
How To Write An NLM

for the DOS/Windows

Environment

Revision 1.0 Draft 1.2

March 1995

Preliminary Version

NetWare®

Disclaimer Novell, Inc. makes no representation or warranties with respect to the contents or use of this

manual, and apecifically disclaims any express or implied warranties of merchantability or

fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this

publication and to make changes to its content, at any time, without obligation to notify any

person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any NetWare

software, and specifically disclaims any express or implied warranties of merchantability or

fitness for any particular purpose. Further, Novell, Inc. reserves the right to make changes to

any and all parts of NetWare software, at any time, without obligation to notify any person or

entity of such changes.

Trademarks Novell, Inc. has made every effort to supply trademark information about company names,

products, and services mentioned in this document. Trademarks were derived from various

sources.

Copyright © Unpublished Work of Novell, Inc. All Rights Reserved.

This work is an unpublished work and contains confidential, proprietary and trade secret

information of Novell, Inc. Access to this work is restricted to (1) Novell employees who

have a need to know to perform tasks within the scope of their assignments, and (2) entities

other than Novell who have entered into appropriate license agreements. No part of this

work may be practiced, performed, copied, distributed, revised, modified, translated,

abridged, condensed, expanded, collected, or adapted without the prior written consent of

Novell, Inc. Any use or exploitation of this work without authorization could subject the

perpetrator to criminal and civil liability.

Novell, Inc.

122 East 1700 South

Provo, Utah 84606 U.S.A.

Revision 1.0 Draft 1.2

March 1995 Edition

Rev 1.0 Draft 1.2 (March 1995) Company Confidential iii

Contents

Preface

Chapter 1: Introduction to Client NLMs

NetWare Loadable Modules . 1

Similarities between Server and Client NLMs 1

Differences between Server and Client NLM Environments 2

NIOS Services . 2

Chapter 2: Getting Started

Preparing Your Workstation Hardware . 4

Determining Your Network Board Settings . 5

Determining Your Network Frame Type . 6

Setting Up NIOS . 6

Copying NIOS Files . 6

Creating A Batch File . 7

Sample Batch File . 9

Installing the Windows 95 Client . 9

Other NIOS Issues . 11

Unloading Client Software . 11

Compatibility With NOVDOS HIMEM.SYS 11

Chapter 3: Developing Client NLM Code

NLM Required Functions . 12

Initialization Function . 12

Deinitialization (Unload) Function . 14

NLM Optional Functions . 15

Module Handle . 15

Development Tools . 16

Assemblers . 16

"C" Compilers . 17

Linkers . 18

Chapter 4: Client NLM Examples

Hello World Header . 19

Hello World Example . 20

How To Write An NLM for the DOS/Windows Environment

iv Company Confidential Rev 1.0 Draft 1.2 (March 1995)

Chapter 5: Debugging Your Client NLM

Debugging Client NLMs in DOS . 24

Using Microsoft’s Windows Kernel Debugger 24

Using Debug.NLM . 25

Accessing Debug Functionality . 25

Accessing Help in the Debugger . 25

Debugging NLMs and Real Mode Code . 25

Compatibility with Soft-ICE for DOS . 26

Debugging Client NLMs within MS Windows . 27

Using WDEB386 in DOS and MS Windows 27

Using DEBUG.NLM Within MS Windows . 27

NIOS Logging . 28

Page Protection Under Windows 3.1 . 29

Statistical Tools . 30

Rev 1.0 Draft 1.2 (March 1995) Company Confidential v

Preface

This is a document in the process of development. As such it is not yet the

definitive work on writing client NLMs. It does, however, contain valuable

information which we feel will help you begin building your own client

NLMs.

Future editions will be greatly expanded and filled with programming helps

from the very development engineers who created the concept of the client

NLM here at Novell.

Any helpful suggestions would be gratefully accepted. Please call Keith

Newman at (801) 429-7370.

This document assumes you have access to the following Novell

publications.

C NetWare Client NIOS Design Specification

C NetWare Client NIOS for DOS, MS Windows, and Windows 95

Design Specification

How To Write An NLM for the DOS/Windows Environment

vi Company Confidential Rev 1.0 Draft 1.2 (March 1995)

Rev 1.0 Draft 1.2 (March 1995) Company Confidential 1

Chapter 1

Introduction to Client NLMs

NetWare Loadable Modules

Originally, NetWare Loadable Modules (NLMs) were defined as programs

built to run in server memory with the NetWare OS. Now, however, this

definition has been expanded to include the DOS/MS Windows and

Windows 95 environments.

This chapter introduces the client NLM by explaining many of the

similarities and differences between server and client NLMs. This chapter

also summarizes the services NIOS makes available to client NLMs.

Similarities between Server and Client NLMs

Client NLMs link with and add functionality to NIOS just as server NLMs

link with and add functionality to the NetWare OS. In fact, client NLMs

were designed to be as much like server NLMs as possible. There are,

therefore, many similarities between server and client NLMs. These

similarities include, but are not limited to, the following.

C Server and Client NLMs can be written entirely in C.

C Server and Client NLMs have the same executable format. (See Figure

1.1.)

C Server and Client NLMs use the same API export and import

mechanism.

C Server and Client NLMs use the same language enabling tools.

C Server and Client NLMs can be loaded and unloaded as needed.

C Server and Client NLMs can use other NLMs to provide services that

are needed.

Startup Code

Main Body of Code

At_Unload Function CHECK Function At_Exit Functions

A _Prelude function or

custom startup function.

The main function and all
of the code for the main

operation of the NLM.

Runs when the UNLOAD

command is issued from

the command line.

Used to see if it is OK to

unload the NLM.
Runs when the NLM

exits.

How To Write An NLM for the DOS/Windows Environment

2 Company Confidential Rev 1.0 Draft 1.2 (March 1995)

Figure 1.1: NLM Structure

Differences between Server and Client NLM Environments

Even though there are many similarities between the environments that

NLMs exist in, there are also some significant differences.

C Currently there is no support for compression for on the client, but the

capability will be added before v1.0 ships.

C NetWare server threads are not supported on the client.

C CLIB is not currently available on the client.

C Most of the server API functions are not available on the client.

NIOS Services

Developers may have many reasons to write their applications as a client

NLMs, but certainly one reason would be to take advantage of the powerful

services made available to client NLMs through the NetWare I/O

Subsystem (NIOS).

NIOS provides a protected mode execution environment for DOS and

Windows. In MS Windows, an NLM behaves like a Vxd having full access

to Vxd services; in return, Vxds have direct access to NLMs. Furthermore,

Introduction to Client NLMs

Rev 1.0 Draft 1.2 (March 1995) Company Confidential 3

NIOS provides a consistent view of protected mode, whether or not DOS or

Windows is active.

Services provided by NIOS can be categorized as follows.

C Configuration Services

C Debug Services

C Event Services

C Handle Management Services

C Hardware Interrupt Services

C Information Services

C Linked List Services

C Module Management Services

C Memory Management Services

C Popup Video Services

C Process Management Services

C Returnable Memory Management Services

C Statistics Services

C Time/Date Services

C User Interface Services

C Utility Services

For more information about specific services, see the NetWare Client NIOS

Design Specification.

How To Write An NLM for the DOS/Windows Environment

4 Company Confidential Rev 1.0 Draft 1.2 (March 1995)

Rev 1.0 Draft 1.2 (March 1995) Company Confidential 5

Chapter 2

Getting Started

This chapter explains the requirements for loading the NetWare NIOS

software on your workstation. The directions assume that you are familiar

with the following operating systems and hardware.

C PC-DOS, MS-DOS, DR-DOS, or Novell DOS 7 (released version),

C Microsoft Windows 3.1 Enhanced mode (Protected mode)

C MS Windows 95

C NetWare 3 or 4 compatible OS LAN drivers (4.1 drivers preferred)

C NetWare compatible network boards

C Memory management software (minimally HIMEM.SYS)

If you are planning to use the new MS Windows 95 operating system, you

may skip to the section titled “Installing the Windows 95 Client”.

Preparing Your Workstation Hardware

Before attempting to install the NetWare NIOS software, you should ensure

the workstation meets the following hardware requirements.

C An Intel 32-bit CPU (80386 or higher).

C A hard drive with 1.2 MB of storage or a 1.2 MB floppy drive and

diskette.

C A network board installed in the workstation. If you need to install the

board, be sure to record the board settings for use during installation.

For information on installing the network board, see the manufacturer’s

documentation.

C A cable connection to the network. Each type of network board

requires unique cabling. See the manufacturer’s documentation

packaged with your network board for requirements.

How To Write An NLM for the DOS/Windows Environment

6 Company Confidential Rev 1.0 Draft 1.2 (March 1995)

Note: Token ring network boards require a cable connection to the

MAU before installing the operating system. Otherwise, the

TOKEN driver will not load.

Determining Your Network Board Settings

The NetWare OS LAN driver requires specific information about the

network board installed in your workstation. Record the values for the

following settings before loading the NIOS software.

C Hardware interrupt. You should use an interrupt that is not already in

use in your system. Interrupts commonly used for network boards are

IRQ3 or IRQ5. See the manufacturer’s documentation for more

information.

C Base I/O port. Each hardware device installed in your workstation

must have a different base I/O port setting. For more information on

the base I/O port for your network board, see the manufacturer’s

documentation.

C Media frame type. All client workstations and servers using a single

network address must use the same frame type. See the section titled

“Determining Your Network Frame Type” in this chapter.

C Other settings. There may be other settings unique to the network

board installed in your workstation. See the documentation provided

with your network board for more information.

Note: In most cases, you should leave your network board set to the

factory default settings. If you need to change the default

settings, see the manufacturer’s documentation.

You can obtain setting information for your network board by using the

following procedures.

C If you have an EISA or MCA network board, run the computer’s setup

or reference program. This program lists the values for your network

board settings.

C If you have an ISA network board, look at the network board itself to

obtain the specific settings. The documentation provided with your

network board will direct you where to find each setting value.

C If you have a network connection already, type NVER at the command

line to view the board settings.

Getting Started

Rev 1.0 Draft 1.2 (March 1995) Company Confidential 7

Determining Your Network Frame Type

You can determine your network frame type by using the following

procedures.

C If you already have a network connection, read the frame type

parameter for the LINK DRIVER option in your NET.CFG file. NIOS

will eventually do this automatically.

C If you a installing on a new workstation, ask your system administrator

for the frame type for your particular network.

Note: The default frame type for Ethernet ODI drivers has changed. In

NetWare 2 and 3, NetWare OS Ethernet LAN drivers defaulted to

Ethernet 802.3 frame type. In NetWare 4, the default frame type

has changed to Ethernet 802.2.

If you use the Ethernet 802.2 frame type on your workstation, it

cannot connect to a network expecting the Ethernet 802.3 frame

type. To eliminate a potential conflict, you can define both frame

types (Ethernet 802.2 and Ethernet 802.3) on your network.

Setting Up NIOS

Once you have the proper hardware and software installed as described in

the preceding sections of this chapter, you can install and configure the

NetWare NIOS software. To do this, you must do the following:

C Obtain the appropriate NetWare 4 compatible OS LAN driver for your

network board. NetWare drivers are available from a release of

NetWare 4.x.

C Obtain the NetWare NIOS Client software.

Copying NIOS Files

Copy the following NIOS files to your NetWare client directory; the default

directory name is NWCLIENT.

C NIOS.EXE

C LSL.NLM

C MSM.NLM

How To Write An NLM for the DOS/Windows Environment

8 Company Confidential Rev 1.0 Draft 1.2 (March 1995)

C ETHERTSM.NLM or TOKENTSM.NLM

C lan_driver.LAN (LAN driver for your network board.)

C IPX.NLM

C POLYPROC.NLM

C NSMUX.NLM

C SESSMUX.NLM

C CONNMAN.NLM

C NCP.NLM

C TASKMAN.NLM

C BINDERY.NLM

C NDS.NLM

C MOCKNW.NLM

C FILEDIR.NLM

C PRINT.NLM

C NETX.NLM

C VLMMAP.NLM

Creating A Batch File

Create a batch file for loading the NIOS software using the following

procedures.

1. Load an ASCII editor with which to create the batch file. Save this file

in the same directory that you copied the NIOS software files to.

2. Add a line for loading the NIOS abstraction layer, by typing

NIOS

3. Add a line for loading the Link Support Layer, by typing

LOAD LSL

4. If you are using NetWare 3.12 and 4.x OS LAN drivers, add a line for

loading support for Novell’s Ethernet or Token-ring Topology Specific

Module (TSM), by typing

LOAD ETHERTSM (For Ethernet LAN drivers)

or

LOAD TOKENTSM (For Token-ring LAN drivers)

or

LOAD FDDITSM (For FDDI LAN drivers)

5. Add a line for loading the LAN driver, by typing

LOAD lan_driver [driver_parameters]

Getting Started

Rev 1.0 Draft 1.2 (March 1995) Company Confidential 9

Replace lan_driver with the appropriate driver for your network board.

Warning: You must use NetWare 4.x LAN drivers. Drivers for

NetWare 3.11 are not compatible.

LAN driver parameters may be required or optional. Currently you

must enter a value for each parameter setting if you have configured

your network board with non-default settings. You must specify the

new value at the command line when you load the driver.

Note: Future implementations of the client software will enable the

LAN driver to prompt you for all required parameter settings.

Most drivers use one or more of the following parameters.

DMA =number

INT=number

NAME=board name

PORT=number

SLOT=number

FRAME=name

MEM=number

NODE=number

RETRIES=number

The following line is a sample LAN driver command for an NE2000

network board.

Load ne2000 int=3 port=300 mem=DC000 frame=ethernet_802.3

Note: The NetWare 4 OS LAN drivers default to the

ETHERNET_802.2 frame type. Previous versions defaulted

to ETHERNET_802.3. Contact your system administrator for

details.

Note: NE3200 users must specify the POLL=0 command line option

when loading the NE3200.LAN driver for proper operation.

6. Add a line for loading IPX support, by typing

LOAD IPX

7. Add lines for loading the NLMs that make up the 32-bit client shell, by

typing

LOAD POLYPROC

How To Write An NLM for the DOS/Windows Environment

10 Company Confidential Rev 1.0 Draft 1.2 (March 1995)

LOAD NSMUX

LOAD SESSMUX

LOAD CONNMAN

LOAD NCP

LOAD TASKMAN

LOAD BINDERY

LOAD NDS

LOAD MOCKNW

LOAD FILEDIR

LOAD PRINT

LOAD NETX

LOAD VLMMAP

Sample Batch File

The following is a sample batch file for loading the NIOS and NetWare

client software.

nios

load lsl

load msm

load ethertsm

load ne2000 int=3 port=300 mem=DC000 frame=ethernet_802.3

load ipx

load polyproc

load nsmux

load sessmux

load connman

load ncp

load taskman

load bindery

load nds

load mocknw

load filedir

load print

load netx

load vlmmap

Installing the Windows 95 Client

Note: The following procedures are temporary. An application for

installing the client is currently in development.

Begin installing the Windows 95 client using the following procedure.

Getting Started

Rev 1.0 Draft 1.2 (March 1995) Company Confidential 11

C Copy the NIOS.VXD file to your Windows system directory. For

example, if you installed Windows 95 to the default C:\WINDOWS

directory, NIOS.VXD would be copied to C:\WINDOWS\SYSTEM.

C Add the following to your SYSTEM.INI file under the [386Enh]

section.

device=nios.vxd

nwhomedir=c:\nwclient

Set NWHOMEDIR to where your NetWare client files (*.NLM and

NET.CFG) are located; the default directory is C:\NWCLIENT.

C You can have NIOS autoload DEBUG.NLM by copying

DEBUG.NLM to the C:\WINDOWS directory. Otherwise you can

load it manually.

C Load the NLM files.

Three methods currently exist to install the NLM files under Windows 95.

C Manually load the NLMs in a DOS box after Windows 95 is up and

running.

C Manually load the NLMs in the Windows 95 GUI environment by

using the NIOSCTL.EXE Windows application.

C Create a WINSTART.BAT file in your Windows directory and list

individual entries to load each NLM. Windows executes the

WINSTART.BAT immediately before the GUI desktop is initialized.

An example WINSTART.BAT is shown below.

LOAD LSL

LOAD MSM

LOAD ETHERTSM

LOAD NE2000.LAN int=5 port=320

LOAD IPX

LOAD POLYPROC

LOAD NSMUX

LOAD SESSMUX

LOAD CONNMAN

LOAD NCP

LOAD TASKMAN

LOAD BINDERY

LOAD NDS

LOAD MOCKNW

How To Write An NLM for the DOS/Windows Environment

12 Company Confidential Rev 1.0 Draft 1.2 (March 1995)

LOAD FILEDIR

LOAD PRINT

LOAD NETX

LOAD VLMMAP

F:LOGIN servername/username

Other NIOS Issues

Unloading Client Software

The NetWare Client NLM software can be removed from memory by using

the UNLOAD command, for example:

UNLOAD LSL

Compatibility With NOVDOS HIMEM.SYS

Due to a bug in the HIMEM.SYS (v2.3) driver in Novell DOS 7, you must

load DOS into the HMA area if running the NIOS software on a Compaq

machine. Add the following line to your CONFIG.SYS file, by typing

DOS=HIGH,UMB

You can also disable the HIMEM.SYS driver and load the EMM386.EXE

file included with Novell DOS 7 instead.

Rev 1.0 Draft 1.2 (March 1995) Company Confidential 13

Chapter 3

Client NLM Code

Development

This chapter describes the basic layout of a NetWare Loadable Module

(NLM) along with the tools and techniques used to build one.

The following data types are defined and used extensively in the client

NLM environment:

#define UINT32 unsigned int
#define SINT32 signed int
#define UINT16 unsigned short int
#define SINT16 signed short int
#define UINT8 unsigned char
#define SINT8 signed char

NLM Required Functions

Initialization Function

An NLM must define and implement a minimum of two functions. The

first function handles the module’s initialization. It is invoked immediately

after the NLM has been loaded into memory. This routine is invoked as a

“C” function with a number of input parameters (discussed in detail later in

this section).

All “C” functions in an NLM environment must preserve registers EBX,

ESI, EDI, and EBP. On return the initialization function must signal in

register EAX whether or not the module initialized successfully. A return

value of 0 signals that the module successfully initialized and should remain

resident in the system, otherwise a non-zero return value signals a failed

initialization in which case the loader will remove the NLM from the

system.

How To Write An NLM for the DOS/Windows Environment

14 Company Confidential Rev 1.0 Draft 1.2 (March 1995)

The initialization function is invoked as follows:

UINT32 ModuleInit(
modHandle myModHandle,
modHandle unusedScreenHandle,
UINT8 *commandLine,
UINT8 *moduleLoadPath,
UINT32 unitializedDataLength,
UINT32 customDataFileHandle,
UINT32 (*readProc)(

UINT32 customFileHandle,
UINT32 customOffset,
UINT8 *buf,
UINT32 bytesToRead),

UINT32 customDataOffset,
UINT32 customDataSize,
UINT32 numMsgs,
UINT8 **msgs)

myModHandle This parameter is the loading NLM’s module

handle which remains valid throughout the

module’s lifetime. Each active NLM is assigned a

unique module handle. The handle is actually a

pointer to a structure. Many of the fields in this

structure are publicly defined and available for the

NLM or other NLMs to look at (refer to NIOS.H

or NIOS.INC for a definition of this structure). In

most cases this structures follows the structure

used by the NetWare OS, however there are a few

minor differences. Many system calls require the

module handle as an input parameter and is often

used to assign and track ownership of system

resources.

unusedScreenHandle In the NetWare OS environment this parameter

contains a handle to the system console screen.

This is needed if the module wants to display

information during its initialization sequence. In

the client environment this parameter is not

needed and is set to equal the NLM’s module

handle (myModHandle).

commandLine This parameter points to an ASCIIz (Zero

terminated) string containing any parameters

specified when the NLM was loaded.

moduleLoadPath This parameter points to an ASCIIz string

containing the path from which the NLM was

loaded from. This string does not include the

name of the NLM.

Client NLM Code Development

Rev 1.0 Draft 1.2 (March 1995) Company Confidential 15

unitializedDataLength Not used in the client environment.

customDataFileHandle The custom data file is appended to the end of an

NLM by the NLM link. NetWare loads only the

NLM’s code data at load time, leaving the file

open for the NLM to handle custom data. This

handle points to a structure that the operating

system uses to read the custom data.

readProc Used to allow reading of a custom data file linked

with the NLM. This is a pointer to the custom

data readProc (see Appendix A).

customDataOffset This is the starting offset of the custom data inside

the NLM file.

customDataSize This parameter contains the length of the custom

data file.

numMsgs This parameter is NOT passed to NLM's running

in the NetWare server environment. In the server

message information is obtained using the

ReturnMessageInformation API (supported on

the client and server). This is the number of

language enabled messages present in the msgs

parameter.

msgs This parameter is NOT passed to NLM's running

in the NetWare server environment. In the server

message information is obtained using the

ReturnMessageInformation API (supported on

the client and server). This parameter is a pointer

to an array of (UINT8 *) pointers. The index or

message number that is used to access specific

messages is assigned by the NLM language

enabling tools.

Deinitialization (Unload) Function

The second required function is the module’s deinitialization function, also

referred to as the module’s exit or unload handler. This function is invoked

when a request has been made to the system to remove the NLM. The

loader calls the exit function using “C” conventions. No input parameters

are defined for the exit routine, and a return code is not used or defined.

How To Write An NLM for the DOS/Windows Environment

16 Company Confidential Rev 1.0 Draft 1.2 (March 1995)

 The function must return any resources it has allocated and place itself into

a nonactive state. Note that if an NLM’s initialization function returns non-

zero, meaning that the NLM will NOT stay resident, the NLM’s exit

function is NOT invoked. For completeness, the prototype for an NLM’s

unload function is:

UINT32 ModuleDeinit(void)

NLM Optional Functions

An optional third function, called the check procedure, can be implemented

to allow an NLM to determine whether or not it is safe or desired to allow

the NLM to unload. The check function is invoked by the loader when a

request has been made to remove the NLM from memory. This function

has no input parameters, is “C” callable, and must return 0 if it is okay to

unload, otherwise the loader will refuse the request to remove the NLM, in

which case the NLM’s exit function will NOT be invoked.

Module Handle

NLM resource tracking is implemented in the NetWare server using

resource tags. In the client NLM environment, resource tags are not

supported or implemented. Resource tracking in the client is simpler and

uses less overhead than resource tags. Basically when a resource is

allocated by an NLM, the resource provider simply increments the

resourceCount field in the caller's module handle structure. When the

resource is freed, the count is decremented.

When an NLM unloads from the system, this count is checked and if it is

not 0 then the loader displays a warning informing the user that the NLM

didn't free all of its allocated resources. Most NIOS services require the

caller's module handle as an input parameter. It is recommended that other

NLMs exposing services to other NLMs increment and decrement the

resourceCount field as resources are allocated and freed.

The resourceCount field is not implemented or supported in the NetWare

server environment, therefore an NLM that is targeted to run in both

environments should use conditional compile techniques to handle the

differences in the way resources are tracked.

NIOS presents primitive functions which allows Ring 3 applications (DOS,

Windows 16-bit, Win32) the ability to invoke exported Ring 0 NLM

functions. Because many Ring 0 NLM functions require a module handle

as an input parameter and the fact that Ring 3 programs are not NLMs and

Client NLM Code Development

Rev 1.0 Draft 1.2 (March 1995) Company Confidential 17

do not have an NLM module handle, NIOS provides services which allow

the Ring 3 application the ability to allocate a pseudo module handle which

can be used in calls that require a module handle parameter (See

NiosCreateModuleHandle and NiosDestroyModuleHandle).

Development Tools

This section describes the tools available to create an NLM executable.

Basically the tools can be grouped into one of three catagories: Assemblers,

"C" compilers, and linkers.

Assemblers

In the past the traditional Intel assembler used to create NLMs has been

Pharlap 386ASM. Although this assembler is still widely used, the 32-bit

client development team recommends the use of Borland's Turbo

Assembler based on the facts that its faster, cheaper, and more versatile

than 386ASM. If you choose to use 386ASM, refer to the NetWare OS

NLM SDK for further information.

Borland's Turbo Assembler (TASM) comes in two flavors, TASM.EXE

and TASMX.EXE. TASMX uses extended memory and allow assembly of

large source files. TASM, and TASMX for that matter, must be invoked

differently depending on which linker you choose to use. If you are using

the Watcom WLINK linker you should use the following command line

switches:

tasmx /m /q /mx myprog.asm

/m Tells TASM to use as many passes necessary to resolve all

references and forward references. Although not required, use of

this parameter generates the best machine code. In particular this

eliminates the need to specify the short keyword on jump

instructions to generate the shortest jump encoding. With /m the

assembler uses the shortest jump encoding without inserting NOP

instructions.

/q Tells the assembler to not include miscellaneous object records in

the .OBJ file that are not needed for linking.

/mx Tells the assembler to use case sensitivity for global symbols.

This parameter is not required although it is recommended.

How To Write An NLM for the DOS/Windows Environment

18 Company Confidential Rev 1.0 Draft 1.2 (March 1995)

If you are using the Novell linker (NLMLINKX) you should have the

following switches and commands:

tasmx /m /q /mx /op myprog.asm,myprog.ob1;

borfix myprog.ob1 myprog.obj

/m /q /mx As defined above.

/op Tells the assembler to generate an .OBJ compatible with the

Pharlap .OBJ standard.

Because the object records are not entirely comatible with NLMLINKX

you must run the object file through the BORFIX utility before linking.

In general an assembly language source file used with TASM should

contain the following directives, segment definitions, etc. Note that you can

use whatever segment names you prefer, the names used below are for

illustration only.

.386p ; Enable protected mode 386 instructions.

assume cs:OSCODE, ds:OSCODE, es:OSDATA, ss:OSDATA
OSDATA segment USE32 READWRITE public 'DATA'

YourData db ?

OSDATA ends

OSCODE segment USE32 EXECREAD public 'CODE'

MyProc proc near
CPush
; ... Your code
CPop
ret

MyProc endp

OSCODE ends
end

"C" Compilers

The two "C" compilers available are: Watcom "C" 9.00 or above, and

Metaware "C". Watcom is the most popular compiler used for NLM

development. Other "C" compilers, or even other language compilers such

as C++, Pascal, etc. should work as well as long as they can generate 32-bit

flat memory model code.

wcc386p /fo=myprog.obj myprog.c /ez /ot /3s /w4 /zp1 /zl /s

Client NLM Code Development

Rev 1.0 Draft 1.2 (March 1995) Company Confidential 19

-3s 386 stack calling conventions

-ez generate PharLap EZ-OMF object files

-s remove stack overflow checks

-zl remove default library information

-zp1 pack structure members on 1 byte boundaries.

Linkers

In general two linkers exists that generate NLM executables. One is from

Novell, called NLMLINKX, and the other from Watcom called WLINK

which is include with their "C" compiler. Usage information for

NLMLINKX is available in the NetWare OS SDK and also by typing

NLMLINKX with no parameters.

The following sample link statements below show how to configure

WLINK to generate an .NLM.

wlink @myprog.def

Contents of myprog.def:
format novell nlm 'My Programs Banner'
debug
name myprog.nlm
sort
option start=MyProgInit
option exit=MyProgDeinit
option map=myprog.map
option copyright '(C) Copyright 1995 My Company, Inc.
All Rights Reserved.'
option version=0.01.1

Please refer to the Watcom WLINK users guide for more information about

WLINK and the options used in the above example.

How To Write An NLM for the DOS/Windows Environment

20 Company Confidential Rev 1.0 Draft 1.2 (March 1995)

Rev 1.0 Draft 1.2 (March 1995) Company Confidential 21

Chapter 4

Client NLM Example

This chapter includes two versions of the famous Hello World program

written as NLMs. The program demonstrates the basic NLM program

structure.

Hello World Header

/***

*

* (C) Unpublished Copyright of Novell, Inc. All Rights Reserved.

*

* No part of this file may be duplicated, revised, translated,

* localized or modified in any manner or compiled, linked or uploaded

* or downloaded to or from any computer system without the prior

* written consent of Novell, Inc.

*

**

*

* NetWare IO Subsystem (NIOS) Sample Hello NLM Include File

*

*

***/

//~~

// Declare Exportable Definitions Here

//

//~~

// Declare Exportable Data Structures Here

//

//~~

// Declare Exportable API Functions Here

//

How To Write An NLM for the DOS/Windows Environment

22 Company Confidential Rev 1.0 Draft 1.2 (March 1995)

Hello World Example

/***
*
* (C) Unpublished Copyright of Novell, Inc. All Rights Reserved.
*
* No part of this file may be duplicated, revised, translated,
* localized or modified in any manner or compiled, linked or uploaded
* or downloaded to or from any computer system without the prior
* written consent of Novell, Inc.
*
**
*
* NetWare IO Subsystem (NIOS) Sample Hello NLM
*
*
***/

#include <nios.h>
#include <debug.h>
#include <nstdlib.h>
#include <module.h>
#include "hello.h"

//~~
// Local Function prototypes
//
UINT32 IpxInit(

modHandle myModuleHandle,
modHandle unusedScreenHandle,
UINT8 *commandLine,
UINT8 *moduleLoadPath,
UINT32 unitializedDataLength,
UINT32 customDataFileHandle,
UINT32 (*readProc)(

UINT32 customFileHandle,
UINT32 customOffset,
UINT8 *buf,
UINT32 bytesToRead),

UINT32 customDataOffset,
UINT32 customDataSize,
UINT32 numMsgs,
UINT8 **msgs);

void HelloDeinit (void);

//~~
// HelloInit
//
// First routine called when HELLO.NLM is loaded.
//
// Entry:
// myModuleHandle Module handle to be used in module oriented NIOS calls
// unusedScreenHandle
// commandLine -> ASCIIZ command line to module
// moduleLoadPath -> ASCIIZ full path of the module being loaded
// unitializedDataLength
// customDataFileHandle
// readProc
// customDataOffset
// customDataSize
// numMsgs Number of messages in msgs variable

Client NLM Examples

Rev 1.0 Draft 1.2 (March 1995) Company Confidential 23

// msgs -> array of localized messages for this module
//
// Exit:
// 0 Load was successful.
// !0 There was an error. Module load is to be aborted.
//
//~~

#pragma off (unreferenced) // Disable unused parm warnings for a moment

UINT32 HelloInit(
modHandle myModuleHandle,
modHandle unusedScreenHandle,
UINT8 *commandLine,
UINT8 *moduleLoadPath,
UINT32 unitializedDataLength,
UINT32 customDataFileHandle,
UINT32 (*readProc)(

UINT32 customFileHandle,
UINT32 customOffset,
UINT8 *buf,
UINT32 bytesToRead),

UINT32 customDataOffset,
UINT32 customDataSize,
UINT32 numMsgs,
UINT8 **msgs)

#pragma on (unreferenced) // Now allow warnings.

{
UINT32 i;

// Print a little message
for (i=0; i<10; i++)

NiosPrintf (
myModuleHandle,
MT_INFORM,
"Welcome to the world of NLM programming!\n\r");

NiosPrintf (
myModuleHandle,
MT_INFORM,
"\n\r\n\r");

// Tell the NLM loader abort the load of this NLM
return (1);

}

//~~
// HelloDeinit
//
// This needed by the NLM Linker specified as the exit routine.
// NOTE: Since this NLM automatically aborts the load, this
// routine should never be called. However, the way NLMs are
// supposed to work is that they load, stay resident, and then
// unload at a later time. This is the reason an exit procedure
// is necessary.
//
// Entry:
// Nothing
//
// Exit:
// Nothing

How To Write An NLM for the DOS/Windows Environment

24 Company Confidential Rev 1.0 Draft 1.2 (March 1995)

//
//~~

void HelloDeinit (void)
{

// NOT SUPPOSED TO GET HERE!
}

Rev 1.0 Draft 1.2 (March 1995) Company Confidential 25

Chapter 5

Debugging Your Client NLM

This chapter discusses the tools and procedures you can use to debug your

client NLMs in both the DOS and MS Windows environments. This chapter

also includes information about NIOS Logging and read-only page

protection under MS Windows 3.1.

Debugging Client NLMs in DOS

Currently the NIOS development team uses the WDEB386.EXE Microsoft

debugger (available from the MS Windows DDK) to debug NIOS client

NLM software in a DOS only environment. You can use the DEBUG.NLM

program in conjunction with the WDEB386 program for debug information.

Using Microsoft’s Windows Kernel Debugger

To use the WDEB386 program, add a line to your CONFIG.SYS file after

all entries that load resident memory managers. The WDEB386 program

requires at least one parameter setting for the program to initialize itself.

Configure the WDEB386 program by adding any desired parameter to the

line in your CONFIG.SYS file.

You can view available parameters for the WDEB386 program by typing

WDEB386 at a DOS command line with no parameter settings. A help

screen appears showing the various options available on the command line.

WDEB386 requires a terminal attached to the host PC using a NULL

modem cable. Novell recommends that you use the /R:19200 option to

boost the baud rate from the default 9600 to 19200.

The following line is an example of the line you should add to your

CONFIG.SYS file.

How To Write An NLM for the DOS/Windows Environment

26 Company Confidential Rev 1.0 Draft 1.2 (March 1995)

DEVICE=C:\NWCLIENT\WDEB386.EXE /D:”y386env;ydislwr;codebytes;” /R:19200

Settings after the /D parameter are optional.

To use WDEB386 for DOS debugging on a system that runs Windows, you

must comment out the VCD.386 device in the Windows SYSTEM.INI file.

Using Debug.NLM

To obtain symbol information and other useful debugging services, the

DEBUG.NLM file must reside in the same directory as the NIOS.EXE file.

Doing this allows the DEBUG.NLM program to be autoloaded when you

run the NIOS.EXE program.

You can also manually load the DEBUG.NLM file, typing LOAD DEBUG

after running the NIOS.EXE program.

Accessing Debug Functionality

There are three ways to access the debug functionaltiy in the NIOS software.

C Place an INT1 or INT3 inside of your NLM code.

C Use the debug hotkey Ctrl-F12.

C Use the /D option when loading your NLM. If the /D parameter is

specified on the command line when loading a Client NLM, then the

loader will break into the debugger immediately before calling the

initialization function for the NLM.

Accessing Help in the Debugger

Once inside the debugger you can use the ? command to obtain help on all of

the available debugger commands. The .NIOS command can be entered to

gain access to commands made available by the DEBUG.NLM program.

The ? command can be used after entering the .NIOS command to obtain

help on the DEBUG.NLM commands.

Debugging NLMs and Real Mode Code

The debugger allows debugging of 32-bit NLM software and 16-bit real

mode code. When specifying an address you can use the ampersand (&)

modifier to specify a segment:offset address, a number sign (#) modifier to

specify a selector:offset address, a percent sign (%) to specify a linear

address, and a double percent (%%) modifier to specify a physical address.

For example, “d & 112:0" display memory at real mode segment 112 offset

Debugging Your Client NLM

Rev 1.0 Draft 1.2 (March 1995) Company Confidential 27

0. The debugger’s prompt character is different depending on which

processor mode you are in (“>” or “_” for real mode and “#” for protected

mode).

Debug register breakpoints are set using the BR command, and software

breakpoints are set using the BP command. WDEB386 support full regular

expression jump conditions off of ‘br’ also. For example, bp 80400000 “j

by (&ebp + &ld)’dw ebp + 1c l1';g” instructs the debugger to stop when the

byte at linear address ebp + 1Dh is greater than 0B3h and display AX on the

stack , otherwise continue.

Note: The syntax is: bp address “j {expression> [’] cmds;cmds... [’];[’]

cmds;cmds... [’]” (This syntax is complex, but can be very useful.)

Trace messages can be displayed on the debugger terminal by using either

the NiosDprintf service.

Compatibility with Soft-ICE for DOS

The Nu-Mega’s Soft-ICE for DOS program requires some special conditions

to coexist successfully with NIOS. You must load the S-ICE.EXE program

in your CONFIG.SYS file with the “/EMM 1024" option. This enables the

VCPI host interface in Soft-ICE to coexist peacefully with the NIOS

software

Note: Due to bugs in earlier versions of the S-ICE.EXE program, use Soft-

ICE v2.60 or later. Earlier versions will not function properly. Due

to bugs in v2.60, you should disable DOS’s use of the HMA. Do

this by removing the DOS=HIGH entry in your CONFIG.SYS. You

cannot use Soft-ICE to debug DOS and MS Windows Client NLM

software, only real mode programs.

Occasionally when using the NIOS software with Soft-ICE, some key

strokes will appear dropped or garbled. This is a problem with the way the

Soft-ICE program handles receiving-keyboard hardware interrupts from

protexted mode. We are anticipating that Nu-Mega will correct this problem

in future releases of their product.

Note: The Soft-ICE for Windows program disables its VCPI interface

when the disables its VCPI interface when the BREAK ON

command is entered. Therefore, the NIOS software cannot be used

with the BREAK ON facility.

How To Write An NLM for the DOS/Windows Environment

28 Company Confidential Rev 1.0 Draft 1.2 (March 1995)

Debugging Client NLMs within MS Windows

To debug Client NLM software when running MS Windows in Enhanced

mode, you must load an additional debugger when starting MS Windows.

Use either Microsoft’s WDEB386.EXE or Nu-Mega’s Soft-ICE for

Windows program (WINICE.EXE). Even if you have added a line for

loading the WDEB386 program in your CONFIG.SYS file, you must load

an additional debugger program when running within MS Windows. After

exiting MS Windows, any active debugger program you had loaded before

running MS Windows will be reactivated.

Note: If you are using the WDEB386 program in both CONFIG.SYS and

for an MS Windows session, make sure you use the same command

line options when loading WDEB386 the second time within MS

Windows.

Using WDEB386 in DOS and MS Windows

If you load the WDEB386 program in your CONFIG.SYS file and load it

again within MS Windows, you must remove the VCD Vxd from your

SYSTEM.INI file. There is an incompatibility when loading two copies of

the WDEB386 program and VCD.

To remove the VCD Vxd from your SYSTEM.INI file, open the

SYSTEM.INI file in an ASCII text editor and enter a semicolon (;) character

in front of the “device=*vcd” entry.

The incompatibility with dual loading of the WDEB386 program and VCD

Vxd does not occur on all machines. If MS Windows hangs when booting or

exiting, the incompatibility probably exists. This problem can also occur

when loading the WDEB386 program in the CONFIG.SYS file running the

WINICE program within MS Windows. Generally, when debugging within

MS Windows, you should remove VCD.

Using DEBUG.NLM Within MS Windows

When the DEBUG.NLM program is loaded, the debug query commands are

available. However, if you are using the WINICE program, the debug query

commands will function only if you have installed a Microsoft Windows

debug kernel that is larger than 1M, such as the WIN386.EXE file. If you

use the WDEB386 program in MS Windows, the debug query functions

work properly even while using the retail version of the Windows kernel.

To allow dot (.) commands to work with WINICE and the retail version

of Windows, simply patch WINICE.EXE at the following offsets, depending

Debugging Your Client NLM

Rev 1.0 Draft 1.2 (March 1995) Company Confidential 29

on the version you are using. Patch the offsets with 0x90 and 0x90.

v1.10 0x20CDB,0x20CDC

v1.20 0x21EAA,0x21EAA

v1.30 0x2384C,0x2384D

v1.32 (Win 3.1) 0x239C7,0x239C8

v1.32 (Chicago) 0x31924,0x31925

v1.41 0x24A13,0x24A14

If you are using a version not listed above, search the WINICE.EXE

file for the following byte pattern. Patch the second instance of this pattern

as noted by the xx xx.

CD 22 3D 86 F3 00 00 xx xx

For v1.50 and higher patch the following offsets with the specified byte

values.

v1.50 0x11624 31,C0,90,90,90

Note: The .NSTACK command will not function automatically when

using the WINICE program, you need to provide the address of the

current ESP. However, this command will work automatically when

using the WEDB386 program.

NIOS Logging

The NIOS logging feature is a tool that enables developers and users to store

or view diagnostic or debugging messages in a well known central location.

NIOS logs messages to a file call NIOS.LOG in the NIOS system directory.

The sytem directory is either the directory from which NIOS.EXE is loaded

or, in the case of MS Windows 95, the NwHomeDir specified in

SYSTEM.INI [386Enh].

Logging can be enabled in the following ways.

C Load NIOS.EXE with /L (DOS).

C Specify NwEnableLogging=TRUE in SYSTEM.INI [386Enh] for

(Windows95).

C Type “ENABLE LOGGING” from the DOS prompt after you load

NIOS.

How To Write An NLM for the DOS/Windows Environment

30 Company Confidential Rev 1.0 Draft 1.2 (March 1995)

C Call the API NiosEnableLogging with the parameter

NIOS_LOG_ENABLE.

Logging can be disabled in the following ways.

C Logging is off by default.

C Type “DISABLE LOGGING” from the DOS prompt after you load

NIOS.

C Call the API NiosEnableLogging with the parameter

NIOS_LOG_DISABLE.

The maximum size of the logfile can be controlled with the NIOS LOG

MAX SIZE field in NET.CFG; the default is 64k.

If logging is enabled, the following types of messages will be timestamped

and logged.

C NiosPrintf with the MT_LOG_STATUS message type (always).

C NiosPrintf with the MT_DEBUG_OUT message type (if no debugger).

C NiosDprintf (if no debugger).

You can suppresss the timestamp by using the MTF_NO_TIMESTAMP

flag (not available with NiosDprintf).

Logging is available to all modules (including internal NIOS modules) after

NIOS’s internal memory module has initialized. This service is not available

at interrupt time; if called at interrupt time, the message is discarded.

Page Protection Under Windows 3.1

Due to some incompatibilities (notably with Win32s), read-only page

protection is turned off under Windows 3.1. You can, however, force it to

remain on by setting FORCE WIN WRITE PROTECT = ON under the

NIOS section in your NET.CFG.

By default NIOS’s NLM code segment write protection is disabled. This is

due to incompatibilities with this feature and NOVDOS’s memory manager.

To enable this feature, simply enter WRITE PROTECTION = ON under the

NIOS section in your NET.CFG.

Debugging Your Client NLM

Rev 1.0 Draft 1.2 (March 1995) Company Confidential 31

Note: The information in this section applies only to the debug version of

NIOS.EXE.

Statistical Tools

NIOS provides two very useful statistical tools NLMSTATS.NLM and

NSTATS.EXE. Though their name are similar, their uses are quite different.

NLMSTATS is an NLM that provides valuable information about the

NLMs which are loaded in memory. NLMSTATS allows the developer to

view information about memory usage, NESL event registration, and

configuration parameter values.

NSTATS allows the developer to look at NLM statistics tables, counters,

values, etc.; the NLM must make use of the NIOS statistics registry. (See

NetWare Client NIOS Design Specification for information about NIOS

statistics functions). You can use this program to view not only these

statistics but other statistics available in the system.

How To Write An NLM for the DOS/Windows Environment

32 Company Confidential Rev 1.0 Draft 1.2 (March 1995)

Rev 1.0 Draft 1.2 (March 1995) Company Confidential 33

Appendix A

readProc

readProc

Description Allows the NLM to read custom data.

Syntax UINT32 (*readProc)(

UINT32 customFileHandle,

UINT32 *customDataOffset,

UINT8 *buf,

UINT32 bytesToRead);

Parameters customFileHandle The file handle, supplied as

customDataFileHandle to the NLM’s initialization

routine.

customDataOffset The starting offset in the file, supplied as

customDataOffset to the NLM’s initialization

routine.

buf The location of where to read the file to.

bytesToRead The amount of the data to read, supplied as

customDataSize to the NLM’s initialization

routine.

Returns Completion Codes (EAX)

0 Successful

nonzero Failure

Remarks Note: This routine can only be called during initialization. This routine

could go to sleep and could return with interrutps enabled.

How To Write An NLM for the DOS/Windows Environment

34 Company Confidential Rev 1.0 Draft 1.2 (March 1995)

readProc allows NLMs to read any custom data that they may require into

system memory during initialization. Before the NLM calls this routine, it

must allocate memory for the file to be rea.

This routine’s entry point is not exported by the operating system. The only

time this entry point is valid is during the initialization routine. In fact, the

entry point is passed as a local parameter and must be called indirectly.

The NLM linker actually appends the custom data file to the NLM in the

.NLM file. NetWare only loads the NLM’s code data at load time, leaving

the file open for the NLM to handle custom data however it must.

To define the custom file, use the CUSTOM keyword in the NLM’s

definition file, followed by the file’s name. The NetWare operating system

passes the custom file’s handle, starting address, and size to the NLM’s

initialization routine. NetWare also passes the address of the readProc

routine. The NLM’s initialization routine can then read the file into memory

by calling readProc.

