
v 1.0 (November 1994) Draft 0.3 Company Confidential 1-1

Chapter 5

FileDir Design Description

Abstract

FileDir provides file system services including file, directory, and
synchronization functions. This module contains the cache for the
file system and support for auto-reconnection of file system
resources.

Portable Client32 Design Specification

1-2 Company Confidential Draft 0.3 v 1.0 (November 1994)

Contents

Introduction . 3

Overall Design Description . 3
Auto-Reconnect Capabilities . 4
Dependencies . 5

File-related Functions . 6
Caching . 6
Underlying Cache Design and Integrity Considerations 12
Background Operation . 12
File APIs . 13
Algorithms . 14

Directory-Related Functions . 15
Directory APIs . 15

Synchronization-Related Functions . 16
Synchronization APIs . 17

FileDir API . Appendix 5-A

File Sharing Compatibility . Appendix 5-B

File Functions Directory Functions Sync Functions

(Caching Functionality)

Read-
Ahead
Write-
Behind

Short-
term

Long-
Lived

Directory
Entries

Overview to the Portable Client32 Modules

v 1.0 (November 1994) Draft 0.3 Company Confidential 1-3

Figure 1. FileDir functional architecture. Both FILE and DIR
functions including caching capabilities, as shown.

Introduction

FileDir contains three areas of file system functionality: files (APIs
beginning with "FILE"), directory (DIR), and synchronization
(SYNC) functions. The file and directory functions use memory
caching for improved performance. Caching is vital because
memory is shared among the system as a whole.

FileDir is session-protocol-independent and transport-protocol-
independent, and is written entirely in "C," making it portable to
other operating systems and platforms.

Overall Design Description

The FILE APIs perform opens, reads, writes, seeks, and closes, as
well as getting and setting file information (for example, date, time,
size).

DIR APIs operate on directory entries and logical volume
information for a given directory level. Functions include retrieving
and setting attributes, and creating, deleting, renaming, and
searching directory entries.

SYNC APIs operate on physical records, logical records, and
semaphores. SYNC functionality includes logging, locking,
releasing, and clearing of physical and logical records, and
opening, creating, examining, waiting, signaling, and closing

Portable Client32 Design Specification

1-4 Company Confidential Draft 0.3 v 1.0 (November 1994)

semaphores.

FileDir functions are fully reentrant and can be called from a
foreground context.

Memory for caching file and directory data is shared with the entire
system through the NIOS Memory Pool NLM (MemPool) functions
(see the NetWare I/O Subsystem (NIOS) Design Specification).
MemPool functions allocate and return memory, and when the
system needs more memory and there isn't any free, the module
that allocated the memory is "called back" and asked to return it.

Auto-Reconnect Capabilities

A server connection may become invalidated by events such as
the server going down, the server's watchdog facility timing out a
connection, or as a result of a mobile operation. For a more
detailed discussion of mobile operations see the Disconnected
Operations Design Specification.

When a connection becomes invalid, the connection must be re-
validated through the process of auto-reconnection. Auto-
reconnection events are initiated by lower Requester layers that tell
FileDir which connection needs its resources reestablished.
Information for each resource is stored during its creation and
modification so that it can be reestablished on-the-fly.

FileDir auto-reconnects files, locks, drive mappings, and
semaphores.

During the time a connection is invalid, previously-accessed
resources may be deleted by other users or altered such that
resynchronization is not possible. (An example of when
resynchronization is not possible is when the user is reading a file,
loses connection to the server, is reconnected, and discovers that
the directory the file was in has been deleted.)

When this occurs, a pop-up window indicates which resource is
unable to be reestablished. (Note: The pop-up will remain visible
until acknowledged by the user or until a configurable time limit
expires, but the pop-up will reappear later and this cycle will repeat.
This allows batch operations to continue unattended but still
provides notification if a user was merely away from the computer
temporarily.)

All file system resources have a handle associated with them. The
handle is a 32-bit value, and access to the resource is limited to

Overview to the Portable Client32 Modules

v 1.0 (November 1994) Draft 0.3 Company Confidential 1-5

the correct process group and/or process. During access to the
resource, the process group and process is compared against the
creator's identifiers and must match before access is allowed.
All file system functions support long filenames (up to 255 bytes).
Long filenames must be associated with a name space since there
are different file systems supported by different servers.
Therefore, all calls to the FileDir module that specify paths also
must specify the name space. Windows 95 uses the OS/2 name-
space.

Dependencies
The FileDir module depends on NIOS functions, the Session
Multiplexor (SessMux) module with its corresponding NCP module,
and the ConnMan module.

Portable Client32 Design Specification

1-6 Company Confidential Draft 0.3 v 1.0 (November 1994)

FILE Functions

FILE read and write functions use a cache to buffer network
access. Open, create, close, remote-copy, seek, and flush
functions are monitored to ensure file cache data integrity.

Caching

Because user reads and writes are the most frequently requested
network operations, network performance improves by buffering
these reads and writes, thereby reducing network access. This is
called caching.

The integrated cache buffers network reads and writes so that
network access is made less frequently and in bigger blocks.
Instead of having every user read and write go directly to the
server, the requests are instead sent to a cache buffer.

Goals of Integrated Caching

The goals of the integrated cache are threefold:

! To buffer small reads and writes (small meaning smaller than
the size of the cache blocks).

! To buffer frequently accessed data so that network traffic and
delays are reduced.

! To maintain cached data across file open/close operations for
frequently accessed files.

The integrated cache monitors open, create, close, remote-copy,
and flush functions, altering cache status accordingly.

Cache memory consists of data blocks, each 4096 bytes of data
plus a 64-byte header.

Available blocks are maintained in an LRU linked list. That is,
when a request is made for a cache data block and none is
available, the memory module locates the least-recently-used block
of memory, notifies the owner of the block to free the block, and
appropriates the block for cache memory.
There are five caching modes: read-ahead/write-behind, short-term
cache, long-lived cache, warehouse cache, and no cache. Each of
these is defined in the Definitions section that follows.

Overview to the Portable Client32 Modules

v 1.0 (November 1994) Draft 0.3 Company Confidential 1-7

Caching Definitions

Dirty Buffer. A buffer that contains a block of data which has been modified

(written to) but not actually written to the network.

Long-Lived Cache. A caching mode wherein used data blocks are placed on a

"potentially free" list for possible re-use. Because an image of a data block remains
in cache memory even after the file is closed, it is possible to access that data again
without the overhead of re-reading it into memory. This is true only if no changes
have been made to the file since the last access.

Read-Ahead. A caching mode wherein, on a read request, an entire block of

data (up to 4Kb) is read from the network rather than just reading the size
requested. The assumption is that network access will be reduced because other
nearby data (within the 4K block) is likely to be accessed next.

Read-Ahead mode is most efficient if the file is being accessed sequentially.
Random accesses to large files causes performance to deteriorate, so Read-Ahead
is turned off when random access is detected.

Redundant Write Removal. An algorithm whereby only the actual bytes that

were modified are written to the network, rather than writing an entire cache block.

For example, a database record 6K in length is accessed and read into cache
memory, and only one byte is modified, say a single digit of a phone number.
Rather than write the entire 6K bytes back to the network, a comparison is done
between the new and old record and only a single byte is written.

Short-Term Cache. A caching mode that is used when a request is made for a

file that is small enough to fit entirely within cache memory.

Unique Write Mode. The mode wherein Redundant Write Removal is

practiced.

Warehouse Cache. A caching mode that combines long-lived caching with

caching on the local disk. This is used when local disk access is faster than the
network link.

.
Write-Behind. A caching mode wherein data is written into a cached data block

until an entire data block is filled, then the entire block is written at once. (As
opposed to writing directly to the network in smaller chunks.)

Portable Client32 Design Specification

1-8 Company Confidential Draft 0.3 v 1.0 (November 1994)

Cases Where Data May Be Cached

Files that are being shared may not be cached, thus ensuring that
no one gets bad data (for example, no one reads data that's being
written-over by someone else).

Note: If a file is write-blocked (others may not write), the client
may cache read operations.

If a file is read-blocked (others may not read), the client
may cache write operations.

A client determines the access mode (read- or write-locks) of a file
in one of two ways: by noting the mode in which the file was
opened, or by using a bi-directional protocol.

This bi-directional protocol allows a client to cache data even
though others are granted access to that data. As long as actual
access has not occurred (that is, no one has read the file even
though they could), the client may continue caching. As soon as
the server notifies the client that actual access has been made to
the file (someone opened it to read or write), the client flushes any
dirty buffers (in the case of a write) or invalidates read buffers (in
the case of a read) before continuing.

For a complete list of cases where caching can be used, see
Appendix B of this chapter.

Determining Which Cache Mode to Use

There are three modes of file caching: the file being accessed is
too big to fit into cache memory, the file is small enough to fit into
cache memory, and the file is accessed after it is closed.

4K

4K

4K

3 Mb

2 Mb

Cache Memory File Size

Network

write

Overview to the Portable Client32 Modules

v 1.0 (November 1994) Draft 0.3 Company Confidential 1-9

Figure 2. Read-Ahead/Write-Behind Mode.

1. A file is larger than the memory allocated.

In this case, the FileDir will use only the read-ahead/write-
behind mode. That is, instead of attempting to read the entire
file into cache memory (and wiping out everything else in cache
memory), the file will be accessed only 4K at a time. When a
read is finished, the cache buffer is re-used for the next read.

If, while in this mode, the file is accessed at random locations
in the file, read-ahead will be turned off for this file. Random
access is determined by having two (or some other
configurable number) read cache misses in a row. (That is, the
subsequent read is for a location outside of the 4K that has
been read into memory.)

This method of spotting random access is only meant to weed
out large database or index files which tend to be randomly
accessed. It will still allow caching for multimedia files which,
though very large, are generally "seeked" to a location and then
read sequentially for awhile.

Portable Client32 Design Specification

1-10 Company Confidential Draft 0.3 v 1.0 (November 1994)

2. The entire file fits into cache memory.
In this case, the entire file is read into cache memory. When a
read is finished, the buffer is not re-used for the next read;
rather, a new buffer is used for the next read, and so on until
the entire file is in cache memory. This is called short-term
cache.

3. A file is accessed after it has been closed.

When a file is opened, the file system records the last time the
file was modified. If the file is closed and re-opened, the file
system compares the last-modified date of the file being
opened with the information previously stored on the file.

If the times are the same (that is, no modifications have been
made to the file since the last time it was in cache memory),
the file system uses the cache buffers already in memory. This
is called long-lived cache.

Overview to the Portable Client32 Modules

v 1.0 (November 1994) Draft 0.3 Company Confidential 1-11

Underlying Cache Design and Integrity Considerations

The boundaries (in the file) for cache block data start and end will
always be on multiples of the cache block size. That means, for
example, that the second cache block's data corresponds to offset
4096 to 8191 in the file. This helps maintain cache integrity and
allows the caching code to run faster, with no size or location
variables to consider.

An attempt to write data in a non-overlapping or non-contiguous
fashion within the same cache block will cause any "dirty" data
within that cache block to be flushed before the write actually takes
place. This makes it so that the region between the non-sequential
writes does not have to be read from the network to make a
contiguous "dirty" region. This will not occur if the data between
those regions has already been read. In this case, the whole
spanning write regions would become the new "dirty" region.

This optimization will not occur if the spanning region is larger than
the maximum packet size used by the conection, or if the spanning
region is larger than the overhead of two separate write requests
while on a slow link (less than 100 KBps).

Background Operation

The client cache supports a background operation that wakes up
when an idle state is detected and will perform flushes of any
"dirty" buffers and will read-ahead the rest of the files that are
cacheable as short-term.

Because files sometimes are opened and closed frequently, the
FileDir module supports an optimization where close requests are
delayed for a short period, and if the file is opened again during
that period it is reused without hitting the network. The delay
period is specified in ticks and is configurable (Close Behind Ticks,
see NET.CFG information).

Portable Client32 Design Specification

1-12 Company Confidential Draft 0.3 v 1.0 (November 1994)

File APIs
FILEAbort Cleans up file entry without hitting network.

FILEBuildFIB Returns FIB handle for specified file description

FILEClose Closes specified file

FILECommit Commits specified files dirty write buffers

FILEDup Increments the count of times opened

FILEFindFIB Finds fib handle by connHandle and 6-byte file handle

FILEGetDateTime Returns file's date and time

FILEGetInfo Returns information about a file handle

FILEGetSize Returns the current file size

FILEOpenCreate Opens or creates specified file

FILERead Reads specified file from cache or network

FILERemoteCopy Copies data from one file to another

FILESeek Sets current file position

FILESetDateTime Sets file's date and time

FILEWrite Writes specified file to cache or network

Algorithms

Explanation of Need for True Commit Option.

The combination of the write-behind algorithm with auto-
reconnection introduces a potential file integrity issue. The issue
arises in this case:

1. The client writes to the server, and receives an
acknowledgement of the write. But the server hasn't actually
commited the write to disk, but is holding it in cache.

2. The server, unbeknownst to the client, crashes. The data in
server cache is lost, but the client thinks data is in the file.

3. Auto-reconnection to the server occurs, and the client continues
to write, not knowing that the file is corrupted.

The only way for a client to ensure that writes make it to the disk is
to set the True Commit option. This ensures file integrity across a
crash, but is disk-intensive if several workstations are writing files.
The background write feature of the FileDir module helps
performance for this situation.

By default, written files are not auto-reconnected so that, also by
default, "True Commit" need not be on.

Overview to the Portable Client32 Modules

v 1.0 (November 1994) Draft 0.3 Company Confidential 1-13

DIR Functions

The functions that return directory information also use caching to
improve performance. When a search context is opened, a check
is made to see if the contents of the cache for that context are still
synchronized with the server. If they are, requests are serviced
from the cache; otherwise, the context is treated as the first time
used and directory entry information is placed in the cache as the
entries are enumerated.

Directory APIs
DIRGetAttributes Gets entry's attributes

DIRSetAttributes Sets entry's attributes

DIRRename Renames specified directory entry

DIRMakeDirectory Creates the specified directory

DIRDelete Deletes specified directory entry

DIROpenSearch Returns search context for specified filespec

DIRNextSearch Returns directory entry information

DIRCloseSearch Closes specified search context

DIRRedoSearch Reinitializes search context to new attributes

DIRSetDirectory Sets directory handle to new path

DIRGetDirectory Returns UNC path for a dir handle and relative path

DIRAllocDirHandle Allocates a directory handle to specified path

DIRFreeDirHandle Deallocates specified directory handle

DIR32To8Bit Converts a 32-bit directory handle to 8-bit

DIR8To32Bit Converts an 8-bit directory handle to 32-bit

DIRGetDirectorySpace Gets directory space information

DIRGetVolumeInfo Gets volume information

DIRGetVolumeName Gets volume name

DIRGetVolumeID Gets volume ID

DIRDup Returns a duplicate of the specified dir handle

DIREnumerateDirs Returns directory mapping information

Portable Client32 Design Specification

1-14 Company Confidential Draft 0.3 v 1.0 (November 1994)

SYNC Functions

Synchronization functions have two general types (see table
below): record and semaphore. The record functions in turn have
two types: physical and logical. Physical records deal with portions
of files or whole files and logical records deal with application-
defined names associated with resources (for example, a CD-ROM
on a server).

Synchronization Functions

Record Semaphore

Physical Logical

Physical-record locks on a file, if that file is opened exclusively, will
be cached since the file is already protected by the exclusive open.
If that file's access status changes, by a bi-directional NCP
perhaps, then those physical locks will be issued without
application intervention.

Semaphores

Semaphores are like logical record locks in the sense that they are
associated with network resources such as files, records,
structures, or hardware. Logical record locks limit the number of
applications that can simultaneously access the resource to one.
Semaphores, however, allow a configurable number of applications
to access a network resource at one time.

When an application creates a semaphore, the application assigns
a value to the semaphore (for example, 4). The value indicates
how many applications can access the resource associated with
the semaphore at one time. In the example, five applications can
access the resource at one time (0 to 4).

After opening an existing semaphore, an application first checks
the value using SYNCExamineSemaphore. If the value is greater
than or equal to zero, the application can access the associated
network resource. The application decrements the value by calling
SYNCWaitOnSemaphore and then accesses the resource. When
the application finishes accessing the resource, the application
increments the semaphore value by calling
SYNCSignalSemaphore, and then SYNCExitSemaphore.

Overview to the Portable Client32 Modules

v 1.0 (November 1994) Draft 0.3 Company Confidential 1-15

If, after opening a semaphore, an application discovers that the
value is negative, the application cannot access the resource
immediately. The application can either wait a specified timeout
interval until the resource becomes accessible, or the application
can retry later.

The currentOpenCount returned by SYNCExamineSemaphore
indicates the number of processes using the semaphore.
SYNCOpenSemaphore increments that count and

SYNCCloseSemaphore decrements it.

The following algorithm illustrates semaphore usage:

SYNCOpenSemaphore ()
SYNCExamineSemaphore ()
If (semaphoreValue >= 0) {

If ((SYNCWaitOnSemaphore ()) == 0) {
Access the associated resource
SYNCSignalSemaphore ()

}
}
SYNCCloseSemaphore

Synchronization APIs

SYNCFileName Provides services for file-based semaphores

SYNCFileSet Sets active all logged file-based semaphores

SYNCPhysRecord Provides services for file region-based semaphores

SYNCPhysRecordSet Sets active all logged file region-based semaphores

SYNCLogicalRecord Provides services for string-based semaphores

SYNCLogicalRecordSet Sets active all logged string-based semaphores

SYNCOpenSemaphore Opens or creates a named semaphore

SYNCExamineSemaphore Examines the current count of a semaphore

SYNCWaitOnSemaphore Waits on the semaphore for the specified timeout

SYNCSignalSemaphore Signals the specified semaphore

SYNCCloseSemaphore Closes the specified semaphore

Portable Client32 Design Specification

1-16 Company Confidential Draft 0.3 v 1.0 (November 1994)

Events Generated by FileDir

The following events are produced by FileDir.:

DriveCreatedEvent Produced when a directory handle has been
allocated. This event passes a pointer to
the DriveUpdateEvent structure.

DriveChangedEvent Produced when a directory handle has been
changed to a new location. This event
passes a pointer to the DriveUpdateEvent
structure.

DriveDestroyedEvent
Produced when a directory handle has been
destroyed. This event passes a pointer to
the DriveUpdateEvent structure.

FileAbortEvent Produced when a file is aborted with
FILEAbort or an auto-reconnection failure.

Overview to the Portable Client32 Modules

v 1.0 (November 1994) Draft 0.3 Company Confidential 1-17

NET.CFG Parameters

The following FileDir parameters are configurable by the user at
load- time in the NET.CFG file:

Load-time configurable parameters

Parameter Default Range
Cache blocks 16 no limit
FILE Cache Level 3 4

0: Disabled
1: Read-ahead and write-behind only
2: Short-lived caching (don't cache beyond

closes)
3: Long-lived caching
4: Warehouse caching

Checksum Cache OFF

Run-time configurable parameters

Parameter Default Range
BACKGROUND_WAKE_UP_TIME 5000 ms 56-64Kms
BACKGROUND_INTER_WORK_TIME 56ms 56-64K ms
CACHE_READ_MISS_LIMIT 2 1-4 billion
Read Only Compatibility ON
Redundant Write Removal ON
True Commit OFF
Auto-reconnect level 2 0-3
Close-Behind ticks 36 0-64K
Cache writes ON
Delay writes ON

Portable Client32 Design Specification

1-18 Company Confidential Draft 0.3 v 1.0 (November 1994)

Deliverables Information

Executables FILEDIR.NLM

Product Source FILECORE.C, FILECORE.H
DIRCORE.C, DIRCORE.H
SYNC.C, SYNC.H
API.H
INTERNAL.H

Unit Tests

DEV.NLM Tests all of the Device registry functions.

DIR8-32.NLM Tests the 8-to-32 and 32-to-8 dir handle conversion
functions

FC.NLM Tests drive alloc, make, change, get, rename,
remove directory, get attributes, set attributes,
(search init, continue, redo, close), drive free
functions.

FIO.NLM Tests file open, create, read, write, close, get
info, seek, flush, and delete functions.

SHOWDIR.NLM Tests the DIREnumerate and DIRGetDirectory
functions.

SYNCTEST.NLM Tests the all syncronization functions.

TN.NLM Tests the path and name parsing routines.

