
v 1.0 (November 1994) Draft 1.0 Company Confidential 13-1

Chapter 13

Authentication Multiplexor

Abstract

The Authentication Multiplexor routes authentication requests to
the appropriate authentication service provider.

MockNW

Print File Dir
Portable

Platform-Specific

Netx
VLM

Mapper

CPANORD ConnMan

Session

Multiplexor

Authentication Multiplexor Name Services Multiplexor

Bind

NS
NDS

Auth

NDS

NS

Bind

Auth

Other session protocols

Message

NCP

Portable Client32 Design Specification

13-2 Company Confidential Draft 1.0 v 1.0 (November 1994)

Figure 1. The Authentication Multiplexor routes authentication
requests to any registered authentication provider, such as Bindery
or NDS.

Introduction
Because Client32 is independent of any authentication service, it
must be able to authenticate names using any authentication
provider. This capability requires that there be a module that
registers authentication providers and multiplexes authentication
requests. That module is the Authentication Multiplexor
(AuthMux).

Authentication handles allow callers to provide username and
password information once, and then use that information later to
authenticate new connections using the same information.

Below is a diagram showing AuthMux, two supported
authentication service providers (Bindery authentication and NDS
authentication) and the other Client32 NLMs.

Chapter 13: Authentication Multiplexor

v 1.0 (November 1994) Draft 1.0 Company Confidential 13-3

Design Description
AuthMux does three things: acts as a registry for authentication
providers, multiplexes authentication requests to the appropriate
authentication provider, and maintains a database of
authentication handles.

Authentication Provider Registry

Authentication modules (for example, Bindery, NDS, PNW) must
register their services with AuthMux so that a connection can be
authenticated using a specific authentication method. (Bindery,
NDS, and PNW all authenticate using different methods.) This
scheme also allows a new authentication method (for example,
retina scan) to be registered by an NLM for user verification.

When a provider registers with AuthMux, it passes a structure of
pointers to functions (AUTH_SVC_API_SET_TYPE) that will be
called by AuthMux.

The following is the complete set of authentication registry APIs
that have been defined:

AUTHEnumerateAuthenticationSvc
AUTHRegisterAuthenticationSvc
AUTHUnregisterAuthenticationSvc

Authentication Multiplexing

There is an authentication provider for each supported name
service, including NDS and Bindery. Each authentication provider
must implement for its own name service the following set of
routines:

AUTHAuthenticate
AUTHAuthenticateWithHandle
AUTHCloseAuthenticationHandle
AUTHCreateAuthenticationHandle
AUTHScanAuthenticateHandles
AUTHUnauthenticate

Portable Client32 Design Specification

13-4 Company Confidential Draft 1.0 v 1.0 (November 1994)

The structure for each routine is shown below.

typedef struct {

UINT32 (*CreateAuthenticationHandle)

 (UINT32 processGroupID,

UINT32 processID,

SPECT_DATA *username,

SPECT_DATA *password,

SPECT_DATA *domainName,

VOID *pAuthenSpecInfo,

AUTH_HANDLE *authenHandle);

UINT32 (*AuthenticateWithHandle)

 (AUTH_HANDLE *authenHandle,

CONN_HANDLE connHandle);

UINT32 (*Authenticate)

 (UINT32 processGroupID,

UINT32 processID,

CONN_HANDLE connHandle,

SPECT_DATA *username,

SPECT_DATA *password,

SPECT_DATA *domainName,

VOID *pAuthenSpecInfo);

UINT32 (*Unauthenticate)

 (CONN_HANDLE connHandle);

UINT32 (*CloseAuthenticationHandle)

 (AUTH_HANDLE *authenHandle);

UINT32 (*GetAuthenInfo)

 (AUTH_HANDLE *authenHandle,

SPECT_DATA *username,

SPECT_DATA *domainName,

VOID *pAuthenSpecInfo);

} AUTH_SVC_API_SET_TYPE;

Management of Handle Database

The authentication handles returned by the various providers will
be unique within the individual authentication scheme, but will not
be unique across the whole system. That is, a handle returned by
the Bindery authentication module may not be unique from one
returned by NDS. AuthMux will keep a database to assign

Chapter 13: Authentication Multiplexor

v 1.0 (November 1994) Draft 1.0 Company Confidential 13-5

authentication handles that are unique system-wide.

Portable Client32 Design Specification

13-6 Company Confidential Draft 1.0 v 1.0 (November 1994)

NESL Events

AuthMux will produce events to inform interested NLMs of
authenticated connections and unauthenticated connections.

EVENT_CONN_AUTHENTICATED
Syntax: NESLProduceEvent(

EVENT_CONN_AUTHENTICATED,
conHandle);

Description: AuthMux will produce this event after
successfully authenticating the connection.

EVENT_CONN_UNAUTHENTICATED
Syntax: NESLProduceEvent(

EVENT_CONN_UNAUTHENTICATED,
connHandle);

Description: AuthMux will produce this event after
successfully unauthenticating the connection.

