
NetWare®

Using NIOS Events

Correctly

Version 1.0 Draft 0.1

February 1996

Disclaimer Novell, Inc. makes no representations or warranties with respect to the

contents or use of this document, and specifically disclaims any express or

implied warranties of merchantability or fitness for any particular purpose.

Further, Novell, Inc. reserves the right to revise this publication and to

make changes to its content, at any time, without obligation to notify any

person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to

any NetWare software, and specifically disclaims any express or implied

warranties of merchantability or fitness for any particular purpose. Further,

Novell, Inc. reserves the right to make changes to any and all parts of

NetWare software, at any time, without obligation to notify any person or

entity of such changes.

Trademarks Novell, Inc. has made every effort to supply trademark information about

company names, products, and services mentioned in this document.

Trademarks were derived from various sources.

NetWare and Novell are registered trademarks of Novell, Inc.

Copyright This work is an unpublished work and contains confidential, proprietary

and trade secret information of Novell, Inc. Access to this work is restricted

to (1) Novell employees who have a need to know to perform tasks within

the scope of their assignments, and (2) entities other than Novell who have

entered into appropriate license agreements. No part of this work may be

practiced, performed, copied, distributed, revised, modified, translated,

abridged, condensed, expanded, collected, or adapted without the prior

written consent of Novell, Inc. Any use or exploitation of this work without

authorization could subject the perpetrator to criminal and civil liability.

Novell, Inc.

122 East 1700 South

Provo, Utah 84606 U.S.A.

Draft 0.1

Software version 1.0

February 1996

Novell Part#

v 1.0 (February 1996) Draft 0.1 Company Confidential iii

Introduction

There are two NIOS routines that are causing deadlock and system

performance degradation in the Windows 95 environment when used

improperly (these problems are not present in the DOS/WIN NIOS

environment, only in Windows 95):

NiosScheduleAESEvent Schedules an event to fire after a

specified amount of time.

NiosScheduleForegroundEvent Schedules an event that fires in a

foreground context.

The problem comes in how Windows 95 handles threads and events. It is

important to remember that event time is not the same as process time, and

there are a number of things that should not be done during event time.

Those things are outlined in this document.

In the next release of NIOS, many of these problems will disappear. This

paper describes short-term solutions to keep programmers from

inadvertently creating deadlock states during event handling.

From the Microsoft VMM Help (all references from VMM Help are shown

in italics):

With the greater degree of multi-tasking available in Windows 95, the

opportunity for deadlocking the system grows enormously. Moreover,

some operations, while not deadlocking the system, effectively shut off

multi-tasking until the operation completes.

Principles for Event Time Execution

There are six general principles to keep in mind when programming in the

context of an event.

1. Save the state of client registers before executing an event. In the

context of an event, if you have to call back into the VM (that is, you’re

performing nested execution), you must save the state information of

the client registers before your event begins, and restore them before

returning from your event. This is because events are not synchronized

with the virtual machine, and so the contents of client registers are

unpredictable. Saving the client registers can be done with either of two

NIOS calls:

To save registers:

DOSBeginNestExec

DOSBeginNestExecWithCRS

NIOS AES Events

iv Company Confidential v 1.0 (February 1996) Draft 0.1

To restore registers:

DOSEndNestExec

DOSEndNestExecWithCRS

2. Do not attempt to claim a resource that is owned by the current

thread.

Since event callbacks can be called while the current thread is

blocked on a semaphore or other synchronization object, events

should be extremely careful not to create deadlocks by attempting to

claim a resource that may already owned by the current thread. For

example, consider a thread which takes a resource, then blocks

waiting for some other operation to complete, with the intention of

releasing the resource after the other operation has completed. While

waiting for the semaphore to be signaled, that thread is used to

perform an event callback is which attempts to take the same

resource. The system is now deadlocked, because the event will wait

indefinitely for the resource, which cannot be released until the event

returns.

3. Don’t make any call while in the context of an event that will

invoke a paging operation if the current thread is already in the

middle of its own paging operation. Because NIOS does not

currently ensure that the thread context that an event is running in is not

in the middle of a paging operation, it is up to the programmer to

ensure that the thread is not in the middle of a paging operation. This

can be done as follows:

A. Check to see if the critical section is owned by the current thread.

Before a paging operation is begun, the thread must reserve the critical

section. To do this, make the VMM call:

Get_Crit_Status_Thread

This routine will tell you whether the critical section is currently owned,

and by which thread. If it is not owned, then no paging operations are in

progress and the event may perform a paging operation.

If the critical section is owned but not by this thread, there is still no

problem, and the event may perform a paging operation.

If the critical section is owned by the current thread, then another

routine can be called to determine if it is owned because of a paging

operation.

v 1.0 (February 1996) Draft 0.1 Company Confidential v

B. Determine if the critical section is owned by the current thread

because of a paging operation. To do this, the programmer must call

in to the PageSwap device. This is done as follows:

VxDcall PageSwap_Test_IO_Valid

jc Paging_not_permitted

If the jc flag is set on return, the event may NOT page, as a paging

operation is already in progress, and is owned by this thread.

NOTE: Allocating memory from the VMM page manager or heap

manager may result in paging, so services like _PageAllocate and

_HeapFree are also forbidden unless it has already been determined

that the thread is not paging. List management functions like

List_Allocate are safe to call, provided the list was not created with

the LF_HEAP or LF_SWAP bits.

4. Do not access the Registry unless you’re sure that the thread

processing your event callback is not already active in the

Registry. Since NIOS does not allow events to be scheduled with the

PEF_Wait_Not_Nested_Exec flag, there is no way to restrict the

execution of the event, and so no way to ensure that the processing

thread is not already active there. So it is best to avoid accessing the

Registry at all from events until this can be corrected in NIOS.

Event callbacks may not access the registry unless it can be ensured

that the thread processing the event callback is itself not active in the

registry. This can be done by using the PEF_Wait_Not_Nested_Exec

restriction on the event.

5. Don’t block at event time. A common example of how blocking at

event time can cause a problem is when the VxD attempts to acquire a

resource at event time which the current thread already owns. In effect,

the thread is waiting on itself, and deadlock ensues quickly.

Even if you have ensured that blocking on a semaphore or other

synchronization object will not cause a deadlock, bear in mind that

blocking at event time seriously impacts the system’s ability to

multitask smoothly. The thread that got selected to service an event

might own resources at ring 3, such as the Win16Mutex, for which

other threads are waiting. (Indeed, the fact that the thread is running

at all makes it much more likely that it owns such a resource.) While

the event is in progress, those resources remain held by the thread

even though the thread isn’t doing anything with them.

6. As a rule, don’t block while holding a critical section. Blocking with

the critical section can cause deadlock because so many important

NIOS AES Events

vi Company Confidential v 1.0 (February 1996) Draft 0.1

system operations require the critical section in order to execute.

Imagine the scenario wherein a thread acquires a critical section,

schedules an event, and then runs NIOSPoll while waiting for the event

to complete. While it is currently possible to do this (and it has been

widely done), it has the potential to seriously degrade system

performance. Further, if programmers rely on this practice, it will

prevent NIOS from being corrected in the next release.

General rules to remember are to hold critical sections for only a short

time, and to never block while holding a critical section. (A possible

solution to the scenario above is to acquire the critical section only after

the event has fired.)

