
FEBRUARY 1991

NOVELL® RESEARCH

The NetWare DOS Client Environment

Matt Hagen
Consultant
Systems Engineering Division

Abstract:

This AppNote explores several aspects of NetWare IPX and the NetWare DOS shell. It
defines the two major roles of the shell. It provides two small programs that aid readers in
identifying NetWare IPX and shell interrupts. And it explains how to write C Language and
assembly language routines that access shell services.

Contents
Introduction .

NetWare Software for DOS Clients .
More About the Two Roles of the Shell .
An Implicit Shell Call .
Interrupts .
Interrupt 2Fh .
DOS Interrupt 21h .
NetWare C Libraries .
Building Your Own Routines .
Listings .
Endnotes .

Disclaimer

Novell, Inc. makes no representations or warranties with respect to the contents or use of
these Application Notes (AppNotes) or of any of the third-party products discussed in the
AppNotes. Novell reserves the right to revise these AppNotes and to make changes in their
content at any time, without obligation to notify any person or entity of such revisions or
changes. These AppNotes do not constitute an endorsement of the third-party product or
products that were tested. Configuration(s) tested or described may or may not be the only
available solution. Any test is not a determination of product quality or correctness, nor
does it ensure compliance with any federal, state or local requirements. Novell does not
warranty products except as stated in applicable Novell product warranties or license
agreements.

Copyright (c) 1991 by Novell, Inc., Provo, Utah. All rights reserved.

As a means of promoting NetWare AppNotes, Novell grants you without charge the right to
reproduce, distribute and use copies of the AppNotes, provided you do not receive any
payment, commercial benefit or other consideration for the reproduction or distribution, or
change any copyright notices appearing on or in the document.

Introduction

Copyright © 1990-2000, Novell, Inc. All Rights Reserved. Novell Support Connection CD

The term NetWare used to be easy to define. In the early 1980s when a small consulting firm called
Superset (working for Novell) first developed the NetWare operating system, the term NetWare referred to
a network operating system running in one box and a piece of software called the shell running alongside
DOS in several other boxes. The box with the operating system was called the "file server" and the other
boxes were called the "clients." Each box contained a network interface card (NIC) along with the software
driver necessary to perform I/O to the card. The NICs were connected via cables. The clients sent
"requests" to the server and the file server sent "responses" back to the clients. Typically a client would
request a file and the server would download the file to the client as a series of packets.

Today, "NetWare" describes more than just a DOS-world software product that enables file sharing among
DOS clients. Instead it describes a continuum of products that facilitate the sharing of sundry resources
among many client operating systems for a variety of reasons in a host of settings. Even the NetWare DOS
client architecture has changed considerably with the addition of the Link Support Layer (LSL) which allows
a client workstation to support communication protocol stacks other than the traditional NetWare IPX
standard.1

In spite of this tremendous technological evolution, the current NetWare DOS client strategies still bear the
mark of the initial implementation, a tribute to the original design. This article describes some of these
fundamental strategies.

Throughout this article, "local" refers to the DOS client workstation and "remote" refers to some other box
on the network.

NetWare Software for DOS Clients

NetWare requires that a DOS client run a number of terminate-and-stay-resident programs in workstation
RAM. In the traditional DOS client model each workstation runs a shell (ANET.COM or NET.COM) and a
NetWare IPX module (IPX.COM) which includes both NetWare IPX code and LAN driver code linked
together. The DOS ODI model requires a workstation to run a LAN driver, the LSL, NetWare IPX, and the
shell.2

The LAN driver sends and receives data via the network interface card by copying the data from workstation
RAM to the card and vice versa.

The LSL forms a convenient interface between the LAN drivers and communication protocol stacks like
NetWare IPX. It allows one LAN driver to service more than one stack.

NetWare IPX is a communication protocol stack that provides communication services to applications that
want to send NetWare IPX-style packets on the network. Applications that use the NetWare IPX interface
must build each packet before calling the NetWare IPX interface to send the packet.

The shell performs two major roles: First, the shell interrogates application-generated system calls (to
DOS or BIOS) to determine whether each request concerns local resources or remote resources. The most
notable examples are the DOS Int 21h file manipulation calls and the BIOS Int 17h printer calls. If the shell
detects that a call concerns a remote resource, it builds a request packet, calls the NetWare IPX interface
to send the packet to a server, waits for a response packet, receives the response packet, interprets the
response, and hands the interpreted response to the application. This is accomplished without the
knowledge of the requesting application.

Second, the shell provides a battery of NetWare-specific services that allow NetWare DOS utilities (like
SYSCON, FILER, PCONSOLE, and MAP, as well as third-party NetWare applications) to manipulate file
server binderies, queues, directories, and files, control network printers, send messages, return file server
statistics, and so forth.

More About the Two Roles of the Shell

Copyright © 1990-2000, Novell, Inc. All Rights Reserved. Novell Support Connection CD

In some ways both roles of the NetWare DOS shell are similar. Both require the shell to service
application-generated requests. Both require the shell to capture certain interrupts (as we will see later).
Both require the shell to build NetWare IPX packets and call the NetWare IPX interface to access remote
resources (on behalf of the requesting application).

However, the two roles are also quite distinct. The first role involves resources that commonly exist on
standalone DOS machines and network servers (e.g. files and printers). In this case, the shell must see
certain application-generated requests before DOS or BIOS see them so that the shell can determine
whether the request involves a local resource or a remote resource and then either give the request to DOS
or BIOS (in local RAM) or send the request to a remote box. This role requires the shell to quietly and
unobtrusively watch over the shoulder of DOS and BIOS looking for network requests. The second role
involves NetWare-exclusive resources that exist either in the shell itself (e.g. shell statistics) or at remote
servers (e.g. file server binderies and network queues). In this case, the shell forgoes any cloak-and-dagger
activity and simply processes the request or sends the request to the target remote server.

From another standpoint, the first role involves implicit calls to the shell where the calling application is
unaware that it is accessing the shell. The DOS utility DIR (written to work on a standalone machine before
the advent of NetWare) makes implicit calls to the shell when a user requests the directory listing of a
network drive. The second role involves explicit calls to the shell where the calling application is aware that
it is accessing the shell. The NetWare utility SYSCON makes explicit calls to the shell when it creates a
bindery object.3

An Implicit Shell Call

To better understand an implicit shell call, let's look at a utility like DIR that searches a directory table for file
entries. Let's also suppose that our default drive is F. To find a file the application issues a FindFirst
(AH=4Eh) Int 21h DOS call to search a disk for the target file. The shell traps the call, recognizes that the
target file can only reside on a file server's (remote) disk, builds a packet, passes the packet to NetWare
IPX for transmission to the server, and then waits for a response. Meanwhile the server receives the packet,
searches its own disk for the target file, and then issues a response to the client. (The response indicates
that the server either found the file or that it didn't find the file). The client's NetWare IPX module receives
the response from the server and passes it to the shell which passes it to the requesting application. In this
case, as in all cases involving implicit shell calls, the application is unaware that the shell redirected the
FindFirst request to a remote resource. As far as the application is concerned, it (the application) accessed
a local disk.

Interrupts

We mentioned above that both roles of the shell require the shell to capture certain key interrupts. Let's
look more closely at this intriguing concept.

Most Intel-based computers contain an interrupt vector table consisting of 1024 bytes of 256 4-byte interrupt
vectors at the beginning of RAM. Each interrupt vector consists of the two-byte segment and the two-byte
offset of a routine somewhere else in computer memory. Some vectors point to routines in ROM BIOS.
Others point into DOS. If an interrupt-driven LAN driver resides in workstation memory, at least one of the
vectors points to the driver's interrupt service routine (for packet reception and transmit completion).4

Applications that alter the interrupt vector table can do so by hooking an interrupt vector or by capturing
(sometimes called chaining) an interrupt vector. When an application hooks an interrupt vector it stamps
the far address of one of its routines (an interrupt service routine or ISR) into the vector without bothering to
save the prior contents of the vector. When an application captures an interrupt vector it saves the existing
far pointer (into its own data space) before stamping the vector with a new far pointer. Capturing a vector
allows the current ISR to pass an interrupt request along to the prior ISR if the request is not meant for the
current ISR. Using this technique several ISRs can share the same interrupt vector. BIOS and DOS usually
hook vectors. Typically, LAN drivers hook vectors, too. NetWare IPX and the shell, as we will see in a

Copyright © 1990-2000, Novell, Inc. All Rights Reserved. Novell Support Connection CD

minute, capture interrupts.

SAVE and COMPARE, two programs provided with this article, allow you to isolate the interrupts that any
program hooks or captures. (The listings for both programs appear near the end of this article.) SAVE
copies the contents of the first 48 interrupt vectors to a file called VECTOR.DAT. COMPARE compares the
current interrupt vector table in RAM with the contents of the file. Neither program accepts command line
arguments. You can use these two programs in a variety of ways. You must copy both SAVE.EXE and
COMPARE.EXE to a local drive before using them to analyze NetWare IPX or the shell.

To see which interrupts NetWare IPX captures, complete the following steps:

1. Load the LSL and a LAN driver (if you are using DOS ODI software).

2. Run SAVE.

3. Load NetWare IPX.

4. Run COMPARE.

My results look like this:

Vector 8h = 14F8:0A7A
Vector 2Fh = 14F8:08A0

Note that the segment values are the same indicating that both handlers exist in the same program
(NetWare IPX). By the way, if you are not using DOS ODI software, your results will include the LAN driver's
hardware interrupt vector as well.

To do the same for the shell, complete these steps:

1. Load the LSL and a LAN driver (if you are using DOS ODI software), and then load NetWare IPX.

2. Run SAVE.

3. Load NET3.

4. Run COMPARE.

This time my results look like this:

Vector 10h = 188B:0684
Vector 17h = 188B:5E26
Vector 1Bh = 188B:0695
Vector 20h = 188B:06A8
Vector 21h = 188B:06AA
Vector 24h = 188B:06CE
Vector 27h = 188B:0801

Remember, each SEG:OFF pair is a far pointer to an interrupt service handler inside NetWare IPX and the
shell respectively.

You can use these results in a number of ways. For example, to view the shell's Int 21h handler I complete
the following steps:5

1. Enter DEBUG by typing the following:

debug <Enter>

2. Enter the following command at the debug `-' prompt (you would use your Int 21h value instead of
mine):

Copyright © 1990-2000, Novell, Inc. All Rights Reserved. Novell Support Connection CD

u 188B:06AA <Enter>

Undoubtedly, NetWare IPX and the shell capture each interrupt vector listed above for a good reason. This
article, however, deals with only two of the captured interrupts: Int 2Fh for NetWare IPX and Int 21h for the
shell. Note that both NetWare IPX and the shell "capture" the interrupts as opposed to "hooking" them.

Interrupt 2Fh

DOS calls Int 2Fh the Multiplex Interrupt. Int 2Fh is available for any application to capture so long as the
new ISR agrees to pass any unwanted interrupt requests along to the prior ISR. NetWare IPX captures Int
2Fh as a means of making available to interested applications the whereabouts of its service entry point. To
find the NetWare IPX service entry point in workstation RAM an application need only load AH with 7Ah and
AL with 00h, and then call Int 2Fh. The NetWare IPX Int 2Fh ISR checks the AX register for these telltale
values. If AX does not contain 7A00h (or one of a few other values), the NetWare IPX ISR passes the
interrupt request along to the captured ISR. If AX does contain the right value, NetWare IPX returns the
SEG:OFF of its service entry point in ES:DI.7

The NetWare IPX service entry point is an assembly language API with rules defined by NetWare IPX. To
utilize NetWare IPX services an application must load BX with a value (indicating the target NetWare IPX
service), load other registers as necessary, and then make a far call to the NetWare IPX service entry point.
Here are some examples of NetWare IPX services:

BX = 00h means NetWare IPX Open Socket
BX = 01h means NetWare IPX Close Socket
BX = 02h means NetWare IPX Get Local Target
BX = 03h means NetWare IPX Send Packet
BX = 04h means NetWare IPX Listen For Packet

To view the NetWare IPX ISR for interrupt 2Fh I would use DEBUG.COM to complete the following steps:

1. Enter DEBUG by typing the following:

debug <Enter>

2. Enter the following command at the debug `-' prompt (again, you would use your Int 2Fh value instead
of mine):

u 14F8:08A0 <Enter>

As you look at this assembly code you will notice that the NetWare IPX ISR checks the AX register for the
value 7A00h (as we discussed above) in the very first instruction.

DOS Interrupt 21h

At a DOS machine, interrupt 21h is an extremely important interrupt.8 When DOS bootstraps into
workstation RAM it hooks Int 21h and points it to a DOS ISR that handles almost all application-generated
requests for DOS services. Applications access this interrupt by loading AH with a value (00h..7Fh)
indicating the desired DOS service and then executing an Int 21h instruction.

By capturing this interrupt, the shell establishes a means to accomplish its two primary objectives. First, it is
able to see each request for a DOS service before DOS does and then either pass the request on to DOS,
service the request itself, or send the request to a file server depending on the nature of the request.
Second, since the DOS Int 21h routine does not utilize AH values greater than 7Fh, the shell uses the
values 80h..FFh to allow applications to make explicit shell requests using Int 21h. To fulfil its first role the
shell has no other choice than to capture Int 21h. To fulfil its second role, capturing Int 21h is merely a
convenience.

Copyright © 1990-2000, Novell, Inc. All Rights Reserved. Novell Support Connection CD

Like NetWare IPX, the shell Int 21h service entry point is an assembly language API with rules dictated to
an extent by DOS and further defined by the shell.9 To utilize shell services an application must load AH
with a value (indicating the target shell service), load other registers as necessary, and then execute an Int
21h instruction. Here are some examples of shell services:

AH = B6h means get a file's extended file attributes
AH = D7h means logout the workstation from all attached file servers
AH = E7h means get a file server's current date and time

FIND, another program provided with this article, is intended to help you view the DOS Int 21h ISR (when
the shell is not loaded) and the shell Int 21h ISR (when the shell is loaded) in execution. (A listing is
included near the end of this article.) FIND is a simple assembly language program that makes three calls
to the DOS Int 21h handler. The first sets the DTA, the second finds the first file in the current directory, and
the third displays the filename on the screen. If you run FIND outside of DEBUG it will display on your
computer screen the first file that it finds in the current directory. To view the DOS Int 21h ISR, complete the
following steps:

1. Copy FIND.EXE and DEBUG.EXE to a local drive and make sure the shell is not loaded.

2. Enter the following:

debug find.exe <Enter>

3. Enter the following `proceed' instruction repeatedly until you get to the second INT instruction:

p <Enter>

4. Enter the following `trace' instruction to trace inside the ISR:

t <Enter>

5. Enter the following `unassemble' instruction to look at the ISR code:

u <Enter>

6. Use `p' and `t' to trace through the ISR (in execution) for awhile.

7. Enter the following instruction to `quit' debug:

q <Enter>

To view the shell Int 21h ISR, load the shell and repeat steps 2 through7. If you run FIND from a local drive
the shell ISR will give the request back to DOS. If you run it from a network drive the shell ISR will
eventually create a request packet and send it to the server. (Alas, if you try to follow a FIND request on a
network drive your workstation will hang before you see the request packet sent to the server. This has
something to do with the sticky problem of timeouts.)

NetWare C Libraries

Since the entry points for both NetWare IPX and the shell are assembly language APIs (and somewhat
clumsy to access from a C program), Novell provides a C-Interface library to third-party developers that
want to access NetWare IPX and/or shell services. The library is available in four compiler versions:
Microsoft, Borland, Lattice, and Watcom. Each compiler version includes the following four memory model
sizes: small, medium, compact, and large. Novell actually ships the Watcom development tools with the
Watcom version of the DOS C-Interface library as a complete package.10

Rather than discussing the API or the internals of the NetWare C for DOS library, or the (slight) differences
among the four compiler versions, these last sections provide sample code that might help you write your

Copyright © 1990-2000, Novell, Inc. All Rights Reserved. Novell Support Connection CD

own C-Interface library to NetWare IPX and the shell or (more realistically) at least write a few routines that
you may feel are missing from the current API.11

The routines that you write should (in my estimation) meet the following criteria:

1. Each routine should be independent of any one memory model.

2. Code should be written in C unless assembly language is absolutely vital.

3. Code should try to be compiler-independent.

4. A routine should not duplicate what an existing API already does.

These routines will deal with the following three interfaces:

1. The first is the assembly language interface provided by NetWare IPX and the shell where you load BX
and make a far call to NetWare IPX or else load AX and call the shell's Int 21h ISR.

2. The second is the C language interface that you create by writing a few assembly language routines
that call the interface described in step 1.

3. The third is the C language interface that you create by writing C language routines that call the
interface described in step 2. An application that you might be writing would use this third interface.

In the next section I will describe an API that is missing from the current NetWare C for DOS library and
then provide two routines, one in assembly and one in C, that fit the bill.

Building Your Own Routines

When building an NetWare IPX packet on a client workstation destined for an NLM on a file server, it is
convenient (and faster) to be able to obtain the server's network and node address and the immediate
address relative to the workstation without querying the server's bindery for the information. The client's
shell actually has the needed information. The two routines described in this section allow a developer to
extract this information from the shell.

The DOS shell maintains several tables that applications can query. Two of these tables are the File Server
Name Table and the Connection ID Table. Each of these tables has eight entries. The File Server Name
Table consists of an array of eight 48-byte character buffers. Each buffer accommodates one asciiz server
name. The Connection ID Table consists of an array of eight 32-byte buffers. Each buffer accommodates
information about a server like the server's internetwork address and timeout information. The two tables
work in concert. When the shell attaches to a server, the shell places the server name in an available slot in
the File Server Name Table. The shell also places information about the server in the corresponding slot in
the Connection ID Table. The fact that these two tables are eight entries in size is the reason that a DOS
client workstation can attach to a maximum of eight servers.

The two routines provided with this article, GetConnectionIDTableEntry() and GetServerAddress(), allow a
client application to obtain a server's network, node, and immediate addresses from the shell without
sending a request to the server. I've also included a small program that calls GetServerAddress() and then
displays the network, node, and immediate addresses for each of the servers in the shell's Connection ID
Table. (The listings for these routines appear near the end of this article in two files: GETCONN.ASM and
ADDRESS.C.)12

GetConnectionIDTableEntry() calls the shell Int 21h ISR, returns a pointer to the Connection ID Table, and
then copies the appropriate entry into a buffer. It also provides a C language interface to
GetServerAddress().

GetServerAddress() calls GetConnectionIDTableEntry() to obtain the specified entry in the Connection ID
Table. Then it extracts the network, node, and immediate addresses from the table and copies them into

Copyright © 1990-2000, Novell, Inc. All Rights Reserved. Novell Support Connection CD

buffers for the calling program.

These two routines describe in miniature how a C-interface library written to the NetWare IPX and shell
assembly language interfaces might work.

Listings

This section contains all the listings for all the programs and routines mentioned in this article. SAVE and
COMPARE were created with Watcom tools. FIND, GETCONN, and ADDRESS were created with Borland
tools. Here is the order of the listings:

1. SAVE.C

2. COMPARE.C

3. FIND.ASM

4. GETCONN.ASM

5. ADDRESS.C

/**

* SAVE.C
**/

-include <stdio.h>
-include <stdlib.h>

-define DATAFILE vector.dat
-define HANDLER_COUNT 48

/**
* main
**/

main()
{

void far *vector=NULL;
void (far *array[HANDLER_COUNT])();
FILE *f;

_fmemmove((void far *)array,vector,(sizeof(void (far*) ())) *HANDLER_COUNT);

f=fopen(DATAFILE,wb);
if(f==NULL)
{

printf(Cannot open file for write.\n);

return;
}

fwrite(array,sizeof(void (far *)()),HANDLER_COUNT,f);

fclose(f);

Copyright © 1990-2000, Novell, Inc. All Rights Reserved. Novell Support Connection CD

}

/***/
/***/

/**
* COMPARE.C
**/

-include <stdio.h>
-include <stdlib.h>

-define DATAFILE vector.dat
-define HANDLER_COUNT 48

/**
* main
**/

main(
int argc,
char *argv[])

{
int a;
void far *vector=NULL;
void (far *handler)()=NULL;
void (far *array[HANDLER_COUNT])();
FILE *f;

_fmemmove((void far *)array,vector,(sizeof(void (far *)())) *HANDLER_COUNT);

f=fopen(DATAFILE,rb);
if(f==NULL)
{

printf(Cannot open file for read.\n);

return;
}

for(a=0;a<HANDLER_COUNT;a++)
{

fread(&handler,sizeof(void (far *)()),1,f);

if(handler!=array[a])

printf("Vector %Xh = %FP\n",a,array[a]);
}

fclose(f);
}

/***/
/***/

Copyright © 1990-2000, Novell, Inc. All Rights Reserved. Novell Support Connection CD

;**
; FIND.ASM ;
;**

DTAStructure struc
Reserved db 21 dup (?)
Attributedb ?
Time dw ?
Date dw ?
LowSize dw ?
HighSize dw ?
Name db 13 dup (?)
DTAStructureends

DOSSEG
.MODELSMALL
.STACK100h
.DATA

DTA DTAStructure <>
File db '*.*', 0

.CODE

;**
; FindFirstFile
;**

FindFirstFileprocfar
push ds
xor ax, ax
push ax
mov ax, @data
mov ds, ax

mov ah, 1ah
lea dx, DTA
int 21h

mov ah, 4eh
xor cx, cx
lea dx, File
int 21h

mov ah, 02h
lea bx, DTA.Name

mDisplayName:
mov dl, [bx]
or dl, dl
jz Exit
int 21h
inc bx

Copyright © 1990-2000, Novell, Inc. All Rights Reserved. Novell Support Connection CD

jmp DisplayName

Exit:
ret

FindFirstFileendp
end

;**
;**

;**
; GETCONN.ASM ;
;**

ConnIDTable struc
InUse db ?
Order db ?
Net db 4 dup (?)
Node db 6 dup (?)
Socket db 2 dup (?)
Timeout db 2 dup (2)
ImmedAddr db 6 dup (?)
Sequence db ?
ConnectionNum db ?
ConnectionStatus db ?
MaxTimeout db 2 dup (?)
Reserved db 5 dup (?)
ConnIDTable ends

DOSSEG
.MODELSMALL
.DATA
.CODE

public _GetConnectionIDTableEntry

;**
; int GetConnectionIDTableEntry(
; WORD connID,
; ConnIDTable *entry) ;

; connID is an index (1..8) into the table. entry is a pointer to a buffer
; big enough to hold a ConnIDTable structure. The routine copies the
; specified Connection ID Table entry into the buffer. The routine returns
; a value of 0 for successful and a non-zero value if connID is an invalid
; number.
;**

GetConnectionIDTableEntryproc
ARG connID:WORD, entry:DATAPTR
push bp
mov bp, sp
push si
push di
push ds

Copyright © 1990-2000, Novell, Inc. All Rights Reserved. Novell Support Connection CD

mov ax, connID
dec ax
cmp ax, 7
ja InvalidIndex

mov bl, size ConnIDTable
mul bl
mov bx, ax

mov ax, 0ef03h
int 21h

add si, bx
mov bx, es

IF @DataSize EQ 0
mov di, entry
mov ax, ds
mov es, ax

ELSE
les di, entry

ENDIF
mov ds, bx
mov cx, size ConnIDTable
shr cx, 1
rep movsw
xor ax, ax

InvalidIndex:
pop ds
pop di
pop si
pop bp
ret

GetConnectionIDTableEntry endp
end

;**
;**

/**
* ADDRESS.C
**/

-include <stdio.h>
-include <stdlib.h>

-define BYTE unsigned char
-define WORD unsigned short
-define LONG unsigned long

typedef struct

Copyright © 1990-2000, Novell, Inc. All Rights Reserved. Novell Support Connection CD

{
BYTE inUse;
BYTE order;
BYTE net[4];
BYTE node[6];
BYTE socket[2];
BYTE timeout[2];
BYTE immedAddr[6];
BYTE sequence;
BYTE connectionNum;
BYTE connectionStatus;
BYTE maxTimeout[2];
BYTE reserved[5];

}ConnIDTable;

extern int GetConnectionIDTableEntry(
WORD connID,
ConnIDTable *entry);

int GetServerAddress(
WORD connID,
BYTE *net,
BYTE *node,
BYTE *immediate);

/**
* main
**/

main()
{

WORD c;
BYTE net[4];
BYTE node[6];
BYTE immediate[6];

for(c=1;c<9;c++)
{

GetServerAddress(c,net,node,immediate);

printf(-Slot %d %.2X%.2X%.2X%.2X,c,net[0],net[1],net[2], net[3]);

printf(-%.2X%.2X%.2X%.2X%.2X%.2X,node[0],node[1],node[2],

node[3], node[4],node[5]);

printf(%.2X%.2X%.2X%.2X%.2X%.2X\n,immediate[0],immediate[1],

immediate[2],immediate[3],immediate[4],immediate[5]);
}

return(0);
}

/**
* GetServerAddress

Copyright © 1990-2000, Novell, Inc. All Rights Reserved. Novell Support Connection CD

*
* connID is an index (1..8) into the table. net points to a four-byte
* buffer for the server's network address. node points to a 6-byte buffer
* for the server's node address. immediate points to a 6-byte buffer for
* the node address of the router that routes packets from the client to the
* server. This routine returns 0 for successful and -1 if connID is an
* invalid number.
**/

int GetServerAddress(
WORD connID,
BYTE *net,
BYTE *node,
BYTE *immediate)

{
ConnIDTable e;

if(GetConnectionIDTableEntry(connID,&e)!=0)

return(-1);

memmove(net,&e.net,4);
memmove(node,&e.node,6);
memmove(immediate,&e.immedAddr,6);

return(0);
}

/***/
/***/

Endnotes

1. The LSL is an implementation of the Open Data-Link Interface (ODI) jointly developed by Novell and
Apple.

2. These TSRs must be loaded in the following order: LSL, LAN driver, NetWare IPX, shell. If, for
example, you were using an NE2000 board, you would load the following TSRs in the following order:
LSL.COM, NE2000.COM, IPXODI.COM, and NET3.COM.

3. Ron Lee, a senior consultant at Novell, refers to applications that make implicit calls to networking
software as networked applications. He refers to applications that make explicit calls to networking
software as distributed applications.

4. Peter Norton gives a thorough and down-to-earth description of interrupts and the interrupt vector table
in his book, Inside the IBM PC, Prentice Hall Press, New York, 1986.

5. For more information about the DEBUG utility, see Disk Operating System Technical Reference,
International Business Machines Corporation, 1985, 1987.

6. For more information about the DOS multiplex interrupt, see Disk Operating System Technical
Reference, International Business Machines Corporation, 1985, 1987.

7. For more information about NetWare IPX in workstation memory and calling the NetWare IPX ISR, see
NetWare System Calls - DOS, Novell, Inc., 1989.

8. For more information about the DOS Int 21h ISR, see Disk Operating System Technical Reference,
International Business Machines Corporation, 1985, 1987.

Copyright © 1990-2000, Novell, Inc. All Rights Reserved. Novell Support Connection CD

9. For more information about the shell Int 21h API, see NetWare System Calls - DOS, Novell, Inc. 1989.

10. The Novell products mentioned here include (1) NetWare C Interface for DOS which consists of all four
versions of the library in all four memory models and (2) Network C for DOS which consists of Watcom
development tools and standard C libraries as well as the Watcom version of the NetWare DOS library.

11. If you were to build an entire library you would want to make the assembly routines in the library as
generic as possible, more generic than I present below.

12. I used Borland tools to compile and assemble these routines. To make them with the Watcom tools
you need to put cdecl in front of all routines. Watcom uses some interesting "optimized" parameter
passing techniques that might be worth examining in a future article.

Editor's Note: The author accepts written feedback at FAX (801) 429-5511.

Copyright © 1990-2000, Novell, Inc. All Rights Reserved. Novell Support Connection CD

