
Rev 1.0 Draft 4.0 (March 1995) Company Confidential 15

Chapter 3
NIOS DOS/MS Windows
Client NLM

Client NLM Introduction . 16

DOS/MS Windows NIOS Client NLMs . 17
NetWare I/O Subsystem . 17
LAN Drivers . 19
Topology Support Modules . 19
Link Support Layer . 21
Internetwork/Sequenced Packet Exchange Protocols 21
Transport Service Interface . 22
Requestor/Shell . 23
NDIS 3.0 Shim Module . 24
Source Routing Module . 25
System Debugger . 25

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

16 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

Client NLM Introduction

A driving concept behind the design of the NIOS Client was
creating modular, reusable, and platform-independent software.
To that end, all NIOS Client modules are in an NLM executable
format and can be loaded and unloaded as necessary.

NIOS Client system modules:

! Are dynamically loadable and unloadable.

! Use NLM executable format.

! Run exclusively in a 32-bit flat memory model.

! Allocate memory that is guaranteed not to move or be
discarded.

! Are fully language enabled.

! Are configured by utilities that use a configuration file.

! Require little or no static configuration information from the
user. For example, it is no longer necessary to supply the
number of open IPX sockets. As more sockets are opened, IPX
dynamically allocates more memory to handle the additional
sockets.

! Are written in C and Assembly.

! Run on single-processor Intel 386/486/Pentium systems.

NIOS DOS/MS Windows Client NLM

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 17

DOS/MS Windows NIOS Client NLMs

Each functional component of the NIOS Client is briefly described
here. Refer to each component's individual functional specification
for more information.

The system level components are:

! NetWare I/O Subsystem (NIOS)
! LAN drivers
! Topology Support Modules
! Link Support Layer
! Internetwork/Sequenced Packet Exchange Protocol
! 16-bit ODI Protocol Compatibility Module
! Transport Service Interface
! Requestor/Shell
! System Debugger
! NDIS 3.0 Shim Module
! Source Routing Module

The user interface components are:

! DOS Installation / Upgrade / Configuration Utilities
! Windows Installation / Upgrade / Configuration Utilities

NetWare I/O Subsystem

The NetWare I/O Subsystem (NIOS) is the isolating layer between
NetWare system-level components (core modules and various API
mappers) and the host OS. As such, NIOS contains a full set of
platform-independent APIs. These APIs provide a base from
which powerful system-level functionality can be built. (See Figure
3.1.)

Additionally, NIOS contains the Client NLM loader/unloader
functions. These APIs are responsible for loading and unloading
NLMs and LAN drivers.

MS Windows
DOS

DOS Application MS Windows Application

NIOS

Client32 Core Modules

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

18 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

Figure 3.1: NIOS and NIOS Client Core NLMs

NIOS implements a number of NetWare OS APIs (called the
NetWare OS Emulation module) that are necessary in order to use
NetWare OS-compatible LAN drivers (LAN files) in the DOS/MS
Windows environment.

Because DOS does not provide a protected-mode system-level
environment, NIOS must. Under DOS, NIOS offers a number of
DOS-specific APIs that allow NLMs running in protected-mode to
manage the real-mode environment. This includes APIs that allow
execution of real-mode code, real-to-protected callbacks, hooking
real mode interrupts, and the like. An MS Windows transition
architecture is also provided that allows environment- dependent
modules the ability to correctly handle the DOS-to-Windows,
Windows-to-DOS transition.

NIOS allows DOS real-mode and MS-Windows applications to
access the 32-bit NLM environment from their respective 16-bit
environments. NIOS provides a set of APIs that allow 16-bit
applications to call 32-bit Client NLM APIs and access Ring-0
memory, thus bridging the gap between user applications and the
NIOS Client system-level components.

For example, an end user would execute an application running in
the DOS/MS-Windows environment to load or unload client
system-level components. Under DOS, for example, the command
LOAD loads the specified modules into a protected area.

NIOS DOS/MS Windows Client NLM

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 19

> LOAD LSL
> LOAD NE2000
> LOAD IPX
.
.
.

In an MS-Windows environment, the interface is graphical instead
of command-line, but the underlying principle is the same.

LOAD invokes system-level APIs to actually perform the basic
load/unload operations. In this way, DOS/MS-Windows
applications provide the user interface for managing the NIOS
Client system, though all lower-level system functionality is
provided by NLMs and NIOS.

LAN Drivers

The client uses unmodified NetWare OS-compatible (3.x and 4.x)
LAN drivers. This provides a huge pool of proven, certified LAN
drivers for the client environment.

Plus, the burden on third-party LAN adapter manufacturers is
greatly reduced since the NIOS Client does not introduce another
LAN driver interface to which developers have to write.

Topology Support Modules

Topology Support Modules (TSMs) are components of the
NetWare OS LAN driver architecture which provide an
intermediate layer between the LAN driver and the Multiple Link
Interface (MLI) of the LSL module. There is a separate TSM for
each supported topology type (for example, ETHERTSM.NLM,
TOKENTSM.NLM). (See Figure 3.2.)

Note: The MLI is an API that allows the LSL to remain
independent of physical media.

Multiple Link Interface

Multiple Protocol Interface

LSL

TSM

LAN Driver (HSM)

MSM

Network
Card

MLID

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

20 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

Figure 3.2: Topology Support Module

The client uses customized TSM modules which use a different
packet-receive mechanism than the TSMs written for the NetWare
OS. Instead of using the LSL buffer pool approach of the NetWare
OS TSMs, the NIOS Client uses a Receive Look-Ahead approach,
allowing protocols to preview packet header information and
provide buffers directly for incoming packets. The Receive
Look-Ahead method is much more efficient in a client environment
than the traditional buffer pool method.

The client provides backward compatibility to the NetWare OS
TSMs. A TSM written for the NetWare OS can be used on the
NIOS Client.

MPI

Link Support Layer

MLI

NIOS DOS/MS Windows Client NLM

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 21

Link Support Layer

The Link Support Layer (LSL) is the central component of any
Open Data-Link Interface (ODI) implementation. (See Figure 3.3.)

The core of the NIOS Client's LSL is actually a ported version of the
LSL used by the NetWare OS compliant with the ANSI "C" LSL
interface. Because it does not use any OS-specific APIs, the
unmodified core LSL can be used on other platforms supported by
NIOS.

Figure 3.3: Link Support Layer

Internetwork/Sequenced Packet Exchange Protocols

The NLM (IPX.NLM) that implements the IPX and SPX protocols
for the DOS/MS-Windows NIOS Client comprises a number of
functional components. (See Figure 3.4.) The core IPX and SPX
protocols are OS-independent and need not be modified to work
on other NIOS-supported platforms.

The 16-bit IPX (IPXODI.COM) could bind to only one LAN driver
at a time. The NIOS Client's IPX, however, is multiple- board
aware; it can bind to more than one LAN driver at a time. While
servers have always offered this capability by using internal
routers, no such technology has been generally available on client
workstations.

IPX

NTA

DOS

MAP

 IPX
Diagnostics

WIN

MAP

DOS
MAP

WIN
MAP

SPX Core

IPX Core

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

22 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

Figure 3.4: IPX.NLM architecture

The NIOS Client bypasses the need for cumbersome internal
routers by demanding that client applications be multiple
board-aware. An application queries IPX to find which boards are
registered, and uses a new GetLocalTarget to select the best board
on which to send and receive packets.

Built on top of the core IPX API are four API mappers: two that
emulate the 16-bit IPX/SPX APIs, and two that emulate the 16-bit
MS-Windows IPX/SPX interface. (The MS-Windows 16-bit
interface was previously provided by VIPX.386.)

Additionally, an IPX diagnostics module emulates the
Diagnostic/GNMA functionality currently available with NetWare
clients.

IPX.NLM also includes the IPX Transport Service Agent (TSA) that
interfaces with the TRAN.NLM.

Transport Service Interface

In an attempt to evolve to an entirely transport-independent
Requestor/Shell, the NIOS Client contains a transport independent
layer called the Transport Service Interface (TSI). This layer is
made up of a transport manager called TRAN.NLM and individual
Transport Service Agents (TSAs). NTAs offer a consistent API to
the Transport Service Users (TSUs) to each relevant transport
protocol. (See Figure 3.5.)

Shell Other

TRAN.NLM

IPXTSA IPTSA DDPTSA

IPX IP DDP

Link Support Layer

TSU Interface

TSA Interface

NIOS DOS/MS Windows Client NLM

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 23

Figure 3.5: Transport Service Interface (TSI)

An example of aTSU is the NIOS Client Shell. Before the NIOS
Client, NetWare Shells spoke only IPX. But the NIOS Client Shell
runs on any transport. This is only possible because the TSI masks
protocol differences from the Shell. Instead of issuing an
IpxSendPacket request, the NIOS Client Shell would send a generic
SendPacket. The TSI would translate it into a protocol-specific
request.

Each supported protocol will have its own TSA. A TSA is a mapper
to a protocol. For example, the IPX TSA is linked with IPX.NLM to
provide an interface for the IPX protocol.

Requestor/Shell

NETX.NLM, the NIOS Client Shell, is a true DOS Int 21h shell (as
opposed to a Redirector). Though harder to implement, Shells are
significantly faster than Redirectors. The NIOS Client Shell is
analogous to the 16-bit NETX.EXE module, except that it supports
the advanced features introduced with the 16-bit VLM Requestor,

IPX TCPIIP x y z IPX TCPIP x y z

LSL

MLID

Physical Physical Physical

ProtMan

MAC

LSL

MLID

ProtMan

ODINSUP

ODI NDIS ODINSUP

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

24 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

such as NetWare Directory Service (NDS) support, improved
packet burst protocol, auto-reconnect, and Personal NetWare
support.

The Requestor/Shell module consists of many sub-components,
some of which are OS-dependent and some -independent. Many of
the source code modules for NETX.VLM can be reused without
modification, simply being linked in for a new OS implementation.
However, a significant portion of the Shell will be OS-dependent
due to its close ties with the underlying desktop OS.

NETX.NLM introduces a number of improvements over existing
16-bit shells, such as improved file caching, flexible local/global
network resource mappings, increased usage of new NCPs, ease of
use, and a number of other performance improvements.

NDIS 3.0 Shim Module

ODINSUP is the module which allows ODI to run NDIS
3.0-compliant network layer protocols. It works like this:

The NIOS Client loads the Microsoft ProtMan module (roughly
equivalent to NetWare's LSL) and related protocols along with the
standard ODI protocols. ODINSUP takes the output of ProtMan
and maps it to the ODI LAN Driver instead of to an MS MAC
(Medium Access Control) module. In effect, ODINSUP.NLM
provides an NDIS MAC driver interface to NDIS-compliant
protocol, though an ODI LAN driver is actually used to drive the
LAN. (See Figure 3.6.)

This module provides dual connectivity between LAN
Manager/Windows for Workgroups and NetWare services.

NIOS DOS/MS Windows Client NLM

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 25

Figure 3.6: NIOS Client ODINSUP capability

Source Routing Module

IBM Token-Ring Source Routing bridges Token-Ring rings together
into one logical ring.

Currently, Novell implements this technology with a ROUTE.NLM
module in the NetWare OS, and source route modules for all other
client environments. This provides the necessary protocols to
allow Token-Ring ODI LAN drivers to work correctly on a Source
Routed network.

Because the NIOS Client ROUTE.NLM generally uses only
NetWare OS LAN driver APIs, it is expected that ROUTE.NLM can
be used unmodified on the NIOS Client.

System Debugger

Because the DOS/MS Windows NIOS Client environment operates
in protected mode under DOS, no off-the-shelf debugger can be
used to debug NIOS Client system components. Novell has
developed the DEBUG.NLM module to assist in developing NIOS
Client NLMs.

This module will be made available to third-party developers in the
DOS/MS Windows NIOS Client SDK.

