service Group

AppleTalk: Functions 108

ATAtpSendReq's answers return in ATAtpGet, including return values.

In ATAtpSendReq, a transaction ID is available to allow the client to
match a request with the response. It can be any number. The
Transaction ID sent over the network is a different number, generated
internally by ATP. The transaction ID generated by the requestor is
returned in ATAtpGet when the response appears. Also, if you want to
cancel the request, you must present this transaction ID.

This transaction ID need not be unique, only unique enough for your
needs. If you have only one request outstanding at a time, for example,
no transaction ID is necessary.

See Also

ATAtpCancelSendReq, ATAtpGet

Example

ATAtpSendReq

#include <atp.h>

main ()
{
 ATAtpPass_t send_pass;
 int err, my_fd;
.
.
. Get socket, file descriptor, AppleTalk address. See the
. sample program "ATPCLNT.C".
.
.
/*
 Fill in the pass data structure.
*/
/*
 *buf_p is a global that contains the desired
 AppleTalk address
*/
 send_pass.at_addr.net = buf_p[0].enu_addr.net;
 send_pass.at_addr.node = buf_p[0].enu_addr.node;
 send_pass.at_addr.socket = buf_p[0].enu_addr.socket;
 send_pass.bitmap = 1;
 send_pass.retry.interval = 2000;
 send_pass.retry.retries = 2;
 send_pass.retry.backoff = 2;
 send_pass.ret = 0;
 send_pass.data = buffer;
 send_pass.data_len = strlen(buffer)+1;

Communication Service Group

AppleTalk: Functions 109

 send_pass.userdata[0] = 0;
 send_pass.xo= 0;
 send_pass.xo_relt = ATP_XO_DEF_REL_TIME;
 send_pass.packetize = 0;
 do
 {
 if(err = ATAtpSendReq(my_fd,&send_pass))
 {
 printf("ATAtpSendReq failed: err = %x\n",err);
 ATAtpClose(my_fd);
 exit(__LINE__);
 }
 }
}

Communication Service Group

AppleTalk: Functions 110

ATAtpSendRsp

Sends a response to a remote requesting endpoint
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <atp.h>

int ATAtpSendRsp (
 int fd,
 ATAtpPass_t *pass);

Parameters

fd

(IN) Specifies the file descriptor associated with the socket sending the
TResp packet. The file descriptor is returned by the function
ATAtpOpen, which opens the socket.

pass

(IN) Points to a pass structure, which points to the data being
transferred. For a discussion of this structure, including its packetizing
and retry options, see ATAtpPass_t.

Return Values

0 Success

EBADF Invalid file descriptor

EINVAL The packet is larger than the ATP maximum of
ATP_DATA_SIZE.

The following two error codes can be returned in the ATAtpGet function:

ENOBUFS---insufficient buffer space

ENOENT---When the function sends an XO response, ATP cannot find
the transaction record (the tid parameter is invalid), or the responder
did not send a response within 30 seconds.

Communication Service Group

AppleTalk: Functions 111

Remarks

ATAtpSendRsp returns as soon as ATP queues the response packets for
transmission to the requester.

IMPORTANT: The Transaction ID passed in the ATAtpGet function
that got the request must be passed back in the response.

Call AtpSendRsp to respond to a request retrieved with ATAtpGet. All
errors are be returned in ATAtpGet, and identified by a Transaction ID.

ATAtpSendRsp is a quick function.

Receiving Replies

In the ATAtpPass_t structure, the bitmap field is set to show the exact
mapping of reply packets received. The userdata array is set to the
userdata field of each received response packet, or, in the case of a
request, is userdata[0]. The packet_len array is set to the number of bytes of
ATP data received in each packet. (Usually this information is not
needed.) The data buffer, supplied by the application, is a concatenation
of all data received.

Sending Replies

You can send replies in two ways---ignoring packetization or controlling
packetization. Although the vast majority of replies ignore packetization,
both methods are included in the following discussion.

To ignore packetization, set the pass->packetize variable to 0. Set the data
buffer to the data you want to send in the transaction. Since you won't
know which userdata fields are set, set only userdata[0]. ATP fills the
packets for userdata[1]-[7] to the maximum size (MAX_ATP_DATA) and
ignores bitmap field.

The packetization control fields have been included because some clients
can require more control; notably PAP requires that only 512 bytes of
ATP data be sent in every reply. In the general design of ATP, the
application shouldn't have responsibility for the exact control of packets
(how many packets, and so on) but should instead be controlling
transactions.

In the ATAtpPass_t structure, the bitmap field maps the arrangement of
pass->userdata packets, in right to left order. For example, a pass->bitmap
hexadecimal value of 85 (binary 10000101) specifies pass->userdata
packets in in the first, third, and eighth elements (pass->userdata[0],
pass->userdata[2], and pass->userdata[7]).

Packetization is controlled in the ATAtpPass_t structure in the following
way. Set the pass->packetize to 1. Set the pass->bitmap field to the exact
mapping of response packets that you want to send. Set the
pass->userdata[] fields for the packets you want to send. Set the lengths of
these packets in the pass->packet_len field. A length of 0 means that there
is no ATP data, but that there is a response packet and a pass->userdata[]

Communication Service Group

AppleTalk: Functions 112

entry. Set the pass->data and pass->data_len fields to the total amount of
data you want to send. Make sure the sum of the pass->packet_len array is
equal to the total size of the data, that is, all the pass->data_len field.

For example, if you need to send three reply packets, numbers 0, 1, and 2,
with userdata fields of 3465, 6223, 9867 and data of 0, 100, and 200 bytes,
respectively. Set the pass->bitmap field to the hexadecimal value 07
(binary 00000111). Set pass->userdata[0] to 3465, pass->userdata[1] to 6223,
and pass->userdata[2] to 9867. The pass->data buffer should point to the
300 bytes to be sent. The pass->data_len field should be 300. The
pass->data_len[0] field should be 0, pass->data_len[1] should be 100, and
pass->data_len[2] should be 200.

In requests, bitmap specifies responses allowed, and userdata[0] is the
userdata in the request. If you are receiving requests, these values are
passed through ATAtpGet; bitmap is already set, and userdata[0] has the
userdata in the request packet.

NOTE: It is not possible to send a zero-buffer response. If you set
pass->packetize to 1 and pass->bitmap to 0, no error would be generated,
and one packet would be sent. However, the contents of this buffer
would depend entirely on the rest of the ATAtpPass_t structure.
Whatever was in pass->userdata[0] (very possibly garbage) would be the
ATP header's user data field. No ATP data would be in the packet,
regardless of settings in the pass->data_len and pass->data fields; in this
case, these fields would be ignored.

IMPORTANT: Byte ordering is a crucial issue with DDP packets.
See AppleTalk Byte Ordering.

See Also

ATAtpGet, ATAtpCancelSendReq, ATAtpSendReq,
ATAtpCancelRecvReq

Example

ATAtpSendRsp

#include <atp.h>

main()
{
 ATAtpPass_t resp_pass;
.
.
. Open a socket, do some work.
.
.
/*
 Fill in the pass structure.

Communication Service Group

AppleTalk: Functions 113

*/
 resp_pass.at_addr = rcv_pass.at_addr;
 resp_pass.bitmap = 1; /* For documenation only--1 packet. */
 resp_pass.packetize = 0;
 resp_pass.retry.interval = 2000;
 resp_pass.retry.retries = 2;
 resp_pass.retry.backoff = 2;
 resp_pass.ret =0;
 resp_pass.data = resp_buf;
 resp_pass.data_len = strlen(resp_buf)+1;
 resp_pass.userdata[0] = 0;
 resp_pass.xo = 0;
 resp_pass.xo_relt = ATP_XO_DEF_REL_TIME;
 resp_pass.TransID = rcv_pass.TransID;
 if(err= ATAtpSendRsp(my_fd,&resp_pass))
 {
 printf("ATAtpSendRsp failed: err = %x\n",err);
 ATAtpClose(my_fd);
 exit(__LINE__);
 }
}

Communication Service Group

AppleTalk: Functions 114

ATDdpClose

Closes a socket opened by ATDdpOpen

Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <ddp.h>

int ATDdpClose (
 int fd);

Parameters

fd

(IN) Specifies the file descriptor associated with the opened socket.

Return Values

0 Success

EBADF Someone else closed the file descriptor; you should
stop trying.

STREAMS
error

Try again

Remarks

ATDdpClose closes the file descriptor, freeing up any internal structures
and throwing away all undelivered packets, making all other calls
complete.

Notice that ATDdpClose causes no network traffic.

IMPORTANT: ATDdpClose removes all listeners on this file
descriptor and all NBP registrations.

See Also

ATDdpOpen

Communication Service Group

AppleTalk: Functions 115

Example

ATDdpClose

#include <ddp.h>

main()
{
 int my_fd;
 /*
 Open a socket.
 */
 my_fd = 0;
 if (err = ATDdpOpen(&my_fd))
 {
 printf("ATDdpOpen failed: err= %x\n",err);
 exit(__LINE__);
 }
 /*
 Close the DDP socket.
 */
 if(err = ATDdpClose(my_fd))
 {
 printf("ATDdpClose failed: err = %x\n",err);
 exit(__LINE__);
 }
}

Communication Service Group

AppleTalk: Functions 116

ATDdpDeregisterListener

Removes a listener on the specified file descriptor
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <ddp.h>

int ATDdpDeregisterListener (
 int fd,
 ATSocket sock);

Parameters

fd

(IN) Specifies a file descriptor.

soc

(IN) Specifies the AppleTalk socket number to de-register.

Return Values

0 Success

EBADF Someone else closed the file descriptor and you
should stop trying.

ENOENT The socket to be de-registered is not registered.

STREAMS
errors

Try again.

Remarks

This file descriptor stops receiving all DDP packets destined to that
socket.

The de-registration functionality also occurs when the DDP socket is
closed.

IMPORTANT: Be aware that if ATDdpDeregisterListener is called

Communication Service Group

AppleTalk: Functions 117

with a socket of 0, all listeners are closed on this file descriptor.

See Also

ATDdpOpen

Example

ATDdpDeregisterListener

#include <ddp.h>

main()
{
 int my_fd;
 ATInet_t newsock;
 /*
 Open a socket.
 */
 my_fd = 0;
 if (err = ATDdpOpen(&my_fd))
 {
 printf("ATDdpOpen failed: err = %x\n",err);
 exit(__LINE__);
 }
 newsock.socket = 0;
 if(err = ATDdpRegisterListener(my_fd,&newsock))
 {
 printf("ATDdpRegisterListener failed: err = %x\n",err);
 ATDdpClose(my_fd);
 exit(__LINE__);
 }
}

Communication Service Group

AppleTalk: Functions 118

ATDdpNetinfo

Gets information about this interface
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <ddp.h>

int ATDdpNetinfo (
 int fd,
 ATInet_t *node,
 ATInet_t *router,
 int *flags);

Parameters

fd

(IN) Specifies a file descriptor.

node

(OUT) Points to the ATInet_t structure. The AppleTalk addresses for
your net and node are passed back in that structure.

router

(OUT) Points to the ATInet_t structure and the AppleTalk address for
A_ROUTER is passed back in that structure.

flags

(OUT) Points in which a long word of IF flags returns, telling whether
the network that the stack is bound to is extended or nonextended:

1 = nonextended
0 = extended
2 = unbound

Return Values

0 Success

EBADF Someone else closed the file descriptor and you
should stop trying.

STREAMS Try again.

Communication Service Group

AppleTalk: Functions 119

errors

Remarks

For a complete definition of an extended network, see Inside AppleTalk,
Second Edition. Basically, an extended network allows you to have zone
lists and network cable ranges. The ZIP procedures are also different, but
the NetWare AppleTalk interface takes care of them for you.

If you don't happen to have an fd handy, you can still find out
information about the network by passing in negative 1 (-1) as fd. The
function creates a new file descriptor, get the network information, and
then disposes of the file descriptor.

Any of the pointers (*node, *router, *flags) can be passed in as NULL if that
particular type of information is not requested. For example, if you don't
want to ask about the router, pass in 0.

Be aware that A_ROUTER changes constantly.

No registered listeners are necessary to call this function. No network
traffic occurs.

ATDdpNetinfo succeeds when no node is bound.

For PAP, ASP, and ATP clients, ATDdpNetinfo succeeds on those kinds
of file descriptors. The socket is set to a nonzero value in the cases of PAP
and ASP, but if there is a case of multiple listeners in DDP or ATP, the
value is set to 0 (or to the listener if there is only one listener).

Example

ATDdpNetinfo

#include <ddp.h>

main()
{
 ATInet_t info; /* The server's AppleTalk internet address. */
 ATInet_t router_info; /* The server's adjacent AppleTalk
 router address. */
 int flags;
 /*
 Get configuration information.
 */
 flags = 0;
 if(err = ATDdpNetinfo(my_fd,&info,&router_info, &flags))
 {
 printf("ATDdpNetinfo failed: err = %x\n", err);
 ATDdpClose(my_fd);

Communication Service Group

AppleTalk: Functions 120

 exit(__LINE__);
 }
}

Communication Service Group

AppleTalk: Functions 121

ATDdpOpen

Opens a file descriptor on the local host for reading and writing but does not
bind an AppleTalk socket to this file descriptor
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <ddp.h>

int ATDdpOpen (
 int *fd);

Parameters

fd

(OUT) Points to a file descriptor. Returns the file descriptor opened
here, to be used with ATDdpRead and ATDdpWrite.

Return Values

0 Success

Remarks

You should be aware that ATDdpOpen succeeds even if no node is
bound yet, because when APPLETLK.NLM is loaded, it is not yet
attached (bound) to a network. It can't communicate, since the stack node
is not bound to a card. However, you can still open DDP, open sockets,
and do various other things.

To bind a socket, call ATDdpRegisterListener. The file descriptor is
(currently) a full STREAMS file descriptor, and thus responds to the poll
function.

Note that ATDdpOpen causes no network traffic and is a blocking
function.

To close a socket opened with this function, call ATDdpClose.

Communication Service Group

AppleTalk: Functions 122

See Also

ATDdpClose

Example

ATDdpOpen

#include <ddp.h>

main()
{
 int my_fd;
 /*
 Open a socket.
 */
 my_fd = 0;
 if (err = ATDdpOpen(&my_fd))
 {
 printf("ATDdpOpen failed: err= %x\n",err);
 exit(__LINE__);
 }
}

Communication Service Group

AppleTalk: Functions 123

ATDdpRead

Reads a packet
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <ddp.h>

int ATDdpRead (
 int fd,
 ATDdp_t *ddp,
 int *len);

Parameters

fd

(IN) Indicates the file descriptor.

ddp

(OUT) Points to the data buffer to copy the packet into. See ATDdp_t.

len

(IN/OUT) Points to int, passed in with buffer length, passed out with
number of bytes read.

Return Values

0 Success

EMSGSIZE The packet you read is too large to fit in the buffer you
provided.

ENETDOWN The network you attempted to send a datagram on is
down.

ENOBUFS Insufficient buffer space is available.

ENOTCON The socket you specified has not been opened.

Remarks

IMPORTANT: If you supply a buffer smaller than the actual

Communication Service Group

AppleTalk: Functions 124

incoming packet, ATDdpRead does not let you know that there was
more data to be read. Instead, you get the rest of the data the next time
you do a read. For this reason be sure to set the buffer to the maximum
datagram size, DDP_DATAGRAM_SIZE.

A DDP file descriptor must register listeners before it receives any
packets. Call ATDdpRegisterListener.

Packet headers are always DDP long format. They are expanded if
received as short.

The DDP header is set to whatever was received (with the possible
exception of the checksum field, which might be cleared after the sum has
been checked.)

The poll function can be used to make this function take less time.
Otherwise the function waits until the next packet arrives.

See Also

ATDdpWrite

Example

ATDdpRead

#include <ddp.h>

main()
{
 ATDdp_t recv_pkt; /* The server's received packet structure. */
 int recv_len;
 /*
 The read function will block until data is received. The server
 will then send a response back to the requesting node.
 */
 recv_len = DDP_DATA_SIZE;
 if(err = ATDdpRead(my_fd,&recv_pkt,&recv_len))
 {
 printf("ATDdpRead failed: err = %x\n",err);
 ATDdpClose(my_fd);
 exit(__LINE__);
 }
}

Communication Service Group

AppleTalk: Functions 125

ATDdpRegisterListener

Allows a DDP client to begin listening on a particular socket
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <ddp.h>

int ATDdpRegisterListener (
 int fd,
 ATInet_t *addr);

Parameters

fd

(IN) Specifies a file descriptor.

addr

(IN/OUT) Points to AppleTalk address and returns the address you
were allocated.

Return Values

0 Success

EBADF Someone else closed the file descriptor and you
should stop trying.

ENOENT The socket requested is not available.

EADDRINUS
E

Another protocol client is using the socket you
specified.

EADDRNOT
AVAIL

No sockets are available.

Remarks

The addr parameter returns the entire DDP address that the listener is on.
This can change as routers are attached and removed from the network
and as services are bound and unbound. If there is no node bound, the
net, node is 0,0.

Communication Service Group

AppleTalk: Functions 126

AppleTalk sockets fall into two categories: statically assigned sockets and
dynamically assigned sockets. Statically assigned sockets are denoted by
numbers 1 through 127; dynamically assigned sockets are denoted by
numbers 128 through 254. Apple* Computer, Inc. reserves the use of
sockets 1 through 63; you can use sockets 64 through 127 experimentally,
but not in released products.

For ATDdpRegisterListener to open a statically assigned socket, the
addr.socket field must be the socket number in the static range that you
want to use.

For ATDdpRegisterListener to open a dynamically assigned socket,
addr.socket must be 0, or addr must be a NULL pointer. If addr is non-null,
the function returns the dynamic socket number in addr.socket and, as a
courtesy, addr.net and addr.node are set to the node's current net and node
numbers. If you specify a socket number in the dynamic range, the
function generates the error EINVAL.

Note that multiple listeners can be registered on the same file descriptor.

ATDdpRegisterListener allows a DDP client to allocate a dynamic
socket. However, make sure you know which one has been allocated
because, although it would be possible to send out packets on a socket
that you are not a listener for, that would be in very bad taste.

This interface does not support opening socket 0xff.

ATDdpRegisterListener succeeds when no node is bound; however, no
packets are received. Periodically, a message is posted to the console
saying that there are listeners registered but no node bound. If a node
does become bound, it immediately becomes functional and the listener
starts receiving packets. If the node is unbound while a listener is
registered, the listener stops receiving packets but won't be notified in
any other way.

Novell® has traditionally not allowed the static allocation of sockets in
the dynamic range (128 through 254) but did, in a previous version of
these APIs, allow allocation of dynamic sockets in the static range (1
through 127) when necessary, for example when there weren't any free
sockets in the dynamic range. Now, neither of these types of allocation is
allowed.

See Also

ATDdpOpen

Example

ATDdpRegisterListener

#include <ddp.h>

Communication Service Group

AppleTalk: Functions 127

#include <ddp.h>

main()
{
 int my_fd,err;
 ATInet_t newsock;
 /*
 Open a socket.
 */
 my_fd = 0;
 if (err = ATDdpOpen(&my_fd))
 {
 printf("ATDdpOpen failed: err = %x\n",err);
 exit(__LINE__);
 }
 newsock.socket = 0;
 if(err = ATDdpRegisterListener(my_fd,&newsock))
 {
 printf("ATDdpRegisterListener failed: err = %x\n",err);
 ATDdpClose(my_fd);
 exit(__LINE__);
 }
}

Communication Service Group

AppleTalk: Functions 128

ATDdpWrite

Sends a packet
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <ddp.h>

int ATDdpWrite (
 int fd,
 ATDdp_t *ddp,
 long len);

Parameters

fd

(IN) Specifies a file descriptor to send packet on.

ddp

(IN) Points to packet data, including header, as data. See ATDdp_t.

len

(IN) Indicates an unsigned four-byte for packet length.

Return Values.

0 Success

EMGSIZE The packet you sent is too large or too small.

ENETDOWN The network you attempted to send a datagram on is
down.

ENOBUFS Insufficient buffer space is available.

ENOTCON The socket you specified has not been opened.

EINVAL Bad length; illegal type.

Remarks

In the ATDdp_t structure, the source net/node is overwritten by the

Communication Service Group

AppleTalk: Functions 129

stack, but not the source socket number---which must be filled in by the
API client---and destination address. Hop count and ddp length need not
be filled in. DDP type is of your own choosing. The destination net, node,
and socket are where to send the packet to.

To send a broadcast packet, send the packet to network 0, socket ff for a
cable-wide broadcast. For a network-specific broadcast, send the packet
to network net, socket ff. There is no way to do a cable broadcast for a
cable you aren't on (AppleTalk limitation). Currently this interface
doesn't support sending multicasts.

If the checksum field is nonzero, DDP calculates the checksum.

Packet headers must be DDP long format.

IMPORTANT: ATDdpWrite should not block ("sending" packets
are never queued), but the packet can be discarded if no sending packet
buffers are available (and no error is returned).

Also a note about implementation: If the packet is destined to the same
node it was sent from, queuing and context switches occur, which can
back up STREAMS flow control.

IMPORTANT: Remember, if the packet can't be delivered, no error
is returned.

See Also

ATDdpRead

Example

ATDdpWrite

#include<ddp.h>

main()
{
 ATDdp_t send_pkt; /* The server's send packet structure. */
 /*
 Prepare data to send back to the client. Fill in the send_pkt data
 structure.
 NOTE: The source net received in recv_pkt.src_net is already in
 network order.
 */
 send_pkt.dst_net = recv_pkt.src_net;
 send_pkt.dst_node = recv_pkt.src_node;
 send_pkt.dst_socket = recv_pkt.src_socket; /* Source socket. */
 send_pkt.type = 73; /* The server's protocol type. */
 send_pkt.src_socket = info.socket;
 send_pkt.checksum = 0; /* Don't calculate the checksum. */
 strcpy(send_pkt.data,myMsg); /* Message to the client. */

Communication Service Group

AppleTalk: Functions 130

 send_len = + strlen(myMsg) + 1;
 /*
 Now, everything is in order, so send the data to the client.
 */
 if(err = ATDdpWrite(my_fd,&send_pkt,send_len))
 {
 printf("ATDdpWrite failed: err = %x\n",err);
 ATDdpClose(my_fd);
 exit(__LINE__);
 }
}

Communication Service Group

AppleTalk: Functions 131

ATNbpConfirm

Verifies that the network address of the specified NBP entity is still valid
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <nbp.h>

int ATNbpConfirm (
 ATEntity_t *entity,
 ATInet_t *dest,
 ATRetry_t *retry);

Parameters

entity

(IN) Points to the ATEntity_t structure that contains the three-part
name (object, type, and zone) of the NBP entity whose address you
want to confirm.

Each member of the ATEntity_t structure is an ATNveStr_t structure,
or a P string (length-preceded string) whose maximum size is 32 bytes
(NBP_NVE_STR_SIZE). See ATNveStr_t.

You cannot include wildcards in the entity name. ATNbpConfirm
determines whether the entity name you have specified is valid.

dest

(IN) Points to the ATInet_t structure that contains the entity's
AppleTalk internet address (net,node,socket). See ATInet_t.

If the net and node are still valid but the socket has changed, the
function returns EFAULT. In that case, call ATNbpDirectedLookup to
find out the current socket number.

retry

(IN) Determines how long the function keeps trying before it times
out.

You have the choice of passing a pointer to an ATRetry_t structure that
you have filled in with specific retry settings, or passing in NULL (0)
for the system defaults. For suggestions on making this decision, see
ATRetry_t.

Communication Service Group

AppleTalk: Functions 132

Remember that, on return, the string containing the object, type, or
zone name is not NULL-terminated.

Return Values

0 Mapping is still valid.

EINVAL You specified an invalid parameter.

ENOENT You specified an invalid entity.

ETIMEDOUT Function timed out.

EFAULT The entity is registered at the same net,node but uses a
different socket. Call ATNbpDirectedLookup to find
out the current socket number.

Remarks

ATNbpConfirm verifies that the network address of the specified NBP
entity is still valid by sending an entity-to-address mapping (entity-to-dest
) to the address you specify. If the mapping is still valid, ATNbpConfirm
returns 0. If it is not valid, ATNbpConfirm returns an error.

Call ATNbpConfirm when you have previously performed an
ATNbpLookup and you want to make sure that mapping is still valid.

Although you could always confirm an address by calling
ATNbpLookup again, ATNbpConfirm is highly recommended instead
because it generates considerably less network traffic, especially on
complex internets. Even when each zone is associated with a single
network, ATNbpConfirm generates less network traffic than
ATNbpLookup, although the difference is less dramatic.

NOTE: It is possible for a network service to have changed sockets
while retaining the same net, node. In this case, ATNbpConfirm returns
the EFAULT error. Call ATNbpDirectedLookup to get the current
socket.

Note, too, that ATNbpConfirm blocks until it gets a response, an error,
or times out. Most of the time, it either returns immediately or waits for
the entire retry period. For this reason, NBP functions tend to run a
greater risk of being cut off in the middle of their process because
someone unloads the NLM while these functions are blocking.

See Also

ATNbpLookup, ATNbpParseEntity

Example

Communication Service Group

AppleTalk: Functions 133

ATNbpConfirm

#include <nbp.h>

main()
{
 int err, max, more;
 ATEntity_t e;
 ATInet_t a;
 ATNbpTuple t;
 /*
 Retrieve stored AppleTalk address that you have for this service,
 stash it in a.
 */
 /* Retrieve stored entity name for this service. */
 err = ATNbpConfirm(&e, &a, 0);
 if (err == ETIMEDOUT)
 {
 /* Guess that stashed value is bad, try to lookup for service */
 max = 1;
 more = 1;
 err = ATNbpLookup(&e, &t, &max, 0, &more);
 if (!err)
 {
 a = t.enu_addr;
 }
 }
 if (err == 0) {
 /* Got a great address! Try to connect! */
 }
 return;
}

Communication Service Group

AppleTalk: Functions 134

ATNbpDirectedLookup

Directs a lookup query to a particular node
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <nbp.h>

int ATNbpDirectedLookup (
 ATEntity_t *entity,
 ATInet_t *addr,
 ATNbptuple_t *buf,
 int *max,
 ATRetry_t *retry,
 int *more);

Remarks

Like ATNbpLookup, ATNbpDirectedLookup maps an entity's name
and its internet address with two important differences:

ATNbpDirectedLookup dispenses with the overhead of searching the
entire distributed database on an internet; it inquires only about
services on a particular node (addr).

Whereas ATNbpConfirm gives a yes/no-type answer, this function
returns a list of services available on the node (addr).

Otherwise, ATNbpDirectedLookup is identical to ATNbpLookup.

NOTE: ATNbpDirectedLookup differs from ATNbpConfirm in two
ways. The socket is not specified and wildcards are allowed.

Communication Service Group

AppleTalk: Functions 135

ATNbpLookup

Searches of the names directory and returns a mapping of the specified
entity's name to its internet addresses
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <nbp.h>

int ATNbpLookup (
 ATEntity_t *entity,
 ATNbptuple_t *buf,
 int *max,
 ATRetry_t *retry,
 int *more);

Parameters

entity

(IN) Points to the ATEntity_t structure that has the complete name
(object, type, zone) of the entity you are inquiring about. See
ATEntity_t, which includes a description of the wildcards you can use
in an entity's name.

buf

(IN) Points to an array of ATNbpTuple_t structures; the function fills
in the structures pointed to by buf with the name-address tuples it
returns. See ATNbptuple_t.

max

(IN/OUT) Indicates the size of the buffer (pass in from 1 to n as the
maximum number of tuples the buffer holds.

There is no maximum number of tuples that could be generated. For
example, there could be a large number of NBP entities registered for
each end node in a zone. A typical number is 1-4 per Macintosh*
computer: one for InterPoll/responder, one for a mail package, one for
personal AppleShare*, and one for another entity. So if a zone has
1,000 Macintoshes, 1,000 to 4,000 tuples would typically be received
on a wildcard lookup.

max returns the total number of tuples received by the buffer as a
result of calling this function.

Communication Service Group

AppleTalk: Functions 136

retry

(IN) Determines how long the function keeps trying before it times
out.

You have the choice of passing a pointer to an ATRetry_t structure that
you have filled in with specific retry settings, or passing in NULL (0),
which gives you the system defaults. For guidelines on making this
choice, see ATRetry_t.

Notice that since there are multiple retries, there are multiple
responses from a given node. NBP filters these multiple responses,
and present the client with only one response for each entity.
Matching is done as described in Inside AppleTalk (case matching
against MacASCII is done).

more

(IN/OUT) Lets you control whether the buffer returns its contents as
soon as it fills up or waits until it overflows by one tuple (or until the
function times out):

0---Return buffer's contents as soon as it fills up ---Wait until buffer
overflows to return its contents *0 (NULL pointer)---Use system
default (currently, wait until buffer overflows or function times out).

If you pass in 1 or a NULL pointer and the buffer never overflows, 6
seconds or so elapse before the buffer returns its contents. On return,
more tells you whether the buffer overflowed or not:

0---Buffer returned the exact number of tuples, or less than what was
requested in the max parameter 1---Buffer overflowed

NOTE: Remember that the size of the buffer is expressed in
tuples, not bytes.

Return Values

0 Success

EINVAL You specified an invalid value (bad wildcards).

ENOBUFS Insufficient buffer space is available. Try again. (Don't
believe the parameters passed back.)

ENOENT You specified an invalid entity.

ETIMEDOUT No entity found within the time and number of retries
specified. Also, 0 length in list.

Remarks

ATNbpLookup makes a search of the names directory, a database of

Communication Service Group

AppleTalk: Functions 137

network entities that is distributed throughout the internet, and returns a
mapping of the specified entity's name to its internet address(es). This
mapping is known as an NBP name-address tuple.

Special characters (wildcards) are allowed, as described in ATEntity_t
(also in Inside AppleTalk, p. 7-4). The name part of the tuple is
human-readable. ATNbpLookup is often used with wildcards to display
a list of entities to the user. The user can then choose the entity desired.

For your application to access an entity, it needs to find out the entity's
internet address. The ATNbpLookup function searches throughout the
internet and returns the internet address of the entity or entities that you
specified. (For more information about the names directory, see
ATNbpRegister or ATNbpRegByAddr.)

IMPORTANT: The more parameter gives you the option of forcing
the buffer's contents to return before the customary waiting period has
elapsed. Lookup Functions usually wait about six seconds to make sure
all the possible name-address pairs have been received. See the
discussion of the more parameter for details.

If the buffer does overflow, try again with either a larger buffer or do a
more specific search (remove wildcards).

If you know how many tuples are returned, you can avoid waiting the 6
seconds or so that ATNbpLookup waits before returning the contents of
the buffer. For example, if you are sure your lookup returns only one
tuple (you have used no wildcards), pass in1 as max, which sets the
buffer size to only 1 tuple, and pass in 0 as more, which causes the buffer
to return its contents as soon as it fills up. Consequently, as soon as a
single tuple is received, the buffer returns its contents, significantly
cutting the amount of time involved in lookup.

See Also

ATNbpConfirm, ATNbpDirectedLookup, ATNbpParseEntity

Example

ATNbpLookup

#include <nbp.h>

main()
{
 ATEntity_t LookUpEntity;
 retry.interval = 1000; /* Timeout Value. */
 retry.retries = 2; /* Number of retries.*/
 retry.backoff = 2; /* Gradually increases in time between retries. */
 max_tuples = 1;
 more = NULL;
 /* Note: buf_p is a global. */

Communication Service Group

AppleTalk: Functions 138

 nbp_tuples_found = ATNbpLookup(&LookUpEntity,buf_p,&max_tuples,
 &retry,&more);
}

Communication Service Group

AppleTalk: Functions 139

ATNbpMakeEntity

Creates a complete three-part NBP entity
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <nbp.h>

int ATNbpMakeEntity (
 ATEntity_t *entity,
 char *object,
 char *type,
 char *zone);

Parameters

entity

(IN/OUT) Points to the ATEntity_t structure that is filled in by the
function with the specified object, type, and zone. See ATEntity_t.
ATNbpMakeEntity determines whether the entity name you specify
is valid before returning a value.

object

(IN) Points to a NULL-terminated string of up to 32 characters that
specifies the entity's name.

type

(IN) Points to a NULL-terminated string of up to 32 characters that
specifies the entity's type.

zone

(IN) Points to a NULL-terminated string of up to 32 characters that
specifies the zone in which the entity resides. To indicate the local
zone, you can specify star (*).

NOTE: On return, the ATEntity_t's strings containing the object, type,
or zone name are not NULL-terminated!

Return Values

0 Success

Communication Service Group

AppleTalk: Functions 140

EINVAL Incorrectly formatted strings

Remarks

The ATNbpMakeEntity function creates a complete three-part NBP
entity name by copying the object, type, and zone you specify into the
ATentity_t structure pointed to by entity. Use ATNbpMakeEntity to
create an NBP entity name for a node or service that you want to register
on the internet (using ATNbpRegister or ATNbpRegByAddr).

NOTE: You pass in object, type, and zone as NULL-terminated C
strings but they become P strings (length-preceded strings) in the
ATEntity_t structure. See the explanation in ATEntity_t.

See Also

ATNbpConfirm, ATNbpLookup, ATNbpMakeEntityXlate,
ATNbpParseEntity, ATNbpRegister, ATNbpRemove

Example

ATNbpMakeEntity

#include <nbp.h>

main()
{
ATEntity_t *Made_Entity;
char my_object[]="THE_OBJECT_NAME";
char my_type[]="THE_TYPE";
char my_zone[]='THE_ZONE";
.
.
. Do some work.
.
.
 if(err = ATNbpEntity(Made_Entity,my_object,my_type,my_zone))
 {
 printf("ATNbpEntity failed: err = %x\n",err);
 exit(__LINE__);
 }
}

Communication Service Group

AppleTalk: Functions 141

ATNbpMakeEntityXlate

Same as ATNbpMakeEntity, but also translates the incoming object, type,
and zone strings from the local code page to the MacASCII code page
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <nbp.h>

int ATNbpMakeEntityXlate (
 ATEntity_t *entity,
 char *object,
 char *type,
 char *zone);

Remarks

A NetWare specific version of ATNbpMakeEntity,
ATNbpMakeEntityXlate has the same uses but also translates the
incoming object, type, and zone strings from the local code page to the
MacASCII code page. You would call ATNbpMakeEntityXlate to
translate an entity's name from server code page to MacASCII code page
before calling ATNbpLookup. The mechanics of this function are
identical to ATNbpMakeEntity.

See Also

CstrIBMCPToMac, CstrMacToIBMCP, PstrIBMCPToMac,
PstrMacToIBMCP

Communication Service Group

AppleTalk: Functions 142

ATNbpParseEntity

Converts a string from the "object:type@zone" form to the three-part NBP
entity form
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <nbp.h>

int ATNbpParseEntity (
 ATEntity_t *entity,
 char *str);

Parameters

entity

(OUT) Points to the ATEntity_t structure that ATNbpParseEntity fills
in with the entity name it resolves from the specified string. See
ATEntity_t.

str

(IN) Points to the NULL-terminated string that you want the function
to resolve into an entity name.

NOTE: On return, the string containing the object, type, or zone name
is not NULL-terminated.

Return Values

0 Success

-1 Unsuccessful

EINVAL Incorrectly formatted string, string too long

Remarks

ATNbpParseEntity converts a string from the "object:type@zone" form to
the three- part NBP entity form. (For details on this form see ATEntity_t).
Call ATNbpParseEntity to construct an NBP entity name that you want
to find on the internet later (for example, with ATNbpLookup).

Communication Service Group

AppleTalk: Functions 143

ATNbpParseEntity is useful when an NBP tuple is stored in a file
because some user interfaces are based on single-string names, such as
"johnd@wc.novell.com." The AppleTalk interface is based on three-string
names, and this function converts single-string names to three-string.

The string is NULL-terminated and can have any of the following forms:

object
object:type
object:type@zone

Each component of str can contain up to 32 characters. If you do not
specify a zone, ATNbpParseEntity substitutes a star (*), indicating "local
zone." If you do not specify a type, ATNbpParseEntity substitutes an
equal sign (=), indicating "any type."

It is assumed the string is in C string format (NULL-terminated).

The parsing routine looks for the first colon (:), then the first ampersand
(@). Multiple colons and multiple ampersands are allowed, but the rule is
first colons, then ampersands.

Like all other NBP functions, it is assumed that the string you pass in is in
MacASCII. If you don't have a MacASCII string, use one of the
conversion functions first.

See Also

ATNbpLookup, ATNbpMakeEntity

Example

ATNbpParseEntity

#include <nbp.h>

main()
{
 char nbp_name[] = "MY_OBJECT.MY_TYPE@MY_ZONE";
 ATEntity_t thisEntity;
 if (err = ATNbpParseEntity(&thisEntity, nbp_name))
 {
 printf("ATNbpParseEntity failed: err = %x\n",err);
 return(err); /* Clean up and exit is done in main. */
 }
}

Communication Service Group

AppleTalk: Functions 144

ATNbpRegByAddr

Registers a service by its AppleTalk socket number alone, not by its file
descriptor as ATNbpRegister does
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <nbp.h>

int ATNbpRegByAddr (
 ATEntity_t *entity,
 ATInet_t *addr,
 ATRetry_t *retry);

Parameters

entity

(IN) Points to the at_entity_t structure containing the name you want
to register. See ATEntity_t. The name must be unique in the zone.
ATNbpRegister determines whether the entity name you specify is
valid before returning a value.

addr

(IN) Specifies the AppleTalk socket where you register the service
(cannot be zero).

retry

(IN) Determines how long ATNbpRegByAddr tries to find duplicates
on the net before it times out. You have the choice of passing a pointer
to an ATRetry_t structure that you have filled in with specific retry
settings, or passing in NULL, which gives you the system defaults. For
suggestions on making this choice, see ATRetry_t.

Return Values

0 Success

EADDRNOT
AVAIL

The socket is already registered to another service.

EINVAL You specified a bad socket number to register on.

ENOENT You specified an invalid entity (in this case, a socket).

Communication Service Group

AppleTalk: Functions 145

ETIMEDOUT ATNbpRegByAddr did not return a value within the
time interval and the number of retries you specified.

ESOMETHIN
G

You specified a name that is already registered to
another node.

ENOBUFS Out of memory, try again.

NOTE: Note that if the socket number is invalid, ATNbpRegByAddr
can return either EBADF or ENOENT. Also, any number of STREAMS
errors could be returned if something went wrong in STREAMS.

Remarks

ATNbpRegByAddr registers a service by its AppleTalk socket number
alone, not by its file descriptor as ATNbpRegister does. Otherwise it is
identical to ATNbpRegister, including support for explicit zone
registration when an AppleTalk internal network is present (not to be
confused with the IPX internal network). In explicit registration, the NBP
client specifies exactly which zone to register in. The choice is from the
zones on the internal network's list.

Call ATNbpRegByAddr if you don't have a file descriptor for the service
you want to register. Other nodes on the internet are then able to access
the service by socket.

When you want to remove the entity from the internet, you should either
remove its registration with ATNbpRemoveByAddr or wait for the
socket to close. Even without a file descriptor, a socket close causes the
destruction of all NBP registrations.

IMPORTANT: The AppleTalk socket cannot be zero (0).

See ATNbpRegister for information about registering a service.

See Also

ATNbpMakeEntity, ATNbpParseEntity, ATNbpRegister,
ATNbpRemoveByAddr

Example

ATNbpRegByAddr

#include<nbp.h>

main()
{
int err;
ATRetry_t retry;

Communication Service Group

AppleTalk: Functions 146

char nbp_name[]="MY_NAME.MY_TYPE@*";
ATEntity_t thisEntity;
ATInet_t a;
 /*
 Set up the structure that holds the timeout and retries.
 */
 retry.interval = 1000; /* Timeout Value. */
 retry.retries = 8; /* Number of retries.*/
 retry.backoff = 2; /* Gradually increases in time between retries. */
 if (err = ATNbpParseEntity(&thisEntity, nbp_name))
 {
 printf("ATNbpParseEntity failed: err = %x\n",err);
 return(STREAM_ERROR); /* Clean up and exit is done in main. */
 }
 a.socket = 100;
 if (err = ATNbpRegisterByAddr(&thisEntity, &a, (ATRetry_t *)&retry))
 {
 printf("ATNbpRegister failed: err = %x\n",err);
 return(STREAM_ERROR); /* Clean up and exit is done in main. */
 }
}

Communication Service Group

AppleTalk: Functions 147

ATNbpRegister

Registers a service by file descriptor so that it becomes visible on the internet
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <nbp.h>

int ATNbpRegister (
 ATEntity_t *entity,
 int fd,
 ATRetry_t *retry);

Parameters

entity

(IN/OUT) Points to the ATEntity_t structure that contains the name
you want to register. See ATEntity_t. The name must be unique in the
zone. ATNbpRegister determines whether the entity name you
specify is valid before returning a value.

fd

(IN) Specifies the entity's file descriptor.

retry

(IN) Determines how long ATNbpRegByAddr tries to find duplicates
on the net before it times out. You have the choice of passing a pointer
to an ATRetry_t structure that you have filled in with specific retry
settings, or passing in NULL, which gives you the system defaults. For
suggestions on making this choice, see ATRetry_t.

Return Values

0 Success

EADDRNOT
AVAIL

The name-address tuple already exists.

EBADF You specified an invalid file descriptor.

EINVAL You specified a bad socket number to register on.

ENOENT You specified an invalid entity (in this case, a file
descriptor).

Communication Service Group

AppleTalk: Functions 148

ETIMEDOUT The function did not return a value within the time
interval and the number of retries you specified.

ESOMETHIN
G

You specified a name that is already registered to
another node.

ENOBUFS Out of memory, try again.

Note that if the file descriptor is invalid, ATNbpRegister can return
either EBADF or ENOENT. It could also return a STREAMS error if
something went wrong in STREAMS.

Remarks

ATNbpRegister registers a service by file descriptor so that it becomes
visible on the internet. Going beyond the interface suggested in Inside
AppleTalk, this function and ATNbpRegByAddr allow explicit zone
registration when an Appletalk internal network is present (not to be
confused with the IPX internal network). (ATNbpRegByAddr registers
by socket alone, not complete file descriptor.) In explicit registration, the
NBP client specifies exactly which zone to register in. The choice is from
the zones on the internal network's list.

ATNbpRegister adds a name-to-address mapping, known as an NBP
name-address tuple, to the names table on the local node. This causes
NBP to add a corresponding mapping to the distributed database known
as the names directory. The names directory is the union of the
individual names tables in the nodes on the internet. The database does
not require different portions to be duplicated; it can be distributed
among all nodes containing named network-visible entities (NVEs). An
entity becomes an NVE by entering its name and address into the local
names table with ATNbpRegister or ATNbpRegByAddr.

When a node comes up on the internet, its names table is empty.
Therefore, when restarted, each NVE must re-register its name(s) in the
names table.

Registration is usually done on listeners of some sort, but can also be
done on connections. After creating a listener or connection with another
protocol (DDP, ATP, ADSP, ASP, PAP), call ATNbpRegister and pass
the file descriptor you obtained from the other protocol. See the
individual API description to find out at what point it is valid to call
ATNbpRegister on the file descriptor.

A close on this file descriptor removes the registration, so an explicit call
to ATNbpRemove is not necessary.

Explicit Registration

Contrary to suggestions in Inside AppleTalk, Novell's interface supports
explicit zone registration, but only when an AppleTalk (not IPX)
internal network is available.

Communication Service Group

AppleTalk: Functions 149

When registering an entity with ATNbpRegister or ATNbpRegByAddr,
you can either enter a star (*) as the zone to register on, meaning the zone
for this node, or you can specify an exact zone. In the case of a star (*), the
registration moves from zone to zone as the zone changes for the node.
This is not so for an explicit registration; therefore, Novell has restricted
explicit registration to the case where there is an AppleTalk internal
network available; as long as there is an internal network, the zone list is
stable for as long as AppleTalk is loaded.

The error EFAULT is returned for an invalid explicit zone (not EINVAL).

To promote better user interface design and to allow you to check if an
explicit zone is valid in the current configuration (present on the internal
network's list), Novell has created a ZIP function, ATZipGetNBPZones.
This function returns a list of the currently valid explicit zones.

See Also

ATNbpMakeEntity, ATNbpMakeEntityXlate, ATNbpParseEntity,
ATNbpRegByAddr, ATNbpRemove

Example

ATNbpRegister

#include<nbp.h>

main()
{
int err;
ATRetry_t retry;
char nbp_name[]="MY_NAME.MY_TYPE@*";
ATEntity_t thisEntity;
 /*
 Set up the structure that holds the timeout and retries.
 */
 retry.interval = 1000; /* Timeout Value. */
 retry.retries = 8; /* Number of retries.*/
 retry.backoff = 2; /* Gradually increases in time between retries. */
 if (err = ATNbpParseEntity(&thisEntity, nbp_name))
 {
 printf("ATNbpParseEntity failed: err = %x\n",err);
 return(STREAM_ERROR); /* Clean up and exit is done in main. */
 }
 if (err = ATNbpRegister(&thisEntity, fd, (ATRetry_t *)&retry))
 {
 printf("ATNbpRegister failed: err = %x\n",err);
 return(STREAM_ERROR);/* Clean up and exit is done in main. */
 }
}

Communication Service Group

AppleTalk: Functions 150

ATNbpRemove

Removes an NBP registration from the local names table
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <nbp.h>

int ATNbpRemove (
 ATEntity_t *entity,
 int fd);

Parameters

entity

(IN) Specifies the entity argument: points to an ATEntity_t structure
containing the name of the entity you want to remove. See ATEntity_t.

fd

(IN) Specifies the file descriptor of the entity you want to remove.

Return Values

0 Success

EBADF You specified an invalid file descriptor.

EINVAL You specified an invalid parameter.

ENOEN
T

The name you specified was not found.

NOTE: If the file descriptor is invalid, ATNbpRemove can return
either EBADF or ENOENT.

Remarks

NOTE: If the registration was made on a particular file descriptor
(with ATNbpRegister) the close of that file descriptor triggers an
automatic de-registration.

Communication Service Group

AppleTalk: Functions 151

ATNbpRemove removes an NBP registration from the local names table.
Use this function when you have the file descriptor you registered on.
Typically registrations made with ATNbpRegister are removed with
ATNbpRemove.

If the pointer to an NBP entity is NULL, the function removes all
registrations on the specified file descriptor. If the file descriptor is NULL,
it removes the NBP entity without regard to the file descriptor it is on.

For a description of the local names table, see ATNbpRegister or
ATNbpRegByAddr.

ATNbpRemove blocks until the registration is deleted from the local
names table.

See Also

ATNbpMakeEntity, ATNbpMakeEntityXlate, ATNbpParseEntity,
ATNbpRegister

Example

ATNbpRemove

#include <nbp.h>

main()
{
ATEntity_t thisEntity;
int my_fd;
.
.
. Register the entity. See ATNbpRegister on page 127.
.
.
 /*
 Remove the name registered with NBP.
 */
 if(err = ATNbpRemove(&thisEntity,my_fd))
 {
 printf("ATNbpRemove failed: err = %x\n",err);
 exit(__LINE__);
 }
}

Communication Service Group

AppleTalk: Functions 152

ATNbpRemoveByAddr

Removes an NBP registration from the local names table
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <nbp.h>

int ATNbpRemoveByAddr (
 ATEntity_t *entity,
 ATSocket *socket);

Parameters

entity

(IN) Points to an ATEntity_t structure containing the name of the
entity you want to remove. See ATEntity_t.

socket

(IN) Indicates the socket that the entity was registered on.

Return Values

0 Success

EINVAL You specified an invalid parameter.

ENOEN
T

The name you specified was not found.

Remarks

ATNbpRemoveByAddr removes an NBP registration from the local
names table. Use this function when you do not have the file descriptor
you registered with, or you registered by socket only. Typically
registrations made with ATNbpRegByAddr are removed with
ATNbpRemoveByAddr.

If the pointer to an NBP entity is NULL, the function removes all
registrations on the specified socket.

Communication Service Group

AppleTalk: Functions 153

For a description of the local names table, see ATNbpRegister or
ATNbpRegByAddr.

ATNbpRemoveByAddr blocks until the registration is deleted from the
local names table.

See Also

ATNbpMakeEntity, ATNbpMakeEntityXlate, ATNbpParseEntity,
ATNbpRegByAddr, ATNbpRegister, ATNbpRemove

Example

ATNbpRemoveByAddr

#include <nbp.h>

main()
{
ATEntity_t thisEntity;
.
.
. Register the entity. See ATNbpRegister on page 127.
.
.
 /*
 Remove the name registered with NBP.
 */
 if(err = ATNbpRemoveByAddr(&thisEntity,100))
 {
 printf("ATNbpRemoveByAddr failed: err = %x\n",err);
 exit(__LINE__);
 }
}

Communication Service Group

AppleTalk: Functions 154

ATPapAccept

Makes an SSS (server session socket) out of an unused file descriptor and
links a connection request on the SLS (session listening socket) to this SSS
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <pap.h>

int ATPapAccept (
 int fd,
 void *connect_id,
 ATInet_t *addr,
 char *status,
 u_short status_len);

Parameters

fd

(IN) Specifies the file descriptor.

connect_id

(IN) Points to the ID of connection passed up in OPENCONN_REQ
event.

addr

(IN) Points to the address of the connection, passed up in
OPENCONN_REQ event.

status

(IN) Points to status buffer.

status_len

(IN) Specifies the length of the status buffer.

Return Values

0 Success

EINVAL Invalid file descriptor

Other STREAMS errors

Communication Service Group

AppleTalk: Functions 155

Remarks

ATPapAccept makes an SSS (server session socket) out of an unused file
descriptor and links a connection request on the SLS (session listening
socket) to this SSS. It opens the connection, data starts flowing.
ATPapRead and ATPapWrite are valid after calling ATPapAccept.

ATPapAccept can be called at the state when a connection has come in
after making an ATPapGetNextJob on an SLS Stream. When the
connection request occurs, a PAP_EVENT_OPENCONN_REQ event
occurs on the SLS. If the client wants to accept the job, it creates a new
PAP file descriptor with ATPapOpen, then calls ATPapAccept with the
ID and address passed up in the event.

When PAP sends the open connection reply packet to the remote
endpoint requesting the open, a status string is included. This status
string is the one passed in the ATPapAccept. The status is taken as an
arbitrary string of bytes, so if the printer expects a P string
(length-preceded string), the client of this function must pass in a P
string.

If you wanted to refuse the connection, you would call ATPapReject.

Communication Service Group

AppleTalk: Functions 156

ATPapClose

Destroys the file descriptor and frees all memory, closing any sessions open
on this file descriptor
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <pap.h>

int ATPapClose (
 int fd);

Parameters

fd

(IN) Specifies the file descriptor to close.

Return Values

0 Success

STREAMS
errors

EBADF (invalid file descriptor) or a similar type of
message

Remarks

All functions blocking on this file descriptor are freed, with an error to
the effect (EBADF or ECLOSED or a similar error).

IMPORTANT: If the file descriptor is an SLS (session listening
socket), all SSSs (server session sockets) spawned from this SLS are
invalidated.

Communication Service Group

AppleTalk: Functions 157

ATPapConnect

A workstation-side (NLM requesting connection to a server) function that
changes the specified new file descriptor into a WSS (workstation session
socket)
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <pap.h>

int ATPapConnect (
 int fd,
 ATInet_t *addr,
 u_short waittime_waited,
 int retry_time);

Parameters

fd

(IN) Specifies a file descriptor.

addr

(IN) Points to the AppleTalk address to attach to.

waittime_waited

(IN) Indicates the waittime, in seconds (u_short).

retry_time

(IN) Specifies the time to attempt connection, in seconds.

Return Values

0 Success

STREAMS
errors

In a bad state for a connect, for example, the socket is
already an SLS

Remarks

A workstation-side (NLM requesting connection to a server) function that

Communication Service Group

AppleTalk: Functions 158

changes the specified new file descriptor into a WSS (workstation session
socket). If the connection request succeeds, notification occurs through an
ATPapGet.

The waittime is the period of time that your request has been waiting for a
connection. Typically, you set this parameter to zero on the first try and
add the number of seconds you have waited so far, that is, the value of
retry_time, on each successive try.

The waittime value is passed to the server so that it can enforce fairness
among those trying to connect; it allocates connections first to those who
have been waiting the longest. Although the Inside AppleTalk PAP
interface automatically sets a waittime value, this PAP interface gives that
power to you, trusting that you keep the needs of other users in mind so
that the delicate balance of resources on the network is preserved.

NOTE: ATPapConnect currently sends out connection requests every
two seconds, as specified in the PAP specification. However, it updates
the waittime every other request.

Communication Service Group

AppleTalk: Functions 159

ATPapDisconnect

When you are in the data transport phase, notifies PAP that you want to
close the connection but want all data already sent with ATPapWrite to be
delivered.
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <pap.h>

int ATPapDisconnect (
 int fd);

Parameters

fd

(IN) Specifies the file descriptor.

Return Values

0 Success

STREAMS
errors

Remarks

When you are in the data transport phase, ATPapDisconnect notifies
PAP that you want to close the connection but want all data already sent
with ATPapWrite to be delivered.

In previous interfaces, the only way to close a PAP connection was to call
ATPapClose, which would discard any pending data. ATPapDisconnect
allows orderly close by waiting for the next PAP_EVENT_DATA
transaction to arrive after all data has been delivered.

ATPapDisconnect begins to close the session, but waits until all data
currently being transferred is sent before reporting that it is safe to close.
After calling this function, no data is allowed to be written.

Communication Service Group

AppleTalk: Functions 160

IMPORTANT: Note that calling ATPapDisconnect allows closing of
the connection while still answering all "get status" functions that might
be outstanding.

Communication Service Group

AppleTalk: Functions 161

ATPapGet

Retrieves a message from the PAP protocol client
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <pap.h>

int ATPapGet (
 int fd,
 ATPapPass_t *pass,
 char *buf,
 int *len);

Parameters

fd

(IN) Specifies a file descriptor, describing connection.

pass

(OUT) Points to a ATPapPass_t structure, which contains various
non-data pieces of information about the event. See ATPapPass_t.

buf

(OUT) Points to a buffer. Data is read into this buffer on return.

len

(IN/OUT) Points to an integer, which you must set to the allocated
size of the buffer buf. It is filled with the size of the data on return.

Return Values

0 Success

EMSGSIZE There is data left to be read the second time

STREAMS
errors

Same as STREAMS's GetMsg, at the moment

Remarks

Communication Service Group

AppleTalk: Functions 162

Retrieves a message from the PAP protocol client. Common messages are
PAP_EVENT_DATA, which describes that data has arrived on this
connection, and PAP_EVENT_GETSTAT_REPLY, which lets you know
that an SLS (server listening socket) has been initialized but is not ready
to accept data.

The following tables explain PAP state transition and how to work with
the ATPapPass_t structure: States and Corresponding PAP Events and
PAP State Transition Table, and the table listing PAP events and their
corresponding ATPapPass_t parameters in the description of ATPapGet.

ATPapGet waits until there is an event available. You can avoid a long
wait by using poll.

If the buffer passed in is smaller than the amount of data that needs to be
read, the next time ATPapGet is called the caller receives the next piece
of the data but with the same ATPapPass_t structure and you get an
ERANGE error code, indicating that there is data left to be read.

IMPORTANT: Be sure to check the ATPapPass_t.ret for errors that
occur in the protocol.

If no event is ready, ATPapGet blocks. ATPapGet can be made
nonblocking by using the poll function on the file descriptor, and only
actually reading when data is known to be there.

The maximum data size that is ever be sent up is 4096 bytes.

The ERANGE error signals that data remains to be read. Call ATPapGet
again.

The ATPapPass_t structure (listed below) contains a command field,
which contains the event type, an error field, which describes errors (0 if
none), then a large union. The values of the union which are valid are
derived from the event type. In most cases they should be self evident.

After the structure, the currently defined event types are listed in the
following table. This table lists the name of the event, how it should be
interpreted, and the parameters that are filled in with information about
the event in the ATPapPass_t structure.

IMPORTANT: Do not rely on a number associated with an event;
this number can change. Rather, select your functions based on the
"#defines" themselves.

typedef struct ATPapPass_s {
 u_short cmd;
 long ret;
 union {
 struct ConnReq_s {
 ATInet_t addr;
 void *id;
 } ConnReq;
 struct Data_s {

Communication Service Group

AppleTalk: Functions 163

 u_char eof;
 } Data;
 struct ConnReply_s {
 u_short result;
 } ConnReply;
 struct GetStat_s {
 ATInet_t addr;
 ATRetry_t retry;
 void *id;
 } GetStat;
 } U;
} ATPapPass_t ;

Event Interpretation Parameter

PAP_EVENT_CLOSEC
ONN_REQ

Received request to
close connection,
sent response,
nothing to do but
close.

No data comes up.

PAP_EVENT_GETSTAT
_REPLY

Received when the
response to a
previous
ATPapGetStatus
request comes in.

If pass->ret, an error
occurred. Don't
assume that the
request completed.
U.GetStat.addr
---Address that the
request was made of.
U.GetStat.id---ID the
requestor sent down.

PAP_EVENT_SLS_INIT SLS has been
initiated and is now
ready to accept
everything.

Could return
allocation errors and
no socket errors in
pass->ret. No data.

PAP_EVENT_OPENSES
S_REPLY

Received as a
companion to
ATPapConnect.
Says that the WSS
connection has been
established or failed
(memory allocation
failure, socket
allocation failure).

pass->ret returns
errors that occurred
locally. Data:
U.ConnReply.result is
the result code from
the remote PAP
server; 0 is success.
ATPapGet data is
filled with the status
message from the
remote end---255
bytes maximum.

PAP_EVENT_DATA Received data from
the remote endpoint

pass->ret returns local
errors. U.Data.eof
returns if an EOF was
sent with this

Communication Service Group

AppleTalk: Functions 164

transaction.
ATPapGet data is
filled with data sent.
Max
PAP_DATA_SIZE*8.
Data could be of
length 0, which
would indicate a 0
length transaction.
Transactions are
never coalesced.

PAP_EVENT_CONN_D
IED

Received when an
SSS or WSS dies.
Could be for a
number of reasons.
Examples: tickle
timeout; SLS is
closed, closing all
SSSs. Protocol stack
becomes unbound
or reconfigured
from the network.

The error fields are 0,
no data.

PAP_EVENT_OPENSES
S_REQ

Received on an SLS
when OpenSess
comes in. Indicates
that a request for
Connection made it
through the fairness
arbitration and
get-next-job
screening. Accept or
reject it.

Data---
U.ConnReq.addr is the
address that the
request came in on.
use it for deciding to
reject or accept the
request. U.ConnReq.id
is the ID of the
request. Hand it back
when rejecting or
accepting the request.

PAP_EVENT_DISCON
N

A PAP disconnect
was completed.
ATPapDisconnect
was called, and now
all data has been
delivered and the
close transaction
has been completed,
all gracefully.
Please close the file
descriptor.

No data.

See Also

ATAspGet, ATAtpGet

Communication Service Group

AppleTalk: Functions 165

ATPapGetNextJob

Sets the number of jobs the SLS (Server Listening Socket) is willing to accept
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <pap.h>

int ATPapGetNextJob (
 int fd,
 int num_jobs);

Parameters

fd

(IN) Specifies the file descriptor.

num_jobs

(IN) Specifies the number of jobs the server side is ready to accept.

Return Values

0 Success

EBADSTATE ATPapGetNextJob must be on an SLS

STREAMS errors

Remarks

After initializing the server side, ATPapGetNextJob is called when the
server side is ready to accept a job, to set the number of jobs the SLS
(Server Listening Socket) is willing to accept.

ATPapGetNextJob works with the internal counter that PAP uses to
track the number of connections (jobs) an SLS is ready to accept at any
given time. You can set this parameter to any number. The counter is
incremented by this function by the value of num_jobs and decremented
whenever PAP sends out a PAP_EVENT_OPENSESS_REQ event.

After you have received num_jobs number of

Communication Service Group

AppleTalk: Functions 166

PAP_EVENT_OPENSESS_REQ events, the "get-next-job credit" on the
SLS expires and must be renewed, if desired. When the counter is at zero,
all client open-connection requests are rejected; therefore, to allow your
server to receive jobs, call ATPapGetNextJob.

If you want to revoke granted get-next-job credit, call ATPapGetNextJob
with a negative num_jobs parameter.

Note that ATPapGetNextJob is additive, so that calling
ATPapGetNextJob twice with a parameter of 1 is equivalent to calling it
once with a parameter of 2.

NOTE: To obtain a performance gain, you can avoid the 2-second
arbitration period by keeping the counter filled (1 or more). In this way,
when the open connection packet is received from the workstation, the
PAP_EVENT_OPENSESS_REQ event is passed up to the application
immediately. Since a print job can last as little as one second, this
represents a significant gain.

Communication Service Group

AppleTalk: Functions 167

ATPapGetStatus

Finds out the status of any given remote PAP server endpoint (workstation
function)
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <pap.h>

int ATPapGetStatus (
 int fd,
 ATInet_t *addr,
 ATRetry_t *retry,
 void *id);

Parameters

fd

(IN) Points to file descriptor.

addr

(IN) Points to an AppleTalk address.

retry

(IN) Points to ATRetry_t structure.

id

(IN) Points to get Status ID.

Return Values

0 Success

EBADF Invalid file descriptor

Remarks

A workstation function that finds out the status of any given remote PAP
server endpoint. You can call ATPapGetStatus on any PAP file
descriptor at any time and it can be made on a blocked file descriptor

Communication Service Group

AppleTalk: Functions 168

without blocking.

Notification occurs as an ATPapGet on this file descriptor. When the
ATAspGet completes, the ID and address are passed back so the upward
client can de-multiplex.

The meaning in the status string is arbitrary. Usually it is a
human-readable P string (Pascal-format: length-preceded rather than
NULL-terminated) that indicates the status of the printer or spooler.

Communication Service Group

AppleTalk: Functions 169

ATPapOpen

Opens a PAP file descriptor
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <pap.h>

int ATPapOpen (
 int fd);

Parameters

fd

(OUT) Points to the file descriptor to fill in.

Return Values

0 Success

STREAMS
errors only

ENOBUFS or other resource limitation problems

Remarks

ATPapOpen opens a PAP file descriptor and, hence, a Stream, but it does
not go any further than that. It does not make possible any actual
network activity; other operations must be performed on the file
descriptor before it can be used. Once open, it is possible to send
GetStatus requests and create an SLS (session listening socket), WSS
(workstation session socket), or SSS (server session socket).

Communication Service Group

AppleTalk: Functions 170

ATPapReject

Denies a connection request on the SLS (session listening socket)
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <pap.h>

int ATPapReject (
 int fd,
 void *connect_id,
 ATInet_t *addr,
 char *status,
 u_short status_len);

Parameters

fd

(IN) Specifies the file descriptor.

connect_id

(IN) Points to the ID of connection passed up in OPENCONN_REQ
event.

addr

(IN) Points to the address of the connection, passed up in
OPENCONN_REQ event.

status

(IN) Points to the status buffer.

status_len

(IN) Specifies the length of the status buffer.

Return Values

0 Success

EINVAL Invalid file descriptor

STREAMS
errors

Communication Service Group

AppleTalk: Functions 171

Remarks

NOTE: Because of the get-next-job mechanism of indicating readiness,
the need to call ATPapReject is rare.

When PAP sends the reply packet to the remote endpoint requesting an
open, a status string is included. This status string is the one pointed to by
the status parameter. The status is taken as an arbitrary string of bytes, so
if the printer expects a P string (length-preceded string), the client of this
API must pass in a P string.

Communication Service Group

AppleTalk: Functions 172

ATPapSetStatus

Sets the current status of the SLS
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <pap.h>

int ATPapSetStatus (
 int fd,
 u_short flag,
 u_short status_len,
 char *status);

Parameters

fd

(IN) Specifies a file descriptor, which determines connection.

flag

(IN) Specifies the flag to indicate which statuses to set. Must be
nonzero.

status_len

(IN) Specifies the length of the buffer.

status

(IN) Points to the buffer with the status.

Return Values

0 Success

EINVAL Buffer too long, too short, or similar problem

STREAMS
errors

PAP stream not an SLS

Remarks

After initialization, ATPapSetStatus must be called to set the current

Communication Service Group

AppleTalk: Functions 173

status of the SLS.

ATPapSetStatus is effective on an SLS (Session Listening Socket) file
descriptor only, so you need to have an SLS before calling it.

The status is defined by an upper layer. It is often a human-readable P
string (Pascal-format: length-preceded instead of NULL-terminated). At
one point in Inside AppleTalk, the status string is mandated as a P string,
but Novell allows the flexibility of other interpretations. (See
ATPapAccept for a discussion of statuses in general.)

There are two statuses. They can be set independently. The first is the
status returned if someone sends a "GetStatus" message. The second is
the status returned when someone sends an open connection packet but
the open-connection fails due to no outstanding get-next-job credits
(blocked state) or the connection losing the arbitration cycle. In order to
select which of these two statuses you want to set, AND together the
appropriate flags (defined in the pap.h file) and set the flag parameter.

WARNING: In order to set the status string to the NULL, you could
send a NULL pointer, or the length of zero, in the function. However,
this is not recommended. There should always be a status because a
reply is sent but if it has no bytes in the data, it could have disastrous
results because some applications assume there is some data in the
status string.

Regarding internationalization, the string that the client currently passes
to PAP is exactly what is sent over the network. It is the client's problem
to manage internationalization of strings.

Communication Service Group

AppleTalk: Functions 174

ATPapSLInit

Makes the specified file descriptor into a server listening socket (SLS)
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <pap.h>

int ATPapSLInit (
 int fd);

Parameters

fd

(IN) Specifies the file descriptor to set up as SLS.

Return Values

0 Success

STREAMS
errors

PAP stream not in the correct state to become an SLS

Remarks

IMPORTANT: When creating an SLS and WSS, PAP clients are not
allowed to choose a specific socket to open on.

ATPapSLInit fails if the file descriptor is already open as a listener, as a
client, or as a server. Should be a file descriptor that, up to this time, has
not been used.

Wait for a PAP_EVENT_SLS_INIT event to come up in ATPapGet on the
SLS saying that all resources---for example, sockets---have been
allocated. Check the pass->ret field for errors. After receiving this event,
you must call ATPapSetStatus to set the current status of this connection.
After that, the ATPapGetNextJob, ATPapGetStatus, ATPapAccept, and
ATPapReject functions are valid.

Communication Service Group

AppleTalk: Functions 175

ATPapWrite

Sends data over an established connection
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <pap.h>

int ATPapWrite (
 int fd,
 char *data,
 int *data_len,
 u_char flush,
 u_char eof,
 u_char eot);

Parameters

fd

(IN) Specifies the file descriptor, describing connection.

data

(IN) Points to data to be written. This should be 0 if no data is to be
sent.

data_len

(IN/OUT) Points to size of data. Actual amount written is returned.

flush

(IN) Indicates the flush indicator. Set to TRUE to allow this data to be
sent before a complete 4096 bytes of data can be collected, when you
have send credit.

eof

(IN) Indicates the end of file indicator---set to TRUE if you want this
data to be followed by an end-of-file indicator.

eot

(IN) Indicates the end-of-transaction indicator---set when you want
this data to end a transaction.

Return Values

Communication Service Group

AppleTalk: Functions 176

0 Success

ENOTCONN No connection open on this file descriptor

EBADSTATE For example, a write on an SLS

STREAMS
errors

For example, the connection closed unexpectedly

Remarks

IMPORTANT: Notice that the current session cannot have current
send credit. Thus, the data cannot be sent out immediately.
ATPapWrite takes time when too much data has been written without
being sent. To avoid this wait, poll for writeability with the poll
function.

The length of data is not particularly limited. ATPapWrite buffers the
data to be delivered until a full buffer is reached. This buffer size is
dynamic, depending on the flow quantum of the connection, but is
generally either about 2048 or 4096 bytes. To allow the connection to send
the data when send credit is available even though the buffer might not
be full, set the flush indicator parameter to TRUE.

The performance penalty for setting the flush flag is low, but the penalty
for setting the eof bit can be high. Setting the flush bit doesn't stop the
coalescing of data into larger transactions, but setting the eof and eot bits
does. Therefore, use them only when you need to mark special
boundaries. The current Macintosh printing applications should not pose
a problem of this nature since they are defined in an efficient way.)

Communication Service Group

AppleTalk: Functions 177

ATZipGetLocalZones

Obtains a complete list of all the zone names defined on the local network
(the network the calling node is bound to)
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <zip.h>

int ATZipGetLocalZones (
 int *start,
 ATNveStr_t *zones,
 int *z_size,
 int *last,
 ATInet_t *router);

Parameters

start

(IN/OUT) Indicates the index of current zone requested and last zone
returned.

zones

(IN) Points to the buffer to be filled with zone names on return. The
zones are stored as a list (not an array) of zone names, each of which is
contained in an ATNveStr_t structure; zones points to the first
ATNveStr_t structure. See ATNveStr_t.

If there is no router on the local network, zones returns a star (*). A
router can return one zone with length 0 if it is in the initialization
process and is not yet fully configured.

z_size

(IN/OUT) Points to the size of the zones buffer, in bytes. This buffer
should be at least the size of the maximum number of responses,
which is ATP_DATA_SIZE (defined in atp.h). If this buffer isn't at
least that size, you'll get back the STREAMS error ERANGE. Call the
function again with a larger buffer.

On return, z_size is the size of the buffer that has been filled in.

last

(OUT) Returns 0 if all the zones on the list have not yet been returned,
returns 1 when the last zone on the list has been returned.

Communication Service Group

AppleTalk: Functions 178

router

(IN/OUT) Points to the DDP address of the router the inquiry is sent
to. This can either be a default router chosen by AppleTalk or a
particular router that you trust.

To send the inquiry to a default router, on the first call, pass in 0,0.
router returns the actual address of the router that received the request.

The string containing the zone name is NOT NULL-terminated.

In multi-call inquiries, you must make sure that each call goes to the
same router. To do so, on each call after the first one, set router to the
address that was returned on the first call (instead of 0,0).

Return Values

0 Success

ENOBUFS Insufficient buffer space is available

ETIMEDOUT No response

EBADSIZE ATNveStr_t buffer too small for incoming data, try
again

ERANGE Zones buffer too small; try again with larger buffer

Remarks

When you call ATZipGetLocalZones, ZIP sends a ATZipGetLocalZones
packet to a router on the local network. The router replies with list of all
the zone names on the local network in one or more packets.

If the router happens to be in the local node, no packets are sent out over
the network.

The complete list of zones might not fit into your buffer, so you might
need to call this function more than once to get a complete list. With each
call, you get more zones from the list. The start parameter is used to keep
track of the number of zones returned. When you have gotten all the
zones on the list, the function sets the last flag to 1; otherwise, the
function sets the last flag to zero (0), indicating that there are more zones
to be returned. As long as the last flag is 0, continue to re-call the
function, keeping track of zones with the start parameter.

For example, on the first call, set start to 1. If start returns 3 and the last
flag is 0, on the second call add 1 plus 3 to set start at 4. If start returns 7
and the last flag is still 0, on the third call, add 4+7 to set start at 11. If start
returns 15 and the last flag is now set to 1, you are done.

Communication Service Group

AppleTalk: Functions 179

See Also

ATZipGetZoneList

Example

ATZipGetLocalZones

This example and the one for ATZipGetZoneList are the same.

#include <zip.h>
#include <nbp.h>
/*
 The following table is for uppercasing MacASCII characters. Instead of using
 toupper(), use this character table to uppercase the index into an array. Use
 unsigned chars!! (This table can also be found in Inside AppleTalk
,
 Appendix D.)
*/
u_char norm[] = {
 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,
 0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f,
 0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x29,0x2a,0x2b,0x2c,0x2d,0x2e,0x2f,
 0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x3b,0x3c,0x3d,0x3e,0x3f,
 0x40,0x41,0x42,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x4b,0x4c,0x4d,0x4e,0x4f,
 0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x5b,0x5c,0x5d,0x5e,0x5f,
 0x60,0x41,0x42,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x4b,0x4c,0x4d,0x4e,0x4f,
 0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x7b,0x7c,0x7d,0x7e,0x7f,
 0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0xcb,0x89,0x80,0xcc,0x81,0x82,0x83,0x8f,
 0x90,0x91,0x92,0x93,0x94,0x95,0x84,0x97,0x98,0x99,0x85,0xcd,0x9c,0x9d,0x9e,0x86,
 0xa0,0xa1,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xab,0xac,0xad,0xae,0xaf,
 0xb0,0xb1,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xbb,0xbc,0xbd,0xae,0xaf,
 0xc0,0xc1,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xcb,0xcc,0xcd,0xce,0xce,
 0xd0,0xd1,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xdb,0xdc,0xdd,0xde,0xdf,
 0xe0,0xe1,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xeb,0xec,0xed,0xee,0xef,
 0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa,0xfb,0xfc,0xfd,0xfe,0xff
};
main()
/*
 LocateServer() finds the file server.
 This function asks the user for the zone in which the server is
 registered, validates that zone, and tries to locate the server
 in that zone.
*/
int LocateServer()
{
 int start,oldstart;/* These two variables are the starting index and
 the oldstart index. These are used for multiple
 responses in the ATZipGetZoneList call.
 */
 int tmp=0; /* This is the temp count for how many zones were returned in

Communication Service Group

AppleTalk: Functions 180

 ATZipGetZoneList.
 */
 char zones[ATP_DATA_SIZE]; /* List of zone names will be placed here.
 NOTE: THIS IS NOT AN ARRAY!!!!
 */
 int z_size; /* This is the size of the zones in the buffer. */
 int last; /* This will be set to zero when all the zones have been received. */
 ATInet_t router; /* This is the AppleTalk internet address of the router. */
 int err;
 char ZoneToFind[33]; /* The legal limit for a zone is 32 characters.
 so I will add one byte on the end to allow
 for the '\0'
 */
 int FoundZone =0; /* Variable to let me know if I ever found the zone. */
 char *zone_addr; /* Local buffer to copy the zone name(s) returned from
 ATZipGetZoneList zones parameter (described above).
 I will use this buffer to compare the user-
 specified zone against the zone(s) returned in
 the ATZipGetZoneList call.
 */
 int i; /* Your friendly counter. */
 ATEntity_t LookUpEntity; /* Once the zone is found, I will need to make
 an NBP entity. This will hold that entity.
 */
 ATRetry_t retry; /* The retry structure for NBP. */
 int nbp_tuples_found=0; /* Tuples returned in ATNBPLookUp(). */
 int more;
 int max_tuples;
 /*
 This will be the entire lookup string. For example,
 in this case it will be
 =:ATP_SERVER.NATIVE@<zone_name>
 zone_name is still unknown. Make sure to save enough
 room for the zone name, which is a max of 32 characters.
 In this case, I am
 using 20 bytes for the known string, 32 for the possible
 zone name, and 1 just in case.
 */
 char LookUp_string[53]="=:ATP_SERVER.NATIVE@";
/*
 Find out the zone in which the user wants me to find the server.
*/
 printf("Please enter what zone the server has registered. >> ");
 if(gets(ZoneToFind) == NULL)
 {
 perror("gets failed");
 return(STREAM_ERROR);
 }
/*
 Initialize the router to 0.0, allowing the request to go to any router.
*/
 router.net =0;

Communication Service Group

AppleTalk: Functions 181

 router.node = 0;
/*
 I will stay in this loop as long as there are zones to be found or
 if I find the zone that the user specified. Once I find the zone the user
 specified then I will do a lookup for the server in that zone.
*/
 start = oldstart = 1;
 last = 1;
 printf("Checking for the zone %s, Hang On....\n",ZoneToFind);
 do
 {
 z_size=ATP_DATA_SIZE;
 if(err = ATZipGetZoneList(&start,(ATNvestr_t *)zones,
 &z_size,&last,&router))
 {
 printf("ATZipGetLocalZoneList failed: err = %x\n",err);
 return(err);
 }
 zone_addr = &zones;
 for(i=0;i<start;i++)
 {
 /*
 Now, check the zone against the zone the user typed in.
 */
 if(String_Match(ZoneToFind,zone_addr))
 {
 FoundZone = 1;
 strncat(LookUp_string,zone_addr+1,*zone_addr);
 break;
 }
 /*
 Increment the index for the next zone name. I need to increment by
 1 (for the length) + zone name length.
 */
 zone_addr += 1 + *zone_addr;
 }
 if(FoundZone)
 break;
/*
 Set start equal to the previous start plus the zones that were just
 returned.
*/
 tmp = start;
 start+=oldstart;
 oldstart+=tmp;
 }while (!last);
/*
 A router may not have been found. If there is no router on the network,
 ATZipGetZoneList will return an "*" as the zone name and set the
 last flag, causing me to drop out of the loop. I need to check the
 zones field to see if the length is 1 and the next byte is an "*".
*/

Communication Service Group

AppleTalk: Functions 182

 if(zones[0] == 1 && zones[1] == '*')
 {
 /* Let the console know there is no router. */
 printf("No router found, using an '*' for the zone.\n");

 /* Append the "*" to the end of my lookup string. */
 strncat(LookUp_string,"*",1);
 }
 else
 if(!FoundZone)
 return(NO_ZONE_FOUND);
 if(err = ATNbpParseEntity(&LookUpEntity,LookUp_string))
 {
 printf("ATNbpParseEntity failed: err= %x\n",err);
 return(STREAM_ERROR);
 }
 retry.interval = 1000;
 retry.retries = 2;
 retry.backoff = 2;
 max_tuples = MAX;
 more = NULL;
 /* Note: buf_p is a global. */
 nbp_tuples_found = ATNbpLookup(&LookUpEntity,buf_p,&max_tuples,
 &retry,&more);
 switch(nbp_tuples_found)
 {
 case ETIMEDOUT: return(NO_SERVER_FOUND);
 case ENOBUFS: return(STREAM_ERROR); /* This sample code shouldn't
 get this error.*/
 case EINVAL: printf("Bad WildCard specified\n");
 return(STREAM_ERROR);
 default: return(nbp_tuples_found);
 }
}/* End of LocateServer. */

/*
 String_Match checks str1 (C string) and str2 (P string) against the
 MacASCII table defined as a global. All NBP and ZIP name searches
 should be done case-insensitive (Inside AppleTalk p.8-4). This call
 will return TRUE (1) if this is a match or FALSE(0) if there is not a
 match.
*/
int String_Match(char *str1,char *str2)
{
 int i;
/*
 Compare the two strings. Remember str1 is a C string and str2 is a P
 string.
*/
 if(strlen(str1) != str2[0])
 return (FALSE);
 for (i=0 ; i < strlen(str1) ; i++)

Communication Service Group

AppleTalk: Functions 183

 {
 if (norm[(u_char) str1[i]] != norm[(u_char) str2[i+1]])
 return (FALSE);
 }
 return (TRUE);
}

Communication Service Group

AppleTalk: Functions 184

ATZipGetMyZone

Finds the name of the zone a node is in
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <zip.h>

int ATZipGetMyZone (
 ATNveStr_t *zone);

Parameters

zone

(OUT) Points to the ATNveStr_t structure filled with the zone name
upon return. See ATNveStr_t.

NOTE: The string containing the zone name is not
NULL-terminated.

Return Values

0 Success

ENETDOWN Stack is loaded but not bound to any network

EINVAL Invalid parameter

ENOBUFS Insufficient buffer space

ETIMEDOUT No router or router busy

STREAMS
error

Bad file descriptor

Remarks

The main use of ATZipGetMyZone is to show the user what the current
zone is. This zone is known as "my zone" and all NBP registrations occur
here.

Quite often ATZipGetMyZone does not send a request out over the

Communication Service Group

AppleTalk: Functions 185

network. Sometimes it does.

ATZipGetMyZone is a blocking function.

The buffer should be a full ATNveStr_t.

If AFP is loaded but the AppleTalk stack is not bound to a network, zone
returns a star (*) and the function returns the error ENETDOWN. You
might want to use ENETDOWN to display a warning, such as "Caution:
AFP is loaded but the AppleTalk protocol stack is unbound."

See Also

ATZipGetLocalZones, ATZipGetZoneList

Example

ATZipGetMyZone

#include <zip.h>

main()
{
ATNvestr_t myZone;
int err;

/*
 Let the console know what zone the server is registered in.
*/
 if(err = ATZipGetMyZone(&myZone))
 {
 printf("ATZipGetMyZone failed: err = %x\n",err);
 ATDdpClose(my_fd);
 exit(__LINE__);
 }
 myZone.str[myZone.len] = 0; /* NULL terminate the string. */
 printf("The server is registered in the zone: %s\n",myZone.str);
}

Communication Service Group

AppleTalk: Functions 186

ATZipGetNBPZones

Finds the valid zones for you to explicitly register an entity in
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <zip.h>

int ATZipGetNBPZones (
 ATNveStr_t *zones,
 int *z_size,
 int more);

Parameters

zones

(OUT) Points to a buffer that holds the list of valid zones. The zone
names are returned in packed format, that is, as a packed array of P
strings.

The zones argument is a pointer to a list of valid explicit zone names.
Each zone name is contained in an ATNveStr_t structure; zones is a
pointer to the first ATNveStr_t structure holding a zone name. See
ATNveStr_t.

z_size

(IN/OUT) Points to the size in bytes of the zones buffer. It returns the
size of the buffer that was actually filled in, typically between 10 and
60 bytes.

Novell recommends that you set this buffer to ATP_DATA_SIZE, the
maximum size of responses as defined in atp.h. As long as you set
z_size to at least ATP_DATA_SIZE, your buffer rarely is too small;
therefore, you won't have to call ATZipGetNBPZones more than
once.

more

(OUT) Indicates if your buffer was too small to hold all the available
NBP zones. As explained above (under the z_size parameter), this
parameter is not likely to be set.

more returns the following two values:

 0---All NBP-valid zones fit into buffer

Communication Service Group

AppleTalk: Functions 187

 1---Buffer too small; try again with larger buffer

NOTE: The string containing the zone name is not
NULL-terminated.

Return Values

0 Success

ENOBUFS Insufficient buffer space available

EINVAL Bad buffer

ENETDOWN The stack wasn't up, so no zone list could be found.

ETIMEDOUT No response

EBADSIZE ATNveStr_t buffer too small, try again with larger
buffer

STREAMS
error

Bad file descriptor

Remarks

ATZipGetNBPZones finds the zones that are valid for you to register
explicitly an entity in. In explicit registration, the NBP client specifies
exactly which zone to register in. The choice is from the zones on the
AppleTalk internal network's list (not to be confused with the IPX
internal network).

Contrary to the interface suggested in Inside AppleTalk, Novell now allows
explicit zone registration where there is an AppleTalk internal network
available. This function allows you to check if an explicit zone is valid in
the current configuration. (For a more detailed description of explicit
zone registration, see ATNbpRegister.)

ATZipGetNBPZones is a blocking, but very short, function. No network
access is needed.

Example

ATZipGetNBPZones

#include <zip.h>

main()
{
 char *buf, *bp;
 int err, num_zones=0, more, z_size = 512, lz = 512;

Communication Service Group

AppleTalk: Functions 188

 do
 {
 buf = malloc(lz);
 if (!buf)
 return;
 z_size = lz;
 err = ATZipGetNBPZones((ATNveStr_t *) buf, &z_size, &more);
 if (err)
 return;
 if (more)
 lz *= 2;
 } while (more);
 bp = buf;
 while (bp < z_size + buf)
 {
 /* Display bp, a PString, so the user can choose from a list of zones. */
 bp += *bp + 1;
 num_zones++;
 }
}

Communication Service Group

AppleTalk: Functions 189

ATZipGetZoneList

Obtains all the zones on the internet
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <zip.h>

int ATZipGetZoneList (
 int *start,
 ATNveStr_t *zones,
 int *z_size,
 int *last,
 ATInet_t *router);

Remarks

With ATZipGetZoneList, you get all the zones on the internet , not just
those on the local network. The mechanics of ATZipGetZoneList are
identical to those of ATZipGetLocalZones.

NOTE: A huge amount of network traffic would be generated by
attempting to search all the zones of an internetwork at once. Therefore,
the most common use of ATZipGetZoneList is for presenting a list of
zones to users from which they can choose one to be searched. This is
also true for ATZipGetLocalZones, although it generates less network
traffic. Also note that when presenting a scrolling list, the initial selected
zone should be set to the return of ATGetMyZone.

See Also

ATZipGetLocalZones, ATZipGetMyZone

Example

See the example for ATZipGetLocalZones.

Communication Service Group

AppleTalk: Functions 190

ATZipZoneXlate

Translates, in place, a zone list from the MacASCII code page into the code
page being used by the local server
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <zip.h>

void ATZipZoneXlate (
 ATNveStr_t *zones,
 int z_size);

Parameters

zones

(IN/OUT) Points to a list of valid NBP zone names. The zone names
are returned in packed format, that is, as a packed array of P strings.

Each zone name is contained in an ATNveStr_t structure; zones points
to the first ATNveStr_t structure holding a zone name. See ATNveStr_t
.

z_size

(IN) Specifies the size of the zones buffer, in bytes.

NOTE: Note that the string containing the zone name is not
NULL-terminated.

Return Values

ATZipZoneXlate always succeeds.

Remarks

ATZipZoneXlate is a NetWare-specific function that translates, in place,
a zone list from the MacASCII code page into the code page being used
by the local server. All the other functions return zones in the MacASCII
code page; ATZipZoneXlate translates them into the code page being
used by the local server.

ATZipZoneXlate is a nonblocking, immediate function.

Communication Service Group

AppleTalk: Functions 191

ATZipZoneXlate is the only function that the client passes zones in to
(instead of having a list of zones returned).

See Also

CstrIBMCPToMac, CstrMacToIBMCP, PstrIBMCPToMac,
PstrMacToIBMCP

Example

ATZipZoneXlate

#include <zip.h>

main()
{
 char *buf, *bp;
 int err, num_zones=0, more, z_size = 512, lz = 512;
 do
 {
 buf = malloc(lz);
 if (!buf)
 return;
 z_size = lz;
 err = ATZipGetNBPZones((ATNveStr_t *) buf, &z_size, &more);
 if (err)
 return;
 if (more)
 lz *= 2;
 } while (more);
 ATZipZoneXlate((ATNveStr_t *) buf, z_size);
 bp = buf;
 while (bp < z_size + buf)
 {
 /* Display bp, a PString, so the user can choose from a list of zones. */
 bp += *bp + 1;
 num_zones++;
 }
}

Communication Service Group

AppleTalk: Functions 192

CstrIBMCPToMac

Translates C-string formatted strings (NULL-terminated strings) from the
code page in use on the local server to the MacASCII code page
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <appletlk.h>

char *CstrIBMCPToMac (
 char *src,
 char *dst);

Parameters

src

(IN) Points to the buffer (supplied by the caller) that holds the strings
to be translated.

dst

(OUT) Points to the buffer (supplied by the caller) that holds the
translated strings.

Return Values

If successful, CstrIBMCPToMac returns the dst pointer, and if not, it
returns NULL (0).

Remarks

CstrIBMCPToMac is a non-blocking, immediate call.

See Also

CstrMacToIBMCP, PstrIBMCPToMac, PstrMacToIBMCP

Communication Service Group

AppleTalk: Functions 193

CstrMacToIBMCP

Translates a C-string formatted file (NULL-terminated strings) from the
MacASCII code page to the code page in use on the local server
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <appletlk.h>

char *CstrMacToIBMCP (
 char *src,
 char *dst);

Parameters

src

(IN) Points to the buffer (supplied by the caller) that holds the file to be
translated.

dst

(OUT) Points to the buffer (supplied by the caller) that holds the
translated file.

Return Values

If successful, CstrMacToIBMCP returns the dst pointer, and if not, it
returns NULL (0).

Remarks

CstrMacToIBMCP is a non-blocking, immediate call.

See Also

CstrIBMCPToMac, PstrIBMCPToMac, PstrMacToIBMCP

Communication Service Group

AppleTalk: Functions 194

PstrIBMCPToMac

Translates P-string formatted strings (length-preceded strings) from the
code page in use on the local server to the MacASCII code page
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <appletlk.h>

char *PstrIBMCPToMac (
 char *src,
 char *dst);

Parameters

src

(IN) Points to the buffer (supplied by the caller) that holds the strings
to be translated.

dst

(OUT) Points to the buffer (supplied by the caller) that holds the
translated strings.

Return Values

If successful, PstrIBMCPToMac returns the dst pointer, and if not, it
returns NULL (0).

Remarks

PstrIBMCPToMac is a nonblocking, immediate call.

See Also

CstrIBMCPToMac, CstrMacToIBMCP, PstrMacToIBMCP

Communication Service Group

AppleTalk: Functions 195

PstrMacToIBMCP

Translates P-string formatted strings (length-preceded strings) from the
MacASCII code page to the code page in use on the local server
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 4.x
Platform: NLM
Service: AppleTalk

Syntax

#include <appletlk.h>

char *PstrMacToIBMPC (
 char *src,
 char *dst);

Synopsis

src

(IN) Points to the buffer (supplied by the caller) that holds the strings
to be translated.

dst

(OUT) Points to the buffer (supplied by the caller) that holds the
translated strings.

Return Values

If successful, PstrMacToIBMPC returns the dst pointer, and if not, it
returns NULL (0).

Remarks

PstrMacToIBMPC is a nonblocking, immediate call.

See Also

CstrIBMCPToMac, PstrIBMCPToMac, CstrMacToIBMCP

Communication Service Group

AppleTalk: Functions 196

AppleTalk: Structures

Communication Service Group

AppleTalk: Structures 197

ATAdspOpt_t

Contains option information for ADSP
Service: AppleTalk
Defined In: adsp.h

Structure

typedef struct ATAdspOpt {
 char Major;
 char Minor;
 char Revision;
 unsigned char reserved1;
 unsigned short TransThresh; /* Obsolete */
 unsigned TransTimerIntrvl; /* Obsolete */
 unsigned char reserved2[118];
} ATAdspOpt_t;

Fields

Major

Contains the AppleTalk interface major version number.

Minor

Contains the AppleTalk interface minor version number.

Revision

Contains the AppleTalk interface revision version number.

The other fields are reserved or obsolete.

Remarks

The major, minor, and revision version numbers are defined as shown in
the following figure.

Figure 8. Version Numbers

Communication Service Group

AppleTalk: Structures 198

The major number of the ADSP interface is "revved" (increased in value)
when a release contains one or more new functions, the minor number is
revved when options have changed, and the revision number is revved
when the size of an options buffer has changed.

IMPORTANT: You must retrieve the defaults before changing any
values.

See AppleTalk TLI Structures for more information.

Communication Service Group

AppleTalk: Structures 199

ATAspPass_t

Contains information about an ATP transaction
Service: AppleTalk
Defined In: asp.h

Structure

typedef struct ATAspPass {
 u_short cmd;
 long ret;
 union {
 struct Attn_s { /* Used externally */
 short attn_code; /* 13 bytes */
 ATRetry_t retry;
 u_long id;
 } Attn;
 struct StatReq_s { /* Used externally */
 ATInet_t addr;
 } StatReq;
 struct OpenReq_s {
 ATInet_t addr;
 u_long id;
 u_short fastwrite;
 } OpenReq;
 } U;
} ATAspPass_t;

Fields

cmd

ret

attn_code

retry

id (Attn_s)

addr (StatReq)

addr (OpenReq)

id (OpenReq)

fastwrite

Remarks

This structure is a message with information about a transaction that

Communication Service Group

AppleTalk: Structures 200

This structure is a message with information about a transaction that
came in after calling ATAtpGet. It contains a union with various
substructures. Look in the appropriate substructure for the information
about a certain transaction. For example, if an
ASP_EVENT_SLS_STATUS_REQ comes in, look in the U.StatReq
substructure. The substructures are named after the types of events to
make it easy for you to find the right one.

Communication Service Group

AppleTalk: Structures 201

ATAtpPass_t

Contains information about an ATP transaction
Service: AppleTalk
Defined In: asp.h

Structure

typedef struct ATAtpPass {
 u_short event;
 int ret;
 ATInet_t at_addr;
 void *TransID;
 u_char xo;
 u_char xo_relt;
 u_char bitmap;
 u_char packetize;
 ATRetry_t retry;
 void *data;
 u_short data_len;
 u_long userdata[8];
 u_short packet_len[8];
} ATAtpPass_t;

Fields

event

ret

at_addr

Describes where a request or response came from or is going to.

TransID

Associates requests and responses. The same transaction ID that was
passed in the ATAtpGet function that retrieved the request must be
passed back in the response.

xo

Describes whether a request is XO (exactly once---the request is
delivered only one time, thuse protecting against damage that could
result from a duplicate transaction) or ALO (at least once---the request
is repeated until a response is received by the requester or until a
maximum retry count is reached, thus ensuring that the transaction is
executed at least one time).

xo_relt

Describes the state of the xo_relt bits in a request. (This is the
transaction release timer. For a description, see Inside AppleTalk.)

Communication Service Group

AppleTalk: Structures 202

bitmap

The bitmap field is set to show the exact reply packets received.

packetize

Turns on or off the ability to specify the exact amount of ATP data per
packet in an ATP response. In general, ATP's application client should
not have to exert exact control over packets, such as manage how
many packets and so forth. It should instead manage transactions.
Nevertheless, some clients require more control, such as PAP, which
requires that only 512 bytes of ATP data be sent in every reply. for
these clients, the packetize field is included.

retry

See the description of the ATRetry_t structure.

data

The data buffer, supplied by the API client, is a concatenation of all
data received.

data_len

Contains the length of data.

userdata

The userdata array is set to the userdata of each received response, or in
the case of a request, userdata [0].

packet_len

The packet_len array is set to the number of bytes of ATP data received
in each packet. (Usually this information is not needed.)

Remarks

Byte order in the userdata field can be confusing. Most protocols want to
use this field on a byte-by-byte basis, but the field is defined as a long
data type. This is in host order, so setting the userdata to the value 15
results in the 4 bytes "00 00 00 15" being sent over the network. To set
each individual byte of this field, use the following C code:

userdata = hihibyte << 24 + hilobyte << 16 + lohibylte <<
 8 + lolobyte;

This results in the following byte ordering on the wire:

hihibyte hilobyte lohibyte lolobyte

For more information about byte ordering, see AppleTalk Byte Ordering.

Communication Service Group

AppleTalk: Structures 203

ATDdp_t

Defines a DDP packet
Service: AppleTalk
Defined In: ddp.h

Structure

typedef struct {
 u_short length_hi2:2,
 hopcount:4,
 unused:2,
 length_lo8:8;
 u_short checksum;
 ATNet dst_net;
 ATNet src_net;
 ATNode dst_node;
 ATNode src_node;
 ATSocket dst_socket;
 ATSocket src_socket;
 u_char type;
 char data[DDP_DATA_SIZE];
} ATDdp_t;

Fields

length_hi2, hopcount, unused, length_lo8

checksum

Contains the packet checksum.

dst_net

Contains the destination network number.

src_net

Contains the source network number.

dst_node

Contains the destination node ID.

src_node

Contains the source node ID.

dst_socket

Contains the destination socket number.

src_socket

Contains the source socket number.

type

Communication Service Group

AppleTalk: Structures 204

Contains the protocol type.

data

Contains the packet data.

Remarks

Use this structure to create a DDP packet for sending. ATDdp_t contains
fields for the DDP packet extended header and data, and is defined in
ddp.h. The ATDdp_t structure depends upon these type definitions, as
defined in appletlk.h:

typedef unsigned short at_net;
typedef unsigned char at_node;
typedef unsigned char at_socket;

By default, DDP_DATA_SIZE is 586, the maximum number of bytes
allowed in the data field of a DDP packet.

If you want DDP to calculate a checksum, specify a nonzero value in the
checksum field. If you do not want DDP to calculate a checksum, specify 0
for the checksum field.

When you send a DDP packet, DDP overwrites part of the source
internet address you specify. It overwrites the network ID and the node
ID with the correct network and node IDs.

Because of bit and byte-swapping problems, the DDP length can be
difficult to retrieve. Therefore, Novell offers, in the ddp.h file, the
DDP_LENGTH and SET_DDP_LENGTH macros. DDP_LENGTH takes
one parameter, a pointer to an ATDdp_t structure. It returns the DDP
length (the first value in the DDP packet, the number of bytes from the
beginning of the DDP length field to the end of the packet).
SET_DDP_LENGTH takes two parameters, a pointer to an ATDdp_t
structure and the length that you want to set the DDP length field to.
DDP_LENGTH (ddp) returns the value in the length field of a DDP
packet that you read or write. The ddp argument is a pointer to an
ATDdp_t structure.

Communication Service Group

AppleTalk: Structures 205

ATDdpOpt_t

Contains DDP options
Service: AppleTalk
Defined In: ddp.h

Structure

typedef struct ATDdpOpt {
 u_short checksum; /* optional */
 u_char ddp_type; /* required */
 char major; /* a read-only option */
 char minor; /* a read-only option */
 char revision; /* a read-only option */
} ATDdpOpt_t;

Fields

checksum

Enables the sending client to indicate whether DDP should calculate a
checksum for a packet it sends out. The DDP header contains a
checksum field, in which the value of the checksum appears.

ddp_type

The DDP header contains a DDP type field, an unsigned byte field
that identifies the protocol contained in the data section of the
datagram.

major

Contains the AppleTalk interface major version number.

minor

Contains the AppleTalk interface minor version number.

revision

Contains the AppleTalk interface revision version number.

Remarks

You can set five fields in this structure, the DDP options checksum and
data type and the AppleTalk version number.

The major, minor, and revision version numbers are defined as shown in
the following figure.

Communication Service Group

AppleTalk: Structures 206

The major number of the ADSP interface is "revved" (increased in value)
when a release contains one or more new functions, the minor number is
revved when options have changed, and the revision number is revved
when the size of an options buffer has changed.

The t_unitdata and t_uderr structures have an opt field, which lets you
access protocol options. opt points to a netbuf structure, which contains
the *buf field, which in turn points to the ATDdpOpt_t structure.

A nonzero value in the checksum field of the ATDdpOpt_t structure
causes DDP to generate a checksum when a transport client sends a
datagram. If the checksum field of a DDP datagram is nonzero when the
datagram arrives at its destination, DDP verifies the checksum. If the
checksum is valid, DDP passes the packet on to the next protocol layer. If
the checksum is in error, DDP discards the packet.

The checksum option also enables a receiving client to verify whether the
sender has used a checksum. Therefore, if a transport client receives data
with t_rcvudata, and the checksum field of ATDdpOpt_t is nonzero, it is
considered "polite" to send subsequent datagrams using a checksum.

If the checksum field of ATDdpOpt_t is 0, DDP does not calculate a
checksum. The default value is 0.

The checksum option controls the use of checksums only on send, and
does not automatically affect the use of checksums on other transport
endpoints. The use of checksums is not universal, because it does add
some overhead to the handling of a packet. However, we recommend the
use of checksums in large internets where packets may become corrupted
when crossing multiple repeaters or routers.

NOTE: Even if you do not specify the use of checksums in this way,
they may be turned on for the AppleTalk stack as a whole. This is true
for DDP and ADSP.

Apple Computer, Inc. has established the following universally known
values for the data_type field of the DDP packet:

0 Invalid (do not use)

1 Routing Table Maintenance Protocol (RTMP) response or data

Communication Service Group

AppleTalk: Structures 207

packet

2 Name Binding Protocol (NBP) packet

3 AppleTalk Transaction Protocol (ATP) packet

4 AppleTalk Echo Protocol (AEP) packet

5 RTMP request packet

6 Zone Information Protocol (ZIP) packet

7 AppleTalk Data Stream Protocol (ADSP) packet

Values 8 through 255 are valid but not universally known. Apple
Computer, Inc. has reserved values 1 through 15 for its own use.

When a transport client receives a datagram with t_rcvudata, the
ddp_type field of ATDdpOpt_t is set to the DDP type field in the DDP
header.

When a client sends a datagram with t_sndudata, the DDP type field of
the DDP header is set to the value specified by the ddp_type field of
ATDdpOpt_t.

The default value is 128.

Communication Service Group

AppleTalk: Structures 208

ATEntity_t

Contains an NBP entity's human-readable name (object, type, and zone)
Service: AppleTalk
Defined In: nbp.h

Structure

typedef struct ATEntity {
 at_nvestr_t object;
 at_nvestr_t type;
 at_nvestr_t zone;
} ATEntity_t;

Fields

object

Contains a zone-unique string that identifies the NBP entity, such as
"Marketing Print Server".

type

Contains the type of object, such as "print server".

zone

Contains an AppleTalk zone, such as "Enet".

Remarks

This structure is made up of the three strings that constitute an NBP
entity's human-readable name: object, type, and zone. Each name is a
maximum of 32 characters long, and each string is an ATNveStr_t
structure (P string, defined above).

You can include one wildcard per string (field). The choices are listed in
the following table.

Table auto. Wildcard Options

Field Wildcard Matches

a. Not really a wildcard. The asterisk represents "this zone."

object Equal sign (=) All possible characters

object Approximately
equal sign(Ý)

Zero or more characters (Phase II
only)

type Equal sign (=) All possible characters

type Approximately
equal sign (Ý)

Zero or more characters (Phase II
nodes aren't required to respond to

Communication Service Group

AppleTalk: Structures 209

this)

zone Asterisk (*)a Default value (local zone)

The equal sign (=) is defined in nbp.h as NBP_ORD_WILDCARD. The
approximately equal sign (Ý) is defined in nbp.h as
NBP_SPL_WILDCARD with a value of hexadecimal C5.

ATNbpLookup determines whether the entity name you specify is valid.

NOTE: As the table above indicates, you cannot specify a wildcard
character to indicate all possible zones. Therefore, if you do not know
the name of the zone in which the entity resides, you must use
ATZipGetLocalZones or ATZipGetZoneList to obtain a list of zone
names. ATZipGetLocalZones returns the names of all the zones on the
local network. ATZipGetZoneList returns the names of all the zones on
the internet. Once you have obtained the zone names, you can attempt a
lookup in one or more possible zones.

For information on using ATZipGetLocalZones and
ATZipGetZoneList with ATNbpLookup, see the sample programs that
came with the SDK.

Communication Service Group

AppleTalk: Structures 210

ATInet_t

Contains a three-part AppleTalk internet address (net, node, socket)
Service: AppleTalk
Defined In: appletalk.h

Structure

typedef u_short ATNet;
typedef u_char ATNode;
typedef u_char ATSocket;
typedef struct ATInet {
 ATNet net;
 ATNode node;
 ATSocket socket;
} ATInet_t;

Fields

net

Contains a network (cable) number

node

Contains a node number

socket

Contains a socket number

IMPORTANT: Remember that this structure is in Intel byte order.

Communication Service Group

AppleTalk: Structures 211

ATNbptuple_t

Contains the human-readable name of an NBP entity and its AppleTalk
address
Service: AppleTalk
Defined In: nbp.h

Structure

typedef struct ATNbptuple {
 ATInet_t enu_addr;
 union {
 struct {
 u_char enumerator;
 ATEntity_t entity;
 } en_se;
 struct {
 u_char enumerator;
 u_char name[NBP_TUPLE_SIZE];
 } en_sn;
 } en_u;
} ATNbptuple_t;

Fields

enu_addr

Contains the Internet address of the specified entity; an ATInet_t
structure

enumerator (in en_se)

Contains the enumerator

entity

Contains the name of the specified entity; an ATEntity_t structure

enumerator (in en_sn)

Contains the enumerator

name

Remarks

An NBP name-address tuple matches the human-readable name of an
NBP entity with its complete AppleTalk address so that services can be
found on the network. This structure also has an enumerator to help
applications distinguish between the multiple names that can be
associated with a particular socket.

The enu_entity field is actually a macro that has been defined to provide

Communication Service Group

AppleTalk: Structures 212

easier access to the structure.

The at_nbptuple_t pointer (*) in functions is used as a normal array, not
as the packed format that you find in the ZIP interface. In general, you
would access a series of NBP entities as shown by the following
pseudocode:

ATEntity_t *e; /* Entities returned from lookup */
for (i = 0 ; i < num_entities ; i++)
{
 /* Do what you need to with the entity, e. */
 e++;
}

Communication Service Group

AppleTalk: Structures 213

ATNveStr_t

Describes a service in human-readable form
Service: AppleTalk
Defined In: nbp.h

Structure

typedef struct ATNveStr_t {
 char len;
 char str [NBP_NVE_STR_SIZE];
} ATNveStr_t;

Fields

len

Contains the size in bytes of the NBP object, type, or zone's
human-readable name.

str

Contains an NBP object, type, or zone's human-readable name.

Remarks

This structure is a 33-byte P string (length-preceded string) used to
describe the human-readable form of a network service. (NVE stands for
network visible entity.) The first byte of the string gives the actual
length of the human-readable name, which is usually less than the
allotted 32 bytes (NBP_NVE_STR_SIZE).

IMPORTANT: NBP entities are returned in array format (not in the
"packed" format of zones). Accordingly, you would reference NBP
entities as the following pseudocode shows:

ATEntity_t *e; /* Entities returned from lookup */
for (i = 0 ; i < num_entities ; i++)
{
 /* Do what you need to with the entity, e. */
 e++;
}

NOTE: On the other hand, zones are returned in the packed format
described in Inside AppleTalk. Do not try to reference this structure as
an array (even though it would be syntactically valid). The packing
method has P strings in a list (not an array): length, length-bytes of zone
data. Accordingly, you would reference zones as the following
pseudocode shows:

ATNvestr_t *zones; /* Zone buffer retrieved */

Communication Service Group

AppleTalk: Structures 214

ATNvestr_t *zones; /* Zone buffer retrieved */
ATNvestr_t *now_zone, *end_zone;
end_zone = ((char *)zones) + z_size;
now_zone = zones;
while (now_zone < end_zone)
{
 /* Do what you need to with now_zone. */
 now_zone = (char *)now_zone +
 now_zone->len + 1;
}

Communication Service Group

AppleTalk: Structures 215

ATPapPass_t

Contains information about a PAP transaction
Service: AppleTalk
Defined In: pap.h

Structure

typedef struct ATPapPass_s {
 u_short cmd;
 long ret;
 union {
 struct ConnReq_s {
 ATInet_t addr;
 void *id;
 } ConnReq;
 struct Data_s {
 u_char eof;
 } Data;
 struct ConnReply_s {
 u_short result;
 } ConnReply;
 struct GetStat_s {
 ATInet_t addr;
 ATRetry_t retry;
 void *id;
 } GetStat;
 } U;
} ATPapPass_t;

Fields

cmd

ret

addr (in ConnReq_s)

id (in ConnReq_s)

eof

result

addr (in GetStat)

retry

id (in GetStat)

Remarks

Communication Service Group

AppleTalk: Structures 216

Remarks

This structure contains a union with various substructures. Look in the
appropriate substructure for the information about a certain transaction.
For example, if a connection reply comes in, look in the ConnReply
substructure. The substructures are named after types of events to make
it easy to find the right one.

Communication Service Group

AppleTalk: Structures 217

ATRetry_t

Defines the retry behavior of a function
Service: AppleTalk
Defined In: appletalk.h

Structure

typedef struct ATRetry {
 u_long interval;
 short retries;
 u_char backoff;
} ATRetry_t;

Fields

interval

Contains the retry interval, in 1/1000s of a second

retries

Contains the maximum number of retries; -1 specifies an infinite
number of retries (such as for a regularly scheduled event)

backoff

Indicates whether or not interval increases with successive retries. Must
be between 0 and 4:

0 or 1 = no increase
4 = large increase

Remarks

This structure defines the retry behavior of a function. It sets the number
of times the function retries, the interval between successive retries,
whether the interval increases or not, and whether the increase is gradual
(linear) or radical (exponential) in nature.

The NBP, ATP, and ZIP functions that use retries give you a choice
between passing in NULL (0) to get the system default retry settings or
passing in a pointer to an ATRetry_t structure you have set. Because the
default settings are workable for most situations, Novell recommends
that you use NULL in the early stages of development and later, when
you are able to improve upon the defaults, setting an ATRetry_t
structure.

IMPORTANT: Notice that interval is measured in milliseconds, not
seconds, and is type u_long, not short.

Using the backoff field, you can opt to gradually increase the interval

Communication Service Group

AppleTalk: Structures 218

between retries, thereby increasing the total time before the function
times out. You have four backoff settings to choose from:

0 or 1---no increase in intervals

2---slight increase

3---moderate increase

4---large increase

You have to experiment to see which setting works best for your
application. The exact interval in milliseconds that each of these settings
produce is actually a system function, so when you select a backoff setting,
you are making a value judgment about the general rate at which your
retries should "back off," not an exact calculation of the amount of time
each interval is.

Backoffs could be constant, linear, or exponential in type. Constant
backoff is actually a contradictory phrase; because the interval remains
constant, there is really no backoff involved. This is the type that a
backoff of 0 or 1 produces. However, backoffs 2 through 4 might be linear
or exponential, depending on how Novell has set them.

Constant Backoff

In a constant backoff, the interval remains the same between all retries.
The following example depicts a constant backoff with the following
settings.

interval: 1000 (1")

retries: 5

backoff: 1

The interval of one second (1") between retries remains constant,

Communication Service Group

AppleTalk: Structures 219

resulting in an aggregate retry of 6 seconds (the last second occurs
between the final retry and the point of timing out).

Linear Backoff

A linear backoff is one that increases the time between retries by the same
amount each time. The following example shows a linear backoff where
backoff 2 implies a system default of one second (1"):

interval: 1000

retries: 5

backoff: 2

The interval increases by one second after each retry, adding up to an
aggregate retry of 21 seconds (1+2+3+4+5+6=21).

Exponential Backoff

An exponential backoff is one that multiplies the time between retries by
a set factor, a system default. The following example shows an
exponential backoff with the same settings but where backoff 2 implies a
system default of four seconds (4"):

interval: 1000

retries: 5

backoff: 2

Communication Service Group

AppleTalk: Structures 220

The page is not wide enough to show the true proportions of the last two
exponential increases. In total, the intervals add up to 1365 seconds,
(1+4+16+64+256+1024=1365 seconds), or an aggregate retry of 22
minutes and 45 seconds.

Communication Service Group

AppleTalk: Structures 221

Asynchronous I/O

Communication Service Group

 222

Asynchronous I/O: Guides

Asynchronous I/O: Task Guide

Asynchronous I/O: Concept Guide

Asynchronous I/O: Functions

Asynchronous I/O: Structures

AIOCOMX Communication Driver

Communication Overview

Asynchronous I/O: Task Guide

Acquiring an Asynchronous I/O Port

Setting Function Parameters for Return Values

Asynchronous I/O: Concept Guide

Introduction to Asynchronous I/O

Asynchronous I/O: Functions

Application-to-Asynchronous I/O Functions

Control Functions

Driver Information Functions

External Status Bit Mask Functions

Read and Write Data Transfer Functions

Status Reporting Functions

Wildcard Functions

Communication Service Group

Asynchronous I/O: Guides 223

Asynchronous I/O: Tasks

Acquiring an Asynchronous I/O Port

Call AIOAcquirePort to gain control of a port. You must specify the
appropriate hardware type and board and port numbers in the function.
The application then owns the port until it calls AIOReleasePort to give up
control of it. During the time the application owns the port, no other
application can affect the port in any way.

Asynchronous I/O uses a unique handle value, returned to the application
by AIOAcquirePort, to identify the port and prevent unauthorized access to
it. This handle value has no meaning to applications and should not be
altered.

Call AIOGetFirstPortInfo and AIOGetNextPortInfo to scan the pool of
ports known to Asynchronous I/O. Enough information about each port is
returned to enable you to determine which ports are suitable for use.

Typical NetWare 3.1x applications call AIOAcquirePort.
AIOAcquirePortWithRTag is provided only for backward compatibility
with applications written without the NetWare API.

Setting Function Parameters for Return Values

For all functions, the return value is the completion status, which indicates
the success or failure of a request. A return of 0 indicates the successful
completion of a request. The return of a negative status (such as -1) indicates
an error or failure.

When a function returns a value to an application, the function parameters
include pointers that give the address of variables or structures. These
pointers are used to return the resulting values.

In many cases, you can set these pointer parameters for return values to
NULL (0), indicating that the value is not to be returned for this function.
You can use this to request the return of only part of the information that a
function is capable of returning.

When no information can be returned in a structure (that is, when a
driver-specific structure is not implemented by a particular driver) the
returnLength field in the structure is set to 0.

Communication Service Group

Asynchronous I/O: Tasks 224

Asynchronous I/O: Concepts

Application-to-Asynchronous I/O Functions

Asynchronous I/O functions permit all necessary manipulations of an
asynchronous port. These functions provide to applications the
character-oriented, buffered I/O that Asynchronous I/O drivers offer.
Application-to-Asynchronous I/O services include the following:

Read and Write Data Transfer Functions

Status Reporting Functions

Control Functions

NOTE: This release of Asynchronous I/O does not provide event
detection or notification services to applications. Thus, successful use of
asynchronous ports through Asynchronous I/O usually requires
periodic polling of ports for the current status of external signals, as
well as receive and transmit buffer statuses.

Asynchronous I/O Functions

Table auto. Asynchronous I/O Functions

Function Purpose

AIOAcquirePort Requests exclusive ownership of a
port

AIOAcquirePortWithRTag Requests exclusive ownership or a
port

AIOConfigurePort Sets parameters that affect the format
of data transmission

AIOFlushBuffers Discards data in the receive buffer or
transmit buffer

AIOGetDriverList Returns information about drivers
registered with Asynchronous I/O

AIOGetExternalStatus Returns information about the state
of hardware signals from external
equipment

AIOGetFirstPortInfo Returns information about ports

Communication Service Group

Asynchronous I/O: Concepts 225

known to Asynchronous I/O
without acquiring them

AIOGetNextPortInfo Used after AIOGetFirstPortInfo to
obtain information about the next
port known to Asynchronous I/O

AIOGetPortCapability Returns capability information for a
previously acquired port

AIOGetPortConfiguration Returns configuration information
for an acquired port

AIOGetPortStatistics Returns statistical information for a
port

AIOGetPortStatus Returns the complete state of the port

AIOGetReadBufferSize Returns the total size of all buffers
that a port uses to store received data

AIOGetWriteBufferSize Returns the total size of all buffers
that a port uses to store data to be
transmitted

AIOReadData Copies data from a port's receive
buffer to the NLM buffer

AIOReadStatus Returns status information about
data reception

AIOReleasePort Relinquishes ownership of a port

AIOSetControlData Passes a request and data structure to
an Asynchronous I/O driver

AIOSetExternalControl Controls the state of external signals

AIOSetFlowControl Changes flow control modes
independently of other configuration
parameters given for
AIOConfigurePort

AIOSetFlowControlCharacter
s

Sets data values used with software
flow control

AIOSetReadBufferSize Sets the size of a port's receive
buffers

AIOSetWriteBufferSize Sets the size of a port's transmit
buffers

AIOWriteData Copies data from an NLM buffer to a
transmit buffer

AIOWriteStatus Returns information about data
transmission

Buffer Size

Communication Service Group

Asynchronous I/O: Concepts 226

Two Asynchronous I/O functions allow applications to set the size of
receive and transmit buffers, as desired: AIOSetReadBufferSize and
AIOSetWriteBufferSize. You could call these functions, for instance, to
alter the size of a receive buffer depending on the baud rate used.

Asynchronous I/O sets the size of receive and transmit buffers to the
default when a port is acquired. The default size for receive and transmit
buffers varies among drivers. For example, the default size for both receive
and transmit buffers for the AIOCOMX driver is 1,024 bytes.

NOTE: Many asynchronous boards and associated drivers have no
provision for dynamic buffer sizing. If a port does not support dynamic
buffer sizing, the Asynchronous I/O buffer size functions return an
AIO_FUNC_NOT_SUPPORTED error status. Asynchronous I/O
applications should be prepared for buffer sizing not to be supported
by some ports.

Control Functions

Control functions allow applications to configure hardware to send and
receive data using various speeds, formatting, and flow control methods.
(Flow control allows applications to turn source transmission off if the
recipient's receive buffer fills.) The control functions are as follows:

AIOConfigurePort

AIOFlushBuffers

AIOSetControlData

AIOSetExternalControl

AIOSetFlowControl

AIOSetFlowControlCharacters

Deadman Timer

AIOSetExternalControl has a deadman timer feature that requests that the
port's driver independently monitor the length of time between
AIO_SET_DEADMAN_TIMER requests by the application. If the time
interval exceeds the given length, the driver assumes the application or
server has abended or otherwise failed and turns off the RS-232 signals DTR
and RTS. Using the deadman timer, drivers can automatically detect failure
of the port's user and signal the attached hardware that the connection with
the application has failed.

The deadman timer is initially disabled when a port has just been acquired.

Communication Service Group

Asynchronous I/O: Concepts 227

Applications can enable it by calling AIOSetExternalControl. The deadman
timer is also disabled when the port is released.

Driver Information Functions

Some Asynchronous I/O functions allow applications to receive
driver-specific values or data structures. Additionally, applications can
generate driver-specific commands.

In many cases where Asynchronous I/O-defined data structures are passed,
an application can also make calls to driver-specific data structures. This
permits knowledgeable applications to manipulate drivers that employ
information beyond that specified by the Asynchronous I/O definition.

The format of these structures is not defined beyond the required use of the
returnLength field, which must be used as described earlier in this chapter.

NOTE: This document does not include the information or
descriptions required for an application to interact with a driver in a
driver-specific manner. Similarly, the aio.h file does not include the
definitions of constants and structures for driver-specific data.

Rather, each Asynchronous I/O driver developer supplies, if
applicable, an include file and associated documentation describing the
use of any features unique to that particular driver.

The following functions allow driver-specific structures:

AIOGetFirstPortInfo

AIOGetNextPortInfo

AIOGetPortCapability

AIOGetPortConfiguration

AIOGetPortStatistics

AIOSetControlData

External Status Bit Mask Functions

Each function that returns the current external status values bit mask also
returns an additional bit mask. The additional bit mask indicates those
external status signals that have changed state since the last time a function
returned external status values. This allows applications to better determine
when they should act upon external status values.

For each external status signal, a bit is set to 1 when any transition occurs for
that signal, whether the signal changes from off to on or on to off. A set bit

Communication Service Group

Asynchronous I/O: Concepts 228

remains set even if the signal returns to its original value. The changed
external status bit mask is not reset to 0 until after an application reads the
bit mask (using either AIOGetExternalStatus or AIOGetPortStatus).

The following functions return external status bit masks:

AIOGetExternalStatus

AIOGetFirstPortInfo

AIOGetNextPortInfo

AIOGetPortStatus

Introduction to Asynchronous I/O

Asynchronous I/O is a library of functions that run as an NLM™
application. The Asynchronous I/O NLM presents a single point of control
through which applications can access all asynchronous communications
services in the NetWare® 3.1 and above environment. The following figure
illustrates this use of the Asynchronous I/O NLM by applications and
drivers.

Figure 9. Asynchronous I/O Application Programming Interface

Applications can execute calls to functions in the Asynchronous I/O library
to request services. Most functions identify a specific port to be serviced; the

Communication Service Group

Asynchronous I/O: Concepts 229

requested services are then either performed immediately or rejected for
later retry. Other functions return information without referring to specific
ports; for example, a function might indicate whether any ports in the pool
of ports known to Asynchronous I/O are available.

Individual Asynchronous I/O drivers register with Asynchronous I/O and
identify the asynchronous ports provided by each driver. Asynchronous
I/O adds these ports to the pool of ports that it provides. Applications can
either request ports from the whole pool of ports or request a specific port,
board, or driver hardware type.

Port Owner Name

The AIOGetFirstPortInfo and AIOGetNextPortInfo functions allow an
application to request the NLM name of a port owner if the port has been
acquired. This allows applications to display the name of the owning NLM
when issuing messages about the failure to acquire a port.

Read and Write Data Transfer Functions

The basic read and write data transfer functions are as follows:

AIOAcquirePort

AIOAcquirePortWithRTag

AIOGetReadBufferSize

AIOGetWriteBufferSize

AIOReadData

AIOReleasePort

AIOSetReadBufferSize

AIOSetWriteBufferSize

AIOWriteData

Return Length Field

Asynchronous I/O uses a standardized header for passing data structures
between Asynchronous I/O and the application. The header contains a
returnLength field that allows an application or Asynchronous I/O to
determine the exact size of the data structure being passed.

The returnLength field is needed for two reasons. First, it is required when

Communication Service Group

Asynchronous I/O: Concepts 230

the data that can be passed within a structure varies in size; this applies to
many Asynchronous I/O structures. Second, this field is needed because
structures themselves may vary in size among versions of Asynchronous
I/O. You can use an application with earlier versions of Asynchronous I/O,
because Asynchronous I/O does not overflow the application structure or
overwrite application data areas.

Applications must set the returnLength field before a call to an
Asynchronous I/O function that returns an actual byte length;
Asynchronous I/O does not use more than the specified length.
Asynchronous I/O changes the returnLength field upon return from the
function to reflect the byte length of the data returned in the structure. The
actual length returned is never greater than the original length that the
application set.

Before using the structure as an argument in a call to Asynchronous I/O, an
application must initialize the returnLength field of the structure to the byte
length of the structure, as follows:

AIOPORTCONFIG portConfig;
portConfig.returnLength = sizeof(portConfig);
ccode = AIOGetPortConfiguration(porthandle,
 &portConfig, NULL);

This allows Asynchronous I/O to determine how much data can be
returned in the application-provided structure. In addition, the application
can determine how much information was returned.

The following structures contain a returnLength field:

AIOPORTCAPABILITIES

AIODVRCAPABILITIES

AIOPORTCONFIG

AIODVRCONFIG

AIOPORTSTATISTICS

AIODVRSTATISTICS

AIOPORTINFO

AIODRIVERLIST

Status Reporting Functions

Status reporting functions allow applications to track the progress of data
transfers and changes in external conditions. The status reporting functions
are as follows:

Communication Service Group

Asynchronous I/O: Concepts 231

AIOGetDriverList

AIOGetExternalStatus

AIOGetFirstPortInfo

AIOGetNextPortInfo

AIOGetPortCapability

AIOGetPortConfiguration

AIOGetPortStatistics

AIOGetPortStatus

AIOReadStatus

AIOWriteStatus

Version Fields

Some of the Asynchronous I/O structures contain major and minor version
fields permitting identification of structure formats. Applications can check
the major and minor versions to determine whether structure contents are
different from those expected, and whether the structure is so different that
any use of its data would be unsafe.

The version fields are defined as follows:

The minor version number reflects minor changes made to structures.
Minor changes might occur if structure fields are replaced or no longer
supported, or if new fields are appended to the end of the structure. Even
when the minor version is different from that expected, most references
to structure fields remain valid.

The major version number reflects major reorganizations of a structure
(especially if a preexisting field's offset is changed).

The Asynchronous I/O structures that include major and minor version
numbers also contain a notSupportedMask field. The notSupportedMask field
allows applications to determine whether individual fields are valid across
minor version changes. This 4-byte bit mask uses one bit position per
structure field to indicate which structure fields are not supported. When a
previously existing field is superseded or no longer supported, the bit
position in this mask is set to 1.

The aio.h file contains #define statements for each field in the structures. The
naming convention takes the form:

AIO_<tableName>_NS_<fieldName>

Communication Service Group

Asynchronous I/O: Concepts 232

For example, the receiveBytes field of the AIOPORTSTATISTICS structure
has a bit mask named AIO_STATS_NS_RECEIVEBYTES. Refer to the aio.h
file for specific bit mask names and values.

Applications can use the notSupportedMask field, in combination with the
minor version, to determine when a field data value is valid. Bit positions for
fields not yet defined are set to 1 to help maintain application compatibility
with previous versions of Asynchronous I/O.

The structures that use minor and major version numbers are:

AIOPORTCAPABILITIES

AIOPORTCONFIG

AIOPORTINFO

AIOPORTSTATISTICS

Wildcard Functions

Some Asynchronous I/O functions accept independent wildcard values as
parameters. This wildcard capability allows any mix of wildcard and
nonwildcard values. For example, it is possible to specify the following:

AIOAcquirePort(-1, -1, 0);

The first -1 specifies "any driver"; the second -1 specifies "any board"; and
the 0 specifies "first port." Thus, this function asks for the first port on any
board of any driver.

These Asynchronous I/O functions accept wildcard values:

AIOAcquirePort

AIOGetFirstPortInfo

NOTE: The AIOGetFirstPortInfo and AIOGetNextPortInfo functions
are used in a manner similar to DOSFindFirstFile and
DOSFindNextFile. The "first" functions set up search parameters and
return the first matching port. The "next" functions use the original
search information to return subsequent matching ports, one at a time.

Communication Service Group

Asynchronous I/O: Concepts 233

Asynchronous I/O: Functions

Communication Service Group

Asynchronous I/O: Functions 234

AIOAcquirePort

Allows an application to request exclusive ownership of a port
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOAcquirePort (
 int *hardwareType,
 int *boardNumber,
 int *portNumber,
 int *portHandle);

Parameters

hardwareType

(IN/OUT) Points to the hardware type value for port selection. Can be
equal to -1; if so, the actual selected value is returned.

boardNumber

(IN/OUT) Points to the board number within the hardware type. Can
be equal to -1; if so, the actual board number value is returned.

portNumber

(IN/OUT) Points to the number of the port within the board. Can be
equal to -1; if so, the actual port number value is returned.

portHandle

(OUT) Points to the returned handle value of the acquired port.

Return Values

0 AIO_SUCCESS Successful. The port handle value
is returned.

-2 AIO_FAILURE Unsuccessful. An error occurred
beyond the control of
Asynchronous I/O or the calling
application.

-6 AIO_PORT_NOT_AVAILA The requested port is not

Communication Service Group

Asynchronous I/O: Functions 235

-6 AIO_PORT_NOT_AVAILA
BLE

The requested port is not
available. If you use a wildcard
request, no free ports are
available.

-10 AIO_TYPE_NUMBER_INV
ALID

No hardware driver of the
requested type is registered with
Asynchronous I/O, yet.

-11 AIO_BOARD_NUMBER_IN
VALID

No board of the hardware type
requested has been registered
with Asynchronous I/O, yet.

-12 AIO_PORT_NUMBER_INV
ALID

The requested port is an unknown
port to Asynchronous I/O.

Remarks

You can use specific parameters to select particular ports or use wildcard
parameters to select any free port from a class of ports that is hardware
specific.

If you provide nonnegative values for the first three parameters, a
specific Asynchronous I/O port is selected. That is, Asynchronous I/O
selects a specific hardware driver, a specific board controlled by that
driver, and a specific port on that board. If another application has
already acquired this port, the request is rejected with status
AIO_PORT_NOT_AVAILABLE.

If one of the first three parameters is not valid, the request is rejected as
follows:

If a specific hardwareType is given and that type is not loaded,
AIO_TYPE_NUMBER_INVALID is returned.

If a wildcard hardwareType is given and no types are loaded,
AIO_TYPE_NUMBER_INVALID is returned.

If a specific boardNumber is given and that board is not found,
AIO_BOARD_NUMBER_INVALID is returned.

If a wildcard boardNumber is given and no boards are registered,
AIO_BOARD_NUMBER_INVALID is returned.

If a specific portNumber is given and that port is not found,
AIO_PORT_NUMBER_INVALID is returned.

If a wildcard portNumber is given and no boards are registered,
AIO_PORT_NUMBER_INVALID is returned.

You can also use a value of -1 for any of the first three parameters to
request nonspecific selection of available free ports. Asynchronous I/O
locates an available port and acquires it for the application, returning the
actual hardware type, board number, and port number values for the

Communication Service Group

Asynchronous I/O: Functions 236

selected port. If no ports are available, Asynchronous I/O returns the
AIO_PORT_NOT_AVAILABLE status.

You can also use the wildcard value to define a range of ports that
Asynchronous I/O must check for an available port. Thus, a wildcard
value for the hardware type means Asynchronous I/O can check for
ports across all hardware drivers. Using a wildcard value for the board
number instructs Asynchronous I/O to check for available ports across
all boards controlled by the selected driver. Similarly, use of the wildcard
value for the port number parameter allows selection of any available
port found on the selected boards and hardware types.

You can use this feature to limit the range of ports to those provided by
one particular hardware type. To do so, specify the board and port
number parameters using the wildcard value of -1 and use the desired,
unique hardware type value. If no available ports are found, try the next
most desirable hardware type in the next request.

Whenever you use the wildcard value for any of the addressing
parameters and the request successfully selects an available port, the
wildcard value is replaced with the address value for the selected port.

Once a port is successfully acquired, the application can verify
configuration parameters by calling the AIOGetPortConfiguration
function. Typically, all configuration parameters are reset to
driver-defined default values. For example, the default size for transmit
and receive buffers for the AIOCOMX driver is 1,024 bytes. The specific
settings depend on the driver and hardware for the port and should be
verified as correct for the application's desired use.

Most ports have default values of 2,400 for bit rate, 8 bits for character
length, 1 bit for stop bits, no parity bit generation, and no flow control
modes active. The software flow control characters are reset to the ASCII
XON and XOFF character values. Signals that would be set using
AIOSetExternalControl are off; the RS232 break signal is off, too. No
data exists in either receive or transmit buffers.

See Also

AIOGetPortConfiguration, AIOReleasePort

Communication Service Group

Asynchronous I/O: Functions 237

AIOAcquirePortWithRTag

Allows an application to request exclusive ownership of a port
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOAcquirePortWithRTag (
 int *hardwareType,
 int *boardNumber,
 int *portNumber,
 int *portHandle,
 LONG RTag);

Parameters

hardwareType

(IN/OUT) Points to the hardware type value for port selection. Can be
equal to -1; if so, the actual selected value is returned.

boardNumber

(IN/OUT) Points to the board number within the hardware type. Can
be equal to -1; if so, the actual board number value is returned.

portNumber

(IN/OUT) Points to the number of the port within the board. Can be
equal to -1; if so, the actual port number value is returned.

portHandle

(OUT) Points to the returned handle value of the acquired port.

RTag

(IN) Specifies the allocated asynchronous port resource tag value
using the signature ASYNCIOSignature, defined in the AIO.H file.

Return Values

0 AIO_SUCCESS Successful. The port handle value
is returned.

Communication Service Group

Asynchronous I/O: Functions 238

-2 AIO_FAILURE Unsuccessful. An error occurred
beyond the control of
Asynchronous I/O or the calling
application.

-6 AIO_PORT_NOT_AVAILA
BLE

The requested port is not
available. If you use a wildcard
request, no free ports are
available.

-10 AIO_TYPE_NUMBER_INV
ALID

No hardware driver of the
requested type is registered with
Asynchronous I/O, yet.

-11 AIO_BOARD_NUMBER_IN
VALID

No board of the hardware type
requested has been registered
with Asynchronous I/O, yet.

-12 AIO_PORT_NUMBER_INV
ALID

The requested port is an unknown
port to Asynchronous I/O.

-21 AIO_RTAG_INVALID The requested resource tag is not a
valid Asynchronous I/O resource
tag.

Remarks

This function is provided only for those NLM™ applications that do not
use the NetWare® API. Typical NetWare 3.1 and above applications,
which use the NetWare API, use AIOAcquirePort.

See Also

AIOAcquirePort, AIOReleasePort

Communication Service Group

Asynchronous I/O: Functions 239

AIOConfigurePort

Sets the configuration parameters affecting the format of data transmission
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOConfigurePort (
 int portHandle,
 BYTE bitRate,
 BYTE dataBits,
 BYTE stopBits,
 BYTE parityMode,
 BYTE flowCtrlMode);

Parameters

portHandle

(IN) Specifies the handle that identifies the port to be addressed.
AIOAcquirePort returns this handle. If the handle value is not valid,
the request is rejected.

bitRate

(IN) Specifies the index for selecting the data rate in bits per second
(bps). A value of 255 (0xFF) can be used if no change to the previous
value is desired.

dataBits

(IN) Specifies the index for selecting the number of data bits per
character. A value of 255 (0xFF) can be used if no change to the
previous value is desired.

stopBits

(IN) Specifies the index for selecting the number of stop bits per
character. A value of 255 (0xFF) can be used if no change to the
previous value is desired.

parityMode

(IN) Specifies the index for selecting the type of generated parity.

flowCtrlMode

(IN) Specifies the flow control-mode settings value. This value

Communication Service Group

Asynchronous I/O: Functions 240

contains one or more bit masks, which can be combined using the
bitwise inclusive OR operator (|).

Return Values

0 AIO_SUCCESS Successful.

-1 AIO_BAD_HANDLE Port handle value is not valid.

-2 AIO_FAILURE Unsuccessful. An error occurred
beyond the control of Asynchronous
I/O or the calling application.

-7 AIO_QUALIFIED_SU
CCESS

Accepted, but some parameters were
substituted with different values.

-20 AIO_PORT_GONE Requested port's board has been
deregistered by the driver.

Remarks

The AIOConfigurePort function sets configuration parameters such as
data rate, data length in bits, number of stop bits, and type of generated
parity. Additionally, you can specify the enabled data flow control
modes here.

The index values for the bitRate parameter are defined as follows:

Bit Rate Index Actual Bit Rate (bps)

AIO_BAUD_50 50

AIO_BAUD_75 75

AIO_BAUD_110 110

AIO_BAUD_134p5 134.5

AIO_BAUD_150 150

AIO_BAUD_300 300

AIO_BAUD_600 600

AIO_BAUD_1200 1200

AIO_BAUD_1800 1800

AIO_BAUD_2000 2000

AIO_BAUD_2400 2400

AIO_BAUD_3600 3600

AIO_BAUD_4800 4800

AIO_BAUD_7200 7200

Communication Service Group

Asynchronous I/O: Functions 241

AIO_BAUD_9600 9600

AIO_BAUD_19200 19200

AIO_BAUD_38400 38400

AIO_BAUD_57600 57600

AIO_BAUD_115200 115200

The index values for the dataBits parameter are defined as follows:

Data Bits Index Actual Data Bits

AIO_DATA_BIT
S_5

5

AIO_DATA_BIT
S_6

6

AIO_DATA_BIT
S_7

7

AIO_DATA_BIT
S_8

8

The index values for the stopBits parameter are defined as follows:

Stop Bits Index Actual Stop Bits

AIO_STOP_BITS_1 1

AIO_STOP_BITS_1
p5

1.5

AIO_STOP_BITS_2 2

The index values for the parityMode parameter are defined as follows:

Parity Index Parity Generated

AIO_PARITY_NON
E

None

AIO_PARITY_ODD Odd parity

AIO_PARITY_EVE
N

Even parity

AIO_PARITY_MAR
K

Mark parity

AIO_PARITY_SPA
CE

Space parity

Communication Service Group

Asynchronous I/O: Functions 242

The flowCtrlMode parameter can contain one or more bit masks, which can
be combined using the bitwise inclusive OR operator (|). The following
values are defined:

AIO_SOFTWARE_FLOW_CONTROL_OFF
AIO_SOFTWARE_FLOW_CONTROL_ON
AIO_HARDWARE_FLOW_CONTROL_OFF
AIO_HARDWARE_FLOW_CONTROL_ON

NOTE: Not all asynchronous hardware supports all the parameters
and values outlined previously. Some drivers might choose to
substitute the requested values for values the hardware does support.
In this case, the status AIO_QUALIFIED_SUCCESS is returned. You can
use AIOGetPortConfiguration to read the actual configuration values
set for the hardware.

For example, the AIOCOMX driver does not support 1.5 stop bits per
character, except when a character is made up of 5 data bits only.
Therefore, when a character is set to 6, 7, or 8 data bits and 1.5 stop bits
per character are specified, the AIOCOMX driver uses 2 stop bits.

When hardware flow control is enabled, the Clear To Send (CTS) signal
controls when Asynchronous I/O can transmit data. While the signal is
on, Asynchronous I/O transmits data; when the external attached device
turns the signal off, Asynchronous I/O stops transmitting until the signal
is turned on again.

Similarly, Asynchronous I/O uses the Request To Send (RTS) signal to
indicate when the external attached device is permitted to pass data into
the attached port's receive buffer. When the receive buffer is full,
Asynchronous I/O turns off the RTS signal; when more room becomes
available in the receive buffer, the signal is turned on again.

NOTE: The application must have enabled the RTS signal using
AIOSetExternalControl for hardware flow control to be able to raise
and lower the RTS signal. The application can always override the
enabling of RTS by explicitly lowering RTS itself.

An application can repeat this request as many times as needed.
However, note that updating the parameters that control data
transmission formats could easily disrupt any ongoing data
transmissions.

See Also

AIOGetPortConfiguration, AIOSetFlowControl

Communication Service Group

Asynchronous I/O: Functions 243

AIOFlushBuffers

Discards data resident in the receive buffer (if not yet read) or transmit
buffer (if not yet output from the port)
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOFlushBuffers (
 int portHandle,
 WORD flushType);

Parameters

portHandle

(IN) Specifies a handle identifying the port to be addressed.
AIOAcquirePort returns this handle. If the handle value is not valid,
the request is rejected.

flushType

(IN) Specifies from which buffers to discard data.

Return Values

0 AIO_SUCCESS Successful.

-1 AIO_BAD_HAN
DLE

Port handle value is not valid.

-2 AIO_FAILURE Unsuccessful. An error occurred beyond the
control of Asynchronous I/O or the calling
application.

-20 AIO_PORT_GO
NE

Requested port's board has been deregistered
by the driver.

Remarks

This function flushes the receive buffer, the transmit buffer, or both. The

Communication Service Group

Asynchronous I/O: Functions 244

flushType parameter indicates which buffers to flush. This parameter can
contain one or more bit masks, which can be combined using the bitwise
inclusive OR operator (|). The following flushType mask values are
defined:

AIO_FLUSH_WRITE_BUFFER
AIO_FLUSH_READ_BUFFER

When AIO_FLUSH_READ_BUFFER is specified and any flow control
method is active, then certain actions can take place in addition to
flushing the receive buffer.

The driver sends a transmit XON character to permit remote transmission
if all of the following conditions are met:

Software flow control is enabled.

A transmit XOFF was previously sent to the remote end because the
receive buffer reached or exceeded the threshold (set by the driver).

The Request To Send (RTS) signal is turned on if all of the following
conditions are met:

Hardware flow control is enabled.

RTS was turned off because the receive buffer reached or exceeded the
threshold (set by the driver).

RTS is still enabled by the application (using AIOSetExternalControl).

See Also

AIOSetExternalControl, AIOSetFlowControl

Communication Service Group

Asynchronous I/O: Functions 245

AIOGetDriverList

Returns information on drivers registered with Asynchronous I/O
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOGetDriverList (
 int lastHardwareType,
 AIODRIVERLIST *DriverList)

Parameters

lastHardwareType

(IN) Specifies the number of the last hardware type returned by
AIOGetDriverList for a repeated call. This argument should be equal
to zero (0) on the first call to this function.

pDriverList

(IN/OUT) Points to a user-allocated buffer into which the driver list
information is stored.

Return Values

0 AIO_SUCCESS Successful.

-2 AIO_FAILURE Unsuccessful. An error occurred
beyond the control of
Asynchronous I/O or the calling
application.

-10 AIO_TYPE_NUMBER_IN
VALID

No driver with this hardware type
is registered with Asynchronous
I/O.

Remarks

This function fills a user buffer with information about drivers registered

Communication Service Group

Asynchronous I/O: Functions 246

with Asynchronous I/O. This information includes the hardware type
value used with AIOAcquirePort and AIOGetFirstPortInfo; the total
number of ports accessible through this driver; and the ASCII name of
the driver.

You can determine the number of entries Asynchronous I/O returns by
examining the returnLength field. Subtract from the returnLength field the
byte length of the field (2), and divide the result by the byte length of the
AIODRIVERLISTENTRY structure (see the "Example" below). This yields
the number of entries returned. The number of entries can be zero if the
preceding call returned the remainder of the driver information entries.

Because the amount of information for all drivers registered with
Asynchronous I/O might be too big to fit in the buffer provided by the
application, this function can be repeated as many times as required to
return all the information. For a repeated call, the lastHardwareType
parameter value should be the hardware type value of the last driver for
which information was returned.

On the first call to AIOGetDriverList, this value should be zero,
indicating that no prior drivers were examined and that Asynchronous
I/O should return data starting with the first driver registered with
Asynchronous I/O. Subsequent calls use the hardwareType in the last
filled driver entry returned from the previous call.

The AIOGetDriverList function should be repeated any time the number
of entries returned equals the maximum number that can fit within the
length of the user-provided buffer.

See Also

AIOAcquirePort, AIOGetFirstPortInfo, AIOGetNextPortInfo

Communication Service Group

Asynchronous I/O: Functions 247

AIOGetExternalStatus

Returns information regarding the state of hardware signals from external
equipment
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOGetExternalStatus (
 int portHandle,
 LONG *extStatus,
 LONG *chgdExtStatus);

Parameters

portHandle

(IN) Specifies the handle identifying the port to be addressed. The
AIOAcquirePort function returns this handle. If the handle value is
not valid, the request is rejected.

extStatus

(OUT) Points to the bit mask to receive the current external status
values bit mask. (Optionally, this can be NULL.)

chgdExtStatus

(OUT) Points to the bit mask to receive the changed external status
values bit mask. (Optionally, this can be NULL.)

Return Values

0 AIO_SUCCESS Successful.

-1 AIO_BAD_HAN
DLE

Port handle value is not valid.

-2 AIO_FAILURE Unsuccessful. An error occurred beyond the
control of Asynchronous I/O or the calling
application.

-20 AIO_PORT_GO
NE

Requested port's board has been deregistered
by the driver.

Communication Service Group

Asynchronous I/O: Functions 248

Remarks

This function returns information regarding the state of hardware signals
from external equipment. For most serial equipment these signals
include Data Set Ready (DSR), Clear To Send (CTS), and Data Carrier
Detect (DCD). The information format can be specific to the particular
driver employed.

This function returns two bit masks, the first of which indicates the
current external signal values. The second indicates whether any signal
values have changed since the last request for external status.

The bit value assignments for signals are the same in both bit masks and
are defined as follows:

Name Meaning Values

AIO_EXTSTA_RI Ring Indicator
signal

0x00000001

AIO_EXTSTA_DC
D

DCD signal 0x00000008

AIO_EXTSTA_DS
R

DSR signal 0x00000010

AIO_EXTSTA_CT
S

CTS signal 0x00000020

AIO_EXTSTA_BR
EAK

Break signal 0x00000080

 Whenever the external status values are requested, the changed status
mask is reset to zero. This allows an application to determine which
signals have changed state since the last time the external status values
were requested.

NOTE: AIOGetPortStatus also resets the changed external status
values.

An individual bit is set in the changed mask when that signal changes
value, whether from on to off or off to on. A set bit remains set even when
the signal makes several transitions.

The status bit mask values previously outlined are those defined for
RS232-type asynchronous devices. Other devices might return status
values that emulate these RS232 inputs. Certain drivers might define
additional status values specific to the particular devices handled. These
status bits are defined using the higher-order bits in the LONG values.

The "break" status value is not an RS232 hardware signal input. Rather, it

Communication Service Group

Asynchronous I/O: Functions 249

indicates whether the port has received a "break" data signal. The current
status bit mask is set only while actually receiving the break signal. Once
the break signal turns off, the current status bit becomes zero. Thus,
applications should test both the current and changed status masks.

See Also

AIOGetPortStatus

Communication Service Group

Asynchronous I/O: Functions 250

AIOGetFirstPortInfo

Examines information for ports known to Asynchronous I/O without
having to acquire them to do so
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOGetFirstPortInfo (
 int hardwareType,
 int boardNumber,
 int portNumber,
 AIOPORTSEARCH *portSearch,
 AIOPORTINFO *portInfo,
 AIOPORTCAPABILITIES *capabilities,
 AIODVRCAPABILITIES *dvrCapabilities,
 char *NLMModuleName);

Parameters

hardwareType

(IN) Specifies the hardware type address value for port selection. Can
be equal to -1.

boardNumber

(IN) Specifies the board number (within the hardware type) for port
selection. Can be equal to -1.

portNumber

(IN) Specifies the port number (within the board number) for port
selection. Can be equal to -1.

portSearch

(IN/OUT) Points to a user-allocated buffer used by this function and
AIOGetNextPortInfo. Do not modify this pointer between calls to
AIOGetNextPortInfo. Define the structure using the typedef name
AIOPORTSEARCH. This pointer cannot be NULL.

portInfo

(OUT) Points to a user-allocated buffer to receive the returned port
information structure value.

Communication Service Group

Asynchronous I/O: Functions 251

capabilities

(OUT) Points to a user-allocated buffer to receive the returned port
capabilities structure values (optionally, this can be NULL). The
returnLength field of the AIOPORTCAPABILITIES structure must be
initialized prior to the call.

dvrcapabilities

(IN/OUT) Points to a user-allocated buffer to receive the returned
driver-specific port capability structure values. (Optionally, this can be
NULL.) The returnLength field of the AIODVRCAPABILITIES
structure must be initialized prior to the call.

NLMModuleName

(OUT) Points to a 128-byte character array. (Optionally, this can be
NULL.) If the returned port is currently acquired by an NLM, the
module name of the owning NLM is copied into this character array.
The name is NULL-terminated.

Return Values

0 AIO_SUCCESS Successful.

-2 AIO_FAILURE Unsuccessful. An error occurred
beyond the control of
Asynchronous I/O or the calling
application.

-8 AIO_NO_MORE_PORTS No ports exist with the given
address values.

-10 AIO_TYPE_NUMBER_INV
ALID

No driver with this hardware type
is registered with Asynchronous
I/O.

-11 AIO_BOARD_NUMBER_IN
VALID

No board with this number exists
for the selected hardware type.

-12 AIO_PORT_NUMBER_INV
ALID

The requested port is not known
to Asynchronous I/O.

Remarks

This function can be used to select information for one port or to select a
subset of ports for which information is to be returned. This information
includes the current availability of the port and its capabilities. When
wildcard address values are used, subsequent calls to
AIOGetNextPortInfo can be used to return more ports in the selected
subset of known ports.

When the first three parameters are specified with nonnegative values, a
single port is addressed. That is, the hardwareType parameter specifies a

Communication Service Group

Asynchronous I/O: Functions 252

particular hardware driver, the boardNumber parameter specifies a
particular board controlled by that driver, and the portNumber parameter
specifies a particular port on that board.

Asynchronous I/O drivers can control multiple boards, with each board
containing multiple ports. When an Asynchronous I/O driver is loaded,
it provides Asynchronous I/O with information about the boards and
ports controlled by that driver. The type and number parameter values
are limited to those known by Asynchronous I/O, which were registered
with Asynchronous I/O by each of the Asynchronous I/O drivers when
they were loaded.

Wildcard values can be used in any combination with nonnegative
values to define a range of ports for which Asynchronous I/O is to report
information. Thus, a wildcard value for the hardwareType parameter
means Asynchronous I/O can check for ports across all hardware drivers.
A wildcard value for the boardNumber parameter means Asynchronous
I/O checks for available ports across all boards controlled by the selected
drivers. Similarly, a wildcard value for the portNumber parameter means
Asynchronous I/O checks all available ports found on the specified
boards and hardware types.

One obvious use of this feature is to limit the range of ports to those
provided by one particular hardware type. In this case, the board and
port number parameters are specified using the wildcard value of -1, and
the hardware type is the desired, unique hardware type value.

Whenever the wildcard value is used for any of the addressing
parameters, the application should check the returned data structure
parameters for the actual hardware type, board number, and port
number of the port selected.

If one of the first three parameters is not valid, the request is rejected as
follows:

If a specific hardwareType is given and that type is not loaded,
AIO_TYPE_NUMBER_INVALID is returned.

If a wildcard hardwareType is given and no types are loaded,
AIO_TYPE_NUMBER_INVALID is returned.

If a specific boardNumber is given and that board is not found,
AIO_BOARD_NUMBER_INVALID is returned.

If a wildcard boardNumber is given and no boards are registered,
AIO_BOARD_NUMBER_INVALID is returned.

If a specific portNumber is given and that port is not found,
AIO_PORT_NUMBER_INVALID is returned.

If a wildcard portNumber is given and no boards are registered,
AIO_PORT_NUMBER_INVALID is returned.

The actual format of the driver-specific data structure is not known to

Communication Service Group

Asynchronous I/O: Functions 253

Asynchronous I/O, and the driver developer must supply the
description and definition of the structure. If an application does not need
this information, the dvrcapabilities parameter should be set to NULL. If
you want to get driver-specific information, set the return buffer to the
appropriate size and set its length in the returnLength field of the
structure. In no case does a driver return more than the number of bytes
indicated by the buffer length. If there is less driver data to be returned,
the returnLength field is set to the actual number of bytes of data returned.

The AIOPORTINFO structure contains a chgdExtStatus value. Unlike
AIOGetPortStatus and AIOGetExternalStatus, AIOGetFirstPortInfo
does not reset this value.

See Also

AIOGetNextPortInfo, AIOGetPortCapability

Communication Service Group

Asynchronous I/O: Functions 254

AIOGetNextPortInfo

Used after AIOGetFirstPortInfo to examine the next port of a subset of
ports known to Asynchronous I/O
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOGetNextPortInfo (
 AIOPORTSEARCH *portSearch,
 AIOPORTINFO *portInfo,
 AIOPORTCAPABILITIES *capabilities,
 AIODVRCAPABILITIES *dvrCapabilities,
 char *NLMModuleName);

Parameters

portSearch

(IN/OUT) Points to a user-allocated buffer used by this function and
AIOGetFirstPortInfo. Do not modify this pointer between calls to
AIOGetNextPortInfo. Define the structure using the typedef name
AIOPORTSEARCH.

portInfo

(OUT) Points to a user-allocated buffer to receive the returned port
information structure value.

capabilities

(OUT) Points to a user-allocated buffer to receive the returned port
capabilities structure values. (Optionally, this can be NULL.) The
returnLength field of the AIOPORTCAPABILITIES structure must be
initialized prior to the call.

dvrcapabilities

(IN/OUT) Points to a user-allocated buffer to receive the returned
driver-specific port capability structure values. (Optionally, this can be
NULL.) The returnLength field of the AIODVRCAPABILITIES structure
must be initialized prior to the call.

NLMModuleName

(OUT) Points to a 128-byte character array. If the returned port is

Communication Service Group

Asynchronous I/O: Functions 255

currently acquired by an NLM, the module name of the owning NLM
is copied into this character array. The name is NULL-terminated.

Return Values

0 AIO_SUCCESS Successful.

-2 AIO_FAILURE Unsuccessful. An error occurred beyond
the control of Asynchronous I/O or the
calling application.

-8 AIO_NO_MORE_P
ORTS

No further ports exist with the given
address values.

Remarks

This function continues searching for the next port for which to return
information based on the search pattern set by AIOGetFirstPortInfo. The
AIOPORTSEARCH structure must have been set up using
AIOGetFirstPortInfo and must remain unchanged between calls.

See Also

AIOGetFirstPortInfo, AIOGetPortCapability

Communication Service Group

Asynchronous I/O: Functions 256

AIOGetPortCapability

Queries for capability information about a specific, previously acquired port
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOGetPortCapability (
 int portHandle,
 AIOPORTCAPABILITIES *capabilities,
 AIODVRCAPABILITIES *dvrCapabilities);

Parameters

portHandle

(IN) Specifies the handle identifying the port to be addressed. The
AIOAcquirePort function returns this handle. If the handle value is
not valid, the request is rejected.

capabilities

(IN/OUT) Points to a user-allocated buffer to receive the returned port
capability structure values. (Optionally, this can be NULL.)

dvrCapabilities

(IN/OUT) Points to a user-allocated buffer to receive the returned
driver-specific port capability structure values. (Optionally, this can be
NULL.)

Return Values

0 AIO_SUCCESS Successful.

-1 AIO_BAD_HAN
DLE

Port handle value is not valid.

-2 AIO_FAILURE Unsuccessful. An error occurred beyond the
control of Asynchronous I/O or the calling
application.

-20 AIO_PORT_GO
NE

Requested port's board has been deregistered
by the driver.

Communication Service Group

Asynchronous I/O: Functions 257

Remarks

This function allows an application to query capability information about
a port. Capabilities, such as baud rate and flow control methods, might
not be present in some Asynchronous I/O drivers.

Note that the capabilities data returned in the AIOPORTCAPABILITIES
structure characterizes only the capabilities of the driver and hardware
installed in the server. This does not indicate what the capabilities of the
asynchronous hardware attached to the port might be. For example,
assume a that port's driver and hardware are able to transfer data at 57.6
kilobits per second (Kbps), but a Hayes 2400 modem is attached. The data
transfer is limited to the capabilities of the external device.

The actual format of the driver-specific data structure is not known to
Asynchronous I/O, and the driver developer must supply the
description and definition of the structure. If an application does not need
this information, the dvrCapabilities parameter should be set to NULL. If
the driver-specific information is desired, the return buffer should be of
an appropriate size, and its length set in the returnLength field of the
structure. In no case does a driver return more than the number of bytes
indicated by the buffer length. If there is less driver data to be returned,
the returnLength field is set to the actual number of bytes of data returned.

If the minimum and maximum read or write buffer sizes are equal, the
AIOSetReadBufferSize or AIOSetWriteBufferSize functions are not
supported.

See Also

AIOConfigurePort, AIOGetPortConfiguration, AIOGetReadBufferSize
, AIOGetWriteBufferSize, AIOSetExternalControl

Communication Service Group

Asynchronous I/O: Functions 258

AIOGetPortConfiguration

Requests the current configuration information from an acquired port
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOGetPortConfiguration (
 int portHandle,
 AIOPORTCONFIG *configuration,
 AIODVRCONFIG *dvrconfiguration);

Parameters

portHandle

(IN) Specifies the handle that identifies the port to be addressed.
AIOAcquirePort returns this handle. If the handle value is not valid,
the request is rejected.

configuration

(OUT) Points to a user-allocated port configuration structure.
(Optionally, this value can be NULL.) The returnLength field of the
AIOPORTCONFIG structure must be initialized before the call.

dvrconfiguration

(IN/OUT) Points to a user-allocated buffer to receive the returned
driver-specific port configuration structure values. (Optionally, this
value can be NULL.) The returnLength field of the AIOPORTCONFIG
structure must be initialized before the call.

Return Values

0 AIO_SUCCESS Successful.

-1 AIO_BAD_HAN
DLE

Port handle value is not valid.

-2 AIO_FAILURE Unsuccessful. An error occurred beyond the
control of Asynchronous I/O or the calling
application.

Communication Service Group

Asynchronous I/O: Functions 259

-20 AIO_PORT_GO
NE

Requested port's board has been deregistered
by the driver.

Remarks

The configuration values currently in use by the port are returned. These
values are the cumulative result of any requests to the port that change
how data is transmitted or received (such as AIOConfigurePort or
AIOSetExternalControl).

You can use this function to check whether all application-specified
configuration values given in the AIOConfigurePort function were valid
for a particular port. As discussed in the description of that function,
requested configuration values that are not supported by a driver can be
modified to supported values. The values returned in this structure
reflect those values actually used by the driver.

The actual format of the driver-specific data structure is not known to
Asynchronous I/O, and the driver developer supplies the description
and definition of the structure. If an application does not need this
information, the dvrconfiguration parameter should be set to NULL.

If the driver-specific information is desired, the return buffer should be of
an appropriate size, and its length should be set in the returnLength field
of the AIODVRCONFIG structure. In no case does a driver return more
than the number of bytes indicated by the buffer length. If there is less
driver data to be returned, the returnLength field is set to the actual
number of bytes of data returned.

See Also

AIOConfigurePort, AIOSetExternalControl, AIOSetFlowControl,
AIOSetFlowControlCharacters, AIOSetReadBufferSize,
AIOSetWriteBufferSize

Example

AIOGetPortConfiguration

#include <aio.h>

int portHandle; /* Port handle returned by AIOAcquirePort */
int ccode;
AIOPORTCONFIG portConfig;

/*
 Fetch the active port configuration values,
 Is break on?
*/

Communication Service Group

Asynchronous I/O: Functions 260

portConfig.returnLength = sizeof(portConfig);
ccode = AIOGetPortConfiguration(portHandle, &portConfig, NULL):
if(ccode)
 /* Error handling routine goes here */
if(portConfig.breakMode == AIO_SET_BREAK_ON)
{
 /* Turn off break with AIOSetExternalControl */
}

Communication Service Group

Asynchronous I/O: Functions 261

AIOGetPortStatistics

Returns statistical information for a port, such as counts of received and
transmitted data bytes and counts of errors encountered
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOGetPortStatistics (
 int portHandle,
 AIOPORTSTATISTICS *statistics,
 AIODVRSTATISTICS *dvrstatistics);

Parameters

portHandle

(IN) Specifies the handle that identifies the port to be addressed.
AIOAcquirePort returns this handle. If the handle value is not valid,
the request is rejected.

statistics

(IN/OUT) Points to the structure AIOPORTSTATISTICS. (Optionally,
this can be NULL.) The returnLength field of this structure must be
initialized prior to the call.

dvrstatistics

(IN/OUT) Points to a user-allocated buffer to receive the returned
driver-specific port statistics structure values. (Optionally, this can be
NULL.) The returnLength field of the AIODVRSTATISTICS structure
must be initialized prior to the call.

Return Values

0 AIO_SUCCESS Successful.

-1 AIO_BAD_HAN
DLE

Port handle value is not valid.

-2 AIO_FAILURE Unsuccessful. An error occurred beyond the
control of Asynchronous I/O or the calling

Communication Service Group

Asynchronous I/O: Functions 262

application.

-20 AIO_PORT_GO
NE

Requested port's board has been deregistered
by the driver.

Remarks

This function begins collecting statistics when the Asynchronous I/O
driver loads the board and ports. It continues collecting counts
throughout the lifetime of the driver's usage and ceases only when the
server operator unloads the Asynchronous I/O driver NLM.

An application that wants to derive the counters' delta values from an
application's use of a port should, after acquiring the port, request the
initial statistics values. From then on, the differences between those initial
values and the current values are the statistics for the current usage.

The actual format of the driver-specific data structure is not known to
Asynchronous I/O, and the driver developer supplies the description
and definition of this structure. If an application does not need this
information, the dvrstatistics parameter should be set to NULL.

If the driver-specific information is desired, the return buffer should be of
an appropriate size, and its length should be set in the returnLength field
of the structure. In no case does a driver return more than the number of
bytes indicated by the buffer length. If there is less driver data to be
returned, the returnLength field is set to the actual number of bytes of
data returned.

Communication Service Group

Asynchronous I/O: Functions 263

AIOGetPortStatus

Returns in one request the complete state of the port
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOGetPortStatus (
 int portHandle,
 LONG *writeCount,
 WORD *writeState,
 LONG *readCount,
 WORD *readState,
 LONG *extStatus,
 LONG *chgdExtStatus);

Parameters

portHandle

(IN) Specifies the handle identifying the port to be addressed.
AIOAcquirePort returns this handle. If the handle value is not valid,
the request is rejected.

writeCount

(OUT) Points to the number of bytes yet to be transmitted from the
port. (Optionally, this can be NULL.) The count can vary from zero to
the length of the transmit buffer.

writeState

(OUT) Points to the current output stream state value. (Optionally, this
can be NULL.)

readCount

(OUT) Points to the number of bytes present in the port's receive
buffer. (Optionally, this can be NULL.) The count can vary from zero
to the length of the receive buffer.

readState

(OUT) Points to the current receive stream state value. (Optionally,
this can be NULL.)

extStatus

Communication Service Group

Asynchronous I/O: Functions 264

(OUT) Points to a bit mask to receive the current external status bit
mask value. (Optionally, this can be NULL.)

chgdExtStatus

(OUT) Points to a bit mask to receive the external status changed
values bit mask. (Optionally, this can be NULL.)

Return Values

0 AIO_SUCCESS Successful.

-1 AIO_BAD_HAN
DLE

Port handle value is not valid.

-2 AIO_FAILURE Unsuccessful. An error occurred beyond the
control of Asynchronous I/O or the calling
application.

-20 AIO_PORT_GO
NE

Requested port's board has been deregistered
by the driver.

Remarks

This function returns complete state information for a specified port,
combining information from AIOWriteStatus, AIOReadStatus, and
AIOGetExternalStatus.

The writeCount parameter is number of data bytes yet to be transmitted.
Before you use the AIOReleasePort function, it is best to verify that data
queued for transmission has actually been sent.

The writeState parameter is the transmission state (for example, whether
transmission is stopped due to flow control). The writeState value for a
port allows checking for transmission in progress, transmission complete,
and transmission stopped due to software flow control. Applications
might consider these state values when scheduling output to a port.

The following values are defined for the writeState parameter:

Name Meaning

AIO_TRANSMIT_IDL
E

Transmit buffer is empty

AIO_TRANSMIT_AC
TIVE

Transmission is in progress

AIO_TRANSMIT_XOF
FED

Transmission is stopped due to software flow
control

Communication Service Group

Asynchronous I/O: Functions 265

The readCont parameter is the number of data bytes currently held in the
port's receive buffer. This count allows an application to determine
whether data is present in the port's receive buffer. If the returned count
is nonzero, AIOReadData can then copy data to an application buffer.

The readState parameter is the state of receive buffering (that is, whether
input buffers have filled, making overrun possible). When the receive
buffer is completely filled, any additional data that arrives might be lost.
If the application can read some or all of the data before additional data
arrives, no data is lost. At high data rates, however, you should try to
avoid this risk.

The following values are defined for the readState parameter:

Name Meaning

AIO_RECEIVE_AC
TIVE

Reception is in progress

AIO_RECEIVE_FU
LL

Receive buffer is full

The extStatus and chgdExtStatus parameters are bit masks that reflect the
state of hardware signals from external equipment. For most serial
equipment these signals include Data Set Ready (DSR), Clear To Send
(CTS), and Data Carrier Detect (DCD). The information format might be
specific to the particular driver employed.

The extStatus bit mask indicates the current external signal values. The
chgdExtStatus bit mask indicates whether any signal values have changed
since the last request for external status. An individual bit is set in the
changed mask when that signal changes value, whether from on to off or
off to on. A set bit remains set even when the signal makes several
transitions.

The bit masks for the extStatus and chgdExtStatus parameters are the same
and are defined as follows:

Name Meaning

AIO_EXTSTA_RI RingIndicator signal

AIO_EXTSTA_DC
D

DCD signal

AIO_EXTSTA_DS
R

DSR signal

AIO_EXTSTA_CT
S

CTS signal

AIO_EXTSTA_BR
EAK

Break detected

Communication Service Group

Asynchronous I/O: Functions 266

NOTE: When external status values are requested, the changed status
mask is reset to zero. This allows an application to determine which
signals have changed state since the last time external status values
were requested.

The status bit mask values previously outlined are those defined for
RS232-type asynchronous devices. Other devices might return status
values that emulate these RS232 inputs. Certain drivers might define
additional status values specific to the particular devices handled. These
status bits are defined using the higher-order bits in the LONG values.

The "break" status value is not an RS232 hardware signal input. Rather, it
indicates whether the port has received a "break" data signal. The current
status bit mask is set only while actually receiving the break signal. Once
the break signal turns off, the current status bit becomes zero. Thus,
applications should test both the current and changed status masks.

See Also

AIOGetExternalStatus, AIOReadStatus, AIOWriteStatus

Communication Service Group

Asynchronous I/O: Functions 267

AIOGetReadBufferSize

Returns the total size of all buffers that a port uses to store received data
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOGetReadBufferSize (
 int portHandle,
 LONG *readSize);

Parameters

portHandle

(IN) Specifies a handle that identifies the port to be addressed.
AIOAcquirePort returns this handle. If the handle value is not valid,
the request is rejected.

readSize

(OUT) Points to the total size of the receive buffers.

Return Values

0 AIO_SUCCESS Successful.

-1 AIO_BAD_HAN
DLE

Port handle value is not valid.

-2 AIO_FAILURE Unsuccessful. An error occurred beyond the
control of Asynchronous I/O or the calling
application.

-20 AIO_PORT_GO
NE

Requested port's board has been deregistered
by the driver.

Remarks

You can use this function to implement data transmission pacing. You
can avoid pauses due to flow control by sizing the amount of data sent by

Communication Service Group

Asynchronous I/O: Functions 268

the remote device to match the receive buffer size.

The default receive buffer size is set when a port is acquired. For the
AIOCOMX driver, the default receive buffer size is 1,024 bytes.

See Also

AIOGetWriteBufferSize

Communication Service Group

Asynchronous I/O: Functions 269

AIOGetWriteBufferSize

Returns the total size of all buffers that a port uses to store data to be
transmitted
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOGetWriteBufferSize (
 int portHandle,
 LONG *writeSize);

Parameters

portHandle

(IN) Specifies a handle identifying the port to be addressed.
AIOAcquirePort returns this handle. If the handle value is not valid,
the request is rejected.

writeSize

(OUT) Points to the total size of the transmit buffers.

Return Values

0 AIO_SUCCESS Successful.

-1 AIO_BAD_HAN
DLE

Port handle value is not valid.

-2 AIO_FAILURE Unsuccessful. An error occurred beyond the
control of Asynchronous I/O or the calling
application.

-20 AIO_PORT_GO
NE

Requested port's board has been deregistered
by the driver.

Remarks

You can use this function to implement data transmission pacing. You

Communication Service Group

Asynchronous I/O: Functions 270

might want to take the transmit buffer size into consideration when
scheduling output to the remote device.

The default transmit buffer size is set when a port is acquired. For the
AIOCOMX driver, the default transmit buffer size is 1,024 bytes.

See Also

AIOGetReadBufferSize

Communication Service Group

Asynchronous I/O: Functions 271

AIOReadData

Copies data from a port's receive data buffer to the application buffer
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOReadData (
 int portHandle,
 char *buffer,
 LONG lengthOfBuffer,
 LONG *numberOfBytesRead);

Parameters

portHandle

(IN) Specifies a handle identifying the port to be addressed.
AIOAcquirePort returns this handle. If the handle value is not valid,
the request is rejected.

buffer

(IN) Points to the application's data buffer.

lengthOfBuffer

(IN) Specifies the maximum number of data bytes to be copied from
the port's receive buffer.

numberOfBytesRead

(OUT) Points to the number of data bytes actually copied from the
port. This value can be zero.

Return Values

0 AIO_SUCCESS Successful. Returns the numberOfBytesRead
value.

-1 AIO_BAD_HAN
DLE

Port handle value is not valid.

-2 AIO_FAILURE Unsuccessful. An error occurred beyond the
control of Asynchronous I/O or the calling

Communication Service Group

Asynchronous I/O: Functions 272

control of Asynchronous I/O or the calling
application.

-20 AIO_PORT_GO
NE

Requested port's board has been deregistered
by the driver.

Remarks

The copy count returned in the numberOfBytesRead parameter can be less
than the lengthOfBuffer value when fewer bytes than the lengthOfBuffer
remain to be copied from the receive buffer. The returned count value in
the numberOfBytesRead parameter is zero when no data exists in the port's
receive buffer.

Always check the numberOfBytesRead value, even when the return code is
AIO_SUCCESS. The only way to determine the actual number of bytes
read is to check the return value.

If the maximum number of bytes requested has been returned (
lengthOfBuffer == numberOfBytesRead), you should repeat the function
call, because there might be more data remaining in the receive buffer.

The default receive buffer size is driver specific. For example, the default
receive buffer size for the AIOCOMX driver is 1,024 bytes.

See Also

AIOGetReadBufferSize, AIOReadStatus, AIOWriteData

Communication Service Group

Asynchronous I/O: Functions 273

AIOReadStatus

Returns information regarding the status of data reception
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOReadStatus (
 int portHandle,
 LONG *count,
 WORD *state);

Parameters

portHandle

(IN) Specifies a handle that identifies the port to be addressed.
AIOAcquirePort returns this handle. If the handle value is not valid,
the request is rejected.

count

(OUT) Points to the number of bytes present in the port's receive
buffer. The count can vary from zero to the length of the receive
buffer. The pointer can be NULL.

state

(OUT) Points to the current receive stream state value. The pointer can
be NULL.

Return Values

0 AIO_SUCCESS Successful. Count and state values are
returned.

-1 AIO_BAD_HAN
DLE

Port handle value is not valid.

-2 AIO_FAILURE Unsuccessful. An error occurred beyond the
control of Asynchronous I/O or the calling
application.

-20 AIO_PORT_GO Requested port's board has been deregistered

Communication Service Group

Asynchronous I/O: Functions 274

NE by the driver.

Remarks

This function returns information including the count of data bytes
received, the count of data bytes currently held in receive buffers, and the
condition of receive buffering (that is, whether input buffers have filled,
making overrun possible). This function also allows an application to
determine whether data is present in the port's receive buffer. If the
returned count is nonzero, AIOReadData can then copy data to an
application buffer.

The following state values are defined:

AIO_RECEIVE_ACTIVE
AIO_RECEIVE_FULL

The receive state value for a port allows checking for the possibility of
receive data overrun. When the receive buffer is completely filled, any
additional data that arrives might be discarded. If the application can
read some or all of the data before further data arrives, no data is lost. At
high data rates, however, you should try to avoid this risk.

See Also

AIOGetPortStatus, AIOWriteStatus

Communication Service Group

Asynchronous I/O: Functions 275

AIOReleasePort

Allows an application to relinquish ownership of a port, freeing it for use by
another application
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOReleasePort (
 int portHandle);

Parameters

portHandle

(IN) Specifies a handle that identifies the port to be addressed.
AIOAcquirePort returns this handle. If the handle value is not valid,
the request is rejected.

Return Values

0 AIO_SUCCES Successful.

-1 AIO_BAD_HAN
DLE

Port handle value is not valid.

-2 AIO_FAILURE Unsuccessful. An error occurred beyond the
control of Asynchronous I/O or the calling
application. The port is released anyway.

Remarks

Releasing a port resets the current configuration and external signals to
driver-specified default values. It also flushes the receive and transmit
buffers. Any buffered data (including data yet to be transmitted) is lost.

You can release a port using this function even when the driver, board, or
port is malfunctioning. A nonzero return value indicates that an error
occurred. When AIO_FAILURE is returned, the port is released anyway.

Communication Service Group

Asynchronous I/O: Functions 276

See Also

AIOAcquirePort

Communication Service Group

Asynchronous I/O: Functions 277

AIOSetControlData

Allows an application to pass a request and data structure to an
Asynchronous I/O driver
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOSetControlData (
 int portHandle,
 int requestType,
 AIOCONTROLDATA *requestData);

Parameters

portHandle

(IN) Specifies a handle identifying the port to be addressed.
AIOAcquirePort returns this handle. If the handle value is not valid,
the request is rejected.

requestType

(IN) Specifies the action to perform or the particular data structure
being passed to the driver. An individual request can use only one of
the possible requestType values.

NOTE: At this time, there are no values defined for this
parameter.

requestData

(IN/OUT) Points to a user-allocated buffer. This buffer can be used to
pass user data to a driver, to receive returned driver data, or both. The
returnLength field of the AIOCONTROLDATA structure must be
initialized before the call.

Return Values

0 AIO_SUCCESS Successful.

-1 AIO_BAD_HANDLE Port handle value is not valid.

-2 AIO_FAILURE Unsuccessful. An error occurred

Communication Service Group

Asynchronous I/O: Functions 278

-2 AIO_FAILURE Unsuccessful. An error occurred
beyond the control of Asynchronous
I/O or the calling application.

-3 AIO_FUNC_NOT_SUPP
ORTED

The driver does not support this
function.

-5 AIO_INVALID_PARAM
ETER

Bad requestType passed in.

-15 AIO_BAD_REQUEST_TY
PE

Request type is not valid or is illegal.

-20 AIO_PORT_GONE Requested port's board has been
deregistered by the driver.

Remarks

This function provides a general mechanism for altering various control
information for a communications port. This information might include
protocol-specific parameters or information required by the type of
equipment connected (such as X.21 parameters). This function is an
extension of AIOSetExternalControl, which is used for requests with
single data values. This function allows for requests that require multiple
or complex data values.

The requestType parameter specifies which state or mode is updated, and
the requestData parameter supplies the new value for the state or mode.
The requestType values have no current definitions.

The returnLength field is set to the byte length of the supplied return
buffer. It is returned as the length filled by the function, which is always
less than or equal to the original length. This is the only structure field
Asynchronous I/O defines.

See Also

AIOConfigurePort, AIOSetExternalControl

Communication Service Group

Asynchronous I/O: Functions 279

AIOSetExternalControl

Allows an application to control the states of external signals
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOSetExternalControl (
 int portHandle,
 int requestType,
 int requestValue);

Parameters

portHandle

(IN) Specifies a handle identifying the port to be addressed.
AIOAcquirePort returns this handle. If the handle value is not valid,
the request is rejected.

requestType

(IN) Specifies which state or mode is being updated. An individual
request can use only one of these requestType values.

requestValue

(IN) Specifies a new value for state or mode.

Return Values

0 AIO_SUCCESS Successful.

-1 AIO_BAD_HANDLE Port handle value is not valid.

-2 AIO_FAILURE Unsuccessful. An error occurred
beyond the control of Asynchronous
I/O or the calling application.

-3 AIO_FUNC_NOT_SUPP
ORTED

The driver does not support this
function.

-5 AIO_INVALID_PARAM
ETER

Request value is not valid.

Communication Service Group

Asynchronous I/O: Functions 280

-15 AIO_BAD_REQUEST_TY
PE

Request type is not valid or is illegal.

-20 AIO_PORT_GONE Requested port's board has been
deregistered by the driver.

Remarks

This function provides a general mechanism for altering the states and
modes of communications ports. These include the RS232 external control
signals, the asynchronous "break" signal, the deadman timer, and flow
control modes.

The requestType parameter specifies which state or mode is updated, and
the requestValue parameter supplies the new value for the state or mode.
The requestType values are defined as follows:

AIO_EXTERNAL_CONTROL External control signals

AIO_BREAK_CONTROL Asynchronous break signal

AIO_FLOW_CONTROL Asynchronous flow control mode

AIO_FLOW_CONTROL_CHAR
ACTERS

Asynchronous flow control
characters

AIO_SET_DEADMAN_TIMER Set deadman time interval

NOTE: You can use the AIO_EXTERNAL_CONTROL request to
override control of the Request To Send (RTS) signal by hardware flow
control. That is, if hardware flow control tries to reenable RTS, but the
application has lowered the signal using this request, the signal remains
off.

When used with the AIO_EXTERNAL_CONTROL request, the
requestValue parameter turns the external control signals (DTR or RTS)
either on or off. The request always affects both signals. A request to
change the state of one signal must be accompanied by the desired state
of the other signal.

AIO_EXTCTRL_DTR
AIO_EXTCTRL_RTS

When used with the AIO_BREAK_CONTROL request, the requestValue
parameter turns the generation of the asynchronous break signal either
on or off. Once turned on, the break signal remains on until turned off;
the application is responsible for any required timing. The following
requestValue values are defined for use with the AIO_BREAK_CONTROL
request:

AIO_SET_BREAK_ Turn asynchronous break signal off

Communication Service Group

Asynchronous I/O: Functions 281

OFF

AIO_SET_BREAK_
ON

Turn asynchronous break signal on

When used with the AIO_FLOW_CONTROL request, the requestValue
parameter can contain one or more bit masks that control which flow
control modes are active. The software and hardware flow control modes
are both set at the same time. That is, when setting the software flow
control mode to on, the corresponding hardware flow control mode is set
to off, and vice versa. The following requestValue bit mask values can be
combined using the bitwise inclusive OR operator (|):

AIO_SOFTWARE_FLOW_CONTROL_ON|
AIO_HARDWARE_FLOW_CONTROL_OFF
AIO_SOFTWARE_FLOW_CONTROL_OFF|
AIO_HARDWARE_FLOW_CONTROL_ON

As with AIOConfigurePort, the RTS signal must have been enabled
using AIO_EXTERNAL_CONTROL before hardware flow control can
properly raise and lower the RTS signal as needed.

When used with the AIO_FLOW_CONTROL_CHARACTERS request,
the requestValue parameter is a concatenation of four single BYTE values,
in the order of MSB to LSB:

Bits Position

31 to 24 transmitXon

23 to 16 transmitXoff

15 to 8 receiveXon

7 to 0 receiveXoff

These BYTE values are used when software flow control is enabled.

When used with the AIO_SET_DEADMAN_TIMER request, the
requestValue parameter specifies whether the deadman timer feature is
used. When the value is zero, the timer is disabled. When the value is
nonzero, the deadman feature is enabled for the port and the value
defines the time interval (in seconds) that is the greatest length of time
allowed until the next AIO_SET_DEADMAN_TIMER request.

The driver decrements the timer value. The application can issue
subsequent AIOSetExternalControl calls to reset the timer to a nonzero
value and thus continue deadman monitoring, or the application can turn
off the deadman timer feature by using a value of zero. If the time
interval exceeds the given length, the driver assumes the application or
server has failed (such as abended) and turns off the RS232 signals DTR
and RTS.

Communication Service Group

Asynchronous I/O: Functions 282

NOTE: Call AIOGetPortCapability to determine whether the port
supports the use of a deadman timer.

See Also

AIOConfigurePort, AIOGetPortCapability, AIOSetFlowControl,
AIOSetFlowControlCharacters

Communication Service Group

Asynchronous I/O: Functions 283

AIOSetFlowControl

Allows the flow control modes for a port to be changed independently of
the other configuration parameters that are given on an AIOConfigurePort
function
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOSetFlowControl (
 int portHandle,
 int flowCtrlMode);

Parameters

portHandle

(IN) Specifies a handle identifying the port to be addressed.
AIOAcquirePort returns this handle. If the handle value is not valid,
the request is rejected.

flowCtrlMode

(IN) Specifies new flow control mode settings.

Return Values

0 AIO_SUCCESS Successful.

-1 AIO_BAD_HANDLE Port handle value is not valid.

-2 AIO_FAILURE Unsuccessful. An error occurred
beyond the control of Asynchronous
I/O or the calling application.

-5 AIO_INVALID_PARA
METER

Returned if not in the range of 0 - 3.

-20 AIO_PORT_GONE Requested port's board has been
deregistered by the driver.

Remarks

Communication Service Group

Asynchronous I/O: Functions 284

Remarks

The software and hardware flow control modes are both set at the same
time using the flowCtrlMode parameter, which can contain one or more bit
masks. A request to change the state of one mode must be accompanied
by the desired state of the other mode.

The following flowCtrlMode bit mask values can be combined using the
bitwise inclusive OR operator (|).

AIO_SOFTWARE_FLOW_CONTROL_ON|
AIO_HARDWARE_FLOW_CONTROL_OFF
AIO_SOFTWARE_FLOW_CONTROL_OFF|
AIO_HARDWARE_FLOW_CONTROL_ON

When an application enables flow control mode using
AIOSetFlowControl, certain actions can take place immediately if the
receive buffer is currently at or over the receive threshold (set by the
driver):

If software flow control is enabled, the transmit XOFF character is sent
to the remote end.

If hardware flow control is enabled and Request To Send (RTS) is
currently enabled by the application, RTS is disabled.

When an application disables flow control using AIOSetFlowControl,
certain actions can take place immediately, depending on prior flow
control actions, if any.

The driver sends an XON character to permit remote transmission if all of
the following conditions are met:

Software flow control changes from enabled to disabled.

An XOFF was previously sent to the remote end because the receive
buffer reached or exceeded the threshold (set by the driver).

The RTS signal is turned on if all of the following conditions are met:

Hardware flow control changes from enabled to disabled.

RTS was turned off because the receive buffer reached or exceeded the
threshold (set by the driver).

RTS is still enabled by the application (using AIOSetExternalControl).

The driver restarts write data transmission if one of the following
conditions are met:

Write data transmission was paused because the driver received an
XOFF and software flow control changes from enabled to disabled.

The Clear To Send (CTS) signal is turned off and hardware flow
control changes from enabled to disabled.

Communication Service Group

Asynchronous I/O: Functions 285

See Also

AIOConfigurePort, AIOSetExternalControl

Communication Service Group

Asynchronous I/O: Functions 286

AIOSetFlowControlCharacters

Establishes the data values used with software flow control
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOSetFlowControlCharacters (
 int portHandle,
 BYTE transmitXon,
 BYTE transmitXoff,
 BYTE receiveXon,
 BYTE receiveXoff);

Parameters

portHandle

(IN) Specifies a handle identifying the port to be addressed.
AIOAcquirePort returns this handle. If the handle value is not valid,
the request is rejected.

transmitXon

(IN) Specifies a new enable transmission character for sending to the
remote end.

transmitXoff

(IN) Specifies a new disable transmission character for sending to the
remote end.

receiveXon

(IN) Specifies a new enable transmission character for receiving from
the remote end.

receiveXoff

(IN) Specifies a new disable transmission character for receiving from
the remote end.

Return Values

0 AIO_SUCCESS Successful.

Communication Service Group

Asynchronous I/O: Functions 287

0 AIO_SUCCESS Successful.

-1 AIO_BAD_HAN
DLE

Port handle value is not valid.

-2 AIO_FAILURE Unsuccessful. An error occurred beyond the
control of Asynchronous I/O or the calling
application.

-20 AIO_PORT_GO
NE

Requested port's board has been deregistered
by the driver.

Remarks

When a port is released, Asynchronous I/O resets the software flow
control characters to their default values: ASCII XON (0x11) and XOFF
(0x13) for both the transmit and receive directions.

See Also

AIOConfigurePort, AIOSetExternalControl, AIOSetFlowControl

Communication Service Group

Asynchronous I/O: Functions 288

AIOSetReadBufferSize

Dynamically sets the size of a port's buffers to be used for receiving data
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOSetReadBufferSize (
 int portHandle,
 LONG bufferSize);

Parameters

portHandle

(IN) Specifies a handle identifying the port to be addressed.
AIOAcquirePort returns this handle. If the handle value is not valid,
the request is rejected.

bufferSize

(IN) Specifies the new size (in bytes) for the receive buffers used with
the port.

Return Values

0 AIO_SUCCESS Successful.

-1 AIO_BAD_HANDLE Port handle value is not valid.

-2 AIO_FAILURE Unsuccessful. An error occurred
beyond the control of
Asynchronous I/O or the calling
application.

-3 AIO_FUNC_NOT_SUPPO
RTED

The selected driver does not
support this function.

-14 AIO_DATA_PRESENT Since data exists in the receive
buffer, the request was not
performed.

-20 AIO_PORT_GONE Requested port's board has been
deregistered by the driver.

Communication Service Group

Asynchronous I/O: Functions 289

Remarks

If the port's driver supports it, this function resets the byte length of the
receive buffer for the specified port. You can use this function to adjust
the buffer size according to the data rates used with the port.

The default receive buffer size is set when a port is acquired. For the
AIOCOMX driver, the default receive buffer size is 1,024 bytes.

If you call this function while data is present in the existing receive data
buffer, the function returns AIO_DATA_PRESENT. The data remains in
the buffer, and the buffer size is not changed. The application must either
read the data using AIOReadData, or discard the data using
AIOFlushBuffers before again calling AIOSetReadBufferSize.

See Also

AIOGetReadBufferSize, AIOSetWriteBufferSize

Communication Service Group

Asynchronous I/O: Functions 290

AIOSetWriteBufferSize

Dynamically sets the size of a port's buffers to be used for transmitting data
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOSetWriteBufferSize (
 int portHandle,
 LONG bufferSize);

Parameters

portHandle

(IN) Specifies a handle identifying the port to be addressed.
AIOAcquirePort returns this handle. If the handle value is not valid,
the request is rejected.

bufferSize

(IN) Specifies the new size (in bytes) for the transmit buffers used with
the port.

Return Values

0 AIO_SUCCESS Successful.

-1 AIO_BAD_HANDLE Port handle value is not valid.

-2 AIO_FAILURE Unsuccessful. An error occurred
beyond the control of
Asynchronous I/O or the calling
application.

-3 AIO_FUNC_NOT_SUPPOR
TED

The selected driver does not
support this function.

-14 AIO_DATA_PRESENT Since data exists in the transmit
buffer, the request was not
performed.

-20 AIO_PORT_GONE Requested port's board has been
deregistered by the driver

Communication Service Group

Asynchronous I/O: Functions 291

Remarks

If the port's driver supports it, this function resets the byte length of the
transmit buffer for the specified port. An application might use this to
adjust the buffer size according to the data rates used with the port.

The default transmit buffer size is set when a port is acquired. For the
AIOCOMX driver, the default transmit buffer size is 1,024 bytes.

If you call this function while data is present in the existing transmit data
buffer, the function returns AIO_DATA_PRESENT. The data remains in
the existing buffer, and the buffer size is not changed. The application
must either wait until all data is transmitted, or discard the data using
AIOFlushBuffers before again calling AIOSetWriteBufferSize.

See Also

AIOGetWriteBufferSize, AIOSetReadBufferSize

Communication Service Group

Asynchronous I/O: Functions 292

AIOWriteData

Copies data from an application buffer into the transmit data buffer for the
port
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOWriteData (
 int portHandle,
 char *buffer,
 LONG lengthOfBuffer,
 LONG *numberOfBytesWritten);

Parameters

portHandle

(IN) Specifies a handle identifying the port to be addressed.
AIOAcquirePort returns this handle. If the handle value is not valid,
the request is rejected.

buffer

(IN) Points to the application's data buffer.

lengthOfBuffer

(IN) Specifies the number of data bytes to be copied to the port's
transmit buffer.

numberOfBytesWritten

(OUT) Points to the number of data bytes actually copied to the port's
transmit buffer. This value can be zero.

Return Values

0 AIO_SUCCESS Successful; numberOfBytesWritten parameter
value is returned.

-1 AIO_BAD_HAND
LE

Port handle value is not valid.

Communication Service Group

Asynchronous I/O: Functions 293

-2 AIO_FAILURE Unsuccessful. An error occurred beyond the
control of Asynchronous I/O or the calling
application.

-20 AIO_PORT_GON
E

Requested port's board has been
deregistered by the driver.

Remarks

Once you call this function, data transmission begins immediately if it is
not already in progress, unless flow control has suspended output.
Compare the number of bytes written to the lengthOfBuffer parameter
after a successful return to see if all bytes of the buffer were actually
written.

You can repeat this function to fill the transmit buffer; as long as
sufficient room for the data exists in the transmit buffer, data is copied.
As data is transmitted, more room is made available in the buffer,
allowing more requests. For the AIOCOMX driver, the default transmit
buffer size is 1,024 bytes.

Data transmission can be temporarily suspended when either software or
hardware flow control is enabled.

See Also

AIOGetWriteBufferSize, AIOFlushBuffers, AIOSetFlowControl,
AIOSetWriteBufferSize, AIOWriteStatus

Communication Service Group

Asynchronous I/O: Functions 294

AIOWriteStatus

Returns information regarding the status of data transmission
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.1, 3.11, 3.12, 4.x
Platform: NLM
SMP Aware: No
Service: Asynchronous I/O

Syntax

#include <aio.h>

int AIOWriteStatus (
 int portHandle,
 LONG *count,
 WORD *state);

Parameters

portHandle

(IN) Specifies a handle identifying the port to be addressed.
AIOAcquirePort returns this handle. If the handle value is not valid,
the request is rejected.

count

(OUT) Points to the number of bytes yet to be transmitted from the
port's transmit buffer. (Optionally, this can be NULL.) The count can
vary from zero to the length of the transmit buffer.

state

(OUT) Points to the current output stream state value. (Optionally, this
can be NULL.)

Return Values

0 AIO_SUCCESS Successful, count and state values are
returned.

-1 AIO_BAD_HAND
LE

Port handle value is not valid.

-2 AIO_FAILURE Unsuccessful. An error occurred beyond the
control of Asynchronous I/O or the calling
application.

-20 AIO_PORT_GON Requested port's board has been

Communication Service Group

Asynchronous I/O: Functions 295

E deregistered by the driver.

Remarks

This function returns the count of data bytes yet to be transmitted and the
transmission state (for example, whether output is stopped due to flow
control). In addition, this function allows an application to determine
when all data copied to a port for output has been transmitted. Before
you call AIOReleasePort, it is best to verify that data queued for
transmission has actually been sent.

The following state values are defined:

AIO_TRANSMIT_IDL
E

Transmit buffer empty

AIO_TRANSMIT_AC
TIVE

Transmission in progress

AIO_TRANSMIT_XOF
FED

Stopped due to software flow control

The output state value for a port allows checking for transmission in
progress, transmission complete, and transmission stopped due to
software flow control. Applications might take these state values into
consideration when scheduling output to a port.

See Also

AIOGetPortStatus, AIOReadStatus

Communication Service Group

Asynchronous I/O: Functions 296

Asynchronous I/O: Structures

Communication Service Group

Asynchronous I/O: Structures 297

AIOCONTROLDATA

Contains developer-defined Asynchronous I/O control data
Service: Asynchronous I/O
Defined In: aio.h

Structure

typedef struct {
 WORD returnLength;
 BYTE byteData[2];
} AIOCONTROLDATA;

Fields

returnLength

Specifies the byte length of the supplied return buffer.

byteData

Specifies the user-defined contents.

Remarks

The returnLength field is returned as the length filled by the
AIOCONTROLDATA structure, which is always less than or equal to the
original length.

Communication Service Group

Asynchronous I/O: Structures 298

AIODRIVERLIST

Contains a list of Asynchronous I/O drivers
Service: Asynchronous I/O
Defined In: aio.h

Structure

typedef struct {
 WORD returnLength;
 AIODRIVERLISTENTRY driver[1];
} AIODRIVERLIST;

Fields

returnLength

Specifies the byte length of the supplied structure.

driver

Specifies an array of driver entries (found by examining the
returnLength field).

Remarks

The AIODRIVERLIST structure is used by the AIOGetDriverList
function.

The returnLength field is returned as the length filled by the
AIOGetDriverList function (always less than or equal to the original
length). The returnLength field must be initialized before calling the
AIOGetDriverList function.

Communication Service Group

Asynchronous I/O: Structures 299

AIODRIVERLISTENTRY

Contains information about a driver
Service: Asynchronous I/O
Defined In: aio.h

Structure

typedef struct {
 int hardwareType;
 int ports;
 char name[128];
} AIODRIVERLISTENTRY;

Fields

hardwareType

Specifies the hardware type of the Asynchronous I/O driver.

ports

Specifies the number of ports accessed.

name

Specifies the name of the driver (from 1 to 127 characters long and
NULL-terminated).

Remarks

The AIODRIVERLISTENTRY structure is used by the AIOGetDriverList
function.

Communication Service Group

Asynchronous I/O: Structures 300

AIODVRCAPABILITIES

Contains information about the capabilities of a driver
Service: Asynchronous I/O
Defined In: aio.h

Structure

typedef struct {
 WORD returnLength;
 BYTE byteData[2];
} AIODVRCAPABILITIES;

Fields

returnLength

Specifies the byte length of the supplied return buffer.

byteData

Specifies the user-defined data.

Remarks

The AIODVRCAPABILITIES structure is used by the
AIOGetFirstPortInfo, the AIOGetNextPortInfo, and the
AIOGetPortCapability functions.

The returnLength field is returned as the length filled by the function,
which is always less than or equal to the original length.

The returnLength field is the only structure field Asynchronous I/O
defines.

Communication Service Group

Asynchronous I/O: Structures 301

AIODVRCONFIG

Contains driver configuration information
Service: Asynchronous I/O
Defined In: aio.h

Structure

typedef struct {
 WORD returnLength;
 BYTE byteData[2]
} AIODVRCONFIG;

Fields

returnLength

Specifies the byte length of the supplied return buffer.

byteData

Specifies the user-defined data.

Remarks

The AIODVRCONFIG structure is used by the
AIOGetPortConfiguration function.

The returnLength field is returned as the length filled by the function,
which is always less than or equal to the original length.

The returnLength field is the only structure field Asynchronous I/O
defines.

Communication Service Group

Asynchronous I/O: Structures 302

AIODVRSTATISTICS

Contains driver statistical information
Service: Asynchronous I/O
Defined In: aio.h

Structure

typedef struct {
 WORD returnLength;
 BYTE byteData[2];
} AIODVRSTATISTICS;

Fields

returnLength

Specifies the byte length of the supplied return buffer.

byteData

Specifies the user-definrd data.

Remarks

The AIODVRSTATISTICS structure is used by the AIOGetStatistics
function.

The returnLength field is returned as the length filled by the function,
which is always less than or equal to the original length.

Communication Service Group

Asynchronous I/O: Structures 303

AIOPORTCAPABILITIES

Contains information about the capabilities of a port
Service: Asynchronous I/O
Defined In: aio.h

Structure

typedef struct {
 WORD returnLength;
 BYTE majorVersion;
 BYTE minorVersion;
 LONG notSupportedMask;
 BYTE minBitRate;
 BYTE maxBitRate;
 BYTE minDataBits;
 BYTE maxDataBits;
 BYTE minStopBits;
 BYTE maxStopBits;
 BYTE minParityMode;
 BYTE maxParityMode;
 BYTE minFlowCtrlMode;
 BYTE maxFlowCtrlMode;
 LONG miscCapabilities;
 LONG minReadBufferSize;
 LONG maxReadBufferSize;
 LONG minWriteBufferSize;
 LONG maxWriteBufferSize;
 WORD minDeadmanTime;
 WORD maxDeadmanTime;
} AIOPORTCAPABILITIES;

Fields

returnLength

Specifies the byte length of the supplied structure.

majorVersion

Specifies the major version number of the AIOPORTCAPABILITIES
structure (number 1).

minorVersion

Specifies the minor version number of the AIOPORTCAPABILITIES
structure (number 0).

notSupportedMask

Specifies a bit mask (beginning with the most significant bit
representing the minBitRate field) indicating which fields are currently
supported.

Communication Service Group

Asynchronous I/O: Structures 304

minBitRate

Specifies the minimum index for the supported bit rates.

maxBitRate

Specifies the maximum index for the supported bit rates.

minDataBits

Specifies the minimum index for the supported data bits per character.

maxDataBits

Specifies the maximum index for the supported data bits per
character.

minStopBits

Specifies the minimum index for the supported stop bits per character.

maxStopBits

Specifies the maximum index for the supported stop bits per character.

minParityMode

Specifies the minimum index for the supported parity mode
generation.

maxParityMode

Specifies the maximum index for the supported parity mode
generation.

minFlowCtrlMode

Specifies the minimum index for the supported flow control modes.

maxFlowCtrlMode

Specifies the maximum index for the supported flow control modes.

minReadBufferSize

Specifies the minimum receive buffer size.

maxReadBufferSize

Specifies the maximum receive buffer size.

minWriteBufferSize

Specifies the minimum transmit buffer size.

maxWriteBufferSize

Specifies the maximum transmit buffer size.

minDeadmanTime

Specifies the minimum value (in seconds) for the deadman timer
interval.

maxDeadmanTime

Specifies the maximum value (in seconds) for the deadman timer
interval.

Communication Service Group

Asynchronous I/O: Structures 305

Remarks

The AIOPORTCAPABILITIES structure is used by the
AIOGetFirstPortInfo, the AIOGetNextPortInfo, and the
AIOGetPortCapability functions.

The returnLength field is returned as the length filled, which is always less
than or equal to the original length.

The index values for the minBitRate and maxBitRate fields follow:

AIO_BAUD_50
AIO_BAUD_75
AIO_BAUD_110
AIO_BAUD_150
AIO_BAUD_300
AIO_BAUD_600
AIO_BAUD_1200
AIO_BAUD_1345
AIO_BAUD_1800
AIO_BAUD_2000
AIO_BAUD_2400
AIO_BAUD_3600
AIO_BAUD_4800
AIO_BAUD_7200
AIO_BAUD_9600
AIO_BAUD_19200
AIO_BAUD_38400
AIO_BAUD_57600
AIO_BAUD_115200

The index values for the minDataBits and maxDataBits fields are defined
as follows:

AIO_DATA_BITS_5
AIO_DATA_BITS_6
AIO_DATA_BITS_7
AIO_DATA_BITS_8

The index values for the minStopBits and maxStopBits fields are defined as
follows:

AIO_STOP_BITS_1
AIO_STOP_BITS_1p5
AIO_STOP_BITS_2

The index values for the minParityMode and maxParityMode fields are
defined as follows:

Communication Service Group

Asynchronous I/O: Structures 306

Parity Index Parity Generated

AIO_PARITY_N
ONE

None

AIO_PARITY_O
DD

Odd parity

AIO_PARITY_E
VEN

Even parity

AIO_PARITY_
MARK

Mark parity

AIO_PARITY_S
PACE

Space parity

The minFlowCtrlMode and maxFlowCtrlMode fields can contain one or
more bit masks (which can be combined using the bitwise inclusive OR
operator) and are defined as follows:

AIO_SOFTWARE_FLOW_CONTROL_OF
AIO_SOFTWARE_FLOW_CONTROL_ON
AIO_HARDWARE_FLOW_CONTROL_OFF
AIO_HARDWARE_FLOW_CONTROL_ON

If the minReadBufferSize and maxReadBufferSize fields are equal,
AIOSetReadBufferSize is not supported.

If the minWriteBufferSize and maxWriteBufferSize fields are equal,
AIOSetWriteBufferSize is not supported.

Values for the miscCapabilities field follow:

0x00000002 AIO_CAP_OUTPUT_BREAK
0x00000004 AIO_CAP_FLOWCTRLCHARS
0x00000008 AIO_CAP_PROGRAMMABLE
0x00000010 AIO_CAP_INPUT
0x00000020 AIO_CAP_OUTPUT

Communication Service Group

Asynchronous I/O: Structures 307

AIOPORTCONFIG

Contains information about port configuration
Service: Asynchronous I/O
Defined In: aio.h

Structure

typedef struct {
 WORD returnLength;
 BYTE majorVersion;
 BYTE minorVersion;
 LONG notSupportedMask;
 int hardwareType;
 int boardNumber;
 int portNumber;
 BYTE bitRate;
 BYTE dataBits;
 BYTE stopBits;
 BYTE parityMode;
 BYTE flowCtrlMode;
 BYTE breakMode;
 LONG readSize;
 LONG writeSize;
 BYTE transmitXon;
 BYTE transmitXoff;
 BYTE receiveXon;
 BYTE receiveXoff;
 WORD externalControl;
} AIOPORTCONFIG;

Fields

returnLength

Specifies the byte length of the supplied structure.

majorVersion

Specifies the major version number of the AIOPORTCONFIG
structure (number 1).

minorVersion

Specifies the minor version number of the AIOPORTCONFIG
structure (number 0).

notSupportedMask

Specifies a bit mask (beginning with the most significant bit
representing the bitRate field) that indicates which fields are currently
supported.

Communication Service Group

Asynchronous I/O: Structures 308

hardwareType

Contains the hardware type value that identifies the ports attached to
one unique type of hardware driver.

boardNumber

Contains the number value (zero-based) that indicates which board of
the selected hardware type is connected to the port.

portNumber

Contains the number value (zero-based) that indicates a particular
port on the board.

bitRate

This field is set by the AIOConfigurePort function and can be
modified by the Asynchronous I/O driver. See
AIOPORTCAPABILITIES for more information on this field.

dataBits

This field is set by the AIOConfigurePort function and can be
modified by the Asynchronous I/O driver. See
AIOPORTCAPABILITIES for more information on this field.

stopBits

This field is set by the AIOConfigurePort function and can be
modified by the Asynchronous I/O driver. See
AIOPORTCAPABILITIES for more information on this field.

parityMode

This field is set by the AIOConfigurePort function and can be
modified by the Asynchronous I/O driver. See
AIOPORTCAPABILITIES for more information on this field.

flowCtrlMode

This field is set by the AIOConfigurePort function and can be
modified by the Asynchronous I/O driver. See
AIOPORTCAPABILITIES for more information on this field.

breakMode

Set by AIOSetExternalControl. There are two possible values for this
field, as follows:

AIO_BREAK_MODE_ON
AIO_BREAK_MODE_OFF

readSize

Set by AIOSetReadBufferSize. It is a hexadecimal value reflecting the
size in number of bytes.

writeSize

Set by AIOSetWriteBufferSize. It is a hexadecimal value reflecting
the size in number of bytes.

transmitXon

Contains a hexadecimal value set by AIOSetFlowControlCharacters.

Communication Service Group

Asynchronous I/O: Structures 309

The default value is ASCII XON (0x11).

transmitXoff

Contains a hexadecimal value set by AIOSetFlowControlCharacters.
The default value is ASCII XOFF (0x13).

receiveXon

Contains a hexadecimal value set by AIOSetFlowControlCharacters.
The default value is ASCII XON (0x11).

receiveXoff

Contains a hexadecimal value set by AIOSetFlowControlCharacters.
The default value is ASCII XOFF (0x13).

externalControl

Set by AIOSetExternalControl using the
AIO_EXTERNAL_CONTROL request. This field can contain one or
more bit masks which indicate the external control signals to turn on or
off. These bit masks can be combined using the bitwise inclusive OR
operator (|). The following values are defined for use with the
AIO_EXTERNAL_CONTROL request:

AIO_EXTCTRL_DTR_DISABLE
AIO_EXTCTRL_DTR_ENABLE
AIO_EXTCTRL_RTS_DISABLE
AIO_EXTCTRL_RTS_ENABLE

Remarks

This structure is used by AIOGetPortConfiguration.

The returnLength function is returned as the length filled by the function,
which is always less than or equal to the original length.

If thenotSupportedMask bit is zero, the field is supported.

 If the notSupportedMask bit is 1, the field is not supported. Currently, this
mask is 0x0000FFFF.

Communication Service Group

Asynchronous I/O: Structures 310

AIOPORTINFO

Contains information about a port
Service: Asynchronous I/O
Defined In: aio.h

Structure

typedef struct {
 WORD returnLength;
 BYTE majorVersion;
 BYTE minorVersion;
 LONG notSupportedMask;
 int hardwareType;
 int boardNumber;
 int portNumber;
 WORD availability;
 LONG externalStatus;
 LONG chgdExtStatus;
} AIOPORTINFO;

Fields

returnLength

Set to the byte length of the supplied structure. It is returned as the
length filled by the function, which is always less than or equal to the
original length. The returnLength field must be initialized prior to the
call.

majorVersion

Contains the major version number of the AIOPORTINFO structure.
Currently, this number is 1.

minorVersion

Contains the minor version number of the AIOPORTINFO structure.
Currently, this number is 0.

notSupportedMask

Contains a bit mask (beginning with the most significant bit
representing hardwareType) indicating which fields are currently
supported. If the bit is zero, the field is supported. If the bit is 1, the
field is not supported. Currently, this mask is 0x03FFFFFF.

hardwareType

Contains the hardware type value that identifies the ports attached to
one particular type of hardware board (device).

boardNumber

Contains a number value (zero-based) that indicates which board of

Communication Service Group

Asynchronous I/O: Structures 311

the hardware type is connected to the port.

portNumber

Contains a number value (zero-based) that indicates a particular port
on the board.

availability

Contains a status value that indicates port availability. The following
status values are defined:

AIO_AVAILABLE_FOR_ACQUIRE
AIO_ALREADY_ACQUIRED
AIO_UNAVAILABLE

externalStatus

Indicates the current external status value bit mask for the selected
port (see Remarks).

chgdExtStatus

Contains the changed status values bit mask (see Remarks).

Remarks

This structure is used by AIOGetFirstPortInfo and AIOGetNextPortInfo
.

The values for the bit mask used by externalStatus and chgdExtStatus are
listed in the following table:

Table auto. Port Status Values

Name Meaning

AIO_EXTSTA_RI Ring Indicator signal

AIO_EXTSTA_DCD Data Carrier Detect signal

AIO_EXTSTA_DSR Data Set Ready signal

AIO_EXTSTA_CTS Clear To Send signal

AIO_EXTSTA_BRE
AK

Break signal

When the external status values are requested, the changed status mask is
reset to zero. This allows an application to determine which signals have
changed state since the last time the external status values were
requested.

Communication Service Group

Asynchronous I/O: Structures 312

AIOPORTSEARCH

Contains port search information used by AIOGetFirstPortInfo and
AIOGetNextPortInfo

Service: Asynchronous I/O
Defined In: aio.h

Structure

typedef struct {
 int typeMask;
 int boardMask;
 int portMask;
 int reserved[6];
} AIOPORTSEARCH;

Fields

typeMask

boardMask

portMask

reserved

Communication Service Group

Asynchronous I/O: Structures 313

AIOPORTSTATISTICS

Contains information about ports
Service: Asynchronous I/O
Defined In: aio.h

Structure

typedef struct {
 WORD returnLength;
 BYTE majorVersion;
 BYTE minorVersion;
 LONG notSupportedMask;
 LONG receiveBytes;
 LONG transmitBytes;
 LONG parityErrors;
 LONG framingErrors;
 LONG overrunSoftware;
 LONG overrunHardware;
} AIOPORTSTATISTICS;

Fields

returnLength

Contains the byte length of the supplied structure. It is returned as the
length filled by the function, which is always less than or equal to the
original length.

majorVersion

Contains the major version number of the AIOPORTSTATISTICS
structure. Currently, this number is 1.

minorVersion

Contains the minor version number of the AIOPORTSTATISTICS
structure. Currently, this number is 0.

notSupportedMask

Contains a bit mask (beginning with the most significant bit
representing receiveBytes) that indicates which fields are currently
supported. If the bit is zero, the field is supported. If the bit is 1, the
field is not supported. Currently, this mask is 0x03FFFFFF.

receiveBytes

Contains the count of all data characters received through the selected
port since the port was first registered.

transmitBytes

Contains the count of all data characters transmitted from the selected
port since the port was first registered.

Communication Service Group

Asynchronous I/O: Structures 314

parityErrors

Contains a count of the number of times a character was received with
a parity error. The character received is placed in the receive buffer.

framingErrors

Contains a count of the number of times a character was received with
a framing error. The character received is placed in the receive buffer.

overrunSoftware

Contains a count that reflects only the number of occurrences of a
software overrun error. The counts do not accurately show how many
receive characters might have been lost due to overrun conditions, but
rather how many times such a condition occurred. Since several
characters might have been lost during each overrun condition,
applications cannot derive the count of lost characters from these
fields.

overrunHardware

Contains a count that reflects only the number of occurrences of a
hardware overrun error. The counts do not accurately show how
many receive characters might have been lost due to overrun
conditions, but rather how many times such a condition occurred.
Since several characters might have been lost during each overrun
condition, applications cannot derive the count of lost characters from
these fields.

Remarks

This structure is used by AIOGetStatistics.

Communication Service Group

Asynchronous I/O: Structures 315

AIOCOMX Communication Driver

This section describes the use of the AIOMCOMX.NLM, an asynchronous
I/O driver for the NetWare server's COM ports.

AIOCOMX General Information

Loading AIOCOMX

AIOCOMX Load Syntax

Loading AIOCOMX Multiple Times

AIOCOMX Default Board Settings

AIOCOMX Default Internal Configuration

Changing the AIOCOMX Default Configuration

UARTs

Recommended AIOCOMX Bit Rates

The AIOCOMX Read and Write Buffers

Considerations for AIOCOMX Read and Write Buffer Sizes

Unloading AIOCOMX

Parent Topic: NetWare SDK Getting Started

AIOCOMX General Information

The NetWare® SDK includes AIOCOMX.NLM, an asynchronous I/O driver
for the NetWare server's COM ports. AIOCOMX can service up to four
COM ports (COM1, COM2, COM3, and COM4).

After loading AIOCOMX, you can use the AIO functions (provided by
AIO.NLM) to send and receive data through the COM ports. You can also
use the AIO functions to tell AIOCOMX to modify the configurations of the
COM ports, such as transfer rate, parity, and data size.

An overview of using AIO is provided in Asynchronous I/O: Concepts. The
AIO functions are described in Asynchronous I/O: Functions.

Parent Topic: AIOCOMX Communication Driver

Communication Service Group

AIOCOMX Communication Driver 316

AIOCOMX Load Syntax

To view the options that can be set when loading AIOCOMX, issue the
following command:

LOAD AIOCOMX ?

This command displays a help screen but does not actually load the driver.

LOAD syntax for the AIOCOMX driver is as follows:

LOAD AIOCOMX [PORT=W] [INT=X] [NAME=Y] [NODE=Z] [FORCE]
[NOFIFO] [RXT=A] [TXQ=B]

The parameters are optional.

PORT specifies the I/O port address (in hexadecimal) of the COM port
you want to install. It specifies the start of the I/O port address only; the
COM port uses addresses from W to W+7 for its operations.

INT specifies the interrupt number (2 through 15). Each COM port
requires a nonshared interrupt, regardless of the PC bus (ISA, EISA,
MCA) on which the hardware resides.

In the case of MCA, a single non-shared interrupt is used for both
transmit and receive. For example, rx int = 4 and tx int = 4.

NAME specifies the name to call the board. If the name is omitted, the
default name is based upon the hardware configuration of the port as
shown in Table 2. This name is used unless it is in use by another of the
driver's registered boards. Uncommon hardware configurations produce
a NULL string name.

NODE specifies a number to give the board. If the node number is
omitted, the default board number is used in the order shown in the table
entitled Default Settings for AIOCOMX, below. This default number is
used unless it is in use by another of the driver's registered boards.

If you change your COM port settings from the default values listed to
those in the table entitled Default Settings for AIOCOMX, a default board
number is calculated based on the port address and interrupt number of
the COM port. You can override this default board number with the
NODE parameter.

FORCE tells AIOCOMX not to verify that the hardware address actually
exists. (For example, you can force it to accept an address for COM3, even
if the server doesn't have a COM3 port.) This can lead to very
undesirable consequences if a non-UART type device resides at the
specified port I/O address.

If AIOCOMX fails to load because device verification fails to confirm that
a 8250/16450/16550 device is physically present, using the FORCE

Communication Service Group

AIOCOMX Communication Driver 317

keyword can be dangerous because it instructs AIOCOMX to ignore what
might be a valid reason for aborting the load.

The intent of the FORCE keyword is to accommodate a potential device
that does not meet the UART identification tests. This permits those
UARTs to be used if they are present.

NOFIFO specifies to override from the FIFO 16550 mode to the
8250/16450 non-FIFO mode (described in UARTs).

RXT specifies a 16550 receiver trigger (described in UARTs). This trigger
can be 1, 4, 8, or 14. The default setting is 4.

TXQ specifies a 16550 transmit queue (described in UARTs). This queue
can be 1, 4, 8, 12, or 16. The default setting is 16.

NOTE: If you do not load AIO.NLM before you load AIOCOMX, the
loader will automatically load AIO.NLM while loading AIOCOMX.

Parent Topic: AIOCOMX Communication Driver

Loading AIOCOMX Multiple Times

You must load the AIOCOMX driver once for each COM port it will service.
AIOCOMX will give each COM port a unique board number. If your
server's hardware is configured as shown in the table entitled Default
Settings for AIOCOMX, the first port that AIOCOMX installs is port 0 on
board 0, the second is port 0 on board 1, and so on.

The AIOCOMX driver is reentrant, so although you load once for each COM
port it services, the NetWare OS maintains a single driver image in memory.

Parent Topic: AIOCOMX Communication Driver

AIOCOMX Default Board Settings

If you do not supply parameters when installing AIOCOMX, it attempts to
automatically install the server's COM ports with default values that are
listed in the following table.

Table auto. Default Settings for AIOCOMX

Load I/O Port
Address

Int Default
Name

Default
Board #

1 0x3F8 4 COM1 0

2 0x2F8 3 COM2 1

3 0x3E8 4 COM3 2

Communication Service Group

AIOCOMX Communication Driver 318

4 0x2E8 3 COM4 3

Using the default values, the COM ports will be installed in the following
manner if the server's hardware matches the settings in the table entitled
Default Settings for AIOCOMX:

On the first load, port address = 0x3F8, int = 4, name = "COM1" and
board # = 0.

On the second load, port address = 0x2F8, int = 3, name = "COM2" and
board # = 1.

On the third load, port address = 0x3E8, int = 4, name = "COM3" and
board # = 2, but since interrupt 4 is already in use, AIOCOMX prompts
the user for an interrupt number.

On the fourth load, port address = 0x2E8, int = 3, name = "COM4" and
board # = 3, but since interrupt 3 is already in use, AIOCOMX prompts
the user for a new interrupt number.

In all cases, user-provided values override the default values.

Parent Topic: AIOCOMX Communication Driver

Related Topics:

Loading AIOCOMX Multiple Times

AIOCOMX Default Internal Configuration

When AIOCOMX loads, it sets its internal configuration information to the
default values shown in the table below. These values are the same for each
COM port that AIOCOMX installs.

Table auto. AIOCOMX Configuration Fields

Field Value

Bit rate (bps) 2400

Data bits 8

Stop bits 1

Parity mode off

Flow control
mode

none

Break mode off

Read buffer
size

1024 bytes

Communication Service Group

AIOCOMX Communication Driver 319

Write buffer
size

1024 bytes

Transmit
XON

0x11

Transmit
XOFF

0x13

Receive XON 0x11

Receive XOFF 0x13

Parent Topic: AIOCOMX Communication Driver

Changing the AIOCOMX Default Configuration

The AIO functions provide an interface that you can use to change the
configuration of the AIOCOMX driver. For example, AIOConfigurePort
allows you to change the bit rate, data bits, stop bits, parity mode, and flow
control-mode settings. See Asynchronous I/O: Functions for a listing of
functions that can be used to configure AIO drivers.

Parent Topic: AIOCOMX Communication Driver

UARTs

The Universal Asynchronous Receiver/Transmitter (UART) is responsible
for receiving data as bytes and sending it out of the COM ports one bit at a
time. It also receives data one bit at a time and turns the bits into bytes of
data.

Three types of UARTs (8250, 16450, and 16550) are used with the COM
ports of PCs. The speed at which data can be processed through the port
depends upon the UART that is used.

The 8250 and 16450 UARTs cannot hold more than one byte of data. As
soon as a byte is received, it must be removed from the register before
another byte arrives, or the incoming data will overwrite the previous byte.
If interrupts have been enabled for these UARTs, they will generate an
interrupt each time they receive a byte and each time they send a byte.

The 16550 UART, on the other hand, has a 16-byte transmit buffer and a
16-byte receive buffer. These buffers are processed in a FIFO manner. An
advantage to the 16550 UART is that you can program when it will send an
interrupt.

For example, when AIOCOMX detects a 16550 UART, it sets the receiver

Communication Service Group

AIOCOMX Communication Driver 320

trigger to 4, which means the UART will send an interrupt when it has
received 4 bytes. In the meantime, the receive buffer can hold an additional
12 bytes of data, which can be received before the interrupt is processed.

The default interrupt setting for the transmit queue is 16.

The 16550 UART also has a 16-byte transmit queue that buffers data until it
holds a specified number of bytes. AIOCOMX sets this number to 16 by
default.

If you do not want to use the 16-byte buffers, you can set the receiver trigger
and transmit queue to 1. Doing this will force the 16550 UART to duplicate
the behavior of the 8250 and 16450 UARTs.

NOTE: It is only possible to configure the FIFO parameters for
AIOCOMX at load time. See the RXT and TXQ parameters in
AIOCOMX Load Syntax.

Parent Topic: AIOCOMX Communication Driver

Recommended AIOCOMX Bit Rates

When AIOCOMX is loaded, the rated transfer rate should be set to 2400 or
19200 bps, depending on the type of the server's UARTs.

If the server is equipped with 8250 or 16450 UARTs, the COM ports do not
have any buffering, and the character in the chip's buffer must be removed
before another character arrives. Therefore, an interrupt occurs when each
character arrives, and the server's CPU must process the code that retrieves
the data. In this case, 2400 is the recommended maximum setting.

If the server is equipped with a 16550 UART, the COM ports can buffer up
to 16 characters in a FIFO queue, as mentioned in the previous section. This
increases the speed at which the data can be processed, without losing any
data. Therefore, the maximum setting is 19200.

In either case, the usable transfer rate also depends upon the remote device
you are communicating with. If your server can use the 19200 transfer rate
and the remote device can only use the 2400 transfer rate, you will need to
limit your server's transfer rate to 2400 also.

By default, AIOCOMX sets the transfer rate to 2400, no matter what type of
UART is used.

Parent Topic: AIOCOMX Communication Driver

The AIOCOMX Read and Write Buffers

AIOCOMX creates a read buffer and a write buffer for each of the COM

Communication Service Group

AIOCOMX Communication Driver 321

ports it services. As AIOCOMX driver receives data through the COM port,
it places the data in the buffer associated with that port. When AIOCOMX
detects data in a port's write buffer, it removes the data from the buffer and
sends the data out the COM port.

Your interface to these buffers is through AIOReadData and AIOWriteData
. AIOReadData removes data from the read buffer, and AIOWriteData
places data in the write buffer.

AIOCOMX has a default buffer size of 1,024 bytes for the read buffer and
1,024 bytes for its write buffer. Your NLM applications can change the size
of these buffers with AIOSetReadBufferSize and AIOSetWriteBufferSize.
The upper limit for each of these buffers is 64 KB, but keep in mind that a
large buffer is an unnecessary drain from system memory.

Parent Topic: AIOCOMX Communication Driver

Related Topics:

Considerations for AIOCOMX Read and Write Buffer Sizes

Considerations for AIOCOMX Read and Write
Buffer Sizes

Although AIOCOMX allows you to resize its read and write buffers, buffer
resizing is not a requirement for AIO drivers to be certified. The
requirement is that all drivers must support 1,024-byte buffers. If your
application is going to interface with drivers other than AIOCOMX, you
must ensure that your application works with 1,024 byte buffers.

The size of the driver's read and write buffers determines how your
program sends and receives its data. For example, one of the parameters for
AIOWriteData is how many bytes to write into the buffer. If the available
space in the write buffer is less than the amount specified to send,
AIOWriteData does not write any data to the buffer because the AIOCOMX
driver is designed to take all or nothing.

If the AIOCOMX's default buffer size is used, more than 1,024 bytes cannot
be sent at a time; therefore, if something large is sent such as a PC's screen
(without attributes) that is 2,000 characters, split the screen into two
fragments containing 1,000 bytes each. (If the 2,000-byte buffer is sent at one
time, AIOWriteData will always fail, since 2,000 is always larger than
1,024.)

Another factor to consider is that since AIO is asynchronous
communication, the data you place in the write buffer might not all be sent
by the time you are ready to place more data in the buffer. For example, if
you break your screen fragments into 1,000 bytes, you must call
AIOWriteData twice to send the screen to a remote machine. If you place
the first fragment into the write buffer with AIOWriteData, and then

Communication Service Group

AIOCOMX Communication Driver 322

the first fragment into the write buffer with AIOWriteData, and then
immediately use AIOWriteData with the next fragment, the second call will
fail if more than 24 bytes of the first fragment remain in the write buffer
(have not been sent by AIOCOMX). In this case, you might loop until the
space is available and then send the second fragment.

Parent Topic: The AIOCOMX Read and Write Buffers

Unloading AIOCOMX

To remove AIOCOMX from memory, issue the following command:

UNLOAD AIOCOMX

While you must enter multiple LOAD commands for each COM port you
want to use with the AIOCOMX driver, a single UNLOAD command
removes the entire driver from memory.

Parent Topic: AIOCOMX Communication Driver

Communication Service Group

AIOCOMX Communication Driver 323

BSD Socket

Communication Service Group

 324

BSD Socket: Guides

BSD Socket: General Guide

Overview

BSD Socket Overview

Using BSD Socket Functions

Socket Types

The Client

Socket Functions from the Client Program

Creating a Socket

Binding to a Network Address

Establishing a Connection with BSD Sockets

Performing Network I/O through a Socket

Closing a Socket

The Server

Socket Functions from the Server Program

Receiving a BSD Connection Request

Accepting a BSD Connection

Closing a BSD Connection

Protocols

Protocol Families and BSD

Internet Protocol Family

TCP and BSD

UDP and BSD

Errors

BSD Error Handling

Porting BSD to NetWare

Communication Service Group

BSD Socket: Guides 325

Porting BSD Applications to the NetWare OS

Socket Domains and Protocols

Socket Handles

Concurrent Access to Sockets

Error Number and Error Handling

Limitations of the select Function

Asynchronous I/O in BSD

Out-of-Band Data in BSD

Socket Options

The ioctl Function

BSD Interface Options

Internet Library Functions

Additional Links

BSD Socket: Functions

BSD Socket: Structures

Communication Service Group

BSD Socket: Guides 326

BSD Socket: Concepts

Accepting a BSD Connection

Remote clients can connect to the server after the server issues a successful
listen call. The accept function returns the new socket from the backlog
queue of the parent socket (the socket issuing the accept function). The
accept function has the following form:

s2 = accept(s, addr, addrlen)

The accept function from the server creates a new socket handle with the
same properties as s, the parent socket, and assigns a new socket file handle
s2. This handle must be used for all I/O on this particular connection. A
value other than -1 indicates acceptance of the call and represents the new
socket handle. A value of -1 indicates failure on the parent socket.

This file handle was first created with the socket function. It was bound to
an address with bind and prepared to accept incoming connections with
listen.

The server's listening socket continues to queue connection requests from
remote clients until the queue backlog is reached or the socket is closed;
therefore, multiple accept calls can be performed on one listening socket.
Each call to accept removes a socket from the queue and allows it to admit
new connection requests into the queue.

The addr argument points to a sockaddr_in or sockaddr_ipx structure that
receives the Internet address and port used by the client program upon
successful completion of accept.

The addrlen argument is a pointer to a variable that initially contains the
length of addr in bytes. After an accept function concludes, it contains the
length of the resulting Internet address.

In the TCSKSERV.C program, ds is the socket handle created by accept, and
s is a socket created by socket. In this program, client_sockaddr points to the
sockaddr_in structure that contains the Internet address and port used by
the sample client program TCSKCLNT.C upon successful completion of
accept.

The input length of addr is pointed to by addrlen. On return from accept, it
contains the length of the resulting Internet address.

Parent Topic: Socket Functions from the Server Program

Communication Service Group

BSD Socket: Concepts 327

Asynchronous I/O in BSD

BSD sockets provide a style of I/O that signals a process whenever a socket
is ready for an I/O operation. This facility is not provided in NetWare
because it cannot be emulated precisely. As with select, the purpose of this
feature can be accomplished more naturally by creating a thread to wait on
each I/O stream that can block.

Parent Topic: Porting BSD Applications to the NetWare OS

Binding to a Network Address

The bind function on a socket file handle associates a network address with
a socket. The function has the following form:

status = bind (s, addr, addrlen)

The function returns a status code status. A value of 0 indicates that the
binding was successful. A value of -1 indicates that the binding was
unsuccessful. When a function fails, the variable errno contains a specific
error code.

The socket file handle is s. This is the value previously returned by socket.

For TCP/IP and UDP/IP sockets, addr points to the sockaddr_in structure
containing a network address in the PF_INET domain. If the structure
specifies an IP address or port number that is zero, the BSD Socket API
assigns the local host IP address or port number as required. Either (or both)
can be specified as zero.

For TCP/IPX sockets, addr points to the sockaddr_ipx structure containing a
network address in the PF_IPX domain for TCP sockets. If the structure
specifies an IPX address or port number that is zero, the BSD Socket API
assigns the local host IPX address or port number as required. Either (or
both) can be specified as zero.

Typically, a client program uses zeros for both fields. This ensures that the
client program is unique for each session of the network application
running with the same server. Normally, a server specifies only the port.

The addrlen argument is the length in bytes of the sockaddr_in structure
pointed to by addr.

In the TCSKCLNT.C program, s is the socket file handle whose value was
returned by the socket function.

Parent Topic: Socket Functions from the Client Program

Communication Service Group

BSD Socket: Concepts 328

BSD Error Handling

Socket functions return a value of -1 if an operation fails. The variable errno,
which indicates the specific cause of the failure, is actually a macro that
refers to a per-thread error value. Programs can reference errno only on the
thread that encountered the error.

The include file ERRNO.H contains a listing of error codes and the symbolic
names associated with them.

A program can print the error message text using perror in the following
format:

perror (string);

The message prints the error in the following form:

string : message

The string variable is an ASCII string specified in perror identifying the
source of the error. Usually, string is the address of a command or library
function. The message variable is the message text associated with the error
code.

When the TCPIP.NLM is being unloaded, further socket operations on
existing sockets are in the nonblocking mode and fail. They return an
ENETDOWN error. When this happens, the socket clients should exit as
soon as possible. In particular, a socket client should never loop to
perform socket operations without checking for this error return. A
failure to check for the error return causes the execution thread to loop
infinitely without relinquishing control.

A socket client should abort whenever an unknown error is encountered.
This will help detect compatibility problems if error codes are changed or
added in future releases.

Blocking and Nonblocking I/O Modes

By default, a BSD Socket function blocks further execution of the program
until the transport system completes the requested operation. Some
functions have the potential to block indefinitely; for example, read
blocks until network data becomes available for the socket.

If the nonblocking I/O mode is established, the BSD Socket API determines
whether the requested function can be completed without delay; if so, it
performs the operation and returns successfully. If BSD determines a delay
would occur, an EWOULDBLOCK error is returned in errno, indicating the
transport is currently not ready to complete the operation.

The nonblocking mode is enabled on a per-socket basis using ioctl with the
FIONBIO command.

Parent Topic: BSD Socket Overview

Communication Service Group

BSD Socket: Concepts 329

BSD Interface Options

BSD provides a number of socket ioctl operations that work on datalink
interface devices instead of the socket itself. NetWare sockets do not provide
this access. Interfaces are manipulated by loadtime arguments, bind
arguments, and the SNMP agent.

Parent Topic: Porting BSD Applications to the NetWare OS

BSD Socket Overview

This chapter explains how network applications use the BSD Socket API to
communicate between a client and a server. It also describes the Internet
Protocol (IP) family (as defined by the BSD Socket API) and discusses the
use of the BSD Socket API for TCP/IP and TCP/IPX in NetWare® 4.x. If
you are already familiar with BSD socket programming, you might want to
skip this chapter and proceed to BSD Socket: Functions for detailed
information on the BSD Socket functions.

CAUTION: The BSD Socket API emulates closely the 4.3BSD
Socket Programming Interface. There are, however, important
semantic differences between these two interfaces that may affect an
application porting from BSD UNIX. Porting BSD Applications to the
NetWare OS describes these differences in detail.

Many network applications involve a client program running on a user's
workstation; the client program communicates with a server program
running on a shared server system, such as the NetWare operating system.
The server program runs continuously, while the user invokes the client
program only when it needs the server program's services.

Generally, a transport communication protocol operates separately from
client and server programs and is closely tied to the operating system. An
application program uses the transport protocol by calling its API. A
transport protocol can support more than one API (even in the same
system). Multiple applications can use the transport protocol concurrently.

Related Topics

BSD Socket Overview

Using BSD Socket Functions

Socket Types

Socket Functions from the Client Program

Socket Functions from the Server Program

Communication Service Group

BSD Socket: Concepts 330

Protocol Families and BSD

Internet Protocol Family

BSD Error Handling

Closing a BSD Connection

Depending on the design of your application, either the client or the server
may close the connection first. For example, when the client closes, the
server detects it as a write operation that returns a value of zero. The server
should then close the socket.

Parent Topic: Socket Functions from the Server Program

Closing a Socket

When the communication ends, the application must close the socket. The
close function has the following form:

 close(s)

where s is the socket being closed.

When a program ends, all associated sockets are closed. If a program needs
to reuse a socket before the program ends, it must first close the socket and
then reopen it.

Parent Topic: Socket Functions from the Client Program

Concurrent Access to Sockets

Just as multiple processes can share a socket in BSD UNIX, multiple threads
can share a socket in NetWare. As in BSD, if they read or write concurrently,
they make a hash of the I/O stream. However, it is quite practical for one
thread to read a socket and for another thread to write the same socket.

An important distinction from UNIX I/O treatment is that the first close
request on a socket actually closes the socket, because I/O handles are not
bound to threads. When an NLM™ application is terminated, the NLM C
Library closes all sockets it created. It is not possible to pass a socket from
one NLM to another. Therefore, UNIX code that forks a child process should
be modified so that it does not rely on duplication of the socket.

If one thread closes a socket while another thread is waiting for an operation
to complete on that socket, the latter operation is aborted with an error. All

Communication Service Group

BSD Socket: Concepts 331

pending operations on a socket are aborted before the completion of the
close call.

If a thread attempts to access a socket that has been closed, it receives the
EBADF error. However, you should not rely on this behavior. Instead, avoid
methods that would lead to attempted operations on sockets that have been
closed (using close as opposed to being closed by the peer socket).

Parent Topic: Porting BSD Applications to the NetWare OS

Creating a Socket

When the client program initiates a socket request, it creates a socket on the
local host. Socket requests are made with socket. This function performs two
tasks:

It creates and initializes socket resources in the TCP/IP or TCP/IPX
NLM™ application.

It opens and associates a NetWare file handle with the allocated socket
resources.

The association of internal socket resources with NetWare file handles
grants sockets the same operating system services given to other devices,
including the automatic closure of a device when a program terminates
abnormally.

The socket function has the following form:

s = socket (domain, type, protocol)

The function returns the socket file handle s. A value other than -1 indicates
that the socket has been successfully opened. A value of -1 indicates an
error.

The domain is the protocol family. The protocol family must be PF_INET or
PF_IPX.

The type specifies the type of socket (TCP or UDP) to be used. The currently
defined values for type are either SOCK_STREAM or SOCK_DGRAM.

The protocol is the particular protocol to be used with this socket. Normally,
only a single protocol exists to support a particular socket type within a
given protocol family. Typically, the value of this parameter is set to zero.

When loading the sample client program TCSKCLNT.C, specify the IP
address of the node where the server resides. Once the file handle s has been
created and the socket function returns successfully, the program opens a
connection to the server port 2000.

In the TCSKCLNT.C program, the domain is PF_INET, the type of socket is

Communication Service Group

BSD Socket: Concepts 332

SOCK_STREAM, and the value of the protocol is zero.

Parent Topic: Socket Functions from the Client Program

Error Number and Error Handling

When an OS function fails, BSD and other UNIX derivatives return an error
code in the global variable errno. This is not feasible in NetWare because
multiple threads can share the same data space, creating confusion as to
which thread is associated with an errno value. Therefore, NetWare
implements a per-thread errno that is accessed with the errno macro. For
NetWare socket clients, the proper errno value is available only to the
thread that instigated the error.

In the NetWare environment, the underlying socket protocol NLM
(TCPIP.NLM or TCPIPX.NLM) can be unloaded while a socket application
program is running. When this happens, further socket operations on
existing sockets are in nonblocking mode and fail. They return an
ENETDOWN error. The socket client should then exit as soon as possible. In
particular, the socket client should never loop to perform socket operations
without checking for error returns. A failure to check for the ENETDOWN
error causes the execution thread to loop indefinitely without relinquishing
control.

Parent Topic: Porting BSD Applications to the NetWare OS

Establishing a Connection with BSD Sockets

The connect function on a socket file handle forwards a request to the TCP/
IP transport system for a connection to be established between the client and
the server. This function has the following form:

status = connect (s, addr, addrlen)

When the program calls connect, the protocol module attempts to open the
specified connection. When a connection is successfully established, a status
value of 0 is returned. If a connection cannot be established, the function
returns a value of -1 and sets errno to ETIMEDOUT or ECONNREFUSED.

The argument s is the socket file handle representing the socket on the local
host. This is the value previously returned by socket.

For TCP/IP, the addr argument is a pointer to a sockaddr_in structure
containing the server's network address in the PF_INET domain. The client
program must specify the IP address of the host running the server and the
port on which the server is listening. If the IP address is 0, the host defaults
to the local address.

For TCP/IPX, the addr argument is a pointer to a sockaddr_ipx structure

Communication Service Group

BSD Socket: Concepts 333

For TCP/IPX, the addr argument is a pointer to a sockaddr_ipx structure
containing the server's network address in the PF_IPX domain. The client
program must specify the IPX address of the host running the server and
the port on which the server is listening. If the IPX address is 0, the host
defaults to the local address.

The addrlen argument is the length in bytes of the sockaddr_in or
sockaddr_ipx structure pointed to by addr.

Once a connection is established, the sample program TCSKCLNT.C sends
1,024 bytes of data and reads it back from the server before closing the
connection.

Parent Topic: Socket Functions from the Client Program

Internet Library Functions

Support functions, such as gethostbyname, are used differently in NetWare.
See Internet Network Library for more information.

Parent Topic: Porting BSD Applications to the NetWare OS

Internet Protocol Family

The Internet Protocol (IP) family includes the following protocols:

Internet Control Message Protocol (ICMP)

Transmission Control Protocol (TCP)

User Datagram Protocol (UDP)

Internet Protocol (IP)

Address Resolution Protocol (ARP)

TCP supports the STREAM socket type (SOCK_STREAM), while UDP
supports the datagram socket type (SOCK_DGRAM). IP exists below both
TCP and UDP. It provides end-to-end data delivery over a series of
networks having (potentially) different media. ICMP and ARP are not
directly accessible to the user; they are accessible only to the NetWare OS
and are used internally between peer protocol stacks for management and
control.

See the following topics for further information:

TCP and BSD

UDP and BSD

Communication Service Group

BSD Socket: Concepts 334

Parent Topic: BSD Socket Overview

Limitations of the select Function

The BSD function select works on a variety of file types, including pipes
and ttys. In contrast, the NetWare function select works only on sockets.
This should not affect typical server-oriented applications. If an application
needs to wait simultaneously on sockets and nonsocket files, it should create
separate threads for this purpose. This solution is more consistent with the
design of NetWare, which (unlike UNIX) provides multiple threads in the
same data space.

Socket handles can take any 32-bit value except 0 or -1. This defeats the BSD
implementation of the fd_set structure, which is a bit array of socket index
values. Instead, NetWare sockets define fd_set as an array of 32-bit file
handles. If an application uses only macros (FD_ZERO, FD_SET, FD_ISSET,
and FD_CLR) to manipulate the fd_set structure and does not work on more
than FD_SETSIZE sockets, it is not affected. FD_SETSIZE is currently 16.

Parent Topic: Porting BSD Applications to the NetWare OS

Out-of-Band Data in BSD

BSD out-of-band (OOB) data delivery might rely on delivering a SIGURG
signal to the client process. Again, signals cannot be precisely emulated, so
this mechanism is not used in NetWare. To detect incoming OOB data, the
client should use select and nonblocking I/O, which work the same as in
BSD. Before reading from the socket, the client should deselect on it, using
both read and except FD sets. If select returns with the except FD set for the
socket, the client should proceed as in BSD, after receiving SIGURG.
Otherwise, the methods for reading OOB data are the same as in BSD.

Parent Topic: Porting BSD Applications to the NetWare OS

Performing Network I/O through a Socket

When a connection is established, data is read and written (using read and
write, respectively) as though a direct full-duplex data path existed between
the two processes. Both reading and writing occur on the same logical data
stream.

The read function has the following form:

cc = read(s, bufaddr, buflen)

Communication Service Group

BSD Socket: Concepts 335

The s argument is the socket file handle from which the data is read, bufaddr
is the address of the buffer to receive the data, and buflen is the length of that
buffer.

The write function has the following form:

cc = write(s, bufaddr, buflen)

The socket file handle s is the socket to which the data is written, bufaddr is
the address of the buffer containing the data, and buflen is the length of the
data.

Upon return, cc contains the number of characters actually read from or
written to the logical data stream, or -1 if an error was detected. The value of
cc may be less than what was requested. If the TCSKCLNT.C program does
not return the full amount of characters actually read, the program repeats
the read operation as needed.

Your application program is responsible for synchronizing its
communication so that reading and writing do not cause a deadlock. The
TCP/IP transport system guarantees reliable delivery of data. Thus, a
simple command and response exchange is easy to create.

An error can occur during reading or writing if the remote system is
inaccessible for reasons such as a cable failure, intermediate gateway crash,
remote system malfunction, or remote program completion.

In addition to read and write, the BSD Socket API provides a number of
other functions for performing network I/O, including these: readv, recv,
recvfrom, recvmsg, writev, send, sendto, and sendmsg.

Parent Topic: Socket Functions from the Client Program

Porting BSD Applications to the NetWare OS

This appendix describes differences between the 4.3BSD Socket API and the
NetWare® 3.x and 4.x socket programming interface, which emulates
4.3BSD closely. If you port an application from the BSD UNIX*
environment, review your code fore methods and assumptions that would
be affected.

See the following topics:

Socket Domains and Protocols

Socket Handles

Concurrent Access to Sockets

Error Number and Error Handling

Limitations of the select Function

Communication Service Group

BSD Socket: Concepts 336

Asynchronous I/O in BSD

Out-of-Band Data in BSD

Socket Options

The ioctl Function

BSD Interface Options

Internet Library Functions

Protocol Families and BSD

Every network protocol is associated with a specific protocol family. A
protocol family normally consists of several protocols, one per socket type,
but the protocol family is not required to support all socket types. Multiple
protocols within the same protocol family can support the same socket
abstraction.

To use a specific protocol, you request the appropriate protocol family and
type when you create a socket. Each protocol normally accepts only one
address format, usually determined by the addressing structure of the
protocol family and network architecture. Certain semantics of the basic
socket abstractions are protocol specific. Each protocol supports the basic
model for its particular socket type and can also provide nonstandard
facilities or extensions.

The BSD Socket API supports only the IP and IPX families, which has the
following identifier:

#define PF_INET 2 /* internetwork: UDP, TCP, etc. */
#define PF_IPX 23 /* internetwork: TCP, etc. */

Parent Topic: BSD Socket Overview

Receiving a BSD Connection Request

The listen function on a socket file handle lets the socket receive incoming
connections. The server must call this function before calling accept.

The listen function has the following form:

status = listen(s, backlog)

A status value of 0 indicates that the function is successful. A value of -1
indicates that the function is unsuccessful.

The socket file handle is s. This is the value previously returned by the

Communication Service Group

BSD Socket: Concepts 337

The socket file handle is s. This is the value previously returned by the
socket function.

The backlog is an integer that specifies how many incoming connections can
be in a queue before being processed by calls to accept. Each call to accept
removes one connection from the backlog queue. The value of backlog must
be between 0 and 5, with the actual queue limit being backlog+1.

In the server program TCSKSERV.C, the server listens at the port 2000 for
incoming connection requests. When a request arrives, the server spins off a
separate thread to accept the connection, and continues listening on the
original thread for more requests.

The listen function in this program returns the status code rc. The socket file
handle returned by socket is s. The backlog argument is 5.

Parent Topic: Socket Functions from the Server Program

Socket Domains and Protocols

NetWare sockets implement the PF_INET and PF_IPX domains, but do not
provide PF_UNIX, and so on. The PF_INET domain offers SOCK_STREAM
(IPPROTO_TCP) and SOCK_DGRAM (IPPROTO_UDP), and SOC_RAW
(IPPROTO_ICMP) types. the PF_IPX domain offers only SOCK_STREAM
(IPXPROTO_TCP).

Parent Topic: Porting BSD Applications to the NetWare OS

Socket Functions from the Client Program

Before you can send data from one host to another, you must create a socket
on the local host. Once you create a socket, a client program typically
performs the following BSD Socket functions:

bind (optional)

connect

read and write (for data transfer)

close

Subsequent sections discuss each of the above functions, as well as the
socket function (which you use to create a socket). These discussions refer to
the sample program TCSKCLNT.C. This sample client program applies to
connection-oriented applications that use SOCK_STREAM sockets for a
reliable, sequenced, two-way data transmission. Before running this client
program, make sure that the server program TCSKSERV.C has already been
loaded. Then, load the client program TCSKCLNT.C by specifying the IP

Communication Service Group

BSD Socket: Concepts 338

address (in dotted notation) of the node where the server resides.

Related Topics

Creating a Socket

Binding to a Network Address

Establishing a Connection with BSD Sockets

Performing Network I/O through a Socket

Closing a Socket

Parent Topic: BSD Socket Overview

Socket Functions from the Server Program

The server typically calls the following functions:

socket

bind

listen

accept

read and write (for data transfer)

close

This section illustrates each of these operations through a sample server
program TCSKSERV.C. This sample program applies to
connection-oriented applications using SOCK_STREAM sockets for a
reliable, sequenced, two-way data transmission. It demonstrates how a
typical server accepts a connection request while listening for more
incoming requests at the same time.

A server program uses the functions socket and bind in the same manner as
a client program. For instance, a socket request from the server creates a
socket. However, with bind, the server specifies a well-known port number,
one that the client uses with connect. Each server offering a specific service
(for example, a file transfer server application) should be assigned a unique
port where only servers of that type listen.

Related Topics

Receiving a BSD Connection Request

Accepting a BSD Connection

Closing a BSD Connection

Communication Service Group

BSD Socket: Concepts 339

Parent Topic: BSD Socket Overview

Socket Handles

The BSD function socket returns an integer that is an index into a
per-process file table. The NetWare function socket returns an integer that is
actually the address of a file control block. This distinction is not important
to a client program unless the program is dependent on the range or value
of a socket handle. All 32 bits are significant, and a valid handle can be a
positive or negative value (other than -1).

Parent Topic: Porting BSD Applications to the NetWare OS

Socket Options

Most socket options in the BSD Socket API (for example, getsockopt and
setsockopt) are faithfully emulated in NetWare. Exceptions are as follows:

SO_DEBUG---Has no effect. In BSD, it unleashes a torrent of perpacket TCP
state information messages to the console.

SO_DONTROUTE---Has no effect. In BSD, it constrains outgoing packets to
systems that can be reached without crossing a router.

SO_BROADCAST---Has no effect. All clients can send broadcast packets. In
BSD, it enables a client to send broadcast packets.

Several other SO_XXX options in the BSD header file are not implemented
in BSD TCP, as follows:

SO_SNDLOWAT
SO_RCVLOWAT
SO_SNDTIMEO
SO_RCVTIMEO

Parent Topic: Porting BSD Applications to the NetWare OS

Socket Types

All network programs use either Stream or datagram sockets:

Stream sockets provide sequenced, reliable, two-way, connection-based
messages with an out-of-band mechanism (TCP urgent data). They are
used with the TCP protocol.

Datagram sockets provide connectionless, unreliable messages of a

Communication Service Group

BSD Socket: Concepts 340

limited length for user datagrams. They are used with the UDP protocol.

Parent Topic: BSD Socket Overview

TCP and BSD

TCP provides reliable, two-way data transmission. It is a byte-stream
protocol supporting STREAM (SOCK_STREAM) sockets. The socket
address of each TCP socket is a unique identifier that is formed from both
the host's IP address and its TCP port address.

Sockets using the TCP protocol are either active or passive. Active sockets
initiate connections to passive sockets. By default, TCP sockets are created
active; to create a passive socket, you must call listen. Only passive sockets
can use accept to accept incoming connections. Only active sockets or
passive sockets that have not received a connection request can use connect
to initiate connections.

When specifying the local address in the bind parameter addr, give the IP
address as INADDR_ANY (which is a value of 0). The protocol code then
assigns the local address. You can still specify the TCP port in the sin_port
field of the bind parameter addr. If this field is 0, the system assigns a port
number.

Once a connection has been established, the connection is uniquely
identified by four components:

IP address of the local host

Port number of the local socket

IP address of the remote host

Port number of the remote socket

To create a socket using TCP, use the following header files and structure
declarations, and functions:

#include <sys/socket.h>
#include <netinet/in.h>

int socket_id , return_code;
struct sockaddr_in my_socket = {AF_INET, 0, 0 };

socket_id = socket (PF_INET, SOCK_STREAM, 0);
return_code = bind (socket_id, &my_socket, sizeof(my_socket);

The TCP implementation supports a feature popularized by the BSD
implementation known as keep-alive packets. Keep-alive packets check
whether a peer TCP is still functioning. They are enabled by setting the
setsockopt function's SO_KEEPALIVE option. Keep-alive packets

Communication Service Group

BSD Socket: Concepts 341

periodically poll the remote machine if the connection has been idle.

Parent Topic: Internet Protocol Family

The ioctl Function

NetWare TCP/IP does not support SIOCSPGRP and SIOCGPGRP. These
are used in BSD to manipulate the process group for select and
asynchronous I/O signals.

Parent Topic: Porting BSD Applications to the NetWare OS

UDP and BSD

UDP is a simple, unreliable datagram protocol that supports the
SOCK_DGRAM abstraction for the IP family. UDP sockets are
connectionless and normally use send and recv. You can use connect to set a
destination for future packets, thereby allowing use of read and write.

UDP address formats are identical to those used for TCP. UDP provides a
port identifier in addition to the normal Internet address for the host. UDP
port space is distinct from TCP port space; therefore, a UDP port number
can have the same value as a TCP port number. A UDP port cannot be
connected to a TCP port.

To create a socket using UDP, you use the following header files, structure
definitions, and functions:

#include <sys/socket.h> /* include file socket */
#include <netinet/in.h> /* include file */

int socket_id;
struct sockaddr_in my_socket = { AF_INET, 0, 0 };

socket _id = socket (PF_INET, SOCK_DGRAM, 0);

Parent Topic: Internet Protocol Family

Using BSD Socket Functions

The BSD Socket API is modeled after the UNIX* file system interface.
Instead of opening a disk file, your application creates a socket and uses its
I/O handle to read, write, and close a socket like a disk file. Because of the
complex nature of network communications, your application must invoke
several operations that are not required by disk files in the case of the UNIX

Communication Service Group

BSD Socket: Concepts 342

file system interface. Instead of a filename, each socket that an application
creates has a unique network address. To send data, your application must
supply the address of the destination socket.

The following summarizes how applications use the BSD Socket API to
communicate with remote programs:

Sockets send data using the functions write, writev, send, sendto, and
sendmsg.

Sockets receive data using the functions read, readv, recv, recvfrom, and
recvmsg.

Only connected sockets can use the functions write, writev, send, read,
readv, and recv.

Below is a list of the typical steps a network application program completes
when using Stream sockets. Each step specifies the functions used to
complete the step:

1. Create a socket and associate it with a specific protocol (TCP or UDP).

Client Program: socket

Server Program: socket

2. Associate the socket with the IP or IPX address of the local host and the
port number of the local socket.

Client Program: bind

Server Program: bind

3. Associate the socket and the local port with the IP or IPX address of the
remote host and the port number of the remote socket.

Client Program: connect

Server Program: listen, accept

4. Transfer data.

Client Program: read, write, sendto, rcvfrom, or other data transfer
functions

Server Program: read, write, sendto, rcvfrom, or other data transfer
functions

5. Terminate both endpoint associations (both local and remote hosts, as
well as sockets) and free the socket.

Client Program: close

Server Program: close

The following figure illustrates the BSD programming model.

Communication Service Group

BSD Socket: Concepts 343

Figure 10. Berkeley Sockets Programming Model

Parent Topic: BSD Socket Overview

Communication Service Group

BSD Socket: Concepts 344

BSD Socket: Functions

Communication Service Group

BSD Socket: Functions 345

accept

Accepts a connection from a remote host.
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 3.x, 4.x
Platform: NLM
Standard: BSD
Service: BSD Socket

Syntax

#include <sys/types.h>
#include <nlm/sys/socket.h>
#include <nlm/sys/bsdskt.h>

int accept (
 int s,
 struct sockaddr *addr,
 int *addrlen);

Parameters

s

(IN) Identifies a socket file handle that has been created with the
socket function.

addr

(OUT) Specifies an address to be assigned to an unbound socket.

addrlen

(IN/OUT) Indicates the amount of space pointed to by addr.

Return Values

The accept function returns an integer handle for the accepted socket if
successful. Otherwise, it returns a value of -1 to indicate an error. On
failure, accept returns one of the following errors in errno:

EBADF The socket file handle is invalid.

ENOTSOCK The socket file handle refers to a file, not a socket.

EOPNOTSUP
P

The referenced socket is not of type SOCK_STREAM.

EWOULDBL
OCK

The socket is marked nonblocking, and no
connections are present to be accepted.

Communication Service Group

BSD Socket: Functions 346

EINVAL The socket is not in a listening state.

Remarks

accept is used with connection-based socket types, currently
SOCK_STREAM.

The argument s is a socket file handle that has been created with the
socket function and bound to an address with the bind function. The
listen function prepares the socket to accept incoming connections; then,
the accept function accepts the connection. The accept function extracts
the first connection from the queue pending connections, creates a new
socket with the same properties of s, and allocates a new file handle for
the socket. In the case of no pending connections, the following apply:

If the socket is not marked as nonblocking, the accept function blocks
the caller until a connection is present.

If the socket is marked nonblocking and there are no pending
connections, the accept function returns an error.

The accepted socket handle cannot be used to accept more connections.
The original socket s remains open and continues to listen for
connections.

The argument addr is a result argument that receives the address of the
connecting socket, as known to the communications layer. The exact form
of the addr argument is determined by the domain in which
communication occurs. The sockaddr_in structure in the header file
NETINET/IN.H defines the form of the structure addr for TCP over IP
sockets. The sockaddr_ipx structure in the header file NETIPX/IPX.H
defines the form of the structure addr for TCP over IPX sockets. The
length of the socket structure is fixed at 16 bytes.

The addrlen argument is a value-result argument; it must initially contain
the amount of space pointed to by addr. On return, it contains the actual
length (in bytes) of the address returned.

It is possible to select a socket for accept the way you would select it for
read.

See Also

bind, close, select, socket

Communication Service Group

BSD Socket: Functions 347

bind

Associates local address information with a socket
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 3.x, 4.x
Platform: NLM
Standard: BSD
Service: BSD Socket

Syntax

#include <sys/types.h>
#include <nlm/sys/socket.h>
#include <nlm/sys/bsdskt.h>

int bind (
 int s,
 struct sockaddr *addr,
 int addrlen);

Parameters

s

(IN) Identifies the socket file handle of a socket to which address
information is to be assigned.

addr

(IN) Specifies the address to be assigned to an unbound socket.

addrlen

(IN) Indicates the amount of space pointed to by addr.

Return Values

If the binding is successful, bind returns a value of 0. Otherwise, bind
returns a value of -1 and stores a more specific error code in errno. On
failure, this function returns one of the following errors in errno:

EBADF The argument s is not a valid socket filehandle.

ENOTSOCK The argument s is a file, not a socket handle.

ENOPROTOO
PT

The option is unknown at the level indicated.

EADDRNOT
AVAIL

The specified address is not available from the local
computer.

Communication Service Group

BSD Socket: Functions 348

EADDRINUS
E

The specified address is already in use.

EINVAL The socket is already bound to an address, or an
invalid address length is specified.

EACCES The requested address is protected, and the current
client lacks permission to access it.

EFAULT The argument addr is not specified.

Remarks

The bind function assigns an argument addr to an unbound socket. When
the socket function creates a socket, the socket exists in an addr space
(address family) but has no address assigned.

The bind function requests that addr be assigned to the socket. Once the
argument addr is bound to a socket, another socket can establish
communication by referring to that address.

For a TCP or UDP socket, the argument addr points to a sockaddr_in
structure, defined in NETINET/IN.H. When calling the bind function,
the client should initialize the sockaddr_in structure's members as
follows:

sin_family should be AF_INET.

sin_port can be a 16-bit local port value in the TCP or UDP domain, in
network data order. NETINET/IN.H defines well-known values. If it
is 0, the protocol assigns an unused, nonprivileged value between
1024 and 5000. Values 1 through 1023 and 5001 through 65535 are
reserved for well-known server ports.

sin_addr can usually be set to 0, allowing the protocol to determine the
appropriate local IP address, depending on the route. The client can
set a local address explicitly (in network data order) if the address
belongs to the node.

gethostid can be used to obtain the default local IP address.

sin_zero must be set to eight bytes of 0.

For a TCP over IPX socket, the argument addr points to a sockaddr_ipx
structure, defined in NETIPX/IPX.H. When calling the bind function, the
client should initialize the sockaddr_ipx structure's members as follows:

sipx_family should be AF_IPX.

sipx_addr.x_net contains a four-character array that holds the network
number.

sipx_addr.x_host contains a six-character array that holds the node

Communication Service Group

BSD Socket: Functions 349

number.

sipx_addr.x_socket contains a two-character array that holds the socket
number.

sipx_zero must be initialized to zero (0).

See Also

getsockname, listen, socket

Communication Service Group

BSD Socket: Functions 350

connect

Initiates a connection on a socket
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 3.x, 4.x
Platform: NLM
Standard: ANSI
Service: BSD Socket

Syntax

#include <sys/types.h>
#include <nlm/sys/socket.h>
#include <nlm/sys/bsdskt.h>

int connect (
 int s,
 struct sockaddr *addr,
 int addrlen);

Parameters

s

(IN) Identifies the socket file handle of a socket on which a connection
is to be initiated.

addr

(IN) Specifies the address to be assigned to an unbound socket.

addrlen

(IN) Indicates the amount of space pointed to by addr.

Return Values

If the connection or binding succeeds, connect returns a value of 0.
Otherwise, it returns a value of -1, and errno indicates a more specific
error. On failure, connect returns one of the following errors in errno:

EBADF The argument s is not a valid socket filehandle.

ENOTSOCK The argument s is a file, not a socket handle.

ENOPROTOO
PT

The option is unknown at the level indicated.

EADDRNOT
AVAIL

The specified address is not available from the local
computer.

Communication Service Group

BSD Socket: Functions 351

EAFNOSUPP
ORT

Addresses in the specified address family cannot be
used with this socket.

EISCONN The socket is already connected.

ETIMEDOUT Connection timed out without establishing a
connection.

ECONNREFU
SED

The attempt to connect was forcefully rejected.

ENETUNREA
CH

The network cannot be reached from this host.

EADDRINUS
E

The address is already in use.

EINPROGRES
S

The socket is nonblocking, and the connection cannot
be completed immediately.

EALREADY The socket is nonblocking, and a previous connection
attempt has not yet been completed.

EINVAL The argument namelen is invalid, or the socket has
been reset and is no longer valid.

Remarks

The argument s is a socket. If the socket is SOCK_DGRAM, the connect
function specifies the peer (for example, a socket endpoint for either a
client or a server) with which the socket is to be associated. Only the
address of that socket endpoint receives or sends datagrams. If the socket
is SOCK_STREAM, the connect function attempts to make a connection
to another socket. The other socket is specified by addr, which for TCP
and UDP over IP sockets is a sockaddr_in structure, as defined in
NETINET/IN.H. For TCP over IPX sockets, the structure is sockaddr_ipx,
as defined in NETIPX/IPX.H. The length of this structure is given in
addrlen.

Generally, SOCK_STREAM sockets can successfully connect to a peer
only once; SOCK_DGRAM sockets can use connect multiple times to
change their association. Datagram sockets end the association by
connecting to an invalid address, such as a NULL address.

If a SOCK_STREAM socket is in a blocking mode, the connect function
blocks until a connection is established or the attempt fails. If the socket is
set for nonblocking I/O, the connect function returns an error code, its
value depending on the current state of the connection process.
Depending on the conditions, the error code could be one of the
following:

EINPROGRES
S

This is in response to the initial connect request.

Communication Service Group

BSD Socket: Functions 352

EALREADY This is in response to subsequent requests before a
connection is established.

EISCONN This occurs after a connection is established.

By selecting the socket for writing, you can also select it for completing
the connection.

See Also

accept, getsockname, select, socket

Communication Service Group

BSD Socket: Functions 353

getpeername

Returns the address of a connected peer
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 3.x, 4.x
Platform: NLM
Standard: BSD
Service: BSD Socket

Syntax

#include <nlm/sys/socket.h>
#include <nlm/sys/bsdskt.h>

int getpeername (
 int s,
 struct sockaddr *addr,
 int *addrlen);

Parameters

s

(IN) Identifies the socket file handle of a socket connected to the peer
for which the addr argument is to be returned.

addr

(OUT) Indicates the address of the peer connected to the socket
specified by s.

addrlen

(IN/OUT) Indicates the size of the address pointed to by addr.

Return Values

getpeername returns a value of 0 if the function succeeds and a value of
-1 if it fails. On failure, getpeername returns one of the following errors
in errno:

EBADF The argument s is not a valid socket file handle.

ENOTSOCK The argument s is a file, not a socket.

ENOTCONN The socket is not connected.

ENOBUFS Insufficient resources were available in the system to
perform the operation.

Communication Service Group

BSD Socket: Functions 354

Remarks

The getpeername function returns the addr argument of the peer (which
is a socket endpoint of either a client or a server) connected to socket s. For
TCP and UDP over IP sockets, the argument addr refers to the
sockaddr_in structure, defined in NETINET/IN.H. For TCP over IPX
sockets, the argument addr refers to the sockaddr_ipx structure, defined
in NETIPX/IPX.H.

The addrlen argument should be initialized to the size of this structure. On
return, the argument contains the actual size of the address returned (in
bytes). The address is truncated if the provided buffer is too small.

See Also

accept, bind, getsockname, socket

Communication Service Group

BSD Socket: Functions 355

getsockname

Returns the current address for the specified socket
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 3.x, 4.x
Platform: NLM
Standard: BSD
Service: BSD Socket

Syntax

#include <nlm/sys/socket.h>
#include <nlm/sys/bsdskt.h>

int getsockname (
 int s,
 struct sockaddr *addr,
 int *addrlen);

Parameters

s

(IN) Identifies the socket file handle of a socket for which the addr
argument is to be returned.

addr

(OUT) Indicates the address of the socket specified by s.

addrlen

(IN/OUT) Indicates the size of the address pointed to by addr.

Return Values

getsockname returns a value of 0 it succeeds and a value of -1 if it fails.
On failure, getsockname returns one of the following errors in errno:

EBADF The argument s is not a valid socket file handle.

ENOTSOCK The argument s is a file, not a socket.

ENOBUFS Insufficient resources were available in the system to
perform the operation.

Remarks

Communication Service Group

BSD Socket: Functions 356

For TCP and UDP over IP sockets, addr refers to the sockaddr_in
structure, defined in NETINET/IN.H. For TCP over IPX sockets, addr
refers to the sockaddr_ipx structure, defined in NETIPX/IPX.H. The
addrlen argument should be initialized to indicate the size of this
structure. On return, the argument contains the actual size of the address
returned (in bytes).

See Also

bind, socket

Communication Service Group

BSD Socket: Functions 357

getsockopt

Returns current parameters for socket operation
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.x, 4.x
Platform: NLM
Standard: BSD
Service: BSD Socket

Syntax

#include <nlm/sys/socket.h>
#include <nlm/sys/bsdskt.h>

int getsockopt (
 int s,
 int level,
 int optname,
 char *optval,
 int *optlen);

Parameters

s

(IN) Identifies the socket file handle of a socket for which parameters
are to be returned.

level

(IN) Specifies the level at which the option resides.

optname

(IN) Identifies the option for the request.

optval

(OUT) Points to an option value.

optlen

(IN/OUT) Points to a value describing the option's length.

Return Values

If getsockopt succeeds, it returns a value of 0. If getsockopt fails, it
returns a value of -1, and errno indicates the error.

On failure, the getsockopt function return one of the following errors in
errno:

Communication Service Group

BSD Socket: Functions 358

EBADF The argument s is not a valid socket file handle.

EINVAL The value of argument optlen is inappropriate.

ENOTSOCK The argument s is a file, not a socket.

ENOPROTOO
PT

The option is unknown at the level indicated.

Remarks

The getsockopt functions manipulates options associated with a socket.
These options are defined as arguments for these functions. Options exist
at either the socket level or the underlying protocol level.

The optname argument identifies the option for the request. The include
file SYS/ SOCKET.H contains definitions for socket-level options.

The argument optval points to an option value, while optlen is a pointer to
a value describing the length of the option. These arguments identify a
buffer in which the values for the requested option(s) are to be returned.

The optlen argument is a value-result argument, initially containing the
size of the buffer pointed to by optval and modified on return to indicate
the actual size of the value returned.

For all cases except SO_LINGER, optval refers to an integer object.

The following options are recognized at the socket level. Except as noted,
each can be examined with getsockopt and set with setsockopt.

SO_REUSEA
DDR

Indicates that the rules used in validating addresses
supplied in a bind call should allow reuse of local
addresses. This option is typically enabled only for
TCP sockets that connect and use a fixed local port
value, as in the File Transport Protocol (FTP).

SO_KEEPALI
VE

Enables the periodic transmission of messages on a
connected socket. Should the connected party fail to
respond to these messages, the connection is
considered broken, and requests on the socket fail,
returning the ETIMEDOUT error code.

SO_OOBINLI
NE

Requests that out-of-band data be placed in the
normal data input queue as received; it is then
accessible with recv or read functions without the
MSG_OOB flag.

SO_SNDBUF Specifies the limit placed on output data buffering.
The limit can be increased for high-volume
connections or decreased to limit the possible backlog
of buffered data. The system places an absolute limit

Communication Service Group

BSD Socket: Functions 359

of 64 Kb on this value.

SO_RCVBUF Is the counterpart to SO_SNDBUF for incoming data.
It determines the size of TCP's receive window. For
best efficiency, sender and receiver should have
similar send and recv buffer limits.

SO_LINGER Controls the action taken when unsent data is queued
on a SOCK_STREAM socket and a close call is
performed. The optval argument can point to a struct
linger argument, defined in SYS/SOCKET.H, which
specifies the desired state of the option and the linger
interval. If SO_LINGER is enabled and the linger time
is nonzero, the close call blocks indefinitely, or until
the protocol is able to deliver the data. If the linger
time is zero, the protocol aborts the connection when
close is invoked, possibly losing data. If SO_LINGER
is disabled and a close is issued, the protocol assumes
responsibility for delivering the data and permits the
client to continue without blocking. This is the default
behavior.

SO_TYPE Returns the type of the socket, such as
SOCK_STREAM.

SO_ERROR Returns any pending error code on the socket and
clears the error status. You can use it to check errors
on connected datagram sockets.

See Also

getprotoent, setsockopt, socket

Communication Service Group

BSD Socket: Functions 360

listen

Prepares a socket to accept a connection
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 3.x, 4.x
Platform: NLM
Standard: ANSI
Service: BSD Socket

Syntax

#include <nlm/sys/socket.h>
#include <nlm/sys/bsdskt.h>

int listen (
 int s,
 int backlog);

Parameters

s

(IN) Identifies the socket file handle of a socket that is to be prepared to
accept a connection.

backlog

(IN) Defines the maximum length for the queue of pending
connections.

Return Values

A return value of 0 indicates success, and a value of -1 indicates an error.
On failure, listen returns one of the following errors in errno:

EBADF The argument s is not a valid socket file handle.

ENOTSOCK The argument s is a file, not a socket file handle.

ENOPROTOO
PT

The option is unknown at the level indicated.

EOPNOTSUP
P

The socket does not support this function.

Remarks

Communication Service Group

BSD Socket: Functions 361

The socket function first creates a socket s. The listen function prepares a
socket to accept incoming connections and specifies a queue limit for
incoming connections. Then the accept function accepts the connection.

The listen function lies only to sockets of type SOCK_STREAM.

The backlog argument defines the maximum length for the queue of
pending connections. The effective queue limit is backlog + 1, with a silent
limitation of 5 for the backlog. If a connect request arrives when the queue
is full, the client receives an error with ECONNREFUSED.

See Also

accept, connect, socket

Communication Service Group

BSD Socket: Functions 362

readv

Reads data from a socket and stores it in multiple user buffers as specified
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 3.x, 4.x
Platform: NLM
Standard: ANSI
Service: BSD Socket

Syntax

#include <nlm/sys/socket.h>
#include <nlm/sys/bsdskt.h>
#include <sys/types.h>
#include <sys/uio.h>

int readv (
 int s,
 struct iovec *iov,
 int iovcnt);

Parameters

s

(IN) Identifies the socket file handle of a socket from which data is to
be read.

iov

(OUT) Points to the iovec structure, which specifies the base address
and length of an area in memory where data can be placed.

iovcnt

(IN) Indicates the buffers that the members of the iov array specify.

Return Values

If successful, the readv function returns either the EOF (zero) or the
number of bytes actually read. Otherwise, it returns a value of -1 and set
errno to indicate the error. On failure, the readv function returns one of
the following errors in errno:

EBADF The argument s is not a valid file or socket handle
open for reading.

EWOULDBL
OCK

The file was marked for nonblocking I/O, and data
was not ready to be read.

Communication Service Group

BSD Socket: Functions 363

EINVAL One of the iov_len values in the iov array was negative,
or the sum of the iov_len values in the iov array
overflowed a 32bit integer.

Remarks

The readv function attempts to read nbytes of data from a
SOCK_STREAM socket described by s into the buffer pointed to by buf. It
scatters the input data into the iovcnt buffers specified by the members of
the iov array: iov[0], iov[1], ..., iov[iovcnt - 1].

For readv, the iovec structure is defined in UIO.H as follows:

struct iovec {
 char *iov_base;
 int iov_len;
} iovec;

Each iovec entry specifies the base address and length of an area in
memory where data can be placed. The readv function always fills an
area completely before proceeding to the next.

Upon successful completion, readv returns the number of bytes actually
read and placed in the buffer. The system guarantees to read the number
of bytes requested if there are that many bytes left before the end-of-file.
If the returned value is 0, the peer has closed the connection and no more
data is received.

To read out-of-band data from a TCP socket by calling the read function,
the setsockopt option (SO_OOBINLINE) must be enabled. The client can
select the exception condition to detect the arrival of a new urgent
boundary (just before the out-of-band byte); the client can select the ioctl
operation (SIOCATMARK) to determine whether the read request has
read up to the boundary yet. The system guarantees that a single read
request does not cross the urgent boundary. When SIOCATMARK is
detected, the next read request returns the out-of-band byte plus as much
data past this byte as can fit in the buffer.

If SO_OOBINLINE is not enabled, the client must call the recv function to
read the out-of-band byte. As mentioned previously, a read request reads
up to the urgent boundary, but the next request reads data past the
urgent boundary without reading the out-of-band byte, since it was not
stored with the SO_OOBINLINE option.

SIOCATMARK reveals whether the out-of-band byte is readable by
either method.

The readv function can also read messages from a SOCK_DGRAM
socket, but recv and its derivatives are better suited for this job. Semantics
are identical with recv except that the flags argument is not available.

Communication Service Group

BSD Socket: Functions 364

See Also

recv, recvfrom, recvmsg, select, socket

Communication Service Group

BSD Socket: Functions 365

recv, recvfrom, recvmsg

recv reads data from a socket and stores it in a buffer, with options for
peeking and out-of-band data; recvfrom also obtains source address
information; recvmsg is the same as recvfrom but works on a list of user
buffers
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 3.x, 4.x
Platform: NLM
Standard: BSD
Service: BSD Socket

Syntax

#include <sys/types.h>
#include <nlm/sys/socket.h>
#include <nlm/sys/bsdskt.h>

int recv (
 int s,
 char *buf,
 int len,
 int flags);

int recvfrom (
 int s,
 char *buf,
 int len,
 int flags,
 struct sockaddr *from,
 int *fromlen);

int recvmsg (
 int s,
 struct msghdr *msg,
 int flags);

Parameters

recv

s

(IN) Identifies the socket file handle of a socket from which data is to
be read.

buf

(OUT) Identifies a buffer in which data is to be stored.

Communication Service Group

BSD Socket: Functions 366

len

(IN) Indicates the length of the buffer specified in buf.

flags

(IN) Is formed by using one of two values, as described in the
"Remarks" section.

rcvfrom

s

(IN) Identifies the socket file handle of a socket from which data is to
be read.

buf

(OUT) Identifies a buffer in which data is to be stored.

len

(IN) Indicates the length of the buffer specified in buf.

flags

(IN) Is formed by using one of two values, as described in the
"Remarks" section.

from

(OUT) Points to the structure containing the source address of the
message.

fromlen

(IN/OUT) Indicates the length of the buffer associated with from.

recvmsg

s

(IN) Identifies the socket file handle of a socket from which data is to
be read.

msg

(IN/OUT) Specifies message address information and buffer address
information.

flags

(IN) Formed by using one of two values, as described in the "Remarks"
section.

Return Values

If successful, these functions return either EOF or the number of bytes
received; they return a value of -1 if an error occurred. On failure, the
recv, recvfrom, and recvmsg functions return one of the following errors
in errno:

Communication Service Group

BSD Socket: Functions 367

EBADF The argument s is an invalid socket file handle.

ENOTSOCK The argument s is a file, not a socket handle.

EWOULDBL
OCK

The socket is marked nonblocking, and the receive
operation would block.

EINVAL The MSG_OOB flag is invalid when used with the
SO_OOBINLINE option, or the out-of-band data is not
present.

ENOTCONN The socket is not in a connected state.

EOPNOTSUP
P

The flags values are not supported.

Remarks

Typically, clients call the recv, recvfrom, and recvmsg functions to receive
messages from a SOCK_DGRAM socket. They return a single datagram.

Clients normally call recv only on a connected socket (see connect), while
recvfrom and recvmsg can be used to receive data on a socket whether or
not it is in a connected state.

On a SOCK_STREAM socket, clients can call recv, recvfrom, and recvmsg
, although the read or readv functions are nearly as capable in this case.

recv

If data is not available at the socket, the recv function blocks, unless the
socket is nonblocking (see ioctl), in which case the function returns a
value of -1 with errno set to EWOULDBLOCK.

The client can call select to determine when more data arrives.

The flags argument to a recv function is formed by using one or more of
the following values:

#define MSG_OOB 0x1 /* process out-of-band data */
#define MSG_PEEK 0x2 /* peek at incoming message */

MSG_OOB is used only with TCP sockets. Out-of-band (OOB) data is a
misnomer that actually refers to the byte of data following a TCP urgent
boundary. After the socket client has discovered new out-of-band data
(using select for exceptions) and has read normal data up to the
out-of-band byte (using ioctl SIOCATMARK to recognize the boundary),
it reads one byte of out-of-band data by setting the MSG_OOB flag.

MSG_PEEK permits the socket client to look at a message or STREAM
data without removing it from the socket.

recvfrom

If the from argument to a recvfrom function is nonzero, the source

Communication Service Group

BSD Socket: Functions 368

address of the message is filled. The fromlen argument is a value-result
argument initialized to the size of the buffer associated with from. On
return, the actual size of the source address is stored in fromlen.

For a UDP socket, if a message is too long to fit in the supplied buffer,
rcvfrom truncates the excess bytes.

recvmsg

The recvmsg function uses a msghdr structure to minimize the number of
directly supplied arguments. This structure has the following form, as
defined in SYS/ SOCKET.H:

struct msghdr {
 char *msg_name; /* optional address */
 int msg_addrlen; /* size of address */
 struct iovec *msg_iov; /* scatter/gather array */
 int msg_iovlen; /* # elements in msg_iov */
 char *msg_accrights; /* unused, set to 0 */
 int msg_accrightslen; /* unused, set to 0 */
} msghdr;

Here, msg_name returns the source address of a message; msg_name can be
given as a NULL pointer if no addresses are desired or required.

The msg_iov and msg_iovlen fields describe the scatter/gather locations,
which constitute a buffer that is dispersed in different locations. The
msg_accrights and msg_accrightslen fields do not apply to TCP or UDP
sockets. They can be set to 0 in a request and are undefined in a reply.

See Also

getsockname, readv, select, send, sendmsg, sendto, socket

Communication Service Group

BSD Socket: Functions 369

select

Performs multiplexed socket status queries
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 3.x, 4.x
Platform: NLM
Standard: BSD
Service: BSD Socket

Syntax

#include <nlm/sys/socket.h>
#include <nlm/sys/bsdskt.h>
#include <sys/types.h>
#include <sys/time.h>

int select (
 int width,
 fd_set *readfds,
 fd_set *writefds,
 fd_set *exceptfds,
 struct timeval *timeout);

Parameters

width

(IN) Indicates the total number of socket handles to be examined.

readfds

(IN/OUT) Passes address information for the socket handle set to be
examined.

writefds

(IN/OUT) Passes address information for the socket handle set to be
examined.

exceptfds

(IN/OUT) Passes address information for the socket handle set to be
examined.

timeout

(IN) Points to the timeval structure, which specifies a maximum
interval to wait for the completion of select.

Return Values

Returns the number of ready handles contained in the handle sets, or it

Communication Service Group

BSD Socket: Functions 370

returns -1 if an error occurs. If the time limit expires, returns a value of 0.
If select returns with an error, the handle sets are not modified.

On failure, returns one of the following errors in errno:

EBADF One of the handle sets specified an invalid handle.

EINVAL The specified time limit is invalid. One of its components is
negative or too large.

ENOTS
OCK

One of the handle sets specified a nonsocket handle.

Remarks

The select function examines the socket handle sets whose addresses are
passed in the readfds, writefds, and exceptfds parameters to see if any of
their handles are ready for reading or writing, or have an exceptional
condition pending. The socket handles from 0 through width-1 in the
handle sets are examined. On return, the function replaces the given
socket handle sets with subsets consisting of those handles that are ready
for the operation.

The handle sets are arrays of size FD_SETSIZE containing socket
handles. Each unused element must be set to 0. The following macros are
provided for manipulating such handle sets:

FD_ZERO(&fhset)---Initializes a handle set fhset to the null set

FD_SET(fh, &fhset)---Includes a particular handle fh in fhset

FD_CLR(fh, &fhset)---Removes fh from fhset

FD_ISSET(fh, &fhset)---Is nonzero if fh is a member of fhset, zero
otherwise

Here, fh specifies a handle to be manipulated, and fhset specifies a
handle set.

If the client attempts to specify more file handles in FD_SET than the
handles specified in FD_SETSIZE, the operation fails, silently.

If the timeout pointer is nonzero, it points to the timeval structure which
specifies a maximum interval to wait for the completion of select. If the
timeout parameter is a zero pointer, select blocks indefinitely. To poll, the
timeout parameter can point to a zero-valued timeval structure. If handles
are not of interest, the readfds, writefds, and exceptfds parameters can be
zero pointers.

Normally, select should be used with nonblocking sockets. Even when
select indicates that a socket handle is ready for an operation, it is
possible that select might return EWOULDBLOCK when attempted. For

Communication Service Group

BSD Socket: Functions 371

example, when two or more processes share a handle, select also
indicates readiness for reading or writing when a socket fails or no longer
performs the indicated operation. This nuance assures that a client wakes
up and notices the new socket state.

select works only with socket handles and should not be used for other
file types.

The exceptfs parameter is meaningful only for TCP sockets. When ready,
the TCP sockets imply the existence of out-of-band urgent data on the
socket.

select can also be used to check for completion of accept and connect
operations on nonblocking sockets if the conditions correspond to read
and write readiness respectively.

See Also

accept, connect, readv, recv, recvfrom, recvmsg, send, sendmsg, sendto,
writev

Communication Service Group

BSD Socket: Functions 372

send, sendmsg, sendto

send writes data from a user buffer to a socket, with the option for
out-of-band data; sendto also takes destination address information;
sendmsg is the same as sendto but works on a list of user buffers.
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 3.x, 4.x
Platform: NLM
Standard: BSD
Service: BSD Socket

Syntax

#include <sys/types.h>
#include <nlm/sys/socket.h>
#include <nlm/sys/bsdskt.h>

int send (
 int s,
 char *msg,
 int len,
 int flags);

int sendmsg (
 int s,
 struct msghdr *msg,
 int flags);

int sendto (
 int s,
 char *msg,
 int len,
 int flags,
 struct sockaddr *to,
 int tolen);

Parameters

send

s

(IN) Identifies the socket file handle of a socket to which the data is to
be written.

msg

(IN) Specifies the message to be sent.

len

Communication Service Group

BSD Socket: Functions 373

(IN) Indicates the length of the message.

flags

(IN) Is formed by including the MSG_OOB flag as described in the
"Remarks" section.

sendmsg

s

(IN) Identifies the socket file handle of a socket to which the data is to
be written.

msg

(IN) Specifies message address information and buffer address
information.

flags

(IN) Formed by including the MSG_OOB flag, as described in the
"Remarks" section.

sendto

s

(IN) Identifies the socket file handle of a socket to which the data is to
be written.

msg

(IN) Specifies the message to be sent.

len

(IN) Indicates the length of the message.

flags

(IN) Can include the MSG_OOB flag, as described in the "Remarks"
section.

to

(IN) Points to the sockaddr structure containing the destination
address.

tolen

(IN) Indicates the size of the destination address.

Return Values

These functions return the number of characters sent, or -1 if an error
occurred. On failure, they return one of the following errors in errno:

EBADF An invalid handle was specified.

ENOTSOCK The argument s is a file, not a socket handle.

Communication Service Group

BSD Socket: Functions 374

EMSGSIZE The socket requires that a message be sent atomically,
and the size of the message to be sent made it
impossible.

EWOULDBL
OCK

The socket is marked nonblocking, and the requested
operation would block it.

ENOBUFS The system could not allocate an internal buffer. The
operation might succeed if retried when buffers
become available.

Remarks

The send, sendto, and sendmsg functions are normally used to transmit a
message (such as a packet or datagram) from a SOCK_DGRAM socket to
a similar socket. The send function can be used only when the socket is in
a connected state, while sendto and sendmsg functions can be used any
time.

The send, sendto, and sendmsg functions can also be used on
SOCK_STREAM sockets, although write and writev are almost as
capable and more commonly used. When used on a blocking
SOCK_STREAM socket, these requests block until all of the client's data
can be sent or buffered by the socket. When used on a nonblocking
socket, these requests send or buffer the maximum amount of data that
can be handled without blocking and return the amount that was taken.
If no data is taken, they return a value of -1, indicating an
EWOULDBLOCK error.

send

An indication of failure to deliver is not implicit in a SOCK_DGRAM
send function. A return value of -1 indicates a locally detected error.

If the local socket lacks buffer space to hold the message to be
transmitted, the send function normally blocks unless the socket has been
placed in nonblocking I/O mode. The select function can be used to
determine when it is possible to send more data.

The flags argument can include the following flag:

 #define MSG_OOB 0x1 /* process out-of-band data */

The flag MSG_OOB is set to send out-of-band data on sockets that
support out-of-band transmission. Only TCP sockets support out-of-band
transmission, which is accomplished by placing a new urgent boundary
just before the last byte of the sent message.

sendmsg

The sendmsg function uses a msghdr structure to minimize the number
of directly supplied arguments. This structure has the following form, as
defined in SYS/ SOCKET.H:

Communication Service Group

BSD Socket: Functions 375

struct msghdr {
 char *msg_name; /* optional address */
 int msg_addrlen; /* size of address */
 struct iovec *msg_iov; /* scatter/gather array */
 int msg_iovlen; /* # elements in msg_iov */
 char *msg_accrights; /* unused, set to 0 */
 int msg_accrightslen; /* unused, set to 0 */
} msghdr;

Here, msg_name returns the source address of a message; msg_name can be
given as a NULL pointer if no addresses are desired or required.

The msg_iov and msg_iovlen fields describe the scatter/gather locations,
which constitute a buffer that is dispersed in different locations. The
msg_accrights and msg_accrightslen fields do not apply to TCP or UDP
sockets. They can be set to 0 in a request and are undefined in a reply.

sendto

The destination address is given by to, with tolen specifying its size. For
UDP over IP sockets, the address is a sockaddr_in structure, defined in
NETINET/IN.H. For TCP over IPX sockets, the address is a sockaddr_ipx
structure, defined in NETIPX/IPX.H. The length of the message is given
by len. If the message is too long to pass atomically through the
underlying protocol, the error EMSGSIZE is returned in errno, and the
message is not transmitted.

See Also

getsockname, recv, recvfrom, recvmsg, select, socket, writev

Communication Service Group

BSD Socket: Functions 376

setsockopt

Establishes parameters for socket operation
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.x, 4.x
Platform: NLM
Standard: BSD
Service: BSD Socket

Syntax

#include <sys/types.h>
#include <nlm/sys/socket.h>
#include <nlm/sys/bsdskt.h>

int setsockopt (
 int s,
 int level,
 int optname,
 char *optval,
 int optlen);

Parameters

s

(IN) Identifies the socket file handle of a socket for which parameters
are to be established.

level

(IN) Specifies the level at which the option resides.

optname

(IN) Identifies the option for the request.

optval

(IN) Points to an option value.

optlen

(IN) Indicates the length of the option.

Return Values

If setsockopt succeeds, it returns a value of 0. If it fails, it returns a value
of -1, and errno indicates the error.

On failure, the setsockopt function returns one of the following errors in
errno:

Communication Service Group

BSD Socket: Functions 377

EBADF The argument s is not a valid socket file handle.

EINVAL The value of argument optlen is inappropriate.

ENOTSOCK The argument s is a file, not a socket.

ENOPROTOO
PT

The option is unknown at the level indicated.

Remarks

The setsockopt function manipulates options associated with a socket.
These options are defined as arguments for these functions. Options exist
at either the socket level or the underlying protocol level.

When setting socket options, you must specify the name of the option
and the level at which it resides. To set options at the socket level, specify
level as SOL_SOCKET. To set options at the protocol level, supply the
number of the underlying protocol controlling the option. For example,
for IP protocol families if you want TCP to interpret an option, set the
level to IPPROTO_TCP, as defined in NETINET/IN.H. The protocol
number for UDP is IPPROTO_UDP. For IPX protocol families if you want
TCP to interpret an option, set the level to IPXPROTO_TCP, as defined in
NETIPX/IPX.H. See getprotoent.

The optname argument identifies the option for the request. The include
file SYS/ SOCKET.H contains definitions for socket-level options.

The argument optval points to an option value, while optlen is the length
of the option.

For all cases except SO_LINGER, optval refers to an integer object. The
optval argument points to a nonzero integer to enable a boolean option, or
zero to disable the option.

The following options are recognized at the socket level. Except as noted,
each can be examined with getsockopt and set with setsockopt.

SO_REUSEA
DDR

Indicates that the rules used in validating addresses
supplied in a bind call should allow reuse of local
addresses. This option is typically enabled only for
TCP sockets that connect and use a fixed local port
value, as in the File Transport Protocol (FTP).

SO_KEEPALI
VE

Enables the periodic transmission of messages on a
connected socket. Should the connected party fail to
respond to these messages, the connection is
considered broken, and requests on the socket fail,
returning the ETIMEDOUT error code.

SO_OOBINLI Requests that out-of-band data be placed in the

Communication Service Group

BSD Socket: Functions 378

NE normal data input queue as received; it is then
accessible with recv or read calls without the
MSG_OOB flag.

SO_SNDBUF Specifies the limit placed on output data buffering.
The limit can be increased for high-volume
connections or decreased to limit the possible backlog
of buffered data. The system places an absolute limit
of 64 Kb on this value.

SO_RCVBUF Is the counterpart to SO_SNDBUF for incoming data.
It determines the size of TCP's receive window. For
best efficiency, sender and receiver should have
similar send and recv buffer limits.

SO_LINGER Controls the action taken when unsent data is queued
on a SOCK_STREAM socket and a close call is
performed. The optval argument can point to a struct
linger argument, defined in SYS/SOCKET.H, which
specifies the desired state of the option and the linger
interval. If SO_LINGER is enabled and the linger time
is nonzero, the close call blocks indefinitely, or until
the protocol is able to deliver the data. If the linger
time is zero, the protocol aborts the connection when
close is invoked, possibly losing data. If SO_LINGER
is disabled and a close is issued, the protocol assumes
responsibility for delivering the data and permits the
client to continue without blocking. This is the default
behavior.

SO_TYPE Returns the type of the socket, such as
SOCK_STREAM.

SO_ERROR Returns any pending error code on the socket and
clears the error status. You can use it to check errors
on connected datagram sockets.

See Also

getprotoent, socket

Communication Service Group

BSD Socket: Functions 379

shutdown

Ends all or part of a full-duplex connection
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 3.x, 4.x
Platform: NLM
Standard: BSD
Service: BSD Socket

Syntax

#include <nlm/sys/socket.h>
#include <nlm/sys/bsdskt.h>

int shutdown (
 int s,
 int how);

Parameters

s

(IN) Identifies the socket file handle of a socket on which the
connection is to be ended.

how

(IN) Indicates the extent to which the connection is to be ended.

Return Values

If shutdown succeeds, it returns a value of 0. It returns -1 if it fails. On
failure, shutdown returns one of the following errors in errno:

EBADF The argument s is not a valid handle.

ENOTSOCK The argument s is a file, not a socket handle.

ENOTCONN The specified socket is not connected.

Remarks

The shutdown function ends all or part of a full-duplex connection on the
socket associated with s. If how is 0 (receive shutdown), subsequent recv
calls are not allowed. If how is 1 (send shutdown), further send calls are
not allowed. If how is 2 (send and receive shutdown), subsequent send
and recv calls are not allowed.

Communication Service Group

BSD Socket: Functions 380

and recv calls are not allowed.

A send shutdown function on a TCP socket issues a graceful close. The
socket can still be used to receive data. A receive shutdown call merely
discards incoming data.

See Also

connect, socket

Communication Service Group

BSD Socket: Functions 381

socket

Creates a socket endpoint for communication
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 3.x, 4.x
Platform: NLM
Standard: BSD
Service: BSD Socket

Syntax

#include <sys/types.h>
#include <nlm/sys/socket.h>
#include <nlm/sys/bsdskt.h>

int socket (
 int domain,
 int type,
 int protocol);

Parameters

domain

(IN) Specifies a domain where communication is to occur and selects
the protocol family used.

type

(IN) Specifies the semantics of communication and implies a protocol.

protocol

(IN) Specifies a particular protocol to be used with the socket.

Return Values

If an error occurs, socket returns -1 and errno describes the error.
Otherwise, the return value is a socket handle referencing the socket.

On failure, socket returns one of the following errors in errno:

EPROTONOSUPPO
RT

The protocol type or the specified protocol is not
supported within this domain.

EPROTOTYPE The specified protocol type does not match its
actual type.

ENOBUFS The socket cannot be created until sufficient
resources are freed.

Communication Service Group

BSD Socket: Functions 382

Remarks

The socket function creates an endpoint for communication and returns a
handle.

The domain argument specifies a domain where communication is to
occur and selects the protocol family used. This version supports only the
PF_INET family, which includes TCP and UDP. Both protocols use the
AF_INET address family for the addresses supplied in later operations
on the socket.

This version also supports the PF_IPX family, which includes TCP. This
protocol uses the AF_IPX address family for the addresses supplied in
later operations on the socket.

The type argument specifies the semantics of communication and implies
a protocol. Within PF_INET, the SOCK_STREAM type uses TCP, and the
SOCK_DGRAM type uses UDP, as follows:

TCP provides sequenced, reliable, two-way connection-based byte
streams.

UDP supports datagrams (connectionless, unreliable messages shorter
than 65,536 bytes).

The protocol argument specifies a particular protocol to be used with the
socket. The PF_INET family supports one protocol per type, therefore it is
sufficient to specify its value as 0. For completeness, the supported values
for the PF_INET domain are defined in NETINET/IN.H. The protocol
values for TCP and UDP are as follows:

IPPROTO_TC
P

TCP

IPPROTO_UD
P

UDP

The PF_IPX family supports only one protocol; therefore, it is sufficient to
specify its value as 0. The supported values for the PF_IPX domain are
defined in NETIPX/IPX.H. The protocol value for TCP is as follows:

IPXPROTO_T
CP

TCP

A TCP socket must be in a connected state before it can receive or send
any data. The connect function creates another socket. Once connected,

Communication Service Group

BSD Socket: Functions 383

data can be transferred using the read and write functions or some
variant of the send and recv functions. When a session is complete, a close
function can be performed. Out-of-band urgent data can also be
transmitted (as described in send) and received (as described in recv).

TCP ensures that data is not lost or duplicated. If the peer socket does not
acknowledge a transmission attempt within a reasonable length of time,
the connection is considered broken and the call fails, returning
ETIMEDOUT in errno. TCP optionally keeps sockets active by forcing
transmissions periodically in the absence of other activity.

SOCK_DGRAM sockets allow transmission of datagrams to
correspondents named in sendto calls. The recvfrom function receives
datagrams and returns the next datagram with its return address.

A fcntl function can be used to enable nonblocking I/O.

Socket-level options affect the operation of sockets. The file
SYS/SOCKET.H defines these options. The setsockopt and getsockopt
functions are used to set and get options, respectively.

See Also

accept, bind, connect, getsockname, getsockopt, listen, recv, recvfrom,
recvmsg, select, send, sendmsg, sendto, shutdown, writev

Communication Service Group

BSD Socket: Functions 384

writev

Writes data from a list of user buffers to a socket
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 3.x, 4.x
Platform: NLM
Standard: BSD
Service: BSD Socket

Syntax

#include <nlm/sys/socket.h>
#include <nlm/sys/bsdskt.h>
#include <sys/types.h>
#include <sys/uio.h>

int writev (
 int s,
 struct iovec *iov,
 int iovcnt);

Parameters

s

(IN) Identifies the socket file handle of a socket to which data is to be
written.

iov

(IN) Points to the iovec structure, which specifies a list of buffers from
which data can be copied.

iovcnt

(IN) Indicates the number of buffers specified by the iov array.

Return Values

On failure, the writev function returns one of the following errors in errno
:

EBADF The argument s is not a valid socket file handle open
for writing.

EMSGSIZE On a SOCK_DGRAM socket, the size of the message
would exceed the protocol's capability.

EPIPE An attempt is made to write to a SOCK_STREAM
socket that is not connected to a peer socket or has

Communication Service Group

BSD Socket: Functions 385

socket that is not connected to a peer socket or has
been closed.

EWOULDBL
OCK

The file was marked for nonblocking I/O, and no data
could be written immediately.

EINVAL One of the iov_len values in the iov array was
negative, or the sum of the iov_len values in the iov
array overflowed a 32-bit integer.

EDESTADDR
REQ

The datagram socket has not associated itself with a
destination address.

Remarks

The writev function attempts to write nbytes of data to a SOCK_STREAM
socket described by the argument s from the buffer pointed to by buf. It
gathers the output data from the iovcnt buffers specified by the members
of the iov array: iov[0], iov[1], ..., iov[iovcnt-1].

For writev, the iovec structure is defined as follows:

struct iovec
{
 char *iov_base;
 int iov_len;
} iovec;

Each iovec entry specifies the base address and length of an area in
memory from which data can be copied.

When using nonblocking I/O on SOCK_STREAM sockets, writev might
write fewer bytes than requested; the return value must be noted, and the
remainder of the operation should be retried when possible. Call select to
determine when to try the operation again.

The writev function can also write data to SOCK_DGRAM sockets, but
send and its derivatives are better suited for this job. Semantics are
identical to a send request except the flags argument is not available.

See Also

select

Communication Service Group

BSD Socket: Functions 386

BSD Socket: Structures

Communication Service Group

BSD Socket: Structures 387

iovec

Service: BSD Socket
Defined In: socket.h

Structure

nlm/sys/socket.h
nlm/sys/bsdskt.h

struct iovec {
 char *iov_base;
 int iov_len;
} iovec;

Fields

iov_base

iov_len

Communication Service Group

BSD Socket: Structures 388

msghdr

Contains message information
Service: BSD Socket
Defined In: socket.h

Structure

nlm/sys/socket.h
nlm/sys/bsdskt.h

struct msghdr {
 char *msg_name;
 int msg_addrlen;
 struct iovec *msg_iov;
 int msg_iovlen;
 char *msg_accrights;
 int msg_accrightslen;
} msghdr;

Fields

msg_name

Contains an optional address.

msg_addrlen

Contains the size of msg_name.

msg_iov

Contains the scatter/gather array.

msg_iovlen

Contains the number of elements in msg_iov.

msg_accrights

Unused; set to 0.

msg_accrightslen

Unused; set to 0.

Communication Service Group

BSD Socket: Structures 389

sockaddr

Contains socket address information
Service: BSD Socket
Defined In: socket.h

Structure

nlm/sys/socket.h
nlm/sys/bsdskt.h

Fields

Communication Service Group

BSD Socket: Structures 390

timeval

Contains BSD time information
Service: BSD Socket
Defined In: socket.h

Structure

nlm/sys/socket.h
nlm/sys/bsdskt.h
nlm/sys/timeval.h

struct {
 long tv_sec;
 long tv_usec;
} timeval;

Fields

tv_sec

Specifies the number of seconds for the timeout value.

tv_usec

Specifies the number of miscroseconds for the timeout value.

Communication Service Group

BSD Socket: Structures 391

Diagnostic

Communication Service Group

 392

Diagnostic: Guides

Diagnostic: General Guide

Diagnostic Introduction

Configuration Request Packet

Configuration Reply Packet

Querying Specific Components

Diagnostic Session Functions

Diagnostic Information Functions

Diagnostic: Concepts

Diagnostic: Functions

Diagnostic: Structures

Communication Service Group

Diagnostic: Guides 393

Diagnostic: Concepts

Configuration Reply Packet

Each network node not excluded from the broadcast of the Configuration
Request Packet responds with a Configuration Reply Packet. By scanning
IPX Configuration Reply Packets returned by network nodes, a diagnostic
application can identify all nodes and their software components and build
a map of the network.

The Configuration Reply Packet includes the following fields:

IPX header

Major version

Minor version

SPX diagnostic socket

Component count

Component type

 component type identifies a software component residing at the responding
node. The field is repeated in succession for each component present at the
node. The following types are defined:

0 IPX/SPX
1 Bridge driver
2 Shell driver
3 Shell
4 VAP shell
5 External bridge
6 Internal bridge
7 Nondedicated NetWare® server
8 Star 68000 (IPX only)
9 DOS GNMA
10 OS/2 GNMA

For NetWare servers, bridges, and star 68000, each component type is
followed by additional information describing the networks that the
component communicates with. This information includes the following
fields.

Network count

Communication Service Group

Diagnostic: Concepts 394

Network count

Local network type

Network address

Node address

local network type, network address, and node address are repeated for each local
network the component communicates with. local network type can take the
following values:

0 LAN board
1 Non-dedicated file server (virtual board)
2 Redirected remote line
3 Virtual SFT3 board
4 Idle (or Standby) virtual SFT3 board

ConfigurationResponseStruct is defined for interpreting Configuration
Response Packets.

Parent Topic:

Diagnostic: General Guide

Related Topics:

Querying for Configuration Data

Configuration Request Packet

Configuration Request Packet

To broadcast a configuration request you build a Configuration Request
Packet. Since IPX does not guarantee packet delivery, you may have to
re-broadcast the request packet to unresponsive nodes. The packet includes
the following fields:

IPX header

Number of exclusions

Exclusion list

IPX header is the IPX header filled in appropriately:

To query a specific network node, set node address in the IPX header to the
node's address.

To query multiple nodes, set node address to 0xFFFFFFFFFFFF.

number of exclusions indicates the number of addresses in exclusion list.
exclusion list should contain the addresses of any nodes you aren't
interested in querying or have already queried. Don't include the node

Communication Service Group

Diagnostic: Concepts 395

address of a bridge in the exclusion list. If you don't want to exclude any
nodes from the broadcast, set exclusion address count and exclusion
address to zero.

IPXPacket and ExclusionPacketStructure can be used to create the
Configuration Request Packet.

Parent Topic:

Diagnostic: General Guide

Related Topics:

Querying for Configuration Data

Configuration Reply Packet

Diagnostic Information Functions

These functions are used to return network diagnostic information.

Function Header Comment

GetAllKnownServers nwdiag.h
diag.h

Returns the server type
and name of each server
know to the specified
bridge that the
diagnostic application
sends the request packet
to.

GetBridgeDriverConfigur
ation

nwdiag.h
diag.h

Returns the current
configuration of the
specified bridge driver.

GetBridgeDriverStatistics nwdiag.h
diag.h

Returns the entire driver
diagnostic table of the
specified bridge driver.

GetBridgeDriverStatus nwdiag.h
diag.h

Returns the status of all
LAN boards installed in
a bridge.

GetShellDriverConfigura
tion

nwdiag.h
diag.h

Returns the current
configuration of the
specified workstation
shell.

GetShellDriverStatistics nwdiag.h
diag.h

Returns the entire driver
diagnostic table of the
specified workstation
shell.

GetOSVersionInfo nwdiag.h
diag.h

Returns the OS version
of the target

Communication Service Group

Diagnostic: Concepts 396

workstation.

GetShellAddress nwdiag.h
diag.h

Returns a workstation's
12-byte IPX network
address.

GetShellStatistics nwdiag.h
diag.h

Returns the counters
kept by the workstation
shell.

GetServerAddressTable nwdiag.h
diag.h

Returns the entire
connection ID table of
the specified
workstation.

GetServerNameTable nwdiag.h
diag.h

Returns the entire server
name table as defined by
the shell.

GetPrimaryServerNumbe
r

nwdiag.h
diag.h

Returns the primary
server's number.

GetShellVersionInfo nwdiag.h
diag.h

Returns the workstation
shell version number.

GetBridgeStatistics nwdiag.h
diag.h

Returns statistics
pertaining to the
specified bridge.

GetLocalTables nwdiag.h
diag.h

Returns the node
address of each LAN
board installed in the
specified bridge.

GetSpecificNetworkInfo nwdiag.h
diag.h

Returns information
concerning routing times
and routes between the
specified bridge and a
specified network.

GetSpecificServerInfo nwdiag.h
diag.h

Returns information
about the routing times
and routes between the
specified bridge and the
specified server.

Parent Topic:

Diagnostic: General Guide

Diagnostic Introduction

Diagnostic provides information about the network's configuration and
performance. Use this service to perform the following tasks:

Communication Service Group

Diagnostic: Concepts 397

Identify and query network nodes

Build a network map

Identify the software components on network nodes

Perform point-to-point performance tests

Query logical components on a network node

This information is written primarily from an assembly language
programmer's view. That is, it describes how Diagnostic operates at the
IPX™ and SPX™ level.

The C API library functions manage most diagnostic details for your
application. This includes managing connections, building packets, and
receiving results. The header nwdiag.h defines numerous structure for
receiving diagnostic information.

Parent Topic:

Diagnostic: General Guide

Diagnostic Session Functions

These functions are used to manage a diagnostic session and obtain IPX and
SPX performance data.

Function Header Comment

AbortSendingPackets nwdiag.h
diag.h

Instructs the sending
node in a diagnostic
point-to-point test to
stop sending packets.

BeginDiagnostics nwdiag.h
diag.h

Performs the necessary
initialization for the
remainder of the
diagnostic session.

EndDiagnostics nwdiag.h
diag.h

Terminates the
connection to the target
node and closes the
socket.

FindComponentOffset nwdiag.h
diag.h

Searches through the
component list returned
either by an IPX
configuration response
packet or by
BeginDiagnostics. The
function returns the
offset value of the

Communication Service Group

Diagnostic: Concepts 398

component for which
diagnostic information is
wanted.

GetIPXSPXVersion nwdiag.h
diag.h

Returns the IPX and SPX
version numbers of a
network station.

GetIPXStatistics nwdiag.h
diag.h

Returns IPX
performance statistics
pertaining to a network
station.

GetSPXStatistics nwdiag.h
diag.h

Returns SPX
performance statistics
pertaining to the
network node.

StartCountingPkts nwdiag.h
diag.h

Prepares a node to
participate in a
point-to-point diagnostic
test.

StartSendingPktsTimed nwdiag.h
diag.h

Initiates and controls a
point-to-point diagnostic
test.

ReturnReceivedPacketCo
unt

nwdiag.h
diag.h

Returns information
about the destination
node upon completing a
point-to-point diagnostic
test.

Parent Topic:

Diagnostic: General Guide

Querying for Configuration Data

Diagnostic relies on IPX to return configuration data about network nodes.
With this information, you can build a map of the network's logical
components.

Parent Topic:

Diagnostic: General Guide

Related Topics:

Configuration Request Packet

Configuration Reply Packet

Communication Service Group

Diagnostic: Concepts 399

Querying Specific Components

Diagnostic uses an SPX connection to return information about a node's
specific software components. The following steps build a Diagnostic
Request Packet.

1. The component list of the IPX Configuration Reply Packet is scanned for
the target component.

2. The position of the component in the component list (first = 00h, second
= 01h, etc.) is determined.

3. The destination SPX socket number is taken from the IPX Configuration
Reply Packet.

4. The SPX packet header is prepared. The packet includes the following
data:

SPX header

component number

request type

additional request data

5. The target component's position in component number is recorded, along
with the request type and any additional data.

6. The SPX request packet is sent to the destination socket.

If successful, the results are returned as Diagnostic Reply Packets.

Parent Topic:

Diagnostic: General Guide

Communication Service Group

Diagnostic: Concepts 400

Diagnostic: Functions

Communication Service Group

Diagnostic: Functions 401

AbortSendingPackets

Instructs the sending node in a diagnostic point-to-point test to stop sending
packets
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Platform: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int AbortSendingPackets(
 WORD connectionID,
 BYTE componentNumber);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX™
Configuration Response packet (or BeginDiagnostics ' component
list). To obtain this offset, call FindComponentOffset.

Remarks

AbortSendingPackets does not generate a reply packet.

See Also

IPXSendPacket (DOS), IPXSendPacket (Win)

Communication Service Group

Diagnostic: Functions 402

BeginDiagnostics

Performs the necessary initialization for the remainder of the diagnostics
functions
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int BeginDiagnostics(
 BeginDiagnosticStruct *destination,
 WORD *connectionID,
 BYTE *componentList);

Parameters

destination

(IN) Indicates the IPX address (that is, Network, Node, and Socket)
destination packets are to be sent to.

connectionID

(OUT) Indicates the number assigned when the connection was
established.

componentList

(OUT) Indicates the list (up to 540 bytes) of the components (bridge,
file server, nondedicated IPX/SPX) on the target node. The first byte of
the list is a count of the number of components listed. Each component
on the list then takes one additional byte.

Return Values

0x00 Successful

0xFC Could Not Establish Connection

0xFD Could Not Begin Connection

0xFE Could Not Open Socket

0xFF General Failure

Remarks

Communication Service Group

Diagnostic: Functions 403

After all diagnostic functions have been called, call EndDiagnostics.

Communication Service Group

Diagnostic: Functions 404

EndDiagnostics

Terminates the connection to the target node and closes the socket
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>
int EndDiagnostics(
 WORD connectionID);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

Return Values

0x00 Successful

0xFF General Failure

Remarks

The connection is terminated by passing a connection ID.

See Also

BeginDiagnostics

Communication Service Group

Diagnostic: Functions 405

FindComponentOffset

Searches through the component list returned either by an IPX
Configuration Response packet or by BeginDiagnostics, and returns the
offset value
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

BYTE FindComponentOffset(
 BYTE *componentList,
 BYTE componentID);

Parameters

componentList

(IN) Indicates the list (up to 540 bytes long) of the components (bridge,
file server, and so on) on the target node.

componentID

(IN) Indicates the number associated with the software component to
be queried by one of the Diagnostic Services functions.

Return Values

Offset
Value

0 < offset value < 538

0xFF General Failure

Remarks

The first byte of componentList is the number of components listed. Each
component on the list takes one additional byte. The list is obtained from
the Configuration Response packet or from BeginDiagnostics'
componentList.

(0 < offset-value < 538) of the component for which diagnostics
information is wanted.

componentID can be one of the following values:

Communication Service Group

Diagnostic: Functions 406

0 IPX/SPX
1 Bridge Driver
2 Shell Driver
3 Shell
4 VAP Shell
5 External Bridge
6 Internal Bridge
7 Nondedicated File Server
8 Star 68000 (IPX only)
9 DOS GNMA
10 OS/2 GNMA

Communication Service Group

Diagnostic: Functions 407

GetAllKnownNetworks

Returns the network address of each network known to the specified bridge
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int GetAllKnownNetworks(
 WORD connectionID,
 BYTE componentNumber,
 WORD nextNetworkOffset,
 AllResponseData *response,
 AllKnownNetworksStruct *responseData);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX
Configuration Response packet (or BeginDiagnostics ' componentList).
To obtain this offset, call FindComponentOffset.

nextNetworkOffset

(IN) Indicates the offset number for subsequent calls to
GetAllKnownNetworks. Should be set to 0 for the first call. If
GetAllKnownNetworks returns a full set of 128 network addresses in
reply to the first call, it should be set to 128 for the second call, and so
on until the function returns a partial set of network addresses. A
partial set of network addresses indicates the end of the known
network address list.

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to an AllKnownNetworksStruct structure.

Return Values

Communication Service Group

Diagnostic: Functions 408

0x00 Successful

0xFF General Failure

Remarks

GetAllKnownNetworks returns the network address of each network
known to the bridge to which the diagnostic application sends the
Request packet. It can return a maximum of 128 network addresses. An
application can repeat GetAllKnownNetworks to return several sets of
known network addresses.

Communication Service Group

Diagnostic: Functions 409

GetAllKnownServers

Returns the server type and name of each server known to the specified
bridge to which the diagnostic application sends the Request packet
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int GetAllKnownServers(
 WORD connectionID,
 BYTE componentNumber,
 WORD numberServersToSkip,
 AllResponseData *response,
 AllKnownServersStruct *responseData);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX
Configuration Response packet (or BeginDiagnostics' component list).
To obtain this offset, call FindComponentOffset.

numberServersToSkip

(IN) Indicates the number of servers not to count. It should be set to 0
for the first call. If GetAllKnownServers returns a full set of 10 server
types and names in reply to the first call, numberServersToSkip should
be set to 10 for the second call, and so on until the function returns a
partial set of types and names. A partial set of types and names
indicates the end of the list.

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to an AllKnownServersStruct structure.

Return Values

Communication Service Group

Diagnostic: Functions 410

0x00 Successful

0xFF General Failure

Remarks

GetAllKnownServers can return a maximum of 10 server types and
names. An application can repeatedly call GetAllKnownServers to
return several sets of known server types and names.

Communication Service Group

Diagnostic: Functions 411

GetBridgeDriverConfiguration

Returns the current configuration of the specified bridge driver
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int GetBridgeDriverConfiguration(
 WORD connectionID,
 BYTE componentNumber,
 BYTE LANBoardNumber,
 AllResponseData *response,
 DriverConfigurationStruct *responseData);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX
Configuration Response packet (or BeginDiagnostics' component list).
To obtain this offset, call FindComponentOffset.

LANBoardNumber

(IN) Indicates the target LAN board (0, 1, 2, or 3).

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to a DriverConfigurationStruct structure.

Return Values

0x00 Successful

0x01 Invalid Board Number

0xFF General Failure

Communication Service Group

Diagnostic: Functions 412

Remarks

GetBridgeDriverConfiguration returns the current configuration of the
specified bridge driver (0, 1, 2, or 3) in the bridge to which the diagnostic
application sends the Request packet. GetBridgeDriverConfiguration
returns an error if the specified bridge driver does not exist.

See Also

IPXSendPacket (DOS), IPXSendPacket (Win)

Communication Service Group

Diagnostic: Functions 413

GetBridgeDriverStatistics

Returns the entire Driver Diagnostic Table of the specified bridge driver
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int GetBridgeDriverStatistics(
 WORD connectionID,
 BYTE componentNumber,
 BYTE LANBoardNumber,
 AllResponseData *response,
 DriverStatisticsStruct *responseData);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX
Configuration Response packet (or BeginDiagnostics' component list).
To obtain this offset, call FindComponentOffset.

LANBoardNumber

(IN) Indicates the target LAN board (0, 1, 2, or 3).

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to a DriverStatisticsStruct structure.

Return Values

0x00 Successful

0x01 Invalid Board Number

0xFF General Failure

Communication Service Group

Diagnostic: Functions 414

Remarks

GetBridgeDriverStatistics returns the entire Driver Diagnostic Table of
the specified bridge driver in the bridge to which the diagnostic
application sends the Request packet. The table consists of a set of generic
counters followed by a list of driver-dependent custom variables. Generic
counters not meaningful for a particular driver are set to -1.

NOTE: Although GetBridgeDriverStatistics reports both actual
drivers and virtual drivers, it only returns statistics for an actual board.
For a virtual driver, it returns 0x01.

See Also

IPXSendPacket (DOS), IPXSendPacket (Win)

Communication Service Group

Diagnostic: Functions 415

GetBridgeDriverStatus

Returns the status of all LAN boards installed in a bridge
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int GetBridgeDriverStatus(
 WORD connectionID,
 BYTE componentNumber,
 AllResponseData *response,
 BridgeDriverStatusStruct *responseData)

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX
Configuration Response packet (or BeginDiagnostics' component list).
To obtain this offset, call FindComponentOffset.

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to aBridgeDriverStatusStruct structure.

Return Values

0x00 Successful

0x01 Invalid Board Number

0xFF General Failure

Remarks

GetBridgeDriverStatus returns the status of all LAN boards installed in

Communication Service Group

Diagnostic: Functions 416

the bridge to which the diagnostic application sends the Request packet.

See Also

IPXSendPacket (DOS), IPXSendPacket (Win)

Communication Service Group

Diagnostic: Functions 417

GetBridgeStatistics

Returns statistics pertaining to the specified bridge
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int GetBridgeStatistics(
 WORD connectionID,
 BYTE componentNumber,
 AllResponseData *response,
 BridgeStatisticsStruct *responseData);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX
Configuration Response packet (or BeginDiagnostics' component list).
To obtain this offset, call FindComponentOffset.

response

(OUT) Points to anAllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to a BridgeStatisticsStruct structure.

Return Values

0x00 Successful

0xFF General Failure

Remarks

GetBridgeStatistics returns statistics pertaining to the bridge to which
the diagnostic application sends the Request packet.

Communication Service Group

Diagnostic: Functions 418

See Also

IPXSendPacket (DOS), IPXSendPacket (Win)

Communication Service Group

Diagnostic: Functions 419

GetIPXSPXVersion

Returns the IPX andSPX™ version numbers of a network station
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>
int GetIPXSPXVersion(
 WORD connectionID,
 BYTE componentNumber,
 AllResponseData *response,
 IPXSPXVersion *responseData);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX
Configuration Response packet (or BeginDiagnostics' component list).
To obtain this offset, call FindComponentOffset.

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to an IPXSPXVersion structure.

Return Values

0x00 Successful

0xFF General Failure

Remarks

GetIPXSPXVersion returns the IPX and SPX version numbers of the
network station to which the diagnostic application sends the Request
packet. GetIPXSPXVersion does not return the version number of the
target node's shell or operating system.

Communication Service Group

Diagnostic: Functions 420

See Also

IPXSendPacket (DOS), IPXSendPacket (Win)

Communication Service Group

Diagnostic: Functions 421

GetIPXStatistics

Returns IPX performance statistics pertaining to a network station
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int GetIPXStatistics(
 WORD connectionID,
 BYTE componentNumber,
 AllResponseData *response,
 IPXStatisticsStruct *responseData);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX
Configuration Response packet (or BeginDiagnostics' component list).
To obtain this offset, call FindComponentOffset.

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to an IPXStatisticsStruct structure

Return Values

0x00 Successful

0xFF General Failure

Remarks

GetIPXStatistics returns IPX performance statistics pertaining to the
network station to which the diagnostic application sends the request
packet.

Communication Service Group

Diagnostic: Functions 422

See Also

IPXSendPacket (DOS), IPXSendPacket (Win)

Communication Service Group

Diagnostic: Functions 423

GetLocalTables

Returns the node address of each LAN board installed in the specified
bridge
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int GetLocalTables(
 WORD connectionID,
 BYTE componentNumber,
 AllResponseData *response,
 LocalTablesStruct *responseData);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX
Configuration Response packet (or BeginDiagnostics' component list).
To obtain this offset, call FindComponentOffset.

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to a LocalTablesStruct structure.

Return Values

0x00 Successful

0xFF General Failure

Remarks

GetLocalTables returns the node address of each LAN board installed in
the bridge to which the diagnostic application sends the Request packet.

Communication Service Group

Diagnostic: Functions 424

GetLocalTables also returns the network number corresponding to each
LAN board. In the case of remote LAN-to-LAN networks,
GetLocalTables also returns the node addresses of all virtual boards and
their corresponding network numbers.

See Also

IPXSendPacket (DOS), IPXSendPacket (Win)

Communication Service Group

Diagnostic: Functions 425

GetOSVersionInfo

Return the OS version of the target workstation
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int GetOSVersionInfo(
 WORD connectionID,
 BYTE componentNumber,
 AllResponseData *response,
 OSVersionStruct *responseData);

Parameters

connectionID

(IN) Indicates the NetWare server connection ID.

componentNumber

(IN) Indicates the position of the target component within the
Configuration Response packet (or BeginDiagnostics' component list).
To obtain this offset, call FindComponentOffset.

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to an OSVersionStruct structure.

Return Values

0x00 Successful

0xFF General Failure

Remarks

GetOSVersionInfo returns information about the network station to
which the diagnostic application sends the Request packet.

Communication Service Group

Diagnostic: Functions 426

GetPrimaryServerNumber

Returns the primary server's number
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int GetPrimaryServerNumber(
 WORD connectionID,
 BYTE componentNumber,
 AllResponseData *response,
 PrimaryServerStruct *responseData);

Parameters

connectionID

Indicates the NetWare server connection ID.

componentNumber

(IN) Indicates the position of the target component within the
Configuration Response packet (or BeginDiagnostics' component list).
To obtain this offset, call FindComponentOffset.

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to a PrimaryServerStruct structure.

Return Values

0x00 Successful

0xFF General Failure

Remarks

A diagnostic application sends this Request packet to a workstation.
GetPrimaryServerNum returns a number (1-8) indicating the physical
position of the primary server's address and name in Connection ID
Table and Server Name Table respectively. serverPositionNumber is not

Communication Service Group

Diagnostic: Functions 427

the server's Order Number returned by Return Connection ID Table.

Communication Service Group

Diagnostic: Functions 428

GetServerAddressTable

Returns the entire Connection ID Table of the specified workstation
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int GetServerAddressTable(
 WORD connectionID,
 BYTE componentNumber,
 AllResponseData *response,
 ServerAddressTableStruct *responseData);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX
Configuration Response packet (or BeginDiagnostics' component list).
To obtain this offset, call FindComponentOffset.

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to a ServerAddressTableStruct structure.

Return Values

0x00 Successful

0xFF General Failure

Remarks

GetServerAddressTable returns the entire Connection ID Table of the
workstation to which the diagnostic application sends the Request
packet. Connection ID Table consists of eight 32-byte entries. Each entry

Communication Service Group

Diagnostic: Functions 429

identifies one file server.

Communication Service Group

Diagnostic: Functions 430

GetServerNameTable

Returns the entire Server Name Table as currently defined by the shell
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int GetServerNameTable(
 WORD connectionID,
 BYTE componentNumber,
 AllResponseData *response,
 ServerNameTableStruct *responseData);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX
Configuration Response packet (or BeginDiagnostics component list).
To obtain this offset, call FindComponentOffset.

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to a ServerNameTableStruct structure.

Return Values

0x00 Successful

0xFF General Failure

Remarks

GetServerNameTable returns the entire Server Name Table of the
workstation to which the diagnostic application sends the Request
packet. Server Name 0 in the Server Name Table corresponds to entry 0

Communication Service Group

Diagnostic: Functions 431

in the workstation's Connection ID Table.

Communication Service Group

Diagnostic: Functions 432

GetShellAddress

Returns a workstation's 12-byte IPX internetwork address
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int GetShellAddress(
 WORD connectionID,
 BYTE componentNumber,
 AllResponseData *response,
 ShellAddressStruct *responseData);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX
Configuration Response packet (or BeginDiagnostics' component list).
To obtain this offset, call FindComponentOffset.

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to a ShellAddressStruct structure.

Return Values

0x00 Successful

0xFF General Failure

Remarks

GetShellAddress returns the 12-byte IPX internetwork address the
workstation's shell uses to receive packets from file servers.

Communication Service Group

Diagnostic: Functions 433

GetShellDriverConfiguration

Returns the current configuration of the specified shell driver
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int GetShellDriverConfiguration(
 WORD connectionID,
 BYTE componentNumber,
 AllResponseData *response,
 DriverConfigurationStruct *responseData);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX
Configuration Response packet (or BeginDiagnostics' component list).
To obtain this offset, call FindComponentOffset.

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to a DriverConfigurationStruct structure.

Return Values

0x00 Successful

0x01 Invalid Board Number

0xFF General Failure

Remarks

GetShellDriverConfiguration returns the current configuration of the

Communication Service Group

Diagnostic: Functions 434

shell driver in the workstation to which the diagnostic application sends
the request packet.

See Also

IPXSendPacket (DOS), IPXSendPacket (Win)

Communication Service Group

Diagnostic: Functions 435

GetShellDriverStatistics

Returns the entire Driver Diagnostic Table of the specified shell driver
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int GetShellDriverStatistics(
 WORD connectionID,
 BYTE componentNumber,
 AllResponseData *response,
 DriverStatisticsStruct *responseData);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX
Configuration Response packet (or BeginDiagnostics' component list).
To obtain this offset, call FindComponentOffset.

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to a DriverStatisticsStruct structure.

Return Values

0x00 Successful

0x01 Invalid Board Number

0xFF General Failure

Remarks

GetShellDriverStatistics returns the entire Driver Diagnostic Table of

Communication Service Group

Diagnostic: Functions 436

the shell driver in the workstation to which the diagnostic application
sends the Request packet. The table consists of a set of generic counters
followed by a list of driver-dependent custom variables. Generic counters
not meaningful for a particular driver are set to -1.

See Also

IPXSendPacket (DOS), IPXSendPacket (Win)

Communication Service Group

Diagnostic: Functions 437

GetShellStatistics

Returns the counters kept by the shell
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int GetShellStatistics(
 WORD connectionID,
 BYTE componentNumber,
 AllResponseData *response,
 ShellStatisticsStruct *responseData);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX
Configuration Response packet (or BeginDiagnostics' component list).
To obtain this offset, call FindComponentOffset.

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to a ShellStatisticsStruct structure.

Return Values

0x00 Successful

0xFF General Failure

Remarks

GetShellStatistics returns the counters kept by the shell in the
workstation to which the diagnostic application sends the request packet.
These counters track the number of requests the shell has made to file

Communication Service Group

Diagnostic: Functions 438

servers since the shell was activated. The counters also track the type of
requests the shell has made and the errors the shell has handled.

Communication Service Group

Diagnostic: Functions 439

GetShellVersionInfo

Returns the version number of the shell in the workstation to which the
diagnostic application sends the Request packet
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int GetShellVersionInfo(
 WORD connectionID,
 BYTE componentNumber,
 AllResponseData *response,
 ShellVersionStruct *responseData);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX
Configuration Response packet (or BeginDiagnostics component list).
To obtain this offset, call FindComponentOffset.

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to a ShellVersionStruct structure.

Return Values

0x00 Successful

0xFF General Failure

Remarks

responseData indicates the major and minor version numbers of the target
workstation's shell. For a shell version number of 1.0, 1 indicates the

Communication Service Group

Diagnostic: Functions 440

major version number and 0 indicates the minor version number.

Communication Service Group

Diagnostic: Functions 441

GetSpecificNetworkInfo

Returns information concerning routing times and routes between the
specified bridge and a specified (destination) network
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int GetSpecificNetworkInfo(
 WORD connectionID,
 BYTE componentNumber,
 BYTE *networkAddress,
 AllResponseData *response,
 SpecificNetworkInfoStruct *responseData);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX
Configuration Response packet (or BeginDiagnostics' component list).
To obtain this offset, call FindComponentOffset.

networkAddress

(IN) Indicates the destination network.

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to a SpecificNetworkInfoStruct structure.

Return Values

0x00 Successful

0xFF General Failure

Communication Service Group

Diagnostic: Functions 442

Remarks

GetSpecificNetworkInfo returns information concerning routing times
and routes between the bridge to which the diagnostic application sends
the Request packet and one destination network one or more hops away
from the bridge. If only one route exists between the bridge and the
destination network, GetSpecificNetworkInfo returns the node address
of the first interim bridge a packet meets enroute from the source bridge
to the destination network. It also returns the routing time and number of
hops pertaining to that route. If more than one route exists,
GetSpecificNetworkInfo returns the node addresses of all interim
bridges one hop away from the source bridge and the routing times and
number of hops associated with all routes. The most efficient route
appears at the top of the list in the Reply packet. The following fields
refer to the other (less efficient) known routes to the specified server.

Communication Service Group

Diagnostic: Functions 443

GetSpecificServerInfo

Returns information concerning routing times and routes between the
specified bridge and the specified (destination) server
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int GetSpecificServerInfo(
 WORD connectionID,
 BYTE componentNumber,
 ServerInfoStruct *server,
 AllResponseData *response,
 SpecificServerInfoStruct *responseData);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX
Configuration Response packet (or BeginDiagnostics' component list).
To obtain this offset, call FindComponentOffset.

server

(IN) Points to a ServerInfoStruct structure identifying the target server
for which to get information.

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to a SpecificServerInfoStruct structure.

Return Values

0x00 Successful

0xFF General Failure

Communication Service Group

Diagnostic: Functions 444

Remarks

GetSpecificServerInfo returns information concerning routing times and
routes between the bridge to which the diagnostic application sends the
Request packet and one destination server one or more hops away from
the bridge. If only one route exists between the bridge and the
destination server, GetSpecificServerInfo returns the node address of
the first interim bridge a packet meets enroute from the source bridge to
the destination server. It also returns the routing time and number of
hops pertaining to that route. If more than one route exists,
GetSpecificServerInfo returns the node addresses of all interim bridges
one hop away from the source bridge and the routing times and number
of hops associated with all routes. The most efficient route appears at the
top of the list in the Reply packet. The following fields refer to the other
(less efficient) known routes to the specified server.

Communication Service Group

Diagnostic: Functions 445

GetSPXStatistics

Returns SPX performance statistics pertaining to a network station
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int GetSPXStatistics(
 WORD connectionID,
 BYTE componentNumber,
 AllResponseData *response,
 SPXStatisticsStruct *responseData);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX
Configuration Response packet (or BeginDiagnostics' component list).
To obtain this offset, call FindComponentOffset.

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to a SPXStatisticsStruct structure

Return Values

0x00 Successful

0xFF General Failure

Remarks

GetSPXStatistics returns SPX performance statistics pertaining to the
network station to which the diagnostic application sends the Request
packet.

Communication Service Group

Diagnostic: Functions 446

See Also

IPXSendPacket (DOS), IPXSendPacket (Win)

Communication Service Group

Diagnostic: Functions 447

ReturnReceivedPacketCount

Returns information about the destination node upon completion of a
point-to-point diagnostic test
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int ReturnReceivedPacketCount(
 WORD connectionID,
 BYTE componentNumber,
 AllResponseData *response,
 ReturnReceivedPacketStruct *responseData);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX
Configuration Response packet (or BeginDiagnostics' component list).
To obtain this offset, call FindComponentOffset.

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to a ReturnReceivedPacketStruct structure.

Return Values

0x00 Successful

0xFF General Failure

Remarks

ReturnReceivedPacketCount sends a request packet to the destination
node upon completion of a point-to-point diagnostic test. It returns the

Communication Service Group

Diagnostic: Functions 448

number of point-to-point packets received by the destination node
during the test.

See Also

IPXSendPacket (DOS), IPXSendPacket (Win), StartSendingPktsTimed

Communication Service Group

Diagnostic: Functions 449

StartCountingPkts

Prepares a node to participate as the destination node of a point-to-point
diagnostic test
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int StartCountingPkts(
 WORD connectionID,
 BYTE componentNumber,
 AllResponseData *response,
 StartCountingPacketsStruct *responseData);

Return Values

0x00 Successful

0xFF0 General Failure

Remarks

StartCountingPkts sends a request packet resetting the counter used to
track the number of point-to-point packets received by the destination
node. StartCountingPkts also returns the socket number the application
must use in the request packet of StartSendingPktsTimed.

See Also

IPXSendPacket (DOS), IPXSendPacket (Win), StartSendingPktsTimed

Communication Service Group

Diagnostic: Functions 450

StartSendingPktsTimed

Initiates and controls a point-to-point diagnostic test between the
workstation to which the diagnostic application sends the Request packet
and any network node
NetWare Servers: 2.2, 3.11, 4.0
Client Platforms: DOS, Win
Service: Diagnostic Services

Syntax

#include <nwipxspx.h>

int StartSendingPktsTimed(
 WORD connectionID,
 BYTE componentNumber,
 SendPacketsRequestStruct *requestData,
 AllResponseData *response,
 SendPacketsResponseStruct *responseData,
 WORD ticks);

Parameters

connectionID

(IN) Indicates the number assigned when the connection was
established.

componentNumber

(IN) Indicates the position of the target component within the IPX
Configuration Response packet (or BeginDiagnostics' component list).
To obtain this offset, call FindComponentOffset.

requestData

(IN) Points to a SendPacketsRequestStruct structure containing the
number of packets to be sent and the timer tick interval.

response

(OUT) Points to an AllResponseData structure containing the
completion code and interval marker.

responseData

(OUT) Points to a SendPacketsResponseStruct containing the number
of Transmit Errors.

ticks

(IN) Indicates the maximum time limit (in units of 1/18 second) for the
test.

Communication Service Group

Diagnostic: Functions 451

Return Values

0x00 Successful

0xFF General Failure

Remarks

Before calling StartSendingPktsTimed, the diagnostic application must
call StartCountingPkts to another network node. After the diagnostic test
is completed, the application must call ReturnReceivedPacketCount.

The ticks parameter is the maximum amount of time (in ticks) that
StartSendingPktsTimed should wait before deciding that the test is not
going to complete normally. For example, if your test is expected to take
36 ticks (2 seconds), you might set ticks to 72, telling
StartSendingPktsTimed to quit sending packets and terminate if, for any
reason, the test does complete in 4 seconds. If ticks is set to 0,
StartSendingPktsTimed immediately returns with an error, terminating
before any packets are sent.

See Also

IPXSendPacket (DOS), IPXSendPacket (Win)

Communication Service Group

Diagnostic: Functions 452

Diagnostic: Structures

Communication Service Group

Diagnostic: Structures 453

AddressTableStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructAddressTable {
 BYTE serverUsed;
 BYTE orderNumber;
 BYTE serverNetwork[4];
 BYTE serverNode[6];
 WORD serverSocket;
 WORD receivedTimeout;
 BYTE immediateNode[6];
 BYTE sequenceNumber;
 BYTE connectionNumber;
 BYTE connectionOk;
 WORD maximumTimeout;
 BYTE reserved[5];
} AddressTableStruct;

Fields

serverUsed

Specifies whether the corresponding 32-byte server entry is in use.
0x00 indicates the slot is empty. 0xFF indicates the entry is in use.

orderNumber

Specifies the order number (1-8) assigned to the corresponding server.
The lowest order number indicates the server with the lowest 10-byte
network/node address, assuming the first byte is the most significant.
The second lowest order number indicates the second lowest address,
and so on.

serverNetwork

Specifies the 4-byte network address of the associated server.

serverNode

Specifies the 6-byte node address of the network interface card
installed in the associated server.

serverSocket

Specifies the file server socket number the target workstation uses to
communicate with the associated server.

receivedTimeout

Specifies the value indicating the estimated round-trip time required
for the target workstation to send a request packet to the file server

Communication Service Group

Diagnostic: Structures 454

and receive acknowledgment.

immediateNode

Specifies the node address of the routing bridge the workstation uses
to send packets to the file server.

sequenceNumber

Specifies the sequence number of the last packet the target
workstation sent to the file server. Each time the workstation sends a
packet to the file server, the workstation increases this counter.

connectionNumber

Specifies the connection number the workstation is using to
communicate with the file server.

connectionOk

0x00 if the connection between the workstation and the server is bad.

maximumTimeout

Contains a value indicating the estimated maximum round-trip time
required for the target workstation to send a request packet to the file
server and receive a reply packet.

reserved

Is reserved for future use.

Communication Service Group

Diagnostic: Structures 455

AllKnownNetworksStruct

Receives the addresses of known networks
Service: Diagnostic
Defined In: diag.h and nwdiag.h

AllKnownNetworksStruct

typedef struct StructAllKnownNetworks {
 WORD numberOfNetworkAddresses;
 NetworkAddressStruct networkAddress[128];
} AllKnownNetworksStruct;

Fields

numberOfNetworkAddresses

Indicates how many network addresses (0 to 127) are returning in the
current set.

networkAddress

Is an array of 128 structures of type NetworkAddressStruct.

Remarks

AllKnownNetworksStruct is used by GetAllKnownNetworks.

Communication Service Group

Diagnostic: Structures 456

AllKnownServersStruct

Holds name and type information about a set of servers
Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructAllKnownServers {
 WORD numberOfServers;
 ServerInfoStruct serverInfoStruct[10];
} AllKnownServersStruct;

Fields

numberOfServers

Indicates how many server type and name combinations are contained
in the current set. The maximum value is 10.

serverInfo

Is an array of 10 structures of type ServerInfoStruct.

Remarks

AllKnownServersStruct is used by GetAllKnownServers.

Communication Service Group

Diagnostic: Structures 457

AllResponseData

Contains the completion code and interval marker of an operation
Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructAllResp {
 BYTE completionCode;
 long intervalMarker;
} AllResponseData;

Fields

completionCode

Contains the completion code of an operation.

intervalMarker

Contains the interval marker for an operation.

Remarks

AllResponseData is used by most of the Diagnostic Services functions.

Communication Service Group

Diagnostic: Structures 458

BeginDiagnosticStruct

is a type definition for IPXAddress
Service: Diagnostic
Defined In: diag.h and nwdiag.h

Remarks

BeginDiagnosticStruct is used by BeginDiagnostics.

Communication Service Group

Diagnostic: Structures 459

BridgeDriverStatusStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructBridgeDriverStatus {
 status LANBoard[4];
} BridgeDriverStatusStruct;

Fields

status

Indicates the status of the corresponding LAN board.

Remarks

Each LANBoard returns one of the following values to indicate the status
of the corresponding LAN board:

0x00 The board is alive and running
0x01 The board does not exist
0x02 The board is dead

Communication Service Group

Diagnostic: Structures 460

BridgeStatisticsStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructBridgeStatistics {
 WORD tooManyHopsCount;
 WORD unknownNetworkCount;
 WORD noSpaceForServiceCount;
 WORD noReceiveBuffersCount;
 WORD notMyNetwork;
 long netBIOSPropogateCount;
 long totalPacketsServiced;
 long totalPacketsRouted;
} BridgeStatisticsStruct;

Fields

tooManyHopsCount

Specifies the number of times (since the bridge was initialized) the
bridge received packets on the fifteenth hop across an internetwork
bridge. These packets are discarded.

unknownNetworkCount

Specifies the number of times (since the bridge was initialized) the
bridge has received packets bound for an unknown network. These
packets are discarded.

noSpaceForServiceCount

Specifies the number of times (since the bridge was initialized) the
bridge has received internetwork packets it could not accommodate
because the router did not have enough space in its DGroup area to
copy the packets. These packets are lost.

noReceiveBuffersCount

Specifies the number of times (since the bridge was initialized) the
bridge could not receive inbound packets because of inadequate
buffer space. These packets are lost.

notMyNetwork

Specifies the number of incoming packets with a destination other
than LAN A. (See GetSpecificNetworkInfo for information about
identifying LAN boards.)

netBIOSPropogateCount

Specifies the number of times the bridge received NetBIOS broadcasts
since it was initialized.

Communication Service Group

Diagnostic: Structures 461

totalPacketsServiced

Specifies the total number of packets the bridge serviced since the
bridge was initialized.

totalPacketsRouted

Specifies the total number of packets the router actually routed.

Remarks

BridgeStatisticsStruct is used by GetBridgeStatistics.

Communication Service Group

Diagnostic: Structures 462

DriverConfigurationStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructDriverConf {
 BYTE networkAddress[4];
 BYTE nodeAddress[6];
 BYTE LANMode;
 BYTE nodeAddressType;
 WORD maxDataSize;
 WORD reserved1;
 BYTE LANHardwareID;
 WORD transportTime;
 BYTE reserved2[11];
 BYTE majorVersion;
 BYTE minorVersion;
 BYTE ethernetFlagBits;
 BYTE selectedConfiguration;
 BYTE LANDescription[80];
 WORD IOAddress1;
 WORD IODecodeRange1;
 WORD IOAddress2;
 WORD IODecodeRange2;
 BYTE memoryAddress1[3];
 WORD memoryDecodeRange1;
 BYTE memoryAddress2[3];
 WORD memoryDecodeRange2;
 BYTE interruptIsUsed1;
 BYTE interruptLine1;
 BYTE interruptIsUsed2;
 BYTE interruptLine2;
 BYTE DMAIsUsed1;
 BYTE DMALine1;
 BYTE DMAIsUsed2;
 BYTE DMALine2;
 BYTE microChannelFlagBits;
 BYTE reserved3;
 BYTE textDescription[80];
} DriverConfigurationStruct;

Fields

networkAddress

4-byte network address of the LAN on which the driver
communicates.

Communication Service Group

Diagnostic: Structures 463

nodeAddress

6-byte node address of the LAN board corresponding to the target
bridge driver. The node address uniquely identifies the driver and
board on the network specified in the preceding field. If the node
address is less than 6 bytes long (for example, 0x24E0), the address
appears as follows: 00 00 00 00 24 E0

LANMode

1-byte field with the following bits defined:

Bit 0: 0=Place-holding dummy driver; 1=Real driver
Bit 1: Reserved; must be 0.
Bit 2: 0=Not 100% guaranteed driver; 1=100% guaranteed driver
Bit 3: Reserved; must be 0.
Bit 4: Reserved; must be 0.
Bit 5: Reserved; must be 0.
Bit 6: Reserved; must be 0.
 Bit 7: 0=Driver uses DMA; no receive block stradles 64k physical
address boundary 1=Driver does not use DMA

nodeAddressType indicates the following:

Who (the driver, the developer, or a configuration utility) records the
node address in the driver to match the node address setting of the
LAN board

How the node address is recorded in the driver

When the node address is recorded in the driver

The following values are defined:

0x00

The driver dynamically reads and records the node address by
calling DriverInitialize

0x01

The developer hard codes the node address in the driver code
Master Configuration Table

0x02

A configuration utility assigns the node address

 maxDataSize

maximum size of a packet's data portion for the target driver. The data
portion's maximum size is always 64 bytes less than the packet size
advertised with the LAN board. (The packet header and control
information require 64 bytes.) The following table shows the
maximum size of data portion for four packets:

Communication Service Group

Diagnostic: Structures 464

Largest Maximum Transmittable
Packet

Data Size

576 bytes 512 bytes

1,088 bytes 1,024 bytes

2,112 bytes 2,048 bytes

4,160 bytes 4,096 bytes

 reserved1

address information pertinent only to the driver.

 LANHardwareID

whose value is hard-coded into the Master Configuration Table,
uniquely identifies the LAN hardware. The OEM/Driver Support
Group Manager at Novell® assigns this ID.

 transportTime

value indicating the speed of the LAN associated with the target
driver and board. Speed is measured by the amount of time it takes a
576-byte packet to travel from one node on the LAN to another node.
Time is measured in units of 1/18 second and rounded to the next
highest 1/18.

 reserved2

reserved for future use. Currently, the last 2 bytes of this field identify
the Ethernet type (if applicable).

 majorVersion and minorVersion

identify the major and minor versions of the driver release; they do not
identify the installed NetWare® version. Therefore, in a station
running NetWare 2.1, the driver version may be 1.0, where 1
represents the major version and 0 represents the minor version.

 selectedConfiguration

value indicating which hardware configuration in the Hardware
Configuration Table the driver is using. The value ranges from 0 to n -
1, where n is the maximum number of configurations supported by
the driver.

 ethernetFlagBits

significant only for Ethernet drivers using the Ethernet protocol (not
the IEEE 802.3 protocol). Xerox assigned a value of 0x8137 to Novell
where 81 is the high-order byte and 37 is the low-order byte. Only
drivers with identical Ethernet types can communicate.
ethernetFlagBits is a 1-byte field with the following bits defined:

Bit 0: Etherlink
Bit 1: IEEE 802.3 protocol
Bit 2: 0=Driver can run in protocol mode; 1=Driver runs only in real
mode on 286-based machines
Bit 3: Reserved; must be 0.

Communication Service Group

Diagnostic: Structures 465

Bit 4: 0=Non-Ethernet or non-configurable board driver;
1=Configurable Ethernet board driver
Bit 5: Reserved; must be 0.
Bit 6: Reserved; must be 0.
Bit 7: Reserved; must be 0.

LANDescription

NULL-terminated string of not more than 69 bytes. The string lists the
LAN hardware supported by the driver. The following is a short
example:

NetWare RX-NET

IOAddress1

address of a block of I/O addresses to be decoded by the LAN board.
Zeros returned in the second I/O address field indicate the driver is
not using the field.

IODecodeRange1

number of paragraphs in its corresponding memoryAddress 's block.

memoryAddress

address of a block of memory address space to be decoded by the LAN
board. The block is divided into one or more 16-byte paragraphs. This
is a 3-byte address field. The first byte is the high-order byte. The
remaining uword makes up the low-order portion of the address. Zeros
returned in the second memoryAddress indicate the driver is not using
the field.

memoryDecodeRange

following its corresponding memoryAddress indicates the number of
ports to be decoded. Typically this value is 8, 16, or 32.

interruptIsUsed

whether the value in the following Interrupt Line field is valid. The
following values can appear in interruptIsUsed:

0x00

No interrupt line defined

0xFF

Interrupt line defined for exclusive use

0xFE

Interrupt line defined for a particular LAN board but can be
shared by others of the same type

interruptLine

value of the interrupt used by the LAN board. Zeros returned in the
second interruptLine indicate the LAN board does not use the field.

DMAIsUsed

value in the following DMALine is valid. The following values can

Communication Service Group

Diagnostic: Structures 466

appear in a DMAIsUsed :

0x00

No DMA line defined

0xFF

DMA line defined for exclusive use

0xFE

DMA line defined for a particular LAN board but may be shared
by others of the same type

DMALine

value of the DMA line used by the LAN board. Zeros returned in the
second DMALine indicate the LAN board does not use the field.

microChannelFlagBits

microchannel support for the configuration. The following bits are
defined:

Bit 0: 0 or 1, defined as follows:

0=The configuration does not use microchannel.
1=The configuration uses microchannel but cannot be combined with
other configurations that do not use microchannel.

Bit 1: If set, this configuration uses microchannel and can be combined
with other configurations regardless of whether they use
microchannel.

Bits 2-7: Undefined

nodeAddressType

indicates reserved3 is for future use.

textDescription

NULL-terminated string of not more than 69 bytes. The string
summarizes the configuration information contained in the preceding
fields. The following is a short example of how a text description may
appear in driver code:

I/O Base = 0x2E0, RAM at D000:0 for 0x800 bytes,IRQ 2, No DMA

Remarks

DriverConfigurationStruct is used by GetShellDriverConfiguration.

Communication Service Group

Diagnostic: Structures 467

DriverStatisticsStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructDriverStat {
 BYTE driverVersion[2];
 BYTE statisticsVersion[2];
 long totalTxPacketCount;
 long totalRxPacketCount;
 WORD noECBAvailableCount;
 WORD packetTxTooBigCount;
 WORD packetTxTooSmallCount;
 WORD packetRxOverflowCount;
 WORD packetRxTooBigCount;
 WORD packetRxTooSmallCount;
 WORD packetTxMiscErrorCount
 WORD packetRxMiscErrorCount;
 WORD retryTxCount;
 WORD checksumErrorCount;
 WORD hardwareRxMismatchCount;
 WORD numberOfCustomVariables;
 BYTE variableData[495];
} DriverStatisticsStruct;

Fields

driverVersion

Specifies an array of LAN driver versions for the specified LAN board.

statisticsVersion

Specifies an array of major and minor version numbers a developer
assigns and updates each time the developer modifies the Driver
Diagnostic Table.

totalTxPacketCount

Specifies the number of packets the driver has successfully transmitted
since the last driver reset or initialization.

totalRxPacketCount

Specifies the number of packets the driver has successfully received
and passed into the system since the last reset or initialization.

noECBAvailableCount

Specifies the number of packets the driver has received (since the last
reset or initialization) for which there was no listening ECB.

packetTxTooBigCount

Communication Service Group

Diagnostic: Structures 468

Specifies the number of times (since the last reset or initialization)
applications have asked the driver to send a packet over the maximum
legal size.

packetTxTooSmallCount

Specifies the number of times (since the last reset or initialization)
applications have asked the driver to send a packet under the
minimum legal size.

packetRxOverflowCount

Specifies the number of times (since the last reset or initialization) the
driver has received a packet larger than the buffer space allocated for
the packet.

packetRxTooBigCount

Specifies the number of times (since the last reset or initialization) the
driver has received a packet over the maximum legal size.

packetRxTooSmallCount

Specifies the number of times (since the last reset or initialization) the
driver has received a packet under the minimum legal size.

packetTxMiscErrorCount

Specifies the number of miscellaneous errors preventing the driver
from transmitting a packet (since the last reset or initialization).

packetRxMiscErrorCount

Specifies the number of miscellaneous errors preventing the driver
from receiving a packet (since the last reset or initialization).

retryTxCount

Specifies the number of times (since the last reset or initialization) the
driver resent a packet. For example, when the driver detects a
collision, the driver resends a packet.

checksumErrorCount

Specifies the number of checksum errors occurring while receiving
packets (since the last reset or initialization).

hardwareRxMismatchCount

Specifies the number of times (since the last reset or initialization) the
hardware has received more or fewer bytes than expected.

numberOfCustomVariables

Specifies the number of custom variables following.

variableData

Each byte in variableData specifies information pertinent to the
particular driver. It is optional.

Remarks

Communication Service Group

Diagnostic: Structures 469

DriverStatisticsStruct is used by GetShellDriverStatistics.

Communication Service Group

Diagnostic: Structures 470

IPXAddress

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct {
 BYTE network[4];
 BYTE node[6];
 BYTE socket[2];
} IPXAddress;

Fields

network

node

socket

Communication Service Group

Diagnostic: Structures 471

IPXSPXVersion

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructIPXSPXVersion {
 BYTE IPXMajorVersion;
 BYTE IPXMinorVersion;
 BYTE SPXMajorVersion;
 BYTE SPXMinorVersion;
} IPXSPXVersion;

Fields

IPXMajorVersion

The major version of IPX.

IPXMinorVersion

The minor version of IPX.

SPXMajorVersion

The major version of SPX.

SPXMinorVersion

The minor version of SPX.

Remarks

IPXSPXVersion is used by GetIPXSPXVersion.

Communication Service Group

Diagnostic: Structures 472

IPXStatisticsStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructIPXStatistics {
 long sendPacketCount;
 WORD malformedPacketCount;
 long getECBRequestCount;
 long getECBFailureCount;
 long AESEventCount;
 WORD postponedAESEventCount;
 WORD maxConfiguredSocketsCount;
 WORD maxOpenSocketsCount;
 WORD openSocketFailureCount;
 long listenECBCount;
 WORD ECBCancelFailureCount;
 WORD findRouteFailureCount;;
} IPXStatisticsStruct;

Fields

sendPacketCount

Indicates the number of times (since IPX was loaded) applications
have called IPX to send a packet.

malformedPacketCount

Indicates the number of times (since IPX was loaded) applications
have passed malformed packets to IPX. A packet is malformed if the
value in its ECB's fragmentCount field is 0 or if the value of the size
field within ECB's first fragmentDescriptor is less than 30 bytes.

getECBRequestCount

Indicates the number of times (since IPX was loaded) IPX has supplied
Receive ECBs for incoming packets.

getECBFailureCount

Indicates the number of times (since IPX was loaded) IPX has been
unable to supply a Receive ECB for an incoming packet.

AESEventCount

Indicates the number of times (since IPX was loaded) IPX has used the
AES to schedule an event.

postponedAESEventCount

Indicates the number of times (since IPX was loaded) IPX has been
unable to service an AES event on time. For example, IPX cannot send

Communication Service Group

Diagnostic: Structures 473

an outgoing packet to a driver busy with another packet.

maxConfiguredSocketsCount

Indicates the maximum number of open sockets possible on the target
node. (This value is configurable.)

maxOpenSocketsCount

Indicates the maximum number of sockets open simultaneously since
IPX was loaded.

openSocketFailureCount

Indicates the number of times (since IPX was loaded) applications
have unsuccessfully called IPXOpenSocket. IPX cannot open a socket
if the socket table is full or if the socket is already open.

listenECBCount

Indicates the number of times (since IPX was loaded) applications
have given IPX a Listen ECB.

ECBCancelFailureCount

Indicates the number of times (since IPX was loaded) IPX has been
unable to cancel an ECB. For example, IPX cannot cancel an ECB if the
driver and the ECB have entered a critical section just prior to sending
a packet. In this case, the cancellation is too late.

findRouteFailureCount

Indicates the number of times (since IPX was loaded) IPX has been
unable to find a route to a requested network address.

Remarks

IPXStatisticsStruct is used by GetIPXStatistics.

Communication Service Group

Diagnostic: Structures 474

LocalTablesStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructLocalTables {
 NumberStruct localNetworkNumber[16];
 NodeAddressStruct localNodeAddress[16];
} LocalTablesStruct;

Fields

localNetworkNumber

Specifies an array of 16 structures of type NumberStruct.

Specifies the network defined for each LAN board. Normally, a bridge
connects from one to four networks. However, in the case of remote
LAN-to-LAN networks involving virtual LAN boards with their
associated network numbers, a bridge can connect up to 16 networks.

localNodeAddress

Specifies an array of 16 structures of type NodeAddressStruct.

localNodeAddress specifies the LAN board installed in the bridge. In the
case of LAN-to-LAN networks, the node address also identifies virtual
LAN boards. Although it is 8 bytes long, the actual node address is
only 6 bytes long.

Remarks

LocalTablesStruct is used by GetLocalTables.

Communication Service Group

Diagnostic: Structures 475

NetworkAddressStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructNetworkAddress {
 BYTE address[4];
} NetworkAddressStruct;

Fields

address

Holds one 4-byte network address.

Communication Service Group

Diagnostic: Structures 476

NodeAddressStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructNodeAddress {
 BYTE address[6]
 BYTE reserved[2];
} NodeAddressStruct;

Fields

address

The address of the node.

reserved

Is reserved.

Communication Service Group

Diagnostic: Structures 477

NumberStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructNumber {
 BYTE number[4];
} NumberStruct;

Fields

number

Holds the number of a network.

Communication Service Group

Diagnostic: Structures 478

OSVersionStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructOSVersion {
 BYTE machineID;
 BYTE versionData[41];
} OSVersionStruct;

Fields

machineID

Returns a value of 0x00 if the target machine is an IBM PC computer
or compatible.

versionData

Remarks

OSVersionStruct is used by GetOSVersionInfo.

Communication Service Group

Diagnostic: Structures 479

ReturnReceivedPacketStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructReturnReceivedPacket {
 WORD packetsReceived;
} ReturnReceivedPacketStruct;

Fields

packetsReceived

It returns the number of point-to-point packets received by the
destination node during a test.

Remarks

ReturnReceivedPacketStruct is used by ReturnReceivedPacketCount.

Communication Service Group

Diagnostic: Structures 480

RoutingInfoStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructRoutingInfo {
 BYTE routerForwardingAddress[6];
 BYTE routerBoardNumber;
 BYTE reserved[2];
 BYTE routeHops;
 BYTE routeTime;
} RoutingInfoStruct;

Fields

routerForwardingAddress

Indicates the node address of the LAN board receiving packets from
the source bridge being queried.

routerBoardNumber

Indicates which LAN board (inside a router) to which packets should
be routed. 0x00 indicates LAN A; 0x01 indicates LAN B, and so on.

reserved

Is not pertinent to GetSpecificNetworkInfo.

routeHops

Indicates the number of hops a packet makes traveling between the
source bridge and the destination network on its associated route.

routeTime

Indicates the time it takes a packet to travel between the source bridge
and the destination network on that particular route. If more routers
exist, information pertaining to these routers appears next on the list.

Communication Service Group

Diagnostic: Structures 481

RouteSourceInfoStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructRouteSourceInfo {
 BYTE routeSourceAddress[6];
 WORD routeHopsToSource;
 BYTE reserved[2];
} RouteSourceInfoStruct;

Fields

routeSourceAddress

Indicates the node address of a LAN board (inside a router) capable of
routing the received packet to the server specified. Up to 47 routes can
be returned.

routeHopsToSource

Indicates the number of hops a packet makes traveling between the
source bridge and the destination server specified.

reserved

Is not pertinent to GetSpecificServerInfo.

Communication Service Group

Diagnostic: Structures 482

SendPacketsRequestStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct SPReq {
 BeginDiagnosticStruct target;
 BYTE immediateAddress[6];
 WORD numberOfPackets;
 BYTE timerTickInterval;
 BYTE packetsPerTickInterval;
 WORD packetSize;
 WORD changeSize;
} SendPacketsRequestStruct;

Fields

target

Indicates a structure of type BeginDiagnosticStruct.

immediateAddress

Indicates the node address of the first bridge a packet encounters as it
travels from the source node to the socket node. If the application sets
this field to 0xFFFFFFFFFFFF (-1), IPX chooses a bridge.

numberOfPackets

Indicates the total number of packets to be sent to the destination node
during the diagnostic test.

timerTickInterval

Indicates how often the source node should send a specified number
of packets to the destination node. The timerTickInterval is measured in
units of 1/18 second.

packetsPerTickInterval

Indicates how many packets the source node should send to the
destination node as each send interval expires. If the send (tick)
interval is 3 and the packets per tick interval is 5, the source node
sends 5 packets every 3/18 second.)

packetSize

Indicates the size of the first packet to be sent. The size must be
between 30 and 512 bytes inclusive. If the packet size shrinks below 30
bytes or grows beyond 512, IPX automatically adjusts the size to a
valid value.

changeSize

Indicates a value to increase or decrease the size of the next packet.

Communication Service Group

Diagnostic: Structures 483

This feature allows the packet size to vary during the diagnostic test.

Remarks

SendPacketsRequestStruct is used by StartSendingPktsTimed.

Communication Service Group

Diagnostic: Structures 484

SendPacketsResponseStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct SPResp {
 WORD numberOfTransmitErrors;
} SendPacketsResponseStruct;

Fields

numberOfTransmitErrors

Remarks

SendPacketsResponseStruct is used by StartSendingPktsTimed.

Communication Service Group

Diagnostic: Structures 485

ServerAddressTableStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructServerAddressTable {
 AddressTableStruct addressTable[8];
} ServerAddressTableStruct;

Fields

addressTable

An array of structures of type AddressTableStruct.

Remarks

ServerAddressTableStruct is used by GetServerAddressTable.

Communication Service Group

Diagnostic: Structures 486

ServerInfoStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StrSrvrInfo {
 WORD serverType;
 BYTE serverName[48];
} ServerInfoStruct;

Fields

serverType

The object type of the server whose name appears in the serverName
field. A file server's object type is 0x0004. A print server's object type is
0x0003.

serverName

A 48-byte NULL-terminated string containing the name of the server
whose object type appears in the serverType field.

Remarks

ServerInfoStruct is used by GetSpecificServerInfo.

Communication Service Group

Diagnostic: Structures 487

ShellAddressStruct

is a type definition of IPXAddress
Service: Diagnostic
Defined In: diag.h and nwdiag.h

Remarks

ShellAddressStruct is used by GetShellAddress.

Communication Service Group

Diagnostic: Structures 488

ShellStatisticsStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructShellStatistics {
 long shellRequestsCount;
 WORD operatorAbortsCount;
 WORD operatorRetriesCount;
 WORD timeoutsCount;
 WORD writeErrorCount;
 WORD invalidReplyHeaderCount;
 WORD invalidSlotCount;
 WORD invalidSequenceNumberCount;
 WORD errorReceivingCount;
 WORD noRouterFoundCount;
 WORD beingProcessedCount;
 WORD unknownErrorCount;
 WORD invalidServerSlotCount;
 WORD networkGoneCount;
 WORD reserved1;
 WORD allocateCannotFindRouteCount;
 WORD allocateNoSlotsAvailableCount;
 WORD allocateServerIsDownCount;
} ShellStatisticsStruct;

Fields

shellRequestsCount

Indicates the number of times (since the shell was activated) the shell
has made requests to a file server.

operatorAbortsCount

Indicates the number of times (since the shell was activated) the user
has aborted the shell-server connection by entering "A" in reply to a
"Network Error" message.

operatorRetriesCount

Indicates the number of times (since the shell was activated) the user
has instructed the shell to retry an operation.

timeoutsCount

Indicates the number of times (since the shell was activated) the shell
sent a request to a server and then timed out without receiving a reply.
(Normally, the shell sends another request packet.)

writeErrorCount

Communication Service Group

Diagnostic: Structures 489

Indicates the number of times (since the shell was activated) the driver
has been unable to send a request to a file server (after repeated
retries). In this case, the shell displays the message "Error writing to
network" on the workstation screen. The shell does not increment this
counter if, after repeated retries, the driver is able to send the request.

invalidReplyHeaderCount

Indicates the number of times (since the shell was activated) the shell
has received a reply packet header whose Checksum was -1 or whose
PacketType indicated the packet was not a file server reply.

invalidSlotCount

Indicates the number of times (since the shell was activated) the shell
has received a file server reply packet specifying an incorrect
connection ID.

invalidSequenceNumberCount

Indicates the number of times (since the shell was activated) the shell
received a file server reply packet specifying an incorrect sequence
number. It usually indicates the reply was unnecessary.

errorReceivingCount

Indicates the number of times (since the shell was activated) IPX has
indicated an error even though a packet was received on the socket. It
usually indicates an "Overrun" error.

noRouterFoundCount

Indicates the number of times (since the shell was activated) the shell
tried and failed to find a route to a destination node. The shell
attempts to reroute a packet when a connection seems to fail and the
user requests a "Retry."

beingProcessedCount

Indicates the number of times (since the shell was activated) the shell
received a "being processed" reply from a file server. A file server
sends this reply to a shell when the server, while processing the shell's
request, receives duplicate requests from the shell for the same service.

unknownErrorCount

Indicates the number of times (since the shell was activated) the shell
received a packet containing an undefined error value.

invalidServerSlotCount

Indicates the number of times the shell attempted to communicate on a
particular client connection number, and the server indicated the
connection number is invalid.

networkGoneCount

Indicates the number of times (since the shell was activated) the shell
received a packet from a file server indicating the target network has
gone away. Only a 68000 file server can generate this kind of packet.

reserved1

Is reserved for future use.

Communication Service Group

Diagnostic: Structures 490

allocateCannotFindRouteCount

Indicates the number of times (since the shell was activated) the shell,
asked by an application to establish a connection with a file server,
could not find a route to the destination network.

allocateNoSlotsAvailablseCount

Indicates the number of times (since the shell was activated) the shell,
asked by an application to establish a connection with a file server,
could not establish the connection because the file server's connection
table was full.

allocateServerIsDownCount

Indicates the number of times (since the shell was activated) the shell,
asked by an application to establish a connection with a file server,
could not establish the connection because the target file server was
down.

Remarks

ShellStatisticsStruct is used by GetShellStatistics.

Communication Service Group

Diagnostic: Structures 491

ShellVersionStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructShellVersion {
 BYTE minor;
 BYTE major;
 BYTE rev;
} ShellVersionStruct;

Fields

minor

The minor version of the shell.

major

The major version of the shell.

rev

The revision of the shell.

Remarks

For a shell version number of 1.0, 1 indicates the major version number
and 0 indicates the minor version number.

ShellVersionStruct is used by GetShellVersionInfo.

Communication Service Group

Diagnostic: Structures 492

SpecificNetworkInfoStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructSpecificNetInfo {
 BYTE networkAddress[4];
 BYTE hopsToNet;
 BYTE reservedA[7];
 WORD routeTimeToNet;
 WORD numberOfKnownRouters;
 RoutingInfoStruct routingInfo[MAX_ROUTES];
} SpecificNetworkInfoStruct;

Fields

networkAddress

Indicates the network address of the destination network. It is the same
address the application passes in the Request packet's Specific
Network Address.

hopsToNet

Indicates the number of hops (between the source bridge and the
destination network) of the most efficient route. This value and the
value returned in routeHops are the same.

reservedA

Indicates information not pertinent to GetSpecificNetworkInfo.

routeTimeToNet

Indicates the route time (between the source bridge and the
destination network) of the most efficient route. This value and the
value returned in routeTime1 are the same.

numberOfKnownRouters

Indicates the number of routes between the source bridge and the
destination network. If only one route exists, it returns 0x01.

routingInfo

Indicates an array of RoutingInfoStruct structures.

Remarks

SpecificNetworkInfoStruct is used by GetSpecificNetworkInfo.

Communication Service Group

Diagnostic: Structures 493

SpecificServerInfoStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StrSpecSrvrInfo {
 ServerInfoStruct serverInfo;
 BYTE serverAddress[12];
 WORD hopsToServer;
 BYTE reserved1[2];
 WORD numberOfRoutes;
 RouteSourceInfoStruct routeSourceInfo[MAX_ROUTES];
} SpecificServerInfoStruct;

Fields

serverInfo

Indicates a structure of type ServerInfoStruct. Must be set prior to
calling GetSpecificServerInfo.

serverAddress

Indicates the destination server's 12-byte internetworkaddress.

hopsToServer

Indicates the number of hops (between the source bridge and the
destination server) of the most efficient route.

reserved1

Is not pertinent to GetSpecificServerInfo.

numberOfRoutes

Indicates the number of routes between the source bridge and the
destination server. If only one route exists, it returns 0x01.

routeSourceInfo

Indicates an array of structures of type RouteSourceInfoStruct.

Remarks

SpecificServerInfoStruct is used by GetSpecificServerInfo.

Communication Service Group

Diagnostic: Structures 494

SPXStatisticsStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructSPXStatistics {
 WORD maxConnectionsCount;
 WORD maxUsedConnectionsCount;
 WORD establishConnectionRequest;
 WORD establishConnectionFailure;
 WORD listenConnectionRequestCount;
 WORD listenConnectionFailureCount;
 long sendPacketCount;
 long windowChokeCount;
 WORD badSendPacketCount;
 WORD sendFailureCount;
 WORD abortConnectionCount;
 long listenPacketCount;
 WORD badListenPacketCount;
 long incomingPacketCount;
 WORD badIncomingPacketCount;
 WORD suppressedPacketCount;
 WORD noSessionListenECBCount;
 WORD watchdogDestroySessionCount;
} SPXStatisticsStruct;

Fields

maxConnectionsCount

Indicates the maximum number of SPX connections possible on the
target node. (It is configurable.)

maxUsedConnectionsCount

Indicates the maximum number of SPX connections open
simultaneously since IPX was loaded.

establishConnectionRequest

Indicates the number of times (since SPX was loaded) applications
called SPXEstablishConnection.

establishConnectionFailure

Indicates the number of times (since SPX was loaded)
SPXEstablishConnection calls failed because the SPXPacketHeader
was too small, the SPX Connection Table was full, or no router was
found to the target network.

listenConnectionRequestCount

Communication Service Group

Diagnostic: Structures 495

Indicates the number of times (since SPX was loaded) applications
called SPXListenForConnection.

listenConnectionFailureCount

Indicates the number of times (since SPX was loaded)
SPXListenForConnection calls failed because the SPX Connection
Table was full.

sendPacketCount

Indicates the number of times (since SPX was loaded) applications
called SPXSendSequencedPacket.

windowChokeCount

Indicates the number of times (since SPX was loaded) SPX failed to
send a packet because the target station had not allocated a receive
buffer.

badSendPacketCount

Indicates the number of times (since SPX was loaded)
SPXSendSequencedPacket was incorrectly called by passing an
invalid connection ID or bypassing the address of an ECB indicating a
packet header size of less than 42 bytes.

sendFailureCount

Indicates the number of times (since SPX was loaded) SPX was unable
to send a packet across an SPX connection and receive
acknowledgment. In such a case, SPX aborts the connection and
informs the calling application.

abortConnectionCount

Indicates the number of times (since SPX was loaded)
SPXAbortConnection was called.

listenPacketCount

Indicates the number of times (since SPX was loaded) applications
gave listen ECBs to SPX.

badListenPacketCount

Indicates the number of times (since SPX was loaded) applications
passed SPX a packet whose associated ECB is malformed. An ECB is
malformed if the value in FragmentCount is 0, if the value in its first
FragmentDescriptorSize is less than 42, or if the listen socket is not open.

incomingPacketCount

Indicates the number of times (since SPX was loaded) the node's
driver gave an incoming packet to SPX.

suppressedPacketCount

Indicates the number of times (since SPX was loaded) SPX discarded
inbound packets because they were duplicates of previously received
packets.

noSessionListenECBCount

Indicates the number of times (since SPX was loaded) SPX was forced

Communication Service Group

Diagnostic: Structures 496

to discard an inbound SPXEstablishConnection packet because SPX
lacked a corresponding SPXListenForConnection ECB.

watchdogDestroySessionCount

Indicates the number of times (since SPX was loaded) watchdog
destroyed a connection because the connection was no longer valid.

Remarks

SpxStatisticsStruct is used by GetSPXStatistics.

Communication Service Group

Diagnostic: Structures 497

StartCountingPacketsStruct

Service: Diagnostic
Defined In: diag.h and nwdiag.h

Structure

typedef struct StructStartCountingPackets {
 WORD destinationSocket;
} StartCountingPacketsStruct;

Fields

destinationSocket

The destination node to which packets will be sent.

Remarks

StartCountingPacketsStruct is used by StartCountingPkts.

Communication Service Group

Diagnostic: Structures 498

Internet Network Library

Communication Service Group

 499

Internet Network Library: Guides

Internet Network Library: General Guide

Internet Network Library Overview

Internet Network Library Function List

Internet and NetWare

Additional Links

Internet Network Library: Functions

Internet Network Library: Structures

Communication Service Group

Internet Network Library: Guides 500

Internet Network Library: Concepts

Internet and NetWare

While the Internet support functions emulate the corresponding 4.3BSD
functions as closely as possible, the NetWare® OS environment requires
some changes from the 4.3BSD specifications. As an application
programmer, you must be aware of these differences while porting TCP/IP
applications from the UNIX* to the NetWare OS, and also when designing
new NetWare TCP/IP applications.

The BSD Internet support functions assume a single thread per data space;
in contrast, the NetWare environment allows multiple threads to share the
same data space. Therefore, the NetWare Internet support functions require
a more flexible association of context with support functions. To provide this
flexibility, each function requiring context takes a context block explicitly
from the caller instead of allocating it implicitly.

To avoid confusion between the functions in the 4.3BSD environment and
the NetWare environment, the NetWare function names are prefixed with
either NW or NetDB. For example, the NetWare versions of gethostbyname
are called NWgethostbyname and NetDBgethostbyname, and their first
argument is a pointer to a context block. Your application allocates a
structure of type nwsockent and passes the pointer to either
NWgethostbyname or NetDBgethostbyname. The application must
allocate a context block for each different context it requires. Each context
normally corresponds to a separate process in the UNIX system.

Your application does not look at a nwsockent context block explicitly. The
support functions maintain this structure and extract information from it.
Each context block can remember the file position of each of the four
database files. Whenever a support function returns the address of a file
entry, it points to a location in the context block provided in the call. This is
the same area for each type of support function, so the information in this
area remains valid until the next call is made, regardless of the category.

Your application must take care of the following:

It must initialize the context block with zeros before calling any of the
support functions for the first time.

It must not modify the context block later, since the library preserves
some context information in the context block. Any such modifications
can result in unpredictable behavior.

The sequence of operations that can be allowed depend on the context

Communication Service Group

Internet Network Library: Concepts 501

block that is being passed, not on the thread that is calling. For example,
in two subsequent calls to NWgethostent on the same thread, each
instance of the call is associated with a different context block and results
in the return of the same entry from the HOSTS file.

If the application uses the "NetDB" functions (that is,
NetDBgethostbyname rather than NWgethostbyname), each thread
must maintain its own separate context block. The "NetDB" functions
maintain low-level information on a per-thread basis, and it is important
that each thread not share the context block with any other thread or
unexpected results can occur.

In the NetWare implementation, h_errno is actually a C preprocessor macro
that behaves like a normal variable. However, your application must not
declare h_errno as an extern int.

The 4.3BSD support functions are defined as macros in NETDB.H. These
macros have been defined to help port simple applications involving a
single thread and a single context. Applications with multiple threads must
not call upon these macros, since they could call upon the support functions
concurrently. These macros expand to either functions prefixed with NW
(such as NWgethostent) or NetDB (such as NetDBgethostent).

The functions prefixed with NW access only the local hosts file
(SYS:ETC\HOSTS). No Internet host access is provided with these
functions.

The functions prefixed with NetDB also use SYS:ETC\HOSTS, but in
addition provide transparent access to DNS and/or NIS databases if they
are installed on the system and available on the network. For the host
lookup functions (gethostbyname and gethostbyaddr), the search order is
always local file first, followed by DNS, then NIS. For sequential access of
the hosts database (gethostent), all of the hosts in SYS:ETC\HOSTS are
returned first, followed by all the entries in the NIS hosts.byaddr map, if
available. Use of these functions requires NETDB.NLM. NETDB.NLM is
included with the NetWare SDK. Contact Novell for information about
distribution of this NLM.

Support for DNS requires a RESOLV.CFG file in the SYS:ETC directory on
the NetWare server in the standard format of /etc/resolv.conf on UNIX
systems. A typical RESOLV.CFG follows:

 domain dnsdomain.com ;name of the DNS domain
 nameserver 130.57.1.1 ;primary name server
 nameserver 130.57.1.2 ;secondary name server

Support for NIS requires the NIS binder, called NISBIND.NLM, which is
provided with certain Novell TCP/IP interoperability products. Once the
NIS binder is installed and configured on the system, the application gains
NIS host access automatically.

For backwards compatibility, the 4.3BSD function names are macros
expanding to the functions that only access the local files (that is,
gethostbyname

Communication Service Group

Internet Network Library: Concepts 502

to expand to the internet functions (NetDBgethostbyname), the application
needs to define the symbol NETDB_USE_INTERNET before it includes
NETDB.H. All of the internet functions (prefixed by NetDB) require
NETDB.NLM on the server before the application NLM can be loaded.

To use these macros, your application must include the
NETDB_DEFINE_CONTEXT macro, which declares a single context block
named nwSocketCtx. For each support function, a macro bearing the
original 4.3BSD name calls upon the corresponding NetWare Internet
support function and supplies the nwSocketCtx block. It is sufficient for
your application to call upon NETDB_DEFINE_CONTEXT in any of its
source modules that include NETDB.H.

The Internet address conversion function inet_ntoa has been renamed
NWinet_ntoa to reflect the NetWare version of this function. Your
application can use NWinet_ntoa when multiple threads attempt to convert
address information. The inet_ntoa function is defined as a macro in
ARPA/ INET.H. Use this function for simple applications involving single
threads. Your application must call upon the
NETINET_DEFINE_CONTEXT macro in any one of the source modules
that include ARPA/INET.H.

Detailed information on each function can be found in Internet Network
Library: Functions.

Parent Topic: Internet Network Library Overview

Internet Network Library Function List

Table auto. Internet Network Library Services Functions

Function Purpose

endhostent Ends sequential access of the HOSTS database

endnetent Closes the SYS:ETC\NETWORKS file

endprotoent Closes the SYS:ETC\PROTOCOL file

endservent Closes the SYS:ETC\SERVICES file

gethostbyaddr Returns information about a host at the given IP
address

gethostbyname Returns information about a host given its name

gethostent Returns the next sequential entry from the
HOSTS database

gethostid Returns the system's default local IP address

gethostname Returns the official host name for a system

getnetbyaddr Returns information about a network given its IP
address

Communication Service Group

Internet Network Library: Concepts 503

getnetbyname Returns information about a network given its
name

getnetent Returns the next entry from the
SYS:ETC\NETWORKS file

getprotobyname Returns information about a protocol given its
name

getprotobynumber Returns information about host given its
protocol number

getprotoent Returns the next entry from the
SYS:ETC\PROTOCOL file

getservbyname Returns information about a service given its
name

getservbyport Returns information about a service given its
port number

getservent Returns the next entry from the
SYS:ETC\SERVICES file

htonl Converts 32-bit quantities from host to network
byte order

htons Converts 16-bit quantities from host to network
byte order

inet_addr Converts a character string representing an IP
address expressed in standard dotted notation to
a long value that can be used as an IP address

inet_makeaddr Takes an IP network number and a local
network address and constructs an IP address
from them

inet_network Converts a character string representing an IP
address in standard dotted notation to a
numeric value

inet_ntoa Converts a long value in in_addr format to an
ASCII string representing the address in dotted
notation

NetDBendhostent Closes the SYS:ETC\HOSTS file and makes sure
that the next call to NetDBgethostent returns the
first entry from the file

NetDBgethostbyad
dr

Returns information about a host at the given IP
address using SYS:ETC\HOSTS and internet
name services

NetDBgethostbyna
me

Returns information about a host given its name
using SYS:ETC\HOSTS and internet name
services

NetDBgethostent Returns the next entry in the SYS:ETC\HOSTS
file. Once the file is exhausted and if the NIS
binder is installed on the system, host entries are
returned from the NIS database

Communication Service Group

Internet Network Library: Concepts 504

NetDBsethostent Opens the SYS:ETC\HOSTS file and makes sure
that the next call to NetDBgethostent returns the
first entry in the file

ntohl Converts 32-bit quantites from network to host
byte order

ntohs Converts 16-bit quantities from network to host
byte order

NWendhostent Closes the SYS:ETC\HOSTS file

NWendnetent Closes the SYS:ETC\NETWORKS file

NWendprotoent Closes the SYS:ETC\PROTOCOL file

NWendservent Closes the SYS:ETC\SERVICES file

NWgethostbyaddr Returns information about a host at the given IP
address, using SYS:ETC\HOSTS to locate the
entry

NWgethostbyname Returns information about a host given its
name, using SYS:ETC\HOSTS to locate the
entry

NWgethostent Returns the next entry in the SYS:ETC\HOSTS
file

NWgetnetbyaddr Returns information about a network given its IP
address

NWgetnetbyname Returns information about a network given its
name

NWgetnetent Returns the next entry from the
SYS:ETC\NETWORKS file

NWgetprotobynam
e

Returns information about a protocol given its
name

NWgetprotobynum
ber

Returns information about host given its
protocol number

NWgetprotoent Returns the next entry from the
SYS:ETC\PROTOCOL file

NWgetservbyname Returns information about a service given its
name

NWgetservbyport Returns information about a service given its
port number

NWgetservent Returns the next entry from the
SYS:ETC\SERVICES file

NWinet_ntoa Converts a long value in in_addr format to an
ASCII string representing the address in dotted
notation

NWsethostent Initializes sequential access to the HOSTS
database

Communication Service Group

Internet Network Library: Concepts 505

NWsetnetent Opens the SYS:ETC\NETWORKS file

NWsetprotoent Opens the SYS:ETC\PROTOCOL file

NWsetservent Opens the SYS:ETC\SERVICES file

sethostent Initializes sequential access to the HOSTS
database

setnetent Opens the SYS:ETC\NETWORKS file

setprotoent Opens the SYS:ETC\PROTOCOL file

setservent Opens the SYS:ETC\SERVICES file

Parent Topic: Internet Network Library Overview

Internet Network Library Overview

This chapter describes support functions that simplify TCP/IP application
programming. The functions explained in this chapter provide the
following services:

Byte-Order Conversion Functions: Convert between host data order and
network data order.

Internet Address Conversion Functions: Manipulate IP addresses in both
numeric and string formats and convert between the two forms.

HOSTS File Access Functions: Provide access to hostname and address
mappings stored in the SYS:ETC\HOSTS file. Internet name services
access using DNS and NIS is also available and described. The functions
for hostname and host ID are also described.

NETWORKS File Access Functions: Provide access to network name and
number mappings stored in the SYS:ETC\NETWORKS file.

PROTOCOL File Access Functions: Provide access to protocol name and
number mappings stored in the SYS:ETC\PROTOCOL file.

SERVICES File Access Functions: Provide access to service name and port
number mappings stored in the SYS:ETC\SERVICES file.

Related Topics

Internet Network Library Function List

Internet and NetWare

Communication Service Group

Internet Network Library: Concepts 506

Internet Network Library: Functions

Communication Service Group

Internet Network Library: Functions 507

endhostent

Ends the sequential access of the HOSTS database
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

void endhostent ();

Return Values

None.

Remarks

The endhostent function is defined as a macro in NETDB.H. You can use
this macro to access the HOSTS file or host information from the Internet
name services. endhostent expands to NWendhostent, providing only
access to the file SYS:ETC\HOSTS, or to NetDBendhostent, providing
transparent access to the file in addition to Internet name services such as
NIS. See Internet and NetWare in Internet Network Library: Concepts for
more information. Your application must include
NETDB_DEFINE_CONTEXT in any of the source files that include
NETDB.H.

This function closes the SYS:ETC\HOSTS file and makes sure that the
next call to gethostent begins reading from the beginning of the
SYS:ETC\HOSTS file.

NOTE: If your application spawns multiple threads, use either
NWendhostent or NetDBendhostent.

See Also

NetDBendhostent, NWendhostent, sethostent

For a description of the HOSTS file, refer to the TCP/IP Transport
Supervisor's Guide.

Communication Service Group

Internet Network Library: Functions 508

endnetent

Closes the SYS:\ETC\NETWORKS file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <netdb.h>
#include <sys/types.h>

void endnetent ();

Return Values

None.

Remarks

The endnetent function is defined as a macro in NETDB.H. You can use
this macro to access the NETWORKS file. This macro calls upon the
corresponding NetWare Internet support function. Your application must
include NETDB_DEFINE_CONTEXT in any of the source files that
include NETDB.H.

The endnetent function closes the SYS:ETC\NETWORKS file.

NOTE: If your application spawns multiple threads, use
NWendnetent.

For a description of the NETWORKS file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

NWendnetent, setnetent

Example

See the sample files in SYS:ETC\SAMPLES\NETWORKS.

Communication Service Group

Internet Network Library: Functions 509

endprotoent

Closes the SYS:\ETC\PROTOCOL file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <sys/types.h>

#include <netdb.h>
void endprotoent ();

Return Values

None.

Remarks

The endprotoent function is defined as a macro in NETDB.H. This macro
calls upon the corresponding NetWare Internet support function. Your
application must include NETDB_DEFINE_CONTEXT in any one of the
source files that include NETDB.H.

The endprotoent function closes the SYS:ETC/PROTOCOL file. (This
filename differs from the 4.3BSD filename PROTOCOLS because of the
8-character filename limitation imposed by NetWare.)

NOTE: If your application spawns multiple threads, call
NWendprotoent.

For a description of the PROTOCOL file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

NWendprotoent, NWsetprotoent, setprotoent

Example

See the sample files in SYS:ETC\SAMPLES\PROTOCOL.

Communication Service Group

Internet Network Library: Functions 510

endservent

Closes the SYS:\ETC\SERVICES file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

void endservent ();

Return Values

None.

Remarks

The endservent function closes SYS:ETC\SERVICES.

NOTE: If your application spawns multiple threads, call
NWendservent.

For a description of the SERVICES file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

NWendservent, NWsetservent, setservent

Example

See the sample files in SYS:ETC\SAMPLES\SERVICES.

Communication Service Group

Internet Network Library: Functions 511

gethostbyaddr

Returns information about a host, given its Internet address
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

struct hostent *gethostbyaddr (
 char *addr,
 int len,
 int type);

Parameters

addr

(IN) Points to a sockaddr_in structure containing the host's Internet
address.

len

(IN) Indicates the length of the Internet address, in bytes.

type

(IN) Indicates the value corresponding to the type of Internet address.
Currently, the type is always AF_INET.

Return Values

If gethostbyaddr succeeds, it returns a pointer to a structure of type
hostent. The gethostbyaddr function returns NULL when an error occurs.
The integer h_errno, which is a C preprocessor macro, can be checked to
determine the nature of the error.

The integer h_errno can have the following values:

HOST_NOT_FOUN
D

No such host exists.

Communication Service Group

Internet Network Library: Functions 512

Remarks

The gethostbyaddr function is defined as a macro in NETDB.H. You can
use this macro to obtain host information from the HOSTS file or using
the Internet name services. gethostbyaddr expands to NWgethostbyaddr
, providing only access to the SYS:ETC\HOSTS file, or to
NetDBgethostbyaddr, providing transparent access to this file in
addition to Internet name services such as DNS. See Internet and
NetWare in Internet Network Library: Concepts for more information.
Your application must include NETDB_DEFINE_CONTEXT in any of the
source files that include NETDB.H.

The gethostbyaddr function accepts a pointer to a sockaddr_in structure
containing the Internet address, an integer value representing the length,
and an integer value representing the application family type. The
numeric Internet address is expressed in network byte order; the Internet
address length is expressed in bytes.

The hostent structure has the following format:

struct hostent {
 char *h_name; /* official name of host */
 char ** h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char ** h_addr_list; /* list of addresses from name server */
#define h_addr h_addr_list[0] /* address, for backward compatibility */
};

Calling any database routine overwrites the results of the last call to this
function.

NOTE: If your application spawns multiple threads, use either
NWgethostbyaddr or NetDBgethostbyaddr.

For a description of the HOSTS file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

gethostent, NetDBgethostbyaddr, NetDBgethostent, NWgethostbyaddr,
NWgethostent

Communication Service Group

Internet Network Library: Functions 513

gethostbyname

Returns information about a host, given its name
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

struct hostent *gethostbyname (
 char *name);

Parameters

name

(IN) Indicates the official name of the host.

Return Values

If gethostbyname succeeds, it returns a pointer to a structure of type
hostent. The gethostbyname function returns NULL when an error
occurs. The integer h_errno, which is a C preprocessor macro, can be
checked to determine the nature of the error.

The integer h_errno can have the following values:

HOST_NOT_FOUN
D

No such host exists

Remarks

The gethostbyname function is defined as a macro in NETDB.H. You can
use this macro to obtain information from the SYS:ETC\HOSTS file or
using Internet name services. gethostbyname expands to
NWgethostbyname, providing only access to the SYS:ETC\HOSTS file,
or to NetDBgethostbyname, providing transparent access to this file in
addition to name services such as DNS. See Internet and NetWare in
Internet Network Library: Concepts for more information. Your

Communication Service Group

Internet Network Library: Functions 514

application must include NETDB_DEFINE_CONTEXT in any of the
source files that include NETDB.H.

The gethostbyname function accepts a pointer to a character string
representing a hostname.

The hostent structure has the following format:

struct hostent {
 char *h_name; /* official name of host */
 char ** h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char ** h_addr_list; /* list of addresses from name server */
#define h_addr h_addr_list[0] /* address, for backward compatibility */
};

Calling any database routine overwrites the results of the last routine that
this NLM™ application called.

NOTE: If your application spawns multiple threads, use either
NWgethostbyname or NetDBgethostbyname.

For a description of the HOSTS file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

gethostent, NetDBgethostbyname, NetDBgethostent,
NWgethostbyname, NWgethostent

Communication Service Group

Internet Network Library: Functions 515

gethostent

Returns the next sequential entry from the HOSTS database
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

struct hostent *gethostent ();

Return Values

If gethostent succeeds, it returns a pointer to a structure of type hostent.
The gethostent function returns NULL when an error occurs. The integer
h_errno, which is a C preprocessor macro, can be checked to determine
the nature of the error.

The integer h_errno can have the following values:

HOST_NOT_FOUN
D

No more hosts exist

Remarks

The gethostent function is defined as a macro in NETDB.H. You can use
this macro to access the HOSTS file or host information from Internet
name services. gethostent expands to NWgethostent, providing only
access to the SYS:ETC\HOSTS file, or to NetDBgethostent, providing
transparent access to this file in addition to Internet name services such as
NIS. See Internet and NetWare in Internet Network Library: Concepts for
more information. Your application must include
NETDB_DEFINE_CONTEXT in any of the source files that include
NETDB.H.

The gethostent function returns the next sequential entry from the
SYS:ETC\HOSTS file, opening the file if it is not already open. If the end
of the file is reached, Internet name services are being used, and the NIS
binder is installed on your system, enumeration continues with the first
entry from the NIS HOSTS database.

Communication Service Group

Internet Network Library: Functions 516

The hostent structure has the following format:

struct hostent {
 char *h_name; /* official name of host */
 char ** h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char ** h_addr_list; /* list of addresses from name server */
#define h_addr h_addr_list[0] /* address, for backward compatibility */
};

Calling any database routine overwrites the results of the last call to this
function.

NOTE: If your application spawns multiple threads, call either
NWgethostent or NetDBgethostent.

For a description of the HOSTS file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

gethostbyaddr, gethostbyname, NetDBgethostent, NWgethostent

Communication Service Group

Internet Network Library: Functions 517

gethostid

Returns the system's default local IP address
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

long gethostid ();

Return Values

The gethostid function returns the system's default local IP address if it
succeeds; it returns a value of -1 if an error occurs.

Remarks

The gethostid function returns the system's default local IP address of the
current host in network order.

For a description of the HOSTS file, refer to the TCP/IP Transport
Supervisor's Guide.

Communication Service Group

Internet Network Library: Functions 518

gethostname

Returns the official hostname for the system
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

int gethostname (
 char *name,
 int namelen);

Parameters

name

(IN/OUT) Indicates the official name of the host.

namelen

(IN) Specifies the size of the array pointed to by name.

Return Values

If the gethostname function succeeds, it returns a value of 0. If the call
fails, it returns a value of -1.

Remarks

The gethostname function returns the standard hostname for the current
host machine. The parameter namelen specifies the size of the array
pointed to by name. The returned name is terminated by null, unless
insufficient space is provided. Hostnames are limited to
MAXNAMESIZE (from NETDB.H) characters, which is 64.

For a description of the HOSTS file, refer to the TCP/IP Transport
Supervisor's Guide.

Communication Service Group

Internet Network Library: Functions 519

getnetbyaddr

Returns information about a network, given its IP network number
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <netdb.h>
#include <sys/types.h>

struct netent *getnetbyaddr (
 long net,
 int type);

Parameters

net

(IN) Specifies the IP network number in host order.

type

(IN) Indicates the network type (only currently supported type is
AF_INET).

Return Values

The getnetbyaddr function returns NULL when an error occurs. Upon
success, getnetbyaddr returns a pointer to a structure of type netent.

Remarks

The getnetbyaddr function has been defined as a macro in NETDB.H.
This macro calls upon the corresponding NetWare Internet support
function and returns a pointer to a netent structure in the
SYS:ETC\NETWORKS file.

The getnetbyaddr function accepts a long integer value representing the
Internet network number and an integer value representing the
application family type. Using getnetent, the function begins searching
for the network number from the beginning of the file and continues
until it finds a matching entry or reaches end-of-file.

The netent structure has the following format:

Communication Service Group

Internet Network Library: Functions 520

struct netent
{
 char *n_name; /* official name of network */
 char **n_aliases; /* list of network aliases */
 int n_addrtype; /* network number type */
 unsigned long n_net; /* network number */
 unsigned long n_mask; /* net mask--Novell extension */
};

NOTE: Calling any database routine overwrites the results of the last
call to getnetbyaddr.

If your application spawns multiple threads, call NWgetnetbyaddr.

For a description of the NETWORKS file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

getnetbyname, getnetent, NWgetnetent, NWgetnetbyaddr

Example

See the sample files in SYS:ETC\SAMPLES\NETWORKS.

Communication Service Group

Internet Network Library: Functions 521

getnetbyname

Returns information about a network, given its name
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <netdb.h>
#include <sys/types.h>

struct netent *getnetbyname (
 char *name);

Parameters

name

(IN) Indicates the official name of the network.

Return Values

The getnetbyname function returns NULL when an error occurs. Upon
success, getnetbyname returns a pointer to a structure of type netent.

Remarks

The getnetbyname function has been defined as a macro in NETDB.H.
This macro calls upon the corresponding NetWare Internet support
function and returns a pointer to a netent structure in the
SYS:ETC\NETWORKS file.

The getnetbyname function accepts a pointer to a character string
representing a network name. Using getnetent, the function searches for
the character string from the beginning of the file and continues until it
finds a matching entry or reaches end-of-file.

The netent structure has the following format:

struct netent
{
 char *n_name; /* official name of network */
 char **n_aliases; /* list of network aliases */
 int n_addrtype; /* network number type */

Communication Service Group

Internet Network Library: Functions 522

 unsigned long n_net; /* network number */
 unsigned long n_mask; /* net mask--Novell extension */
};

NOTE: Calling any database routine overwrites the results of the last
call to getnetbyname.

If your application spawns multiple threads, call NWgetnetbyname.

For a description of the NETWORKS file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

getnetbyaddr, getnetent, NWgetnetbyname, NWgetnetent

Example

See the sample files in SYS:ETC\SAMPLES\NETWORKS.

Communication Service Group

Internet Network Library: Functions 523

getnetent

Returns the next sequential entry from the SYS:\ETC\NETWORKS file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <netdb.h>
#include <sys/types.h>

struct netent *getnetent ();

Return Values

The getnetent function returns NULL when an error occurs. Upon
success, getnetent returns a pointer to a structure of type netent.

Remarks

The getnetent function has been defined as a macro in NETDB.H. This
macro returns a pointer to a netent structure in the
SYS:ETC\NETWORKS file.

The getnetent function returns the next sequential entry from the
SYS:ETC\NETWORKS file, opening the file if necessary.

The netent structure has the following format:

struct netent
{
 char *n_name; /* official name of network */
 char **n_aliases; /* list of network aliases */
 int n_addrtype; /* network number type */
 unsigned long n_net; /* network number */
 unsigned long n_mask; /* net mask--Novell extension */
};

NOTE: Calling any database routine overwrites the results of the last
call to NWgetnetent.

If your application spawns multiple threads, call NWgetnetent.

For a description of the NETWORKS file, refer to the TCP/IP Transport
Supervisor's Guide.

Communication Service Group

Internet Network Library: Functions 524

See Also

endnetent, getnetbyaddr, getnetbyname, NWgetnetent, setnetent

Example

See the sample files in SYS:ETC\SAMPLES\NETWORKS.

Communication Service Group

Internet Network Library: Functions 525

getprotobyname

Returns information about a protocol, given its name
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

struct protoent *getprotobyname(
 char *name);

Parameters

name

(IN) Indicates the official name of the protocol.

Return Values

getprotobyname returns a pointer to a structure of type protoent if
successful or NULL if an error occurs.

Remarks

The getprotobyname function is defined as a macro in NETDB.H. This
macro calls upon the corresponding NetWare Internet support function.
Your application must include NETDB_DEFINE_CONTEXT in any one
of the source files that include NETDB.H.

getprotobyname returns a pointer to a protoent structure in the
SYS:ETC\PROTOCOL file. (This filename differs from the 4.3BSD
filename PROTOCOLS because of the 8-character filename limitation
imposed by NetWare.)

The getprotobyname function accepts a pointer to a character string
representing a protocol name. Using getprotoent, the function begins
searching for the character string from the beginning of the file and
continues until it finds a matching entry or reaches end-of-file.

The protoent structure has the following format:

Communication Service Group

Internet Network Library: Functions 526

struct protoent
{
 char *p_name; /* official protocol name */
 char **p_aliases; /* alias list */
 int p_proto; /* protocol # */
};

NOTE: Calling any database routine overwrites the results of the last
call to this function.

If your application spawns multiple threads, call NWgetprotobyname.

For a description of the PROTOCOL file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

getprotobynumber, getprotoent, NWgetprotoent, NWgetprotobyname,
socket

Example

See the sample files in SYS:ETC\SAMPLES\PROTOCOL.

Communication Service Group

Internet Network Library: Functions 527

getprotobynumber

Returns information about a protocol, given its protocol number
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

struct protoent *getprotobynumber (
 int *proto);

Parameters

proto

(IN) Indicates the protocol number.

Return Values

getprotobynumber returns a pointer to a structure of type protoent if
successful or NULL if an error occurs.

Remarks

The getprotobynumber function is defined as a macro in NETDB.H. This
macro calls upon the corresponding NetWare Internet support function.
Your application must include NETDB_DEFINE_CONTEXT in any one
of the source files that include NETDB.H.

getprotobynumber returns a pointer to a protoent structure in the
SYS:ETC\PROTOCOL file. (This filename differs from the 4.3BSD
filename PROTOCOLS because of the 8-character filename limitation
imposed by NetWare.)

The getprotobynumber function accepts an integer value representing
the protocol number. Using getprotoent, the function begins searching
for the protocol number from the beginning of the file and continues
until it finds a matching entry or reaches end-of-file.

The protoent structure has the following format:

Communication Service Group

Internet Network Library: Functions 528

struct protoent
{
 char *p_name; /* official protocol name */
 char **p_aliases; /* alias list */
 int p_proto; /* protocol # */
};

NOTE: Calling any database routine overwrites the results of the last
call to getprotobynumber.

If your application spawns multiple threads, call
NWgetprotobynumber.

For a description of the PROTOCOL file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

getprotobyname, getprotoent, NWgetprotoent, NWgetprotobynumber,
socket

Example

See the sample files in SYS:ETC\SAMPLES\PROTOCOL.

Communication Service Group

Internet Network Library: Functions 529

getprotoent

Returns the next sequential entry from the SYS:\ETC\PROTOCOL file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

struct protoent *getprotoent ();

Return Values

getprotoent returns a pointer to a structure of type protoent if successful
or NULL if an error occurs.

Remarks

The getprotoent function is defined as a macro in NETDB.H. This macro
calls upon the corresponding NetWare Internet support function. Your
application must include NETDB_DEFINE_CONTEXT in any one of the
source files that include NETDB.H.

The getprotoent function returns the next sequential entry from the
SYS:ETC\PROTOCOL file, opening the file if necessary. (This filename
differs from the 4.3BSD filename PROTOCOLS because of the 8-character
filename limitation imposed by NetWare.)

The protoent structure has the following format:

struct protoent
{
 char *p_name; /* official protocol name */
 char **p_aliases; /* alias list */
 int p_proto; /* protocol # */
};

NOTE: Calling any database routine overwrites the results of the last
call to getprotoent.

If your application spawns multiple threads, call NWgetprotoent.

For a description of the PROTOCOL file, refer to the TCP/IP Transport

Communication Service Group

Internet Network Library: Functions 530

Supervisor's Guide.

See Also

getprotobyname, getprotobynumber, NWgetprotoent, socket

Example

See the sample files in SYS:ETC\SAMPLES\PROTOCOL.

Communication Service Group

Internet Network Library: Functions 531

getservbyname

Returns information about a service, given its name
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

struct servent *getservbyname (
 char *name,
 char *proto);

Parameters

name

(IN) Indicates the official name of the service.

proto

(IN) Indicates the name of the protocol to use when contacting a
service.

Return Values

getservbyname returns a pointer to a structure of type servent if
successful or NULL if an error occurs.

Remarks

The getservbyname function is defined as a macro in NETDB.H. This
macro calls upon the corresponding NetWare Internet support function.
Your application must include NETDB_DEFINE_CONTEXT in any of the
source files that include NETDB.H.

getservbyname returns a pointer to a servent structure in the
SYS:ETC\SERVICES file. If proto is NULL, getservbyname returns the
first entry matching the service name.

The getservbyname function accepts pointers to two character strings
representing the service and protocol name for which to search. Using
getservent, the function searches for the service from the beginning of

Communication Service Group

Internet Network Library: Functions 532

the file and continues until it finds a matching entry or reaches
end-of-file.

The servent structure has the following format:

struct servent
{
 char *s_name; /* official service name */
 char **s_aliases; /* alias list */
 int s_port; /* port # */
 char *s_proto; /* protocol to use */
};

NOTE: Calling any database routine overwrites the results of the last
call to getservbyname.

If your application spawns multiple threads, call NWgetservbyname.

For a description of the SERVICES file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

bind, connect, getservbyport, getservent, NWgetservbyname,
NWgetservent

Example

See the sample files in SYS:ETC\SAMPLES\SERVICES.

Communication Service Group

Internet Network Library: Functions 533

getservbyport

Returns information about a service, given its port number
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

struct servent *getservbyport (
 int port,
 char *proto);

Parameters

port

(IN) Indicates the port number at which the service resides, in network
order.

proto

(IN) Points to the name of the protocol to use when contacting a
service.

Return Values

getservbyport returns a pointer to a structure of type servent if successful
or NULL if an error occurs.

Remarks

The getservbyport function is defined as a macro in NETDB.H. This
macro calls upon the corresponding NetWare Internet support function.
Your application must include NETDB_DEFINE_CONTEXT in any of the
source files that include NETDB.H.

getservbyport returns a pointer to a servent structure in the
SYS:ETC\SERVICES file.

The getservbyport function accepts a pointer to a character string
representing the protocol name and an integer representing the port
number. Using getservent, the function searches from the beginning of

Communication Service Group

Internet Network Library: Functions 534

the file and continues until it reaches end-of-file or finds a service
matching the port number. If a protocol name is also specified, then the
searches must also match the protocol name. (The numeric protocol
number is expressed in network byte order). If the protocol name is
NULL, the first matching entry with the given port number is returned.

The servent structure has the following format:

struct servent
{
 char *s_name; /* official service name */
 char **s_aliases; /* alias list */
 int s_port; /* port # */
 char *s_proto; /* protocol to use */
};

NOTE: Calling any database routine overwrites the results of the last
call to getservbyport.

If your application spawns multiple threads, call NWgetservbyport.

For a description of the SERVICES file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

bind, connect, getservbyname, getservent, NWgetservbyport,
NWgetservent, setservent

Example

See the sample files in SYS:ETC\SAMPLES\SERVICES.

Communication Service Group

Internet Network Library: Functions 535

getservent

Returns the next sequential entry from the SYS:\ETC\SERVICES file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>
struct servent *getservent ();

Return Values

getservent returns a pointer to a structure of type servent if successful or
NULL if an error occurs.

Remark

The getservent function is defined as a macro in NETDB.H. This macro
calls upon the corresponding NetWare Internet support function. Your
application must include NETDB_DEFINE_CONTEXT in any of the
source files that include NETDB.H.

getservent returns a pointer to a servent structure in the
SYS:ETC\SERVICES file.

The getservent function returns the next sequential entry from the
SYS:ETC\SERVICES file, opening the file if necessary.

The servent structure has the following format:

struct servent
{
 char *s_name; /* official service name */
 char **s_aliases; /* alias list */
 int s_port; /* port # */
 char *s_proto; /* protocol to use */
};

NOTE: Calling any database routine overwrites the results of the last
call to getservbyport.

If your application spawns multiple threads, call NWgetservbyport.

Communication Service Group

Internet Network Library: Functions 536

For a description of the SERVICES file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

bind, connect, getservbyname, getservbyport, NWgetservent

Example

See the sample files in SYS:ETC\SAMPLES\SERVICES.

Communication Service Group

Internet Network Library: Functions 537

htonl

Converts 32-bit quantities from host to network byte order
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <netinet/in.h>

unsigned long htonl (
 unsigned long hostlong);

Parameters

hostlong

(IN) Indicates a 32-bit quantity in host byte order.

Return Values

htonl returns a value that has been converted from host to network byte
order.

Remarks

htonl is frequently used to convert Internet addresses from host byte
order to network byte order for socket calls requiring an Internet address
as a parameter.

NOTE: Network data order places the most significant byte at the
lower memory address, while 80386 data order places the least
significant byte at the lower address.

See Also

accept, bind, connect, inet_addr, inet_network, ntohl

Communication Service Group

Internet Network Library: Functions 538

htons

Converts 16-bit quantities from host to network byte order
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <netinet/in.h>

unsigned short htons (
 unsigned short hostshort);

Parameters

hostshort

(IN) Indicates a 16-bit quantity in host byte order.

Return Values

htons returns a value that has been converted from host to network byte
order.

Remarks

htons is frequently used to convert port numbers from host byte order to
network byte order for socket calls requiring a port number as a
parameter.

NOTE: Network data order places the most significant byte at the
lower memory address, while 80386 data order places the least
significant byte at the lower address.

See Also

accept, bind, connect, inet_addr, inet_network, ntohs

Communication Service Group

Internet Network Library: Functions 539

inet_addr

Converts a character string representing an IP address expressed in the
Internet standard dotted notation to a long value that can be used as an
Internet address
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long inet_addr (
 char *cp);

Parameters

cp

(IN) Points to the character string (in Internet Standard Dotted
Notation) that represents the Internet address.

Return Values

Upon success, inet_addr returns an Internet address value. inet_addr
returns -1 upon detection of malformed requests. It does not update the
integer errno.

Remarks

The Internet addresses are returned in network byte order (bytes ordered
from left to right).

Internet Standard Dotted Notation

Values specified using dotted notation take one of the following forms:

a When only one part of the address is given, the value is
stored directly in the network address without any byte
rearrangement.

a.b When a two-part address is supplied, the last part is

Communication Service Group

Internet Network Library: Functions 540

interpreted as a 24-bit quantity and placed in the rightmost
3 bytes of the network address. This makes the two-part
address format convenient for specifying Class A network
addresses in net.host format (for example, 89.1 where the
network address is 89 and the host address is 1).

a.b.c When a three-part address is specified, the last part is
interpreted as a 16-bit quantity and placed in the rightmost
2 bytes of the network address. This makes the three-part
address format convenient for specifying Class B network
addresses in net.host format (for example, 128.1.1 where the
network address is 128.1 and the host address is 1).

a.b.c.d When four parts are specified, each part is interpreted as a
byte of data and assigned, from left to right, to the four
bytes of an Internet address.

The following illustrates the Internet address form.

All numbers supplied as parts in dotted notation can be expressed in
decimal, octal, or hexadecimal, as specified in the C language. (A leading
0x or 0X implies a hexadecimal number, and a leading 0 implies an octal
number; otherwise, the number is interpreted as decimal.)

See Also

inet_network

Communication Service Group

Internet Network Library: Functions 541

inet_makeaddr

Takes an Internet network number and a local network address and
constructs an Internet address from them
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

struct in_addr inet_makeaddr (
 int net,
 int lna);

Parameters

net

(IN) Internet network number.

lna

(IN) The local network address part of an Internet address.

Return Values

If successful, inet_makeaddr returns an in_addr structure representing
the Internet address. inet_makeaddr does not return an error value.

Remarks

The Internet address is returned in the structure in_addr.

Communication Service Group

Internet Network Library: Functions 542

inet_network

Converts a character string representing an IP network number expressed
in the Internet standard dotted notation to a numeric value
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long inet_network (
 char *cp);

Parameters

cp

(IN) Indicates the character string that represents the IP network
number.

Return Values

Upon success, inet_network returns a network number. inet_network
returns -1 upon detection of malformed requests. It does not update the
integer errno.

Remarks

The network number is returned as a long value in network order.

Internet Standard Dotted Notation

Values specified using dotted notation take one of the following forms:

a When only one part of the address is given, the value is
stored directly in the network address without any byte
rearrangement.

a.b When a two-part address is supplied, the last part is
interpreted as a 24-bit quantity and placed in the rightmost
3 bytes of the network address. This makes the two-part

Communication Service Group

Internet Network Library: Functions 543

address format convenient for specifying Class A network
addresses in net.host format (for example, 89.1 where the
network address is 89 and the host address is 1).

a.b.c When a three-part address is specified, the last part is
interpreted as a 16-bit quantity and placed in the rightmost
2 bytes of the network address. This makes the three-part
address format convenient for specifying Class B network
addresses in net.host format (for example, 128.1.1 where the
network address is 128.1 and the host address is 1).

a.b.c.d When four parts are specified, each part is interpreted as a
byte of data and assigned, from left to right, to the four
bytes of an Internet address.

The following illustrates the Internet address form.

All numbers supplied as parts in dotted notation can be expressed in
decimal, octal, or hexadecimal, as specified in the C language. (A leading
0x or 0X implies a hexadecimal number, and a leading 0 implies an octal
number; otherwise, the number is interpreted as decimal.)

See Also

inet_addr

Communication Service Group

Internet Network Library: Functions 544

inet_ntoa

Converts a long value in in_addr format into an ASCII string representing
the address in dotted notation
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

char *inet_ntoa (
 struct in_addr in);

Parameters

in

(IN) IP address, in in_addr format.

Return Values

inet_ntoa returns a pointer to the array containing the ASCII string
representing the address in dotted notation. inet_ntoa does not return an
error value.

Remarks

The inet_ntoa function has been defined as a macro in ARPA/INET.H.
To use this macro, your application must include the
NETDB_DEFINE_CONTEXT macro (defined in ARPA/INET.H) in at
least one of the modules that is being linked to form an NLM.
NETDB_DEFINE_CONTEXT declares an array of characters.

The library fills this array with the converted address and returns a
pointer to this array. The contents are destroyed if inet_ntoa is called
subsequently by the same or a different thread in the NLM. Simple
applications involving a single thread can use this macro. Applications
with multiple threads should call NWinet_ntoa instead of inet_ntoa.

See Also

Communication Service Group

Internet Network Library: Functions 545

NWinet_ntoa

Communication Service Group

Internet Network Library: Functions 546

NetDBendhostent

Closes the SYS:ETC\HOSTS file and makes sure the next call to
NetDBgethostent returns the first entry from the file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

void NetDBendhostent (
 struct nwsockent *nwsktent);

Parameters

nwsktent

(IN) Points to a context block.

Return Values

None.

Remarks

NetDBendhostent closes the SYS:ETC\HOSTS file and rewinds it if the
file is already open. In addition, this function resets the thread's context
so that the next call to NetDBgethostent begins reading from the
beginning of the SYS:ETC\HOSTS file. NetDBgethostent returns all the
host entries in the SYS:ETC\HOSTS file first, followed by all hosts in the
NIS HOSTS database if available. See Internet and NetWare in Internet
Network Library: Concepts for more information.

NetDBendhostent is identical endhostent except your application must
pass the address of an nwsockent structure.

If you don't want to use Internet name services, call NWendhostent
instead (see Internet and NetWare in Internet Network Library: Concepts
).

The result of NetDBendhostent stays intact until the next call is made.
NetDBendhostent is useful for applications spawning multiple threads,
where each thread accesses the HOSTS file. Your application can declare

Communication Service Group

Internet Network Library: Functions 547

separate nwsockent structures for each thread.

Your application must follow the instructions specified in Internet and
NetWare in Internet Network Library: Concepts. Any deviation can
result in unpredictable behavior.

The NetWare Library uses the same database pointers for this function as
for NetDBgethostbyaddr, NetDBgethostbyname, NetDBgethostent, and
NetDBsethostent for each context block to access the HOSTS databases.
In addition, each thread in an application maintains state information
specific to that thread. Therefore, each thread should maintain its own
context block. Calling these functions indiscriminately can result in
unpredictable behavior from NetDBgethostent because it relies on the
current value of the database pointers.

For a description of the HOSTS file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

endhostent, NWendhostent, sethostent

Communication Service Group

Internet Network Library: Functions 548

NetDBgethostbyaddr

Returns information about a host at a given Internet address
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

struct hostent *NetDBgethostbyaddr (
 struct nwsockent *nwsktent,
 char *addr,
 int len,
 int type);

Parameters

nwsktent

(IN) Points to a context block.

addr

(IN) Points to a sockaddr_in structure containing the host's Internet
address.

len

(IN) Indicates the length of the Internet address, in bytes.

type

(IN) Indicates the value corresponding to the type of Internet address.
Currently, the type is always AF_INET.

Return Values

If NetDBgethostbyaddr succeeds, it returns a pointer to a structure of
type hostent. The NetDBgethostbyaddr function returns NULL when an
error occurs. The integer h_errno, which is a C preprocessor macro, can
be checked to determine the nature of the error.

The integer h_errno can have the following values:

HOST_NOT_FOUND---No such host exists.

Remarks

Communication Service Group

Internet Network Library: Functions 549

NetDBgethostbyaddr accepts a pointer to a sockaddr_in structure
containing the Internet address, an integer value representing the
address length, and an integer value representing the application family
type. The local SYS:ETC\HOSTS file is consulted first. If the host entry is
not found and Internet services are enabled, DNS is then consulted. If it is
still not found, NIS is consulted. See Internet and NetWare in Internet
Network Library: Concepts for more information.

NetDBgethostbyaddr is identical to gethostbyaddr except your
application must pass the address of a nwsockent structure.

If you don't want to use Internet name services, call NWgethostbyaddr
instead (see Internet and NetWare in Internet Network Library: Concepts
).

The result of NetDBgethostbyaddr stays intact until the next call is made.
NetDBgethostbyaddr is useful for applications spawning multiple
threads, where each thread accesses the HOSTS database. Your
application must declare separate nwsockent structures for each thread.

Your application must follow the instructions specified in Internet and
NetWare of Internet Network Library: Concepts. Any deviation can
result in unpredictable behavior.

The NetWare Library uses the same database pointers for
NetDBgethostbyaddr as for NetDBgethostent, NetDBgethostbyname,
NetDBsethostent, and NetDBendhostent for each context block to access
the HOSTS databases. In addition, each thread in an application
maintains state information specific to that thread. Therefore, each thread
should maintain its own context block. Calling these functions
indiscriminately can result in unpredictable behavior from
NetDBgethostent because it relies on the current value of the database
pointers.

struct hostent {
 char *h_name; /* official name of host */
 char ** h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char ** h_addr_list; /* list of addresses from name server */
#define h_addr h_addr_list[0] /* address, for backward compatibility */
};

See hostent.

NOTE: Calling any database routine overwrites the results of the last
call to *NetDBgethostbyaddr .

For a description of the HOSTS file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

Communication Service Group

Internet Network Library: Functions 550

gethostbyaddr, gethostbyname, gethostent, NetDBgethostent,
NWgethostbyaddr, NWgethostent

Communication Service Group

Internet Network Library: Functions 551

NetDBgethostbyname

Returns information about a host, given its name
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

struct hostent *NetDBgethostbyname (
 struct nwsockent *nwsktent,
 char *name);

Parameters

nwsktent

(IN) Points to a context block.

name

(IN) Points to the official name of the host.

Return Values

If NetDBgethostbyname succeeds, it returns a pointer to a structure of
type hostent. NetDBgethostbyname returns NULL when an error occurs.
The integer h_errno, which is a C preprocessor macro, can be checked to
determine the nature of the error.

The integer h_errno can have the following value:

HOST_NOT_FOUN
D

No such host exists.

Remarks

NetDBgethostbyname accepts a pointer to a character string
representing a hostname. The local SYS:ETC\HOSTS file is consulted
first. If the host entry is not found and Internet services are enabled, DNS
is then consulted. If it is still not found, NIS is consulted. See Internet and
NetWare in Internet Network Library: Concepts for more information.

Communication Service Group

Internet Network Library: Functions 552

NetDBgethostbyname is identical to gethostbyname except your
application must pass the address of a nwsockent structure.

If you don't want to use Internet name services, call NWgethostbyname
instead (see Internet and NetWare in Internet Network Library: Concepts
).

The result of NetDBgethostbyname stays intact until the next call is
made. NetDBgethostbyname is useful for applications spawning
multiple threads, where each thread accesses the HOSTS database. Your
application must declare separate nwsockent structures for each thread.

Your application must follow the instructions specified in Internet and
NetWare in Internet Network Library: Concepts. Any deviation can
result in unpredictable behavior.

The NetWare Library uses the same database pointers for this function as
for NetDBgethostent, NetDBgethostbyaddr, NetDBsethostent, and
NetDBendhostent for each context block to access the HOSTS databases.
In addition, each thread in an application maintains state information
specific to that thread. Therefore, each thread should maintain its own
context block. Calling these functions indiscriminately can result in
unpredictable behavior from NetDBgethostent because it relies on the
current value of the database pointers.

The hostent structure has the following format:

struct hostent {
 char *h_name; /* official name of host */
 char ** h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char ** h_addr_list; /* list of addresses from name server */
#define h_addr h_addr_list[0] /* address, for backward compatibility */
};

See hostent.

NOTE: Calling any database routine overwrites the results of the last
call to *NetDBgethostbyname.

For a description of the HOSTS file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

gethostbyname, gethostent, NetDBgethostent, NWgethostbyname,
NWgethostent

Communication Service Group

Internet Network Library: Functions 553

NetDBgethostent

Returns the next sequential entry from the HOSTS database
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

struct hostent *NetDBgethostent (
 struct nwsockent *nwsktent,
 short *ploc);

Parameters

nwsktent

(IN) Points to a context block.

ploc

(IN/OUT) Indicates whether this entry is from the local
SYS:ETC\HOSTS file (1) or from the NIS HOSTS database (2). Pass in
NULL if you do not want this information.

Return Values

If NetDBgethostent succeeds, it returns a pointer to a structure of type
hostent. The NetDBgethostent function returns NULL when an error
occurs. The integer h_errno, which is a C preprocessor macro, can be
checked to determine the nature of the error.

The integer h_errno can have the following values:

HOST_NOT_FOUND---No more hosts exist.

Remarks

NetDBgethostent returns the next sequential entry from the
SYS:ETC\HOSTS file, opening the file if it is not already open. After all
the file's hosts are returned, all the hosts from the NIS HOSTS database, if
any are returned. See Internet and NetWare in Internet Network Library:
Concepts for more information.

Communication Service Group

Internet Network Library: Functions 554

NetDBgethostent is identical to gethostent except your application must
pass the address of a nwsockent structure, as well as a second parameter
that returns which database the host entry came from.

If you don't want to use Internet name services, call NWgethostbyname
instead (see Internet and NetWare in Internet Network Library: Concepts
).

The result of NetDBgethostent stays intact until the next call is made.
NetDBgethostent is useful for applications spawning multiple threads,
where each thread accesses the HOSTS database. Your application must
declare separate nwsockent structures for each thread.

Your application must follow the instructions specified in Internet and
NetWare in Internet Network Library: Concepts. Any deviation can
result in unpredictable behavior.

The NetWare Library uses the same database pointers for this function as
for NetDBgethostbyaddr, NetDBgethostbyname, NetDBsethostent, and
NetDBendhostent for each context block to access the HOSTS databases.
In addition, each thread in an application maintains state information
specific to that thread. Therefore, each thread should maintain its own
context block. Calling these functions indiscriminately can result in
unpredictable behavior from NetDBgethostent because it relies on the
current value of the database pointers.

The hostent structure has the following format:

struct hostent {
 char *h_name; /* official name of host */
 char ** h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char ** h_addr_list; /* list of addresses from name server */
#define h_addr h_addr_list[0] /* address, for backward compatibility */
};

NOTE: Calling any database routine overwrites the results of the last
call to NetDBgethostent.

For a description of the HOSTS file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

gethostent, gethostbyaddr, gethostbyname, NWgethostent

Communication Service Group

Internet Network Library: Functions 555

NetDBsethostent

Opens the SYS:ETC\HOSTS file and makes sure that the next call to
NetDBgethostent returns the first entry in the file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

void NetDBsethostent(
 struct nwsockent *nwsktent,
 int stayopen);

Parameters

nwsktent

(IN) Points to a context block.

stayopen

(IN) If nonzero, causes SYS:ETC\HOSTS to remain open after a call to
NetDBgethostbyname or NetDBgethostbyaddr.

Return Values

None.

Remarks

NetDBsethostent opens the SYS:ETC\HOSTS file and rewinds it if the
file is already open. If the stayopen flag is set (nonzero), the
SYS:ETC\HOSTS file is not closed after each call made to
NetDBgethostent by NetDBgethostbyname or NetDBgethostbyaddr. In
addition, this function resets the thread's context so that the next call to
NetDBgethostent begins reading from the beginning of the
SYS:ETC\HOSTS file. NetDBgethostent returns all the host entries in the
SYS:ETC\HOSTS file first, followed by all hosts in the NIS HOSTS
database if available. See Internet and NetWare in Internet Network
Library: Concepts for more information.

The NetDBsethostent is identical to sethostent except your application
must pass the address of an nwsockent structure.

Communication Service Group

Internet Network Library: Functions 556

If you don't want to use Internet name services, use NWsethostent
instead (see Internet and NetWare in Internet Network Library: Concepts
).

The result of NetDBsethostent stays intact until the next call is made.
NetDBsethostent is useful for applications spawning multiple threads,
where each thread is accessing the HOSTS databases. Your application
can declare separate nwsockent structures for each thread.

Your application must follow the instructions specified in Internet and
NetWare in Internet Network Library: Concepts. Any deviation can
result in unpredictable behavior.

The NetWare Library uses the same database pointers for this function as
for NetDBgethostbyaddr, NetDBgethostbyname, NetDBgethostent, and
NetDBendhostent for each context block to access the HOSTS databases.
In addition, each thread in an application maintains state information
specific to that thread. Therefore, each thread should maintain its own
context block. Calling these functions indiscriminately can result in
unpredictable behavior from NetDBgethostent because it relies on the
current value of the database pointers.

For a description of the HOSTS file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

gethostbyaddr, gethostbyname, gethostent, NetDBgethostbyaddr,
NetDBgethostbyname, NetDBgethostent, NWgethostbyaddr,
NWgethostbyname, NWgethostent, NWsethostent, sethostent

Communication Service Group

Internet Network Library: Functions 557

ntohl

Converts 32-bit quantities from network to host byte order
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <netinet/in.h>

unsigned long ntohl (
 unsigned long netlong);

Parameters

netlong

(IN) A 32-bit quantity in network byte order.

Return Values

ntohl returns a value that has been converted from network to host byte
order.

Remarks

NOTE: Network data order places the most significant byte at the
lower memory address, while 80386 data order places the least
significant byte at the lower address.

See Also

htonl

Communication Service Group

Internet Network Library: Functions 558

ntohs

Converts 16-bit quantities from network to host byte order
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <netinet/in.h>

unsigned short ntohs (
 unsigned short netshort);

Parameters

netshort

(IN) Indicates a 16-bit quantity in network byte order.

Return Values

ntohs returns a value that has been converted from network to host byte
order.

Remarks

NOTE: Network data order places the most significant byte at the
lower memory address, while 80386 data order places the least
significant byte at the lower address.

See Also

htons

Communication Service Group

Internet Network Library: Functions 559

NWendhostent

Closes the SYS:\ETC\HOSTS file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

void NWendhostent (
 struct nwsockent *nwsktent);

Parameters

nwsktent

(IN) Points to a context block.

Return Values

None.

Remarks

The NWendhostent function closes the SYS:ETC\HOSTS file.

The NWendhostent is identical endhostent except your application must
pass the address of an nwsockent structure.

NWendhostent accesses the SYS:ETC\HOSTS file only. Call
NetDBendhostent to access Internet name services transparently in
addition to accessing the SYS:ETC\HOSTS file. See Internet and NetWare
in Internet Network Library: Concepts for more information.

The result of NWendhostent call stays intact until the next call is made.
NWendhostent is useful for applications spawning multiple threads,
where each thread is accessing the HOSTS file. Your application can
declare separate nwsockent structures for each thread.

Your application must follow the instructions specified in Internet and
NetWare in Internet Network Library: Concepts. Any deviation can
result in unpredictable behavior.

The NetWare library uses the same file pointer NWgethostent,

Communication Service Group

Internet Network Library: Functions 560

NWgethostbyaddr, NWgethostbyname and NWsethostent for each
context block to access the HOSTS file. Using these functions
indiscriminately can result in unpredictable behavior from gethostent
because it relies on the current value of the file pointer.

For a description of the HOSTS file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

endhostent, NetDBendhostent, sethostent

Communication Service Group

Internet Network Library: Functions 561

NWendnetent

Closes the SYS:\ETC\NETWORKS file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <netdb.h>
#include <sys/types.h>

void NWendnetent (
 struct nwsockent *nwsktent);

Parameters

nwsktent

(IN) Points to a context block.

Return Values

None.

Remarks

The endnetent function closes the SYS:ETC\NETWORKS file.

The NWendnetent function is identical to endnetent except your
application must pass the address of a structure of type nwsockent.

The result of NWendnetent stays intact until the application makes the
next call. NWendnetent is useful for applications spawning multiple
threads, where each thread accesses the NETWORKS file.

Your application can declare separate nwsockent structures for each
thread. It must follow the instructions specified in Internet Network
Library. Any deviation can result in unpredictable behavior.

The NetWare library uses the same file pointer for this function as for
NWgetnetent, NWgetnetbyaddr, NWgetnetbyname and NWsetnetent
for each context block to access the NETWORKS file. Calling these
functions indiscriminately can result in unpredictable behavior from
getnetent because it relies on the current value of the file pointer.

For a description of the NETWORKS file, refer to the TCP/IP Transport

Communication Service Group

Internet Network Library: Functions 562

Supervisor's Guide.

See Also

endnetent, setnetent

Example

See the sample files in SYS:ETC\SAMPLES\NETWORKS.

Communication Service Group

Internet Network Library: Functions 563

NWendprotoent

Closes the SYS:\ETC\PROTOCOL file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

void NWendprotoent (
 struct nwsockent *nwsktent);

Parameters

nwsktent

(IN) Points to a context block.

Return Values

None.

Remarks

The NWendprotoent function closes the SYS:ETC/PROTOCOL file. This
function is identical to endprotoent except your application must pass
the address of an nwsockent structure.

The result of the function stays intact until the application makes the next
call. NWendprotoent is useful for applications spawning multiple
threads, where each thread is accessing the PROTOCOL file. Your
application can declare separate nwsockent structures for each thread. It
must follow the instructions specified in Internet Network Library. Any
deviation can result in unpredictable behavior.

The NetWare library uses the same file pointer for this function as for
NWgetprotoent, NWgetprotobyname, NWgetprotobynumber and
NWsetprotoent for each context block to access the PROTOCOL file.
Calling these functions indiscriminately can result in unpredictable
behavior from getprotoent because it relies on the current value of the
file pointer.

For a description of the PROTOCOL file, refer to the TCP/IP Transport

Communication Service Group

Internet Network Library: Functions 564

Supervisor's Guide.

See Also

endprotoent, NWsetprotoent, setprotoent

Example

See the sample files in SYS:ETC\SAMPLES\PROTOCOL.

Communication Service Group

Internet Network Library: Functions 565

NWendservent

Closes the SYS:\ETC\SERVICES file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

void NWendservent (
 struct nwsockent *nwsktent);

Parameters

nwsktent

(OUT) Points to a context block.

Return Values

None.

Remarks

The endservent function closes SYS:ETC\SERVICES. This function is
identical to endservent except your application must pass the address of
an nwsockent structure. The result of the function call stays intact until
the application makes the next call.

NWendservent is useful for applications spawning multiple threads,
where each thread is accessing the SERVICES file. Your application can
declare separate nwsockent structures for each thread.

Your application must follow the instructions specified in Internet and
NetWare in Internet Network Library: Concepts. Any deviation can
result in unpredictable behavior.

The NetWare library uses the same file pointer for NWendservent as for
NWgetservbyport, NWgetservbyname, NWgetservent, and
NWsetservent for each context block to access the SERVICES file. Using
these functions indiscriminately can result in unpredictable behavior
from getservent because it relies on the current value of the file pointer.

Communication Service Group

Internet Network Library: Functions 566

For a description of the SERVICES file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

endservent, NWendservent, NWsetservent, setservent

Example

See the sample files in SYS:ETC\SAMPLES\SERVICES.

Communication Service Group

Internet Network Library: Functions 567

NWgethostbyaddr

Returns information about a host at a given Internet address
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

struct hostent *NWgethostbyaddr (
 struct nwsockent *nwsktent,
 char *addr,
 int len,
 int type);

Parameters

nwsktent

(IN) Points to a context block.

addr

(IN) Points to a sockaddr_in structure containing the host's Internet
address.

len

(IN) Indicates the length of the Internet address, in bytes.

type

(IN) Indicates the value corresponding to the type of Internet address.
Currently, the type is always AF_INET.

Return Values

If NWgethostbyaddr succeeds, it returns a pointer to a structure of type
hostent. The NWgethostbyaddr function returns NULL when an error
occurs. The integer h_errno, which is a C preprocessor macro, can be
checked to determine the nature of the error.

The integer h_errno can have the following values:

HOST_NOT_FOUND---No such host exists in the file SYS:ETC\HOSTS.

Remarks

Communication Service Group

Internet Network Library: Functions 568

The NWgethostbyaddr function accepts a pointer to a sockaddr_in
structure containing the Internet address, an integer value representing
the address length, and an integer value representing the application
family type. Calling NWgethostent, NWgethostbyaddr begins searching
for the character string from the beginning of the file and continues until
it finds a matching entry or reaches end- of-file. The numeric Internet
address is expressed in network byte order; the Internet address length is
expressed in bytes.

The NWgethostbyaddr function is identical to gethostbyaddr except
your application must pass the address of a nwsockent structure.

NWgethostbyaddr accesses the SYS:ETC\HOSTS file only. Use
NetDBgethostbyaddr to transparently access Internet name services in
addition to the SYS:ETC\HOSTS file. See Internet and NetWare in
Internet Network Library: Concepts for more information.

The result of NWgethostbyaddr function stays intact until the next call is
made. *NWgethostbyaddr is useful for applications spawning multiple
threads, where each thread is accessing the HOSTS file. Your application
can declare separate nwsockent structures for each thread.

Your application must follow the instructions specified in Internet and
NetWare in Internet Network Library: Concepts. Any deviation can
result in unpredictable behavior.

The NetWare library uses the same file pointer for NWgethostbyaddr as
for NWgethostent, NWgethostbyname, NWsethostent and
NWendhostent for each context block to access the HOSTS file. Using
these functions indiscriminately can result in unpredictable behavior
from gethostent because it relies on the current value of the file pointer.

The hostent structure has the following format:

struct hostent {
 char *h_name; /* official name of host */
 char ** h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char ** h_addr_list; /* list of addresses from name server */
#define h_addr h_addr_list[0] /* address, for backward compatibility */
};

NOTE: Calling any database routine overwrites the results of the last
call to NWgethostbyaddr.

For a description of the HOSTS file, refer to theTCP/IP Transport
Supervisor's Guide.

See Also

gethostbyaddr, gethostbyname, gethostent, NetDBgethostbyaddr,

Communication Service Group

Internet Network Library: Functions 569

NetDBgethostent, NWgethostent

Communication Service Group

Internet Network Library: Functions 570

NWgethostbyname

Returns information about a host, given its name
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

struct hostent *NWgethostbyname(
 struct nwsockent *nwsktent,
 char *name);

Parameters

nwsktent

(IN) Points to a context block.

name

(IN) Points to the official name of the host.

Return Values

If NWgethostbyname succeeds, it returns a pointer to a structure of type
hostent. NWgethostbyname returns NULL when an error occurs. The
integer h_errno, which is a C preprocessor macro, can be checked to
determine the nature of the error.

The integer h_errno can have the following values:

HOST_NOT_FOUN
D

No such host exists in the SYS:ETC\HOSTS file.

Remarks

The NWgethostbyname function accepts a pointer to a character string
representing a hostname. Using NWgethostent, the function begins
searching for the character string from the beginning of the file and
continues until it finds a matching entry or reaches end-of-file.

Communication Service Group

Internet Network Library: Functions 571

The NWgethostbyname function is identical to gethostbyname except
your application must pass the address of a nwsockent structure.

NWgethostbyname accesses the SYS:ETC\HOSTS file only. Use
NetDBgethostbyname to access Internet name services transparently in
addition to accessing the SYS:ETC\HOSTS file. See Internet and NetWare
in Internet Network Library: Concepts for more information.

The result of NWgethostbyname stays intact until the next call is made.
NWgethostbyname is useful for applications spawning multiple threads,
where each thread is accessing the HOSTS file. Your application can
declare separate nwsockent structures for each thread.

Your application must follow the instructions specified in Internet and
NetWare in Internet Network Library: Concepts. Any deviation can
result in unpredictable behavior.

The NetWare library uses the same file pointer for NWgethostbyname as
for NWgethostent, NWgethostbyaddr, NWsethostent and
NWendhostent for each context block to access the HOSTS file. Using
these functions indiscriminately can result in unpredictable behavior
from gethostent because it relies on the current value of the file pointer.

The hostent structure has the following format:

struct hostent {
 char *h_name; /* official name of host */
 char ** h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char ** h_addr_list; /* list of addresses from name server */
#define h_addr h_addr_list[0] /* address, for backward compatibility */
};

NOTE: Calling any database routine overwrites the results of the last
call to NWgethostbyname.

For a description of the HOSTS file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

gethostbyname, gethostent, NetDBgethostbyname, NetDBgethostent,
NWgethostent

Communication Service Group

Internet Network Library: Functions 572

NWgethostent

Returns the next sequential entry from the SYS:\ETC\HOSTS file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

struct hostent *NWgethostent (
 struct nwsockent *nwsktent);

Parameters

nwsktent

(IN) Points to a context block.

Return Values

If NWgethostent succeeds, it returns a pointer to a structure of type
hostent. The NWgethostent function returns NULL when an error occurs.
The integer h_errno, which is a C preprocessor macro, can be checked to
determine the nature of the error.

The integer h_errno can have the following values:

HOST_NOT_FOUND---No such host exists in the file SYS:ETC\HOSTS.

Remarks

The NWgethostent function returns the next sequential entry from the
SYS:ETC\HOSTS file, opening the file if it is not already open.

The NWgethostent function is identical to gethostent except that your
application must pass the address of a nwsockent structure.

*NWgethostent accesses the SYS:ETC\HOSTS file only. Use
NetDBgethostent to access Internet name services transparently in
addition to accessing the SYS:ETC\HOSTS file. See Internet and NetWare
in Internet Network Library: Concepts for more information.

The result of *NWgethostent call stays intact until the next call is made.
*NWgethostent is useful for applications spawning multiple threads,

Communication Service Group

Internet Network Library: Functions 573

where each thread is accessing the HOSTS file. Your application can
declare separate nwsockent structures for each thread.

Your application must follow the instructions specified in Internet and
NetWare in Internet Network Library: Concepts. Any deviation can
result in unpredictable behavior.

The NetWare library uses the same file pointer for NWgethostent as for
NWgethostbyaddr, NWgethostbyname, NWsethostent and
NWendhostent for each context block to access the HOSTS file. Using
these functions indiscriminately can result in unpredictable behavior
from gethostent because it relies on the current value of the file pointer.

The hostent structure has the following format:

struct hostent {
 char *h_name; /* official name of host */
 char ** h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char ** h_addr_list; /* list of addresses from name server */
#define h_addr h_addr_list[0] /* address, for backward compatibility */
};

NOTE: Calling any database routine overwrites the results of the last
call to NWgethostent.

For a description of the HOSTS file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

gethostent, gethostbyaddr, gethostbyname, NetDBgethostent

Communication Service Group

Internet Network Library: Functions 574

NWgetnetbyaddr

Returns information about a network, given its IP network number
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <netdb.h>
#include <sys/types.h>

struct netent *NWgetnetbyaddr (
 struct nwsockent *nwsktent,
 int net,
 int type);

Parameters

nwsktent

(IN) Points to a context block.

net

(IN) Specifies the IP network number in host order.

type

(IN) Currently, the only network type supported is AF_INET.

Return Values

The NWgetnetbyaddr function returns NULL when an error occurs.
Upon success, this function returns a pointer to a structure of type netent.

Remarks

The NWgetnetbyaddr function accepts a long integer value representing
the Internet network number and an integer value representing the
application family type. Using NWgetnetent, the function begins
searching for the network number from the beginning of the file and
continues until it finds a matching entry or reaches end-of-file.

The NWgetnetbyaddr function is identical to getnetbyaddr except your
application must pass the address of an nwsockent structure.

The result of NWgetnetbyaddr stays intact until the application makes

Communication Service Group

Internet Network Library: Functions 575

the next call. NWgetnetbyaddr is useful for applications spawning
multiple threads, where each thread accesses the NETWORKS file.

Your application can declare separate nwsockent structures for each
thread. It must follow the instructions specified in Internet Network
Library. Any deviation can result in unpredictable behavior.

The NetWare library uses the same file pointer for NWgetnetbyaddr as
for NWgetnetent, NWgetnetbyname, NWsetnetent and NWendnetent
for each context block to access the NETWORKS file. Using these
functions indiscriminately can result in unpredictable behavior from
getnetent because it relies on the current value of the file pointer.

The netent structure has the following format:

struct netent
{
 char *n_name; /* official name of network */
 char **n_aliases; /* list of network aliases */
 int n_addrtype; /* network number type */
 unsigned long n_net; /* network number */
 unsigned long n_mask; /* net mask--Novell extension */
};

NOTE: Calling any database routine overwrites the results of the last
call to NWgetnetbyaddr.

For a description of the NETWORKS file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

getnetbyname, getnetent, NWgetnetent

Example

See the sample files in SYS:ETC\SAMPLES\NETWORKS.

Communication Service Group

Internet Network Library: Functions 576

NWgetnetbyname

Returns information about a network, given its name
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <netdb.h>
#include <sys/types.h>

struct netent *NWgetnetbyname (
 struct nwsockent *nwsktent,
 char *name);

Parameters

nwsktent

(IN) Points to a context block.

name

(IN) Points to the official name of the network.

Return Values

The NWgetnetbyname function returns NULL when an error occurs.
Upon success, NWgetnetbyname returns a pointer to a structure of type
netent.

Remarks

The NWgetnetbyname function accepts a pointer to a character string
representing a network name. Using NWgetnetent, the function searches
for the character string from the beginning of the file and continues until
it finds a matching entry or reaches end-of-file.

The NWgetnetbyname function is identical to getnetbyname except your
application must pass the address of an nwsockent structure.

The result of NWgetnetbyname stays intact until the application makes
the next call. NWgetnetbyname is useful for applications spawning
multiple threads, where each thread accesses the NETWORKS file.

Your application can declare separate nwsockent structures for each

Communication Service Group

Internet Network Library: Functions 577

thread. It must follow the instructions specified in Internet Network
Library. Any deviation can result in unpredictable behavior.

The NetWare library uses the same file pointer for NWgetnetbyname as
for NWgetnetent, NWgetnetbyaddr, NWsetnetent and NWendnetent for
each context block to access the NETWORKS file. Using these functions
indiscriminately can result in unpredictable behavior from getnetent
because it relies on the current value of the file pointer.

The netent structure has the following format:

struct netent
{
 char *n_name; /* official name of network */
 char **n_aliases; /* list of network aliases */
 int n_addrtype; /* network number type */
 unsigned long n_net; /* network number */
 unsigned long n_mask; /* net mask--Novell extension */
};

NOTE: Calling any database routine overwrites the results of the last
call to NWgetnetbyname.

For a description of the NETWORKS file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

getnetbyaddr, getnetent, NWgetnetent

Example

See the sample files in SYS:ETC\SAMPLES\NETWORKS.

Communication Service Group

Internet Network Library: Functions 578

NWgetnetent

Returns the next sequential entry from the SYS:\ETC\NETWORKS file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <netdb.h>
#include <sys/types.h>

struct netent *NWgetnetent (
 struct nwsockent *nwsktent);

Parameters

nwsktent

(IN) Points to a context block.

Return Values

The NWgetnetent function returns NULL when an error occurs. Upon
success, NWgetnetent returns a pointer to a structure of type netent.

Remarks

The NWgetnetent function returns the next sequential entry from the
SYS:ETC\NETWORKS file, opening the file if necessary.

The NWgetnetent is identical to getnetent except your application must
pass the address of an nwsockent structure.

The result of NWgetnetent stays intact until the application makes the
next call. NWgetnetent is useful for applications spawning multiple
threads, where each thread accesses the NETWORKS file.

Your application can declare separate nwsockent structures for each
thread. It must follow the instructions specified in Internet Network
Library. Any deviation can result in unpredictable behavior.

The NetWare library uses the same file pointer for NWgetnetent as for
NWgetnetbyaddr, NWgetnetbyname, NWsetnetent and NWendnetent
for each context block to access the NETWORKS file. Using these
functions indiscriminately can result in unpredictable behavior from

Communication Service Group

Internet Network Library: Functions 579

getnetent because it relies on the current value of the file pointer.

The netent structure has the following format:

struct netent
{
 char *n_name; /* official name of network */
 char **n_aliases; /* list of network aliases */
 int n_addrtype; /* network number type */
 unsigned long n_net; /* network number */
 unsigned long n_mask; /* net mask--Novell extension */
};

NOTE: Calling any database routine overwrites the results of the last
call to NWgetnetent.

For a description of the NETWORKS file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

getnetbyaddr, getnetbyname, getnetent

Example

See the sample files in SYS:ETC\SAMPLES\NETWORKS.

Communication Service Group

Internet Network Library: Functions 580

NWgetprotobyname

Returns information about a protocol, given its name
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

struct protoent *NWgetprotobyname (
 struct nwsockent *nwsktent,
 char *name);

Parameters

nwsktent

(IN) Points to a context block.

name

(IN) Points to the official name of the protocol.

Return Values

NWgetprotobyname returns a pointer to a structure of type protoent if
successful or NULL if an error occurs.

Remarks

The NWgetprotobyname function accepts a pointer to a character string
representing a protocol name. Using NWgetprotoent, the function begins
searching for the character string from the beginning of the file and
continues until it finds a matching entry or reaches end-of-file.

NWgetprotobyname is identical to getprotobyname except your
application must pass the address of an nwsockent structure.

The result of NWgetprotobyname stays intact until the application
makes the next call. This function is useful for applications spawning
multiple threads, where each thread is accessing the PROTOCOL file.
Your application can declare separate nwsockent structures for each
thread. It must follow the instructions specified in Internet Network
Library. Any deviation can result in unpredictable behavior.

Communication Service Group

Internet Network Library: Functions 581

The NetWare library uses the same file pointer for NWgetprotobyname
as for NWgetprotoent, NWgetprotobynumber, NWsetprotoent and
NWendprotoent for each context block to access the PROTOCOL file.
Calling these functions indiscriminately can result in unpredictable
behavior from getprotoent because it relies on the current value of the
file pointer.

NWgetprotobyname returns a pointer to a protoent structure in the
SYS:ETC\PROTOCOL file. (This filename differs from the 4.3BSD
filename PROTOCOLS because of the 8-character filename limitation
imposed by NetWare.).

The protoent structure has the following format:

struct protoent
{
 char *p_name; /* official protocol name */
 char **p_aliases; /* alias list */
 int p_proto; /* protocol # */
};

NOTE: Calling any database routine overwrites the results of the last
call to NWgetprotobyname.

For a description of the PROTOCOL file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

getprotobynumber, getprotoent, NWgetprotoent, socket

Example

See the sample files in SYS:ETC\SAMPLES\PROTOCOL.

Communication Service Group

Internet Network Library: Functions 582

NWgetprotobynumber

Returns information about a protocol, given its protocol number
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

struct protoent *NWgetprotobynumber (
 struct nwsockent *nwsktent,
 int proto);

Parameters

nwsktent

(IN) Points to a context block.

proto

(IN) Indicates the protocol number.

Return Values

NWgetprotobynumber returns a pointer to a structure of type protoent if
successful or NULL if an error occurs.

Remarks

The NWgetprotobynumber function accepts an integer value
representing the protocol number. Using NWgetprotoent, the function
begins searching for the protocol number from the beginning of the file
and continues until it finds a matching entry or reaches end-of-file.

You can call NWgetprotobynumber to access the PROTOCOL file. This
function is identical to getprotobynumber except your application must
pass the address of an nwsockent structure.

The result of NWgetprotobynumber stays intact until the application
makes the next call. NWgetprotobynumber is useful for applications
spawning multiple threads, where each thread is accessing the
PROTOCOL file. Your application can declare separate nwsockent
structures for each thread. It must follow the instructions specified in

Communication Service Group

Internet Network Library: Functions 583

Internet Network Library. Any deviation can result in unpredictable
behavior.

The NetWare library uses the same file pointer for
NWgetprotobynumber as for NWgetprotoent, NWgetprotobyname,
NWsetprotoent and NWendprotoent for each context block to access the
PROTOCOL file. Using these functions indiscriminately can result in
unpredictable behavior from getprotoent because it relies on the current
value of the file pointer.

NWgetprotobynumber returns a pointer to a protoent structure in the
SYS:ETC\PROTOCOL file. (This filename differs from the 4.3BSD
filename PROTOCOLS because of the 8-character filename limitation
imposed by NetWare.)

The protoent structure has the following format:

struct protoent
{
 char *p_name; /* official protocol name */
 char **p_aliases; /* alias list */
 int p_proto; /* protocol # */
};

NOTE: Calling any database routine overwrites the results of the last
call to NWgetprotobynumber.

For a description of the PROTOCOL file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

getprotobyname, getprotobynumber, getprotoent, NWgetprotoent,
socket

Example

See the sample files in SYS:ETC\SAMPLES\PROTOCOL.

Communication Service Group

Internet Network Library: Functions 584

NWgetprotoent

Returns the next sequential entry from the SYS:\ETC\PROTOCOL file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

struct protoent *NWgetprotoent(
 struct nwsockent *nwsktent);

Parameters

nwsktent

(IN) Points to a context block.

Return Values

NWgetprotoent returns a pointer to a structure of type protoent if
successful or NULL if an error occurs.

Remarks

The NWgetprotoent function returns the next sequential entry from the
SYS:ETC\PROTOCOL file, opening the file if necessary.

This function is identical to getprotoent except your application must
pass the address of a structure of type nwsockent.

The result of the call stays intact until the application makes the next call.
NWgetprotoent is useful for applications spawning multiple threads,
where each thread is accessing the PROTOCOL file. Your application can
declare separate nwsockent structures for each thread. It must follow the
instructions specified in Internet Network Library. Any deviation can
result in unpredictable behavior.

The NetWare library uses the same file pointer for NWgetprotoent as for
NWgetprotobyname, NWgetprotobyaddr, NWsetprotoent and
NWendprotoent for each context block to access the PROTOCOL file.
Using these functions indiscriminately can result in unpredictable
behavior from getprotoent because it relies on the current value of the

Communication Service Group

Internet Network Library: Functions 585

file pointer.

This function returns a pointer to a protoent structure in the
SYS:ETC\PROTOCOL file. (This filename differs from the 4.3BSD
filename PROTOCOLS because of the 8-character filename limitation
imposed by NetWare.);

The protoent structure has the following format:

struct protoent
{
 char *p_name; /* official protocol name */
 char **p_aliases; /* alias list */
 int p_proto; /* protocol # */
};

NOTE: Calling any database routine overwrites the results of the last
call to NWgetprotoent.

For a description of the PROTOCOL file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

getprotobyname, getprotobynumber, getprotoent, socket

Example

See the sample files in SYS:ETC\SAMPLES\PROTOCOL.

Communication Service Group

Internet Network Library: Functions 586

NWgetservbyname

Returns information about a service, given its name
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

struct servent *NWgetservbyname (
 struct nwsockent *nwsktent,
 char *name,
 char *proto);

Parameters

nwsktent

(IN) Points to a context block.

name

(IN) Points to the official name of the service.

proto

(IN) Points to the name of the protocol to use when contacting a
service.

Return Values

NWgetservbyname returns a pointer to a structure of type servent if
successful or NULL if an error occurs.

Remarks

The NWgetservbyname function accepts pointers to two character strings
representing the service and protocol name for which to search. Using
NWgetservent, the function searches for a service from the beginning of
the file and continues until it finds a matching entry or reaches
end-of-file.

NWgetservbyname returns a pointer to a servent structure in the
SYS:ETC\SERVICES file. If proto is NULL, getservbyname returns the
first entry matching the service name.

Communication Service Group

Internet Network Library: Functions 587

NWgetservbyname is identical to getservbyname except your
application must pass the address of an nwsockent structure. The result
of NWgetservbyname stays intact until the application makes the next
call.

NWgetservbyname is useful for applications spawning multiple threads,
where each thread is accessing the SERVICES file. Your application can
declare separate nwsockent structures for each thread.

Your application must follow the instructions specified in Internet and
NetWare in Internet Network Library: Concepts. Any deviation can
result in unpredictable behavior.

The NetWare library uses the same file pointer for NWgetservbyname as
for NWgetservent, NWgetservbyport, NWsetservent, and
NWendservent for each context block to access the SERVICES file. Using
these functions indiscriminately can result in unpredictable behavior
from getservent because it relies on the current value of the file pointer.

The servent structure has the following format:

struct servent
{
 char *s_name; /* official service name */
 char **s_aliases; /* alias list */
 int s_port; /* port # */
 char *s_proto; /* protocol to use */
};

NOTE: Calling any database routine overwrites the results of the last
call to NWgetservbyname.

For a description of the SERVICES file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

bind, connect, getservbyname, getservbyport, getservent, NWgetservent

Example

See the sample files in SYS:ETC\SAMPLES\SERVICES.

Communication Service Group

Internet Network Library: Functions 588

NWgetservbyport

Returns information about a service, given its port number
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

struct servent *NWgetservbyport (
 struct nwsockent *nwsktent,
 int port,
 char *proto);

Parameters

nwsktent

(IN) Points to a context block.

port

(IN) Indicates the port number at which the service resides, in network
order.

proto

(IN) Indicates the name of the protocol to use when contacting a
service.

Return Values

NWgetservbyport returns a pointer to a structure of type servent if
successful or NULL if an error occurs.

Remarks

The NWgetservbyport function accepts a pointer to a character string
representing the protocol name and an integer representing the port
number. Calling NWgetservent, NWgetservbyport searches from the
beginning of the file and continues until it finds a service matching the
port number or reaches end-of-file. If a protocol name is also specified,
then the searches must also match the protocol name. (The numeric
protocol number is expressed in network byte order). If the protocol
name is NULL, the first matching entry with the given port number is

Communication Service Group

Internet Network Library: Functions 589

returned.

You can call NWgetservbyport to access the SERVICES file.
NWgetservbyport is identical to getservbyport except your application
must pass the address of an nwsockent structure. The result of
NWgetservbyport stays intact until the application makes the next call.

NWgetservbyport is useful for applications spawning multiple threads,
where each thread is accessing the SERVICES file. Your application can
declare separate nwsockent structures for each thread.

Your application must follow the instructions specified in Internet and
NetWare in Internet Network Library: Concepts. Any deviation can
result in unpredictable behavior.

The NetWare library uses the same file pointer for NWgetservbyport as
for NWgetservent, NWgetservbyname, NWsetservent, and
NWendservent for each context block to access the SERVICES file. Using
these functions indiscriminately can result in unpredictable behavior
from getservent because it relies on the current value of the file pointer.

NWgetservbyport returns a pointer to a servent structure in the
SYS:ETC\SERVICES file.

The servent structure has the following format:

struct servent
{
 char *s_name; /* official service name */
 char **s_aliases; /* alias list */
 int s_port; /* port # */
 char *s_proto; /* protocol to use */
};

NOTE: Calling any database routine overwrites the results of the last
call to NWgetservbyport.

For a description of the SERVICES file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

getservbyname, getservbyport, getservent, setservent

Example

See the sample files in SYS:ETC\SAMPLES\SERVICES.

Communication Service Group

Internet Network Library: Functions 590

NWgetservent

Returns the next sequential entry from the SYS:\ETC\SERVICES file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

struct servent *NWgetservent(
 struct nwsockent *nwsktent);

Parameters

nwsktent

(IN) Points to a context block.

Return Values

NWgetservent returns a pointer to a structure of type servent if
successful or NULL if an error occurs.

Remarks

The NWgetservent function returns the next sequential entry from the
SYS:ETC\SERVICES file, opening the file if necessary.

NWgetservent returns a pointer to a servent structure in the
SYS:ETC\SERVICES file.

NWgetservent is identical to getservent except your application must
pass the address of an nwsockent structure. The result of NWgetservent
stays intact until the application makes the next call.

NWgetservent is useful for applications spawning multiple threads,
where each thread is accessing the SERVICES file. Your application can
declare separate nwsockent structures for each thread.

Your application must follow the instructions specified in Internet and
NetWare in Internet Network Library: Concepts. Any deviation can
result in unpredictable behavior.

The NetWare library uses the same file pointer for NWgetservent as for

Communication Service Group

Internet Network Library: Functions 591

NWgetservbyport, NWgetservbyname, NWsetservent, and
NWendservent for each context block to access the SERVICES file. Using
these functions indiscriminately can result in unpredictable behavior
from getservent because it relies on the current value of the file pointer.

The servent structure has the following format:

struct servent
{
 char *s_name; /* official service name */
 char **s_aliases; /* alias list */
 int s_port; /* port # */
 char *s_proto; /* protocol to use */
};

NOTE: Calling any database routine overwrites the results of the last
call to NWgetservent.

For a description of the SERVICES file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

getservbyname, getservbyport, getservent

Example

See the sample files in SYS:ETC\SAMPLES\SERVICES.

Communication Service Group

Internet Network Library: Functions 592

NWinet_ntoa

Converts an Internet address in in_addr format into an ASCII string
representing the address in dotted notation
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
NETINET_DEFINE_CONTEXT

char *NWinet_ntoa (
 char *cp,
 struct in_addr in);

Parameters

cp

(IN) Points to the character string that represents the Internet address.

in

(IN) Indicates the Internet address, in in_addr format.

Return Values

NWinet_ntoa returns a pointer to a character array containing the ASCII
string representing the Internet address in dotted notation. NWinet_ntoa
does not return any error value.

Remarks

Your application must pass a pointer to a character array of at least 18
bytes. NWinet_ntoa fills the array with the converted address and returns
the pointer to the character array. Your application must pass the address
to be converted in the structure in_addr. Since the application is
allocating the character array, it can call NWinet_ntoa for multiple
threads where each thread can define its own array.

See Also

inet_ntoa

Communication Service Group

Internet Network Library: Functions 593

inet_ntoa

Communication Service Group

Internet Network Library: Functions 594

NWsethostent

Opens the SYS:\ETC\HOSTS file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

void NWsethostent(
 struct nwsockent *nwsktent,
 int stayopen);

Parameters

nwsktent

(IN) Points to a context block.

stayopen

(IN) Causes SYS:ETC\HOSTS to remain open (if nonzero) after a
calling NWgethostbyname or NWgethostbyaddr.

Return Values

None.

Remarks

The NWsethostent function opens the SYS:ETC\HOSTS file and rewinds
it if the file is already open. If the stayopen flag is set (nonzero), the
SYS:ETC\HOSTS file is not closed after each call made to NWgethostent
by NWgethostbyname or NWgethostbyaddr.

The NWsethostent is identical to sethostent except your application must
pass the address of an nwsockent structure.

NWsethostent accesses the SYS:ETC\HOSTS file only. Use
NetDBsethostent to transparently access Internet name services in
addition to the SYS:ETC\HOSTS file. See Internet and NetWare in
Internet Network Library: Concepts for more information.

The result of NWsethostent stays intact until the next call is made.

Communication Service Group

Internet Network Library: Functions 595

NWsethostent is useful for applications spawning multiple threads,
where each thread is accessing the HOSTS file. Your application can
declare separate nwsockent structures for each thread.

Your application must follow the instructions specified in Internet and
NetWare in Internet Network Library: Concepts. Any deviation can
result in unpredictable behavior.

The NetWare library uses the same file pointer for NWsethostent as for
NWgethostent, NWgethostbyaddr, NWgethostbyname and
NWendhostent for each context block to access the HOSTS file. Calling
these functions indiscriminately can result in unpredictable behavior
from gethostent because it relies on the current value of the file pointer.

For a description of the HOSTS file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

gethostbyaddr, gethostbyname, gethostent, NetDBgethostbyaddr,
NetDBgethostbyname, NetDBgethostent, NetDBsethostent,
NWgethostbyaddr, NWgethostbyname, NWgethostent, sethostent

Communication Service Group

Internet Network Library: Functions 596

NWsetnetent

Opens the SYS:\ETC\NETWORKS file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <netdb.h>
#include <sys/types.h>

void NWsetnetent (
 struct nwsockent *nwsktent,
 int stayopen);

Parameters

nwsktent

(IN) Points to a context block.

stayopen

(IN) Causes SYS:ETC\NETWORKS to remain open (if nonzero) after a
call to NWgetnetbyname or NWgetnetbyaddr.

Return Values

None.

Remarks

The NWsetnetent function opens the SYS:ETC\NETWORKS file and
rewinds the file if it is open. If the stayopen flag is set (nonzero), the
SYS:ETC\NETWORKS file is not closed after each call made to
NWgetnetent by NWgetnetbyname or NWgetnetbyaddr.

The NWsetnetent function is identical to setnetent except your
application must pass the address of a structure of type nwsockent.

The result of NWsetnetent stays intact until the application makes the
next call. NWsetnetent is useful for applications spawning multiple
threads, where each thread accesses the NETWORKS file.

Your application can declare separate nwsockent structures for each
thread. It must follow the instructions specified in Internet Network

Communication Service Group

Internet Network Library: Functions 597

Library. Any deviation can result in unpredictable behavior.

The NetWare library uses the same file pointer for NWsetnetent as for
NWgetnetent, NWgetnetbyaddr, NWgetnetbyname and NWendnetent
for each context block to access the NETWORKS file. Calling these
functions indiscriminately can result in unpredictable behavior from
getnetent because it relies on the current value of the file pointer.

For a description of the NETWORKS file, refer to theTCP/IP Transport
Supervisor's Guide.

See Also

endnetent, getnetbyaddr, getnetbyname, getnetent, NWgetnetent,
NWgetnetbyaddr, NWgetnetbyname, setnetent

Example

See the sample files in SYS:ETC\SAMPLES\NETWORKS.

Communication Service Group

Internet Network Library: Functions 598

NWsetprotoent

Opens the SYS:\ETC\PROTOCOL file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

void NWsetprotoent (
 struct nwsockent *nwsktent,
 int stayopen);

Parameters

nwsktent

(IN) Points to a context block.

stayopen

(IN) Causes SYS:ETC\PROTOCOL to remain open (if nonzero) after a
call to NWgetprotobyname or NWgetprotobynumber.

Return Values

None.

Remarks

The NWsetprotoent function opens the SYS:ETC/PROTOCOL file and
rewinds the file if it is already open. If the stayopen flag is set (nonzero),
the PROTOCOL file is not closed after each call made to NWgetprotoent
by NWgetprotobyname or NWgetprotobynumber.

NWsetprotoent is identical to setprotoent except your application must
pass the address of an nwsockent.

The result of NWsetprotoent stays intact until the application makes the
next call. NWsetprotoent is useful for applications spawning multiple
threads, where each thread is accessing the PROTOCOL file. Your
application can declare separate nwsockent structures for each thread. It
must follow the instructions specified in TBS. Any deviation can result in
unpredictable behavior.

Communication Service Group

Internet Network Library: Functions 599

The NetWare library uses the same file pointer for NWsetprotoent as for
NWgetprotoent, NWgetprotobyname, NWgetprotobynumber and
NWendprotoent for each context block to access the PROTOCOL file.
Calling these functions indiscriminately can result in unpredictable
behavior from getprotoent because it relies on the current value of the
file pointer.

For a description of the PROTOCOL file, refer to theTCP/IP Transport
Supervisor's Guide.

See Also

endprotoent, getprotobyname, getprotobynumber, getprotoent,
NWendprotoent, NWgetprotoent, NWgetprotobyname,
NWgetprotobynumber, setprotoent

Example

See the sample file in SYS:ETC\SAMPLES\PROTOCOL.

Communication Service Group

Internet Network Library: Functions 600

NWsetservent

Opens the SYS:\ETC\SERVICES file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

void NWsetservent (
 struct nwsockent *nwsktent,
 int stayopen);

Parameters

nwsktent

(IN) Points to a context block.

stayopen

(IN) Causes SYS:ETC\SERVICES to remain open (if nonzero) after a
call by NWgetservbyname or NWgetservbyport.

Return Values

None.

Remarks

The NWsetservent function opens the SYS:ETC\SERVICES file and
rewinds the file if it is already open. If the stayopen flag is set (nonzero),
the SYS:ETC\SERVICES file is not closed after each call made to
NWgetservent by NWgetservbyname or NWgetservbyport.

You can call NWsetservent to access the SERVICES file. NWsetservent is
identical to setservent except your application must pass the address of
an nwsockent structure. The result of NWsetservent stays intact until the
application makes the next call.

NWsetservent is useful for applications spawning multiple threads,
where each thread is accessing the SERVICES file. Your application can
declare separate nwsockent structures for each thread.

Communication Service Group

Internet Network Library: Functions 601

Your application must follow the instructions specified in TBS. Any
deviation can result in unpredictable behavior.

The NetWare library uses the same file pointer for NWsetservent as for
NWgetservbyport, NWgetservbyname, NWgetservent, and
NWendservent for each context block to access the SERVICES file. Using
these functions indiscriminately can result in unpredictable behavior
from getservent because it relies on the current value of the file pointer.

For a description of the SERVICES file, refer to theTCP/IP Transport
Supervisor's Guide.

See Also

endservent, NWendservent, setservent

Example

See the sample files in SYS:ETC\SAMPLES\SERVICES.

Communication Service Group

Internet Network Library: Functions 602

sethostent

Initializes sequential access to the HOSTS database
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

void sethostent (
 int stayopen);

Parameters

stayopen

(IN) Causes SYS:ETC\HOSTS to remain open (if nonzero) after a call
to gethostbyname or gethostbyaddr.

Return Values

None.

Remarks

The sethostent function is defined as a macro in NETDB.H. You can use
this macro to access the HOSTS file or host information from Internet
name services. sethostent expands to NWsethostent, providing only
access to the SYS:ETC\HOSTS file, or to NetDBsethostent, providing
transparent access to this file in addition to Internet name services such as
NIS. See Internet and NetWare in Internet Network Library: Concepts for
more information. Your application must include
NETDB_DEFINE_CONTEXT in any of the source files that include
NETDB.H.

The sethostent function opens the SYS:ETC\HOSTS file and rewinds the
file if it is already open. If the stayopen flag is set (nonzero), the
SYS:ETC\HOSTS file is not closed after each call made to gethostent by
gethostbyname or gethostbyaddr. sethostent also makes sure that the
next call to gethostent reads from the beginning of the SYS:ETC\HOSTS
file.

Communication Service Group

Internet Network Library: Functions 603

NOTE: If your application spawns multiple threads, call either
NWsethostent or NetDBsethostent.

For a description of the HOSTS file, refer to theTCP/IP Transport
Supervisor's Guide.

See Also

gethostbyaddr, gethostbyname, gethostent, NetDBgethostbyname,
NetDBgethostent, NetDBsethostent, NWgethostent, NWgethostbyaddr,
NWgethostbyname, NWsethostent

Communication Service Group

Internet Network Library: Functions 604

setnetent

Opens the SYS:\ETC\NETWORKS file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <netdb.h>
#include <sys/types.h>

void setnetent (
 int stayopen);

Parameters

stayopen

(IN) Causes SYS:ETC\NETWORKS to remain open (if nonzero) after a
call to getnetbyname or getnetbyaddr.

Return Values

None.

Remarks

The setnetent function is defined as a macro in NETDB.H. You can use
this macro to access the NETWORKS file. This macro calls upon the
corresponding NetWare Internet support function. Your application must
include NETDB_DEFINE_CONTEXT in any of the source files that
include NETDB.H.

The setnetent function opens the SYS:ETC\NETWORKS file and rewinds
the file if it is already open. If the stayopen flag is set (nonzero), the
SYS:ETC\NETWORKS file is not closed after each call made to getnetent
by getnetbyname or getnetbyaddr.

NOTE: If your application spawns multiple threads, call NWsetnetent
.

For a description of the NETWORKS file, refer to the TCP/IP Transport
TCP/IP Supervisor's Guide.

Communication Service Group

Internet Network Library: Functions 605

See Also

endnetent, getnetbyaddr, getnetbyname, getnetent, NWgetnetbyaddr,
NWgetnetbyname, NWgetnetent, NWsetnetent

Example

See the sample files in SYS:ETC\SAMPLES\NETWORKS.

Communication Service Group

Internet Network Library: Functions 606

setprotoent

Opens the SYS:\ETC\PROTOCOL file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

void setprotoent (
 int stayopen);

Parameters

stayopen

(IN) Causes SYS:ETC\PROTOCOL to remain open (if nonzero) after a
call to getprotobyname or getprotobynumber.

Return Values

None.

Remarks

The setprotoent function is defined as a macro in NETDB.H. This macro
calls upon the corresponding NetWare Internet support function. Your
application must include NETDB_DEFINE_CONTEXT in any one of the
source files that include NETDB.H.

The setprotoent function opens the SYS:ETC/PROTOCOL file if it is not
already open. It rewinds the file if it is open. If the stayopen flag is set
(nonzero), the PROTOCOL file is not closed after each call made to
getprotoent by getprotobyname or getprotobynumber. (This filename
differs from the 4.3BSD filename PROTOCOLS because of the 8-character
filename limitation imposed by NetWare.)

NOTE: If your application spawns multiple threads, call
NWsetprotoent.

For a description of the PROTOCOL file, refer to the TCP/IP Transport
TCP/IP Supervisor's Guide.

Communication Service Group

Internet Network Library: Functions 607

See Also

endprotoent, getprotobyname, getprotobynumber, getprotoent,
NWendprotoent, NWgetprotoent, NWgetprotobyname,
NWgetprotobynumber, NWsetprotoent

Example

See the sample files in SYS:ETC\SAMPLES\PROTOCOL.

Communication Service Group

Internet Network Library: Functions 608

setservent

Opens the SYS:\ETC\SERVICES file
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 2.x, 3.x, 4.x
Platform: NLM
Standard: BSD
Service: Internet Network Library

Syntax

#include <sys/types.h>
#include <netdb.h>

void setservent (
 int stayopen);

Parameters

stayopen

(IN) Causes SYS:ETC\SERVICES to remain open (if nonzero) after a
call by getservbyname or getservbyport.

Return Values

None.

Remarks

The setservent function opens the SYS:ETC\SERVICES file and rewinds
the file if it is already open. If the stayopen flag is set (nonzero), the
SYS:ETC\SERVICES file is not closed after each call made to getservent
by getservbyname or getservbyport.

NOTE: If your application spawns multiple threads, call
NWsetservent.

For a description of the SERVICES file, refer to the TCP/IP Transport
Supervisor's Guide.

See Also

endservent, NWendservent, NWsetservent

Example

Communication Service Group

Internet Network Library: Functions 609

See the sample files in SYS:ETC\SAMPLES\SERVICES.

Communication Service Group

Internet Network Library: Functions 610

Internet Network Library: Structures

Communication Service Group

Internet Network Library: Structures 611

hostent

Defines an internet host
Service: Internet Network Library
Defined In: netdb.h

Structure

struct hostent {
 char *h_name;
 char ** h_aliases;
 int h_addrtype;
 int h_length;
 char ** h_addr_list;
#define h_addr h_addr_list[0]
};

Fields

h_name

Points to the official name of the host.

h_aliases

Points to the first element in a list of addresses of alternative names for
the host. A zero (0) terminates the list.

h_addrtype

Contains the type of address being returned. Currently, this is always
AF_INET.

h_length

Contains the length in bytes of the host's address.

h_addr_list

Points to the first element in an array of pointers to in_addr structures
containing the addresses for the host. A zero (0) terminates the list.
Host addresses are returned in network byte order.

h_addr

Points to the first address in h_addr_list. This define is provided for
backward compatibility.

Communication Service Group

Internet Network Library: Structures 612

in_addr

Defines an internet address
Service: Internet Network Library
Defined In: in.h

Structure

struct {
 union {
 struct {
 unsigned char s_b1, s_b2,s_b3,s_b4;
 } S_un_b;
 struct {
 unsigned short s_w1,s_w2;
 } S_un_w;
 unsigned long S_addr;
 } S_un;
} in_addr;

Fields

s_b1

s_b2

s_b3

.s_b4

.s_w1

.s_w2

S_addr

Communication Service Group

Internet Network Library: Structures 613

netent

Defines an internet network
Service: Internet Network Library
Defined In: netdb.h

Structure

struct netent
{
 char *n_name; /* official name of network */
 char **n_aliases; /* list of network aliases */
 int n_addrtype; /* network number type */
 unsigned long n_net; /* network number */
 unsigned long n_mask; /* net mask--Novell extension */
};

Fields

n_name

Points to the official name of the network.

n_aliases

Points to the first element in a list of pointers to alternate names
(aliases) for the network. A NULL character terminates the list.

n_addrtype

Contains the type of the network number returned. Currently, this is
always AF_INET.

n_net

Contains the network number, in host order.

n_mask

Contains the net mask. This field is a Novell extension of the structure.

Communication Service Group

Internet Network Library: Structures 614

nwsockent

Provides context in NetWare 386 environment
Service: Internet Network Library
Defined In: netdb.h

Structure

typedef struct nwsockent{
 FILE *nse_hostctx;
 FILE *nse_netctx;
 FILE *nse_protoctx
 FILE *nse_servctx
 int nse_h_errno;
 union sockent {
 struct hostent nsu_hst;
 struct netent nsu_net;
 struct.netent nsu_proto;
 struct.servent nsu_serv;
 } nse_sockent_un;
char nse_scratch[SRATCHBUFSIZE];
} nwsockent;

Fields

No fields listed

Communication Service Group

Internet Network Library: Structures 615

protoent

Defines an internet protocol
Service: Internet Network Library
Defined In: netdb.h

Structure

struct protoent {
 char *p_name;
 char **p_aliases;
 int p_proto;
};

Fields

p_name

Points to the official name of the protocol.

p_aliases

Points to the first element in a list of pointers to alternate names
(aliases) for the protocol. A NULL character terminates the list.

p_proto

Contains the protocol number.

Communication Service Group

Internet Network Library: Structures 616

servent

Defines an internet service
Service: Internet Network Library
Defined In: netdb.h

Structure

struct servent {
 char *s_name;
 char **s_aliases;
 int s_port;
 char *s_proto;
};

Fields

s_name

Points to the official name of the service.

s_aliases

Points to the first element in a list of pointers to alternate names
(aliases) for the service. A NULL pointer terminates the list.

s_port

Contains the port number at which the service resides. Port numbers
are returned in network byte order.

s_proto

Points to the name of the protocol to use when contacting the service.

Communication Service Group

Internet Network Library: Structures 617

IPX/SPX

Communication Service Group

 618

IPX/SPX: Guides

IPX/SPX: Concept Guide

Overview

IPX and SPX Overview

Packet Information

Event Control Blocks

IPX Function List

SPX Function List

IPX/SPX NLM Function List

Packet Checksum Function List

IPX

Connectionless Service: IPX

IPX Connectionless Mode Client: Example and IPX Connectionless
Mode Server: Example

Managing ECBs

Listening for IPX Packets

Sending IPX Packets

Deallocating IPX Resources

Scheduling Asynchronous Events with IPX

SPX

Connection-Mode Service: SPX

Establishing an SPX Connection

SPX TLI Multiple Connection Server: Example

Transmitting Data with SPX

Releasing an SPX Connection

SPX TLI Client: Example and SPX TLI Server: Example

Communication Service Group

IPX/SPX: Guides 619

Local Management

IPX/SPX Local Management Issues

IPX Initialization

SPX Initialization

Managing IPX Sockets

Event Service Routines

The Event Service Routine Interface

Event Service Routine Processing

Enabling Interrupts

Event Service Routines and IPX Requests

ECB Management

Additional Features

Packet Checksums

Look Ahead Sockets

Additional Links

IPX: Functions

SPX: Functions

IPX/SPX and TLI IPX: Structures

Communication Service Group

IPX/SPX: Guides 620

IPX/SPX: Concepts

Checksumming and Ethernet 802.3

Checksum values are stored in the checksum field of the IPX header. A
value of 0FFFFh in the checksum field identifies ETHERNET_802.3 packets
to LAN drivers. Consequently, applications can't use IPX checksums when
transmitting packets across a network that uses ETHERNET_802.3.
Specifically, applications should not use checksumming if the local DOS IPX
engine is bound to an ETHERNET_802.3 board/frame type.

Parent Topic: Packet Checksums

Checksums and Packet Transmission

DOS IPX supports two functions that send packets:

IPXFastSend

IPXSendPacket

IPXFastSend speeds delivery by bypassing the normal error checking
performed by IPXSendPacket. IPXFastSend leaves the IPX header
unmodified, assuming the caller has included all the necessary data.

In contrast, IPXSendPacket initializes several IPX header fields before
sending the packet, including the checksum field, which it always sets to
0FFFFh. In other words, this function always overwrites any current
checksum value. To allow for unmodified checksums, call
IPXSendWithChecksum.

Parent Topic: Packet Checksums

Connection-Mode Service: SPX

Communicating with SPX involves much of the same preparation required
by IPX. You must initialize SPX, open a socket, and set up send and receive
ECBs just as you would for IPX. SPX, however, requires a few additional
steps to build the connection-oriented resources.

Related Topics

Communication Service Group

IPX/SPX: Concepts 621

Establishing an SPX Connection

Transmitting Data with SPX

Releasing an SPX Connection

Connectionless Service: IPX

Once you have initialized IPX locally, you are ready to send and receive IPX
packets.

Related Topics

Managing ECBs

Listening for IPX Packets

Sending IPX Packets

Deallocating IPX Resources

Scheduling Asynchronous Events with IPX

IPX Connectionless Mode Client: Example and IPX Connectionless Mode
Server: Example

Deallocating IPX Resources

When you have finished communicating with a particular node, call
IPXDisconnectFromTarget. This function allows network drivers to
deallocate resource at the network protocol level.

Parent Topic: Connectionless Service: IPX

ECB Management

ECBs can be be used individually or can be used out of a queue. In other
words multiple ECBs can be queued up for use by IPX/SPX in turn. You
need to decide whether to use individual ECBs or the queueing feature of
IPX/SPX. Another decision you must address is where to store the data that
will be placed in the packet that goes out onto the network wire. You can
use a single fragment of memory that contains all the data (including the
header) of the packet that will be sent or you can have multiple fragments
of memory that will contain the data that will be sent.

This section discusses both ECB queue usage and managing packet
fragments.

Communication Service Group

IPX/SPX: Concepts 622

Packet Fragments

IPX assembles a packet from the buffers or fragments referenced by the
ECB. The ECB stores these values as an array of fragment descriptors along
with a fragment count that indicates the length of the array.

You can use as many fragments as are necessary. The only requirement is
that the first 30 bytes of the first buffer must be devoted to the IPX header
(42 bytes for an SPX header) and the entire packet length cannot exceed 576
bytes.

In most situations two buffers are adequate for managing a packet. The first
buffer usually contains the IPX or SPX header, and the second buffer
contains the message data.

ECB Queues

When an ECB with a nonNULL queueHead field is used, a queue (or list) of
ECBs is built from each ECB which shares a queue head as the event
associated with the ECB occurs.

This list of ECBs, which are linked in reverse order of the completion of the
associated events, are doubly linked by means of a next and prev pointer. The
first ECB in the list is for the most recent event and the last ECB is for the
first event.

The prev pointer in the list's first (most recent) ECB points to the last ECB in
the list and the last ECB's next pointer is NULL. To process the ECBs in the
order received, the application uses the first ECB's prev pointer to get a
pointer to the last ECB and then follows the prev pointer until it reaches the
first ECB (see the following figure).

Figure 11. ECB List

Communication Service Group

IPX/SPX: Concepts 623

Most applications have several functionally equivalent ECBs outstanding
simultaneously. If the application uses the queue head feature, it typically
gives all of the pending ECBs (those that are dedicated to a particular use)
the same queue head. Thus, the same queue head can process the
completed ECBs from any and all of several listens.

Whenever the application does process the ECBs queued on a particular
queue head, the application should call IpxGetAndClearQ to retrieve the
pointer to the most recent ECB on the queue and to simultaneously clear the
queue head.

NOTE: An application should set a queue head to NULL before it is
used the first time.

Parent Topic:

Communication Service Group

IPX/SPX: Concepts 624

IPX/SPX Local Management Issues

Enabling Interrupts

An event service routine can execute for longer periods if it enables
interrupts or invokes a procedure that temporarily enables interrupts.
However, if IPX calls the event service routine, problems can occur if the
routine is not reentrant and enables interrupts.

Under these circumstances, the event service routine should take measures
to prevent itself from recurring. If the AES calls the event service routine,
enabling interrupts will prevent the AES from calling other event service
routines scheduled during the same clock interval. These routines will be
delayed until the next system clock tick.

Parent Topic: Event Service Routines

Establishing an SPX Connection

The explanation of how to set up ECBs for IPX applies equally to SPX (see
Managing ECBs). SPX needs an additional ECB to establish the SPX
connection. Generally, you will want to allocate a separate ECB for this
purpose since the initial ECB requires no event service routine and
references no data other than the SPX header.

To set up the connection, one node acts as the caller and the other acts as the
listener. Once the connection has been established, SPX makes no
distinction between the caller and sender.

The calling node calls SPXEstablishConnection. This function takes the
initial ECB, a retry count, and a watchdog flag as input. The retry count
specifies how many times SPX will continue sending unacknowledged
packets.

The watchdog flag allows the caller to enable a local watchdog process to
monitor the SPX connection after it is established. (If you enable the
watchdog process, you should allocate an additional receive ECB.) If the
request is successful, the caller receives an SPX connection ID that identifies
the connection.

At the other end of the connection, the listening node calls
SPXListenForConnection. This function takes parameters similar to
SPXEstablishConnection. SPXListenForConnection can be cancelled by
calling IPXCancelEvent.

Related Topics:

Connection-Mode Service: SPX

Communication Service Group

IPX/SPX: Concepts 625

SPX TLI Multiple Connection Server: Example

Event Control Blocks

Event Control Blocks (ECBs) are the link between your application and IPX.
Each ECB contains the information IPX needs to send or receive a packet
tailored to the needs of your application. Setting up the ECBs is the main
hurdle you face when programming IPX or SPX.

ECBs can be socket-based or socketless.

Socket-based ECBs handle IPX/SPX events.

Socketless ECBs schedule events without reference to IPX/SPX packet
transmissions.

A socket-based ECB includes the following fields:

Link address

ESR address

In use flag

Completion code

Socket number

IPX workspace

Driver workspace

Immediate address

Fragment count

ECB fragment descriptor list

ECB contains the ECB data.

Socketless ECBs are timed by the Asynchronous Event Scheduler (AES) and
consequently don't require a socket. The fields in a socketless ECB are a
subset of those found in the socket-based ECB:

Link address

ESR address

In-use flag

AES workspace

The structure IPX_ECB, which is identical to the SPX_ECB structure, is

Communication Service Group

IPX/SPX: Concepts 626

defined in NWIPXSPX.H and consists of the following fields:

unsigned long semHandleSave; /*R*/
struct IPX_ECBStruct **queueHead; /*sr*/
struct IPX_ECBStruct *next; /*A*/
struct IPX_ECBStruct *prev; /*A*/
short status; /*q*/
unsigned long semHandle; /*sr (ignored by
 IpxSend) */
unsigned short IProtID; /*R*/
unsigned char protID [6]; /*R*/
unsigned long boardNumber; /*R*/
unsigned char immediateAddress [6]; /*s*/
unsigned char driverWS [4]; /*R*/
unsigned long ESREBXValue; /*R*/
unsigned short socket; /*sr (ignored if
 the socket
 parameter is 0
 and on SPX
 functions which
 take the
 connection
 number as 0) */
unsigned short protocolWorkspace; /*R*/
unsigned long dataLen; /*q*/
unsigned long fragCount; /*sr*/
ECBFrag fragList [2]; /*sr*/

In the preceding comments:

R Indicates fields that are reserved.

s Indicates fields the application must set when using
the ECB to send a packet.

r Indicates fields the application must set when using
the ECB to receive a packet.

A Indicates fields that may be used when the ECB is not
in use by IPX/SPX.

q Indicates fields the application may read.

IPX and SPX use the semHandleSave field for internal purposes and must not
be modified.

The queueHead field is set by the application either to a pointer to an ECB
pointer (double pointer to an ECB) or else to NULL. The queueHead field is
set to an ECB pointer pointer to cause IPX and SPX to queue ECBs for
completed events, using the ECB pointer pointed to by the queueHead field
as the head of the queue. The application can set this field to NULL if it does
not need this feature.

Communication Service Group

IPX/SPX: Concepts 627

IPX/SPX uses the next and prev fields for internal purposes. IPX and SPX
maintain these fields while the ECB is in use. When the ECB is not in use,
the application can use these fields (if necessary). Most commonly, the next
and prev fields are used by the application as link fields for keeping the ECB
in a free list. These fields are also used by IPX/SPX to queue ECBs off of the
queue head if the queueHead field is nonNULL.

The status field indicates the current state of the event (for example, SPX is
listening on a socket) and to indicate whether the event was completed
successfully. If this field is positive, the event has not yet occurred. If this
field is zero, the event completed successfully. If this field is negative, the
event completed with an error. The value of status in this case indicates the
type of error.

The semHandle field is set by the application either to a semaphore handle
returned by OpenLocalSemaphore or to NULL. The purpose of the
semaphore handle is to allow the application to block pending the
completion of one or more IPX/SPX events. Whenever the event (associated
with any of the IPX/SPX functions that take an ECB as a parameter) occurs,
and the semHandle field is nonNULL, IPX/SPX calls SignalLocalSemaphore
with the specified semaphore handle. This unblocks the application if the
application was blocked on the semaphore.

NOTE: The semaphore handle is undefined until the ECB completes.

The IProtID, boardNumber, driverWS, ESREBXValue, protocolWorkspace, and
dataLen fields are used internally by IPX/SPX and the driver and must not
be modified. IProtID, protID, boardNumber, driverWS, ESREBXValue, and
protocolWorkspace are reserved fields.

The field immediateAddress holds the address of the node to which the packet
is sent or from which it arrived. This is the address of an internetwork
bridge on the local network if the packet is not sent to or received from a
node on the local network. GetLocalTarget can be used to get the
information for this field. This field needs to be initialized only for IpxSend.

The socket field identifies the sending or receiving socket with which the ECB
is associated. This field can be used two ways:

The application sets this field to the desired socket number and passes
zero as the socket number to those functions that take both a socket
number and an ECB as parameters.

The application does not fill this field, but passes the actual socket to the
above-mentioned functions.

The fragCount field indicates the number of buffers from which an outbound
packet is built or into which an inbound packet is dispersed. The number of
buffers (one or more) is given by fragCount. The application provides a list
of fragment descriptors, at the end of the ECB, which contains the address
and size of the buffers.

The first fragList must describe a buffer large enough to hold at least the

Communication Service Group

IPX/SPX: Concepts 628

packet header for the service being used. That is, for IPX packets the first
fragList must describe a buffer of at least length 30, and for SPX the first
fragList must describe a buffer of at least length 42. Note that the IPX_ECB
(and SPX_ECB) defines two fragments.

Event Service Routine Processing

An event service routine behaves like an interrupt service routine. IPX calls
the event service routine with interrupts disabled. Consequently, if you use
an event service routine, it should execute as quickly as possible. When the
routine is finished, IPX returns control to your application.

An event service routine should not perform tasks that the main body of
your application can perform just as effectively. Typically, an event service
routine places its associated ECB in a queue and returns. The main body of
the application monitors the queue, processes the data, and hands the ECB
back to IPX.

Parent Topic: Event Service Routines

Event Service Routines

The ESR Address field in the ECB can contain the address of an event
service routine that your application wants to execute in response to an IPX
event. The event triggering the event service routine might be the sending
of a packet, the receiving of a packet, the recurrence of an IPX event
rescheduling itself, or an event scheduled by your application.

After processing the event, IPX resets the ECB's In-use flag to zero, enters a
completion code, removes the ECB from its internal lists, and calls the event
service routine. At that point, IPX is finished and you are free to handle the
ECB and any associated data as you see fit.

Related Topics

The Event Service Routine Interface

Event Service Routine Processing

Enabling Interrupts

Event Service Routines and IPX Requests

Parent Topic: IPX/SPX Local Management Issues

Event Service Routines and IPX Requests

Communication Service Group

IPX/SPX: Concepts 629

An event service routine called by IPX can freely call any IPX or AES
function except these functions:

IPXCloseSocket

IPXDisconnectFromTarget

These functions should not be called by an event service routine.

An event service routine can reschedule itself for delayed execution by
calling either of these functions:

IPXScheduleIPXEvent (if it was called by IPX)

IPXScheduleSpecialEvent (if it was called by the AES)

In either case, the event service routine passes the address of the procedure
to its associated ECB and then executes an RETF instruction.

All IPX Functions except for the following execute entirely in an
interrupts-disabled state:

IPXSendPacket

IPXGetLocalTarget

IPXRelinquishControl

If you are calling any of these functions from inside code that is running
with interrupts disabled, be sure your code can survive if interrupts are
enabled temporarily.

Parent Topic: Event Service Routines

IPX and SPX Overview

IPX™ and SPX™ are the native communication services of the NetWare®
OS. IPX is used by the NetWare workstation software to communicate with
NetWare servers. SPX adds connection-oriented enhancements to IPX to
provide a reliable transport for client applications. To use IPX or SPX, you
must load the IPX communication software on the local workstation. Other
workstation software can also be loaded but is not required.

IPX Features

IPX deals in datagrams, lone packets of data requiring no
acknowledgements or sequencing. Datagrams reduce network traffic and
streamline network performance. In the case of IPX the success rate for
datagram delivery is typically about 95%. Consequently, if you use IPX you
need to develop a strategy for confirming deliveries and, possibly, keeping
packets in order.

Communication Service Group

IPX/SPX: Concepts 630

If you are transmitting brief messages that fit into a single packet and don't
require an acknowledgement, you may be able to use IPX as-is. Also, if you
are using IPX to perform simple request/reply transactions, the reply itself
can serve as an acknowledgement. If no reply is received within a certain
period of time, you can assume the delivery failed and react accordingly.

SPX Features

On the other hand, if you need to know with certainty that data is being
received in the order it is sent, you must build such guarantees into your
application or use SPX. SPX provides the packet sequencing and
guaranteed delivery associated with a connection-mode service. These
features add some overhead to network communications, but they come
ready-to-use and require no additional work on your part.

IPX Function List

These functions perform IPX operations.

Function Header Comment

IPXCancelEvent nxtd.h
nxtw.h

Cancels a pending event.

IPXCloseSocket nxtd.h
nxtw.h

Closes the specified IPX socket
and cancels any events defined
by ECBs associated with the
socket.

IPXDisconnectFromT
arget

nxtd.h
nxtw.h

Informs IPX that the connection
with the specified node is no
longer needed.

IPXGetInternetworkA
ddress

nxtd.h
nxtw.h

Returns the network and node
address of the requesting
workstation.

IPXGetIntervalMarke
r

nxtd.h
nxtw.h

Returns an IPX time marker. This
function lets applications
measure the elapsed time
between two events.

IPXGetLocalTarget nxtd.h
nxtw.h

Gets the value to be placed in an
ECB's immediate address field.

IPXGetMaxPacketSiz
e

nxtd.h
nxtw.h

Finds the maximum packet size
allowed by a workstation's
network topology.

IPXInitialize nxtd.h
nxtw.h

Gets the entry address to the IPX
interface.

Communication Service Group

IPX/SPX: Concepts 631

IPXListenForPacket nxtd.h
nxtw.h

Prepares IPX to receive a packet.

IPXOpenSocket nxtd.h
nxtw.h

Opens an IPX socket.

IPXRelinquishContro
l

nxtd.h
nxtw.h

Relinquishes control of the
workstation's CPU.

IPXScheduleIPXEvent nxtd.h
nxtw.h

Schedules an IPX event.

IPXSendPacket nxtd.h
nxtw.h

Sends an IPX packet to the
ECB-defined node and socket.

IPX Initialization

For Assembly programmers IPX and SPX functions are accessed by making
a far call to the IPX interface. To obtain this address, you execute the DOS
multiplex interrupt. For example, the following instructions will return the
address:

IPXLocation dd
mov AX, 7A00h
int 2Fh
cmp AL, 0FFh
jne NoIPX
mov AX, ES
mov IPXLocation, DI
mov IPXLocation + 2, AX

If IPX is loaded, it sets the low byte of AX to FFh and returns its far call entry
address in ES:DI. If IPX has not been loaded, the interrupt leaves AL
unmodified. You can make IPX and SPX calls by preparing the appropriate
registers and then calling the entry point. The BP register is not preserved
on SPX calls.

C programmers can call IPXInitialize to check whether IPX is loaded. If it is,
this function stores the IPX entry address internally for the API library to
use.

Parent Topic: IPX/SPX Local Management Issues

IPX Packet Structure

The structure of an IPX packet is identical to the structure of a Xerox
Network Standard (XNS) packet. The packet consists of a 30-byte header
followed by 0 to 546 bytes of data. The minimum packet size is 30 bytes (the
header only) and the maximum packet size is 576 bytes. The content and

Communication Service Group

IPX/SPX: Concepts 632

structure of the data portion are entirely the responsibility of the application
using IPX and can take any format.

The NWIPXSPX.H include file contains definitions for all the C structures
needed for IPX, SPX headers, and ECB structures.

The structure IPX_HEADER is defined in NWIPXSPX.H and consists of the
following fields:

unsigned short checksum; /* high/low */
unsigned short packetLen; /* high/low */
unsigned char transportCtl;
unsigned char packetType;
unsigned long destNet; /* high/low */
unsigned char destNode[6]; /* high/low */
unsigned short destSocket; /* high/low */
unsigned long sourceNet; /* high/low */
unsigned char sourceNode[6]; /* high/low */
unsigned short sourceSocket; /* high/low */

The checksum field contains a dummy checksum of the packet contents and
is always set by IPX to 0xFFFF.

The packetLen field contains the length of the complete IPX packet (30 to 576
bytes) and is set by IPX.

The application must set the packetType and destNet, destNode, destSocket fields
before sending an IPX packet. The remaining fields are set by IPX.

NetWare internetwork bridges use the transportCtl field to monitor the
number of bridges or routers that a packet has crossed. The packets are
discarded by the 16th bridge they encounter. IPX sets this field to zero
before sending the packet.

The packetType field identifies the type of service offered or required by the
packet.

Xerox* has defined the following packet types:

0 Unknown Packet Type

1 Routing Information Packet (RIP)

2 Echo Packet

3 Error Packet

Novell® has defined the following packet types:

4 Packet Exchange Packet (IPX)

5 Sequenced Packet Protocol Packet (SPX)

Communication Service Group

IPX/SPX: Concepts 633

16-31 Experimental Protocols

17 NetWare Control Protocol™ (NCP™) Packet

20 NetBIOS Name Packet

IPX users should set packetType to either 0 or 4. SPX sets the packet type to 5
for packets of that protocol.

The destNet and sourceNet fields identify the network address of the target or
source application. The network address is a 4-byte number assigned to
each physical cabling segment. This address is determined and assigned by
the network administrator.

The destNode and sourceNode fields contain the 6-byte number that identifies
the LAN board within the target or source network station (or node). A
value of 0xFFFFFFFFFFFF is placed in the node field to indicate a broadcast.

The destSocket and sourceSocket fields contain the socket address, a 2-byte
number that identifies a process within a node. This is an IPX socket and
must be opened using the IPX open socket function. If the destination socket
is not opened communication will not occur.

Parent Topic: Packet Information

IPX/SPX Local Management Issues

IPX and SPX local management issues include initializing the API library
(for C programmers), opening and closing sockets, scheduling
asynchronous events, developing event service routines, and managing ECB
queues and fragments.

Initializing IPX and SPX: Before you can call the functions in the IPX/SPX
API library, you must initialize the IPX environment. Optionally, you can
initialize SPX to ensure local compatibility with SPX functions. This
initializaiton does not apply if programming an NLM. See the following:

IPX Initialization

SPX Initialization

Related Topics

Managing IPX Sockets

Event Service Routines

ECB Management

IPX/SPX NLM Function List

Communication Service Group

IPX/SPX: Concepts 634

These functions are available for NLMs. They compare to the functions
shown above and for the most part are the same, but there are some
differences.

Table auto. Communication Services Functions

Function Purpose

IpxCancelEvent/
IpxCancelPacket

Cancels an ECB being used by
IpxReceive

IpxCheckSocket Determines if the specified socket is
open

IpxCloseSocket Closes an IPX socket

IpxConnect Creates a virtual connection to the
specified address

IpxDisconnect Destroys a virtual connection to the
specified address

IpxGetAndClearQ Returns a pointer to the list of ECBs
queued off of a specified queue head
and then sets the queue head to
NULL

IpxGetInternetworkAddress Returns the network and node
address of the requesting NLM

IpxGetLocalTarget Fills the immediateAddress field in an
ECB

IpxGetStatistics Returns diagnostic statistics
maintained by IPX (Not
implemented; included for
compatibility)

IpxGetVersion Returns the major and minor version
and the revision of IPX

IpxOpenSocket Opens an IPX socket

IpxReceive Initiates the receiving of an IPX
packet

IpxResetStatistics Resets diagnostic statistics
maintained by IPX (Not
implemented; included for
compatibility)

IpxSend Initiates the sending of an IPX packet

SpxAbortConnection Aborts an SPX connection

SpxCancelEvent/
SpxCancelPacket

Cancels a pending SPX event

SpxCheckSocket Checks the status of a specified
socket number

Communication Service Group

IPX/SPX: Concepts 635

SpxCloseSocket Closes an SPX socket

SpxEstablishConnection Attempts to establish an SPX
connection with a listening socket

SpxGetConfiguration Determines the maximum number of
SPX connections and the number of
available SPX connections

SpxGetConnectionStatus Returns the status of an SPX
connection

SpxGetTime Gets a time marker from SPX

SpxGetVersion Returns the major and minor version,
revision, and revision date of SPX

SpxListenForConnection Attempts to receive an Establish
Connection packet and thereby
establish an SPX connection with a
remote partner

SpxListenForSequencedPacke
t

Passes an ECB to SPX for the purpose
of receiving a sequenced packet

SpxOpenSocket Opens an SPX socket

SpxSendSequencedPacket Sends an SPX packet

SpxTerminateConnection Terminates an SPX connection

Listening for IPX Packets

To listen for packets, call IPXListenForPacket. As input, this function takes
an ECB prepared for receiving packets. Call this function for each ECB you
want to post on a socket. There is no limit to the number of ECBs you can
post.

While IPX is using the ECB, the In-use flag is a nonzero value. Once a
packet has been received on an ECB, the In-use flag is set to zero and an
appropriate value is entered in the completion code field. When IPX is
finished with the receive ECB it invokes the ECB's event service routine if
you have assigned one.

Parent Topic: Connectionless Service: IPX

Look Ahead Socket Restrictions

Sockets opened by IPXOpenLookAheadSocket are handled a little
differently from sockets opened by IPXOpenSocket. The following
restrictions apply to look ahead sockets:

Communication Service Group

IPX/SPX: Concepts 636

All look ahead sockets are opened long term. Therefore, an application
that opens a look ahead socket should always close the socket before the
application terminates.

Receive ECBs cannot be posted on a look ahead socket.

SPX functions cannot be used with a look ahead socket.

Despite these differences, you close a look ahead socket as you would a
normal socket by calling IPXCloseSocket. Also, like a normal socket, a look
ahead socket can be used to send packets or to schedule asynchronous
events.

Parent Topic: Look Ahead Sockets

Look Ahead Sockets

The function IPXOpenLookAheadSocket has recently been added to
NetWare. They are not available for NLM applications. This function lets an
application open a look ahead socket and register a
ReceiveLookAheadHandler with IPX.

Related Topics

The Receive Look Ahead Handler

Look Ahead Socket Restrictions

The Look Ahead Structure

Managing ECBs

The first step in exchanging packets is to set up a pool of ECBs to receive
incoming data and a pool of send ECBs for outgoing data. The number of
ECBs you allocate depends on what your application needs to do with the
data associated with the ECBs. For example, at some point you must remove
the incoming data from the input buffer referenced by the ECB's fragment
list.

Allocating ECBs

Until you process the ECB and return it to IPX, the ECB can no longer
receive incoming data. Other ECBs must be available to pick up the slack.
The more processing your application performs on the input buffer, the
more ECBs you will want to allocate. It is better to have a few too many than
not enough.

Communication Service Group

IPX/SPX: Concepts 637

Queueing ECBs

You need to devise some strategy for queuing and scanning the ECBs, such
as a linked list. For the receive ECBs, your event service routine can process
the ECB. When IPX uses the ECB, it invokes the event service routine, which
at that time can enter the ECB into a queue. The application can check the
queue periodically and process the ECBs.

Initializing ECBs

As you allocate and prepare the ECBs, several fields need to be initialized.
For receive ECBs, fill in the following fields:

Event service routine address

Socket number

Fragment list fields

For send ECBs, fill in these fields:

The event service routine address

Socket number

Immediate address

Packet type

Destination address

Fragment list fields

The immediate address field can be set by calling IPXGetLocalTarget. If
you are not using an event service routine, place a NULL in the event
service routine address field.

Maintaining ECBs

Receive and send ECBs are generally handled separately:

Receive ECBs are passed to IPX by calling IPXListenForPacket. This
approach lets your application forget about the receive ECBs until they
need attention.

Send ECBs must be maintained by the application. Once IPX uses a send
ECB it is finished with it, and the application is responsible for keeping
the ECB in circulation. You can place available send ECBs in a free list or
you could scan the entire pool of send ECBs searching for a free ECB each
time you need one.

Communication Service Group

IPX/SPX: Concepts 638

Parent Topic:

Connectionless Service: IPX

Managing IPX Sockets

A socket is a two-byte value that associates an application or a process with
the transmission of data. Both IPX and SPX require you open a socket in
order to receive data. SPX also requires an open socket to send data. If you
are sending data with IPX, you do not have to open a socket. IPX will
allocate a socket if you do not specify one. You cannot use the same socket to
handle both IPX and SPX transmissions.

Opening an IPX Socket

To open a socket, call IPXOpenSocket. This function takes a socket number
and socket type as input. IPX will select a dynamic socket value if you pass a
socket number of 0000h. IPX chooses dynamic sockets between 4000h and
5000h.

Socket types can be short-lived or long-lived. Typically, most applications
use short-lived sockets. A long-lived socket remains open after your
application terminates and can be advantageous for memory-resident
programs.

Closing an IPX Socket

When you are finished with a socket, call IPXCloseSocket. This function
cancels events associated with the socket. It is especially important that your
application closes any long-lived sockets it has opened. These sockets will
persist after your application terminates. IPX closes short-lived sockets upon
program termination.

Parent Topic:

IPX/SPX Local Management Issues

Negotiating Checksums

Communicating nodes must negotiate whether to use checksums. Such
negotiations should be conducted using connection-oriented protocols such
as SPX or NetBIOS. To determine whether checksumming is supported at
the local workstation, call GetIPXInformation.

Parent Topic: Packet Checksums

Communication Service Group

IPX/SPX: Concepts 639

Packet Checksum Function List

These assembly language functions support IPX Checksums and Look
Ahead Receive handlers.

Function Value Comment

Get IPX Information 31 Indicates whether checksumming is
supported on the local node.

IPX Generated
Checksum

33 Generates an appropriate checksum
value for an IPX packet.

IPX Open Look Ahead
Socket

35 Opens a look ahead socket and
registers a Look Ahead Receive
handler.

IPX Send With
Checksum

32 Generates a checksum in an IPX
packet's checksum field before
sending the packet.

IPX Verify Checksum 34 Determines whether or not a
received packet's data has been
corrupted.

Packet Checksums

Packet checksum functions have recently been added to the NetWare API.
They are not available for NLM programs at this time. These functions
generate and verify checksums for packet transmissions, providing a high
level of data integrity across the network. Packet checksumming is an
optional feature that must be supported at both ends of a transmission. The
checksum requests are implemented under the DOS IPX protocol only
(IPXODI).

Related Topics

Negotiating Checksums

Checksums and Packet Transmission

Checksumming and Ethernet 802.3

Packet Information

Both IPX and SPX are adaptations of the Xerox* Network Systems (XNS*)

Communication Service Group

IPX/SPX: Concepts 640

architecture. IPX conform to the Xerox Internetwork Datagram Protocol
(IDP), and SPX conforms to the Sequenced Packet Protocol (SPP). To use
either protocol you must think in terms of packets. A packet is a specially
formatted data item to be transmitted from one workstation to another
workstation.

A packet contains a header and a message. The header contains the data
needed to transport the packet from its source to its destination. The
message is the application data. IPX defines the basic format of the packet
header. SPX augments this format with the data it needs to maintain
connections. In the discussions that follow, you can assume that what is said
about IPX is also true for SPX unless otherwise noted.

Related Topics

IPX Packet Structure

SPX Packet Structure

The Receive Look Ahead Handler

IPX calls ReceiveLookAheadHandler when it receives packets on the
associated socket so the handler can preview the incoming data. If the
application wants the packet, the handler supplies IPX with the addresses of
application buffers to receive the data. Using this approach, the application
can arrange to receive a burst of packets directly into application buffers.

Normally the receive ECB buffers serve as temporary storage for incoming
data. Before posting the ECB again, the application must copy the data out
of these buffers and into an area where it can operate on the data. By using a
look ahead socket, an application is no longer required to maintain this pool
of intermediate buffers.

To understand how the ReceiveLookAheadHandler works, consider how
incoming packets are handled. When a workstation receives a packet, the
LAN driver gives a portion of it to the Link Support Layer (LSL). From this
data, the LSL determines which network layer the packet is destined for. If
the destination is IPX, LSL calls the IPX internal look ahead handler.

The IPX internal handler determines the status of the destination socket. If
the destination socket is a normal socket on which an application has posted
receive ECBs, the handler passes an ECB to the LSL, which in turn passes it
to the LAN driver. The LAN driver fills in the ECB to reference the received
data and then calls the associated event service routine. At this point, the
application must retrieve the data from the ECB buffers and post the ECB
again.

If the destination socket is a look ahead socket, the IPX internal handler calls
the socket's ReceiveLookAheadHandler. This handler can then determine
whether the application wants the packet. If so, it must build an ODI-style
ECB to reference the application's receive buffers and event service routine.

Communication Service Group

IPX/SPX: Concepts 641

ReceiveLookAheadHandler returns by passing IPX a pointer to this ECB.
(For the ReceiveLookAheadHandler interface specifications, see the
Assembly Transport Function Reference in the NetWare Limited Support
SDK.)

Parent Topic: Look Ahead Sockets

Releasing an SPX Connection

There are two functions that close an SPX connection:

SPXTerminateConnection informs the partner node that the connection
is being closed.

SPXAbortConnection makes no attempt to alert the partner node that it
is closing the connection.

SPXTerminateConnection is the preferred method for most situations.

Parent Topic: Connection-Mode Service: SPX

Scheduling Asynchronous Events with IPX

The workstation IPX software includes an Asynchronous Event Scheduler
(AES). This device allows you to schedule IPX events to occur after a
specified time interval. To schedule an asynchronous event, call
IPXScheduleIPXEvent. As input, this function takes the amount of time to
delay the event and an ECB that will control the execution of the event.

The ECB should include the socket number that the event will occur on and
the event service routine that will receive control when the time period
expires. The time unit is expressed in clock ticks (from zero to 65,353). You
can schedule an event up to one hour in advance. To cancel a scheduled
event, call IPXCancelEvent.

Parent Topic: Connectionless Service: IPX

Sending IPX Packets

To send a packet, call IPXSendPacket. As input, this function takes a send
ECB whose IPX header specifies the destination node and socket. To
broadcast to all stations, the header's destination field should be filled with
FFh. If your application is broadcasting to the network that it resides on, the
ECB's immediate address field should also be filled with FFh.

While IPX attempts to send the packet, it sets the ECB's In-use flag to FFh.

Communication Service Group

IPX/SPX: Concepts 642

Afterward, IPX sets this field to zero and enters an appropriate value in the
completion code field. A completion code of FEh indicates that the packet is
not deliverable. This may be because IPX cannot find a bridge to the
destination network or because the target node address does not exist.

Parent Topic: Connectionless Service: IPX

SPX Function List

These functions perform SPX operations.

Function Header Comment

SPXAbortConnection nxtd.h
nxtw.h

Unilaterally aborts the
connection associated with the
specified SPX connection ID
number.

SPXEstablishConnectio
n

nxtd.h
nxtw.h

Establishes an SPX connection
with a the ECB-defined
listening node and socket.

SPXGetConnectionStat
us

nxtd.h
nxtw.h

Returns the status of an SPX
connection.

SPXInitialize nxtd.h
nxtw.h

Checks whether SPX is
installed at the workstation.

SPXListenForConnectio
n

nxtd.h
nxtw.h

Attempts to receive an establish
connection packet from the
ECB-defined node and socket.

SPXListenForSequence
dPacket

nxtd.h
nxtw.h

Listens for an SPX packet using
the specified ECB.

SPXSendSequencedPac
ket

nxtd.h
nxtw.h

Sends an SPX packet using the
specified SPX connection ID
number and ECB.

SPXTerminateConnecti
on

nxtd.h
nxtw.h

Terminates the specified SPX
connection.

SPX Initialization

Before using SPX, you can check whether SPX is supported locally. (Early
versions of the NetWare workstation software did not support SPX.) To
check for SPX support, call SPXInitialize. This function returns the SPX
major and minor revision number and the number of maximum and
available SPX connections. SPX is supported by NetWare 2.1 and higher.

Communication Service Group

IPX/SPX: Concepts 643

Parent Topic: IPX/SPX Local Management Issues

SPX Packet Structure

The SPX packet is identical to the IPX packet except that it has an additional
12 bytes in the header. An SPX packet consists of a 42-byte header followed
by 0 to 534 bytes of data. The minimum packet size is 42 bytes (the header
only) and the maximum size is 576 bytes. The content and structure of the
data portion are entirely the responsibility of the application using SPX and
can take any format.

The SPX packet header consists of an IPX header (30 bytes) and 7 additional
fields as follows:

unsigned char connectionCtl;
unsigned char dataStreamType;
unsigned short sourceConnectID; /* high/low */
unsigned short destConnectID; /* high/low */
unsigned short sequenceNumber; /* high/low */
unsigned short ackNumber; /* high/low */
unsigned short allocNumber; /* high/low */

SPX sets all fields in the SPX header except the destination fields (in some
functions), connectionCtl, and dataStreamType.

The connectionCtl field controls the bidirectional flow of data across an SPX
connection. The defined bits are shown in the following figure.

Figure 12. Connection Control Bits

The END_OF_MESSAGE bit is the only bit the application sets or clears.

The dataStreamType field indicates the type of data included in the packet.

Communication Service Group

IPX/SPX: Concepts 644

Values of 0x00 through 0xFD are defined by the client and ignored by SPX.
A value of 0xFE indicates an End-Of-Connection packet. When a client
makes a call to terminate an active connection, SPX generates an
End-Of-Connection packet. This packet is then delivered to the connection
partner as the last message on the connection.

A value of 0xFF indicates an End-Of-Connection-Acknowledgment packet.
SPX generates an End-Of-Connection-Acknowledgment packet
automatically. It is marked as a system packet and not delivered to the
partner clients. The values 0xFE and 0xFF are reserved for use by SPX in
connection maintenance and should not be used by an application.

The sourceConnectID and destConnectID fields specify the connection
identification number assigned to the SPX connection by the source node
and destination node respectively.

The sequenceNumber field keeps a count of packets exchanged in one
direction on the connection. Each side of the connection keeps its own count.
The number wraps to 0x0000 after reaching 0xFFFF. Since SPX manages this
field, client processes need not be concerned with it.

The ackNumber field indicates the next packet that an SPX connection expects
to receive. The values in this field increment from 0x0000 to 0xFFFF and
then wrap to zero again.

The allocNumber (in conjunction with the ackNumber) indicates the number of
outstanding packet receive buffers (posted listens) available for a given SPX
connection. It is used by SPX to implement flow control between
communicating applications. The allocNumber minus the ackNumber equals
the number of posted listens outstanding on the connection socket. SPX
sends packets only until the local sequence number equals the allocNumber
of the remote partner. The allocNumber increments from 0xFFFF and wraps
to 0x0000.

Related Topics:

Packet Information

SPX TLI Client: Example and SPX TLI Server: Example

The Event Service Routine Interface

On entry, your event service routine should assume the following
conditions:

The AL register contains the identity of the calling process: 00h for the
AES and FFh for IPX.

A pointer to the ECB associated with the event service routine is in the
register pair ES:SI.

The state of the processor flags and all registers except SS and SP have

Communication Service Group

IPX/SPX: Concepts 645

been saved on the user's stack. The event service routine is responsible
for saving SS and SP so it can return properly after execution.

Interrupts are disabled.

The DS register needs to be initialized before the event service routine
makes reference to any application variables.

The event service routine is called by a long procedure call. Consequently, it
must return with an RETF instruction and with interrupts disabled. It can't
return a value.

For programs written in C, the event service routine can be implemented as
a C function called by an assembly front end:

_ESRHandler proc far
mov ax, DGroup
mov ds, ax
push es
push si
call _EventServiceRoutine
retf
_ESRHandler endp

If your ESR handler needs to pass more than a few bytes of data to the event
service routine, the handler should set up its own stack. In that case, it
should restore the original stack segment and stack pointer before
returning.

Parent Topic: Event Service Routines

The Look Ahead Structure

When IPX calls your application's ReceiveLookAheadHandler, it passes a
LookAhead referencing the received packet. The structure includes the
following fields:

Look ahead address

Look ahead length

look ahead address is the address of a buffer holding the first n bytes of the
received packet.

look ahead length contains the length of the look ahead buffer.

look ahead length is equal to or greater than the look ahead size requested by
the application when it called IPXOpenLookAheadSocket. However, if the
packet's total length is less than the requested size, look ahead length contains
the length of the packet. If this value is less than the minimum size
requested, discard the packet.

Communication Service Group

IPX/SPX: Concepts 646

Parent Topic: Look Ahead Sockets

Transmitting Data with SPX

There are two functions used to exchange data once a connection has been
set up:

SPXListenForSequencedPacket

SPXSendSequencedPacket

As input, both functions take an ECB to conduct the associated event. Your
application must manage the ECBs in a manner similar to that described for
IPX operations. To receive status information about an SPX connection, call
SPXGetConnectionStatus.

Parent Topic: Connection-Mode Service: SPX

Communication Service Group

IPX/SPX: Concepts 647

IPX: Functions

IPX for DOS

Communication Service Group

IPX: Functions 648

IPXCancelEvent (DOS)

Cancels a pending event by passing an ECB address to the IPX™ protocol
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS
Service: IPX

Syntax

#include <nwipxspx.h>

int IPXCancelEvent(
 ECB far *eventControlBlock);

Parameters

eventControlBlock

(IN/OUT) Points to an ECB structure.

Return Values

0x0000 Successful

0xF9 ECB cannot be canceled

0xFF ECB not in use

ECB Return Values

0xFC Event canceled

Remarks

IPXCancelEvent (DOS) returns a completion code upon returning
control to the application program.

ECB might be performing an event such as send or listen under IPX, a
schedule or reschedule under AES, or a listen under the SPX™ protocol.

When an ECB is submitted to IPX to coordinate an event, IPX sets ECB's
inUseFlag to a nonzero value, indicating the ECB is unavailable to other
applications. Possible nonzero values for inUseFlag are listed below:

Communication Service Group

IPX: Functions 649

Decimal Hex Flag Value Description

224 0xE0 AES Temporary Indicator

248 0xF8 Critical Holding (IPX in critical process)

250 0xFA Processing

251 0xFB Holding (in processing after an event occurred)

252 0xFC AES Waiting

253 0xFD Waiting

254 0xFE Receiving

255 0xFF Sending

After attempting to cancel the event defined by the ECB, IPX sets ECB's
completionCode to an appropriate value. It also sets ECB's inUseFlag to
0x00 (available for use). IPX does not call the ESR referenced by ECB's
ESRAddress.

IPXCancelEvent (DOS) cannot cancel packets already sent by the node's
driver.

See Also

IPXScheduleIPXEvent (DOS)

Communication Service Group

IPX: Functions 650

IPXCloseSocket (DOS)

Closes the specified IPX socket and cancels all associated ECBs
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS
Service: IPX

Syntax

#include <nwipxspx.h>

void cdecl IPXCloseSocket(
 WORD socketNumber);

Parameters

 socketNumber

(IN) Indicates the socket number of the socket to be closed (high-low).

Remarks

IPXCloseSocket (DOS) returns a value of 0xFC in each ECB's
completionCode, indicating that the event has been canceled. Then IPX sets
each ECB's inUseFlag to 0x00 (available for use). IPX does not call ECBs'
associated ESRs.

NOTE: Any socket number can be closed; no error is generated if the
specified socket is not opened. Before an application program
terminates and destroys ESR code, it must close all sockets it has opened
as long-lived. Otherwise, ESR could be called after it is no longer
available, permanently hanging the workstation. Sockets opened as
short-lived will automatically close upon program termination if the
shell is loaded.

Applications waiting to receive a packet on the closed socket are
awakened with 0x8007 code (Cancel) in ECB status.

Transient applications should close sockets before terminating.

IPXCloseSocket (DOS) must not be called from within an ESR.

See Also

IPXOpenSocket (DOS)

Communication Service Group

IPX: Functions 651

IPXDisconnectFromTarget (DOS)

Informs the communication driver the application does not intend to send
any more packets to the specified station
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS
Service: IPX

Syntax

#include <nwipxspx.h>

void IPXDisconnectFromTarget(
 BYTE far *networkAddress);

Parameters

networkAddress

(IN) Points to the 12-byte local network address (high-low). The 12
bytes are organized as follows:

Bytes 0-3 = Network number
Bytes 4-9 = Node number
Bytes 10-11 = Socket number

Remarks

IPXDisconnectFromTarget (DOS) is a courtesy to network
communications drivers operating strictly on a point-to-point basis at the
physical transport level. Once informed, the driver can dismantle any
board-level virtual connection with the node specified.

 networkAddress identifies the node with which communication will be
terminated. After calling IPXDisconnectFromTarget (DOS), any virtual
connection between the machine on which the application is running and
the target machine may be dismantled by the driver.

An application should never call IPXDisconnectFromTarget (DOS) from
within an ESR.

See Also

SPXAbortConnection (DOS), SPXTerminateConnection (DOS)

Communication Service Group

IPX: Functions 652

IPXGetInternetworkAddress (DOS)

Returns the network and node address of the requesting workstation
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS
Service: IPX

Syntax

#include <nwipxspx.h>

void IPXGetInternetworkAddress(
 BYTE far *networkAddress);

Parameters

networkAddress

(OUT) Points to the 10-byte local network address. The 10 bytes are
organized as follows:

Bytes 0-3 = Network number
Bytes 4-9 = Node number

Remarks

IPXGetInternetworkAddress (DOS) is especially useful to any
application that must inform other nodes of its address on the
internetwork.

The buffer supplied by the application is filled with a 4-byte network
address followed by a 6-byte node address. Both fields are in high-low
order.

IPXGetInternetworkAddress (DOS) does not return a socket number.
The socket number is determined when an application opens a socket.
When an application builds a complete 12-byte network address, it must
append the appropriate socket number.

See Also

IPXGetLocalTarget (DOS)

Communication Service Group

IPX: Functions 653

IPXGetIntervalMarker (DOS)

Returns a time marker from IPX
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS
Service: IPX

Syntax

#include <nwipxspx.h>

WORD cdec IPXGetIntervalMarker(
 void);

Parameters

IPXGetIntervalMarker (DOS) requires no parameters.

Return Values

timeUnits as a WORD.

Remarks

IPXGetIntervalMarker (DOS) may be used to measure the elapsed time
between two events. To do this, call IPXGetIntervalMarker (DOS)
twice, once before each of the two events. Subtract the first interval
marker from the second to derive the elapsed time (in clock ticks). This
result remains accurate even if the interval marker wraps through zero
between the first and second event. The timer is not intended for use with
time intervals greater than 1 hour due to the precision of the interval
marker (16 bits unsigned).

The interval marker is a value between 0 and 65,535 [(0x0000) and
(0xFFFF)]. Each interval represents one IBM* PC clock tick, which is
approximately 1/18 second.

IPXInitialize (DOS) must be called before calling
IPXGetIntervalMarker (DOS).

See Also

IPXInitialize (DOS)

Communication Service Group

IPX: Functions 654

IPXGetLocalTarget (DOS)

Returns the value to be placed in ECB's immediateAddress

Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS
Service: IPX

Syntax

#include <nwipxspx.h>

int cdecl IPXGetLocalTarget(
 BYTE far *networkAddress,
 BYTE far *immediateAddress,
 int far *transportTime);

Parameters

networkAddress

(IN) Points to the 12-byte destination network address (high-low).

immediateAddress

(OUT) Points to the ECB's 6-byte immediate address (high-low).

transportTime

(OUT) Indicates the estimated amount of time (in system clock ticks)
for sending a 576-byte packet to the destination node.

Return Values

0x0000 Successful

0xFA No Local Target Identified

Remarks

IPXGetLocalTarget (DOS) passes the internetwork address of a
destination node to IPX. IPX returns an estimated packet transport time
and either the node address of the destination node or the node address
of the local bridge. It will use this information to route a packet to the
destination node.

The 12 bytes of networkAddress are defined as:

Bytes 0-3 = Network Number
Bytes 4-9 = Node Number
Bytes 10-11 = Socket Number

Communication Service Group

IPX: Functions 655

 transportTime contains an estimate of the time (in clock ticks of
approximately 1/18 second) a 576-byte packet takes to travel from the
source node to the destination node. Since the returned value is only an
estimate, actual travel time can vary depending on network traffic and
packet size.

IPXGetLocalTarget (DOS) can be used with destination addresses using
broadcast values (all 0xFFs) in the node field of networkAddress.

When IPX receives a packet, it records the node address of the sending
node in immediateAddress of the receive ECB. The 6 bytes of
immediateAddress are the local target node number, not the local source
node number. The local source node number is the number of the calling
workstation.

Therefore, once an application begins exchanging packets with an
application on another node, either application can use immediateAddress
returned with a receive ECB to obtain the local target value instead of
continually calling IPXGetLocalTarget (DOS).

An application can use an ECB that has received a packet to send a
packet to the originating address without modifying immediateAddress in
ECB.

IPXGetLocalTarget (DOS) can be called from within IPX or an AES ESR
or directly from the main portion of an application. It must not be called
from any other kind of interrupt service routine.

See Also

IPXSendPacket (DOS), IPXListenForPacket (DOS)

Communication Service Group

IPX: Functions 656

IPXGetMaxPacketSize (DOS)

Finds the maximum packet size allowed by a workstation's topology (LAN
card and wiring)
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS
Service: IPX

Syntax

#include <nwipxspx.h>

WORD cdecl IPXGetMaxPacketSize(
 void);

Parameters

IPXGetMaxPacketSize (DOS) requires no parameters.

Return Values

Packet
Size

Successful

Remarks

IPXInitialize (DOS) must be called successfully before calling
IPXGetMaxPacketSize (DOS).

When IPXGetMaxPacketSize (DOS) fails, it returns 0xF0 (240 decimal);
240 decimal can also be a valid maximum packet size in some situations.

Packet size on a local network is limited only by that network's topology.
The content and structure of an IPX packet's data portion are entirely the
responsibility of the application using IPX. The application may be able to
take advantage of a larger allowable packet size if the topology permits.
Call IPXGetMaxPacketSize (DOS) to check what size packets the
topology allows.

NOTE: Some bridges will not route packets that are longer than 576
bytes. Because bridges will not fragment packets and reassemble them
later, the application must not exceed the 576-byte packet size limit if it
is to work across a bridge.

If SHELL.CFG uses IPXMaxPacket, the packet size returned by
IPXGetMaxPacketSize (DOS) will be supported by theLAN, not by the
individual workstation.

Communication Service Group

IPX: Functions 657

See Also

IPXInitialize (DOS), SPXInitialize (DOS)

Communication Service Group

IPX: Functions 658

IPXInitialize (DOS)

Returns the entry address for the IPX interface
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS
Service: IPX

Syntax

#include <nwipxspx.h>

BYTE cdecl IPXInitialize(
 void);

Parameters

IPXInitialize (DOS) does not requires any parameters.

Return Values

0x0000 Successful

0xF0 Ipx Not Installed

Remarks

IPXInitialize (DOS) initializes a variable (IPXLocation) in the library with
the address of the IPX services.

IPXInitialize (DOS) or SPXInitialize (DOS) must be called before any
IPX function can be performed.

See Also

SPXInitialize (DOS)

Communication Service Group

IPX: Functions 659

IPXListenForPacket (DOS)

Prepares IPX to receive an IPX packet
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS
Service: IPX

Syntax

#include <nwipxspx.h>

void IPXListenForPacket(
 ECB far *eventControlBlock);

Parameters

eventControlBlock

(IN/OUT) Points to an ECB structure.

ECB Return Values

0x0000 Successful

0xFC Request Cancelled

0xFD Bad Packet

0xFF Socket Not Open

Remarks

IPXListenForPacket (DOS) passes an ECB address to IPX for the purpose
of receiving an IPX packet. It then returns control to the calling
application. Meanwhile, IPX listens for and attempts to receive a packet.

Before calling IPXListenForPacket (DOS), an application must open the
socket and initialize ECB's ESRAddress, socketNumber, immediateAddress,
fragmentCount, and fragmentDescriptor. If no routine is to be called,
ESRAddress should contain a NULL.

Initially, IPX sets ECB's inUseFlagto (0xFE) indicating that the ECB is
waiting to receive a packet. IPX also adds the ECB to a buffer pool of
ECBs all listening for IPX packets on the same socket. IPX imposes no
limit on the number of ECBs that can be listening concurrently on a
socket.

When IPX detects an incoming packet, IPX uses one of the listening ECBs
to receive the packet. Listen ECBs are not filled in the order they were

Communication Service Group

IPX: Functions 660

submitted to IPX. IPX records an appropriate value in the selected ECB's
completionCode and places a node address in ECB's immediateAddress. The
value in immediateAddress identifies either the sending node (if the
sending node resides on the local network), or the local bridge that
routed the packet to the receiving node (if the sending node does not
reside on the local network).

Finally, IPX sets ECB's inUseFlag to 0x00 (available for use) and calls the
ESR referenced by ECB's ESRAddress (if applicable).

See Also

IPXSendPacket (DOS)

Communication Service Group

IPX: Functions 661

IPXOpenSocket (DOS)

Opens an IPX socket
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS
Service: IPX

Syntax

#include <nwipxspx.h>

int cdecl IPXOpenSocket(
 BYTE far *socketNumber,
 BYTE socketType);

Parameters

socketNumber

(IN/OUT) Points to a socket number (high-low) or a 0x00 value.

socketType

(IN) Indicates the type of socket to open. socketType can be either:

0x00 = Stay open until program closes it or program terminates
(short-lived)
0xFF = Stay open until program closes it (long-lived)

Return Values

0x0000 Successful

0x00F0 IPX Not Installed

0x00FE Socket Table Full

0x00FF Socket Already Open

Remarks

An application must call IPXOpenSocket (DOS) to open a socket before
receiving a packet on the socket.

socketNumber contains the number of the socket to be opened. Passing
0x0000 allows IPX to open an available socket of its choice in the range
0x4000 to 0x5000. This is known as a dynamic socket. The dynamic socket
opened will be returned in socketNumber, which is a 2-byte variable.

If IPXOpenSocket (DOS) returns a completion code of 0x00, the socket

Communication Service Group

IPX: Functions 662

has been opened as expected. If the completion code is 0xFE, the socket
table is already full. If IPXOpenSocket (DOS) returns a completion code
of 0xFF, the specified socket is already open.

 socketType specifies how long the socket should remain open. Unless the
program intends to terminate and stay resident, the socket type should
always be temporary (0x00---SHORT_LIVED). The exception to this is for
programming with MS Windows, in which case you should always open
sockets as permanent (0xFF---LONG_LIVED) sockets. Sockets that are
opened as temporary (SHORT_LIVED) are automatically closed upon
program termination (if the NetWare® shell is loaded), and all associated
events pending on that socket are canceled. If the application program
opens a socket as permanent, it must guarantee that the ESR is available
even after it terminates. Otherwise, the workstation could hang if the ESR
is called after it is no longer available.

By default, IPX supports up to 20 open sockets on one workstation. The
maximum number of simultaneously opened sockets for a workstation
can be as high as 150 and is configurable in SHELL.CFG.

See Also

IPXCancelEvent (DOS), IPXCloseSocket (DOS)

Communication Service Group

IPX: Functions 663

IPXRelinquishControl (DOS)

Relinquishes control of a workstation's CPU
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS
Service: IPX

Syntax

#include <nwipxspx.h>

void cdecl IPXRelinquishControl(
 void);

Parameters

IPXRelinquishControl (DOS) needs no parameters.

Remarks

IPXRelinquishControl (DOS) can temporarily relinquish control of the
workstation CPU so that other processing can be done while the
application is waiting for input.

IPX applications should make repeated calls to IPXRelinquishControl
(DOS) during idle time to allow other applications in the computer to use
the CPU. This is especially important when the application is resident
with NetWare server or bridge software, since IPXRelinquishControl
(DOS) greatly improves the efficiency of the server or bridge.

IPXRelinquishControl (DOS) also allows the communications driver in
IPX to run. This is important if the driver is not interrupt driven. On a
normal workstation, IPXRelinquishControl (DOS) invokes a polling
procedure provided by the network communications driver. It represents
the only opportunity the driver has to use the CPU to send and receive
packets, events essential to the application itself.

Communication Service Group

IPX: Functions 664

IPXScheduleIPXEvent (DOS)

Schedules an IPX event
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS
Service: IPX

Syntax

#include <nwipxspx.h>

void IPXScheduleIPXEvent(
 WORD timeUnits,
 ECB far eventControlBlock);

Parameters

timeUnits

(IN) Indicates the time interval.

eventControlBlock

(IN) Points to ECB.

Remarks

After initializing ECB's ESRAddress and socketNumber, calling
IPXScheduleIPXEvent (DOS) passes a delay time and an ECB address to
IPX for the purpose of scheduling an IPX event. It then returns control to
the calling application. Meanwhile, IPX attempts to schedule the event.

The scheduled event is directly associated with an IPX socket. If
IPXCloseSocket (DOS) is executed with this socket as its argument, the
event scheduled by IPXScheduleIPXEvent (DOS) is canceled along with
all other IPX packet events for the socket. To cancel only an event
scheduled by IPXScheduleIPXEvent (DOS), call IPXCancelEvent (DOS).

timeUnits specifies the waiting time (in clock ticks) before a scheduled
event takes place. It must be set to a value between 0 and 65,535 (0x0000
and 0xFFFF). The interval between each IBM PC clock tick is
approximately 1/18 second. This allows an event to be scheduled for up
to one hour.

IPXScheduleIPXEvent (DOS) can reschedule an ECB previously
submitted for scheduling. The application passes a pointer to the same
ECB to the function, along with a new expiration time. This is the only
situation in which it is legal to pass IPX (AES) to an ECB that is still in
use. inUseFlag is set to a value of 0xFD while the AES is in control of the
IPX ECB.

An ESR can also call IPXScheduleIPXEvent (DOS). For example, when

Communication Service Group

IPX: Functions 665

IPX calls an ESR, the ESR can first check conditions in the system,
determine that conditions are not acceptable for executing at the moment,
and then call IPXScheduleIPXEvent (DOS) to reschedule itself. After the
specified delay time, the ESR can execute again, check conditions, and
continue the cycle until conditions are favorable.

An application should never call IPXScheduleIPXEvent (DOS) to pass
the address of an ECB currently being used by IPX for packet events.

See Also

IPXCancelEvent (DOS)

Communication Service Group

IPX: Functions 666

IPXSendPacket (DOS)

Initiates the sending of an IPX packet
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS
Service: IPX

Syntax

#include <nwipxspx.h>

void IPXSendPacket(
 ECB far *eventControlBlock);

Parameters

eventControlBlock

(IN/OUT) Points to ECB.

ECB Return Values

0x00 Successfully Sent But Not Necessarily Received

0xFC Request Canceled

0xFD Given Packet Did Not Have a 30-byte Packet Header as the
First Fragment, or Its Total Length Exceeded 567 Bytes

0xFE Packet Not Deliverable

0xFF Hardware Failure

Remarks

IPXSendPacket (DOS) passes an ECB address to IPX for the purpose of
sending an IPX packet. It then returns control to the calling application.
Meanwhile, IPX attempts to send the packet.

Before calling IPXSendPacket (DOS), the application must initialize
ECB's ESRAddress, socketNumber, immediateAddress, fragmentCount, and
fragmentDescriptor. The application must also prepare the IPX header of
the associated packet by filling in packetType and destination.
IPXSendPacket (DOS) then passes the ECB to the network
communication drivers to initiate the send operation.

Although socketNumber in ECB is significant (IPX uses it as the source
socket number on the packet header), the socket need not be open to
perform a send on it.

Communication Service Group

IPX: Functions 667

immediateAddress in ECB can be set by calling NWIPXGetLocalTarget
(DOS).

Initially, IPX sets ECB's inUseFlag to 0xFF, indicating that the ECB is
sending a packet. After attempting to send the packet, IPX sets ECB's
completionCode to an appropriate value and sets inUseFlag to 0x00,
indicating that the ECB is available for use. Finally, IPX calls the ESR
referenced by ECB's ESRAddress (if applicable).

A completion code of 0x00 indicates the packet was sent successfully but
does not guarantee the packet was received successfully by the
destination node. For example, the transmission media may lose or
garble the packet, or the destination socket may not be open or listening.
IPX does not inform the sending node if these problems occur.

0xFE indicates that the packet is undeliverable. The ECB returns this
completion code for one of two reasons:

IPX cannot find a bridge with a path to the destination network.

The target node address does not exist.

An application can send or broadcast an IPX packet to any socket on the
internetwork including the socket on which the application sends the
packet. Packets sent to sockets residing in the same node as the
application are called intra-node packets.

To send a broadcast packet (one that will be received by every listening
station on a network), node of destination in the packet header should be
initialized to all 0xFFs (-1). If the broadcast is to the network on which the
application resides, immediateAddress in the ECB should also be set to all
0xFFs.

See Also

IPXGetLocalTarget (DOS), IPXListenForPacket (DOS)

IPX for NLM

Communication Service Group

IPX: Functions 668

IpxCancelEvent, IpxCancelPacket (NLM)

Cancels an ECB being used by IpxReceive
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Platform: NLM
Service: IPX

Syntax

#include <nwipxspx.h>

int IpxCancelEvent(
 IPX_ECB *eventControlBlock);

Parameters

eventControlBlock

(IN/OUT) Points to the IPX_ECB structure.

Return Values

0 (0x00)

ESUCCE
SS

249

(0xF9) ERR_ECB_CANNOT_BE_CANCELLED

Remarks

IpxCancelEvent (NLM) cancels a pending event by passing an Event
Control Block (ECB) address to IPX. The function returns a completion
code upon returning control to the application program.

The ECB should be busy waiting for an IPX packet (by calling
IpxReceive (NLM)).

When an ECB is submitted to IpxReceive (NLM) to receive a packet, IPX
sets the ECB's status field to a positive value, indicating that the ECB is
unavailable to other applications. The possible values are listed in
NWIPXSPX.H. After attempting to cancel the event defined by the ECB,
IPX sets the ECB's status field to STS_SPX_EVENT_CANCELLED. IPX
neither posts the ECB's associated semaphore handle nor queues the ECB
on the queue head.

Communication Service Group

IPX: Functions 669

For compatibility with the OS implementation of the IPX/SPX™
protocols, IpxCancelEvent (NLM) has the alternate name
IpxCancelPacket (NLM).

Communication Service Group

IPX: Functions 670

IpxCheckSocket (NLM)

Determines whether a socket is open
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: IPX

Syntax

#include <nwipxspx.h>

int IpxCheckSocket (
 unsigned short socketNumber);

Parameters

socketNumber

(IN) Specifies the socket number of the socket to be checked
(high/low).

Return Values

0 (0x00)

ESUCCE
SS

240

(0xF0) ERR_SOCKET_NOT_OPEN

Remarks

IpxCheckSocket (NLM) determines whether the socket is open.

Communication Service Group

IPX: Functions 671

IpxCloseSocket (NLM)

Closes an IPX socket
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: IPX

Syntax

#include <nwipxspx.h>

int IpxCloseSocket (
 unsigned short socketNumber);

Parameters

socketNumber

(IN) Specifies the socket number of the socket to be closed (high/low)

Return Values

0 (0x00) ESUCCESS

Remarks

IpxCloseSocket (NLM) closes the IPX socket and cancels events defined
by the ECBs associated with the socket. IPX also returns a value of
0xFFFC in each ECB's status field, indicating that the event has been
cancelled.

IPX posts the ECBs' associated semaphore handles and then queues the
ECBs on the associated queue heads for ECBs that are pending on the
socket. Any socket number can be closed; no error is generated if the
specified socket was not open.

Applications should close all sockets they open before terminating.

See Also

IpxOpenSocket (NLM)

Communication Service Group

IPX: Functions 672

IpxConnect (NLM)

Creates a virtual connection to an address
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: IPX

Syntax

#include <nwipxspx.h>

int IpxConnect (
 IPX_ECB *eventControlBlock);

Parameters

eventControlBlock

(IN) Points to the IPX_ECB structure.

Return Values

0 (0x00) ESUCCESS

Remarks

IpxConnect (NLM) is nonoperational in the NetWare 3.x and 4.x
environment. It is included only for compatibility with the OS
implementation of IPX/SPX.

Communication Service Group

IPX: Functions 673

IpxDisconnect (NLM)

Destroys a virtual connection to an address
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: IPX

Syntax

#include <nwipxspx.h>

int IpxDisconnect (
 IPX_ECB *eventControlBlock);

Parameters

eventControlBlock

(IN) Points to the IPX_ECB structure.

Return Values

0 (0x00) ESUCCESS

Remarks

IpxDisconnect (NLM) is nonoperational in the NetWare 3.x and 4.x
environment. It is included only for compatibility with the OS
implementation of IPX/SPX.

Communication Service Group

IPX: Functions 674

IpxGetAndClearQ (NLM)

Returns a pointer to the list of completed ECBs queued off of a queue head
and then sets the queue head to NULL
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: IPX

Syntax

#include <nwipxspx.h>

IPX_ECB * IpxGetAndClearQ (
 IPX_ECB **queueHeadPtr);

Parameters

queueHeadPtr

(IN/OUT) Points to the queue head.

Return Values

IpxGetAndClearQ (NLM) returns a pointer to the first ECB in the list of
ECBs queued from the queue head. If NULL is returned, the list is empty.

Remarks

The queue head (to which queueHeadPtr points) is cleared (set to NULL)
by IpxGetAndClearQ (NLM). It is used with both SPX and IPX
(although IPX_ECB is used in the declaration).

Before NW SDK Release 9, IpxGetAndClearQ (NLM) was implemented
as a macro. An IpxGetAndClearQ (NLM) symbol was not exported.

Beginning with NW SDK Release 11, IpxGetAndClearQ (NLM) is
prototyped as an external function. The IpxGetAndClearQ (NLM)
symbol will be exported at load time by the static libraries (prelude.obj)
being used.

Example

IpxGetAndClearQ

#include <nwipxspx.h>

IPX_ECB *ptr;
IPX_ECB *queueHeadPtr;

Communication Service Group

IPX: Functions 675

IPX_ECB *queueHeadPtr;
ptr = IpxGetAndClearQ (&queueHeadPtr);

Communication Service Group

IPX: Functions 676

IpxGetInternetworkAddress (NLM)

Returns the network and node address of the requesting NLM™ application
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: IPX

Syntax

#include <nwipxspx.h>

int IpxGetInternetworkAddress (
 unsigned char *networkAddress);

Parameters

networkAddress

(OUT) Points to the 10-byte local network address. The bytes are
organized as follows:

Bytes 0-3 = Network number
Bytes 4-9 = Node number

Return Values

0 (0x00) ESUCCESS

Remarks

The IpxGetInternetworkAddress (NLM) function is especially useful to
an application that must inform other nodes of its address on the
internetwork. It provides the internetwork address of the node on which
an application is executing. The buffer supplied by an application is
filled with a 4-byte network number followed by a 6-byte node address.
Both fields are in high/low order.

IpxGetInternetworkAddress (NLM) does not return a socket number.
The socket number is determined when an application opens a socket.
When an application builds a complete 12-byte network address, it must
append the appropriate socket number.

See Also

IpxGetLocalTarget (NLM)

Communication Service Group

IPX: Functions 677

IpxGetLocalTarget (NLM)

Fills the immediateAddress field in an ECB
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: IPX

Syntax

#include <nwipxspx.h>

int IpxGetLocalTarget (
 unsigned char *networkAddress,
 IPX_ECB *eventControlBlock,
 unsigned long *transportTime);

Parameters

networkAddress

(IN) Points to the 12-byte destination network address (high/low).

eventControlBlock

(OUT) Points to the ECB into which the 6-byte immediate address
(high/ low) of the target is returned.

transportTime

(OUT) Points to the estimated amount of time (in system clock ticks)
for sending a 576-byte packet to the destination node.

Return Values

0 (0x00) ESUCCESS

25
0

(0xFA) ERR_NO_LOCAL_TARGET_IDENTIFIED

Remarks

The IpxGetLocalTarget (NLM) function passes the internetwork address
of a destination node to IPX. IPX returns an estimated packet transport
time and either the node address of the destination node or the node
address of the local bridge it uses to route a packet to the destination
node.

The 12 bytes of the networkAddress are defined as follows:

Communication Service Group

IPX: Functions 678

Bytes 0-3 = Network Number

Bytes 4-9 = Node Number

Bytes 10-11 = Socket Number

The transportTime parameter contains an estimate of the time (in clock
ticks of approximately 1/18 of a second) a 576-byte packet takes to travel
from the source node to the destination node. Since the returned value is
only an estimate, actual travel time can vary depending on network
traffic and packet size.

The IpxGetLocalTarget (NLM) function can be used with destination
addresses using broadcast values (all 0xFFs) in the node field.

When IPX receives a packet, it records the node address of the sending
node in the immediateAddress field of the receive ECB. The 6 bytes of
immediateAddress are the local target node number, not the local source
node number. The local source node number is the number of the calling
workstation. Therefore, once an application begins exchanging packets
with an application on another node, either application can use the
immediateAddress from a receive ECB to obtain the local target value
instead of continually making calls to the IpxGetLocalTarget (NLM)
function.

An application can use an ECB that has received a packet to send a
packet to the originating address without modifying the immediateAddress
field in the ECB.

See Also

IpxSend (NLM)

Communication Service Group

IPX: Functions 679

IpxGetStatistics (NLM)

Returns diagnostic statistics maintained by IPX
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: IPX

Syntax

#include <nwipxspx.h>

int IpxGetStatistics (
 IPX_STATS *ipxStats);

Parameters

ipxStats

(OUT) Points to the diagnostic statistics.

Return Values

-1 EFAILURE

Remarks

The IpxGetStatistics (NLM) function is nonoperational in the NetWare
3.x and 4.x environment. This function is included only for compatibility
with the OS implementation of IPX/SPX.

See Also

IpxResetStatistics (NLM)

Communication Service Group

IPX: Functions 680

IpxGetVersion (NLM)

Returns the major and minor version and the revision of the IPX
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: IPX

Syntax

#include <nwipxspx.h>

int IpxGetVersion (
 unsigned char *majorVersion,
 unsigned char *minorVersion,
 unsigned short *revision);

Parameters

majorVersion

(OUT) Points to major revision of the IPX.

minorVersion

(OUT) Points to minor revision of the IPX.

revision

(OUT) Points to the revision of the IPX.

Return Values

0 (0x00) ESUCCESS

Remarks

Versions of IPX are identified by major version number, minor version
number, and (if applicable) revision number. IpxGetVersion (NLM)
returns the major and minor version of IPX. The revision is always
returned as 0.

If any of the parameters is NULL, the value for that parameter is not
returned.

See Also

SpxGetVersion (NLM)

Communication Service Group

IPX: Functions 681

IpxOpenSocket (NLM)

Opens an IPX socket
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: IPX

Syntax

#include <nwipxspx.h>

int IpxOpenSocket (
 unsigned short *socketNumber);

Parameters

socketNumber

(IN/OUT) Points to a socket number (high/low).

Return Values

0 (0x00) ESUCCESS

240 (0xF0) ERR_IPX_NOT_INSTALLED

241 (0xF1) ERR_SOCKET_ALREADY_OPEN

254 (0xFE) ERR_SOCKET_TABLE_FULL

Remarks

An application must call IpxOpenSocket (NLM) to open a socket before
receiving a packet on the socket.

Blocking InformationIpxOpenSocket (NLM) blocks for the initial call and
is nonblocking for subsequent calls.

The socketNumber parameter points to the number of the socket to be
opened. If the socket number to be opened is set to zero, IPX opens an
available socket of its choice in the range 0x4000 to 0x7FFF, returning the
value of the new socket in the variable pointed to by socketNumber. This is
known as a dynamic socket open.

If IpxOpenSocket (NLM) returns a completion code of 0x00, the socket
has been opened as expected. If the completion code is 0xFE, the socket
table is already full. If IpxOpenSocket (NLM) returns a completion code
of 0xF1, the specified socket is already open.

Communication Service Group

IPX: Functions 682

of 0xF1, the specified socket is already open.

At present, IPX/SPX supports up to 100 open sockets on a NetWare 3.x
and 4.x server.

See Also

IpxCloseSocket (NLM)

Communication Service Group

IPX: Functions 683

IpxReceive (NLM)

Initiates the receiving of an IPX packet
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: IPX

Syntax

#include <nwipxspx.h>

int IpxReceive (
 unsigned short socketNumber,
 IPX_ECB *eventControlBlock);

Parameters

socketNumber

(IN) Specifies the socket number of the socket to receive the packet.

eventControlBlock

(IN/OUT) Points to the IPX_ECB structure.

Return Values

0 (0x00) ESUCCESS

240 (0xF0) ERR_SOCKET_NOT_OPEN

252 (0xFC) ERR_REQUEST_CANCELLED

253 (0xFD) ERR_PACKET_OVERFLOW

254 (0xFE) ERR_TIMEOUT_FAILURE

254 (0xFE) ERR_BAD_PACKET

255 (0xFF) ERR_SOCKET_CLOSED

Remarks

IpxReceive (NLM) passes the ECB to the LAN drivers to execute the
receive operation. An application can specify a semaphore handle in the
ECB and then wait (WaitOnLocalSemaphore) on the handle after calling
IpxReceive (NLM). The application is awakened when a packet is
received. A queue head can also be specified in the ECB (for more
information about queue heads, see ECB Queues).

Communication Service Group

IPX: Functions 684

The ECB is used to receive a packet. The socket must be open before any
receive requests can be made on that socket. IPX ignores all incoming
packets destined for unopened sockets.

An application does not have to execute a receive before executing a
send. This implementation of IPX does not buffer incoming packets
destined for open sockets with no pending receive.

If the socketNumber parameter is zero, the socket field in the ECB is
assumed to contain the socket number to receive the packet on.

IPX places packet contents (including the 30-byte IPX header) into
memory according to the ECB's fragment list. If available buffer space is
large enough to contain the packet, IPX disburses the packet among as
many fragments as needed. Any remaining buffer space is undisturbed.
If a packet is larger than the combined available space specified by the
fragment list, IPX disburses as much of the packet as can be handled, and
remaining data is lost.

Communication Service Group

IPX: Functions 685

IpxResetStatistics (NLM)

Resets diagnostic statistics maintained by IPX
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: IPX

Syntax

#include <nwipxspx.h>

int IpxResetStatistics (
 void);

Return Values

-1 EFAILURE

Remarks

IpxResetStatistics (NLM) is nonoperational in the NetWare 3.x and 4.x
environment. It is included only for compatibility with the OS
implementation of IPX/SPX.

See Also

IpxGetStatistics (NLM)

Communication Service Group

IPX: Functions 686

IpxSend (NLM)

Initiates the sending of an IPX packet
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: IPX

Syntax

#include <nwipxspx.h>

int IpxSend (
 unsigned short socket,
 IPX_ECB *ECBp);

Parameters

socket

(IN) Indicates the socket number of the socket to perform a send on;
can be 0.

ECBp

(IN/OUT) Points to the IPX_ECB structure.

Return Values

0 (0x00) ESUCCESS

25
0

(0xFA) ERR_NO_KNOWN_ROUTE_TO_DESTINATION

25
2

(0xFC) ERR_REQUEST_CANCELLED

25
4

(0xFE) ERR_BAD_PACKET

25
5

(0xFF) ERR_HARDWARE_FAILURE

Remarks

IpxSend (NLM) passes an ECB address to IPX for the purpose of sending
an IPX packet. It then returns control to the calling application.
Meanwhile, IPX attempts to send the packet.

Before calling IpxSend (NLM), the application must initialize the ECB's

Communication Service Group

IPX: Functions 687

socketNumber (if the socketNumber parameter is 0), immediateAddress,
fragCount, and fragList fields. If the socketNumber parameter is nonzero, it
is used rather than the socketNumber field in the ECB.

NOTE: IpxSend (NLM) is the only IPX/SPX function that takes an
ECB as a parameter and does not use a semaphore handle or a queue
head if specified in the ECB. The application has no way to determine
when the packet is actually sent by the LAN driver.

The application must also prepare the IPX header of the associated
packet by filling in the packetType and dest fields. The function then passes
the ECB to the network communication drivers to initiate the send
operation.

Although the socketNumber parameter in the ECB is significant (IPX uses it
as the source socket number on the packet header), the socket does not
need be open to perform a send on it.

The immediateAddress field in the ECB can be set using IpxGetLocalTarget
(NLM).

Initially, IPX sets the ECB's status field to a positive value, indicating that
the ECB is sending a packet. After attempting to send the packet, IPX sets
the ECB's status field to an appropriate value.

The 0x00 completion code indicates the packet was sent successfully but
does not guarantee the packet was received successfully by the
destination node. For example, the transmission media might lose or
garble the packet, or the destination socket might not be open or
listening. IPX does not inform the sending node if these problems occur.

The 0xFA completion code indicates the packet is undeliverable. The ECB
returns this completion code for one of two reasons:

IPX cannot find a bridge with a path to the destination network.

The target node address does not exist.

An application can send or broadcast an IPX packet to any socket on the
internetwork, including the socket on which the application sends the
packet. Packets sent to sockets that reside in the same node as the
application are called intra-node packets.

To send a broadcast packet (one to be received by every listening station
on a network), the node portion of the destination field in the packet
header should be initialized to all 0xFFs (-1). If the broadcast is to the
network on which the application resides, the immediateAddress field in
the ECB should also be set to all 0xFFs.

See Also

IpxGetLocalTarget (NLM), IpxReceive (NLM)

Communication Service Group

IPX: Functions 688

IPX for OS/2

For the 32-bit OS/2* interface to IPX, see NWSIPX.

IPX for Windows

Communication Service Group

IPX: Functions 689

IPXCancelEvent (Win)

Cancels a pending event by passing an ECB address to IPX
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: IPX

Syntax

#include <nwipxspx.h>

int FAR PASCAL IPXCancelEvent(
 DWORD IPXTaskID,
 ECB FAR *eventControlBlock);

Parameters

IPXTaskID

(IN) Indicates the task ID obtained from IPXInitialize (Win) or
SPXInitialize (Win).

eventControlBlock

(IN/OUT) Points to ECB.

Return Values

0x0000 Successful

0xF9 Ecb Cannot Be Canceled

0xFF Ecb Not In Use

Ecb Return Values

0xFC Event Canceled

Remarks

IPXCancelEvent (Win) returns a completion code upon returning control
to the application program.

ECB might be performing an event such as send or listen under IPX, a
schedule or reschedule under AES, or a listen under SPX.

Communication Service Group

IPX: Functions 690

When an ECB is submitted to IPX to coordinate an event, IPX sets ECB's
inUseFlag to a nonzero value, indicating the ECB is unavailable to other
applications. Possible nonzero values for inUseFlag are listed below:

Decimal Hex Flag Value Description

224 0xE0 AES Temporary Indicator

248 0xF8 Critical Holding (IPX in critical process)

250 0xFA Processing

251 0xFB Holding (in processing after an event occurred)

252 0xFC AES Waiting

253 0xFD Waiting

254 0xFE Receiving

255 0xFF Sending

After attempting to cancel the event defined by the ECB, IPX sets ECB's
completionCode to an appropriate value. It also sets ECB's inUseFlag to
0x00 (available for use). IPX does not call the ESR referenced by ECB's
ESRAddress.

IPXCancelEvent (Win) cannot cancel packets already sent by the node's
driver.

See Also

IPXScheduleIPXEvent (Win)

Communication Service Group

IPX: Functions 691

IPXCloseSocket (Win)

Closes the specified IPX socket and cancels any events defined by the ECBs
associated with the socket
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: IPX

Syntax

#include <nwipxspx.h>

void FAR PASCAL IPXCloseSocket(
 DWORD IPXTaskID,
 WORD socketNumber);

Parameters

IPXTaskID

(IN) Indicates the task ID obtained from IPXInitialize (Win) or
SPXInitialize (Win).

socketNumber

(IN) Indicates the socket number of the socket to be closed (high-low).

Remarks

IPX returns a value of 0xFC in each ECB's completionCode, indicating the
event has been canceled. IPX sets each ECB's inUseFlag to 0x00 (available
for use). IPX does not call ECBs' associated ESRs.

NOTE: Windows allows no short-lived sockets. When a windows
application quits, no DOS end-of-task is sent; therefore, IPX cannot close
any short-lived sockets. To prevent the application from leaving open
sockets after exiting, IPXCloseSocket (Win) must be called prior to
exiting the application.

IPXTaskID must contain the task ID assigned by the intialization function
to this IPX process.

Any socket number can be closed; no error is generated if the specified
socket is not opened. Before an application program terminates and
destroys the ESR code, it must close all sockets that it has opened.
Otherwise the ESR could be called after it is no longer available,
permanently hanging the workstation.

 IPXCloseSocket (Win) must not be called from within an ESR.

NOTE: After all sockets are closed, IPXSPXDeinit (Win) must be
called to clean up any resources allocated to the application by

Communication Service Group

IPX: Functions 692

NWIPXSPX.DLL.

See Also

IPXOpenSocket (Win), IPXSPXDeinit (Win)

Communication Service Group

IPX: Functions 693

IPXDisconnectFromTarget (Win)

Informs the communication driver the application does not intend to send
any more packets to the specified station
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: IPX

Syntax

#include <nwipxspx.h>

void FAR PASCAL IPXDisconnectFromTarget(
 DWORD IPXTaskID,
 BYTE FAR *networkAddress);

Parameters

IPXTaskID

(IN) Indicates the task ID obtained from IPXInitialize (Win) or
SPXInitialize (Win).

networkAddress

(IN) Points (high-low) to the 12-byte local network address. The 12
bytes are organized as follows:

Bytes 0---3 = Network number
Bytes 4---9 = Node number
Bytes 10---11 = Socket number

Remarks

IPXDisconnectFromTarget (Win) is a courtesy to network
communications drivers operating strictly on a point-to-point basis at the
physical transport level. Once informed, the driver can dismantle any
board-level virtual connection with the node specified.

 networkAddress identifies the node with which communication will be
terminated. After IPXDisconnectFromTarget (Win) is made, any virtual
connection between the machine the application is running on and the
target machine may be dismantled by the driver.

An application should never call IPXDisconnectFromTarget (Win) from
within an ESR.

See Also

SPXAbortConnection (Win), SPXTerminateConnection (Win)

Communication Service Group

IPX: Functions 694

IPXGetInternetworkAddress (Win)

Returns the network and node address of the requesting workstation
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: IPX

Syntax

#include <nwipxspx.h>

void FAR PASCAL IPXGetInternetworkAddress(
 DWORD IPXTaskID,
 BYTE FAR *networkAddress);

Parameters

IPXTaskID

(IN) Indicates the task ID obtained from IPXInitialize (Win) or
SPXInitialize (Win).

networkAddress

(OUT) Points to the 10-byte local network address. The 10 bytes are
organized as follows:

Bytes 0---3 = Network number
Bytes 4---9 = Node number

Remarks

IPXGetInternetworkAddress (Win) is especially useful to any
application that must inform other nodes of its address on the
internetwork.

IPXGetInternetworkAddress (Win) does not return a socket number.
The socket number is determined when an application opens a socket.
When an application builds a complete 12-byte network address, it must
append the appropriate socket number.

See Also

IPXGetLocalTarget (Win)

Communication Service Group

IPX: Functions 695

IPXGetIntervalMarker (Win)

Returns a time marker from IPX
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: IPX

Syntax

#include <nwipxspx.h>

WORD FAR PASCAL IPXGetIntervalMarker(
 DWORD IPXTaskID);

Parameters

IPXTaskID

(IN) Indicates the task ID obtained from IPXInitialize (Win) or
SPXInitialize (Win).

Return Values

Time as a WORD.

Remarks

IPXGetIntervalMarker (Win) may be used to measure the elapsed time
between two events. To do this, call IPXGetIntervalMarker (Win) twice,
once before each of the two events. Subtract the first interval marker from
the second. The difference represents the time interval between the two
events (in clock ticks). This result remains accurate even if the interval
marker wraps through zero between the first and second event. The timer
is not intended for use with time intervals greater than 1 hour due to the
precision of the interval marker (16 bits unsigned).

The interval marker is a value between 0 and 65,535 [(0x0000) and
(0xFFFF)]. Each interval represents one IBM PC clock tick, which is
approximately 1/18 second.

IPXInitialize (Win) must be called before calling IPXGetIntervalMarker
(Win).

See Also

IPXInitialize (Win)

Communication Service Group

IPX: Functions 696

IPXGetLocalTarget (Win)

Returns the value to be placed in an ECB's immediateAddress

Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: IPX

Syntax

#include <nwipxspx.h>

int FAR PASCAL IPXGetLocalTarget(
 DWORD IPXTaskID,
 BYTE FAR *networkAddress,
 BYTE FAR *immediateAddress,
 int FAR *transportTime);

Parameters

IPXTaskID

(IN) Indicates the task ID obtained from IPXInitialize (Win) or
SPXInitialize (Win).

 networkAddress

(IN) Points to the 12-byte destination network address (high-low).

immediateAddress

(OUT) Points to the ECB's 6-byte immediate address (high-low).

 transportTime

(OUT) Indicates the estimated amount of time (in system clock ticks)
for sending a 576-byte packet to the destination node.

Return Values

0x0000 Successful

0xF1 Ipx/Spx Not Initialized

0xFA No Local Target Identified

Remarks

IPXGetLocalTarget (Win) passes the internetwork address of a
destination node to IPX. IPX returns an estimated packet transport time
and either the node address of the destination node or the node address
of the local bridge it will use to route a packet to the destination node.

Communication Service Group

IPX: Functions 697

The 12 bytes of networkAddress are defined as:

 Bytes 0---3 = Network Number
 Bytes 4---9 = Node Number
 Bytes 10---11 = Socket Number

transportTime contains an estimate of the time (in clock ticks of
approximately 1/18 second) a 576-byte packet takes to travel from the
source node to the destination node. Since the returned value is only an
estimate, actual travel time can vary depending on network traffic and
packet size.

IPXGetLocalTarget (Win) can be used with destination addresses using
broadcast values (all 0xFFs) in node of networkAddress.

When IPX receives a packet, it records the node address of the sending
node in immediateAddress of the receive ECB. The 6 bytes of
immediateAddress are the local target node number, not the local source
node number. The local source node number is the number of the calling
workstation.

Therefore, once an application begins exchanging packets with an
application on another node, either application can use immediateAddress
returned with a receive ECB to obtain the local target value instead of
continually calling IPXGetLocalTarget (Win).

An application can use an ECB that has received a packet to send a
packet to the originating address without modifying immediateAddress in
ECB.

IPXGetLocalTarget (Win) can be called from within IPX, or an AES ESR,
or directly from the main portion of an application. It must not be called
from any other kind of interrupt service routine.

See Also

IPXSendPacket (Win), IPXListenForPacket (Win)

Communication Service Group

IPX: Functions 698

IPXGetLocalTargetAsync (Win)

Returns the value to be placed in an ECB's immediateAddress field
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: IPX

Syntax

#include <nwipxspx.h>

WORD FAR PASCAL IPXGetLocalTargetAsync(
 AGLT FAR *listenAGLT,
 AGLT FAR *sendAGLT,
 BYTE FAR *destAddr);

Parameters

listenAGLT

(IN) Pointer to a listen AGLT.

sendAGLT

(IN) Pointer to a send AGLT.

destAddr

(IN) Points to the 12-byte destination network address (high-low).

Return Values

0x0000 Successful

0xF1 Ipx/Spx Not Initialized

0xFA No Local Target Identified

Messages

0x6666 IMMEDIATE_ADDRESS_FAILED

0x7777 IMMEDIATE_ADDRESS_COMPLETE

Remarks

The address is placed in the ECB specified in listenAGLT.

Communication Service Group

IPX: Functions 699

IPXGetLocalTargetAsync(Win) passes the internetwork address of a
destination node to IPX. IPX returns an estimated packet transport time
and either the node address of the destination node or the node address
of a local bridge that can be used to route a packet to the destination
node.

IPXGetLocalTargetAsync (Win) calls the listen ESR.

Before calling IPXGetLocalTargetAsync (Win) set the fields of
listenAGLT as follows:

listenAGLT.ecb.fragmentDescriptor[0].address

Set to point to a buffer that is filled with zeros. The buffer must be 64
bytes or larger.

listenAGLT.ecb.fragmentDescriptor[0].size

Set to the size of the buffer pointed to by
listenAGLT.ecb.fragmentDescriptor[0].address.

listenAGLT.taskID

Set to the IPX task ID that was returned when IPXInitialize (WIN)
was called.

listenAGLT.retry

This field can be ignored.

listenAGLT.hWnd

Set to the handle of window from which IPXGetLocalTargetAsync
(Win) is called.

In addition, the fields of sendAGLT must be filled out as follows before
calling IPXGetLocalTargetAsync (Win):

sendAGLT.ecb.fragmentDescriptor[0].address

Points to a buffer that is filled with zeros. The buffer must be 64 bytes
or larger.

sendAGLT.ecb.fragmentDescriptor[0].size

Set to the size of the buffer pointed to by
sendAGLT.ecb.fragmentDescriptor[0].address.

sendAGLT.taskID

The IPX task ID that was returned when IPXInitialize (WIN) was
called.

sendAGLT.retry

This field can be ignored.

sendAGLT.hWnd

The handle of window from which IPXGetLocalTargetAsync (Win) is
called.

If IPXGetLocalTargetAsync (Win) can determine the local target, it will

Communication Service Group

IPX: Functions 700

send your application an IMMEDIATE_ADDRESS_COMPLETE
message. Otherwise, it will send your application an
IMMEDIATE_ADDRESS_FAILED message. The message will be sent to
the window specified by listenAGLT.hWnd.

If the IMMEDIATE_MESSAGE_COMPLETE message is received, the
lParam parameter of your Windows WndProc procedure will contain a
pointer to the received ECB. You can then use this pointer to extract the
immediate address from the ECB in the following manner:

...
static BYTE immediate[6];
ECB *receivedImmediate;
...

case IMMEDIATE_ADDRESS_COMPLETE:
 receivedImmediate = (ECB FAR*) lParam;
 memcpy(&immediate, &receivedImmediate->immediateAddress, 6);
...

CAUTION: To be safe, you should not allow your application to
terminate until one of the above messages is received. Failure to
allow NWIPXSPX.DLL to clean up after calling
IPXGetLocalTargetAsync (Win).could compromise system stability.

See Also

IPXSendPacket (Win), IPXListenForPacket (Win)

Communication Service Group

IPX: Functions 701

IPXGetMaxPacketSize (Win)

Finds the maximum packet size allowed by a workstation's topology (LAN
card and wiring)
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: IPX

Syntax

#include <nwipxspx.h>

int FAR PASCAL IPXGetMaxPacketSize(
 void);

Parameters

IPXGetMaxPacketSize (Win) does not require any parameters.

Return Values

0x0000 Successful

Remarks

Packet size on a local network is limited only by that network's topology.
The content and structure of an IPX packet's data portion are entirely the
responsibility of the application using IPX. The application may be able to
take advantage of a larger allowable packet size if the topology permits.
Use IPXGetMaxPacketSize (Win) to see what size packets the topology
allows.

NOTE: Bridges will not route packets larger than 576 bytes. Because
bridges will not fragment packets and reassemble them later, the
application must not exceed the 576-byte packet size limit if it is to work
across a bridge.

See Also

IPXInitialize (Win), SPXInitialize (Win)

Communication Service Group

IPX: Functions 702

IPXInitialize (Win)

Returns the entry address for the IPX interface
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: IPX

Syntax

#include <nwipxspx.h>

int FAR PASCAL IPXInitialize(
 DWORD FAR *IPXTaskID,
 WORD maxECBs,
 WORD maxPacketSize);

Parameters

IPXTaskID

(IN/OUT) On input, points to how resources are allocated. On return,
points to the assigned task ID.

maxECBs

(IN) Indicates the maximum number of outstanding ECBs that can be
submitted to IPX.

maxPacketSize

(IN) Indicates the maximum size packet that can be sent by the
application. The default value is 576 bytes: 30 bytes for the IPX header,
and 546 bytes for the data portion of the packet.

Return Values

0x0000 Successful

0xF0 Ipx Not Installed

0xF1 Ipx/Spx Not Initialized

0xF2 No Dos Memory

0xF3 No Free Ecb

0xF4 Lock Failed

0xF5 Over The Maximum Limit

0xF6 Ipx/Spx Previously Initialized

Remarks

Communication Service Group

IPX: Functions 703

IPXInitialize (Win) initializes a variable (IPXLocation) in the NIT.C
library with the address of the IPX services. It must be executed before
any of the IPX functions in this manual can be performed.

As an input parameter, IPXTaskID determines how resources are
allocated in the following way:

0x00000000 Resources allocated directly to the calling application.
0xFFFFFFFE Resources allocated directly to the calling application;
however, multiple initializations are allowed.
0xFFFFFFFF Resources allocated in a pool for access by multiple
applications.

However, DLLs frequently manage their own resources, regardless of the
number of clients they service. For example, a DLL may manage a pool of
ECBs for multiple applications wanting to access an SPX server.

As an output parameter, IPXTaskID receives the task ID assigned by the
initialization function to this IPX or SPX process. The application must
store this task ID for later use. Most Communication Services functions
require IPXTaskID, returned by IPXInitialize (Win), as one of their input
parameters.

NOTE: For every IPXTaskID assigned by IPXInitialize (Win), a
matching call to IPXSPXDeinit (Win) must be provided. IPXSPXDeinit
(Win) releases the resources allocated by NWIPXSPX.DLL for each task
ID.

See Also

SPXInitialize (Win), IPXSPXDeinit (Win)

Communication Service Group

IPX: Functions 704

IPXListenForPacket (Win)

Prepares IPX to receive an IPX packet
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: IPX

Syntax

#include <nwipxspx.h>

void FAR PASCAL IPXListenForPacket(
 DWORD IPXTaskID,
 ECB FAR *eventControlBlock);

Parameters

IPXTaskID

(IN) Indicates the task ID obtained from IPXInitialize (Win) or
SPXInitialize (Win).

eventControlBlock

(IN/OUT) Points to ECB.

ECB Return Values

0x0000 Successful

0xF7 ECB in use by VIPX

0xFC Request Cancelled

0xFD Bad Packet

0xFF Socket Not Open

Remarks

IPXListenForPacket (Win) passes an ECB address to IPX for the purpose
of receiving an IPX packet. It then returns control to the calling
application. Meanwhile, IPX listens for and attempts to receive a packet.

Before calling IPXListenForPacket (Win), an application must open the
socket and initialize ECB's ESRAddress, socketNumber, immediateAddress,
fragmentCount, and fragmentDescriptor. If no routine is to be called,
ESRAddress should contain a NULL.

Initially, IPX sets ECB's inUseFlagto (0xFE) indicating the ECB is waiting
to receive a packet. IPX also adds the ECB to a buffer pool of ECBs all

Communication Service Group

IPX: Functions 705

listening for IPX packets on the same socket. IPX imposes no limit on the
number of ECBs that can be listening concurrently on a socket.

When IPX detects an incoming packet, IPX uses one of the listening ECBs
to receive the packet. Listen ECBs are not filled in the order they were
submitted to IPX. IPX records an appropriate value in the selected ECB's
completionCode and places a node address in ECB's immediateAddress. The
value in immediateAddress identifies either the sending node (if the
sending node resides on the local network), or the local bridge that
routed the packet to the receiving node (if the sending node does not
reside on the local network).

Finally, IPX sets ECB's inUseFlag to 0x00 (available for use) and calls the
ESR referenced by ECB's ESRAddress (if applicable).

NOTE: Existing non-Windows applications frequently verify whether
or not an ECB has been released by using while(ecb.inUseFlag).
However, using such a statement from the Window's environment
prevents the LAN driver from setting ECB's inUseFlag to zero after the
packet is sent. If inUseFlag is never set to zero, while will remain in an
infinite loop.

To avoid this situation, check inUseFlag from an ESR. If you prefer not to
use an ESR, either have the application post a message, or have it activate
a Window's timer to check inUseFlag.

See Also

IPXSendPacket (Win)

Communication Service Group

IPX: Functions 706

IPXOpenSocket (Win)

Opens an IPX socket before receiving a packet on the socket
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: IPX

Syntax

#include <nwipxspx.h>

int FAR PASCAL IPXOpenSocket(
 DWORD IPXTaskID,
 WORD FAR *socketNumber,
 BYTE socketType);

Parameters

IPXTaskID

(IN) Indicates the task ID obtained from IPXInitialize (Win) or
SPXInitialize (Win).

socketNumber

(IN/OUT) Points to a socket number (high-low) or a 0x00 value.

socketType

(IN) Indicates the type of socket to be opened. socketType can be either:

0x00 = Stays open until program closes it or the program terminates
(short-lived)
0xFF = Stays open until program closes it (long-lived)

Return Values

0x0000 Successful

0xF0 Ipx Not Installed

0xF1 Ipx/Spx Not Initialized

0xFE Socket Table Full

0xFF Socket Already Open

Remarks

Call IPXOpenSocket (Win) to open a socket before receiving a packet on
the socket.

Communication Service Group

IPX: Functions 707

IPXTaskID must contain the task ID assigned by IPXInitialize (Win).

socketNumber contains the number of the socket to be opened. Passing
0x0000 in this field allows IPX to open an available socket of its choice,
known as a dynamic socket, in the range 0x4000 to 0x5000. The dynamic
socket opened will be returned in socketNumber, which is a 2-byte
variable.

NOTE: If the application can have more than one instance on a node,
be sure the application uses dynamic sockets. Conversely, if the
application uses a well-known, statically-defined socket, do not allow
more than one instance of the application to run on a node. This
restriction is due to the pooling of ECBs by socket, and to the necessity
of using the socket to demultiplex communications.

If IPXOpenSocket (Win) returns a completion code of 0x00, the socket
has been opened as expected. If the completion code is 0xFE, the socket
table is already full. If IPXOpenSocket (Win) returns a completion code
of 0xFF, the specified socket is already open.

socketType specifies how long the socket should remain open. Unless the
program intends to terminate and stay resident, the socket type should
always be temporary (0x00---SHORT_LIVED). The exception to this is if
programming in MS Windows you should always open sockets as
permanent (0xFF---LONG_LIVED) sockets. Sockets that are opened as
temporary (SHORT_LIVED) are automatically closed upon program
termination (if the NetWare shell is loaded), and all associated events
pending on that socket are canceled. If the application program opens a
socket as permanent, it must guarantee that the ESR is available even
after it terminates. Otherwise, the workstation could hang if the ESR is
called after it is no longer available.

By default, IPX supports up to 20 open sockets on one workstation. The
maximum number of simultaneously opened sockets for a workstation
can be as high as 150 and is configurable in SHELL.CFG.

After all sockets are closed, IPXSPXDeinit (Win) must be called to clean
up any resources allocated to the application by NWIPXSPX.DLL.

See Also

IPXCancelEvent (Win), IPXCloseSocket (Win), IPXSPXDeinit (Win)

Communication Service Group

IPX: Functions 708

IPXRelinquishControl (Win)

Relinquishes control of a workstation's CPU
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: IPX

Syntax

#include <nwipxspx.h>

void FAR PASCAL IPXRelinquishControl(
 void);

Parameters

IPXRelinquishControl (Win) requires no parameters.

Remarks

IPXRelinquishControl (Win) can temporarily relinquish control of the
workstation CPU so that other processing can be done while the
application is waiting for input.

IPX applications should make repeated calls to IPXRelinquishControl
(Win) during idle time to allow other applications in the computer to use
the CPU. This is especially important when the application is resident
with NetWare server or bridge software since IPXRelinquishControl
(Win) greatly improves the efficiency of the server or bridge.

IPXRelinquishControl (Win) also allows the communications driver in
IPX to run. This is important if the driver is not interrupt driven. On a
normal workstation, IPXRelinquishControl (Win) invokes a polling
procedure provided by the network communications driver. It represents
the only opportunity the driver has to use the CPU to send and receive
packets, events essential to the application itself.

Communication Service Group

IPX: Functions 709

IPXScheduleIPXEvent (Win)

Schedules an IPX event
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: IPX

Syntax

#include <nwipxspx.h>

void FAR PASCAL IPXScheduleIPXEvent(
 DWORD IPXTaskID,
 WORD time,
 ECB FAR eventControlBlock);

Parameters

IPXTaskID

(IN) Indicates the task ID obtained from IPXInitialize (Win) or
SPXInitialize (Win).

time

(IN) Indicates the time interval.

eventControlBlock

(IN) Points to ECB.

Remarks

After initializing ECB's ESRAddress and socketNumber, executing
IPXScheduleIPXEvent passes a delay time and an ECB address to IPX for
the purpose of scheduling an IPX event. The function then returns control
to the calling application. Meanwhile, IPX attempts to schedule the event.

The scheduled event is directly associated with an IPX socket. If
IPXCloseSocket (Win) is executed with this socket as its argument, the
event scheduled by IPXScheduleIPXEvent (Win) is canceled along with
all other IPX packet events for the socket. To cancel only an event
scheduled by IPXScheduleIPXEvent (Win), call IPXCancelEvent (Win).

time specifies the waiting time (in clock ticks) before a scheduled event
takes place. It must be set to a value between 0 and 65,535 (0x0000 and
0xFFFF). The interval between each IBM PC clock tick is approximately
1/18 second. This allows an event to be scheduled for up to one hour.

IPXScheduleIPXEvent (Win) can reschedule an ECB previously
submitted for scheduling. The application passes a pointer to the same
ECB to the function, as well as a new expiration time. This is the only
situation in which it is legal to pass IPX (AES) to an ECB that is still in

Communication Service Group

IPX: Functions 710

use. inUseFlag is set to a value of 0xFD while the AES is in control of the
IPX ECB.

An ESR can also call IPXScheduleIPXEvent (Win). For example, when
IPX calls an ESR, the ESR can first check conditions in the system,
determine that conditions are not acceptable for executing at the moment,
and invoke IPXScheduleIPXEvent (Win) to reschedule itself. After the
specified delay time, the ESR can execute again, check conditions, and
continue the cycle until conditions are favorable.

An application should never call IPXScheduleIPXEvent (Win) to pass
the address of an ECB currently being used by IPX for packet events.

See Also

IPXCancelEvent (Win)

Communication Service Group

IPX: Functions 711

IPXSendPacket (Win)

Initiates the sending of an IPX packet
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: IPX

Syntax

#include <nwipxspx.h>

void FAR PASCALIPXSendPacket(
 DWORD IPXTaskID,
 ECB FAR *eventControlBlock);

Parameters

IPXTaskID

(IN) Indicates the task ID obtained from IPXInitialize (Win) or
SPXInitialize (Win).

eventControlBlock

(IN/OUT) Points to the ECB structure.

ECB Return Values

0x0000 Successfully Sent But Not Necessarily Received

0xF7 ECB in use by VIPX

0xFC Request Canceled

0xFD Given Packet Did Not Have a 30-byte Packet Header As the
First Fragment, or Its Total Length Exceeded 567 Bytes

0xFE Packet Not Deliverable

0xFF Hardware Failure

Remarks

IPXSendPacket (Win) passes an ECB address to IPX for the purpose of
sending an IPX packet. It then returns control to the calling application.
Meanwhile, IPX attempts to send the packet.

Before calling IPXSendPacket (Win), the application must initialize
ECB's ESRAddress, socketNumber, immediateAddress, fragmentCount, and
fragmentDescriptor. The application must also prepare the IPX header of
the associated packet by filling in packetType and destination.

Communication Service Group

IPX: Functions 712

IPXSendPacket (Win) then passes the ECB to the network
communication drivers to initiate the send operation.

Although socketNumber in ECB is significant (IPX uses it as the source
socket number on the packet header), the socket need not be open to
perform a send on it.

immediateAddress in ECB can be set by calling NWIPXGetLocalTarget
(Win).

Initially, IPX sets ECB's inUseFlagto 0xFF, indicating that the ECB is
sending a packet. After attempting to send the packet, IPX sets ECB's
completionCode to an appropriate value and sets inUseFlag to 0x00,
indicating that the ECB is available for use. Finally, IPX calls the ESR
referenced by ECB's ESRAddress (if applicable).

0x00 completion code indicates that the packet was sent successfully but
does not guarantee the packet was received successfully by the
destination node. For example, the transmission media may lose or
garble the packet, or the destination socket may not be open or listening.
IPX does not inform the sending node if these problems occur.

0xFE indicates that the packet is undeliverable. The ECB returns this
completion code for one of two reasons:

IPX cannot find a bridge with a path to the destination network
The target node address does not exist

An application can send or broadcast an IPX packet to any socket on the
internetwork including the socket on which the application sends the
packet. Packets sent to sockets residing in the same node as the
application are called intra-node packets.

To send a broadcast packet (one that will be received by every listening
station on a network), the node portion of destination in the packet header
should be initialized to all 0xFFs (-1). If the broadcast is to the network on
which the application resides, ECB's immediateAddress should also be set
to 0xFF.

See Also

IPXGetLocalTarget (Win), IPXListenForPacket (Win)

Communication Service Group

IPX: Functions 713

IPXSPXDeinit (Win)

Releases any resources allocated to an application by NWIPXSPX.DLL for
use by other applications
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: IPX

Syntax

#include <nwipxspx.h>

int FAR PASCAL IPXSPXDeinit(
 DWORD IPXTaskID);

Parameters

IPXTaskID

(IN) Indicates the task ID obtained from IPXInitialize (Win) or
SPXInitialize (Win).

Return Values

0x0000 Successful

0xF1 IPX/SPX Not Initialized

See Also

IPXCancelEvent (Win), IPXCloseSocket (Win), IPXRelinquishControl
(Win), SPXAbortConnection (Win), SPXTerminateConnection (Win)

IPX for Windows 95

For the 32-bit Windows 95* interface to IPX, see NWSIPX.

IPX for Windows NT

For the 32-bit Windows NT* interface to IPX, see NWSIPX.

Communication Service Group

IPX: Functions 714

SPX: Functions

SPX for DOS

Communication Service Group

SPX: Functions 715

SPXAbortConnection (DOS)

Passes an SPX™ connection ID to SPX for the purpose of unilaterally
aborting an SPX connection
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS
Service: SPX

Syntax

#include <nwipxspx.h>

void cdecl SPXAbortConnection(
 WORD connectionIDNumber);

Parameters

connectionIDNumber

(IN) Indicates the connection ID number assigned by SPX when the
connection was established.

Remarks

SPXAbortConnection (DOS) returns control to the calling application.
Meanwhile, SPX aborts the connection.

SPX makes no attempt to inform the connection partner of the decision to
abort the connection. The partner discovers the connection is no longer
valid when it attempts to send a packet on the connection or when its
watchdog checks the connection after the inactivity timer expires.

Any SPXEstablishConnection (DOS), SPXTerminateConnection (DOS)
, SPXListenForPacket (DOS), or SPXSendSequencedPacket (DOS) calls
that are outstanding on the connection are aborted. The completion codes
in the ECBs of such calls are set to 0xED, indicating an abnormal
connection termination. The ESRs of the affected ECBs are called (unless
ESRAddress is NULL).

If any of the affected ECBs are in a state not allowing them to be canceled
(the network interface card is in the middle of sending the packet, for
example), they will be canceled at the earliest possible time. In this case,
the completion code of the ECB is still set to 0xED, and the ESR is called if
it exists.

SPXAbortConnection (DOS) is included to allow a connection partner to
unilaterally dismantle the connection if some catastrophic condition is
detected. Under normal conditions SPXTerminateConnection (DOS)
should be used to ensure both connection partners break the connection
in a controlled fashion.

Communication Service Group

SPX: Functions 716

See Also

SPXEstablishConnection (DOS), SPXTerminateConnection (DOS)

Communication Service Group

SPX: Functions 717

SPXEstablishConnection (DOS)

Establishes a connection with a listening socket
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS
Service: SPX

Syntax

#include <nwipxspx.h>

int cdecl SPXEstablishConnection(
 BYTE retryCount,
 BYTE watchDog,
 WORD FAR *connectionID,
 ECB FAR *eventControlBlock);

Parameters

retryCount

(IN) Indicates values from 0 to 255.

watchDog

(IN) Indicates the flag controlling watchdog connection supervision
(0=disable, !0=enable).

connectionID

(OUT) Points to an unsigned integer that will receive the connection
ID number.

eventControlBlock

(IN/OUT) Points to ECB.

Return Values

0x0000 SPX Connection Started

0xEF Connection Table Full

0xFD Malformed Packet

0xFF Socket Not Opened

ECB Return Values

0xED SPX_NO_ANSWER_FROM_TARGET (either a hardware
failure has occurred, or the application has used

Communication Service Group

SPX: Functions 718

SPXAbortConnection)

0xEF SPX_CONNECTION_TABLE_FULL (no further
connections may be initiated until an active connection is
terminated. The SPX Connection Table has room for
entries) 100

0xFC SPX_SOCKET_CLOSED (connection socket was closed
before the command was completed, and ECB's ESR was
not called)

0xFD SPX_MALFORMED_PACKET (either fragment count was
not 1 or the buffer size was not 42)

0xFF Socket Not Opened

Remarks

SPXEstablishConnection (DOS) passes a retryCount, SPX watchDog, and
eventControlBlock address to SPX to establish an SPX connection.
SPXEstablishConnection (DOS) then returns control to the calling
application. Meanwhile, SPX attempts to establish the connection.

NOTE: Sockets used by SPX connections must be dedicated solely for
use by SPX and cannot be used with IPXSendPacket (DOS) or
IPXListenForPacket (DOS) for sending or receiving packets directly.

If an SPX socket is closed, all connections on that socket automatically
terminate and any pending events (sends or listens) are canceled.

Do not cancel SPXEstablishConnection (DOS) by calling
IPXCancelEvent (DOS). If an application does not want to establish a
connection, call SPXAbortConnection (DOS) and
SPXEstablishConnection (DOS).

Before calling SPXEstablishConnection (DOS), the application must do
the following:

1. Set retryCount, watchDog, and ECBAddress (described below) to the
appropriate values.

2. Use IPXOpenSocket (DOS) to open the socket specified in ECB's
socketNumber.

3. Initialize ECB's ESRAddress, socketNumber, fragmentCount, and
fragmentDescriptor. fragmentCount should be initialized to 0x01.
fragmentDescriptor must point to a 42-byte buffer containing the header
of an SPX packet.

4. Initialize SPX header's destination. None of these fields can be set to -1
(broadcast).

5. Create at least two listen ECBs, and pass them to SPX with
SPXListenForSequencedPacket (DOS). Once SPX sends the

Communication Service Group

SPX: Functions 719

SPXEstablishConnection (DOS) packet mentioned above, SPX uses
one of the listen ECBs to receive a confirmation packet from the
destination socket. The other can be used by the watchdog process to
maintain the SPX connection once it is established.

To establish the connection, SPX creates a local connection half and
verifies that the local connection half is fully functional.
SPXEstablishConnection (DOS) then returns to the calling procedure.

Once SPX creates and verifies the local connection half,
SPXEstablishConnection (DOS) returns a completion code. SPX also
records this completion code in completionCode of the sending ECB. If
SPXEstablishConnection (DOS) returns anything but 0x00
(SUCCESSFUL), the attempt to establish a connection stops at this point.

Meanwhile, SPX sends an Establish Connection packet through the local
connection half to a specified (listening) destination socket to establish a
connection. To receive the Establish Connection packet, the destination
socket must pass an ECB to its SPX process with
SPXListenForConnection (DOS).

More extensive parameter descriptions follow:

retryCount

Specifies how many times SPX resends unacknowledged packets
before concluding that the destination node is not functioning
properly. The application can set this field to 0x00, which instructs
SPX to use its own internal retry count. A value of 1 through 255
(inclusive) indicates SPX should resend packets the specified number
of times.

watchDog

Monitors an SPX connection, ensuring the connection is functioning
properly when traffic is not passing through the connection. To enable
watchDog, set watchDog to 0xFF ENABLE_WATCHDOG. A value of
0x00 disables the feature.

If watchDog determines that an SPX connection has failed, it aborts the
connection and posts an SPXListenSequencedPacket (DOS) ECB with
a completionCode value of SPX_CONNECTION_FAILED (0xED). The
connection ID of the failed connection is in the first word of ECB's
IPXWorkspace. When ECB's inUseFlag is reset to zero, completionCode
contains 0x00 if the SPX connection was established.

sourceConnectionID

If SPXEstablishConnection (DOS) returns a completion code of 0x00
(SUCCESSFUL), it also returns a connection ID in sourceConnectionID.
Although no connection is established yet with a destination socket, a
connection occupies one entry in the node's SPX Connection Table.
SPX then sends an SPXEstablishConnection (DOS) packet to the
destination node.

Communication Service Group

SPX: Functions 720

See Also

SPXAbortConnection (DOS), SPXTerminateConnection (DOS)

Communication Service Group

SPX: Functions 721

SPXGetConnectionStatus (DOS)

Returns the status of an SPX connection
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS
Service: SPX

Syntax

#include <nwipxspx.h>

int SPXGetConnectionStatus(
 WORD connectionIDNumber,
 CONNECTION_INFO FAR *connectionInfo);

Parameters

connectionIDNumber

(IN) Indicates the number assigned by SPX when the connection was
established.

connectionInfo

(OUT) Points to a 44-byte connection information structure (
CONNECTION_INFO).

Return Values

0x0000 Connection OK

0xEE Invalid Connection

Remarks

SPXGetConnectionStatus (DOS) allows an application to check on the
current status of an SPX connection. If the specified connection exists, it
returns the connection ID number and a buffer of information on the
connection. If the specified connection does not currently exist,
SPXGetConnectionStatus (DOS) returns a completion code (0xEE).

CONNECTION_INFO is defined in NXT.H, and contains the following:

typedef struct
{
 BYTE connectionState;
 BYTE connectionFlags;
 WORD sourceConnectionID;/*high-low*/
 WORD destinationConnectionID;/*high-low*/

Communication Service Group

SPX: Functions 722

 WORD sequenceNumber;/*high-low*/
 WORD acknowledgeNumber;/*high-low*/
 WORD allocationNumber;/*high-low*/
 WORD remoteAcknowledgeNumber;/*high-low*/
 WORD remoteAllocationNumber;/*high-low*/
 WORD connectionSocket;/*high-low*/
 BYTE immediateAddress[6]IPXAddress destination;
 WORD retransmissionCount;/*high-low*/
 WORD estimatedRoundTripDelay;/*high-low*/
 WORD retransmittedPackets;/*high-low*/
 WORD suppressedPackets;/*high-low*/;
} CONNECTION_INFO

connectionState

 indicates the current state of the specified connection, as follows:

He
x

Name Description

0x
01

WAITING SPX is listening on the connection, waiting
to receive an SPX Establish Connection
packet. See SPXListenForConnection
(DOS).

0x
02

STARTING SPX is attempting to create a full connection
with a remote workstation by sending SPX
Establish Connection packets on its half of
the connection. See
SPXEstablishConnection (DOS)

0x
03

ESTABLISHE
D

SPX has established a connection with a
remote workstation, and the connection is
open for two-way packet transmission.

0x
04

TERMINATI
NG

The remote SPX has terminated the
connection. However, the local SPX has not
yet terminated its half of the connection. See
SPXTerminateConnection (DOS).

sourceConnectionID

Indicates the connection ID assigned by the local client's SPX package.

 destinationConnectionID

Indicates the cconnection ID assigned by the remote client's SPX
package. It is valid only if the connection state is ESTABLISHED or
TERMINATING.

sequenceNumber

Indicates the next packet the local SPX sends to the remote
workstation. SPX assigns a sequence number (0x0000 to 0xFFFF) to
each packet it sends to the remote workstation. This ensures
sequenced transmission at the local end and sequenced reception at

Communication Service Group

SPX: Functions 723

the remote end. When the sequence number reaches 0xFFFF, it wraps
to 0x0000. sequenceNumber is not valid if the connection state is
WAITING.

acknowledgeNumber

Indicates the sequence number of the next packet that the local SPX
expects to receive from the remote SPX. When this sequence number
reaches 0xFFFF, it wraps to 0x0000. It is not valid if the connection
state is WAITING.

allocationNumber

Indicates (in conjunction with acknowledgeNumber) the number of
outstanding packet receive buffers (posted listens) available for a given
SPX connection. It is used by SPX to implement flow control between
communicating applications. allocationNumber minus
acknowledgeNumber equals the number of posted listens outstanding on
the connection socket. SPX sends packets only until the local sequence
number equals allocationNumber of the remote partner.
allocationNumber increments from 0xFFFF and wraps to 0x0000. It is not
valid if the connection state is WAITING. The number is based on the
number of Listen ECBs outstanding.

remoteAcknowledgeNumber

Indicates the sequence number of the next packet the remote SPX
expects to receive from the local SPX. When this sequence number
reaches 0xFFFF, it wraps to 0x0000. It is not valid if the connection
state is WAITING.

The local SPX is allowed to send packets with sequence numbers up to
and including remoteAllocationNumber. Meanwhile, the remote SPX
increments the remote allocation number as the remote workstation
generates listen ECBs. In this way, the remote SPX regulates the
number of packets the local SPX sends and avoids being inundated
with packets it is not ready to receive. When this number reaches
0xFFFF, it wraps back to 0x0000. remoteAcknowledgeNumber is not valid
if the connection state is WAITING. The number is based on the
number of ECBs outstanding.

connectionSocket

Indicates the socket number the local SPX is using to send and receive
packets.

immediateAddress

Indicates the node address of the bridge (on the local network) routing
the packets to and from the remote workstation. If the local and remote
workstations reside on the same local network, the immediate address
is the node address of the remote workstation. (In this case, a bridge is
unnecessary.) It is not valid if the connection state is WAITING.

destinationSocket

Indicates the socket address through which the remote SPX expects to
receive packets pertaining to this connection, and from which packets
are sent to the local SPX. The two SPX packages do not need to use the

Communication Service Group

SPX: Functions 724

same socket; this number does not need to be the same as
connectionSocket. It is not valid if the connection state is WAITING.

retransmissionCount

Indicates the number of times SPX attempts to retransmit an
unacknowledged packet before it determines the remote SPX has
become inoperable or unreachable.

estimatedRoundTripDelay

Indicates the amount of time (in 1/18th second units) SPX should wait
for an acknowledgment to arrive from the remote SPX partner. SPX
includes both dynamic flow control and dynamic routing. This means
the value of estimatedRoundTripDelay may change from time to time as
SPX adjusts to observed fluctuations in packet throughput on the
underlying internetwork. It is not valid if the connection state is
WAITING.

retransmittedPackets

Indicates the number of times SPX had to retransmit a packet on this
connection before it received an expected acknowledgment. When this
field reaches a value of 0xFFFF, it wraps to 0x0000. It is valid only if
the connection state is ESTABLISHED or TERMINATING.

suppressedPackets

Indicates the number of times SPX received a data packet on the
connection that was not delivered to the connection client because the
packet was either a duplicate of previously delivered data or was
out-of-bounds for the current receive window. When it reaches a value
of 0xFFFF, it wraps to 0x0000. suppressedPackets is valid only if the
connection state is ESTABLISHED or TERMINATING.

See Also

SPXEstablishConnection (DOS)

Communication Service Group

SPX: Functions 725

SPXInitialize (DOS)

Checks to see if SPX is installed
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS
Service: SPX

Syntax

#include <nwipxspx.h>

int cdecl SPXInitialize(
 BYTE FAR *majorRevisionNumber,
 BYTE FAR *minorRevisionNumber,
 WORD FAR *maxConnections,
 WORD FAR *availableConnections);

Parameters

majorRevisionNumber

(OUT) Points to a byte receiving the SPX major revision number.

minorRevisionNumber

(OUT) Points to a byte receiving the SPX minor revision number.

maxConnections

(OUT) Points to an unsigned integer receiving the maximum number
of SPX connections supported.

availableConnections

(OUT) Points to an unsigned integer receiving the number of available
SPX connections.

Return Values

0x0000 SPX_NOT_INSTALLED

0x00FF SPX_IS_INSTALLED

Remarks

SPXInitialize (DOS) determines whether SPX is installed on the node
where the application is running. If SPX is installed, SPXInitialize returns
the major and minor revision numbers of SPX, the maximum number of
connections supported by SPX, and the number of SPX connections
available.

Communication Service Group

SPX: Functions 726

Early versions of the NetWare® OS did not support SPX. Specifically,
only the last shell (ANET3.COM, 2.01-4) of NetWare 2.0a supports the
SPX. All versions of NetWare 2.1 and higher support SPX.

NOTE: In NetWare 2.0a, SPX is supported for workstations only, not
for servers.

majorRevisionNumber and minorRevisionNumber

Indicate which SPX revision is installed. For example, Revision 1.0
returns a 1 in the first field and a 0 in the second.

maxConnections

Indicates the maximum number of SPX connections this particular
version of SPX supports.

availableConnections

Indicates how many SPX connections are available to the application.

Communication Service Group

SPX: Functions 727

SPXListenForConnection (DOS)

Receives an Establish Connection packet and thereby establishes an SPX
connection with a remote partner
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS
Service: SPX

Syntax

#include <nwipxspx.h>

void cdecl SPXListenForConnection(
 BYTE retryCount,
 BYTE watchDog,
 ECB FAR *eventControlBlock);

Parameters

retryCount

(IN) Indicates the retry count (from 0 to 255).

watchDog

(IN) Indicates the flag controlling watchdog connection supervision
(0=disable, !0=enable).

eventControlBlock

(IN/OUT) Points to ECB.

Return Values

0x0000 Successful

ECB Return Values

0xEF SPX Connection Table Full

0xF SPX Command Canceled (with IPXCancelEvent (DOS))

0xF Socket Not Opened

Remarks

SPXListenForConnection (DOS) passes a retryCount, SPX watchDog flag,

Communication Service Group

SPX: Functions 728

and eventControlBlock address to SPX to listen for and receive an
SPXEstablishConnection (DOS)packet. When the
SPXEstablishConnection (DOS) packet is received, a connection is
established with the sending node.

SPXListenForConnection (DOS) then returns control to the calling
function. Meanwhile, SPX attempts to receive an
SPXEstablishConnection (DOS) packet and establish a connection.

NOTE: ECB's ESRAddress and socketNumber must be intialized. The
other parameters are passed by SPXListenForConnection (DOS).

Before SPXListenForConnection (DOS) can be called, IPXOpenSocket
(DOS) must be called to open the socket to be used for the connection.
When ECB's inUseFlag is reset to zero, completionCode contains 0x00 if the
SPX connection was established.

SPX_CONNECTION_TABLE_FULL (0xFE) indicates all positions in the
SPX connection table are occupied and no more connections are
available. The application must wait until an active connection is
terminated.

SPX_COMMAND_CANCELLED (0xFC) indicates the command was
canceled by IPXCancelEvent (DOS).

SPX tries to establish a connection in two steps as follows:

1. The function listens for an SPXEstablishConnection (DOS) packet.

2. After an establish connection packet is received, the function attempts to
create a local connection.

If successful, SPX sends a confirmation packet to the source node, and
both sides are ready to either send or receive data on the connection.

To complete the second step, SPX requires retryCount, SPX watchDog, and
eventControlBlock.

 retryCount specifies how many times SPX resends unacknowledged
packets before concluding the partner node is not functioning properly.
The application should set retryCount to 0x00; 0x00 instructs SPX to use its
own internal retry count. A value of 1 through 255 (inclusive) indicates
that SPX should resend packets the specified number of times.

SPX watchDog monitors an SPX connection, ensuring the connection is
functioning properly when traffic is not passing through the connection.
If watchDog determines an SPX connection has failed, it signals the
application by recording a value of 0xED (Failed Connection) in
completionCode of any listening ECB. watchDog also records the failed
connection ID number in the same ECB's IPXWorkspace and calls the
ECB's ESR.

The ECB (eventControlBlock) passed to SPXListenForConnection (DOS)
needs no associated packets or fragments.

Communication Service Group

SPX: Functions 729

SPX-based applications must prepost at least two ECBs by calling
SPXListenForSequencedPacket (DOS). SPX uses one of these ECBs to
receive the Establish Connection packet, and uses the other to
acknowledge the Establish Connection packet has been received.

After the connection is established, SPX sends a Confirmation packet
back to the node that initiated the connection. SPX records the following
information in that packet's associated ECB fields:

 IPXWorkspace (first 2 bytes)---Connection ID number

 driverWorkspace---12-byte address of the partner node

 completionCode---A value of 0x00 (Connection established)

 inUseFlag---A value of 0x00 (available for use)

To cancel a connection attempted by SPXListenForConnection (DOS),
an application can call IPXCancelEvent (DOS). In this situation, SPX
records a value of 0xFC (SPX_COMMAND_CANCELLED) in ECB's
completionCode.

The following ECBs occupy one entry each in the node's SPX Connection
Table:

ECBs attempting to establish a connection

ECBs participating in a connection

See Also

IPXOpenSocket (DOS), SPXEstablishConnection (DOS),
SPXListenForSequencedPacket (DOS)

Communication Service Group

SPX: Functions 730

SPXListenForSequencedPacket (DOS)

Passes an ECB to SPX for the purpose of receiving a sequenced packet
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS
Service: SPX

Syntax

#include <nwipxspx.h>

void cdecl SPXListenForSequencedPacket(
 ECB FAR *eventControlBlock);

Parameters

eventControlBlock

(IN/OUT) Points to ECB.

ECB Return Values

0x0000 Successful

0xED Connection Failed

0xFC SPX Socket Closed

0xFD Packet Overflow

0xFF SPX Socket Not Opened

Remarks

SPXListenForSequencedPacket (DOS) delivers an ECB address and the
buffer space it identifies to SPX for the purpose of receiving a sequenced
packet. It then returns control to the calling application. SPX allows
applications to receive sequenced packets in a fully asynchronous
fashion. Therefore, SPXListenForSequencedPacket (DOS) only
dedicates the given ECB for use in receiving packets; it does not wait for
an actual packet to be received.

Before calling SPXListenForSequencedPacket (DOS), the application
must initialize ECB's ESRAddress, SocketNumber, fragmentCount, and
fragmentDescriptor. The socket specified by socketNumber must be
previously opened by calling IPXOpenSocket (DOS).

When ECB's inUseFlag is reset to zero, completionCode contains the codes
listed in the ECB Completion Code table above.

Communication Service Group

SPX: Functions 731

If the completion code is 0xED, SPX watchDog determined a connection
has failed and aborted the connection. If the code is 0xFD, a sequenced
packet was received; but the available space defined by ECB's fragment
descriptor list was not large enough to contain the entire packet.

Because both system and user packets arrive via the buffers in the listen
ECB pool, SPX cannot function properly unless the SPX client makes
available an adequate supply of listen ECBs. SPX imposes no limits on
the number of ECBs that can be used concurrently for listening on a given
socket. If a listening ECB is canceled with IPXCancelEvent (DOS), ECB's
ESRAddress must be reinitialized to an appropriate value before the ECB
is reused.

See Also

SPXListenForConnection (DOS), SPXSendSequencedPacket (DOS)

Communication Service Group

SPX: Functions 732

SPXSendSequencedPacket (DOS)

Passes a connection ID and an ECB address to SPX for the purpose of
sending an SPX packet and returns control to the calling application
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS
Service: SPX

Syntax

#include <nwipxspx.h>

void SPXSendSequencedPacket(
 WORD connectionIDNumber,
 ECB FAR *eventControlBlock);

Parameters

connectionIDNumber

(IN) Indicates the number assigned by SPX when the connection was
established.

eventControlBlock

(IN/OUT) Points to ECB.

ECB Return Values

0x0000 Successful

0xEC Connection Terminated

0xED SPX Terminated Poorly

0xEE Invalid Connection

0xFC Socket Closed

0xFD Malformed Packet

Remarks

Before calling SPXSendSequencedPacket (DOS), ECB's ESRAddress,
fragmentCount, and fragmentDescriptor must be initialized. The fragment
buffer referenced by the first fragmentDescriptor must contain at least a
42-byte SPX packet header. The application can also initialize the SPX
packet. header's endOfMessage bit in connectionControl and should
initialize dataStreamType. All other fields in the SPX packet header are
initialized by SPX.

Communication Service Group

SPX: Functions 733

Initially, SPX sets ECB's inUseFlagto a non-zero value indicating that the
ECB is sending a packet. SPX also queues the ECB/packet combination
for transmission.

When SPX completes its attempt to send the packet, SPX records a
completion code in ECB's completionCode, sets inUseFlag to 0x00
(AVAILABLE_FOR_USE), and calls the ESR defined in ECB's ESRAddress
(if applicable).

0x00 indicates the packet was successfully sent and received in order by
the connection partner. An acknowledgment from the partner was
returned.

0xEC indicates the remote partner terminated the connection without
acknowledging this packet. SPX cannot guarantee the remote partner
received this packet before the connection was destroyed.

0xED indicates the connection ended abnormally. One of the two
partners used SPXAbortConnection (DOS) to abort the connection, or
the connection partner failed to acknowledge receipt of this packet. This
error is also reported if the network hardware fails or if the packet cannot
be delivered to the specified destination.

0xEE indicates SPXConnectionID does not reference an established
connection.

0xFC indicates the connection socket was closed. In this case,
EventServiceRoutine is not called.

0xFD indicates the fragment count is zero, the first fragment is less than
42 bytes long, or the entire packet is greater than 576 bytes long.

WARNING: 0xFD causes the connection to be aborted.

Sockets used by SPX connections cannot be used to send or receive
packets directly using IPX™ calls IPXSendPacket (DOS) and
IPXListenForPacket (DOS). The sockets must be dedicated solely for use
by the SPX protocol.

When an application passes several ECB/packet combinations to SPX,
SPX queues the packets and sends them in the order it receives them.

When an application or some other agent closes an SPX socket, SPX
terminates all connections associated with the socket.

An application can establish a connection between two sockets residing
in the same node. An application should use SPXAbortConnection
(DOS) (not IPXCancelEvent (DOS)) to cancel an
SPXSendSequencedPacket (DOS) event.

See Also

SPXListenForSequencedPacket (DOS)

Communication Service Group

SPX: Functions 734

SPXTerminateConnection (DOS)

Terminates an SPX connection by passing a connection ID and an ECB
address to SPX and returns control to the calling application
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS
Service: SPX

Syntax

#include <nwipxspx.h>

void SPXTerminateConnection(
 WORD connectionIDNumber,
 ECB FAR *eventControlBlock);

Parameters

connectionIDNumber

(IN) Indicates the number assigned by SPX when the connection was
established.

eventControlBlock

(IN/OUT) Points to ECB.

Return Values

0x0000 Successful

ECB Return Values

0x0000 SPX Connection Terminated

0xEC Terminated By Remote Partner

0xED SPX Terminated Poorly

0xEE Invalid Connection

0xFD Malformed Packet

Remarks

Before calling SPXTerminateConnection (DOS), ECB's ESRAddress,
fragmentCount, and fragmentDescriptor must be initialized. The application

Communication Service Group

SPX: Functions 735

must set fragmentCount to 1. fragmentDescriptor must point to a 42-byte
buffer.

connectionIDNumber is the local number assigned to the connection upon
creation by SPX. If the connection was created with
SPXEstablishConnection (DOS), it is the number returned from that call.
If the connection was created with SPXListenForConnection (DOS), it is
the number obtained from the first 2 bytes of SPXListenForConnection
(DOS) ECB's IPXWorkspace after the connection was made.

1. SPX records a value of 0xFE (TERMINATE_CONNECTION) in
dataStreamType of the SPX header referenced in the ECB. This tells the
receiver the connection is terminated.

2. SPX delivers the packet to the partner node.

3. SPX returns the appropriate completion code in ECB's completionCode,
and records 0x00 (AVAILABLE_FOR_USE) in ECB's inUseFlag.

4. SPX calls the ESR referenced by ECB's ESRAddress (if applicable).

A completion code of 0xED indicates the remote connection partner
failed to acknowledge the request within an appropriate amount of time.
The connection is terminated on the local side, but SPX cannot guarantee
the connection partner saw this SPXTerminateConnection (DOS)
request. This error is also returned if the network hardware fails or the
packet cannot be delivered to the specified destination.

A completion code of 0xFD indicates the fragment count was not 1 or the
buffer size was not 42. Because of the asynchronous functionality of SPX,
the termination request may not be complete when
SPXTerminateConnection (DOS) returns. Thus, the ECB is not available
until inUseFlag is reset to zero.

Once SPX terminates a connection, the position connectionIDNumber
occupied in the Connection Table becomes available for use by a new
connection. Applications can initiate new connections with
SPXEstablishConnection (DOS).

An application should call SPXAbortConnection (DOS) (not
IPXCancelEvent (DOS)) to cancel SPXTerminateConnection (DOS).

See Also

SPXAbortConnection (DOS), SPXEstablishConnection (DOS),
SPXListenForConnection (DOS)

SPX for NLM

Communication Service Group

SPX: Functions 736

SpxAbortConnection (NLM)

Aborts an SPX connection
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Platform: NLM
Service: SPX

Syntax

#include <nwipxspx.h>

int SpxAbortConnection (
 unsigned short connection);

Parameters

connection

(IN) Specifies the connection ID number assigned by SPX when the
connection was established.

Return Values

0 (0x00)

ESUCCE
SS

238

(0xEE) ERR_SPX_INVALID_CONNECTION

Remarks

SpxAbortConnection (NLM) passes a connection ID to SPX for the
purpose of unilaterally aborting an SPX connection. It then returns
control to the calling application. Meanwhile, SPX aborts the connection.

SPX makes no attempt to inform the connection partner of the decision to
abort the connection. The partner discovers the connection is no longer
valid when it attempts to send a packet on the connection or when its
watchdog checks the connection after the inactivity timer expires.

Any SpxEstablishConnection (NLM), SpxTerminateConnection (NLM)
, or SpxSendSequencedPacket (NLM) commands that are outstanding
on the connection are aborted. The completion codes in the ECBs of such
commands are set to 0xFFED, indicating an abnormal connection
termination. The semaphore handles of any incomplete

Communication Service Group

SPX: Functions 737

SpxSendSequencedPacket (NLM) ECBs on the affected session are
posted (unless the semHandle field is NULL). The ECBs are queued off of
their queue heads (unless the queueHead field is NULL).

If any of the affected ECBs are in a state that does not allow them to be
cancelled (for example, if the network interface card is in the middle of
sending the packet), they are cancelled at the earliest possible time. In
this case, the completion code of the ECB is still set to 0xFFED, and the
semaphore handles and queue heads of the affected ECBs are still acted
on.

This function is included to allow a connection partner to unilaterally
dismantle the connection if some catastrophic condition is detected.
Under normal conditions, the SpxTerminateConnection (NLM) function
should be used to ensure that both connection partners break the
connection in a controlled fashion.

See Also

SpxEstablishConnection (NLM), SpxTerminateConnection (NLM)

Communication Service Group

SPX: Functions 738

SpxCancelEvent, SpxCancelPacket (NLM)

Local Servers: nonblocking
Remote Servers: N/A
NetWare Versions: 3.x, 4.x
Service: SPX

Syntax

#include <nwipxspx.h>

int SpxCancelEvent (
 SPX_ECB *ecb);

Parameters

ecb

(IN/OUT) Points to the SPX_ECB structure to be cancelled.

Return Values

0 (0x00) ESUCCESS

238 (0xEE) ERR_SPX_INVALID_CONNECTION

249 (0xF9) ERR_ECB_CANNOT_BE_CANCELLED

255 (0xFF) ERR_ECB_NOT_IN_USE

Remarks

SpxCancelEvent (NLM) cancels the action requested by a previously
submitted ECB.

If this function is made to an ECB performing an
SpxSendSequencedPacket (NLM), SpxEstablishConnection (NLM), or
SpxListenForConnection (NLM), the following events occur:

The pending application is aborted.

The semaphore handle is not posted.

The ECB is not queued off of the queue head.

The following conditions cause a cancel request to fail:

Conditions are determined to be in an unexpected state.

Communication Service Group

SPX: Functions 739

The ECB is being processed by the LAN board.

The ECB has been processed and is waiting for an acknowledgment.

SpxCancelEvent (NLM) can also be called as SpxCancelPacket (NLM)
(for compatibility with the OS implementation of SPX).

Communication Service Group

SPX: Functions 740

SpxCheckSocket (NLM)

Checks the status of a specified socket number
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: SPX

Syntax

#include <nwipxspx.h>

int SpxCheckSocket (
 unsigned short socket);

Parameters

socket

(IN) Specifies the socket number to be checked (high/low).

Return Values

0 (0x00) ESUCCESS

240 (0xF0) ERR_SOCKET_NOT_OPENED

Remarks

SpxCheckSocket (NLM) allows an application to check on the current
status of an SPX socket.

Communication Service Group

SPX: Functions 741

SpxCloseSocket (NLM)

Closes an SPX socket
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: SPX

Syntax

#include <nwipxspx.h>

int SpxCloseSocket (
 unsigned short socket);

Parameters

socket

(IN) Specifies the socket number of the socket to be closed (high/low).

Return Values

0 (0x00) ESUCCESS

Remarks

SpxCloseSocket (NLM) closes the specified SPX socket and cancels
events defined by the ECBs associated with the socket. SPX also returns a
value of 0xFFFC in each ECB's status field, indicating that the event has
been cancelled. SPX posts the ECBs' associated semaphore handles and
then queues the ECBs on the associated queue heads for all
SpxSendSequencedPacket (NLM), SpxListenForSequencedPacket
(NLM), SpxListenForConnection (NLM), and SpxEstablishConnection
(NLM) ECBs that are pending on the socket.

Any socket number can be closed; no error is generated if the specified
socket was not open.

See Also

SpxOpenSocket (NLM)

Communication Service Group

SPX: Functions 742

SpxEstablishConnection (NLM)

Attempts to establish a connection with a listening socket
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: SPX

Syntax

#include <nwipxspx.h>

int SpxEstablishConnection (
 unsigned short socket,
 SPX_ECB *ecb,
 unsigned char retryCount,
 unsigned char watchDogFlag,
 unsigned short *connection);

Parameters

socket

(IN) Specifies the socket number of the socket for which to establish a
connection.

ecb

(IN/OUT) Points to the SPX_ECB structure.

retryCount

(IN) Specifies a value from 0 to 255.

watchDogFlag

(IN) Specifies a flag that controls watchdog connection supervision
(zero disables; nonzero enables).

connection

(OUT) Points to an unsigned integer that receives the connection ID
number.

Return Values

0 (0x00) ESUCCESS

237 (0xED) ERR_SPX_NO_ANSWER_FROM_TARGET

239 (0xEF) ERR_SPX_CONNECTION_TABLE_FULL

240 (0xF0) ERR_SOCKET_NOT_OPENED

250 (0xFA) ERR_NO_LOCAL_TARGET_IDENTIFIED

Communication Service Group

SPX: Functions 743

252 (0xFC) ERR_SPX_COMMAND_CANCELLED

254 (0xFE) ERR_SPX_MALFORMED_PACKET

Remarks

SpxEstablishConnection (NLM) passes a retry count, SPX watchdog
flag, and an ECB address to SPX to of establish an SPX connection. The
function then returns control to the calling application. Meanwhile, SPX
attempts to establish the connection.

Before calling SpxEstablishConnection (NLM), the application must do
the following:

Initialize an ECB's semHandle field, queueHead field, socketNumber field
(only necessary if the socket number is zero), fragCount field, and
fragList field. The fragCount field should be initialized to 0x01. The
fragList field must point to a 42-byte buffer containing the header of an
SPX packet.

Initialize the SPX header's destination field. It cannot be set to -1
(broadcast).

SPX tries to establish the connection in two steps. First, SPX creates a local
connection half and verifies that the local connection half is fully
functional. The SpxEstablishConnection (NLM) function returns to the
calling procedure at this point.

Meanwhile, SPX sends an Establish Connection packet through the local
connection half to a specified (listening) destination socket to establish a
connection. To receive the Establish Connection packet, the destination
socket must pass an ECB to its SPX with SpxListenForConnection
(NLM).

For the first step, SPX requires the retryCount and watchDogFlag
parameters be set to the appropriate values.

The retryCount parameter specifies how many times SPX resends
unacknowledged packets before concluding that the destination node is
not functioning properly. The application can set this field to 0x00, which
instructs SPX to use its own internal retry count. A value of 1 to 255
indicates that SPX should resend packets the specified number of times.

The watchdog process monitors an SPX connection, ensuring that the
connection is functioning properly when traffic is not passing through
the connection. To enable the watchdog feature, an application should set
the watchDogFlag parameter to ENABLE_WATCHDOG (0XFF). A value
of 0x00 disables the feature.

If the watchdog process determines that an SPX connection has failed, the
watchdog process aborts the connection and posts an
SpxListenForSequencedPacket (NLM) ECB with 0xFFED (SPX

Communication Service Group

SPX: Functions 744

connection failed) in the status field. The connection ID of the failed
connection is placed in the ECB's protocolWorkspace field.

The socket specified in the ECB's socket field must have been opened prior
to this call using the SpxOpenSocket (NLM) or IpxOpenSocket (NLM)
function. Sockets that is used by SPX connections must not be used with
the IpxSendPacket (NLM) or IpxReceive (NLM) function for sending or
receiving packets directly. The socket must be dedicated solely for use by
SPX. If an SPX socket is closed, then all connections on that socket are
terminated and pending events (sends or listens) are cancelled.

Once SPX creates and verifies the local connection half, the function
returns a completion code. If the function returns anything but 0x00
(ESUCCESS), the attempt to establish a connection stops at this point.

If the function returns a completion code of 0x00 (ESUCCESS), the
function also returns a connection ID. Although no connection is
established yet with a destination socket, a connection occupies one entry
in the node's SPX connection table. SPX then sends an SPX Establish
Connection packet to the destination node.

The ECB's status field contains 0x00 if the SPX connection is established.

An SpxEstablishConnection (NLM) event must not be cancelled by
calling IpxCancelEvent (NLM). If an application does not want to
establish a connection, the SpxAbortConnection (NLM) function should
be called to prevent it.

See Also

SpxAbortConnection (NLM), SpxTerminateConnection (NLM)

Communication Service Group

SPX: Functions 745

SpxGetConfiguration (NLM)

Determines the maximum number of SPX connections and the number of
available SPX connections
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: SPX

Syntax

#include <nwipxspx.h>

int SpxGetConfiguration (
 unsigned *maxConn,
 unsigned *availConn);

Parameters

maxConn

(OUT) Receives the maximum number of SPX connections supported.

availConn

(OUT) Receives the number of available SPX connections.

Return Values

0 (0x00) ESUCCESS

Remarks

SpxGetConfiguration (NLM) returns the maximum number of
connections supported by SPX and the number of SPX connections
available to the application.

Communication Service Group

SPX: Functions 746

SpxGetConnectionStatus (NLM)

Returns the status of an SPX connection
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: SPX

Syntax

#include <nwipxspx.h>

int SpxGetConnectionStatus (
 unsigned short connection,
 SPX_SESSION *buffer);

Parameters

connection

(IN) Specifies the number assigned by SPX when the connection was
established.

buffer

(OUT) Points to a 60-byte connection information structure.

Return Values

0 (0x00) ESUCCESS

238 (0xEE) ERR_SPX_INVALID_CONNECTION

Remarks

SpxGetConnectionStatus (NLM) allows an application to check on the
status of an SPX connection. If the connection exists, the function returns
the connection ID number and a buffer of information on the connection.
If the connection does not exist, then the completion code 0xEE is
returned.

The SPX_SESSION structure contains the following fields:

unsigned char sStatus;
unsigned char sFlags;
unsigned short sSourceConnectID; /* high/low */
unsigned short sDestConnectID; /* high/low */
unsigned short sSequenceNumber; /* high/low */
unsigned short sAckNumber; /* high/low */

Communication Service Group

SPX: Functions 747

unsigned short sAllocNumber; /* high/low */
unsigned short sRemoteAckNumber; /* high/low */
unsigned short sRemoteAllocNumber; /* high/low */
unsigned short sLocalSocket; /* low-high */
unsigned char sImmediateAddres[6];
unsigned long sRemoteNet; /* high/low */
unsigned char sRemoteNode[6]; /* high/low */
unsigned short sRemoteSocket; /* high/low */
unsigned char sRetransmitCount;
unsigned char sRetransmitMax;
unsigned short sRoundTripTimer;
unsigned short sRetransmittedPackets;
unsigned short sSuppressedPackets;
unsigned short sLastReceiveTime;
unsigned short sLastSendTime;
unsigned short sRoundTripMax;
unsigned short sWatchdogTimeout;
unsigned long sSessionXmitQHead;
unsigned long sSessionXmitECBp;

The SPX_SESSION structure is described in the "IPX and SPX Protocols"
chapter of NetWare Library Reference for C: Structures.

See Also

SpxEstablishConnection (NLM)

Communication Service Group

SPX: Functions 748

SpxGetTime (NLM)

Gets a time marker from SPX
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: SPX

Syntax

#include <nwipxspx.h>

int SpxGetTime (
 unsigned long *marker);

Parameters

marker

(OUT) Specifies the time interval marker.

Return Values

0 (0x00) ESUCCESS

Remarks

The time interval marker is a value between 0 and 65,535 (0x0000 and
0xFFFF). The interval value represents units of milliseconds.

An application can call SpxGetTime (NLM) to measure the elapsed time
between two events. To do so, the application makes two requests to
SpxGetTime (NLM), each function returning an interval marker that
corresponds to the time of an event. The application then subtracts the
first interval marker from the second. The difference represents the time
interval between the two events (in clock ticks). This result remains
accurate even if the interval marker wraps through zero between the first
and second event. This timer is not intended for use with large time
intervals (greater than 1 hour) due to the precision of the interval marker
(16 bits unsigned).

Communication Service Group

SPX: Functions 749

SpxGetVersion (NLM)

Returns the major and minor version, revision, and revision date of SPX
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: SPX

Syntax

#include <nwipxspx.h>

int SpxGetVersion (
 unsigned char *major,
 unsigned char *minor,
 unsigned short *revision,
 unsigned long *revDate);

Parameters

major

(OUT) Returns major revision of the SPX.

minor

(OUT) Returns minor revision of the SPX.

revision

(OUT) Returns revision of the SPX.

revDate

(OUT) Returns revision date of the SPX.

Return Values

0 (0x00) ESUCCESS

Remarks

SpxGetVersion (NLM) enables an application to determine the SPX
version installed on the server where the application is running. Call
SpxGetVersion (NLM) before making other SPX calls.

If the SPX interface changes, the SPX major version number or SPX minor
version number changes. SPX client programs should verify that they are
running on the SPX version which they were written for.

Communication Service Group

SPX: Functions 750

SpxGetVersion (NLM) always returns the revision as 0 and revision date
as 0.

If any of the parameters is NULL, the value of that parameter is not
returned.

Communication Service Group

SPX: Functions 751

SpxListenForConnectedPacket (NLM)

Passes an ECB to SPX so that it can receive a sequenced packet for an SPX
session
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.11, 3.12, 4.x
Service: SPX

Syntax

#include <nwipxspx.h>

int SpxListenForConnectedPacket (
 unsigned short socket,
 SPX_ECB *ecb,
 unsigned short connection);

Parameters

socket

(IN) Specifies the number of the open socket.

ecb

(IN/OUT) Points to the SPX_ECB structure.

connection

(IN) Specifies the SPX connection ID number assigned when the
connection was established (see SpxEstablishConnection (NLM)).

Return Values

0 (0x00) ESUCCESS

237 (0xED) ERR_SPX_CONNECTION_FAILED

240 (0xF0) ERR_SPX_SOCKET_NOT_OPENED

252 (0xFC) ERR_SPX_COMMAND_CANCELLED

253 (0xFD) ERR_SPX_PACKET_OVERFLOW

254 (0xFE) ERR_SPX_MALFORMED_PACKET

Remarks

SpxListenForConnectedPacket (NLM) is identical to
SpxListenForSequencedPacket (NLM) except that it allows you to post
an ECB for a specific SPX session (specified by connection).

Communication Service Group

SPX: Functions 752

SpxListenForConnectedPacket (NLM) delivers an ECB address and the
buffer space it identifies to SPX for the purpose of receiving a sequenced
packet. It then returns control to the calling application. SPX allows
applications to receive sequenced packets in a fully asynchronous
fashion. Therefore, SpxListenForConnectedPacket (NLM) only
dedicates the given ECB for use in receiving packets; it does not wait for
an actual packet to be received.

Before calling SpxListenForConnectedPacket (NLM), the application
must initialize the ECB's semHandle, queueHead, socket (if the socket
parameter is zero), fragCount, and fragList fields. The socket must have
been previously opened by calling SpxOpenSocket (NLM).

If the completion code is 0xED, the SPX watchdog process determined
that a connection has failed and aborted the connection. If the code is
0xFE, a sequenced packet was received, but the available space defined
by the ECB's fragment descriptor list was not large enough to contain the
entire packet.

When the listen completes (either because a packet arrived or an error
occurred), the watchdog process signals the ECB's semaphore handle (if
nonNULL) and queues the ECB on the queue head (if nonNULL).

If a listening ECB is cancelled with the SpxCancelEvent (NLM) function,
the ECB's semHandle field must be reinitialized to an appropriate value
before the ECB is reused.

See Also

SpxListenForConnection (NLM), SpxListenForSequencedPacket
(NLM), SpxSendSequencedPacket (NLM)

Communication Service Group

SPX: Functions 753

SpxListenForConnection (NLM)

Attempts to receive an Establish Connection packet and establish an SPX
connection with a remote partner
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: SPX

Syntax

#include <nwipxspx.h>

int SpxListenForConnection (
 unsigned short socket,
 SPX_ECB *ecb,
 unsigned char retryCount,
 unsigned char watchDogFlag,
 unsigned short *connection);

Parameters

socket

(IN) Specifies the socket number.

ecb

(IN/OUT) Points to the SPX_ECB structure.

retryCount

(IN) Specifies a value from 0 to 255.

watchDogFlag

(IN) Specifies a flag that controls watchdog connection supervision
(zero disables, nonzero enables).

connection

(OUT) Receives the connection ID of the established connection.

Return Values

0 (0x00) ESUCCESS

239 (0xEF) ERR_SPX_CONNECTION_TABLE_FULL

240 (0xF0) ERR_SPX_SOCKET_NOT_OPENED

252 (0xFC) ERR_SPX_COMMAND_CANCELLED

Communication Service Group

SPX: Functions 754

Remarks

SpxListenForConnection (NLM) passes a retry count, SPX watchdog
flag, and ECB address to SPX to listen for and receive an SPX Establish
Connection packet. This establishes a connection with the sending node.
The function then returns control to the calling function. Meanwhile, SPX
attempts to receive an SPX Establish Connection packet and establish a
connection.

Before this function can be used, call SpxOpenSocket (NLM) or
IpxOpenSocket (NLM) to open the socket to be used for the connection.
The ECB's status field is set to zero (0x00) if the SPX connection is
established. The status field is set negative if an error occurred. The status
field is set positive while the listen for connection is pending.

SPX tries to establish a connection in two steps. First, the function listens
for an SPX Establish Connection packet. Second, after an establish
connection packet is received, the function attempts to create a local
connection. If it is successful, a confirmation packet is sent to the source
node, and both sides are ready to either send or receive data on the
connection.

To complete the second step, SPX requires a retry count, an SPX
watchdog flag, and an ECB address.

The retryCount parameter specifies how many times SPX resends
unacknowledged packets before concluding that the partner node is not
functioning properly. The application can set this parameter to 0x00,
which instructs SPX to use its own internal retry count. A value of 1 to 255
indicates that SPX should resend packets that many of times.

The SPX watchdog process monitors SPX connections, ensuring that the
connection is functioning properly when traffic is not passing through
the connection. If the watchdog process determines that an SPX
connection has failed, the watchdog process signals the application by
recording a value of 0xFFED (Failed Connection) in the status field of any
listening ECB. The watchdog process also records the failed connection
ID number in the same ECB's protocolWorkspace field and signals the
ECB's semaphore handle (if nonNULL) and queues the ECB on the
queue head (if nonNULL).

Then SPX sends a confirmation packet back to the node that initiated the
connection. Next, SPX records the connection ID number in the ECB's
protocolWorkspace field (this is the same value returned in the connection
parameter).

If the application cancels (by calling SpxCancelEvent (NLM)) the
SpxListenForConnection (NLM) attempt, SPX records a value of 0xFFFC
in the ECB's status field.

The following ECBs occupy one entry each in the node's SPX Connection
Table:

Communication Service Group

SPX: Functions 755

ECBs attempting to establish a connection

ECBs participating in a connection

An application can call SpxCancelEvent (NLM) to cancel
SpxListenForConnection (NLM).

See Also

SpxEstablishConnection (NLM), SpxListenForSequencedPacket
(NLM), SpxOpenSocket (NLM)

Communication Service Group

SPX: Functions 756

SpxListenForSequencedPacket (NLM)

Passes an ECB to SPX for the purpose of receiving a sequenced packet
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: SPX

Syntax

#include <nwipxspx.h>

int SpxListenForSequencedPacket (
 unsigned short socket,
 SPX_ECB *ecb);

Parameters

socket

(IN) Specifies the socket number.

ecb

(IN/OUT) Points to the SPX_ECB structure.

Return Values

0 (0x00) ESUCCESS

237 (0xED) ERR_SPX_CONNECTION_FAILED

240 (0xF0) ERR_SPX_SOCKET_NOT_OPENED

252 (0xFC) ERR_SPX_COMMAND_CANCELLED

253 (0xFD) ERR_SPX_PACKET_OVERFLOW

254 (0xFE) ERR_SPX_MALFORMED_PACKET

Remarks

SpxListenForSequencedPacket (NLM) delivers an ECB address and the
buffer space it identifies to SPX for the purpose of receiving a sequenced
packet. It then returns control to the calling application. SPX allows
applications to receive sequenced packets in a fully asynchronous
fashion. Therefore, SpxListenForSequencedPacket (NLM) only
dedicates the given ECB for use in receiving packets; it does not wait for
an actual packet to be received.

Before calling SpxListenForSequencedPacket (NLM), the application

Communication Service Group

SPX: Functions 757

must initialize the ECB's semHandle, queueHead, socket (if the socket
parameter is zero), fragCount, and fragList fields. The specified socket
must have been previously opened with a call to SpxOpenSocket (NLM)
.

If the completion code is 0xED, the SPX watchdog process determined
that a connection has failed and aborted the connection. If the code is
0xFE, then a sequenced packet was received, but the available space
defined by the ECB's fragment descriptor list was not large enough to
contain the entire packet.

When the listen completes (either because a packet arrived or an error
occurred), the watchdog process signals the ECB's semaphore handle (if
nonNULL) and queues the ECB on the queue head (if nonNULL).

Because both system and user packets arrive via the buffers in the listen
ECB pool, SPX cannot function properly unless the SPX client makes
available an adequate supply of listen ECBs. SPX imposes no limits on
the number of ECBs that can be used concurrently for listening on a given
socket.

If a listening ECB is cancelled with the SpxCancelEvent (NLM) function,
the ECB's semHandle field must be reinitialized to an appropriate value
before the ECB is reused.

See Also

SpxListenForConnection (NLM), SpxSendSequencedPacket (NLM)

Communication Service Group

SPX: Functions 758

SpxOpenSocket (NLM)

Opens an SPX socket
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: SPX

Syntax

#include <nwipxspx.h>

int SpxOpenSocket (
 unsigned short *socket);

Parameters

socket

(IN/OUT) Contains a socket number (high/low).

Return Values

0 (0x00) ESUCCESS

241 (0xF1) ERR_SOCKET_ALREADY_OPEN

254 (0xFE) ERR_SOCKET_TABLE_FULL

Remarks

An application must call SpxOpenSocket (NLM) to open a socket before
receiving a packet on the socket.

The socket parameter points to the number of the socket to be opened. If
the socket number to be opened is set to zero, SPX opens an available
socket of its choice in the range 0x4000 to 0x7FFF, returning the value of
the new socket in the variable pointed to by socketNumber. This is known
as a dynamic socket open.

If SpxOpenSocket (NLM) returns a completion code of 0x00, then the
socket has been opened as expected. If the completion code is 0xFE, then
the socket table is already full. If the function returns a completion code
of 0xF1, then the specified socket is already open.

See Also

SpxCloseSocket (NLM)

Communication Service Group

SPX: Functions 759

SpxSendSequencedPacket (NLM)

Sends an SPX packet
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: SPX

Syntax

#include <nwipxspx.h>

int SpxSendSequencedPacket (
 unsigned short connection,
 SPX_ECB *ecb);

Parameters

connection

Specifies the number assigned by SPX when the connection was
established.

ecb

Points to the SPX_ECB structure.

Return Values

0 (0x00) ESUCCESS

23
6

(0xEC) ERR_TERMINATED_BY_REMOTE_PARTNER

23
7

(0xED) ERR_SPX_CONNECTION_FAILED

23
8

(0xEE) ERR_SPX_INVALID_CONNECTION

25
4

(0xFE) ERR_MALFORMED_PACKET

Remarks

SpxSendSequencedPacket (NLM) passes a connection ID and an ECB
address to SPX for the purpose of sending an SPX packet. It then returns
control to the calling application. Meanwhile, SPX attempts to send an
SPX packet.

Communication Service Group

SPX: Functions 760

Before calling SpxSendSequencedPacket (NLM), the application must
initialize the ECB's semHandle, queueHead, fragCount, and fragList fields.
The fragment buffer referenced by the first fragList field must contain at
least a 42-byte SPX packet header. The application must also set or clear
the SPX packet header's endOfMessage bit in the connectionCtl field and
must initialize the dataStreamType field. All other fields in the SPX packet
header are initialized by SPX.

Initially, SPX sets the ECB's status field to a positive value indicating the
ECB is sending a packet. SPX also queues the ECB/packet combination
for transmission.

When SPX completes its attempt to send the packet, SPX records a
completion code in the ECB's status field, and signals the ECB's
semaphore handle (if nonNULL) and queues the ECB on the queue head
(if nonNULL).

Sockets used by SPX connections cannot be used to send or receive
packets directly using the IPX calls IpxSend (NLM) and IpxReceive
(NLM) functions. The sockets must be dedicated solely for use by the SPX
protocol.

When an application passes several ECB/packet combinations to SPX,
SPX queues the packets and sends them in the order that it received
them.

When an SPX socket is closed, SPX terminates all connections associated
with the socket.

An application can establish a connection between two sockets residing
in the same node.

An application should call SpxCancelEvent (NLM) to cancel an
SpxSendSequencedPacket (NLM) event.

See Also

SpxListenForSequencedPacket (NLM)

Communication Service Group

SPX: Functions 761

SpxTerminateConnection (NLM)

Terminates an SPX connection
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: SPX

Syntax

#include <nwipxspx.h>

int SpxTerminateConnection (
 unsigned short connection,
 IPX_ECB *ecb);

Parameters

connection

(IN) Specifies the number assigned by SPX when the connection was
established.

ecb

(IN/OUT) Points to the SPX_ECB structure.

Return Values

0 (0x00) ESUCCESS

23
6

(0xEC) ERR_TERMINATED_BY_REMOTE_PARTNER

23
7

(0xED) ERR_SPX_TERMINATED_POORLY

23
8

(0xEE) ERR_SPX_INVALID_CONNECTION

25
4

(0xFE) ERR_SPX_MALFORMED_PACKET

Remarks

SpxTerminateConnection (NLM) terminates an SPX connection by
passing a connection ID and an ECB address to SPX. It then returns
control to the calling application. Meanwhile, SPX attempts to break the
connection.

Communication Service Group

SPX: Functions 762

Before calling SpxTerminateConnection (NLM), the application must
initialize the ECB's semHandle, queueHead, fragCount, and fragList fields.
The application must set the fragCount field to 1. The fragList field must
point to a 42-byte buffer. At least one SpxListenForSequencedPacket
(NLM) must be outstanding on the socket associated with the connection.

The connection parameter is the local number assigned to the connection
upon creation by SPX. If the connection was created with
SpxEstablishConnection (NLM) or SpxListenForConnection (NLM),
this is the number returned from that call.

SPX records a value of 0xFE (TERMINATE_CONNECTION) in the
datastreamType field of the SPX header referenced in the ECB. This tells
the receiver that the connection is terminated. SPX then delivers the
packet to the partner node, returns the appropriate completion code in
the ECB's status field, and signals the ECB's semaphore handle (if
nonNULL) and queues the ECB on the queue head (if nonNULL).

Once SPX terminates a connection, the position that the connection ID
number occupied in the connection table becomes available for use by a
new connection. Applications can initiate new connections with
SpxEstablishConnection (NLM).

An application should call SpxAbortConnection (NLM) to cancel
SpxTerminateConnection (NLM).

See Also

SpxAbortConnection (NLM), SpxEstablishConnection (NLM),
SpxListenForConnection (NLM)

SPX for OS/2

For the 32-bit OS/2* interface to SPX, see NWSIPX.

SPX for Windows

Communication Service Group

SPX: Functions 763

SPXAbortConnection (Win)

Aborts an SPX connection
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: SPX

Syntax

#include <nwipxspx.h>

void FAR PASCAL SPXAbortConnection(
 WORD SPXConnectionID);

Parameters

SPXConnectionID

(IN) Indicates the connection ID number assigned by SPX when the
connection was established.

Remarks

SPXAbortConnection (Win) is included to allow a connection partner to
unilaterally dismantle the connection if some catastrophic condition is
detected.

Under normal conditions, SPXTerminateConnection (Win) should be
used to ensure that both connection partners break the connection in a
controlled fashion.

SPXAbortConnection (Win) passes a connection ID to SPX for the
purpose of unilaterally aborting an SPX connection. It then returns
control to the calling application. Meanwhile, SPX aborts the connection.

SPX makes no attempt to inform the connection partner of the decision to
abort the connection. The partner will discover the connection is no
longer valid when it attempts to send a packet on the connection or when
its watchdog checks the connection after the inactivity timer expires.

Any outstanding SPXEstablishConnection (Win),
SPXTerminateConnection (Win), or SPXSendSequencedPacket (Win)
commands on the connection are aborted. The completion codes in the
ECBs of such commands are set to 0xED, indicating an abnormal
connection termination. The ESRs of the affected ECBs are called (unless
ESRAddress is NULL).

If any of the affected ECBs are in a state not allowing them to be canceled
(the network interface card is in the middle of sending the packet, for
example), they are canceled at the earliest possible time. In this case, the
completion code of the ECB is still set to 0xED, and the ESR is called if it

Communication Service Group

SPX: Functions 764

exists.

See Also

SPXEstablishConnection (Win), SPXTerminateConnection (Win)

Communication Service Group

SPX: Functions 765

SPXEstablishConnection (Win)

Establishes a connection with a listening socket
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: SPX

Syntax

#include <nwipxspx.h>

int FAR PASCAL SPXEstablishConnection(
 DWORD IPXTaskID,
 BYTE retryCount,
 BYTE watchDog,
 WORD FAR *SPXConnectionID,
 ECB FAR *eventControlBlock);

Parameters

IPXTaskID

(IN) Indicates the task ID obtained from IPXInitialize (Win) or
SPXInitialize (Win).

retryCount

(IN) Indicates the retry count (0-255).

watchDog

(IN) Indicates the flag controlling watchdog connection supervision
(0=disable, 0!=enable).

SPXConnectionID

(OUT) Points to an unsigned integer to receive the SPX connection ID
number.

eventControlBlock

(IN/OUT) Points to ECB.

Return Values

0x0000 Successful

0xEF Connection Table Full

0xF1 IPS/SPX Not Initialized

0xF7 ECB in use by VIPX

0xFD Malformed Packet

0xFF Socket Not Opened

Communication Service Group

SPX: Functions 766

ECB Return Values

0x0000 Successful

0xED No Answer From Target

0xEF Connection Table Full

0xFC Socket Closed

0xFD Malformed Packet

0xFF Socket Not Opened

Remarks

SPXEstablishConnection (Win) passes a task ID, retry count,
SPXwatchDog flag, and eventControlBlock address to SPX for the purpose
of establishing an SPX connection. It then returns control to the calling
application. Meanwhile, SPX attempts to establish the connection.

Before calling SPXEstablishConnection (Win), the application must
perform the following:

1. Initialize ECB's ESRAddress, socketNumber, fragmentCount, and
fragmentDescriptor. fragmentCount should be initialized to 0x01.
fragmentDescriptor must point to a 42-byte buffer containing the header
of an SPX packet.

2. Initialize the SPX header's destination field. None of these fields can be
set to -1 (broadcast).

3. Create at least two listen ECBs, and pass them to SPX with
SPXListenForSequencedPacket (Win). Once SPX sends the
SPXEstablishConnection (Win) packet mentioned above, SPX will use
one of the listen ECBs to receive a confirmation packet from the
destination socket. The other may be used by WatchDog to maintain the
SPX connection once it is established.

SPX tries to establish the connection in two steps as follows:

1. SPX creates a local connection half and verifies that it is fully functional.
SPXEstablishConnection (Win)returns to the calling procedure at this
point.

2. Meanwhile, SPX sends an Establish Connection packet through the local
connection half to a specified (listening) destination socket in hopes of
establishing a connection. To receive the Establish Connection packet,
the destination socket must pass an ECB to its SPX process with
SPXListenForConnection (Win).

Communication Service Group

SPX: Functions 767

For the first step, SPX requires IPXtaskID, retryCount, watchDog, and
ECBAddress be set to the appropriate values.

IPXTaskID is a value returned from SPXInitialize (Win).

retryCount specifies how many times SPX will resend unacknowledged
packets before concluding the destination node is not functioning
properly. The application can set this field to 0x00, which instructs SPX to
use its own internal retry count. A value of 1-255 (inclusive) indicates
SPX should resend packets the specified number of times.

watchDog monitors an SPX connection, ensuring the connection is
functioning properly when traffic is not passing through the connection.
To enable the watchDog feature, an application should set watchDog to
0xFF, ENABLE_WATCHDOG. A value of 0x00 disables watchDog.

If watchDog determines an SPX connection has failed, watchDog will abort
the connection and post an SPXListenSequencedPacket (Win) ECB with
completionCode SPX_CONNECTION_FAILED (0xED). The connection ID
of the failed connection will be in the first word of ECB's IPXWorkspace.
When ECB's inUseFlag is reset to zero, completionCode will contain 0x00 if
the SPX connection was established.

The socket specified in ECB's socketNumber must be opened prior to
calling SPXEstablishConnection (Win) by calling IPXOpenSocket (Win)
. Sockets used by SPX connections must not be used with IPXSendPacket
(Win) or IPXListenForPacket (Win) for sending or receiving packets
directly. The socket must be dedicated solely for use by SPX. If an SPX
socket is closed, all connections on that socket automatically terminate
and any pending events (sends or listens) are canceled.

Once SPX creates and verifies the local connection half,
SPXEstablishConnection (Win) returns a completion code. SPX also
records this completion code in completionCode of the sending ECB. If
SPXEstablishConnection (Win) returns anything but 0x00
(SUCCESSFUL), the attempt to establish a connection stops at this point.

If SPXEstablishConnection (Win) returns a completion code of 0x00
(SUCCESSFUL), it will also return a connection ID in sourceConnectionID.
Although no connection is established yet with a destination socket, a
connection occupies one entry in the node's SPX Connection Table SPX
then sends an SPXEstablishConnection (Win) packet to the destination
node.

An SPXEstablishConnection (Win) event must not be canceled by
calling IPXCancelEvent (Win). If an application does not want to
establish a connection, SPXAbortConnection (Win) should be called to
prevent it.

A completion code 0xED (SPX_NO_ANSWER_FROM_TARGET)
indicates either a hardware failure has occurred, or the application has
used SPXAbortConnection (Win).

Communication Service Group

SPX: Functions 768

A completion code 0xEF (SPX_CONNECTION_TABLE_FULL) indicates
no further connections may be initiated until an active connection is
terminated. The SPX Connection Table has room for 100 entries.

A completion code of 0xFC (SPX_SOCKET_CLOSED) indicates the
connection socket was closed before the command was completed, and
ECB's ESR was not called.

A completion code of 0xFD (SPX_MALFORMED_PACKET) indicates the
fragment count was not 1 or the buffer size was not 42.

See Also

SPXAbortConnection (Win), SPXTerminateConnection (Win)

Communication Service Group

SPX: Functions 769

SPXGetConnectionStatus (Win)

Returns the status of an SPX connection
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: SPX

Syntax

#include <nwipxspx.h>

int FAR PASCAL SPXGetConnectionStatus(
 DWORD IPXTaskID,
 WORD SPXConnectionID,
 CONNECTION_INFO FAR *connectionInfo);

Parameters

IPXTaskID

(IN) Indicates the task ID obtained from IPXInitialize (Win) or
SPXInitialize (Win).

SPXConnectionID

(IN) Indicates the number assigned by SPX when the connection was
established.

connectionInfo

(OUT) Points to a 44-byte connection information structure.

Return Values

0x0000 Connection OK

0xEE Invalid Connection

0xF1 IPS/SPX Not Initialized

Remarks

SPXGetConnectionStatus (Win) allows an application to check on the
current status of an SPX connection. If the specified connection exists,
SPXGetConnectionStatus (Win) returns the connection ID number and a
buffer of information on the connection. If the specified connection does
not currently exist, the completion code (0xEE) is returned.

CONNECTION_INFO is defined in NXT.H, and contains the following:

typedef struct

Communication Service Group

SPX: Functions 770

{
 BYTE connectionState;
 BYTE connectionFlags;
 WORD sourceConnectionID;/*high-low*/
 WORD destinationConnectionID;/*high-low*/
 WORD sequenceNumber;/*high-low*/
 WORD acknowledgeNumber;/*high-low*/
 WORD allocationNumber;/*high-low*/
 WORD remoteAcknowledgeNumber;/*high-low*/
 WORD remoteAllocationNumber;/*high-low*/
 WORD connectionSocket;
 BYTE immediateAddress[6];
 IPXAddress destination;
 WORD retransmissionCount;/*high-low*/
 WORD estimatedRoundTripDelay;/*high-low*/
 WORD retransmittedPackets;/*high-low*/
 WORD suppressedPackets;/*high-low*/

connectionState indicates the current state of the specified connection as
follows:

He
x

Name Description

0x
01

WAITING SPX is listening on the connection, waiting to
receive an SPX Establish Connection packet. See
SPXListenForConnection (Win).

0x
02

STARTING SPX is attempting to create a full connection
with a remote workstation by sending SPX
Establish Connection packets on its half of the
connection. See SPXEstablishConnection (Win).

0x
03

ESTABLISHE
D

SPX has established a connection with a remote
workstation, and the connection is open for
two-way packet transmission.

0x
04

TERMINATI
NG

The remote SPX has terminated the connection.
However, the local SPX has not yet terminated
its half of the connection. See
SPXTerminateConnection (Win).

sourceConnectionID Indicates the connection ID assigned by the
local client's SPX package.

destinationConnectionI
D

Indicates the connection ID assigned by the
remote client's SPX package. It is valid only if
the connection state is ESTABLISHED or
TERMINATING.

sequenceNumber Indicates the next packet the local SPX will
send to the remote workstation. SPX assigns a

Communication Service Group

SPX: Functions 771

sequence number (0x0000 to 0xFFFF) to each
packet it sends to the remote workstation.
This ensures sequenced transmission at the
local end and sequenced reception at the
remote end. When the sequence number
reaches 0xFFFF, it wraps to 0x0000.
sequenceNumber is not valid if the connection
state is WAITING.

acknowledgeNumber Indicates the sequence number of the next
packet the local SPX expects to receive from
the remote SPX. When the sequence number
reaches 0xFFFF, it wraps to 0x0000.
acknowledgeNumber is not valid if the
connection state is WAITING.

allocationNumber Indicates (in conjunction with
acknowledgeNumber) number of outstanding
packet receive buffers (posted listens)
available for a given SPX connection. It is
used by SPX to implement flow control
between communicating applications.
allocationNumber minus acknowledgeNumber
equals the number of posted listens
outstanding on the connection socket. SPX
will send packets only until the local
sequence number equals allocationNumber of
the remote partner. The allocationNumber
increments from 0xFFFF and wraps to
0x0000. It is not valid if the connection state is
WAITING. This number is based on the
number of Listen ECBs outstanding.

remoteAcknowledgeNum
ber

Indicates the sequence number of the next
packet the remote SPX expects to receive from
the local SPX. When the sequence number
reaches 0xFFFF, it wraps to 0x0000.
remoteAcknowledgeNumber is not valid if the
connection state is WAITING.
The local SPX is allowed to send packets with
sequence numbers up to and including, but
not exceeding, remoteAllocationNumber.
Meanwhile, the remote SPX increments the
remote allocation number as the
remoteworkstation generates listen ECBs. In
this way, the remote SPX regulates the
number of packets that the local SPXsends
and avoids being inundated with packets it is
not ready to receive. When this number
reaches 0xFFFF, it wraps back to 0x0000. The
number is based on the number of ECBs
outstanding.

connectionSocket Indicates the socket number the local SPX is

Communication Service Group

SPX: Functions 772

using to send and receive packets.

immediateAddress Indicates the node address of the bridge (on
the local network) that routes the packets to
and from the remote workstation. If the local
and remote workstations reside on the same
local network, the immediate address is the
node address of the remote workstation. (In
this case, a bridge is unnecessary.)
immediateAddress is not valid if the connection
state is WAITING.

retransmissionCount Indicates the number of times SPX attempts to
retransmit an unacknowledged packet before
it determines the remote SPX has become
inoperable or unreachable.

estimatedRoundTripDela
y

Indicates the amount of time (in 1/18th
second units) SPX should wait for an
acknowledgment to arrive from the remote
SPX partner. SPX includes both dynamic flow
control and dynamic routing. This means the
value of estimatedRoundTripDelay may change
from time to time as SPX adjusts to observed
fluctuations in packet throughput on the
underlying internetwork.
estimatedRountTripDelay is not valid if the
connection state is WAITING.

retransmittedPackets Indicates the number of times SPX had to
retransmit a packet on the connection before
it received an expected acknowledgment.
When it reaches a value of 0xFFFF, it wraps to
0x0000. retransmittedPackets is valid only if the
connection state is ESTABLISHED or
TERMINATING.

suppressedPackets Indicates the number of times SPX received a
data packet on the connection that was not
delivered to the connection client because the
packet was either a duplicate of previously
delivered data or was out-of-bounds for the
current receive window. When it reaches a
value of 0xFFFF, it wraps to 0x0000.
suppressedPackets is valid only if the
connection state is ESTABLISHED or
TERMINATING.

See Also

SPXEstablishConnection (Win)

Communication Service Group

SPX: Functions 773

SPXInitialize (Win)

Checks to see if SPX is installed, and if not, initializes SPX
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: SPX

Syntax

#include <nwipxspx.h>

int FAR PASCAL SPXInitialize(
 DWORD FAR *IPXTaskID,
 WORD maxECBs,
 WORD maxPacketSize,
 BYTE FAR *majorRevisionNumber,
 BYTE FAR *minorRevisionNumber,
 WORD FAR *maxConnections,
 WORD FAR *availableConnections);

Parameters

IPXTaskID

(IN/OUT) Inputs how resources are allocated. Outputs the assigned
task ID.

maxECBs

(IN) Indicates the maximum number of outstanding ECBs that can be
submitted to SPX.

maxPacketSize

(IN) Indicates the maximum size packet that can be sent by the
application. The default value is 576 bytes: 30 bytes for the IPX header,
and 546 bytes for the data portion of the packet.

majorRevisionNumber

(OUT) Points to a byte receiving the SPX major revision number.

minorRevisionNumber

(OUT) Points to a byte receiving the SPX minor revision number.

maxConnections

(OUT) Points to an unsigned integer receiving the maximum number
of SPX connections supported.

availableConnections

(OUT) Points to an unsigned integer receiving the number of available
SPX connections.

Return Values

Communication Service Group

SPX: Functions 774

0x0000 SPX Not Installed

0xF1 IPX/SPX Not Initialized

0xF2 No DOS Memory

0xF3 No Free ECB

0xF4 Lock Failed

0xF5 Over the Maximum Limit

0xF6 IPX/SPX Previously Initialized

0xFF SPX Installed

Remarks

Applications must initialize SPX before calling other SPX functions.

SPXInitialize (Win) determines whether SPX is installed on the node
where the application is running. If SPX is installed, SPXInitialize (Win)
returns the major and minor revision numbers of SPX, the maximum
number of connections supported by SPX, and the number of SPX
connections available.

IPXTaskID

acts both as an input and as an output parameter for the initialization
functions. As input, IPXTaskID specifies how NWIPXSPX.DLL
allocates resources as follows:

0x00000000

Resources allocated directly to the calling application.

0xFFFFFFFE

Resources allocated directly to the calling application; however,
multiple initializations are allowed.

0xFFFFFFFF

Resources allocated in a pool for access by multiple applications.

However, DLLs frequently manage their own
resources,regardless of the number of clients they service.
Forexample, a DLL may manage a pool of ECBs for
multipleapplications wanting to access an SPX server.

As output, IPXTaskID receives the task ID assigned by the
initialization function to this IPX or SPX process. The application
must store this task ID for later use. Most Communication
Services functions require IPXTaskID bereturned by the
initialization function as one of their inputparameters.

Communication Service Group

SPX: Functions 775

For every IPXTaskID assigned by the initialization function, an
application must provide a matching call to IPXSPXDeinit (Win)
. IPXSPXDeinit (Win) releases the resourcesallocated by
NWIPXSPX.DLL for each task ID.

 completionCode

indicates whether SPX is installed on the node where the application is
running (0x00 = not installed; 0xFF = installed).

Early versions of NetWare did not support SPX. Specifically, only the
last shell (ANET3.COM, 2.01-4) of NetWare 2.0a supports the SPX
protocol. All versions of NetWare 2.1 and higher support SPX.

NOTE: In NetWare 2.0a, SPX is supported for workstations only;
not for servers.

majorRevisionNumber

and minorRevisionNumber indicate which SPX revision is installed. For
example, Revision 1.0 returns a 1 in the first field and a 0 in the
second.

maxConnections

Indicates the maximum number of SPX connections this particular
version of SPX supports.

availableConnections

Indicates how many SPX connections are available to the application.

See Also

IPXSPXDeinit (Win)

Communication Service Group

SPX: Functions 776

SPXListenForConnection (Win)

Receives an Establish Connection packet and thereby establishes an SPX
connection with a remote partner
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: SPX

Syntax

#include <nwipxspx.h>

void FAR PASCAL SPXListenForConnection(
 DWORD IPXTaskID,
 BYTE retryCount,
 BYTE watchDog,
 ECB FAR *eventControlBlock);

Parameters

IPXTaskID

(IN) Indicates the task ID obtained from IPXInitialize (Win) or
SPXInitialize (Win).

retryCount

(IN) Indicates the retry count (0-255).

watchDog

(IN) Indicates the flag controlling watchdog connection supervision
(0=disable, 0!=enable).

eventControlBlock

(IN/OUT) Points to ECB.

Return Values

0x0000 Successful

ECB Return Values

0xEF SPX Connection Table Full

0xF7 ECB in use by VIPX

0xFC SPX Command Canceled (with IPXCancelEvent (Win))

0xFF Socket Not Opened

Communication Service Group

SPX: Functions 777

Remarks

SPXListenForConnection (Win) passes a task ID, retryCount,
SPXwatchDog, and eventControlBlock address to SPX for listening and
receiving an SPXEstablishConnection (Win) packet. When the
SPXEstablishConnection (Win) packet is received, a connection is
established with the sending node.

SPXListenForConnection (Win) then returns control to the calling
function. Meanwhile, SPX attempts to receive an
SPXEstablishConnection (Win) packet and establish a connection.

NOTE: ECB's ESRAddress and socketNumber must be initialized. The
other parameters are passed by SPXListenForConnection (Win).

Before SPXListenForConnection (Win) can be used, IPXOpenSocket
(Win) must be called to open the socket to be used for the connection.
When ECB's inUseFlag is reset to zero, completionCode contains 0x00 if the
SPX connection was established.

SPX tries to establish a connection in two steps:

1. The function listens for an SPXEstablishConnection (Win) packet.

2. After an establish connection packet is received it attempts to create a
local connection.

If successful, a confirmation packet is sent to the source node, and both
sides are ready to either send or receive data on the connection.

To complete the second step, SPX requires a task ID, retryCount,
SPXwatchDog, and an eventControlBlock address.

IPXTaskID

Indicates a value returned from SPXInitialize (Win).

retryCount

specifies how many times SPX resends unacknowledged packets
before concluding the partner node is not functioning properly. The
application should set retryCount to 0x00; 0x00 instructs SPX to use its
own internal retry count. A value of 1 through 255 (inclusive)
indicates SPX should resend packets the specified number of times.

SPX watchDog monitors an SPX connection, ensuring the connection is
functioning properly when traffic is not passing through the connection.
If watchDog determines an SPX connection has failed, it signals the
application by recording a value of 0xED (Failed Connection) in
completionCode of any listening ECB. watchDog also records the failed
connection ID number in the same ECB's IPXWorkspace and calls ECB's
ESR.

Communication Service Group

SPX: Functions 778

The application must prepost at least two
SPXListenForSequencedPacket (Win) functions (see
SPXEstablishConnection (Win)). These are used by SPX to actually
receive the establish connection packet and to acknowledge the receive.
The ECB passed to this function does not need packets or fragments
associated with it.

1. SPX sends a confirmation packet back to the node initiating the
connection.

2. SPX records the connection ID number in the first 2 bytes of ECB's
IPXWorkspace.

3. SPX also records the 12-byte address of the partner node in ECB's
driverWorkspace.

4. SPX records a value of 0x00 (ConnectionEstablished) in ECB's
completionCode and a value of 0x00 (AVAILABLE_FOR_USE) in ECB's
inUseFlag.

If the application cancels (with IPXCancelEvent (Win))
SPXListenForConnection (Win) attempt at any time, SPX records a value
of 0xFC (SPX_COMMAND_CANCELLED) in ECB's completionCode.

The following ECBs occupy one entry each in the node's SPX Connection
Table:

ECBs attempting to establish a connection

ECBs participating in a connection

An application can call IPXCancelEvent (Win) to cancel
SPXListenForConnection (Win).

See Also

IPXOpenSocket (Win), SPXEstablishConnection (Win),
SPXListenForSequencedPacket (Win)

Communication Service Group

SPX: Functions 779

SPXListenForSequencedPacket (Win)

Delivers an ECB address and the buffer space it identifies to SPX for the
purpose of receiving a sequenced packet and then returns control to the
calling application
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: SPX

Syntax

#include <nwipxspx.h>

void FAR PASCAL SPXListenForSequencedPacket(
 DWORD IPXTaskID,
 ECB FAR *eventControlBlock);

Parameters

IPXTaskID

(IN) Indicates the task ID obtained from IPXInitialize (Win) or
SPXInitialize (Win).

eventControlBlock

(IN/OUT) Points to ECB.

ECB Return Values

0x0000 Successful

0xED SPX Connection Failed

0xF7 ECB in use by VIPX

0xFC SPX Socket Closed

0xFD SPX Packet Overflow

0xFF SPX Socket Not Opened

Remarks

SPX allows applications to receive sequenced packets in a fully
asynchronous fashion. Therefore, SPXListenForSequencedPacket (Win)
dedicates only the given ECB for use in receiving packets; it does not wait
for an actual packet to be received.

Before calling SPXListenForSequencedPacket (Win), the application
must initialize ECB's ESRAddress, SocketNumber, fragmentCount, and

Communication Service Group

SPX: Functions 780

fragmentDescriptor. The socket specified by socketNumber must be
previously opened by calling IPXOpenSocket (Win).

When ECB's inUseFlag is reset to zero, completionCode contains the codes
listed in the ECB Completion Code table above.

If the completion code is 0xED, SPX watchDog determined a connection
failed and aborted the connection. If the code is 0xFD, a sequenced
packet was received, but the available space defined by the ECB's
fragment descriptor list was not large enough to contain the entire
packet.

Because both system and user packets arrive via the buffers in the listen
ECB pool, SPX cannot function properly unless the SPX client makes
available an adequate supply of listen ECBs. SPX imposes no limits on
the number of ECBs that can be used concurrently for listening on a given
socket. If a listening ECB is canceled with IPXCancelEvent (Win), ECB's
ESRAddress must be reinitialized to an appropriate value before the ECB
is reused.

See Also

SPXListenForConnection (Win), SPXSendSequencedPacket (Win)

Communication Service Group

SPX: Functions 781

SPXSendSequencedPacket (Win)

Passes a connection ID and an ECB address to SPX for the purpose of
sending an SPX packet and then returns control to the calling application
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: SPX

Syntax

#include <nwipxspx.h>

void FAR PASCAL SPXSendSequencedPacket(
 DWORD IPXTaskID,
 WORD SPXConnectionID,
 ECB FAR *eventControlBlock);

Parameters

IPXTaskID

(IN) Indicates the task ID obtained from IPXInitialize (Win) or
SPXInitialize (Win).

SPXConnectionID

(IN) Indicates the number assigned by SPX when the connection was
established.

eventControlBlock

(IN/OUT) Points to ECB.

ECB Return Values

0x0000 Successful

0xEC SPX Terminated Poorly

0xED SPX Connection Terminated

0xEE Invalid Connection

0xF7 ECB in use by VIPX

0xFC Socket Closed

0xFD Malformed Packet

Remarks

Before calling SPXSendSequencedPacket (Win), ECB's ESRAddress,
fragmentCount

Communication Service Group

SPX: Functions 782

buffer referenced by the first fragmentDescriptor must contain at least a
42-byte SPX packet header. The application can also initialize SPX packet
header's endOfMessage in connectionControl and should initialize
dataStreamType. All other fields in the SPX packet header are initialized
by SPX.

Initially, SPX sets ECB's inUseFlag to a non-zero value indicating the ECB
is sending a packet. SPX also queues the ECB/packet combination for
transmission.

When SPX completes its attempt to send the packet, SPX records a
completion code in ECB's completionCode, sets inUse Flag to 0x00
(AVAILABLE_FOR_USE), and calls the ESR defined in ECB's ESRAddress
(if applicable).

0x00 indicates the packet was successfully sent and received in order by
the connection partner. An acknowledgment from the partner was
returned.

0xEC indicates the remote partner terminated the connection without
acknowledging this packet. SPX cannot guarantee the remote partner
received this packet before the connection was destroyed.

0xED indicates the connection ended abnormally. One of the two
partners called SPXAbortConnection (Win) to abort the connection, or
the connection partner failed to acknowledge receipt of this packet. It is
also reported if the network hardware fails or if the packet cannot be
delivered to the specified destination.

0xEE indicates SPXConnectionID does not reference an established
connection.

0xFC indicates the connections socket was closed. In this case,
EventServiceRoutine is not called.

0xFD indicates the fragment count is zero, the first fragment is less than
42 bytes long, or the entire packet is greater than 576 bytes long.

WARNING: An ECB completion error 0xFD causes the connection
to be aborted.

Sockets used by SPX connections cannot be used to send or receive
packets directly using the IPX calls IPXSendPacket (Win) and
IPXListenForPacket (Win). The sockets must be dedicated solely for use
by the SPX protocol.

When an application passes several ECB/packet combinations to SPX,
SPX queues the packets and sends them in the order it receives them.

When an application or some other agent closes an SPX socket, SPX
terminates all connections associated with the socket.

An application can establish a connection between two sockets residing
in the same node. An application should call SPXAbortConnection

Communication Service Group

SPX: Functions 783

(Win) (not IPXCancelEvent (Win)) to cancel an
SPXSendSequencedPacket (Win) event.

See Also

SPXListenForSequencedPacket (Win)

Communication Service Group

SPX: Functions 784

SPXTerminateConnection (Win)

Terminates an SPX connection by passing a connection ID and an ECB
address to SPX and then returns control to the calling application
Server: 2.2, 3.11 and above, 4.0 and above
Platform: Win
Service: SPX

Syntax

#include <nwipxspx.h>

void FAR PASCAL SPXTerminateConnection(
 DWORD IPXTaskID,
 WORD SPXConnectionID,
 ECB FAR *eventControlBlock);

Parameters

IPXTaskID

(IN) Indicates the task ID obtained from IPXInitialize (Win) or
SPXInitialize (Win).

SPXConnectionID

(IN) Indicates the number assigned by SPX when the connection was
established.

eventControlBlock

(IN/OUT) Points to ECB.

ECB Return Values

0x0000 Successful

0xEC SPX Terminated Poorly

0xED SPX Connection Terminated By Remote Partner

0xEE Invalid Connection

0xFD Malformed Packet

Remarks

Before calling SPXTerminateConnection (Win), ECB's ESRAddress,
fragmentCount, and fragmentDescriptor must be initialized. The application
must set fragmentCount to 1. fragmentDescriptor must point to a 42-byte
buffer.

Communication Service Group

SPX: Functions 785

IPXTaskID is a value returned from SPXInitialize (Win).

SPXConnectionID is the local number assigned to the connection upon
creation by SPX. If the connection was created with
SPXEstablishConnection (Win), it is the number returned from that call.
If the connection was created with SPXListenForConnection (Win), it the
number obtained from the first 2 bytes of SPXListenForConnection
(Win) ECB's IPXWorkspace after the connection was made.

SPX records a value of 0xFE (TERMINATE_CONNECTION) in
dataStreamType of the SPX header referenced in the ECB telling the
receiver the connection is terminated. SPX then delivers the packet to the
partner node, returns the appropriate completion code in ECB's
completionCode, and records 0x00 (AVAILABLE_FOR_USE) in ECB's
inUseFlag. Finally, SPX calls the ESR referenced by ECB's ESRAddress (if
applicable).

0xED indicates the remote connection partner failed to acknowledge the
request within an appropriate amount of time. The connection is
terminated on the local side, but SPX cannot guarantee the connection
partner saw the SPXTerminateConnection (Win) request. It is also
returned if the network hardware fails or the packet cannot be delivered
to the specified destination.

0xFD indicates the fragment count was not 1 or the buffer size was not 42.
Due to the asynchronous functionality of SPX, the termination request
may not be complete when SPXTerminateConnection (Win) returns.
Thus, the ECB is not available until inUseFlag is reset to zero.

Once SPX terminates a connection, the position SPXConnectionID
occupied in the connection table becomes available for use by a new
connection. Applications can initiate new connections with
SPXEstablishConnection (Win).

An application should call SPXAbortConnection (Win) (not
IPXCancelEvent (Win)) to cancel SPXTerminateConnection (Win).

See Also

SPXAbortConnection (Win), SPXEstablishConnection (Win),
SPXListenForConnection (Win)

SPX for Windows 95

For the 32-bit Windows 95* interface to SPX, see NWSIPX.

SPX for Windows NT

Communication Service Group

SPX: Functions 786

For the 32-bit Windows NT* interface to SPX, see NWSIPX.

Communication Service Group

SPX: Functions 787

IPX/SPX and TLI IPX: Structures

Communication Service Group

IPX/SPX and TLI IPX: Structures 788

ECB

 Contains the information required by IPX and SPX to send and receive a
packet
Service: IPX/SPX and TLI IPX
Defined In: nxtw.h

Structure

typedef struct ECB {
 void far *linkAddress;
 void (far *ESRAddress) ();
 BYTE inUseFlag;
 BYTE completionCode;
 WORD socketNumber; /* high-low */
 BYTE IPXWorkspace[4]; /* N/A */
 BYTE driverWorkspace[12]; /* N/A */
 BYTE immediateAddress[6]; /* high-low */
 WORD fragmentCount; /* low-high */
 ECBFragment fragmentDescriptor[5];
} ECB;

Fields

inUseFlag

Defines availability for the ECB. If the ECB is set by IPX or SPX to a
non-zero value, then the ECB is unavailable to other applications.

completionCode

Records an appropriate value in the ECB to denote whether the packet
was sent successfully. If anything but a 0x00 is sent, the attempt to
establish a connection ceases.

socketNumber

Identifies the sending or receiving socket with which the ECB is
associated.

IPXWorkspace

Displays the connection ID number.

driverWorkSpace

Reserved for NetWare. Do not modify.

immediateAddress

Reserved for NetWare. Do not modify.

fragmentCount

Reserved for NetWare. Do not modify.

fragmentDescriptor

Communication Service Group

IPX/SPX and TLI IPX: Structures 789

Reserved for NetWare. Do not modify.

Communication Service Group

IPX/SPX and TLI IPX: Structures 790

IPX_ADDR

Contains an IPX address
Service: IPX/SPX and TLI IPX
Defined In: tispxipx.h

Structure

typedef struct ipxaddr_s {
 unsigned char ipxa_net[4];
 unsigned char ipxa_node[6];
 unsigned char ipxa_socket[2];
} IPX_ADDR;

Fields

ipxa_net

Contains a four-character array that holds the network number.

ipxa_node

Contains a six-character array that holds the node number.

ipxa_socket

Contains a two-character array that holds the socket number.

Remarks

This structure is specific to the NetWare implementation of TLI using
IPX, SPX and SPX II. No functions require this structure, but it has been
provided to facilitate IPX addressing. For example, it would be difficult to
deal with the 4-byte network address (ipxa_net) as a long variable because
the Intel* CPU stores the variable in word-swapped order. The character
arrays of IPX_ADDR are provided to facilitate the reordering of these
numbers.

The IPX_ADDR structure can be used with any structures that are
defined with the field

 struct netbuf addr;

which means it can be used with the t_bind, t_call, t_uderr, and
t_unitdata structures. For example, to make the t_bind addr.buf field point
to an IPX_ADDR structure, cast the address of the IPX_ADDR structure to
be a char pointer, as shown in the following examples:

struct t_bind T_bind;
IPX_ADDR ipx_addr;
T_bind.addr.buf=(char *)&ipx_addr;
 OR

Communication Service Group

IPX/SPX and TLI IPX: Structures 791

(IPX_ADDR *)tbind.addr.buf=&ipx_addr;

Communication Service Group

IPX/SPX and TLI IPX: Structures 792

IPX_ECB

Contains information that links IPX to your application (SPX_ECB is
identical)
Service: IPX/SPX and TLI IPX
Defined In: nwipxspx.h

Structure

typedef struct IPX_ECBStruct {
 unsigned long semHandleSave; /* R */
 struct IPX_ECBStruct **queueHead; /* sr */
 struct IPX_ECBStruct *next; /* A */
 struct IPX_ECBStruct *prev; /* A */
 unsigned short status; /* q */
 unsigned long semHandle; /* sr (ignored for IpxSend) */
 unsigned short lProtID; /* R */
 unsigned char protID [6]; /* R */
 unsigned long boardNumber; /* R */
 unsigned char immediateAddress [6];/* s (IpxSend only) */
 unsigned char driverWS [4]; /* R */
 unsigned long ESREBXValue; /* R */
 unsigned short socket; /* sr ignored if socket parm !=0 */
 unsigned short protocolWorkspace; /* R */
 unsigned long dataLen; /* q */
 unsigned long fragCount; /* sr */
 ECBFrag fragList [2]; /* sr */
} IPX_ECB;

Fields

In the structure comments:

R Indicates fields that are reserved.

s Indicates fields the application must set when using the ECB to
send a packet.

r Indicates fields the application must set when using the ECB to
receive a packet.

A Indicates fields that may be used when the ECB is not in use by
IPX/SPX.

q Indicates fields the application may read.

semHandleSave

Used internally; must not be modified.

Communication Service Group

IPX/SPX and TLI IPX: Structures 793

queueHead

Set by the application either to a pointer to an ECB pointer (double
pointer to an ECB) or else to NULL. The queueHead field is set to an
ECB pointer pointer to cause IPX and SPX to queue ECBs for
completed events, using the ECB pointer pointed to by the queueHead
field as the head of the queue. The application can set this field to
NULL if it does not need this feature.

next

Used for internal purposes. IPX (and SPX) maintains this field while
the ECB is in use. When the ECB is not in use, the application can use
this field (if necessary). Most commonly, this field is used by the
application as link fields for keeping the ECB in a free list. This field is
also used by IPX (and SPX) to queue ECBs off of the queue head if the
queueHead field is nonNULL.

prev

Used for internal purposes. IPX (and SPX) maintains this field while
the ECB is in use. When the ECB is not in use, the application can use
this field (if necessary). Most commonly, this field is used by the
application as link fields for keeping the ECB in a free list. This field is
also used by IPX (and SPX) to queue ECBs off of the queue head if the
queueHead field is nonNULL.

status

Indicates the current state of the event (for example, SPX is listening
on a socket) and to indicate whether the event was completed
successfully. If this field is positive, the event has not yet occurred. If
this field is zero, the event completed successfully. If this field is
negative, the event completed with an error. The value of status in this
case indicates the type of error.

semHandle

Set by the application either to a semaphore handle returned by
OpenLocalSemaphore or to NULL. The purpose of the semaphore
handle is to allow the application to block pending the completion of
one or more IPX (SPX) events. Whenever the event (associated with
any of the IPX (SPX) functions that take an ECB as a parameter)
occurs, and the semHandle field is nonNULL, IPX (SPX) calls
SignalLocalSemaphore with the specified semaphore handle. This
unblocks the application if the application was blocked on the
semaphore.

NOTE: The semaphore handle is undefined until the ECB
completes.

IProtID

Reserved for NetWare. Do not modify.

protID

Reserved for NetWare. Do not modify.

boardNumber

Communication Service Group

IPX/SPX and TLI IPX: Structures 794

Reserved for NetWare. Do not modify.

immediateAddress

Holds the address of the node to which the packet is sent or from
which it arrived. This is the address of an internetwork bridge on the
local network if the packet is not sent to or received from a node on the
local network. GetLocalTarget can be used to get the information for
this field. This field needs to be initialized only for IpxSend.

driverWS

Reserved for NetWare. Do not modify.

ESREBXValue

Reserved for NetWare. Do not modify.

socket

Identifies the sending or receiving socket with which the ECB is
associated. This field can be used two ways:

The application sets this field to the desired socket number and passes
zero as the socket number to those functions that take both a socket
number and an ECB as parameters.

The application does not fill this field, but passes the actual socket to
the above-mentioned functions.

protocolWorkspace

Reserved for NetWare. Do not modify.

dataLen

Reserved for NetWare. Do not modify.

fragCount

Indicates the number of buffers from which an outbound packet is
built or into which an inbound packet is dispersed. The number of
buffers (one or more) is given by fragCount. The application provides a
list of fragment descriptors, at the end of the ECB, which contains the
address and size of the buffers.

fragList

The first fragList must describe a buffer large enough to hold at least
the packet header for the service being used. That is, for IPX packets
the first fragList must describe a buffer of at least length 30, and for SPX
the first fragList must describe a buffer of at least length 42. Note that
the IPX_ECB (and SPX_ECB) defines two fragments.

Communication Service Group

IPX/SPX and TLI IPX: Structures 795

IPX_HEADER

Service: IPX/SPX and TLI IPX
Defined In: nwipxspx.h

Structure

typedef struct tagIPX_HEADER
{
 unsigned short checksum; /* hi-lo */
 unsigned short packetLen; /* hi-lo */
 unsigned char transportCtl;
 unsigned char packetType;
 unsigned long destNet; /* hi-lo */
 unsigned char destNode[6];
 unsigned short destSocket; /* hi-lo */
 unsigned long sourceNet; /* hi-lo */
 unsigned char sourceNode[6];
 unsigned short sourceSocket; /* hi-lo */
} IPX_HEADER;

Fields

checksum

Contains a dummy checksum of the packet contents and is always set
by IPX to 0xFFFF.

packetLen

Contains the length of the complete IPX packet (30 to 576 bytes) and is
set by IPX.

transportCtl

Used by NetWare internetwork bridges to monitor the number of
bridges or routers that a packet has crossed. The packets are discarded
by the 16th bridge they encounter. IPX sets this field to zero before
sending the packet.

packetType

Identifies the type of service offered or required by the packet.

Xerox* has defined the following packet types:

0 Unknown Packet Type

1 Routing Information Packet (RIP)

2 Echo Packet

3 Error Packet

Communication Service Group

IPX/SPX and TLI IPX: Structures 796

Novell® has defined the following packet types:

4 Packet Exchange Packet (IPX)

5 Sequenced Packet Protocol Packet (SPX)

16-31 Experimental Protocols

17 NetWare Control Protocol™ (NCP™) Packet

20 NetBIOS Name Packet

IPX users should set packetType to either 0 or 4. SPX sets the packet
type to 5 for packets of that protocol.

destNet

Identifies the network address of the target application. The network
address is a 4-byte number assigned to each physical cabling segment.
This address is determined and assigned by the network
administrator.

destNode

Contains the 6-byte number that identifies the LAN board within the
target network station (or node). A value of 0xFFFFFFFFFFFF is placed
in the node field to indicate a broadcast.

destSocket

Contains the socket address, a 2-byte number that identifies a process
within a node. This is an IPX socket and must be opened using the
IPX open socket function. If the destination socket is not opened
communication will not occur.

sourceNet

Identifies the network address of the source application. The network
address is a 4-byte number assigned to each physical cabling segment.
This address is determined and assigned by the network
administrator.

sourceNode

Contains the 6-byte number that identifies the LAN board within the
source network station (or node). A value of 0xFFFFFFFFFFFF is
placed in the node field to indicate a broadcast.

sourceSocket

Contains the socket address, a 2-byte number that identifies a process
within a node. This is an IPX socket and must be opened using the
IPX open socket function.

Communication Service Group

IPX/SPX and TLI IPX: Structures 797

IPX_OPTS

Used when accessing IPX through TLI
Service: IPX/SPX and TLI IPX
Defined In: ispxipx.h

Structure

typedef struct ipxopt_s
{
 unsigned char ipx_type;
 unsigned char ipx_pad1[3];
 unsigned char ipx_hops;
 unsigned char ipx_pad2[3];
} IPX_OPTS;

Fields

ipx_type

Holds the type field for the IPX header.

ipx_pad1

Contains a three-character array that pads the structure out to a
double-word boundary; it should be set to 0.

ipx_hops

Contains the hop count.

ipx_pad2

Contains athree-character array that pads the structure to a
double-word boundary; it should be set to 0.

Remarks

The address of the IPX_OPT structure can be used as one of the values in
the t_unitdata structure, which is used as a parameter for t_rcvudata,
t_rcvuderr, and t_sndudata. The t_uintdata structure contains a netbuf
structure, named opt, whose buf field can be set to point to the IPX_OPTS
structure.

To make the t_uintdata opt.buf field point to the IPX_OPTS structure, cast
the address of the IPX_OPTS structure to be a char pointer, as shown in
the following examples:

struct t_unitdata T_unitdata;
IPX_OPTS ipx_opts;
T_unitdata.opt.buf=(char *)&ipx_opts;
 OR
(IPX_OPTS *)T_unitdata.opts.buf=&ipx_opts;

Communication Service Group

IPX/SPX and TLI IPX: Structures 798

(IPX_OPTS *)T_unitdata.opts.buf=&ipx_opts;

NOTE: The IPX_OPTS structure is used when /dev/nipx device is
opened with t_open.

Communication Service Group

IPX/SPX and TLI IPX: Structures 799

SPX_ECB

Contains information that links IPX to your application
Service: IPX/SPX and TLI IPX
Defined In: nwipxspx.h

Syntax

#define SPX_ECB struct IPX_ECBStruct

Remarks

See the structure description for IPX_ECB.

Communication Service Group

IPX/SPX and TLI IPX: Structures 800

SPX_HEADER

Contains information about an IPX packet
Service: IPX/SPX and TLI IPX
Defined In: nwipxspx.h

Structure

typedef struct tagSPX_HEADER {
 unsigned short checksum; /* hi-lo */
 unsigned short packetLen; /* hi-lo */
 unsigned char transportCtl;
 unsigned char packetType;
 unsigned long destNet; /* hi-lo */
 unsigned char destNode[6];
 unsigned short destSocket; /* hi-lo */
 unsigned long sourceNet; /* hi-lo */
 unsigned char sourceNode[6];
 unsigned short sourceSocket; /* hi-lo */
 unsigned char connectionCtl;
 unsigned char dataStreamType;
 unsigned short sourceConnectID; /* hi-lo */
 unsigned short destConnectID; /* hi-lo */
 unsigned short sequenceNumber; /* hi-lo */
 unsigned short ackNumber; /* hi-lo */
 unsigned short allocNumber; /* hi-lo */
 SPX_HEADER;

Fields

checksum

Contains a dummy checksum of the packet contents and is always set
by IPX to 0xFFFF.

packetLen

Contains the length of the complete IPX packet (30 to 576 bytes) and is
set by IPX.

transportCtl

Used by NetWare internetwork bridges to monitor the number of
bridges or routers that a packet has crossed. The packets are discarded
by the 16th bridge they encounter. IPX sets this field to zero before
sending the packet.

packetType

Identifies the type of service offered or required by the packet.

Xerox* has defined the following packet types:

Communication Service Group

IPX/SPX and TLI IPX: Structures 801

0 Unknown Packet Type

1 Routing Information Packet (RIP)

2 Echo Packet

3 Error Packet

Novell® has defined the following packet types:

4 Packet Exchange Packet (IPX)

5 Sequenced Packet Protocol Packet (SPX)

16-31 Experimental Protocols

17 NetWare Control Protocol™ (NCP™) Packet

20 NetBIOS Name Packet

IPX users should set packetType to either 0 or 4. SPX sets the packet
type to 5 for packets of that protocol.

destNet

Identifies the network address of the target application. The network
address is a 4-byte number assigned to each physical cabling segment.
This address is determined and assigned by the network
administrator.

destNode

Contains the 6-byte number that identifies the LAN board within the
target network station (or node). A value of 0xFFFFFFFFFFFF is placed
in the node field to indicate a broadcast.

destSocket

Contains the socket address, a 2-byte number that identifies a process
within a node. This is an IPX socket and must be opened using the
IPX open socket function. If the destination socket is not opened
communication will not occur.

sourceNet

Identifies the network address of the source application. The network
address is a 4-byte number assigned to each physical cabling segment.
This address is determined and assigned by the network
administrator.

sourceNode

Contains the 6-byte number that identifies the LAN board within the
source network station (or node). A value of 0xFFFFFFFFFFFF is
placed in the node field to indicate a broadcast.

sourceSocket

Contains the socket address, a 2-byte number that identifies a process

Communication Service Group

IPX/SPX and TLI IPX: Structures 802

within a node. This is an IPX socket and must be opened using the
IPX open socket function.

connectionCtl

Controls the bi-directional flow of data across an SPX connection. The
defined bits are as follows:

The END_OF_MESSAGE bit is the only bit the application sets or
clears.

dataStreamType

Indicates the type of data included in the packet. Values of 0x00
through 0xFD are defined by the client and ignored by SPX. A value of
0xFE indicates an End-Of-Connection packet. When a client makes a
call to terminate an active connection, SPX generates an
End-Of-Connection packet. This packet is then delivered to the
connection partner as the last message on the connection.

A value of 0xFF indicates an End-Of-Connection-Acknowledgment
packet. SPX generates an End-Of-Connection-Acknowledgment
packet automatically. It is marked as a system packet and not
delivered to the partner clients. The values 0xFE and 0xFF are
reserved for use by SPX in connection maintenance and should not be
used by an application.

sourceConnectID

Specifies the connection identification number assigned to the SPX
connection by the source node.

destConnectID

Specifies the connection identification number assigned to the SPX
connection by the destination node.

sequenceNumber

Keeps a count of packets exchanged in one direction on the
connection. Each side of the connection keeps its own count. The
number wraps to 0x0000 after reaching 0xFFFF. Since SPX manages
this field, client processes need not be concerned with it.

ackNumber

Indicates the next packet that an SPX connection expects to receive.

Communication Service Group

IPX/SPX and TLI IPX: Structures 803

The values in this field increment from 0x0000 to 0xFFFF and then
wrap to zero again.

allocNumber

Indicates (in conjunction with the ackNumber) the number of
outstanding packet receive buffers (posted listens) available for a given
SPX connection. It is used by SPX to implement flow control between
communicating applications. The allocNumber minus the ackNumber
equals the number of posted listens outstanding on the connection
socket. SPX sends packets only until the local sequence number equals
the allocNumber of the remote partner. The allocNumber increments
from 0xFFFF and wraps to 0x0000.

Communication Service Group

IPX/SPX and TLI IPX: Structures 804

SPX_OPTMGMT

Contains SPX timeout and retry information
Service: IPX/SPX and TLI IPX
Defined In: tispxipx.h

Structure

typedef struct spx_optmgmt {
 unsigned char spxo_retry_count;
 unsigned char spxo_watchdog_flag;
 unsigned char spxo_min_retry_delay;
 unsigned char spxo_pad2[2];
} SPX_OPTMGMT;

Fields

spxo_retry_count

Contains a retry value between 0 and 255 that specifies how many
times SPX resends unacknowledged packets before concluding that
the destination node is not functioning properly. The application can
set this value to 0, which instructs SPX to use its own internal retry
count. A nonzero value indicates that SPX should resend packets the
specified number of times.

spxo_watchdog_flag

Contains a flag that controls watchdog connection supervision. The
watchdog process monitors an SPX connection, ensuring that the
connection is functioning properly when traffic is not passing through
the connection. To enable the watchdog feature, an application should
set this flag to FFh. Setting this flag to 0 disables the watchdog.

spxo_min_retry_delay

Contains the initial delay in milliseconds that SPX should wait
between retries. SPX adjusts to transmission times to help in
determining if a packet needs to be resent. The longest initial delay is
approximately 65 seconds.

spxo_pad2

Pads the structure to 8 bytes; it should be set to 0.

Remarks

NOTE: SPX_OPTS and SPX_OPTMGMT will be changed in future
releases to support other options.

Communication Service Group

IPX/SPX and TLI IPX: Structures 805

SPX_OPTS

Used for accessing SPX through TLI
Service: IPX/SPX and TLI IPX
Defined In: ispxipx.h

Structure

typedef struct spxopt_s {
 unsigned char spx_connectionID[2];
 unsigned char spx_allocationNumber[2];
 unsigned char spx_pad1[4];
} SPX_OPTS;

Fields

spx_connectionID

Contains the internal connection number that SPX uses to track the
connection.

spx_allocationNumber

Contains the data window that SPX uses.

spx_pad1

Contains a three-character array that pads the structure to a
double-word boundary; it should be set to 0.

Remarks

NOTE: The SPX_OPTS and SPX_OPTMGMT structures are used when
the /dev/nspx device is opened with t_open.

Communication Service Group

IPX/SPX and TLI IPX: Structures 806

SPX_SESSION

Defines an SPX session
Service: IPX/SPX and TLI IPX
Defined In: nwipxspx.h

Structure

typedef struct SPX_ConnStruct {
 unsigned char sStatus;
 unsigned char sFlags;
 unsigned short sSourceConnectID; /* hi-lo */
 unsigned short sDestConnectID; /* hi-lo */
 unsigned short sSequenceNumber; /* hi-lo */
 unsigned short sAckNumber; /* hi-lo */
 unsigned short sAllocNumber; /* hi-lo */
 unsigned short sRemoteAckNumber; /* hi-lo */
 unsigned short sRemoteAllocNumber; /* hi-lo */
 unsigned short sLocalSocket; /* lo-hi */
 unsigned char sImmediateAddrees[6];
 unsigned long sRemoteNet; /* hi-lo */
 unsigned char sRemoteNode[6]; /* hi-lo */
 unsigned short sRemoteSocket; /* hi-lo */
 unsigned char sRetransmitCount;
 unsigned char sRetransmitMax;
 unsigned short sRoundTripTimer; /* lo-hi */
 unsigned short sRetransmittedPackets; /* lo-hi */
 unsigned short sSuppressedPackets; /* lo-hi */

 unsigned short sLastReceiveTime;
 unsigned short sLastSendTime;
 unsigned short sRoundTripMax;
 unsigned short sWatchdogTimeout;
 unsigned long sSessionXmitQHead;
 unsigned long sSessionXmitECBp;
} SPX_SESSION;

Fields

sStatus

ndicates the current state of the connection. Five states are defined:

0x
00

ABORTED The session has been aborted.

0x
01

WAITING SPX is listening on the connection, waiting
to receive an SPX Establish Connection
packet. See SpxListenForConnection

Communication Service Group

IPX/SPX and TLI IPX: Structures 807

(NLM).

0x
02

STARTING SPX is attempting to create a full connection
with a remote workstation by sending SPX
Establish Connection packets on its half of
the connection. See
SPXEstablishConnection (NLM).

0x
03

ESTABLISHE
D

SPX has established a connection with a
remote workstation, and the connection is
open for two-way packet transmission.

0x
04

TERMINATI
NG

The remote SPX has terminated the
connection. However, the local SPX has not
yet terminated its half of the connection. See
SPXTerminateConnection (NLM).

sFlags

sSourceConnectID

sDestConnectID

sSequenceNumber

sAckNumber

Indicates the sequence number of the next packet that the local SPX
expects to receive from the remote SPX. When this sequence number
reaches 0xFFFF, it wraps to 0x0000. This field is not valid if the
connection state is WAITING.

sAllocNumber

Indicates (in conjunction with the sAckNumber) the number of
outstanding packet receive buffers (posted listens) available for a given
SPX connection. It is used by SPX to implement flow control between
communicating applications. The sAllocNumber minus the sAckNumber
equals the number of posted listens outstanding on the connection
socket. SPX sends packets only until the local sequence number equals
the sAllocNumber of the remote partner. The sAllocNumber increments
from 0xFFFF and wraps to 0x0000. This field is not valid if the
connection state is WAITING. This number is based on the number of
Listen ECBs outstanding.

sRemoteAckNumber

Indicates the sequence number of the next packet that the remote SPX
expects to receive from the local SPX. When this sequence number
reaches 0xFFFF, it wraps to 0x0000. This field is not valid if the
connection state is WAITING.

sRemoteAllocNumber

The local SPX is allowed to send packets with sequence numbers up to
and including, but not exceeding, the sRemoteAllocNumber. Meanwhile,
the remote SPX increments the remote allocation number as the remote
workstation generates listen ECBs. In this way, the remote SPX

Communication Service Group

IPX/SPX and TLI IPX: Structures 808

regulates the number of packets that the local SPX sends and avoids
being inundated with packets it is not ready to receive. When this
number reaches 0xFFFF, it wraps back to 0x0000. This parameter is not
valid if the connection state is WAITING. This number is based on the
number of ECBs outstanding.

sLocalSocket

sImmediateAddress

Contains the node address of the bridge (on the local network) that
routes the packets to and from the remote workstation. If the local and
remote workstations reside on the same local network, the immediate
address is the node address of the remote workstation. (In this case, a
bridge is unnecessary.) This field is not valid if the connection state is
WAITING.

sRemoteNet

sRemoteNode

sRemoteSocket

sRetransmitCount

Indicates the number of times that SPX attempts to retransmit an
unacknowledged packet before it determines that the remote SPX has
become inoperable or unreachable.

sRetransmitMax

sRoundTripTimer

Indicates the time (in 1/18ths of a second) that SPX should wait for an
acknowledgment to arrive from the remote SPX partner. SPX includes
both dynamic flow control and dynamic routing. This means the value
of sRoundTripTimer can change from time to time as SPX adjusts to
observed fluctuations in packet throughput on the underlying
internetwork. This field is not valid if the connection state is
WAITING.

sRetransmittedPackets

Indicates the number of times that SPX had to retransmit a packet on
this connection before it received an expected acknowledgment. When
this field reaches a value of 0xFFFF, it wraps to 0x0000. This field is
valid only if the connection state is ESTABLISHED or
TERMINATING.

sSuppressedPackets

Indicates the number of times that SPX received a data packet on the
connection that was not delivered to the connection client because the
packet was either a duplicate of previously delivered data or was
out-of-bounds for the current receive window. When this field reaches
a value of 0xFFFF, it wraps to 0x0000. This field is valid only if the
connection state is ESTABLISHED or TERMINATING.

sLastReceiveTime

sLastSendTime

Communication Service Group

IPX/SPX and TLI IPX: Structures 809

sLastSendTime

sRoundTripMax

sWatchdogTimeout

sSessionXmitQHead

sSessionXmitECBp

Communication Service Group

IPX/SPX and TLI IPX: Structures 810

SPX2_OPTIONS

Contains SPX II option information
Service: IPX/SPX and TLI IPX
Defined In: tispxipx.h

Structure

typedef struct spx2_options {
 unsigned long versionNumber;
 unsigned long spxIIOptionNegotiate;
 unsigned long spxIIRetryCount;
 unsigned long spxIIMinimumRetryDelay;
 unsigned long spxIIMaximumRetryDelta;
 unsigned long spxIIWatchdogTimeout;
 unsigned long spxIIConnectTimeout;
 unsigned long spxIILocalWindowSize;
 unsigned long spxIIRemoteWindowSize;
 unsigned long spxIIConnectionID;
 unsigned long spxIIInboundPacketSize;
 unsigned long spxIIOutboundPacketSize;
 unsigned long spxIISessionFlags;
} SPX2_OPTIONS;

Fields

versionNumber

Contains the version number of the SPX2_OPTIONS structure. This
number is increased each time the structure is enhanced. You must set
this field to OPTIONS_VERSION.

For transparency reasons, an SPX II TLI-based application should use
t_alloc and t_getinfo to allocate and determine the size of the
SPX2_OPTIONS structure, rather than the sizeof operator.

spxIIOptionNegotiate

Specifies whether the application wants to exchange option
information with the remote endpoint and whether to determine the
largest packet size. This field can be set to
SPX_NEGOTIATE_OPTIONS (the default) or to
SPX_NO_NEGOTIATE_OPTIONS.

spxIIRetryCount

Specifies the number of times SPX II retries sending a data packet that
has been involved in a transmission failure before it unilaterally aborts
the connection. To use the current default value for the protocol stack,
set this value to zero.

spxIIMinimumRetryDelay

Communication Service Group

IPX/SPX and TLI IPX: Structures 811

Indicates whether the application wants to override the internal
round-trip time calculation algorithm and wants to specify a minimum
timeout value before SPX II resends a data packet.

Setting this field to zero tells the protocol stack to determine the round
trip time (this is recommended). Setting the field to a nonzero value
specifies a new minimum timeout value for SPX II to use. The time is
specified in milliseconds.

spxIIMaximumRetryDelta

Specifies the amount of time (in milliseconds) to add to the current
round-trip time to determine the maximum retry delay. A value of
zero indicates to the protocol stack to use the current default.

spxIIWatchdogTimeout

Specifies the time (in milliseconds) that the watchdog algorithm allows
to pass on a silent connection before it sends a watchdog query packet
to determine if the other side is still available.

A value of zero indicates the protocol stack to use the current default
value. A nonzero value overrides the default value.

spxIIConnectTimeout

Specifies time limit (in milliseconds) that a session setup packet must
arrive in after a successful connection request has been made. A zero
value specifies an infinite timeout.

spxIILocalWindowSize

Specifies the size (in packets) of the local endpoint receive window. A
zero value indicates to the protocol stack to determine the receive
window size.

spxIIRemoteWindowSize

Specifies the number of packets in the remote endpoint's receive
window. This is an information only field and is valid only after a
connection has been established.

spxIIConnectionID

Specifies the local endpoint connection ID. This is an information only
field and is valid only after a connection has been established.

spxIIInboundPacketSize

Specifies the size (in bytes) of incoming packets. This value may
change if SPX II renegotiates after a router change. If this occurs, there
is no way for the application to receive the new packet size.

This is an information only field and is valid only after a connection
has been established.

spxIIOutboundPacketSize

Specifies the size (in bytes) of outgoing packets. This value may
change if SPX II renegotiates after a router change. If this occurs, there
is no way for the application to receive the new packet size.

Communication Service Group

IPX/SPX and TLI IPX: Structures 812

This is an information only field and is valid only after a connection
has been established.

spxIISessionFlags

Contains a bit field that contains flags that are used to control the
characteristics of the SPX II packets on the wire. These characteristics
can include packet checksums, data signing, or data encryption. The
currently defined values are listed in the following table.

Flag Definition Meaning

SPX_SF_NONE No special characteristics.

SPX_SF_IPX_CHECKSU
M

Use IPX checksum if both ends
support it.

SPX_SF_SPX2_SESSION After the connection was established,
it was a complete SPX II connection.

Remarks

NOTE: The SPX2_OPTIONS structure is used when the /dev/nspx2
device is opened with t_open.

Communication Service Group

IPX/SPX and TLI IPX: Structures 813

Message

Communication Service Group

 814

Message: Guides

Message: Concept Guide

Message: Functions

Communication Overview

Message: Concept Guide

Introduction to Message

Message: Functions

Message Modes

Message Size

Communication Service Group

Message: Guides 815

Message: Concepts

Introduction to Message

Message let your application send broadcast messages to other workstations
attached to a common NetWare server. The server stores the messages in
buffers it maintains for this purpose and alerts each workstation that a
broadcast has arrived. At the workstation, the NetWare workstation
software automatically retrieves the message.

You can also send messages to the NetWare server console. The message is
displayed in a single line on the console screen after the colon (:) prompt.
The NetWare SEND, CASTON, and CASTOFF utilities are examples of how
to apply these functions. (CASTON and CASTOFF are NetWare 2.2 and 3.11
utilities.)

Message Functions

These functions send and receive broadcast messages. They are declared in
nwmsg.h. It is possible only a subset of these functions are supported by a
specific client.

Function Comment

 NWBroadcastToCons
ole

Sends a message to the default NetWare
server's system console.

 NWDisableBroadcasts Informs the server that a client doesn't want
to receive messages from other clients.

 NWEnableBroadcasts Allows a client to receive broadcast messages
after broadcasts have been disabled.

 NWGetBroadcastMes
sage

Returns a message from the specified
NetWare server. (Not supported on Unix.)

 NWSendBroadcastMe
ssage

Sends a message to the specified logical
connections on the specified NetWare server.

 NWSendConsoleBroa
dcast

Sends a console message to the specified
logical connection. The functions requires
operator rights.

NWSetBroadcastMode Sets the message mode for the workstation
on the specified NetWare server.

Communication Service Group

Message: Concepts 816

Message Modes

A workstation has a configurable message mode on the NetWare server to
which it's connected. The message mode enables and disables the reception
of messages, and lets the workstation discriminate between messages from
other users and messages from the server console.

The mode also lets you control the notification feature that causes the
workstation software to retrieve a message automatically. If notification is
disabled, your application must poll the server for current messages. The
following table shows possible values for the message mode. The default
value is 0, enabling all broadcasts.

Table auto. Broadcast Message Modes

Mode Val
ue

Comment

Enable all 0 Receive all broadcasts.

Server only 1 Receive only server broadcasts. Discard user
broadcasts.

Disable all 2 Disable all broadcasts. Discard user broadcasts.
Store server broadcast but don't notify.

Disable
notify

3 Store both user and server broadcasts but don't
notify.

Message Size

All broadcast messages should be NULL-terminated. The message size and
the number of connections to which you can send messages depends on the
version of the server.

For NetWare 3.11b and below, a message can be from 1 to 58 bytes long
including the null terminator and can be sent to between 1 and the
maximum number of possible connections (configurable up to 256).

For NetWare 3.11c and above, the message can be 1 to 254 bytes long
including a null terminator and be sent to as many as 62 connections.

When retrieving a message on networks running NetWare 3.11c and above,
allocate a buffer at least 254 bytes in length.

Communication Service Group

Message: Concepts 817

Message: Functions

Communication Service Group

Message: Functions 818

NWBroadcastToConsole

Sends a message to the default server's system console
Local Servers: blocking
Remote Servers: blocking
NetWare Server: 2.2, 3.11, 3.12, 4.x
Platform: DOS, NLM, OS/2, Windows* 3.1, Windows NT*, Windows*95
Service: Message

Syntax

#include <nwmsg.h>
or
#include <nwcalls.h>

NWCCODE N_API NWBroadcastToConsole (
 NWCONN_HANDLE conn,
 pnstr8 message);

Pascal Syntax

#include <nwmsg.inc>

Function NWBroadcastToConsole
 (conn : NWCONN_HANDLE;
 message : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare® server connection handle.

message

(IN) Points to the NULL-terminated message to be sent.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

Communication Service Group

Message: Functions 819

Remarks

Under NETX, if an invalid connection handle is passed to conn,
NWBroadcastToConsole will return 0x0000. NETX will pick a default
connection handle if the connection handle cannot be resolved.

The message is displayed in a single line on the console screen after the
colon (:) prompt. Messages longer than 58 bytes are truncated without
notifying the broadcasting workstation. New messages overwrite
previous messages at the console.

NCP Calls

0x2222 21 9 Broadcast To Console

Communication Service Group

Message: Functions 820

NWDisableBroadcasts

Informs the server a client does not want to receive messages from other
client
Local Servers: blocking
Remote Servers: blocking
NetWare Server: 2.2, 3.11, 3.12, 4.x
Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95
Service: Message

Syntax

#include <nwmsg.h>
or
#include <nwcalls.h>

NWCCODE N_API NWDisableBroadcasts (
 NWCONN_HANDLE conn);

Pascal Syntax

#include <nwmsg.inc>

Function NWDisableBroadcasts
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x89FF Broadcast Disabled

Remarks

After calling NWDisableBroadcasts, the server does not allow other
clients to log messages for forwarding to this client. If another client

Communication Service Group

Message: Functions 821

clients to log messages for forwarding to this client. If another client
attempts to broadcast to a client with broadcast disabled, 0x89FF (failed)
is returned. NWDisableBroadcasts can be used by any client.

NCP Calls

0x2222 21 2 Disable Broadcasts

See Also

NWEnableBroadcasts

Communication Service Group

Message: Functions 822

NWEnableBroadcasts

Allows a client to enable message reception after broadcast reception has
been disabled by calling NWDisableBroadcasts

Local Servers: blocking
Remote Servers: blocking
NetWare Server: 2.2, 3.11, 3.12, 4.x
Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95
Service: Message

Syntax

#include <nwmsg.h>
or
#include <nwcalls.h>

NWCCODE N_API NWEnableBroadcasts (
 NWCONN_HANDLE conn);

Pascal Syntax

#include <nwmsg.inc>

Function NWEnableBroadcasts
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

Remarks

Messages are enabled by default when the connection is first established.
NWEnableBroadcasts can be called by any client.

Communication Service Group

Message: Functions 823

NCP Calls

0x2222 21 3 Enable Broadcasts

See Also

NWDisableBroadcasts

Communication Service Group

Message: Functions 824

NWGetBroadcastMessage

Returns a message from the specified server
Local Servers: blocking
Remote Servers: blocking
NetWare Server: 2.2, 3.11, 3.12, 4.x
Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95
Service: Message

Syntax

#include <nwmsg.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetBroadcastMessage (
 NWCONN_HANDLE conn,
 pnstr8 message);

Pascal Syntax

#include <nwmsg.inc>

Function NWGetBroadcastMessage
 (conn : NWCONN_HANDLE;
 message : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

message

(OUT) Points to the message buffer where the message will be stored.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x89FD BAD_STATION_NUMBER

Communication Service Group

Message: Functions 825

Remarks

Because some servers support 256-byte messages, the message buffer
passed in should be large enough to contain messages of this size.

NCP Calls

0x2222 21 01 Get Broadcast Message
0x2222 21 11 Get Broadcast Message (new)
0x2222 23 17 Get File Server Information

Communication Service Group

Message: Functions 826

NWGetBroadcastMode (obsolete 6/96)

Returns the receive message mode for the current workstation but is now
obsolete. Call NWCCGetConnInfo instead.
Local Servers: blocking
Remote Servers: blocking
NetWare Server: PNW, 2.2, 3.11, 3.12, 4.x
Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT
Service: Message

Syntax

#include <nwmsg.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetBroadcastMode
 (NWCONN_HANDLE conn,
 pnuint16 mode);

Pascal Syntax

#include <nwmsg.inc>

Function NWGetBroadcastMode
 (conn : NWCONN_HANDLE;
 mode : pnuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

mode

(OUT) Points to the broadcast mode.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

Communication Service Group

Message: Functions 827

Remarks

According to individual settings of broadcast mode, the broadcast mode
can be any one of the following:

Broadca
st Mode

Description

0x0000 Receive all broadcasts (default mode).

0x0001 Receive only server messages. User messages are not stored.

0x0002 Disable all broadcasts. User messages are not stored. Server
messages are stored, but notification is not given to the
workstation; the client can poll for server messages.

0x0003 Both user and server messages are stored, but message
notification is not sent to the workstation. The client can poll
for messages.

NCP Calls

0x2222 23 17 Get File Server Information
0x2222 23 22 Get Station's Logged Info (old)
0x2222 23 28 Get Station's Logged Info
0x2222 104 1 Ping for NDS NCP

Communication Service Group

Message: Functions 828

NWSendBroadcastMessage

Allows a client to send a broadcast message to the specified logical
connections on the specified NetWare server
Local Servers: blocking
Remote Servers: blocking
NetWare Server: 2.2, 3.11, 3.12, 4.x
Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95
Service: Message

Syntax

#include <nwmsg.h>
or
#include <nwcalls.h>

NWCCODE N_API NWSendBroadcastMessage (
 NWCONN_HANDLE conn,
 pnstr8 message,
 nuint16 connCount,
 pnuint16 connList,
 pnuint8 resultList);

Pascal Syntax

#include <nwmsg.inc>

Function NWSendBroadcastMessage
 (conn : NWCONN_HANDLE;
 message : pnstr8;
 connCount : nuint16;
 connList : pnuint16;
 resultList : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

message

(IN) Points to the NULL-terminated message being sent.

connCount

(IN) Specifies the number of connections in the connection list.

connList

(IN) Points to an array containing the connection numbers of all

Communication Service Group

Message: Functions 829

stations scheduled to receive the message.

resultList

(OUT) Points to an array containing result codes for all stations being
sent the broadcast.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x89FB INVALID_PARAMETERS

0x89FC MESSAGE_QUEUE_FULL

0x89FD BAD_STATION_NUMBER

Remarks

NWSendBroadcastMessage can be used by any client. The specified
NetWare server attempts to store the broadcast message in the message
buffer of each target connection. A result code for each target is returned
by NWSendBroadcastMessage in resultList. Valid result codes are listed
below:

Result Values Description

0x0000 Successful. NetWare server stored the message in the
target connection's message buffer.

0x0001 (4.0 only) Illegal station number---station number
(conn) is invalid

0x0002 (4.0 only) Client not logged in---intended recipient of
the message is not currently logged in to the default
server, even though the client may be logged in to the
network.

0x0003 (4.0 only) Client not accepting message---intended
recipient of message not accepting incoming messages

0x0004 (4.0 only) Client already has message---server already
has a message stored for intended recipient and
cannot accept another message until that recipient
clears the message from their screen

0x0150 (4.0 only) No allocation of space for the message on
the server---message cannot be sent

Communication Service Group

Message: Functions 830

These result codes indicate whether the NetWare server has successfully
placed the message in the message buffer of the target connection. The
NetWare server notifies the connection when a message arrives.
However, placing the message in the message buffer and notifying the
connection does not guarantee that the target station received the
message. It is the target's responsibility to retrieve and display the
message, depending on the broadcast mode of the connection.

A broadcast message can have the following sizes:

before 3.11 1-58 bytes
3.11 and later 1-250 bytes

A broadcast can be sent to the following maximum number of configured
connections:

before 3.11 1-200
3.11 and later 1-62

Messages longer than the appropriate buffer size are truncated. The
broadcasting workstation does not receive a message regarding
truncated broadcasts.

NCP Calls

0x2222 21 00 Send Personal Message (3.11a or below)
0x2222 21 10 Send Personal Message (3.11b or above)
0x2222 23 17 Get File Server Information

Communication Service Group

Message: Functions 831

NWSendConsoleBroadcast

Broadcasts a message to the specified logical connections on the specified
NetWare server
Local Servers: blocking
Remote Servers: blocking
NetWare Server: 2.2, 3.11, 3.12, 4.x
Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95
Service: Message

Syntax

#include <nwmsg.h>
or
#include <nwcalls.h>

NWCCODE N_API NWSendConsoleBroadcast (
 NWCONN_HANDLE conn,
 pnstr8 message,
 nuint16 connCount,
 pnuint16 connList);

Pascal Syntax

#include <nwmsg.inc>

Function NWSendConsoleBroadcast
 (conn : NWCONN_HANDLE;
 message : pnstr8;
 connCount : nuint16;
 connList : pnuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

message

(IN) Points to the NULL-terminated message being broadcast.

connCount

(IN) Specifies the number of connections in the connection list.

connList

(IN) Points to an array containing the connection number of all
stations scheduled to receive the message.

Communication Service Group

Message: Functions 832

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FD BAD_STATION_NUMBER

Remarks

The requesting client must have operator rights to call
NWSendConsoleBroadcast.

Messages are not received by workstations that have disabled broadcasts
or workstations that are not logged in. If connCount is set to 0, the
message is sent to all connections.

NCP Calls

0x2222 23 17 Get File Server Information
0x2222 23 209 Send Console Broadcast
0x2222 23 253 Send Console Broadcast

See Also

NWSetBroadcastMode

Communication Service Group

Message: Functions 833

NWSetBroadcastMode

Sets the message mode of the requesting workstation
Local Servers: blocking
Remote Servers: blocking
NetWare Server: 2.2, 3.11, 3.12, 4.x
Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95
Service: Message

Syntax

#include <nwmsg.h>
or
#include <nwcalls.h>

NWCCODE N_API NWSetBroadcastMode (
 NWCONN_HANDLE conn,
 nuint16 mode);

Pascal Syntax

#include <nwmsg.inc>

Function NWSetBroadcastMode
 (conn : NWCONN_HANDLE;
 mode : nuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

mode

(IN) Specifies the broadcast mode to be set.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8836 INVALID_PARAMETER

Communication Service Group

Message: Functions 834

Remarks

NWSetBroadcastMode can be used by any client.

When a broadcast message is sent, the NetWare server attempts to store
the message in the message buffer of each target connection. The result of
this action depends on the broadcast mode of the target station. The
default mode is 0x00, receive all broadcasts. However, broadcast modes
can be set to any one of the following by calling NWSetBroadcastMode:

Broadcast
Mode

Description

0x0000 Receive all broadcasts (default mode).

0x0001 Receive only server broadcasts. User messages are not
stored.

0x0002 Disable all broadcasts. User messages are not stored.
Server messages are stored but notification is not
given to the workstation.

0x0003 Both user and server messages are stored but message
notification is not sent to the workstation. The client
can poll for messages.

NOTE: When using NETX, NWCONN_HANDLE is ignored and
NWBROADCAST_MODE is set for all logged-in connections.

NCP Calls

0x2222 21 02 Disable Broadcasts
0x2222 21 03 Enable Broadcasts

See Also

NWSendConsoleBroadcast

Communication Service Group

Message: Functions 835

NCP Extension

Communication Service Group

 836

NCP Extension: Guides

NCP Extension: Task Guide

NCP Extension: Concept Guide

NCP Extension: Functions

NCP Extension: Structures

Communication Overview

NCP Extension: Task Guide

Client-Server Access

Accessing an NCP Extension from the Client

Providing an NLM Service as an NCP Extension

NCP Extension Client: Example

NCP Extension Server: Example

Registering, Processing, and Deregistering

Registering Multiple NCP Extensions

Allocating Reply Buffers

Processing an NCP Extension

Deregistering Before Unloading

Listing Registered NCP Extensions: Example

NCP Extension: Concept Guide

Introduction to NCP Extension

NCP Extension Functions

NCP Extension Pieces

NCP Extension Context

NCP Extension ID

Communication Service Group

NCP Extension: Guides 837

NCP Extension Identification

NCP Extension Name

NCP Extension Security

NCP Extension Server Components

NCP Extension Views

Client View

Provider View

Communication Service Group

NCP Extension: Guides 838

NCP Extension: Tasks

Accessing an NCP Extension from the Client

The client takes the following steps when accessing an NCP Extension:

1. Establish a connection with the server that has the NCP Extension
registered.

 char serverUserCombo[96];
printf("\nEnter login [fileserver/]username to access echo server:");
scanf("%s", serverUserCombo);
LoginToFileServer(serverUserCombo, 1, "");

NCP Extension works through existing connections. This connection can
be an attachment as well as a logged-in connection.

Some of the functions that can be used to establish connections are:

AttachByAddress

AttachToFileServer

LoginToFileServer

2. Query to see if the desired NCP Extension has been registered.

 struct queryDataStruct {
 LONG CharsEchoed;
 LONG unused[7];
 } queryData;

 LONG NCPExtID;
 NWGetNCPExtensionInfo("ECHO SERVER", &NCPExtID, NULL, NULL, NULL,
 &queryData);
 /* you should check the return value to see if the service exists. */
 printf("ECHO SERVER reports %ld characters echoed so far.\nKeystrokes"
 "will be echoed on the ECHO SERVER's screen, and echoed locally\n"
 "after they are returned from the ECHO SERVER\n(Enter ctrl-z to"
 "quit)\n",queryData.CharsEchoed);
 ...
}

Before you can use the NCP Extension, it must be registered. To see if
the extension has been registered, call NWGetNCPExtensionInfo,
passing in the name of the NCP Extension you are looking for, such as
ECHO SERVER. This function returns SUCCESSFUL if the NCP

Communication Service Group

NCP Extension: Tasks 839

Extension is registered and gives you an ID to use when accessing the
NCP Extension. This ID is valid until the NCP Extension is deregistered.
If no extension within a given ID is found then
ERR_NO_ITEMS_FOUND will be returned. It may not be necessary to
query in this fashion at all if a well known ID is being used.

The example above not only checks to see if the NCP Extension is
registered, but it also uses the queryData pointer to receive information
about how many characters the ECHO SERVER has echoed back to
clients.

3. Access the NCP Extension.

main()
{
 LONG NCPExtID;
 char chr, rtnChr;
 LONG rtnSize;

 struct queryDataStruct {
 LONG CharsEchoed;
 LONG unused[7];
 } queryData;

 ...
 /* A connection would be established before making the following call. */
 NWGetNCPExtensionInfo("ECHO SERVER", &NCPExtID, NULL, NULL, NULL,
 &queryData);
 ...
 rtnSize = 1;
 while((chr = getch()) != CTRL_Z) /* checking for ctrl-z to exit */
 {
 NWSendNCPExtensionRequest(NCPExtID, &chr, sizeof(chr), &rtnChr,
 &rtnSize);
 putchar(rtnChr);
 }
}

Your client can access an NCP Extension by first setting its thread
group's current connection to the server with the NCP Extension, and
then calling the NWSendNCPExtensionRequest, with the NCP
Extension ID as one of the parameters. The example sends a request
buffer with one character to the NCP Extension and receives a character
in its reply buffer.

Allocating Reply Buffers

Reply buffers are allocated in the following ways:

When a reply buffer manager is not used the NetWare API creates a

Communication Service Group

NCP Extension: Tasks 840

single reply buffer and passes its address to the NCP Extension handler.

The NCP Extension handler allocates a single reply buffer and returns a
pointer to this buffer.

The NCP Extension handler allocates multiple reply buffers and returns a
pointer to a NCP extension message fragment structure that has pointers
to the reply buffers.

NetWare API Allocation of a Single Reply Buffer: If your NCP Extension
does not use a reply buffer manager, the NetWare API allocates a reply
buffer that is the size specified by the client. The NetWare API then passes a
pointer to the allocated buffer as a parameter into your NCP Extension
handler. Your NCP Extension handler places its reply into the buffer, and
the NetWare API sends the data in the buffer to the client.

NCP Extension Handler Allocation of a Single Reply Buffer: If your NCP
Extension uses a reply buffer manager, the NetWare API does not allocate a
reply buffer. In this case, it is the responsibility of the NCP Extension
handler to provide the buffer. The NCP Extension handler places its data in
the buffer it has allocated and then returns a pointer to the buffer. The
NetWare API then sends the data in that buffer to the client.

NCP Extension Handler Allocation of Multiple Reply Buffers: If you
wish to reply with data from multiple buffers, you may do so using a reply
buffer manager.. In this case, the NCP Extension handler sets its replyData
parameter to point to a structure containing pointers to multiple fragments.
The NCP Extension handler also sets its replyDataLen parameter to
REPLY_BUFFER_IS_FRAGGED. The NetWare API then sends the
information from the multiple buffers.

The structure that you use to point to the fragmented data must be similar to
the NCPExtensionMessageFrag structure that is documented in the
reference for NWSendNCPExtensionFraggedRequest. The difference is
that the structure your NCP Extension handler returns can have more than
four elements in its fragList. (The client is limited to four fragments, but there
is no limit to the number of fragments that the NCP Extension handler can
return.)

Deregistering Before Unloading

Before an NLM unloads, it must deregister all NCP Extensions that it has
registered. Failure to deregister before unloading may cause the server to
abend.

When an NCP Extension is deregistered, all new requests return with
ERR_NO_ITEMS_FOUND, and existing requests may or may not be
completed. Those that don't complete also return with the value of
ERR_NO_ITEMS_FOUND.

If you need to be assured that all of your current requests are completed,

Communication Service Group

NCP Extension: Tasks 841

you can set a counter telling how many requests are outstanding.
Outstanding requests are requests being processed by the exstension
handler or the reply buffer manager. You decrement the counter when a
request has completed. Before deregistering the NCP Extension, you return
a failure return code immediately for all new requests and continue
servicing the current requests. When the counter is set to zero, you call
NWDeRegisterNCPExtension, then continue letting your NLM unload.

See Listing Registered NCP Extensions: Example.

Processing an NCP Extension

When you register an NCP Extension with NWRegisterNCPExtension,
three of the parameters are functions that may be called as part of the
service. These parameters are NCPExtensionHandler, ConnectionEventHandler,
and ReplyBufferManager. When the client calls the NCP Extension, the order
of processing is in the following manner.

1. The client sends an NCP Extension request.

If the client sends an NCP Extension request with
NWSendNCPExtensionRequest the clients request must be contained
in one buffer. If the client sends a request with
NWSendNCPExtensionFraggedRequest, the client's request can be
placed in one buffer or in multiple buffers depending on the client's
architecture. Either way, the data is sent across the wire as a stream of
bytes.

2. The NetWare API creates the needed buffer(s) on the server that is
providing the NCP Extension.

If a reply buffer manager has not been specified, the NetWare API
creates two buffers on the server; the size of these buffers are the size of
the client's request and reply buffers respectively.

If a buffer manager has been specified, the NetWare API creates only
one buffer the size of the client's request buffer. The creation of the
reply buffer is the responsibility of the function registered as
NCPExtensionHandler.

If the request buffer is large, it is be sent in fragments to the server. The
server reassembles the fragments, making the fragmentation
transparent to your program.

3. The NetWare API calls the NCPExtensionHandler function.

This workhorse function interprets the data in the request buffer and
processes the request.

If a reply buffer manager is not being used, this function places its reply
data in the buffer that the NetWare API created. If a reply buffer
manager is being used, this function returns a pointer to a buffer where

Communication Service Group

NCP Extension: Tasks 842

it has stored the reply data.

4. The NetWare API sends the reply information to the client.

5. If the reply data is large, the NetWare API sends it across the wire in
fragments. The client's NWSendNCPExtensionRequest or
NWSendNCPExtensionFraggedRequest function reassembles the
packet, making the fragmentation transparent to the user.

NOTE: The data in the reply buffer is sent to the client only if the
NCPExtensionHandler function returns SUCCESSFUL.

6. If a buffer manager was specified, the NetWare API calls the
BufferManager.

The buffer manager is called after that reply data has been sent to the
client.

In some ways, the reply buffer manager can be thought of as a second
part of the NCP Extension handler. The reply buffer manager can free
buffers and reset counters and semaphores that the NCP Extension
handler has set. For example, if the NCP Extension handler has set a
semaphore for a buffer, the buffer manager can signal or free the
semaphore.

7. The NetWare API frees the buffers it has created.

When the NCP Extension request is completed, the NetWare API frees
the buffers it has allocated for the request and reply data. When new
requests come in, the NetWare API allocates new buffers.

NOTE: The ConnectionEventHandler is currently only called when a
connection is freed, killed, logged out, or restarted.

Providing an NLM Service as an NCP Extension

You must take the following steps to provide your NLM service as an NCP
Extension.

1. Create your NCP Extension handler, connection event handler, and
reply buffer manager functions, as well as a queryData update
routine as needed (remember all the routines are optional).

BYTE EchoServer(NCPExtensionClient *client, BYTE *requestData,
 LONG requestDataLen, BYTE *replyData, LONG *replyDataLen)
{
 int savedThreadGroupID;
 savedThreadGroupID = GetThreadGroupID();
 SetThreadGroupID(myThreadGroupID);

 /* echo character */

Communication Service Group

NCP Extension: Tasks 843

 putchar(*(char *)requestData);
 *replyDataLen = 1;

 /* return echoed character */
 *replyData = *requestData;
 queryData->CharsEchoed++;
 SetThreadGroupID(savedThreadGroupID);
 return 0;
}
void EchoServerConnEventHandler(LONG connection, LONG eventType)
{
 ConsolePrintf("\nECHO SERVER notified of connection %d
 logged out or returned\n", connection);
}
/* A buffer manager is not used in this example. */

In the example code above, EchoServer is the function that serves as the
NCP Extension handler, and EchoServerConnDownHandler is called
when certain connection events occurs. This example does not use a
buffer manager.

You do not need to supply all of the routines. This example has a NCP
Extension handler, a connection event handler, and a queryData update
routine, but it does not use a reply buffer manager.

2. If needed, store the thread group ID so that it can be used for
establishing CLIB context within your registered functions.

int myThreadGroupID;
main()
{
 myThreadGroupID = GetThreadGroupID();
 SetThreadContextSpecifier(GetThreadID(), NO_CONTEXT);
 ...
}

The functions registered for NCP Extension run as callbacks which run
as OS threads. If these threads are going to call the NetWare API
functions, you should manually give them CLIB context.

For the NetWare 4.x OS, callback threads can be automatically given
thread group context when they are registered. The context they are
given is determined by the value of the registering thread's context
specifier when the callbacks are registered. The context specifier can be
set to give callbacks the thread group context of the calling thread, the
thread group context of another thread group, or no context at all. When
registering your callbacks for NCP Extension, it is recommended that
you call SetThreadContextSpecifier with NO_CONTEXT as the
contextSpecifier parameter so that the callbacks are not be automatically
given context when they are registered. Then within your handler you
would call getThreadGroupID() with the appropriate thread group ID.
This is recommended for performance and compatability reasons.

Communication Service Group

NCP Extension: Tasks 844

For the NetWare 3.11 OS, threads do not have a context specifier, so you
must manually set the context within each callback handler.

3. Register your NLM service as an NCP Extension.

struct queryDataStruct{
 LONG CharsEchoed;
 LONG unused[7];
} *queryData;
void main(void)
{
 ...
 NWRegisterNCPExtension("ECHO SERVER", EchoServer,\
 EchoServerConnDownHandler,NULL, 1, 0, 0, &queryData);
 queryData->CharsEchoed = 0;
 printf("Press any key to unload echo server.\n");
 getch();
 ...
}

An NLM can provide a service through NCP Extension by registering
its service with the OS in one of the following ways:

Calling NWRegisterNCPExtension to register the NCP Extension by
using the name of the NCP Extension. This method returns a
dynamic ID that is valid until the service providing NLM is
unloaded.

Calling NWRegisterNCPExtensionByID to register the NCP
Extension using a well known ID that always associated with the
NLM applications service.

After an NCP Extension has been registered, clients can access the NCP
Extension. The Extension remains valid until the service-providing
NLM deregisters the NCP Extension.

In this example, the NLM's service is registered with the server by
calling NWRegisterNCPExtension.

The example above registers an extension handler with the name of
"ECHO SERVER." EchoServer is the NCPExtensionHandler,
EchoServerConnEventHandler is the ConnectionEventHandler, and
NULL is passed in for ReplyBufferManager, meaning a reply buffer
manager is not used. The queryData pointer becomes the handle to the
NCP Extension.

4. Provide the service when your NCP Extension is accessed.

When the client requests service from your NCP Extension, the
NetWare API first calls the function you registered in Step 3 as
NCPExtensionHandler. This function is the workhorse that processes the
request and fills a reply buffer that the NetWare API sends back to the
client. After the buffer has been sent to the client, the NetWare API calls
the function registered with ReplyBufferManager, if you have registered

Communication Service Group

NCP Extension: Tasks 845

one. Remember if programming an NLM you must establish CLIB
context as needed within all handlers.

The ConnectionEventHandler is called whenever a connection event
occurs. Currently, notification occurs when connections are freed, killed,
logged out, or restarted. This information is helpful for NCP Extensions
that need to know when connection events occur. (These event types are
discussed in Connection Status.)

5. Deregister the NCP Extension.

struct queryDataStruct{
 LONG CharsEchoed;
 LONG unused[7];
} *queryData;

main()
{
 ...
 NWRegisterNCPExtension("ECHO SERVER", EchoServer,\
 EchoServerConnEventHandler,NULL, 1, 0, 0, &queryData);
 ...
 NWDeRegisterNCPExtension(queryData);
}

In most cases, you will choose to have your NLM provide its services as
long as it is loaded. Before your NLM unloads, it must call
NWDeRegisterNCPExtension to remove its NCP Extension from the
list of NCP Extensions. If a NLM has more than one NCP Extension
registered, it must call NWDeRegisterNCPExtension for each extension
that it has registered.

NOTE: You cannot guarantee that outstanding NCP Extension
requests complete successfully after NWDeRegisterNCPExtension
is called.

If a client makes a call to an NCP Extension after the Extension has been
deregistered, the client's call fails, returning ERR_NO_ITEMS_FOUND.

Registering Multiple NCP Extensions

There might be times when your service-providing NLM offers more than
one service. If your NLM is a database, you may have the following
services:

Open the database

Add a record

Delete a record

Communication Service Group

NCP Extension: Tasks 846

Search for a record

Close the database

In the above case, you would have to make a decision: do you register five
NCP Extensions to handle the requests, or do you register one NCP
Extension that decodes a subfunction field within the request messages? If
you choose to register five NCP Extensions, you must create five names for
them. If you choose to use one NCP Extension, you only need to create one
name (most NCPs operate this way).

If you choose to use a single NCP extension, your code might look like the
following:

Registering a Single NCP Extension to Provide Multiple Services

typedef MyStruct MyStruct;
struct requestDataStruct{
 int operation;
 char data[1000];
}MyStruct;
BYTE DataBaseControl(NCPExtensionClient *client,MyStruct *requestData,
 LONG requestDataLen, BYTE replyData, LONG *replyDataLen)
{
 switch(requestData->operation)
 {
 case OPEN_DATABASE:
 OpenDatabase(requestData->data);
 break;
 case ADD_RECORD:
 AddRecord(requestData->data);
 break;
 case DELETE_RECORD:
 DELETE_RECORD(requestData->data);
 break;
 case SEARCH_FOR_RECORD:
 SearchForRecord(requestData->data);
 break;
 case CLOSE_DATABASE:
 CloseDatabase(requestData->data);
 }
}

Related Topics:

See Listing Registered NCP Extensions: Example.

Communication Service Group

NCP Extension: Tasks 847

NCP Extension: Concepts

Client-Server Applications

NCP Extension is an excellent use for client-server applications, since they
allow the service-providing NLM, which is close to the resource, to do the
work for the client. For example, with a database, the client could send a
request to the NCP Extension to search the database for a certain record. The
function registered as the NCP Extension handler would interpret the
request, process the search, and return the related information to the client

Related Topics:

NCP Extension Client: Example

NCP Extension Server: Example

Connection Status

Your connectionEventHandler can keep track of when connections are freed,
killed, logged out, or restarted. If keeping track of connection status is not
important to you, you can pass NULL for the ConnectionEventHandler when
you register the NCP Extension.

In some cases, this information is important; in other cases, it is not. A
service that has a limit on the number of users would be interested in
knowing when a connection was terminated, so it could allow another user
to have access to the service. A service that allows unlimited access may not
be concerned with who is using it.

CAUTION: If you are using a reply buffer manager, you should use
a connection event handler. This is because the reply buffer manager
is never called if the current client's connection goes down while the
reply buffer is being sent to the client. Instead of calling the reply
buffer manager, the OS eventually calls the connection event handler
for that connection. It is then the responsibility of the connection
event handler to recognize that the client has gone away and to free
its resources accordingly.

Your connection event handler is called when a connection is freed, killed,
logged out, or restarted. For the NetWare 3.12 OS and above, this
information in received in the eventType parameter. This parameter may be
tested for the following values:

CONNECTION_BEING_FREED---This is returned when the client calls a

Communication Service Group

NCP Extension: Concepts 848

CONNECTION_BEING_FREED---This is returned when the client calls a
function to return its connection, or an NLM is unloaded without
returning its connection, or an attempt to create a connection fails.

CONNECTION_BEING_KILLED---This means that someone has asked
to kill the connection either explicitly or via a call to bring down the
server.

CONNECTION_BEING_LOGGED_OUT---The client has made a call to
log out.

CONNECTION_BEING_RESTARTED---This is returned when the client
is making a call to create a connection when it has not already freed the
connection. This can happen when the client station locks up and is
rebooted. When the client tries to log in to the server, the server sees that
the client is trying to allocate a connection when it already has a
connection. The server issues a notice of
CONNECTION_BEING_RESTARTED, then a notice for
CONNECTION_BEING_LOGGED_OUT. If the logout fails, the server
issues a CONNECTION_BEING_FREED notice.

NOTE: The eventType parameter is not used for the NetWare 3.11 OS
and previous versions. The prototype for the ConnectionEventHandler
does not include this parameter. Do not attempt to interpret the
eventType value if running on those versions of the OS.

Data Transfer

The data that is used by the client and the server is stored in buffers as it
moves through the process. For example, the client can store its information
in one location or in up to four locations. The data stored in multiple
locations is known as fragmented data.

If the client wants to send data that is stored in one buffer, it sends the
request by calling NWSendNCPExtensionRequest. If the client wants to
send fragmented data, it sends the request by calling
NWSendNCPExtensionFraggedRequest.

NWSendNCPExtensionFraggedRequest gathers the data from the multiple
locations and sends it as a stream of bytes to the server, just as if the data
had come from one location.

Once the server has received all the data, the NetWare API calls the NCP
Extension handler, giving the handler the address of the request buffer
where the client's request is stored. The client's request is stored in one
buffer, even if the client's request has come from multiple locations on the
client.

After the NCP Extension handler has serviced the request, it can return the
reply from one buffer or from multiple buffers (fragmented data as with the
client). In either case, the reply is sent as a stream of bytes to the client.

Communication Service Group

NCP Extension: Concepts 849

When the reply returns to the client, the client's code is still within the
NWSendNCPExtensionRequest or within the
NWSendNCPExtensionFraggedRequest function. These functions place
the data in the buffer(s) specified as parameters to the functions.
NWSendNCPExtensionRequest places the reply in one buffer.
NWSendNCPExtensionFragged Request can place the reply in one buffer,
or it can separate the reply, placing it in multiple buffers.

Introduction to NCP Extension

NCP Extension is a client-server paradigm, where the following events
occur:

The client sends an NCP request to the server.

The NCP Extension on the server processes the request.

The server sends the results back to the client.

With NCP Extension, the client can be either a workstation application or an
NLM acting as a client. The server is an NLM running on a NetWare server.

The fundamental NetWare® services are provided by a set of functions
implemented by the NetWare Core Protocol™ (NCP™) software. Each
routine is referred to as an NCP. Many of the NLM™ C Interface functions
call the NCP routines.

The NetWare API allows you to register the services of an NLM as an NCP
Extension, allowing you to extend the services provided by the NetWare OS
while maintaining the advantages associated with NCPs. The main
advantages of NCP Extension follow:

Easy to use.

Use an existing connection with a server (eliminating the need to
establish a separate communications session with the server).

Allow use of arbitrary message sizes

There are two sides to NLM Extensions:

The service-providing side runs as an NLM on a server and registers its
service as an NCP Extension. The NLM must be loaded on each server
that provides the NCP Extension. An NLM that is loaded on one server
cannot register an NCP Extension on a remote server.

The client side uses the service of the NLM by calling the NCP Extension.
The client can be an NLM acting as a client, or it can be an application
running on a workstation.

Communication Service Group

NCP Extension: Concepts 850

IPX/SPX Alternative

While NCP Extension does not replace every need for IPX and SPX, there
are some cases where NCP Extension can simplify the communication
between the client and the server. The advantage of an NCP Extension is it
uses the existing connection of the client, freeing you from needing to set up
communication sockets. You can use NCP Extension in many of the cases
where you are currently using IPX or SPX.

The disadvantage is that NCP Extension takes a connection. If your
application isn't already establishing a NetWare connection, and you don't
want to establish one, you may choose to use IPX and SPX instead.

Another disadvantage to NCP Extension is that communication must
always be initiated by the client. With IPX and SPX the client and/or the
server can initiate communication.

NCP Extension Context

The NCPExtensionHandler, ConnectionEventHandler, and ReplyBufferManager
functions that you provide as parameters to NWRegisterNCPExtension are
registered as callbacks. These callbacks run as OS threads and are not able to
call most of the NetWare API functions, unless they are given CLIB context.
If context is not given to these callbacks and they call functions that need
context, the server abends.

With the NetWare 4.x OS, threads have been given a context specifier that
determines what CLIB context is given to the callbacks they register. You
can determine the existing setting of the registering thread's context
specifier by calling GetThreadContextSpecifier. Call
SetThreadContextSpecifier to set the registering thread's context specifier
to one of the following options:

NO_CONTEXT---Callbacks registered by threads with this option set are
not given CLIB context. The advantage here is that you avoid the
overhead needed for setting up CLIB context. The disadvantage is that
without the context, the callback is not able to use NetWare API functions
that require thread group level context.

USE_CURRENT_CONTEXT---Callbacks registered with a thread that has
its context specifier set to USE_CURRENT_CONTEXT have the thread
group context of the registering thread. This is the default setting for
threads that are started with BeginThread, BeginThreadGroup, or
ScheduleWorkToDo.

A valid thread group ID---This is to be used when you want the callbacks
to have a different thread group context than the thread that schedules
them.

Although CLIB context can be given to these callbacks automatically (with

Communication Service Group

NCP Extension: Concepts 851

the NetWare 4.x OS) by setting the registering thread's context specifier to
USE_CURRENT_CONTEXT, your NCP Extension processes faster if you set
the context specifier to NO_CONTEXT and then manually establish the
context inside your callback by calling SetThreadGroupID, and passing in
the ID of a valid thread group. (Note: This behavior is peculiar to the NCP
Extension-handling code, and does not apply to callbacks in general.)

NLM applications that run on the NetWare 3.11 OS must manually set the
thread-group syntax within the callbacks, by calling SetThreadGroupID
and passing in a valid thread group ID.

For more information on using CLIB context, see Context Problems with OS
Threads.

NCP Extension Functions

Table auto. NLM Service Provider Functions

Function Task

NWDeRegisterNCPExtensi
on

Remove an NCP Extension from the OS.

NWRegisterNCPExtension Using a specific name, register an NCP
Extension with the OS

NWRegisterNCPExtension
ByID

Using a specific ID and name, register
an NCP Extension with the OS.

Table auto. NLM Client Functions

Function Task

NWGetNCPExtensionInfo Return information about the
NCP Extension associated with a
specific name.

NWGetNCPExtensionInfoByID Return information about the
NCP Extension associated with a
specific ID.

NWScanNCPExtensions List all registered NCP Extensions.

NWSendNCPExtensionRequest Send a request to an NCP
Extension.Have this function send
the data from one location and
place the reply in another.

NWSendNCPExtensionFraggedR
equest

Send a request to an NCP
Extension.Have this function
gather the data from multiple
addresses and place the reply in
more than one address.

Communication Service Group

NCP Extension: Concepts 852

NCP Extension Name

Every NCP Extension must have an identifying name. The following rules
apply for naming an NCP Extension:

Case-sensitive.

Any text character string up to 32 bytes long, not counting the NULL
terminator.

Unique. It should be cleared through Developer Support to guarantee
uniqueness.

NOTE: Problems can occur if two service providing NLM applications
use the same name for each NCP Extension. The clients accessing the
extensions by calling NWGetNCPExtensionInfo and
NWScanNCPExtensions would not know if the extension they see
registered is the one they want. To avoid duplicate names, you should
clear your NCP Extension name through Developer Support.

NCP Extension ID

An ID is also used to identify an NCP Extension. The following rules apply
to an NCP Extension ID.

They are unique.

They are dynamically assigned by the OS when an NLM registers an
NCP Extension with NWRegisterNCPExtension. These dynamic ID's are
determined by the OS on a first-come, first-served basis, and they can be
different each time an NCP Extension is registered.

If an NCP Extension that is using dynamic IDs is deregistered and then
registered again, it has a different ID. NCP Extension IDs increase in a
monotonic manner. For example, if IDs 1 through 5 are used and the
NCP Extension with an ID of 3 is deregistered and then reregistered, it
will have an ID greater than 5. The ID 3 is not used again until the server
is brought down and restarted.

They can be "well known" IDs that NLM applications use to identify an
NCP Extension when they register the Extensions with
NWRegisterNCPExtensionByID. These IDs are the same each time an
NCP Extension is registered, so they can be used to identify a specific
NCP Extension.

NOTE: Well known IDs are assigned by Developer Support to
guarantee uniqueness and that the IDs are in a valid range.

Communication Service Group

NCP Extension: Concepts 853

Dynamically assigned IDs are not assigned by Developer Support since
these IDs are not attached to a specific NCP Extension.

NCP Extension Identification

After an NCP Extension is registered with the OS, it is available to service
requests from clients. Before using an NCP Extension, the clients must
verify that an NCP Extension is active for the service they want to use. An
NCP Extension is identified by name or by ID.

NCP Extension Security

You must make sure that your NCP Extension does not violate the
security of the network. Your service-providing NLM may have supervisor
access to the server it is running on. If your NCP Extension handler provides
a service that is sensitive to NetWare security issues (accesses requires
NetWare security controls), it should take over the client's connection and
make its requests using the client's connection. This helps ensure that the
request is processed with the client's rights.

The following code fragment shows how to take over a client's connection:

// The current connection ID is assumed to be set to the local server.
oldConnection = SetCurrentConnection(clientsConnection);
// Server requests are made on behalf of the client, using his
// connection's security restrictions.
setCurrentConnection(oldConnection);

NCP Extension Server Components

The NCP Extension server resides on a NetWare server and consists of the
following components:

NCP Extension handler (optional)

Reply buffer manager (optional)

Connection event handler (optional)

Query data buffer

The NCP Extension handler is a routine that runs on the server and is called
by the NetWare API whenever the client calls
NWSendNCPExtensionRequest, or
NWSendNCPExtensionFraggedRequest. The NCP Extension handler
interprets the message sent by the client, processes the request, and sends a

Communication Service Group

NCP Extension: Concepts 854

reply to the client.

A reply buffer manager is useful when the data to be transferred is already
gathered or if the data should be kept in a specific memory location. The
reply buffer manager is a routine that determines what to do with the reply
buffer after the information in the buffer has been sent to the client. The OS
calls this routine after it has sent the information in the buffer. Whether to
use a reply buffer manager or not is a question of performance and
function. The reply buffer manager might do things such as free the reply
buffer, return it to a free list of buffers or unlock the data; the
implementation is determined by the NCP Extension handler and the reply
buffer manager.

The connection event handler is a routine that the server calls when any
connection on the server is freed, killed, logged out, or restarted. One of the
parameters to this routine is the connection that the event is happening on,
and the other parameter is the event type. The connection event handler can
use this information to determine if the connection belongs to a client that is
being serviced by the NCP Extension handler, and if so, what action to take
to clean up that connection's state.

The query data buffer is a 32-byte buffer that can be used to return
information when NWGetNCPExtensionInfo or NWScanNCPExtensions is
called. Calling these functions returns the contents of the update buffer to
the client, which provides a one-way, passive information passing scheme.

NOTE: The query data buffer becomes the sole communication
mechanism if an NCP Extension handler is not registered.

NCP Extension Views

Client View

The view from the client is different than that from the NCP Extension. The
client sends requests and receives replies. It does not need to know the
details of how the NCP Extension works; it only needs to know the protocol
for the communication between them.

The client accesses the services of an NCP Extension in the following ways:

Checks to see if the NCP Extension has been registered. A client cannot
use an NCP Extension until it has been registered. The client can use
NWGetNCPExtensionInfo or NWScanNCPExtensions to obtain the
NCP Extension IDs of extensions that have been registered. If the NCP
Extension ID is a well known ID it is not necessary to scan or get
extension information because attempting to use the ID will return a
failure if the extension is not registered.

Sends a request to the NCP Extension with
NWSendNCPExtensionRequest or

Communication Service Group

NCP Extension: Concepts 855

NWSendNCPExtensionFraggedRequest and use the information that
was returned.

Asks for the information in an NCP Extension's query data buffer by
calling NWGetNCPExtensionInfo or NWScanNCPExtensions and uses
the query data that is returned.

Provider View

The NCP Extension does not need to know what the client process looks
like; it only needs to know the format of the request coming from the client
and how to format the reply.

The NCP Extension does the following:

Registers the NCP Extension with the NCP Extension handler, the reply
buffer manager, the connection event handler, and query data buffer.

When the NCP Extension handler is called, it finds the request in a buffer
that the OS allocated when the request was received. The NCP Extension
handler processes the request and places the reply in another buffer(s)
that the OS will use when sending the reply to the requester.

If a reply buffer manager is used, it is called after the data in the reply
buffer(s) has been sent to the client. When the OS calls the reply buffer
manager the reply buffer address is passed to it and the reply buffer
manager determines what to do with the buffer(s) where the reply is
stored.

When the connection event handler is called, it determines if the event
affects the NCP Extension, and takes appropriate action.

Updates the information in the query data buffer if there is a need..

Deregisters the NCP Extension handler when it no longer wants to
provide the service or when the service-providing NLM is unloaded.

Reentrancy

You must make sure your NCP Extension handler is reentrant. You cannot
be assured that your NCP Extension handler runs to completion before it is
called again by another client. Because more than one request can be
accessing the same code, you need to code with reentrancy in mind. Similar
issues are of concern exist for the reply buffer manager and the connection
event handler as well. For more information about reentrancy see Shared
Memory.

Reply Buffer Manager

Communication Service Group

NCP Extension: Concepts 856

The reply buffer manager is a routine that the NetWare API calls after it has
sent the NCP Extension handler's reply to the client. If you are going to use a
reply buffer manager, you specify it when you register the NCP Extension
with the OS.

If you specify that your NCP Extension uses a reply buffer manager, the
NetWare API does not allocate reply buffers for your NCP Extension. In this
case, the creation of the buffers is the responsibility of the NCP Extension
handler.

The reply buffer manager does not allocate reply buffers. However, it can
free the buffers that the NCP Extension handler allocates or manipulate data
which controls access to those buffers.

Reasons to Use

The main reason for using a reply buffer manager is to avoid needless
copying of reply data, thereby speeding up your application. It also
minimizes possible failures due to Alloc Memory failures for copying data
into another buffer when the data already exists in memory.

For example, if your NCP Extension handler maintains a buffer itself, it can
save a copy cycle by returning a pointer to its buffer, rather than copying
the buffer's contents into a buffer created by the NetWare API. If your NCP
Extension is a game that maintains a screen buffer and returns the updated
screen to the client after its player is moved, it would be best to send the
screen data directly from the buffer it is maintained in.

Another example is with an NCP Extension that returns fragmented data. In
this case the NCP Extension could have a routine that is constantly polling
the server and placing information into various buffers. When the NCP
Extension is called, the NCP Extension handler simply returns a structure
that has fields pointing to the buffers where the information is located. This
avoids copying the data from various locations and placing it in a single
buffer.

Another reason for using a reply buffer manager is that, in some ways, it
can be thought of as the second part of the NCP Extension handler. With the
example in the previous paragraph, the NCP Extension handler could set a
semaphore to stop the update routine from updating the buffers. Then, after
the information in the buffers has been sent to the client, and the reply
buffer manager is called, the reply buffer manager can reset the semaphore,
allowing the update routine to continue with updating the buffers.

Tips for Using

A common issue when using the reply buffer management scheme
presented above is that of associating the call to the reply buffer manager
with the associated call to the extension handler. The parameters to each
callback are helpful in this regard. Even though the reply buffer address

Communication Service Group

NCP Extension: Concepts 857

passed between calls is the same, this is sometimes insufficient. The
connection number and task number are the same between calls, but this
knowledge alone may require an additional private tracking mechanism to
correctly associate the two callbacks.

To help eliminate the problem the NCPExtensionClient parameter has been
constructed so that the same address is passed to both callbacks and the
same contents are passed to both callbacks. In conjunction with this your
extension handler can overwrite the two LONG members of the
NCPExtension client structure with any values you like. These same values
will then be returned to your reply buffer manager handler in the
NCPExtension client parameter. This should be sufficient to allow you to
accurately and efficiently coordinate the reply buffer between the extension
handler and the reply buffer manager callbacks.

One other tip is that the reply buffer manager will not be called if the
extension handler returns a nonzero return code. It will also not be called if
no data was returned and REPLY_BUFFER_IS_FRAGGED was not used.

Communication Service Group

NCP Extension: Concepts 858

NCP Extension: Functions

Communication Service Group

NCP Extension: Functions 859

NWDeRegisterNCPExtension

Deregisters an NCP Extension
Local Servers: nonblocking
Remote Servers: N/A
NetWare Server: 3.11, 3.12, 4.x
Platform: NLM
Service: NCP Extension

Syntax

#include <ncpext.h>

int NWDeRegisterNCPExtension (
 void *queryData);

Parameters

queryData

(IN) Points to the extension handle received from the
NWRegisterNCPExtension function.

Return Values

0 0x0
0

SUCCESSFUL The extension was deregistered

25
5

0xF
F

ERR_NO_ITEMS_FOUND The extension has already
been deregistered

Remarks

NWDeRegisterNCPExtension is called by the service-providing NLM
applications in conjunction with the NWRegisterNCPExtension
function.

When an NCP Extension is registered with the
NWRegisterNCPExtension function, the address of the queryData
parameter is passed as one of the parameters. The pointer is then
initialized to point to a 32-byte area of memory in which the service
provider can place data. ThequeryData parameter is also used as a handle
for deregistering the NCP Extension.

See Also

Communication Service Group

NCP Extension: Functions 860

NWGetNCPExtensionInfo (NLM), NWRegisterNCPExtension,
NWScanNCPExtensions, NWSendNCPExtensionRequest

Communication Service Group

NCP Extension: Functions 861

NWFragNCPExtensionRequest

Sends and receives information from an NCP extension handle
Local Servers: blocking
Remote Servers: blocking
NetWare Server: 3.11 and above, 4.0 and above
Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT
Service: NCP Extension

Syntax

#include <nwncpext.h>
#include <nwmisc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWFragNCPExtensionRequest(
 NWCONN_HANDLE conn,
 nuint32 NCPExtensionID,
 nuint16 reqFragCount,
 NW_FRAGMENT N_FAR *reqFragList,
 nuint16 replyFragCount,
 NW_FRAGMENT N_FAR *replyFragList);

Pascal Syntax

#include <nwncpext.inc>

Function NWFragNCPExtensionRequest
 (conn : NWCONN_HANDLE;
 NCPExtensionID : nuint32;
 reqFragCount : nuint16;
 Var reqFragList : NW_FRAGMENT;
 replyFragCount : nuint16;
 Var replyFragList : NW_FRAGMENT
) : NWCCODE;

Parameters

conn

 (IN) Specifies the NetWare server connection handle.

NCPExtensionID

 (IN) Specifies the ID of the NCP extension handler to use for the
request.

reqFragCount

 (IN) Specifies the number of request fragments.

Communication Service Group

NCP Extension: Functions 862

reqFragList

 (IN) Points to the NW_FRAGMENT structure.

replyFragCount

 (IN) Specifies the number of reply fragments.

replyFragList

 (IN/OUT) Points to the NW_FRAGMENT structure.

Remarks

The fragment based protocol allows data up to 64K (a server imposed
limitation) to be transferred to and from the NCP extension handler.

To increase packet efficiency, NWFragNCPExtensionRequest packs as
many fragments as possible into a send buffer.

The reply data will be returned in the NW_FRAGMENT structure
pointed to by the replyFragList parameter. The fragSize field of the
NW_FRAGMENT structure will be updated to reflect the number of
bytes copied into the buffer pointed to by the fragAddress field.

NCP Calls

0x2222 23 17 Get File Server Information

Communication Service Group

NCP Extension: Functions 863

NWGetNCPExtensionInfo

Returns information about the specified NCP extension handler
NetWare Server: 3.11 and above, 4.0 and above
Platform: DOS, OS/2, Windows 3.1, Windows NT
Service: NCP Extension

Syntax

#include <nwncpext.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNCPExtensionInfo(
 NWCONN_HANDLE conn,
 nuint32 NCPExtensionID,
 pnstr8 NCPExtensionName,
 pnuint8 majorVersion,
 pnuint8 minorVersion,
 pnuint8 revision,
 pnuint8 queryData);

Pascal Syntax

#include <nwncpext.inc>

Function NWGetNCPExtensionInfo
 (conn : NWCONN_HANDLE;
 NCPExtensionID : nuint32;
 NCPExtensionName : pnstr8;
 majorVersion : pnuint8;
 minorVersion : pnuint8;
 revision : pnuint8;
 queryData : pnuint8
) : NWCCODE;

Parameters

conn

 (IN) Specifies the NetWare server connection handle.

NCPExtensionID

 (IN) Specifies the ID of the NCP extension handler for which to get
information.

NCPExtensionName

 (OUT) Points to a buffer to receive NCP extension name (33 bytes,
optional).

Communication Service Group

NCP Extension: Functions 864

majorVersion

 (OUT) Points to the major version number of the NCP extension
handler (optional).

minorVersion

 (OUT) Points to the minor version number of the NCP extension
handler (optional).

revision

 (OUT) Points to the revision number of the NCP extension handler
(optional).

queryData

 (OUT) Points to a 32-byte buffer of custom information that the NCP
extension handler can use (optional).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL The extension was found, and the non-null
output parameters were filled.

0x89FE Extension ID not found

Remarks

If an NCP extension with an ID higher than the one submitted was
found, and its data was returned, NWGetNCPExtensionInfo returns
0x89FE.

NCP Calls

0x2222 23 17 Get File Server Information
0x2222 36 00 Scan NCP Extensions
0x2222 36 02 Scan Loaded Extensions By Name
0x2222 36 05 Get NCP Extension Info

See Also

NWNCPExtensionRequest, NWFragNCPExtensionRequest,
NWScanNCPExtensions, NWGetNCPExtensionInfoByName,
NWGetNCPExtensionsList, NWGetNumberNCPExtensions

Communication Service Group

NCP Extension: Functions 865

NWGetNCPExtensionInfo (NLM)

Returns information about an NCP Extension specified by name
Local Servers: nonblocking
Remote Servers: blocking
NetWare Server: 3.11, 3.12, 4.x
Platform: NLM
Service: NCP Extension

Syntax

#include <ncpext.h>

int NWGetNCPExtensionInfo (
 const char *NCPExtensionName,
 LONG NCPExtensionID,
 BYTE *majorVersion,
 BYTE *minorVersion,
 BYTE *revision,
 void *queryData);

Parameters

NCPExtensionName

(IN) Points to the name of the desired NCP Extension.

NCPExtensionID

(OUT) Specifies the ID of the desired NCP Extension (optional).

majorVersion

(OUT) Points to the major version number of the NCP Extension
provider (optional).

minorVersion

(OUT) Points to the minor version number of the NCP Extension
provider (optional).

revision

(OUT) Points to the revision number of the NCP Extension provider
(optional).

queryData

(OUT) Points to 32 bytes of information from the NCP Extension
(optional).

Return Values

Communication Service Group

NCP Extension: Functions 866

0 0x0
0

SUCCESSFUL The extension was found, and the
non-null output parameters were filled.

25
5

0xF
F

ERR_NO_ITEMS_FOUND The extension name was not
found.

1-1
6

A communications error occurred. (See nwncpext.h.)

Remarks

NWGetNCPExtensionInfo (NLM), the NWScanNCPExtensions (NLM)
function, and the NWSendNCPExtensionRequest function access NCP
Extensions. For example, if you know the name of the NCP Extension
you want to access, such as "ECHO SERVER," you can call
NWGetNCPExtensionInfo (NLM) for the following purposes:

To see if the NCP Extension is registered.

To check the version of the NCP Extension.

To get the NCP Extension ID number used when calling the
NWSendNCPExtensionRequest function.

To receive 32 bytes of information from the NCP Extension without
calling the NWSendNCPExtensionRequest function.

Before a client can access an NCP Extension, NWGetNCPExtensionInfo
(NLM) must be called to see if the Extension has been registered followed
by calling the NWScanNCPExtensions (NLM) function to receive the
Extension ID needed to call the NCP Extension. If the NCP Extension has
been registered, NWGetNCPExtensionInfo (NLM) returns
SUCCESSFUL; otherwise, it returns ERR_NO_ITEMS_FOUND. The
NWScanNCPExtensions (NLM) function returns the same information
but must be called iteratively until the NCP Extension name is found.

The NCPExtensionName parameter can be any character string, up to 32
bytes plus a NULL terminator. The NCP Extension names are case
sensitive and must be unique for each NCP Extension. One suggestion is
to name the NCP Extension the same as your NLM. To avoid naming
conflicts, you should clear your NCP Extension's name through
Developer Support.

You provide the majorVersion, minorVersion, and revision parameters when
you call the NWRegisterNCPExtension function. If you have different
versions or revisions of the NCP Extension, the client can use these
parameters to verify that the extension is the correct version. If you do not
want to use any of these parameters, pass NULL.

The server side and the client side of NCP Extensions should be
implemented as matched sets so the client side knows what the server
side is expecting and what it can return. The client side also needs to

Communication Service Group

NCP Extension: Functions 867

know the name of the NCP Extension.

There are some cases where NWGetNCPExtensionInfo (NLM) can
return all of the information your client needs, eliminating the need to
call the NWSendNCPExtensionRequest function or to have an NCP
Extension handler. This information is placed in the client's queryData
buffer, whose address is passed as a parameter to
NWGetNCPExtensionInfo (NLM).

Use this method if the service-providing NLM is periodically updating its
queryData buffer (with 32 bytes or less of information) and the buffer
address was returned to the NLM when it called the
NWRegisterNCPExtension function. If the information you want is in
the NLM's queryData buffer, call NWGetNCPExtensionInfo (NLM) to
copy the contents of the queryData buffer for the service-providing NLM
into the queryData buffer for the client. This method is useful only if a
one-way server-to-client message is sufficient.

If you are using the queryData buffer, pass NULL to the queryData
parameter.

NOTE: If an NLM is unloaded, all NCP Extensions associated with it
are deregistered. If the NLM is reloaded, its NCP Extensions do not
have the same NCP Extension IDs, even though they have the same
names.

If any of the client (NLM or workstation) NCP Extension functions
return ERR_NO_ITEMS_FOUND (or ERR_NCPEXT_NO_HANDLER
after previously working properly), call the NCPGetExtensionInfo
function again. The NCPGetExtensionInfo function will return the new
NCPExtensionID parameter if the NCP Extension has been deregistered
and then reregistered.

See Also

NWDeRegisterNCPExtension, NWGetNCPExtensionInfoByID,
NWRegisterNCPExtension, NWScanNCPExtensions (NLM),
NWSendNCPExtensionRequest

Communication Service Group

NCP Extension: Functions 868

NWGetNCPExtensionInfoByID

Returns information about an NCP Extension specified by ID
Local Servers: nonblocking
Remote Servers: blocking
NetWare Server: 3.11, 3.12, 4.x
Platform: NLM
Service: NCP Extension

Syntax

#include <ncpext.h>

int NWGetNCPExtensionInfoByID (
 LONG NCPExtensionID,
 char *NCPExtensionName,
 BYTE *majorVersion,
 BYTE *minorVersion,
 BYTE *revision,
 void *queryData);

Parameters

NCPExtensionID

(IN) Specifies the ID of the desired NCP Extension.

NCPExtensionName

(OUT) Points to the name of NCP Extension associated with the ID
passed in the NCPExtensionID parameter (optional).

majorVersion

(OUT) Points to the major version number of the NCP Extension
provider (optional).

minorVersion

(OUT) Points to the minor version number of the NCP Extension
provider (optional).

revision

(OUT) Points to the revision number of the NCP Extension provider
(optional).

queryData

(OUT) Points to 32 bytes of information from the NCP Extension
(optional).

Return Values

Communication Service Group

NCP Extension: Functions 869

0 0x0
0

SUCCESSFUL The extension was found, and the
non-null output parameters were filled.

25
5

0xF
F

ERR_NO_ITEMS_FOUND The extension name was not
found.

1-1
6

A communications error occurred. (See niterror.h.)

Remarks

The NWGetNCPExtensionInfo (NLM), NWGetNCPExtensionInfoByID,
NWScanNCPExtensions (NLM),
NWSendNCPExtensionFraggedRequest, and
NWSendNCPExtensionRequest functions access NCP Extensions.

If you know the ID of the NCP Extension, you can call
NWGetNCPExtensionInfoByID for the following purposes:

To see if the NCP Extension is registered.

To verify the name of the NCP Extension.

To check the version of the NCP Extension handler.

To receive 32 bytes of information from the NCP Extension without
calling the NWSendNCPExtensionRequest function.

Before a client can access an NCP Extension, call either the
NWGetNCPExtensionInfo (NLM), NWGetNCPExtensionInfoByID, or
NWScanNCPExtensions (NLM) function to see if the extension has been
registered. If the NCP Extension has been registered,
NWGetNCPExtensionInfoByID returns SUCCESSFUL; otherwise, it
returns ERR_NO_ITEMS_FOUND. The NWGetNCPExtensionInfo
(NLM) and NWScanNCPExtensions (NLM) functions return the same
information but they use the name of the NCP Extension, rather than the
ID.

The NCPExtensionID parameter can be a dynamic ID returned from the
NWGetNCPExtensionInfo (NLM) or NWScanNCPExtensions (NLM)
function, or it can be a static ID assigned by Developer Support.

If you are using a static ID, check the name pointed to by the
NCPExtensionName parameter (on the first call) to verify that the name
returned is the same as the name of your NCP Extension.

The majorVersion, minorVersion, and revision parameters are those you
provide when you call the NWRegisterNCPExtension or
NWRegisterNCPExtensionByID function. If you have different versions
or revisions of the NCP Extension service providers, the client can use
these parameters to verify that the service provider is the correct version.
If you do not want to use any of these parameters, pass NULL.

Communication Service Group

NCP Extension: Functions 870

There are some cases where NWGetNCPExtensionInfoByID can return
all of the information your client needs, eliminating the need to call the
NWSendNCPExtensionRequest function or to have an NCP Extension
handler. This information is placed in the client's queryData buffer, whose
address is passed as a parameter to NWGetNCPExtensionInfoByID.

Use this method if the service-providing NLM is periodically updating its
queryData buffer (with 32 bytes or less of information) and whose address
was returned to the NLM when it called NWRegisterNCPExtension or
NWRegisterNCPExtensionByID. If the information you want is in the
NLM's queryData buffer, you can use NWGetNCPExtensionInfoByID to
copy the contents of the queryData buffer for the service-providing NLM
into the queryData buffer for the client. This method is useful only if a
one-way server-to-client message is sufficient.

If you are using the queryData buffer, pass NULL to the queryData
parameter.

NOTE: If an NLM is unloaded, all NCP Extensions associated with it
are deregistered. If the NLM is reloaded, and it registers its NCP
Extensions by calling NWRegisterNCPExtensionByID, the IDs for the
extensions are the same.

If the NLM is reloaded, and it registers its NCP Extensions by name by
calling the NWRegisterNCPExtension function, the NCP Extensions do
not have the same NCP Extension IDs, even though they have the same
names.

If any of the client (NLM or workstation) NCP Extension functions
return ERR_NO_ITEMS_FOUND (or ERR_NCPEXT_NO_HANDLER
after previously working properly), call the NWGetNCPExtensionInfo
(NLM) function. The NWGetNCPExtensionInfo (NLM) function will
return the new NCPExtensionID parameter if the NCP Extension has
been deregistered and then reregistered.

See Also

NWDeRegisterNCPExtension, NWGetNCPExtensionInfo (NLM),
NWRegisterNCPExtension, NWScanNCPExtensions (NLM),
NWSendNCPExtensionRequest

Communication Service Group

NCP Extension: Functions 871

NWGetNCPExtensionInfoByName

Returns information for the specified NCP extension handler
Local Servers: blocking
Remote Servers: blocking
NetWare Server: 3.11 and above, 4.0 and above
Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT
Service: NCP Extension

Syntax

#include <nwncpext.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNCPExtensionInfoByName(
 NWCONN_HANDLE conn,
 pnstr8 NCPExtensionName,
 pnuint32 NCPExtensionID,
 pnuint8 majorVersion,
 pnuint8 minorVersion,
 pnuint8 revision,
 pnuint8 queryData);

Pascal Syntax

#include <nwncpext.inc>

Function NWGetNCPExtensionInfoByName
 (conn : NWCONN_HANDLE;
 NCPExtensionName : pnstr8;
 NCPExtensionID : pnuint32;
 majorVersion : pnuint8;
 minorVersion : pnuint8;
 revision : pnuint8;
 queryData : pnuint8
) : NWCCODE;

Parameters

conn

 (IN) Specifies the NetWare server connection handle.

NCPExtensionName

 (IN) Points to a buffer containing the NCP extension name (33 bytes)
for which to get information (optional).

NCPExtensionID

Communication Service Group

NCP Extension: Functions 872

 (OUT) Points to the ID of the NCP extension handler.

majorVersion

 (OUT) Points to the major version number of the NCP extension
handler (optional).

minorVersion

 (OUT) Points to the minor version number of the NCP extension
handler (optional).

revision

 (OUT) Points to the revision number of the NCP extension handler
(optional).

queryData

 (OUT) Points to a 32-byte buffer of custom information the NCP
extension handler can optionally use (optional).

Return Values

None

NCP Calls

0x2222 23 17 Get File Server Information
0x2222 36 00 Scan NCP Extensions
0x2222 36 02 Scan Currently Loaded NCP Extensions By Name

See Also

NWGetNCPExtensionInfo, NWNCPExtensionRequest,
NWFragNCPExtensionRequest, NWScanNCPExtensions,
NWGetNCPExtensionsList, NWGetNumberNCPExtensions

Communication Service Group

NCP Extension: Functions 873

NWGetNCPExtensionsList

Returns a list of NCP extension handlers loaded on the server
Local Servers: blocking
Remote Servers: blocking
NetWare Server: 3.11 and above, 4.0 and above
Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT
Service: NCP Extension

Syntax

#include <nwncpext.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNCPExtensionsList(
 NWCONN_HANDLE conn,
 pnuint32 startNCPExtensionID,
 pnuint16 itemsInList,
 pnuint32 NCPExtensionIDList);

Pascal Syntax

#include <nwncpext.inc>

Function NWGetNCPExtensionsList
 (conn : NWCONN_HANDLE;
 startNCPExtensionID : pnuint32;
 itemsInList : pnuint16;
 NCPExtensionIDList : pnuint32
) : NWCCODE;

Parameters

conn

 (IN) Specifies the NetWare server connection handle.

startNCPExtensionID

 (IN) Points to the next extension ID to use to obtain a list.

itemsInList

 (OUT) Points to the number of NCP extension handler IDs.

NCPExtensionIDList

 (OUT) Points to a buffer to receive list of NCP extension handler IDs
(512 bytes or 4 times the number of NCP extension IDs, whichever is
less).

Communication Service Group

NCP Extension: Functions 874

Return Values

None

Remarks

If there are more than 128 extension handlers loaded, call
NWGetNCPExtensionsList multiple times.

Set startNCPExtensionID to 0 for the first iteration.
NWGetNCPExtensionsList returns the next value to use.

NCP Calls

0x2222 23 17 Get File Server Information
0x2222 36 0 Scan Loaded NCP Extensions
0x2222 36 04 Get NCP Extension Loaded List

See Also

NWGetNCPExtensionInfo, NWNCPExtensionRequest,
NWFragNCPExtensionRequest, NWScanNCPExtensions,
NWGetNCPExtensionInfoByName, NWGetNumberNCPExtensions

Communication Service Group

NCP Extension: Functions 875

NWGetNumberNCPExtensions

Returns the number of NCP extension handlers loaded on the specified
server
Local Servers: blocking
Remote Servers: blocking
NetWare Server: 3.11 and above, 4.0 and above
Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT
Service: NCP Extension

Syntax

#include <nwncpext.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNumberNCPExtensions(
 NWCONN_HANDLE conn,
 pnuint32 numNCPExtensions);

Pascal Syntax

#include <nwncpext.inc>

Function NWGetNumberNCPExtensions
 (conn : NWCONN_HANDLE;
 numNCPExtensions : pnuint32
) : NWCCODE;

Parameters

conn

 (IN) Specifies the NetWare server connection handle.

numNCPExtensions

 (OUT) Points to the number of NCP extension handlers installed on
the server.

Return Values

None

NCP Calls

0x2222 23 17 Get Server Info
0x2222 36 0 Scan Loaded NCP Extensions
 0x2222 36 3 Get Number Of Loaded NCP Extensions

Communication Service Group

NCP Extension: Functions 876

 0x2222 36 3 Get Number Of Loaded NCP Extensions

See Also

NWGetNCPExtensionInfo, NWNCPExtensionRequest,
NWFragNCPExtensionRequest, NWScanNCPExtensions,
NWGetNCPExtensionInfoByName, NWGetNCPExtensionsList

Communication Service Group

NCP Extension: Functions 877

NWNCPExtensionRequest

Sends and receives small data from an NCP extension handler
Local Servers: blocking
Remote Servers: blocking
NetWare Server: 3.11 and above, 4.0 and above
Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT
Service: NCP Extension

Syntax

#include <nwncpext.h>
or
#include <nwcalls.h>

NWCCODE N_API NWNCPExtensionRequest(
 NWCONN_HANDLE conn,
 nuint32 NCPExtensionID,
 nptr requestData,
 nuint16 requestDataLen,
 nptr replyData,
 pnuint16 replyDataLen);

Pascal Syntax

#include <nwncpext.inc>

Function NWNCPExtensionRequest
 (conn : NWCONN_HANDLE;
 NCPExtensionID : nuint32;
 requestData : nptr;
 requestDataLen : nuint16;
 replyData : nptr;
 replyDataLen : pnuint16
) : NWCCODE;

Parameters

conn

 (IN) Specifies the NetWare server connection handle.

NCPExtensionID

 (IN) Specifies the ID of the NCP extension handler to use for the
request.

requestData

 (IN) Points to a buffer containing request data.

Communication Service Group

NCP Extension: Functions 878

requestDataLen

 (IN) Specifies the length of request data.

replyData

 (OUT) Points to a buffer to receive reply data (can be the same buffer
as request data; optional if no reply data is expected).

replyDataLen

 (IN/OUT) Points to amount of data expected and how much data was
returned (optional if no reply data is expected).

Return Values

None

Remarks

NWNCPExtensionRequest should be used only if the send size is 511
bytes or less, and the receive size is 100 bytes or less. On 4.0,
NWNCPExtensionRequest should be used only if the receive size is 523
bytes or less.

If either of these limits is exceeded, NWNCPExtensionRequest will send
the packets via NWFragNCPExtensionRequest.

NCP Calls

0x2222 23 17 Get File Server Information

See Also

NWGetNCPExtensionInfo, NWFragNCPExtensionRequest,
NWScanNCPExtensions, NWGetNCPExtensionInfoByName,
NWGetNCPExtensionsList, NWGetNumberNCPExtensions

Communication Service Group

NCP Extension: Functions 879

NWNCPSend

Sends an NCP request to a currently connected server
Local Servers: blocking
Remote Servers: blocking
NetWare Server: 3.11, 3.12, 4.x
Platform: NLM
Service: NCP Extension

Syntax

#include <nwconn.h>

int NWNCPSend (
 BYTE functionCode,
 char *sendPacket,
 WORD sendLen,
 char *replyBuf,
 WORD replyLen);

Parameters

functionCode

(IN) Specifies the NCP function code.

sendPacket

(IN) Points to the input buffer for the NCP.

sendLen

(IN) Specifies the length of the sendPacket parameter.

replyBuf

(IN/OUT) Points to the reply buffer for the NCP.

replyLen

(IN/OUT) Specifies the length of the replyBuf parameter.

Return Values

ESUCCESS or NetWare errors.

Remarks

An NCP request consists of function code and a request buffer that
contains input information needed to process the request.

Communication Service Group

NCP Extension: Functions 880

NWRegisterNCPExtension

Registers a service to be provided as an NCP extension
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 3.11, 3.12, 4.x
Platform: NLM
Service: NCP Extension

Syntax

#include <ncpext.h>
int NWRegisterNCPExtension (
 const char *NCPExtensionName,
 BYTE (*NCPExtensionHandler)(
 NCPExtensionClient *client,
 void *requestData,
 LONG requestDataLen,
 void *replyData,
 LONG *replyDataLen),
 void (*ConnectionEventHandler)(
 LONG connection,
 LONG eventType)
 void (*ReplyBufferManager)(
 NCPExtensionClient *client,
 void *replyBuffer),
 BYTE majorVersion,
 BYTE minorVersion,
 BYTE revision,
 void **queryData);

Parameters

NCPExtensionName

(IN) Points to the name of an NCP Extension.

NCPExtensionHandler

(IN) Points to the function to be called when the NCP Extension calls
the NWSendNCPExtensionRequest function (optional).

ConnectionEventHandler

(IN) Points to the function to be called and action to follow when a
connection is freed, killed, logged out, or restarted (optional).

ReplyBufferManager

(IN) Points to a buffer manager function used to reply to NCP
Extension requests (optional).

majorVersion

Communication Service Group

NCP Extension: Functions 881

(IN) Specifies the major version number of the service provider.

minorVersion

(IN) Specifies the minor version number of the service provider.

revision

(IN) Specifies the revision number of the service provider.

queryData

(OUT) Points to a 32-byte area that NetWare has allocated.

Return Values

0 0x0
0

SUCCESSFUL The extension was found, and the
non-null output parameters were filled.

5 0x0
5

ENOMEM Not enough memory was available on the
server to register the service.

16
6

0xA
6

ERR_ALREADY_IN_USE The NCP Extension name is
already registered. Your service is not registered.

25
5

0xF
F

ERR_BAD_PARAMETER The NCPExtensionName
parameter is longer than the 32-byte limit.

Remarks

NWRegisterNCPExtension is called by the service-providing NLM
applications in conjunction with theNWDeRegisterNCPExtension
function.

NCP extension names are case sensitive and must be unique. They have a
maximum length of 32 bytes plus a NULL terminator.

The queryData parameter can be used by the service provider to return up
to 32 bytes of information to the client and is aligned on a DWORD
(32-bit) boundary. This information can then be retrieved by calling the
NWGetNCPExtensionInfo (NLM) or NWScanNCPExtensions (NLM)
function. The queryData parameter is also used by the registering NLM as
the NCP extension handle when the NWDeRegisterNCPExtension
function is called.

NOTE: The NCPExtensionHandler parameter returns a BYTE
representing the value returned when the
NWSendNCPExtensionRequest function is called. The extension
handler can return any value other than those used by the lower-level
NCP-transport services (see niterror.h). However, information is placed
into the replyData parameter after the NCPExtensionHandler parameter
returns SUCCESSFUL.

Other status information can be returned to the client with the extension

Communication Service Group

NCP Extension: Functions 882

handler. However, do not return any values (other than SUCCESSFUL)
that NWRegisterNCPExtension can return. Otherwise, future versions
of the OS might return values you have defined and confuse their
meaning. If the extension handler always returns SUCCESSFUL and
then uses a "status" field in the replyData parameter to return status
information, the meaning of each return value will be clear.

If you can provide all needed information by updating the 32-byte
queryData buffer, pass NULL to the NCPExtensionHandler parameter.
Then call either the NWGetNCPExtensionInfo (NLM) or
NWScanNCPExtensions (NLM) function to obtain information in the
queryData buffer. This is a passive method of passing information. The
NCP extension will not be notified that the queryData parameter was
accessed.

NOTE: The NCPExtensionHandler, ConnectionEventHandler, and
ReplyBufferManager parameters are function callbacks that run as OS
threads. They need to have CLIB context if they are going to call
NetWare functions that need context.

The function pointed to by the NCPExtensionHandler parameter has the
following parameters:

client

(IN) Points to the NCPExtensionClient structure containing the
connection and task of the calling client (also used by the
ReplyBufferManager parameter to associate the request with the reply
notification it receives).

requestData

(IN) Points to a buffer, which might be DWORD aligned, to hold the
request information.

requestDataLen

(IN) Specifies the size (in bytes) of the data in the requestData
parameter.

replyData

(OUT) Points to a buffer to store the response data from the service
routine if the ReplyBufferManager parameter is NULL. Otherwise,
points to the address of a valid buffer, which might be DWORD
aligned, that the NCP extension handler created.

replyDataLen

(IN/OUT) Inputs the maximum size (in bytes) of information that can
be stored in the reply buffer. Outputs the actual number of bytes that
the NCPExtensionHandler parameter stored in the reply buffer.

The function pointed to by the ConnectionEventHandler parameter has the
following parameters:

connection

Communication Service Group

NCP Extension: Functions 883

(IN) Specifies the connection number for any connection (NCP
extension clients and others) that was logged out or cleared (optional).

eventType

(IN) Specifies the type of event that is being reported for NetWare 3.12
and higher (optional):

CONNECTION_BEING_FREED
CONNECTION_BEING_KILLED
CONNECTION_BEING_LOGGED_OUT
CONNECTION_BEING_FREED

You must decide if it is important for your service to be aware of when
clients (particularly the NCP extension clients) log out or terminate a
connection.

The ConnectionEventHandler parameter does not return a value.

The function pointed to by the ReplyBufferManager parameter has the
following parameters:

client

(IN) Points to the NCPExtensionClient structure containing the
connection and task of the calling client.

replyBuffer

(IN) Points to a buffer whose information has been returned to the
client (optional).

See Also

GetThreadContextSpecifier, NWDeRegisterNCPExtension,
NWGetNCPExtensionInfo (NLM), NWScanNCPExtensions (NLM),
NWSendNCPExtensionRequest, NWRegisterNCPExtensionByID,
SetThreadContextSpecifier

Communication Service Group

NCP Extension: Functions 884

NWRegisterNCPExtensionByID

Registers a service to be provided as an NCP Extension and assigns the NCP
Extension a specific ID
Local Servers: blocking
Remote Servers: N/A
NetWare Server: 3.12, 4.x
Platform: NLM
Service: NCP Extension

Syntax

#include <ncpext.h>

int NWRegisterNCPExtensionByID (
 LONG NCPExtensionID,
 const char *NCPExtensionName,
 BYTE (*NCPExtensionHandler)(
 NCPExtensionClient *NCPExtensionClient,
 void *requestData,
 LONG requestDataLen,
 void *replyData,
 LONG *replyDataLen),
 void (*ConnectionEventHandler)(
 LONG connection,
 LONG eventType)
 void (*ReplyBufferManager)(
 NCPExtensionClient *NCPExtensionClient,
 void *replyBuffer),
 BYTE majorVersion,
 BYTE minorVersion,
 BYTE revision,
 void **queryData);

Parameters

NCPExtensionID

(IN) Specifies the unique ID to be associated with your service for the
NCP Extension (assigned by Developer Support).

NCPExtensionName

(IN) Points to the name to identify the NCP Extension.

NCPExtensionHandler

(IN) Points to the function to be called when the NCP Extension calls
the NWSendNCPExtensionRequest or
NWSendNCPExtensionFraggedRequest function (optional).

ConnectionEventHandler

Communication Service Group

NCP Extension: Functions 885

(IN) Points to the function to be called and steps to follow when a
connection is freed, killed, logged out, or restarted (optional).

ReplyBufferManager

(IN) Points to a buffer manager function used to reply to NCP
Extension requests (optional).

majorVersion

(IN) Specifies the major version number of the service provider.

minorVersion

(IN) Specifies the minor version number of the service provider.

revision

(IN) Specifies the revision number of the service provider.

queryData

(OUT) Points to a 32-byte area that NetWare has allocated.

Return Values

0 0x0
0

SUCCESSFUL The extension was found, and the
non-null output parameters were filled.

5 0x0
5

ENOMEM Not enough memory was available on the
server to register the service.

16
6

0xA
6

ERR_ALREADY_IN_USE The NCP Extension name is
already registered. Your service is not registered.

25
1

0xF
B

ERR_UNKNOWN_REQUEST The server version does
not support this request.

25
5

0xF
F

ERR_BAD_PARAMETER The NCPExtensionName
parameter is longer than the 32-byte limit.

Remarks

NWRegisterNCPExtensionByID is called by the service-providing NLM
applications in conjunction with NWDeRegisterNCPExtension and
NWRegisterNCPExtension.

NCP extension names are case sensitive and must be unique. They have a
maximum length of 32 bytes plus a NULL terminator.

For an explanation of the NCPExtensionHandler, ConnectionEventHandler,
and ReplyBufferManager parameters, see the Remarks section for
NWRegisterNCPExtension.

The queryData parameter can be used by the service provider to return up
to 32 bytes of information to the client and is aligned on a DWORD

Communication Service Group

NCP Extension: Functions 886

(32-bit) boundary. This information can then be retrieved by calling
NWGetNCPExtensionInfo (NLM), NWGetNCPExtensionInfoByID, or
NWScanNCPExtensions (NLM). The queryData parameter is also used by
the registering NLM as the NCP extension handle when
NWDeRegisterNCPExtension is called.

NOTE: The NCPExtensionHandler, ConnectionEventHandler, and
ReplyBufferManager parameters are function callbacks that run as OS
threads. They need to have CLIB context if they are going to call
NetWare functions that need context.

See Also

GetThreadContextSpecifier, NWDeRegisterNCPExtension,
NWRegisterNCPExtension, SetThreadContextSpecifier

Communication Service Group

NCP Extension: Functions 887

NWSendNCPExtensionFraggedRequest

Sends a request to the specified NCP extension and allows data to be
retrieved from and stored in noncontiguous memory locations
Local Servers: blocking
Remote Servers: blocking
NetWare Server: 3.11, 3.12, 4.x
Platform: NLM
Service: NCP Extension

Syntax

#include <ncpext.h>

int NWSendNCPExtensionFraggedRequest (
 LONG NCPExtensionID,
 const struct NCPExtensionMessageFrag
 *requestFrag,
 struct NCPExtensionMessageFrag
 *replyFrag);

Parameters

NCPExtensionID

(IN) Specifies the ID of the NCP Extension to process the request.

requestFrag

(IN) Points to the NCPExtensionMessageFrag structure containing
information about the lengths and locations of the fragmented data for
the NCP Extension handler to process (optional).

replyFrag

(IN/OUT) Points to the NCPExtensionMessageFrag structure. Inputs
the maximum length of the data to return and where to place the data.
Outputs the length of all returned data and where the data is stored
(optional).

Return Values

0 0x0
0

SUCCESSFUL The extension was found, and the
non-null output parameters were filled.

12
6

0x7
E

ERR_NCPEXT_TRANSPORT_PROTOCOL_VIOLATION
The message transport mechanism entered a bad state in
the protocol.

15
0

0x9
6

ERR_NO_ALLOC_SPACE There was not enough
memory available on the server to allocate space for the

Communication Service Group

NCP Extension: Functions 888

0 6 memory available on the server to allocate space for the
message.

25
2

0xF
C

ERR_NCPEXT_SERVICE_PROTOCOL_VIOLATION
The service provider tried to return more data than the
reply buffer could hold.

25
4

0xF
E

ERR_NCPEXT_NO_HANDLER The NCP exception
handler could not be found.

1-1
6

A communications error has occurred. (See niterror.h.)

Remarks

Call NWSendNCPExtensionFraggedRequest when you want to send
your NCP Extension handler information stored at various locations
which will avoid copying the information into a single buffer before
sending it to your NCP Extension.

NWSendNCPExtensionFraggedRequest can also place the reply data
into up to four specific locations, eliminating the need for you to copy the
data from a reply buffer.

If your NCP Extension uses a single input buffer and/or a single output
buffer, call NWSendNCPExtensionRequest instead of
NWSendNCPExtensionFraggedRequest.

If your NLM registers its NCP Extension by a specific ID, use that ID
when calling NWSendNCPExtensionFraggedRequest. If your NLM
registers its NCP Extension by name, call NWGetNCPExtensionInfo
(NLM) or NWScanNCPExtensions (NLM) to obtain the ID before calling
NWSendNCPExtensionFraggedRequest.

NWSendNCPExtensionFraggedRequest copies the number of bytes
from the server (indicated in the totalMessageSize field of the
NCPExtensionMessageFrag structure), places them into memory
locations (specified in the fragList field of the NCPExtensionMessageFrag
structure), and sets a value to reflect the actual number of bytes
transferred (indicated by the totalMessageSize field of the
NCPExtensionMessageFrag structure).

NOTE: The information in the replyFrag parameter is valid only if
NWSendNCPExtensionFraggedRequest returns SUCCESSFUL.

The request and reply buffers of the client must be reproduced on the
server, so the maximum size of the buffers depends upon the memory
available on the server that registers the NCP Extension. When
NWSendNCPExtensionFraggedRequest is called, it attempts to allocate
server memory for two message buffers. If it cannot allocate enough
space, ERR_NO_ALLOC_SPACE will be returned. However, the request
should be retried several times since server memory use is dynamic.

Communication Service Group

NCP Extension: Functions 889

See Also

NWSendNCPExtensionRequest

Communication Service Group

NCP Extension: Functions 890

NWSendNCPExtensionRequest

Sends a request to the specified NCP extension
Local Servers: blocking
Remote Servers: blocking
NetWare Server: 3.11, 3.12, 4.x
Platform: NLM
Service: NCP Extension

Syntax

#include <ncpext.h>

int NWSendNCPExtensionRequest (
 LONG NCPExtensionID,
 const void *requestData,
 LONG requestDataLen,
 void *replyData,
 LONG *replyDataLen);

Parameters

NCPExtensionID

(IN) Specifies the ID of the NCP Extension to process your request
(obtained by calling the NWGetNCPExtensionInfo (NLM) or
NWScanNCPExtensions (NLM) function.

requestData

(IN) Points to information for the NCP Extension handler to process
(optional).

requestDataLen

(IN) Specifies the length (in bytes) of the input request buffer that is
being sent to the NCP Extension (optional).

replyData

(OUT) Points to the information returned by the NCP Extension
(optional).

replyDataLen

(IN/OUT) Inputs a pointer to the length (in bytes) of the replyData
parameter. Outputs a pointer to the actual number of bytes placed into
the buffer (optional).

Return Values

0 0x0 SUCCESSFUL The extension was found, and the

Communication Service Group

NCP Extension: Functions 891

0 non-null output parameters were filled.

12
6

0x7
E

ERR_NCPEXT_TRANSPORT_PROTOCOL_VIOLATION
The message transport mechanism entered a bad state in
the protocol.

15
0

0x9
6

ERR_NO_ALLOC_SPACE There was not enough
memory available on the server to allocate space for the
message.

25
2

0xF
C

ERR_NCPEXT_SERVICE_PROTOCOL_VIOLATION
The service provider tried to return more data than the
reply buffer could hold.

25
4

0xF
E

ERR_NCPEXT_NO_HANDLER The NCP exception
handler could not be found.

1-1
6

A communications error has occurred. (See niterror.h.)

Remarks

NWSendNCPExtensionRequest sends the number of bytes specified by
the requestDataLen parameter to the server.

If the requestData or requestDataLen parameter is set to NULL or zero
respectively, no request data is sent.

NWSendNCPExtensionFraggedRequest copies the number of bytes
from the server (indicated in the totalMessageSize field of the
NCPExtensionMessageFrag structure), places them into memory
locations (specified in the fragList field of the NCPExtensionMessageFrag
structure), and sets a value to reflect the actual number of bytes
transferred (indicated by the totalMessageSize field of the
NCPExtensionMessageFrag structure).

NWSendNCPExtensionRequest copies the number of bytes from the
server (specified in the replyDataLen parameter), places them into
memory (specified in the replyData parameter), and sets a value to reflect
the actual number of bytes transferred (specified by the replyDataLen
parameter.

If the replyData or replyDataLen parameter is set to NULL or zero
respectively, no reply data is returned.

NOTE: The information in the replyData parameter is valid only if
NWSendNCPExtensionRequest returns SUCCESSFUL.

The request and reply buffers of the client must be reproduced on the
server, so the maximum size of the buffers depends upon the memory
available on the server that registers the NCP Extension. When
NWSendNCPExtension is called, it attempts to allocate server memory
for two message buffers. If it cannot allocate enough space,
ERR_NO_ALLOC_SPACE will be returned. However, the request should

Communication Service Group

NCP Extension: Functions 892

be retried several times since server memory use is dynamic.

See Also

NWDeRegisterNCPExtension, NWGetNCPExtensionInfo (NLM),
NWScanNCPExtensions (NLM),
NWSendNCPExtensionFraggedRequest, NWRegisterNCPExtension

Communication Service Group

NCP Extension: Functions 893

NWScanNCPExtensions

Scans the server for NCP extension handlers
NetWare Server: 4.x
Platform: DOS, OS/2, Windows 3.1, Windows NT
Service: NCP Extension

Syntax

#include <nwncpext.h>
or
#include <nwcalls.h>

NWCCODE N_API NWScanNCPExtensions(
 NWCONN_HANDLE conn,
 pnuint32 NCPExtensionID,
 pnstr8 NCPExtensionName,
 pnuint8 majorVersion,
 pnuint8 minorVersion,
 pnuint8 revision,
 pnuint8 queryData);

Pascal Syntax

#include <nwncpext.inc>

Function NWScanNCPExtensions
 (conn : NWCONN_HANDLE;
 NCPExtensionID : pnuint32;
 NCPExtensionName : pnstr8;
 majorVersion : pnuint8;
 minorVersion : pnuint8;
 revision : pnuint8;
 queryData : pnuint8
) : NWCCODE;

Parameters

conn

 (IN) Specifies the NetWare server connection handle.

NCPExtensionID

 (IN) Points to the ID of the NCP extension handler for which to get
information. Should be set to -1 for the first iteration.

NCPExtensionName

 (OUT) Points to the 32-byte buffer to receive the NCP extension name
(optional).

Communication Service Group

NCP Extension: Functions 894

majorVersion

 (OUT) Points to the major version number of the NCP extension
handler (optional).

minorVersion

 (OUT) Points to the minor version number of the NCP extension
handler (optional).

revision

 (OUT) Points to the revision number of the NCP extension handler
(optional).

queryData

 (OUT) Points to the 32-byte buffer of custom information the NCP
extension handler can use (optional).

Return Values

None

NCP Calls

0x2222 36 00 Scan Currently Loaded NCP Extensions

See Also

NWGetNCPExtensionInfo, NWNCPExtensionRequest,
NWFragNCPExtensionRequest, NWGetNCPExtensionInfoByName,
NWGetNCPExtensionsList, NWGetNumberNCPExtensions

Communication Service Group

NCP Extension: Functions 895

NWScanNCPExtensions (NLM)

Iteratively returns information about all registered NCP extensions
Local Servers: nonblocking
Remote Servers: blocking
NetWare Server: 4.x
Platform: NLM
Service: NCP Extension

Syntax

#include <ncpext.h>

int NWScanNCPExtensions (
 LONG *NCPExtensionID,
 char *NCPExtensionName,
 BYTE *majorVersion,
 BYTE *minorVersion,
 BYTE *revision,
 void *queryData);

Parameters

NCPExtensionID

(IN/OUT) Points to the ID of the desired NCP Extension.

NCPExtensionName

(OUT) Points to the name of the NCP Extension that was found.

majorVersion

(OUT) Points to the major version number of the NCP Extension
provider (optional).

minorVersion

(OUT) Points to the minor version number of the NCP Extension
provider (optional).

revision

(OUT) Points to the revision number of the NCP Extension provider
(optional).

queryData

(OUT) Points to 32 bytes of information from the NCP Extension
service provider and allocated when the NLM calls the
NWRegisterNCPExtension function (optional).

Return Values

Communication Service Group

NCP Extension: Functions 896

0 SUCCESSFUL: Extension was found and non-NULL output
parameters were filled

-1 No more NCP Extensions were found

1-
1
6

An NCP error occurred (see niterror.h)

Remarks

NWScanNCPExtensions (NLM) can be used iteratively to return the
names of all the NCP Extensions registered on the server being queried.
To scan the complete list of NCP Extensions, set the NCPExtensionID
parameter to BEGIN_SCAN_NCP_EXTENSIONS. When
NWScanNCPExtensions (NLM) returns, the NCPExtensionID parameter
will be set to the ID of the first NCP Extension in the list and will return
SUCCESSFUL. Use the ID in the NCPExtensionID parameter as a seed
value to find the next NCP Extension ID. Continue calling
NWScanNCPExtensions (NLM), using the new IDs returned in the
NCPExtensionID parameter, until you find the information you want or
until -1 is returned.

Call NWScanNCPExtensions (NLM) when you want to list the names of
the NCP Extensions but are not looking for the name of a specific
extension. If you know the name of your NCP Extension, such as "My
NCP Extension," you should call NWGetNCPExtensionInfo (NLM) to
see if the extension is registered because NWGetNCPExtensionInfo
(NLM) needs to be called only once.

Call NWScanNCPExtensions (NLM) to do the following:

See if the NCP Extension is registered.

Check the version of the NCP Extension.

Get the NCP Extension ID number to call
NWSendNCPExtensionRequest.

Receive 32 bytes of information from the NCP Extension without
calling the NWSendNCPExtensionRequest function.

The NCPExtensionName parameter should be set to a buffer that is
MAX_NCP_EXTENSION_NAME_BYTES (33) bytes long. The returned
name is case sensitive and unique for each NCP Extension.

NOTE: The IDs of NCP Extensions are not always consecutive
numbers. Therefore, you should not assume that if you increment the
value in the NCPExtensionID parameter by one that it is a valid NCP
Extension ID.

The majorVersion, minorVersion, and revision parameters are assigned by

Communication Service Group

NCP Extension: Functions 897

the registering NLM when it calls NWRegisterNCPExtension. If you
have different versions or revisions of the NCP Extension, use these fields
to verify that the extension is of the correct version. If you do not want
any of this information, pass NULL.

NWScanNCPExtensionInfo can return all of the information you need,
eliminating the need to call NWSendNCPExtensionRequest. If all your
information can be returned in the queryData parameter, obtain the buffer
contents by calling NWGetNCPExtensionInfo (NLM). Receiving
information this way does not call the NCP Extension handler and is
useful only if a one-way server-to-client message is sufficient. If you do
not need the information that is returned in the buffer, pass NULL.

See Also

NWDeRegisterNCPExtension, NWGetNCPExtensionInfo (NLM),
NWRegisterNCPExtension, NWSendNCPExtensionRequest

Communication Service Group

NCP Extension: Functions 898

NCP Extension: Structures

Communication Service Group

NCP Extension: Structures 899

FragElement

Defines a fragment of a fragmented NCP extension request
Service: NCP Extension
Defined In: ncpext.h

Structure

struct FragElement {
 void *ptr;
 LONG size;
};

Fields

ptr

Points to the fragment data.

size

Specifies the number of bytes that can be placed in the ptr field.

Communication Service Group

NCP Extension: Structures 900

NCPExtensionClient

Defines an NCP extension client
Service: NCP Extension
Defined In: ncpext.h

Structure

struct NCPExtensionClient {
 LONG connection;
 LONG task;
};

Fields

connection

Specifies the connection number of the client.

task

Specifies the task number of the client.

Communication Service Group

NCP Extension: Structures 901

NCPExtensionMessageFrag

Defines a fragmented NCP extension request
Service: NCP Extension
Defined In: ncpext.h

Structure

struct NCPExtensionMessageFrag {
 LONG totalMessageSize;
 LONG fragCount;
 struct FragElement fragList[4];
};

Fields

totalMessageSize

Specifies the limit (in bytes) for the returned data.

fragCount

Specifies the number of FragElement structures stored in the fragList
field.

fragList

Specifies an array of up to four FragElement structures.

Communication Service Group

NCP Extension: Structures 902

NWSIPX

Communication Service Group

 903

NWSIPX: Guides

NWSIPX: General Guide

General Information

NWSIPX Overview

NWSIPX Elements

Parts of NWSIPX

NWSIPX Environment Management

NWTCB Management

Socket Management in NWSIPX

Connection Endpoint Management in NWSIPX

Event Notification in NWSIPX

Datagrams

NWSIPX Datagram Service

Connection Mode

NWSIPX Connection-Oriented Service

NWSIPX Connection Establishment

Connection-Oriented Message Management and Data Transfer

NWSIPX Connection Release

Additional Features

NWSIPX API Toolbox

Migration

Migrating to NWSIPX from Previous IPX/SPX APIs

Additional Links

NWSIPX: Functions

NWSIPX: Structures

Communication Service Group

NWSIPX: Guides 904

NWSIPX: Concepts

Connection Endpoint Management in NWSIPX

The functions associated with connection-oriented services are used within
the context of a connection endpoint. By definition, IPX sockets are the
network-addressable service access points for the IPX/SPX protocols.
Connection endpoints act as extensions to the IPX socket for
connection-oriented services. When you open a connection endpoint, you
receive a connection endpoint handle that uniquely identifies the connection
endpoint. The connection endpoint handle is a required parameter for all
connection-oriented functions.

A connection endpoint is opened by calling
NWSipxOpenConnectionEndpoint. Because a connection endpoint is
always associated with an IPX socket, the API automatically opens a socket
for every connection endpoint that is allocated. The socket number can be
specified or dynamically selected by the API.

NWSIPX Services maintains a set of connection element parameters for each
socket. These parameters are retrieved by calling NWSipxGetInformation
with the infoType parameter set to SIPX_CONN_INFORMATION.

The connection element parameters are returned in an SIPX_CONN_INFO
structure.

Connection-endpoint parameters can be examined and modified using
NWSipxGetInformation and NWSipxSetInformation.

The following functions are used for connection endpoint management:

Function Header Purpose

NWSipxCloseConnection
Endpoint

nwsipx32.
h

Closes an open connection
endpoint.

NWSipxOpenConnection
Endpoint

nwsipx32.
h

Opens a connection
endpoint.

Connection-Oriented Message Management and
Data Transfer

Communication Service Group

NWSIPX: Concepts 905

Data segments making up a complete or partial message are defined for the
API using a fragment list. The fragment list is an array of fragment
descriptors that identify the data fragments constituting the data segment.
The number of fragment descriptors contained in the fragment list and the
pointer to the fragment list are stored in the TCBFragmentCount and
TCBFragmentList fields of the NWTCB respectively.

For a definition of the fragment descriptor, see FRAGMENT.

To send data messages, call NWSipxSendMessage. Before calling
NWSipxSendMessage, you must initialize the following fields in the
NWTCB:

TCBConnHandle Handle of the connection endpoint associated
with the transport connection.

TCBFragmentCount Number of fragment descriptors in the fragment
list (maximum of 15).

TCBFragmentList Pointer to the fragment list defining the data
segment to send.

TCBFlags The SIPX_SNDMSG_PARTIAL flag is set or
cleared to indicate whether or not this data
segment is the end of a message.

NOTE: If you want to send an SPX header without data, set the
TCBFragmentCount field to zero. The API will then ignore the
TCBFragmentList field.

You must segment data messages larger than the maximum transport
service data unit (TSDU) size supported by the underlying SPX protocol
stack. The maximum packet size is determined by calling
NWSipxGetMaxTsduSize or referencing the CIMaxTsduSize connection
endpoint parameter. If the maximum TSDU value is equal to
SIPX_CONN_UNLIMITED_TSDU, you can send any size message to the
peer system and the API will automatically fragment the message according
to the output mode selected in the CIOutput connection endpoint parameter.
Otherwise, the TSDU size must be honored and you must segment the data
message as described above. You must also indicate message boundaries to
the API. This is done by setting the SIPX_SNDMSG_PARTIAL flag in the
TCBFlags field of the NWTCB passed to NWSipxSendMessage if it is not the
last segment of a message. Otherwise, the SIPX_SNDMSG_PARTIAL flag
should be clear.

When sending data, you can select between two output modes:
fragmentation mode and transparent mode. In fragmentation mode (the
default), the API automatically fragments data messages for delivery across
the network to the peer system as needed. In transparent mode, the API
does not fragment data messages, but sends the messages as received from
you to the peer system. In transparent mode, it is your responsibility to
determine valid message sizes. Transparent mode is provided for your

Communication Service Group

NWSIPX: Concepts 906

applications that negotiate message sizes with peer applications and have a
means for determining the optimal message size. The output mode is
contained in the CIOutputMode connection endpoint parameter, which can
be read and set using the NWSipxGetInformation and
NWSipxSetInformation functions.

You are not required to build the SPX header as part of the data message.
The API adds any necessary protocol headers. You can optionally specify
the SPX data stream type that will be stored in SPX protocol header by
either setting the SPX Datastream Type connection endpoint parameter or
setting the SIPX_SNDMSG_DSTRM_TYPE flag in the TCBFlags field and
storing the data stream value in the TCBDataStreamType field in the NWTCB
passed to NWSipxSendMessage. You can request that the attention flag be
set in the SPX header by setting the SIPX_SNDMSG_ATTN flag in the
TCBFlags field of the NWTCB passed to NWSipxSendMessage.

NOTE: The NWSIPX API for Windows NT* does not support the
setting of the attention flag in the SPX header.

When the message has been successfully sent, you are notified according to
the event notification method specified in the NWTCB. The
TCBBytesTransferred and TCBFinalStatus fields of the NWTCB are updated to
reflect the number of data bytes actually sent and the final status of the
service request.

To receive data messages, call NWSipxReceiveMessage . You are
responsible for allocating the data space in which the input message is
stored. Before calling NWSipxRecieveMessage , you must initialize the
following fields in the NWTCB:

TCBConnHandle Handle of the connection endpoint associated
with the transport connection.

TCBFragmentCount Number of fragment descriptors in the fragment
list.

TCBFragmentList Pointer to the fragment list defining the
allocated data space.

When a message has been received, you are notified according to the event
notification method specified in the NWTCB. Before notification, the
NWSIPX API updates the TCBFinalStatus, TCBBytesTranferred,
TCBDatastreamType, TCBMsgSequenceNumber, and TCBFlags fields of the
NWTCB. The SIPX_RCVMSG_PARTIAL flag is set in the TCBFlags field of
the NWTCB if a partial message was received. If the whole message was
received, the SIPX_RCVMSG_PARTIAL flag is clear. If the attention flag
was set in the SPX header, the SIPX_RCVMSG_ATTN flag is set in the
TCBFlags field of the NWTCB.

You can select between streaming mode and message mode when receiving
data. In streaming mode, you receive message fragments as they arrive from
the network and you are responsible for putting them into a meaningful

Communication Service Group

NWSIPX: Concepts 907

context. The API indicates which fragment is the final fragment of a
message by clearing the SIPX_RCVMSG_PARTIAL flag in the TCBFlags
field of the NWTCB. In message mode, you will only receive whole data
messages unless the input message is larger than the data space you
allocated for input. If the API is able to buffer the excess data, the API sets
the SIPX_RCVMSG_PARTIAL flag in the TCBFlags field of the NWTCB and
it returns a final status of SIPX_SUCCESS, indicating that
NWSipxReceiveMessage must be called again to receive the remainder of
the message. If no more internal resources exist to hold the excess data, the
input message is truncated and a final status of SIPX_DATA_OVERFLOW
is returned. The connection's input mode is contained in the CIInputMode
connection endpoint parameter, which can be read and set using the
NWSipxGetInformation and NWSipxSetInformation functions.

To enable you to determine the order in which message segments are
received from a peer, the sequence number of the message segment is stored
in the TCBMsgSequenceNumber field of the NWTCB. The message sequence
number is maintained as part of the connection endpoint and is set to zero
when a transport connection is established. It is incremented each time a
message segment is received and its value is stored in the
TMCBMsgSequenceNumber field of the NWTCB of the message segment. The
message sequence number is not the SPX protocol sequence number.

Parent Topic: NWSIPX Connection-Oriented Service

Datagram Message Management and Data
Transfer

Datagrams are defined for the API with a fragment list. The fragment list is
an array of fragment descriptors that define the data fragments constituting
a complete datagram. The number of fragment descriptors contained in the
fragment list and the pointer to the fragment list are stored in the
TCBFragmentCount and TCBFragmentList fields of the NWTCB respectively.

For a definition of the fragment descriptor, see FRAGMENT.

You send datagrams by calling NWSipxSendDatagram. Before calling
NWSipxSendDatagram, you must initialize the following fields in the
NWTCB:

TCBSockHandle Handle of the socket the datagram is to be sent
on.

TCBFragmentCount Number of fragment descriptors in the fragment
list (maximum of 15).

TCBFragmentList Pointer to the fragment list defining the
datagram.

TCBRemoteAddress The network address of the remote system.

Communication Service Group

NWSIPX: Concepts 908

NOTE: If you want to send an IPX header without data, set the
TCBFragmentCount field to zero. The API will then ignore the
TCBFragmentList field.

You can optionally specify the IPX packet type to be stored in the IPX
protocol header by either setting the SIPacketType parameter of the socket
(see SIPX_SOCKET_INFO) or by setting the SIPX_SNDDG_PACKET_TYPE
flag and storing the packet type value in the TCBFlags and TCBPacketType
fields of the NWTCB passed to NWSipxSendDatagram.

You are not required to determine and maintain the address of the next hop
in the network path to a remote system (also known as the local target).
Whenever datagrams are sent to a remote system, the NWSIPX API
determines and maintains the address of the local target. If the next hop in
the network path to the remote system cannot be ascertained by the API
when you call NWSipxSendDatagram, the
SIPX_NO_ROUTE_TO_TARGET status is returned. Even though you are
not required to initially determine the local target address, you must request
the API to verify the local target address whenever it appears that the path
to the remote system is no longer valid. This is done by setting the
SIPX_SNDDG_VERIFY_ROUTE flag in the TCBFlags field of the NWTCB
before calling NWSipxSendDatagram to send the next datagram. The
SIPX_SNDDG_VERIFY_ROUTE flag should not be set every time
NWSIPXSendDatagram is called, as it causes the API to flush the
destination address from its route cache and query the network for a new
route, resulting in higher processing overhead and degraded performance.

You can also request certain routing options when sending a datagram. The
following table shows the options and the methods used to select the
options.

Select a specific
subnetwork

Set the SIPX_SNDDG_SPECIFIC_ROUTE flag in
the TCBFlags field and store the handle of the
subnetwork to use in the TCBSubnetworkHandle
field of the NWTCB.

Select the best route
over any
subnetwork

Set the SIPX_SNDDG_BEST_ROUTE flag in the
TCBFlags field of the NWTCB.

When the message has been successfully sent, you are notified using the
event notification method specified in the NWTCB. The TCBBytesTransferred
, TCBFinalStatus, TCBPacketType, and TCBBoardNumber fields of the NWTCB
are updated to reflect the number of data bytes actually sent, the final status
of the service request, the packet type value stored in the IPX header, and
the board number of the network interface card used to send the datagram.

You receive datagrams by calling NWSipxReceiveDatagram. You are
responsible for allocating the data space in which to store the input

Communication Service Group

NWSIPX: Concepts 909

datagram. Before calling NWSipxRecieveDatagram, the you must initialize
the following fields in the NWTCB:

TCBSockHandle Handle of the socket to monitor for input.

TCBFragmentCount Number of fragment descriptors in the fragment
list (maximum of 15).

TCBFragmentList Pointer to the fragment list defining the
allocated space.

When a datagram has been received, you are notified using the method
specified in the NWTCB. Before you are notified, the NWSIPX API updates
the TCBFinalStatus, TCBBytesTranferred, TCBPacketType, TCBRemoteAddress,
and TCBSubnetworkHandle fields of the NWTCB.

You must segment outgoing messages according to the maximum packet
size supported by the underlying network layer. Conversely, you must also
reassemble any data fragments received as input into a single datagram.
The maximum packet size is determined for a specific socket by calling
NWSipxGetMaxNsduSize or by referencing the SIMaxNsduSize socket
parameter. (See SIPX_SOCKET_INFO.)

If checksum processing is desired, you can request it when calling
NWSipxSendDatagram by setting the
SIPX_SNDDG_GENERATE_CHKSUM flag in the TCBFlags field of the
NWTCB. The API will generate a checksum for that message only.
Datagrams received with checksums will be automatically validated before
being passed to you.

Parent Topic: NWSIPX Datagram Service

Event Notification in NWSIPX

When allocating an NWTCB, you select the method of event notification to
be employed for any function using the NWTCB. The following event
notification methods are available:

Blocking

Polling

Callback functions

User-managed events

API-managed events

Multiplexed API-managed events

Communication Service Group

NWSIPX: Concepts 910

The event notification method of a request is determined by the NWTCB
that a function uses. When you allocate an NWTCB, you specify an event
notification method that is to be assigned to the NWTCB. Whenever that
NWTCB is used, the event notification method associated with the NWTCB
is invoked to indicate the completion of the service request.

You can change the event notification method associated with an NWTCB
by using one of the following methods:

Call NWSipxChangeControlBlock.

Retrieve the NWTCB element parameters by calling
NWSipxGetInformation, change the NWIEventType and NWIEventInfo
element parameters, and then call NWSipxSetInformation to make the
change.

If an NWSIPX function requires an NWTCB, the return value indicates
whether or not the request was initiated successfully, and the API stores the
final status of the request in the TCBFinalStatus field of the NWTCB when
the request completes. If a service request requiring an NWTCB cannot be
initiated successfully, (that is, the return value indicates an error), the return
value is the final status of the request and the TCBFinalStatus field is not
updated.

The SIPX_SUCCESS and SIPX_ERROR macros are provided to help
applications easily determine whether an error has occurred during the
execution of an NWSIPX service request. These macros take a function's
return value or the contents of an NWTCB's TCBFinalStatus field, and return
a boolean value of TRUE or FALSE, indicating the success or failure of the
service request.

The event notification methods are described in the following table:

Event Notification
Method

Description

Blocking
(SIPX_BLOCKING)

The function is blocked; that is, control is not
returned on that execution thread until the
request is complete. You must then check the
TCBFinalStatus field of the NWTCB to
determine the result of the service request.

Polling
(SIPX_POLLING)

The function returns immediately. If the
request was initiated successfully, you must
call NWPoll repetitively until a status other
than SIPX_PENDING is returned, indicating
that the request has completed. You must then
check the TCBFinalStatus field of the NWTCB
to determine the result of the service request.

Callback function
(SIPX_CALLBACK)

The function returns immediately. If the
request was initiated successfully, your
callback function is called when the request

Communication Service Group

NWSIPX: Concepts 911

completes.
When the callback function receives control,
you must check the TCBFinalStatus field of the
NWTCB to determine the result of the service
request.
You must not block on a callback function
execution thread.

The address of the callback function is passed
as a parameter to NWSipxAllocControlBlock
when the associated NWTCB is allocated. The
callback address can be changed by calling
NWSipxChangeControlBlock or by storing
the address of the new callback function in the
NWIEventInfo NWTCB element parameter by
calling NWSIpxSetInformation.
Every callback function has the prototype of :
void (N_CDECL
Callback_Function)(*NWTCB)

User-managed
events
(SIPX_USER_EVENT
)

The function returns immediately. If the
request was initiated successfully, your
application's event object is signaled when the
request completes.
When you receive control, you must check the
TCBFinalStatus field of the NWTCB to
determine the result of the service request.
A handle to the event object that you allocated
is passed as a parameter to
NWSipxAllocControlBlock. The event object
handle can be changed by calling
NWSipxChangeControlBlock, or by storing a
new event object handle in the NWIEventInfo
NWTCB event parameter and calling
NWSipxSetInformation.
Any type of event object supported by the OS
platform can be used, and it is your
responsibility to coordinate any execution
thread synchronization associated with the
signaled event object.

API-managed events
(SIPX_API_EVENT)

The function returns immediately. If the
request was initiated successfully, you must
call NWSipxWaitForSingleEvent , which
blocks until the request completes or the
specified timeout period has elapsed. You
must then check the TCBFinalStatus field of the
NWTCB to determine the result of the service
request.
The use of event objects for thread
synchronization is completely managed by the
API.

Multiplexed This method of event notification allows you to

Communication Service Group

NWSIPX: Concepts 912

Multiplexed
API-managed events
(SIPX_API_MUX_EV
ENT)

This method of event notification allows you to
monitor multiple NWTCBs for event
completion with a single call to
NWSipxWaitForMultipleEvents.
To group NWTCBs for use by
NWSipxWaitForMultipleEvents, an NWTCB
mux group must be created and the mux
group handle specified when allocating the
NWTCB. A new NWTCB mux group is
automatically created by the NWSIPX API
whenever a mux group handle value of
SIPX_ALLOC_MUX_GROUP is passed to
NWSIPXAllocControlBlock. If successfully
allocated, the handle of the new NWTCB mux
group is returned for use with subsequent calls
to NWSipxAllocControlBlock.
The mux group handle can be changed by
calling NWSipxChangeControlBlock or by
storing the new mux group handle into the
NWIEventInfo NWTCB element parameter and
calling NWSipxSetInformation.
To monitor multiple NWTCBs, you must call
NWSipxWaitForMultipleEvents, which
blocks until an event completes for one of the
multiplexed NWTCBs or the specified timeout
period has elapsed. A pointer to the NWTCB
with the completed event is returned. you
must then check the TCBFinalStatus field of the
NWTCB to determine the result of the service
request.
The use of event objects for thread
synchronization is completely managed by the
API.

The following functions are used for event notification management:

Function Header Purpose

NWSipxAllocControlBloc
k

nwsipx32.
h

Allocates an NWTCB.

NWSipxPoll nwsipx32.
h

Checks if a pending request
has completed.

NWSipxWaitForMultiple
Events

nwsipx32.
h

Monitors multiple NWTCBs
for a transport event.

NWSipxWaitForSingleEv
ent

nwsipx32.
h

Monitors a single NWTCB
for a transport event.

Communication Service Group

NWSIPX: Concepts 913

Migrating to NWSIPX from Previous IPX/SPX APIs

Client applications written to use previous versions of IPX/SPX APIs can be
converted to use the NWSIPX API in a direct manner. In general, the overall
logic flow of an existing application does not have to change when using the
NWSIPX API and in many areas can be greatly simplified. Existing
applications must be modified in the following areas to use the NWSIPX
API:

Use 32-bit memory addresses

Use new NWSIPX functions

Use NWTCBs instead of ECBs

Investigate and possibly use new event notification methods

Remove code that builds IPX and SPX headers

Remove code that determines the next hop in network path (local target)

Query the API for the maximum size datagram or message that can be
sent

Open and use connection endpoints for connection-oriented services

Investigate use of operational parameters

The NWSIPX API supports 32-bit addressing. It is assumed that your
application is written to operate in a 32-bit environment.

The NWSIPX API supports a set of functions that are similar to the functions
supported by previous IPX/SPX APIs but have been adapted to the new
capabilities of the NWSIPX API. In most cases, migrating from a previous
API to the NWSIPX API requires replacing the old API service requests with
the analogous service requests of the NWSIPX API. However, there are a
few old API service requests that have either been removed or the function
is provided for in a new way. Most often, this is because the API has
assumed responsibility for the missing function and your application can be
simplified. See NWSIPX: Functions for a complete description of each of the
NWSIPX functions.

Instead of ECBs, you use NWTCBs to interface with the NWSIPX API.
NWTCBs are used in the same fashion as ECBs, but you must allocate them
by calling NWSipxAllocControlBlock, instead of allocating memory for the
NWTCB yourself. The NWTCB is used to store information needed by the
API to properly satisfy the service request. The API stores results of the
service request in the NWTCB when the request completes. When allocating
an NWTCB, you select the method of event notification to be employed for
any function using the NWTCB. See NWTCB Management for a complete
description of the NWTCB and its use.

Communication Service Group

NWSIPX: Concepts 914

Every event notification method (that is, synchronous, ESR, and so on)
supported by previous IPX/SPX APIs is supported by the NWSIPX API. As
a result, the overall program structure and logic flow of an application is not
required to change. Also, new event notification methods have been added
to take advantage of the capabilities of various OS platforms. A key point is
that you are not restricted to using a single event notification method, but
can choose any event notification method for each function. This gives you
greater flexibility in your approach to accessing the network and processing
network events. See Event Notification in NWSIPX for complete details.

You are no longer required to build or examine IPX and SPX protocol
headers. Protocol headers are built by the API on your behalf. The NWSIPX
API allows you to specify the values of user-definable fields in IPX and SPX
headers either by setting an operational parameter that causes the selected
value to appear in the protocol headers of all messages sent, or by
specifying values on a per-message basis. Because you don't have to build
protocol headers, client applications can be simplified to concentrate on
exchanging data with peers without having to manage the protocols
required to transfer the messages across the network. See Datagram
Message Management and Data Transfer and Connection-Oriented
Message Management and Data Transfer for a complete description of
sending and receiving datagrams and messages.

When using datagram services, you are no longer required to determine
and maintain the address of the next hop in the network path to a remote
system (also known as the local target). Whenever datagrams are sent to a
remote system, the API determines and maintains the address of the local
target. If the next hop in the network path to the remote system cannot be
ascertained by the API, you are notified. Even though you are not required
to initially determine the local target address, you must request the API to
verify the local target address whenever it appears that the path to the
remote system is no longer valid. Local target processing applies to
datagram services only. See Datagram Message Management and Data
Transfer for a complete description of local target processing.

You are still responsible for segmenting and reassembling data segments
that are larger than the message size supported by the underlying transport
layer. To determine the maximum size data segment supported by the
network, you must query the API on a peer socket or connection endpoint
basis depending on whether a datagram or connection oriented-message is
being sent. The maximum message size associated with each socket or
connection endpoint varies depending on the capabilities of the network
layer protocols being used and the type of network media the data message
must traverse. See Datagram Message Management and Data Transfer and
Connection-Oriented Message Management and Data Transfer for more
information on segmenting and reassembling datagrams and messages.

The functions associated with connection-oriented services are used within
the context of a connection endpoint. By definition, IPX sockets are the
network addressable service access points for the IPX/SPX protocols.
Connection endpoints act as extensions to the IPX socket for
connection-oriented services. When a connection endpoint is opened, you
receive a connection endpoint handle that uniquely identifies the connection

Communication Service Group

NWSIPX: Concepts 915

endpoint. The connection endpoint handle is required by all
connection-oriented functions and is used as the connection identifier for
any transport connection using the connection endpoint (only one transport
connection can be open on a connection endpoint at a time). Because a
connection endpoint is always associated with an IPX socket, the API
automatically opens a socket for every connection endpoint that is allocated.
The socket number can be specified or it can be dynamically selected by the
API. Each connection endpoint has a set of operational parameters that
affect the operation of any transport connection using the connection
endpoint. You can read and modify these parameters. See Connection
Endpoint Management in NWSIPX for complete information on connections
and their use.

Various elements of the NWSIPX API have operational parameters that
affect the operation of the API. The API elements supporting parameters are
the API environment, sockets, connection endpoints, and NWTCBs. Some
parameters are informational (read-only) and others can be modified. All
parameters are set with the default values that allow for API operation
equivalent to that of the previous IPX/SPX APIs. As a result, existing
applications are not required to read or modify parameters to use the
NWSIPX API. But it is worthwhile to become familiar with the element
parameters and how they can enhance the operation of your application.
See NWSIPX Elements for more information on API element parameters
and their use.

NWSIPX API Toolbox

The NWSIPX API contains a set of functions and macros that are not
included as part the datagram or connection-oriented services, but are
useful for other reasons. These services include canceling pending requests,
determining the local network address for a socket, timer services,
advertising, querying for network services, and determining if an NWSIPX
status code indicates an error condition. Because all are extraneous to the
datagram and connection oriented services, they have been grouped
together as an API Toolbox.

Occasionally, you might want to cancel a request that is in progress. To do
so, call NWSipxCancelPendingRequest with a pointer to the NWTCB
associated with the pending request. The request is immediately terminated
and the appropriate event notification method invoked as specified by the
NWTCB. The TCBFinalStatus field of the NWTCB contains the
SIPX_CANCELED status. This service only applies to requests that use an
NWTCB.

If you need to know the local network address of a socket, call
NWSipxGetInternetAddress. The network address is returned in the
TCBRemoteAddress field of the NWTCB used for the request.

If you require a timing service, you can use
NWSipxRegisterForTransportEvent. To do so, you must store the

Communication Service Group

NWSIPX: Concepts 916

SIPX_SCHEDULE_TIMER_EVENT event type and the timeout value in the
TCBTransportEvent and TCBTimeout fields of the NWTCB used with
NWSipxRegisterForTransportEvent. The advantage of using this service
over native timing services provided by the OS platform is that any of the
event notification methods provided by the NWSIPX API can be used to
indicate the expiration of the timer.

You can register for notification of subnetwork status changes by storing the
SIPX_SUBNET_STATUS_CHANGE event type in the
TCBTransportEventType field of the NWTCB and calling
NWSipxRegisterForTransportEvent. When a change in status occurs for a
subnetwork, you will be notified according to the event notification
methods specified for the NWTCB. You must call NWSipxGetInformation
to get the subnetwork information. (The subnetwork information is part of
the API environment parameters.)

If you provide a service that you want to advertise to the network, you can
call NWSipxAdvertiseService to initiate the periodic broadcasting of the
service to the network. The NWSIPX API broadcasts the service at 60 second
intervals for as long as the request is active. As long as the API is advertising
the service, queries for the service by other network nodes are answered
automatically in your behalf. To cancel the advertising of a service, call
NWSipxCancelAdvertiseService.

To query for network services, call NWSipxQueryService. You pass in an
input buffer where the query response is stored. Upon receipt of the query
response, the API stores server information into the input buffer until it is
full or all of the service information has been stored. To terminate a service
query request, call NWSipxCancelPendingRequest.

The SIPX_SUCCESS and SIPX_ERROR macros are provided to help you
easily determine whether or not an error has occurred during the execution
of an NWSIPX API service request. These macros take an NWSIPX status
code (that is, a function return value or the contents of the TCBFinalStatus
field of the NWTCB) as input and return a value of TRUE or FALSE,
indicating the success or failure of the service request. Often the course of
action following an error is the same regardless of the error type. These
macros provide an easy way for you to determine if an error has occurred.
The SIPX_SUCCESS macro returns TRUE if the status code does not
indicate an error condition. The SIPX_ERROR macro returns TRUE if the
status code indicates an error condition.

The NWSIPX API Toolbox functions and macros are listed below:

Function Header Purpose

NWSipxAdvertiseService nwsipx32.
h

Advertises a service.

NWSipxCancelAdvertiseSe
rvice

nwsipx32.
h

Cancels an active advertise
service request.

NWSipxCancelPendingReq
uest

nwsipx32.
h

Cancels a pending request.

Communication Service Group

NWSIPX: Concepts 917

NWSipxGetInternetAddres
s

nwsipx32.
h

Returns the local network
address of a specified
socket.

NWSipxQueryService nwsipx32.
h

Broadcasts a query to
discover the identities of all
servers of any type, all
servers of a specific type, or
the nearest server of a
specific type and then
returns the response.

NWSipxRegisterForTransp
ortEvent

nwsipx32.
h

Registers to receive a
transport event.

SIPX_ERROR nwsipx32.
h

Indicates whether an
NWSIPX return value or
status code indicates an
error.

SIPX_SUCCESS nwsipx32.
h

Indicates whether an
NWSIPX status code
indicates success.

NWSIPX Connection Establishment

The establishment of transport connections can be initiated by either local or
remote network applications. To establish a transport connection, the local
client application calls NWSipxEstablishConnection. Before calling
NWSipxEstablishConnection, you must open a connection endpoint and
store the handle of the connection endpoint and the network address of the
destination system in the TCBConnHandle and TCBRemoteAddress fields of
the NWTCB passed to NWSipxEstablishConnection. The connection
endpoint handle is used as the local connection identifier for the transport
connection (only one transport connection can be opened on a connection
endpoint at a time). When the connection is established, or if an error
occurs, you are notified by the event notification method selected in the
NWTCB.

To listen for incoming transport connection requests, you open a connection
endpoint and then call NWSipxListenForConnection. If you have selected
immediate acceptance of the transport connection request (the default), the
request is immediately accepted by the API and you are notified of the
connection establishment. The connection endpoint is put into the connected
state and is now usable for data transfer. A new connection endpoint must
be used to listen for further incoming connections.

If you select delayed acceptance, the API delays accepting the transport
connection request until you call NWSipxAcceptConnectionEx. You can
accept the incoming connection on the same connection endpoint used for

Communication Service Group

NWSIPX: Concepts 918

listening or on a different connection endpoint. In this way, you can
selectively accept incoming connections and a single connection endpoint
can be used to listen for all incoming connections. If the connection is
accepted on a different connection endpoint than the listening connection
endpoint, the listening connection endpoint is returned to the
SIPX_ALLOCATED state. If you want to reject the incoming connection, call
NWSipxTerminateConnection with the SIPX_TERM_REJECT flag set in
the TCBFlags field of the NWTCB.

You are not required to pre-post receive buffers (that is, call
NWSipxReceiveMessage) to listen for incoming connections.

Parent Topic: NWSIPX Connection-Oriented Service

NWSIPX Connection Release

To terminate a transport connection, call NWSipxTerminateConnection.
The connection endpoint handle of the transport connection being
terminated must be stored in the TCBConnHandle field of the NWTCB before
calling NWSipxTerminateConnection. The NWSIPX API terminates the
transport connection and notifies you according to the event notification
method selected in the NWTCB. You select whether an acknowledged
release or an abortive release occurs by setting the SIPX_TERM_ACKED or
SIPX_TERM_ABORT flag in the TCBFlags field of the NWTCB. An
acknowledged release causes the API to delay notification that the
termination is complete until the peer acknowledges the transport
connection release. When the abortive release is selected, you are notified of
the termination immediately.

You can optionally monitor transport connections for termination by calling
NWSipxRegisterForTransportEvent with the
SIPX_LISTEN_FOR_DISCONNECT event type and the connection
endpoint handle stored in the TCBTransportEvent and TCBConnHandle fields
of the NWTCB. If a transport connection is terminated for any reason, you
are notified using the event notification method selected for the NWTCB.

Parent Topic: NWSIPX Connection-Oriented Service

NWSIPX Connection-Oriented Service

The NWSIPX API supports connection oriented services. These services
include establishing transport connections with peer applications, data
transfer, and terminating transport connections. Connection oriented
services use the SPX protocol to establish and maintain transport
connections and to provide the reliable exchange of data messages with
flow control.

When using connection oriented services, you call functions within the

Communication Service Group

NWSIPX: Concepts 919

context of connection endpoints. All connection-oriented functions either
require a connection endpoint or are used to open or close a connection
endpoint.

You are responsible for segmenting and reassembling data messages larger
than the maximum message size supported by the underlying transport
layer. You must call NWSipxGetMaxTsduSize or reference the
CIMaxTsduSize connection endpoint parameter to get the maximum
transport services data unit (TSDU) size supported by the connection
endpoint through which the data message is to be sent or received. (See
SIPX_CONN_INFO.) By using the maximum TSDU size determined by the
API, you can send the largest messages possible according to the
capabilities of the underlying network protocols and the requirements of
the network path being used, rather than using the smallest maximum
message size that fits all networks.You can select between two output
modes when sending messages. The fragmentation mode (default) causes
the API to automatically fragment data messages that are too large for
transfer across the network to the peer system. The transparent mode causes
the API to send data messages as received from you without further
fragmentation. In this mode, the responsibility of determining valid
message size rests with you.

The API adds the SPX header to messages sent to remote applications. You
can optionally specify the data stream type value that is included in the SPX
header by setting the CIDataStreamType connection endpoint parameter or
when calling NWSipxSendMessage. You can also request the attention flag
in the SPX header to be set at the time you call NWSipxSendMessage.

You can select between streaming and message mode when receiving data.
In streaming mode (the default) you receive message fragments as they
arrive from the network and you are responsible for putting them into a
meaningful context. In message mode, only whole messages are received
unless the receive buffer is too small to contain the whole message. In this
case, you must call the API again to receive the rest of the message. If the
API runs out of resources to stage an input message, a data overrun error
occurs and the remainder of the input is discarded.

The following functions are used for connection management:

Function Header Purpose

NWSipxAcceptConnection
Ex

nwsipx32.
h

Accepts an incoming
connection.

NWSipxEstablishConnecti
on

nwsipx32.
h

Establishes a transport
connection with a peer.

NWSipxGetMaxTsduSize nwsipx32.
h

Returns the maximum data
packet size that can be sent
as a connection-oriented
message for a specific
connection endpoint.

NWSipxListenForConnecti nwsipx32. Listens for incoming

Communication Service Group

NWSIPX: Concepts 920

on h connections.

NWSipxReceiveMessage nwsipx32.
h

Prepares you to receive an
input message.

NWSipxRegisterForTransp
ortEvent

nwsipx32.
h

Registers to receive a
transport event.

NWSipxSendMessage nwsipx32.
h

Sends an output message to
a peer.

NWSipxTerminateConnect
ion

nwsipx32.
h

Terminates a transport
connection.

Related Topics

NWSIPX Connection Establishment

Connection-Oriented Message Management and Data Transfer

NWSIPX Connection Release

NWSIPX Datagram Service

The NWSIPX API supports datagram services. These services are limited to
data transfer. The data transfer service uses the IPX protocol to provide
connectionless exchange of data messages without flow control. Being
connectionless in nature, the IPX protocol does not guarantee delivery of
messages or that messages will be received in the order they are sent. It is up
to you to provide message recovery and to put datagram messages into a
meaningful context.

Datagram services are provided within the context of an IPX socket. All
datagram service functions either require an open socket or are used to open
or close a socket.

When using datagram services, you must be aware of the maximum packet
size supported by the underlying network layer. You must segment data
messages larger than the datagram packet size and reassemble input
messages too large to fit in a single datagram message.

You are not required to build the IPX header when sending datagrams. The
API adds the IPX header to any message sent to remote applications. You
can optionally specify the value of the IPX packet type passed in the Packet
Type field of the IPX header.

Checksum processing (generation and validation of checksums) for
datagrams is handled completely by the NWSIPX API on your behalf. You
can request checksum generation on a per-datagram basis or invoke
automatic checksum processing when opening a socket. If automatic
checksum processing is requested when opening a socket, every datagram
sent over that socket will have a checksum calculated and stored in the IPX
header. All datagrams received with a checksum will be automatically

Communication Service Group

NWSIPX: Concepts 921

validated by the API before being passed to you.

Your applications can also exercise some control over the routing of a
datagram. These options include:

Specifying the subnetwork over which a datagram is sent

Requesting the API to verify and/or refresh the current network route to
the destination system

Requesting the API to use the best route over any subnetwork available

The functions comprising the datagram services are listed below:

Function Header Purpose

NWSipxGetMaxNsduS
ize

nwsipx32.
h

Returns the maximum data
packet size that can be sent as a
datagram for a specific socket.

NWSipxReceiveDatagr
am

nwsipx32.
h

Prepares a client application to
receive a datagram.

NWSipxSendDatagram nwsipx32.
h

Sends a datagram.

Related Topic: Datagram Message Management and Data Transfer

NWSIPX Elements

The NWSIPX API consists of the following elements:

The API environment that reflects the current state and capabilities of the
NWSIPX API on your local system

Service primitive functions that make the services of the IPX and SPX
protocols available to API users

Sockets which are the network addressable service access points of the
IPX/SPX protocol stack

Connection endpoints that provide the processing context for
connection-oriented services

NWTCBs that are used to exchange information between client
applications and NWSIPX Services

There are parameters associated with some of the API elements that
describe and affect the operation of the NWSIPX API. The following
NWSIPX API elements have parameters associated with them:

Communication Service Group

NWSIPX: Concepts 922

The API environment

The NWTCB

Sockets

Connection endpoints

A unique data structure is defined for each API element supporting
parameters. These structures are used to retrieve and set an element's
parameter values. Client applications can retrieve and change these
parameters by calling NWSipxGetInformation and
NWSipxSetInformation.

To retrieve a copy of the parameters of an API element, you must take the
following steps:

1. Retrieve the parameter information by calling
NWSipxGetInformation.

2. When the parameter information is no longer needed, free the data
structure holding the parameter information by calling
NWSipxFreeInformation.

To change the parameters of an API element, you must take the following
steps:

1. Retrieve the parameter information by calling
NWSipxGetInformation.

2. Set the desired fields in the returned structure.

3. Make the changes to the API elements parameters by calling
NWSipxSetInformation.

4. Free the data structure holding the parameter information by calling
NWSipxFreeInformation.

The following table lists the data structures that are associated with each of
the API elements:

API Element Associated Data Structure

API Environment SIPX_API_INFO

NWTCB SIPX_NWTCB_INFO

Sockets SIPX_SOCKET_INFO

Connection endpoints SIPX_CONN_INFO

For a description of the NWSIPX API element parameters, see
SIPX_API_INFO, SIPX_NWTCB_INFO, SIPX_SOCKET_INFO, and
SIPX_CONN_INFO in the Structure Reference.

Communication Service Group

NWSIPX: Concepts 923

NWSIPX Environment Management

NWSIPX Services maintains a set of API element parameters that describe
the API environment and its operations. These parameters are retrieved by
calling NWSipxGetInformation with the infoType parameter set to
SIPX_API_INFORMATION. These parameters are read-only and cannot be
set.

The API element parameters are returned in a SIPX_API_INFO structure.
See SIPX_API_INFO.

NWSIPX Overview

With the advent and general availability of OS platforms supporting 32-bit
addressing, the previous 16-bit IPX/SPX™ APIs are insufficient to take
advantage of the new 32-bit computing environment. The NWSIPX API is a
32-bit interface that is rich enough in functionality to operate on all
currently known OS platforms, allowing client application developers to
implement to a single IPX/SPX interface for all supported client OS
platforms. While Novell® will continue to support the other 16-bit IPX/SPX
APIs, the NWSIPX API is the standard 32-bit IPX/SPX API for all 32-bit
client OS platforms.

The NWSIPX API is a 32-bit, user-mode API that provides access to all of
the services available with the IPX and SPX protocols. Although the
NWSIPX API is similar in capabilities to its predecessors, it is a departure
from the earlier APIs that provided separate interfaces for IPX and SPX. The
NWSIPX API provides a single interface to both IPX and SPX, freeing
applications from the complexity of correlating and coordinating the events
from both the IPX and SPX services.

The NWSIPX API allows you to view IPX/SPX communication as sending
messages or datagrams over a connection-oriented or datagram service. The
API frees the applications from the details that are specific to the IPX and
SPX protocols. Internally, the API uses SPX for connection management and
providing reliable data transfer with flow control. The API uses IPX to
provide connectionless, unreliable data transfer without flow control.

By removing many of the protocol-specific details, the NWSIPX API also
reduces the complexity of client applications. For example, you are no
longer required to build the IPX and SPX protocol headers to send with their
data messages. Instead, the NWSIPX API adds all necessary protocol
headers that the you would normally have to create.

NOTE: While the NWSIPX API provides a simplified interface to
IPX/SPX, it is not a protocol-independent interface. Developers who
need platform and network protocol independence should look to the

Communication Service Group

NWSIPX: Concepts 924

Winsock and TLI/XTI interfaces, which Novell supports.

In providing protocol independence, transport independent APIs
sometimes produce inefficiencies and make generalizations that can
hide or detract from the specialized features of a given protocol. As a
result, some developers prefer to use transport-specific APIs that expose
all of the features of a protocol suite and facilitate their use. The
NWSIPX API is a 32-bit service interface that provides direct and full
access to all of the services available with the IPX and SPX protocols,
while exposing the services with a simplified interface.

The new features of the NWSIPX API are listed below:

A new interface control block, called the NetWare® Transport Control
Block (NWTCB), is used to transfer information between the your
application and the API. NWTCB management (allocating and freeing) is
provided through the API. The Event Control Blocks (ECBs) utilized by
previous IPX and SPX services are not supported.

You are no longer required to build the IPX and SPX protocol headers to
send with their data messages. Instead, the NWSIPX API adds all
necessary protocol headers that the you would otherwise have to create.

When using datagram services, you are no longer required to determine
and maintain the address of the next hop in the network path to a remote
system (also known as the local target). Whenever datagrams are sent to a
remote system, the API determines and maintains the address of the local
target. If the next hop in the network path to the remote system cannot be
ascertained by the API, you are notified. Even though you are not
required to initially determine the local target address, you must request
the API to verify the local target address whenever it appears that the
path to the remote system is no longer valid. Local target processing
applies to datagram services only.

When using the NWSIPX connection-oriented service, you can select
between streaming and message mode when receiving data. In streaming
mode, you receive message fragments as they arrive from the network
and are responsible for putting them into a meaningful context. In
message mode, only whole messages are received unless the receive
buffer is too small to contain the whole message. In this case, you must
call the API again to receive the rest of the message. (The API might
discard the remainder of the message if it doesn't have the resources to
buffer the excess.) You can also select between fragmentation mode and
transparent mode when sending data. In fragmentation mode, the API
will automatically fragment the data message for delivery across the
network to the peer system as needed. In transparent mode, the API will
send the data message as received from your application and will not
fragment the data message further.

You are responsible for segmenting and reassembling data messages
larger than the maximum message size supported by the underlying
network or transport layer. You must query the API for the maximum
size supported for the socket or connection endpoint through which the

Communication Service Group

NWSIPX: Concepts 925

data message will be sent or received. The maximum message size
associated with each socket or connection endpoint can vary, depending
upon the type of networking media the data message must traverse.

For connection endpoints, the maximum message size can be unlimited,
in which case, the API will automatically fragment the message as
needed for delivery across the wire.

For both connection-oriented and datagram services, you can select, on a
per request basis, one of several methods for event notification. These
methods include API-managed events, multiplexed API-managed
events, callback functions, polling, blocking, and user-managed events.
The desired event notification method is selected when an NWTCB is
allocated and can be changed any time the NWTCB is not in use. You are
free to employ whatever method of event notification best fits its need for
a given task.

The NWSIPX API supports simultaneous attachment to multiple
networks and/or multiple attachments to the same physical network
using different data encapsulation methods, such as Ethernet 802.2 and
Ethernet II. Each network attachment is referred to as a subnetwork. You
are not required to select or be aware of which subnetwork must be used
for communication with a remote system. The NWSIPX API does this
automatically for you. However, the NWSIPX API does allow you to
specify the subnetwork to use.

The NWSIPX API supports other services beyond the scope of datagram
and connection-oriented services. These additional services include
canceling pending requests, timer services, determining local network
addresses, advertising and querying for services, and determining if an
NWSIPX status code indicates an error. These supplementary services
have been grouped together and are referred to as the NWSIPX API
toolbox.

The following sections describe how to use the features of the NWSIPX API.

NWTCB Management

The NWTCB is used to transfer information between your application and
the NWSIPX API. Client applications use the NWTCB to store information
that is needed by the API to properly satisfy a service request. The API
stores the results of the service request in the NWTCB when the request
completes. Client applications allocate NWTCBs by calling
NWSipxAllocControlBlock. Applications free NWTCBs by calling
NWSipxFreeControlBlock.

NWSIPX Services maintains a set of API element parameters for each
NWTCB. These parameters are retrieved by calling
NWSipxGetInformation with the infoType parameter set to
SIPX_NWTCB_INFORMATION.

Communication Service Group

NWSIPX: Concepts 926

The API element parameters are returned in a SIPX_NWTCB_INFO
structure. For a description of the NWTCB element parameters and the
SIPX_API_INFO structure, see SIPX_API_INFO.

The following functions are used for control block management:

Function Header Purpose

NWSipxAllocControlBloc
k

nwsipx32.
h

Allocates an NWTCB.

NWSipxChangeControlBl
ock

nwsipx32.
h

Changes the event
notification method of an
NWTCB.

NWSipxFreeControlBlock nwsipx32.
h

Frees an NWTCB.

Socket Management in NWSIPX

IPX sockets are the network-addressable service access points of the
IPX/SPX protocol stack. All communication with peer applications using
the IPX and SPX protocols must be sent to the net.node.socket address of the
destination system. As a result, you must open a socket to receive messages
from other network applications. Explicit management of sockets is
required only when using datagram services. Sockets used by connection
endpoints are automatically opened when the connection endpoint is
opened.

When opening a socket, you can specify the socket number to open or allow
the API to dynamically select an unused socket number. A socket whose
number has been specified by a client is known as a static socket, while a
socket whose number has been selected by the NWSIPX API is known as a
dynamic socket. All sockets are opened as short-lived sockets, meaning they
are closed when the application terminates.

You open IPX sockets by calling NWSipxOpenSocket, which blocks until
the request has completed. The return value indicates success or error in
opening the socket. You close IPX sockets by calling NWSipxCloseSocket.

NWSIPX Services maintains a set of socket-element parameters for each
socket. These parameters are retrieved by calling NWSipxGetInformation
with the infoType parameter set to SIPX_SOCKET_INFORMATION.

The socket element parameters are returned in an SIPX_SOCKET_INFO
structure.

The following functions are used for socket management:

Communication Service Group

NWSIPX: Concepts 927

Function Header Purpose

NWSipxCloseSocket nwsipx32.
h

Closes an open IPX socket.

NWSipxOpenSocket nwsipx32.
h

Opens an IPX socket.

Communication Service Group

NWSIPX: Concepts 928

NWSIPX: Functions

Communication Service Group

NWSIPX: Functions 929

NWSipxAcceptConnection

NWSipxAcceptConnection is obsolete. See NWSipxAcceptConnectionEx.
Platform: OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxAcceptConnection (
 PNWTCB pNwtcb,
 SIPXCONN_HANDLE hAcceptHandle);

Parameters

pNwtcb

(IN) Points to theNetWare® Transport Control Block (NWTCB) for this
request.

hAcceptHandle

(IN) Specifies the handle of the connection endpoint to be used for this
connection.

Return Values

SIPX_ACCESS_VIOLATION The pointer to the NWTCB is
invalid.

SIPX_INVALID_CONNECTION_
HANDLE

An invalid hAcceptHandle was
specified, or the listening
connection endpoint handle in the
NWTCB is invalid.

SIPX_INVALID_IOCTL_BUFFER
_LEN

Versions of NWSIPX DLL and
NLM™ are mismatched.

SIPX_INVALID_IOCTL_FUNCTI
ON

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_NWTCB Data space pointed to by pNwtcb is
not a valid NWTCB.

SIPX_INVALID_NWTCB_FLAGS Invalid NWTCB flags were
specified.

SIPX_INVALID_STATE The listening connection endpoint
is not in
SIPX_WAITING_ACCEPT state.

Communication Service Group

NWSIPX: Functions 930

SIPX_INVALID_SYNC_TYPE Cannot block within a callback
function.

SIPX_MEMORY_LOCK_ERROR System error: cannot lock
memory.

SIPX_NWTCB_IN_USE The NWTCB is already in use.

SIPX_PENDING Request accepted without error
and is in progress.

SPX_PRIMITIVE_NOT_SUPPORT
ED

NWSipxAcceptConnection is not
supported on this platform.

SIPX_SUCCESSFUL Request accepted without error.

Final Status Values

SPX_SUCCESSFUL The request completed without
error.

SIPX_CANCELED The request was canceled.

SIPX_CONNECTION_TERMINA
TED

The connection indication
terminated before it could be
accepted.

SIPX_INSUFFICIENT_RESOURC
ES

System resources required for this
request are unavailable.

SIPX_INTERNAL_ERROR Internal system error occurred
and connection was terminated.

Remarks

WARNING: NWSipxAcceptConnection is not supported on all OS
platforms. For backwards compatibility, all OS platforms will accept
calls to NWSipxAcceptConnection, but those OS platforms that do
not support it will return the SIPX_PRIMITIVE_NOT_SUPPORTED
error status. NWSipxAcceptConnectionEx is supported by all OS
platforms and should be used if cross-platform support is required.

NWSipxAcceptConnection accepts an incoming connection. The user
can specify the connection endpoint on which to accept the connection.

NWSipxAcceptConnection is used only if the
SIPX_LISTEN_DELAY_ACCEPT flag was set when
NWSipxListenForConnection was called.

The NWTCB pointed to by pNwtcb must be the same as was used with
NWSipxListenForConnection.

If NULL is specified for hAcceptHandle the listening connection endpoint

Communication Service Group

NWSIPX: Functions 931

is used for the connection.

To reject an incoming connection, call NWSipxTerminateConnection.

The following NWTCB field must be set before calling
NWSipxTerminateConnection:

TCBConnHandle must contain the handle of the listening connection
endpoint.

The following NWTCB field is set upon completion:

TCBFinalStatus indicates the final status of the request.

See Also

NWSipxAcceptConnectionEx, NWSipxAllocControlBlock,
NWSipxListenForConnection, NWSipxTerminateConnection

Communication Service Group

NWSIPX: Functions 932

NWSipxAcceptConnectionEx

Accepts an incoming connection
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxAcceptConnectionEx (
 PNWTCB pNwtcb,
 PSIPXCONN_HANDLE pAcceptHandle);

Parameters

pNwtcb

(IN) Points to the NWTCB for this request. This must be the same
NWTCB used with NWSipxListenForConnection.

hAcceptHandle

(OUT) Receives the handle of the connection endpoint on which the
connection is accepted. If NULL, the accept connection-endpoint will
not be stored.

Return Values

SIPX_ACCESS_VIOLATION The pointer to the NWTCB is
invalid.

SIPX_INVALID_CONNECTION_
HANDLE

Listening connection-endpoint
handle in the NWTCB is invalid.

SIPX_INVALID_IOCTL_BUFFER
_LEN

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_IOCTL_FUNCTI
ON

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_NWTCB Data space pointed to by pNwtcb is
not a valid NWTCB.

SIPX_INVALID_NWTCB_FLAGS Invalid NWTCB flags were
specified.

SIPX_INVALID_PARAMETER Invalid pAcceptHandle specified.

SIPX_INVALID_STATE The listening connection endpoint
is not in
SIPX_WAITING_ACCEPT state.

Communication Service Group

NWSIPX: Functions 933

SIPX_INVALID_SYNC_TYPE Cannot block within a callback
function.

SIPX_MEMORY_LOCK_ERROR System error: cannot lock
memory.

SIPX_NWTCB_IN_USE The NWTCB is already in use.

SIPX_PENDING Request accepted without error
and is in progress.

SIPX_SUCCESSFUL Request accepted without error.

Final Status Values

SPX_SUCCESSFUL The request completed without
error.

SIPX_CANCELED The request was canceled.

SIPX_CONNECTION_TERMINA
TED

The connection indication
terminated before it could be
accepted.

SIPX_INSUFFICIENT_RESOURC
ES

System resources required for this
request are unavailable.

SIPX_INTERNAL_ERROR Internal system error occurred
and connection was terminated.

Remarks

The connection endpoint on which the connection is accepted is opened
automatically and its handle returned to the caller.

NWSipxAcceptConnection is used only if the
SIPX_LISTEN_DELAY_ACCEPT flag was set when
NWSipxListenForConnection was called.

To reject an incoming connection, call NWSipxTerminateConnection.

It is the responsibility of your application to close the accept connection
endpoint.

The following NWTCB flag may be set in the TCBFlags field.

SIPX_ACCEPT_ON_LISTEN_ENDPOINT-The connection will be accepted
on the listening connection endpoint.

The following NWTCB field must be set before calling
NWSipxTerminateConnection:

TCBConnHandle must contain the handle of the listening connection

Communication Service Group

NWSIPX: Functions 934

endpoint.

The following NWTCB field is set upon completion:

TCBFinalStatus indicates the final status of the request.

See Also

NWSipxAcceptConnection, NWSipxAllocControlBlock,
NWSipxListenForConnection, NWSipxTerminateConnection

Communication Service Group

NWSIPX: Functions 935

NWSipxAdvertiseService

Initiates the advertisement of a client application service
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxAdvertiseService (
 nuint16 serviceType,
 pnstr8 pServiceName,
 SIPXSOCK_HANDLE hSockHandle);

Parameters

serviceType

(IN) Specifies the class of service as assigned by Novell®; for example:

4 OT_FILE_SERVER
5 OT_JOB_SERVER
6 OT_PRINT_SERVER

pServiceName

(IN) Points to a NULL-terminated string containing the unique name
of the server within the network.

hSockHandle

(IN) Specifies the handle of the previously opened socket through
which the advertised service is accessible.

Return Values

SIPX_INSUFFICIENT_RESOURC
ES

System resources required to
satisfy this request are
unavailable.

SIPX_INVALID_IOCTL_BUFFER
_LEN

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_IOCTL_FUNCTI
ON

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_PARAMETER The pServiceName pointer is
invalid.

SIPX_INVALID_SERVICE_NAM The service name did not meet

Communication Service Group

NWSIPX: Functions 936

E proper criteria. (See service name
criteria in the Remarks section.)

SIPX_INVALID_SOCKET_HAND
LE

The socket handle is not valid.

SIPX_SERVICE_ALREADY_ACTI
VE

A service by this name and type is
already active.

SIPX_SOCKET_IN_USE The socket is already in use by a
server.

SIPX_SUCCESSFUL The request completed without
error.

SIPX_UNSUCCESSFUL Advertiser not available.

Remarks

The serviceType parameter value must be formatted in network byte order
(high-low). See NTYPES.H for macros that facilitate conversion to and
from network byte order.

The service name specified by pServiceName must conform to the
following criteria:

Maximum name length is 48 characters, including NULL.

The name can contain any character between 21h (!) and 7Fh (DEL),
excluding the slash, backslash, colon, semicolon, comma, asterisk,
question mark, plus, and minus characters (/\:;,*?+-).

The service type is broadcast on the network every 60 seconds until
canceled by NWSipxCancelAdvertiseService.

If a service query request is received from the network, the NWSIPX API
automatically answers the query as long as the advertise service request
is active.

See Also

NWSipxCancelAdvertiseService, NWSipxQueryServices

Communication Service Group

NWSIPX: Functions 937

NWSipxAllocControlBlock

Allocates an NWTCB
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxAllocControlBlock (
 nuint32 syncType,
 nptr pEventInfo,
 PPNWTCB ppNwtcb);

Parameters

syncType

(IN) Indicates the type of event notification associated with this
NWTCB.

pEventInfo

(IN) Points to a variable containing supplementary information of
differing types depending on the value of syncType.

ppNwtcb

(OUT) Points to a variable of type PNWTCB where the pointer to the
allocated NWTCB will be stored.

Return Values

SIPX_ACCESS_VIOLATION An invalid handle was specified
in pEventInfo.

SIPX_INSUFFICIENT_RESOURC
ES

Required system resources are
unavailable.

SIPX_INVALID_HANDLE An invalid handle specified in
pEventInfo.

SIPX_INVALID_MUX_GROUP_
HANDLE

An invalid NWTCB mux group
handle specified in pEventInfo.

SIPX_INVALID_PARAMETER Either the value of ppNwtcb is
invalid, or the information in
pEventInfo is invalid.

SIPX_INVALID_SYNC_TYPE An invalid event notification type
was specified.

Communication Service Group

NWSIPX: Functions 938

SIPX_SUCCESSFUL The request completed without
error.

Remarks

To free the NWTCB, call NWSipxFreeControlBlock.

syncType indicates the type of notification to associate with the NWTCB.
pEventInfo provides supplementary information that is determined by the
notification type. The following table lists the valid values for syncType
and specifies the associated information that must be supplied by
pEventInfo:

syncType Value syncType Description pEventInfo Value

SIPX_USER_EV
ENT

Your event object will be
signaled upon
completion of the
request.

The handle of the event
object

SIPX_CALLBA
CK

Your callback function
will be called upon
request completion.

The address of your
callback function. Every
callback function has the
prototype of :
void (N_CDECL
Callback_Function)
(*NWTCB)

SIPX_BLOCKIN
G

The client application is
blocked until the request
completes.

NULL

SIPX_POLLING You will determine
request completion by
calling NWSipxPoll

NULL

SIPX_API_EVE
NT

You will determine
request completion by
calling
NWSipxWaitForSingle
Event

NULL

SIPX_API_MUX
_EVENT

You will determine
request completion by
calling
NWSipxWaitForMultip
leEvents.

A pointer to a variable of
type
SIPXMUXGRP_HANDL
E that contains the
handle of the mux group
to which this NWTCB
will be assigned. If a
value of
SIPX_ALLOC_MUX_GR
OUP is specified, the

Communication Service Group

NWSIPX: Functions 939

API creates a new mux
group and stores its
handle into the variable
pointed to by this
parameter.

The event notification method of an NWTCB can be changed by calling
NWSipxChangeControlBlock, or by modifying NIEventType and
NIEventInfo element parameters of the NWTCB with
NWSipxSetInformation.

See Also

NWSipxChangeControlBlock, NWSipxFreeControlBlock, NWSipxPoll,
NWSipxSetInformation, NWSipxWaitForSingleEvent,
NWSipxWaitForMultipleEvents

Communication Service Group

NWSIPX: Functions 940

NWSipxCancelAdvertiseService

Cancels an active advertise service request
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxCancelAdvertiseService (
 nuint16 serviceType,
 pnstr8 pServiceName,
 SIPXSOCK_HANDLE hSockHandle);

Parameters

serviceType

(IN) Specifies the class of service as assigned by Novell; for example:

4 OT_FILE_SERVER
5 OT_JOB_SERVER
6 OT_PRINT_SERVER

pServiceName

(IN) Points to a NULL-terminated string containing the unique name
of the server within the network.

hSockHandle

(IN) Specifies the handle of the socket being used by the service to be
canceled.

Return Values

SPX_INVALID_IOCTL_BUFFER_
LEN

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_IOCTL_FUNCTI
ON

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_PARAMETER The pServiceName parameter is
invalid.

SIPX_INVALID_SOCKET_HAND
LE

The socket handle specified by the
hSocketHandle parameter is
invalid.

SIPX_SERVICE_NOT_ACTIVE The service being canceled is not

Communication Service Group

NWSIPX: Functions 941

currently active.

SIPX_SUCCESSFUL The request completed without
error.

Remarks

This function deletes a service from the network.

The serviceType parameter value must be formatted in network byte order
(high-low). See NTYPES.H for macros that facilitate conversion to and
from network byte order.

The service name specified by pServiceName must conform to the
following criteria:

Maximum name length is 48 characters, including NULL.

The name can contain any character between 21h (!) and 7Fh (DEL),
excluding the slash, backslash, colon, semicolon, comma, asterisk,
question mark, plus, and minus characters (/\:;,*?+-).

See Also

NWSipxAdvertiseService

Communication Service Group

NWSIPX: Functions 942

NWSipxCancelPendingRequest

Cancels a pending request
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxCancelPendingRequest (
 PNWTCB pNwtcb);

Parameters

pNwtcb

(IN) Points to the NWTCB being used by the pending request.

Return Values

SIPX_CANNOT_CANCEL The NWTCB cannot be canceled.

SIPX_INVALID_IOCTL_BUFFER
_LEN

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_IOCTL_FUNCTI
ON

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_NWTCB The data space pointed to by
pNwtcb is not a valid NWTCB.

SIPX_REQUEST_NOT_PENDING No request is pending.

SIPX_SUCCESSFUL Request completed without error.

Remarks

When NWSipxCancelPendingRequest returns, the status
SIPX_REQ_CANCELED is stored in the TCBFinalStatus field of the
NWTCB and the event notification method specified in the NWTCB is
invoked.

Do not modify any of the flags or fields in the NWTCB pointed to by
pNwtcb, since the NWTCB is currently being used for a service request by
another function.

Communication Service Group

NWSIPX: Functions 943

See Also

NWSipxAcceptConnectionEx, NWSipxEstablishConnection,
NWSipxListenForConnection, NWSipxQueryServices,
NWSipxReceiveDatagram, NWSipxReceiveMessage ,
NWSipxRegisterForTransportEvent, NWSipxSendDatagram,
NWSipxSendMessage

Communication Service Group

NWSIPX: Functions 944

NWSipxChangeControlBlock

Changes the event notification method of an NWTCB
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxChangeControlBlock (
 nuint32 syncType,
 nptr pEventInfo,
 PNWTCB pNwtcb);

Parameters

syncType

(IN) Specifies the new event notification type for this NWTCB.

pEventInfo

(IN) Specifies supplementary information of differing types,
depending on the value of syncType.

pNwtcb

(IN) Points to the NWTCB that is to be changed.

Return Values

SIPX_ACCESS_VIOLATION An invalid pointer was specified
by pEventInfo.

SIPX_INSUFFICIENT_RESOURC
ES

Required system resources are
unavailable.

SIPX_INVALID_HANDLE An invalid handle was specified
by pEventInfo.

SIPX_INVALID_MUX_GROUP_
HANDLE

An invalid NWTCB mux group
handle was specified by
pEventInfo.

SIPX_INVALID_NWTCB The data space pointed to by
pNwtcb is invalid.

SIPX_INVALID_NWTCB_FLAGS Invalid NWTCB flags were
specified.

Communication Service Group

NWSIPX: Functions 945

SIPX_INVALID_PARAMETER There is either invalid ppNwtcb
parameter or invalid information
in pEventInfo.

SIPX_INVALID_SYNC_TYPE An invalid event notification type
was specified.

SIPX_NWTCB_IN_USE The NWTCB is in use by another
function.

SIPX_SUCCESSFUL The request completed without
error.

Remarks

The NWTCB specified by pNwtcb must not be in use by any other
function when NWSipxCancelPendingRequest is called. In addition, the
TCBFlags field of the NWTCB must be set to zero before calling
NWSipxCancelPendingRequest.

syncType indicates the type of notification to associate with the NWTCB.
pEventInfo provides supplementary information that is determined by the
notification type. The following table lists the valid values for syncType
and specifies the associated information that must be supplied by
pEventInfo:

syncType Value syncType Description pEventInfo Value

SIPX_USER_EVE
NT

Your event object will be
signaled upon
completion of the
request.

The handle of the
event object

SIPX_CALLBACK Your callback function
will be called upon
request completion.

The address of your
callback function.
Every callback
function has the
prototype of :
void (N_CDECL
Callback_Functio
n)(*NWTCB)

SIPX_BLOCKING The client application is
blocked until the request
completes.

NULL

SIPX_POLLING You will determine
request completion by
calling NWSipxPoll

NULL

SIPX_API_EVENT You will determine
request completion by
calling
NWSipxWaitForSingle

NULL

Communication Service Group

NWSIPX: Functions 946

Event

SIPX_API_MUX_E
VENT

You will determine
request completion by
calling
NWSipxWaitForMultip
leEvents.

A pointer to a variable
of type
SIPXMUXGRP_HAN
DLE that contains the
handle of the mux
group to which this
NWTCB will be
assigned. If a value of
SIPX_ALLOC_MUX_
GROUP is specified,
the API creates a new
mux group and stores
its handle into the
variable pointed to by
this parameter.

See Also

NWSipxAllocControlBlock

Communication Service Group

NWSIPX: Functions 947

NWSipxCloseConnectionEndpoint

Closes an open connection endpoint
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxCloseConnectionEndpoint (
 SIPXCONN_HANDLE hConnHandle);

Parameters

hConnHandle

(IN) Specifies the handle of the connection endpoint to be closed.

Return Values

SIPX_INTERNAL_ERROR An internal system error occurred.

SIPX_INVALID_CONNECTION_
HANDLE

The connection endpoint handle is
invalid.

SIPX_INVALID_IOCTL_BUFFER
_LEN

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_IOCTL_FUNCTI
ON

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_SUCCESSFUL The request completed without
error.

Remarks

If there is a transport connection active on this connection endpoint, it is
aborted before the connection endpoint is closed.

The dynamic socket associated with the connection endpoint is
automatically closed as part of closing the connection endpoint.

Any outstanding NWSipxReceiveMessage requests are cancelled with a
final status of SIPX_CANCELED stored in the TCBFinalStatus field of the
NWTCB.

Communication Service Group

NWSIPX: Functions 948

See Also

NWSipxOpenConnectionEndpoint

Communication Service Group

NWSIPX: Functions 949

NWSipxCloseSocket

Closes an open IPX socket
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxCloseSocket (
 SIPXSOCK_HANDLE hSockHandle);

Parameters

hSockHandle

(IN) Specifies the handle of the socket being closed.

Return Values

SIPX_INTERNAL_ERROR An Internal system error occurred.

SIPX_INVALID_SOCKET_HAND
LE

The socket handle is invalid.

SIPX_INVALID_IOCTL_BUFFER
_LEN

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_IOCTL_FUNCTI
ON

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_SUCCESSFUL The request completed without
error.

Remarks

Any active NWSipxReceiveDatagram or NWSipxQueryServices
requests are terminated with a final status of SIPX_CANCELED stored in
the TCBFinalStatus field of the NWTCB.

NOTE: Sockets opened by NWSipxOpenConnectionEndpoint cannot
be closed using NWSipxCloseSocket.

See Also

NWSipxOpenSocket

Communication Service Group

NWSIPX: Functions 950

NWSipxEstablishConnection

Establishes a transport connection with a peer client application
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

nuint32 NWSipxEstablishConnection (
 PNWTCB pNwtcb);

Parameters

pNwtcb

(IN) Points to the NWTCB for the request.

Return Values

SIPX_INSUFFICIENT_RESOURC
ES

System resources required to
satisfy this request are
unavailable.

SIPX_INVALID_CONNECTION_
HANDLE

The connection endpoint handle
specified in the NWTCB is not
valid.

SIPX_INVALID_IOCTL_BUFFER
_LEN

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_IOCTL_FUNCTI
ON

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_NETWORK_AD
DRESS

An invalid destination network
address is specified in the
TCBRemoteAddress field of the
NWTCB.

SIPX_INVALID_NWTCB The data space pointed to by
pNwtcb is not a valid NWTCB.

SIPX_INVALID_NWTCB_FLAGS Invalid NWTCB flags were
specified.

SIPX_INVALID_STATE The connection endpoint is not in
the SIPX_ALLOCATED state.

SIPX_INVALID_SYNC_TYPE You cannot block within a
callback function.

Communication Service Group

NWSIPX: Functions 951

SIPX_MEMORY_LOCK_ERROR System error: could not lock
memory.

SIPX_NWTCB_IN_USE The NWTCB is already in use.

SIPX_PENDING Request accepted without error
and is in progress.

SIPX_SUCCESSFUL The request completed without
error.

Final Status Values

SIPX_CANCELLED Request canceled.

SIPX_INSUFFICIENT_RESOURC
ES

System resources required to
satisfy this request are
unavailable.

SIPX_INTERNAL_ERROR Internal system error.

SIPX_NO_RESPONSE_FROM_TA
RGET

The destination system did not
respond.

SIPX_NO_ROUTE_TO_TARGET A network route to the remote
system identified by the
TCBRemoteAddress field of the
NWTCB does not exist.

SIPX_SUCCESSFUL The request completed without
error.

Remarks

Before calling NWSipxEstablishConnection, the following NWTCB
fields must be set:

TCBConnHandle, indicating the handle of the connection endpoint for
this connection.

NOTE: When establishing a connection, the NWSIPX API for
Windows NT* ignores the subnetwork specified by the connection
endpoint and uses the subnetwork, providing the best route to the
destination node.

TCBRemoteAddress, indicating the network address of the destination
node (in network byte order).

In addition, the following NWTCB flag can be set as follows:

SIPX_CONNECT_NO_WATCHDOG, disabling the watchdog function.

NOTE: The NWSIPX API for Windows NT does not allow the

Communication Service Group

NWSIPX: Functions 952

NOTE: The NWSIPX API for Windows NT does not allow the
watchdog function to be disabled.

The following NWTCB fields are set upon completion:

TCBFinalStatus, indicating the final status of the request.

TCBRemoteAddress, indicating the actual network address of the
destination node (in network byte order).

NOTE: The network address components must be specified in
network byte order (high-low). See NTYPES.H for macros that facilitate
conversion to and from network byte order. When specifying an IPX
network address, you must set the NAType field to TA_IPX_SPX and the
NALength field to the value of sizeof(IPXADDR).

See Also

NWSipxCloseConnectionEndpoint,
NWSipxOpenConnectionEndpoint, NWSipxSetInformation

Communication Service Group

NWSIPX: Functions 953

NWSipxFreeControlBlock

Frees an NWTCB
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxFreeControlBlock (
 PNWTCB pNwtcb);

Parameters

pNwtcb

(IN) Points to the NWTCB that is to be freed.

Return Values

SIPX_INVALID_IOCTL_BUFFER
_LEN

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_IOCTL_FUNCTI
ON

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_NWTCB The data space pointed to by
pNwtcb is not a valid NWTCB.

SIPX_NWTCB_IN_USE The NWTCB is in use by another
function.

SIPX_SUCCESSFUL The request completed without
error.

Remarks

The NWTCB must not be in use by another function when the NWTCB is
freed.

If you use multiple threads that access the same NWTCB, you must
ensure that none of the threads try to access the NWTCB after it has been
freed.

The TCBFlags field of the NWTCB must be zero.

Communication Service Group

NWSIPX: Functions 954

See Also

NWSipxAllocControlBlock

Communication Service Group

NWSIPX: Functions 955

NWSipxFreeInformation

Frees a previously allocated API element information structure
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

nuint32 NWSipxFreeInformation (
 nptr pInfoStruct);

Parameters

pInfoStruct

(IN) Points to the information structure to be freed.

Return Values

SIPX_INVALID_PARAM
ETER

pInfoStruct does not point to an API
element information structure.

SIPX_SUCCESSFUL The request completed without failure.

Remarks

The information structure being freed must have been allocated by
NWSipxGetInformation.

If you use multiple threads that access the same information structure,
you must ensure that none of the threads try to access the information
structure after it has been freed.

See Also

NWSipxGetInformation, NWSipxSetInformation

Communication Service Group

NWSIPX: Functions 956

NWSipxGetInformation

Returns current information about an NWSIPX API element
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxGetInformation (
 nuint32 infoType,
 nptr hHandle,
 pnptr ppInfoStruct,
 pnuint32 pInfoStructLen);

Parameters

infoType

(IN) Specifies the type of API element information being requested.

hHandle

(IN) Specifies different types of handles, depending upon the
information type specified by infoType.

ppInfoStruct

(OUT) Points to a variable of type nptr where a pointer to the
information structure of the API element is to be stored. The
information structure returned is initialized with the current
parameter settings for the requested API element.

pInfoStructLen

(OUT) Points to the location where the length of the information
structure is to be stored.

Return Values

SIPX_INSUFFICIENT_RESOURC
ES

Insufficient system resources are
available to satisfy this request.

SIPX_INVALID_CONNECTION_
HANDLE

 An invalid connection endpoint
handle specified in hHandle.

SIPX_INVALID_INFO_TYPE An invalid information type
specified in infoType.

SIPX_INVALID_IOCTL_BUFFER
_LEN

Versions of NWSIPX DLL and
NLM are mismatched.

Communication Service Group

NWSIPX: Functions 957

SIPX_INVALID_IOCTL_FUNCTI
ON

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_PARAMETER An invalid pointer specified in
ppInfoStruct or pInfoStructLen.

SIPX_INVALID_NWTCB An invalid NWTCB specified in
hHandle.

SIPX_INVALID_SOCKET_HAND
LE

An invalid socket handle specified
in hHandle.

SIPX_SUCCESSFUL The request completed without
failure.

Remarks

The API element information structure must be freed by calling
NWSipxFreeInformation.

Valid infoType values include:

SIPX_API_INFORMATION API environment
SIPX_SOCKET_INFORMATION Socket
SIPX_CONN_INFORMATION Connection endpoint
SIPX_NWTCB_INFORMATION NWTCB

Allowed structure types for ppInfoStruct include:

SIPX_API_INFO API environment
SIPX_SOCKET_INFO Socket
SIPX_CONN_INFO Connection endpoint
SIPX_NWTCB_INFO NWTCB

The following table shows the relationship between the value of the
infoType parameter and the type of allocated structure whose address is
retuned in ppInfoStruct.

infoType ppInfoStruct Structure

SIPX_API_INFORMATIO
N

SIPX_API_INFO

SIPX_CONN_INFORMA
TION

SIPX_CONN_INFO

SIPX_NWTCB_INFORM
ATION

SIPX_NWTCB_INFO

SIPX_SOCKET_INFORM
ATION

SIPX_SOCKET_INFO

The type of information specified by the hHandle is determined by the

Communication Service Group

NWSIPX: Functions 958

value specified by the infoType. The following table shows this
relationship.

infoType hHandle

SIPX_API_INFORMATIO
N

NULL

SIPX_CONN_INFORMA
TION

Handle of a connection endpoint

SIPX_NWTCB_INFORM
ATION

Pointer to an NWTCB

SIPX_SOCKET_INFORM
ATION

Handle of a socket

See Also

NWSipxFreeInformation, NWSipxSetInformation

Communication Service Group

NWSIPX: Functions 959

NWSipxGetInternetAddress

Returns the local network address of a socket
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxGetInternetAddress (
 SIPXSOCK_HANDLE hSockHandle,
 PNETADDR pNetAddress);

Parameters

hSockHandle

(IN) Indicates the handle of the target socket.

pNetAddress

(OUT) Points to a NETADDR structure where the internetwork
address is to be stored.

Return Values

SIPX_INSUFFICIENT_RESOURC
ES

Insufficient system resources are
available to satisfy this request.

SIPX_INVALID_IOCTL_BUFFER
_LEN

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_IOCTL_FUNCTI
ON

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_PARAMETER An invalid pointer was specified
in pNetAddress.

SIPX_INVALID_SOCKET_HAND
LE

The socket handle specified in
hSockHandle is invalid.

SIPX_SUCCESSFUL The request completed without
error.

Remarks

You must allocate space for the structure whose address is pointed to by
pNetAddress.

Communication Service Group

NWSIPX: Functions 960

Only the net and node portions of the address are returned.

The internetwork address of the subnetwork currently associated with
the socket is returned.

Communication Service Group

NWSIPX: Functions 961

NWSipxGetMaxNsduSize

Returns the maximum data packet size that can be sent as a datagram for a
specific socket
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxGetMaxNsduSize (
 SIPXSOCK_HANDLE hSockHandle);

Parameters

hSockHandle

(IN) Specifies the handle of the target socket.

Return Values

zero An invalid socket handle was specified

nonzero The maximum size of data packet

Remarks

NWSipxGetMaxNsduSize is used with datagram services only.

The maximum NSDU size supported by the subnetwork associated with
the socket is returned.

See Also

NWSipxReceiveDatagram, NWSipxSendDatagram

Communication Service Group

NWSIPX: Functions 962

NWSipxGetMaxTsduSize

Returns the maximum data packet size that can be sent as a
connection-oriented message on a specific connection endpoint
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxGetMaxTsduSize (
 SIPXCONN_HANDLE hConnHandle);

Parameters

hConnHandle

(IN) Specifies the handle of the target connection endpoint.

Return Values

zero An invalid connection endpoint handle
was specified

SIPX_CONN_UNLIMITE
D_TSDU

An unlimited TSDU size was specified.

nonzero other than the
above value

The maximum size of data packet

Remarks

NWSipxGetMaxTsduSize is used only with connection-oriented
services.

See Also

NWSipxReceiveMessage , NWSipxSendMessage

Communication Service Group

NWSIPX: Functions 963

NWSipxListenForConnection

Listens for incoming connections
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxListenForConnection (
 PNWTCB pNwtcb);

Parameters

pNwtcb

(IN) Points to the NWTCB for this request.

Return Values

SIPX_INVALID_CONNECTION_
HANDLE

The connection endpoint handle
specified in the NWTCB is not
valid.

SIPX_INVALID_NWTCB The data space pointed to by
pNwtcb is not a valid NWTCB.

SIPX_INVALID_IOCTL_BUFFER
_LEN

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_IOCTL_FUNCTI
ON

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_NWTCB_FLAGS Invalid NWTCB flags were
specified.

SIPX_INVALID_STATE The connection endpoint is not in
the SIPX_ALLOCATED state.

SIPX_INVALID_SYNC_TYPE You cannot block within the
callback function.

SIPX_MEMORY_LOCK_ERROR System error: cannot lock
memory.

SIPX_NWTCB_IN_USE The NWTCB is already in use.

SIPX_PENDING The request was accepted without
error and is in progress.

SIPX_SUCCESSFUL The request completed without

Communication Service Group

NWSIPX: Functions 964

error.

Final Status Values

SIPX_CANCELED The request was canceled, or the
connection endpoint was closed.

SIPX_INSUFFICIENT_RESOU
RCES

System resources are not available
for this request.

SIPX_INTERNAL_ERROR Internal system error.

SIPX_SUCCESSFUL Request completed without error.

Remarks

The incoming connection is acknowledged and accepted immediately on
the listening connection endpoint unless the
SIPX_LISTEN_DELAY_ACCEPT flag is set.

The following NWTCB field must be set before calling
NWSipxListenForConnection:

TCBConnHandle indicating the handle of the connection endpoint on
which to listen.

The following NWTCB flags can be set:

SIPX_LISTEN_NO_WATCHDOG, disabling the watchdog function.

NOTE: The NWSIPX API for Windows NT does not allow the
watchdog function to be disabled.

SIPX_LISTEN_DELAY_ACCEPT, indicating don't acccept a
connection until you call NWSipxAcceptConnectionEx.

The following NWTCB fields are set upon completion:

TCBFinalStatus, indicating the final status of the request.

TCBRemoteAddress, indicating the network address of the peer
application requesting a connection. (The address is in network byte
order.)

TCBSubnetworkHandle, indicating the subnetwork through which the
connection request was received.

See Also

NWSipxAcceptConnectionEx, NWSipxAllocControlBlock

Communication Service Group

NWSIPX: Functions 965

NWSipxOpenConnectionEndpoint

Opens a connection endpoint
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxOpenConnectionEndpoint (
 SIPXSUBNET_HANDLE hSubnetworkHandle,
 pnuint16 pSocket,
 PSIPXCONN_HANDLE pConnHandle);

Parameters

hSubnetworkHandle

(IN) Specifies the handle of the subnetwork to use for this connection
endpoint. If SIPX_DEFAULT_SUBNETWORK is specified, the default
subnetwork is used.

pSocket

(IN/OUT) On input, points to the data location containing the number
of the socket to open for the connection endpoint. On output, the data
location contains the number of the socket that was actually opened.

pConnHandle

(OUT) Points to the location where the connection handle is to be
stored.

Return Values

SIPX_INSUFFICIENT_RESOURC
ES

System resources are not available
for this request.

SIPX_INTERNAL_ERROR An internal system error has
occurred.

SIPX_INVALID_IOCTL_BUFFER
_LEN

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_IOCTL_FUNCTI
ON

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_PARAMETER pConnHandle is an invalid pointer.

SIPX_INVALID_SUBNETWORK_
HANDLE

An invalid subnetwork handle
was specified in

Communication Service Group

NWSIPX: Functions 966

hSubnetworkHandle.

SIPX_MEMORY_LOCK_ERROR System cannot lock memory.

SIPX_NO_SUBNETS_BOUND_T
O_IPX

A subnetwork is not available for
use by IPX.

SIPX_SOCKET_IN_USE Socket in use.

SIPX_SUCCESSFUL Request completed without error.

Remarks

This function blocks until the request has completed.

If successful, NWSipxOpenConnectionEndpoint allocates and initializes
a connection endpoint, assigns a connection endpoint handle, and
associates the connection endpoint with an IPX socket. It does not
establish a transport connection.

On input, the value pointed to by pSocket can be used to specify a specific
socket or to request a dynamic socket be opened. If the value pointed to
by pSocket is a nonzero value that value is used as the number of the
socket to open. If the value is 0, a dynamic socket is opened.

NOTE: The socket number must be specified in network byte order
(high-low). See NTYPES.H for macros that facilitate conversion to and
from network byte order.

The handle of the socket opened for the connection endpoint can be
obtained from the connection endpoint parameter CISocketHandle.

See Also

NWSipxCloseConnectionEndpoint, NWSipxGetInformation,
NWSipxSetInformation

Communication Service Group

NWSIPX: Functions 967

NWSipxOpenSocket

Opens an IPX socket
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxOpenSocket (
 nflag32 SocketAttributes,
 SIPXSUBNET_HANDLE hSubnetworkHandle,
 pnuint16 pSocket,
 PSIPXSOCK_HANDLE pSockHandle);

Parameters

SocketAttributes

(IN) Specifies flags indicating the desired socket attributes. The
following flag can be set:

SIPX_SOCK_CHECKSUM

hSubnetworkHandle

(IN) Specifies the handle of the subnetwork to use this socket. If
SIPX_DEFAULT_SUBNETWORK is specified, the default subnetwork
is used.

pSocket

(IN/OUT) On input, points to the location containing the number of
the socket to open. If the socket number is 0, a socket is dynamically
opened for the user. On output, the data location contains the number
of the socket that was actually opened.

pSockHandle

(OUT) Points to the location where the socket handle is to be stored.

Return Values

SIPX_ACCESS_VIOLATION An invalid pointer is specified in
pSockHandle.

SIPX_INSUFFICIENT_RESOURC
ES

Lack of system resources prohibit
opening another socket.

SIPX_INTERNAL_ERROR Internal system error.

Communication Service Group

NWSIPX: Functions 968

SIPX_INVALID_IOCTL_BUFFER
_LEN

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_IOCTL_FUNCTI
ON

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_SUBNETWORK_
HANDLE

An invalid subnetwork handle
was specified.

SIPX_MEMORY_LOCK_ERROR System cannot lock memory.

SIPX_NO_SUBNETS_BOUND_T
O_IPX

A subnetwork is not available for
use by IPX.

SIPX_SOCKET_IN_USE The socket is in use.

SIPX_SUCCESSFUL The request completed without
error.

Remarks

NWSipxOpenSocket blocks until the request has completed.

If the SIPX_SOCK_CHECKSUM flag is set in SocketAttributes, the API
automatically generates a checksum for every packet sent over this
socket.

The number of the socket that was opened is stored at the location
pointed to by pSocket.

NOTE: The socket number must be specified in network byte order
(high-low). See NTYPES.H for macros that facilitate conversion to and
from network byte order.

See Also

NWSipxCloseSocket

Communication Service Group

NWSIPX: Functions 969

NWSipxPoll

Checks if a pending request employing the SIPX_POLLING event
notification method has completed
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxPoll (
 PNWTCB pNwtcb);

Parameters

pNwtcb

(IN) Points to the NWTCB whose completion status is pending.

Return Values

SIPX_SUCCESSFUL The request has completed.

SIPX_PENDING The request is still pending.

SIPX_INVALID_NWTCB The data space pointed to by pNwtcb is not
a valid NWTCB.

SIPX_INVALID_SYNC_T
YPE

The NWTCB pointed to by pNwtcb is not
using the SPX_POLLING method of event
notification.

Remarks

Do not modify any of the flags or fields in the NWTCB pointed to by
pNwtcb, since the NWTCB might be in use for a service request by
another function.

Communication Service Group

NWSIPX: Functions 970

NWSipxQueryServices

Broadcasts a SAP query to discover the identities of all servers of any type,
all servers of a specific type, or the nearest server of a specific type and then
returns the response
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxQueryServices (
 nuint16 queryType,
 nuint16 serviceType,
 PNWTCB pNwtcb);

Parameters

queryType

(IN) Specifies the type of query to be performed. The following values
are valid:

SIPX_ALL_SERVERS
SIPX_NEAREST_SERVER

serviceType

(IN) Specifies the service type of interest. serviceType must match the
class of service as assigned by Novell. For example:

0x0004 File server
0x0005 Job server
0x0006 Print server
0xFFFF Wildcard

pNwtcb

Points to the NWTCB for the request.

Return Values

SIPX_INSUFFICIENT_RESOURC
ES

Lack of system resources prohibit
opening another socket.

SIPX_INTERNAL_ERROR An internal system error has
occurred.

SIPX_INVALID_IOCTL_BUFFER Versions of NWSIPX DLL and

Communication Service Group

NWSIPX: Functions 971

_LEN NLM are mismatched.

SIPX_INVALID_IOCTL_FUNCTI
ON

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_NWTCB The data space pointed to by
pNwtcb is not a valid NWTCB.

SIPX_INVALID_NWTCB_FLAGS Invalid NWTCB flags were
specified.

SIPX_INVALID_QUERY_TYPE An invalid query type was
specified.

SIPX_INVALID_SYNC_TYPE You cannot block within the
callback function.

SIPX_MEMORY_LOCK_ERROR System error: cannot lock
memory.

SIPX_NO_SUBNETS_BOUND_T
O_IPX

A subnetwork is not available for
use by IPX.

SIPX_NWTCB_IN_USE The NWTCB is already in use.

SIPX_PENDING The request was accepted without
error and is in progress.

SIPX_SUCCESSFUL The request completed without
error.

Final Status Values

SIPX_CANCELED The request was canceled.

SIPX_PARTIAL_SERVER
_INFO

The server information was larger than the
allocated data space, so the server
information was truncated.

SIPX_SUCCESSFUL The request completed without error.

Remarks

The following values are valid for queryType:

SPX_ALL_SERVERS All servers of the type indicated by
serviceType

SIPX_NEAREST_SERVE
R

Only the nearest server of the type
indicated byserviceType

The query response consists of one or more SIPX_SERVICE_INFO
structures stored into the data space pointed to by the fragment list of the

Communication Service Group

NWSIPX: Functions 972

NWTCB. If more server information is received than fits in the data space
allocated, the server information is truncated and FinalStatus in NWTCB
contains the status of SIPX_PARTIAL_SERVER_INFO.

NOTE: The service type specified by serviceType must be stored in
network byte order (high-low). See NTYPES.H for macros that facilitate
conversion to and from network byte order.

The following NWTCB fields that must be set before calling
NWSipxQueryServices:

TCBFragmentCount, indicating the number of entries in the fragment
list.

TCBFragmentList, pointing to the fragment list containing information
about preallocated data space.

The following NWTCB field and flag can be set:

TCBSubnetworkHandle, indicating the handle of the subnetwork to use.

SIPX_QUERY_SPECIFIC_ROUTE, requesting the API to send the
service query over the subnetwork identified by the
TCBSubnetworkHandle NWTCB element parameter.

NOTE: For the value in TCBSubnetworkHandle to be used,
SIPX_QUERY_SPECIFIC_ROUTE must be set.

The following NWTCB fields are set upon completion:

TCBBytesTransferred, indicating the byte count of the stored server
information.

TCBFinalStatus, indicating the final status of the request.

TCBSubnetworkHandle, indicating the handle of the subnetwork
through which the service query response was received.

The following must be true for this call to complete successfully and for
there to be valid data in the return NWTCB packet:

 the call returns SPIX_SUCCESSFUL

the TCBFinalStatus field contains SIPX_SUCCESSFUL

the TCBBytesTransferred field contains a value greater than 0. If this
field contains a 0, the requested services were not found and
NWSipxQueryServices timed out.

See Also

NWSipxAdvertiseService

Communication Service Group

NWSIPX: Functions 973

NWSipxReceiveDatagram

Prepares to receive a datagram
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxReceiveDatagram (
 PNWTCB pNwtcb);

Parameters

pNwtcb

(IN) Points to the NWTCB for the request.

Return Values

SIPX_INVALID_FRAGMENT_CO
UNT

The fragment count specified in
the NWTCB is invalid.

SIPX_INVALID_FRAGMENT_LIS
T

The fragment list or one of its
fragment descriptors is bad.

SIPX_INVALID_NWTCB The data space pointed to by
pNwtcb is not a valid NWTCB.

SIPX_INVALID_IOCTL_BUFFER
_LEN

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_IOCTL_FUNCTI
ON

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_NWTCB_FLAGS Invalid NWTCB flags were
specified.

SIPX_INVAILD_SOCKET_HAND
LE

The socket handle specified by the
NWTCB is not valid.

SIPX_INVALID_SYNC_TYPE You cannot block within the
callback function.

SIPX_MEMORY_LOCK_ERROR System error: cannot lock
memory.

SIPX_NWTCB_IN_USE NWTCB already in use.

SIPX_PENDING The request was accepted without
error and is in progress.

Communication Service Group

NWSIPX: Functions 974

SIPX_SUCCESSFUL The request was accepted without
error.

Final Status Values

SIPX_CANCELED The request was cancelled or
socket was closed.

SIPX_DATA_OVERFLOW The input (received) message was
larger than the preallocated data
space. The input message was
truncated.

SIPX_INTERNAL_ERROR An internal system error occurred.

SIPX_INVALID_SOCKET_HAND
LE

The socket handle specified in the
NWTCB is not valid.

SIPX_SUCCESSFUL The request completed without
error.

Remarks

Checksum processing (checksum validation) is done automatically by the
NWSIPX API.

The following NWTCB fields must be set before calling
NWSipxReceiveDatagram:

TCBFlags, must be set to zero.

TCBFragmentCount, indicating the number of entries in the fragment
list.

TCBFragmentList, pointing to the fragment list containing information
about preallocated data space.

TCBSockHandle, indicating the handle of the IPX socket to monitor for
data.

The following NWTCB fields are set upon completion:

TCBBytesTransferred, indicating the number of bytes received.

TCBFinalStatus, indicating the final status of the request.

TCBPacketType, indicating the value present in the Packet Type field of
the IPX header.

TCBRemoteAddress, indicating the network address of the peer
application sending the datagram.

Communication Service Group

NWSIPX: Functions 975

TCBSubnetworkHandle, indicating the handle of the subnetwork
through which the datagram was received.

NOTE: The network address components are specified in network
byte order (high-low). See NTYPES.H for macros that facilitate
conversion to and from network byte order.

See Also

NWSipxSendDatagram

Communication Service Group

NWSIPX: Functions 976

NWSipxReceiveMessage

Prepares to receive an input message
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxReceiveMessage (
 PNWTCB pNwtcb);

Parameters

pNwtcb

(IN) Points to the NWTCB for the request.

Return Values

SIPX_INVALID_CONNECTION_
HANDLE

The connection endpoint handle
specified in NWTCB is invalid.

SIPX_INVALID_FRAGMENT_CO
UNT

The fragment count specified in
the NWTCB is invalid.

SIPX_INVALID_FRAGMENT_LIS
T

The fragment list or one of its
fragment descriptors is bad.

SIPX_INVALID_IOCTL_BUFFER
_LEN

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_IOCTL_FUNCTI
ON

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_NWTCB The data space pointed to by
pNwtcb is not a valid NWTCB.

SIPX_INVALID_NWTCB_FLAGS Invalid NWTCB flags were
specified.

SIPX_INVALID_SYNC_TYPE You cannot block within the
callback function.

SIPX_MEMORY_LOCK_ERROR System error: cannot lock
memory.

SIPX_NWTCB_IN_USE The NWTCB is already in use.

SIPX_PENDING The request was accepted without
error and is in progress.

Communication Service Group

NWSIPX: Functions 977

SIPX_SUCCESSFUL The request completed without
error.

Final Status Values

SIPX_CANCELLED The request was canceled.

SIPX_CONNECTION_ABORT
ED

The transport connection was
terminated.

SIPX_DATA_OVERFLOW The input (received) message was
larger than the preallocated data
space. The input message was
truncated.

SIPX_INTERNAL_ERROR Internal system error.

SIPX_SUCCESSFUL The request was completed without
error.

Remarks

The following NWTCB fields must be set before calling
NWSipxReceiveMessage :

TCBConnHandle, indicating the handle of the connection endpoint to
monitor for incoming messages.

TCBFragmentCount, indicating the number of entries in the fragment
list.

TCBFragmentList, pointing to the fragment list containing information
about preallocated data space.

The following NWTCB fields are set upon completion:

TCBBytesTransferred, indicating the number of bytes received.

TCBDataStreamType, indicating the value present in the Data Stream
Type field of the SPX header.

TCBFinalStatus, indicating the final status of the request.

TCBMessageSequenceNumber, indicating message sequence number.

The following NWTCB flags are set upon completion:

SIPX_RCVMSG_ATTN The attention flag in the SPX header was
set.

Communication Service Group

NWSIPX: Functions 978

SIPX_RCVMSG_PARTIA
L

Clear: Data segment is final fragment of
message.
Set: Data segment is not final fragment of
message.

See Also

NWSipxSendMessage

Communication Service Group

NWSIPX: Functions 979

NWSipxRegisterForTransportEvent

Registers to receive a transport event
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxRegisterForTransportEvent (
 PNWTCB pNwtcb);

Parameters

pNwtcb

(IN) Points to the NWTCB for the request.

Return Values

SIPX_INVALID_CONNECTION_
HANDLE

The connection endpoint handle
specified in the NWTCB is invalid.

SIPX_INVALID_IOCTL_BUFFER
_LEN

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_IOCTL_FUNCTI
ON

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_MEMORY_LOCK_ERROR System error: cannot lock
memory.

SIPX_INVALID_NWTCB The data space pointed to by
pNwtcb is not a valid NWTCB.

SIPX_INVALID_NWTCB_FLAGS Invalid NWTCB flags were
specified.

SIPX_INVALID_SYNC_TYPE You cannot block within the
callback function.

SIPX_INVALID_TRANSPORT_E
VENT

The transport event specified in
the TransportEvent field of the
NWTCB is not valid.

SIPX_NWTCB_IN_USE The NWTCB is already in use.

SIPX_PENDING The request was accepted without
error and is in progress.

SIPX_SUCCESSFUL The request completed without

Communication Service Group

NWSIPX: Functions 980

error.

Final Status Values

SIPX_CANCELED The request was canceled.

SIPX_SUCCESSFUL The request was completed without error.

Remarks

When the transport event occurs, you will be notified according to the
event notification method selected for the NWTCB.

The following NWTCB field must be set before calling
NWSIPXRegisterForTransportEvent:

TCBFlags, must be set to zero.

TCBTransportEvent, indicating the transport event being registered for.
The following event types are valid for the NWTCB's TCBTransportEvent
field:

SIPX_LISTEN_FOR_DISCONNECT
SIPX_SCHEDULE_TIMER_EVENT
SIPX_SUBNET_STATUS_CHANGE

The following NWTCB fields may need to be set before calling
NWSIPXRegisterForTransportEvent:

TCBConnHandle indicating the connection endpoint handle of the
transport connection being monitored if the
SIPX_LISTEN_FOR_DISCONNECT event type has been selected.

TCBEvent.TCBTimeout, indicating the timer value (in milliseconds) if
the SIPX_SCHEDULE_TIMER_EVENT event type has been selected.

The following NWTCB field is set upon completion:

TCBFinalStatus, indicating the final status of the request.

Communication Service Group

NWSIPX: Functions 981

NWSipxSendDatagram

Sends a datagram
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxSendDatagram (
 PNWTCB pNwtcb);

Parameters

pNwtcb

(IN) Points to the NWTCB for the request.

Return Values

SIPX_INVALID_FRAGMENT_CO
UNT

The fragment count specified in
the NWTCB is invalid.

SIPX_INVALID_FRAGMENT_LIS
T

The fragment list or one of its
fragment descriptors is bad.

SIPX_INVALID_IOCTL_BUFFER
_LEN

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_IOCTL_FUNCTI
ON

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_NETWORK_AD
DRESS

The network address specified in
the TCBRemoteAddress field of the
NWTCB is not valid.

SIPX_INVALID_NWTCB The data space pointed to by
pNwtcb is not a valid NWTCB.

SIPX_INVALID_NWTCB_FLAGS Invalid NWTCB flags were
specified.

SIPX_INVALID_SOCKET_HAND
LE

The socket handle specified in the
TCBSocketHandle field of the
NWTCB is not valid.

SIPX_INVALID_SYNC_TYPE You cannot block within a
callback function.

SIPX_MEMORY_LOCK_ERROR System error: cannot lock
memory.

Communication Service Group

NWSIPX: Functions 982

SIPX_NWTCB_IN_USE The NWTCB is already in use.

SIPX_PENDING The request was accepted without
error and is in progress.

SIPX_SUCCESSFUL The request was completed
without error.

Final Status Values

SIPX_CANCELED The request was canceled or the
socket was closed.

SIPX_CHECKSUM_NOT_SUPPO
RTED

Selected subnetwork does not
support checksum processing.

SIPX_INTERNAL_ERROR Internal system error.

SIPX_INVALID_SUBNETWORK_
HANDLE

An invalid subnetwork handle
was specified in the
TCBSubnetworkHandle field of the
NWTCB.

SIPX_NO_ROUTE_TO_TARGET A network route to the remote
system identified by the
TCBRemoteAddress field of the
NWTCB does not exist.

SIPX_NO_SUBNETS_BOUND_T
O_IPX

A subnetwork is not available for
use by IPX.

SIPX_SUCCESSFUL Request accepted without error.

Remarks

The following NWTCB fields that must be set before calling
NWSipxSendDatagram:

TCBFragmentCount, indicating the number of entries in the fragment
list.

TCBFragmentList, pointing to the fragment list containing information
about the data space.

TCBRemoteAddress, indicating the network address of the destination
node.

TCBSockHandle, indicating the handle of the IPX socket on which to
send the datagram.

If you want to send an IPX header without data, set the
TCBFragmentCount field to zero. The API will then ignore the

Communication Service Group

NWSIPX: Functions 983

TCBFragmentList field.

NOTE: The network address components must be specified in
network byte order (high-low). See NTYPES.H for macros that facilitate
conversion to and from network byte order.

When specifying an IPX network address, you must set the NAType
field to TA_IPX_SPX and the NALength field to the value of sizeof
(IPXADDR).

The following NWTCB fields may be set before calling
NWSipxSendDatagram:

TCBSubnetworkHandle, indicating the handle of the subnetwork to use
(the SIPX_SNDDG_SPECIFIC_ROUTE flag must also be set).

TCBPacketType, indicating the value to store in the Packet Type field of
the IPX header (the SIPX_SNDDG_PACKET_TYPE flag must be set).

The following NWTCB flags may be set before calling
NWSipxSendDatagram:

SIPX_SNDDG_BEST_ROUTE Select the best route using any
subnetwork available.

SIPX_SNDDG_GENERATE_CHK
SUM

Generate and store the checksum
in the IPX header.

NOTE: The NWSIPX API for
Windows NT does not support
the generation of checksums for
datagrams.

SIPX_SNDDG_PACKET_TYPE Store the value of the
TCBPacketType NWTCB field in
the Packet Type field of the IPX
header. (TCBPacketType must be
given a value.)

SIPX_SNDDG_SPECIFIC_ROUTE Use the subnetwork identified by
the TCBSubnetworkHandle NWTCB
field to send the datagram. (
TCBSubnetworkHandle must be
given a value.)

SIPX_SNDDG_VERIFY_ROUTE Verify the address of the next hop
in the path to the destination
node.

The following NWTCB fields are set upon completion:

TCBBytesTransferred, indicating the number of bytes sent.

TCBFinalStatus, indicating the final status of the request.

Communication Service Group

NWSIPX: Functions 984

TCBSubnetworkHandle, indicating the subnetwork over which the
datagram was sent.

See Also

NWSipxReceiveDatagram

Communication Service Group

NWSIPX: Functions 985

NWSipxSendMessage

Sends a data message to a peer client application
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxSendMessage (
 PNWTCB pNwtcb);

Parameters

pNwtcb

(IN) Points to the NWTCB for the request.

Return Values

SIPX_PENDING The request was accepted without
error and is in progress.

SIPX_SUCCESSFUL The request was completed
without error.

Final Status Values

SIPX_CANCELED The request was canceled.

SIPX_CONNECTION_ABORTED The transport connection was
terminated abnormally.

SIPX_CONNECTION_TERMINA
TED

The transport connection was
terminated.

SIPX_INSUFFICIENT_RESOURC
ES

System resources were not
available for this request.

SIPX_INTERNAL_ERROR Internal system error occurred.

SIPX_INVALID_CONNECTION_
HANDLE

The connection endpoint handle
specified in the NWTCB is invalid.

Communication Service Group

NWSIPX: Functions 986

Remarks

The following NWTCB fields must be set before calling
NWSipxSendMessage:

TCBConnHandle, indicating the handle of the connection endpoint to
use.

TCBFragmentCount, indicating the number of entries in the fragment
list.

TCBFragmentList, pointing to the fragment list containing information
about the data message.

If you want to send an SPX header without data, set the
TCBFragmentCount field to zero. The API will then ignore the
TCBFragmentList field.

The SIPX_SNDMSG_PARTIAL NWTCB flag must be set before calling
NWSipxSendMessage. If SIPX_SNDMSG_PARTIAL is clear, the data
segment is in the final fragment of the message. If
SIPX_SNDMSG_PARTIAL is set, the data segment is not in the final
fragment of the message. For example, the following indicates that the
packet is not the final fragment:

sendTCB->TCBFlags = SIPX_SNDMSG_PARTIAL;

And the following indicates the packet is the following fragment:

sendTCB->TCBFlags = SendTCB->TCBFlags & ~SIPX_SNDMSG_PARTIAL;

The TCBDataStreamType NWTCB field can be set before calling
NWSipxSendMessage. This field indicates the value to store in the Data
Stream Type field of the SPX header (The SIPX_SNDMSG_DSTRM_TYPE
flag must be set).

The following NWTCB flag can be set before calling
NWSipxSendMessage:

SIPX_SNDMSG_ATTN--Requests the attention flag be set in the SPX
header. The NWSIPX API for Windows NT does not support the
setting of the attention bit in the SPX header.

SIPX_SNDMSG_DSTRM_TYPE--Stores the value of
TCBDataStreamType into the Data Stream Type field of the SPX header. (
TCBDataStreamType must be given a value.)

The following NWTCB fields are set upon completion:

 TCBBytesTransferred--indicates the number of bytes sent.

 TCBFinalStatus--indicates the final status of the request.

Communication Service Group

NWSIPX: Functions 987

NWSipxSetInformation

Sets new information values for a connection endpoint
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxSetInformation (
 nuint32 infoType,
 nptr hHandle,
 nptr pInfoStruct);

Parameters

infoType

(IN) Specifies the type of API element information structure being
modified.

hHandle

(IN) Specifies differing types of handles or pointers depending on the
information type specified in infoType.

pInfoStruct

(IN) Points to the information structure containing the new API
element parameter information. The structure pointed to varies
according to the information type specified in infoType.

Return Values

SIPX_ACCESS_VIOLATION An invalid pointer is specified in
the NWIEventInfo field of the
NWTCB information structure.

SIPX_INVALID_CONNECTION_
HANDLE

An invalid connection endpoint
handle is specified in hHandle.

SIPX_INVALID_HANDLE An invalid handle is specified in
the NWIEventInfo field of the
NWTCB information structure.

SIPX_INVALID_INFO_TYPE An invalid information type was
specified in the infoType
parameter.

SIPX_INVALID_IOCTL_BUFFER Versions of NWSIPX DLL and

Communication Service Group

NWSIPX: Functions 988

_LEN NLM are mismatched.

SIPX_INVALID_IOCTL_FUNCTI
ON

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_MUX_GROUP_
HANDLE

An invalid mux group handle is
specified in the NWIEventInfo field
of the NWTCB information
structure.

SIPX_INVALID_NWTCB An invalid pointer to an NWTCB
has been specified in the hHandle
parameter.

SIPX_INVALID_NWTCB_FLAGS Invalid NWTCB flags are
specified.

SIPX_INVALID_SOCKET_HAND
LE

The socket handle specified in
hHandle is invalid.

SIPX_INVALID_SYNC_TYPE An invalid event notification type
is specified in the NWIEventType
field of the NWTCB information
structure.

SIPX_NWTCB_IN_USE The NWTCB is in use by another
function.

SIPX_SUCCESSFUL The request completed without
error.

Remarks

The information structure to be modified must be obtained by calling
NWSipxGetInformation and freed by calling NWSipxFreeInformation.

Valid infoType values include:

SIPX_API_INFORMATION API environment
SIPX_SOCKET_INFORMATION Socket
SIPX_CONN_INFORMATION Connection endpoint
SIPX_NWTCB_INFORMATION NWTCB

Allowed structure types for pInfoStruct include:

SIPX_API_INFO API environment
SIPX_SOCKET_INFO Socket
SIPX_CONN_INFO Connection endpoint
SIPX_NWTCB_INFO NWTCB

The following table shows the relationship between the value of the
infoType parameter and the type of allocated structure whose address is
retuned in ppInfoStruct.

infoType ppInfoStruct Structure

Communication Service Group

NWSIPX: Functions 989

SIPX_API_INFORMATIO
N

SIPX_API_INFO

SIPX_CONN_INFORMA
TION

SIPX_CONN_INFO

SIPX_NWTCB_INFORM
ATION

SIPX_NWTCB_INFO

SIPX_SOCKET_INFORM
ATION

SIPX_SOCKET_INFO

The type of information specified by the hHandle is determined by the
value specified by the infoType. The following table shows this
relationship.

infoType hHandle

SIPX_API_INFORMATIO
N

NULL

SIPX_CONN_INFORMA
TION

Handle of a connection endpoint

SIPX_NWTCB_INFORM
ATION

Pointer to an NWTCB

SIPX_SOCKET_INFORM
ATION

Handle of a socket

See Also

NWSipxFreeInformation, NWSipxGetInformation

Communication Service Group

NWSIPX: Functions 990

NWSipxTerminateConnection

Terminates a connection with a peer application
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxTerminateConnection (
 PNWTCB pNwtcb);

Parameters

pNwtcb

(IN) Points to the NWTCB for the request. If the SPX_TERM_REJECT
flag is set in the TCBFlags field of the NWTCB, this must be the same
NWTCB used with the NWSipxListenForConnection function.

Return Values

SIPX_INVALID_CONNECTION_
HANDLE

The connection endpoint handle
specified in NWTCB is invalid.

SIPX_INVALID_IOCTL_BUFFER
_LEN

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_IOCTL_FUNCTI
ON

Versions of NWSIPX DLL and
NLM are mismatched.

SIPX_INVALID_NWTCB The data space pointed to by
pNwtcb is not a valid NWTCB.

SIPX_INVALID_NWTCB_FLAGS Invalid NWTCB flags were
specified.

SIPX_INVALID_STATE The connection endpoint is not in
the SIPX_WAITING_ACCEPT or
the SIPX_CONNECTED state.

SIPX_INVALID_SYNC_TYPE You cannot block within the
callback function.

SIPX_MEMORY_LOCK_ERROR System error: cannot lock
memory.

SIPX_NWTCB_IN_USE The NWTCB already in use.

SIPX_PENDING The request was accepted without
error and is in progress.

Communication Service Group

NWSIPX: Functions 991

SIPX_SUCCESSFUL The request completed without
error.

Final Status Values

SIPX_CANCELED Request canceled.

SIPX_INTERNAL_ERRO
R

An internal system error occurred.

SIPX_SUCCESSFUL The request was accepted without error.

Remarks

If NWSipxTerminateConnection is called to reject an incoming
connection, the same NWTCB used for NWSipxListenForConnection
must be used when calling NWSipxTerminateConnection.

The following NWTCB field must be set before calling
NWSipxTerminateConnection:

TCBConnHandle indicating the handle of the connection endpoint for the
transport connection to be terminated.

One of the following NWTCB flags must be set before calling
NWSipxTerminateConnection:

SIPX_TERM_ACKE
D

Do not notify the user that termination is
complete until the peer acknowledges the
termination.

SIPX_TERM_ABOR
T

Immediately abort the transport connection and
notify the user that termination is complete.

SIPX_TERM_REJEC
T

Reject the incoming connection. This flag must
be set only in NWTCBs that have been used
with NWSipxListenForConnection.

The following NWTCB field is set upon completion:

TCBFinalStatus indicating the final status of the request.

See Also

NWSipxEstablishConnection

Communication Service Group

NWSIPX: Functions 992

NWSipxWaitForSingleEvent

Monitors a single NWTCB for a transport event
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxWaitForSingleEvent (
 PNWTCB pNwtcb,
 nuint32 timeOut);

Parameters

pNwtcb

(IN) Points to the NWTCB for the request.

timeOut

(IN) Indicates the time (in milliseconds) to wait for a transport event to
occur. Specify SIPX_INFINITE_WAIT if no timeout is desired.

Return Values

SPX_CANCELED The request was canceled.

SIPX_INVALID_NWTCB The data space pointed to by pNwtcb is not
a valid NWTCB.

SIPX_INVALID_SYNC_T
YPE

You cannot block within a callback
function.

SIPX_PENDING The timeout value elapsed; request
completion is still pending.

SIPX_SUCCESSFUL The request completed without error.

SIPX_UNSUCCESSFUL An internal system error occurred.

Other values Other values according to the API service
request initiating the transport event.

Remarks

Because the NWTCB might be is use by another function, the NWTCB
flags or fields must not be set before calling

Communication Service Group

NWSIPX: Functions 993

NWSipxWaitForSingleEvent .

The following NWTCB field is set upon completion:

TCBFinalStatus, indicating the final status of the request. The final status
values are the same as for the function that initiated the transport event.

See Also

NWSipxAllocControlBlock, NWSipxWaitForMultipleEvents

Communication Service Group

NWSIPX: Functions 994

NWSipxWaitForMultipleEvents

Monitors multiple NWTCBs for a transport event
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <ntypes.h>
#include <nwsipx32.h>

N_EXTERN_LIBRARY(nuint32) NWSipxWaitForMultipleEvents (
 SIPXMUXGRP_HANDLE muxGroupHandle,
 nuint32 timeOut,
 PPNWTCB ppNwtcb);

Parameters

muxGroupHandle

(IN) Specifies the handle of the NWTCB mux group to monitor.

timeOut

(IN) Specifies the time (in milliseconds) to wait for a transport event to
occur. Specify SIPX_INFINITE_WAIT if no timeout is desired.

ppNwtcb

(OUT) Points to the location where the pointer to the NWTCB with the
transport event will be stored.

Return Values

SIPX_INVALID_MUX_GROUP_
HANDLE

The NWTCB mux group handle
specified in muxGroupHandle is
invalid.

SIPX_INVALID_PARAMETER An invalid pointer was specified
by ppNwtcb.

SIPX_INVALID_SYNC_TYPE You cannot block within a
callback function.

SIPX_PENDING The timeout value elapsed;
request completion is still
pending.

SIPX_SUCCESSFUL The request completed without
error.

SIPX_UNSUCCESSFUL An internal system error occurred.

Communication Service Group

NWSIPX: Functions 995

Other values Other values according to the
function initiating the transport
event.

Remarks

The following NWTCB field is set upon completion:

TCBFinalStatus, indicating the final status of the request. The final status
values are the same as for the function that initiated the transport event.

See Also

NWSipxAllocControlBlock,NWSipxChangeControlBlock,
NWSipxWaitForSingleEvent

Communication Service Group

NWSIPX: Functions 996

SIPX_ERROR

(Macro) Determines whether an NWSIPX API service request resulted in an
error
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <nwsipx32.h>

SIPX_ERROR (x);

Parameters

x

(IN) Specifies the status value to be checked.

Return Values

TRUE An error occurred.

FALSE An error did not occur.

Remarks

SIPX_ERROR is a macro that is provided to help client applications
determine whether or not an error has occurred during the execution of a
NWSIPX service request. The value checked can either be the return
value of a function, or it can be the contents of the TCBFinalStatus field of
the NWTCB.

See Also

SIPX_SUCCESS

Communication Service Group

NWSIPX: Functions 997

SIPX_SUCCESS

(Macro) Determines whether an NWSIPX API service request was
successful
Platform: NT, OS/2, Windows 95
Service: NWSIPX

Syntax

#include <nwsipx32.h>

SIPX_SUCCESS (x);

Parameters

x

(IN) Specifies the status value to be checked.

Return Values

TRUE The request was successful.

FALSE The request was not successful.

Remarks

SIPX_SUCCESS is a macro that is provided to help client applications
determine whether or not an NWSIPX service request was successful. The
value checked can either be the return value of a function, or it can be the
contents of the TCBFinalStatus field of the NWTCB.

See Also

SIPX_ERROR

Communication Service Group

NWSIPX: Functions 998

NWSIPX: Structures

Communication Service Group

NWSIPX: Structures 999

FRAGMENT

Provides information about the location and size of a fragment of data
Service: NWSIPX
Defined In: nwsipx32.h

Structure

typedef struct TAG_FRAGMENT {
 nptr FAddress;
 nuint32 FLength;
} FRAGMENT, *PFRAGMENT;

Fields

FAddress

Points to a fragment of data.

FLength

Indicates the size (in bytes) of the data fragment.

Communication Service Group

NWSIPX: Structures 1000

IPXADDR

Stores an IPX/SPX network address
Service: NWSIPX
Defined In: nwsipx32.h

Structure

typedef struct TAG_IPXADDR {
 nuint8 NANet[4];
 nuint8 NANode[6];
 nuint8 NASocket[2];
} IPXADDR, *PIPXADDR;

Fields

NANet

Indicates a network number, stored as a character array.

NANode

Indicates a node number, stored as a character array.

NASocket

Indicates a socket number, stored as a character array.

Remarks

NOTE: The network address components are specified in network
byte order (high-low). See NTYPES.H for macros that facilitate
conversion to and from network byte order.

Communication Service Group

NWSIPX: Structures 1001

NETADDR

Stores multiple types of network addresses
Service: NWSIPX
Defined In: nwsipx32.h

Structure

typedef struct TAG_NETADDR {
 nuint32 NAType;
 nuint32 NALength;
 union {
 nuint8 NAGenAddress[SIPX_MAX_TRANS_ADDR_LEN];
 IPXADDR NAIpxAddress;
 } NAAddress;
} NETADDR, *PNETADDR;

Fields

NAType

Indicates the type of the network address being stored. Currently, the
only address type that is supported is TA_IPX_SPX.

NALength

Indicates the length (in bytes) of the address stored in NAAddress.

NAAddress

Indicates a network address.

Remarks

NETADDR can be used to define multiple address types.

The only address type currently supported is TA_IPX_SPX.

NOTE: The network address components are specified in network
byte order (high-low). See NTYPES.H for macros that facilitate
conversion to and from network byte order.

Communication Service Group

NWSIPX: Structures 1002

NWTCB

Used to transfer information between the client application and the
NWSIPX API
Service: NWSIPX
Defined In: nwsipx32.h

Structure

typedef struct TAG_NWTCB {
 TAG_NWTCB *TCBNext;
 TAG_NWTCB *TCBPrevious;
 SIPXSOCK_HANDLE TCBSockHandle;
 SIPXCONN_HANDLE TCBConnHandle;
 nptr TCBClientContext;
 nuint32 TCBTransportEvent;
 union {
 nuint32 TCBTimeout;
 nuint8 TCBEventSpace[32];
 } TCBEvent;
 nuint32 TCBFinalStatus;
 nuint32 TCBBytesTransferred;
 nflag32 TCBFlags;
 NETADDR TCBRemoteAddress;
 SIPXSUBNET_HANDLE TCBSubnetworkHandle;
 nuint32 TCBMsgSequenceNumber;
 nuint8 TCBPacketType;
 nuint8 TCBDataStreamType;
 nuint8 TCBReserved[2];
 nuint32 TCBFragmentCount;
 PFRAGMENT TCBFragmentList;
} NWTCB, *PNWTCB, **PPNWTCB;

Fields

TCBNext

Points to the next NWTCB in a linked list. This is for use by the client
application when it manages multiple NWTCBs. The NWSIPX API
does not use this field at any time.

TCBPrevious

Points to the previous NWTCB in a linked list. This is for use by the
client application when it manages multiple NWTCBs. The NWSIPX
API does not use this field at any time.

TCBSockHandle

Specifies a socket handle. This field is used differently depending
upon the function being called.

Communication Service Group

NWSIPX: Structures 1003

TCBConnHandle

Specifies a connection-endpoint handle. This field is used differently
depending upon the function being called.

TCBClientContext

Points to a location where the client can save its own context-sensitive
information. This field is not used by the NWSIPX API at any time.

TCBTransportEvent

Indicates the transport event to be registered for when calling
NWSipxRegisterForTransportEvent. The currently defined values
are:

SIPX_LISTEN_FOR_DISCONNECT
SIPX_SCHEDULE_TIMER_EVENT
SIPX_SUBNET_STATUS_CHANGE

TCBEvent

Indicates parameters associated with the transport event specified in
the TCBTransportEvent field. This is an overloaded field that
accommodates any parameters that are required for the transport
event indicated by the TCBTransportEvent field. The currently defined
parameter fields are:

TCBTimeout Timer value (in milliseconds) when
 SIPX_SCHEDULE_TIMER_EVENT has been selected.

TCBFinalStatus

Indicates the final completion status of a request or event.

TCBBytesTransferred

Indicates the number of bytes sent or received on a data transfer
operation.

TCBFlags

Specifies the common flag field of the NWTCB. Any flags required for
the operation of an NWSIPX API function are set in this field.

NOTE: Only valid flags must be set in this field. If invalid flags
are set, an error status results whenever the NWTCB is used.

TCBRemoteAddress

Indicates a remote address structure that you can store into or examine
depending upon the function that is being called.

NOTE: The network address components are specified in
network byte order (high-low). See NTYPES.H for macros that
facilitate conversion to and from network byte order.

When specifying a network address, you must set the NAType
field to TA_IPX_SPX and the NALength field to the value of sizeof
(IPXADDR).

TCBSubnetworkHandle

Communication Service Group

NWSIPX: Structures 1004

Specifies the handle of the subnetwork to be used by the function
using this NWTCB.

TCBMsgSequenceNumber

Indicates the sequence number of the message segment associated
with the NWTCB (for connection-oriented messages only). The
message sequence number is assigned to each message segment as it
arrives, allowing you to determine the order in which message
segments were received. This sequence number is not the same as the
SPX protocol sequence number.

TCBPacketType

When sending a datagram, this field indicates a value that is to be
stored into the packetType field of the IPX header. When receiving a
datagram, this field indicates the value that was present in the
packetType field of the IPX header. TCBPacketType is valid only for
datagram services.

TCBDataStreamType

When sending a message, this field indicates a value that is to be
stored in the dataStreamType field of the SPX header. When receiving a
message, this field indicates the value that was present in the
dataStreamType field of the SPX header. TCBDataStreamType is valid
only for connection-oriented services.

TCBReserved

Is reserved for future use.

TCBFragmentCount

Indicates the number of fragment descriptors in the fragment list
pointed to by the TCBFragmentList field (maximum of 15).

TCBFragmentList

Points to a fragment list. Each fragment descriptor in the fragment list
contains a pointer to the data fragment and its size in bytes.

NOTE: Neither the fragment list nor the data space identified by
the fragment list can be modified or freed while the NWTCB is in
use by an NWSIPX API request.

Communication Service Group

NWSIPX: Structures 1005

SIPX_API_INFO

Holds information describing the NWSIPX API environment
Service: NWSIPX
Defined In: nwsipx32.h

Structure

typedef struct {
 nuint32 AIApiVersion;
 nuint32 AIIpxVersion;
 nuint32 AISpxVersion;
 nuint32 Reserved[4];
 nuint32 AISubnetCount;
 SIPX_SUBNET_INFO AISubnetInfo[1];
} SIPX_API_INFO, *PSIPX_API_INFO;

Fields

AIApiVersion

(Read-only) Indicates the current version of the NWSIPX API.

AIIpxVersion

(Read-only) Indicates the current IPX version.

AISpxVersion

(Read-only) Indicates the current SPX version.

Reserved

Is reserved for future use.

AISubnetCount

(Read-only) Indicates the number of subnetworks known to the
system.

AISubnetInfo

(Read-only) Indicates an array of SPX_SUBNET_INFO structures
describing the attributes of the subnetworks known to the NWSIPX
API. The AISubnetCount field indicates how many elements are in the
array.

Remarks

SIPX_API_INFO structures are allocated by calling
NWSIPXGetInformation with the infoType parameter set to
SIPX_API_INFORMATION. They are freed by calling
NWSIPXFreeInformation.

Communication Service Group

NWSIPX: Structures 1006

SIPX_CONN_INFO

Holds information about a connection endpoint
Service: NWSIPX
Defined In: nwsipx32.h

Structure

typedef struct {
 nuint32 CISpxVersion;
 nuint32 CIState;
 nuint32 CIDataStreamType;
 nuint32 CIConnectionProfile;
 nuint32 CIInputMode;
 nuint32 CIStreamingTimer;
 nuint32 CIRetryCount;
 nuint32 CISocketHandle;
 nuint32 CIMaxTsduSize;;
 nuint32 CIOutputMode
 nuint32 Reserved[3];
} SIPX_CONN_INFO, *PSIPX_CONN_INFO;

Fields

CISpxVersion

(Read-only) Indicates the SPX version currently being used by the
connection endpoint.

CIState

(Read-only) Indicates the current state of the connection endpoint. The
following states are defined:

SIPX_ALLOCATED
SIPX_CONNECTED
SIPX_CONNECTING
SIPX_LISTENING
SIPX_TERMINATING
SIPX_WAITING_ACCEPT

CIDataStreamType

Indicates the type of the data stream. The contents of this field are
stored in the dataStreamType field of the SPX header of every data
message that is sent to the peer application through the connection
endpoint. This value can be overridden on a per-message basis. The
valid ranges of values are 0x00 to 0xFD.

CIConnectionProfile

Indicates the expected duration and the quality of service
requirements for a transport connection using this connection

Communication Service Group

NWSIPX: Structures 1007

endpoint. The following values are currently defined:

SIPX_CONN_LONG_TERM
SIPX_CONN_SHORT_TERM

CIInputMode

Indicates the method for receiving data. The defined modes are:

SIPX_CONN_MESSAGE
SIPX_CONN_STREAM

CIStreamingTimer

Indicates the length of time (in milliseconds) that message fragments
should be gathered before delivery. This parameter is used only if
CIInputMode has a value of SIPX_CONN_STREAM.

CIRetryCount

Indicates the number of times the transfer of a data message should be
retried before aborting the transport connection. (This is a read-only
parameter for Windows NT*.)

CISocketHandle

(Read-only) Indicates the handle of the socket that the connection
endpoint is associated with.

CIMaxTsduSize

(Read-only) Indicates the maximum size of the data segment
supported for this connection endpoint. A value of
SIPX_CONN_UNLIMITED_TSDU indicates an unlimited TSDU size.

CIOutputMode

Indicates the method for sending data. The defined modes are:

SIPX_CONN_FRAGMENT
SIPX_CONN_TRANSPARENT

Reserved

Is reserved for future use.

Remarks

NOTE: You must not allocate or free SIPX_CONN_INFO structures
yourself. The only way you can allocate valid SIPX_CONN_INFO
structures is by calling NWSIPXGetInformation with the infoType
parameter set to SIPX_CONN_INFORMATION. You must free
SIPX_CONN_INFO structures by calling NWSIPXFreeInformation.

The value of CIConnectionProfile allows the NWSIPX API to negotiate
different SPX options that most closely match the intended use of the
transport connection. This field can only be set when the connection
endpoint is in the SIPX_ALLOCATED state.

The modes and descriptions for the CIInputMode field are as follows:

Communication Service Group

NWSIPX: Structures 1008

SIPX_CONN_MESS
AGE

Data is delivered as whole messages. (Partial
messages can be delivered if the input buffer is
too small to hold the entire message.

SIPX_CONN_STRE
AM

This behavior depends upon the value of the
CIStreamingTimer field. If streaming mode is
disabled (by CIStreamingTimer being set to zero),
message fragments are delivered as they arrive
from the network. Otherwise, message
fragments are gathered until the
CIStreamingTimer value expires.
This field can only be set when the connection
endpoint is in the SIPX_ALLOCATED state.

The modes and descriptions for the CIOutputMode field are as follows:

SIPX_CONN_FRAGM
ENT

Data received is fragmented as necessary for
delivery to the peer system.

SIPX_CONN_TRANS
PARENT

Data received is sent immediately to the peer
system without further fragmentation. You
are responsible for determining valid
message sizes.
This field can only be set when the
connection endpoint is in the
SIPX_ALLOCATED state.
You indicate message boundaries by setting
or clearing the SIPX_SNDMSG_PARTIAL
flag in the TCBFlags field of the NWTCB
passed to the NWSipxSendMessage
function.
Windows NT cannot guarantee that messages
will not be fragmented in Transparent Mode.
Implementations of the NWSIPX API Version
2 or earlier do not support this parameter. In
these cases, the parameter value will be
SIPX_CONN_UNSUPPORTED. The API
version can be read from the APIVersion API
Environment parameter.

When a connection is established, its parameters are set to the following
default values:

Parameter Default Value

CISpxVersion Current SPX version

Communication Service Group

NWSIPX: Structures 1009

CIState SIPX_ALLOCATED

CIDataStreamType 0x0

CIConnectionProfile SIPX_CONN_LONG_TERM

CIOutputMode SIPX_CONN_FRAGMENT

CIInputMode SIPX_CONN_STREAM

CIStreamingTimer 0

CIRetryCount IPX retry count configured for the system

CISockethandle None

CIMaxTsduSize Maximum TSDU size supported by the SPX
protocol stack.

Communication Service Group

NWSIPX: Structures 1010

SIPX_NWTCB_INFO

Contains information about parameters that are associated with an NWTCB
Service: NWSIPX
Defined In: nwsipx32.h

Structure

typedef struct TAG_SIPX_NWTCB_INFO {
 nuint32 NWIState;
 nuint32 NWIEventType;
 nuint32 NWIEventInfo;
 nuint32 Reserved[4];
} SIPX_NWTCB_INFO, *PSIPX_NWTCB_INFO;

Fields

NWIState

(Read-only) Indicates the current state of the associated NWTCB.

NWIEventType

Indicates the event notification type associated with the NWTCB.

NWIEventInfo

Indicates supplementary information pertaining to the event
notification type. The supplementary information differs according to
the event notification type specified by NWIEventType.

Reserved

Is reserved for future use.

Remarks

The following values are valid for the NWIState field:

SIPX_TCB_ALLOC
ATED

The NWTCB is allocated but is not in use.

SIPX_TCB_IN_USE The NWTCB is in use.

The following values are valid for the NWIEventType field:

SIPX_API_EVENT The function returns immediately. You must call
NWSipxWaitForSingleEvent , which blocks
until the request completes or the specified
timeout period completes.

Communication Service Group

NWSIPX: Structures 1011

timeout period completes.

SIPX_API_MUX_E
VENT

Allows applications to monitor multiple
NWTCBs for event completion with a single call
to NWSipxWaitForMultipleEvents.

SIPX_BLOCKING The function blocks until the request is
complete.

SIPX_CALLBACK The function returns immediately and the
callback function is called when the request
completes.

SIPX_POLLING The function returns immediately and you
application must call NWSipxPoll until a status
other than SIPX_PENDING is returned.

SIPX_USER_EVEN
T

The function returns immediately. If the request
is initiated successfully, your event object will be
signaled when the request completes.

The following table shows the information that the NWIEventInfo field
provides to supplement the information provided by NWIState.

Event Type Supplementary Information

SPX_API_EVENT NULL (No additional information is needed.)

SIPX_API_MUX_E
VENT

Handle of the mux group to which this NWTCB
belongs.

SIPX_BLOCKING NULL (No additional information is needed.)

SIPX_CALLBACK Address of the callback function that is to be
called when the service request completes.

SIPX_POLLING NULL (No additional information is needed.)

SIPX_USER_EVEN
T

Handle of the event object to be signaled upon
completion of the service request.

SIPX_NWTCB_INFO structures are used to retrieve and set element
parameters associated with an NWTCB. To change the values of NWTCB
element parameters, first read the NWTCB's current parameters by
calling NWSIPXGetInformation to retrieve an SIPX_NWTCB_INFO
structure containing the current parameters. Then change the desired
values in the SIPX_NWTCB_INFO structure. Then call
NWSIPXSetInformation, passing in the modified SIPX_NWTCB_INFO
structure. Lastly, free the SIPX_NWTCB_INFO structure by calling
NWSIPXFreeInformation.

NOTE: You must not allocate or free SIPX_NWTCB_INFO structures
yourself. The only way you can allocate valid SIPX_NWTCB_INFO
structures is by calling NWSIPXGetInformation with the infoType
parameter set to SIPX_NWTCB_INFORMATION. You must free
SIPX_NWTCB_INFO

Communication Service Group

NWSIPX: Structures 1012

SIPX_NWTCB_INFO structures by calling NWSIPXFreeInformation.

Communication Service Group

NWSIPX: Structures 1013

SIPX_SERVICE_INFO

Identifies information about a server
Service: NWSIPX
Defined In: nwsipx32.h

Structure

typedef struct TAG_SIPX_SERVICE_INFO {
 nuint16 SIServerType;
 nstr8 SIServerName[48];
 nuint8 SINetwork[4];
 nuint8 SINode[6];
 nuint16 SISocket;
 nuint16 SIHops;
} SIPX_SERVICE_INFO, *PSIPX_SERVICE_INFO;

Fields

SIServerType

Indicates the type of server.

SIServerName

Indicates the name of the server. Maximum name length is 47 bytes
plus one for NULL termination.

SINetwork

Indicates the server network number, stored as a character array.

SINode

Indicates the server node number, stored as a character array.

SISocket

Indicates the server socket number, stored as a character array.

SIHops

Indicates the number of hops to the server.

Remarks

NOTE: The byte ordering of all of the fields in this structure is network
byte order (high-low). See NTYPES.H for macros that facilitate
conversion to and from network byte order.

SIPX_SERVER_INFO is used with NWSipxQueryServices.

One or more SIPX_SERVER_INFO structures are returned in the data
space provided by the client application. These structures contain the
requested server information.

Communication Service Group

NWSIPX: Structures 1014

SIPX_SOCKET_INFO

Stores parameters associated with a socket
Service: NWSIPX
Defined In: nwsipx32.h

Structure

typedef struct TAG_SIPX_SOCKET_INFO {
 nuint32 SIIpxVersion;
 nflag32 SIAttributeFlags;
 nuint16 SISocketNumber;
 nuint16 SIReserved;
 nuint32 SIPacketType;
 SIPX_SUBNET_HANDLE SISubnetworkHandle;
 nuint32 Reserved[4];
} SIPX_SOCKET_INFO, *PSIPX_SOCKET_INFO;

Fields

SIIpxVersion

(Read-only) Indicates the IPX version currently installed.

SIAttributeFlags

(Read-only) Indicates the type of the socket.

SISocketNumber

Indicates the number of the socket.

SIReserved

Is reserved.

SIPacketType

Indicates a value to be stored in the packetType field of the IPX header
of each message that is sent. This value can be overridden on a
per-message basis.

SISubnetworkHandle

Indicates the handle of the subnetwork currently being used by the
socket.

Reserved

Is reserved for future use.

Remarks

The following values are valid for the SIAttributeFlags field:

Communication Service Group

NWSIPX: Structures 1015

SIPX_SOCK_DYNAM
IC

The socket number was selected dynamically
by the NWSIPX API.

SIPX_SOCK_CHECKS
UM

Checksum processing (generation and
validation) is done for every datagram sent or
received over this socket.

SIPX_SOCK_STATIC The socket number was specified by the
application.

NOTE: The NWSIPX API for Windows NT does not support the
generation of checksums for datagrams.

The socket number stored in SISocketNumber is stored in network byte
order (high-low). See NTYPES.H for macros that facilitate conversion to
and from network byte order.

NOTE: You must not allocate or free SIPX_SOCKET_INFO structures
yourself. The only way you can allocate valid SIPX_SOCKET_INFO
structures is by calling NWSIPXGetInformation with the infoType
parameter set to SIPX_SOCKET_INFORMATION. You must free
SIPX_SOCKET_INFO structures by calling NWSIPXFreeInformation.

When a socket is opened, its parameters are set to the following default
values:

Parameter Default Value

SIIpxVersion Current IPX version

SIAttributeFlags Set according to socket attributes (see
SIAttributeFlags above)

SISocketNumber The number of the socket that was opened

SIPacketType 0x4

SISubnetworkHa
ndle

Handle of the default subnetwork or the subnetwork
handle specified by the application when it opened
the socket

Communication Service Group

NWSIPX: Structures 1016

SIPX_SUBNET_INFO

Describes the attributes of a subnetwork
Service: NWSIPX
Defined In: nwsipx32.h

Structure

typedef struct TAG_SIPX_SUBNET_INFO {
 SIPXSUBNET_HANDLE SNSubnetworkHandle;
 nuint32 SNMaxNsduSize;
 NETADDR SNNetAddress;
 nflag32 SNFlags;
 nuint32 SNSubnetworkType;
 nuint32 Reserved[4];
} SIPX_SUBNET_INFO, *PSIPX_SUBNET_INFO;

Fields

SNSubnetworkHandle

Indicates a handle that uniquely identifies the subnetwork.

SNMaxNsduSize

Indicates the maximum NSDU size supported by the subnetwork.

SNNetAddress

Indicates the local internet address (net.node) associated with the
subnetwork.

SNFlags

Indicates flags describing the subnetwork attributes.

SNSubnetworkType

Indicates the type of subnetwork.

Reserved

Is reserved for future use.

Remarks

The NWSIPX API supports simultaneous attachment to multiple
networks and/or multiple attachments to the same physical network
using different data encapsulation methods, such as ETHERNET_802.2,
ETHERNET_II, and ETHERNET_SNAP. Each network attachment is
referred to as a subnetwork. The SIPX_SUBNET_INFO describes
structure is used to hold information about each of the subnetworks.

The following values are valid for the SNFlags field:

Communication Service Group

NWSIPX: Structures 1017

SIPX_SN_XSUM_FLAG Checksum processing is supported.

SPX_SN_ACTIVE_FLAG Subnetwork is active and usable.

SIPX_SN_DEFAULT_FL
AG

The subnetwork is the default subnetwork.
It is the subnetwork that will be used
when a specific subnetwork is not
specified for functions that accept a
subnetwork handle as a parameter.

The following values are valid for the SNSubnetworkType field:

Subnetwork Type Value Description

SIPX_SN_VIRTUAL_LA
N

0x00000
000

Frame ID/MAC envelope is not
necessary

SIPX_SN_ETHERNET_II 0x00000
002

Ethernet using DEC Ethernet II
frame type

SIPX_SN_ETHERNET_80
2_2

0x00000
003

Ethernet (802.3) using an 802.2
envelope

SIPX_SN_TOKEN_RING 0x00000
004

Token Ring (802.5) using an
802.2 envelope

SIPX_SN_ETHERNET_80
2.3

0x00000
005

IPX 802.3 raw encapsulation

SPX_SN_802_4 0x00000
006

Token-passing bus envelope

SIPX_SN_NOVELL_PCN
2

0x00000
007

Novell's IBM PC Network II
envelope

SIPX_SN_GNET 0x00000
008

Gateway's GNET frame
envelope

SIPX_SN_PRONET_10 0x00000
009

Proteon's ProNET I/O frame
envelope

SIPX_SN_ETHERNET_S
NAP

0x00000
00a

Ethernet (802.3) using an 802.2
with SNAP envelope

SIPX_SN_TOKEN_RING
_SNAP

0x00000
00b

Token Ring (802.5) using 802.2
with SNAP envelope

SIPX_SN_LANPC_II 0x00000
00c

Racore frame envelope

SIPX_SN_ISDN 0x00000
00d

ISDN

SIPX_SN_NOVELL_RX_
NET

0x00000
00e

Novell's RX-NET envelope

SIPX_SN_IBM_PCN2_80
2.2

0x00000
00f

IBM PCN2 using 802.2 envelope

Communication Service Group

NWSIPX: Structures 1018

SPX_SN_IBM_PCN2_SN
AP

0x00000
010

IBM PCN2 using 802.2 with
SNAP envelope

SIPX_SN_OMNINET_4 0x00000
011

Corvus's frame type

SIPX_SN_3270_COAXA 0x00000
012

Harris Adcom's frame envelope

SIPX_SN_IP 0x00000
013

IP tunnel frame envelope

SIPX_SN_FDDI_802_2 0x00000
014

FDDI using 802.2 envelope

SIPX_SN_IVDALN_802_
9

0x00000
015

Comtex, Inc. frame envelope

SIPX_SN_DATACO_OSI 0x00000
016

Dataco's frame envelope

SIPX_SN_FDDI_SNAP 0x00000
017

FDDI using 802.2 with SNAP
envelope

NOTE: The NWSIPX API for Windows NT cannot determine a
subnetwork's type. Therefore, the SNSubnetworkType parameter always
indicates SIPX_SN_TYPE_UNKNOWN for Windows NT platforms.

SIPX_SUBNET_INFO is associated with SIPX_API_INFO.

Communication Service Group

NWSIPX: Structures 1019

SAP

Communication Service Group

 1020

SAP: Guides

SAP: General Guide

Basic Information

SAP Overview

SAP Function List

Parts of SAP

SAP Protocol Requirements

Service Advertising Packets

Service Identification Packets

Service Query Packets

Using SAP

Broadcasting

Initializing SAP

Advertising Services

Responding to Service Queries

Terminating Service

Locating Services

Locating Services with SAP

Scanning the Bindery

Making General Service Queries

Making Nearest Service Queries

Additional Links

SAP: Functions

SAP: Structures

Communication Service Group

SAP: Guides 1021

SAP: Concepts

Advertising Services

All advertising servers must broadcast their identity once every 60 seconds
using a service identification packet. This periodic broadcast keeps bridges
and servers (running NetWare 2.x and above) information of the
advertising server's identity and presence.

To broadcast a server identification packet, an advertising server sets
response type to 2. In the packet's IPX header, the server sets destination node
field to FFFFFFFFFFFFh and destination socket field to 0452h.

AdvertiseService sends out an identification packet every 60 seconds.
Identification packets are received by all servers and bridges on a network.
This function takes the server type, server name, and socket number as
input. It opens the socket, prepares the server identification packet, and
performs the advertising as described above

Servers add a server to their binderies based on the information in the
identification packet. If several minutes pass and a server fails to broadcast,
all bridges and servers on the network assume the server has terminated. In
that case, servers remove the server from their binderies. The identification
packet is automatically forwarded to the entire internet by bridges and
servers.

Parent Topic: Broadcasting

Broadcasting

Advertising servers must initialize the service advertising socket,
periodically transmit service identification packets, and be prepared to
respond to service query packets.

Related Topics

Initializing SAP

Advertising Services

Responding to Service Queries

Terminating Service

Communication Service Group

SAP: Concepts 1022

Initializing SAP

An advertising server must open the service advertising socket and post one
or more ECBs to monitor service queries. If the socket has been opened
already, the server must not attempt to monitor the socket. Another process,
typically a NetWare server or bridge, is monitoring the socket and
responding to service advertising queries on behalf of the advertising
server.

If a server is unable to open the socket because the maximum number of
sockets are already opened, the server should report an error and terminate.

Parent Topic: Broadcasting

Locating Services with SAP

A service query is sent by an application that wants to find a server that it
can establish a client-server relationship with. There are two ways clients
can locate services on the network. They can search a server's bindery to
detect the presence of the server on the network, or they can use
QueryServices.

Related Topics

Scanning the Bindery

Sending Service Query Broadcasts

Making General Service Queries

Making Nearest Service Queries

Making General Service Queries

Applications can make a general service query to obtain a list of all eligible
servers on the network. General service queries seek a response from every
qualified server. The query can specify all servers of a particular type or all
servers of any type. Every server on the network that matches the indicated
type responds with an identification packet.

Packets for a general service query are of Query Type 1. The server type
parameter should be set to a particular service class. The wildcard value
(0xFFFF) is also valid.

Parent Topic: Locating Services with SAP

Communication Service Group

SAP: Concepts 1023

Making Nearest Service Queries

Applications can query for the nearest server of a particular type. In this
context, nearest refers to the server that is able to respond first. When
making this query, the application obtains information about only one
server (if any servers offering the requested service are present on the
network).

Parent Topic: Locating Services with SAP

Responding to Service Queries

Clients use the service query packet to query advertising servers. Servers
receive this query on the service advertising socket and must post at least
one ECB on the this socket. In response to the query, the server returns a
server identification packet to the client. The response should indicate the
type of query the server is responding to. See Advertising Services.)

A service query packet indicates both the query type and server type. The
server must check to ensure that it matches the query's server type. The
server should also respond to the wildcard server type.

There are two types of queries:

General service query (1)

Nearest service query (2).

The first type seeks all servers of a specified type. The second type searches
for the first server that responds of a specified type. Only nearest service
queries are currently implemented in the C client library. However,
developers can implement general service queries themselves. Although a
server may receive an assortment of packets on the service advertising
socket, it should respond only to general and nearest service queries.

Applications can call the C library function QueryServices to broadcast
service queries. This function takes the query type and server type as input
and returns the appropriate server information.

Parent Topic: Broadcasting

SAP Function List

SAP functions offered for DOS, MS Windows, and OS/2 workstations are
listed below. If you are programming your service to run with DOS, MS
Windows, or OS/2 you should use these functions.

Communication Service Group

SAP: Concepts 1024

Function Header Purpose

AdvertiseServic
e

nwsap.h
sap.h

Advertises a service on the network.

QueryServices nwsap.h
sap.h

Returns the identities of all servers of
all types, all servers of a specific type,
or the nearest server of a specific type.

ShutdownSAP
(DOS, Win)

nwsap.h
sap.h

Stops the advertising of a service on
the network.

For NLM applications, the following functions are available

Function Purpose

AdvertiseService Informs clients of the presence of a service on
the network.

FreeQueryServicesLi
st

Frees the list of SAP response structures after
QueryServices has been called.

QueryServices Returns the identities of all servers of all types,
all servers of a specific type, or the nearest
server of a specific type.

ShutdownAdvertisi
ng (NLM)

Stops the advertising of a service on the
network.

SAP Overview

Service Advertising Protocol (SAP) defines IPX packet structures and
broadcast procedures for servers that want to advertise their name and
service on the network. An advertising server can be any application
running on a NetWare® server, bridge, or workstation. NetWare servers
record in their binderies the advertising server's name, service type, and
network address.

Clients of value-added servers can use SAP to query the network for
various types of servers. Clients can also use Bindery Services to query the
bindery of any NetWare server and discover the names and addresses of
various types of servers present on the network.

To use SAP, advertising servers and their clients must operate on nodes
running NetWare 2.x or above. Under NetWare 4.x, Directory Services
effectively replaces SAP as an advertising medium. However, using
Directory Services as an advertising medium isn't possible for
bindery-based NetWare servers and workstations. Advertising servers must
use SAP to advertise to bindery-based clients.

Communication Service Group

SAP: Concepts 1025

NOTE: In NetWare 4.x, the maximum number of SAP handles that
one NLM™ application can concurrently have open is 20. Otherwise,
SAP services have been preserved exactly as they were in NetWare
versions before 4.0; the NetWare Directory itself is "SAPing."

SAP Protocol Requirements

SAP governs the server types, server names, and socket assignments
available to advertising servers.

Server Types

Novell assigns each type of server a unique server type. By specifying a
server type, a client application can receive a list of servers providing a
particular service. All servers that provide the same service through
identical application-level protocols should adopt the same server type.
Software developers must contact Novell to obtain a specialized server type
(see Reserving Services and Names and How To Get Assistance). The
following well-known server object types are defined:

FFFFh
(1)

Wild

0000h Unknown

0003h Print queue

0004h NetWare server

0005h Job server

0007h Print server

0009h Archive server

0024h Remote bridge server

0047h Advertising print server

8000h Reserved up to

Server Names

Each advertising server must be given a unique name within its service
type. Names are usually assigned by the network administrator as part of
the server installation procedure. Servers of different types may share
names. For example, a NetWare server named ADMIN and a print server
named ADMIN could both reside on the network.

Socket Assignments

Communication Service Group

SAP: Concepts 1026

SAP designates socket 0452h as the service advertising socket. All SAP
operations are performed on this socket. The service advertising socket must
be kept separate from working sockets used by an advertising server to
provide services. Working sockets are regulated according to IPX
conventions. Dynamic socket numbers range from 4000h to 4FFFh. Static
socket numbers are assigned by Novell and begin at 8000h.

Scanning the Bindery

All NetWare servers monitor the SAP socket for server broadcasts. When a
server broadcasts, each NetWare server adds that server as an object in its
bindery. An application can locate a NetWare server by scanning another
NetWare server's bindery.

Server objects in the bindery have a name and type that identify them
uniquely on the network. No two servers of a particular type can have the
same name. Server objects also have a NET_ADDRESS property that
contains the network, node, and socket address of the server.

Applications can scan a bindery for a specific NetWare server by name, for
all servers of a specific type, or for all servers in general. Once a server is
found, the client can use the server's NET_ADDRESS property to deliver
IPX packets to the server. For more information about how to scan a
bindery, see Bindery.

Parent Topic: Locating Services with SAP

Sending Service Query Broadcasts

In addition to scanning the bindery, applications can call QueryServices to
send a service query broadcast and receive all the replies. QueryServices
works if volume SYS: is not mounted, whereas scanning the bindery does
not work. It also works to locate services other than NetWare servers.

Parent Topic: Locating Services with SAP

Service Advertising Packets

SAP defines two packet structures: service identification packet and service
query packet. Advertising services broadcast Service Indentification
Packets. Clients search for services using the service query packet.

NetWare bridges monitor service identification packets to track active
advertising servers. Each bridge propagates this information to other

Communication Service Group

SAP: Concepts 1027

bridges on the network. NetWare servers log the server's name, type, and
address in their binderies. If a server fails to make itself known for several
minutes, all bridges and NetWare servers assume the server has terminated.

By keeping track of advertising servers, NetWare bridges and servers are
able to reply to workstation queries about the servers present on the
network. This makes it possible for a workstation to find an appropriate
server even if the workstation resides on a different local network.

Related Topics

Service Identification Packets

Service Query Packets

Service Identification Packets

The service identification packet has a length of 96 bytes. In some instances,
however, a service identification packet may contain information
concerning as many as seven servers. Each additional server adds 64 bytes
of data to the packet.

The maximum length of a server identification packet is 480 bytes.
Therefore, an application using SAP to locate a specific type of server (or all
servers of a given type) must have a listen packet large enough to receive up
to 480 bytes. It has the following format:

Offset Field Size Type

0 Header Information BYTE[30
]

high-low

30 Response Type WORD high-low

32 Server Type WORD high-low

34 Server Name BYTE[48
]

high-low

82 Network BYTE[4] high-low

86 Node BYTE[6] high-low

92 Socket WORD high-low

94 Intermediate Networks WORD high-low

Each field in the identification packet is explained in the following list. (The
packet is constructed by AdvertiseService.)

Header Information

This field contains the IPX header (30 bytes). For a detailed
explanation of the IPX header, see IPX Packet Structure.

Communication Service Group

SAP: Concepts 1028

Response Type

This field identifies the type of SAP packet. If the packet is a response
to a services query, the field is set according to the query type. For
more information about query types, see Making General Service
Queries. For a periodic broadcast, this field is set to 2.

Server Type

This field identifies the type of service the server provides. Server
types can be obtained from Novell. For example, a NetWare server
advertises itself as type 4. This value becomes the object type for this
server in the bindery.

Server Name

This field contains the object name assigned to the server. Server
names can be 48 bytes (including a NULL terminator) and must
uniquely identify the server on the network.

Network

This field contains the address of the network on which the server
resides.

Node

This field contains the address of the node on which the server resides.

Socket

This field contains the socket number on which the server receives
service requests.

Intermediate Networks

This field contains the number of hops the identification packet makes
traveling from the server to the client. Initially, NetWare sets this field
to 0. Each time the packet passes through an intermediate network, the
field is incremented by one.

Parent Topic: Service Advertising Packets

Service Query Packets

The structure for a service query packet is shown in the following table.
(The packet is built by QueryServices.) An explanation of each field
follows.

Offset Field Size Type

0 Header Information BYTE[30
]

high-low

30 Packet Type WORD high-low

32 Server Type WORD high-low

Communication Service Group

SAP: Concepts 1029

Header Information

This field contains the IPX header (30 bytes). For a detailed
explanation of the IPX header, see IPX Packet Structure.

Packet Type

This field identifies the type of service query. For a General Service
Query, this field is set to 1. For a Nearest Service Query, this field is set
to 3.

Server Type

This field identifies the type of service the server provides. Contact
Novell Developer Relations to register a new server type.

Applications can call QueryServices to find all servers present or to
find only the nearest server of a specific type. Each type of query is
explained in the following section.

Parent Topic: Service Advertising Packets

Terminating Service

If a server is preparing to shut down, it can broadcast a shutdown packet
that notifies all bridges and servers of its intention. Shutdown advertising is
not mandatory but should be performed as a courtesy to the network. The
notification allows bridges and servers to purge the server from their tables.
A shutdown packet is identical to an identification packet except that
ShutdownAdvertising (NLM) for NLM applications and ShutdownSAP
(DOS, Win) for other applications places a value of 0x10 in the intermediate
networks field.

Parent Topic: Broadcasting

Communication Service Group

SAP: Concepts 1030

SAP: Functions

SAP for DOS, Win

Communication Service Group

SAP: Functions 1031

AdvertiseService (DOS, Win)

Advertises a server on the internetwork
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS, Win
Service: Service Advertising Protocol (SAP)

Syntax

#include <nwipxspx.h>

int AdvertiseService(
 WORD serverType,
 char *serverName,
 BYTE *serverSocket);

Parameters

serverType

(IN) Indicates the type of server assigned by Novell® for the server's
service class. This parameter must appear in low-high order, so call
IntSwap when using NetWare® defined server types.

serverName

(IN) Indicates the server name (maximum of 48 characters including
NULL).

serverSocket

(IN) Points to the server socket number.

Remarks

All servers, regardless of type, must broadcast their identity once every 60
seconds. This periodic identification broadcast informs all bridges and
file servers running NetWare 2.0 and above on the local network of a
server's identity.

Valid serverType parameters follow:

OT_WILD 0xFFFF(only valid for General Service Queries)
OT_UNKNOWN 0x0000
OT_USER 0x0100
OT_USER_GROUP 0x0200
OT_PRINT_QUEUE 0x0300
OT_FILE_SERVER 0x0400
OT_JOB_SERVER 0x0500
OT_GATEWAY 0x0600
OT_PRINT_SERVER 0x0700
OT_ARCHIVE_QUEUE 0x0800

Communication Service Group

SAP: Functions 1032

OT_ARCHIVE_SERVER 0x0900
OT_JOB_QUEUE 0x0A00
OT_ADMINISTRATION 0x0B00
OT_NAS_SNA_GATEWAY 0x2100
OT_REMOTE_BRIDGE_SERVER 0x2600
OT_TCPIP_GATEWAY 0x2700

In addition, the following extended bindery object types are available:

OT_TIME_SYNCHRONIZATION_SERVER 0x2D00
OT_ARCHIVE_SERVER_DYNAMIC_SAP 0x2E00
OT_ADVERTISING_PRINT_SERVER 0x4700
OT_PRINT_QUEUE_USER 0x5300

If a zero is passed in as serverSocket, a socket is dynamically assigned.

Communication Service Group

SAP: Functions 1033

QueryServices (DOS, Win)

Broadcasts a query to discover the identities of all servers of all types, all
servers of a specific type, or the nearest server of a specific type
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS, Win
Service: Service Advertising Protocol (SAP)

Syntax

#include <nwipxspx.h>

int QueryServices(
 WORD queryType,
 WORD serverType,
 WORD returnSize,
 SAP *serviceBuffer);

Parameters

queryType

(IN) Indicates the type of query to be performed.

serverType

(IN) Indicates the type of server to respond to this query. This
parameter must appear in low-high order, so call IntSwap when using
NetWare defined server types.

returnSize

(IN) Indicates the byte size of how much data to return in serviceBuffer.

serviceBuffer

(OUT) Points to a buffer where the server types are returned.

Remarks

Only Nearest Service Queries are currently implemented.

queryType would be set to 3 for Nearest Server Query.

When querying for a downed or absent service, QueryServices (DOS,
Win) can still return successfully. If interveningNetworks of the SAP
structure is equal to 16, the service is down and other servers are
returning the information.

Valid serverType parameters follow:

OT_WILD 0xFFFF (only valid for General Service Queries)
OT_UNKNOWN 0x0000
OT_USER 0x0100

Communication Service Group

SAP: Functions 1034

OT_USER_GROUP 0x0200
OT_PRINT_QUEUE 0x0300
OT_FILE_SERVER 0x0400
OT_JOB_SERVER 0x0500
OT_GATEWAY 0x0600
OT_PRINT_SERVER 0x0700
OT_ARCHIVE_QUEUE 0x0800
OT_ARCHIVE_SERVER 0x0900
OT_JOB_QUEUE 0x0A00
OT_ADMINISTRATION 0x0B00
OT_NAS_SNA_GATEWAY 0x2100
OT_REMOTE_BRIDGE_SERVER 0x2600
OT_TCPIP_GATEWAY 0x2700

In addition, the following extended bindery object types are available:

OT_TIME_SYNCHRONIZATION_SERVER 0x2D00
OT_ARCHIVE_SERVER_DYNAMIC_SAP 0x2E00
OT_ADVERTISING_PRINT_SERVER 0x4700
OT_PRINT_QUEUE_USER 0x5300

Communication Service Group

SAP: Functions 1035

ShutdownSAP (DOS, Win)

Broadcasts notification of a SAP server's intention to shut down, thereby
allowing bridges and file servers on the network to purge the SAP server
from their tables
Server: 2.2, 3.11 and above, 4.0 and above
Platform: DOS, Win
Service: Service Advertising Protocol (SAP)

Syntax

#include <nwipxspx.h>

int ShutdownSAP(void);

Return Values

0x00 Successful

0x67 SAP ECB not cancelled

0x68 SAP ECB not advertising

0xFF Failure

Remarks

ShutdownSAP (DOS, Win) issues a Cancel Event request against the
ECB being used to schedule the 60-second SAP broadcasts.

SAP for NLM

Communication Service Group

SAP: Functions 1036

AdvertiseService (NLM)

Advertises a server on the internetwork
Local Servers: nonblocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: Service Advertising Protocol (SAP)

Syntax

#include <sap.h>

LONG AdvertiseService (
 WORD serverType,
 char *serverName,
 WORD serviceSocket);

Parameters

serverType

(IN) Specifies the value assigned by Novell for the server's service
class.

serverName

(IN) Points to a 48-byte NULL-terminated string that is the server's
unique name within the internetwork.

serviceSocket

(IN) Specifies the service socket number that a client wanting to
communicate with the server via IPX™ or SPX™ protocols will use.

Return Values

AdvertiseService (NLM) returns a LONG handle associated with this
particular call to AdvertiseService (NLM). If AdvertiseService (NLM)
fails, it returns a value of -1, and NetWareErrno is set to the appropriate
error value.

Remarks

AdvertiseService (NLM) is used by servers to advertise the availability
of the service they provide.

Servers should post listens (IPX or SPX) on the serviceSocket before calling
AdvertiseService (NLM). Otherwise, a potential client can attempt to use
the advertised service and fail.

Example

Communication Service Group

SAP: Functions 1037

AdvertiseService (NLM)

#include <sap.h>

#define TAPE_SERVER_TYPE 44
#define TAPE_SERVER_SOCKET 10011
LONG SAPhandle;

SAPhandle = AdvertiseService (TAPE_SERVER_TYPE, "Tape_Server", TAPE_SERVER_SOCKET);

Communication Service Group

SAP: Functions 1038

FreeQueryServicesList (NLM)

Frees the list of SAP response structures after QueryServices has been
called
Local Servers: blocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: Service Advertising Protocol (SAP)

Syntax

#include <sap.h>

int FreeQueryServicesList (
 SAP_RESPONSE_LIST_ENTRY *listP);

Parameters

listP

(OUT) Points to the list of SAP response structures (returned by
QueryServices (NLM)).

Return Values

FreeQueryServicesList (NLM) returns a value of 0 if successful.

Communication Service Group

SAP: Functions 1039

QueryServices (NLM)

Returns the identities of all servers of all types, all servers of a specific type,
or the nearest server of a specific type
Local Servers: blocking
Remote Servers: N/A
Classification: 2.x, 3.x, 4.x
Service: Service Advertising Protocol (SAP)

Syntax

#include <sap.h>

SAP_RESPONSE_LIST_ENTRY *QueryServices (
 WORD queryType,
 WORD serviceType);

Parameters

queryType

(IN) Specifies the type of query to be performed: (1)
GENERAL_SERVICE_QUERY (3) NEAREST_SERVER_QUERY. See
Service Advertising Packets for more Information.

serviceType

(IN) Indicates the type of server that should respond to this query. A
value of 0xFFFF is a wildcard type that causes all server types to
respond. The wildcard type is only valid for General Service Queries.

Return Values

QueryServices (NLM) returns a pointer to a singly-linked list of
response structures. Each of the elements in the list is a structure defined
in SAP.H and is called SAP_RESPONSE_LIST_ENTRY.

Upon failure, QueryServices (NLM) returns EFAILURE.

Remarks

The last response structure in the list has a NULL next pointer. Each
response structure can contain information on up to eight servers (in the
case of a General Service Query). The count field specifies exactly the
number of servers for which SAP information is present in a given
response structure.

#define SAP_RESPONSES_PER_PACKET 8
#define QUERY_LIST_SIGNATURE 0x454C5253

typedef struct SAPResponse

Communication Service Group

SAP: Functions 1040

{
 WORD SAPPacketType; /* 2 or 4 */
 struct
 {
 WORD serverType; /* assigned by Novell*/
 BYTE serverName[48]; /* service name */
 InternetAddress serverAddress; /* server
 internetwork
 address */
 WORD interveningNetworks; /* # of networks
 packet must
 traverse */
 } responses[SAP_RESPONSES_PER_PACKET];
 struct SAPResponse *next;
 LONG signature;
 int count;
} SAP_RESPONSE_LIST_ENTRY;

QueryServices (NLM) uses the malloc function to allocate the memory
for each of the response structures in the list. The FreeQueryServicesList
(NLM) function should be called when the list is no longer needed to free
the memory it occupies.

Communication Service Group

SAP: Functions 1041

ShutdownAdvertising (NLM)

Stops advertising a service
Local Servers: blocking
Remote Servers: N/A
Classification: 3.x, 4.x
Service: Service Advertising Protocol (SAP)

Syntax

#include <sap.h>

int ShutdownAdvertising (
 LONG adHandle);

Parameters

adHandle

(IN) Specifies the advertising handle to be shut down (returned by
AdvertiseService (NLM)).

Return Values

ShutdownAdvertising (NLM) returns a value of 0 if successful.
Otherwise, it returns an error code (nonzero value).

Remarks

ShutdownAdvertising (NLM) stops the advertising of a service. More
than one service can be advertised. The advertising handle identifies
which service to shut down. An advertising handle must first be obtained
with a call to AdvertiseService (NLM).

Example

ShutdownAdvertising

#include <sap.h>

LONG adHandle;
int completionCode;
adHandle = AdvertiseService (TAPE_SERVER_TYPE,
 Tape_Server", TAPE_SERVER_SOCKET);
.
.
.
completionCode = ShutdownAdvertising (adHandle);

Communication Service Group

SAP: Functions 1042

SAP: Structures

Communication Service Group

SAP: Structures 1043

SAP

Service: SAP
Defined In: sap.h

Structure

typedef struct {
 IPXHeader Header;
 WORD ResponseType; /* HI - LO */
 WORD ServerType; /* HI - LO */
 BYTE ServerName[48];
 BTYE Network[4]; /* hi - lo */
 BYTE Node[6]; /* hi - lo */
 BYTE Socket[2]; /* hi - lo */
 WORD InterveningNetworks; /* hi - lo */
}SAP;

Fields

Header

ResponseType

ServerType

ServerName

Network

Node

Socket

InterveningNetworks

Remarks

SAP is used by QueryServices (DOS, Win).

Communication Service Group

SAP: Structures 1044

SAP_RESPONSE_LIST_ENTRY

Service: SAP
Defined In: nwsap.h

Structure

#define SAP_RESPONSES_PER_PACKET 8

typedef struct {
 WORD SAPPacketType; /*2 or 4*/
 struct {
 WORD serverType; /*assigned by Novell*/
 BYTE serverName[48]; /*service name*/
 InternetAddress serverAddress; /*server internetwork address*/
 WORD interveningNetworks; /*# of networks "hops"*/ }
 struct {
 SAPResponse *next;
 LONG signature;
 int count;
 } SAP_RESPONSE_LIST_ENTRY;

Fields

SAPPacketType

serverType

serverName

serverAddress

interveningNetworks

responses

next

signature

count

Remarks

SAP_RESPONSE_LIST_ENTRY is used by FreeQueryServicesList
(NLM) and QueryServices (NLM).

Communication Service Group

SAP: Structures 1045

TCP/IP and TCP/IPX

Communication Service Group

 1046

TCP/IP and TCP/IPX: Guides

TCP/IP and TCP/IPX: Concept Guide

TCP Implementation

TCP

UDP

NetWare Implementation of STREAMS-Based TLI for TCP/IP

TLI Function Notes for TCP/IP

See TCPIP TLI Client: Example and TCPIP TLI Server: Example.

TCP

NetWare Implementation of STREAMS-Based TLI for TCP/IP

TLI Function Notes for TCP/IPX

See TCPIP Socket Client: Example and TCPIP Socket Server: Example
.

Communication Service Group

TCP/IP and TCP/IPX: Guides 1047

TCP/IP and TCP/IPX: Concepts

Modes of Transport Service

Two modes of transport service are provided:

TCP provides connection-oriented transport service.

UDP provides connectionless transport service.

The figure below illustrates how you can implement these modes.

Figure 13. NetWare TCP/IP Protocol Stack

Communication Service Group

TCP/IP and TCP/IPX: Concepts 1048

Most TLI functions initiate an exchange of one or more Transport Provider
Interface (TPI) primitives between the TPI and TLI.

The t_open function enables a user to choose a specific transport provider
and establish an endpoint.

t_bind (Function) binds a transport address to the transport endpoint. Once
t_open is called, the TLI Library pushes the timod module on top of the TPI
driver. The timod module provides the functions that convert M_IOCTL
messages, which are coming from the upstream, into M_PROTO messages
for the TPI driver. It also converts the corresponding TPI replies into
M_IOCACK messages.

When the transport service is in the connectionless mode (UDP), the user
can begin the transfer of data using either the t_sndudata or t_rcvudata
functions.

When the transport service is in the connection-oriented mode (TCP), the
user can connect to another transport endpoint using t_connect and can
transfer data using either t_snd or t_rcv.

The user can disconnect a connection using t_snddis or release the
connection in an orderly manner using t_sndrel and t_rcvrel. Then, the user
can unbind the transport address by calling t_unbind and later close the
endpoint with t_close.

NetWare Implementation of STREAMS-Based TLI
for TCP/IP

The implementation of TLI for TCP/IP includes the following:

Modes of Transport Service (connection-oriented and connectionless)

TCP Implementation

The netbuf and sockaddr_in structures (Network Buffer and Address
Structures for TCP/IP)

NetWare Implementation of STREAMS-Based TLI
for TCP/IPX

The implementation of TLI for TCP/IPX includes the following:

Modes of Transport Service (connection-oriented)

TCP Implementation

Communication Service Group

TCP/IP and TCP/IPX: Concepts 1049

The netbuf and sockaddr_ipx structures (Network Buffer and Address
Structures for TCP/IPX)

Network Buffer and Address Structures for TCP/IP

Various functions use the netbuf structure to send and receive data and
information. The netbuf structure contains the following members:

unsigned int maxlen;

unsigned int len;

char *buf;

The pointer buf points to a user input and/or output buffer. The len field
generally specifies the number of bytes contained in the buffer. If the
structure is used for both input and output, the function replaces the user
value of len on return. Generally, the maxlen field is significant only when buf
is used to receive output from the function.

In this case, maxlen specifies the physical size of the buffer, the maximum
value of len that the function can set. If maxlen is not large enough to hold
the returned information, a TBUFOVFLW error generally results. However,
certain functions may return part of the data and not generate an error.

A sockaddr_in structure is used to represent a network address. This
structure is defined as follows:

#include <types.h>
#include <netinet/in.h>
struct sockaddr_in {
 short sin_family;
 short sin_port;
 struct in_addr sin_addr;
char sin_zero[8];
};

Its members are as follows:

sin_family contains the AF_INET value.

sin_port corresponds to the TCP or UDP port number. It should be
specified in network data order (which is not the same as host data order
on the 80386-based workstation).

sin_addr contains a 4-byte Internet address, which is also in network data
order.

sin_zero must be initialized to zero.

Parent Topic: NetWare Implementation of STREAMS-Based TLI for

Communication Service Group

TCP/IP and TCP/IPX: Concepts 1050

TCP/IP

Network Buffer and Address Structures for
TCP/IPX

Various functions use the netbuf structure to send and receive data and
information. The netbuf structure contains the following members:

unsigned int maxlen;

unsigned int len;

char *buf;

The pointer buf points to a user input and/or output buffer. The len field
generally specifies the number of bytes contained in the buffer. If the
structure is used for both input and output, the function replaces the user
value of len on return. Generally, the maxlen field is significant only when buf
is used to receive output from the function.

In this case, maxlen specifies the physical size of the buffer, the maximum
value of len that the function can set. If maxlen is not large enough to hold
the returned information, a TBUFOVFLW error generally results. However,
certain functions may return part of the data and not generate an error.

A sockaddr_ipx structure is used to represent a network address. This
structure is defined as follows:

#include <types.h>
#include <netinet/in.h>
#define sipx_socket sipx_addr.x_socket
#define sipx_port sipx_socket
#define sipx_netnum sipx_addr.x_net.cx_net
#define sipx_nodenum sipx_addr.x_host.cx_host

struct sockaddr_ipx {
 short sipx_family;
 struct ipx_addr sipx_addr;
 char sipx_zero[2];
};

Its members are as follows:

sipx_family contains the AF_IPX value.

sipx_netnum contains a 4-character array that holds the network number.

sipx_nodenum contains a 6-character array that holds the node number.

sipx_port contains a 2-character array that holds the socket number.

Communication Service Group

TCP/IP and TCP/IPX: Concepts 1051

sipx_zero must be initialized to zero.

Parent Topic: NetWare Implementation of STREAMS-Based TLI for
TCP/IPX

TCP

Transmission Control Protocol (TCP) provides a connection-oriented
transport service that is circuit-oriented and lets data travel over an
established connection in a reliable, sequenced manner. You might use this
service if your applications require datastream-oriented interactions.

TCP exhibits the following characteristics:

Provides an identification mechanism that avoids the overhead of
transmitting an address and resolution during the data transfer phase.

Provides a context in which successive units of data, transferred between
peer users, are logically related.

TCP Implementation

In addition to supporting all the regular TPI primitives, the TCP
implementation also supports orderly release of a connection.

The user can use t_sndrel and t_rcvrel for the orderly release of a
connection. Since orderly release of a connection is optional and other
transport providers may not support these functions, the developer who is
concerned with portability should avoid these functions.

As an alternative to using TLI routines, the user can issue read and write
calls on a fully connected transport endpoint by pushing the tirdwr module.
This module converts a TLI connection-oriented transport stream into a
simple bidirectional pipe.

After pushing the tirdwr module, the user must cease to use TLI routines.
The user can end a connection either by closing the file handle associated
with the transport endpoint or by popping the tirdwr module off the
STREAM.

NOTE: Since this implementation does not support expedited data
transfer, it does not support Expedited Transport Service Data Units
(ETSDUs). Since TCP does not support data unit boundaries, it does not
support Transport Service Data Units (TSDUs), either. The T_MORE
and T_EXPEDITED flags are ignored. Currently, calls to ioctl are not
supported.

The close routine of the TPI adapter is called if either of the following
occurs:

Communication Service Group

TCP/IP and TCP/IPX: Concepts 1052

The user calls t_close explicitly.

The NLM™ application exits with a call to exit.

In the NetWare environment, an application can spawn multiple threads,
with each thread having the capacity to open its own transport endpoint.
The user is advised to close the endpoint by calling t_close for each thread;
this is advisable since the NetWare API (CLIB) function ExitThread does
not close the endpoint explicitly.

For a description of standard functions such as htons and htonl that convert
short (16-bit) and long (32-bit) values between host and network data order,
see Internet Network Library.

TCP/IP and TCP/IPX Notes: t_accept

The transport endpoint that accepts the connection inherits the following:

The IP address and TCP port number of the endpoint that received the
connect indication

The IP address and TCP port number of the endpoint that initiated the
connection

TCP considers the connection to be established even before the user issues
t_accept. If the user rejects the connection with t_snddis, TCP aborts the
connection.

If the connection is accepted on the endpoint on which the connect
indication was received (resfh==fh), the endpoint ceases to be a listening
endpoint. However, the user can unbind the endpoint with t_unbind and
bind again with t_bind (Function) to make this endpoint a listening
endpoint.

If the peer aborts the connection before the user has called t_accept, the user
is not informed that the connection was aborted with a disconnect indication
during t_accept. However, the endpoint on which the connection was
accepted (that is, fh) is informed of the disconnect with a disconnect
indication. A listening endpoint is never informed of a disconnect during
t_accept.

The user must pass the sequence number that t_listen returned earlier. Since
this implementation does not support the transfer of data during the call to
t_accept, udata.len must be set to zero. Since options are not supported
during the t_accept call either, opt.len must be set to zero.

After a successful call to t_listen, the server typically opens and binds a new
endpoint. Next, it calls t_accept, passing the file handle of the new endpoint.
Upon accepting the connection, the server spawns a new thread to send and
receive data and then goes back to listen for any other incoming

Communication Service Group

TCP/IP and TCP/IPX: Concepts 1053

connections.

TCP/IP and TCP/IPX Notes: t_close

The close routine of the transport provider is called whenever the user calls
t_close. In the case of TCP, if t_close is called from any state other than
T_UNBND, TCP aborts the connection; all the data queued to be sent and
all the data that had been received are discarded.

The user is advised to close the endpoint explicitly with t_close if the
application involves more than one thread. This is necessary because
ExitThread does not close the opened endpoints.

TCP/IP and TCP/IPX Notes: t_open

This implementation supports the following devices:

/dev/tcp for a connection-oriented transport service based on TCP.

/dev/udp for a connectionless transport service based on UDP.

The default characteristics of the underlying transport protocol are
described in t_getinfo. There is no assigned limit to the number of devices
that a user can open.

TCP/IP and TCP/IPX Notes: t_rcv

The maximum amount of data that a single t_rcv call can receive is limited
by STRMSGZ in STREAM.H. Typically, the maximum is 4,096 bytes. Since
this implementation does not support expedited data transfer, it does not
support ETSDUs. Since TCP does not support data unit boundaries, it does
not support TSDUs, either. T_MORE and T_EXPEDITED flags must be set to
zero.

TCP/IP and TCP/IPX Notes: t_rcvdis

If a connection is disconnected, TCP informs the user. The reason field in the
t_discon structure has one of the following errors:

ETIMEDOUT: The peer failed to acknowledge repeated attempts to deliver
data, window probes, or keep-alive probes.

ECONNRESET: The peer reset the connection.

TCPE_UNLOADING: TCP is either unloading or has been unloaded.

Communication Service Group

TCP/IP and TCP/IPX: Concepts 1054

If an active endpoint is disconnected, TCP informs the user immediately. If
a passive endpoint is disconnected, the transport provider waits for the user
to respond to an earlier successful t_listen call and then informs the
provider that the connection was disconnected.

The user cannot call t_connect again on this endpoint because the protocol
address bound to this endpoint is no longer valid. Instead, the user can
unbind the endpoint and bind it again.

This implementation does not support any data with the disconnect
indication.

TCP/IP and TCP/IPX Notes: t_rcvrel

This implementation supports the orderly closure of a connection. When
t_rcvrel is successful, the transport provider does not deliver any more data
to the user. The user cannot call t_connect again on this endpoint because
the bound protocol address is no longer valid. Instead, the user can unbind
the endpoint with t_unbind and bind it again with t_bind (Function).

Typically, a user can call t_sndrel for an orderly close if there is no more
data to send after a successful call to t_rcvrel. A connection is considered to
be fully closed if t_sndrel follows t_rcvrel, or vice versa.

TCP/IP and TCP/IPX Notes: t_snd

The maximum data that can be sent in a single call to t_snd is 65,536 bytes.
Because this implementation does not support expedited data transfer, it
does not support ETSDUs. As a result, T_MORE and T_EXPEDITED flags
must be set to zero. Since TCP does not support data unit boundaries, it does
not support TSDUs, either.

TCP/IP and TCP/IPX Notes: t_snddis

If the endpoint is active, t_snddis causes all the data on the transmitting and
receiving queues to be discarded, and the connection is aborted. If the
endpoint is passive, TCP considers the connection established when the user
is informed of a connect indication. When the user issues t_snddis, this
connection is aborted. The user cannot call t_connect again on this endpoint
because the bound address is rendered invalid after t_snddis, even though
the endpoint is in T_IDLE state after a call to t_snddis. To reuse the
endpoint for a connection, the user must unbind the address with t_unbind
and bind it again with t_bind (Function).

Transfer of data is not supported during t_snddis; therefore, udata.len must

Communication Service Group

TCP/IP and TCP/IPX: Concepts 1055

be set to zero.

TCP/IP and TCP/IPX Notes: t_sndrel

This implementation supports the orderly release of a connection. TCP
ensures the delivery of data to its destination before initiating a closure.

If the local endpoint initiates the closing of a connection and the remote
endpoint responds with a t_sndrel call, TCP waits approximately two
minutes before considering the connection fully closed. The user cannot call
t_connect again on this endpoint because the bound address is rendered
invalid after t_sndrel, even though the endpoint is in T_IDLE state after a
t_sndrel. To reuse the endpoint for a connection, the user must unbind the
address with t_unbind and bind it again with t_bind (Function).

Typically, the user can call either t_rcvrel after a successful t_sndrel call or
t_sndrel after a successful t_rcvrel call.

TCP/IP Notes: t_bind

A STREAM endpoint is bound when it is associated with an IP address and
a transport port number. A user can request that the transport provider
either bind the endpoint to a specific transport port number and IP address,
or allocate a port number and an IP address.

The transport provider returns the port number and IP address in the
sockaddr_in structure defined in the SOCKET.H and BSDSKT.H files. The
buf field in t_bind (Structure) points to the sockaddr_in structure. The
sockaddr_in structure represents a network address. Its elements are as
follows:

sin_family is AF_INET for IPs.

sin_port specifies the local transport-level port number.

sin_addr specifies the local IP address.

sin_zero must be initialized to zero.

The IP address and the port number must be in network byte order.

If the user specifies a port number as zero, the provider assigns a port
number from a list of available port numbers in the nonreserved range (1024
to 5000, inclusive). If the user specifies an IP address of zero, IP assigns the
default local IP address.

If the user specifies a nonzero port number and IP address, TCP assigns the
port number and IP address if they are available. TCP does not assign the
requested port number and IP address if:

Communication Service Group

TCP/IP and TCP/IPX: Concepts 1056

The requested port is already being used by another endpoint that is
listening.

The requested port number is used by another endpoint that is not yet
connected.

In the case of UDP, the requested port number is assigned only if it is
available and no other endpoint is using it.

The len field in the addr structure contains the length of the protocol address,
which is equal to sizeof(struct sockaddr_in).

After a successful call to t_bind (Function) in the connection-oriented mode
(TCP), the user can listen for a connect indication if the value of qlen is
greater than zero or the user can initiate a connection. Currently, there is no
assigned limit to the value of qlen.

When the transport service is in the connectionless mode (UDP), the user
can begin to send and receive data.

Typically, a client does not specify the port and IP address. On the other
hand, the server usually specifies a well-known port and IP address.

The user is advised to check the port number and IP address that the
transport provider returns to determine whether the endpoint was indeed
bound with the requested address.

Parent topic: TLI Function Notes for TCP/IP

TCP/IP Notes: t_connect

The sockaddr_in structure specifies the destination address. The buf field in
the t_call structure points to the sockaddr_in structure. The structure's
elements are as follows:

sin_family is AF_INET for IPs.

sin_port specifies the destination port.

sin_addr specifies the destination IP address.

sin_zero must be initialized to zero.

Both the destination port number and destination IP address must be in
network byte order.

The user can call t_connect on either an active or a passive endpoint. The
only exceptions, in the case of a passive endpoint, are that the endpoint
must be in T_IDLE state and it should not have received a connect
indication earlier. Once a t_connect call is issued, the passive endpoint
ceases to listen; it becomes an active endpoint for the duration of the

Communication Service Group

TCP/IP and TCP/IPX: Concepts 1057

connection, until t_unbind unbinds the endpoint. To make the endpoint
passive again after issuing t_unbind, the user can bind again using t_bind
(Function).

If the destination address is 0.0.0.0 or 127.0.0.0, the host defaults to the local
address. A destination address of 255.255.255.255 is invalid.

The len field in the addr structure contains the length of the protocol address,
which is equal to sizeof (struct sockaddr_in). Since options are
not supported during t_connect, the len field in the opt structure must be set
to zero.

To confirm a connection, the user can specify a non-NULL value for the
rcvcall argument. The addr.maxlen field must be set to sizeof(struct
sockaddr_in). On return in rcvcall, addr.buf points to the sockaddr_in
structure, which contains the address of the responding endpoint. Options
and transfer of data are not supported during the t_connect call; therefore,
opt.len and udata must be set to zero.

Unless the user unbinds and binds a connected endpoint that was either
disconnected or released earlier, that endpoint cannot be reused.

Parent topic: TLI Function Notes for TCP/IP

TCP/IP Notes: t_getinfo

The protocol-dependent information about the transport layer is returned in
the info structure. The fields returned have the following values:

addr size of struct sockaddr_in (16 bytes)

options -2

tsdu 0 for TCP, 4096 for UDP

etsdu -2

connect -2

discon -2

servtype T_COTS_ORD (for TCP) T_CLTS (for UDP)

Parent topic: TLI Function Notes for TCP/IP

TCP/IP Notes: t_listen

On receiving a connect indication from TCP, the transport provider accepts
the connection, if possible, and queues the indication. TCP considers the

Communication Service Group

TCP/IP and TCP/IPX: Concepts 1058

connection to have been established.

In the t_call structure, the buf field points to the sockaddr_in structure, which
is used to represent a network address. The structure's elements are as
follows:

sin_family is AF_INET for IPs.

sin_port contains the TCP port number of the endpoint initiating the
connection.

sin_addr contains the IP address of the node initiating the connection.

sin_zero must be initialized to zero.

The TCP port number and the IP address are in network byte order.

The transport provider assigns a unique sequence number greater than -1
and informs the user of a pending connect indication. When issuing a
response to this connection, the user must use the sequence number and
information in the sockaddr_in structure.

Since options are not supported during the t_listen call and data is not
passed to the user, opt.len and udata.len are set to zero.

The transport provider queues connect indications from TCP up to the
maximum specified during the t_bind (Function) call in qlen. The transport
provider rejects further connect indications until the number of queued
connect indications is less than qlen. The user should respond to a successful
t_listen call by calling either t_accept or t_snddis.

Typically, the server listens for connect indications by issuing t_listen. After
a successful t_listen call, the server opens a new endpoint by calling t_open
and binds that endpoint with t_bind (Function). The server accepts the
connection by passing the fh of the new endpoint in t_accept. The server
then listens for any further connect indications. Thus, the server endpoint
can be dedicated for listening for any connect indications. If the server does
not want to accept a connection, it must call t_snddis and continue to listen
for further connect indications.

Parent topic: TLI Function Notes for TCP/IP

TCP/IP Notes: t_rcvconnect

In the addr structure, the buf field points to the sockaddr_in structure, which
is used to represent a network address. The structure's elements are as
follows:

sin_family is AF_INET for IPs.

sin_port contains the TCP port number of the endpoint initiating the
connection.

Communication Service Group

TCP/IP and TCP/IPX: Concepts 1059

sin_addr contains the IP address of the node initiating the connection.

The TCP port number and the IP address are in network byte order.

This implementation does not support any options or data transfer during
t_rcvconnect; therefore, opt.len and udata.len are set to zero.

Parent topic: TLI Function Notes for TCP/IP

TCP/IP Notes: t_rcvudata

The maximum data that a single t_rcvudata call can receive is 4,096 bytes.
The buf field in the addr structure points to a sockaddr_in structure, which is
used to represent a network address. The structure's elements are as follows:

sin_family is AF_INET for IPs.

sin_port specifies the UDP port number of the source endpoints.

sin_addr specifies the IP address of the source endpoint.

sin_zero must be initialized to zero.

Both the UDP port number and the IP address are returned in network byte
order. Because options are not supported during the call to t_rcvudata,
opt.len is set to zero.

Parent topic: TLI Function Notes for TCP/IP

TCP/IP Notes: t_sndudata

The maximum data that a single call to t_sndudata can send is limited by
STRMSGZ, as defined in STREAM.H. Typically, the maximum is 4,096
bytes.

The buf field in the addr structure points to the sockaddr_in structure, which
is used to represent a network address.The structure's elements are as
follows:

sin_family is AF_INET for IPs.

sin_port specifies the destination UDP port number.

sin_addr specifies the destination IP address.

sin_zero must be initialized to zero.

Both the UDP port number and the IP address must be in network byte

Communication Service Group

TCP/IP and TCP/IPX: Concepts 1060

order.

To broadcast a datagram to all nodes, the user can specify a destination
address of 255.255.255.255. To send a datagram to the local node alone, the
user can specify a destination address of 127.x.x.x. (the loopback address) or
0.0.0.0.

Because options are not supported during t_sndudata, opt.len must be set to
zero.

Parent topic: TLI Function Notes for TCP/IP

TCP/IPX Notes: t_bind

A STREAM endpoint is bound when it is associated with an IP address and
a transport port number. A user can request that the transport provider
either bind the endpoint to a specific transport port number and IPX
address, or allocate a port number and an IPX address.

The transport provider returns the port number and IPX address in the
sockaddr_ipx structure defined in NETIPX/IPX.H. The buf field in the
t_bind structure points to the sockaddr_ipx structure. The sockaddr_ipx
structure represents a network address. Its elements are as follows:

sipx_family is AF_IPX for IPX.

sipx_netnum contains a 4-character array that holds the network number.

sipx_nodenum contains a 6-character array that holds the node number.

sipx_port contains a 2-character array that holds the socket number.

sipx_zero must be initialized to zero.

The IPX address and the port number must be in network byte order.

If the user specifies a port number as zero, the provider assigns a port
number from a list of available port numbers in the nonreserved range (1024
to 5000, inclusive). If the user specifies an IPX address of zero, IPX assigns
the default local IPX address.

If the user specifies a nonzero port number and IPX address, TCP assigns
the port number and IPX address if they are available. TCP does not assign
the requested port number and IPX address if:

The requested port is already being used by another endpoint that is
listening.

The requested port number is used by another endpoint that is not yet
connected.

The len field in the addr structure contains the length of the protocol address,

Communication Service Group

TCP/IP and TCP/IPX: Concepts 1061

which is equal to sizeof(struct sockaddr_ipx).

After a successful call to t_bind (Function) in the connection-oriented mode
(TCP), the user can listen for a connect indication if the value of qlen is
greater than zero or the user can initiate a connection. Currently, there is no
assigned limit to the value of qlen.

When the transport service is in the connectionless mode (UDP), the user
can begin to send and receive data.

Typically, a client does not specify the port and IPX address. On the other
hand, the server usually specifies a well-known port and IPX address.

The user is advised to check the port number and IPX address that the
transport provider returns to determine whether the endpoint was indeed
bound with the requested address.

Parent topic: TLI Function Notes for TCP/IPX

TCP/IPX Notes: t_connect

The sockaddr_ipx structure specifies the destination address. The buf field in
the t_call structure points to the sockaddr_ipx structure. The structure's
elements are as follows:

sipx_family is AF_IPX for IPX.

sipx_netnum contains a 4-character array that holds the network number.

sipx_nodenum contains a 6-character array that holds the node number.

sipx_port contains a 2-character array that holds the socket number.

sipx_zero must be initialized to zero.

Both the destination port number and destination IPX address must be in
network byte order.

The user can call t_connect on either an active or a passive endpoint. The
only exceptions, in the case of a passive endpoint, are that the endpoint
must be in T_IDLE state and it should not have received a connect
indication earlier. Once a t_connect is called, the passive endpoint ceases to
listen; it becomes an active endpoint for the duration of the connection, until
t_unbind unbinds the endpoint. To make the endpoint passive again after
issuing t_unbind, the user can bind again using t_bind (Function).

The len field in the addr structure contains the length of the protocol address,
which is equal to sizeof (struct sockaddr_ipx). Because options
are not supported during t_connect, the len field in the opt structure must be
set to zero.

To confirm a connection, the user can specify a non-NULL value for the

Communication Service Group

TCP/IP and TCP/IPX: Concepts 1062

rcvcall argument. The addr.maxlen field must be set to sizeof(struct
sockaddr_in). On return in rcvcall, addr.buf points to the sockaddr_in
structure, which contains the address of the responding endpoint. Options
and transfer of data are not supported during the t_connect call; therefore,
opt.len and udata must be set to zero.

Unless the user unbinds and binds a connected endpoint that was either
disconnected or released earlier, that endpoint cannot be reused.

Parent topic: TLI Function Notes for TCP/IPX

TCP/IPX Notes: t_getinfo

The protocol-dependent information about the transport layer is returned in
the info structure. The fields returned have the following values:

addr size of struct sockaddr_in (16 bytes)

options -2

tsdu 0 for TCP, 4096 for UDP

etsdu -2

connect -2

discon -2

servtype T_COTS_ORD (for TCP)

Parent topic: TLI Function Notes for TCP/IPX

TCP/IPX Notes: t_listen

On receiving a connect indication from TCP, the transport provider accepts
the connection, if possible, and queues the indication. TCP considers the
connection to have been established.

In the t_call structure, the buf field points to the sockaddr_ipx structure,
which is used to represent a network address. The structure's elements are
as follows:

sipx_family is AF_IPX for IPX.

sipx_netnum contains a 4-character array that holds the network number.

sipx_nodenum contains a 6-character array that holds the node number.

sipx_port contains a 2-character array that holds the socket number.

Communication Service Group

TCP/IP and TCP/IPX: Concepts 1063

sipx_zero must be initialized to zero.

The TCP port number and the IPX address are in network byte order.

The transport provider assigns a unique sequence number greater than -1
and informs the user of a pending connect indication. When issuing a
response to this connection, the user must use the sequence number and
information in the sockaddr_ipx structure.

Since options are not supported during the t_listen call and data is not
passed to the user, opt.len and udata.len are set to zero.

The transport provider queues connect indications from TCP up to the
maximum specified during the t_bind (Function) call in qlen. The transport
provider rejects further connect indications until the number of queued
connect indications is less than qlen. The user should respond to a successful
t_listen call by calling either t_accept or t_snddis.

Typically, the server listens for connect indications by calling t_listen. After
a successful t_listen call, the server opens a new endpoint by calling t_open
and binds that endpoint with t_bind (Function). The server accepts the
connection by passing the fh of the new endpoint in t_accept. The server
then listens for any further connect indications. Thus, the server endpoint
can be dedicated for listening for any connect indications. If the server does
not want to accept a connection, it must call t_snddis and continue to listen
for further connect indications.

Parent topic: TLI Function Notes for TCP/IPX

TCP/IPX Notes: t_rcvconnect

In the addr structure, the buf field points to the sockaddr_ipx structure,
which is used to represent an IPX network address. The structure's elements
are as follows:

sipx_family is AF_IPX for IPX.

sipx_netnum contains a 4-character array that holds the network number.

sipx_nodenum contains a 6-character array that holds the node number.

sipx_port contains a 2-character array that holds the socket number.

sipx_zero must be initialized to zero.

The TCP port number and the IP address are in network byte order.

This implementation does not support any options or data transfer during
t_rcvconnect; therefore, opt.len and udata.len are set to zero.

Parent topic: TLI Function Notes for TCP/IPX

Communication Service Group

TCP/IP and TCP/IPX: Concepts 1064

TLI Function Notes for TCP/IP

The implementation notes in this section provide information specific to use
of TLI functions for accessing the transport protocol TCP/IP in NetWare
3.11 and later. These implementation notes supplement the function notes in
Overview of TLI Functions.

Notes for some TLI functions are the same for both TCP/IP and TCP/IPX.
See the following information for using TLI with TCP/IP:

TCP/IP and TCP/IPX Notes: t_accept

TCP/IP Notes: t_bind

TCP/IP and TCP/IPX Notes: t_close

TCP/IP Notes: t_connect

TCP/IP Notes: t_getinfo

TCP/IP Notes: t_listen

TCP/IP and TCP/IPX Notes: t_open

t_optmgmt (this implementation does not support any options)

TCP/IP and TCP/IPX Notes: t_rcv

TCP/IP Notes: t_rcvconnect

TCP/IP and TCP/IPX Notes: t_rcvdis

TCP/IP and TCP/IPX Notes: t_rcvrel

TCP/IP Notes: t_rcvudata

TCP/IP and TCP/IPX Notes: t_snd

TCP/IP and TCP/IPX Notes: t_snddis

TCP/IP and TCP/IPX Notes: t_sndrel

TCP/IP Notes: t_sndudata

See TCPIP TLI Client: Example and TCPIP TLI Server: Example.

TLI Function Notes for TCP/IPX

The implementation notes in this section provide information specific to use
of TLI functions for accessing the transport protocol TCP/IPX in NetWare

Communication Service Group

TCP/IP and TCP/IPX: Concepts 1065

3.11 and later. These implementation notes supplement the function notes in
Overview of TLI Functions.

Notes for some TLI functions are the same for both TCP/IP and TCP/IPX.
See the following information for using TLI with TCP/IPX:

TCP/IP and TCP/IPX Notes: t_accept

TCP/IPX Notes: t_bind

TCP/IP and TCP/IPX Notes: t_close

TCP/IPX Notes: t_connect

TCP/IPX Notes: t_getinfo

TCP/IPX Notes: t_listen

TCP/IP and TCP/IPX Notes: t_open

t_optmgmt (this implementation does not support any options)

TCP/IP and TCP/IPX Notes: t_rcv

TCP/IPX Notes: t_rcvconnect

TCP/IP and TCP/IPX Notes: t_rcvdis

TCP/IP and TCP/IPX Notes: t_rcvrel

t_rcvudata (not supported)

TCP/IP and TCP/IPX Notes: t_snd

TCP/IP and TCP/IPX Notes: t_snddis

TCP/IP and TCP/IPX Notes: t_sndrel

t_sndudata (not supported)

See TCPIP Socket Client: Example and TCPIP Socket Server: Example.

UDP

User Datagram Protocol (UDP) provides a connectionless transport service
that is message oriented. It supports transfer of data in self-contained units
or in datagrams, with no logical relationship required among multiple
datagrams.

This service requires only a preexisting association between the peer users
involved. This association determines the characteristics of the data to be
transmitted. You may use this service if your applications

Communication Service Group

TCP/IP and TCP/IPX: Concepts 1066

Need short-term request/response interactions

Exhibit a high level of redundancy

Are dynamically reconfigurable

Do not require guaranteed, sequenced delivery of data

UDP has the following characteristics:

It does not support the dynamic negotiation of parameters and options.

It features single-service access (SSA), which does not necessarily relate to
any other service access. SSA presents the transport provider with all the
information required to deliver a datagram (for example, a destination
address), together with the data to be transmitted.

Each transmitted datagram is self-contained, and the transport provider
can independently route it.

See UDP/IP Client: Example and UDP/IP Server: Example.

See UDP/IP TLI Client: Example and UDP/IP TLI Server: Example.

Communication Service Group

TCP/IP and TCP/IPX: Concepts 1067

TLI

Communication Service Group

 1068

TLI: Guides

TLI: Concept Guide

Overview of Transport Protocols

TLI Connection Mode Services

TLI Connectionless Mode Services

A TLI Read/Write Interface

TLI Asynchronous Execution Mode

Overview of TLI Functions

NetWare IPX/SPX/SPX II

NetWare OSI

TLI State Transitions

SPX TLI Multiple Connection Server: Example

SPX TLI Client: Example and SPX TLI Server: Example

TLI: Functions

TLI: Structures

Overview of Transport Protocols

This provides an introduction to the Transport Level Interface (TLI) for the
NetWare® OS. This interface provides a standard means of gaining direct
access to transport services. The discussion in the following topics assumes a
working knowledge of C language programming and data communication
concepts.

OSI Reference Model

Overview of TLI

TLI Local Management Issues

TLI State Transitioning

Communication Service Group

TLI: Guides 1069

TLI Local Management Function List

TLI Connection-Oriented Functions

TLI Connectionless Function List

TLI Programming Example

TLI Connection Mode Services

This chapter describes the connection-mode service of TLI. As discussed in
Overview of Transport Protocols, the connection mode service can be
illustrated using a client-server paradigm.

The concepts of connection mode service can be presented using two
programming examples. The first example illustrates how a client
establishes a connection to a server and then communicates with it; the
second example shows the server's side of the interaction.

In these examples, the client establishes a connection with a server and then
the server transfers a file to the client. The client, in turn, receives the data
from the server and writes it to its standard output file.

Connection Mode: Local Management

Connection Mode: Connection Establishment

Connection Mode: Event Handling

Connection Mode: Data Transfer

Abortive Connection Release

Orderly Connection Release

TLI Connectionless Mode Services

Connectionless mode service is appropriate for short-term request/response
interactions, such as transaction processing applications. Data is transferred
in self-contained units with no logical relationship required among multiple
units.

This discussion describes the connectionless mode services using a
transaction server as an example. This server waits for incoming transaction
queries and then processes and responds to each query.

Connectionless Mode: Local Management

Connectionless Mode: Data Transfer

Communication Service Group

TLI: Guides 1070

Datagram Errors

A TLI Read/Write Interface: Guide

A TLI Read/Write Interface

Write

Read

Close

Overview of TLI Functions: Guide

Overview of TLI Functions

TLI Terms

TLI Error Handling

Synchronous and Asynchronous Execution Modes

Overview of Connection-Oriented Service

Overview of Connectionless Service

Transport Provider States

NetWare IPX/SPX/SPX II: Guide

NetWare IPX/SPX/SPX II

SPX Protocol

SPX II Protocol

IPX Protocol

NetWare Implementation of STREAMS-Based IPX/SPX/SPX II

Environment Enhancement for TLI

TLI Function Implementation Notes for IPX/SPX/SPX II

NetWare OSI: Guide

Communication Service Group

TLI: Guides 1071

NetWare OSI

OSI Address Format

Options Management Structures

TLI Function Implementation Notes for OSI

TLI State Transitions

These tables describe the state transitions, events, and service types
associated with TLI.

TLI States

Outgoing Events

Incoming Events

Transport User Actions

Communication Service Group

TLI: Guides 1072

TLI: Concepts

A TLI Read/Write Interface

A user might want to establish a transport connection and use the read and
write functions for I/O needs. TLI does not directly support a read/write
interface to a transport provider, but one is available with NetWare® 4.x.
This interface enables a user to issue read and write calls over a transport
connection that is in the data transfer phase.

This interface is not available with the connectionless mode service.

The read/write interface is presented using the client example in TLI
Connection Mode Services with some minor modifications. The clients are
identical until the data transfer phase is reached.

At that point, this client uses the read/write interface and process incoming
data.

The following shows only the differences between this client and that of the
example in TLI Connection Mode Services:

TLI Read/Write Interface

#include <io.h> /* read, write, ioctl */
#include <sys/stropts.h>/* I_PUSH */
 .
 .
 .
 if (t_connect(fh, sndcall, NULL) == -1)
 {
 t_error("t_connect");
 exit(1);
 }

 /* ioctl push tirdwr module */
 if (ioctl(fh, I_PUSH, "tirdwr") == -1)
 {
 perror("ioctl");
 exit(1);
 }

 /* Receive line at a time and print it on the screen */
 while(read(fh, iobuf, (LONG)sizeof(iobuf)) > 0)
 {
 printf("%s",iobuf);
 }

Communication Service Group

TLI: Concepts 1073

 }

/* Free allocated structures */
 if(t_free((char *) sndcall, T_CALL) == -1)
 {
 t_error("t_free");
 exit(1);
 }

 /* Close the endpoint */
 if(close(fh) == -1)
 {
 perror("close");
 exit(1);
 }
 exit(0);
}

The client invokes the read/write interface by pushing the tirdwr module
onto the STREAM associated with the transport endpoint where the
connection was established. This module converts TLI above the transport
provider into a pure read/write interface. Because the transport endpoint
identifier is a file handle, the read and close functions can be executed.

Because TLI uses the STREAMS service, the facilities of this character I/O
mechanism can be used to provide enhanced user services. By pushing the
tirdwr module above the transport provider, the user's interface is
effectively changed. The semantics of read and write must be followed, and
message boundaries are not preserved.

NOTE: The tirdwr module can be pushed onto a STREAM only when
the transport endpoint is in the data transfer phase. Once the module is
pushed, the user must not call any TLI routines. If a TLI routine is
invoked, tirdwr generates a fatal protocol error, EPROTO, on that
STREAM, rendering it unusable. Furthermore, if the user pops the
tirdwr module off the STREAM, the transport connection is aborted.

Subsequent sections describe the exact semantics of write, read, and close
using tirdwr. To summarize, the tirdwr module enables a user to send and
receive data over a transport connection using read and write. This module
translates all TLI indications into the appropriate actions. The connection
can be released with the close system function.

Related Topics

Write

Read

Close

Abortive Connection Release

Communication Service Group

TLI: Concepts 1074

At any point during data transfer, the user can release the transport
connection and end the conversation.

In the case of abortive release, the connection terminates immediately and
can result in the loss of any data that has not yet reached the destination
user.

Either user can call t_snddis to generate an abortive release. Also, the
transport provider can abort a connection if a problem occurs below TLI.

The t_snddis function enables a user to send data to the remote user when
aborting a connection. Although all transport providers support the
abortive release, not all of them support the ability to send data when
aborting a connection.

When the remote user is notified of the aborted connection, t_rcvdis must be
called to retrieve the disconnect indication. This function returns a reason
code that identifies why the connection was aborted. It also returns any user
data that might have accompanied the disconnect indication (if the abortive
release was initiated by the remote user). This reason code is specific to the
underlying transport protocol and should not be interpreted by
protocol-independent software.

Related Topics

Abortive Connection Release: the Server

Abortive Connection Release: the Client

Parent Topic: TLI Connection Mode Services

Abortive Connection Release: the Client

The client's view of connection release is similar to that of the server. As
mentioned earlier, the client continues to process incoming data until t_rcv
fails. If the server releases the connection (using t_snddis), t_rcv fails and
sets t_errno to TLOOK. The client then processes the connection release as
follows:

TLI Abortive Connection Release---the Client

/* Receive a connection closure */
 if(t_rcvdis(fh, NULL) == -1) {
 t_error("t_rcvdis");
 exit(1);
 }

 /* Unbind the address from the endpoint */
 if(t_unbind(fh) == -1) {
 t_error("t_unbind");
 exit(1);

Communication Service Group

TLI: Concepts 1075

 }
 /* Free allocated structures */
 if(t_free((char *) sndcall, T_CALL) == -1) {
 t_error("t_free");
 exit(1);
 }

 /* Close the endpoint */
 if(t_close(fh) == -1) {
 t_error("t_close");
 exit(1);
 }
 exit(0);
}

After receiving and processing the disconnection, the client unbinds the
transport endpoint, closes it, and frees used resources.

Each user must take steps to prevent data loss. For example, the user can
insert a special byte pattern in the data stream to indicate the end of a
conversation. There are many possible routines for preventing data loss.
Each application and high-level protocol must choose an appropriate
routine, given the target protocol environment and requirements.

Parent Topic: Abortive Connection Release

Abortive Connection Release: the Server

The following client-server example assumes that the transport provider
supports the abortive release of a connection. When the server has
transferred all the data, the connection can be disconnected as follows:

TLI Abortive Connection Release---the Server

/* Send disconnect to the client */
 if(t_snddis(*fh, NULL) == -1) {
 t_error("t_snddis");
 t_close(*fh);
 free(fh);
 return;
 }
/* Unbind TEP */
 if(t_unbind(*fh) == -1) {
 t_error("t_unbind");
 t_close(*fh);
 free(fh);
 return;
 }

 t_close(*fh);
 free(fh);

Communication Service Group

TLI: Concepts 1076

}

Parent Topic: Abortive Connection Release

Abortive Release Summary

An abortive release is the only release supported by the SPX™ protocol. Call
t_snddis to perform an abortive release. This function breaks the connection
without preparing the partner, who receives only an indication that the
connection was broken. As input, this function takes the local endpoint and
t_call:

int t_snddis(int fh, struct t_call *call);

call is optional. You can use it to provide information to the partner about
the release. No more data can be sent or received on the connection after
you call t_snddis.

If the partner sends an abortive release, you receive an error value while
processing the connection. The release is reported in t_errno as
T_DISCONNECT. Call t_look to confirm the release, then call t_rcvdis to
close your side of the connection. As input, this function takes the local
endpoint and t_discon to receive any information explaining the reason for
releasing the connection:

int t_rcvdis(int fh, struct t_discon *discon);

The disconnect information is protocol dependent. Examples of reasons for
disconnecting might be a failed connection or a malformed packet.

Parent Topic: Releasing a Connection in TLI

Asynchronous Events

A function that attempts to receive data in synchronous mode waits until
data arrives before returning control to the user. This is the default mode of
execution. It is useful for user processes that want to wait for events to occur,
or for user processes that have no other useful work to perform.

The asynchronous mode of operation, on the other hand, can notify a user of
some event without forcing the user to wait for the event. This enables users
to work while waiting for a particular event.

For example, a function that attempts to receive data in asynchronous mode
returns control to the user immediately if no data is available. The user can
then periodically poll for incoming data until it arrives. The asynchronous
mode is intended for those applications that expect long delays between
events and have other tasks that they can perform in the meantime.

Communication Service Group

TLI: Concepts 1077

The two execution modes are not provided through separate interfaces or
different functions. Instead, functions that process incoming events have
two modes of operation: synchronous and asynchronous. The asynchronous
mode is specified through the O_NDELAY flag. This flag can be set when
the transport provider is initially opened or before any specific function or
group of functions is executed by calling t_nonblocking. The effect of this
flag is specified in the description of each function.

A process that calls functions in synchronous mode must still be able to
recognize certain asynchronous events immediately and act on them, if
necessary. This is handled through a the transport error TLOOK, which is
returned by a function when an asynchronous event occurs. The t_look
function is then called to identify the specific event that has occurred.

You can accomplish asynchronous processing through polling. The polling
capability enables processes to do useful work and periodically poll for one
of the asynchronous events listed in the table in Synchronous and
Asynchronous Execution Modes. Set the O_NDELAY flag for the
appropriate functions and use t_look to poll.

Parent Topic: Synchronous and Asynchronous Execution Modes

Asynchronous Mode for Some TLI Functions

Many TLI library routines might block while waiting for an incoming event
or the relaxation of flow control. However, some time-critical applications
should not block for any reason. Similarly, you might want to perform local
processing while waiting for some asynchronous transport interface event to
occur.

Support for asynchronous processing of TLI events is available to
applications using a combination of the STREAMS asynchronous features
and the nonblocking mode of TLI functions. Examples in previous chapters
have illustrated the use of poll for processing events asynchronously.

In addition, each TLI function that might block while waiting for some
event can be run in a special nonblocking mode using the NetWare®
specific function t_nonblocking.

t_nonblocking puts the transport endpoint into a nonblocking mode. It
forces the stream head associated with the transport endpoint to return an
error code to calling processes if their requests cannot be completed
immediately.

For example, t_listen normally blocks, waiting for a connect indication.
However, a server can periodically poll a transport endpoint for existing
connect indications by calling t_listen in the nonblocking (or asynchronous)
mode. The asynchronous mode is enabled by setting O_NDELAY or
O_NONBLOCK on the file handle. These can be set as flags on t_open or by
calling fcntl before calling the TLI function. The fcntl function can be used to

Communication Service Group

TLI: Concepts 1078

enable or disable this mode at any time.

The NetWare specific function t_blocking puts the transport into a blocking
mode. The blocking mode forces NetWare to make the user's thread sleep
until the I/O is available. This function can be useful in a multitasking
environment because it is not always desirable to do "busy waiting." This is
the situation where the user consumes processor cycles checking for work,
only to find that there is no work. Because NetWare is a nonpreemptive OS,
this means that no other threads can work if the user is checking for work.

O_NDELAY or O_NONBLOCK affect each TLI function differently. To
determine the exact semantics of O_NDELAY or O_NONBLOCK for a
particular function, see the function description in TLI: Functions.

See TLI Asynchronous Mode: Advanced Programming Example for a
programming example.

Parent Topic: TLI Asynchronous Execution Mode

Blocking and Nonblocking Modes

Most TLI functions can execute in blocking or nonblocking modes (also
called synchronous and asynchronous modes). The endpoint that the
operation is performed on controls the blocking mode. In blocking mode, a
function doesn't return until it has completed the operation. In nonblocking
mode, the function returns as quickly as possible but in many cases
continues processing the operation in the background.

TLI determines an endpoint's blocking mode at the time you open the
endpoint. t_open opens an endpoint. You can request an endpoint be
opened in nonblocking mode by passing t_open O_NDELAY. Otherwise,
t_open opens the endpoint in blocking mode. Use t_getinfo to find an
endpoint's blocking status after it is opened.

t_rcv is a good example of how a function operates differently under
blocking and nonblocking. In blocking mode, t_rcv blocks until it receives
data from the transport provider. That means if you call t_rcv in blocking
mode, you lose control until data arrives at the endpoint.

In nonblocking mode, t_rcv receives any data that is available and returns.
If no data is available, t_rcv fails and returns TNODATA in t_errno. So if you
need more control over the operation, you can open an endpoint in
nonblocking mode and use t_rcv to poll for incoming data. For details about
how the blocking status affects particular functions, look up the function in
TLI: Functions.

Parent Topic: TLI Local Management Issues

Close

Communication Service Group

TLI: Concepts 1079

With tirdwr on a STREAM, the user can send and receive data over a
transport connection for the duration of that connection. Either user can
terminate the connection by closing the file handle associated with the
transport endpoint or by popping the tirdwr module off the STREAM. In
either case, tirdwr takes the following actions:

If an orderly release indication was previously received by tirdwr, an
orderly release request is passed to the transport provider to complete the
orderly release of the connection. The remote user who initiated the
orderly release procedure receives the expected indication when data
transfer completes.

If a disconnect indication was previously received by tirdwr, no special
action is taken.

If neither an orderly release indication nor a disconnect indication was
previously received by tirdwr, a disconnect request is passed to the
transport provider to abort the connection.

If an error previously occurred on the STREAM and a disconnect
indication has not been received by tirdwr, a disconnect request is passed
to the transport provider.

A process must not initiate an orderly release after tirdwr is pushed onto a
STREAM, but tirdwr handles an orderly release properly if it is initiated by
the user on the other side of a transport connection.

If the client in this section is communicating with a server program that
supports orderly release, that server terminates the transfer of data with an
orderly release request. The server then waits for the corresponding
indication from the client. At that point, the client exits and the transport
endpoint is closed. When the file handle is closed, tirdwr initiates the
orderly release request from the client's side of the connection. This
generates the indication that the server is expecting, and the connection is
released properly.

Parent Topic: A TLI Read/Write Interface

Connection Establishment Phase

In this phase, two transport users establish a transport connection between
them. One user is considered active and initiates the conversation, whereas
the second user is passive and waits for a transport user to request a
connection.

The active user requests a connection and then receives a response from the
passive user. The passive user waits for connect indications (indications of a
connect request) and then either accepts or rejects the request.

Communication Service Group

TLI: Concepts 1080

The functions that support these operations are listed as follows.

Table auto. Connection Establishment Functions

Function Task

t_connect This function requests a connection to the transport
user at a specified destination and waits for the
passive user's response. This function can be executed
in either synchronous or asynchronous mode. In
synchronous mode, the function waits for the passive
user's response before returning control to the active
user. In asynchronous mode, the function initiates
connection establishment but returns control to the
active user before a response arrives.

t_rcvconnect This function enables an active transport user to
determine the status of a previously sent connect
request. If the request was accepted, the connection
establishment phase is complete on return from this
function. This function is used with t_connect to
establish an asynchronous connection.

t_listen This function enables the passive transport user to
receive connect indications from other transport users.

t_accept The passive user calls this function to accept a
particular connect request, after an indication has
been received.

Parent Topic: Overview of Connection-Oriented Service

Connection Establishment: the Client

Continuing with the client-server example, the steps needed by the client to
establish a connection are as follows:

TLI Connection Mode Connection Establishment---the Client

/* Allocate space for server's address */
 sndcall = (struct t_call *) t_alloc(fh, T_CALL, T_ADDR);
 if (sndcall == NULL) {
 t_error("sndcall");
 exit(1);
 }

 /* Copy address of the server into t_call structure */
 sndcall->addr.len = sizeof (IPX_ADDR);
 memcpy(sndcall->addr.buf, pv, sndcall->addr.len);

 /* Initiate connect with a server */

Communication Service Group

TLI: Concepts 1081

 if (t_connect(fh, sndcall, NULL) == -1) {
 t_error("t_connect");
 exit(1);
 }

The t_connect function establishes the connection with the server. The first
argument to t_connect, fh, identifies the transport endpoint through which
the connection is established, and the second argument, sndcall, identifies
the destination server. This argument is a pointer to a t_call structure with
the following format:

struct t_call {
 struct netbuf addr;
 struct netbuf opt;
 struct netbuf udata;
 int sequence;
}

The addr field identifies the address of the server. The opt field can be used to
specify protocol-specific options that the client would like to associate with
the connection. The udata field identifies user data that can be sent with the
connect request to the server. The sequence field has no meaning for
t_connect.

The t_alloc function is called to allocate the t_call structure dynamically.
Once t_call is allocated, the appropriate values are assigned. In this
example, no options or user data are associated with t_connect, but the
server's address must be set. The third argument to t_alloc is set to T_ADDR
to specify that an appropriate netbuf buffer should be allocated for the
address. The server's address is then assigned to buf, and len is set
accordingly.

The third argument to t_connect can be used to return information about the
newly-established connection to the user. It can also retrieve any user data
sent by the server in its response to the connect request. Here, the client sets
it to NULL to indicate that this information is not needed. The connection is
established on successful return of t_connect. If the server rejects the connect
request, t_connect fails and sets t_errno to TLOOK.

Parent Topic: Connection Mode: Connection Establishment

Connection Mode: Connection Establishment

The connection establishment procedures highlight the distinction between
clients and servers. TLI imposes a different set of procedures in this phase
for each type of transport user.

The client starts the connection establishment procedure by requesting a
connection to a particular server using t_connect. The server is then notified
of the client's request by calling t_listen. The server can accept or reject the
client's request. It calls t_accept to establish the connection or t_snddis to

Communication Service Group

TLI: Concepts 1082

reject the request. The client is notified of the server's decision when
t_connect completes.

During connection establishment, TLI supports two facilities that might not
be supported by all transport providers:

The ability to transfer data between the client and server when
establishing the connection. The client can send data to the server when it
requests a connection. This data is passed to the server by t_listen.
Similarly, the server can send data to the client when it accepts or rejects
the connection. The connect characteristic returned by t_open determines
how much data, if any, two users can transfer during connect
establishment.

The negotiation of protocol options. The client can specify protocol
options that it would like the transport provider and/or the remote user
to support. TLI supports both local and remote option negotiation.

See Connection Establishment: the Client for an example.

Parent Topic: TLI Connection Mode Services

Connection Mode: Data Transfer

Once the connection has been established, both the client and server can
begin transferring data over the connection using t_snd and t_rcv. TLI does
not differentiate the client from the server from this point on. Either user can
send and receive data, or disconnect the connection. TLI guarantees reliable,
sequenced delivery of data over an existing connection. Two classes of data
can be transferred over a transport connection:

Normal data

Expedited data

Expedited data is typically associated with urgent information. The exact
semantics of expedited data are subject to the interpretations of the
transport provider. Furthermore, not all transport protocols support the
notion of an expedited data class (see t_open).

All transport protocols support the transfer of data in byte stream mode,
where "byte stream" implies no concept of message boundaries on data that
is transferred over a connection. However, some transport protocols support
the preservation of message boundaries over a transport connection. This
service is supported by TLI, but protocol-independent software must not
rely on its existence. SPX II, ADSP, and OSI™ connection transports support
message services.

The message interface for data transfer is supported by the T_MORE flag of
t_snd and t_rcv. The messages, called Transport Service Data Units
(TSDUs), can be transferred between two transport users as distinct units.

Communication Service Group

TLI: Concepts 1083

The maximum size of a TSDU is a characteristic of the underlying transport
protocol. This information is available to the user from t_open and t_getinfo
. Because the maximum TSDU size can be large (possibly unlimited), TLI
allows a user to transmit a message in multiple units.

To send a message in multiple units over a transport connection, the user
must set the T_MORE flag on every t_snd call except the last. This flag
specifies that the user will send more data associated with the message in a
subsequent call to t_snd. The last message unit should be transmitted with
T_MORE turned off to specify that this is the end of the TSDU.

Similarly, a TSDU can be passed in multiple units to the receiving user.
Again, if t_rcv returns with the T_MORE flag set, the user should continue
calling t_rcv to retrieve the remainder of the message. The last unit in the
message is identified by a call to t_rcv that does not set T_MORE.

NOTE: The T_MORE flag implies nothing about how the data iscan
packaged below TLI or how the data is delivered to the remote user.
Each transport protocol, and each implementation of that protocol, can
package and deliver the data differently.

For example, if a user sends a complete message in a single call to t_snd,
there is no guarantee that the transport provider will deliver the data in
a single unit to the remote transport user. Similarly, a TSDU transmitted
in two message units can be delivered in a single unit to the remote
transport user. The message boundaries can be preserved only by
noting the value of the T_MORE flag on t_snd and t_rcv. This
guarantees that the receiving user sees a message with the same
contents and message boundaries as those sent by the remote user.

Related Topics

Connection Mode Data Transfer: the Client

Connection Mode Data Transfer: the Server

Parent Topic: TLI Connection Mode Services

Connection Mode Data Transfer: the Client

Continuing with the client-server example, the server transfers a log file to
the client over the transport connection. The client receives this data and
writes it to the screen. A byte stream interface is used by the client and
server, in which message boundaries (that is, the T_MORE flag) are ignored.
The client receives data using the following instructions:

 /* Receive line at a time and print it on the screen */
 while(t_rcv(fh, iobuf, sizeof(iobuf), &flags) != -1) {
 printf("%s",iobuf);
 }

The client continuously calls t_rcv to process incoming data. If no data is

Communication Service Group

TLI: Concepts 1084

currently available, t_rcv blocks until data arrives. The t_rcv function
retrieves the available data up to 132 bytes, which is the size of the client's
input buffer, and returns the number of bytes received. The client then
writes this data to standard output and continues.

The data transfer phase is complete when t_rcv fails. The t_rcv function fails
if a disconnect indication arrives (see Abortive Connection Release). If the
transport endpoint is closed (either by exit or t_close) during the data
transfer phase, the connection is aborted, and the remote user receives a
disconnect indication.

Parent Topic: Connection Mode: Data Transfer

Connection Mode Data Transfer: the Server

Looking now at the other side of the connection, the server manages its data
transfer by beginning a new thread to send the data to the client. The parent
thread then loops back to listen for further connect indications. The server
calls BeginThread to begin a new thread. Once this occurs, the
ProcessConnection function is executed on the new thread. The first
parameter for the ProcessConnection function is fh, which is a pointer to a
newly-established connection.

TLI Connection Mode Data Transfer Server Example

void ProcessConnection(int *fh) {
 FILE *fp; /* file pointer */
 char iobuf[132]; /* line buffer */

 if((fp = fopen(LOGFILE, "r")) == NULL) {
 printf("Couldn't open file: %s\n", LOGFILE);
 t_close(*fh);
 free(fh);
 return;
 }

 /* Read lines from a file and send to the client */
 while(fgets(iobuf, sizeof(iobuf), fp) != NULL) {
 delay(100); /* timeout and thread switch */
 if(t_look(*fh) == T_DISCONNECT) {
 printf("Received disconnect, EXIT.\n");
 if(t_rcvdis(*fh, NULL) < 0)
 terror("t_rcvdis");
 fclose(fp);
 t_close(*fh);
 free(fh);
 return;
 }
if(t_snd(*fh, iobuf, sizeof(iobuf), NULL) == -1) {
 t_error("t_snd");

Communication Service Group

TLI: Concepts 1085

 fclose(fp);
 t_close(*fh);
 free(fh);
 return;
 }
 }
 fclose(fp);
}

After beginning a new thread, the parent thread returns to the main
processing loop and listens for further connect indications. Meanwhile, the
child thread manages the newly-established transport connection. If
BeginThread fails, the transport endpoint is closed, sending disconnect
indications to the client. The client's call to t_rcv fails.

The server process reads one line of the log file at a time and sends that data
to the client using t_snd. The iobuf argument points to the start of the data
buffer, and sizeof(iobuf) specifies the number of bytes to be
transmitted. The fourth argument can contain one of the following two
optional flags:

T_EXPEDITED specifies that the data is expedited.

T_MORE defines message boundaries when transmitting messages over
a connection.

Neither flag is set by the server in this example.

If the user floods the transport provider with data, the provider can exert
blocking pressure to provide flow control. In such cases, t_snd blocks until
the flow control is relieved and then resumes its operation. The t_snd
function does not complete until a whole buffer has been passed to the
transport provider. If the endpoint is in nonblocking mode, it is possible that
only part of the data is accepted by the transport provider. In this case,
t_snd sets T_MORE and returns a value less than sizeof(iobuf).

In order to check for incoming events, t_look is called before each t_snd call.
If t_look returns T_DISCONNECT, which means that a disconnect
indication has arrived, the thread closes the transport endpoint and
terminates.

If the data traffic flowed in both directions in this example, the user would
not have to monitor the connection for disconnects. If the client alternated
t_snd and t_rcv calls, it could rely on t_rcv to recognize an incoming
disconnect indication.

Parent Topic: Connection Mode: Data Transfer

Connection Mode: Event Handling

The TLOOK error has special significance in TLI. TLOOK notifies the user

Communication Service Group

TLI: Concepts 1086

when a TLI routine is interrupted by an unexpected asynchronous transport
event on the given transport endpoint. As such, TLOOK does not report an
error with a TLI routine, but the normal processing of that routine does not
proceed because of the pending event. The events defined by TLI are
described in the following table.

Table auto. TLI Events

Event Description

T_LISTEN A request for a connection, called a connect indication,
has arrived at the transport endpoint.

T_CONNECT The confirmation of a previously sent connect request,
called a connect confirmation, has arrived at the
transport endpoint. The confirmation is generated
when a server accepts a connect request.

T_DATA User data has arrived at the transport endpoint.

T_EXDATA Expedited user data (discussed in Connection Mode:
Data Transfer) has arrived at the transport endpoint.

T_DISCONN
ECT

A notification that the connection was aborted or that
the server rejected a connect request, called a
disconnect indication, has arrived at the transport
endpoint.

T_UDERR The notification of an error in a previously-sent
datagram, called a unitdata error indication, has
arrived at the transport endpoint. (See TLI
Connectionless Mode Services.)

T_ORDREL A request for the orderly release of a connection,
called an orderly release indication, has arrived at the
transport endpoint.

T_GODATA It is possible to send normal data is again.

T_GOEXDAT
A

It is possible to send expedited data again.

It is possible in some states to receive one of several asynchronous events, as
described in the state tables in TLI State Transitions. The t_look function
enables a user to determine what event has occurred if a TLOOK error is
returned. The user can then process that event accordingly.

In the example, if a connect request is rejected, the event passed to the client
is a disconnect indication. The client exits if its request is rejected.

See Event Handling: the Server for an example.

Parent Topic: TLI Connection Mode Services

Connection Mode: Local Management

Communication Service Group

TLI: Concepts 1087

Before the client and server can establish a transport connection, each must
first establish a local channel (the transport endpoint) to the transport
provider using t_open, and establish its identity (or address) using t_bind
(Function).

The set of services supported by TLI might not be implemented by all
transport protocols. Each transport provider has a set of characteristics that
determines the services it offers and the limits associated with those
services. This information is returned to the user by t_open and consists of
the characteristics summarized in the following table.

Table auto. Transport Provider Characteristics

Characteristic Description

addr Maximum size of a transport address.

options Maximum bytes of protocol-specific options that can
be passed between the transport user and transport
provider.

tsdu Maximum message size that can be transmitted in
either connection mode or connectionless mode.

etsdu Maximum expedited data message size that can be
sent over a transport connection.

connect Maximum bytes of user data that can be passed
between users during connection establishment.

discon Maximum bytes of user data that can be passed
between users during the abortive release of a
connection.

servtype The type of service supported by the transport
provider.

The three service types defined by TLI are described in the following table.

Table auto. TLI Service Types

Service Type Description

T_COTS The transport provider supports connection mode
service but does not provide the optional orderly
release facility.

T_COTS_ORD The transport provider supports connection mode
service with the optional orderly release facility.

T_CLTS The transport provider supports connectionless mode
service. Only one such service can be associated with
the transport provider identified by t_open.

Communication Service Group

TLI: Concepts 1088

The t_open function returns the default provider characteristics associated
with a transport endpoint. However, some characteristics can change after
an endpoint has been opened. This occurs if the characteristics are
associated with negotiated options. (Option negotiation is described later in
this chapter.)

For example, if the support of expedited data transfer is a negotiated option,
the value of this characteristic can change. Call t_getinfo function to retrieve
the current characteristics of a transport endpoint.

After establishing a transport endpoint with the chosen transport provider,
the user must establish its identity. t_bind (Function) does this by binding a
transport address to the transport endpoint. In addition, for servers, this
routine informs the transport provider that the endpoint will be used to
listen for incoming connect indications, also called connect requests.

An optional facility, t_optmgmt (Function), is also available during the local
management phase. It enables a user to negotiate the values of protocol
options with the transport provider.

Each transport protocol is expected to define its own set of negotiable
protocol options, which can include such information as QualityofService
parameters. Because of the protocol-specific nature of options, only
applications written for a particular protocol environment are expected to
use this facility.

The following topics discuss the local management requirements of the
example client and server.

Connection Mode Local Management: the Client

Connection Mode Local Management: the Server

Parent Topic: TLI Connection Mode Services

Connection Mode Local Management: the Server

The server in this example must take similar local management steps before
communication can begin. The server must establish a transport endpoint
(TEP) through which it listens for connect indications. The necessary
definitions and local management steps are as follows:

TLI Connection Mode Local Management---the Server

#define SRV_SOCK 0x4800 /* Server socket (dynamic sock*/
#define TLI_TYPE 0x9000 /* Server type (dynamic area) */
#define LOGFILE "README.TXT" /* File name */

/* Global variables */
int fh; /* TEP handle */
LONG SAPhandle; /* SAP handle */

Communication Service Group

TLI: Concepts 1089

struct t_call *call; /* call structure ptr */
struct t_bind *bind; /* bind structure ptr */

void TerminateNLM(void)
{
 if(SAPhandle)
 ShutdownAdvertising(SAPhandle);
 if(bind)
 t_free((char *)bind, T_BIND);
 if(call)
 t_free((char *)call, T_CALL);
 t_unbind(fh);
 t_close(fh);
}

main(int argc, char **argv)
{
 int *fh_new; /* new transport endpoint pointer*/
 IPX_ADDR *addr; /* address structure for SPX */

 if(argc != 2) {
 printf("Usage: %s <server's name>\n", argv[0]);
 exit(1);
 }

 /* Register function that will be executed when NLM
 exits or is unloaded */
 if(atexit(TerminateNLM) != NULL) {
 printf("atexit failed");
 exit(1);
 }

/* Open server's endpoint, no info needed */
 if((fh = t_open("/dev/nspx", O_RDWR, NULL)) == -1) {
 t_error("t_open");
 exit(1);
 }

 /* Allocate space for structures */
 bind = (struct t_bind *) t_alloc(fh, T_BIND, T_ALL);
 call = (struct t_call *) t_alloc(fh, T_CALL, T_ADDR);
 if(bind == NULL || call == NULL) {
 t_error("t_alloc");
 exit(1);
 }
 /* Prepare bind structure and then call t_bind */
 bind->qlen = 1;
 bind->addr.len = sizeof(IPX_ADDR);
 addr = (IPX_ADDR *)bind->addr.buf;
 GetInternetAddress(GetConnectionNumber(),
 addr->ipxa_net, addr->ipxa_node);
 *(WORD *)addr->ipxa_socket = IntSwap(SRV_SOCK);

Communication Service Group

TLI: Concepts 1090

 *(WORD *)addr->ipxa_socket = IntSwap(SRV_SOCK);

 if(t_bind(fh, bind, bind) == -1) {
 t_error("t_bind");
 exit(1);
 }

 /* Check if this is socket you wanted to be bound to */
 if(*(WORD *)&bind->addr.buf[10] != IntSwap(SRV_SOCK)) {
 printf("Bound wrong address: %d != %d\n",
 *(WORD *)&bind->addr.buf[10], IntSwap(SRV_SOCK));
 exit(1);
 }

As with the client, the first step is to call t_open to establish a transport
endpoint with the desired transport provider. This endpoint is used to listen
for connect indications. Next, the server must bind its well-known address
to the endpoint. Clients use this address to access the server.

The second argument to t_bind (Function) requests that a particular
address be bound to the transport endpoint. This argument points to a
t_bind structure with the following format:

struct t_bind {
 struct netbuf addr;
 unsigned int qlen;
}

where addr describes the address to be bound, and qlen specifies the
maximum outstanding connect indications that can arrive at this endpoint.
All TLI structure and constant definitions are found in TIUSER.H.

The address is specified using a netbuf structure that contains the following
members:

struct netbuf {
 unsigned int maxlen;
 unsigned int len;
 char *buf;
}

where buf points to a buffer containing the data, len specifies the bytes of
data in the buffer, and maxlen specifies the maximum bytes the buffer can
hold. You need to set maxlen only if a TLI routine returns data to the user.

For the t_bind structure, the data pointed to by buf identifies a transport
address. It is expected that the structure of addresses vary among each
protocol implementation under TLI. The netbuf structure is intended to
support any address structure.

If the value of qlen is greater than 0, the transport endpoint can be used to
listen for connect indications. In such cases, t_bind directs the transport
provider to begin queuing connect indications destined for the bound
address immediately.

Communication Service Group

TLI: Concepts 1091

Furthermore, the value of qlen specifies the maximum outstanding connect
indications the server wants to process. The server must respond to each
connect indication, either accepting or rejecting the request for connection.
An outstanding connect indication is one to which the server has not yet
responded.

Often, a server fully processes a single connect indication and responds to it
before receiving the next indication. When this occurs, a value of 1 is
appropriate for qlen.

However, some servers might want to retrieve several connect indications
before responding to any of them. In such cases, qlen specifies the maximum
number of outstanding indications the server will process.

An example of a server that manages multiple outstanding connect
indications is presented in TLI Asynchronous Execution Mode.

The t_alloc function is called to allocate the t_bind (Structure) structure
needed by t_bind (Function). The t_alloc function takes three arguments.
The first is a file handle that references a transport endpoint. This is used to
access the characteristics of the transport provider (see t_open). The second
argument identifies the appropriate TLI structure to be allocated. The third
argument specifies which, if any, netbuf buffers should be allocated for that
structure. T_ALL specifies that all netbuf buffers associated with the
structure should be allocated and causes the addr buffer to be allocated in
this example. The size of this buffer is determined from the transport
provider characteristic that defines the maximum address size.

The maxlen field of this netbuf structure is set to the size of the newly
allocated buffer by t_alloc. The use of t_alloc helps ensure the compatibility
of user programs with future releases of TLI.

In this example, the server processes connect indications one at a time, so
qlen is set to 1. The address information is then assigned to the newly
allocated t_bind structure. This t_bind structure passes information to
t_bind (Function) in the second argument and returns information to the
user in the third argument.

On return, the t_bind structure contains the address that was bound to the
transport endpoint. If the provider could not bind the requested address
(perhaps because it had been bound to another transport endpoint), it
chooses another appropriate address.

Each transport provider manages its address space differently. Some
transport providers might allow a single transport address to be bound to
several transport endpoints, whereas others might require a unique address
per endpoint. TLI supports either choice.

Based on its address management rules, a provider determines if it can bind
the requested address. If not, it chooses another valid address from its
address space and binds it to the transport endpoint.

The server must check the bound address to ensure that it is the one

Communication Service Group

TLI: Concepts 1092

previously advertised to clients. Otherwise, the clients are unable to reach
the server. (To advertise its service in the bindery, the server in this example
uses SAP (see SAP).

If t_bind (Function) succeeds, the provider begins queuing connect
indications, thus entering the next phase of communication, connection
establishment.

Parent Topic: Connection Mode: Local Management

Connection Mode Service

The connection mode service is circuit-oriented and enables the
transmission of data over an established connection in a reliable, sequenced
manner. It also provides an identification procedure that avoids the
overhead of address resolution and transmission during the data transfer
phase. This service is attractive for applications that require relatively
long-lived, datastream-oriented interactions.

Connection mode service involves three phases:

Establishing a Connection in TLI

Transferring Data in TLI

Releasing a Connection in TLI

You must perform all three phases in the proper sequence to handle the
connection successfully.

Parent Topic: Overview of Transport Protocols

Connection Release Phase

The connection-oriented TLI supports two forms of connection release:
abortive and orderly.

An abortive release can be invoked from either the connection
establishment phase or the data transfer phase. When in the connection
establishment phase, a transport user can use the abortive release to reject or
cancel a connect request. In the data transfer phase, either user can abort a
connection at any time.

The transport users do not negotiate the abortive release, and it takes effect
immediately on request. The user on the other side of the connection is
notified when a connection is aborted.

The transport provider can also initiate an abortive release, in which case

Communication Service Group

TLI: Concepts 1093

both users are informed that the connection no longer exists. There is no
guarantee of delivery of user data once an abortive release has been
initiated.

The orderly release capability is an optional feature of the
connection-oriented service. If supported by the underlying transport
provider, an orderly release can be invoked from the data transfer phase to
enable two users to gracefully release a connection. The procedure for
orderly release prevents the loss of data that can occur during an abortive
release.

The functions that support the release of a connection are listed in the
following table.

Table auto. Functions for Releasing a Connection

Function Task

t_snddis This function can be called by either transport user to
initiate the abortive release of a transport connection.
It can also be used to reject or cancel a connect request
during the connection establishment phase.

t_rcvdis This function identifies the reason for the abortive
release of a connection, when the connection is
released by the transport provider or another
transport user.

t_sndrel (Optional) This function can be called by either
transport user to initiate an orderly release. The
connection remains intact until both users call this
function and the t_rcvrel function.

t_rcvrel (Optional) This function is called when a user is
notified of an orderly release request, as a means of
informing the transport provider that the user is
aware of the remote user's actions.

After a connection has been released, the transport user must deinitialize
the associated transport endpoint, thereby freeing the resource for future
use.

Parent Topic: Overview of Connection-Oriented Service

Connectionless Mode: Data Transfer

Once a user has bound an address to the transport endpoint, datagrams can
be sent or received over that endpoint. Each outgoing message is
accompanied by the address of the destination user. In addition, TLI enables
a user to specify protocol options that should be associated with the transfer
of the data unit (for example, transit delay). As discussed earlier, each

Communication Service Group

TLI: Concepts 1094

transport provider defines the set of options, if any, that can accompany a
datagram. When the datagram is passed to the destination user, the
associated protocol options can be returned as well.

The following sequence of calls illustrates the data transfer phase of the
connectionless mode server:

TLI Connectionless Mode Data Transfer for the Server

 for (;;)
 {
 printf("Server: %s is ready ...\n", argv[1]);
 /* Receive message from client */
 if(t_rcvudata(fh, udata, &flags) == -1)
 {
 if(t_errno == TLOOK)
 {
 /* Error on previously sent datagram */
 if(t_rcvuderr(fh, uderr) == -1)
 {
 t_error("t_rcvuderr");
 exit(1);
 }
 printf("Bad datagram, error=%d\n", uderr->error);
 }
 t_error("t_rcvudata");
 exit(1);
 }
 printf("Received: %s\n", udata->udata.buf);
 query();
 ThreadSwitch();
 if(t_sndudata(fh, udata) == -1)
 {
 t_error("t_sndudata");
 exit(1);
 }
 printf("Sending: %s\n", udata->udata.buf);
 }
}

query(void){ /* Stub for simplicity */ }

The server must first allocate a t_unitdata structure for storing datagrams,
using the following format:

struct t_unitdata {
 struct netbuf addr;
 struct netbuf opt;
 struct netbuf udata;
}

The addr field holds the source address of incoming datagrams and the
destination address of outgoing datagrams. The opt field identifies any
protocol options associated with the transfer of the datagram. The udata field

Communication Service Group

TLI: Concepts 1095

holds the data itself.

The addr, opt, and udata fields must all be allocated with buffers large enough
to hold any possible incoming values. The T_ALL argument to t_alloc
ensures this and sets the maxlen field of each netbuf structure accordingly.
The server also allocates a t_uderr structure for processing any datagram
errors, as discussed in Datagram Errors.

The transaction server loops forever, receiving queries, processing the
queries, and responding to the clients. It first calls t_rcvudata to receive the
next query. The t_rcvudata function retrieves the next available incoming
datagram. If none is currently available, t_rcvudata blocks, waiting for a
datagram to arrive. The second argument of t_rcvudata identifies the
t_unitdata structure in which the datagram should be stored.

The third argument, flags, must point to an integer variable and can be set to
T_MORE on return from t_rcvudata to specify that the user's udata buffer
was not large enough to store the full datagram. In this case, subsequent
calls to t_rcvudata retrieve the remainder of the datagram. Because t_alloc
allocates a udata buffer large enough to store the maximum datagram size,
the transaction server does not have to check the value of flags.

If a datagram is received successfully, the transaction server calls the query
routine to process the request. This routine stores the response in the
structure pointed to by udata and sets udata->udata.len to specify the number
of bytes in the response. The source address returned by t_rcvudata in
ud->addr is used as the destination address by t_sndudata.

When the response is ready, t_sndudata is called to return the response to
the client. TLI prevents a user from flooding the transport provider with
datagrams using the same flow control mechanism described for the
connection mode service. In such cases, t_sndudata blocks until the flow
control is relieved and then resumes its operation.

A connectionless mode client follows the same local management steps as a
server does. Because the connectionless mode does not guarantee message
delivery once a message is sent, the client waits for a specified period of
time; if it does not receive a response from the server, the client exits.

Monitoring for the response is accomplished by using poll. The poll
function waits for a specified period of time for the incoming event. If the
event does not arrive, poll returns. It is up to the user to check for the
received event on a particular transport endpoint and take action
accordingly. "Message Received" is displayed if the response from the
server is received. Otherwise, the message "Server didn't respond" is
displayed.

The following sequence of calls illustrates the data transfer phase of the
connectionless mode client:

TLI Connectionless Mode Data Transfer for the Client

 .
 .

Communication Service Group

TLI: Concepts 1096

 .
 struct pollfd pfh;
 .
 .
 .
 udata->udata.len = strlen(argv[2]) + 1;
 if(udata->udata.maxlen < udata->udata.len) {
 printf("Buffer to small: %d\n", udata->udata.maxlen);
 exit(1);
 }
 strcpy(udata->udata.buf, argv[2]);

 /* Send message, blocked until send completed */
 printf("Sending: %s\n", udata->udata.buf);
 if(t_sndudata(pfh.fd, udata) == -1) {
 t_error("t_sndudata");
 exit(1);
 }

 /* Wait up to 5 seconds for response from server */
 pfh.events = POLLIN;
 if(poll(&pfh, 1, 5000) == -1) {
 perror("poll");
 exit(1);
 }
 if(pfh.revents == POLLIN) {
 if(t_rcvudata(pfh.fd, udata, &flags) != -1) {
 t_error("t_rcvudata");
 exit(1);
 }
 printf("Received: %s\n", udata->udata.buf);
 }
 else
 printf("Server didn't respond.\n");
}

Parent Topic: TLI Connectionless Mode Services

Connectionless Mode: Local Management

Just as with connection mode service, the transport users must complete the
appropriate local management steps before transferring data. A user must
choose the appropriate connectionless service provider using t_open and
establish its identity using t_bind (Function).

t_optmgmt (Function) can be used to negotiate protocol options associated
with the transfer of each data unit. As with the connection mode service,
each transport provider specifies the options, if any, that it supports. Option
negotiation is, therefore, a protocol-specific activity.

Communication Service Group

TLI: Concepts 1097

In the following example, the definitions and local management calls
needed by the transaction server are shown.

TLI Connectionless Mode Local Management for the Server

#define SRV_SOCK 0x4800 /* Echo socket (dynamic socket)*/
#define TLI_TYPE 0x9000 /* Server type */

int fh;
struct t_bind *bnd;
struct t_unitdata *udata;
struct t_uderr *uderr;
LONG SAPhandle;

void TerminateNLM(void)
{
 if(SAPhandle)
 ShutdownAdvertising(SAPhandle);
 if(udata)
 t_free((char *)udata, T_UNITDATA);
 if(uderr)
 t_free((char *)uderr, T_UDERROR);
 if(bnd)
 t_free((char *)bnd, T_BIND);
 t_close(fh);
}

main(int argc, char **argv)
{
 IPX_ADDR *addr; /* address structure for SPX */
 int flags;

 if(argc != 2) {
 printf("Usage: %s <server's name>\n", argv[0]);
 exit(1);
 }

 /* Register function that will be executed when NLM exits
 or is unloaded */
 if(atexit(TerminateNLM) != NULL) {
 printf("atexit failed");
 exit(1);
 }

 /* Open server's endpoint, no info needed */
 if((fh = t_open("/dev/nipx", O_RDWR, NULL)) == -1) {
 t_error("t_open");
 exit(1);
 }

 /* Allocate space for structures */
 bnd = (struct t_bind *)t_alloc(fh, T_BIND, T_ALL);

Communication Service Group

TLI: Concepts 1098

 udata = (struct t_unitdata *)t_alloc(fh,T_UNITDATA,T_ALL);
 uderr = (struct t_uderr *)t_alloc(fh, T_UDERROR, T_ALL);
 if(!bnd || !udata || !uderr) {
 t_error("t_alloc");
 exit(1);
 }
/* Prepare bind structure and then call t_bind */
 bnd->addr.len = sizeof(IPX_ADDR);
 addr = (IPX_ADDR *)bnd->addr.buf;
 GetInternetAddress(GetConnectionNumber(),
 addr->ipxa_net, addr->ipxa_node);
 *(WORD *)addr->ipxa_socket = IntSwap(SRV_SOCK);

 if(t_bind(fh, bnd, bnd) == -1) {
 t_error("t_bind");
 exit(1);
 }
 /* Check if this is the right socket */
 if(*(WORD *)&bnd->addr.buf[10] != IntSwap(SRV_SOCK)) {
 printf("Bound wrong address: %d != %d\n",
 *(WORD *)&bnd->addr.buf[10], IntSwap(SRV_SOCK));
 exit(1);
 }

 /* Advertise server on SRV_SOCK socket */
 SAPhandle = AdvertiseService(TLI_TYPE, argv[1],
 IntSwap(SRV_SOCK));
 if(SAPhandle == NULL) {
 printf("AdvertiseService failed for: %s\n", argv[1]);
 exit(1);
 }

The local management steps should look familiar by now. The server
establishes a transport endpoint with the desired transport provider using
t_open. Each provider has an associated service type, so the user can choose
a particular service by opening the appropriate transport provider file, in
this case /dev/nipx.

This connectionless mode server ignores the characteristics of the provider
returned by t_open in the same way as the users in the connection mode
example, by setting the third argument to NULL. For simplicity, the
transaction server assumes the transport provider has the following
characteristics:

The transport provider supports the T_CLTS service type (connectionless
transport service, or datagram).

The transport provider supports protocol-specific options. (None are
used in this example.)

The connectionless server also binds a transport address to the endpoint so
that potential clients can identify and access the server. A t_bind (Structure)
structure is allocated using t_alloc, and the buf and len fields of the address

Communication Service Group

TLI: Concepts 1099

are set accordingly.

One important difference between the connection mode server and this
connectionless mode server is that the qlen field of the t_bind structure has
no meaning for connectionless mode service. This is because all users are
capable of receiving datagrams once they have bound an address. TLI
defines an inherent client-server relationship between two users while
establishing a transport connection in the connection mode service.
However, no such relationship exists in the connectionless mode service. It is
the context of this example, not TLI, that defines one user as a server and
another as a client.

Because the address of the server is known by all potential clients, the server
checks the bound address returned by t_bind (Function) to ensure that it is
correct.

Parent Topic: TLI Connectionless Mode Services

Connectionless Service

Because connectionless service doesn't provide the conveniences and
safeguards associated with a connection, connectionless service is simpler to
arrange. All that a connectionless transfer requires is that you open an
endpoint and bind an address to it. You are then ready to send and receive.
Messages sent across the network without a connection are known as
datagrams.

Sending Connectionless Data

Call t_sndudata to send a datagram. This function takes the endpoint and
t_unitdata as input:

int t_sndudata(int fh, struct t_unitdata *unitdata);

t_unitdata includes the destination address, any protocol-specific options,
and the message data.

Receiving Connectionless Data

Call t_rcvudata to receive a datagram. As input, this function takes the
endpoint, t_unitdata, and space for any control flags:

int t_rcvudata(int fh, struct t_unitdata *unitdata,
int *flags);

flags will be set to T_MORE if the buffer referenced by unitdata isn't large
enough to hold the message. In that case, you should continue calling
t_rcvudata until the entire message has been received.

Communication Service Group

TLI: Concepts 1100

Transport providers return datagram errors as unit data error events. When
a datagram error occurs, the function encountering the error (t_sndudata or
t_rcvudata) fails and returns TLOOK in t_errno. The TLOOK event for any
unit data error is T_UDERR. (Confirm this event by calling t_look.) To
process the error, call t_rcvuderr. This function clears the error and finds the
destination address and protocol options for the associated data unit.

Parent Topic:

Overview of Transport Protocols

Data Transfer Phase of Connection-Oriented
Service

Once a transport connection is established between two users, data can be
transferred over the connection. Two functions that transfer data in
connection mode are listed in the following table.

Table auto. Data Transfer Functions

Function Task

t_snd This function enables transport users to send either
normal or expedited data over a transport connection.

t_rcv This function enables transport users toreceive either
normal or expedited data on a transport connection.

Parent Topic: Overview of Connection-Oriented Service

Data Transfer Phase of Connectionless Service

Once a transport endpoint has been activated, a user is free to send and
receive data units through that endpoint in connectionless mode (see the
following table).

Table auto. Datagram Functions

t_sndudata This function enables transport users to send a
datagram to the user at the specified protocol address.

t_rcvudata This function enables transport users to receive
datagrams from other users.

t_rcvuderr This function enables users to retrieve error
information associated with a previously sent

Communication Service Group

TLI: Concepts 1101

datagram.

Parent Topic: Overview of Connectionless Service

Datagram Errors

If the transport provider cannot process a datagram that was passed to it by
t_sndudata, it returns a unit data error event, T_UDERR, to the user. This
event includes the destination address and options associated with the
datagram, plus a protocol-specific error value that describes what might be
wrong with the datagram.

The reason a datagram could not be processed is protocol-specific. One
possible reason is that the transport provider could not interpret the
destination address or options. Each transport protocol is expected to specify
all the reasons why it cannot process a datagram.

The unit data error indication is not necessarily intended to indicate success
or failure in delivering the datagram to the specified destination. The
transport protocol decides how the indication is used. Remember, the
connectionless service does not guarantee reliable delivery of data.

The transaction server is notified of this error event when it attempts to
receive another datagram. In this case, t_rcvudata fails, setting t_errno to
TLOOK. If TLOOK is set, the only possible event is T_UDERR, so the server
calls t_rcvuderr to retrieve the event. The second argument to t_rcvuderr is
the t_uderr structure that was allocated earlier. This structure is filled in by
t_rcvuderr and has the following format:

struct t_uderr {
 struct netbuf addr;
 struct netbuf opt;
 long error;
}

The addr and opt fields identify the destination address and protocol options
as specified in the bad datagram, and error is a protocol-specific error code
that specifies why the provider could not process the datagram. The
transaction server prints the error code and then continues by entering the
processing loop again.

Parent Topic: TLI Connectionless Mode Services

dclient.c

dclient.c is the active side of the connection. It calls the server program
running on another workstation and asks for the connection. It then initiates

Communication Service Group

TLI: Concepts 1102

the data transfer and closes the connection after receiving data back.

1. dclient.c requires the user to enter the network node and address of the
server on the command line. The parameter takes the form of a network
address separated from the node address by a slash. Leading zeros are
required:

DCLIENT 00001234/00001b02362e

There are several ways to obtain the network and node address. If the
server program is attached to a NetWare server or is advertising with
SAP, the user can find the server's address by scanning the server's
bindery. (The utility USERLIST performs this operation.) Under NDS,
the user can look up the server address if the server takes the
appropriate steps to store it there.

The client uses a pair of subroutines, ParseAddress and PutAddress, to
parse the parameter entered by the user. Although somewhat incidental
to the purposes of this example, the routines are included below to
demonstrate one way to solve the problem of translating the address's
character representation into byte values. The resulting address is
stored in IPX_ADDR.

2. After parsing the address, the client begins by opening an endpoint for
calling the server. It binds the endpoint to a socket. Although the client
needs to know the socket on which the server is listening at the other
end, the client doesn't need to worry about which local socket it uses.
t_bind (Function) assigns a socket.

3. Next, the client prepares t_call to pass to t_connect. The client sets up
this structure to reference IPX_ADDR containing the destination
address in the same way the server sets up t_call for listening.

4. The client calls t_connect to attempt the connection.

5. If the server accepts the connection, the client enters a for loop in which
the client uses the same endpoint to carry on the connection. The for
loop repeatedly sends a message to the server with t_snd and receives
the same message back with t_rcv. If at any point an error occurs,
SPXDisconReason is called to report the reason for the error.

6. After sending and receiving the messages, the client disconnects from
the server with t_snddis and closes the endpoint.

dclient.c example

#include <stdio.h>
#include <ctype.h>
#include <process.h>
#include <fcntl.h>
#include <string.h>
#include <tispxipx.h>
#include <tiuser.h>

Communication Service Group

TLI: Concepts 1103

#define SPX_SOCKET 31 /* arbitrary socket */

int ParseAddress(char *address, IPX_ADDR *destination);
int PutAddress(char *string, char *buf, int hexBytes);
void SPXDisconReason(int fd);

int ParseAddress(char *addr, IPX_ADDR *destination)
{
 if (strlen(addr) == 21 && addr[8] == '/')
 if (PutAddress(addr, destination->ipxa_net, 4))
 if (PutAddress(&addr[9], destination->ipxa_node, 6))
 return 1;
 return 0;
}

int PutAddress(char *string, char *buf, int hexBytes)
{
 int i, j, value;
 char c;

 for (i = 0; i < hexBytes; i++)
 {
 value = 0; /* build a byte from two nibbles */
 for (j = 0; j < 2; j++)
 {
 value <<= 4;
 if ((c = (char)toupper(*string)) >= '0' && c <= '9')
 value += c - '0';
 else if (c >= 'A' && c <= 'F')
 value += c - 'A' + 10;
 else return 0;
 string++;
 }
 *buf++ = (char)value;
 }
 return 1;
}

void main (int argc, char *argv[])
{
 IPX_ADDR spx_addr; /* server address from command line */
 SPX_OPTS spx_options;
 char buf[100], buf2[100];
 int fd, flags, i1;
 struct t_call tcall;

 /* Step 1 */

 if (argc != 2 || !ParseAddress(argv[1], & spx_addr))
 {
 printf("Usage:\tdclient ServerAddress\n");
 printf("\tServerAddress = Net/Node (in hex, leading \

Communication Service Group

TLI: Concepts 1104

 zero's required)\n");
 printf("\tExample:\"dclient 00001234/00001b02362e\"\n");
 exit(1);
 }

 /* Step 2 */

 if ((fd = t_open("/dev/nspx", O_RDWR, (struct t_info *)0)) == -1)
 {
 t_error("open of /dev/nspx failed");
 exit(2);

 /* No need to bind to a specific socket */

 if (t_bind(fd, (struct t_bind *)0, (struct t_bind *)0)== -1)
 {
 t_error("bind failed");
 exit(2);
 }

 /* Step 3 */

 spx_addr.ipxa_socket[0] = 0;
 spx_addr.ipxa_socket[1] = SPX_SOCKET;
 tcall.addr.buf = (char *)&spx_addr;
 tcall.addr.len = sizeof(spx_addr);
 tcall.addr.maxlen = sizeof(spx_addr);
 spx_options.spx_connectionID[0] = 0;
 spx_options.spx_connectionID[1] = 0;
 spx_options.spx_allocationNumber[0] = 0;
 spx_options.spx_allocationNumber[1] = 0;
 tcall.opt.buf = (char *)&spx_options;
 tcall.opt.len = sizeof(spx_options);
 tcall.opt.maxlen = sizeof(spx_options);
 tcall.udata.buf = (char *)0;
 tcall.udata.len = 0;
 tcall.udata.maxlen = 0;

 /* Step 4 */

 if (t_connect(fd, &tcall, &tcall) == -1)
 {
 t_error("t_connect failed");
 if (t_errno == TLOOK && t_look(fd) == T_DISCONNECT)
 SPXDisconReason(fd);
 exit(2);
 }
 printf("\nt_connect successful, beginning send loop\n");

 /* Step 5 */

 for (i1 = 0; i1 < 10; i1++)

Communication Service Group

TLI: Concepts 1105

 {
 sprintf(buf, "message %d", i1);
 if (t_snd(fd, buf, strlen(buf)+1, 0) == -1)
 {
 t_error("t_snd failed");
 exit(2);
 }
 flags = 0;
 if (t_rcv(fd, buf2, sizeof(buf2), &flags) == -1)
 {
 t_error("t_rcv failed");
 if (t_errno == TLOOK && t_look(fd) == T_DISCONNECT)
 SPXDisconReason(fd);
 exit(2);
 }
 if (strcmp(buf, buf2) == 0)
 printf("Sent & received message: '%s'\n", buf2);
 else
 {
 printf("Received back invalid message %s\n", buf2);
 t_close(fd);
 exit(3);
 }
 }

 /* Step 6 */

 if (t_snddis(fd, (struct t_call *)0) == -1)
 {
 t_error("t_snddis failed");
 exit(2);
 }
 t_close(fd);

} /* End of main */

void SPXDisconReason(int fd)
{
 struct t_discon discon;
 char *msg;

 if (t_rcvdis(fd, &discon) == -1)
 {
 t_error("t_rcvdis failed");
 exit(2);
 }
 switch(discon.reason)
 {
 case TLI_SPX_CONNECTION_FAILED:
 msg = "Connection failed";
 break;
 case TLI_SPX_CONNECTION_TERMINATED:

Communication Service Group

TLI: Concepts 1106

 msg = "Connection terminated by client";
 break;
 case TLI_SPX_MALFORMED_PACKET:
 msg = "Internal SPX interface error -- malformed packet";
 break;
 default:
 msg = "Unknown termination reason";
 }
 printf("SPX Connection terminated: %s\n", msg);
}

Parent Topic: TLI Programming Example

dserver.c

dserver.c is the passive side of the connection. It demonstrates the basic
steps required to establish a connection from the listening side. There are no
command line parameters:

1. The server begins by opening a read/write endpoint in nonblocking
mode with SPX as the transport provider. Nonblocking mode gives the
server more control over events when it begins listening for a
connection.

2. The next step is to bind the endpoint to an SPX network address. t_bind
(Function) supplies the local network and node address, but the server
must specify a socket. In this case, it is an arbitrary socket value
hard-coded in both server and client programs. The server also supplies
space for storing the address. It does so by declaring IPX_ADDR,
spx_addr and assigning the structure to addr.buf in t_bind (Structure).

Even though the server processes only one client at a time, several
clients can attempt to connect to the server at once. To handle multiple
connection requests, the server sets the endpoint's queue length to 5,
allowing it to store up to five requests at a time. Also, note that the data
returned by t_bind overwrites the data the server passes to the function.

3. Now the server is ready to begin listening for connections. The server
must prepare t_call to pass to t_listen. t_listen fills in t_call with the
address of the caller. The server must ensure adequate space is
available for the address and the SPX options.

4. The server enters a do-while loop containing most of the server's
processing. Inside this loop is another do-while loop. The inner loop
polls for a connection with t_listen. It continues until t_listen receives a
request for a connection (listenResult is 0) or the user presses a key, at
which point the server exits. The outer loop continues until t_listen
returns an error.

5. When t_listen receives a connection request, the server opens a new
endpoint and binds it. The server passes this endpoint to t_accept to

Communication Service Group

TLI: Concepts 1107

establish the connection. Switching the connection to a new endpoint
allows the server to reserve the original endpoint for listening. Also,
listenResult is -1 only if t_listen returned an error other than
T_NODATA.

6. Having established a connection, the server enters a while loop for
transferring data. The server receives data from the client with t_rcv.
Because the endpoint was opened in blocking mode, t_rcv waits until it
receives data before returning. The server returns the same data to the
client with t_snd. The while loop breaks when t_rcv is no longer
receiving data.

7. The server closes the connection with t_snddis and closes the endpoint
with t_close. These procedures conclude the processing within the
do-while loop the server entered with step #4.

8. If an error occurs, SPXDisconReason reports the reason for the error.
Otherwise, the server closes the original endpoint when the user presses
a key to interrupt processing.

dserver.c example

#include <stdio.h>
#include <conio.h>
#include <process.h>
#include <fcntl.h>
#include <tispxipx.h>
#include <tiuser.h>

#define SPX_SOCKET 31 /* arbitrary socket */

#ifndef t_errno
 int t_errno;
#endif
void SPXDisconReason(int fd);
void main ()
{
 IPX_ADDR spx_addr;

 /* Step 1 */

 SPX_OPTS spx_options;
 struct t_bind tbind;
 struct t_call tcall;
 char buf[100];
 int fd, nfd, flags, len, listenResult;

 if ((fd = t_open("/dev/nspx", O_RDWR | O_NDELAY,
 (struct t_info *)0)) == -1)
 {
 t_error("open of /dev/nspx failed");
 exit(1);
 }

Communication Service Group

TLI: Concepts 1108

 /* Step 2 */

 spx_addr.ipxa_socket[0] = 0;
 spx_addr.ipxa_socket[1] = SPX_SOCKET;
 tbind.addr.len = sizeof(spx_addr);
 tbind.addr.maxlen = sizeof(spx_addr);
 tbind.addr.buf = (char *) &spx_addr;
 tbind.qlen = 5;

 if (t_bind(fd, &tbind, &tbind) == -1)
 {
 t_error("bind failed");
 exit(1);
 }

 /* Step 3 */

 tcall.addr.buf = (char *) &spx_addr;
 tcall.addr.maxlen = sizeof(spx_addr);
 tcall.addr.len = sizeof(spx_addr);
 spx_options.spx_connectionID[0] = 0;
 spx_options.spx_connectionID[1] = 0;
 spx_options.spx_allocationNumber[0] = 0;
 spx_options.spx_allocationNumber[1] = 0;
 tcall.opt.buf = (char *)&spx_options;
 tcall.opt.len = sizeof(spx_options);
 tcall.opt.maxlen = sizeof(spx_options);
 tcall.udata.buf = (char *)0;
 tcall.udata.maxlen = 0;
 tcall.udata.len = 0;

 do /* Step 4 */
 {
 do
 {
 if (kbhit())
 {
 getch(); /* clean up keyboard buffer */
 printf("DSERV terminated\n");
 t_close(fd);
 exit(0);
 }
 } while ((listenResult = t_listen(fd, &tcall)) == -1 &&
 t_errno == TNODATA);

 /* Step 5 */

 if (listenResult != -1)
 {
 if ((nfd = t_open("/dev/nspx", O_RDWR, (struct t_info *)0)) == -1)
 {

Communication Service Group

TLI: Concepts 1109

 t_error("t_open after listen failed");
 t_close(fd);
 exit(1);
 }
 if (t_bind(nfd, (struct t_bind *)0, (struct t_bind *)0) == -1)
 {
 t_error("t_bind failed");
 t_close(nfd);
 t_close(fd);
 exit(1);
 }
 if (t_accept(fd, nfd, &tcall) == -1)
 { t_error("t_accept failed");
 t_close(nfd);
 t_close(fd);
 exit(1);
 }
 printf("\nConnection accepted.");
 flags = 0; /* initialize for t_rcv call */

 /* Step 6 */

 while ((len = t_rcv(nfd, buf, sizeof(buf),&flags)) != -1)
 {
 printf("Received and returned message'%s'\n", buf);
 if (t_snd(nfd, buf, len, 0) == -1)
 {
 t_error("t_snd failed");
 t_close(nfd);
 t_close(fd);
 exit(1);
 }
 }

 /* Step 7 */

 if (t_errno == TLOOK && t_look(nfd) == T_DISCONNECT)
 SPXDisconReason(nfd);
 else /* some other error so disconnect */
 {
 if (t_snddis(nfd, (struct t_call *)0) == -1)
 t_error("t_snddis failed ");
 }
 t_close(nfd);
 printf("listening... ");
 } /* End of if (listenResult != -1) */
 } while (listenResult != -1); /* End of outer do-while loop */

 /* Step 8 */

 if (t_errno == TLOOK && t_look(fd) == T_DISCONNECT)

Communication Service Group

TLI: Concepts 1110

 SPXDisconReason(fd);
 else
 {
 t_error("t_listen failed");
 t_close(fd);
 }
}
/* End of main */

void SPXDisconReason(int fd)
{
 struct t_discon discon;
 char *msg;

 if (t_rcvdis(fd, &discon) == -1)
 {
 t_error("t_rcvdis failed");
 exit(2);
 }
 switch(discon.reason)
 {
 case TLI_SPX_CONNECTION_FAILED:
 msg = "Connection failed";
 break;
 case TLI_SPX_CONNECTION_TERMINATED:
 msg = "Connection terminated by client";
 break;
 case TLI_SPX_MALFORMED_PACKET:
 msg = "Internal SPX interface error -- malformed packet";
 break;
 default:
 msg = "Unknown termination reason";
 }
 printf("SPX Connection terminated: %s\n", msg);
}

Parent Topic: TLI Programming Example

Endpoint Management in TLI

Before attempting to transfer data, both workstations must set up local
endpoints to support the connection.

Opening an Endpoint

Call t_open to set up an endpoint. As input, this function takes the name of
a file identifying the transport provider (SPX,TCP/IP, and so on) and
configuration flags. If the endpoint is opened successfully, you receive a

Communication Service Group

TLI: Concepts 1111

handle to the endpoint for use in subsequent operations:

int t_open(char *path, int oflag, struct t_info
*info);

The configuration flags specify the endpoint's read/write status and the
blocking mode. When you are finished using an endpoint, remove the
endpoint with t_close.

Endpoint Information

You can choose to receive additional information about the underlying
transport at the time you open the endpoint. After you have opened the
endpoint, you can read this information by calling t_getinfo. Endpoint data
is contained by t_info.

Binding an Endpoint

After opening an endpoint, you must assign an address to the endpoint
with t_bind (Function). When you call this function, you can either specify
the address yourself or TLI will assign one for you:

int t_bind(int fh, struct t_bind *req, struct t_bind
*ret);

The characteristics of the address depend on the underlying transport. For
example, if the transport provider is SPX, you could bind the endpoint to a
specific socket or have TLI assign a socket value to the endpoint. Call
t_unbind to unbind the endpoint. This function disables the endpoint but
leaves it available for another operation.

Parent Topic:

TLI Local Management Issues

Environment Enhancement for TLI

To create an environment that allows an NLM to call TLI functions, the
following modules must be loaded on the server.

STREAMS.NLM, which provides the STREAMS environment

SPXS.NLM, which couples the STREAMS environment to SPX (if using
SPX or SPX II)

CLIB.NLM, which contains the NLM interface

TLI.NLM, which contains the TLI functions

Communication Service Group

TLI: Concepts 1112

When linking your NLM, you can specify that the above modules be
autoloaded, in which case the loader automatically loads them if they are
not in memory when your NLM is loaded. (See MODULE).

Parent Topic: NetWare IPX/SPX/SPX II

Error Handling in TLI

If an error occurs during processing, a TLI function places the specific error
value in the global t_errno variable and returns -1 to your application. To
evaluate an error, you should test the value of t_errno.

If an asynchronous transport event interrupts a TLI function, the function
places TLOOK in t_errno. This indicates that an event might be pending that
you need to process.

If t_errno is set to TLOOK, call t_look to find out what kind of event
interrupted the operation. Once you have determined the nature of the
event, you can process the event accordingly. The following table shows the
set of TLOOK events.

You can call t_error to output the current value of t_errno to the standard
output. As input, t_error take a description of the problem, which it prints
followed by a colon and a standard error message.

Table auto. TLOOK Events

Event Comment

T_LISTEN The endpoint received a request for a connection from
another endpoint.

T_CONNECT The endpoint received a confirmation of your own
request for a connection on this endpoint.

T_DATA The endpoint received data from another endpoint.

T_EXDATA The endpoint received expedited data from another
endpoint.

T_DISCONN
ECT

The endpoint received notice the connection was
aborted or rejected.

T_ORDREL The endpoint received a request for an orderly release
of the connection. (Not supported under SPX.)

T_UDERR The endpoint received notice of an error in a
previously sent datagram.

Parent Topic: TLI Local Management Issues

Communication Service Group

TLI: Concepts 1113

Establishing a Connection in TLI

Once you have opened an endpoint and bound it to an address, you can
attempt to establish a connection. The steps to connection establishment
require one node to act as the caller and the other node to act as the listener.
This arrangement reflects the typical relationship between a client and
server where the server continually listens for clients who are attempting to
establish connections. However, after the connection is established, TLI
doesn't differentiate between the roles assumed by either side.

Listening for a Connection

Call t_listen to anticipate and respond to another endpoint's request for a
connection. This function takes the endpoint and t_call as input. t_call
receives connection data if the connection is successful:

int t_listen(int fh, struct t_call *call);

As with t_connect, you pass protocol-specific information to t_listen
through netbuf nested in t_call. Using SPX as an example again, buf.addr in
call would point to the IPX address of the calling node and opt.addr would
point to the SPX connection ID and allocation number if the request is
received successfully.

t_listen only receives connection requests, it does not respond to requests.
Call t_accept to accept a connection request and establish the connection.
t_accept allows you to transfer the connection from the endpoint that
receives the request to another endpoint for handling the connection. As
input, this function takes the endpoint that listened for the request, the
endpoint that handles the connection, and t_call data returned by t_listen:

int t_accept(int fh, int resfh, struct t_call
*call);

It isn't necessary to specify a new endpoint, but this can be a very useful
step, especially for servers that are managing multiple connections. If you
are changing endpoints, you must open and bind the new endpoint.

Calling for a Connection

Call t_connect to request a connection with another node. As input, this
function takes an endpoint and a pair of t_calls. One t_call contains data to
initialize the connection. The other structure receives any data relevant to a
successful connection.

If the connection is successful, t_connect returns zero:

int t_connect(int fh, struct t_call *sndcall, struct
t_call *rcvcall);

If you don't care about overwriting information, you can use the same t_call

Communication Service Group

TLI: Concepts 1114

for both sndcall and rcvcall.

For example, if SPX is the transport provider, addr.buf in sndcall would
point to the IPX address of the destination and addr.len would be the length
of this address. Below is an example of the steps that an application might
take to set up sndcall. (Assume NET_ADDR, NODE_ADDR , and
SPX_SOCKET have been defined and assigned values):

IPX_ADDRESS spx_addr;
struct t_call sndcall;
.
.
.
memcpy(spx_addr.ipxa_net, NET_ADDR, 4);
memcpy(spx_addr.ipxa_node, NODE_ADDR, 6);
spx_addr.ipxa_socket[0] = 0;
spx_addr.ipxa_socket[1] = SPX_SOCKET;
sndcall.addr.buf = (char *)&spx_addr;
sndcall.addr.len = sizeof(spx_addr);
sndcall.addr.maxlen = sizeof(spx_addr);
.
.
.

Likewise, opt.buf in rcvcall would point to space for receiving the SPX
connection ID and SPX allocation number once the connection was
established.

Parent Topic:

Connection Mode Service

Event Handling: the Server

Returning to the example, when the client calls t_connect, a connect
indication is generated on the server's listening transport endpoint. The
steps required by the server to process the event are as follows. For each
client, the server accepts the connect request and creates a new thread to
manage the connection.

TLI Event Handling---Creating Threads to Manage Connections

for (;;) {
 /* Listen for incoming connect indication */
 printf("Server: %s is ready ...\n", argv[1]);
 if(t_listen(fh, call) == -1) {
 t_error("t_listen");
 exit(1);
 }
 if((fh_new = AcceptConnection()) != NULL)

Communication Service Group

TLI: Concepts 1115

 if(BeginThread(ProcessConnection,
 NULL, NULL, fh_new) == -1) {
 printf("BeginThread failed\n");
 exit(1);
 }
 ThreadSwitch();
 }
}

The server loops forever, processing each connect indication. The call to
ThreadSwitch inside the loop ensures that the program relinquishes control
and does not hold the system. This is necessary because NetWare is a
nonpreemptive OS.

First, the server calls t_listen to retrieve the next connect indication. When
one arrives, the server calls AcceptConnection to accept the connect
request. AcceptConnection accepts the connection on an alternate transport
endpoint (as discussed subsequently) and returns the value of that
endpoint.

The fh_new variable is a global variable that identifies the transport
endpoint where the connection is established. Because the connection is
accepted on an alternate endpoint, the server might continue listening for
connect indications on the endpoint that was bound for listening. If the call
is accepted without error, BeginThread starts a new thread to manage the
connection.

The first parameter to BeginThread, ProcessConnection, is a pointer to a
function to be executed as a new thread. The second and third parameters
are stack parameters, and default values are used in this example. The last
parameter, fh_new, is a pointer to an argument that is passed to the new
thread and is received by ProcessConnection.

The server allocates a t_call structure to be used by t_listen at the same time
the t_bind (Structure) structure is allocated. The third argument to t_alloc,
T_ALL, specifies that all necessary buffers should be allocated for retrieving
the caller's address, options, and user data.

As mentioned earlier, the transport provider in this example does not
support the transfer of user data during connection establishment.
Therefore, t_alloc does not allocate a buffer for the user data. It must,
however, allocate a buffer large enough to store the address of the caller.
The t_alloc function determines the buffer size from the addr characteristic
returned by t_open. The maxlen field of each netbuf structure is set to the
size of the newly allocated buffer by t_alloc. (For the user data buffer,
maxlen is 0.)

NOTE: Using the t_call structure, the server calls t_listen to retrieve
the next connect indication. If one is currently available, it is returned to
the server immediately. Otherwise, t_listen blocks until a connect
indication arrives.

TLI supports an asynchronous mode for these routines, which prevents a

Communication Service Group

TLI: Concepts 1116

process from blocking. This feature is discussed in TLI Asynchronous
Execution Mode.

When a connect indication arrives, the server calls AcceptConnection to
accept the client's request, as follows:

TLI Event Handling---Accepting Clients' Requests

/* Allocate a new TEP, accept and return it on success */
int *AcceptConnection(void) {
 int *fhp; /* new TEP handle ptr */

 fhp = (int *)malloc(sizeof(int));

 /* Open new TEP */
 if((*fhp = t_open("/dev/nspx", O_RDWR, NULL)) == -1) {
 t_error("t_open");
 free(fhp);
 exit(1);
 }

 /* Bind it, address is not important here */
 if(t_bind(*fhp, NULL, NULL) == -1) {
 t_error("t_bind");
 t_close(*fhp);
 free(fhp);
 exit(1);
 }

 /* Accept the call from a client */
 if(t_accept(fh, *fhp, call) == -1) {
 t_error("t_accept");
 t_close(*fhp);
 free(fhp);
 exit(1);
 }

/* Check for disconnect */
 ThreadSwitch();
 if(t_look(*fhp) == T_DISCONNECT) {
 printf("DISCONNECT\n");
 if(t_rcvdis(*fhp, NULL) < 0)
 terror("t_rcvdis");
 t_close(*fhp);
 free(fhp);
 return NULL;
 }

 printf("ACCEPT\n");
 return fhp;
}

The server first establishes another transport endpoint by opening the

Communication Service Group

TLI: Concepts 1117

/dev/ nspx device node of the transport provider and binding an address.
As with the client, a NULL value is passed to t_bind (Function) to specify
that the user does not care what address is bound by the provider. The
newly-established transport endpoint, fhp, is used to accept the client's
connect request.

The first two arguments of t_accept specify the listening transport endpoint
and the endpoint where the connection is accepted, respectively. A
connection can be accepted on the listening endpoint, but this prevents
other clients from accessing the server for the duration of the connection.

The third argument of t_accept points to the t_call structure associated with
the connect indication. This structure should contain the address of the
calling user and the sequence number returned by t_listen. The value of
sequence is significant if the server manages multiple outstanding connect
indications. An example of this situation is presented in TLI Asynchronous
Execution Mode.

The t_call structure should identify protocol options the user would like to
specify, and user data that might be passed to the client. Because the
transport provider in this example does not use protocol options and does
not support the transfer of user data during connection establishment, the
t_call structure returned by t_listen can be passed without change to
t_accept.

For simplicity in the example, the server exits if either t_open or t_bind
(Function) fails. The exit function closes the transport endpoint associated
with *fhp, causing the transport provider to pass a disconnect indication to
the client that requested the connection. This disconnect indication notifies
the client that the connection was not established: t_connect fails, setting
t_errno to TLOOK.

Upon termination of a program, the TerminateNLM function is called to
clean up allocated structures and terminate advertising services. This occurs
because TerminateNLM is registered by calling atexit at the beginning of
the server program.

After t_accept is executed, an asynchronous event can occur. ThreadSwitch
is executed to relinquish control, and t_look is called to check for an
asynchronous event.

The only event that can occur in this state is a disconnect indication. This
event can occur if the client decides to undo the connect request it had
previously sent. If a disconnect indication arrives, the server must retrieve
the disconnect indication using t_rcvdis. This function takes a pointer to a
t_discon structure as an argument, which is used to retrieve information
associated with a disconnect indication. In this example, however, the server
does not retrieve this information, so it sets the argument to NULL.

After receiving the disconnect indication, AcceptConnection closes the
responding transport endpoint and returns NULL, which informs the server
that the connection was disconnected by the client. The server then listens
for further connect indications. The following figure illustrates how the

Communication Service Group

TLI: Concepts 1118

server establishes connections.

Figure 14. Listening and Responding Transport Endpoints

The transport connection is established on the newly-created responding
endpoint, and the listening endpoint is freed to retrieve further connect
indications.

Parent Topic: Connection Mode: Event Handling

Guidelines for Writing Protocol-Independent
Software

A primary characteristic of TLI is that it is a transport-independent network
access method. It enables you to write programs that have no knowledge of
the particular transport protocol to which they will interface. This feature
enables your networking applications to run in different protocol
environments without change.

Use the following guidelines to ensure that the user-level TLI supports
protocol independence for applications:

Because the TCP and IPX/SPX protocols do not support data unit
boundaries, the concept of a TSDU is not supported. The OSI protocol
does support the TSDU.

In the TCP and IPX/SPX protocol environments, the ETSDU feature is
not supported. Because both TSDU and ETSDU are not supported,
T_MORE and T_EXPEDITED flags are ignored. The OSI protocol does

Communication Service Group

TLI: Concepts 1119

support the ETSDU.

The protocol-specific service limits returned by t_open and t_getinfo
must not be exceeded. The user is responsible for accessing these limits
and adhering to the limits throughout the communication process.

Hide protocol-specific addressing issues from the user program. The user
program should not specify any protocol address on t_bind (Function)
but should allow t_bind to assign an address to the user. This hides
details concerning protocol-specific addressing from the user.

Similarly, the user must have some way of accessing destination
addresses in an invisible manner, such as through a name server.

The reason codes associated with t_rcvdis are protocol-dependent. The
user should not interpret this information if protocol independence is a
concern.

The error codes associated with t_rcvuderr are protocol-dependent. The
user should not interpret this information if protocol independence is
important.

The names of devices should not be hard-coded into the programs.
Although you can write software for a particular class of service (for
example, the connectionless service), do not write it to depend on any
attribute of the underlying protocol.

Programs intended for multiple protocol environments should not use
the optional orderly release facility of the connection-oriented service
(that is, t_sndrel and t_rcvrel). This facility is not supported by all
connection-based transport protocols.

Parent Topic: TLI States

Incoming Events

The incoming events described in the following table correspond to the
successful return of the specified routines, where these routines retrieve
data or event information from the transport provider. The only incoming
event not associated directly with the return of a routine is pass_conn,
which occurs when a user transfers a connection to another transport
endpoint. This event occurs on the endpoint that is being passed the
connection, despite the fact that no TLI routine is issued on that endpoint.
The pass_conn event is included in the state tables to describe the behavior
when a user accepts a connection on another transport endpoint.

Incoming
Event

Description Service Type

listen Successful return of t_listen T_COTS,

Communication Service Group

TLI: Concepts 1120

T_COTS_ORD

rcvconnect Successful return of t_rcvconnect T_COTS,
T_COTS_ORD

rcv Successful return of t_rcv T_COTS,
T_COTS_ORD

rcvdis1 Successful return of t_rcvdis with
ocnt <= 0

T_COTS,
T_COTS_ORD

rcvdis2 Successful return of t_rcvdis with
ocnt == 1

T_COTS,
T_COTS_ORD

rcvdis3 Successful return of t_rcvdis with
ocnt > 1

T_COTS,
T_COTS_ORD

rcvrel Successful return of t_rcvrel T_COTS_ORD

rcvudata Successful return of t_rcvudata T_CLTS

rcvuderr Successful return of t_rcvuderr T_CLTS

pass_conn Receive a passed connection T_COTS,
T_COTS_ORD

In the above table, the rcvdis events are distinguished by the context in
which they occur. The context is based on the value of ocnt, which is the
count of outstanding connect indications on the transport endpoint.

Parent Topic: TLI State Transitions

Connection Mode Local Management: the Client

The following are the definitions needed by the client program, followed by
the required local management steps.

TLI Connection Mode Local Management---the Client

#define TLI_TYPE 0x9000 /* Server type (dynamic area) */

main(int argc, char **argv)
{
 int fh, flags;
 char iobuf[132];
 struct t_call *sndcall;
 BYTE pv[128]; /* holds property value */
 BYTE dc[1]; /* don't care BYTE */

 if(argc != 2) {
 printf("Usage: %s <server's name>\n", argv[0]);
 exit(1);
 }

 /* Check if the server is active */

Communication Service Group

TLI: Concepts 1121

 if(ReadPropertyValue(argv[1], TLI_TYPE, "NET_ADDRESS",
 1, pv, dc, dc) != NULL) {
 printf("Server %s is not available.\n", argv[1]);
 exit(1);
 }

/* Open an endpoint, no info needed */
 if ((fh = t_open("/dev/nspx", O_RDWR, NULL)) == -1) {
 t_error("t_open");
 exit(1);
 }

 /* Request the provider to assign an address */
 if (t_bind(fh, NULL, NULL) == -1) {
 t_error("t_bind");
 exit(1);
 }

The first argument to t_open is the pathname of a file system node that
identifies the transport protocol that will supply the transport service. In this
example, /dev/nspx is an SPX™ device node that identifies a
connection-oriented transport protocol. It is opened for both reading and
writing, as specified by the O_RDWR open flag.

The third argument can be used to return the service characteristics of the
transport provider to the user. This information is useful when writing
software that is protocol-independent. For simplicity, the client and server
in this example ignore this information. NetWare implementation of the
STREAMS based TLI for SPX uses an underlying IPX/SPX™ transport
protocol. The transport provider for SPX exhibits the following
characteristics:

The transport address format is given in the header file TISPXIPX.H (see
IPX_ADDR).

The transport provider supports the T_COTS service type.

User data must not be passed between users during either connection
establishment or abortive release.

The transport provider supports protocol-specific options. However, the
example does not use them.

Because these characteristics are not needed by the user, NULL is specified
in the third argument to t_open. If the user needed a service other than
T_COTS, another transport provider would be opened. An example of the
T_CLTS service invocation is presented in TLI Connectionless Mode
Services.

The return value of t_open is an identifier for the transport endpoint that
will be used by all subsequent calls to TLI functions. This identifier is
actually a file handle obtained by opening the transport protocol file (see
open). The significance of this fact is highlighted in A TLI Read/Write

Communication Service Group

TLI: Concepts 1122

Interface.

After the transport endpoint is created, the client calls t_bind (Function) to
assign an address to the endpoint. The first argument identifies the
transport endpoint. The second argument describes the address the user
wants to bind to the endpoint, and the third argument is set on return from
t_bind to specify the address that the provider bound.

The address associated with a server's transport endpoint is important
because that is the address all clients use to access the server. However, the
typical client does not care what its own address is because no other process
will try to access it. That is the case in this example, in which the second and
third arguments to t_bind are set to NULL. A NULL second argument
directs the transport provider to choose an address for the user. A NULL
third argument specifies that the user does not care what address was
assigned to the endpoint.

If either t_open or t_bind fails, the program calls t_error to print an
appropriate error message to stderr. If any TLI function fails, t_errno is
assigned a transport error value. A set of error values has been defined (in
TIUSER.H) for TLI, and t_error prints an error message corresponding to the
value in t_errno.

The t_error function is analogous to perror, which prints an error message
based on the value of errno. If the error associated with a transport function
is a system error, t_errno is set to TSYSERR, and errno is set to the appropriate
value.

Parent Topic: Connection Mode: Local Management

Initialization/Deinitialization Phase of
Connection-Oriented Service

Before a user can establish a transport connection, the user's environment
must be initialized. Specifically, the user must

Create a local communication path to the transport provider (for
example, creating the transport endpoint)

Obtain necessary protocol-specific information

Activate the transport endpoint.

A transport endpoint is considered active when the transport provider can
accept or request connections associated with the endpoint.

After a connection is released, the transport user must deinitialize the
associated transport endpoint, making it available for future use.

The functions listed in the following table support
initialization/deinitialization tasks. All these functions provide local

Communication Service Group

TLI: Concepts 1123

management functions; no information is sent over the network.

Table auto. Functions that Support Initialization/Deinitialization

Function Task

t_open Creates a transport endpoint and returns
protocol-specific information associated with that
endpoint. It also returns a file handle that serves as the
local identifier of the endpoint.

t_bind Associates a protocol address with a given transport
endpoint, thereby activating the endpoint. It also
directs the transport provider to begin accepting
connect indications, if so desired.

t_optmgmt Enables the user to get or negotiate protocol options
with the transport provider.

t_unbind Disables a transport endpoint so that no further
request destined for the given endpoint are accepted
by the transport provider.

t_close Informs the transport provider that the user is finished
with the transport endpoint and frees any local
resources associated with that endpoint.

The functions listed in the following table are also local management
functions, but can be issued during any phase of communication.

Table auto. Local Management Functions That Can Be Called During Any Phase of
Communication

Function Task

t_getinfo Returns protocol-specific information associated with
the specified transport endpoint.

t_getstate Returns the current state of the transport endpoint.

t_alloc Allocates storage for the specified library data
structure.

t_free Frees storage for a library data structure that was
allocated by t_alloc.

t_error Prints a message describing the last error encountered
during a call to a TLI function.

t_look Returns the current event associated with the given
transport endpoint.

Parent Topic: Overview of Connection-Oriented Service

Communication Service Group

TLI: Concepts 1124

Initialization/Deinitialization Phase of
Connectionless Service

Before a user can transfer data in connectionless mode, the environment of
the user must be initialized. Specifically, the user must create a local
communication path to the transport provider (that is, create the transport
endpoint), obtain necessary protocol-specific information, and activate the
transport endpoint.

To stop sending or receiving data units through a given transport endpoint,
the user must deinitialize the endpoint, thereby freeing the resource for
future use.

NOTE: The functions that support the initialization and
deinitialization tasks are the same functions used in the
connection-mode service.

Parent Topic: Overview of Connectionless Service

IPX Protocol

IPX provides a connectionless transport service that is packet-oriented. It
supports transfer of data in self-contained units or datagrams with no
logical relationship required among multiple datagrams. IPX requires only a
preexisting association between the peer users involved, which determines
the characteristics of the data to be transmitted.

You can use IPX if your applications need short-term request/response
interactions, exhibit a high level of redundancy, are dynamically
reconfigurable, or do not require guaranteed, sequenced delivery of data.

IPX has the following characteristics:

Single-service access (SSA), which need not relate to any other service
access, presents the transport provider with all the information required
to deliver a datagram (for example, a destination address), together with
the data to be transmitted.

Each transmitted datagram is self-contained and can be independently
routed by the transport provider.

Parent Topic: NetWare IPX/SPX/SPX II

IPX/SPX/SPX II Notes: t_accept

(SPX/SPX II) The transport endpoint that accepts the connection contains

Communication Service Group

TLI: Concepts 1125

the connection ID pertaining to the connection being accepted.

SPX considers the connection established even before you call t_accept. If
you reject the connection with t_snddis, SPX aborts the connection.

If you accept a connection on the same endpoint on which you received the
connect indication (resfd==fd), the endpoint ceases to be a listening endpoint
for the duration of the connection. However, after disconnecting, the
endpoint can be used for listening once again. (t_bind (Function) address
and qlen are preserved across the connections.)

You must pass the sequence number, which is the SPX connection ID
returned by t_listen. This is easily accomplished by calling t_accept with the
same t_call structure that was used for t_listen. Because this implementation
does not support the transfer of data during the t_accept call, udata.len must
be set to zero.

After a successful call to t_listen, the server typically opens and binds a new
endpoint. Next, it calls t_accept, passing the new endpoint returned from
t_open, and a pointer to the same t_call structure that was used for t_listen.
Upon accepting the connection, the server should spawn a new thread to
send and receive data on the new connection, and then go back to listen for
other incoming connections.

When processing multiple connections using t_listen and t_accept, you
should take care to ensure that the t_call structure for one t_listen/t_accept
pair is not being used by a second pair at the same time. There is no way to
ensure that queued t_listen/t_accept pairs are processed in order.

Parent Topic: TLI Function Implementation Notes for IPX/SPX/SPX II

IPX/SPX/SPX II Notes: t_alloc

(IPX/SPX/SPX II) No implementation specific details.

You should use t_alloc whenever possible to allocate all TLI structures. This
ensures compatibility between different TLI implementations and ensures
that all fields are initialized properly.

Parent Topic: TLI Function Implementation Notes for IPX/SPX/SPX II

IPX/SPX/SPX II Notes: t_bind

(IPX/SPX/SPX II) A STREAM endpoint is bound when it is associated with
an SPX socket number. You can either request that the transport provider
bind the endpoint to a specific SPX socket number or request that the
transport provider allocate and bind a dynamic socket.

If required, the transport provider returns the network, node, and socket

Communication Service Group

TLI: Concepts 1126

number in the ret parameter (a t_bind structure). This represents the address
of the workstation and socket number to which the endpoint is bound.

If you pass a NULL (0) for t_bind (Function)'s req parameter (a t_bind
(Structure) structure), the transport provider assigns a dynamic socket
number from a list of available socket numbers in the dynamic range
(0x4000 to 0x7FFF). Otherwise, the specified socket is opened and the
transport endpoint is bound to it.

If the socket to be bound is already open by SPX II, it is reused. (SPX II can
multiplex through its sockets.) However, if the socket is opened by a
protocol other than SPX II, a new socket is assigned.

The len field in the addr structure contains the length of the protocol address,
which is set to 12.

After a successful call to t_bind in the connection-oriented mode (SPX and
SPX II), you can listen for a connect indication if the value of qlen is greater
than zero, or you can initiate a connection. Currently, there is no assigned
limit to the value of qlen.

In the connectionless mode (IPX), you can begin to send and receive data
after t_bind is successfully called.

Typically, you do not specify the socket number to bind. On the other hand,
the server usually specifies a well-known socket number or uses SAP to
advertise its socket number.

If you request a specific socket number, should check the socket number
returned by the transport provider to determine whether the endpoint was
indeed bound with the requested socket.

Parent Topic: TLI Function Implementation Notes for IPX/SPX/SPX II

IPX/SPX/SPX II Notes: t_blocking

(IPX/SPX/SPX II) This function is specific to the NetWare implementation
of TLI and is not a part of TLI specifications. It sets the STREAM to blocking
mode.

TLI is asynchronous by nature; events occur independently of the
application that is using TLI. For example, an application might be sending
data over a connection when a disconnect is received. The NLM must be
notified of such events and given the opportunity to respond in an
asynchronous manner.

TLI responds to these asynchronous events in two modes of operation:
synchronous (blocking) mode and asynchronous (nonblocking) mode.

Rather than creating different functions for the different modes of operation,
TLI handles incoming events differently, according to the mode of

Communication Service Group

TLI: Concepts 1127

operation.

In blocking mode, the functions wait for the specific events to complete
before returning control to the application. In asynchronous (nonblocking)
mode, TLI immediately returns control to the application without requiring
the events to actually occur; the application receives notification of the status
of the event and can continue to do useful work before the event actually
completes.

The mode of operation is normally set through the O_NONBLOCK flag
when calling t_open.

An example of the differences between the TLI modes of operation can be
seen in the connection process. For example, when t_connect is called in
blocking mode, it returns control to the application only after the connection
is established.

In contrast, when t_connect is called in nonblocking mode, it does the
following:

Returns successfully if the server was set up to properly listen for the
incoming connection.

Returns with t_errno set to indicate the error found.

In asynchronous (nonblocking) mode, the next step the client must take is to
call t_rcvconnect, which returns successfully if the server has had time to
properly accept the connection, and if no errors are detected.

If the server has not previously accepted the connection, the client can use
t_rcvconnect to poll the endpoint for existing connect confirmations. If no
confirmations exist, t_rcvconnect fails, setting t_errno to T_NODATA.
Control is then returned to the application, giving the application the
opportunity to attend to other events during the connection establishment
process.

Parent Topic: TLI Function Implementation Notes for IPX/SPX/SPX II

IPX/SPX/SPX II Notes: t_close

(IPX/SPX/SPX II) The close routine of the transport provider is called
whenever you call t_close. In the case of SPX, if t_close is issued from any
state other than T_UNBND, SPX aborts the connection. In this case, any data
queued to be sent or the data that had been received is discarded.

If you create more than one thread, each thread should close endpoints
explicitly with t_close before exiting because ExitThread does not close
endpoints.

Parent Topic: TLI Function Implementation Notes for IPX/SPX/SPX II

Communication Service Group

TLI: Concepts 1128

IPX/SPX/SPX II Notes: t_connect

(SPX/SPX II) Before calling t_connect, you must initialize the sndcall
parameter (a t_call structure) in the following manner:

Set the addr.buf field to point to an IPX_ADDR structure that you have
initialized. All of the IPX_ADDR fields must be initialized.

Set the addr.len and addr.maxlen fields to sizeof (IPX_ADDR).

Set the opt.buf field to point to an initialized SPX_OPTS structure if you
are using SPX, or to an SPX2_OPTIONS structure if you are using SPX II.

Set the opt.len and opt.maxlen fields to sizeof (SPX_OPTS) or sizeof
(SPX2_OPTIONS), depending on whether you are using SPX or SPX II.

Set the udata.len field to zero because data transfer is not supported by
t_connect.

Use t_connect on active endpoints, t_listen for passive endpoints.

After calling t_unbind, you can make the endpoint passive again by
binding with t_bind (Function) (t_bind address and qlen are preserved
across the connections.)

If you want to confirm a connection, you pass in the address of a t_call
structure for t_connect's rcvcall parameter (instead of passing in NULL).
Before calling t_connect, initialize the addr.maxlen field to sizeof
(IPX_ADDR). On return, addr.buf points to an IPX_ADDR structure, which
contains the address of the responding endpoint.

As long as you unbind and bind a connected endpoint that was either
disconnected or released earlier, that endpoint can be reused. (t_bind
(Function) address and qlen are preserved across the connections.)

In blocking mode t_connect waits for a connection to complete. In
nonblocking mode, it returns immediately and should be followed by a call
to t_rcvconnect.

Parent Topic: TLI Function Implementation Notes for IPX/SPX/SPX II

IPX/SPX/SPX II Notes: t_getinfo

(IPX/SPX/SPX II) The protocol-dependent information about the transport
layer is returned in the info parameter, (a t_info structure). The fields
returned have the following values:

addr sizeof (IPX_ADDR), 12 bytes

Communication Service Group

TLI: Concepts 1129

options sizeof (IPX_OPTS), 8 bytes; sizeof (SPX_OPTS), 8
bytes; or sizeof (SPX2_OPTIONS), 52 bytes; depending
upon the protocol being used

tsdu -1 (SPX, SPX II), 546 (IPX)

etsdu -2

connect -2

discon -2

servtype T_COTS (SPX), T_COTS_ORD (SPX II), T_CLTS (IPX)

For SPX and SPX II, -1 is placed in the tsdu field, indicating that the message
size is unlimited.

Parent Topic: TLI Function Implementation Notes for IPX/SPX/SPX II

IPX/SPX/SPX II Notes: t_listen

(SPX/SPX II) Upon receiving a connect indication from SPX, the transport
provider accepts the connection, if possible, and queues the indication. SPX
and SPX II consider the connection established.

Before calling t_listen, you must initialize the call parameter (a t_call
structure) in the following manner:

Set the addr.buf field to point to an IPX_ADDR structure that you have
allocated. All of the IPX_ADDR fields must be initialized.

Set the addr.maxlen field to sizeof (IPX_ADDR).

Set opt.buf field to point to an initialized SPX_OPTS structure if you are
using SPX, or to an SPX2_OPTIONS structure if you are using SPX II.

Set the opt.maxlen field to sizeof (SPX_OPTS) or sizeof
(SPX2_OPTIONS), depending on whether you are using SPX or SPX II.

Set the udata.maxlen field to zero because data transfer is not supported
by t_listen.

The transport provider assigns a unique sequence number greater than 0,
and informs you of a pending connect indication. When accepting this
connection, you must use this sequence number.

The transport provider queues connect indications from SPX up to the
maximum specified by t_bind (Function) in qlen; it rejects further connect
indications until the number of queued connect indications are less than qlen
. You should respond to a successful call to t_listen by calling either
t_accept or a t_snddis.

Communication Service Group

TLI: Concepts 1130

Typically, the server listens for connect indications by calling t_listen. After
successfully calling t_listen, the server opens a new endpoint by calling
t_open and binds that endpoint with t_bind.

The server accepts the connection by passing the fd of the new endpoint to
t_accept. The server then listens for any further connect indications. Thus,
the server endpoint can be dedicated for listening for any connect
indication. To reject a connection, the server must call t_snddis and continue
to listen for further connect indications.

Parent Topic: TLI Function Implementation Notes for IPX/SPX/SPX II

IPX/SPX/SPX II Notes: t_nonblocking

(IPX/SPX/SPX II) This function is specific to the NetWare implementation
of TLI and is not a part of TLI specifications. This routine sets the transport
stream to nonblocking mode.

For example, in a traditional STREAMS environment, you might enter the
following command to open a STREAM in nonblocking mode:

fd = t_open("/dev/nspx", O_RDWR | O_NDELAY, (struct t_info *) 0);

When using t_nonblocking, you must first open a STREAM in blocking
mode (that is, do not specify the O_NDELAY flag). Then, change the state
using t_nonblocking.

If the call to t_nonblocking is successful, it returns 0. If the call is
unsuccessful, it returns a -1 and sets t_errno to TBADF to signify that the file
handle is invalid.

Parent Topic: TLI Function Implementation Notes for IPX/SPX/SPX II

IPX/SPX/SPX II Notes: t_open

(IPX/SPX/SPX II) This implementation supports the following devices:

/dev/nipx for a connectionless transport service based on IPX

/dev/nspx for a connection-oriented transport service based on SPX

/dev/nspx2 for a connection-oriented transport service based on SPX II

The default characteristics of the underlying transport protocol are
described in t_getinfo. There is no practical limit to the number of
endpoints that can be opened by a transport user; however, the underlying
SPX protocol has a limit of 2,000 concurrent sessions.

Parent Topic: TLI Function Implementation Notes for IPX/SPX/SPX II

Communication Service Group

TLI: Concepts 1131

IPX/SPX/SPX II Notes: t_rcv

(SPX/SPX II) The t_rcv function places no limit on the amount of data that
can be received by a single call. In NetWare TLI, if the message size exceeds
the maximum transport packet size, it is split into multiple packets and sent
across the wire. When it is received, NetWare TLI reassembles the message.

Although the TLI implementations of SPX and SPX II do not limit the size of
the transmitted message, the receiving application must ensure that it
provides adequate buffers for receiving the message.

Receiving applications should monitor the T_MORE flag closely when using
t_rcv. If an application's receive buffer is not large enough to hold the entire
message, TLI fills the receive buffer and sets the T_MORE flag, meaning a
partial message was received. The application must then iteratively call
t_rcv until the T_MORE flag is not set, meaning the complete message has
been received.

Because this implementation does not support expedited data transfer, it
does not support ETSDUs.

Parent Topic: TLI Function Implementation Notes for IPX/SPX/SPX II

IPX/SPX/SPX II Notes: t_rcvconnect

(SPX/SPX II) In the call parameter (a t_call structure), the addr.buf field
points to the IPX_ADDR structure, which represents the protocol address of
the responding endpoint.

Because this implementation does not support data transfer during
t_rcvconnect, you must set the udata.len field to zero.

If t_connect was called in nonblocking mode, you can use t_rcvconnect to
poll for connection confirmations.

Parent Topic: TLI Function Implementation Notes for IPX/SPX/SPX II

IPX/SPX/SPX II Notes: t_rcvdis

(SPX/SPX II) SPX informs you if a connection is disconnected. The discon
parameter (a t_discon structure) to t_rcvdis recieves the disconnection
information in its discon.reason field. The returned reasons are as follows:

TLI_SPX_CONNECTION_FAILED
TLI_SPX_CONNECTION_TERMINATED

Communication Service Group

TLI: Concepts 1132

TLI_SPX_MALFORMED_PACKET
TLI_SPX_PACKET_OVERFLOW
TLI_SPX_UNRELIABLE_DEST (SPXII only)

If an active endpoint is disconnected, SPX immediately informs you. In the
case of a passive endpoint, the transport provider waits for you to respond
to an earlier successful call to t_listen before informing you that the
connection was disconnected.

This implementation does not support any data with the disconnect
indication.

Parent Topic: TLI Function Implementation Notes for IPX/SPX/SPX II

IPX/SPX/SPX II Notes: t_rcvrel

(SPX II) This function is supported by SPX II but not by SPX. t_rcvrel can be
used to ensure that data is not lost when closing down a connection.

After opening a connection, you should determine if the connection is using
SPX II. If it is, you can use t_rcvrel to ensure that no data is lost when the
connection is closed.

Parent Topic: TLI Function Implementation Notes for IPX/SPX/SPX II

IPX/SPX/SPX II Notes: t_rcvudata

(IPX) On return from t_rcvudata, the fields of the t_unitdata structure
pointed to by unitdata contain the following information:

udata.len contains the length of data or length of udata.buf, whichever is
lower.

udata.buf contains data to the length specified by udata.len.

addr.len is set to 12.

addr.buf points to an IPX_ADDR structure containing the address and socket
number to which the endpoint is bound.

opt.buf points to ipx_type field of an IPX_OPTS structure.

opt.len is set to sizeof (IPX_OPTS) or 0, as determined by opt.maxlen
passed into the function.

The maximum amount of data that can be received by a single call to
t_rcvudata is 546 bytes.

Parent Topic: TLI Function Implementation Notes for IPX/SPX/SPX II

Communication Service Group

TLI: Concepts 1133

IPX/SPX/SPX II Notes: t_rcvuderr

(IPX) This function is called only to receive a unit data error indication. The
t_uderr structure pointed to by the uderr parameter contains the following
fields:

error contains the error code, which can be any of the following:

 TLI_IPX_MALFORMED ADDRESS
 TLI_IPX_PACKET_OVERFLOW

addr.buf points to the destination address that caused the error.

opt.buf points to ipx.packetType.

Parent Topic: TLI Function Implementation Notes for IPX/SPX/SPX II

IPX/SPX/SPX II Notes: t_snd

(SPX/SPX II) For SPX and SPX II, there is no limit the size of the message
you can send with a single call to t_snd.

The sender can also send a message with multiple calls to t_snd and have it
appear as a single message by the receiver, if the sender sets the T_MORE
flag appropriately. If the sender calls t_snd with the T_MORE flag set, TLI
assumes that the next t_snd is part of the same message. When the T_MORE
flag is not set, TLI assumes that t_snd will not be called again for the current
message.

When TLI sends a message with multiple calls to t_snd, the receiving side
must monitor the T_MORE flag to ensure that the message boundary is
preserved.

Because this implementation does not support expedited data transfer, it
does not support ETSDUs. Therefore, the T_EXPEDITED flag should be set
to zero.

Parent Topic: TLI Function Implementation Notes for IPX/SPX/SPX II

IPX/SPX/SPX II Notes: t_snddis

(SPX/SPX II) If the endpoint is active, t_snddis causes all the data on the
transmitting and receiving queues to be discarded, and the connection is
aborted. In the case of a passive endpoint, SPX considers the connection
established you are informed of a connect indication.

Communication Service Group

TLI: Concepts 1134

When you call t_snddis, this connection is aborted. You can call t_connect
again on this endpoint because the bound address is still valid.

Because data transfer is not supported during t_snddis, set the udata.len
field of the call parameter to zero.

Parent Topic: TLI Function Implementation Notes for IPX/SPX/SPX II

IPX/SPX/SPX II Notes: t_sndrel

(SPX II) This function is supported by SPX II but not by SPX. It is used for an
orderly release of a connection.

Parent Topic: TLI Function Implementation Notes for IPX/SPX/SPX II

IPX/SPX/SPX II Notes: t_sndudata

(IPX) The maximum data that a single call to t_sndudata can send is 546
bytes.

Initialize the fields of the t_unitdata structure pointed to by the unitdata
parameter as follows:

Set the addr.len field to sizeof (IPX_ADDR).

Set the addr.maxlen: sizeof (IPX_ADDR).

Set the addr.buf field to point to the address of the IPX_ADDR structure,
which contains the node, network, and socket number to which the
endpoint is bound. To broadcast a datagram to all nodes, you can
initialize the ipxa_node field of the IPX_ADDR structure to -1 (FF).

Set the opt.maxlen field to sizeof (IPX_OPTS).

Set the opt.len field to sizeof (IPX_OPTS).

Set the opt.buf field to point to the address of the IPX_OPTS structure.

Set the udata.maxlen to the length of the data pointed to by the udata.buf
field.

Set the udata.len to the length of the message.

Set the udata.buf to point to the address of the buffer containing data to be
sent.

Parent Topic: TLI Function Implementation Notes for IPX/SPX/SPX II

Communication Service Group

TLI: Concepts 1135

NetWare Implementation of STREAMS-Based
IPX/SPX/SPX II

Two types of transport service are provided by the NetWare
implementation of STREAMS-based TLI:

Connection-oriented transport service, provided by SPX and SPX II

Connectionless transport service, provided by IPX

SPX and SPX II Implementation

SPX supports most of the TLI functions. However, because of the
underlying nature of the SPX protocol, it does not support t_sndrel and
t_rcvrel, which provide an orderly release of a connection.

SPX II, on the other hand, supports all of the TLI functions, including
t_sndrel and t_rcvrel.

Because the orderly release of connections is optional and not supported by
all transport providers, there are times when your SPX II application is not
able to use t_sndrel and t_rcvrel. For this reason, after your SPX II
application completes the connections process, it should check the
connection to see if it supports an orderly release. If the connection does not
support an orderly release, your application should close the connection
using t_snddis and t_rcvdis instead of t_sndrel and t_rcvrel.

SPX and SPX II do not support expedited data transfer. Therefore, they do
not support ETSDUs.

The close routine is called if one of the following is true:

Your code calls t_close explicitly.

The NLM exits by calling exit.

The NLM is unloaded by the UNLOAD console command.

In the NLM environment, an application can spawn multiple threads, with
each thread able to open its own transport endpoint. For each thread that
has established an endpoint, you should close the thread's endpoint by
calling t_close before exiting the thread because ExitThread does not close a
thread's endpoint explicitly.

SPX relies on IPX to send and receive packets. SPX II communicates directly
with the LSL, which makes communication using SPX II faster.

SPX II can only be accessed through TLI. SPX can be accessed through TLI,
or through its own interface.

Parent Topic: NetWare IPX/SPX/SPX II

Communication Service Group

TLI: Concepts 1136

NetWare IPX/SPX/SPX II

This chapter describes TLI for developing applications in NetWare® 3.11
and above using the IPX/SPX™/SPX II transport protocols. SPX II was
added for the NetWare 4.0 OS.

The interface provided in the NetWare environment provides virtually all
the functionality of the AT&T TLI specification described in Overview of
TLI Functions. However, because TLI is not a native interface to the
NetWare environment, some changes to the TLI specification have been
required.

The following topics are discussed in this chapter:

The functionality provided by IPX, SPX, and SPX II through TLI

The NetWare implementation of STREAMS-based TLI

The environment enhancement needed for an NLM™ application to
make TLI calls

Information specific to using TLI functions for accessing the transport
protocol IPX/SPX/SPX II in the NetWare environment

Related Topics

SPX Protocol

SPX II Protocol

IPX Protocol

NetWare Implementation of STREAMS-Based IPX/SPX/SPX II

Environment Enhancement for TLI

TLI Function Implementation Notes for IPX/SPX/SPX II

NetWare OSI

TLI provides a set of library routines that the transport user can use to
communicate with the transport layer through the STREAMS-based
Transport Provider Interface (TPI). The STREAMS TLI for NetWare 3.11
and later follows this standard closely, with few variations. The following
figure illustrates how the STREAMS TLI is associated with the NetWare OSI
Lower Layers Protocol Stack.

Figure 15. NetWare OSI Protocol Stack

Communication Service Group

TLI: Concepts 1137

Two modes of transport service are provided. TP4 provides
connection-oriented transport service, and CLTP provides connectionless

Communication Service Group

TLI: Concepts 1138

transport service.

Each TLI function initiates an exchange of one or more TPI primitives
between the TPI and the TLI. The TPI interfaces the TLI to the transport
layer.

1. The t_open function enables a user to choose a specific transport
provider and establish an endpoint.

2. t_bind (Function) binds a transport address to the transport endpoint.
Once a call is issued, the TLI library pushes the timod module on top of
the TPI driver. Then, it either issues ioctl calls to the module or
generates TPI primitives, depending on the TLI function that was
called.

Upon receiving the M_IOCTL message, the timod module generates the
TPI primitive and returns a response, which the TLI library receives as
an M_IOCACK/M_IOCNACK message. The timod module returns any
unexpected TPI primitives to the stream head so that the TLI library can
handle them.

3. When the transport service is in the connectionless mode (CLTP), the
user can begin the transfer of data using either t_sndudata or
t_rcvudata.

When the transport service is in the connection-oriented mode (TP4),
the user can connect to another transport endpoint using t_connect and
can transfer data using either t_snd or t_rcv. The user can either
disconnect a connection using t_snddis or release the connection in an
orderly manner using t_sndrel and t_rcvrel.

4. Then, the user can unbind the transport address by calling t_unbind.

5. The user closes the endpoint with t_close.

In addition to supporting all the regular TPI primitives, this implementation
also supports some option management functions.

The options buffers are modeled after the X/Open standard.

As an alternative to using TLI routines, the user can issue read and write
calls on a fully connected transport endpoint by popping the timod module
and pushing the tirdwr module. This module converts a TLI
connection-oriented transport stream into a simple bidirectional pipe. Plain
data issued either from an application to the transport module or from the
transport to an application is converted into TPI messages by the tirdwr
module, before the data is sent.

After pushing the tirwdr module, the user must stop using TLI routines. The
user can end a connection either by closing the file handle associated with
the transport endpoint or by popping the tirdwr module off the STREAM.

The close routine of the TPI adapter is called if either of the following
occurs:

Communication Service Group

TLI: Concepts 1139

The user calls t_close explicitly.

The NLM™ application exits with a call to exit.

In NetWare, the application can spawn multiple threads, with each thread
having the capacity to open its own transport endpoint. You should close
the endpoint by calling t_close for each thread because ExitThread does not
close the endpoint explicitly.

Various functions use the netbuf structure to send and receive data and
information. It contains the following members:

unsigned int maxlen;
unsigned int len;
char *buf;

The pointer buf points to a user input and/or output buffer. The len field
generally specifies the number of bytes contained in the buffer. If the
structure is used for both input and output, the function replaces the user
value of len on return.

Generally, the maxlen field is significant only when buf is used to receive
output from the function. In this case, maxlen specifies the physical size of
the buffer, the maximum value of len that the function can set. If maxlen is
not large enough to hold the returned information, a TBUFOVFLW error
generally results. However, certain functions can return part of the data and
not generate an error.

Related Topics

OSI Address Format

Options Management Structures

TLI Function Implementation Notes for OSI

Options Management Structures

The options management structures that TLI functions use are defined in
OSITLI.H. These structures are passed to the TP4 and CLTP transports to set
options.

/* * Options Management structures. */

struct rate{
 long targetvalue; /* target value */
 long minacceptvalue; /* minimum acceptable value */
};
struct reqvalue {
 struct rate called; /* called rate */
 struct rate calling; /* calling rate */

Communication Service Group

TLI: Concepts 1140

};
struct thrpt {
 struct reqvalue maxthrpt; /* maximum throughput */
 struct reqvalue avgthrpt; /* average throughput */
};
struct management {
 short dflt; /* T_YES: the following parameters are */
 /* ignored, default values are used */
 /* T_NO: the following parameters are used */
 int ltpdu; /* maximum length of TPDU (in octets) */
 short reastime; /* reassignment time (in seconds) */
 char class; /* preferred class; value T_CLASS0 - TCLASS4 */
 char altclass; /* alternative class */
 char extform; /* extended format T_YES or T_NO */
 char flowctrl; /* flow control: T_YES or T_NO */
 char checksum; /* checksum (cl. 4) T_YES or T_NO */
 char netexp; /* network expedited data: T_YES or T_NO */
 char netrecptcf; /* receipt confirmation: T_YES or T_NO */
};

/* * Connection oriented options. */

struct isoco_options {
 struct thrpt throughput; /* throughput */
 struct reqvalue transdel; /* transit delay */
 struct rate reserrorrate; /* residual error rate */
 struct rate transffailprob; /* transfer failure prob. */
 struct rate estfailprob; /* connection establ.
 failure prob. */
 struct rate relfailprob; /* connection release
 failure prob. */
 struct rate estdelay; /* connection establishment
 delay */
 struct rate reldelay; /* connection release delay */
 struct netbuf connresil; /* connection resilience */
 unsigned short protection; /* protection */
 short priority; /* priority */
 struct management mngmt; /* management parameters */
 char expd; /* expedited data: T_YES or
 T_NO */
};

/* * Connectionless options. */

struct isocl_options {
 struct rate transdel; /* transit delay */
 struct rate reserrorrate; /* residual error rate */
 unsigned short protection; /* protection */
 short priority; /* priority */
};

/* * Novell connectionless options. */

Communication Service Group

TLI: Concepts 1141

struct novell_isocl_options {
 struct rate transdel; /* transit delay */
 struct rate reserrorrate; /* residual error rate */
 unsigned short protection; /* protection */
 short priority; /* priority */
 int checksum; /* checksums */
};

Related Topics

Setting Options with TP4

Setting Options with CLTP

Parent Topic: NetWare OSI

Orderly Connection Release

During data transfer, the user can generate an orderly connection release.
An orderly connection release gracefully terminates a connection and
guarantees that no data is lost.

NOTE: All transport providers must support the abortive release
procedure. In contrast, orderly release is an optional facility that is not
supported by all transport protocols.

The orderly release procedure consists of two steps by each user. The first
user to complete data transfer can initiate a release using t_sndrel, as
illustrated in the example.

Related Topics

Orderly Connection Release: the Server

Orderly Connection Release: the Client

Parent Topic: TLI Connection Mode Services

Orderly Connection Release: the Client

In this example, data is transferred in one direction from the server to the
client. When an event occurs on the client's transport endpoint, the client
checks whether the expected orderly release indication has arrived. If so, it
proceeds with the release procedure by calling t_rcvrel to process the
indication and t_sndrel to inform the server that the client is ready to release
the connection. At this point, the client exits, closing its transport endpoint.

The client can respond to an orderly release request as follows:

Communication Service Group

TLI: Concepts 1142

TLI Orderly Connection Release---the Client

 /* Process a connection closure */
 while (t_rcvrel(fh) == -1) {
 if (t_errno != TNOREL) {
 t_error("t_rcvrel");
 exit(1);
 }
 ThreadSwitch();
 }
 /* Send disconnection release to the server */
 if (t_sndrel(fh) == -1) {
 t_error("t_sndrel");
 exit(1);
 }
 .
 .
 .

Parent Topic: Orderly Connection Release

Orderly Connection Release: the Server

The t_sndrel function informs the client that no more data will be sent by the
server. When the client receives this indication, it can continue sending data
back to the server, if desired. When all data has been transferred, however,
the client must also call t_sndrel to indicate that it is ready to release the
connection. The connection is released only after both the client and the
server have requested an orderly release and received the corresponding
indication from the each other.

When the server has transferred all the data, the connection can be released
as follows:

TLI Orderly Connection Release---the Server

 if(t_sndrel(*fh) == -1) {
 t_error("t_snddis");
 t_close(*fh);
 free(fh);
 return;
 }

while (t_rcvrel(*fh) == -1) {
 if (t_errno != TNOREL) {
 t_error("t_rcvrel");
 t_close(*fh);
 free(fh);
 return;
 }
 ThreadSwitch();

Communication Service Group

TLI: Concepts 1143

 }

 if(t_unbind(*fh) == -1) {
 t_error("t_unbind");
 t_close(*fh);
 free(fh);
 return;
 }
 t_close(*fh);
 free(fh);
}

Parent Topic: Orderly Connection Release

Orderly Release Summary

Call t_sndrel to initiate an orderly release. As input, this function takes the
local endpoint for the connection to be released. t_sndrel returns zero if the
request was sent successfully:

int t_sndrel(int fh);

After calling t_sndrel, your application waits for its partner to return an
orderly release indication. The indication is reported in t_errno as
T_ORDREL. You can continue receiving data on the connection after calling
t_sndrel until you receive the orderly release indication. Call t_look to
confirm the indication was returned.

If the partner sends a request for an orderly release, you receive notification
of the request as an error value while processing the connection. For
example, t_rcv might receive the error when the partner has no more data to
send. The request is reported in t_errno as T_ORDREL. Call t_look to
confirm the request, then call t_rcvrel to process the request:

int t_rcvrel(int fh);

After calling t_rcvrel, call t_sndrel to send the partner an orderly release
indication. Because SPX doesn't support orderly release, TLI doesn't support
t_rcvrel and t_sndrel at the DOS workstation.

Parent Topic: Releasing a Connection in TLI

OSI Address Format

The OSI reference model uses a variable-length format to represent a
network address. The following figure shows the OSI address format.

Communication Service Group

TLI: Concepts 1144

The fields and their contents are as follows:

flag---One-byte field that always contains a zero

TSelector Length---One-byte field that contains the length of the Tselector
field

TSelector---Variable-length field of 0 to 32 bytes that contains the binary
representation of the Tselector

NSAP Length---One-byte field that contains the length of the NSAP field

NSAP---Variable-length field of 0 to 20 bytes that contains the binary
representation of the NSAP address

The address format is identical for CLTP and TP4. However, there are some
guidelines that you should follow to ensure that your applications
communicate successfully:

When you call t_bind (Function), set the NSAP length to zero to force
CLNP to allocate the default local NSAP. When you call t_sndudata or
t_connect, you must specify the NSAP address.

TP4 allows you to specify a zero-length TSelector; however, each listener
that you establish must be bound to a unique TSelector. Therefore, you
should avoid using a zero-length TSelector with TP4.

TP4 does not allocate server TSelector values.

CLTP does not allow a zero-length TSelector. If your application calls
t_bind with a zero-length TSelector, CLTP assigns a TSelector.

Loopback and multicast are not supported.

Parent Topic: NetWare OSI

OSI Notes: t_accept

The transport endpoint that accepts the connection is set to the following:

The NSAP address and T-Selector of the endpoint that received the
connect indication

Communication Service Group

TLI: Concepts 1145

The NSAP address and T-Selector of the endpoint that initiated the
connection

The options negotiated between the initiator and the endpoint that
received the connection

If the connecting transport has aborted the connection, a disconnect
indication is sent to the resfh endpoint.

If the connection is accepted on the same endpoint on which the connect
indication was received (resfh==fh), the endpoint ceases to be a listening
endpoint. However, the user can unbind the endpoint with t_unbind and
bind it again with t_bind (Function) to make this endpoint a listening
endpoint.

The user must pass the same sequence number that was passed to t_listen
earlier.

The isoco_options are not supported during t_accept; therefore, opt_len
should be set to zero.

After a successful t_listen call, the server typically opens and binds a new
endpoint. Next, it calls t_accept, passing the file handle of the new endpoint.
Upon accepting the connection, the server spawns a new thread to send and
receive data and then goes back to listen for any other incoming
connections.

The following sample program uses t_accept.

call = (struct t_call *) t_alloc (listen_fh, T_CALL, T_ALL);
if (call == NULL)
{
 t_error (t_alloc");
 exit (1);
}

for (;;)
{
 /* Listen for any incoming indications */

 listenresult = t_listen (listen_fh, call);
 if (listenresult == -1)
 {
 t_error (t_listen");
 exit (1);
 }

 /* Open a new endpoint */
 if ((conn_fh = t_open (/dev/tp4", O_RDWR, NULL)) == -1)
 {
 t_error ("t_open");
 exit (1);

Communication Service Group

TLI: Concepts 1146

 }

 /* Bind to any address */
 if (t_bind (conn_fh, NULL, NULL) == -1)
 {
 t_error (t_bind");
 exit (1);
 }

 /* Accept the connection */
 if (t_accept (listen_fh, conn_fh, call) == -1)
 {
 t_error (t_accept");
 exit (1);
 }
}

Parent Topic: TLI Function Implementation Notes for OSI

OSI Notes: t_bind

See OSI Address Format.

The following sample programs use t_bind (Function).

unsigned char tsel [5] = { 4, 0x00, 0x00, 0x00, 0x01 };

/*
 * Bind to any address. The transport provider will
 * allocate an address
 */

rc = t_bind(fh, NULL, NULL);
if (fh == -1)
{
 t_error("t_bind");
 exit(1);
}

/* Allocate the address request structure */
if ((bind = (struct t_bind *) t_alloc (listen_fh, T_BIND, T_ALL)) ==
 NULL)
{
 t_error (t_alloc");
 exit (1);
}

 bind->qlen = MAX_CIND; /* Max. no of outstanding
 * connect indications */

Communication Service Group

TLI: Concepts 1147

 bind->addr.len = tsel[0] + 3; /* Length of the protocol
 address */
 bind->addr.buf[0] = 0;
 memcpy (&bind->addr.buf[1], tsel, tsel[0] + 1);
 bind->addr.buf[2 + tsel[0]] = 0;
 if (t_bind (listen_fh, bind, NULL) == -1)
 {
 t_error (t_bind");
 exit (1);
 }

Parent Topic: TLI Function Implementation Notes for OSI

OSI Notes: t_close

The close routine of the transport provider is called whenever the user calls
t_close. In the case of TP4, if t_close is called from any state other than
T_UNBND, TP4 aborts the connection. Both CLTP and TP4 discard all data
queued to be sent, as well as all data that has been received.

The following sample program uses t_close.

/* close the endpoint */

rc = t_close(fh);
if (rc == -1)
{
 t_error(t_close");
 exit(1);
}

Parent Topic: TLI Function Implementation Notes for OSI

OSI Notes: t_connect

See OSI Address Format.

The user can call t_connect on either an active or a passive endpoint. For a
passive endpoint, the endpoint must be in T_IDLE state and it should not
have received a connect indication earlier. Once the user calls t_connect, the
passive endpoint ceases to listen and becomes an active endpoint for the
duration of the connection, until the endpoint is unbound with t_unbind.
The user can make the endpoint passive again after calling t_unbind and
binding again with t_bind (Function).

TP4 supports sending up to 32 bytes of user data with a connect request.

Unless the user unbinds and binds a connected endpoint that was either

Communication Service Group

TLI: Concepts 1148

disconnected or released earlier, that endpoint cannot be reused.

The following sample program uses t_connect.

unsigned char nsap[12] = {
11, 0x49, 0x00, 0x01, 0x00, 0x00, 0x1b, 0x02, 0xa5, 0xd3,
0xfe, 0x00
};

unsigned char tsel [5] = { 4, 0x00, 0x00, 0x00, 0x01 };

 /* Synchronous connect mode */

 sndcall = (struct t_call *) t_alloc (fh, T_CALL, T_ADDR);
 if (sndcall == NULL)
 {
 t_error (t_alloc");
 exit (1);
 }

 sndcall->addr.len = nsap[0] + tsel[0] + 3;
 sndcall->addr.buf[0] = 0;
 memcpy (&sndcall->addr.buf[1], tsel, tsel[0] + 1);

 memcpy (&sndcall->addr.buf[2 + tsel[0]], nsap,
 nsap[0] + 1);

 rc = t_connect (fh, sndcall, NULL);
 if (rc == -1)
 {
 t_error (t_connect");
 exit (1);
 }

Parent Topic: TLI Function Implementation Notes for OSI

OSI Notes: t_getinfo

The protocol-dependent information about the transport layer is returned in
the info structure. The fields returned for TP4 and CLTP have the values
listed in the following table.

Table . Fields in the info Structure

Field TP4 CLTP

addr 54 54

options 128 24

tsdu 1 4,096

Communication Service Group

TLI: Concepts 1149

etsdu 16 -2

connect 32 -2

discon 64 -2

servtype T_CO
TS

T_CLTS

The following sample program uses t_getinfo.

/* get information about the transport interface */
rc = t_getinfo(fh, info);
if (rc == -1)
{
 t_error("t_getinfo");
 exit(0);
}

Parent Topic: TLI Function Implementation Notes for OSI

OSI Notes: t_listen

On receiving a connect indication from TP4, the transport provider does not
accept the connection. The application should call t_accept in a timely
manner.

See OSI Address Format for information about the OSI addressing format
and options management.

The transport provider assigns a unique sequence number greater than -1
and informs the user of a pending connect indication. The t_call structure
contains the address of the client and the options settings on the TP4 circuit.

The transport provider queues connect indications from TP4 up to the
maximum specified during t_bind (Function) in qlen; it rejects further
connect indications until the number of queued connect indications are less
than qlen. The user should respond to a successful call to t_listen by calling
either t_accept or t_snddis.

Typically, the server listens for connect indications by calling t_listen. After
a successful call to t_listen, the server opens a new endpoint by calling
t_open and binds that endpoint with t_bind (Function). The server accepts
the connection by passing the fh of the new endpoint in t_accept. The server
then listens for any further connect indications. Thus, the server endpoint
can be dedicated for listening for any connect indications. If the server does
not want to accept a connection, it must call t_snddis and continue to listen
for further connect indications.

The following is a sample program using t_listen.

Communication Service Group

TLI: Concepts 1150

/* Listen for any incoming indication */
while (t_listen(listen_fh, call) == -1)
{
 if (t_errno == TNODATA)
 continue;
 else
 {
 t_error("t_listen");
 exit(1);
 }
}

Parent Topic: TLI Function Implementation Notes for OSI

OSI Notes: t_open

This implementation supports the following devices:

/dev/tp4: For a connection-oriented transport service based on TP4

/dev/cltp: For a connectionless transport service based on CLTP

The default characteristics of the underlying transport protocol are
described in t_getinfo. There is no assigned limit to the number of devices a
user can open.

/* Open in synchronous mode */
fh_synch = t_open(/dev/tp4", O_RDWR, NULL);
if (fh_synch == -1)
{
 t_error("t_open");
 exit(1);
}

/* Open in asynchronous mode */
fh_asynch = t_open(/dev/tp4", O_RDWR | O_NDELAY, NULL);
if (fh_asynch == -1)
{
 t_error("t_open");
 exit(1);
}

Parent Topic: TLI Function Implementation Notes for OSI

OSI Notes: t_rcv

Becuase TP4 supports sending expedited data and infinite TSDU size, the
user can set the T_EXPEDITED and T_MORE flags upon the successful

Communication Service Group

TLI: Concepts 1151

return of t_rcv.

The following sample program uses t_rcv.

/*
 * t_rcv() does not necessarily return the full amount
 * requested, so repeat the operation if necessary.
 */
for (nread = 0; nread < sizeof (iobuf); nread += rc)
{
 flags = 0;
 if ((rc = t_rcv(fh_synch, iobuf, sizeof (iobuf),
 &flags)) == -1)
 {
 t_error(t_rcv");
 exit(1);
 }
 nread += rc;
}
printf(Received %d bytes\r\n", nread);

/*
 * t_rcv() in asynchronous mode, if no data is available
 * then t_rcv fails and t_errno is set to TNODATA.
 */
for (nread = 0; nread << sizeof (iobuf); nread += rc)
{
 flags = 0;
 while ((rc = t_rcv(fh_asynch, io_buf, sizeof (iobuf),
 &flags)) == -1)
 {
 if (t_errno == TNODATA)
 flags = 0;
 else
 {
 t_error(t_rcv ");
 exit(1);
 }
 }
 }

Parent Topic: TLI Function Implementation Notes for OSI

OSI Notes: t_rcvconnect

The TP4 provider supports the concept of transferring data upon setting up
a connection. The maximum amount of data you can receive is 32 bytes.

See OSI Address Format and Options Management Structures.

unsigned char nsap[12] = {

Communication Service Group

TLI: Concepts 1152

unsigned char nsap[12] = {
11, 0x49, 0x00, 0x01, 0x00, 0x00, 0x1b, 0x02, 0xa5, 0xd3,
0xfe, 0x00};

unsigned char tsel [5] = { 4, 0x00, 0x00, 0x00, 0x01 };

 /* Asynchronous connect */

 sndcall = (struct t_call *) t_alloc (fh, T_CALL, T_ADDR);
 if (sndcall == NULL)
 {
 t_error (t_alloc");
 exit (1);
 }

 sndcall->addr.len = nsap[0] + tsel[0] + 3;
 sndcall->addr.buf[0] = 0;
 memcpy (&sndcall->addr.buf[1], tsel, tsel[0] + 1);

 memcpy (&sndcall->addr.buf[2 + tsel[0]], nsap,
 nsap[0] + 1);

 rc = t_connect (fh_asynch, sndcall, NULL);
 if (rc == -1)
 {
 if (t_errno != TNODATA)
 {
 t_error (t_connect");
 exit (1);
 }
 }

 /* Check whether t_connect succeeded */

 if (t_getstate (fh_asynch) != T_DATAXFER)
 {
 /* loop until t_rcvconnect succeeds */
 while (t_rcvconnect (fh_asynch, NULL) == -1)
 {
 if (t_errno != TNODATA)
 {
 t_error (t_rcvconnect");
 exit (2);
 }
 }
 }

Parent Topic: TLI Function Implementation Notes for OSI

OSI Notes: t_rcvdis

Communication Service Group

TLI: Concepts 1153

If a connection is disconnected, TP4 informs the user. The reason field in the
t_discon structure has one of the errors listed in the following table.

Table . Disconnection Errors

Error Meaning

TPDR_NORMAL Normal disconnect initiated by the session entity

TPDR_CRCONG Remote transport entity congestion at connect
request time

TPDR_CONNEG Connection negotiation failed

TPDR_DUPSR Duplicate source reference detected for same pair
of NSAPs

TPDR_MMREF Mismatched references

TPDR_PE Protocol error

TPDR_REOVFL Reference overflow

TPDR_NWREF Connection request refused on this network
connection

TPDR_INVHD Header or parameter length is invalid

TPDR_RNS Reason not specified

TPDR_CONG Congestion at the TSAP

TPDR_NOSESS Session entity not attached to TSAP

TPDR_UNKAD
DR

Address unknown

If an active endpoint is disconnected, TP4 informs the user immediately. If a
passive endpoint is disconnected, the transport provider waits for the user
to respond to an earlier successful t_listen before informing the user that the
connection was disconnected.

The user can call t_connect again on this endpoint. TP4 attempts to
reconnect to the same protocol address.

TP4 supports the concept of receiving user data while disconnecting a
circuit. Up to 64 bytes can be transferred.

while (t_rcvdis(fh, NULL) == -1)
{
 if (t_errno != TNODIS)
 {
 t_error("t_rcvdis");
 exit(1);
 }
}

Parent Topic: TLI Function Implementation Notes for OSI

Communication Service Group

TLI: Concepts 1154

OSI Notes: t_rcvudata

The following sample program uses t_rcvudata.

/*
 t_rcvudata() in asynchronous mode, if no data is
 available then it fails and t_errno is set to
 TNODATA.
*/
for (nread = 0; nread << sizeof (iobuf); nread += rc)
{
 flags = 0;
 while ((rc = t_rcvudata(fh, unitdata, &flags)) == -1)
 {
 if (t_errno == TNODATA)
 flags = 0;
 else
 {
 t_error("t_rcv ");
 exit(1);
 }
 }
}

Parent Topic: TLI Function Implementation Notes for OSI

OSI Notes: t_snd

TP4 supports expedited data and has an infinite TSDU size. You can set the
T_EXPEDITED and T_MORE flags. If expd is set to T_NO, an attempt to
send expedited data causes the STREAM to terminate. You can determine
whether expd is on by calling t_optmgmt (Function).

If you send more than 16 bytes of expedited data, the STREAM is
terminated. The expedited data channel does not have flow control.

/*
 * Assumes that the TP4 quotas add up to more than 1024
 * bytes. Otherwise this strategy invites deadlock.
 */
rc = t_snd(fh, iobuf, sizeof (iobuf), 0);
if (rc == -1)
{
 t_error(t_snd");
 exit(1);
}

Communication Service Group

TLI: Concepts 1155

/* asynchronous mode */

while ((rc = t_snd(fh_asynch, iobuf, sizeof (iobuf), 0)) == -1)
{
 if (t_errno != TFLOW)
 {
 t_error(t_snd");
 exit(1);
 }
}

Parent Topic: TLI Function Implementation Notes for OSI

OSI Notes: t_snddis

If the endpoint is active, t_snddis causes all the data on the transmitting and
receiving queues to be discarded, and the connection is aborted. If the
endpoint is passive, t_snddis can abort the connection setup (if it is not
already aborted). The user can call t_connect again on an active endpoint or
on a passive endpoint with no pending connect indication.

The maximum udata length allowed is 64 bytes.

The following is a sample program using t_snddis.

/* Aborting an existing connection */

rc = t_snddis(fh, NULL);
if (rc == -1)
{
 t_error("t_snddis");
 exit(0);
}

/* Refuse a connection */

/* Listen for any incoming indication */

while (t_listen(listen_fh, call) == -1)
{
 if (t_errno == TNODATA)
 continue;
 else
 {
 t_error("t_listen");
 exit(1);
 }
}
rc = t_snddis(listen_fh, call);
if (rc == -1)

Communication Service Group

TLI: Concepts 1156

if (rc == -1)
{
 t_error("t_snddis");
 exit(0);
}

Parent Topic: TLI Function Implementation Notes for OSI

OSI Notes: t_sndudata

See OSI Address Format and Options Management Structures.

The maximum data that a single call to t_sndudata can send is limited by
STRMSGZ, as defined in STREAM.H. Typically, the maximum is 4,096
bytes.

The following sample program uses t_sndudata.

while ((rc = t_sndudata(fh, unitdata)) == -1)
{
 if (t_errno != TFLOW)
 {
 t_error("t_snd");
 exit(1);
 }
}

Parent Topic: TLI Function Implementation Notes for OSI

OSI Reference Model

To place TLI in perspective, a discussion of the OSI reference model is
helpful. The reference model partitions networking functions into seven
layers, as shown in the following figure.

Figure 16. Seven-Layer OSI Reference Model

Communication Service Group

TLI: Concepts 1157

The following table describes the OSI layers.

Table auto. Layers of the OSI Model

OSI Layer Description

Layer 7 The application layer serves as the window between
corresponding application processes that are exchanging
information.

Layer 6 The presentation layer manages the representation of
information that application layer entities either
communicate or reference in their communication.

Communication Service Group

TLI: Concepts 1158

Layer 5 The session layer provides the services that presentation
layer entities need to organize and synchronize their
dialog and manage their data exchange.

Layer 4 The transport layer provides transparent data transfer
services between session layer entities. It relieves those
entities from concerns of how to achieve reliable and
costeffective data transfer.

Layer 3 The network layer manages the operation of the network.
In particular, it is responsible for the routing and
management of data exchange between transport layer
entities within the network.

Layer 2 The data link layer enables the exchange of data between
network layer entities. It detects and corrects any errors
that can occur in the physical layer transmission.

Layer 1 The physical layer is responsible for the transmission of
raw data over a communication medium.

A basic principle of the OSI reference model is that each layer provides
services needed by the next higher layer, freeing the upper layer from
determining how these services are provided. This approach simplifies the
design of each layer.

Industry standards have been or are being defined at each layer of the OSI
reference model. Two standards are defined at each layer: one that specifies
an interface to the services of the layer, and one that defines the protocol by
which services are provided. A service interface standard at any layer frees
users of the service from details of how that layer's protocol is implemented,
or even which protocol provides the service.

The transport layer is important because it provides the basic service of
reliable, end-to-end data transfer needed by applications and higher-layer
protocols. In doing so, this layer hides the topology and characteristics of
the underlying network from its users. More important, however, the
transport layer defines a set of services common to layers of many
contemporary protocol suites, including the following:

ISO protocols

TCP/IP of the ARPAnet

Xerox Network Systems* (XNS*)

Systems Network Architecture* (SNA*)

NetWare IPX/SPX™

In summary, a transport service interface enables applications and
higher-layer protocols to be implemented without knowledge of the
underlying protocol suite. This is a principal goal of TLI. Also, because the
transport layer hides details of the physical medium being used, TLI offers

Communication Service Group

TLI: Concepts 1159

transport layer hides details of the physical medium being used, TLI offers
both protocol and medium independence to networking applications and
higher-layer protocols.

TLI is modeled after the industry-standard ISO Transport Service Definition
(ISO 8072). As such, it is intended for applications and protocols that require
transport services. Because TLI provides reliable data transfer and its
services are common to several protocol suites, many networking
applications find TLI useful.

NetWare TLI complies with the 1988 XTI specification with 2 minor
exceptions: t_alloc and UNIX* TLI structure names.

TLI is implemented as a user library using the STREAMS I/O mechanism.
Therefore, many services available to STREAMS applications are also
available to users of TLI.

Parent Topic: Overview of Transport Protocols

Outgoing and Incoming Events

Outgoing events shown in the following table correspond to the successful
return of the specified user-level TLI functions, where these functions send
a request or response to the transport provider. Some events in this table (for
example, accept) are distinguished by the context in which they occur.

Table auto. Outgoing TLI Events

Outgoing
Event

Description Service Type

connect1 Successful return of t_connect in
asynchronous mode

T_COTS,
T_COTS_ORD

connect2 TNODATA error on t_connect in
asynchronous mode, or TLOOK error
due to a disconnect indication
arriving on the transport endpoint

T_COTS,
T_COTS_ORD

accept1 Successful return of t_accept with
ocnt == 1, fh == resfh

T_COTS,
T_COTS_ORD

accept2 Successful return of t_accept with
ocnt == 1, fh! = resfh

T_COTS,
T_COTS_ORD

accept3 Successful return of t_accept with
ocnt > 1

T_COTS,
T_COTS_ORD

snd Successful return of t_snd T_COTS,
T_COTS_ORD

snddis1 Successful return of t_snddis with
ocnt < = 1

T_COTS,
T_COTS_ORD

snddis2 Successful return of t_snddis with T_COTS,

Communication Service Group

TLI: Concepts 1160

ocnt > 1 T_COTS_ORD

sndrel Successful return of t_sndrel T_COTS_ORD

sndudata Successful return of t_sndudata T_CLTS

The context is based on the values of the following:

ocnt---Number of outstanding connect indications
fh---File handle of the current transport endpoint
resfh---File handle of the transport endpoint where a connection will be
accepted

The following table illustrates the allowable sequence of state transitions
during connection establishment, data transfer, and release. Given a current
state and event, the table illustrates the transition to the next state upon the
occurrence of an event.

Table auto. State and Event Combinations

Current State Event Next State

T_IDLE connect1 T_DATAXFER

T_IDLE connect2 T_OUTCON

T_IDLE listen T_INCON[2]

T_IDLE pass_conn T_DATAXFER

T_OUTCON rcvconnect T_DATAXFER

T_OUTCON snddis1 T_IDLE

T_OUTCON rcvdis1 T_IDLE

T_INCON listen T_INCON[2]

T_INCON accept1 T_DATAXFER[3]

T_INCON accept2 T_IDLE[3] [4]

T_INCON accept3 T_INCON[3] [4]

T_INCON snddis1 T_IDLE[3]

T_INCO snddis2 T_INCON[3]

T_INCON rcvdis2 T_IDLE[3]

T_INCON rcvdis3 T_INCON[3]

T_DATAXFER snd T_DATAXFER

T_DATAXFER rcv T_DATAXFER

T_DATAXFER snddis1 T_IDLE

T_DATAXFER rcvdis1 T_IDLE

T_DATAXFER sndrel T_OUTREL

T_DATAXFER rcvrel T_INREL

T_OUTREL rcv T_OUTREL

Communication Service Group

TLI: Concepts 1161

T_OUTREL snddis1 T_IDLE

T_OUTREL rcvdis1 T_IDLE

T_OUTREL rcvrel T_IDLE

T_INREL snd T_INREL

T_INREL snddis1 T_IDLE

T_INREL rcvdis1 T_IDLE

T_INREL sndrel T_IDLE

For example, assume that an endpoint is in T_IDLE state. If a connect1 event
occurs, the endpoint enters the T_DATAXFER state. If a snd or rcv event
occurs in the T_DATAXFER state, the endpoint remains in the same state. If
snddis1 occurs, the endpoint enters the T_IDLE state.

Some of the resulting states in the table include the notation [n] as a suffix,
where n is a number from 1 through 4. These notations indicate the
necessary action to be taken by the transport user, as described in the
following table.

Table auto. Transport User's Actions

Notation Transport User's Action

[1] Set the number of outstanding connect indications to zero

[2] Decrement the number of outstanding connect indications

[3] Increment the number of outstanding connect indications

[4] Pass a connection to another transport endpoint as
indicated in t_accept

Incoming events, shown in the following table, correspond to the successful
return of the specified user-level TLI functions, where these functions
retrieve data or event information from the transport provider.

Table auto. Incoming TLI Events

Incoming
Event

Description Service Type

listen Successful return of t_listen T_COTS,
T_COTS_ORD

rcvconnect Successful return of
t_rcvconnect

T_COTS,
T_COTS_ORD

rcv Successful return of t_rcv T_COTS,
T_COTS_ORD

rcvdis1 Successful return of t_rcvdis
with ocnt <=0

T_COTS,
T_COTS_ORD

Communication Service Group

TLI: Concepts 1162

rcvdis2 Successful return of t_rcvdis
with ocnt == 1

T_COTS,
T_COTS_ORD

rcvdis3 Successful return of t_rcvdis
with ocnt > 1

T_COTS,
T_COTS_ORD

rcvrel Successful return of t_rcvrel T_COTS_ORD

rcvudata Successful return of t_rcvudata T_CLTS

rcvuderr Successful return of t_rcvuderr T_CLTS

pass_conn Receive a passed connection T_COTS,
T_COTS_ORD

The only incoming event not associated directly with the return of a function
on a given transport endpoint is pass_conn, which occurs when a user
transfers a connection to another transport endpoint. This event occurs on
the endpoint to which the connection is transferred, despite the fact that no
function is issued on that endpoint.

In the above table, the rcvdis events are distinguished by the context in
which they occur. The context is based on the value of ocnt, which is the
count of outstanding connect indications on the current transport endpoint.

Parent Topic: TLI Local Management Functions and Events

Outgoing Events

The outgoing events described in the following table correspond to the
successful return of the specified TLI functions, where these functions send
a request or response to the transport provider.

Event Description Service Type

opened Successful return of t_open T_COTS,
T_COTS_ORD,
T_CLTS

bind Successful return of t_bind T_COTS,
T_COTS_ORD,
T_CLTS

optmgmt Successful return of t_optmgmt T_COTS,
T_COTS_ORD,
T_CLTS

unbind Successful return of t_unbind T_COTS,
T_COTS_ORD,
T_CLTS

closed Successful return of t_close T_COTS,
T_COTS_ORD,

Communication Service Group

TLI: Concepts 1163

T_CLTS

connect1 Successful return of t_connect in
synchronous mode

T_COTS,
T_COTS_ORD

connect2 TNODATA error on t_connect in
synchronous mode, or TLOOK error
due to a disconnect indication
arriving on the transport endpoint

T_COTS,
T_COTS_ORD

accept1 Successful return of t_accept with
ocnt == 1, fh == resfh

T_COTS,
T_COTS_ORD

accept2 Successful return of t_accept with
ocnt == 1, fh != resfh

T_COTS,
T_COTS_ORD

accept3 Successful return of t_accept with
ocnt > 1

T_COTS,
T_COTS_ORD

snd Successful return of t_snd T_COTS,
T_COTS_ORD

snddis1 Successful return of t_snddis with
ocnt <= 1

T_COTS,
T_COTS_ORD

snddis2 Successful return of t_snddis with
ocnt > 1

T_COTS,
T_COTS_ORD

sndrel Successful return of t_sndrel T_COTS_ORD

sndudata Successful return of t_sndudata T_CLTS

In the table, some events (such as acceptn) are distinguished by the context
in which they occur. The context is based on the values of the following
variables:

ocnt---Count of outstanding connect indications

fh---File handle of the current transport endpoint

resfh---File handle of the transport endpoint where a connection will be
accepted

Parent Topic: TLI State Transitions

Overview of Connection-Oriented Service

Connection-oriented transport service consists of four phases of
communication:

1. Initialization/deinitialization

2. Connection establishment

3. Data transfer

Communication Service Group

TLI: Concepts 1164

4. Connection release

Related Topics

Initialization/Deinitialization Phase of Connection-Oriented Service

Connection Establishment Phase

Data Transfer Phase of Connection-Oriented Service

Connection Release Phase

Parent Topic: Overview of Connection-Oriented Service

Parent Topic: Overview of TLI Functions

Overview of Connectionless Service

Connectionless transport service consists of two phases of communication:

1. Initialization/deinitialization

2. Data transfer

Related Topics

Initialization/Deinitialization Phase of Connectionless Service

Data Transfer Phase of Connectionless Service

Parent Topic: Overview of TLI Functions

Overview of TLI Functions

TLI functions provide the services of the transport level. These services
provide end-to-end communication, using the services of an underlying
network. Your application, which uses TLI functions, is independent of the
underlying protocols. By providing media and protocol independence, TLI
lets networking applications run in various protocol environments.

This information explains the various phases of communication available
through the transport services provided by the transport provider. (Again, a
transport provider is a transport protocol that provides the services of the
transport level.) Two modes of transport service are available:
connection-oriented and connectionless.

The SPX™ protocol provides a connection-oriented service, and the IPX™
protocol provides connectionless service. Similarly, TCP provides
connection-oriented service, and UDP provides connectionless service. A

Communication Service Group

TLI: Concepts 1165

single transport endpoint cannot support both modes of service
simultaneously.

In TLI environment, an endpoint specifies a communication path between a
transport user and a specific transport provider; the endpoint is identified
by the local file handle fh. A transport endpoint is indicated as an open
device, special file. All requests to the transport provider must pass through
a transport endpoint.

TLI provides the following library functions:

t_accept

t_alloc

t_bind (Function)

t_blocking

t_close

t_connect

t_error

t_free

t_getinfo

t_getstate

t_listen

t_nonblocking

t_rcvdis

t_rcvrel

t_rcvudata

t_rcvuderr

t_snd

t_snddis

t_sndrel

t_sndudata

t_sync

t_unbind

When using these functions, you must follow certain rules. This overview

Communication Service Group

TLI: Concepts 1166

shows you how to use these functions and describes their relationships.

Related Topics

TLI Terms

TLI Error Handling

Synchronous and Asynchronous Execution Modes

Overview of Connection-Oriented Service

Overview of Connectionless Service

TLI States

Overview of TLI

Here we present a high-level overview of the services of TLI, discussing
how it supports the transfer of data between two transport endpoints

Figure 17. TLI Overview

TLI is a transport interface standard designed by USL for the UNIX

Communication Service Group

TLI: Concepts 1167

environment. Novell has adopted TLI as a standard for applications that
need a transport protocol. At the DOS workstation, TLI is implemented as
an API library

Advantages in using TLI include the following features:

Multi-protocol support. TLI provides a clean layering between client
applications and the implementation issues of network protocols.
Applications that use TLI will require only minor modifications to run on
top of other protocols, such as TCP/IP, when support for those protocols
is made available.

Ease of Use. TLI hides many of the time-consuming details associated
with lower-level protocols (such as IPX/SPX). This simplicity makes TLI
applications easier to develop and maintain.

Standardization. TLI is an accepted standard within the UNIX
environment and defines services that are common to many other
networking protocols (such as OSI).

The transport provider is the entity that provides the services of TLI, and
the transport user is the entity that requires these services. An example of a
transport provider is the ISO transport protocol, whereas a transport user
can be an NLM™ application, a networking application, or a session layer
protocol.

The transport user accesses the services of the transport provider by issuing
the appropriate service requests. One example is a request to transfer data
over a connection. Similarly, the transport provider notifies the user of
various events, such as the arrival of data on a connection.

TLI functions support the services of TLI for user processes. These functions
enable a user to make requests to the provider and process incoming events.

Related Topics

TLI Local Management Issues

TLI Connectionless Mode Services

TLI State Transitions

TLI Programming Example

Parent Topic: Overview of Transport Protocols

Read

The read function can be used to retrieve data that has arrived over the
transport connection. The tirdwr module passes data to the user from the
transport provider. However, any other event or indication passed to the
user from the provider is processed by tirdwr as follows:

Communication Service Group

TLI: Concepts 1168

The read function cannot process expedited data because it cannot
distinguish expedited data from normal data for the user. If an expedited
data indication is received, tirdwr generates a fatal protocol error,
EPROTO, on that STREAM. This error causes further system calls to fail.
Therefore, when using the read/write interface, you should not
communicate with a process that is sending expedited data.

If an abortive disconnect indication is received, tirdwr discards it and
generates a STREAMS hangup condition on that STREAM. Subsequent
read calls retrieve any remaining data, and then read returns zero for all
further calls (indicating End-of-file (EOF)).

If an orderly release indication is received, tirdwr discards the indication
and delivers a zero-length STREAMS message to the user. As described
in read, this notifies the user of EOF by returning 0.

If any other TLI indication is received, tirdwr generates a fatal protocol
error, EPROTO, on that STREAM. This causes further system calls to fail.
If a user pushes tirdwr onto a STREAM after the connection has been
established, no indication is generated.

Parent Topic: A TLI Read/Write Interface

Releasing a Connection in TLI

There are two ways to release a connection: abortive release and orderly
release. With an abortive release, you break the connection without
preparing the other endpoint for the release. With an orderly release, both
sides signal each other that they are ready to release the connection. An
abortive release takes no measures to protect the integrity of any data that
the connection might be transmitting.

An orderly release ensures that all data has been processed before the
connection is released. TLI requires all transport providers to support an
abortive release but not an orderly release. Check the TLI type for support
of T_COTS_ORD to determine whether the current version of SPX supports
an orderly release.

Related Topics

Orderly Release Summary

Abortive Release Summary

Parent Topic: Connection Mode Service

Rules for Connection-Oriented Transport Service

Communication Service Group

TLI: Concepts 1169

The following rules apply only to the connection-oriented transport service:

The transport connection release phase can be initiated at any time
during the connection establishment phase or data transfer phase.

The only time the state of a transport service interface of a transport
endpoint can be transferred to another transport endpoint is when
t_accept specifies such action. The following rules then apply to the
cooperating transport endpoints:

---The endpoint that is to accept the current state of the interface must be
bound to an appropriate protocol address and must be in the T_IDLE
state.

---The user transferring the current state of an endpoint must have correct
permissions for the use of the protocol address and must be in the
T_IDLE state.

---The endpoint that transfers the state of TLI is placed into the T_IDLE
state by the transport provider after the completion of the transfer if there
are no more outstanding connect indications.

Parent Topic: TLI States

Rules for Maintaining the State of TLI

The following are rules for maintaining the state of TLI:

The transport provider is responsible for keeping a record of the state of
TLI as seen by the transport user.

The transport provider must never process a function that places TLI out
of state.

If the user issues a function out of sequence, the transport provider
should indicate this, if possible, through an error return on that function.
The state should not change. If any data is passed with the function when
not in T_DATAXFER state, the transport provider does not accept or
forward that data.

The uninitialized state (T_UNINIT) of a transport endpoint is in the
initial state, and the endpoint must be initialized and bound before the
transport provider can view it as active.

The uninitialized state is also the final state, and the transport endpoint
must be viewed as unused by the transport provider. The t_close
function closes the transport endpoint and frees TLI library resources for
another endpoint.

As shown in Transport Provider States, t_close should be called only from
the T_UNBND state. If it is called from any other state and no other user
has that endpoint open, the action is abortive, the transport endpoint is

Communication Service Group

TLI: Concepts 1170

successfully closed, and the library resources are freed for another
endpoint. When t_close is called, the transport provider must ensure that
the address associated with the specified transport endpoint has been
unbound from that endpoint. Also, the provider should send appropriate
disconnects if t_close is not called from the unbound state.

Parent Topic: TLI States

Sequence of TLI Functions

The following figure shows the flow of events through the various states in
the connection-oriented service. The broken line represents the passive user,
and the solid line represents the active user. This example illustrates the
local management as well as the connection establishment, data transfer,
and connection release phases, without an orderly release of the connection.

Figure 18. Flow of Events for Connection-Oriented Service

Communication Service Group

TLI: Concepts 1171

For example, assume that the endpoint is in the T_UNINIT state. If the
endpoint is opened with t_open, it enters the T_UNBND state. If the user
calls t_bind (Function), it enters the T_IDLE state. If the user was bound as a
passive user and calls t_listen, the endpoint enters the T_INCON state. If an
incoming connect indication occurs and the user accepts the connection with
t_accept, the endpoint enters the T_DATAXFER state. The endpoint remains
in the same state if the user calls t_snd or t_rcv. If the user calls t_snddis or if
a t_rcvdis call is issued and is successful, the endpoint enters the T_IDLE
state. If the user calls t_unbind, the endpoint enters the T_UNBND state. If
the user calls t_close, the endpoint is closed and returns to a T_UNINIT
state.

The following figure illustrates the flow of events through the various states
in a connectionless service.

Figure 19. Flow of Events for Connectionless Service

Communication Service Group

TLI: Concepts 1172

Parent Topic: TLI States

Setting Options with CLTP

CLTP does not support any of the isocl_options. To remain compatible with
the X/Open standard, you can use isocl_options provided that you set all
fields to T_UNUSED. Additionally, CLTP supports an extended structure,
novell_isocl_options, that includes a checksum field. Options negotiated via
t_optmgmt (Function) affect all packets sent on that STREAM. Options sent
with t_sndudata override the current option settings for that call only.

Parent Topic: Options Management Structures

Setting Options with TP4

When calling t_optmgmt (Function), t_connect, and t_accept, you can pass
the isoco_options buffer. The following fields are used in TP4:

mngmt.extform---Defines whether TP4 negotiates the use of
extended-format sequence numbers

mngmt.checksum---Defines whether TP4 negotiates checksums

expd---Defines whether TP4 negotiates the use of expedited data

All unused fields must be set to T_UNUSED. Calling t_optmgmt (Function)
to get the defaults sets unused fields to T_UNUSED. Class should be set to
T_CLASS4.

Issuing options on a call to t_accept has no effect on the options actually
negotiated. These options must be negotiated on the listener before
receiving a connect indication.

Parent Topic: Options Management Structures

SPX Protocol

SPX provides a connection-oriented transport service and lets data travel
over an established connection in a reliable, sequenced manner. You can use
SPX II if your applications require message-oriented interactions, meaning
you send and receive entire messages. (On the sending side SPX II breaks
the message into packets for you and sends the fragments across the wire.
At the receiving end, SPX II maintains the message boundary by setting the
SPX II end of message bit on the last packet of data associated with that
specific message.)

Communication Service Group

TLI: Concepts 1173

SPX exhibits the following characteristics:

Provides guaranteed delivery by using IPX datagram functions to send
packets and receive positive acknowledgments of packet delivery. There
is a logical relationship between the packets being exchanged.

After a reasonable number of retransmissions have failed to return a
positive acknowledgment, the connection is assumed to have failed.

Related Topics:

NetWare IPX/SPX/SPX II

SPX TLI Multiple Connection Server: Example

SPX TLI Client: Example and SPX TLI Server: Example

SPX II Protocol

SPX II is compatable with the SPX protocol. In addition, it extends the SPX
protocol, providing the following additional features:

Uses a sliding window algorithm to minimize packets on the wire and to
minimize latency between packets. This decreases the time needed to
send a message.

Provides an orderly release of connections so that no data is lost when a
connection is released.

Supports end-to-end large data packets, rather than the 534-byte
limitation of SPX.

Ensures that the largest packet size is used by allowing packet size
negotiation when establishing a connection and packet size renegotation
when the delivery route changes.

Allows for receiving of positive and negative acknowledgments of packet
delivery.

Communicates directly with the LSL™ facility rather than using IPX
datagram functions.

Parent Topic: NetWare IPX/SPX/SPX II

Synchronous and Asynchronous Execution Modes

TLI is inherently asynchronous: various events can occur independent of
the actions of a transport user. For example, a user can be sending data over
a transport connection when an asynchronous disconnect indication arrives.

Communication Service Group

TLI: Concepts 1174

The user must somehow be informed that the connection has been broken.

TLI supports two execution modes for handling asynchronous events:
synchronous mode and asynchronous mode. In the synchronous mode, the
transport functions wait for specific events before returning control to the
user. While waiting, the user cannot perform other tasks.

Eight asynchronous events are defined in TLI to cover connection-oriented
and connectionless service (see the following table).

Table auto. Asynchronous Events in Connection-Oriented and Connectionless
Service

Event Description

T_LISTEN Connection-oriented: Occurs when the transport
provider receives a connect request from a remote
user.

T_CONNECT Connection-oriented: Occurs when a transport
provider receives a connect confirmation.

T_DATA Connection-oriented: Occurs when a transport
provider receives normal data.

T_EXDATA Connection-oriented: Occurs when a transport
provider receives expedited data.

T_DISCONN
ECT

Connection-oriented: Occurs when a transport
provider receives a disconnect indication.

T_UDERR Connectionless: Occurs when an error is found in a
previously sent datagram.

T_ORDREL Connection-oriented (with orderly release only):
Occurs when a provider receives an orderly release
indication.

T_ERROR Both modes: Occurs when the transport provider
generates a fatal error, making the transport endpoint
inaccessible.

T_GODATA Connection-oriented: Occurs when it is okay to send
normal data again.

T_GOEXDAT
A

Connection-oriented: Occurs when it is okay to send
expedited data again.

Related Topic: Asynchronous Events

Parent Topic: Overview of TLI Functions

TLI Asynchronous Execution Mode

Communication Service Group

TLI: Concepts 1175

This information presents two important concepts of TLI:

An optional nonblocking (asynchronous) mode for some library
functions

An advanced programming example that defines a server supporting
multiple outstanding connect indications and operating in an
event-driven manner

The example program resides in NWCNLM\SRC\TLI.

Related Topics

Asynchronous Mode for Some TLI Functions

TLI Asynchronous Mode: Advanced Programming Example

TLI Asynchronous Mode: Advanced Programming
Example

The following example demonstrates two important capabilities. The first is
a server's ability to manage multiple outstanding connect indications. The
second is the ability to write event-driven software using TLI and the
STREAMS system call interface.

The server example introduced by Connection Mode Service is capable of
supporting only one outstanding connect indication, but TLI supports the
ability to manage multiple outstanding connect indications.

One reason a server might want to receive several simultaneous connect
indications is to impose a priority scheme on each client. A server can
retrieve several connect indications and then accept them in an order based
on each client's priority.

A second reason for handling several outstanding connect indications is that
the single-threaded scheme has some limitations. Depending on the
implementation of the transport provider, it is possible that while the server
is processing the current connect indication, other clients might find it busy.
If, however, multiple connect indications can be processed simultaneously,
the server is busy only if the maximum number of clients attempt to call the
server simultaneously.

The server example is event-driven: the process polls a transport endpoint
for incoming TLI events and then takes the appropriate actions for the
current event. The example demonstrates the ability to poll multiple
transport endpoints for incoming events.

The definitions and local management functions needed by this example
are similar to those of the server example provided in TLI Connection Mode
Services.

TLI Asynchronous Mode---Startup

Communication Service Group

TLI: Concepts 1176

/* Global defines */
#define MAX_CIND 10 /* Max connection indication */
#define SRV_SOCK 0x4800 /* Server socket (dynamic sock*/
#define TLI_TYPE 0x9000 /* Server type (dynamic area) */
#define LOGFILE "README.TXT" /* File name */

/* Global variables */
int conn_ind; /* num connection indicatio*/
struct pollfd pfh; /* poll structure */
struct t_bind *bind; /* bind structure ptr */
struct t_call *calls[MAX_CIND]; /* call structure ptr */
struct t_discon discon; /* disconnect structure */
LONG SAPhandle; /* SAP handle */

/* Function prototypes */
int *AcceptConnection(int i); /* Assign a new TEP, accept*/
void ProcessConnection(int *); /* Process new connection */
void TerminateNLM(void); /* Cleanup function */

void TerminateNLM(void)
{
 int i;

 if(SAPhandle)
 ShutdownAdvertising(SAPhandle);
 if(bind)
 t_free((char *)bind, T_BIND);
 for(i=0; i<conn_ind; i++) {
 if(calls[i] != NULL) {
 t_free((char *)calls[i], T_CALL);
 calls[i] = NULL;
 }
 }
 t_unbind(pfh.fd);
 t_close(pfh.fd);
}

main(int argc, char **argv)
{
 int *fh_new; /* new transport endpoint pointer*/
 BYTE pv[128]; /* holds property value */
 BYTE dc[1]; /* don't care BYTE */

 if(argc != 3) {
 printf("Usage: %s <name> <connections>\n", argv[0]);
 exit(1);
 }
 conn_ind = atoi(argv[2]);
 if(conn_ind > MAX_CIND)
 conn_ind = MAX_CIND;

Communication Service Group

TLI: Concepts 1177

 /* Register function that will be executed when NLM
 exits or is unloaded */
 if(atexit(TerminateNLM) != NULL) {
 printf("atexit failed");
 exit(1);
 }

 /* Open server's TEP */
 if((pfh.fd = t_open("/dev/nspx", O_RDWR, NULL)) == -1) {
 t_error("t_open");
 exit(1);
 }

 /* Allocate space for structures */
 bind = (struct t_bind *) t_alloc(pfh.fd, T_BIND, T_ALL);
 if(bind == NULL) {
 t_error("t_alloc");
 exit(1);
 }
 /* Prepare bind structure and then call t_bind */
 bind->qlen = conn_ind;
 bind->addr.len = sizeof(IPX_ADDR);
 addr = (IPX_ADDR *)bind->addr.buf;
 GetInternetAddress(GetConnectionNumber(),
 addr->ipxa_net, addr->ipxa_node);
 *(WORD *)addr->ipxa_socket = IntSwap(SRV_SOCK);

 if(t_bind(pfh.fd, bind, bind) == -1) {
 t_error("t_bind");
 exit(1);
 }

/* Check if this is socket you wanted to be bound to */
 if(*(WORD *)&bind->addr.buf[10] != IntSwap(SRV_SOCK)) {
 printf("Bound wrong address: %d != %d \n",
 *(WORD *)&bind->addr.buf[10], IntSwap(SRV_SOCK));
 exit(1);
 }

 /* Advertise server on SRV_SOCK socket */
 SAPhandle = AdvertiseService(TLI_TYPE, argv[1],
 IntSwap(SRV_SOCK));
 if(SAPhandle == NULL) {
 printf("AdvertiseService failed for: %s\n", argv[1]);
 exit(1);
 }
 printf("Server %s is ready. %d connections.\n",
 argv[1], conn_ind);

The file handle returned by t_open is stored in a pollfd structure (see poll)
that polls the transport endpoint for incoming data. Notice that only one
transport endpoint is established in this example.

Communication Service Group

TLI: Concepts 1178

An important aspect of this server is that it sets qlen to a value greater than 1
for t_bind. This specifies that the server is willing to handle multiple
outstanding connect indications. Remember that the earlier examples
single-threaded the connect indications and responses. The server accepts
the current connect indication before retrieving additional connect
indications. This example, however, can retrieve up to MAX_CIND connect
indications at one time before responding to any of them. The transport
provider can negotiate the value of qlen downward if it cannot support
MAX_CIND outstanding connect indications.

Once the server has bound its address and is ready to process incoming
connect requests, it does the following:

TLI Asynchronous Mode---Polling for Connect Requests

 pfh.events = POLLIN;

 for (;;)
 {
 if(poll(&pfh, 1, -1) == -1)
 {
 perror("poll");
 exit(1);
 }

 if(pfh.revents != POLLIN)
 {
 perror("poll returned error event");
 exit(1);
 }
 if(t_look(pfh.fd) == T_LISTEN)
 {
 for(i=0; i<conn_ind; i++)
 {
 if(calls[i] == NULL)
 break;
 }
 calls[i]=(struct t_call*)t_alloc(pfh.fd,T_CALL,T_ALL);
 if(calls[i] == NULL)
 {
 t_error("t_alloc");
 exit(1);
 }
 if (t_listen(pfh.fd, calls[i]) == -1)
 {
 t_error("t_listen");
 exit(1);
 }
 if((fh_new = AcceptConnection(i)) != NULL)
 if(BeginThread(ProcessConnection,
 NULL, NULL, fh_new) == -1)
 {
 printf("BeginThread failed\n");

Communication Service Group

TLI: Concepts 1179

 exit(1);
 }
 }
 else
 {
 t_error("t_look");
 exit(1);
 }
 ThreadSwitch();
 } /* for */
} /* main */

The events field of the pollfd structure is set to POLLIN, which notifies the
server of any incoming TLI events. The server then enters an infinite loop, in
which it polls the transport endpoint for events and then processes those
events as they occur.

The poll function blocks because the third parameter, a timeout, is set to -1.
The call waits for an incoming event. On return, revents is checked for an
existing event. If revents is set to POLLIN, t_look is called; if t_look returns
any event other than T_LISTEN, the program exits. If revents is not set to
POLLIN, it indicates that an error occurred on the transport endpoint, and
the server exits.

The calls array contains an entry for each polled transport endpoint, where
each entry consists of an array of t_call structures that hold incoming
connect indications for that transport endpoint. The array is searched for the
next empty slot. Then, struct t_call is allocated. There must always be at least
one free entry in the connect indication array; this is because the calls array
is large enough to hold the maximum number of outstanding connect
indications, as negotiated by t_bind (Function).

The t_listen function is called to process the incoming connect indication,
then the following routine is called to process the connection:

TLI Asynchronous Mode---Processing Connections

/* Assign a new TEP, accept and return new TEP on success */
int *AcceptConnection(int i) {
 int *fhp; /* new TEP handle ptr */

 fhp = (int *)malloc(sizeof(int));

 /* Open new TEP */
 if((*fhp = t_open("/dev/nspx", O_RDWR, NULL)) == -1) {
 t_error("t_open");
 free(fhp);
 exit(1);
 }

 /* Bind it, address is not important here */
 if(t_bind(*fhp, NULL, NULL) == -1) {
 t_error("t_bind");

Communication Service Group

TLI: Concepts 1180

 t_close(*fhp);
 free(fhp);
 exit(1);
 }
 /* Accept the call from a client */
 if(t_accept(pfh.fd, *fhp, calls[i]) == -1) {
 t_error("t_accept");
 t_close(*fhp);
 free(fhp);
 exit(1);
 }

 /* Check if it was disconnect */
 ThreadSwitch();
 if(t_look(*fhp) == T_DISCONNECT) {
 printf("DISCONNECT[%d]\n", calls[i]->sequence);
 if(t_rcvdis(*fhp, NULL) < 0)
 terror("t_rcvdis");
 t_close(*fhp);
 free(fhp);
 t_free((char *)calls[i], T_CALL);
 calls[i] = NULL;
 return NULL;
 }
/* Success, so free calls[i] slot to be reusable by others */
 printf("ACCEPT[%d]\n", calls[i]->sequence);
 t_free((char *)calls[i], T_CALL);
 calls[i] = NULL;
 return fhp;
}

AcceptConnection is called with the parameter i, an index into the calls
array. The parameter i points to an element of the calls array that holds the
outstanding connect indication. A t_call structure is allocated for that entry,
and the connect indication is retrieved using t_listen.

For each indication, the server opens a responding transport endpoint,
binds an address to the endpoint, and then accepts the connection on that
endpoint. When the connect indication is accepted, its entry in the calls
array is freed and is set to NULL. ProcessConnection is called to process the
new connection.

After t_accept is called, you need to determine whether the disconnect
occurred because this is the earliest you can check for this event.

If a disconnect indication arrives, it must correspond to a
previously-received connect indication. This occurs if a client attempts to
cancel a previous connect request. In this case, t_discon structure is allocated
to retrieve the relevant disconnect information. This structure has the
following members:

struct t_discon {
 struct netbuf udata;

Communication Service Group

TLI: Concepts 1181

 int reason;
 int sequence;
}

The udata field identifies any user data that might have been sent with the
disconnect indication. The reason field contains a protocol-specific
disconnect reason code. The sequence field identifies the outstanding connect
indication that matches this disconnect indication.

The disconnect indication is processed by a call to t_rcvdis, the transport
endpoint is closed, and the corresponding entry of the calls array is freed.

As mentioned earlier, ProcessConnection is called as follows:

TLI Asynchronous Mode---ProcessConnection

void ProcessConnection(int *fh) {
 FILE *fp; /* file pointer */
 char iobuf[132]; /* line buffer */

 printf("Client %d\n", *fh);
 if((fp = fopen(LOGFILE, "r")) == NULL)
 {
 printf("Couldn't open file: %s\r\n", LOGFILE);
 free(fh);
 return;
 }

 /* Read lines from a file and send to the client */
 while(fgets(iobuf, sizeof(iobuf), fp) != NULL)
 {
 delay(100); /* timeout and thread switch */
 if(t_look(*fh) == T_DISCONNECT)
 {
 printf("Client %d received disconnect, EXIT.\n", *fh);
 fclose(fp);
 t_close(*fh);
 free(fh);
 return;
 }
 if(t_snd(*fh, iobuf, sizeof(iobuf), NULL) == -1)
 {
 t_error("t_snd");
 fclose(fp);
 t_close(*fh);
 free(fh);
 return;
 }
 }
 fclose(fp);

 /* Send disconnect to the client */
 if(t_snddis(*fh, NULL) == -1)

Communication Service Group

TLI: Concepts 1182

 {
 t_error("t_snddis");
 t_close(*fh);
 free(fh);
 return;
 }

/* Unbind TEP */
 if(t_unbind(*fh) == -1)
 {
 t_error("t_unbind");
 t_close(*fh);
 free(fh);
 return;
 }

 t_close(*fh);
 free(fh);
}

The server calls the BeginThread routine to begin a new thread. Once this
occurs, the ProcessConnection function is executed on the new thread. The
ProcessConnection function is called to manage the data transfer, as shown
in TLI Connection Mode Services.

Parent Topic: TLI Asynchronous Execution Mode

TLI Connection-Oriented Functions

Use the following functions to establish a connection, transfer data, and
release the connection.

Function Header Comment

t_accept tiuser.h Accepts a connection request from a
calling node.

t_connect tiuser.h Requests a connection with the specified
listening node.

t_listen tiuser.h Listens for a connection request from a
calling node.

t_rcv tiuser.h Receives either normal or expedited data
sent from another endpoint with t_snd.

t_rcvconnect tiuser.h Determines the status of a previously sent
connection request.

t_rcvdis tiuser.h Identifies another endpoint's reason for
disconnecting and retrieves user data sent
along with the disconnect.

Communication Service Group

TLI: Concepts 1183

t_rcvrel tiuser.h Acknowledges receipt of an orderly
release (not supported by SPX).

t_snd tiuser.h Sends normal or expedited data to
another endpoint in connection mode.

t_snddis tiuser.h Initiates an abortive release on a
connection.

t_sndrel tiuser.h Initiates an orderly release on a
connection (not supported by SPX).

t_sync tiuser.h Synchronizes the TLI data structures with
information from the transport provider.
(Under SPX, t_sync returns only the
current state of the transport provider.)

Parent Topic: Overview of Transport Protocols

TLI Connectionless Function List

Connectionless Services include functions for sending and receiving data
without the support of a connection.

Function Header Comment

t_rcvudata tiuser.h Receives data sent from another endpoint
by t_sndudata.

t_rcvuderr tiuser.h Receives information concerning an error
of data sent previously from another
endpoint with t_rcvudata.

t_sndudata tiuser.h Sends data to another endpoint in
connectionless mode.

TLI Data Management

TLI defines the following structure types to handle parameters for TLI
operations:

t_bind (Structure)
t_call
t_optmgmt (Structure)
t_discon
t_unitdata
t_uderr

Communication Service Group

TLI: Concepts 1184

t_info

netbuf is a generic type for buffering transport data.

netbuf is one of the keys to TLI's multiprotocol support. Most TLI structure
types contain pointers netbuf. For example, input to t_bind (Function)
includes t_bind (Structure) containing an address a local endpoint will be
bound to.

Nesting netbuf within t_bind (Structure) allows the address to be expressed
in whatever format the local transport provider requires. netbuf helps
separate TLI from the protocol-specific issues related to addressing data.

Parent Topic: TLI Local Management Issues

TLI Error Handling

Two levels of errors are defined in TLI:

Library errors

OS service routine errors

On the library error level, each library function has one or more error return
values. Failures are indicated by a return value of -1. An external integer,
t_errno, holds the specific error number when such a failure occurs. This
value is set when an error occurs but is not cleared on successful library
calls, so it should be tested only after an error has been indicated.

A diagnostic function, t_error, prints information about the current
transport error. The state of the transport provider can change if a transport
error occurs.

The second level of error is the OS service routine level. TSYSERR is a
special library-level error number that is generated by each library function
when an OS service routine fails or some general error occurs. When a
function sets t_errno to TSYSERR, it stores a specific error code in the
external variable errno.

When a protocol error occurs, the transport provider generates the system
error EPROTO. If the error is severe, it can cause the file handle and
transport endpoint to be unusable. To continue, all users of the file must
close it and then reopen and initialize it.

Parent Topic: Overview of TLI Functions

TLI Function Implementation Notes for
IPX/SPX/SPX II

Communication Service Group

TLI: Concepts 1185

The implementation notes in this section provide information specific to the
use of TLI functions for accessing the IPX, SPX, and SPX II transport
protocols in the NetWare environment.

Some of the TLI functions are implemented with IPX, SPX and SPX II. These
functions are listed in the following table.

Table auto. TLI Functions Implemented for IPX, SPX and SPX II

t_alloc t_event t_open

t_bind t_free t_optmgmt

t_blocking t_getinfo t_sync

t_close t_getstate t_unbind

t_error t_look t_nonblocking

Some of the TLI functions are for connectionless, or datagram services only.
The NetWare implementation of TLI used IPX to implement these functions.
These connectionless functions are listed in the following table.

Table auto. TLI Functions Implemented for IPX

t_rcvudata t_rcvuder
r

t_sndudata

Some of the TLI functions are for connection-oriented services. The
NetWare implementation of TLI uses SPX and SPX II, but not IPX, to
implement these functions. These connection-oriented functions are listed in
the following table.

Table auto. TLI Functions Implemented for SPX and SPX II

t_accept t_rcvconne
ct

t_snddis

t_connect t_rcvdis t_sndrel

t_listen t_rcvrel

t_rcv t_snd

The following sections discuss the implementation specific details of the TLI
functions for IPX, SPX, and SPX II. These implementation notes supplement
the function descriptions in IPX: Functions and SPX: Functions.

In each of the following function descriptions, the protocols that use the
functions are listed, within parenthesis, at the first of the description. For
example, IPX, SPX, and SPX II use t_alloc.

Communication Service Group

TLI: Concepts 1186

See the following topics for notes about each TLI function:

IPX/SPX/SPX II Notes: t_accept

IPX/SPX/SPX II Notes: t_alloc

IPX/SPX/SPX II Notes: t_bind

IPX/SPX/SPX II Notes: t_blocking

IPX/SPX/SPX II Notes: t_close

IPX/SPX/SPX II Notes: t_connect

t_error---no implementation-specific details

t_event---no implementation-specific details

t_free---no implementation-specific details

IPX/SPX/SPX II Notes: t_getinfo

t_getstate---no implementation-specific details

IPX/SPX/SPX II Notes: t_listen

t_look---no implementation-specific details

IPX/SPX/SPX II Notes: t_nonblocking

IPX/SPX/SPX II Notes: t_open

t_optmgmt---no implementation-specific details

IPX/SPX/SPX II Notes: t_rcv

IPX/SPX/SPX II Notes: t_rcvconnect

IPX/SPX/SPX II Notes: t_rcvdis

IPX/SPX/SPX II Notes: t_rcvrel

IPX/SPX/SPX II Notes: t_rcvudata

IPX/SPX/SPX II Notes: t_rcvuderr

IPX/SPX/SPX II Notes: t_snd

IPX/SPX/SPX II Notes: t_snddis

IPX/SPX/SPX II Notes: t_sndrel

IPX/SPX/SPX II Notes: t_sndudata

t_sync---no implementation-specific details

Communication Service Group

TLI: Concepts 1187

t_unbind---no implementation-specific details

Parent Topic: NetWare IPX/SPX/SPX II

TLI Function Implementation Notes for OSI

The implementation notes provide information specific to the use of TLI
functions for accessing the OSI transport protocol in NetWare 3.11 and
above. These implementation notes supplement the complete function
descriptions in TLI: Functions. See the following topics:

OSI Notes: t_accept

OSI Notes: t_bind

OSI Notes: t_close

OSI Notes: t_connect

OSI Notes: t_getinfo

OSI Notes: t_listen

OSI Notes: t_open

t_optmgmt---see Options Management Structures

OSI Notes: t_rcv

OSI Notes: t_rcvconnect

OSI Notes: t_rcvdis

t_rcvrel---TP4 does not support orderly release of a connection.

OSI Notes: t_rcvudata

OSI Notes: t_snd

OSI Notes: t_snddis

t_sndrel---TP4 does not support orderly release of a connection.

OSI Notes: t_sndudata

Parent Topic: NetWare OSI

TLI Local Management Function List

Use the following functions to set up and tear down endpoints and to

Communication Service Group

TLI: Concepts 1188

maintain the local TLI environment:

Function Header Comment

t_alloc tiuser.h Dynamically allocates memory for TLI
structure parameters.

t_bind
(Function)

tiuser.h Activates an endpoint and associates a
protocol address with it.

t_blocking tiuser.h Puts an endpoint into blocking mode.
(This function is NetWare specific.)

t_nonblockin
g

tiuser.h Puts an endpoint into nonblocking mode.
(This function is NetWare specific.)

t_close tiuser.h Closes an endpoint and frees any
associated local resources.

t_error tiuser.h Produces a message on the standard error
output describing the most recent TLI
error.

t_free tiuser.h Frees memory previously allocated by
t_alloc.

t_getinfo tiuser.h Returns the current characteristics of the
underlying transport provider for the
specified endpoint.

t_getstate tiuser.h Returns the current state of the transport
provider for the specified endpoint.

t_look tiuser.h Returns the current event on the specified
endpoint.

t_open tiuser.h Opens and initializes an endpoint.

t_optmgmt
(Function)

tiuser.h Retrieves, verifies, and negotiates
protocol options with the transport
provider.

t_unbind tiuser.h Disables the specified endpoint
previously bound by t_bind.

Parent Topic: Overview of Transport Protocols

TLI Local Management Functions and Events

The local management functions help in managing the endpoint locally and
do not involve the transmission of information across the network. The
following table lists the local management functions and the event that
occurs for each upon successful return. Each function supports all three
service types: connectionless, connection-oriented, or connection-oriented
with orderly release.

Communication Service Group

TLI: Concepts 1189

Table auto. Local Management Functions and Events

Function Event

t_open opened

t_bind bind

t_optmgmt optmgmt

t_unbind unbind

t_close closed

The following table illustrates the state transitions that can occur during the
initialization/de-initialization phase. Given a particular state of the
endpoint and a particular event, the table shows that endpoint's next state.
For example, in the same table, assume that the endpoint is in T_UNINIT
state. If the endpoint is opened, the endpoint enters the T_UNBND state. If
the endpoint is bound, it enters the T_IDLE state. Some of the resulting
states include the notation [n] as a suffix, where n is a number from 1
through 4. These notations indicate the necessary action to be taken by the
transport user, as described in next table.

This table also illustrates the state transitions that are not allowed. For
example, the endpoint cannot be opened during the T_UNBND state.
Therefore, the corresponding entry for opened /T_UNBND is marked
Invalid in the table.

Table auto. Initialization/Deinitialization Tasks and State Transitions

Event T_UNINIT State T_UNBND
State

T_IDLE State

opened T_UNBND Invalid Invalid

bind Invalid T_IDLE[1] Invalid

optmgmt Invalid Invalid T_IDLE

unbind Invalid Invalid T_UNBND

closed Invalid T_UNINIT Invalid

Related Topic: Outgoing and Incoming Events

Parent Topic: TLI States

TLI Local Management Issues

Local management issues include the following:

Communication Service Group

TLI: Concepts 1190

TLI Data Management

TLI Memory Allocation

Blocking and Nonblocking Modes

Error Handling in TLI

Endpoint Management in TLI

Parent Topic: Overview of Transport Protocols

TLI Memory Allocation

TLI includes t_alloc and t_free for dynamically allocating and releasing
space for TLI structure variables. TLI does not require you to call these
functions, but they can reduce the amount of work it takes to allocate and
initialize TLI's complex structure variables.

Returning to the t_bind (Structure) example, you must allocate sufficient
space to store the address referenced by addr.buf. The amount of space
required to store the address depends on the local transport provider. By
using t_alloc to dynamically allocate t_bind and other TLI structures, you
can assure such allocations are managed correctly.

Call t_alloc to allocate a structure. As input, t_alloc takes the endpoint, the
structure type, and fields.

The returned structure can be used as a parameter to any number of TLI
functions. The size of all buffers related to TLI structure parameters is based
on the endpoint's transport information. t_alloc can allocate none, some, or
all of the associated buffers.

Parent Topic: TLI Local Management Issues

TLI Programming Example

This section looks at a simple example of how to use TLI to exchange data
between DOS workstations. The example consists of two programs: a DOS
server, dserver.c, and a DOS client, dclient.c. The dserver.c program opens
an endpoint and listens for a connection. The dclient.c program contacts the
server side and asks for the connection. Once the connection is established,
the programs pass a message back and forth and then close the connection.

dserver.c

dclient.c

Communication Service Group

TLI: Concepts 1191

Parent Topic: Overview of Transport Protocols

TLI State Transitioning

Obviously the sequence of TLI operations is very important. You can't
receive packets on a connection until the connection is established. You can't
establish a connection without opening and binding an endpoint. The
relationship between TLI operations can be viewed as a set of finite states,
that is to say, there is a finite set of states that a TLI program can assume.

Finite states are a conceptual tool that can help you understand the
relationships among TLI functions. At any given moment a TLI program is
in a particular state that defines the actions the program must or can
perform. Events move the program from one state to another. The following
table lists the possible TLI states.

Table auto. Table of TLI States

State Comment

T_UNINIT T_UNINIT is the uninitialized state of a TLI program.
At T_UNINIT the program hasn't initialized or has
completed all TLI operations. This is the program's
initial and final state.

T_UNBND At T_UNBND the endpoint is open but not yet bound.
The open operation moves the program from
T_UNINIT to T_UNBND. Closing the endpoint moves
the program back to T_UNINIT.

T_IDLE At T_IDLE the program has bound the endpoint to an
address. A connection mode program can move to
T_INCON or T_OUTCON. A connectionless program
can move to T_DATAXFER by sending or receiving
data. Unbinding the endpoint moves the program
back to T_UNBND.

T_OUTCON T_OUTCON is a connection mode state. At
T_OUTCON the program is attempting to establish a
connection but hasn't received confirmation from the
other side. From T_OUTCON the program can move
to T_DATAXFER by receiving a connection
confirmation. Receiving a refusal from the other side
can move the program back to T_IDLE.

T_INCON T_INCON is a connection mode state. At T_INCON
the program is listening for a connection but hasn't yet
received the connection request from the other side.
From T_ICON the program can move to
T_DATAXFER by receiving and accepting the
connection request. Refusing the connection can move
the program back to T_IDLE.

Communication Service Group

TLI: Concepts 1192

T_DATAXFE
R

At T_DATAXFER the program is sending or receiving
data. A connection mode program can move back to
T_OUTREL by requesting an orderly release and to
T_INREL by receiving a request for an orderly release.
It can move to T_IDLE by sending or receiving an
abortive release. A connectionless program returns to
T_IDLE when it has completed sending or receiving.

T_OUTREL T_OUTREL is a connection mode state. At T_OUTREL
the program has requested an orderly release and is
awaiting a response. Receiving the response moves
the program back to T_IDLE. T_OUTREL isn't
supported by SPX.

T_INREL T_INREL is a connection mode state. At T_INREL the
program has received a request for an orderly release.
Processing the request moves the program back to
T_IDLE. T_INREL isn't support by SPX.

Parent Topic: Overview of Transport Protocols

TLI States

The following table defines the states used to describe TLI state transitions.

Table auto. States Describing TLI State Transitions

State Description Service Type

T_UNINIT Uninitialized initial and final state of
interface

T_COTS,
T_COTS_ORD
, T_CLTS

T_UNBND Initialized but not bound T_COTS,
T_COTS_ORD
, T_CLTS

T_IDLE No connection established T_COTS,
T_COTS_ORD
, T_CLTS

T_OUTCON Outgoing connection pending for
client

T_COTS,
T_COTS_ORD

T_INCON Incoming connection pending for
server

T_COTS,
T_COTS_ORD

T_DATAXFE
R

Data transfer T_COTS,
T_COTS_ORD

T_OUTREL Outgoing orderly release (waiting for
orderly release indication)

T_COTS_ORD

T_INREL Incoming orderly release (waiting to T_COTS_ORD

Communication Service Group

TLI: Concepts 1193

send orderly release request)

Parent Topic: TLI State Transitions

TLI State Tables

The state tables describe TLI state transitions. Given a current state and an
event, the transition to the next state is shown, as well as any actions that the
user must take (indicated by [n]). The state is that of the transport provider
as seen by the user.

The contents of each box represent the next state, given the current state
(column) and the current incoming or outgoing event (row). An empty box
represents a state and event combination that is invalid. Along with the next
state, each box may include an action list (as specified in the previous
section). The transport user must take the specific actions in the order
specified in the state table.

Keep in mind the following when studying state tables:

The t_close routine is referenced in the state tables (see closed event in the
Outgoing Events table) but can be called from any state to close a
transport endpoint. If t_close is called when a transport address is bound
to an endpoint, the address is unbound. Also, if t_close is called when the
transport connection is still active, the connection is aborted.

If a transport user issues a routine out of sequence, the transport provider
recognizes this and the routine fails, setting t_errno to TOUTSTATE. The
state does not change.

If any other transport error occurs, the state does not change unless
otherwise noted. The exception to this is a TLOOK or TNODATA error
on t_connect, as described in the Incoming Events table. The state tables
assume correct use of TLI.

The state tables exclude the following support routines because they do
not affect the state: t_getinfo, t_getstate, t_alloc, t_free, t_sync, t_look,
and t_error.

The following state tables are provided.

Table auto. Common Local Management State Table

Event T_UNINIT
State

T_UNBND
State

T_IDLE State

opened T_UNBND

bind T_IDLE[1]

optmgmt T_IDLE

Communication Service Group

TLI: Concepts 1194

unbind T_UNBND

closed T_UNINIT

Table auto. Connectionless-Mode State Table

Event T_IDLE State

sndudata T_IDLE

rcvudata T_IDLE

rcvuderr T_IDLE

Table auto. Connection-Mode State Table

Current State Event Next State

T_IDLE connect1 T_DATAXFER

T_IDLE connect2 T_OUTCON

T_IDLE listen T_INCON[2]

T_IDLE pass_conn T_DATAXFER

T_OUTCON rcvconnect T_DATAXFER

T_OUTCON snddis1 T_IDLE

T_OUTCON rcvdis1 T_IDLE

T_INCON listen T_INCON[2]

T_INCON accept1 T_DATAXFER[3]

T_INCON accept2 T_IDLE[3] [4]

T_INCON accept3 T_INCON[3] [4]

T_INCON snddis1 T_IDLE[3]

T_INCON snddis2 T_INCON[3]

T_INCON rcvdis2 T_IDLE[3]

T_INCON rcvdis3 T_INCON[3]

T_DATAXFE
R

snd T_DATAXFER

T_DATAXFE
R

rcv T_DATAXFER

T_DATAXFE
R

snddis1 T_IDLE

T_DATAXFE
R

rcvdis1 T_IDLE

T_DATAXFE
R

sndrel T_OUTREL

Communication Service Group

TLI: Concepts 1195

T_DATAXFE
R

rcvrel T_INREL

T_OUTREL rcv T_OUTREL

T_OUTREL snddis1 T_IDLE

T_OUTREL rcvdis1 T_IDLE

T_OUTREL rcvrel T_IDLE

T_INREL snd T_INREL

T_INREL snddis1 T_IDLE

T_INREL rcvdis1 T_IDLE

T_INREL sndrel T_IDLE

Parent Topic: Transport User Actions

TLI Terms

The following defines terms that are frequently used in the TLI
environment:

active transport user

The transport user that initiates a connection.

asynchronous execution

The mode of execution in which transport service functions do not
wait for specific asynchronous events to occur before returning control
to the user, but instead return immediately if the event is not pending.

ETSDU

Expedited Transport Service Data Unit. The expedited data that is
transmitted over a transport connection. Its identity is preserved from
one end of a transport connection to the other.

passive transport user

The transport user that listens for an incoming connect indication.

protocol address

The address, also known as the Transport Service Access Point (TSAP)
address, that identifies the transport user. This interface places no
particular structure or semantics on an address.

synchronous execution

The mode of execution in which transport service functions wait for
specific asynchronous events to occur before returning control to the
user.

transport endpoint

The communication path identified by a file handle, between a

Communication Service Group

TLI: Concepts 1196

transport user and a specific transport provider.

transport provider

The transport protocol that provides the services of the TLI.

transport user

The user-level application or protocol that is accessing the services of
TLI.

TSDU

Transport Service Data Unit. The user data that is transmitted over a
transport connection. Its identity is preserved from one end of a
transport connection to the other.

Parent Topic: Overview of TLI Functions

Transferring Data in TLI

Once you have established a connection, you send and receive data with
t_snd and t_rcv. Both functions can execute in synchronous or asynchronous
mode according to the configuration of the endpoint.

Receiving Data

Call t_rcv to receive data. As input, this function takes the endpoint, a buffer
for receiving data, the buffer size, and space to receive control flags. t_rcv
returns the number of bytes received:

int t_rcv(int fh, char *buf, unsigned nbytes, int
*flags);

If the data has been fragmented, the T_MORE flag is set. You should
continue calling t_rcv until the flag is cleared.

A typical way to set up a data transfer is for the sending side to loop on
t_snd, checking for an error value that signals a disconnection:

while ((bytes=t_snd(fh, buf, sizeof(buf), 0)) == -1) {
 if (t_errno == TLOOK && t_look(fh) == T_DISCONNECT)
 /* disconnect */
 .
 .
}

At the same time, the receiving side loops on t_rcv, also checking for a
disconnection. Either function will return a TLOOK value if the other side
closes or loses the connection:

while ((bytes=t_rcv(fh, buf, sizeof(buf), &flags)) == -1) {
 if (t_errno == TLOOK && t_look(fh) == T_DISCONNECT)

Communication Service Group

TLI: Concepts 1197

 if (t_errno == TLOOK && t_look(fh) == T_DISCONNECT)
 /* disconnect */
 .
 .
 else
 /* move the data out of the buffer */
 if (fwrite(buf, 1, sizeof(buf), stdout) < 0)
 exit(1);
}

Sending Data

Call t_snd to send data. As input, this function takes the endpoint, a buffer
containing the data to transfer, the buffer size, and any control flags. t_snd
returns the number of bytes sent successfully:

int t_snd(int fh, char *buf, unsigned nbytes, int
flags);

If the amount of data is too large for the buffer you have defined, you can
set the T_MORE control in flags. Setting T_MORE tells the transport
provider you need to make several calls to t_snd to complete the send
operation. Be sure to clear T_MORE the last time you call t_snd.

t_snd itself can set the T_MORE flag if it returns before it is able to send the
number of bytes you specify. This would only happen if you had opened
the endpoint in nonblocking mode.

Parent Topic:

Connection Mode Service

Transport Provider States

The transport provider exists in a particular state at any given time. For
example, when a transport provider is not yet initialized, it is in a
T_UNINIT state. Once it is initialized, the provider is in a T_UNBND state.
The following table, Transport Provider States, shows all the possible states
of the transport provider as seen by the transport user. The service type can
be connectionless, connection-oriented, or connection-oriented with orderly
release.

State Description Service Type

T_UNINIT Uninitialized. This is the initial and
final state of TLI.

T_COTS,
T_CLTS,
T_COTS_ORD

T_UNBND Unbound. T_COTS,

Communication Service Group

TLI: Concepts 1198

T_CLTS,
T_COTS_ORD

T_IDLE No connection established. The
sndudata, rcvudata, and rcvuderr
events cause the endpoint to remain
in the T_IDLE state.)

T_COTS,
T_CLTS,
T_COTS_ORD

T_OUTCON Outgoing connection pending for the
active user.

T_COTS
T_COTS_ORD

T_INCON Incoming connection pending for the
passive user.

T_COTS,
T_COTS_ORD

T_DATAXFE
R

Data transfer. T_COTS,
T_COTS_ORD

T_OUTREL Outgoing orderly release (waiting for
orderly release indication).

T_COTS_ORD

T_INREL Incoming orderly release (waiting to
send an orderly release request).

T_COTS_ORD

Related Topics

TLI Local Management Functions and Events

Sequence of TLI Functions

Rules for Maintaining the State of TLI

Rules for Connection-Oriented Transport Service

Guidelines for Writing Protocol-Independent Software

Parent Topic: Overview of TLI Functions

Transport User Actions

In the state tables (see TLI State Tables), some state transitions are
accompanied by a list of actions the transport user must take. The notation [
n] represents these actions, where n is the number of the specific action, as
listed in the following table.

Table auto. List of Actions for Values of n

Value of
n

Corresponding Action

1 Set the count of outstanding connect indications to zero

2 Increment the count of outstanding connect indications

3 Decrement the count of outstanding connect indications

Communication Service Group

TLI: Concepts 1199

4 Pass a connection to another transport endpoint as
indicated in t_accept

Parent Topic: TLI State Transitions

WinSock 2

WinSock 2 is replacing TLI as the transport of choice since WinSock 2
supports Internet Protocols (IP).

See the http://www.stardust.com URL for more information.

Write

The user can transmit data over the transport connection using write. The
tirdwr module passes data to the transport provider. However, if a user
attempts to send a zero-length data packet (which the STREAMS
mechanism allows), tirdwr discards the message.

If the transport connection is aborted (for example, because the remote user
aborts the connection using t_snddis), a STREAMS hangup condition is
generated on that STREAM, and further write calls fail and set errno to
ENXIO. The user can still retrieve any available data after a hangup.

Parent Topic: A TLI Read/Write Interface

Communication Service Group

TLI: Concepts 1200

TLI: Functions

Communication Service Group

TLI: Functions 1201

poll

Monitors input and output on a set of file descriptors that reference open
transport endpoints to allow multiplexing on those endpoints
Local Servers: blocking
Remote Servers: N/A
Platforms: DOS, NLM™, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <poll.h>

int poll (
 struct pollfd fds[],
 unsigned long nfds,
 int timeout);

Parameters

fds

(OUT) Points to an array of file descriptors and events to be polled.

nfds

(IN) Specifies the number of file descriptors to be polled.

timeout

(IN) Specifies the number of milliseconds poll should wait for an
event if no events are pending (-1 specifies a wait forever).

Return Values

Upon successful completion, poll returns a non-negative value indicating
the number of file descriptors that have been selected. A value of 0
indicates that the call timed out and that no file discriptors have been
selected. Upon failure, poll returns -1 and sets errno to indicate the error
(see remarks).

Remarks

NOTE: While poll is not defined in the TLI standard, the use of poll is
common in TLI applications. Therefore, the documentation for poll is
grouped with TLI Services as a matter of convenience for the developer.

NLM applications can also use poll with NetWare STREAMS Services.

Upon failure, poll sets errno to one of the following values:

Communication Service Group

TLI: Functions 1202

EAGAI
N

The allocation of internal data structures failed, but the
request should be attempted again.

EINTR A signal was caught during the poll system call.

EINVAL The argument nfds is less than zero or greater than
[OPEN_MAX].

poll examines each file descriptor for the requested event, and on return,
indicates which events have occurred for each file descriptor.

poll identifies those transport endpoints over which the user can send or
receive data, or on which certain events have occurred. For each endpoint
of interest, the application fills out a pollfd structure specifying the file
descriptor to examine and the events to monitor.

The pollfd structure is defined in POLL.H

An application can specify which events to query by setting the bits in
the events field of the pollfd structure that is associated with the file
descriptor. events is a bitmask that is set to the bitwise inclusive OR of
events to be monitored on the associated file descriptor. This bitmap can
include the following events:

POLLIN Is input data is available on the transport endpoint
associated with the given file descriptor?

POLLPR
I

Is a priority message is available on the transport endpoint
associated with the given file descriptor?

POLLO
UT

Is the transport endpoint associated with the given file is
writable? That is, has the endpoint relieved the flow control
that would prevent an application from sending data over
that endpoint?

When poll is called, it examines each element in the fds array. For each
element in the array, it examines the file descriptor, specified by fd, for the
events specified in events field. It then sets revents to indicate which of the
requested events has occurred. (If fd is set to a value less than zero, poll
ignores events and sets revents to zero.)

If poll succeeds, the calling application examines the revents field of each
element in the fds array. If revents is set to 0, no event has occurred on that
file descriptor. If revents is set to a value other than 0, an event has
occurred on that file descriptor. revents can also contain notification of
error conditions. The following values are valid for revents:

POLLIN Input data is available on the transport endpoint associated
with the given file descriptor.

Communication Service Group

TLI: Functions 1203

POLLPR
I

A priority message is available on the transport endpoint
associated with the given file descriptor.

POLLO
UT

The transport endpoint associated with the given file is
writable. That is, the endpoint has relieved the flow control
that would prevent a user from sending data over that
endpoint.

POLLER
R

A fatal error has occurred in some module or driver on the
transport endpoint associated with the specified file
descriptor. Further function calls will fail.

POLLH
UP

A hangup condition exists on the transport endpoint
associated with the specified file descriptor.

POLLN
VAL

The specified file descriptor is not associated with an open
transport endpoint.

An application uses the value of revents to determine what actions it can
take on the associated file descriptor. For example, if revents is set to
POLLIN, incoming data is available and can be read from the device
associated with the file descriptor.

Besides identifying the events that have occurred on a file descriptor, the
revents field can also specify errors that have occurred on the file
descriptor. For example, if POLLIN is requested in events, and poll sets
the associated revents field to a value other than 0 or POLLIN, an error
event must have occurred on the associated transport endpoint, because
the only requested event was POLLIN.

The POLLERR, POLLHUP, and POLLNVAL events cannot be polled for
by placing them in the events field before calling poll. Instead, these
events are reported in revents whenever they occur.

If no event has occurred on any of the polled file descriptors, the
behavior of poll depends upon the value of the timeout parameter. If
timeout is a positive value, poll waits at least that many milliseconds
before returning. If timeout is 0, poll returns immediately after examining
the file descriptors. If timeout is -1, poll blocks until an event has occurred
on at least one of the specified file descriptors.

poll is not affected by the O_NDELAY and O_NONBLOCK flags.

See Also

getmsg, putmsg

Communication Service Group

TLI: Functions 1204

t_accept

Accepts a connect request
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

intt_accept(
 int fd,
 int resfd,
 struct t_call *call);

Parameters

fd

(IN) Indicates the local transport endpoint where the connect
indication arrived.

resfd

(OUT) Indicates the local transport endpoint where connection is to be
established.

call

(IN/OUT) Points to the information required by the transport
provider to complete the connection.

Return Values

Successful

-1 Failure (sets t_errno Code)

t_errno Values

Upon successful completion, t_accept returns a value of 0. Otherwise, it
returns a value of -1. On failure, it sets t_errno to one of the following:

TBADF Specified file handle does not refer to a transport

Communication Service Group

TLI: Functions 1205

endpoint, or the user is illegally accepting a
connection on the same transport endpoint on which
the connect indication arrived.

TOUTSTATE Function was issued in the wrong sequence on the
transport endpoint referenced by fd, or the transport
endpoint referred to by resfd is not in T_IDLE.

TACCESS User cannot access specified option.

TBADOPT Specified protocol options were in an incorrect format
or contained illegal information.

TBADDATA Amount of user data specified was not within the
bounds allowed by the transport provider.

TBADADDR Specified protocol address was in an incorrect format
or contained illegal information.

TBADSEQ Invalid sequence number was specified.

TLOOK Asynchronous event has occurred on the transport
endpoint referenced by fd and requires immediate.
attention

TNOTSUPPO
RT

Underlying transport provider does not support this
function.

TSYSERR System error occurred during execution of this
function.

Remarks

t_accept is issued by a transport user to accept a connect request.

Blocking Informationt_accept blocks if t_open was called in blocking mode
or if t_blocking was called. It is nonblocking if t_open was called in
nonblocking mode or if t_nonblocking was called.

call points to a t_call structure, which is defined in TIUSER.H.

A transport user can accept a connection on the same local transport
endpoint as the one on which the connect indication arrived, or on a
different one.

If the same endpoint is specified (that is, resfd = fd), the connection can
be accepted unless the user has received other indications on that
endpoint but has not responded to them (with t_accept or t_snddis).
For this condition, t_accept fails and sets t_errno to TBADF.

If a different transport endpoint is specified (resfd != fd), the endpoint
must be bound to a protocol address and must be in T_IDLE (see
t_getstate) before t_accept is called.

For both types of endpoints, t_accept fails and sets t_errno to TLOOK if
indications (that is, a connect or disconnect) are waiting to be received on

Communication Service Group

TLI: Functions 1206

the endpoint.

The values of opt and the syntax of those values are protocol-specific.

udata enables the called transport user to send user data to the caller. The
amount of user data must not exceed the limits supported by the
transport provider, as returned in connect of info of t_open or t_getinfo. If
len of udata is zero, no data will be sent to the caller.

See Also

t_connect, t_getstate, t_listen, t_open, t_optmgmt (Function),
t_rcvconnect, AppleTalk Notes: t_accept, IPX/SPX/SPX II Notes: t_accept
, OSI Notes: t_accept, TCP/IP and TCP/IPX Notes: t_accept

Example

t_accept

int listen_fd, conn_fd;
struct t_call *call;
 .
 .
 .
/* Bind to any address */
if (t_bind(conn_fd, NULL, NULL) == -1)
{
 t_error(t_bind ");
 exit(1);
}
/* Accept connection */
if (t_accept(listen_fd, conn_fd, call) == -1)
{
 if ((t_errno == TLOOK) && (t_look(listen_fd) == T_DISCONNECT))
 {
 if (t_rcvdis(listen_fd, NULL) == -1)
 {
 t_error("t_rcvdis");
 exit(1);
 }
 t_error("t_accept");
 exit(1);
 }
}

Communication Service Group

TLI: Functions 1207

t_alloc

Dynamically allocates memory for various TLI function argument
structures and buffers referenced by the structures
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

char t_alloc(
 int fd,
 int struct_type,
 int fields);

Parameters

 fd

(IN) Indicates the local transport endpoint through which to pass the
newly allocated structure.

struct_type

(IN) Indicates the structure to which to allocate memory.

fields

(IN) Indicates the memory allocated to the buffers associated with the
specified fields.

Return Values

NULL Failure (sets t_errno Code)

Pointer Successful

t_errno Values

On successful completion, t_alloc returns a pointer to the newly allocated
structure. On failure, it returns NULL and sets t_errno to one of the
following:

Communication Service Group

TLI: Functions 1208

TBADF Specified file handle does not refer to a transport
endpoint

TSYSERR System error occurred during execution

TNOTSUPPO
RT

Underlying transport provider does not support this
function

TNOSTRUCT
YPE

Specified struct_type is not supported

Remarks

t_alloc allocates memory for TLI structures.

Blocking InformationIn the NLM platform, t_alloc blocks if t_open was
called in blocking mode or if t_blocking was called. It is nonblocking if
t_open was called in nonblocking mode or if t_nonblocking was called.

The structure to allocate is specified by struct_type and can be one of the
following:

Structure
Type

Structure

T_BIND t_bind

T_CALL t_call

T_OPTMGMT t_optmgmt

T_DIS t_discon

T_UNITDAT
A

t_unitdata

T_UDERROR t_uderr

T_INFO t_info

Each one of these structures can subsequently be used as an argument to
one or more TLI functions.

Each of the struct_type structures except T_INFO contains at least one
field of type struct netbuf, which is defined in TIUSER.H.

For each field that is a netbuf structure, the user can specify that the
buffer for that field should be allocated as well. (netbuf is defined in
TIUSER.H.)

The fields argument specifies this option, where the argument is the
bitwise-or of any of the following:

Communication Service Group

TLI: Functions 1209

T_ADD
R

The addr field of the t_bind, t_call, t_unitdata, or t_uderr
structures.

T_OPT The opt field of the t_optmgmt, t_call, t_unitdata, or t_uderr
structures.

T_UDA
TA

The udata field of the t_call, t_discon, or t_unitdata
structures.

T_ALL All relevant fields of the given structure.

Each one of these structures can subsequently be used as an argument to
one or more TLI functions.

Each struct_type except T_INFO contains at least one field of struct netbuf.
For each structnetbuf, the user may specify that the buffer for that field
should be allocated as well.

fields specifies this option, where the argument is the bitwise OR of any of
the following:

For each field specified in fields, t_alloc allocates memory for the buffer
associated with the field and initializes buf and maxlen, accordingly.

The length of the buffer allocated is based on the same size information
that is returned to the user on t_open and t_getinfo. Thus, fd must refer to
the transport endpoint through which the newly allocated structure is
passed, so that the appropriate size information can be accessed. If the
size value associated with any specified field is -1 or -2 (see t_open or
t_getinfo), t_alloc cannot determine the size of the buffer to allocate and
fails, setting t_errno to TSYSERR and errno to EINVAL. For any field not
specified in fields, buf is set to NULL and maxlen is set to zero.

Calling t_alloc to allocate structures helps ensure the compatibility of
user programs with future releases of the TLI.

See Also

t_free, t_getinfo, t_open, IPX/SPX/SPX II Notes: t_alloc

Example

t_alloc

/*
 Allocate a structure of type struct t_bind and
 allocate all the relevant fields of that structure
*/
if ((bind = (struct t_bind *) t_alloc(listen_fd, T_BIND, T_ALL)) == NULL)
{
 t_error("t_alloc");
 exit(0);

Communication Service Group

TLI: Functions 1210

}

Communication Service Group

TLI: Functions 1211

t_bind (Function)

Associates a protocol address with the specified transport endpoint and
activates that transport endpoint
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

*int t_bind(
 int fd,
 struct t_bind *req,
 struct t_bind *ret);

Parameters

fd

(IN) Indicates the local transport endpoint to be activated.

req

(IN) Points to the request that an address, represented by netbuf, be
bound to the given transport endpoint.

ret

(OUT) Points to the address the transport provider acutally bound to
the transport endpoint; this may be different from the address
specified by the user in req.

Return Values

0 Successful

-1 Failure (sets t_errno Code)

t_bind returns 0 if successful. Otherwise, it returns a value of -1. On
failure, it sets t_errno to one of the following:

t_errno Values

Communication Service Group

TLI: Functions 1212

TBADF Specified file handle does not refer to a transport
endpoint

TOUTSTATE Function was issued in the wrong sequence

TBADADDR Specified protocol address was in an incorrect format
or contained illegal information

TACCESS User cannot access specified option

TNOADDR Transport provider could not allocate an address

TBUFOVFLW Number of bytes allowed for an incoming argument is
not sufficient to store the value of that argument. The
provider's state changes to T_IDLE and the
information to be returned in ret is discarded

TSYSERR System error occurred during execution of this
function

TADDRBUSY Address the transport provider bound to the transport
endpoint is busy.

Remarks

Blocking Information t_bind blocks if t_open was called in blocking mode
or if t_blocking was called. It is nonblocking if t_open was called in
nonblocking mode or if t_nonblocking was called.

req and ret point to t_bind (Structure), which is defined in TIUSER.H.

Fields req ret

maxle
n

Has no meaning for req Specifies the maximum size of the
address buffer. If maxlen is not
large enough to hold the returned
address, an error results.

len Specifies the number of
bytes in the address.

Specifies the number of bytes in
the bound address.

buf Points to the address
buffer.

Points to the buffer where the
address is to be placed.

If the requested address is not available or if no address is specified in req
(len of addr in req is zero), the transport provider can assign an
appropriate address to be bound and return that address in addr of ret.
The user can compare the addresses in req and ret to determine whether
the transport provider bound the transport endpoint to a different
address than that requested.

req can be NULL if the user does not want to specify an address to be
bound. Here, qlen is assumed to be zero, and the transport provider must
assign an address to the transport endpoint. Similarly, ret may be NULL

Communication Service Group

TLI: Functions 1213

if the user does not care what address was bound by the provider and is
not interested in the negotiated value of qlen. It is valid to set req and ret to
NULL for the same function, in which case the provider chooses the
address to bind to the transport endpoint and does not return that
information to the user.

qlen has meaning only when initializing a connection-mode service. It
specifies the number of outstanding connect indications the transport
provider should support for the given transport endpoint. An
outstanding connect indication is one that the transport provider has
passed to the transport user. A value of qlen greater than zero is
meaningful only when issued by a passive transport user that expects
other users to call it. qlen is negotiated by the transport provider and can
be changed if the transport provider cannot support the specified number
of outstanding connect indications. On return, qlen in ret contains the
negotiated value.

t_bind allows more than one transport endpoint to be bound to the same
protocol address (if the transport provider supports this capability).
However, it is not allowable to bind more than one protocol address to
the same transport endpoint. If a user binds more than one transport
endpoint to the same protocol address, only one endpoint can be used to
listen for connect indications associated with that protocol address.

Only one t_bind for a given protocol address can specify a value of qlen
greater than zero. In this way, the transport provider can identify which
transport endpoint should be notified of an incoming connect indication.
If a user attempts to bind a protocol address to a second transport
endpoint with a value of qlen greater than zero, the transport provider
can assign another address to be bound to that endpoint. If a user accepts
a connection on the transport endpoint that is being used as the listening
endpoint, the bound protocol address will be found to be busy for the
duration of that connection. For a given protocol address, there can be
only one listening endpoint at any time. This prevents more than one
transport endpoint bound to the same protocol address from accepting
connect indications.

See Also

t_alloc, t_close, t_open, t_optmgmt (Function), t_unbind, AppleTalk
Notes: t_bind, IPX/SPX/SPX II Notes: t_bind, OSI Notes: t_bind, TCP/IP
Notes: t_bind, TCP/IPX Notes: t_bind

Example

t_bind

The following example illustrates calling the t_bind function to bind to any
address, which is typically done by a client. The transport server allocates an
address.

Communication Service Group

TLI: Functions 1214

rc = t_bind(fd, NULL, NULL);
if (rc == -1)
{
 t_error("t_bind");
 exit(1);}

The following example for the TCP/IP protocol illustrates using the t_bind
function to bind to a specific address, which is typically done by a server.

#define SRV_PORT 7
#define SRV_ADDR "130.57.7.77"
#define MAX_CIND 5

 /* Allocate the address request structure */
 if ((bind = (struct t_bind *) t_alloc(listen_fd, T_BIND, T_ALL)) == NULL)
 {
 t_error("t_alloc");
 exit(1);
 }
 /*
 Allocate a structure to check the returned
 information
 */
 if ((bound = (struct t_bind *) t_alloc(listen_fd, T_BIND, T_ALL)) == NULL)
 {
 t_error("t_alloc");
 exit(1);
 }
 /* Specify the socket you want to bind to */
 /*
 Specify the max. no. of outstanding connect
 indications
 */
 bind->qlen = MAX_CIND;
 /* Length of the protocol address */
 bind->addr.len = sizeof (struct sockaddr_in);
 sinpt = (struct sockaddr_in *) bind->addr.buf;
 /* Family for internet protocols */
 sinpt->sin_family = AF_INET;
 /* Wellknown port */
 sinpt->sin_port = SRV_PORT;
 /* Local address */
 sinpt->sin_addr.s_addr = inet_addr(SRV_ADDR);
 if (t_bind(listen_fd, bind, bound) == -1)
 {
 t_error("t_bind");
 exit(1);
 }
 /* Check if this port is the one you wanted to bind to */
 if (((struct sockaddr_in *) (bound->addr.buf))->sin_port != SRV_PORT)
 {
 printf("Bound wrong address\n");

Communication Service Group

TLI: Functions 1215

 exit(1);
 }

Communication Service Group

TLI: Functions 1216

t_blocking

Puts the transport into a blocking mode (NetWare® specific)
Local Servers: nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_blocking(
 int fd);

Parameters

fd

(IN) Indicates the local transport endpoint where the transport is to be
put into blocking mode.

Return Values

0 Successful

-1 Failure (sets t_errno Code)

t_errno Values

t_blocking returns a value of 0 if it is successful. If an error occurs, it
returns a value of -1 and sets t_errno to the following:

TBADF Specified file handle does not refer to a transport endpoint

Remarks

t_blocking can be useful in a multitasking environment, because it is not
always desirable to do "busy waiting." In the case of busy waiting, the
user consumes processor cycles checking for work, sometimes only to
find that there is no work. Since the NetWare operating system is a
nonpreemptive operating system, busy waiting would mean no other

Communication Service Group

TLI: Functions 1217

threads could work while the user is checking for work.

The blocking mode forces the NetWare operating system to make the
user's thread sleep until I/O is available.

See Also

t_nonblocking, IPX/SPX/SPX II Notes: t_blocking

Communication Service Group

TLI: Functions 1218

t_close

Informs the transport provider the user is finished with the specified
transport endpoint, frees any local library resources associated with the
endpoint, and closes the file associated with the transport endpoint
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_close(
 int fd);

Parameters

fd

(IN) Indicates the local transport endpoint for which associated local
library resources are to be freed.

Return Values

0 Successful

-1 Failure (sets t_errno Code)

t_errno Values

The t_close function returns 0 if successful. If an error occurs, it returns a
value of -1. On failure, it sets t_errno to the following:

TBADF Specified file handle does not refer to a transport endpoint

Remarks

t_close should be called from the T_UNBND state (see t_getstate).
However, this function does not check state information, so it can be
called from any state to close a transport endpoint. If this occurs, the local

Communication Service Group

TLI: Functions 1219

library resources associated with the endpoint is freed automatically. In
addition, a close is issued for that file handle; the close is abortive if no
other process has that file open and breaks any transport connection that
might be associated with that endpoint.

Blocking Informationt_close blocks if t_open was called in blocking mode
or if t_blocking was called. It is nonblocking if t_open was called in
nonblocking mode or if t_nonblocking was called.

See Also

t_getstate, t_open, t_unbind, AppleTalk Notes: t_close, IPX/SPX/SPX II
Notes: t_close, OSI Notes: t_close, TCP/IP and TCP/IPX Notes: t_close

Example

t_close

int rc, fd;
 .
 .
 .
/* Close the endpoint */
rc = t_close(fd);
if (rc == -1) {
 t_error("t_close");
 exit(1);
}

Communication Service Group

TLI: Functions 1220

t_connect

Enables a transport user to request a connection to the specified destination
transport user
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_connect(
 int fd,
 struct t_call *sndcall,
 struct t_call *rcvcall);

Parameters

fd

(IN) Indicates the local transport endpoint where communication will
be established.

sndcall

(IN) Indicates the information needed by the transport provider to
establish a connection.

 rcvcall

(OUT) Indicates the information associated with the newly established
connection.

Return Values

0 Successful

-1 Failure (sets t_errno Code)

t_errno Values

The t_connect function returns 0 if successful. Otherwise, it returns a
value of -1. On failure, it sets t_errno to one of the following:

Communication Service Group

TLI: Functions 1221

TBADF Specified file handle does not refer to a transport
endpoint

TOUTSTATE Function was issued in the wrong sequence

TNODATA O_NDELAY was set so the function successfully
initiated the connection establishment procedure, but
it did not wait for a response from the remote user

TBADADDR Specified protocol address was in an incorrect format
or contained illegal information

TACCESS User cannot access specified option

TBADOPT Specified protocol options were in an incorrect format
or contained illegal information

TBADDATA Amount of user data specified was not within the
bounds allowed by the transport provider

TBUFOVFLW Number of bytes allocated for an incoming argument
is not sufficient to store the value of that argument. If
executed in synchronous mode, the provider's state (as
seen by the user) changes to T_DATAXFER and the
connect indication information to be returned in
rcvcall is discarded

TLOOK Asynchronous event has occurred on this transport
endpoint and requires immediate attention

TNOTSUPPO
RT

Underlying transport provider does not support this
function

TSYSERR System error occurred during execution

Remarks

t_open enables a transport user to request a connection to the destination
transport user.

Blocking Informationt_connect blocks if t_open was called in blocking
mode or if t_blocking was called. It is nonblocking if t_open was called in
nonblocking mode or if t_nonblocking was called.

sndcall and rcvcall point to a t_call structure, which is defined in
TIUSER.H. For this function, the fields of t_call have the following
meanings:

Fields sndcall rcvcall

addr Specifies the protocol address
of the destination transport
user.

Returns the protocol
address associated with
the responding transport
endpoint.

opt Presents any protocol-specific Presents any

Communication Service Group

TLI: Functions 1222

information that might be
needed by the transport
provider.

protocol-specific
information associated
with the connection.

udata Points to the optional user data
that may be passed to the
destination transport users
during connection
establishment. If len of udata is
zero in sndcall, no data is sent to
the destination transport user.

Points to the optional user
data that may be returned
by the destination
transport user during
connection establishment.

sequence Has no meaning for this
function.

Has no meaning for this
function.

The transport provider is free to specify the structure of any options
passed to it. These options are specific to the underlying protocol of the
transport provider. The user can choose not to negotiate protocol options
by setting len of opt to zero. Then the provider may use default options.

udata enables the caller to pass user data to the destination transport user
and receive user data from the destination user during connection
establishment. However, the amount of user data must not exceed the
limits supported by the transport provider, as returned by t_open or
t_getinfo.

On return, addr, opt, and udata of rcvcall are updated to reflect values
associated with the connection. Thus, maxlen of each argument must be
set before calling t_connect to indicate the maximum size of the buffer for
each. However, rcvcall may be NULL, in which case no information is
given to the user on return from t_connect.

The netbuf structure used in the t_call structure is defined in TIUSER.H:

By default, t_connect executes in synchronous mode and waits for the
destination user's response before returning control to the local user. A
successful return (that is, a return value of zero) indicates the requested
connection has been established. However, if O_NDELAY is set (by
calling t_open), t_connect executes in asynchronous mode. In this case
t_connect does not wait for the remote user's response but returns control
immediately to the local user. It also returns -1 with t_errno set to
TNODATA to indicate the connection has not yet been established. It
simply initiates the connection establishment procedure by sending a
connect request to the destination transport user.

See Also

t_accept, t_alloc, t_getinfo, t_listen, t_open, t_optmgmt (Function),
t_rcvconnect, AppleTalk Notes: t_connect, IPX/SPX/SPX II Notes:
t_connect, OSI Notes: t_connect, TCP/IP Notes: t_connect, TCP/IPX
Notes: t_connect

Communication Service Group

TLI: Functions 1223

Example

t_connect

 rc = t_connect(fd,sndcall, NULL);
 if (rc == -1)
 {
 if (t_errno != TNODATA)
 {
 t_error("t_connect");
 exit(1);
 }
 }

Communication Service Group

TLI: Functions 1224

t_error

Produces a message on the standard error output describing the last error
encountered by calling a TLI function
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

void t_error(
 char *errmsg);

Parameters

errmsg

(IN) Indicates the user-supplied error message that gives context to the
error.

Return Values

0 Successful

-1 Failure (sets t_errno Code)

t_errno Values

On failure, t_errno is set to the following:

TNOTSUPPO
RT

Underlying transport provider does not support this
function

Remarks

Blocking Informationt_error blocks if t_open was called in blocking mode
or if t_blocking was called. It is nonblocking if t_open was called in
nonblocking mode or if t_nonblocking was called.

Communication Service Group

TLI: Functions 1225

The t_error function prints the user-supplied error message followed by a
colon and a standard error message for the current value contained in
t_errno. If t_errno is TSYSERR, t_error also prints the standard error
message for the current value contained in errno.

When an error occurs, t_errno is set and is not cleared on subsequent
successful calls.

t_errno can be used as an index into the t_errlist array to retrieve the error
message string (without a terminating newline).

The error message strings are provided in the t_errlist array. The
maximum index value for the t_errlist array is defined by the t_nerr
variable.

Example

t_error

If a t_connect function fails on transport endpoint fd because a bad address
was given, the following call might follow the failure:

t_error("t_connect failed on fd");

The diagnostic message would print as:

t_connect failed on fd: Incorrect transport address format

where "t_connect failed on fd" tells the user which function failed on which
transport endpoint, and "Incorrect transport address format" identifies the
specific error that occurred.

rc = t_connect(fd, sndcall, NULL);
if (rc == -1)
{
 t_error("t_connect failed on fd");
 exit(1);
}

Communication Service Group

TLI: Functions 1226

t_free

Frees memory previously allocated by t_alloc

Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_free(
 char *ptr,
 int struct_type);

Parameters

ptr

(IN) Points to one of the six structure types described for t_alloc.

struct_type

(IN) Indicates the structure for which memory will be freed.

Return Values

0 Successful

-1 Failure (sets t_errno Code)

t_errno Values

The t_free function returns 0 if successful. Otherwise, it returns a value of
-1. On failure, it sets t_errno to the following:

TSYSERR System error occurred during execution of this
function

TNOTSUPPO
RT

Underlying transport provider does not support this
function

Remarks

Communication Service Group

TLI: Functions 1227

t_free frees memory allocated by t_alloc. t_free frees memory both for
the specified structure and for buffers referenced by the structure.

Blocking Informationt_free blocks if t_open was called in blocking mode or
if t_blocking was called. It is nonblocking if t_open was called in
nonblocking mode or if t_nonblocking was called.

The netbuf structure used in the t_call structure is defined in TIUSER.H.

If buf is NULL, t_free does not attempt to free memory. After all buffers
are freed, t_free frees the memory associated with the structure pointed
to by ptr.

t_free checks addr, opt, and udata of the given structure (as appropriate)
and frees the buffers pointed to by buf of netbuf.

Undefined results occur if ptr or buf points to a block of memory not
previously allocated by t_alloc.

Each of these structures is used as an argument to one or more TLI
functions. The structure specified by struct_type can be one of the
following:

Name Structure

T_BIND struct t_bind

T_CALL struct t_call

T_OPTMGMT struct t_optmgmt

T_DIS struct t_discon

T_UNITDAT
A

struct t_unitdata

T_UDERROR struct t_uderr

T_INFO struct t_info

Services

Transport Level Interface (TLI)

See Also

t_alloc

Example

t_free

Communication Service Group

TLI: Functions 1228

/* Free the structure allocated with t_alloc */

rc = t_free((char *) bind, T_BIND);
if (rc == -1)
{
 t_error("t_free");
 exit(1);
}

Communication Service Group

TLI: Functions 1229

t_getinfo

Returns the current characteristics of the underlying transport protocol
associated with the specified file handle
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_getinfo(
 int fd,
 struct t_info *info);

Parameters

fd

(IN) Indicates the file handle for which associated transport protocol
characteristics are to be returned.

info

(OUT) Points to the information returned by t_open.

Return Values

0 Successful

-1 Failure (sets t_errno Code)

t_errno Values

The t_getinfo function returns 0 if successful. Otherwise, it returns a
value of -1. On failure, it sets t_errno to one of the following:

TBADF Specified file handle does not refer to a transport
endpoint

TSYSERR System error occurred during execution of this
function

TNOTSUPPO Underlying transport provider does not support this

Communication Service Group

TLI: Functions 1230

RT function

Remarks

t_getinfo enables a transport user to access the information returned by
info during any phase of communication.

Blocking Informationt_getinfo blocks if t_open was called in blocking
mode or if t_blocking was called. It is nonblocking if t_open was called in
nonblocking mode or if t_nonblocking was called.

info points to a t_info structure, which is defined in TIUSER.H.

If concerned with protocol independence, a transport user can check info
to determine how large the buffers must be to hold each piece of
information. Alternatively, the user can allocate these buffers with t_alloc
. An error results if a transport user exceeds the allowed data size on any
function. The value of each field may change as a result of option
negotiation, and t_getinfo enables a user to retrieve the current
characteristics.

See Also

t_alloc, t_open, AppleTalk Notes: t_getinfo, IPX/SPX/SPX II Notes:
t_getinfo, OSI Notes: t_getinfo, TCP/IP Notes: t_getinfo, TCP/IPX Notes:
t_getinfo

Example

t_getinfo

/* Get information about the transport interface */
rc = t_getinfo(fd, info);
if (rc == -1)
{
 t_error("t_getinfo");
 exit(1);
}

Communication Service Group

TLI: Functions 1231

t_getstate

Returns the current state of the provider associated with the specified
transport endpoint
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_getstate(
 int fd);

Parameters

 fd

(IN) Indicates the local transport endpoint for which the current state
of the provider is to be returned.

Return Values

Current state Successful

-1 Failure (sets t_errno Code)

t_errno Values

The t_getstate function returns the current state on successful completion
and -1 on failure. On failure, it sets t_errno to one of the following:

TBADF Specified file handle does not refer to a transport
endpoint

TSTATECHN
G

Transport provider is undergoing a state change

TSYSERR System error occurred during execution of this
function

TNOTSUPPO
RT

Underlying transport provider does not support this
function

Communication Service Group

TLI: Functions 1232

Remarks

t_getstate returns the state of the provider associated with the transport
endpoint fd.

Blocking Informationt_getstate blocks if t_open was called in blocking
mode or if t_blocking was called. It is nonblocking if t_open was called in
nonblocking mode or if t_nonblocking was called.

The current state of the provider can be one of the following:

State Name Description

T_UNBND Unbound

T_IDLE Idle

T_OUTCON Outgoing connection pending

T_INCON Incoming connection pending

T_DATAXFE
R

Data transfer

T_OUTREL Outgoing orderly release (waiting for an orderly
release indication)

T_INREL Incoming orderly release (waiting for an orderly
release request)

If the provider is undergoing a state transition when t_getstate is called,
t_getstate fails and t_errno is set to TSTATECHNG.

See Also

t_open

Example

t_getstate

rc = t_getstate(fd);
if (rc == -1)
{
 t_error("t_getstate");
 exit(1);
}
else
{
 switch (rc)

Communication Service Group

TLI: Functions 1233

 {
 case T_UNBND:
 printf("T_UNBND\n");
 break;

 case T_IDLE:
 printf("T_IDLE\n");
 break;

 case T_OUTCON:
 printf("T_OUTCON\n");
 break;

 case T_INCON:
 printf("T_INCON\n");
 break;

 case T_DATAXFER:
 printf("T_DATAXFER\n");
 break;

 case T_OUTREL:
 printf("T_OUTREL\n");
 break;

 case T_INREL:
 printf("T_INREL\n");
 break;

 default:
 printf("Invalid state\n");
 exit(1);
 }
}

Communication Service Group

TLI: Functions 1234

t_listen

Listens for a connect request from a calling transport user
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>

int t_listen(
 int fd,
 struct t_call *call);

Parameters

fd

(IN) Indicates the local transport endpoint where the connect
indications arrive.

call

(OUT) Points to the information describing the connect indication.

Return Values

0 Successful

-1 Failure (sets t_errno Code)

t_errno Values

The t_listen function returns 0 if successful. Otherwise, it returns a value
of -1. On failure, it sets t_errno to one of the following:

TBADF Specified file handle does not refer to a transport
endpoint

TBADQLEN Argument qlen of the transport endpoint specified by
fd is zero

TBUFOVFLW Number of bytes allocated for an incoming argument
is not sufficient to store the value of that argument.
The provider's state, as seen by the user, changes to

Communication Service Group

TLI: Functions 1235

T_INCON. The connect indication information to be
returned in call is discarded.

TNODATA O_NDELAY was set, but no connect indications had
been queued

TLOOK Asynchronous event has occurred on this transport
endpoint and requires immediate attention

TNOTSUPPO
RT

Underlying transport provider does not support this
function

TOUTSTATE Function was issued in the wrong sequence on the
transport endpoint specified by fd

TSYSERR System error occurred during execution

Remarks

t_listen listens for a connect request.

Blocking Informationt_listen blocks if t_open was called in blocking mode
or if t_blocking was called. It is nonblocking if t_open was called in
nonblocking mode or if t_nonblocking was called.

The call parameter points to a t_call structure, which is defined in
TIUSER.H. For this function, the fields of t_call have the following
meanings:

addr Returns the protocol address of the calling transport user.

opt Returns protocol-specific parameters associated with the
connect request.

udata Returns any user data sent by the caller on the connect
request.

sequence Indicates a number uniquely identifying the returned
connect indication. The value of sequence enables the user to
listen for multiple connect indications before responding to
any of them.

Since t_listen returns values for addr, opt, and udata of call, maxlen of each
must be set before calling t_listen to indicate the maximum size of the
buffer for each.

If a user issues t_listen in synchronous mode on a transport endpoint that
was not bound for listening (that is, qlen was zero on t_bind), the call
waits forever because no connect indications arrive on that endpoint.

By default, t_listen executes in synchronous mode and waits for a
connect indication to arrive before returning to the user. However, if
O_NDELAY is set (using t_open), t_listen executes asynchronously,

Communication Service Group

TLI: Functions 1236

reducing to a poll for existing connect indications. If none are available, it
returns -1 and sets t_errno to TNODATA.

See Also

t_accept, t_alloc, t_bind (Function), t_connect, t_open, t_optmgmt
(Function), t_rcvconnect, AppleTalk Notes: t_listen, IPX/SPX/SPX II
Notes: t_listen, OSI Notes: t_listen, TCP/IP Notes: t_listen, TCP/IPX
Notes: t_listen

Example

t_listen

while (t_listen(listen_fd, call) == -1)
{
 if (t_errno != TNODATA)
 {
 t_error("t_listen");
 exit(1);
 }
 ThreadSwitch();
}

Communication Service Group

TLI: Functions 1237

t_look

Returns the current event on the specified transport endpoint
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_look(
 int fd);

Parameters

fd

(IN) Indicates the local transport endpoint for which the current event
is to be returned.

Return Values

0 Successful (no event occurred) Event Value Successful (the value
indicates which of the allowable events has occured)

-1 Failure (sets t_errno Code)

t_errno Values

On failure, t_look returns a value of -1 and sets t_errno to one of the
following:

TBADF Specified file handle does not refer to a transport endpoint

TSYSER
R

System error occurred during execution

Upon success, t_look returns a value indicating which of the allowable
events has occurred or returns a value of 0 if no event occurred. The value
for one of the following events is returned:

Communication Service Group

TLI: Functions 1238

Allowable
Events

Description

T_LISTEN Connect indication received

T_CONNECT Connect confirmation received

T_DATA Normal data received

T_EXDATA Expedited data received

T_DISCONN
ECT

Disconnect received

T_UDERR Datagram error indication

T_ORDREL Orderly release indication

T_GODATA Flow control restrictions on normal data flow have
been lifted

T_GOEXDAT
A

Flow control restrictions on expedited data flow have
been lifted

Remarks

t_look enables a transport provider to notify a transport user of an
asynchronous event when the user is issuing functions in synchronous
mode. Certain events require immediate notification of the user and are
indicated by a specific error, TLOOK, on the current or next function to be
executed.

t_look also enables a transport user to poll a transport endpoint
periodically for asynchronous events.

Blocking Informationt_look blocks if t_open was called in blocking mode
or if t_blocking was called. It is nonblocking if t_open was called in
nonblocking mode or if t_nonblocking was called.

See Also

t_open, t_snd, t_sndudata

Communication Service Group

TLI: Functions 1239

t_nonblocking

Puts the transport endpoint into a nonblocking mode (NetWare specific)
Local Servers: nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_nonblocking(
 int fd);

Parameters

fd

(IN) Indicates the local transport endpoint where the transport is to be
put into nonblocking mode.

Return Values

0 Successful

-1 Failure (sets t_errno Code)

t_errno Values

If successful, t_nonblocking returns a value of 0. If unsuccessful, it
returns a value of -1 and sets t_errno to the following:

TBADF Specified file handle does not refer to a transport endpoint

Remarks

t_nonblocking forces the stream head associated with fd to return an
error code to calling processes if their requests cannot be completed
immediately.

t_nonblocking is implemented with an ioctl call with I_SETDELAY and

Communication Service Group

TLI: Functions 1240

1 as arguments.

For example, in a STREAMS-based TLI environment, you can open a
STREAM in a nonblocking mode as follows:

fd = t_open("/dev/tcp",O_RDWR | O_NDELAY,(struct t_info *)0);

In NetWare, you begin by opening the transport endpoint in a blocking
mode, as follows:

fd = t_open("dev/tcp",O_RDWR ,(struct t_info *)0);

Then, you can switch to the nonblocking mode with the following
command:

t_nonblocking(fd);

See Also

t_blocking, IPX/SPX/SPX II Notes: t_nonblocking

Communication Service Group

TLI: Functions 1241

t_open

Initializes a transport endpoint by opening a file identifying a particular
transport provider and returns a file handle identifying the endpoint
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_open(
 char *path,
 int oflag,
 struct t_info *info);

Parameters

path

(IN) Points to the pathname of the file to open.

oflag

(IN) Specifies the settings for the flags O_NDELAY and O_RDWR.
O_RDWR specifies that the endpoint is to be opened for read/write
access. Default is blocking mode. When O_NDELAY is ORed with
O_RDWR, the endpoint is opened in nonblocking mode.

info

(OUT) Points to the information about the underlying transport
protocol.

Return Values

File handle Successful

-1 Failure (sets t_errno Code)

t_errno Values

The t_open function returns a valid file handle if successful. Otherwise, it
returns a value of -1. On failure, it sets t_errno to one of the following:

Communication Service Group

TLI: Functions 1242

TBADFLAG Invalid flag was specified

TSYSERR System error occurred during execution

TBADNAME Invalid transport provider name was specified

Remarks

t_open establishes a transport endpoint by opening a file that identifies a
particular transport provider (that is, transport protocol) and returns a
file handle that identifies the endpoint.

t_open must be called to initialize a transport endpoint. For example,
opening /dev/iso_cots identifies an OSI connection-oriented transport
protocol as the transport provider.

t_open returns a file handle all subsequent functions use to identify the
particular local transport endpoint. t_open also returns various default
characteristics of the underlying transport protocol by setting fields in the
t_info structure.

Blocking Informationt_open blocks if called in blocking mode.

info points to a t_info structure, which is defined in TIUSER.H.

If concerned with protocol independence, a transport user can check info
to determine how large the buffers must be to hold each piece of
information. Alternatively, t_alloc can be used to allocate these buffers.
An error results if a transport user exceeds the allowed data size on any
function.

A single transport endpoint can support only one of the preceding
services at one time.

If the transport user sets info to NULL, t_open returns no protocol
information.

The protocols and their associated files are as follows:

Protocol Protocol File Name

IPX /dev/nipx

OSI /dev/iso_cots

SPX /dev/nspx

SPX2 /dev/nspx2

TCP /dev/tcp

UDP /dev/udp

Communication Service Group

TLI: Functions 1243

Services

Transport Level Interface (TLI)

See Also

t_alloc, AppleTalk Notes: t_open, IPX/SPX/SPX II Notes: t_open, OSI
Notes: t_open, TCP/IP and TCP/IPX Notes: t_open

Example

t_open

The following example illustrates the use of the t_open function in
asynchronous mode:

fd = t_open("/dev/tcp", O_RDWR | O_NDELAY, NULL);
if (fd == -1)
{
 t_error("t_open");
 exit(1);
}

The following example illustrates the use of the t_open function in
synchronous mode:

fd = t_open("/dev/tcp", O_RDWR, NULL);
if (fd == -1)
{
 t_error("t_open");
 exit(1);
}

Communication Service Group

TLI: Functions 1244

t_optmgmt (Function)

Enables a transport user to retrieve, verify, or negotiate protocol options
with the transport provider
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_optmgmt(
 int fd,
 struct t_optmgmt *req,
 struct t_optmgmt *ret);

Parameters

fd

(IN) Indicates the bound transport endpoint.

req

(IN) Indicates a specification of the transport provider. See t_optmgmt
(Structure).

ret

(OUT) Indicates the options and flag values. See t_optmgmt
(Structure).

Return Values

0 Successful

-1 Failure (sets t_errno Code)

t_errno Values

The t_optmgmt function returns 0 if successful. Otherwise, it returns a
value of - 1. On failure, it sets t_errno to one of the following:

TBADF Specified file handle does not refer to a transport

Communication Service Group

TLI: Functions 1245

endpoint

TOUTSTATE Function was issued in the wrong sequence

TBADOPT Specified protocol options were in an incorrect format
or contained illegal information

TACCESS User cannot access specified option

TBADFLAG Invalid flag was specified

TBUFOVFLW Number of bytes allowed for an incoming argument is
not sufficient to store the value of that argument. The
information to be returned in ret is discarded

TSYSERR System error occurred during execution

TNOTSUPPO
RT

Underlying transport provider does not support this
function

Remarks

t_optmgmt enables a transport user to retrieve, verify or negotiate
protocol options with the transport provider.

Blocking Information t_optmgmt blocks if t_open was called in blocking
mode or if t_blocking was called. It is nonblocking if t_open was called in
nonblocking mode or if t_nonblocking was called.

req and ret point to a t_optmgmt (Structure), which is defined in
TIUSER.H.

req requests a specific action of the provider and sends options to the
provider.

Although maxlen has no meaning for req, it must be set in ret to specify the
maximum number of bytes the options buffer can hold. The transport
provider imposes the actual structure and content of the options.

If issued as part of the connectionless-mode service, t_optmgmt can block
due to flow control constraints. It does not complete until the transport
provider has processed all previously sent data units.

See Also

t_accept, t_alloc, t_connect, t_listen, t_rcvconnect, t_getinfo, t_open,
AppleTalk Notes: t_optmgmt

Communication Service Group

TLI: Functions 1246

t_rcv

Receives either normal or expedited data
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_rcv(
 int fd,
 char *buf,
 unsigned nbytes,
 int *flags);

Parameters

fd

(IN) Indicates the local transport endpoint through which data will
arrive.

buf

(OUT) Points to a receive buffer where user data will be placed.

nbytes

(IN) Indicates the size of the receive buffer.

flags

(OUT) Points to the optional flags; may be returned from t_rcv.

Return Values

Bytes received Successful

-1 Failure (sets t_errno Code)

t_errno Values

On successful completion, t_rcv returns the number of bytes received. On
failure, it it returns -1 and sets t_errno to one of the following:

Communication Service Group

TLI: Functions 1247

TBADF Specified file handle does not refer to a transport
endpoint

TNODATA O_NDELAY was set, but no data is currently
available from the transport provider

TLOOK Asynchronous event has occurred on this transport
endpoint and requires immediate attention

TNOTSUPPO
RT

Underlying transport provider does not support this
function

TOUTSTATE Function was issued in the wrong sequence on the
transport endpoint specified by fd

TSYSERR System error occurred during execution

Remarks

By default, t_rcv operates in synchronous mode and waits for data to
arrive if none is currently available.

However, if O_NDELAY is set (by calling t_open), t_rcv executes in
asynchronous mode and fails if no data is available. (See TNODATA in
the "Return Values" section.)

Blocking Informationt_rcv blocks if t_open was called in blocking mode or
if t_blocking was called. It is nonblocking if t_open was called in
nonblocking mode or if t_nonblocking was called.

On return from t_rcv, if T_MORE is set in flags, there is more data. The
current Transport Service Data Unit (TSDU) or Expedited Transport
Service Data Unit (ETSDU) must be received in multiple t_rcv calls. Each
t_rcv with T_MORE set indicates another t_rcv must follow to get more
data for the current TSDU. The end of TSDU is identified by the return of
t_rcv with T_MORE not set. If the transport provider does not support
TSDUs as indicated in info on return from t_open or t_getinfo, T_MORE
is not meaningful and can be ignored.

The data returned is expedited data if T_EXPEDITED is set in flags. If the
number of bytes of expedited data exceeds nbytes, t_rcv sets
T_EXPEDITED and T_MORE on return from the initial call. Subsequent
calls to retrieve the remaining ETSDU will have T_EXPEDITED set on
return.

The end of the ETSDU is identified by the return of t_rcv with T_MORE
not set. If expedited data arrives after part of TSDU has been retrieved,
receipt of the remainder of TSDU is suspended until ETSDU has been
processed. The remainder of TSDU becomes available to the user only
after the full ETSDU has been retrieved (T_MORE not set).

See Also

Communication Service Group

TLI: Functions 1248

t_open, t_snd, t_getinfo, AppleTalk Notes: t_rcv, IPX/SPX/SPX II Notes:
t_rcv, OSI Notes: t_rcv, TCP/IP and TCP/IPX Notes: t_rcv

Example

t_rcv

The following example illustrates the use of the t_rcv function in
synchronous mode:

/*
 t_rcv() in synchronous mode. Do a t_rcv() until all
 the necessary data is retrieved.
*/
for (nread = 0; nread < sizeof (iobuf); nread += rc)
{
 flags = 0;
 if ((rc = t_rcv(fd, iobuf,sizeof(iobuf), &flags)) == -1)
 {
 t_error("t_rcv");
 exit(1);
 }
}

The following example illustrates the use of the t_rcv function in
asynchronous mode:

/*
 t_rcv() in asynchronous mode. If no data is
 available, then it fails and t_errno is set to
 TNODATA
*/
for (nread = 0; nread < sizeof (iobuf); nread += rc)
{
 flags = 0;
 while ((rc = t_rcv(fd, iobuf,sizeof(iobuf), &flags)) == -1)
 {
 if (t_error != TNODATA)
 {
 t_error("t_rcvudata");
 exit(1);
 }
 flags = 0;
 ThreadSwitch();
 }
}

Communication Service Group

TLI: Functions 1249

t_rcvconnect

Enables a calling transport user to determine the status of a previously sent
connect request
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_rcvconnect(
 int fd,
 struct t_call *call);

Parameters

fd

(IN) Indicates the local transport endpoint where communication is
established.

call

(OUT) Points to the information associated with the newly established
connection.

Return Values

0 Successful

-1 Failure (sets t_errno Code)

t_errno Values

t_rcvconnect returns 0 if successful. Otherwise, it returns a value of -1. On
failure, it sets t_errno to one of the following:

TBADF Specified file handle does not refer to a transport
endpoint

TBUFOVFLW Number of bytes allocated for an incoming argument
is not sufficient to store the value of that argument.
The connect information to be returned in call is

Communication Service Group

TLI: Functions 1250

discarded. The provider's state, as seen by the user,
changes to DATAXFER.

TNODATA O_NDELAY was set, but a connect confirmation has
not yet arrived

TLOOK Asynchronous event has occurred on this transport
endpoint and requires immediate attention

TNOTSUPPO
RT

Underlying transport provider does not support this
function

TOUTSTATE Function was issued in the wrong sequence on the
transport endpoint specified by fd

TSYSERR System error occurred during execution

Remarks

t_rcvconnect enables a calling transport user to determine the status of a
previously sent connect request. You can use t_rcvconnect in conjunction
with t_connect to establish a connection in asynchronous mode. The
connection is established on successful completion of this function.

t_rcvconnect can be used in conjunction with t_connect to establish a
connection in asynchronous mode. The connection is established on
successful completion of t_rcvconnect.

Blocking Informationt_rcvconnect blocks if t_open was called in blocking
mode or if t_blocking was called. It is nonblocking if t_open was called in
nonblocking mode or if t_nonblocking was called.

call points to a t_call structure, which is defined in TIUSER.H. For this
function, the fields of t_call have the following meanings:

addr Returns the protocol address associated with the
responding transport endpoint.

opt Returns protocol-specific information associated with the
connect request.

udata Points to optional user data that may be returned by the
destination transport user during connection establishment.

sequence Has no meaning for t_rcvconnect.

maxlen of each argument must be set before issuing t _rcvconnect to
indicate the maximum size of the buffer for each. However, call may be
NULL, in which case no information is given to the user on return from
t_rcvconnect. By default, t_rcvconnect executes in synchronous mode
and waits for the connection to be established before returning. On
return, addr, opt, and udata reflect values associated with the connection.

Communication Service Group

TLI: Functions 1251

If O_NDELAY is set (by calling t_open), t_rcvconnect executes in
asynchronous mode and reduces to a poll for existing connect
confirmations. If none are available, t_rcvconnect fails and returns
immediately without waiting for the connection to be established. (See
TNODATA in t_errno Values above.) t_rcvconnect must be reissued at a
later time to complete the connection establishment phase and retrieve
the information returned.

See Also

t_accept, t_alloc, t_bind (Function), t_connect, t_listen, t_open,
t_optmgmt (Function), AppleTalk Notes: t_rcvconnect, IPX/SPX/SPX II
Notes: t_rcvconnect, OSI Notes: t_rcvconnect, TCP/IP Notes: t_rcvconnect
, TCP/IPX Notes: t_rcvconnect

Example

t_rcvconnect

/* Asynchronous Connect */
/* Initialize the sndcall structure as shown in figure(t_connect() first one) */
rc = t_connect(fd, sndcall, NULL);
if (rc == -1)
{
 if (t_errno != TNODATA)
 {
 t_error("t_connect");
 exit(1);
 }
 /* Check whether t_connect succeeded */
 /* Loop until t_rcvconnect succeeds */
 while (t_rcvconnect(fd, NULL) == -1)
 {
 if (t_errno != TNODATA)
 {
 t_error("t_rcvconnect");
 exit(2);
 }
 ThreadSwitch();
 }
}

Communication Service Group

TLI: Functions 1252

t_rcvdis

Identifies the cause of a disconnect and retrieves any user data sent with the
disconnect
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_rcvdis(
 int fd,
 struct t_discon *discon);

Parameters

fd

(IN) Indicates the local transport endpoint where the connection
existed.

discon

(OUT) Indicates the information pertaining to the disconnect.

Return Values

0 Successful

-1 Failure (sets t_errno Code)

t_errno Values

The t_rcvdis function returns 0 if successful. Otherwise, it returns a value
of -1. On failure, it sets t_errno to one of the following:

TBADF Specified file handle does not refer to a transport
endpoint

TNODIS No disconnect indication currently exists on the
specified transport Endpoint

TBUFOVFLW Number of bytes allocated for an incoming argument

Communication Service Group

TLI: Functions 1253

is not sufficient to store the value of that argument.
The connect information to be returned in call is
discarded. The provider's state, as seen by the user,
changes to DATAXFER.

TNOTSUPPO
RT

Underlying transport provider does not support this
function

TOUTSTATE Function was issued in the wrong sequence on the
transport endpoint specified by fd

TSYSERR System error occurred during execution

Remarks

discon points to a t_discon structure, which is defined in TIUSER.H.

If a disconnect indication occurs, sequence can identify which of the
outstanding connect indications is associated with the disconnect.

If a user does not care about incoming data and does not need to know
the value of reason or sequence, discon may be NULL; then any user data
associated with the disconnect is discarded. However, if a user has
retrieved more than one outstanding connect indication (by calling
t_listen) and discon is NULL, the user is unable to identify the connect
indication with which the disconnect is associated.

See Also

t_alloc, t_connect, t_listen, t_open, t_snddis, AppleTalk Notes: t_rcvdis,
IPX/SPX/SPX II Notes: t_rcvdis, OSI Notes: t_rcvdis, TCP/IP and
TCP/IPX Notes: t_rcvdis

Example

t_rcvdis

while (t_rcvdis(fd, NULL) == -1)
{
 if (t_errno != TNODIS)
 {
 t_error("t_rcvdis");
 exit(1);
 }
 ThreadSwitch();
}

Communication Service Group

TLI: Functions 1254

t_rcvrel

Acknowledges receipt of an orderly release indication
Local Servers: nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_rcvrel(
 int fd);

Parameters

fd

(IN) Indicates the local transport endpoint where the connection exists.

Return Values

0 Successful

-1 Failure (sets t_errno Code)

t_errno Values

t_rcvrel returns 0 if successful. Otherwise, it returns a value of -1. On
failure, it sets t_errno to one of the following:

TBADF Specified file handle does not refer to a transport
endpoint

TNOREL No orderly release indication currently exists on the
specified transport endpoint

TLOOK Asynchronous event has occurred on this transport
endpoint and requires immediate attention

TNOTSUPPO
RT

Underlying transport provider does not support this
function

TOUTSTATE Function was issued in the wrong sequence on the
transport endpoint specified by fd

Communication Service Group

TLI: Functions 1255

TSYSERR System error occurred during execution

Remarks

t_sndrel is an optional service of the transport provider and is supported
only if the transport provider returned T_COTS_ORD on t_open or
t_getinfo.

After receipt of the orderly release indication, the user cannot attempt to
receive more data because such an attempt will block forever. However,
if t_sndrel has not been issued, the user may continue to send data over
the connection.

See Also

t_getinfo, t_open, t_sndrel, AppleTalk Notes: t_rcvrel, IPX/SPX/SPX II
Notes: t_rcvrel, TCP/IP and TCP/IPX Notes: t_rcvrel

Example

t_rcvrel

/* Initiate a closure */
rc = t_sndrel(fd);
if (rc == -1)
{
 t_error("t_sndrel");
 exit(1);
}
/* Loop till t_rcvrel is successful */
while (t_rcvrel(fd) == -1)
{
 if (t_errno != TNOREL)
 {
 t_error("t_rcvrel");
 exit(1);
 }
 ThreadSwitch();
}

Communication Service Group

TLI: Functions 1256

t_rcvudata

Receives a data unit from another transport user in connectionless mode
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_rcvudata(
 int fd,
 struct t_unitdata *unitdata,
 int *flags);

Parameters

fd

(IN) Indicates the local transport endpoint through which data will be
received.

unitdata

(OUT) Points to the hold information associated with the received data
unit.

flags

(OUT) Points to a location that indicates if the complete data unit was
not received.

Return Values

0 Successful

-1 Failure (sets t_errno Code)

t_errno Values

t_rcvudata returns 0 if successful. Otherwise, it returns a value of - 1. On
failure, it sets t_errno to one of the following:

TBADF Specified file handle does not refer to a transport

Communication Service Group

TLI: Functions 1257

endpoint

TNODATA O_NDELAY was set, but no data units are currently
available from the transport provider

TBUFOVFLW Number of bytes allocated for the incoming protocol
address or options is not sufficient to store the
information. The unit data information to be returned
in unitdata is discarded

TLOOK Asynchronous event has occurred on this transport
endpoint and requires immediate attention

TNOTSUPPO
RT

Underlying transport provider does not support this
function

TOUTSTATE Function was issued in the wrong sequence on the
transport endpoint specified by fd

TSYSERR System error occurred during execution

Remarks

t_rcvudata is used in connectionless mode to receive a data unit from
another transport user.

Blocking Informationt_rcvudata blocks if t_open was called in blocking
mode or if t_blocking was called. It is nonblocking if t_open was called in
nonblocking mode or if t_nonblocking was called.

unitdata points to a t_unitdata structure that is defined in TIUSER.H.

maxlen of addr, opt, and udata must be set before issuing t_rcvudata to
indicate the maximum size of the buffer for each.

The netbuf structure used in the t_unitdata structure is defined in
TIUSER.H as follows:

If the buffer defined in udata of unitdata is not large enough to hold the
current data unit, the buffer is filled. Then T_MORE is set in flags on
return to indicate the user needs to call t_rcvudata to retrieve the rest of
the data unit.

By default, t_rcvudata operates in synchronous mode and waits for a data
unit to arrive if none is currently available. However, if O_NDELAY is set
(by calling t_open), t_rcvudata executes in asynchronous mode and fails
if no data units are available.

Subsequent t_rcvudata calls return zero for the length of the address and
options until the full data unit has been received.

See Also

t_rcvuderr, t_sndudata, AppleTalk Notes: t_rcvudata, IPX/SPX/SPX II

Communication Service Group

TLI: Functions 1258

Notes: t_rcvudata, OSI Notes: t_rcvudata, TCP/IP Notes: t_rcvudata

Example

t_rcvudata

/*
 t_rcvudata() in asynchronous mode. If no data is
 available then it fails and t_errno is set to
 TNODATA
*/
for (nread = 0; nread < sizeof (iobuf); nread += rc)
{
 flags = 0;
 while ((rc = t_rcvudata(fd, unitdata, &flags)) == -1)
 {
 if (t_errno ! == TNODATA)
 {
 t_error("t_rcvudata");
 exit(0);
 }
 flags = 0;
 ThreadSwitch();
 }
}

Communication Service Group

TLI: Functions 1259

t_rcvuderr

Receives information in connectionless mode concerning an error on a
previously sent data unit
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_rcvuderr(
 int fd,
 struct t_uderr *uderr);

Parameters

fd

(IN) Indicates the local transport endpoint through which the error
report will be received.

uderr

(OUT) Points to the error information.

Return Values

0 Successful

-1 Failure (sets t_errno Code)

t_errno Values

The t_rcvuderr function returns 0 on successful completion and -1 on
failure. On failure, it sets t_errno to one of the following:

TBADF Specified file handle does not refer to a transport
endpoint

TNOUDERR No unit data error indication currently exists on the
specified transport endpoint

TBUFOVFLW Number of bytes allocated for the incoming protocol

Communication Service Group

TLI: Functions 1260

address or options is not sufficient to store the
information. The unit data information to be returned
in unitdata is discarded

TNOTSUPPO
RT

Underlying transport provider does not support this
function

TSYSERR System error occurred during execution

Remarks

t_rcvuderr should be issued only after receiving a unit data error
indication. It informs the transport user that a data unit, with a specific
destination address and protocol options, produced an error.

t_rcvuderr is used in connectionless mode to receive information
concerning an error on a previously sent data unit.

Blocking Informationt_rcvuderr blocks if t_open was called in blocking
mode or if t_blocking was called. It is nonblocking if t_open was called in
nonblocking mode or if t_nonblocking was called.

uderr points to a t_uderr structure, which is defined in TIUSER.H.

maxlen of addr and opt must be set before calling t_rcvuderr to indicate the
maximum size of the buffer for each.

If you don't want to identify the data unit that produced an error, uderr
can be set to NULL. In that case, t_rcvuderr simply clears the error
indication without reporting any information to the user.

See Also

t_alloc, t_open, t_rcvudata, t_sndudata, IPX/SPX/SPX II Notes:
t_rcvuderr

Example

t_rcvuderr

if (t_sndudata(fd, unitdata) == -1)
{
 t_error("t_sndudata");
 exit(1);
}
/* Look for any T_UDERR */
if (t_look == T_UDERR)
{
 if (t_rcvuderr(fd, uderr) == -1)
 {
 t_error("t_rcvuderr");

Communication Service Group

TLI: Functions 1261

 exit(1);
 }
}

Communication Service Group

TLI: Functions 1262

t_snd

Sends either normal or expedited data
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_snd(
 int fd,
 char *buf,
 unsigned nbytes,
 int flags);

Parameters

fd

(IN) Indicates the local transport endpoint over which data should be
sent.

buf

(IN) Points to the user data.

nbytes

(IN) Indicates the number of bytes of user data to be sent.

flags

(IN) Indicates the optional flags described below.

Return Values

numb
er of
bytes

Successful

-1 Failure (sets t_errno Code)

t_errno Values

On successful completion, the t_snd function returns the number of bytes

Communication Service Group

TLI: Functions 1263

accepted by the transport provider, and it returns -1 on failure. On
failure, it sets t_errno to one of the following:

TBADDATA Illegal amount of data. Zero octets is not supported

TBADF Specified file handle does not refer to a transport
endpoint

TBADFLAG Invalid flag was specified

TFLOW O_NDELAY was set, but the flow control mechanism
prevented the transport provider from accepting data
at this time

TLOOK Asynchronous event occurred on the transport
endpoint specified by fd

TNOTSUPPO
RT

Underlying transport provider does not support this
function

TSYSERR System error occurred during execution

Remarks

t_snd sends either normal or expedited data.

Blocking Informationt_snd blocks if t_open was called in blocking mode or
if t_blocking was called. It is nonblocking if t_open was called in
nonblocking mode or if t_nonblocking was called.

By default, t_snd operates in synchronous mode and can wait if flow
control restrictions prevent the local transport provider from accepting
the data at the time the call is made. However, if O_NDELAY is set (by
calling t_open), t_snd executes in asynchronous mode and fails
immediately if there are flow control restrictions.

Even when there are no flow control restrictions, t_snd waits if STREAMS
internal resources are not available, regardless of the state of
O_NDELAY.

On successful completion, t_snd returns the number of bytes accepted by
the transport provider. Normally, this equals the number of bytes
specified in nbytes. However, if O _NDELAY is set, it is possible only part
of the data was accepted by the transport provider. In this case, t_snd sets
T_MORE and returns a value less than nbytes. If nbytes is zero, no data is
passed to the provider and t_snd returns a value of 0.

If T_EXPEDITED is set in flags, the data is sent as expedited data and is
subject to the interpretations of the transport provider.

If T_MORE is set in flags or is set as described in the preceding discussion,
an indication is sent to the transport provider as notification that a
Transport Service Data Unit (TSDU) or an Expedited Transport Service
Data Unit (ETSDU) is being sent through multiple t_snd functions. Each

Communication Service Group

TLI: Functions 1264

t_snd with T_MORE set indicates another t_snd will follow with more
data for the current TSDU. The end of TSDU (or ETSDU) is identified by
t_snd with T_MORE not set.

Use of T_MORE enables a user to break up large logical data units
without losing the boundaries of those units at the other end of the
connection. T_MORE implies nothing about how the data is packaged for
transfer below the TLI. If the transport provider does not support TSDUs
as indicated in info on return from t_open or t_getinfo, T_MORE is not
meaningful and the user can ignore it.

The size of each TSDU or ETSDU must not exceed the limits of the
transport provider as returned by t_open or t_getinfo. If the size is
exceeded, TSYSERR with EPROTO occurs. However, t_snd may not fail
because EPROTO may not be reported immediately. In this case, a
subsequent call that accesses the transport endpoint fails with the
associated TSYSERR.

If t_snd is called from T_IDLE, the provider can silently discard the data.
If t_snd is issued from any state other than T_DATAXFER, T_INREL, or
T_IDLE, the provider generates TSYSERR with EPROTO (which may be
reported and behave in the manner described in the previous
paragraph).

See Also

t_getinfo, t_open, t_rcv, AppleTalk Notes: t_snd, IPX/SPX/SPX II Notes:
t_snd, OSI Notes: t_snd, TCP/IP and TCP/IPX Notes: t_snd

Example

t_snd

rc = t_snd(fd, iobuf, sizeof (iobuf), 0);
if (rc == -1)
{
 t_error("t_snd");
 exit(1);
}

Communication Service Group

TLI: Functions 1265

t_snddis

Initiates an abortive release on an already established connection and/or
rejects a connect request
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_snddis(
 int fd,
 struct t_call *call);

Parameters

fd

(IN) Indicates the local transport endpoint of the connection.

call

(IN) Points to the information associated with the abortive release.

Return Values

0 Successful

-1 Failure (sets t_errno Code)

t_errno Values

The t_snddis function returns 0 if successful. Otherwise, it returns a value
of -1. On failure, it sets t_errno to one of the following:

TBADF Specified file handle does not refer to a transport
endpoint

TOUTSTATE Function was issued in the wrong sequence. The
transport provider's outgoing queue may be flushed,
so data may be lost

TBADDATA Amount of user data specified was not within the

Communication Service Group

TLI: Functions 1266

bounds allowed by the transport provider. The
transport provider's outgoing queue will be flushed,
so data may be lost

TBADSEQ Invalid sequence number was specified, or a null call
structure was specified when rejecting a connect
request. The transport provider's outgoing queue will
be flushed, so data may be lost

TNOTSUPPO
RT

Underlying transport provider does not support this
function

TSYSERR System error occurred during execution

Remarks

t_snddis initiates an abortive release on an already established
connection. It can also reject a connect request.

Blocking Informationt_snddis blocks if t_open was called in blocking
mode or if t_blocking was called. It is nonblocking if t_open was called in
nonblocking mode or if t_nonblocking was called.

call points to a t_call structure, which is defined in TIUSER.H.

The values in call have different semantics, depending on the context of
t_snddis.

When t_snddis is rejecting a connect request, call must not be NULL, and
it must contain a valid value of sequence to identify uniquely the rejected
connect indication to the transport provider. addr and opt of call are
ignored. In all other cases, call is used only when data is being sent with
the disconnect request. addr, opt, and sequence of t_call are ignored. If the
user does not want to send data to the remote user, call can be NULL.

udata specifies the user data to be sent to the remote user. The amount of
user data must not exceed the limits supported by the transport provider
as returned in discon of info of t_open or t_getinfo. If len of udata is zero, no
data is sent to the remote user.

See Also

t_connect, t_getinfo, t_listen, t_open, AppleTalk Notes: t_snddis,
IPX/SPX/SPX II Notes: t_snddis, OSI Notes: t_snddis, TCP/IP and
TCP/IPX Notes: t_snddis

Example

t_snddis

/* Abort an existing connection */

Communication Service Group

TLI: Functions 1267

rc = t_snddis(fd, NULL);
if (rc == -1)
{
 t_error("t_snddis");
 exit(1);
}

Communication Service Group

TLI: Functions 1268

t_sndrel

Initiates an orderly release of a transport connection and indicates to the
transport provider that the transport user has no more data to send
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_sndrel(
 int fd);

Parameters

 fd

(IN) Indicates the local transport endpoint where the connection exists.

Return Values

0 Successful

-1 Failure (sets t_errno Code)

t_errno Values

The t_sndrel function returns 0 if successful. Otherwise, it returns a value
of -1. On failure, it sets t_errno to one of the following:

TBADF Specified file handle does not refer to a transport
endpoint

TFLOW O_NDELAY was set, but the flow control mechanism
prevented the transport provider from accepting the
function at this time

TLOOK Asynchronous event occurred on the transport
endpoint specified by fd

TNOTSUPPO
RT

Underlying transport provider does not support this
function

Communication Service Group

TLI: Functions 1269

TOUTSTATE Function was issued in the wrong sequence on the
transport endpoint specified by fd

TSYSERR System error occurred during execution

Remarks

t_sndrel is an optional service of the transport provider. It is supported
only if the transport provider returned T_COTS_ORD on t_open or
t_getinfo. If t_sndrel is issued from an invalid state, the provider
generates EPROTO; however, this error may not occur until the user
makes a subsequent reference to the transport endpoint.

After calling t_sndrel, more data cannot be sent over the connection.
However, a user can continue to receive data if an orderly release
indication has not been received.

Blocking Informationt_sndrel blocks if t_open was called in blocking mode
or if t_blocking was called. It is nonblocking if t_open was called in
nonblocking mode or if t_nonblocking was called.

See Also

t_getinfo, t_open, t_rcvrel, AppleTalk Notes: t_sndrel, IPX/SPX/SPX II
Notes: t_sndrel, TCP/IP and TCP/IPX Notes: t_sndrel

Example

t_sndrel

rc = t_sndrel(fd);
if (rc == -1)
{
 t_error("t_sndrel");
 exit(1);
}
while ((rc = t_rcvrel(fd)) == -1)
{
 if (t_errno ! = TNOREL)
 {
 t_error("t_rcvrel");
 exit(0);
 }
 ThreadSwitch();
}

Communication Service Group

TLI: Functions 1270

t_sndudata

Sends a data unit in connectionless mode to another transport user
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_sndudata(
 int fd,
 struct t_unitdata *unitdata);

Parameters

fd

(IN) Indicates the local transport endpoint through which data will be
sent.

unitdata

(IN) Points to the data unit to be sent.

Return Values

0 Successful

-1 Failure (sets t_errno Code)

t_errno Values

The t_sndudata function returns 0 on successful completion and -1 on
failure. On failure, it sets t_errno to one of the following:

TBADDATA Illegal amount of data. Zero octets is not supported

TBADF Specified file handle does not refer to a transport
endpoint

TFLOW O_NDELAY was set, but the flow control mechanism
prevented the transport provider from accepting the
function at this time

Communication Service Group

TLI: Functions 1271

TLOOK Asynchronous event occurred on the transport
endpoint specified by fd

TNOTSUPPO
RT

Underlying transport provider does not support this
function

TOUTSTATE Function was issued in the wrong sequence on the
transport endpoint specified by fd

TSYSERR System error occurred during execution

Remarks

t_sndudata is used in connectionless mode to send a data unit to another
transport user.

Blocking Informationt_sndudata blocks if t_open was called in blocking
mode or if t_blocking was called. It is nonblocking if t_open was called in
nonblocking mode or if t_nonblocking was called.

unitdata points to a t_unitdata structure, which is defined in TIUSER.H.

You can choose not to specify what protocol options are associated with
the transfer by setting the len field of opt to zero. In this case, the provider
can use default options.

If len of udata is 0, no data is passed to the transport provider. t_sndudata
sends zero-length data units.

By default, t_sndudata operates in synchronous mode and can wait if
flow control restrictions prevent the local transport provider from
accepting data. Under such conditions, when O_NDELAY is set (by
calling t_open or fcntl), t_sndudata executes in asynchronous mode and
fails.

If t_sndudata is issued from an invalid state, or if the amount of data
specified in udata exceeds TSDU size as returned in tsdu of info of t_open
or t_getinfo, the provider generates an EPROTO protocol error. (See
TSYSERR in the "Return Values" section.)

If the state is invalid, this error may not occur until the user makes a
subsequent reference to the transport endpoint.

See Also

t_alloc, t_open, t_rcvudata, t_rcvuderr, AppleTalk Notes: t_sndudata,
IPX/SPX/SPX II Notes: t_sndudata, OSI Notes: t_sndudata, TCP/IP
Notes: t_sndudata

Example

Communication Service Group

TLI: Functions 1272

t_sndudata

while ((rc = t_sndudata(fd, unitdata)) == -1)
{
 if (t_errno != TFLOW)
 {
 t_error("t_snd");
 exit(1);
 }
 ThreadSwitch();
}

Communication Service Group

TLI: Functions 1273

t_sync

Synchronizes the data structures that the TLI library manages with
information from the underlying transport provider
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_sync(
 int fd);

Parameters

fd

(IN) Indicates the local transport endpoint where data structures are to
be synchronized.

Return Values

0 Successful

-1 Failure (sets t_errno Code)

t_errno Values

The t_sync function returns the state of the transport provider on
successful completion and -1 on failure. On failure, it sets t_errno to one
of the following:

TBADF Specified file handle does not refer to a transport
endpoint

TSTATECHN
G

Transport provider is undergoing a state change

TSYSERR System error occurred during execution

Communication Service Group

TLI: Functions 1274

Remarks

t_sync is a stub function in the NetWare environment. It returns the
current state of the transport provider.

Blocking Informationt_sync blocks if t_open was called in blocking mode
or if t_blocking was called. It is nonblocking if t_open was called in
nonblocking mode or if t_nonblocking was called.

The states returned by t_sync can be one of the following:

State Name Description

T_UNBND Unbound

T_IDLE Idle

T_OUTCON Outgoing connection pending

T_INCON Incoming connection pending

T_DATAXFE
R

Data transfer

T_OUTREL Outgoing orderly release (waiting for an orderly
release indication)

T_INREL Incoming orderly release (waiting for an orderly
release request)

Services

Transport Level Interface (TLI)

See Also

t_open

Communication Service Group

TLI: Functions 1275

t_unbind

Disables the transport endpoint that fd specifies
Local Servers: either blocking or nonblocking
Remote Servers: N/A
Platforms: DOS, NLM, OS/2, Win
Service: Transport Level Interface (TLI)

Syntax

#include <tiuser.h>
#include <tispxipx.h>

int t_unbind(

 int fd);

Parameters

fd

(IN) Indicates the local transport endpoint to be disabled.

Return Values

0 Successful

-1 Failure (sets t_errno Code)

t_errno Values

The function t_unbind returns 0 if successful. Otherwise, it returns a
value of -1. On failure, it sets t_errno to one of the following:

TBADF Specified file handle does not refer to a transport
endpoint

TOUTSTATE Function was issued in the wrong sequence

TLOOK Asynchronous event has occurred on this transport
endpoint

TSYSERR System error occurred during execution

Remarks

Communication Service Group

TLI: Functions 1276

On completion of t_unbind, the transport provider accepts no further
data or events destined for this transport endpoint. t_bind bound the
transport endpoint previously.

Blocking Informationt_unbind blocks if t_open was called in blocking
mode or if t_blocking was called. It is nonblocking if t_open was called in
nonblocking mode or if t_nonblocking was called.

See Also

t_bind (Function), AppleTalk Notes: t_unbind

Example

t_unbind

rc = t_unbind(fd);
if (rc == -1)
{
 t_error("t_unbind");
 exit(1);
}

Communication Service Group

TLI: Functions 1277

TLI: Structures

Communication Service Group

TLI: Structures 1278

netbuf

Contains information about a buffer
Service: TLI
Defined In: tiuser.h

Structure

struct netbuf {
 unsigned maxlen;
 unsigned len;
 char *buf;
};

Fields

maxlen

Specifies the maximum size of the address buffer. If maxlen is not large
enough to hold the returned address, an error results.

len

Specifies the number of bytes in the address.

buf

Points to the address buffer.

Communication Service Group

TLI: Structures 1279

pollfd

Contains information used to poll the status of a transport endpoint
Service: TLI
Defined In: poll.h

Structure

struct pollfd {
 int fd;
 short events;
 short revents;
 int _ifd; /* For internal kernel use. Defined only in the NLM structure. */
};

Fields

fd

Specifies the file descriptor to be polled.

events

Contains a bitmask that contains the bitwise inclusive OR of events to
be polled on that file descriptor.

revents

Indicates which of the requested events has occurred.

_ifd

For internal use only. Specifies a file descriptor to be used internally by
the kernel. This field is defined only in the poll.h file for NLM
applications.

Remarks

NOTE: The only platform for which the _ifd field is defined for is the
NLM platform. To ensure that you define the correct structure for your
applications, use the poll.h file for the platform on which your
application will run.

Used by poll.

Communication Service Group

TLI: Structures 1280

t_bind (Structure)

Contains information about a bound transport endpoint
Service: TLI
Defined In: tiuser.h

Structure

struct t_bind {
 struct netbuf addr;
 unsigned qlen;
};

Fields

addr

Specifies a protocol address, and qlen indicates the maximum number
of outstanding connect indications.

netbuf

Requests and returns information in netbuf.

Communication Service Group

TLI: Structures 1281

t_call

Contains information about a caller
Service: TLI
Defined In: tiuser.h

Structure

struct t_call {
 struct netbuf addr;
 struct netbuf opt;
 struct netbuf udata;
 int sequence;
};

Fields

addr

Contains the protocol address of the calling transport user.

opt

Contains protocol-specific information associated with the connection.

udata

Points to any user-defined data.

sequence

Contains the value returned by t_listen uniquely associating the
response with a previously received connect indication.

This value is a number uniquely identifying the returned connect
indication. The value of sequence enables the user to listen for multiple
connect indications before responding to any of them.

Communication Service Group

TLI: Structures 1282

t_discon

Contains information about a disconnect
Service: TLI
Defined In: tiuser.h

Structure

struct t_discon {
 struct netbuf udata;
 int reason;
 int sequence;
};

Fields

udata

Identifies any user data that was sent with the disconnect.

reason

Specifies the reason for the disconnect through a protocol-dependent
reason code.

sequence

Identifies an outstanding connect indication with which the disconnect
is associated. sequence is meaningful only when t_rcvdis is issued by a
passive transport user who has called t_listen one or more times and is
processing the resulting connect indications.

Remarks

Used by t_rcvdis.

Communication Service Group

TLI: Structures 1283

t_info

Contains information about a transport protocol address
Service: TLI
Defined In: tiuser.h

Structure

struct t_info {
 long addr;
 long options;
 long tsdu;
 long etsdu;
 long connect;
 long discon;
 long servtype;
};

Fields

addr

Contains information abou the size of a transport protocol address as
follows:

> 0 Maximum size of a transport protocol address

-1 No limit on the address size

-2 Transport provider does not provide user access to
transport protocol addresses

options

Contains information about the size of protocol-specific options
supported by the provider as follows:

> 0 Maximum number of bytes options

-1 No limit on the option size

-2 Transport provider does not support user-settable options

tsdu

Contains information about Transport Service Data Units (TSDUs)

> 0 Maximum size of a TSDU

Communication Service Group

TLI: Structures 1284

0 Transport provider does not support TSDUs, although it
does support sending a data stream with no logical
boundaries preserved across a connection

-1 No limit on the size of a TSDU

-2 Transport provider does not support transferring normal
data

etsdu

Contains information about Expedited Transport Service Data Units
(ETSDUs)

> 0 Maximum size of an ETSDU

0 Transport provider does not support ETSDUs, although it
does support sending an expedited data stream with no
logical boundaries preserved across a connection

-1 No limit on the size of an ETSDU

-2 Transport provider does not support transferring
expedited data

connect

Contains information about the data sent during connection
establishment.

> 0 Maximum amount of data associated with connection
establishment functions

-1 No limit on the amount of data sent during connection
establishment

-2 Transport provider does not allow data to be sent with
connection establishment functions

discon

Contains information about the amount of data that can be associated
with t_snddis and t_rcvdis.

> 0 Maximum amount of data that may be associated with
these abortive release functions

-1 No limit on the amount of data sent with these abortive
release functions

-2 Transport provider does not allow data to be sent with the
abortive release functions

Communication Service Group

TLI: Structures 1285

servtype

Contains information about whether the transport provider supports
connection mode service and has an orderly release facility.

T_COTS Transport provider supports a connection mode
service but does not support the optional orderly
release facility

T_COTS_ORD Transport provider supports a connection mode
service with the optional orderly release facility

T_CLTS Transport provider supports a connectionless
mode service. For this service type, t_open returns
-2 for etsdu, connect, and discon

Communication Service Group

TLI: Structures 1286

t_optmgmt (Structure)

Contains information about protocol options
Service: TLI
Defined In: tiuser.h

Structure

struct t_optmgmt {
 struct netbuf opt;
 long flags;
};

Fields

opt

Identifies protocol options.

The options are represented by netbuf in a manner similar to the
address in t_bind. netbuf is used to request and return information as
follows (for t_optmgmt (Function)):

Fields req ret

maxlen Has no meaning for req Maximum size of the
options buffer.

len Number of bytes in the
options.

Number of bytes returned.

buf Pointer to the options
buffer.

Pointer to the buffer where
the options are to be
placed.

flags

Specifies the action to take with those options, as follows:

Action Description

T_NEGOTIAT
E

Negotiate the values of the options specified in req
with the transport provider. The provider
evaluates the requested options and negotiates
the values, returning the negotiated values
through ret.

T_CHECK Verify whether the options specified in req are
supported by the transport provider. On return,
flags of ret has either T_SUCCESS or T_FAILURE

Communication Service Group

TLI: Structures 1287

set to indicate to the user whether the options are
supported. These flags are only meaningful for
T_CHECK.

T_DEFAULT Retrieve the default options supported by the
transport provider into opt of ret. In req, len of opt
must be zero, and buf may be NULL.

Communication Service Group

TLI: Structures 1288

t_uderr

Contains information about an erroneous data unit
Service: TLI
Defined In: tiuser.h

Structure

struct t_uderr {
 struct netbuf addr;
 struct netbuf opt;
 long error;
};

Fields

addr

Specifies the destination protocol address of the erroneous data unit.

opt

Identifies protocol-specific options associated with this data unit.

error

Specifies a protocol-dependent error code.

Communication Service Group

TLI: Structures 1289

t_unitdata

Contains information about data being sent
Service: TLI
Defined In: tiuser.h

Structure

struct t_unitdata {
 struct netbuf addr;
 struct netbuf opt;
 struct netbuf udata;
};

Fields

addr

Specifies the protocol address of the user.

opt

Identifies protocol-specific options associated with this data unit.

udata

Specifies the user data.

Communication Service Group

TLI: Structures 1290

Communication White Papers

Communication Service Group

 1291

Communication White Papers: Guide

This manual contains white papers that present solutions to various specific
NetWare® development challenges.

To use this information effectively, you should already be familiar with
NetWare programming. For introductory material, see other manuals in this
SDK. To locate the information you want, see the SDK Roadmap.

Currently, this manual contains the following white papers:

NetWare/IP Protocol Packet Definitions

Describes NetWare/IP packets.

Protocol Reference: ODI and STREAMS

Describes the Open Data-Link Interface™ (ODI™) architecture and
how it relates to the OSI model.

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack

Describes the Request Control Block (RCB) interface to the LAN
Workplace® TCP/IP protocol stack.

Using the Low-Level RCB Interface to Support the NetWare/IP
DOS/Windows Client v1.0

Describes how to emulate the RCB interface to support NetWare/IP™
clients.

Using the Low-Level RCB Interface to TCP/IP for UDP Communication

Describes how to use the RCB interface for UDP communication.

Communication Service Group

Communication White Papers: Guide 1292

Chapter 51

NetWare/IP Protocol Packet
Definitions

Novell® Engineering

NetWare/IP Protocol Packet Definitions: Guide

NetWare/IP™ (NWIP) software allows total or partial replacement of the
IPX™ transport subsystem with the industry standard TCP/IP transport
subsystem in a NetWare® network. The following constitute the core
components of the NetWare/IP software:

NetWare/IP Server (NWIP) NLM™

Domain SAP/RIP Server (DSS) NLM

NetWare/IP Client executable

This paper documents the protocol, specifically the packet definitions, used
for communication between these three components of the NetWare/IP
software. The reader is expected to be familiar with the design and
architecture of the software. This article does not document the packet
structure for standard services used by NetWare/IP software (for example,
DNS).

NOTE: All packets described below are UDP packets unless otherwise
noted.

See the following areas of information about NWIP.

Get NWIP Common Parameters from DSS

NWIP Server/DSS Communications

Primary DSS/Secondary DSS Communications

NWIP Client/DSS Communications

NWIP Client/NWIP Server Communications

Summary of NWIP Packet Fields

Communication Service Group

NetWare/IP Protocol Packet Definitions 1293

Database Version Number Query Packet (Type = 8)

Offse
t

Field Size Type

0 Packet Type (= 8) 2
bytes

high-low uword

Parent Topic: Database Synchronization Packets

Database Version Number Response Packet (Type
= 9)

Offse
t

Field Size Type

0 Packet Type (= 9) 2 bytes high-low uword

2 Version Number 2 bytes high-low uword

If the NWIP server finds that the database version has changed, it initiates a
TCP connection and requests a transfer. The NetWare/IP servers can
request one of the following types of database transfers (D2N stands for
transfer between a DSS and a NWIP server):

D2N Transfer Type Request
Packet Type

Response
Packet Type

Delta Transfer without Checksum 259 (0x103) 261 (0x105)

Delta Transfer with Checksum 260 (0x104) 261 (0x105)

Full Transfer 257 (0x101) 258 (0x102)

The request and response packet structures for the transfer are shown
below.

NOTE: Note that these packets are transferred as TCP data.

Parent Topic: Database Synchronization Packets

D2D Database Transfer Request Packet (Type =
273 or 275)

Communication Service Group

NetWare/IP Protocol Packet Definitions 1294

Offse
t

Field Size Type

0 Packet Type (see above) 2 bytes high-low uword

2 Local DB Version Number 2 bytes high-low uword

4 Local IP Address 4 bytes high-low uword

8 Local IP Subnet Mask 4 bytes high-low uword

Parent Topic: Primary DSS/Secondary DSS Communications

D2D Database Transfer Response Packet (Type =
274 or 276)

This packet also has three sections---header, SAP records, and RIP records.
The packet is ordered so that the header is followed by zero or more SAP
records, followed by zero or more RIP records. The 16-byte header contains
the number of SAP and RIP records in the packet along with the total length
of all three sections. The major difference between this packet and the
corresponding D2N packet is that the SAP and RIP records in the D2D
packet are no longer of fixed length, since each record can contain more
than one IP address.

Header Section:

Offse
t

Field Size Type

0 Packet Type (= 274 or 276) 2 bytes high-low uword

2 DSS DB Version Number 2 bytes high-low uword

4 Total Entries in DB
(checksum)

4 bytes high-low ulong

8 Packet Flag 2 bytes bit map

10 Total Packet Length 2 bytes high-low uword

12 Number of SAP Records 2 bytes high-low uword

14 Number of RIP Records 2 bytes high-low uword

The bit definitions for the Packet Flag field are as follows (bit 0 = least
significant bit):

Communication Service Group

NetWare/IP Protocol Packet Definitions 1295

Bit 0: Set=> Database unchanged since last transfer.

Bit 1: Set=> More D2D Database Transfer packets to
follow. Reset=> End of transfer.

Bits 2 through 15: Reserved, should be reset.

SAP Record & RIP Record:

The structure of the SAP and RIP record is similar to the corresponding
records defined in D2D Database Upload Packet (Type = 277).

Parent Topic: Primary DSS/Secondary DSS Communications

D2D Database Upload Packet (Type = 277)

This packet has three sections---header, SAP records, and RIP records. The
packet is ordered so that the header is followed by zero or more SAP
records, followed by zero or more RIP records. The 16-byte header contains
the number of SAP and RIP records in the packet and the total length of all
three sections. The full upload of the database can require the transfer of
multiple packets from the secondary to the primary DSS server. The major
difference between this packet and the corresponding D2N packet is that
the SAP and RIP records in the D2D packet are no longer of fixed length, as
each record can contain more than one IP address.

Header Section:

Offse
t

Field Size Type

0 Packet Type (= 277) 2 bytes high-low uword

2 Reserved Field 6 bytes undefined

8 Packet Flag 2 bytes bit map

10 Total Packet Length 2 bytes high-low uword

12 Number of SAP Records 2 bytes high-low uword

14 Number of RIP Records 2 bytes high-low uword

The bit definitions for the Packet Flag field are as follows (bit 0 = least
significant bit):

Bit 0: Reserved, should be reset.

Bit 1: Set=> More Upload packets to follow. Reset=> End
of Upload.

Communication Service Group

NetWare/IP Protocol Packet Definitions 1296

Bits 2 through 15: Reserved, should be reset.

SAP Record:

Each SAP record in the SAP record section of the D2D Database Transfer
response packet is at least 82 bytes, and contains at least one IP address
structure. Each additional IP address structure increases the record length
by 17 bytes. Note: Some numeric fields in the SAP record are transferred in
machine order (that is, the Intel x86 order (low-high)), as indicated below.

Offse
t

Field Size Type

0 Record Type (= 1) 2 bytes low-high uword

2 Server Name 48 bytes ASCII string (0
padded)

50 IPX Network 4 bytes high-low ulong

54 IPX Node 6 bytes high-low uword

60 IPX Socket 2 bytes high-low uword

62 Server Type 2 bytes high-low uword

64 IP Address Count 1 byte uchar

65 IP Address 4 bytes high-low ulong

69 IP Subnet 4 bytes high-low ulong

73 Time to Live 1 byte uchar

74 Intermediate Networks 1 byte uchar

75 Reserved Field 2 bytes undefined

77 Authoritative DSS's IP Addr 4 bytes high-low ulong

81 Record Flag 1 byte bit-map

(Addition IP Addr Structs)

The bit mappings for the Record Flag field are as follows (bit 0 = least
significant bit):

Bit 0: Set=> The reporting DSS is the authoritative
source of the information.

Bit 1: Reserved.

Bit 2: Set=> Record is to be deleted. Bit 3 through 6:
Reserved.

Bit 7: Set=> RIP record. Reset=> SAP record.

Communication Service Group

NetWare/IP Protocol Packet Definitions 1297

RIP Record:

Each RIP record in the RIP record section of the D2D Database Transfer
response packet is at least 24 bytes, and contains at least one IP address
structure. Each additional IP address structure increases the length of the
record by 17 bytes. Note: Some numeric fields in the RIP record are
transferred in machine order (that is, the Intel x86 order (low-high)) as
indicated below.

Offse
t

Field Size Type

0 Record Type (= 2) 2 bytes low-high uword

2 IPX Network 4 bytes high-low uword

6 IP Address Count 1 byte uchar

7 IP Address 4 bytes high-low ulong

11 IP Subnet 4 bytes high-low ulong

15 Time to Live 1 byte uchar

16 Intermediate Networks 1 byte uchar

17 Ticks 2 bytes low-high uword

19 Authoritative DSS's IP Addr 4 bytes high-low ulong

23 Record Flag 1 byte bit-map

(Addition IP Addr Structs)

The record flag bits are similar to those defined in the SAP Record section.

The secondary DSS server can request one of the following types of
database transfers (downloads) from the primary DSS server:

D2D Transfer Type Request
Packet Type

Response
Packet Type

Delta Transfer 275 (0x113) 276 (0x114)

Full Transfer 273 (0x111) 274 (0x112)

The request and response packet structures for the transfer are shown
below. Note that these packets are transferred as TCP data.

Parent Topic: Primary DSS/Secondary DSS Communications

D2N Database Transfer Request Packet (Type =
259, 260, or 257)

Communication Service Group

NetWare/IP Protocol Packet Definitions 1298

Offse
t

Field Size Type

0 Packet Type (see above) 2 bytes high-low uword

2 Local DB Version Number 2 bytes high-low uword

4 Local IP Address 4 bytes high-low uword

8 Local IP Subnet Mask 4 bytes high-low uword

Parent Topic: Database Synchronization Packets

D2N Database Transfer Response Packet (Type =
261 or 258)

This packet has three sections---header, SAP records, and RIP records. The
packet is ordered so that the header is followed by zero or more SAP
records, followed by zero or more RIP records. The 16-byte header section
contains the number of SAP and RIP records in the packet and the total
length of all three sections. Each SAP record is 72 bytes and each RIP record
16 bytes.

Header Section:

Offse
t

Field Size Type

0 Packet Type (= 261 or 258) 2 bytes high-low uword

2 DSS DB Version Number 2 bytes high-low uword

4 Total Entries in DB
(checksum)

4 bytes high-low ulong

8 Packet Flag 2 bytes bit map

10 Total Packet Length 2 bytes high-low uword

12 Number of SAP Records 2 bytes high-low uword

14 Number of RIP Records 2 bytes high-low uword

The bit definitions for the Packet Flag field are as follows (bit 0 = least
significant bit):

Bit 0: Set=> Database unchanged since last transfer.

Bit 1: Set=> More D2N DB Transfer packets to follow.

Communication Service Group

NetWare/IP Protocol Packet Definitions 1299

Reset=> End of transfer.

Bits 2 through 15: Reserved, should be reset.

SAP Record:

Offse
t

Field Size Type

0 Record Type (= 1) 2 bytes high-low uword

2 Server Type 2 bytes high-low uword

4 Server Name 48 bytes ASCII string (0
padded)

52 IPX Network 4 bytes high-low ulong

56 IPX Node 6 bytes high-low uword

62 IPX Socket 2 bytes high-low uword

64 Intermediate Networks 2 bytes high-low uword

66 Record Flag 2 bytes bit-map

68 Suitable IP Address 4 bytes high-low ulong

RIP Record:

Offse
t

Field Size Type

0 Record Type (= 2) 2 bytes high-low uword

2 Record Flag 2 bytes bit-map

4 IPX Network 4 bytes high-low ulong

8 Intermediate Networks 2 bytes high-low uword

10 Ticks 2 bytes high-low uword

12 Suitable IP Address 4 bytes high-low ulong

Parent Topic: Database Synchronization Packets

Get NWIP Common Parameters from DSS

Configuration Information Exchange: The request packet originates from
the NWIP server or client and the DSS server answers using the response
packet. There are two ways to get NWIP parameters---simple and extended.
The request/response packet types are the same, so the DSS server checks

Communication Service Group

NetWare/IP Protocol Packet Definitions 1300

the Signature field to identify requests. The NWIP server or client to
similarly uses this field to identify responses. The exchange is done using
the UDP/IP protocol.

See the following packet types:

NWIP Parameters Request Packet (Type = 12, Simple)

NWIP Parameters Response Packet (Type = 13, Simple)

NWIP Parameters Request Packet (Type = 12, Extended)

NWIP Parameters Response Packet (Type = 13, Extended)

Parent Topic: NetWare/IP Protocol Packet Definitions: Guide

IPX Emulation

For directed IPX packets or broadcast IPX packets that are not addressed to
a SAP socket (452h) or RIP socket (453h), the NWIP client encapsulates the
entire IPX packet (including 30 bytes of header and data) into a UDP packet.
The destination UDP port is the first configured port (default 43981)
described in NWIP Client/DSS Communications. A broadcast packet is
addressed to the local IP subnet only rather than a network-wide broadcast.

This packet format is for both request and response:

Offse
t

Field Size Type

0 IPX Packet Header 30 bytes low-high uchar

30 IPX Data Portion n bytes low-high uchar

Parent Topic: NWIP Client/NWIP Server Communications

Nearest Server Query

The NWIP client uses the following packet to identify a suitable service
provider (for example, a file server) for the service it requires. An NWIP
server responds with the response packet (type = 3). Note that the NWIP
server returns the matched SAP information only when its Reply To Get
Nearest Server flag is on.

See the following packet types:

NWIP Nearest Server Query Packet (Type = 2) (NWIP Client/NWIP

Communication Service Group

NetWare/IP Protocol Packet Definitions 1301

Server)

NWIP Nearest Server Response Packet (Type = 3) (NWIP Client/NWIP
Server)

Parent Topic: NWIP Client/NWIP Server Communications

NWIP Client/DSS Communications

The communications between a NetWare/IP client and a DSS serves three
functions:

Retrieval of configuration parameters

Querying for Nearest Servers

Registration of SAP Information

The following sections describe packet structures for each function.

NWIP Client/DSS Configuration Information Exchange

The client uses the NWIP Parameters Request Packet (type=12) and the DSS
responds with NWIP Parameters Response Packet (type=13). These packets
are defined in Get NWIP Common Parameters from DSS.

Nearest Server Query Packets

The NWIP client uses the following packet, if necessary, to determine a
suitable service provider (for example, a file server) for the service it
requires. The DSS responds with a response packet (type = 3). Note that the
DSS returns the matched SAP information regardless of whether the Reply
To Get Nearest Server flag is on or not.

See the following packet types:

NWIP Nearest Server Query Packet (Type = 2) (NWIP Client/DSS)

NWIP Nearest Server Response Packet (Type = 3) (NWIP Client/DSS)

SAP Registration

When a service (for example, Print Server) is provided by an NWIP client,
the client must register it with the DSS. The SAP Information Update Packet
and SAP Information Update Acknowledgment packet are used for this
purpose. These packets are defined in SAP/RIP Registration Packets.

Parent Topic:

Communication Service Group

NetWare/IP Protocol Packet Definitions 1302

NetWare/IP Protocol Packet Definitions: Guide

NWIP Client/NWIP Server Communications

The communications between a NetWare/IP client and a NetWare/IP
server serve three functions:

Querying for the nearest server

Querying SAP & RIP information

IPX emulation

There are two contiguous TCP/UDP ports (default to 43981, 43982)
configured by the primary DSS. These are used for NWIP clients/servers to
communicate with an NWIP server. The first port is for service queries (for
example, SAP/RIP queries). The second port is for IPX emulation (for
example, sending an NCP™ packet to the server).

The following topics describe packet structures for each function.

Nearest Server Query

SAP Information Query

RIP Information Query

IPX Emulation

Parent Topic: NetWare/IP Protocol Packet Definitions: Guide

NWIP Echo Request Packet (Type = 14 or 46)

Offse
t

Field Size Type

0 Packet Type (= 14 or 46) 2 bytes high-low uword

2 Source IPX Socket 2 bytes high-low uword

4 Start Timer Ticks 2 bytes low-high uword

8 IPX Network Number 4 bytes high-low ulong

12 Number of Hops 2 bytes high-low uword

14 Original Ticks 2 bytes high-low uword

Communication Service Group

NetWare/IP Protocol Packet Definitions 1303

Parent Topic: RIP Echo with the NetWare/IP Server

NWIP Echo Response Packet (Type = 15 or 46)

Offse
t

Field Size Type

0 Packet Type (= 15 or 46) 2 bytes high-low uword

2 Source IPX Socket 2 bytes high-low uword

4 Start Timer Ticks 2 bytes low-high uword

8 IPX Network Number 4 bytes high-low ulong

12 Number of Hops 2 bytes high-low uword

14 Original Ticks 2 bytes high-low uword

Parent Topic: RIP Echo with the NetWare/IP Server

NWIP Nearest Server Query Packet (Type = 2)
(NWIP Client/DSS)

Offse
t

Field Size Type

0 Packet Type (= 2) 2 bytes high-low uword

2 Source IPX Socket 2 bytes high-low uword

4 Server Type 2 bytes high-low uword

6 Source IP Subnet Mask 4 bytes high-low ulong

Parent Topic: Nearest Server Query Packets

NWIP Nearest Server Query Packet (Type = 2)
(NWIP Client/NWIP Server)

Offse
t

Field Size Type

0 Packet Type (= 2) 2 bytes high-low uword

Communication Service Group

NetWare/IP Protocol Packet Definitions 1304

2 Source IPX Socket 2 bytes high-low uword

4 Server Type 2 byte high-low uword

6 NWIP Domain Length 2 bytes high-low uword

8 NWIP Domain Name 256
bytes

ASCII String

Parent Topic: Nearest Server Query

NWIP Nearest Server Response Packet (Type = 3)
(NWIP Client/DSS)

The response packet from DSS has a fixed length header followed by one or
more 64-byte server records. The number of server records is specified in
the Record Count field of the header.

Offse
t

Field Size Type

0 Packet Type (= 3) 2 bytes high-low uword

2 Source IPX Socket 2 bytes high-low uword

4 Record Count 2 bytes high-low uword

6 Server #1: IP Address 4 bytes high-low ulong

10 Server #1: Ticks 2 bytes high-low ushort

12 Server #2: IP Address 4 bytes high-low ulong

16 Server #2: Ticks 2 bytes high-low ushort

18 Server #3: IP Address 4 bytes high-low ulong

22 Server #3: Ticks 2 bytes high-low ushort

24 Server #4: IP Address 4 bytes high-low ulong

28 Server #4: Ticks 2 bytes high-low ushort

30 Server #5: IP Address 4 bytes high-low ulong

34 Server #5: Ticks 2 bytes high-low ushort

36 Server Type 2 bytes high-low uword

38 Server Name 48 bytes ASCII string (0
padded)

86 IPX Network 4 bytes high-low ulong

90 IPX Node 6 bytes high-low uword

96 IPX Socket 2 bytes high-low uword

98 Intermediate Networks 2 bytes high-low uword

Communication Service Group

NetWare/IP Protocol Packet Definitions 1305

100 Next Server Record 64 bytes

Parent Topic: Nearest Server Query Packets

NWIP Nearest Server Response Packet (Type = 3)
(NWIP Client/NWIP Server)

The response packet from a NWIP server has a fixed-length header
followed by exactly one 64-byte server record. The number of server records
is specified in the Record Count field of the header.

Offse
t

Field Size Type

0 Packet Type (= 3) 2 bytes high-low uword

2 Source IPX Socket 2 bytes high-low uword

4 Record Count (= 1) 2 bytes high-low uword

6 Server IP Address 4 bytes high-low ulong

10 Server Ticks 2 bytes high-low ushort

12 Not Used 24 bytes N/A

36 Server Type 2 bytes high-low uword

38 Server Name 48 bytes ASCII string (0
padded)

76 IPX Network 4 bytes high-low ulong

80 IPX Node 6 bytes high-low uword

86 IPX Socket 2 bytes high-low uword

88 Intermediate Networks 2 bytes high-low uword

Parent Topic: Nearest Server Query

NWIP Parameters Request Packet (Type = 12,
Extended)

Offse
t

Field Size Type

0 Packet Type (= 12) 2
bytes

high-low uword

Communication Service Group

NetWare/IP Protocol Packet Definitions 1306

2 Sequence Number 2
bytes

high-low uword

4 Signature (0x4F574950) 4
bytes

high-low ubyte

8 Number of Additional Params 2
bytes

high-low uword

10 Additional Params IDs 2
bytes

low-high uword

Additional Params IDs at offset 10 is the first additional parameter ID. This
can be followed by other IDs depending on the Number of Additional
Params at offset 8.

So far there are only two additional parameter ID requests defined:

Get NWIP Domain Name 0001

Get NWIP Protocol Version number 0003

Parent Topic: Get NWIP Common Parameters from DSS

NWIP Parameters Request Packet (Type = 12,
Simple)

Offse
t

Field Size Type

0 Packet Type (= 12) 2
bytes

high-low uword

2 Sequence Number 2
bytes

high-low uword

Parent Topic: Get NWIP Common Parameters from DSS

NWIP Parameters Response Packet (Type = 13,
Extended)

Offse Field Size Type

Communication Service Group

NetWare/IP Protocol Packet Definitions 1307

t

0 Packet Type (= 13) 2
bytes

high-low uword

2 Sequence Number 2
bytes

high-low uword

4 IPX Network Number String 8
bytes

string

12 IPX Network Number 4
bytes

high-low ulong

16 NetWare/IP Port Number 2
bytes

low-high uword

18 Checksum Usage Flag 2
bytes

zero = no, else = yes

20 DB Sync. Interval (in secs) 2
bytes

low-high uword

22 Max. UDP Re transmissions 2
bytes

low-high uword

24 Signature (0x4F574950) 4
bytes

high-low ubyte

28 Number of Additional Params 2
bytes

high-low uword

30 Param ID 2
bytes

high-low uword

32 Param Length 2
bytes

high-low uword

34 Param Value n
bytes

string

Additional Params IDs at offset 30 is the first additional parameter
value/data structure. This can be followed by other IDs depending on the
Number of Additional Params at offset 28.

So far there are only two additional parameter ID responses defined:

Get NWIP Domain
Name

0001 Response is a length-preceded string

Get NWIP Protocol
Version number

0003 Response is an unsigned long in
network order. The most significant 2
bytes indicate the major version
number. The least significant 2 bytes
indicate the minor version number

Parent Topic:

Communication Service Group

NetWare/IP Protocol Packet Definitions 1308

Parent Topic: Get NWIP Common Parameters from DSS

NWIP Parameters Response Packet (Type = 13,
Simple)

Offse
t

Field Size Type

0 Packet Type (= 13) 2
bytes

high-low uword

2 Sequence Number 2
bytes

high-low uword

4 IPX Network Number String 8
bytes

string

12 IPX Network Number 4
bytes

high-low ulong

16 NetWare/IP Port Number 2
bytes

low-high uword

18 Checksum Usage Flag 2
bytes

zero = no, else = yes

20 DB Sync. Interval (in secs) 2
bytes

low-high uword

22 Max. UDP Re transmissions 2
bytes

low-high uword

Parent Topic: Get NWIP Common Parameters from DSS

NWIP RIP Query Packet (Type = 16)

Offse
t

Field Size Type

0 Packet Type (= 16) 2 bytes high-low uword

2 Source IPX Socket 2 bytes high-low uword

4 IPX Network Number 4 bytes high-low ulong

Parent Topic: RIP Information Query

Communication Service Group

NetWare/IP Protocol Packet Definitions 1309

NWIP RIP Response Packet (Type = 17)

Offse
t

Field Size Type

0 Packet Type (= 17) 2 bytes high-low uword

2 Source IPX Socket 2 bytes high-low uword

4 IP address 4 bytes high-low ulong

8 IPX Network Number 4 bytes high-low ulong

12 Intermediate Networks 2 bytes high-low uword

14 Ticks 2 bytes high-low uword

Parent Topic: RIP Information Query

NWIP SAP Query Packet (Type = 18)

Offse
t

Field Size Type

0 Packet Type (= 18) 2 bytes high-low uword

2 Source IPX Socket 2 bytes high-low uword

4 SAP Type 2 bytes high-low uword

Parent Topic: SAP Information Query

NWIP SAP Response Packet (Type = 19)

Offse
t

Field Size Type

0 Packet Type (= 19) 2 bytes high-low uword

2 Source IPX Socket 2 bytes high-low uword

4 Record Count 2 bytes high-low uword

6 SAP Type 2 bytes high-low uword

8 Server Name 48 bytes ASCII string (0
padded)

56 IPX Network 4 bytes high-low ulong

Communication Service Group

NetWare/IP Protocol Packet Definitions 1310

60 IPX Node 6 bytes high-low uword

66 IPX Socket 2 bytes high-low uword

68 Intermediate Networks 2 bytes high-low uword

70 Next Server Record 64 bytes

Parent Topic: SAP Information Query

NWIP Server/DSS Communications

The communications between a NetWare/IP server and a DSS serves three
functions:

Retrieval of configuration parameters

Registration of SAP and RIP information

SAP/RIP database synchronization

NWIP has obtained a unique TCP/UDP port from the Assigned Number
Authority. That port, 396 decimal, is the well-known port for DSS to serve
other NWIP entities.

The following sections describe packet structures for each function.

SAP/RIP Registration Packets

The update packets originate from the NWIP server and the DSS server
acknowledges their receipts using the corresponding acknowledgment
packets. The exchange is done using the UDP/IP protocol.

See the following packet types:

SAP Information Update Packet (Type = 1)

SAP Information Update Acknowledgment Packet (Type = 7)

RIP Information Update Packet (Type = 5)

RIP Information Update Acknowledgment Packet (Type = 6)

Database Synchronization Packets

NWIP servers use a UDP packet to ascertain whether their local copy of the
SAP/RIP database needs to be updated with respect the database of their
DSS. This is done using the Version Number Query packet. The DSS
responds with the version number of its database, using the Version

Communication Service Group

NetWare/IP Protocol Packet Definitions 1311

Number Response packet.

See the following packet types:

Database Version Number Query Packet (Type = 8)

Database Version Number Response Packet (Type = 9)

D2N Database Transfer Request Packet (Type = 259, 260, or 257)

D2N Database Transfer Response Packet (Type = 261 or 258)

Parent Topic:

NetWare/IP Protocol Packet Definitions: Guide

Primary DSS/Secondary DSS Communications

The periodic communication between a secondary DSS and its primary DSS
is meant to synchronize the SAP/RIP databases on the two servers.

The secondary DSS server initiates a TCP connection with the primary DSS
server and uploads any new or changed information which has been
reported to it. Following that, the secondary DSS requests a download of
new/changed information from the primary. The primary responds with
the updated information. Finally, the TCP connection is closed by the
secondary DSS server. (Note: D2D stands for transfer between a secondary
DSS and the primary DSS servers.)

See the following packet types:

D2D Database Upload Packet (Type = 277)

D2D Database Transfer Request Packet (Type = 273 or 275)

D2D Database Transfer Response Packet (Type = 274 or 276)

Parent Topic: NetWare/IP Protocol Packet Definitions: Guide

RIP Echo with the NetWare/IP Server

The NWIP client uses either an NWIP echo or UDP echo packet to send an
echo structure to the NetWare/IP server for two purposes: to validate the
target NetWare/IP server is alive, and to calculate the round trip time from
the client to the target server.

Depending on whether the NWIP1_1 COMPATIBILITY parameter in
net.cfg is OFF (default for v2.1) or ON (v1.1), the client sends the echo

Communication Service Group

NetWare/IP Protocol Packet Definitions 1312

packet to the second dynamic port (for example, 43982) owned by the
NetWare/IP server, or the UDP echo port (7) owned by TCP/IP
respectively. The echo request type is 14 and response type is 15 when the
echo port is 43982. Both the echo request and response types are 46 when
the echo port is 7.

See the following packet types:

NWIP Echo Request Packet (Type = 14 or 46)

NWIP Echo Response Packet (Type = 15 or 46)

Parent Topic: NWIP Client/NWIP Server Communications

RIP Information Query

The NWIP client uses the following packets to obtain the RIP information
that matches the given IPX Network Number.

NWIP RIP Query Packet (Type = 16)

NWIP RIP Response Packet (Type = 17)

Parent Topic: NWIP Client/NWIP Server Communications

RIP Information Update Acknowledgment Packet
(Type = 6)

Offse
t

Field Size Type

0 Packet Type (= 6) 2
bytes

high-low uword

2 Sequence Number 2
bytes

high-low uword

Parent Topic: SAP/RIP Registration Packets

RIP Information Update Packet (Type = 5)

Each of these packet can contain information about multiple routes. The
record count field is initialized with the number of routes. The first RIP
record starts after the 16-byte packet header, followed by subsequent

Communication Service Group

NetWare/IP Protocol Packet Definitions 1313

records. Each RIP record is 12 bytes.

Offse
t

Field Size Type

0 Packet Type (= 5) 2
bytes

high-low uword

2 Reserved Field 2
bytes

not defined

4 Sequence Number 2
bytes

high-low uword

6 Record Count 2
bytes

high-low uword

8 Source IP Address 4
bytes

high-low ulong

12 Source IP Subnet Mask 4
bytes

high-low ulong

16 IPX Network 4
bytes

high-low ulong

20 Intermediate Networks 2
bytes

high-low uword

22 Ticks 2
bytes

high-low uword

24 Record Flag 2
bytes

high-low bit map

26 Reserved 2
bytes

not defined

28 Next RIP Record 12
bytes

The bit definitions for the Record Flag are similar to those defined for SAP
Info Update packet.

Parent Topic: SAP/RIP Registration Packets

SAP Information Query

The NWIP client uses the following packets to obtain the SAP information
that matches the given SAP type.

NWIP SAP Query Packet (Type = 18)

NWIP SAP Response Packet (Type = 19)

Communication Service Group

NetWare/IP Protocol Packet Definitions 1314

Parent Topic: NWIP Client/NWIP Server Communications

SAP Information Update Acknowledgment Packet
(Type = 7)

Offse
t

Field Size Type

0 Packet Type (= 7) 2
bytes

high-low uword

2 Sequence Number 2
bytes

high-low uword

Parent Topic: SAP/RIP Registration Packets

SAP Information Update Packet (Type = 1)

Each of these packets can contain information about multiple services. The
record count field is initialized with the number of services. The first record
starts after the 16-byte packet header, followed by subsequent records. Each
service record is 66 bytes.

Offse
t

Field Size Type

0 Packet Type (= 1) 2
bytes

high-low uword

2 Reserved Field 2
bytes

not defined

4 Sequence Number 2
bytes

high-low uword

6 Record Count 2
bytes

high-low uword

8 Source IP Address 4
bytes

high-low ulong

12 Source IP Subnet Mask 4
bytes

high-low ulong

16 Server Type 2
bytes

high-low uword

18 Server Name 48
bytes

ASCII string (0
padded)

Communication Service Group

NetWare/IP Protocol Packet Definitions 1315

66 IPX Network 4
bytes

high-low ulong

70 IPX Node 6
bytes

high-low uword

76 IPX Socket 2
bytes

high-low uword

78 Intermediate Networks 2
bytes

high-low uword

80 Record Flag 2
bytes

high-low bit map

82 Next Service Record 66
bytes

The bit definitions for the Record Flag field are as follows (bit 0 = least
significant bit):

Bit 0: Reserved, should be reset.

Bit 1: New Record

Bit 2: Changed Record

Bit 3: Changed Record due to retargeting by the NWIP
server

Bit 4: Periodic Identification Information

Bits 5 & 6: Reserved, should be reset.

Bit 7: Server/Route Unavailable. Delete Record

Bits 8 through 15: Reserved, should be reset.

Parent Topic: SAP/RIP Registration Packets

Summary of NWIP Packet Fields

The following table lists all the field types used in the packet definitions.
Each field is described in the next column.

Authoritative DSS's IP
address

The address identifying the DSS where the
service/route was originally registered. (0
=> Primary DSS).

Checksum Usage Flag A boolean field to turn on/off use of UDP
checksums.

DB Sync. Interval The user-tunable database

Communication Service Group

NetWare/IP Protocol Packet Definitions 1316

DB Sync. Interval The user-tunable database
synchronization interval for use by all
major components of NetWare/IP.

DSS DB Version Number Local database's version number
maintained by DSS servers.

Intermediate Networks The number of intermediate nodes
reported by the IPX protocol.

IPX Network The IPX network associated with the SAP
service record.

IPX Network Number A number identifying the virtual IPX
network created by NWIP.

IPX Network Number
String

ASCII representation of the NWIP virtual
IPX network number.

IPX Node The IPX node number associated with the
SAP service record

IPX Socket The IPX socket number associated with the
SAP service record.

Local DB Version
Number

Local SAP/RIP database's version number
maintained by NWIP Servers.

Max. UDP
Retransmissions

The user-tunable parameter that indicates
how often to retransmit a UDP packet
before assuming the other side is down.

NetWare/IP Port
Number

First of two consecutive user defined
dynamic UDP port numbers to be used by
NWIP.

Number of RIP Records The count of the RIP records in the current
packet.

Number of SAP Records The count of the SAP records in the
current packet.

Packet Type NetWare/IP Protocol defined value.

Record Count The count of records included in the
variable length part of a packet.

Sequence Number A identifier used to match responses with
requests.

Server Name ASCII NULL-terminated name.

Server Type Novell supplied SAP service identifier.

Source IP Address IP address of the dialog initiating
computer.

Source IP Socket IP socket being used by the sender, where
a response should be directed.

Source IP Subnet Mask IP Subnet Mask of the dialog initiating
computer.

Suitable IP Address IP address of the NWIP server. When an
IPX node can be reached through multiple

Communication Service Group

NetWare/IP Protocol Packet Definitions 1317

NWIP gateways, this field contains the
"closest" gateway.

Ticks The number of ticks as reported by IPX
RIP.

Time to Live An internal parameter in the database,
used for timing out stale records.

Total Entries in DB Total number of SAP and RIP records in
the DSS database. Used for
double-checking the integrity of the
replicated database.

Parent Topic: NetWare/IP Protocol Packet Definitions: Guide

Communication Service Group

NetWare/IP Protocol Packet Definitions 1318

Protocol Reference: ODI and
STREAMS

Novell®, Inc.

ODI and STREAMS: Guide

The development of the Open Data-Link Interface™ (ODI™) architecture is
an important advance for interoperability. Before you can really take
advantage of ODI, you need some background information. This paper
presents information relating to the two sides of ODI: server and client.

The Open Data-Link Interface

The Server Side of ODI

Protocol ID Information

The Open Data-Link Interface

ODI is an open data-link architecture that can provide your organization
with critical network interoperability. ODI significantly reduces the cost of
ownership by providing the ability to protect investments in installed
hardware, integrate new resources and technologies into the network, and
reduce the expenses associated with support and noninteroperability. ODI
integrates the network media of choice with the network transport of choice.

Related Topics

Can We Talk?

Constantly Inconstant

Meet ODI

ODI, a Path to Your Future

ODI on Your Server

ODI on Your Workstation

What ODI Really Means to You

A Case in Point

Communication Service Group

Protocol Reference: ODI and STREAMS 1319

Parent Topic: ODI and STREAMS: Guide

Can We Talk?

The Open Systems Interconnection (OSI) model is a high-level overview
that provides direction on how computers should communicate. This model
is composed of seven layers including Application, Presentation, Session,
Transport, Network, Data-link, and Physical. Each layer defines the process
required for an application on one computer to send a message over a
network to an application on another computer.

It is important to note that the OSI model largely explains what should
happen, not necessarily how it should happen. Many vendors use the OSI
model as a source of reference in their networking implementations.

Generally, the communication process can be divided into two parts: the
process of defining and formatting the message, and the mechanics of
actually delivering the message. Layers one and two of the OSI model
(Application and Presentation) address the issue of creating, formatting and
presenting the message. OSI layers three through seven (Session, Transport,
Network, Data-Link, and Physical) deal with the mechanics of delivering
the message. Computers can communicate only to the extent that they share
the same conventions at all levels of the communication process. In other
words, each computer system must have a common interface at each of the
seven layers of the OSI reference model.

Since many vendors use the OSI model as a reference, a more standardized
way of defining some of the actual processes needs to occur before
interoperability between systems can happen. The Institute of Electrical and
Electronic Engineering (IEEE) addressed this need and created a body of
standards which defined, in part, "how the message is delivered". These
standards were authored and formalized by the 802 committee.

The 802 committee created several standards that focused on the Data-Link
layer of the OSI reference model and defined the access methods to the
media (network cabling). Ethernet (802.3) and token ring (802.5) are two
well-known works of the 802 committee. Each standard governs how
computers take control of the communication link for transmitting
messages. However, keep in mind that the Data-Link layer is only one of
seven layers in the OSI reference model. The 802 committee did not address
other layers of the OSI model, particularly the layers that govern the actual
delivery of the message (that is, OSI layers 3 through 7.)

Many of the communication protocols that govern the transmission of
network messages (layer 3 of the OSI model) are not as well-defined. In fact,
the industry relies heavily on de facto standards (that is, standards that
generally arise from sheer popularity). For example, IPX/SPX™
(popularized by Novell®), TCP/IP (popularized by UNIX* workstations),
AppleTalk* (popularized by Apple*) and SNA (popularized by IBM*) have
become some of today's de facto transport standards. It is interesting to note

Communication Service Group

Protocol Reference: ODI and STREAMS 1320

that some of these transports were developed by assuming a specific access
protocol and media; therefore, they are generally not available over other
access protocols and media. For example, TCP/IP is traditionally limited to
Ethernet and SNA is traditionally limited to token ring.

Parent Topic: The Open Data-Link Interface

Constantly Inconstant

So how can there be so much confusion with so many standards? Keep in
mind that the OSI reference is mostly used as a model when networking
vendors build their various solutions. Also keep in mind that none of the
standards discussed so far define an interface between access protocols and
transport protocols. In other words, we know how to get data on and off the
wire, but how do we interface with the other protocols (layers 3 through 7 of
the OSI model) required for communication?

This is exactly the problem network adapter vendors face when writing
driver software that allows their adapters to operate with various systems.
The driver is the software that links the hardware with the other software
components in the computer. Specifically, the driver implements the
functionality defined in both the OSI Data-Link layer (layer 2) and the IEEE
802 specifications.

However, since there is no clear interface defined between the Data-Link
layer and the Network layer (layers 2 and 3), network adapter vendors are
forced to write drivers for each adapter and for each network transport. The
result is a "monolithic" driver, like IPX.COM, that tightly couples a given
transport to the driver. This tight coupling reduces flexibility.

In addition, monolithic drivers make it difficult to concurrently support
multiple network transports with a single adapter. For example,
workstations with monolithic drivers can not easily access NetWare®
servers and IBM hosts at the same time.

What is needed is a clearly defined interface between the driver (Data-Link
layer) and the network transport. This interface would make it easier for
network adapter vendors to write generic drivers and make it easier for
users to add flexibility and extensibility to their networks.

Parent Topic: The Open Data-Link Interface

Meet ODI

ODI (Open Data-Link Interface) is a data-link specification jointly
developed by Apple Computer and Novell and published to the
networking industry in 1989. The strategic goal of ODI is to provide
seamless network integration at the network transport level. ODI simplifies

Communication Service Group

Protocol Reference: ODI and STREAMS 1321

the development, and ultimate availability, of network drivers for a wide
variety of network adapters and network transport protocol stacks. The
result is easier access to a wide variety of networked resources without
requiring multiple network connections or additional investments in
hardware and software.

ODI offers several advantages over the earlier Microsoft*/3Com* NDIS
(Network Device Interface Specification) architecture. NDIS primarily
provided a standard interface between the Physical layer and the Data-Link
layer (OSI MAC layer) and also allowed concurrent support of multiple
network protocols. While ODI provides these same benefits, ODI also offers
true media independence. Unlike ODI, NDIS protocol stacks are tightly
coupled to a particular media type much as monolithic drivers. With ODI,
software, like network protocols and applications, can now be totally
unaware of the media in place. The enormous benefit of this feature is
explained later in greater detail.

ODI is also more modular and more focused on performance than NDIS.
The modularity of ODI makes it easier to manage and provides a cleaner
migration path to the standards of tomorrow. The focus of ODI on
performance means access to network resources is fast and transparent.

ODI is fundamental to network integration by allowing the mix and match
of popular media and communication protocol suites on the network. This
allows the server, in part, to simultaneously support heterogeneous
workstations, and provide for the routing of data between network
segments. ODI also allows workstations to establish concurrent "any-to-
any" connections with available network resources.

Parent Topic: The Open Data-Link Interface

ODI, a Path to Your Future

ODI provides a smooth migration path when integrating either new
protocols or new media. ODI was designed to transparently support any
network transport regardless of the underlying media. This feature has
far-reaching benefits. For example, ODI provides TCP/IP support, which is
traditionally limited to Ethernet, over ARCnet* or token ring. This means
that you can select any transport like OSI TP4 without regard to present
topologies. Conversely, ODI preserves your investment in existing protocols
and applications when migrating to new media. ODI gracefully integrates
FDDI, wireless technology, or other media types into your present network.

Parent Topic: The Open Data-Link Interface

ODI on Your Server

ODI is the architectural platform that provides support for heterogeneous

Communication Service Group

Protocol Reference: ODI and STREAMS 1322

workstations and facilitates multiprotocol routing. ODI allows servers to
natively support workstations using AppleTalk (Macintosh*), TCP/IP (Sun*,
NeXT*, HP*, or UNIX workstations), IPX/SPX (DOS, OS/2, Windows), or
SNA (IBM host to terminal) communication protocols. For example, ODI
provides transport support so that a Macintosh can use a NetWare server to
queue and print documents, save data files that are shareable with other
types of workstations, and access larger hosts through communication links.
In addition, ODI provides crucial multiprotocol routing functions. This
routing allows workstations to access needed resources on network
segments other than the one that they are physically on.

Parent Topic: The Open Data-Link Interface

ODI on Your Workstation

ODI allows transparent workstation connections to a wide variety of
network resources. This allows for one-to-many or many-to-many
connection possibilities. For example, a workstation can concurrently access
services from a NetWare server as well as from a UNIX host.

ODI is a modular solution consisting of a hardware driver for each network
adapter, a link management layer and one or more protocol stacks like
IPX/SPX or TCP/IP. Each piece is dynamically configurable. This
eliminates the need to pre-link special drivers using special utilities like
Novell's WSGEN program. ODI also makes it easier to use workstation
memory more effectively. Any piece of the ODI platform (driver, link
manager, or protocol stack) can be unloaded to free valuable memory when
needed. The end result is a smaller, more flexible network interface.

Parent Topic: The Open Data-Link Interface

What ODI Really Means to You

Many of the benefits of ODI result from Novell's networking leadership.
ODI is a robust architecture that allows over eight million NetWare users to
easily interoperate with other resources on the network. ODI provides more
flexibility in configuring the network interface, uses resources more
effectively and preserves investments in hardware and other network
resources. All of these benefits save money.

There are a number of ODI benefits that have more to do with service than
with technology. ODI is vital to an integrated networking strategy.
Supporting that strategy is a network of people, programs and services that
include education, certification and support. ODI developers have access to
expert engineering support and development tools. Novell's certification
program ensures that NetWare ODI drivers and protocol stacks perform
under demanding environments. In addition, there are over 4,500 Certified

SM

Communication Service Group

Protocol Reference: ODI and STREAMS 1323

Novell EngineersSM (CNEsSM), strategic NetWare support organizations, and
Novell's authorized resellers.

Novell is committed to the ODI standard along with key third-party
developers. These vendors---IBM, Compaq*, 3Com, Standard Microsystems,
Western Digital*, Racal* Interlan, Tiara, Hewlett-Packard*, Proteon*,
Ungermann-Bass*, and others---are currently developing or distributing
ODI drivers for their network adapters. Protocol stacks that are currently
available include IPX/SPX, TCP/IP, AppleTalk, OSI TP4, DEC* LAT*, and
more.

Parent Topic: The Open Data-Link Interface

A Case in Point

Brigham Young University (BYU) has built its information system around
various computing platforms that include DEC VAX* machines, IBM
mainframes, UNIX workstations, and PCs networked with NetWare. The
NetWare networks are interconnected using twisted pair Ethernet and
StarLAN. There are approximately 70 NetWare networks tied together
along with the Campus hosts by means of a TCP/IP backbone.

BYU has standardized on SMTP-based e-mail and regularly uses FTP and
Telnet to access resources from VAX and IBM host systems. To provide this
level of functionality, BYU pioneered IPX and TCP/IP coexistence on the PC
by using "packet driver" technology and by writing their own version of IPX
that operate with these packet drivers. BYU then licensed their IPX
implementation to a commercial developer for resale.

Soon after ODI and LAN Workplace® for DOS were released, BYU
reevaluated their IPX and TCP/IP coexistence strategy and replaced their
packet drivers with ODI and their public domain TCP/IP-based tools with
LAN Workplace for DOS. By doing so, BYU now relies on a single vendor,
Novell, for timely maintenance and support of their network drivers and
protocol stacks. In addition, they are better able to manage their networks
themselves.

NOTE: Packet Drivers are public domain NIC drivers that are written
to a specification developed by FTP software.

Parent Topic: The Open Data-Link Interface

The Server Side of ODI

The ODI specification allows media-independent communications. Because
of this, the specification, along with the STREAMS environment and NLM
programs, makes NetWare 3.11 a true server platform on which you can
build a customized system. The following items are discussed:

Communication Service Group

Protocol Reference: ODI and STREAMS 1324

Layers

Packet Transmission

Protocol ID Information

Related Topics

Layers

Packet Transmission

MLID

LSL

Parent Topic: ODI and STREAMS: Guide

Layers

With ODI, NetWare 3.11 supports a large number of LAN adapters
(network boards), and can receive or send a variety of communication
protocols on the same adapter concurrently (that is, IPX/SPX, TCP/IP,
AppleTalk). The implementation of ODI is perhaps best explained as
several layers through which communications arriving at or departing from
the server, router, or workstation must travel. The layers, as shown in the
following graphic, include the LAN adapter and Multiple Link Interface
Driver™ (MLID™) layer, the Link Support Layer™ (LSL™), and the
Protocol Stack Layer. From the Protocol Stack layer, communication packets
can access the NetWare OS.

Parent Topic: The Server Side of ODI

Packet Transmission

The role of ODI can be further illustrated through the process of packet
transmission. The following is an explanation of packet transmission on a
network, first without ODI, then with it.

Without ODI (for example, on a NetWare 2.x network), a workstation LAN
adapter sends an IPX packet to another workstation where it is received by a
LAN adapter. The LAN driver passes the packet to IPX, which either passes
it to higher levels or routes it down through another LAN adapter to
another network. This process permits only one protocol packet per media
at a time because the LAN adapter driver is written to identify and accept
only a specific type of packet, such as an IPX packet, an AppleTalk packet,
or a TCP/IP packet.

The NetWare implementation of ODI, however, supports a number of

Communication Service Group

Protocol Reference: ODI and STREAMS 1325

The NetWare implementation of ODI, however, supports a number of
protocols on each media or LAN adapter. On a NetWare 3.11 network, with
ODI, a workstation LAN adapter sends any kind of packet (IPX, AppleTalk,
TCP/IP, and so on) to another workstation where it is received by a LAN
adapter. The LAN driver for that adapter, unlike the LAN driver for the
NetWare 2.x network, can accept any type of packet. Thus, it is called a
Multiple Link Interface Driver (MLID). This MLID passes the packet to the
next layer in the Open Data-Link Interface, the Link Support Layer (LSL).

The LSL is responsible for identifying the type of packet it receives and
passing it to the appropriate protocol in the next higher layer. This next
higher layer is called the Protocol Stack layer, and it contains any number of
protocol stacks such as IPX, AppleTalk, and TCP/IP. Once a communication
packet arrives at its specified protocol stack, it is either passed to higher
levels or routed back down through the LSL to an MLID and to a specified
LAN adapter which represents another network.

Parent Topic: The Server Side of ODI

MLID

As the section on packet transmission points out, the NetWare MLID is
different from a previous NetWare driver. An MLID accepts multiple
protocol packets rather than just one packet as previous LAN drivers do.
The MLID does not interpret a packet after receiving it, but simply copies
identification information from the packet into a receive ECB (Event Control
Block) and passes the ECB to the LSL. Likewise, when sending out a packet,
the MLID simply copies identification information from a send ECB into the
packet and sends it out.

Parent Topic: The Server Side of ODI

LSL

The LSL is a support and a link through which multiple protocol packets
travel as they go from the LAN adapter with its accompanying MLID to a
designated protocol stack. The LSL acts as a type of switchboard to route
packets between LAN adapters with their MLID layers and protocol stacks.
As such, it must contain information about these two layers. Thus, the LSL
contains a data segment (OSData) that maintains LAN adapter information,
Protocol Stack information, binding information, and ECB information.

The LSL assigns each LAN adapter a logical number and maintains
information about each LAN adapter. This information is registered with
the LSL at load time.

Although an MLID can be configured to send and receive packets for more
than one protocol stack, the LSL sees beneath it only LAN adapters,

Communication Service Group

Protocol Reference: ODI and STREAMS 1326

associating with each adapter a block of data, a send routine, and a control
routine. Although LAN adapters may have the same send and control
routines (driven by the same driver), this does not matter to the LSL since
each LAN adapter always has its own block of data.

The LSL also assigns each protocol stack a logical protocol stack number (up
to 16 stacks are supported) and maintains information about each one. As
with the LAN adapter information, this protocol stack information is
registered with the LSL at load time.

In addition to the information about the LAN adapters below it and the
protocol stacks above it, the LSL needs information from the ECBs that come
from either direction, depending on whether they are send or receive ECBs.
The LSL uses the packet ID information in the ECBs and the other
information about LAN adapters below it and protocol stacks above it to
route packets from LAN adapters to protocol stacks and from protocol
stacks to LAN adapters.

Finally, the LSL must also have a set of routines to support the drivers that
are below and a set of routines for the protocol stacks above. Using this
information, the LSL is able to act as a switchboard, coordinating protocol
stack/MLID interaction and packet movement within the server.

Each network station (server, router, OS/2 workstation, DOS workstation)
has its own implementation of an LSL. Novell has created an LSL for
NetWare 3.11 as well as for other NetWare versions. Currently, the
NetWare 3.11 server LSL supports up to 16 MLID layers and up to 32
protocol stacks.

Parent Topic: The Server Side of ODI

Protocol ID Information

Every packet on a network that supports multiple protocols is made up of
the following components:

A communications protocol packet such as IPX, TCP/IP, or AppleTalk.

A media envelope.

A globally administered value (1 to 6 bytes) called a Protocol ID (PID)
located inside the media envelope.

As its name indicates, the PID that is located in every packet is a label that
identifies two things about the packet:

The packet contains a certain communication protocol header.

The packet contains a certain envelope frame.

For example, an IPX header and an Ethernet II envelope have a PID of
8137h. However, another protocol packet on another medium (for example,

Communication Service Group

Protocol Reference: ODI and STREAMS 1327

TCP/IP on ARCnet) might have the identical PID of 8137h. PID values are
not unique across all media. The LSL uses the PID value to route incoming
packets to the proper protocol stack.

Related Topic: STREAMS Interface

Parent Topic: ODI and STREAMS: Guide

STREAMS Interface

STREAMS is a set of tools consisting of system calls, kernel resources, and
kernel utility routines. These tools are used to create, use, or dismantle a
stream---a full-duplex processing and data transfer path between the driver
on the low kernel end of the NetWare OS and the user application on the
high end. (The NetWare implementation of STREAMS was developed from
STREAMS, available on the UNIX System V™ architecture. For more
detailed information on STREAMS, see the STREAMS Primer and the
STREAMS Programmers Guide.)

A stream defines the interface for character I/O within the kernel and
between the kernel and the rest of the OS. It is made up of three basic parts:

The stream head that interfaces with user applications

Modules (optional) used to process data traveling between the stream
head and the stream end

The stream end or driver providing an external interface by means of a
character I/O device

The Transport Level Interface (TLI) is an API that sits between STREAMS
and the user application, providing an interface with transport level
protocols such as SPX.

NetWare 3.11 implements STREAMS as a number of NLM programs. One
NLM includes the STREAMS application interface routines, the utility
routines for STREAMS modules, the log device, and an ODI driver. The
utility routines in the NLM include all common functions used by
STREAMS modules.

Other NLM programs include a number of STREAMS modules to provide
communication protocols such as IPX/SPX or TCP/IP.

Parent Topic: Protocol ID Information

Communication Service Group

Protocol Reference: ODI and STREAMS 1328

The RCB Interface to the LAN
WorkPlace TCP/IP Protocol Stack

Novell® Engineering

RCB Interface: Guide

Overview of the RCB Interface

Request Control Block

Protocol Stack RCB Handler

Finding the RCB Handler Entry Point

Interfacing with the RCB Handler

The C Language Version of RCB Structures

Addendum (6/30/95)

ACCEPT, BIND, CONNECT, GETPEERNAME,
GETSOCKNAME, GETMYIPADDR, and
GETSUBNETMASK

 rcb_addr STRUC
 RCB_addr_cmn DB (SIZE rcb_common) DUP (?)
 RCB_port DW ?
 RCB_address DD ?
 rcb_addr ENDS

GETMYIPADDR and GETSUBNETMASK do not require RCB_socket to be
set.

BIND and CONNECT require input parameters RCB_port and RCB_address.
However, they can be set to zero for BIND. They should be in network byte
order.

ACCEPT returns the spawned socket ID in RCB_socket and the peer's IP
address and port number in RCB_address and RCB_port in network byte
order.

Parent Topic: RCB Structures for Individual Commands

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1329

Addendum (6/30/95)

The LAN WorkPlace protocol stack was designed to be lean and mean. As a
result, LAN WorkPlace TCP/IP suffers (or enjoys) a less flexible interface
with a minimum set of configurable parameters. However, to support our
internal development effort and to fulfill customers' requests, we will
modify TCP/IP and the socket library to enable reconfiguration of some of
the protocol stack's operating parameters during run-time. Currently
TCP/IP configuration is set during initialization. This configuration can
only be changed by modifying the NET.CFG file, then unloading and
reloading the TCP/IP TSR.

Related Topics

New Socket Library Functions

New RCB Definitions

RCB Implementation Notes

Parent Topic: RCB Interface: Guide

Break Handling

For blocking RCB commands, the LAN WorkPlace protocol stack
(TCPIP.EXE) blocks the execution thread until processing is completed, then
returns the control to the application. To accomplish this, TCPIP.EXE polls
the completion status of the RCB. A <Ctrl-Break> interruption mechanism is
implemented in TCP/IP with the cooperation of the application so the tight
polling loop can be exited. The default blocking RCB request does not allow
the use of <Ctrl-Break>.

Break checking is turned on for each individual RCB request by setting
RCB_flags to RF_BREAKRCB. TCP/IP issues the DOS INT 21h function 0Bh
during the polling loop so that DOS can execute an interrupt 23h when
<Ctrl-Break> is detected. For the TCP/IP to abort the RCB request, your INT
23h break handler should OR RCB_flags with RF_ABORTRCB. The pointer
to the blocking RCB can be obtained from a global variable set up when the
RCB is submitted to the protocol stack's RCB handler (see Sending an RCB
Request).

NOTE: The above <Ctrl-Break> logic is for DOS only.

Parent Topic: Interfacing with the RCB Handler

CLOSE

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1330

CLOSE

 rcb_close STRUC
 RCB_skt_cmn DB (SIZE rcb_common) DUP (?)
 rcb_close ENDS

rcb_close does not have command specific fields. RCB_socket is the only field
that must be set.

Parent Topic: RCB Structures for Individual Commands

DOS Host Resident Internet Protocols RCB
Format (For Non-I/O Operations)

Offse
t

Field Comments

0 RCB_next Used for link management

4 RCB_prev Used for link management

8 RCB_ESR Post address

12 RCB_reserved For LAN WorkPlace TCP/IP internal use

20 RCB_type (not used)

21 RCB_comman
d

Command code

22 RCB_socket Socket ID

23 RCB_status Status & return code

24 RCB_param
(variable)

Content determined by RCB_command

Parent Topic: The C Language Version of RCB Structures

Finding the RCB Handler Entry Point

LAN WorkPlace TCPIP.EXE presents a far procedure entry point to its RCB
handler for RCB clients to submit requests and receive replies. TCPIP.EXE
returns far pointers to its RCB handler in register pairs to the clients during
initialization. RCB clients should save the entry point for submitting RCB
requests. The entry point discovery mechanism is built on the install check
function of the 2F multiplex interrupt handler of TCPIP.EXE. TCPIP.EXE
uses multiplex number 7Ah and the function code 40h for install check.

 [On Entry]

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1331

 AX = 7A40h {install check and get RCB service entry }

 [On Return]
 AX = 7AFFh
 BX = offset of MLID ISR vector in DOS's interrupt vector table,
 for example, BX equal to (5+8)*4=34h for IRQ 5
 CX = version (0402h for 4.1, 0401h for 4.01, 1 for 4.0)
 DX = 0
 ES:DI = far pointer to the RCB handler

The following code demonstrates the function:

 RCB_service_entry dd 0 ; stores far pointer to TCPIP's RCB handler

 ...
 mov ax, 7A40h ; TCPIP interrupt 2F install check
 int 2Fh
 cmp ax, 7AFFh ; is TCPIP there?
 jnz not_installed
 mov ax, es
 or ax, di ; double check the validity of the pointer
 jz not_installed
 mov word ptr RCB_service_entry, di ; saves far pointer to RCB handler
 mov word ptr RCB_service_entry+2, es ;
 ret
not_installed:
 ; handles condition where TCPIP is not loaded before running the RCB client

Parent Topic: RCB Interface: Guide

GETBOOTPVSA

 rcb_bootpvsa STRUC
 RCB_bootp_cmn DB (SIZE rcb_common) DUP (?)
 RCB_bootp_vsa DB 64 DUP (?)
 rcb_bootpvsa ENDS

This is a LAN WorkPlace specific RCB command that conveys the
vendor-specific area of the bootp reply packet back to application. Only the
RCB_command field is required. The 64 bytes of vendor-specific information
in the bootp reply packet is copied into RCB_bootp_vsa. See the (RFC1084)
BOOTP Vendor Information Extension for the data format. This information
is only valid when the LAN WorkPlace protocol stack used the bootp
protocol to retrieve configuration parameters.

Parent Topic: RCB Structures for Individual Commands

GETMYMACADDR

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1332

 rcb_macaddr STRUC
 RCB_mac_cmn DB (SIZE rcb_common) DUP (?)
 RCB_mac_addr DB 6 DUP (?)
 rcb_macaddr ENDS

This is a LAN WorkPlace specific RCB command that returns the MAC
(hardware) address of the default network interface. Only the
RCB_command field is required for this command. Up to six bytes of MAC
address is returned in network byte order in RCB_mac_addr.

Parent Topic: RCB Structures for Individual Commands

GETPATHINFO

 rcb_getpathinfo STRUC
 RCB_pathinfo_cmd DB (SIZE rcb_common) DUP (?)
 RCB_pathkey DB 8 DUP (?)
 RCB_path DB 128 DUP (?)
 RCB_pathlen DW ?
 rcb_getpathinfo ENDS

This is a LAN WorkPlace specific RCB command that provides directory
paths to LAN WorkPlace system files. The paths are those entered using the
PATH keyword in the NET.CFG file for path keys SCRIPT, PROFILE,
LWP_CFG, TCP_CFG. Only the RCB_command field is required.
RCB_pathkey holds the path key string (in upper case) for which you want
the associated directory path configured in the NET.CFG. The upper case
path string from NET.CFG is returned in RCB_path (up to 128 bytes).
RCB_pathlen contains the actual length of the path string returned in
RCB_path (in bytes).

Parent Topic: RCB Structures for Individual Commands

GETSNMPINFO

 rcb_getsnmpinfo STRUC
 RCB_snmpinfo_cmn DB (SIZE rcb_common) DUP(?)
 RCB_mibvars DD ?
 rcb_getsnmpinfo ENDS

This is an internal LAN WorkPlace specific RCB command that obtains a far
pointer to a data area in the protocol stack which contains SNMP statistics
and configurations.

Parent Topic: RCB Structures for Individual Commands

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1333

GETSOCKOPT, SETSOCKOPT

 rcb_sockopt STRUC
 RCB_opt_cmn DB (SIZE rcb_common) DUP (?)
 RCB_optname DW ?
 RCB_optval DW ?
 RCB_linger DW ?
 rcb_sockopt ENDS

 ; valid RCB_optname definitions
 SO_REUSEADDR EQU 4h ; allow local address reuse
 SO_KEEPALIVE EQU 8h ; keep connections alive
 SO_LINGER EQU 80h ; linger on close if data present

RCB_socket is required for both commands. RCB_optname takes one of the
SO_ definitions below. RCB_optval contains the value of the option returned
or to set to. A nonzero value in RCB_optval for SO_REUSEADDR,
SO_KEEPALIVE, and SO_LINGER indicates that the option is set or to
needs to be set. For SO_LINGER, RCB_linger stores the linger time interval
in seconds. Note that LAN WorkPlace currently does not support socket
close lingering.

Parent Topic: RCB Structures for Individual Commands

Handling NO_WAIT Commands

ACCEPT, CONNECT, SELECT, CLOSE, RECV, RECVFROM, SEND,
SENDTO can be processed by protocol stack asynchronously when
RCB_command is ANDed with NO_WAIT. Control immediately returns
after the request is submitted. If a far notification (post) routine is specified
in RCB_ESR, the notification routine is called when the request is
completed. Unless an error (an RCB_status other than PENDING) is
returned when submitting the request, the RCB and its associated data
buffers should not be altered or reused before the notification routine is
called. The data returned is valid only after the post routine is called.
RCB_status contains the status of the completed request.

The post routine of a NO_WAIT RCB request is called with ES:SI pointing to
the original request RCB, DS containing the data segment of the protocol
stack, and SS:SP containing the stack's run-time event stack (256 bytes). The
post routine must preserve DS and ES:SI, and ensure that the stack does not
overflow during post-processing. Because this applies to every post routine,
a single common asynchronous notification routine front end can be used
with the unique portion of the post routine called afterwards.

Switching to a larger stack in the data segment is also recommended to
protect the protocol stack from overflowing, or if the stack segment (SS)
must be set to the your local DGROUP for run-time library functions called

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1334

from the post routine. A mechanism must be created to associate extra
information (for example, the "real" post routine, and so on) with the RCB to
accomplish this.

Parent Topic: Interfacing with the RCB Handler

Interfacing with the RCB Handler

Interfacing with the RCB Handler includes the following aspects:

Sending an RCB Request

RCB Completion and Error Handling

Handling NO_WAIT Commands

Break Handling

Parent Topic: RCB Interface: Guide

IOCTL

 rcb_ioctl STRUC
 RCB_ioc_cmn DB (SIZE rcb_common) DUP (?)
 RCB_ioc_arg DD ?
 RCB_ioc_cmd DW ?
 rcb_ioctl ENDS

 ; values for RCB_ioc_cmd
 FIONBIO EQU 26238
 FIONREAD EQU 26239

For the ioctl command FIONBIO, set RCB_ioc_arg to 1 to set the socket I/O
mode to nonblocking, or to 0 for blocking mode. For FIONREAD,
RCB_ioc_arg contains the number of bytes available to read on completion.

Parent Topic: RCB Structures for Individual Commands

LISTEN

 rcb_listen STRUC
 RCB_lis_cmn DB (SIZE rcb_common) DUP (?)
 RCB_lis_bklog DW ? ; listen backlog (maximum is 5)
 rcb_listen ENDS

Parent Topic: RCB Structures for Individual Commands

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1335

New RCB Definitions

The changes involved for implementing the the new RCB functions include
additions to the protocol stack's RCB handler as well as socket libraries for
both DOS and Windows. The RCB will be expanded as follows:

rcb_common STRUC
 RCB_next DD ? ; forward link
 RCB_prev dd ? ; back link
 RCB_ESR DD ? ; user completion routine
 RCB_reserved DB 8 DUP (?) ; workspace
 RCB_type DB ? ; for de-muxing
 RCB_command DB ? ; command
 RCB_socket DB ? ; socket
 RCB_status DB ? ; status
rcb_common ENDS

; new RCB commands
;
CMD_GETIFN EQU 25 ; get interface number
CMD_SETIPINFO EQU 26 ; set IP info
CMD_GETIPINFO EQU 27 ; get IP info
CMD_SETDNSINFO EQU 28 ; set DNS info
CMD_GETDNSINFO EQU 29 ; get DNS info
CMD_SETROUTES EQU 30 ; set/modify route entry/entries
CMD_GETROUTES EQU 31 ; get route entry/entries
CMD_REMOVEROUTES EQU 32 ; remove route entry/entries
CMD_SETARPS EQU 33 ; set/modify ARP entry/entries
CMD_GETARPS EQU 34 ; get ARP entry/entries
CMD_REMOVEARPS EQU 35 ; remove ARP entry/entries

CMD_MAX EQU 35

; command structure used by CMD_GETIFN
;
MAXMLIDNAMELENGTH equ 128
;
rcb_ifn STRUC
 RCB_ifn_cmn db (SIZE rcb_common) dup (?)
 RCB_ifnum dw ? ; interface number (1 - 4) returned
 RCB_mlid_instance dw ? ; instance number of the mlid
 RCB_mlid_name db MAXMLIDNAMELENGTH dup (?)
 ; this is the file name (short name)
 ; of the mlid and normally should be
 ; less or equal to 8 characters long
rcb_ifn ENDS

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1336

; command structure used by CMD_GETIPINFO and CMD_SETIPINFO
;
MAXROUTERS equ 3 ; up to three default routers can be
 ; specified for each interface
;
rcb_ipinfo STRUC
 RCB_ipinfo_cmn db (SIZE rcb_common) dup (?)
 RCB_ip_ifnum dw ? ; interface number (1 - 4), if 0
 ; specified the default interface (1)
 ; will be used
 RCB_ip_address dd ?
 RCB_ip_netmask dd ?
 RCB_ip_router dd MAXROUTERS dup (?)
rcb_ipinfo ENDS

; command structure used by CMD_GETDNSINFO and CMD_SETDNSINFO
;
MAXDNS equ 3 ; up to three DNS server can be
 ; specified
MAXDNAME equ 128

rcb_dnsinfo STRUC
 RCB_dnsinfo_cmn db (SIZE rcb_common) dup (?)
 RCB_dns_ipaddr dd MAXDNS dup (?) ; name server ip address
 RCB_dns_domain db MAXDNAME dup (?)
 ; note, this is half of the MAXDNAME
 ; used by the resolver, it is chosen
 ; so the current RCB size is not
 ; increased
rcb_dnsinfo ENDS

; command structure used by CMD_GETROUTES, CMD_SETROUTES, and
; CMD_REMOVEROUTES
;
MAXROUTES equ 5 ; up to 5 static routes can be
 ; manipulated
;
; definitions for RCB_route_type
;
ROUTE_STATIC equ 1 ; indicate static route
ROUTE_HOST equ 2 ; host specific route

rcb_route STRUC
 RCB_dest_ipaddr dd ? ; destination host/net IP address
 RCB_router dd ? ; IP address of the 1st hop router
 RCB_route_type dw ?
rcb_route ENDS

rcb_routeinfo STRUC
 RCB_routeinfo_cmn db (SIZE rcb_common) dup (?)
 RCB_rn dw ? ; number of route entries up to
 ; MAXROUTES specified in the RCB

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1337

 RCB_route_entry db (MAXROUTES * SIZE rcb_route) dup (?)
rcb_routeinfo ENDS

; command structure used by CMD_GETARPE, CMD_SETARPE, and
; CMD_REMOVEARPE
;
MAXARPE equ 16 ; up to 16 ARP entries can be
 ; manipulated

rcb_arp STRUC
 RCB_dest_ip dd ?
 RCB_dest_ha db 6 dup (?)
rcb_arp ENDS

rcb_arpinfo STRUC
 RCB_arpinfo_cmn db (SIZE rcb_common) dup (?)
 RCB_an dw ? ; number of arp entries up to
 ; MAXARPE specified in the RCB
 RCB_arp_entry db (MAXARPE * SIZE rcb_arp) dup (?)
rcb_arpinfo ENDS

Parent Topic: Addendum (6/30/95)

New Socket Library Functions

Synopses of the new socket library functions follow. (Note that the
definitions are for the DOS socket library only, FAR pointers and PASCAL
function types are required for Windows.)

 define RCBMAXDNAME 128 /* maximum domain name length */
 define MAXROUTES 5 /* maximum number of route entries
 can be manipulated */
 define MAXARPE 16 /* maximum number of arp entries can
 be manipulated */

struct ipinfo { /* used in get/setipinfo() */
 long addr; /* IP numbers are in network byte
 order, only nonzero numbers are
 valid in SET function */
 long netmask;
 long router1;
 long router2;
 long router3;
};

struct dnsinfo { /* structure used in get/setdnsinfo()
 to convey relevant DNS information
 between application and TCPIP */
 long dns1; /* name server IP address */
 long dns2;

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1338

 long dns3;
 char dname[RCBMAXDNAME]; /* case sensitive ASCIIZ domain name */
};

struct route { /* route entry structure used in
 get/set/removeroutes() */
 long dest_addr; /* destination host/net IP address */
 long router; /* first hop router IP address */
 short route_type;
};

struct arpe { /* arp entry structure used in
 get/set/removearpe() */
 long dest_ip; /* IP address of a host */
 char dest_ha[6]; /* hardware address of the host */
};

typedef char * CHARPTR;
typedef struct ipinfo * IPINFO_PTR;
typedef struct dnsinfo * DNSINFO_PTR;
typedef struct route * ROUTE_PTR;
typedef struct arpe * ARPE_PTR;

 include <sys\socket.h>
int getifn /* interface number returned */
 (CHARPTR mlidname, /* case insensitive ASCIIZ mlid short
 name (file name without suffix) */
 int mlidinstance); /* driver instance, 0 indicates 1st */

int getipinfo
 (int ifn, /* interface number to get info from */
 IPINFO_PTR addrptr); /* pointer to address buffer to store
 returned ipinfo */

int setipinfo
 (int ifn, /* interface number to set info to */
 IPINFO_PTR addrptr); /* pointer to address buffer which
 stores the new address ipinfo */

int getdnsinfo
 (DNSINFO_PTR dnsptr); /* ptr to dnsinfo buffer to store
 returned info */

int setdnsinfo
 (DNSINFO_PTR dnsptr); /* ptr to new dnsinfo buffer to
 set */

int getroutes /* number of static routes retrieved */
 (ROUTE_PTR routeptr); /* ptr to route entry buffer to store
 returned info, the buffer should
 be large enough to hold MAXROUTES
 'route' entries */

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1339

int setroutes
 (int rn, /* number of routes pointed by routeptr */
 ROUTE_PTR routeptr); /* ptr to route entries to set/mod. */

int removeroutes
 (int rn, /* number of routes as specified in
 routeptr to remove */
 ROUTE_PTR routeptr); /* ptr to route entry buffer */

int getarps /* number of ARP entries retrieved */
 (ARPE_PTR arpptr); /* ptr to arp entry buffer to store
 returned info, the buffer should
 be large enough to hole MAXARPE
 'arpe' entries */
int setarps
 (int an, /* number of arp entries pointed by arpptr */
 ARPE_PTR arpptr); /* ptr to arp entries to set/mod. */

int removearps
 (int an, /* number of arp entries as specified
 in routeptr to remove */
 ARPE_PTR arpptr); /* ptr to arp entry buffer */

Possible error codes are:
 ENIFNOTFOUND - nif is not found for the mlid
 EINVALIDIFN - invalid interface number
 EINVALIDIP - invalid IP address for local, router, DNS server,
 target of route/ARP entry to remove
 EINVALIDRN - invalid number of route entry
 EROUTENOTFOUND - route entry specified to remove is not found
 EINVALIDAN - invalid number of ARP entry
 EARPENOTFOUND - ARP entry specified to remove is not found
 ESETNOTALLOWED - setting TCPIP operating parameters is not allowed
 possibly due to open socket

Parent Topic: Addendum (6/30/95)

OS Host Resident Internet Protocols RCB Format
(For Data-I/O Operations)

Offse
t

Field Comments

0 RCB_next Used for link management

4 RCB_prev Used for link management

8 RCB_ESR Post address

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1340

12 RCB_reserved For LAN WorkPlace TCP/IP internal use

20 RCB_type (not used)

21 RCB_command Command code

22 RCB_socket Socket ID

23 RCB_status Status & return code

24 RCB_flags Flag of MSG_OOB or MSG_PEEK

26 RCB_port Port number (ignored for SEND/RECV)

28 RCB_ip_addr IP address (ignored for SEND/RECV)

32 totallen Total length of all fragments

34 RCB_frag_cnt Fragment count

36 RCB_frag [0] Fragment 0

42 RCB_frag [1] Fragment 1

48 RCB_frag [2] Fragment 2

54 RCB_frag [3] Fragment 3

60 RCB_frag [4] Fragment 4

66 RCB_frag [5] Fragment 5

72 RCB_frag [6] Fragment 6

78 RCB_frag [7] Fragment 7

Parent Topic: The C Language Version of RCB Structures

Overview of the RCB Interface

The LAN WorkPlace® TCP/IP protocol stack provides a transport module
for DOS and Windows* clients. At the upper boundary, it exposes a
Request Control Block (RCB) interface for the BSD socket library and other
clients (for example, the RFC NetBios driver). At the lower boundary, this
interface communicates with the Link Support Layer™ (LSL™) according to
the industry-standard Open Data-Link Interface™ (ODI™) specification.
Although not directly related to the RCB interface, ODI affects the way how
a user's RCB request is handled. LSL exposes an asynchronous interface to
the protocol stack at the link layer that surfaces in the RCB interface.
However, a blocking (synchronous) RCB request is built into the protocol
stack's RCB handler rather than giving this responsibility to RCB clients.

This article describes the RCB interface for developers who want to bypass
the LAN WorkPlace SDK socket libraries and use TCP/IP directly. The
interface is described in the form of Intel* 8086 assembly language, but this
does not prevent its use in applications written in higher-level languages.
You can use this interface with higher-level languages by using either an
assembly language front end or the assembly language capability built into

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1341

some high-level languages. See The C Language Version of RCB Structures
for the C language version of RCB structure definitions.

This article describes the interface provided by version 4.1 of LAN
WorkPlace. However, this article applies to versions 4.0 and 4.01 of the
LAN WorkPlace protocol stack, except for three new RCB commands
(GETBOOTPVSA, GETSNMPINFO, and GETPATHINFO) which are not
supported.

It is strongly recommended that you have access to LAN WorkPlace SDK
documentation (particularly the LAN WorkPlace for DOS Socket Library
Reference) because LAN WorkPlace socket libraries are implemented on top
of the RCB interface. Therefore, information about the LAN WorkPlace
socket API and access to function descriptions can help you understand this
article.

Parent Topic: RCB Interface: Guide

Protocol Stack RCB Handler

At the top of the LAN WorkPlace protocol stack is the RCB/socket module
that interfaces with the application through RCB. The application passes the
RCB containing the request context of a BSD socket function (in most cases)
or a LAN WorkPlace specific service through the RCB service routine vector
it obtained during initialization.

If the request is a blocking request, the completed RCB is returned to the
application on the same request processing thread (for example,
CMD_RECV only returns when data has been received).

If the request is a NO_WAIT request, the original request is returned
immediately and the completed RCB is returned when the post routine
specified in the RCB_ESR of the request is called (for example,
CMD_RECV+NO_WAIT returns immediately and the post routine is called
asynchronously on another processing thread---usually an interrupt
thread---when data is received). LAN WorkPlace SDK socket libraries use
NO_WAIT RCB requests to implement unique ANR socket functions.

The protocol stack RCB handler is a far procedure routine. All application
registers except DX are preserved.

Parent Topic: RCB Interface: Guide

RCB Completion and Error Handling

For blocking RCB commands (the NO_WAIT bit is not set), the control does
not return to the RCB client until the request is completed. For
asynchronous RCB commands (the NO_WAIT bit set and RCB_ESR
pointing to the post routine---asynchronous notification routine), the request

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1342

pointing to the post routine---asynchronous notification routine), the request
is initiated and the control is returned immediately. The post routine is
called when the request completes. RCB_status contains the command
processing result. Any codes other than EOK indicate that the request has
not successfully processed.

For NO_WAIT commands, RCB_status contains the immediate result after
submitting the request to the protocol stack RCB handler. Any code other
than PENDING indicates an error.

For a nonblocking BSD socket I/O request (set by the FIONBIO option of
the IOCTL command for the individual socket), an RCB_status of
EWOULDBLOCK on return indicates that the request is not fulfilled and
would be blocked if submitted as a blocking request. The request is
processed if the protocol stack determined that the operation can be
completed without delay. As a result, you should retry the request upon
receiving the EWOULDBLOCK status.

NOTE: Only asynchronous RCB commands can be issued from the
post routine. ESYNNOTSUPP is returned in RCB_status if a
synchronous command is issued.

Parent Topic: Interfacing with the RCB Handler

RCB Definitions

**/

 ifndef _RCB

 define _RCB

 define MAXSG 8 /* Max number of scatter/gather */
 define MAXTOTALLEN 65535 /* Max Total length of data per io */

 typedef unsigned char u8bit;
 typedef unsigned short u16bit;
 typedef unsigned long u32bit;

 /* RCB defines the static part of both Non IO and IO RCBs */

 typedef struct RCB_static {
 u32bit RCB_next; /* RCB management */
 u32bit RCB_prev; /* RCB management */
 u32bit RCB_ESR; /* post address */
 u8bit RCB_reserved [8]; /* workspace */
 u8bit RCB_type; /* for RCB de-muxing */
 u8bit RCB_command; /* command code */
 u8bit RCB_socket; /* socket */
 u8bit RCB_status; /* status & return code */
 };

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1343

 /* frag describes the fragments */

 struct frag {
 u32bit fragptr; /* pointer to the data */
 u16bit fraglen; /* length */
 };

 /* RCB_io defines the scatter gather arrray for IO RCBs */
 typedef struct RCB_io {
 u16bit totallen;
 u16bit RCB_fragcnt; /* number of fragments */
 struct frag RCB_frag [8]; /* the fragments. Max = 8 */
 };

/***/

 /* values for RCB_type */

 define RCB_BSD43 1 /* BSD 4.3 Internet */

 /* Values for RCB_command (Non-IO Operations) */

 define ACCEPT 1
 define BIND 2
 define CLOSE 3
 define CONNECT 4
 define GETMYIPADDR 5
 define GETMYMACADDR 6
 define GETPEERNAME 7
 define GETSOCKNAME 8
 define GETSOCKOPT 9
 define GETSUBNETMASK 10
 define IOCTL 11
 define LISTEN 12
 define SELECT 13
 define SETMYIPADDR 14
 define SETSOCKOPT 15
 define SHUTDOWN 16
 define SOCKET 17

/* Data-IO Operations */

 define RECV 18
 define RECVFROM 9
 define SEND 20
 define SENDTO 21

/* New Commands for version 4.02 */

 define GETBOOTPVSA 22
 define GETSNMPINFO 23

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1344

 define GETSNMPINFO 23
 define GETPATHINFO 24

/***/

 /* Sockaddr structure has the IPADDR and the PORT */

 struct RCB_sockaddr {
 u16bit port; /* UDP/TCP port */
 u32bit ip_addr; /* IP address */
 };

 /* Define various rcb structures for the socket commands. */

Parent Topic: The C Language Version of RCB Structures

RCB Definitions for I/O Operations

 typedef struct rcb_recv {
 struct RCB_static rcb;
 u16bit flags;
 struct RCB_sockaddr from;
 struct RCB_io recv_io;
 }rcb_recv;

 typedef struct rcb_recvfrom {
 struct RCB_static rcb;
 u16bit flags;
 struct RCB_sockaddr from;
 struct RCB_io recvfrom_io;
 }rcb_recvfrom;

 typedef struct rcb_send {
 struct RCB_static rcb;
 u16bit flags;
 struct RCB_sockaddr to;
 struct RCB_io send_io;
 } rcb_send;

 typedef struct rcb_sendto {
 struct RCB_static rcb;
 u16bit flags;
 struct RCB_sockaddr to;
 struct RCB_io sendto_io;
 }rcb_sendto;

 endif

Parent Topic: The C Language Version of RCB Structures

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1345

RCB Header Structure

The following structure defines the RCB header:

rcb_common STRUC
 RCB_next DD ? ; forward link
 RCB_prev DD ? ; back link
 RCB_ESR DD ? ; user completion (post) routine
 RCB_reserved DB 8 DUP (?) ; workspace
 RCB_type DB ? ; for de-muxing
 RCB_command DB ? ; command
 RCB_socket DB ? ; socket
 RCB_status DB ? ; status
rcb_common ENDS

The RCB_next and RCB_prev fields can be used by clients to manage the
allocation of available RCBs and the freeing of a previously allocated RCBs
from a linked list of available RCBs. Both fields can be modified by TCP/IP.

RCB_ESR contains a far pointer to the client's event service routine (post
routine), which is called when the request is completed for an asynchronous
(NO_WAIT) RCB command. This field should be set to NULL for blocking
(not NO_WAIT) RCB commands.

The RCB_reserved field is reserved for the protocol stack. You must not use
this field. RCB_type is also reserved for the protocol stack, and its value is
modified.

RCB_command contains the command code for the RCB request.

RCB_socket contains the socket ID the request is targeted to. This field should
be set to zero for commands not associated with sockets (that is, SOCKET,
SELECT, GETMYIPADDR, GETSUBNETMASK, GETMYMACADDR,
GETBOOTPVSA, GETSNMPINFO, and GETPATHINFO). The valid ID
number ranges from 1 to the configured maximum.

RCB_status is set to the status or error code when the RCB returns on
completion of the request.

IMPORTANT: All RCB fields that are not used by the specific RCB
command must contain zeroes.

The following defines values for RCB_flags:

 RCB_flags EQU RCB_reserved

; RCB_flags values

 RF_INPROG EQU 01H
 RF_POSTED EQU 02H

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1346

 RF_WINDOWS EQU 04H
 RF_PROTBUF EQU 08H
 RF_ABORTRCB EQU 10H ; for break handling
 RF_BREAKRCB EQU 20H ;

The following defines the values for RCB_command:

 ; RCB_command code definition

 CMD_ACCEPT EQU 1
 CMD_BIND EQU 2
 CMD_CLOSE EQU 3
 CMD_CONNECT EQU 4
 CMD_GETMYIPADDR EQU 5
 CMD_GETMYMACADDR EQU 6
 CMD_GETPEERNAME EQU 7
 CMD_GETSOCKNAME EQU 8
 CMD_GETSOCKOPT EQU 9
 CMD_GETSUBNETMASK EQU 10
 CMD_IOCTL EQU 11
 CMD_LISTEN EQU 12
 CMD_SELECT EQU 13
 CMD_SETMYIPADDR EQU 14 ; not supported anymore
 CMD_SETSOCKOPT EQU 15
 CMD_SHUTDOWN EQU 16
 CMD_SOCKET EQU 17
 CMD_RECV EQU 18
 CMD_RECVFROM EQU 19
 CMD_SEND EQU 20
 CMD_SENDTO EQU 21
 CMD_GETBOOTPVSA EQU 22
 CMD_GETSNMPINFO EQU 23
 CMD_GETPATHINFO EQU 24

 CMD_MAX EQU 24

The following defines the asynchronous command modifier:

 ; asynchronous command modifier - AND with the above command code
 ; to signify an asynchronous RCB request. Note, due to the
 ; semantic nature of the commands,
 ; only ACCEPT, CONNECT, SELECT, CLOSE, RECV, RECVFROM, SEND
 ; SENDTO can be NO_WAIT command

 NO_WAIT EQU 10000000b

The following defines values for RCB_status:

 ; RCB_status definition

 EOK EQU 0 ; Operation was successful

 EWOULDBLOCK EQU 35 ; Operation would block

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1347

 EINPROGRESS EQU 36 ; Operation now in progress
 EALREADY EQU 37 ; Operation already in progress
 ENOTSOCK EQU 38 ; Socket operation on non-socket
 EDESTADDRREQ EQU 39 ; Destination address required
 EMSGSIZE EQU 40 ; Message too long
 EPROTOTYPE EQU 41 ; Protocol wrong type for socket
 ENOPROTOOPT EQU 42 ; Protocol not available
 EPROTONOSUPPORT EQU 43 ; Protocol not supported
 ESOCKTNOSUPPORT EQU 44 ; Socket type not supported
 EOPNOTSUPP EQU 45 ; Operation not supported on socket
 EPFNOSUPPORT EQU 46 ; Protocol family not supported
 EAFNOSUPPORT EQU 47 ; Address family not supported by
 ; protocol family
 EADDRINUSE EQU 48 ; Address already in use
 EADDRNOTAVAIL EQU 49 ; Can't assign requested address
 ENETDOWN EQU 50 ; Network is down
 ENETUNREACH EQU 51 ; Network is unreachable
 ENETRESET EQU 52 ; Network dropped connection on reset
 ECONNABORTED EQU 53 ; Software caused connection abort
 ECONNRESET EQU 54 ; Connection reset by peer
 ENOBUFS EQU 55 ; No buffer space available
 EISCONN EQU 56 ; Socket is already connected
 ENOTCONN EQU 57 ; Socket is not connected
 ESHUTDOWN EQU 58 ; Can't send after socket shutdown
 ETOOMANYREFS EQU 59 ; Too many references: can't splice
 ETIMEDOUT EQU 60 ; Connection timed out
 ECONNREFUSED EQU 61 ; Connection refused
 ELOOP EQU 62 ; Too many levels of symbolic links
 ENAMETOOLONG EQU 63 ; File name too long
 EHOSTDOWN EQU 64 ; Host is down
 EHOSTUNREACH EQU 65 ; No route to host
 ENOTINSTLD EQU 66 ; Protocol stack not installed
 EASYNCNOTSUPP EQU 67 ; Asynchronous operation cannot be
 ; performed
 ESYNCNOTSUPP EQU 68 ; Synchronous operation cannot be
 ; performed
 ENO_RCB EQU 69 ; no RCB available

 ; special RCB_status value indicating that the RCB request is pending to be processed

 PENDING EQU 11111111b

Parent Topic: Request Control Block

RCB Implementation Notes

CMD_SETROUTES and CMD_SETARPE imply MODIFY if the route or
arp entry for the destination already exists.

Definitions of MAXROUTERS, MAXDNS, MAXROUTES, and

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1348

MAXARPE reflect the current (R41-1i and later) implementation of
TCP/IP

LAN WorkPlace implements a domain name resolver in the socket
library. However, the resolver looks up the protocol stack's bootp reply
(if any) and uses the DNS information over the static configured
information in resolv.cfg if it exists. Implementation to
CMD_SETDNSINFO takes advantage of this fact and fakes building a
bootp reply which reflects the DNS information that the user wants the
socket library to use. The actual implementation of massaging the bootp
reply when there a "real" bootp reply already exists will take into account
the existing variable length format of TAG_DOMAIN_SERVER and/or
TAG_HOSTNAME records.

The TCP/IP RCB handler will do minimum validity checks on IP
numbers passed in setipinfo, setdnsinfo, setroutes, setarpe. That is, an
address of ff.ff.ff.ff, 0.0.0.0, or 1st octet >= 11100000b is considered
invalid.

Error handling by the new socket library functions follows the same
convention used in the current DOS/Windows socket library where a
return code of -1 indicates an error and the global variable errno or
function geterrno can be used to determine the cause.

The getifn function is incapable of identifying the interface when
multiple instances of the same Multiple Link Interface Driver™ (MLID™)
driver are loaded when only the MLID name is used. The extra "instance
number" solves this problem.

The protocol stack does not allow its operating parameters to be set when
a socket is opened.

We are considering making set/remove route/ARPe a single entry at the
socket library interface level.

CMD_REMOVEROUTES treats NULL (0) for "IP address of the 1st hop
router" as a special token that instructs TCP/IP to remove the route based
on the "destination IP address" match only.

Parent Topic: Addendum (6/30/95)

RCB Structures for Individual Commands

In addition to the common RCB header, variable fields are defined for
specific commands. See the complete definitions of all socket-related
parameters for each command in SOCKET.H, supplied with the LAN
WorkPlace SDK.

SOCKET

LISTEN

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1349

ACCEPT, BIND, CONNECT, GETPEERNAME, GETSOCKNAME,
GETMYIPADDR, and GETSUBNETMASK

CLOSE

GETSOCKOPT, SETSOCKOPT

GETMYMACADDR

GETBOOTPVSA

GETSNMPINFO

GETPATHINFO

SELECT

IOCTL

SHUTDOWN

RECV, RECVFROM, SEND, SENDTO

Parent Topic: Request Control Block

RCB Structures for Non-I/O Operations

 typedef struct rcb_accept {
 struct RCB_static rcb;
 atruct RCB_sockaddr addr;
 }rcb_accept;

 typedef struct rcb_bind {
 struct RCB_static rcb;
 struct RCB_sockaddr addr;
 }rcb_bind;

 typedef struct rcb_close {
 struct RCB_static rcb;
 }rcb_close;

 typedef struct rcb_connect {
 struct RCB_static rcb;
 struct RCB_sockaddr addr;
 }rcb_connect;

 typedef struct rcb_getmyipaddr {
 struct RCB_static rcb;
 struct RCB_sockaddr addr;
 }rcb_getmyipaddr;

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1350

 typedef struct rcb_getmymacaddr {
 struct RCB_static rcb;
 u8bit rcb_macaddr[6];
 }rcb_getmymacaddr;

 typedef struct rcb_getbootpvsa {
 struct RCB_static rcb;
 u8bit rcb_getbootp_vsa[64];
 }rcb_getbootpvsa;

 typedef struct rcb_getpathinfo {
 struct RCB_static rcb;
 u8bit RCB_key[8];
 u8bit RCB_path[128];
 u16bit RCB_pathlen;
 }rcb_getpathinfo;

 typedef struct rcb_getpeername {
 struct RCB_static rcb;
 struct RCB_sockaddr addr;
 }rcb_getpeername;

 typedef struct rcb_getsockname {
 struct RCB_static rcb;
 struct RCB_sockaddr addr;
 }rcb_getsockname;

 typedef struct rcb_getsockopt {
 struct RCB_static rcb;
 u16bit optname;
 u16bit optval;
 u16bit linger;
 }rcb_getsockopt;

 typedef struct rcb_ioctl {
 struct RCB_static rcb;
 u32bit arg;
 u16bit ioctl;
 }rcb_ioctl;

 typedef struct rcb_listen {
 struct RCB_static rcb;
 u16bit backlog;
 }rcb_listen;

 typedef struct rcb_select {
 struct RCB_static rcb;
 u16bit socket_count;
 fd_set readfds;
 fd_set writefds;
 fd_set exceptfds;

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1351

 unsigned long ticks;
 }rcb_select;

 typedef struct rcb_setsockopt {
 struct RCB_static rcb;
 u16bit optname;
 u16bit optval;
 u16bit linger;
 }rcb_setsockopt;

 typedef struct rcb_shutdown {
 struct RCB_static rcb;
 u16bit how;
 }rcb_shutdown;

 typedef struct rcb_socket {
 struct RCB_static rcb;
 u16bit protocol;
 }rcb_socket;

Parent Topic: The C Language Version of RCB Structures

RECV, RECVFROM, SEND, SENDTO

 rcb_io STRUC
 RCB_io_cmn DB (SIZE rcb_common) DUP (?)
 RCB_io_flags DW ?
 RCB_data_port DW ?
 RCB_data_addr DD ?
 RCB_SendLen DW ?
 RCB_FragCnt DW ? ; number of fragments in RCB
 RCB_FragPtr1 DD ?
 RCB_FragLen1 DW ?
 RCB_FragPtr2 DD ?
 RCB_FragLen2 DW ?
 RCB_FragPtr3 DD ?
 RCB_FragLen3 DW ?
 RCB_FragPtr4 DD ?
 RCB_FragLen4 DW ?
 RCB_FragPtr5 DD ?
 RCB_FragLen5 DW ?
 RCB_FragPtr6 DD ?
 RCB_FragLen6 DW ?
 RCB_FragPtr7 DD ?
 RCB_FragLen7 DW ?
 RCB_FragPtr8 DD ?
 RCB_FragLen8 DW ?
 rcb_io ENDS

 rcb_frag STRUC

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1352

 RCB_FragPtr DD ? ; ptr to the buffer fragment
 RCB_FragLen DW ? ; fragment length in bytes
 rcb_frag ENDS

 ; RCB_io_flags definition
 ; MSG_OOB EQU 1 ; process out-of-band data

 ; RCB_flags bit definition, note that this flag
 ; value is present only in rcb_io !
 RF_INPROG EQU 1 ; IO is in progress

rcb_io can be used to do network input and output using single buffer or
scatter gather buffers. Up to eight application buffer fragments can be
specified to receive data or to contain data to be transmitted. RCB_SendLen
should be set to the total number of bytes of data that you want to send or
receive on input. It is set to the actual number of bytes sent or received on
completion. RCB_data_addr and RCB_data_port contain the destination host's
IP address and protocol port number in network byte order for SEND and
SENDTO on input. They are set to the source IP address and port number
for RECV and RECVFROM on completion. On a connection-oriented TCP
socket, RCB_data_addr and RCB_data_port are ignored on input for
SEND/SENDTO, but they are still set to the originating host's IP address
and port on completion for RECV/RECVFROM.

For connectionless UDP sockets, SEND can be used only if the socket is
connected (pseudo connect---a CONNECT has been applied to the socket).
RCB_data_addr and RCB_data_port are ignored in this case.

SENDTO can be used only when the socket is not connected (pseudo). Both
RCB_data_addr and RCB_data_port must be specified. Otherwise an
immediate error EDESTADDRREQ is returned.

RCB_io_flags can be set to MSG_OOB to transmit (SEND/SENDTO)
out-of-band urgent data.

Parent Topic: RCB Structures for Individual Commands

Request Control Block

The Request Control Block (RCB) is designed in accordance with the BSD
version 4.3 socket library API plus several services unique to LAN
WorkPlace. You are assumed to have a basic understanding of Berkeley
sockets (see LAN WorkPlace for DOS Socket Library Reference in the LAN
WorkPlace SDK). Each RCB has a common static header followed by a
variable format that depends on the command. Note that multiple
commands can share an identical structure.

Related Topics

RCB Header Structure

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1353

RCB Structures for Individual Commands

Parent Topic: RCB Interface: Guide

SELECT

 rcb_select STRUC
 RCB_sel_cmn DB (SIZE rcb_common) DUP (?)
 RCB_sel_cnt DW ?
 RCB_sel_rd DD 4 DUP (?)
 RCB_sel_wr DD 4 DUP (?)
 RCB_sel_ex DD 4 DUP (?)
 RCB_sel_ticks DD ?
 rcb_select ENDS

RCB_sel_cnt should be set to one larger than the largest socket ID you want
to examine on input because LAN WorkPlace returns socket IDs from 1 up.
It is set to indicate the number of sockets that are ready on return.

RCB_sel_rd, RCB_sel_wr, and RCB_sel_ex are socket ID descriptor sets for
(network I/O) read, write, and exception. They should be set to a bit mask of
the socket IDs that you are interested in on input, and are set to a subset of
the original mask to indicate those sockets ready for reading, ready for
writing, or have exception conditions pending on return.

RCB_sel_ticks should be set to the number of DOS timer ticks that you are
willing to wait for the event to happen. Set RCB_sel_ticks to -1 to wait
indefinitely.

LAN WorkPlace currently does not support select on exception conditions.

Parent Topic: RCB Structures for Individual Commands

Sending an RCB Request

After verifying that the LAN WorkPlace protocol stack is loaded and
preparing a request RCB, an RCB client can send an RCB request. To send
the request, put the far pointer of the request RCB in the register pair ES:SI
and invoke the far function pointer of the protocol stack's RCB handler
(obtained from the interrupt 2F install check of the protocol stack). The
following code shows the process:

 current_rcb dd 0 ; stores far pointer to RCB in processing
 ; used for <Ctrl-Break> handling
 ...
 mov word ptr current_rcb, si
 mov word ptr current_rcb+2, es
 call [RCB_service_entry] ; es:si -> request RCB

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1354

 mov word ptr current_rcb, 0
 mov word ptr current_rcb+2, 0
 . ; es:si -> original request RCB

Parent Topic: Interfacing with the RCB Handler

SHUTDOWN

 rcb_shutdown STRUC
 RCB_shutdown_cmn DB (SIZE rcb_common) DUP (?)
 RCB_how DW ?
 rcb_shutdown ENDS

This command is not fully implemented in LAN WorkPlace. RCB_how can
only be set to 1 to disallow further send.

Parent Topic: RCB Structures for Individual Commands

SOCKET

 rcb_skt STRUC
 RCB_skt_cmn DB (SIZE rcb_common) DUP (?)
 RCB_skt_proto DW ?
 rcb_skt ENDS

 ; RCB_skt_proto values
 IPPROTO_ICMP EQU 1 ; internet control message protocol
 IPPROTO_TCP EQU 6 ; tcp
 IPPROTO_UDP EQU 17 ; udp

RCB_socket contains the socket ID allocated on successful completion of the
request.

Parent Topic: RCB Structures for Individual Commands

The C Language Version of RCB Structures

This section describes the RCB structure definitions used to convey BSD 4.3
socket requests/replies between drivers and libraries or users.

The RCB can be logically defined as two different substructures: the
non-I/O operation RCB and the I/O operation RCB.

Related Topics

DOS Host Resident Internet Protocols RCB Format (For Non-I/O
Operations)

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1355

OS Host Resident Internet Protocols RCB Format (For Data-I/O
Operations)

RCB Definitions

RCB Structures for Non-I/O Operations

RCB Definitions for I/O Operations

Parent Topic: RCB Interface: Guide

Communication Service Group

The RCB Interface to the LAN WorkPlace TCP/IP Protocol Stack 1356

Using the Low-Level RCB Interface to
Support the NetWare/IP
DOS/Windows Client v1.0

Novell® Engineering

Using the Low-Level RCB Interface to Support the
NWIP Client: Guide

Prerequisites: A TCP/IP stack vendor must implement the low-level RCB
interface as described in Using the Low-Level RCB Interface to TCP/IP for
UDP Communication. This must be done to enable the NetWare/IP™ client
to send and receive UDP Packets.

Requirements for the TCP/IP Stack

NetWare/IP Operation

NWIP Software Components

Installation and Loading for NWIP

Installation and Loading for NWIP

NWIPWIN.EXE and RES_SUPP.DLL should be copied to your Windows
SYSTEM directory to be autoloaded by Windows. NWIP.EXE and
NWIPINIT.EXE should be located in the NWCLIENT directory that
contains ODI files. Make sure that your NET.CFG is in the same directory as
LSL and NWIP.EXE.

Load in the following order in DOS (same as NetWare/IP 1.1):

1. LSL

2. LAN driver

3. TCPIP

4. NWIP

You can now load Windows and bring up VxD TCP/IP.

Communication Service Group

Using the Low-Level RCB Interface to Support the NetWare/IP DOS/Windows Client v1.0 1357

Parent Topic: Using the Low-Level RCB Interface to Support the NWIP
Client: Guide

NetWare/IP Operation

The following illustrates how NetWare/IP 2.1 would operate in the
described delayed TCP/IP-ready environment.

The NetWare/IP 2.1 workstation operates as follows:

First, NWIP.EXE (shrinked down version) tries to perform initialization (for
example, finding a DSS through DNS) when it is loaded and TCP/IP is
available (TCP/IP must return 0 as the local IP address if it is not ready).

1. NWIP.EXE loads and executes (through INT 21H, AX=4B).
NWIPINIT.EXE (which parses NET.CFG) communicates with the
BOOTP/DHCP server for NetWare/IP parameters (if applicable) and
finds DSS's through DNS.

2. Upon completing execution, NWIPINIT.EXE terminates and returns
control to NWIP.EXE with a code indicating the result of initialization.

3. NWIP.EXE then indicates whether it has loaded successfully or not by
displaying a message on the workstation screen.

If TCP/IP is not ready, NWIP.EXE loads without initializing until TCP/IP is
ready. The following applies to Windows only.

1. As Windows is loaded, NetWare/IP asks Windows to autoload
NWIPWIN.EXE (the WINSOCK-based NetWare/IP Windows
application similar to NWIPINIT.EXE for DOS). NWIPWIN.EXE
depends on IPCONFIG.DLL and RES_SUPP.DLL.

2. When TCP/IP is ready (for example, TCP/IP VxD is loaded in
Windows), the stack should send a message (type WM_USER+0x0050)
to NWIPWIN.EXE. Indicate that TCP/IP is ready by setting wParam to 0.

3. Upon receiving this message, NWIPWIN.EXE performs the same
function in Windows as NWIPINIT.EXE does in DOS.

As a Windows based TCP/IP stack is unloaded (no longer ready), it must
let NWIP.EXE know through INT 2FH (AX=7A47h, DI=1000h), so that
NWIP.EXE can reset its TCP/IP state to not-ready.

Parent Topic: Using the Low-Level RCB Interface to Support the NWIP
Client: Guide

NWIP Software Components

Communication Service Group

Using the Low-Level RCB Interface to Support the NetWare/IP DOS/Windows Client v1.0 1358

DOS Executables

NetWare/IP contains the following DOS executables:

NWIP.EXE---the TSR.

NWIPINIT.EXE---the DOS initialization program that is loaded and
executed by NWIP.EXE in the DOS environment if TCP/IP is ready.

Windows Executables and DLLs

NetWare/IP contains the following Windows executables and DLLs:

NWIPWIN.EXE---the Windows application that NWIP.EXE requests to
be autoloaded when Windows is loaded. It performs NetWare/IP
initialization similar to that of NWIPINIT.EXE in DOS.

RES_SUPP.DLL---exports functions (such as wres_send and wres_mkqu)
for DNS resolver functions. It is completely based on WINSOCK.

Parent Topic:

Using the Low-Level RCB Interface to Support the NWIP Client: Guide

Requirements for the TCP/IP Stack

NetWare/IP 2.1 operates in a Windows based TCP/IP environment (VxD or
TCPIP DLL), provided that the TCP/IP stack supports the following
interface:

A TSR emulating the low-level RCB interface that is loaded before
NWIP.EXE. NetWare/IP uses RCB to talk to the underlying TCP/IP
stack.

WINSOCK.DLL, supporting the following functions:

closesocket

connect

ioctl

recv

recvfrom

select

send

sendto

socket

IPCONFIG.DLL, that exports get_ip_config and fills the passed data

Communication Service Group

Using the Low-Level RCB Interface to Support the NetWare/IP DOS/Windows Client v1.0 1359

structure when called. The function should be defined as follows:

WINAPI int get_ip_config(LPSTR ipConfigBuf, int
 numberOfNameServers);

A return value of 1 indicates success; 0 indicates failure.

The ipConfigBuf has the following structure:

#define MAXNUMDNS 5
#define MAXDNAME 256

typedef struct
{
 unsigned long icfg_ip;
 unsigned long icfg_mask;
 unsigned short icfg_num_dnsaddr; // up to 5
 unsigned long icfg_dnsaddr[MAXNUMDNS];
 unsigned short icfg_num_dnsname; // this is the returned number of
 // name servers which cannot exceed
 // the numberOfNameServers passed
 // by the caller
 unsigned short icfg_dnslen1; // length preceded, doesn't include
 // the null terminator
 char icfg_dnsname1[MAXDNAME];
} IPCONFIG;

A stack that emulates the LAN WorkPlace® stack BOOTP/DHCP interface
with NetWare/IP needs the following:

The ability to send a BOOTP request to an LAN WorkPlace 5.0
BOOTP/DHCP server.

Besides using the IP address, subnet mask, default router, DNS names
and addresses from the BOOTP reply (some of those is in the vendor
area), the stack must also store the reply buffer pointer in its memory.
Real mode seg:offset is expected for the BOOTP reply buffer address.

The BOOTP reply buffer should be retrievable by NetWare/IP by calling
INT 2Fh, AX=7A47h, DI=0004. If successful, AX=7AFF, and ES:SI points
to the BOOTP reply buffer. Otherwise, the call is unsuccessful.

The BOOTP reply packet is defined as follows:

 /*
 * UDP port numbers, server and client.
 */
 #define IPPORT_BOOTPS 67
 #define IPPORT_BOOTPC 68

 #define BOOTREPLY 2
 #define BOOTREQUEST 1

 struct in_addr_list

Communication Service Group

Using the Low-Level RCB Interface to Support the NetWare/IP DOS/Windows Client v1.0 1360

 struct in_addr_list
 {
 unsigned linkcount, addrcount;
 struct in_addr addr[1]; /* Dynamically extended */
 };

 typedef struct bootp {
 unsigned char bp_op; /* packet opcode type */
 unsigned char bp_htype; /* hardware addr type */
 unsigned char bp_hlen; /* hardware addr length */
 unsigned char bp_hops; /* gateway hops */
 unsigned long bp_xid; /* transaction ID */
 unsigned short bp_secs; /* seconds since boot began */
 unsigned short bp_unused;
 struct in_addr bp_ciaddr; /* client IP address */
 struct in_addr bp_yiaddr; /* 'your' IP address */
 struct in_addr bp_siaddr; /* server IP address */
 struct in_addr bp_giaddr; /* gateway IP address */
 unsigned char bp_chaddr[16]; /* client hardware address */
 unsigned char bp_sname[64]; /* server host name */
 unsigned char bp_file[128]; /* boot file name */
 unsigned char bp_vend[64]; /* vendor-specific area */
 } bootp_header;

 /*
 * RFC1048 tag values used to specify what information is
 * being supplied in the vendor field of the packet.
 */
 #define TAG_PAD ((unsigned char) 0)
 #define TAG_SUBNET_MASK ((unsigned char) 1)
 #define TAG_TIME_OFFSET ((unsigned char) 2)
 #define TAG_GATEWAY ((unsigned char) 3)
 #define TAG_TIME_SERVER ((unsigned char) 4)
 #define TAG_NAME_SERVER ((unsigned char) 5)
 #define TAG_DOMAIN_SERVER ((unsigned char) 6)
 #define TAG_LOG_SERVER ((unsigned char) 7)
 #define TAG_COOKIE_SERVER ((unsigned char) 8)
 #define TAG_LPR_SERVER ((unsigned char) 9)
 #define TAG_IMPRESS_SERVER ((unsigned char) 10)
 #define TAG_RLP_SERVER ((unsigned char) 11)
 #define TAG_HOSTNAME ((unsigned char) 12)
 #define TAG_BOOTSIZE ((unsigned char) 13)
 #define TAG_DNS_DOMAIN_NAME ((unsigned char) 15)
 #define TAG_PARAM_REQUEST ((unsigned char) 55)
 #define TAG_END ((unsigned char) 255)

Parent Topic: Using the Low-Level RCB Interface to Support the NWIP
Client: Guide

Communication Service Group

Using the Low-Level RCB Interface to Support the NetWare/IP DOS/Windows Client v1.0 1361

Using the Low-Level RCB Interface to
TCP/IP for UDP Communication

Novell® Engineering

Using the RCB Interface for UDP: Guide

Overview of RCB and UDP

UDP Interface

Finding UDP Entry Points

You must first locate an LSL entry point through LSL, then find a UDP
protocol entry point. The following code illustrates this. (For more
information, see the Novell ODI Specification: NetWare® 16-Bit DOS Protocol
Stack and MLIDs™ (part number 107-00078-001), available from Novell
Labs™, 801-429-5544.)

Finding UDP Entry Points: Example

PROTSUP_GET_PROTO_CTL_ENTRY equ 19

LSLSignature db 'LINKSUP$'
LSLInitHandler dd 0
LSLEntryPoints dd 0
UDPProtoControl dd 0
ip_protname db 2, 'IP', 0

FindLSL proc near
 sub ax, ax
 mov es, ax
 mov cx, word ptr es:[2Fh*4]
 mov dx, word ptr es:[2F*4+2]
 mov ax, cx
 or ax, dx
 jz LSLIsNotLoaded
 mov ax, 0c00h

LookForLSLLoop:
 push ax
 int 2fh
 cmp al, 0FFh

Communication Service Group

Using the Low-Level RCB Interface to TCP/IP for UDP Communication 1362

 pop ax
 je Int2fSlotUsed

TryNextSlot:
 inc ah
 jnz LookForLSLLoop
 jmp LSLIsNotLoaded

Int2fSlotUsed:
 mov di, si
 mov si, offset LSLSignature
 mov cx, 4
 cld
 rep cmpsw
 jnz TryNextSlot

; Found the LSL. DX:BX -> LSL Init Handler.
; Call the handler to obtain the LSL Protocol Stack support
; entry point.

 mov word ptr LSLInitHandler+0, bx
 mov word ptr LSLInitEntry+2, dx
 push ds
 pop es ;ES:SI -> parm block
 mov si, offset LSLEntryPoints
 mov bx, 2 ;Function #2 request support entry points
 call LSLInitHandler
 sub ax, ax
 ret

LSLIsNotLoaded:
 mov ax, Error
 ret
FindLSL endp

FindUDPProtEntry proc near
;
; Find the ip protocol stack id number
;
 call ChkProtStkloaded ;is the protocol stack loaded ?
 jnz UDPProtoNotLoaded
;
 mov bx, PROTSUP_GET_PROTO_CTL_ENTRY ;protocol control function
 lea di, ip_protnum ;protocol stack id number
 mov ax, word ptr [di]
 call LSLEntryPoints ;get the control entry from lsl
 jnz UDPProtoNotLoaded
 mov word ptr UDPProtoControl, si
 mov word ptr UDPProtoControl+2, es
 ret

Communication Service Group

Using the Low-Level RCB Interface to TCP/IP for UDP Communication 1363

UDPProtoNotLoaded:
 mov ax, Error
 ret
FindUDPProtEntry endp

ChkProtStkLoaded proc near
 lea si, ip_protname ;IP protocol name
 mov bx, PROTSUP_GET_PROTNUM_FROM_NAME
 call LSLEntryPoints
 jnz cps_exit ;protocol not registered
 mov ip_protnum, bx ;save the protocol number

cps_exit:
 ret
ChkProtStkLoaded endp

Parent Topic: UDP Interface

Overview of RCB and UDP

The LAN WorkPlace® TCP/IP protocol stack provides a transport module
for DOS and Windows clients. At the upper boundary, it exposes both a
high- and low-level Request Control Block (RCB) interface to applications.

The low-level RCB interface is provided for BSD socket library and other
clients such as RFC NetBIOS driver (see The RCB Interface to the LAN
WorkPlace TCP/IP Protocol Stack for more information). The high-level
interface is provided for the NetWare/IP™ client and other applications
that are not socket-based to send and receive using the TCP/IP stack. This
article illustrates the low-level interface.

This article describes the low-level RCB interface for developers who want
to send and receive UDP packets and for TCP/IP vendors who want to
emulate this interface so that applications such as the NetWare/IP client can
run on their stacks (see Using the Low-Level RCB Interface to Support the
NetWare/IP DOS/Windows Client v1.0). The interface is described in the
form of Intel 8086 assembly language, but this does not prevent its use by
applications written in higher-level languages. You can use this interface
with higher-level languages by using either an assembly language front end
or the assembly language capability built into some high-level languages
(see The C Language Version of RCB Structures).

Parent Topic: Using the RCB Interface for UDP: Guide

Receiving UDP Packets

If you want to receive incoming UDP packets through the low-level RCB
interface, you must register your receive port and handler with UDP by

Communication Service Group

Using the Low-Level RCB Interface to TCP/IP for UDP Communication 1364

interface, you must register your receive port and handler with UDP by
calling UDPRegister. A PECB structure pointer is passed when the receive
handler is invoked. The receive handler first points to pe_ecb to get the
received ECB, which can contain one or more received fragments. Data
pointed to by Frag1Addr is the 12-byte ip_addr_info structure followed by 8
bytes of UDP-specific information (source and destination ports, UDP
length, and checksum). Thus, UDP data starts at offset 20 (14h). The related
data structures and sample code for a receive handler follows.

Resources used to receive (for example, pecb, ecb) are released by the UDP
stack when the receive handler does a far return to the stack.

Data Structures and Receive Handler

;
; pecb structure passed by UDP stack to receive handler
;
pecb struc
 pe_pecb dw ? ; singly linked list
 pe_ecb dd ? ; pointer to a received ECB
 pe_flags dw ? ; flags
 pe_ws1 dw ? ; work space word 1
 pe_ws2 dw ? ; work space word 2
pecb ends

;
; Event Control Block Structure pointed to by pecb
;

ECB struc
 NextLink dw ?,?
 PrevLink dd ?
 Status dw ?
 ESR dd ?
 ProtoNum dw ?
 ProtID db 6 dup (?)
 BoardNum dw ?
 ImmAddr db 6 dup (?)
 DriverWS db 4 dup (?)
 ProtocolWS dw 4 dup (?)
 DataLen dw ?
 FragCount dw ?
 Frag1Addr dd ?
 Frag1Len dw ?
ECB ends

;
; cooked ip header
;
ip_addr_info struc
 iai_srcaddr db 4 dup (?) ; source address
 iai_destaddr db 4 dup (?) ; destination address
 iai_prec db ? ; precedence/security

Communication Service Group

Using the Low-Level RCB Interface to TCP/IP for UDP Communication 1365

 iai_protocol db ? ; IP protocol #
 iai_length dw ? ; IP data length
ip_addr_info ends

; aliases for UDP pseudo header prefix. uph_prefix has the same format
; as ip_addr_info passed up from IP.
;
uph_prefix equ ip_addr_info
ui_srcaddr equ iai_srcaddr
ui_dstaddr equ iai_destaddr
ui_zero equ iai_prec
ui_protocol equ iai_protocol
ui_iplen equ iai_length
UPH_PREFIX_LEN equ size ip_addr_info

; UDP pseudo header definition.
;
ui_header struc
ui_prefix db UPH_PREFIX_LEN dup (?)
ui_srcport dw ?
ui_dstport dw ?
ui_udplen dw ?
ui_cksum dw ?
ui_header ends

; UDP address information passed up to UDP clients
;
udp_addr_info equ ui_header
uai_srcaddr equ ui_srcaddr
uai_dstaddr equ ui_dstaddr
uai_zero equ ui_zero
uai_protocol equ ui_protocol
uai_iplen equ ui_iplen
uai_srcport equ ui_srcport
uai_dstport equ ui_dstport
uai_udplen equ ui_udplen
uai_cksum equ ui_cksum

PH_LENGTH equ size ui_header
UH_LENGTH equ size udp_header

;
; sample code for a receive handler
; get pointer to the physical buffer of the given rECB

 mov word ptr lkahdr.LMediaHeaderPtr[0], di
 mov word ptr lkahdr.LMediaHeaderPtr[2], es
 les bx, es:[di].pe_ecb ;make es:bx point to recevied ecb
 les bx, es:[bx].Frag1Addr ;make es:bx point to first received buffer

Communication Service Group

Using the Low-Level RCB Interface to TCP/IP for UDP Communication 1366

Parent Topic: UDP Interface

Registering UDP

After finding the UDP entry point, you must register with UDP before
sending or receiving UDP packets. The following example code shows how
to register UDP with the receive handler and obtain a UDP Send entry
point.

Registering UDP and Obtaining a UDP Send Entry Point

IPSUP_UDP_REGISTER equ 5
IPSUP_UDP_DEREGISTER equ 6
MY_PORT_NUMBER equ 9999

UDPSend dd ?

UDPRegister proc near
 mov ax, cs
 mov es, ax ; es:si -> application's receive handler
 mov si, offset MyRecvHandler
 mov ax, MY_PORT_NUMBER ; ax has the application's UDP port number
 mov bx, IPSUP_UDP_REGISTER
 call UDPProtoControl
 jnz udpreg_exit ; bad return

;
;save the udp send entry point, it is used by UDPSend routine.
;dx has the UDPSend's code segment, cx has its offset
;

 mov word ptr UDPSend, cx
 mov word ptr UDPSend+2, dx

udpreg_exit:
 ret
UDPRegister endp

Parent Topic: UDP Interface

Sending UDP Packets

An RCB is allocated and filled out by a TCP/IP application to pass a send
request to the underlying TCP/IP module for processing (for more
information about RCB structures, see The RCB Interface to the LAN
WorkPlace TCP/IP Protocol Stack). The RCB uses either a single buffer or
scatter-gather buffers. Up to 8 application buffer fragments can be specified
to contain data to be transmitted. The UDP send entry point is obtained by

Communication Service Group

Using the Low-Level RCB Interface to TCP/IP for UDP Communication 1367

calling UDP to register a port for sending and receiving.

Set the fields of the RCB as follows:

RCB_SendLen should be set to the total number of bytes of data you want to
send. It returns the actual number of bytes sent on completion.

RCB_data_addr and RCB_data_port contain (in network byte order) the
destination host's IP address and protocol port number.

RCB_FragCnt is set to the number of fragments to sent (at least 1).

RCB_FragPtr1, RCB_FragLen1, and the following fragments are set to the
offset/segment pointing to the data to be sent.

RCB_Reserved[0] contains the checksum option (0 = no UDP checksum).

RCB_Reserved[2] contains the local IP address in network byte order.

RCB_ESR is set to the sender's transmit completion handler, which is called
by the protocol stack when the UDP packet is sent.

Finally, ES:DI points to the send RCB structure as the input parameter for
the UDP send routine.

Parent Topic: UDP Interface

UDP Interface

TCP/IP is implemented as an Open Data-Link Interface™ (ODI™) protocol
stack on top of the Link Support Layer™ (LSL™). Before you can send or
receive UDP packets, you must get a UDP entry point through LSL, register
with UDP to receive, and get a UDP Send entry point. Both sending and
receiving are based on an asynchronous model. The following sections
describe each step.

Related Topics

Finding UDP Entry Points

Registering UDP

Sending UDP Packets

Receiving UDP Packets

Parent Topic: Using the RCB Interface for UDP: Guide

Communication Service Group

Using the Low-Level RCB Interface to TCP/IP for UDP Communication 1368

