
Rev 1.0 Draft 4.0 (March 1995) Company Confidential 1

Chapter 1
NLM API Mapper
Environment

NIOS in DOS and Windows Environments . 2

Re-entrancy in DOS and Windows . 3

Detecting Execution Environment . 4

Polled LAN Drivers . 5

Kernel Layer

Application Layer

Cross-Platform NIOS Model

Mappers

 NIOS

 DOS

Specific

 API

 NIOS

Portable

 API

Subset of

 NetWare

 Server

 API

Portable Client Components

LAN Drivers

Target

 OS

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

2 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

The DOS, MS Windows, and Windows 95 environment-specific
NIOS APIs (those beginning with "Dos") have been designed to
ease development of API Mapper NLMs which support both the
DOS and MS Windows environments. See Figure 1.1 below to
review NIOS architecture.

Figure 1.1: NIOS Architecture

NIOS in DOS and Windows Environments

Though the Dos_ NIOS APIs have been designed to be used even
while Windows is running, an API Mapper implemented to handle
both environments must still take into account some inherent
differences between the DOS and MS Windows environments.
These issues are elaborated on in the discussion that follows.

NLM API Mapper Environment

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 3

In MS Windows, V86 and MS Windows Application (WinApp)
code is always executed in the foreground. Ring-0 code cannot
invoke V86 or WinApp code while in the context of a hardware
interrupt. A Ring-0 interrupt handler that needs to invoke V86 or
WinApp code must do so out of a foreground event callback
(GlobalEvent).

In a DOS-only environment, V86 code can, as always, be executed
directly from the context of a hardware interrupt.

Re-entrancy in DOS and Windows

There are two common cases under DOS and MS Windows where
a foreground NLM procedure can be reentered:

1) If the NLM directly or indirectly yields by invoking
the NiosPoll function. This case holds for any NIOS-
supported environment.

2) If a Mapper NLM directly or indirectly yields by
invoking Ring-3 V86 or WinApp code. Both the DOS
and Windows VMM functions service foreground
events before returning to user mode (V86 or
WinApp).

Because hardware interrupts are not serialized (pushed to the
foreground) in the DOS-only environment, there exists one other
case where an NLM API mapper procedure may be reentered.

3) If the NLM API mapper procedure could be invoked
directly or indirectly from a real-mode hardware
interrupt handler, then the NLM function could be
reentered anytime that NLM enables interrupts.

Note that this case also applies to real-mode API handlers
implemented as TSRs; therefore the methods of dealing with this
type of reentrancy are the same for TSRs and NLMs: specifically, a
queue or a CLI is used to protect global data and/or the function
uses stack-based local variables.

Because Ring-0 hardware interrupt handlers are not serialized in
either the DOS or Windows environments, an NLM procedure that
could be invoked directly or indirectly from a Ring-0 hardware

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

4 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

interrupt handler could obviously be reentered any time it runs
with interrupts enabled.

All pertinent DOS environment NIOS services are completely
reentrant and therefore can be called from hardware interrupt
context. These services are documented as such. However, when
the Windows environment is started, many of these NIOS services
become non-reentrant to NLM procedures running in the context
of a Ring-0 hardware interrupt handler. This is because these DOS
NIOS VMM services now map to the appropriate Windows VMM
services, which are not reentrant.

Therefore an NLM procedure that wishes to invoke a reentrant
DOS NIOS function from the context of a Ring-0 hardware
interrupt, while Windows is active, must schedule a foreground
event using the NiosScheduleForegroundEvent service or the VxD
Schedule_Global_Event service. The callback handler would then
invoke the needed service.

Detecting Execution Environment

This section describes techniques that allow an NLM binary that supports

both the NetWare server and NIOS (e.g. LAN drivers) to determine which

of these execution environments is active. This allows an NLM to modify

its behaviour at run-time appropriate for the active environment.

Note that an NLM written exclusively for the NIOS environment can

simply use the NiosGetVersion API function to detect which specific

NIOS platform it is executing on (e.g. NetWare server, DOS/Windows

3.1x, Windows 4.x, etc.).

Step 1: Determine if NIOS is present. This is accomplished using the

NetWare OS function ImportPublicSymbol and attempting to

import the NIOS function NiosGetVersion. Note that

ImportPublicSymbol requires that the function name parameter

be length preceded and zero terminated. If the call is unable to

locate the public symbol then NIOS is NOT present and therefore

the NLM is executing on a NetWare server. For example:

NLM API Mapper Environment

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 5

UINT32 (*NiosGetVerFuncAddr)(void);

NiosGetVerFuncAddr = (void *)ImportPublicSymbol(
modHandle,
"\xE" "NiosGetVersion");

if (NiosGetVerFuncAddr == NULL)
 /* NIOS is NOT present, running on NetWare server */

else
 /* NIOS is present, continue to step 2 */

Step 2: The second step, if needed, is to determine which particular

operating system is hosting the NIOS interface. This is

accomplished by invoking the NiosGetVersion API function using

the address returned in Step 1. For example,

NiosVersion = (*NiosGetVerFuncAddr)();

Polled LAN Drivers

32-bit NetWare server LAN drivers are now being hosted on a number of

desktop operating systems such as DOS, Windows, UnixWare, and NT.

Overall this effort has been technically feasible, however one area in which

it has not been feasible is support for polled LAN drivers. Most of these

desktop operating systems cannot supply a high enough poll frequency

needed to provide an adequate level of performance.

There are configurations on the NetWare server where the OS kernel is

unable to provide the polling frequency necessary for adequate

performance. Because of this Novell recommends in its developer

documentation that polled drivers implement and use an interrupt backup

mechanism. In the case where the driver's polling function has not been

called for a certain amount of time, the adapter will generate an interrupt to

the driver, thus allowing the adapter to be serviced. This generally solves

the problem on the server since an insufficient polling frequency

condition occurs a minority of the time, however in a desktop operating

system environment where the polling frequency is insufficient a majority

of the time, interrupt backup does not provide an optimal performance

solution due to the interrupt time delay (driver/adapter specific) incurred for

every adapter event.

The above discussion can be summarized as follows:

1) A polled driver/adapter without an interrupt backup mechanism is

not viable in a desktop OS environment. The driver/adapter will

function but with extremely poor performance.

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

6 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

2) A polled driver/adapter with an interrupt backup mechanism will

function in a desktop OS environment, however performance will

fall short of the performance possible using a non-polled driver.

3) A non-polled, purely interrupt driven, driver/adapter provides the

best performance in a desktop OS environment. Therefore it is

recommended that LAN drivers currently capable of polling be

modified to detect the environment in which they are loaded and

adjust their behaviour to be either polled with interrupt backup or

purely interrupt driven.

Detecting whether or not polling should be used can be accomplished using

the GetPollSupportLevel function. Note that this API function is NOT

available on every platform, therefore the driver cannot import the public

directly in its linker definition file, instead the driver should check to see if

the public exists during initialization using the ImportPublicSymbol

function. The entry and exit conditions for GetPollSupportLevel are:

 UINT32 GetPollSupportLevel(void)

 Returns: 0 Environment does NOT support polling.

Polling procedure will never be called.

 1 Limited support for polling. Polling

procedure will be called infrequently.

 2 Polling is fully support, however interrupt

backup is still recommended.

The following sample code illustrates how to detect the polling support

level.

UINT32 (*GetPollSupportFunc)(void);

GetPollSupportFunc = (void*)ImportPublicSymbol(
modHandle,
"\x12" "GetPollSupportLevel");

if (GetPollSupportFunc == NULL)
/* Polling is fully supported */

else
{

/* Polling may or may not be supported */

switch((*GetPollSupportFunc)())
{

 case 0:
/* No support for polling. Polling
Procedure will never be called. Use
Interrupt mode */
break;

NLM API Mapper Environment

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 7

case 1:
/* Limited support for polling. Polling
procedure will be called infrequently.
Use Interrupt mode */
break;

case 2:
default:
/* Polling is fully supported, use
Interrupt backup mode */
break;

}
}

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

8 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

