
WATCOM Debugger Trap File
Interface

VERSION 17.0

Copyright 1994 by WATCOM International Corp.

July 3, 1994

Table of Contents

Introduction ... 1

1 Some Definitions ... 1

1.1 Pointer Sizes .. 1
1.2 Base Types .. 1

The Request Interface ... 3

1 Request Structure. .. 3

2 The Interface Routines ... 3

2.1 TrapInit .. 3
2.2 TrapRequest .. 4

2.2.1 Request Example .. 5
2.3 TrapFini ... 5

The Requests ... 6

1 Core Requests .. 6

1.1 REQ_CONNECT (0) .. 6
1.2 REQ_DISCONNECT (1) .. 7
1.3 REQ_SUSPEND (2) ... 7
1.4 REQ_RESUME (3) ... 7
1.5 REQ_GET_SUPPLEMENTARY_SERVICE (4) ... 8
1.6 REQ_PERFORM_SUPPLEMENTARY_SERVICE (5) .. 8
1.7 REQ_GET_SYS_CONFIG (6) ... 9
1.8 REQ_MAP_ADDR (7) ... 10
1.9 REQ_ADDR_INFO (8) .. 11
1.10 REQ_CHECKSUM_MEM (9) ... 11
1.11 REQ_READ_MEM (10) ... 12
1.12 REQ_WRITE_MEM (11) ... 12
1.13 REQ_READ_IO (12) .. 12
1.14 REQ_WRITE_IO (13) .. 13
1.15 REQ_READ_CPU (14) ... 13
1.16 REQ_READ_FPU (15) ... 14
1.17 REQ_WRITE_CPU (16)/REQ_WRITE_FPU (17) .. 14
1.18 REQ_PROG_GO (18)/REQ_PROG_STEP (19) .. 15
1.19 REQ_PROG_LOAD (20) ... 16
1.20 REQ_PROG_KILL (21) ... 17
1.21 REQ_SET_WATCH (22) ... 17
1.22 REQ_CLEAR_WATCH (23) ... 18
1.23 REQ_SET_BREAK (24) ... 18
1.24 REQ_CLEAR_BREAK (25) ... 18
1.25 REQ_GET_NEXT_ALIAS (26) ... 19
1.26 REQ_SET_USER_SCREEN (27) ... 19
1.27 REQ_SET_DEBUG_SCREEN (28) ... 19
1.28 REQ_READ_USER_KEYBOARD (29) .. 20

Table of Contents

1.29 REQ_GET_LIB_NAME (30) ... 20
1.30 REQ_GET_ERR_TEXT (31) ... 21
1.31 REQ_GET_MESSAGE_TEXT (32) ... 21
1.32 REQ_REDIRECT_STDIN (33)/REQ_REDIRECT_STDOUT (34) 22
1.33 REQ_SPLIT_CMD (35) ... 22

2 File I/O requests ... 23

2.1 REQ_FILE_GET_CONFIG (0) .. 23
2.2 REQ_FILE_OPEN (1) .. 23
2.3 REQ_FILE_SEEK (2) ... 24
2.4 REQ_FILE_READ (3) .. 25
2.5 REQ_FILE_WRITE (4) .. 25
2.6 REQ_FILE_WRITE_CONSOLE (5) .. 26
2.7 REQ_FILE_CLOSE (6) .. 26
2.8 REQ_FILE_ERASE (7) .. 26
2.9 REQ_FILE_STRING_TO_FULLPATH (8) ... 27
2.10 REQ_FILE_RUN_CMD (9) ... 27

3 Overlay requests ... 28

3.1 REQ_OVL_STATE_SIZE (0) .. 29
3.2 REQ_OVL_GET_DATA (1) .. 29
3.3 REQ_OVL_READ_STATE (2) .. 29
3.4 REQ_OVL_WRITE_STATE (3) .. 30
3.5 REQ_OVL_TRANS_VECT_ADDR (4) .. 30
3.6 REQ_OVL_TRANS_RET_ADDR (5) ... 31
3.7 REQ_OVL_GET_REMAP_ENTRY (6) .. 31

4 Thread requests .. 32

4.1 REQ_THREAD_GET_NEXT (0) ... 32
4.2 REQ_THREAD_SET (1) .. 32
4.3 REQ_THREAD_FREEZE (2) .. 33
4.4 REQ_THREAD_THAW (3) ... 33
4.5 REQ_THREAD_GET_EXTRA (4) .. 34

5 RFX requests .. 34

5.1 REQ_RFX_RENAME (0) ... 34
5.2 REQ_RFX_MKDIR (1) .. 35
5.3 REQ_RFX_RMDIR (2) .. 35
5.4 REQ_RFX_SETDRIVE (3) .. 35
5.5 REQ_RFX_GETDRIVE (4) ... 36
5.6 REQ_RFX_SETCWD (5) ... 36
5.7 REQ_RFX_GETCWD (6) .. 37
5.8 REQ_RFX_SETDATETIME (7) .. 37
5.9 REQ_RFX_GETDATETIME (8) ... 37
5.10 REQ_RFX_GETFREESPACE (9) ... 38
5.11 REQ_RFX_SETFILEATTR (10) ... 38

Table of Contents

5.12 REQ_RFX_GETFILEATTR (11) ... 39
5.13 REQ_RFX_NAMETOCANNONICAL (12) .. 39
5.14 REQ_RFX_FINDFIRST (13) ... 39
5.15 REQ_RFX_FINDNEXT (14) ... 40
5.16 REQ_RFX_FINDCLOSE (15) ... 41

System Dependent Aspects ... 42

1 Trap Files Under DOS ... 42

2 Trap Files Under OS/2 ... 42

3 Trap Files Under Windows. ... 43

4 Trap Files Under Windows NT. ... 43

5 Trap Files Under QNX ... 44

6 Trap Files Under Netware 386 or PenPoint ... 44

Introduction

The WATCOM debugger consists of a number of separate pieces of code. The main executable, WD.EXE,
provides a debugging ‘engine’ and user interface. When the engine wishes to perform an operation upon
the program being debugged such as reading memory or setting a breakpoint, it creates a request structure
and sends it to the ‘trap file’ (so called because under DOS, it contains the first level trap handlers). The
trap file examines the request structure, performs the indicated action and returns a result structure to the
debugger. This design has two main benefits:

1. OS debugging interfaces tend to be wildly varying in how they are accessed. By moving all the
OS specific interface code into the trap file and having a defined interface to access it, porting the
debugger becomes much easier.

2. The trap file does not have to actually perform the operation. Instead it could send the request out
to a remote server by a communication link such as a serial line or LAN. The remote server can
retrieve the request, perform the operation on the remote machine and send the results back via the
link. This enables the debugger to debug applications in cases where there are memory contraints or
other considerations which prevent the debugger proper from running on the remote system (such
as Novell Netware 386).

This document describes the interface used by version 4.0 of the WATCOM debugger (shipped with the
10.0 C/C++ and FORTRAN releases). It is expected to be modified in future releases. Where possible,
notification of expected changes are given in the document, but all aspects are subject to revision.

1 Some Definitions

1.1 Pointer Sizes

In a 16-bit hosted environment such as DOS, all pointers used by the trap file are "far" 16:16 pointers. In a
32-bit environment such as Windows NT the pointers are "near" 0:32 pointers.

1.2 Base Types

A number of basic types are used in the interface. They are defined as follows:

Type Definition

unsigned_8 1 byte unsigned quantity

unsigned_16 2 byte unsigned quantity

unsigned_32 4 byte unsigned quantity

Introduction 1

access_req The first field of every request is of this type. It is a 1 byte field which identifies the
request to be performed.

addr48_ptr This type encapsulates the concept of a 16:32 pointer. All addresses in the debuggee
memory are described with these. The debugger always acts as if the debuggee were in a
32-bit large model environment since the 32-bit flat model and all 16-bit memory models
are subsets. The structure is defined as follows:

typedef struct {
unsigned_32 offset;
unsigned_16 segment;

} addr48_ptr;

The segment field contains the segment of the address and the offset field stores the
offset of the address.

bytes The type bytes is an array of unsigned_8. The length is provided by other means.
Typically a field of type bytes is the last one in a request and the length is calculated
from the total length of the request.

string The type string is actually an array of characters. The array is terminated by a null
(’\0’) character. The length is provided by other means. Typically a field of type
string is the last one in a request and the length is calculated from the total length of
the request.

trap_error Some trap file requests return debuggee operating system error codes, notably the
requests to perform file I/O on the remote system. These error codes are returned as an
unsigned_32. The debugger considers the value zero to indicate no error.

Introduction 2

The Request Interface

1 Request Structure.

Each request is a composed of two sequences of bytes provided by the debugger called messages. The first
set contains the actual request code and whatever parameters that are required by the request. The second
sequence is where the result of the operation is to be stored by the trap file.

The two sequences need not be contiguous. The sequences are described to the trap file through two arrays
of message entry structures. This allows the debugger to avoid unnecessary packing and unpacking of
messages, since mx_entry’s can be set to point directly at parameter/result buffers.

Multiple requests are not allowed in a single message. The mx_entry’s are only used to provide
scatter/gather capabilities for one request at a time.

The message entry structure is as follows:

typedef struct {
void FAR *ptr;
unsigned_16 len;

} mx_entry;

The ptr is pointing to a block of data for that message entry. The len field gives the length of that block.
One array of mx_entry’s describes the request message. The second array describes the return message.

It is not legal to split a message into arbitrary pieces with mx_entries. Each request documents where an
mx_entry is allowed to start with a line of dashes.

2 The Interface Routines

The trap file interface must provide three routines: TrapInit, TrapRequest, and TrapFini. These
routines are invoked with standard WATCOM register calling conventions. How the debugger determines
the address of these routines after loading a trap file is system dependent and described later.

2.1 TrapInit

This function initializes the environment for proper operation of TrapRequest.

The Request Interface 3

trap_version FAR TrapInit(char FAR *parm,
char FAR *error,
unsigned_8 remote

);

The parm is a string that the user passes to the trap file. Its interpretation is completely up to the trap file.
In the case of the WATCOM debugger, all the characters following the semicolon in the /TRAP option are
passed as the parm. For example:

wd /trap=nov;testing program

The parm would be "testing". Any error message will be returned in error. The remote field is a zero if
the WATCOM debugger is loading the trap file and a one if a remote server is loading it. This function
returns a structure trap_version of the following form:

typedef struct {
unsigned_8 major;
unsigned_8 minor;
unsigned_8 remote;

} trap_version;

The major field contains the major version number of the trap file while the minor field tells the minor
version number of the trap file. Major is changed whenever there is a modification made to the trap file
that is not upwardly compatable with previous versions. Minor increments by one whenever a change is
made to the trap file that is upwardly compatible with previous versions. The current major verion is 17,
the current minor version is 0. The remote field informs the debugger whether the trap file communicates
with a remote machine.

TrapInit must be called before using TrapRequest to send a request. Failure to do so may result in
unpredictable operation of TrapRequest.

2.2 TrapRequest

All requests between the server and the remote trap file are handled by TrapRequest.

unsigned TrapRequest(unsigned num_in_mx,
mx_entry *mx_in,
unsigned num_out_mx,
mx_entry *mx_out

);

The mx_in points to an array of request mx_entry’s. The num_in_mx field contains the number of
elements of the array. Similarly, the mx_out will point to an array of return mx_entry’s. The number of
elements will be given by the num_out_mx field. The total number of bytes actually filled in to the return
message by the trap file is returned by the function (this may be less than the total number of bytes
described by the mx_out array).

Since every request must start with an access_req field, the minimum size of a request message is one
byte.

The Request Interface 4

Some requests do not require a return message. In this case, the program invoking TrapRequest must pass
zero for num_out_mx and NULL for mx_out.

2.2.1 Request Example

The request REQ_READ_MEM needs the memory address and length of memory to read as input and will
return the memory block in the output message. To read 30 bytes of memory from address 0x0010:0x8000
into a buffer, we can write:

mx_entry in[1];
mx_entry out[1];
unsigned char buffer[30];
struct in_msg_def {

access_req req;
addr48_ptr addr;
unsigned_16 len;

} in_msg = { REQ_READ_MEM, { 0x8000, 0x0010 }, sizeof(buffer) };

unsigned_16 mem_blk_len;

in[0].ptr = &in_msg;
in[0].len = sizeof(in_msg);
out[0].ptr = &buffer;
out[0].len = sizeof(buffer);

mem_blk_len = TrapRequest(1, in, 2, out);

if(mem_blk_length != sizeof(buffer)) {
printf("Error in reading memory\n");

} else {
printf("OK\n");

}

The program will print "OK" if it has transferred 30 bytes of data from the debuggee’s address space to the
buffer variable. If less than 30 bytes is transfered, an error message is printed out.

2.3 TrapFini

The function terminates the link between the debugger and the trap file. It should be called after finishing
all access requests.

void FAR TrapFini(void);

After calling TrapFini, it is illegal to call TrapRequest without calling TrapInit again.

The Request Interface 5

The Requests

This section descibes the individual requests, their parameters, and their return values. A line of dashes
indicates where an mx_entry is allowed (but not required) to start. The debugger allows (via
REQ_GET_SUPPLEMENTARY_SERVICE/REQ_PERFORM_SUPPLEMENTARY_SERVICE)
optional components to be implemented only on specific systems.

The numeric value of the request which is placed in the req field follows the symbolic name in
parentheses.

1 Core Requests

These requests need to be implemented in all versions of the trap file, although some of them may only be
stub implementations in some environments.

1.1 REQ_CONNECT (0)

Request to connect to the remote machine. This must be the first request made.

Request message:

access_req req
unsigned_8 major; <-+- struct trap_version
unsigned_8 minor; |
unsigned_8 remote; <-+

The req field contains the request. The trap_version structure tells the version of the program making
the request. The major field contains the major version number of the trap file while the minor field tells
the minor version number of the trap file. The major is changed whenever there is a modification made to
the trap file that is not upwardly compatable with previous versions. The minor increments by one
whenever a change is made to the trap file that is upwardly compatable with previous versions. The current
major version is 17, the current minor version is 0. The remote field informs the trap file whether a
remote server is between the WATCOM debugger and the trap file.

Return message:

unsigned_16 max_msg_size

string err_msg

If error has occurred, the err_msg field will returns the error message string. If there is no error,
error_msg returns a null character and the field max_msg_size will contain the allowed maximum size

The Requests 6

of a message in bytes. Any message (typically reading/writing memory or files) which would require more
than the maximum number of bytes to transmit or receive must be broken up into multiple requests. The
minimum acceptable value for this field is 256.

1.2 REQ_DISCONNECT (1)

Request to terminate the link between the local and remote machine. After this request, a
REQ_CONNECT must be the next one made.

Request message:

access_req req

The req field contains the request.

Return message:

NONE

1.3 REQ_SUSPEND (2)

Request to suspend the link between the server and the remote trap file. The debugger issues this message
just before it spawns a sub-shell (the "system" command). This allows a remote server to enter a state
where it allows other trap files to connect to it (normally, once a remote server has connected to a trap file,
the remote link will fail any other attempts to connect to it). This allows the user to start up an RFX
process and transfer any missing files to the remote machine before continuing the debugging process.

Request message:

access_req req

The req field contains the request.

Return message:

NONE

1.4 REQ_RESUME (3)

Request to resume the link between the server and the remote trap file. The debugger issues this request
when the spawned sub-shell exits.

Request message:

access_req req

The Requests 7

The req field contains the request.

Return message:

NONE

1.5 REQ_GET_SUPPLEMENTARY_SERVICE (4)

Request to obtain a supplementary service id.

Request message:

access_req req

string service_name

The req field contains the request. The service_name field contains a string identifying the
supplementary service. This string is case insensitive.

Return message:

trap_error err
unsigned_32 id

The err field is non-zero if something went wrong in obtaining or initializing the service. Id is the
identifier for a particular supplementary service. It need not be the same from one invocation of the trap
file to another. If both it and the err field are zero, it means that the service is not available from this trap
file.

NOTE: In the future, we might allow for user developed add-ons to be integrated with the debugger.
There would be two components, one to be added to the debugger and one to be added to the trap
file. The two pieces could communicate with each other via the supplementary services
mechanism.

1.6 REQ_PERFORM_SUPPLEMENTARY_SERVICE (5)

Request to perform a supplementary service.

Request message:

access_req req
unsigned_32 service_id

unspecified

The req field contains the request. The service_id field indicates which service is being requested. The
remainder of the request is specified by the individual supplementary service provider.

The Requests 8

Return message:

unspecified

The return message is specified by the individual supplementary service provider.

1.7 REQ_GET_SYS_CONFIG (6)

Request to get system information from the remote machine.

Request message:

access_req req

The req field contains the request.

Return message:

unsigned_8 cpu;
unsigned_8 fpu;
unsigned_8 osmajor;
unsigned_8 osminor;
unsigned_8 os;
unsigned_8 huge_shift;

The cpu fields returns the type of the remote CPU. The size of that field is unsigned_8. Possible cpu types
are:

CPU_86 = 0
CPU_186 = 1
CPU_286 = 2
CPU_386 = 3
CPU_486 = 4
CPU_586 = 5

The fpu fields tells the type of FPU. The size of the field is unsigned_8. FPU types include:

FPU_EMU = -1 - Software emulated FPU
FPU_NO = 0 - No FPU
FPU_87 = 1
FPU_287 = 2
FPU_387 = 3

The osmajor and osminor contains the major and minor version number for the operating system of the
remote machine. The type of operating system can be found in os field. The size of this field is
unsigned_8. The OS can be :

The Requests 9

OS_IDUNNO = 0 - Unknown operating system
OS_DOS = 1
OS_OS2 = 2
OS_PHAR = 3 - Phar Lap 386 DOS Extender
OS_ECLIPSE = 4 - Eclipse 386 DOS Extender
OS_NW386 = 5 - NetWare 386
OS_QNX = 6
OS_RATIONAL = 7 - DOS/4G
OS_WINDOWS = 8
OS_PENPOINT = 9
OS_NT = 10
OS_AUTOCAD = 11 - ADS/ADI development

The huge_shift field is used to determine the shift needed for huge arithmetic in that system. It stores
the number of left shifts required in order to calculate the next segment correctly. It is 12 for real mode
programs. The value in a protect mode environment must be obtained from the OS of the debuggee
machine.

1.8 REQ_MAP_ADDR (7)

Request to map the input address to the actual address of the remote machine. The addresses in the
symbolic information provided by the linker do not reflect any relocation performed on the executable by
the system loader. This request obtains that relocation information so that the debugger can update its
addresses.

Request message:

access_req req
addr48_ptr in_addr
unsigned_32 handle;

The req field contains the request. The in_addr tells the address to map. The handle field identifies the
module which the address is from. The value from this field is obtained by REQ_PROG_LOAD or
REQ_GET_LIB_NAME. There are two magical values for the in_addr.segment field.

MAP_FLAT_CODE_SELECTOR = -1
MAP_FLAT_DATA_SELECTOR = -2

When the in_addr.segment equals one of these values, the debugger does not have a map segment
value and is requesting that the trap file performs the mapping as if the given offset was in the flat address
space.

Return message:

addr48_ptr out_addr
unsigned_32 lo_bound;
unsigned_32 hi_bound;

The mapped address is returned in out_addr. Note that in addition to the segment portion being modified,
the offset of the portion of the address may be adjusted as well if the loader performs offset relocations
(like OS/2 2.x or Windows NT). The lo_bound and hi_bound fields identify the lowest and highest input

The Requests 10

offsets for which this mapping is valid. If the debugger needs to map another address whose input segment
value is the same as a previous request, and the input offset falls within the valid range identified by the
return of that previous request, it can perform the mapping itself and not bother sending the request to the
trap file.

1.9 REQ_ADDR_INFO (8)

Request to check if a given address is using 32-bit addressing (the selector’s B-bit is on) by default. The
debugger requires this information to properly disassemble instructions.

Request message:

access_req req
addr48_ptr in_addr

The req field contains the request and the in_addr tells the input address.

Return message:

unsigned_8 is_32

The field returns one if the address is a USE32 segment, zero otherwise.

1.10 REQ_CHECKSUM_MEM (9)

Request to calculate the checksum for a block of memory in the debuggee’s address space. This is used by
the debugger to determine if the contents of the memory block have changed since the last time it was
read. Since only a four byte checksum has to be transmitted back, it is more efficient than actually reading
the memory again. The debugger does not care how the checksum is calculated.

Request message:

access_req req
addr48_ptr in_addr
unsigned_16 len

The req field stores the request. The in_addr contains the starting address and the len field tells how
large the block of memory is.

Return message:

unsigned_32 result

The checksum will be returned in result.

The Requests 11

1.11 REQ_READ_MEM (10)

Request to read a block of memory.

Request message:

access_req req
addr48_ptr mem_addr
unsigned_16 len

The mem_addr contains the address of the memory block to read from the remote machine. The length of
the block is determined by len. The memory data will be copied to output message.

Return message:

bytes data

The data field stores the memory block read in. The length of this memory block is given by the return
value from TrapRequest. If error has occurred in reading memory, the length of the data returns will not be
equal to the number of bytes requested.

1.12 REQ_WRITE_MEM (11)

Request to write a block of memory.

Request message:

access_req req
addr48_ptr mem_addr

bytes data

The data field stores the memory data to be transferred. The data will be stored in the debuggee’s address
space starting at the address in the mem_addr field.

Return message:

unsigned_16 len

The len field tells the length of memory block actually written to the debuggee machine. If error has
occurred in writing the memory, the length returned will not be equal to the number of bytes requested.

1.13 REQ_READ_IO (12)

Request to read data from I/O address space of the debuggee.

The Requests 12

Request message:

access_req req
unsigned_32 IO_offset
unsigned_8 len

The IO_offset contains the I/O address of the debuggee machine. The length of the block is determined
by len. It must be 1, 2 or 4 bytes. The data will be copied from IO_offset to the return message.

Return message:

bytes data

The data field stores the memory block read in. The length of this memory block is given by the return
value from TrapRequest. If an error has occurred in reading, the length returned will not be equal to the
number of bytes requested.

1.14 REQ_WRITE_IO (13)

Request to write data to the I/O address space of the debuggee.

Request message:

access_req req
unsigned_32 IO_offset

bytes data

The IO_offset contains the I/O address of the debuggee machine. The data stored in data field will be
copied to IO_offset on the debuggee machine.

Return message:

unsigned_8 len

The len field tells the number of bytes actually written out. If an error has occurred in writing, the length
returned will not be equal to the number of bytes requested.

1.15 REQ_READ_CPU (14)

Request to read the CPU registers.

Request message:

access_req req

Return message:

The Requests 13

bytes data

The data field contains the register information requested. It contains the following structure:

struct cpu_regs {
unsigned_32 EAX;
unsigned_32 EBX;
unsigned_32 ECX;
unsigned_32 EDX;
unsigned_32 ESI;
unsigned_32 EDI;
unsigned_32 EBP;
unsigned_32 ESP;
unsigned_32 EIP;
unsigned_32 EFL;
unsigned_32 CR0;
unsigned_32 CR2;
unsigned_32 CR3;
unsigned_16 DS;
unsigned_16 ES;
unsigned_16 SS;
unsigned_16 CS;
unsigned_16 FS;
unsigned_16 GS;

};

1.16 REQ_READ_FPU (15)

Request to read the FPU registers.

Request message:

access_req req

Return message:

bytes data

The data field contains the register information requested. Its format is the same as the result of a "fsave"
instruction in a 32-bit segment (the instruction pointer and operand pointer fields take up 8 bytes each).
Implementations of trap files in 16-bit environments should expand the instruction pointer and operand
pointer fields from 4 bytes to 8 (shuffling the data register fields down in memory) before returning the
result to the debugger.

1.17 REQ_WRITE_CPU (16)/REQ_WRITE_FPU (17)

Requests to write to the CPU or FPU state.

Request message:

The Requests 14

access_req req

bytes data

Information in data field will be transfered to the debuggee’s registers. The formats of data can be found
in REQ_READ_CPU/REQ_READ_FPU

NOTE: For the REQ_WRITE_FPU case, the data will be in a 32-bit "fsave" instruction format, so 16-bit
environments will have to squish the instruction and operand pointer fields back to their 4 byte
forms.

Return message:

NONE

1.18 REQ_PROG_GO (18)/REQ_PROG_STEP (19)

Requests to execute the debuggee. REQ_PROG_GO causes the debuggee to resume execution, while
REQ_PROG_STEP requests only a single machine instruction to be executed before returning. In either
case, this request will return when a breakpoint, watchpoint, machine exception or other significant event
has been encountered. While executing, a trap file is allowed to return spurious COND_WATCH
indications. The debugger always checks its own watchpoint table for changes before reporting to the
user. This means that a legal implementation of a trap file (but very inefficient) can just single step the
program and return COND_WATCH for every instruction when there are active watchpoints present.

Request message:

access_req req

The request is in req field.

Return message:

addr48_ptr stack_pointer
addr48_ptr program_counter
unsigned_16 conditions

The stack_pointer and program_counter fields store the latest values of SS:ESP and CS:EIP
respectively. The conditions informs the debugger what conditions have changed since execution
began. It contains the following flags:

The Requests 15

Bit 0 : COND_CONFIG - Configurations change
Bit 1 : COND_SECTIONS - Program overlays change
Bit 2 : COND_LIBRARIES - Libraries (DLL) change
Bit 3 : COND_ALIASING - Alias change
Bit 4 : COND_THREAD - Thread change
Bit 5 : COND_THREAD_EXTRA - Thread extra change
Bit 6 : COND_TRACE - Trace point occurred
Bit 7 : COND_BREAK - Break point occurred
Bit 8 : COND_WATCH - Watch point occurred
Bit 9 : COND_USER - User interrupt
Bit 10 : COND_TERMINATE - Program terminated
Bit 11 : COND_EXCEPTION - Machine exception
Bit 12 : COND_MESSAGE - Message to be displayed
Bit 13 : COND_STOP - Debuggee wants to stop
Bit 14-15 : not used

When a bit is off, the debugger avoids having to make additional requests to determine the new state of the
debuggee. If the trap file is not sure that a particular item has changed, or if it is expensive to find out, it
should just turn the bit on.

1.19 REQ_PROG_LOAD (20)

Request to load a program.

Request message:

access_req req
unsigned_8 true_argv

bytes argv

The true_argv field indicates whether the argument consists of a single string, or a true C-style argument
vector. This field is set to be one for a true argument vector and zero otherwise. The argv is a set of
zero-terminated strings, one following each other. The first string gives the name of the program to be
loaded. The remainder of the argv field contains the program’s arguments. The arguments can be a single
string or an array of strings.

Return message:

trap_error err
unsigned_32 task_id
unsigned_32 mod_handle
unsigned_8 flags

The err field returns the error code while loading the program. The task_id shows the task (process) ID
for the program loaded. The mod_handle is the system module identification for the executable image. It
is used as input to the REQ_MAP_ADDR request. The flags field contains the following information:

The Requests 16

Bit 0 : LD_FLAG_IS_32 - 32-bit program
Bit 1 : LD_FLAG_IS_PROT - Protected mode
Bit 2 : LD_FLAG_IS_STARTED - Program already started
Bit 3 : LD_FLAG_IGNORE_SEGMENTS - Ignore segments (flat)
Bit 4 - 7 : not used

1.20 REQ_PROG_KILL (21)

Request to kill the program.

Request message:

access_req req
unsigned_32 task_id

The req field contains the request. The task_id field (obtained from REQ_PROG_LOAD) identifies the
program to be killed.

Return message:

trap_error err

The err field returns the error code of the OS kill program operation.

1.21 REQ_SET_WATCH (22)

Request to set a watchpoint at the address given.

Request message:

access_req req
addr48_ptr watch_addr
unsigned_8 size

The address of the watchpoint is given by the watch_addr field. The size field gives the number of
bytes to be watched.

Return message:

trap_error err
unsigned_32 multiplier

The err field returns the error code if the setting failed. If the setting of the watchpoint worked, the 31
low order bits of multiplier indicate the expected slow down of the program when it’s placed into
execution. The top bit of the field is set to one if a debug register is being used for the watchpoint, and
zero if the watchpoint is being done by software.

The Requests 17

1.22 REQ_CLEAR_WATCH (23)

Request to clear a watchpoint at the address given. The trap file may assume all watch points are cleared at
once.

Request message:

access_req req
addr48_ptr watch_addr
unsigned_8 size

The address of the watch point is given by the watch_addr field. The size field gives the size of the
watch point.

Return message:

NONE

1.23 REQ_SET_BREAK (24)

Request to set a breakpoint at the address given.

Request message:

access_req req
addr48_ptr break_addr

The address of the break point is given by the break_addr field.

Return message:

unsigned_32 old

The old field returns the original byte(s) at the address break_addr.

1.24 REQ_CLEAR_BREAK (25)

Request to clear a breakpoint at the address given. The trap file may assume all breakpoints are cleared at
once.

Request message:

access_req req
addr48_ptr break_addr
unsigned_32 old

The Requests 18

The address of the break point is given by the break_addr field. The old field holds the old instruction
returned from the REQ_SET_BREAK request.

Return message:

NONE

1.25 REQ_GET_NEXT_ALIAS (26)

Request to get alias information for a segment. In some protect mode environments (typically 32-bit flat)
two different selectors may refer to the same physical memory. Which selectors do this is important to the
debugger in certain cases (so that symbolic information is properly displayed).

Request message:

access_req req
unsigned_16 seg

The seg field contains the segment. To get the first alias, put zero in this field.

Return message:

unsigned_16 seg
unsigned_16 alias

The seg field contains the next segment where an alias appears. If this field returns zero, it implies no
more aliases can be found. The alias field returns the alias of the input segment. Zero indicates a
previously set alias should be deleted.

1.26 REQ_SET_USER_SCREEN (27)

Request to make the debuggee’s screen visible.

Request message:

access_req req

Return message:

NONE

1.27 REQ_SET_DEBUG_SCREEN (28)

Request to make the debugger’s screen visible.

The Requests 19

Request message:

access_req req

Return message:

NONE

1.28 REQ_READ_USER_KEYBOARD (29)

Request to read the remote keyboard input.

Request message:

access_req req
unsigned_16 wait

The request will be time out if it waits longer than the period specifies in the wait field. The waiting
period is measured in seconds. A value of zero means to wait forever.

Return message:

unsigned_8 key

The key field returns the input character from remote machine.

1.29 REQ_GET_LIB_NAME (30)

Request to get the name of a newly loaded library (DLL).

Request message:

access_req req
unsigned_32 handle

The handle field contains the library handle. It should be zero to get the name of the first DLL or the
value from the handle of a previous request.

Return message:

unsigned_32 handle

string name

The handle field contains the library handle. It contains zero if there are no more DLL names to be
returned. The name of the library will be returned in name field.

The Requests 20

1.30 REQ_GET_ERR_TEXT (31)

Request to get the error message text for an error code.

Request message:

access_req req
trap_error err

The err field contains the error code number of the error text requested.

Return message:

string error_msg

The error message text will be returned in error_msg field.

1.31 REQ_GET_MESSAGE_TEXT (32)

Request to get generic message text. After a REQ_PROG_LOAD, or
REQ_PROG_GO/REQ_PROG_STEP has returned with COND_MESSAGE/COND_EXCEPTION, the
debugger will make this request to obtain the message text. In the case of a COND_EXCEPTION return
text describing the machine exception that caused the return to the debugger. Otherwise return whatever
generic message text that the trap file wants to display to the user.

Request message:

access_req req

Return message:

unsigned_8 flags

string msg

The message text will be returned in the msg field. The flags contains a number of bits which control the
next action of the debugger. They are:

Bit 0 : MSG_NEWLINE
Bit 1 : MSG_MORE
Bit 2 : MSG_WARNING
Bit 3 : MSG_ERROR
Bit 4 - 7 : not used

The MSG_NEWLINE bit indicates that the debugger should scroll its display to a new line after
displaying the message. The MSG_MORE bit indicates that there is another line of output to come and

The Requests 21

the debugger should make another REQ_GET_MESSAGE_TEXT. MSG_WARNING indicates that the
message is a warning level message while MSG_ERROR is an error level message. If neither of these bits
are on, the message is merely informational.

1.32 REQ_REDIRECT_STDIN (33)/REQ_REDIRECT_STDOUT (34)

Request to redirect the standard input (REQ_REDIRECT_STDIN) or standard output
(REQ_REDIRECT_STDOUT) of the debuggee.

Request message:

access_req req

string name

The file name to be redirected to/from is given by the name field.

Return message:

trap_error err

When an error has occurred, the err field contains an error code indicating the type of error that has been
detected.

1.33 REQ_SPLIT_CMD (35)

Request to split the command line into the command name and parameters.

Request message:

access_req req

string cmd

The cmd field contains the command. Command can be a single command line or an array of command
strings.

Return message:

unsigned_16 cmd_end
unsigned_16 parm_start

The cmd_end field tells the position in command line where the command name ends. The parm_start

field stores the position where the program arguments begin.

The Requests 22

2 File I/O requests

This section describes requests that deal with file input/output on the debuggee machine. These requests
are actually performed by the core request REQ_PERFORM_SUPPLEMENTARY_SERVICE and
appropriate service id. The following descriptions do not show do not show that "prefix" to the request
messages.

The service name to be used in the REQ_GET_SUPPLEMENTARY_SERVICE is

"Files". The file requests use an new basic type in addition to the ones already described:

Type Definition

trap_fhandle This is an unsigned_32 which holds a debuggee file handle.

2.1 REQ_FILE_GET_CONFIG (0)

Request to retreive characteristics of the remote file system.

Request message:

access_req req

Return message:

char ext_separator;
char path_separator[3];
char newline[2];

The ext_separator contains the separator for file name extensions. The possible path separators can be
found in array path_separator. The first one is the "preferred" path separator for that operating system.
This is the path separator that the debugger will use if it needs to construct a file name for the remote
system. The new line control characters are stored in array newline. If the operating system uses only a
single character for newline, put a zero in the second element.

2.2 REQ_FILE_OPEN (1)

Request to create/open a file.

Request message:

access_req req
unsigned_8 mode

string name

The Requests 23

The name of the file to be opened is given by name. The mode field stores the access mode of the file. The
following bits are defined:

Bit 0 : IO_READ
Bit 1 : IO_WRITE
Bit 2 : IO_CREATE
Bit 3 - 7 : not used

For read/write mode, turn both IO_READ and IO_WRITE bits on.

Return message:

trap_error err
trap_fhandle handle

If successful, the handle returns a handle for the file. When an error has occurred, the err field contains
a value indicating the type of error that has been detected.

2.3 REQ_FILE_SEEK (2)

Request to seek to a particular file position.

Request message:

access_req req
trap_fhandle handle
unsigned_8 mode
unsigned_32 pos

The handle of the file is given by the handle field. The mode field stores the seek mode. There are three
seek modes:

DBG_SEEK_ORG = 0 - Relative to the start of file
DBG_SEEK_CUR = 1 - Relative to the current file position
DBG_SEEK_END = 2 - Rrelative to the end of file

The position to seek to is in the pos field.

Return message:

trap_error err
unsigned_32 pos

If an error has occurred, the err field contains a value indicating the type of error that has been detected.
The pos field returns the current position of the file.

The Requests 24

2.4 REQ_FILE_READ (3)

Request to read a block of data from a file.

Request message:

access_req req
trap_fhandle handle
unsigned_16 len

The handle of the file is given by the handle field. The len field stores the number of bytes to be
transmitted.

Return message:

trap_error err

bytes data

If successful, the data returns the block of data. The length of returned data is given by the return value
of TrapRequest minus 4 (to account for the size of err). The length will normally be equal to the len

field. If the end of file is encountered before the read completes, the return value will be less than the
number of bytes requested. When an error has occurred, the err field contains a value indicating the type
of error that has been detected.

2.5 REQ_FILE_WRITE (4)

Request to write a block of data to a file.

Request message:

access_req req
trap_fhandle handle

bytes data

The handle of the file is given by the handle field. The data is given in data field.

Return message:

trap_error err
unsigned_16 len

If there is no error, len will equal to that in the data_len field. When an error has occurred, the err field
contains a value indicating the type of error that has been detected.

The Requests 25

2.6 REQ_FILE_WRITE_CONSOLE (5)

Request to write a block of data to the debuggee’s screen.

Request message:

access_req req

bytes data

The data is given in data field.

Return message:

trap_error err
unsigned_16 len

If there is no error, len will equal to the data_len field. When an error has occurred, the err field
contains a value indicating the type of error that has been detected.

2.7 REQ_FILE_CLOSE (6)

Request to close a file.

Request message:

access_req req
trap_fhandle handle

The handle of the file is given by the handle field.

Return message:

trap_error err

When an error has occurred, the err field contains a value indicating the type of error that has been
detected.

2.8 REQ_FILE_ERASE (7)

Request to erase a file.

Request message:

The Requests 26

access_req req

string file_name

The file_name field contains the file name to be deleted.

Return message:

trap_error err

If error has occurred when erasing the file, the err field will return the error code number.

2.9 REQ_FILE_STRING_TO_FULLPATH (8)

Request to convert a file name to its full path name.

Request message:

access_req req
unsigned_8 file_type

string file_name

The file_type field indicates the type of the input file. File types can be:

FILE_EXE = 0
FILE_DBG = 1
FILE_PRS = 2
FILE_HLP = 3

This is so the trap file can search different paths for the different types of files. For example, under QNX,
the PATH environment variable is searched for the FILE_EXE type, and the WD_PATH environment
variable is searched for the others. The file_name field contains the file name to be converted.

Return message:

trap_error err

string path_name

If no error occurs the err field returns a zero and the full path name will be stored in the path_name

field. When an error has occurred, the err field contains an error code indicating the type of error that has
been detected.

2.10 REQ_FILE_RUN_CMD (9)

Request to run a command on the debuggee’s system

The Requests 27

Request message:

access_req req
unsigned_16 chk_size

string cmd

The chk_size field gives the check size in kilobytes. This field is only useful in the DOS implementation.
It contains the value of the /CHECKSIZE debugger command line option and represents the amount of
memory the user wishes to have free for the spawned sub-shell.The cmd field stores the command to be
executed.

Return message:

trap_error err

If error has occurred when executing the command, the err field will return the error code number.

3 Overlay requests

This section describes requests that deal with overlays (currently supported only under 16-bit DOS).
These requests are actually performed by the core request
REQ_PERFORM_SUPPLEMENTARY_SERVICE and appropriate service id. The following
descriptions do not show do not show that "prefix" to the request messages.

The service name to be used in the REQ_GET_SUPPLEMENTARY_SERVICE is "Overlays".

The overlay requests use an new basic type in addition to the ones already described:

Type Definition

addr32_ptr This type encapsulates the concept of a 16:16 pointer into the debuggee’s address space.
Since overlays are only useful for 16-bit environments, using the addr48_ptr type would
be inefficient. The structure is defined as follows:

typedef struct {
unsigned_16 offset;
unsigned_16 segment;

} addr32_ptr;

The segment field contains the segment of the address and the offset field stores the
offset of the address.

The Requests 28

3.1 REQ_OVL_STATE_SIZE (0)

Request to return the size of the overlay state information in bytes of the task program. This request maps
onto the overlay manager’s GET_STATE_SIZE request. See the Overlay Manager Interface document for
more information on the contents of the return message.

Request message:

access_req req

The req field contains the request.

Return message:

unsigned_16 size

The size field returns the size in bytes. A value of zero indicates no overlays are present in the debuggee
and none of the other requests dealing with overlays will ever be called.

3.2 REQ_OVL_GET_DATA (1)

Request to get the address and size of an overlay section. This request maps onto the overlay manager’s
GET_SECTION_DATA request. See the Overlay Manager Interface document for more information on
the contents of the return message.

Request message:

access_req req
unsigned_16 sect_id

The sect_id field indicates the overlay section the information is being requested of.

Return message:

unsigned_16 segment
unsigned_32 size

The segment field contains the segment value where the overlay section is loaded (or would be loaded if
it was brought into memory). The size field gives the size, in bytes, of the overlay section. If there is no
section for the given id, the segment field will be zero.

3.3 REQ_OVL_READ_STATE (2)

Request to read the overlay table state. This request maps onto the overlay manager’s
GET_OVERLAY_STATE request. See the Overlay Manager Interface document for more information on

The Requests 29

the contents of the return message. The size of the returned data is provided by the
REQ_OVL_STATE_SIZE trap file request.

Request message:

access_req req

Return message:

bytes data

The data field contains the overlay state information requested.

3.4 REQ_OVL_WRITE_STATE (3)

Request to write the overlay table state. This request maps onto the overlay manager’s
SET_OVERLAY_STATE request. See the Overlay Manager Interface document for more information on
the contents of the return message.

Request message:

access_req req

bytes data

The data field contains the overlay state information to be restored.

Return message:

NONE

3.5 REQ_OVL_TRANS_VECT_ADDR (4)

Request to check if the input overlay address is actually an overlay vector. This request maps onto the
overlay manager’s TRANSLATE_VECTOR_ADDR request. See the Overlay Manager Interface
document for more information on the contents of the messages.

Request message:

access_req req
ovl_address ovl_addr

The ovl_addr field contains the overlay address. The ovl_addr field is defined as follows:

The Requests 30

typedef struct {
addr32_ptr mach;
unsigned_16 sect_id;

}

The mach field is the machine address. The sect_id field stores the number of entries down in the
overlay stack.

Return message:

ovl_address ovl_addr

The translated address will be returned in the ovl_addr field. If the address is not an overlay vector, then
the input address will be returned and the section_id field will be zero.

3.6 REQ_OVL_TRANS_RET_ADDR (5)

Request to check if the address is the overlay manager parallel return code. This request maps onto the
overlay manager’s TRANSLATE_RETURN_ADDR request. See the Overlay Manager Interface
document for more information on the contents of the messages.

Request message:

access_req req
ovl_address ovl_addr

Return message:

ovl_address ovl_addr

The translated address will be returned in the ovl_addr field. If the address is not an parallel return code,
then the input address will be returned and the section_id field in the structure ovl_addr will be zero.

3.7 REQ_OVL_GET_REMAP_ENTRY (6)

Request to check if the overlay address needs to be remapped. This request maps onto the overlay
manager’s GET_MOVED_SECTION request. See the Overlay Manager Interface document for more
information on the contents of the messages.

Request message:

access_req req
ovl_address ovl_addr

The ovl_addr field contains the overlay address.

Return message:

The Requests 31

unsigned_8 remapped
ovl_address ovl_addr

If the address gets remapped the remapped field will return one. The remapped address will be returned
in the ovl_addr field. The input address will be unchanged if the address has not been remapped.

4 Thread requests

This section descibes requests that deal with threads. These requests are actually performed by the core
request REQ_PERFORM_SUPPLEMENTARY_SERVICE and appropriate service id. The following
descriptions do not show do not show that "prefix" to the request messages.

The service name to be used in the REQ_GET_SUPPLEMENTARY_SERVICE is "Threads".

4.1 REQ_THREAD_GET_NEXT (0)

Request to get next thread.

Request message:

access_req req
unsigned_32 thread

The thread contains the either a zero to get information on the first thread, or the value of the thread

field in the return message of a previous request.

Return message:

unsigned_32 thread
unsigned_8 state

The thread field returns the thread ID. There are no more threads in the list, it will contain zero. The
state field can have two values:

THREAD_THAWED = 0
THREAD_FROZEN = 1

4.2 REQ_THREAD_SET (1)

Request to set a given thread ID to be the current thread.

Request message:

access_req req
unsigned_32 thread

The Requests 32

The thread contains the thread number to set. If it’s zero, do not attempt to set the thread, just return the
current thread id.

Return message:

trap_error error
unsigned_32 old_thread

The old_thread field returns the previous thread id. If the set fails, the err field will be non-zero.

4.3 REQ_THREAD_FREEZE (2)

Request to freeze a thread so that it will not be run next time when executing the task program.

Request message:

access_req req
unsigned_32 thread

The thread contains the thread number to freeze.

Return message:

trap_error err

If the thread cannot be frozen, the err field returns non zero value.

4.4 REQ_THREAD_THAW (3)

Request to allow a thread to run next time when executing the program.

Request message:

access_req req
unsigned_32 thread

The thread contains the thread number to thaw.

Return message:

trap_error err

If the thread cannot be thawed, the err field returns non zero value.

The Requests 33

4.5 REQ_THREAD_GET_EXTRA (4)

Request to get extra information about a thread. This is arbitrary textual data which the debugger merely
displays in its thread window. The trap file can place any information in the return message which it feels
would be useful for the user to know.

Request message:

access_req req
unsigned_32 thread

The thread field contains the thread ID. A zero value means to get the title string for the thread extra
information. This is displayed at the top of the thread window.

Return message:

string extra

The extra information of the thread will be returned in extra field.

5 RFX requests

This section deals with requests that are only used by the RFX program. These requests are actually
performed by the core request REQ_PERFORM_SUPPLEMENTARY_SERVICE and appropriate service
id. The following descriptions do not show do not show that "prefix" to the request messages.

The service name to be used in the REQ_GET_SUPPLEMENTARY_SERVICE is "RFX".

5.1 REQ_RFX_RENAME (0)

Request to rename a file on the debuggee’s system.

Request message:

access_req req

string from_name

string to_name

The file whose name is indicated by the field from_name will be renamed to the name given by the field
to_name

Return message:

The Requests 34

trap_error err

If error has occurred, the err field will return the error code number.

5.2 REQ_RFX_MKDIR (1)

Request to create a directory on the debuggee’s system.

Request message:

access_req req

string dir_name

The dir_name field contains the name of the directory to be created.

Return message:

trap_error err

If error has occurred when creating the directory, the err field will return the error code number.

5.3 REQ_RFX_RMDIR (2)

Request to remove a directory on the debuggee’s system.

Request message:

access_req req

string dir_name

The dir_name field contains the name of the directory to be removed.

Return message:

trap_error err

If error has occurred, the err field will return the error code number.

5.4 REQ_RFX_SETDRIVE (3)

Request to set the current drive on the debuggee’s system.

Request message:

The Requests 35

access_req req
unsigned_8 drive

The drive field contains the drive number to be set on the debuggee’s system.

Return message:

trap_error err

If error has occurred, the err field will return the error code number.

5.5 REQ_RFX_GETDRIVE (4)

Request to get the current drive on the debuggee’s system.

Request message:

access_req req

The req field contains the request.

Return message:

unsigned_8 drive

The drive field returns the current drive number on the debuggee’s system.

5.6 REQ_RFX_SETCWD (5)

Request to set a directory on the debuggee’s system.

Request message:

access_req req

string dir_name

The dir_name field contains the name of the directory to be set.

Return message:

trap_error err

If error has occurred, the err field will return the error code number.

The Requests 36

5.7 REQ_RFX_GETCWD (6)

Request to get the current directory name on the debuggee’s system.

Request message:

access_req req
unsigned_8 drive

The drive field contains the target drive number.

Return message:

trap_error err

string dir_name

The dir_name field contains the name of the directory to be set. If error has occurred, the err field will
return the error code number.

5.8 REQ_RFX_SETDATETIME (7)

Request to set the date and time information on the debuggee’s system.

Request message:

access_req req
trap_fhandle handle
time_t time

The handle contains the file handle. The time field follows the UNIX time format. The time represents
the time since January 1, 1970 (UTC).

Return message:

NONE

5.9 REQ_RFX_GETDATETIME (8)

Request to get the date and time information on the debuggee’s system.

Request message:

access_req req
trap_fhandle handle

The Requests 37

The handle contains the file handle.

Return message:

time_t time

The time field follows the UNIX time format. The time represents the time since January 1, 1970 (UTC).

5.10 REQ_RFX_GETFREESPACE (9)

Request to get the amount of free space left on the drive.

Request message:

access_req req
unsigned_8 drive

The drive field contains the target drive number.

Return message:

unsigned_32 size

The size field returns the number of bytes left on the drive.

5.11 REQ_RFX_SETFILEATTR (10)

Request to set the file attribute of a file.

Request message:

access_req req
unsigned_32 attribute

string name

The name field contains the name whose attributes are to be set. The attribute field contains the new
attributes of the file.

Return message:

trap_error err

If error has occurred, the err field will return the error code number.

The Requests 38

5.12 REQ_RFX_GETFILEATTR (11)

Request to get the file attribute of a file.

Request message:

access_req req

string name

The name field contains the name to be checked.

Return message:

unsigned_32 attribute

The attribute field returns the attribute of the file.

5.13 REQ_RFX_NAMETOCANNONICAL (12)

Request to convert a file name to its canonical form.

Request message:

access_req req

string file_name

The file_name field contains the file name to be converted.

Return message:

trap_error err

string path_name

If there is no error, the err field returns a zero and the full path name will be stored in the path_name

field. When an error has occurred, the err field contains an error code indicating the type of error that has
been detected.

5.14 REQ_RFX_FINDFIRST (13)

Request to find the first file in a directory.

Request message:

The Requests 39

access_req req
unsigned_8 attrib

string name

The name field contains the name of the directory and the attrib field contains the attribute of the files to
list in the directory.

Return message:

trap_error err

dta info

If found, the err field will be zero. The location and information of about the first file will be in the
structure info. Definition of the structure dta is as follows:

typedef struct dta {
struct {

char i_dunno[13];
unsigned int dir_entry_num;
unsigned int cluster;
char i_still_dunno[4];

} dos;
char attr;
unsigned int time;
unsigned int date;
long size;
char name[14];

} dta;

5.15 REQ_RFX_FINDNEXT (14)

Request to find the next file in the directory. This request should be used only after
REQ_RFX_FINDFIRST.

Request message:

access_req req

dta info

The req field contains the request. The info field contains the dta returned from the previous
REQ_FIND_NEXT or REQ_FIND_FIRST.

Return message:

trap_error err

dta info

The Requests 40

The info field is the same as in REQ_FIND_FIRST.

5.16 REQ_RFX_FINDCLOSE (15)

Request to end the directory search operation.

Request message:

access_req req

The req field contains the request.

Return message:

trap_error err

If successful, the err field will be zero, otherwise the system error code will be returned.

The Requests 41

System Dependent Aspects

Every environment has a different method of loading the code for the trap file and locating the TrapInit,
TrapRequest, and TrapFini routines. This section descibes how the WATCOM debugger performs these
operations for the various systems.

1 Trap Files Under DOS

A trap file is an "EXE" format file with the extension ".TRP". The debugger searches the directories
specified by the PATH environment variable. Once found, it is loaded into memory and has the normal
EXE style relocations applied to the image. Then the lowest address in the load image (NOTE: not the
starting address from EXE header information) is examined for the following structure:

typedef struct {
unsigned_16 signature; /* == 0xDEAF */
unsigned_16 init_off;
unsigned_16 acc_off;
unsigned_16 fini_off;

} trap_header;

If the first 2 bytes contain the value 0xDEAF, the file is considered to be a valid trap file and the
init_off, acc_off, and fini_off fields are used to obtain the offsets of the TrapInit, TrapRequest, and
TrapFini routines repectively.

The starting address field of the EXE header should be set to point at some code which prints out a
message about not being able to be run from the command line and then terminates.

2 Trap Files Under OS/2

A trap file is a normal OS/2 1.x DLL. The system automatically searches the directories specified by the
LIBPATH command in the CONFIG.SYS file. Once loaded, the WATCOM debugger uses export ordinal
1 from the DLL for TrapInit, export ordinal 2 for TrapFini and export ordinal 3 for TrapRequest. Some
example code follows:

System Dependent Aspects 42

rc = DosLoadModule(NULL, 0, trap_file_name, &dll_module);
if(rc != 0) {

return("unable to load trap file");
}
if(DosGetProcAddr(dll_module, "#1", &TrapInit) != 0
|| DosGetProcAddr(dll_module, "#2", &TrapFini) != 0
|| DosGetProcAddr(dll_module, "#3", &TrapRequest) != 0) {

return("incorrect version of trap file");
}

3 Trap Files Under Windows.

A trap file is a normal Windows DLL. The system automatically searches the directories specified by the
PATH environment variable. Once loaded, the WATCOM debugger uses export ordinal 2 from the DLL
for TrapInit, export ordinal 3 for TrapFini and export ordinal 4 for TrapRequest. Some example code
follows:

dll = LoadLibrary(trap_file_name);
if(dll < 32) {

return("unable to load trap file");
}
TrapInit = (LPVOID) GetProcAddress(dll, (LPSTR)2);
TrapFini = (LPVOID) GetProcAddress(dll, (LPSTR)3);
TrapRequest = (LPVOID) GetProcAddress(dll, (LPSTR)4);
if(TrapInit == NULL || TrapFini == NULL || TrapRequest == NULL) {

return("incorrect version of trap file");
}

4 Trap Files Under Windows NT.

A trap file is a normal Windows NT DLL. The system automatically searches the directories specified by
the PATH environment variable. Once loaded, the WATCOM debugger uses export ordinal 1 from the
DLL for TrapInit, export ordinal 2 for TrapFini and export ordinal 3 for TrapRequest. Some example code
follows:

dll = LoadLibrary(trap_file_name);
if(dll < 32) {

return("unable to load trap file");
}
TrapInit = (LPVOID) GetProcAddress(dll, (LPSTR)1);
TrapFini = (LPVOID) GetProcAddress(dll, (LPSTR)2);
TrapRequest = (LPVOID) GetProcAddress(dll, (LPSTR)3);
if(TrapInit == NULL || TrapFini == NULL || TrapRequest == NULL) {

return("incorrect version of trap file");
}

System Dependent Aspects 43

5 Trap Files Under QNX

A trap file is a QNX load module format file with the extension ".trp" and whose file permissions are not
marked as executable. The debugger searches the directories specified by the WD_PATH environment
variable and then the "/usr/watcom/wd" directory. Once found, it is loaded into memory and has the
normal loader relocations applied to the image. Then the lowest address in the load image (NOTE: not the
starting address from load module header information) is examined for the following structure:

typedef struct {
unsigned_16 signature; /* == 0xDEAF */
unsigned_16 init_off;
unsigned_16 acc_off;
unsigned_16 fini_off;

} trap_header;

If the first 2 bytes contain the value 0xDEAF, the file is considered to be a valid trap file and the
init_off, acc_off, and fini_off fields are used to obtain the offsets of the TrapInit, TrapRequest, and
TrapFini routines repectively.

The starting address field of the load image header should be set to point at some code which prints out a
message about not being able to be run from the command line and then terminates.

6 Trap Files Under Netware 386 or PenPoint

The trap file routines are linked directly into the remote server code and TrapInit, TrapRequest, TrapFini
are directly called.

System Dependent Aspects 44

