
v 1.0 (November 1994)  Draft 0.3 Company Confidential

Appendix 4A

ConnMan API



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

Contents
CONNAuthenticate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
CONNAuthenticateWithHandle . . . . . . . . . . . . . . . . . . . . . . . . . 5
CONNChangePassword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
CONNClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
CONNCreateAuthenticationHandle . . . . . . . . . . . . . . . . . . . . . . 10
CONNDecInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
CONNDestroyAuthenticationHandle . . . . . . . . . . . . . . . . . . . . . . 13
CONNGetAuthHandleInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
CONNGetDefaultConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
CONNGetNumConnections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
CONNGetStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
CONNGetValue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
CONNIncInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
CONNOpenByAddress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
CONNOpenByName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
CONNOpenByReference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
CONNOpenPreferred . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
CONNQueryStringLength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
CONNScanAuthenticationHandles . . . . . . . . . . . . . . . . . . . . . . . 36
CONNScanInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
CONNSetDefaultConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
CONNSetPassword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
CONNSetStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
CONNSetValue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
CONNUnauthenticate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
CONNValidateHandle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
CONNVerifyPassword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

CONNAuthenticate

Description Authenticates a connHandle without using an authHandle.

Syntax UINTXX DIST
CONNAuthenticate (

UINT32 processGroupID,
UINT32 processId,
CONN_HANDLE connHandle, 
UINT32 authFlags,
UINT32 DIST *authSvcId, 
SPECT_DATA DIST *userName,
SPECT_DATA DIST *password, 
SPECT_DATA DIST *domainName,
VOID DIST *pAuthSpecInfo)

Input processGroupID Calling function's group ID.

processID Calling function's process ID.

connHandle The connection to authenticate.

authFlags Determines whether the password should be
prompted for from a secure ring-0 environment.
Possible values for this field are: 
CONN_PASSWD_PROMPT_NONE

CONN_PASSWD_PROMPT

authSvcId The unique ID of the authentication service to
use in creating this authentication handle. Must
be one of these values:

AUTH_SVC_BINDERY_ID
AUTH_SVC_NDS_ID
AUTH_SVC_PNW_ID

userName Pointer to the user name to use in
authenticating the connection. The
SPECT_DATA fields must be correctly filled in
(the Data buffer must contain the user name
and the length field must be correct).



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

password A collection of bytes representing the password.
It is specified in a SPECT_DATA structure by
filling out the length field of the string type and
pointing the Data field at the password buffer.

domainName Pointer to the domain name where the
authentication credentials are valid so they can
be used in authenticating the connection. The
SPECT_DATA fields must be correctly filled out
(that is, the Data buffer must contain the domain
name and the Length field must be correct).

pAuthSpecInfo Pointer to any specific information required
by the authentication service. The first
DWORD of this pointer should contain the
number of bytes of this buffer that contain
information.

Output None.

Remarks This function authenticates a connection without first creating an
authentication handle. It therefore requires that all of the
information that is needed to authenticate a connection be
explicitly passed in.

This function determines if the connHandle has previously been
authenticated. If it has, the function returns an error. If it hasn't
been authenticated, the function will call down to the authentication
multiplexor to authenticate the connection using the given
authentication information.

This function will not pass back the authentication handle that has
been created.

See also CONNAuthenticateWithHandle
CONNUnauthenticate
CONNCreateAuthenticationHandle
CONNDestroyAuthenticationHandle
CONNScanAuthenticationHandles
CONNGetAuthHandleInfo



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

CONNAuthenticateWithHandle

Description Authenticates a connHandle using an authHandle.

Syntax UINTXX DIST
CONNAuthenticateWithHandle (

AUTH_HANDLE authHandle,
CONN_HANDLE connHandle)

Input authHandle The authentication handle to use when
authenticating this connection. 

connHandle The connection to authenticate.

Output None.

Remarks This function determines if the connHandle has previously been
authenticated. If it has, it will return an error. If it hasn't, it will call
down to the authentication multiplexor to authenticate the
connection with the specified authentication handle.

See also CONNAuthenticate
CONNUnauthenticate
CONNCreateAuthenticationHandle
CONNDestroyAuthenticationHandle
CONNScanAuthenticationHandles
CONNGetAuthHandleInfo
CONNChangePassword
CONNVerifyPassword



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

CONNChangePassword

Description Synchronizes a password change across a domain (consisting of
several bindery servers, and/or several trees). The caller specifies
whether this function uses a dialog box requesting the old and new
passwords (allowing for greater security to be built into
applications).

Syntax UINTXX DIST
CONNChangePassword (

UINT32 authHandle,
UINT32 authFlags,
SPECT_DATA DIST *oldPassword,
SPECT_DATA DIST *newPassword)

Input authHandle Authentication handle to set the password for.

flags Controls whether a secure prompting for the
password is made from ring-0. The flags may
have one of the following values:

CONN_PASSWD_PROMPT_NONE
CONN_PASSWD_PROMPT_NEW
CONN_PASSWD_PROMPT_OLD
CONN_PASSWD_PROMPT_BOTH

oldPassword Old password, stored in SPECT_DATA
structure. It must be correctly initialized. If the
password is to be prompted for from ring 0, this
parameter should be set to NULL.

newPassword New password, stored in SPECT_DATA
structure. It must be correctly initialized. If the
password is to be prompted for from ring 0, this
parameter should be set to NULL.

Output None.



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

See also CONNAuthenticateWithHandle
CONNAuthenticate
CONNUnauthenticate
CONNCreateAuthenticationHandle
CONNDestroyAuthenticationHandle
CONNScanAuthenticationHandles
CONNGetAuthHandleInfo
CONNVerifyPassword



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

CONNClose

Description Closes the connection with the specified connHandle.  This call is
made when the caller that has previously opened the connection
has finished using it.

Syntax UINTXX DIST
CONNClose (

UINT32  processGroupID,
UINT32  processId, 
CONN_HANDLE connHandle, 
UINT32  flags)

Input processGroupID Calling function's process group ID.

processID Calling function's process ID.

connHandle The connection handle to be closed. 

flags LONG_LIVED_CONNECTION.  This connection
was opened as a long-lived connection, and
should now be terminated even if other
applications are using it.

SHORT_LIVED_CONNECTION. The connection
was opened as a short-lived connection, and
should be terminated only if no other
applications are using it.

Output None.

Remarks After all open handles to a connection are closed, the connection is
either destroyed or else placed upon a list of disposable
connections for later reference. If a connection is to be destroyed,
the appropriate SESSDisconnect routine is called to destroy the
connection.

If other processes are still using this connection, simply decrement
the in-use count and leave the connection alone.

Any connection that is placed on the disposable list may be either



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

reopened in the future (if a connection open request matching the
disposed connection is received), or else destroyed (if an algorithm
determines that reusing old disposable connections is a more
efficient use of memory than allocating new memory for a new
connection).

If other processes are still have this connection open, the in-use
count is simply decremented to reflect that this process has closed
the connection.

See also CONNOpenByAddress 
CONNOpenByName 
CONNOpenPreferred 
CONNOpenByReference 



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

CONNCreateAuthenticationHandle

Description Creates an authentication handle. 

Syntax UINTXX DIST
CONNCreateAuthenticationHandle (

UINT32     processGroupID, 
UINT32     processId,
UINT32     authFlags,
UINT32 DIST    *authSvcId,
SPECT_DATA DIST     *userName,
SPECT_DATA DIST     *password, 
SPECT_DATA DIST     *domainName, 
VOID DIST    *pAuthSpecInfo,
AUTH_HANDLE DIST *authHandle)

Input processGroupID Calling function's process group ID

processID The process identifier to associate with the
connection.

authFlags Determines whether to prompt for a password
from a secure ring-0 environment. Possible
values for this field include the following:

CONN_PASSWD_PROMPT_NONE
CONN_PASSWD_PROMPT

authSvcId The unique ID of the authentication service to
use to create this authentication handle. It must
be one of the following values:

AUTH_SVC_BINDERY_ID
AUTH_SVC_NDS_ID
AUTH_SVC_PNW_ID

userName Pointer to the username to use in creating the
authentication handle. The SPECT_DATA fields
must be correctly filled out (that is, the Data
buffer must contain the user name and the
Length field must be correct).



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

password A collection of bytes representing the password.
It is specified in a SPECT_DATA structure by
filling out the Length field of the string type and
pointing the Data field at the password buffer.

domainName Pointer to the domain name where the
authentication credentials are valid.  The
credentials are used to authenticate the
connection. The SPECT_DATA fields must be
correctly filled out (that is, the Data buffer must
contain the domain name and the Length field
must be correct).

pAuthSpecInfo Pointer to any specific information required
by the authentication service. The first
DWORD of this pointer should contain the
number of bytes of this buffer containing
information.

Output authHandle The created authentication handle is returned
here.

Remarks All necessary information is supplied as parameters to the call. The
authentication service is called (through the AuthMux) to perform
the actual creation of the authentication handle.

See also CONNAuthenticateWithHandle
CONNAuthenticate
CONNUnauthenticate
CONNDestroyAuthenticationHandle
CONNScanAuthenticationHandles
CONNGetAuthHandleInfo
CONNChangePassword
CONNVerifyPassword



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

CONNDecInfo

Description Decrements a connHandle counter.

Syntax UINTXX DIST
CONNDecInfo (

CONN_HANDLE connHandle,
UINT32  infoId)

Input connHandle The connection handle of the desired connection.

infoId Specifies the connection information which should
be changed.  It can be the following:

CONN_ENTRY_RESOURCE_COUNT

Output None.

Remarks This function is reserved for system NLMs that are tracking
resources.  It allows them to decrement the connection's resource
count to indicate that the connection is no longer in use.

See also CONNIncInfo 



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

CONNDestroyAuthenticationHandle

Description Destroys an authentication handle.

Syntax UINTXX DIST
CONNDestroyAuthenticationHandle (

AUTH_HANDLE authHandle)

Input authHandle The authentication handle to destroy.

Output None.

Remarks This function finds all connection handles that use the specified
authentication handle and then calls down to the authentication
multiplexor to unauthenticate those connections. After they have
all been unauthenticated, a call to the authentication multiplexor
will destroy the authentication handle. 

See also CONNAuthenticateWithHandle
CONNAuthenticate
CONNUnauthenticate
CONNCreateAuthenticationHandle
CONNScanAuthenticationHandles
CONNGetAuthHandleInfo
CONNChangePassword
CONNVerifyPassword



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

CONNGetAuthHandleInfo

Description Returns information on a given authentication handle.

Syntax UINTXX DIST
CONNGetAuthHandleInfo (

AUTH_HANDLE authHandle,
UINT32 DIST *authSvcId,
SPECT_DATA DIST  *userName,
SPECT_DATA DIST  *domainName,
VOID DIST *pAuthSpecInfo)

Input authHandle Authentication handle for which to return
information.

Output authSvcId Unique ID of the authentication service used to
create this authentication handle.  It must be one of
the following values:

AUTH_SVC_BINDERY_ID
AUTH_SVC_NDS_ID
AUTH_SVC_PNW_ID

userName Pointer to the buffer containing the user name used
in creating this authentication handle. The
SPECT_DATA fields must be correctly filled out
(that is, the Data buffer must have sufficient size to
receive the username and the Length field must be
filled in when this function is called).

domainName Pointer to the buffer containing the domain name
used in creating this authentication handle. The
SPECT_DATA fields must be correctly filled out
(that is, the Data buffer must have sufficient size to
receive the domainName and the Length field must
be filled in when this function is called).



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

pAuthSpecInfo
Pointer to any specific information set by the
authentication service. The first DWORD of this
pointer should contain the number of bytes of buffer
space available to store returned information.

Remarks This call returns the same information about an authentication
handle as CONNScanAuthenticationHandles, but can be used to
identify information specific to a given authentication handle
without scanning until that authentication handle is identified.

See also CONNAuthenticateWithHandle
CONNAuthenticate
CONNUnauthenticate
CONNCreateAuthenticationHandle
CONNDestroyAuthenticationHandle
CONNScanAuthenticationHandles
CONNChangePassword
CONNVerifyPassword



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

CONNGetDefaultConnection

Description Return the default connection handle associated with a process and
process group.

Syntax UINTXX DIST
CONNGetDefaultConnection (

UINT32 processGroupID,
UINT32 processId,
CONN_HANDLE DIST *connHandle)

Input processGroupID Calling function's process group ID.

processID Process identifiers to associate with the
connection.

Output connHandle The connection handle to associate with the
specified process identifiers.

See also CONNSetDefaultConnection 



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

CONNGetNumConnections

Description Returns the number of currently allocated connection entries. The
value returned reflects the total number of connections possible,
including those currently in use.

Syntax UINTXX DIST
CONNGetNumConnections (

UINT32 DIST *numberOfEntries)

Input None.

Output numberOfEntries The number of connection entries that have
been allocated.

Remarks ConnMan will return the number of connection entries which are
currently allocated. Some of these connections may be private and
thus would not be visible to all processes. 

Because the connection table is dynamically extensible at run-time,
the call should not hold on to this value The number of connection
entries which have been allocated is a dynamic value and will
change over time; the caller should not assume that the value
returned will remain the same.

See also None.



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

CONNGetStructure

Description Returns structure-type connection information for a given
connection handle. The caller must allocate enough space to receive
a copy of the information.

Syntax UINTXX DIST
CONNGetStructure (

CONN_HANDLE  connHandle,
UINT32        infoId,
UINT32        infoLen,
VOID DIST        *infoPtr)

Input connHandle
Connection handle

infoId The connection parameter, which can be one of the
following:

    Value        Data type  Meaning

CONN_ENTRY_TRAN_ADDR TRAN_ADDR_TYPE Transport address 

CONN_ENTRY_DOMAIN_NAME SPECT_DATA Connection domain name

CONN_ENTRY_SERVER_NAME SPECT_DATA Connection server name

CONN_ENTRY_SERVICE_NAME SPECT_DATA Connection service name

CONN_ENTRY_RETURN_ALL CONN_INFO_TYPE Return the whole structure

All of these items may be queried by calls external to
the client.

infoLen Length of output buffer into which to return information. 

If the structure is a TRAN_ADDR_TYPE, the infoLen
field should be the size of that structure.

If the structure is a SPECT_DATA, the infoLen field
should be the size of a SPECT_DATA structure. In
addition, the name field of the structure should already
be filled in with a pointer to a buffer of size 
SPECT_DATA.Length. 

This buffer will receive the name value of the
SPECT_DATA field, which can be predetermined by
calling CONNQueryStringLength.  If this value is less



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

than required to copy the Data field, an error will be
returned after copying the portion which will fit into the
infoPtr buffer.

For example, pretend that the caller wants to get the
value of the server name for a connection.

 
Step 1.  Determine the size of buffer needed to store
the name by calling CONNQueryStringLength, thus: 

CONNQueryStringLength (connHandle,

CONN_ENTRY_SERVER_NAME, &nameLength);

Step 2.  Allocate space for the name.

serverName.Data = NIOSShortTermAlloc

(modHandle, nameLength);

serverName.Length = nameLength;

serverName.DataType = SPECT_DATA_ASCII;

serverName.CountryCode = 0;

serverName.LocalCodePage = 0;

Step 3.  Get the name itself with CONNGetStructure.

CONNGetStructure(connHandle,

CONN_ENTRY_SERVER_NAME, sizeof

(SPECT_DATA_TYPE), &serverName);

If the infoId is CONN_ENTRY_RETURN_ALL, then the
infoLen parameter should be the size of the
CONN_INFO_TYPE. This structure size does not reflect
the size of the variable string Data parameters of the
SPECT_DATA entries. These pointers should be
pre-initialized to buffers which are sized correctly to
receive the variable length string.

CONNQueryStringLength can be used to
pre-determine the correct size. If any of these
SPECT_DATA buffers are too small, an error will be
returned.

Output infoPtr Pointer to the buffer into which to receive information. 

If the structure requested is a SPECT_DATA structure,
it must have a valid pointer already in the Data field that
has enough room to hold the name.



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

Remarks The caller can get one piece of the connection information structure
or the whole structure. Some of the entries in the structure are
pointers. The caller must fill in the pointer to a valid data area that
is large enough for the Requester to copy the information into.  If
the caller specifies CONN_ENTRY_RETURN_ALL and doesn't want
all the SPECT_DATA information strings, a NULL can be passed in
for the particular field that is not desired.

An error is returned if the output buffer is too small to receive the
requested information. 

See also CONNGetValue 
CONNSetStructure 
CONNSetValue 
CONNScanInfo 



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

CONNGetValue

Description Returns specific value (as opposed to structure) connection
information for the given connection handle. 

Syntax UINTXX DIST
CONNGetValue (

CONN_HANDLE connHandle,
UINT32 infoId,
VOID DIST *infoPtr)

Input connHandle Connection handle.

infoId Type of information to be returned can be one of
the following:

*Avail    Value        Data type  Meaning

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
A CONN_ENTRY_VERSION UINT32 Version of CONN_INFO struct

A CONN_ENTRY_AUTH_USER_ID UINT32 Id of user authenticated as

A CONN_ENTRY_AUTH_SVC_ID UINT32 Id of authentication module:

AUTH_SVC_BINDERY_ID

AUTH_SVC_NDS_ID

AUTH_SVC_PNW_ID

A CONN_ENTRY_AUTH_HANDLE UINT32 Authentication Handle

I CONN_ENTRY_AUTH_SPEC_PTR UINT32 Pointer to auth-specific info

A CONN_ENTRY_SESS_SVC_ID UINT32 Session Protocol Provider Id:

NCP_SESSION_ID

SMB_SESSION_ID

I CONN_ENTRY_SESS_SPEC_PTR UINT32 Pointer - Session-specific info

A CONN_ENTRY_NAME_SVC_ID UINT32 Id of name service provider:

NAME_SVC_BINDERY_ID

NAME_SVC_NDS_ID

NAME_SVC_PNW_ID

A  CONN_ENTRY_MAX_IO UINT32 Maximum IO for connection

A  CONN_ENTRY_MAX_RW_IO UINT32 Maximum read/write IO

A CONN_ENTRY_ROUND_TRIP UINT32 Round trip time in milliseconds

A CONN_ENTRY_SECURITY UINT32 Security mode in effect

Bit definitions:

CFG_CRC

CFG_MD4

CFG_CRYPT

A CONN_ENTRY_LICENSE UINT32 License state of connection ??

I CONN_ENTRY_TRAN_ADDR_OBJ UINT32 Pointer to the tran addr object

I CONN_ENTRY_NCP_HOOK_RTNS UINT32 Pointer to NCP hook routines



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

A CONN_ENTRY_SFT_LEVEL UINT32 Current sft level

A CONN_ENTRY_TTS_LEVEL UINT32 Current tts level

A CONN_ENTRY_SERVER_CONN_NUM UINT32 Server connection number

A CONN_ENTRY_SERVER_VERSION UINT32 Server version

A CONN_ENTRY_PERM BIT Permanent flag for connection

A CONN_ENTRY_AUTH BIT Authenticated state

A CONN_ENTRY_ANCHOR BIT Anchor state for connection

A CONN_ENTRY_SUSPENDED BIT Suspended state for condition

A CONN_ENTRY_TRAN_SVC_ID UINT32 Transport Service Id

A CONN_ENTRY_ORDER_NUM UINT32 Connection order number

A CONN_ENTRY_RETURN_ALL CONN_ENTRY_INFO

A CONN_ENTRY_RETURN_NONE n/a

))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
*A  Available to all calling functions  
 I   Available to internal client NLMs only (that is, no external  function should ever need to access these items).

Output infoPtr Pointer to the buffer which should receive the data. All
bit fields are a UINT32 type. (Zero if clear, else set)

See also CONNGetStructure 
CONNSetStructure 
CONNSetValue 
CONNScanInfo 



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

CONNIncInfo

Description Increments a connHandle counter.

Syntax UINTXX DIST
CONNIncInfo (

CONN_HANDLE connHandle,
UINT32 infoId)

Input connHandle The connection handle of the desired connection.

infoId Connection information which should be changed. It
can be the following:

CONN_ENTRY_RESOURCE_COUNT

Output None.

Remarks This function is reserved for system NLMs that are tracking
resources.  It allows them to increment a connection's resource
count to indicate that the connection is in use.

See also CONNDecInfo 



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

CONNOpenByAddress 

Description Calls the specified session protocol module to establish a
connection with the remote entity specified by the transport
address.

Syntax UINTXX DIST
CONNOpenByAddress (

UINT32 processGroupId,
UINT32 processId,
UINT32 flags,
UINT32 sessionSvcId,
TRAN_ADDR_TYPE DIST *tranAddr,
CONN_HANDLE DIST *repConnHandle)

Input processGroupID Calling function's process group ID.

processID Calling function's process ID.

flags LONG_LIVED_CONNECTION.  The connection
should last past the termination of the calling
process.

SHORT_LIVED_CONNECTION.  The
connection should not remain past the
termination of the calling process.

sessionSvcId NCP_SESSION_ID
SMB_SESSION_ID
WILD_SESSION_ID  

Can be used alone or ORed with another
sessionSvcId. If it is ORed with another ID,
the other session service will be tried first. If
that fails or if only a wild card is specified,
the remaining session services will be tried
according to their load order.

tranAddr The destination transport address, correctly
formatted for the transport type specified in this
structure.

Output repConnHandle A pointer to the connection handle to be



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

returned. This connection handle may be used
for all requests directed to this connection.

Remarks If a connection already exists that matches the input
processGroupID, processId, sessionSvcId, and tranAddr, then the in-use
count of the already-established connection is incremented and a
handle to that connection handle is returned.

ConnMan will either return the connection handle of an existing
connection or else will call the SESSConnectByAddress routine of
the corresponding session protocol module to establish a new
connection to the remote entity. This will bind the connection both
to a specific session protocol module and to a specific transport
protocol module, thus allowing high-level API requests (such as
FileOpen) to be multiplexed to the correct session protocol module
(for example, NCP).  Also, low-level API requests (such as
SendPacket) used by session protocols will be multiplexed to the
correct transport protocol module (such as IPX).

See also CONNOpenByName 
CONNOpenPreferred 
CONNOpenByReference 
CONNClose 



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

CONNOpenByName

Description Resolves a given name to a transport address/session protocol
pair. The appropriate session protocol is then called to establish a
connection using the transport address.

Syntax UINTXX DIST
CONNOpenByName (

UINT32 processGroupID,
UINT32 processId,
UINT32 flags, 
SPECT_DATA DIST *name,
UINT32 nameSvcId,
SPECT_DATA DIST *objectType,
UINT32 tranSvcId,
CONN_HANDLE DIST *repConnHandle)

Input processGroupID Calling function's process group ID.

processID Calling function's process ID.

flags LONG_LIVED_CONNECTION.  The connection
should remain past the termination of the calling
process

SHORT_LIVED_CONNECTION.  The
connection should not remain past the
termination of the calling process

name Pointer to the user-readable name to resolve to
a connection. The string must be NULL-
terminated and a maximum of 512 characters. If
this string is Unicode, then the string has a
maximum of 1024 bytes, and the SPECT_DATA
fields must be correctly filled out.



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

nameSvcId Desired name service ID.
NAME_SVC_BINDERY_ID
NAME_SVC_NDS_ID
NAME_SVC_PNW_ID
SVC_ID_WILDCARD  

Can be by itself or  ORed with another
nameSvcId. If it is ORed, the other name
service will be tried first. If that name
service fails or if only a wild card is
specified, the remaining name services
will be tried in the order specified in the
NET.CFG protocol order.

objectType Address of desired object type.  This will be
one of the OBJECT_TYPE identifiers found
in CLIENT32.H, but must be placed into a
SPECT_DATA structure.

tranSvcId Desired transport ID.
TRAN_ID_IPX
TRAN_ID_UDP
TRAN_ID_WILDCARD See explanation above.

Output repConnHandle A pointer to the connection handle to be
returned. This connection handle may be used
for all requests directed to this connection.

Remarks If a connection already exists which matches the input
processGroupID, processID, name, nameSvcId, objectType, and
tranSvcId, the in-use count of the already-established connection is
incremented and a handle to that connection is returned.

ConnMan will either return the connection handle of an existing
connection with a matching name or else will call
NAMEResolveToAddress to resolve the name to a transport
address and session protocol. 

ConnMan will use this address and session protocol to open a
connection. Opening a connection will either return an existing
connection handle or will call the corresponding session protocol
module to establish a new connection to the remote entity. This will
bind the connection both to a specific session protocol module and
to a specific transport protocol module. 



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

After the connection is established, high-level API requests (such
as FileOpen) can be multiplexed to the correct session protocol
module (such as NCP); low-level API requests (such as
SendPacket) can be multiplexed to the correct transport protocol
module (such as IPX).

See also CONNOpenByAddress 
CONNOpenByName 
CONNOpenPreferred 
CONNOpenByReference 
CONNClose 



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

CONNOpenByReference

Description Opens a connHandle for a connection reference specified by the
connReference parameter. (This reference was returned from a call
to CONNScanInfo.) 

Syntax UINTXX DIST
CONNOpenByReference (

UINT32 processGroupID,
UINT32 processId,
UINT32 flags,
UINT32 connReference, 
CONN_HANDLE DIST *repConnHandle)

Input processGroupID Process group ID to associate with new
connection.

processID Process ID to associate with new connection.

flags LONG_LIVED_CONNECTION. The connection
should remain past the termination of the calling
process.

SHORT_LIVED_CONNECTION. The connection
should not remain past the termination of the
calling process.

Output repConnHandle A pointer to the connection handle to be
returned. This connection handle may be used
for all requests directed to this connection.

Remarks connReference refers to an existing connection which was found by
scanning connections for specific information. If the input
parameters processGroupID and processId specify a private
connection, then a new connection will be established to the remote
entity; otherwise, the in-use count of the connection associated with
the reference handle is incremented and a connection handle to
that connection is returned.

Any connection that is returned will be bound to a specific session
protocol module and to a specific transport protocol module, thus



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

allowing high-level API requests (such as FileOpen) to be
multiplexed to the correct session protocol module (for example,
NCP), and low-level API requests (such as SendPacket) to be
multiplexed to the correct transport protocol module (for example,
IPX).

See also CONNOpenByAddress 
CONNOpenByName 
CONNOpenPreferred 
CONNOpenByReference 
CONNClose 
CONNScanInfo 



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

CONNOpenPreferred

Description Returns a connHandle to the preferred connection defined in the
NET.CFG configuration file. The connection will be made to either
the preferred server or to the preferred tree.

Syntax UINTXX DIST
CONNOpenPreferred (

UINT32 processGroupId,
UINT32 processId,
UINT32 flags,
UINT32 DIST *nameSvcId,
UINT32 tranSvcId, 
CONN_HANDLE DIST  *repConnHandle)

Input processGroupID Process group ID to associate with new
connection.

processID Process ID to associate with new connection.

flags LONG_LIVED_CONNECTION.  The connection
should remain past the termination of the calling
process

SHORT_LIVED_CONNECTION.  The
connection should not remain past the
termination of the calling process

nameSvcId NAME_SVC_BINDERY_ID
NAME_SVC_NDS_ID
NAME_SVC_PNW_ID
SVC_ID_WILDCARD.  

Can be used by itself or ORed with another
nameSvcId. If ORed with another ID, then
the other name service will be tried first. If
that fails or if only a wild card is specified,
the remaining name services will be tried in
the order specified in the NET.CFG protocol
order.

tranSvcId TRAN_ID_IPX
TRAN_ID_UDP
TRAN_ID_WILDCARD.  

Can be used by itself or ORed with another



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

tranSvcId. If ORed with another ID, then the
other transport service will be tried first. If
that fails or if only a wild card is specified,
the remaining transport services will be tried
according to their load order.

Output repConnHandle A pointer to the connection handle being
returned. This connection handle may be used
for all subsequent requests directed to this
connection.

Remarks The algorithm used in this routine is as follows:

If a preferred name has been set:

1. Determine the preferred name by calling NAMEGetPreferred. 

2. Resolve this name to an address using
NAMEResolveToAddress. 

3. Open a connection using the address, and receive back a
connection handle.

If no preferred name has been set, or the preferred name cannot
be resolved to an address:

1. Call NAMEGetInitialConnection to return any connection that
can be found.  Any connection that is returned will be bound to
to a specific session protocol module and to a specific
transport protocol module. 



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

See also CONNOpenByAddress 
CONNOpenByName 
CONNOpenPreferred 
CONNOpenByReference 
CONNClose 



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

CONNQueryStringLength

Description Returns the length of the variable portion of a SPECT_DATA item.

Syntax UINTXX DIST
CONNQueryStringLength (

CONN_HANDLE connHandle,
UINT32 infoId, 
UINT32 DIST *stringLen )

Input connHandle The connection handle.

infoId The SPECT_DATA item, which can be one of the
following:

    Value               Meaning
   ))))))))))))))))))))))))))))))))))))))))))))))))))

CONN_ENTRY_DOMAIN_NAME Connection domain name
CONN_ENTRY_SERVER_NAME Connection server name 
CONN_ENTRY_SERVICE_NAME Service type name 
))))))))))))))))))))))))))))))))))))))))))))))))))

All of these items may be queried by calls external
to the client.

Output stringLen Length of output buffer required to store the variable
portion of a SPECT_DATA object.

Remarks This call will be made just prior to making a CONNGetStructure

call, and will determine the correct size of buffer that will allow it
to return all of the requested data.

See also CONNGetStructure 



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

CONNScanAuthenticationHandles

Description Scans through authentication handles, determining which
authentications exist within the caller's scope. 

Syntax UINTXX DIST
CONNScanAuthenticationHandles (

UINT32 processID,
UINT32 processId, 
UINT32 DIST *scanHandle,
AUTH_HANDLE DIST *authHandle,
UINT32 DIST *authSvcId,
SPECT_DATA DIST *userName,
SPECT_DATA DIST *domainName, 
VOID DIST *pAuthSpecInfo)

Input processGroupID Calling function's process group ID.

processID Calling function's process ID.

scanHandle Address of the handle to be used to retrieve the
next authentication handle. This value should
initially be set to zero. The output value of
scanHandle will be the next handle to use on
subsequent calls to this function.

Output authSvcId Unique ID of the authentication service used to
create this authentication handle. It will be either
AUTH_SVC_BINDERY_ID,
AUTH_SVC_NDS_ID, or AUTH_SVC_PNW_ID.

userName Pointer to the buffer in which to return the user
name used in creating this authentication
handle. The SPECT_DATA fields must be
correctly filled out (that is, the Data buffer must
have sufficient size to receive the username and
the Length field must be filled in when this
function is called).

domainName Pointer to the buffer to return the domain name
used in creating this authentication handle. The
SPECT_DATA fields must be correctly filled out
(that is, the Data buffer must have sufficient size



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

to receive the domainName and the Length field
must be filled in when this function is called).

pAuthSpecInfo Pointer to any specific information set by the
authentication service. The first DWORD of
this pointer should contain the number of
bytes of buffer space available to store
returned information.

See also CONNAuthenticateWithHandle
CONNAuthenticate
CONNUnauthenticate
CONNCreateAuthenticationHandle
CONNDestroyAuthenticationHandle
CONNGetAuthHandleInfo
CONNChangePassword
CONNVerifyPassword



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

CONNScanInfo

Description Returns connection information for multiple connections. It will
return either one piece or the full structure of connection
information for one connection at time. 

Syntax UINTXX DIST
CONNScanInfo (

UINT32 processGroupID, 
UINT32 processId, 
UINT32 DIST *scanReference,
UINT32 scanInfoId, 
VOID DIST *scanMatchPtr,
UINT32 scanFlags,
UINT32 retInfoId, 
UINT32 retInfoLen,
VOID DIST *retInfoPtr, 
UINT32 DIST *connReference)

Input processGroupID Calling function's process group ID.

processID Calling function's process ID.

scanReference The reference to be used on the next
iteration of the scan. This value should be
initially set to zero. The output of this
parameter will be used in subsequent calls
to this function. 

scanInfoId Specifies which connection information is to be
scanned for. (Caller cannot specify matching the
entire CONN_INFO_STRUCT).

The following table shows all available
connection information. 



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

Value        Data type  Meaning
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
CONN_ENTRY_AUTH_USER_ID UINT32 Id of user authenticated

CONN_ENTRY_AUTH_SVC_ID UINT32 Id of authentication module

CONN_ENTRY_AUTH_HANDLE UINT32 Authentication Handle

CONN_ENTRY_AUTH_SPEC_PTR UINT32 Pointer to auth specific info

CONN_ENTRY_SESS_SVC_ID UINT32 Session Protocol Provider Id

CONN_ENTRY_SESS_SPEC_PTR UINT32 Pointer - Session specific info

CONN_ENTRY_NAME_SVC_ID UINT32 Id of name service provider

CONN_ENTRY_MAX_IO UINT32 Maximum IO for connection

CONN_ENTRY_MAX_RW_IO UINT32 Maximum read/write IO

CONN_ENTRY_ROUND_TRIP UINT32 Round trip time in milliseconds

CONN_ENTRY_SECURITY UINT32 Security mode in effect

CONN_ENTRY_LICENSE UINT32 License state of connection

CONN_ENTRY_TRAN_ADDR_OBJ UINT32 Pointer to the tran addr object

CONN_ENTRY_TRAN_SVC_ID UINT32 Id of transport service provider

CONN_ENTRY_NCP_HOOK_RTNS UINT32 Pointer to NCP hook routines

CONN_ENTRY_SFT_LEVEL UINT32 Current sft level

CONN_ENTRY_TTS_LEVEL UINT32 Current tts level

CONN_ENTRY_SERVER_CONN_NUM UINT32 Server connection number

CONN_ENTRY_SERVER_VERSION UINT32 Server version

CONN_ENTRY_TRAN_ADDR TRAN_ADDR_TYPE Transport address 

CONN_ENTRY_DOMAIN_NAME SPECT_DATA Domain for connection 

CONN_ENTRY_SERVER_NAME SPECT_DATA Server name for connection

CONN_ENTRY_SERVICE_NAME SPECT_DATA Service type name for connection

CONN_ENTRY_PERM BIT Permanent flag for connection

CONN_ENTRY_AUTH BIT Authenticated state

CONN_ENTRY_ANCHOR BIT Anchor state for connection

CONN_ENTRY_SUSPENDED BIT Suspended state for condition

))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

scanMatchPtr Points to data that matches the data type defined by
scanInfoId as to value to match. If scanInfoId
defines a data member that is a pointer, then
scanMatchPtr is a pointer to that data structure.

scanFlags Determines whether to return connection
information for connections that do match the scan
criteria or which do not match the scan criteria. The
permitted values include:

MATCH_EQUALS "Equal to"  type lookup
MATCH_NOT_EQUALS "Not equal to" type              
                              lookup

  
retInfoId Specifies which type of connection information

should be returned. Acceptable values are the same
as for scanInfoId except that the whole



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

CONN_INFO_STRUCT can be returned (using
CONN_ENTRY_RETURN_ALL) and no return
information can be requested (using
CONN_ENTRY_RETURN_NONE).

Supported retInfoId types include the following:

Value        Data type  Meaning
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
CONN_ENTRY_AUTH_USER_ID UINT32 ID of user

CONN_ENTRY_AUTH_SVC_ID UINT32 ID of authentication module

CONN_ENTRY_AUTH_HANDLE UINT32 Authentication Handle

CONN_ENTRY_AUTH_SPEC_PTR UINT32 Pointer to auth specific info

CONN_ENTRY_SESS_SVC_ID UINT32 Session Protocol Provider Id

CONN_ENTRY_SESS_SPEC_PTR UINT32 Pointer - Session specific info

CONN_ENTRY_NAME_SVC_ID UINT32 Id of name service provider

CONN_ENTRY_MAX_IO UINT32 Maximum IO for connection

CONN_ENTRY_MAX_RW_IO UINT32 Maximum read/write IO

CONN_ENTRY_ROUND_TRIP UINT32 Round trip time in milliseconds

CONN_ENTRY_SECURITY UINT32 Security mode in effect

CONN_ENTRY_LICENSE UINT32 License state of connection

CONN_ENTRY_TRAN_ADDR_OBJ UINT32 Pointer to the tran addr object

CONN_ENTRY_USER_CTX_PTR UINT32 Pointer to user context pointer

CONN_ENTRY_NCP_HOOK_RTNS UINT32 Pointer to NCP hook routines

CONN_ENTRY_SFT_LEVEL UINT32 Current sft level

CONN_ENTRY_TTS_LEVEL UINT32 Current tts level

CONN_ENTRY_SERVER_CONN_NUM UINT32 Server connection number

CONN_ENTRY_SERVER_VERSION UINT32 Server version

CONN_ENTRY_TRAN_ADDR TRAN_ADDR_TYPE Transport address 

CONN_ENTRY_TRAN_SVC_ID UINT32 Transport service provider ID

CONN_ENTRY_DOMAIN_NAME SPECT_DATA Domain for connection 

CONN_ENTRY_SERVER_NAME SPECT_DATA Server name for connection

CONN_ENTRY_SERVICE_NAME SPECT_DATA Service type name for connection

CONN_ENTRY_ERROR BIT Error condition of connection

CONN_ENTRY_PERM BIT Permanent flag for connection

CONN_ENTRY_AUTH BIT Authenticated state

CONN_ENTRY_ANCHOR BIT Anchor state for connection

CONN_ENTRY_SUSPENDED BIT Suspended state for condition

CONN_ENTRY_RETURN_ALL  CONN_INFO_TYPE Structure defining all info

CONN_ENTRY_RETURN_NONE No return Info requested

))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

retInfoLen Length of output buffer into which to return
information.  This field is valid only if retInfoId
requests a structure.



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

Output retInfoPtr Pointer to buffer into which to receive information. If
the caller is requesting only one piece of
information, then this is a pointer to a buffer of the
type of information being requested. 

If the return type is SPECT_DATA, the size of the
Data buffer must be indicated in the
SPECT_DATA.Length field. 

If the return type is CONN_INFO_TYPE, all of the
SPECT_DATA fields and all of the fields specifying
maximum buffer sizes must be initialized before
making this call. For iterative scans, this function
will copy the value contained in the max name
length field (that is, connMaxDomainNameLen,
connMaxServerNameLen,
connMaxServiceNameLen) into the appropriate
SPECT_DATA.Length field (that is, if
connMaxServerNameLen is set to 9, this routine will
copy that value into the connServer Data.Length
field before copying the server name. This will allow
for iterative calls without the caller resetting any
fields.)

connReference Connection reference associated with the
information that is being returned. The caller can
use this connection reference to open the
connection and get an actual connection handle
(see CONNOpenByReference function
description) if it needs to perform any
processing on this connection.

Remarks This call scans for connections based on any piece of connection
information contained in the CONN_INFO_TYPE structure. This
allows the caller to look up all connection table entries matching
any of the Get-/Set-Entry values in the connection table. 

This lookup method can be time-consuming since the size of the
connection table is not pre-determined, and the procedure must
cycle through the entries one at a time while checking the
appropriate information. Consequently, this procedure is designed
for versatility rather than speed.  

To understand how this call works, imagine that the caller wants to
scan for all connections in the NDS tree "NOVELL_INC."  The call



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

would be made with the following parameters:

processGroupID = current process group id
processId = current process id
scanReference = 0 (initially)
scanInfoId = CONN_ENTRY_DOMAIN_NAME

scanMatchPtr = SPECT_DATA "NOVELL_INC"

scanFlags = MATCH_EQUALS

retInfoId = CONN_ENTRY_RETURN_NONE

retInfoLen = 0
retInfoPtr = NULL

connReference = 0

See also CONNGetStructure 
CONNGetValue 
CONNSetStructure 
CONNSetValue 



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

CONNSetDefaultConnection

Description Associates a connection handle with a process and process group. 

Syntax UINTXX DIST
CONNSetDefaultConnection (

UINT32  processGroupID, 
UINT32  processId,
CONN_HANDLE connHandle)

Input processGroupID Calling function's process group ID.

processID Calling function's process ID.

connHandle The connection handle to associate with the
specified process identifiers.

Output None.

See also CONNGetDefaultConnection 



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

CONNSetPassword

Description Synchronizes a password change across a domain (several bindery
servers, and/or several trees). The caller specifies whether a dialog
box requests the old and new passwords (allowing for greater
security to be built into applications).

Syntax UINTXX
CONNSetPassword

AUTH_HANDLE authHandle,
UINT32 flags,
SPECT_DATA DIST *password)

Input authHandle Authentication handle to set the password for.

flags Controls whether a secure prompting for the
password is made from ring 0. The flags may have
one of the following values:

CONN_PASSWD_PROMPT_NONE
CONN_PASSWD_PROMPT

password Password, stored in SPECT_DATA structure. It
must be correctly initialized. If the password is to be
prompted for from ring 0, this parameter should be
set to NULL.

Output None.

See also CONNAuthenticateWithHandle
CONNAuthenticate
CONNUnauthenticate
CONNCreateAuthenticationHandle
CONNDestroyAuthenticationHandle
CONNScanAuthenticationHandles
CONNGetAuthHandleInfo
CONNVerifyPassword



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

CONNSetStructure

Description Sets a specific connection structure for the given connection handle.

Syntax UINTXX DIST
CONNSetStructure (

CONN_HANDLE connHandle,
UINT32  infoId, 
UINT32  infoLen,
VOID DIST *infoPtr)

Input connHandle Connection Handle.

infoId Connection parameter, which can be one of the
following:

Value        Data type  Meaning
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
CONN_ENTRY_TRAN_ADDR TRAN_ADDR_TYPE Transport address

CONN_ENTRY_DOMAIN_NAME SPECT_DATA Connection's Domain name

CONN_ENTRY_SERVER_NAME SPECT_DATA Connection's Server name 

CONN_ENTRY_SERVICE_NAME SPECT_DATA Connection's Service name 

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Note: These structures should only be set by client

internal NLMs!

infoLen Length of input buffer from which to take
information.  If infoId is a SPECT_DATA structure,
infoLen should be the size of the SPECT_DATA
structure and the Data field of the SPECT_DATA
structure should point to a valid Data string. The
Length field of the SPECT_DATA structure should
accurately indicate the length of the Data field of
that structure. (See the example listed with
CONNGetStructure.)

If the infoId is CONN_ENTRY_RETURN_ALL, the
infoLen parameter should be the size of the
CONN_INFO_STRUCT.  All SPECT_DATA Data
pointers should be initialized to a valid Data string



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

and all SPECT_DATA lengths should be initialized
to the length of the buffer associated with the
SPECT_DATA Data pointer. 

infoPtr Pointer to the buffer from which to set information
into the connEntry.

Remarks Note:  This call should be used only by CLIENT INTERNAL NLMs!!

See also CONNGetStructure 
CONNGetValue 
CONNSetValue 
CONNScanInfo 



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

CONNSetValue

Description Sets specific connection entry information for the given connection
handle.

Syntax UINTXX DIST
CONNSetValue (

CONN_HANDLE connHandle,
UINT32  infoId,
UINT32  infoValue)

Input connHandle Connection handle for which the value should be
set.

infoId Connection parameter, which can be one of the
following:

Avail Value           Datatype Meaning

))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
I CONN_ENTRY_AUTH_USER_ID UINT32 ID of user

I CONN_ENTRY_AUTH_SVC_ID UINT32 ID of authentication module:

AUTH_SVC_BINDERY_ID

AUTH_SVC_NDS_ID

AUTH_SVC_PNW_ID

I CONN_ENTRY_AUTH_HANDLE UINT32 Authentication Handle

I CONN_ENTRY_AUTH_SPEC_PTR UINT32 Ptr to auth-specific information

I CONN_ENTRY_SESS_SVC_ID UINT32 Session Protocol Provider ID:

NCP_SESSION_ID

SMB_SESSION_ID

I CONN_ENTRY_SESS_SPEC_PTR UINT32 Ptr to session-specific information

I CONN_ENTRY_NAME_SVC_ID UINT32 ID of name service provider:

NAME_SVC_BINDERY_ID

NAME_SVC_NDS_ID

NAME_SVC_PNW_ID

I  CONN_ENTRY_MAX_IO UINT32 Maximum IO for connection

I  CONN_ENTRY_MAX_RW_IO UINT32 Maximum read/write IO

I CONN_ENTRY_ROUND_TRIP UINT32 Round trip time in milliseconds

I CONN_ENTRY_SECURITY UINT32 Security mode in effect

Bit definitions:

CFG_CRC

CFG_MD4

CFG_CRYPT

I CONN_ENTRY_LICENSE UINT32 License state of connection

I CONN_ENTRY_TRAN_ADDR_OBJ UINT32 Pointer to the tran addr object



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

I CONN_ENTRY_NCP_HOOK_RTNS UINT32 Pointer to NCP hook routines

I CONN_ENTRY_SFT_LEVEL UINT32 Current sft level

I CONN_ENTRY_TTS_LEVEL UINT32 Current tts level



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

Avail Value (continued)    Datatype Meaning

))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
I CONN_ENTRY_SERVER_CONN_NUM UINT32 Server connection number

I CONN_ENTRY_SERVER_VERSION UINT32 Server version

I CONN_ENTRY_PERM BIT Permanent flag for connection

I CONN_ENTRY_AUTH BIT Authenticated state

I CONN_ENTRY_ANCHOR BIT Anchor state for connection

I CONN_ENTRY_SUSPENDED BIT Suspended state for condition

I CONN_ENTRY_ORDER_NUM UINT32 Session connection order

I CONN_ENTRY_ORDER_NUM UINT32 Connection order number

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
The availability of these items is indicated in the first column.
A  Available to all calling functions. 

I  Available to internal client NLMs only.

infoValue The data value to set. All bit values are zero to clear;
any other value will set the bit.

See also CONNGetStructure 
CONNGetValue 
CONNSetStructure 
CONNScanInfo 



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

CONNUnauthenticate

Description Unauthenticates a connection handle by calling down to the
authentication multiplexor. If the connection is not already
authenticated, an error will be returned. The correct authentication
handle is determined by interrogating the connHandle for the
information.

Syntax UINTXX DIST
CONNUnauthenticate (

CONN_HANDLE connHandle)

Input connHandle The connection to unauthenticate.

Output None.

See also CONNAuthenticateWithHandle
CONNAuthenticate
CONNCreateAuthenticationHandle
CONNDestroyAuthenticationHandle
CONNScanAuthenticationHandles
CONNGetAuthHandleInfo
CONNChangePassword
CONNVerifyPassword



Overview to the Portable Client32 Modules

v 1.0 (November 1994)  Draft 0.3 Company Confidential

CONNValidateHandle

Description Checks the validity of a connection. 

Syntax UINTXX DIST
CONNValidateHandle (

CONN_HANDLE connHandle,
UINT32  flags)

Input connHandle The connection of interest.

flags Controls the type of validation performed on the
connection. The permitted values include:

CONN_VALIDATE_HANDLE

Verify only that connHandle is

valid.

CONN_VALIDATE_SESSION 

Verify through to the far end.

  

Output None.

Remarks ConnMan will check the validity of the connection at its level (that
is, see that the connHandle is valid) and, if so, will call the session
protocol associated with the connection using
SESSValidateConnection and verify the connection. 

See also None.



Portable Client32 Design Specification

Company Confidential  Draft 0.3  v 1.0 (November 1994)

CONNVerifyPassword

Description Verifies a password for a given domain (consisting of several
bindery servers, and/or several trees). 

Syntax UINTXX DIST
CONNVerifyPassword (

UINT32 domainHandle,
UINT32 flags,
SPECT_DATA DIST *password)

Input authHandle Authentication handle for which to set the
password.

flags Controls whether a secure prompting for the
password is made from ring 0. The flags may have
one of the following values:

CONN_PASSWD_PROMPT_NONE
CONN_PASSWD_PROMPT

password Password, stored in a SPECT_DATA structure. It
must be correctly initialized. If the password is to be
prompted for from ring 0, this parameter should be
set to NULL.

Output None.

Remarks The flags parameter allows the caller to specify whether this
function should put up a dialog box requesting the password to
verify (allowing for greater security to be built into applications).

See also CONNAuthenticateWithHandle
CONNAuthenticate
CONNUnauthenticate
CONNCreateAuthenticationHandle
CONNDestroyAuthenticationHandle
CONNScanAuthenticationHandles
CONNGetAuthHandleInfo


