
v 1.0 (November 1994) Draft 0.3 Company Confidential

Chapter 2

Private and Global Resource Scope

Abstract

This chapter is a preliminary look at how resource scope issues
are handled with Client32. Scope algorithms may change in later
releases of Client32. Private scope is not yet supported.

Portable Client32 Design Specification

Company Confidential Draft 0.3 v 1.0 (November 1994)

Introduction
The scope of a resource defines the realm in which that resource
is visible. The resource types that Client32 monitors separately for
scope are connections, drive root mappings, drive relative
mappings (e.g., cd's), and printer redirections.

A realm is generally a process group, for example a DOSBOX
(under Windows) or a Task Switcher DOSBOX (under DOS).
Windows programs are processes within the system process
group.

There are three kinds of scope: global, private, and inherited.

Definitions

Global

Global scope means that a resource is shared, allowing access
from any process group on the system. Any changes made to a
global resource are visible from any other scope.

For example, if drive mappings were of global scope and a new
drive mapping was made in one DOSBOX, then that drive would
also be visible in any other DOSBOXes on the system. If the drive
were later deleted, it would disappear from the other DOSBOXes
as well.

Inherited

Inherited scope means that when a resource is created, it is
initialized to match what the system process group represents for
that resource, after which it is treated like a private resource, and
any changes do not affect any other resources.

Private

Private scope means that when a resource is created, it stands
alone and does not inherit attributes from any other resource. For
the case of a whole process group being launched as private, no
resources are initialized other than the "F:\LOGIN" drive.
Changes made to private resource are visible only in the process
group that created the resource.

Overview to the Portable Client32 Modules

v 1.0 (November 1994) Draft 0.3 Company Confidential

Goals for a Scope Algorithm

The Client32 Requesters needs a scheme for setting the default
scope values and managing scope of different system resources.
Some factors in determining this scheme:

1. Support a majority of user desires for resource scopes. The
Client32 resource scopes, listed by resource type, are:

Resource Type Scope
Connections Global to system
Drive roots Inherited, global within process group
Drive paths Inherited, global within process group
Printers Inherited, global within process group

2. Give users the option to specify that all resource scopes be
either global or private. This is an advanced configuration
option that changes the default, making all connections, drive
roots, drive paths, and printers either global or private, system-
wide. The client must be reloaded for the change to take
effect.

3. Support launching a process group or a process privately such
that any associated resources are kept independent. This
could be initiated by the user by using the GUI provider to drag
and drop an icon on an icon that represents private-ness. A
script could be associated with that icon that indicates
resources that are needed and their respective redirections to
the network; otherwise the process would only receive the
standard "F:\LOGIN" drive resource.

4. Consider backward-compatibility issues. The following grid
shows default scopes for Netx, VLMs, and Client32.

Resource Global Inherited Private
Connections CN V
Drive roots V CN
Drive paths CNV
Printers NV C

Key: C = Client32, N = NETX.COM, V = VLMs

Portable Client32 Design Specification

Company Confidential Draft 0.3 v 1.0 (November 1994)

Identifying Resource Scope

In order for the Requester to keep track of which resources are
associated with which scope, all APIs involved with a tracked
resource must use the calling process and process group as
parameters. These values are then converted to a scope (usually
from within the "HandleToXXX" function) using the
SCOPEGetResource. This scope is then assigned to the
resource if it is being created, or is used to check for valid access
to that resource.

