Watcom FORTRAN 77

Language Reference

Edition 11.0c

Notice of Copyright

Copyright 00 2000 Sybase, Inc. and itssubsidiaries. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of Sybase, Inc. and its subsidiaries.

Printed in U.S.A.

Preface

Watcom FORTRAN 77 is an implementation of the American National Standard
programming language FORTRAN, ANSI X3.9-1978, commonly referred to as FORTRAN
77. Thelanguage level supported by Watcom FORTRAN 77 compilers includes the full
language definition as well as significant extensions to the language. Watcom FORTRAN 77
compilers are based upon some well known FORTRAN language compilers, namely the
University of Waterloo’s WATFOR and WATFIV-S compilers (implementations for the
International Business Machines 370 series) and the WATFOR-11 compiler (an
implementation for the Digital Equipment PDP11).

This manual describes the language level supported by Watcom FORTRAN 77 including
extensions to the standard language. Shaded areas in the book denote a Watcom FORTRAN
77 language extension. Occasionally, where an entire section or chapter deals with alanguage
extension, the text may not be shaded. Users should note that extensions which are supported
by this compiler may not be supported by other compilers. We leave the choiceto use a
particular extension to the discretion of the programmer.

An accompanying manual, the User’ s Guide, contains system specific topics such as how to
run the software on your system, file system support, compiler options, etc.

Acknowledgements

This book was produced with the Watcom GML electronic publishing system, a software tool
developed by WATCOM. Inthis system, writers use an ASCI| text editor to create source
files containing text annotated with tags. These tags label the structural elements of the
document, such as chapters, sections, paragraphs, and lists. The Watcom GML software,
which runs on avariety of operating systems, interprets the tags to format the text into aform
such asyou see here. Writers can produce output for avariety of printers, including laser
printers, using separately specified layout directives for such things as font selection, column
width and height, number of columns, etc. The result istype-set quality copy containing
integrated text and graphics.

Much of the information contained in this document was taken from the ANSI publication
"American National Standard Programming Language FORTRAN, ANSI X3.9-1978". We
recommend that anyone who isinterested in the definitive description of FORTRAN 77
obtain a copy of thisdocument. Their addressis. American National Standards Institute, Inc.,
1430 Broadway, New Y ork, New York, U.S.A. 10018.

September, 2000.

Table of Contents

LanNQUAEgE REFEIEINCEoiuiieieeeieee ettt e e ettt b e b b s ae b b e

1 FORTRAN Source Program FOMMELccccvrerimininiiieese e
1.1 CharaCler SELocvceirieirieerere et bbb

1.2 Extended CharaCler SELccooeereirieerieereese et

1.3 S0Urce Program FOMMELcoceeeierininese s

1.3.1 COMMENE LINE ..o

1.3.2 Debug Line (Extension)

L.3.3INIIA LINE e
1.3.4 ContinUaLioN LiNEccverireerireerereerereeereee e ere e
1.3.5 Significance of the Blank Character ...
1.3.6 Significance of Lower Case Characters (Extension)cccc......
137 EXAMPIES .o
1.4 Order of FORTRAN Statements and LinesScccoeevennenneneienieicneenee

2 FORTRAN Statements.....cccccceeevevveeeeevinnes

2.1 Classifying StAEMENEScceveeeececere s e

2.2 FORTRAN Statement Summary

2.3 ADMIT SEAEMENL ..vecviirieiicriere ettt sre b e e reereesreennas
24 ALLOCATE SEAEIMENT ...vecvvecriciectecee ettt ettt sre et sre b v ne e
2.5 Statement Label Assignment (ASSIGN) Statementccoocevevereeieeieniennene
2.6 AT END SEAEMENT ...ocviivieiiieiecie ettt st st srre b e sre e sre s
2.7 BACKSPACE StAEMENEvoiviceieciieie ettt sttt svee e s
2.8 BLOCK DATA SAEMENL ...oooveereieiecriciecte ettt see st st sbe et sre s
2.9 CALL SEAEMENT ...ttt et eee e et e et e e eaee e ebeeeeanreeeenes
N O N 7 N i = =11 |
2.11 CHARACTER StateMENT ...oceeiveeieeteciecteecreeeeste et

2.11.1 Standard CHARACTER Statementccceevvveevereesieseenresieensens

2.11.2 Extended CHARACTER Statement: Data Initialization
2.12 CLOSE SEAEMENE ...ecviivierictiecre e ettt st sae e besreesbesreesbeeaeesreeneesreennes
2.13 COMMON SEALEMENLvecveericeieetieee ettt s stesee e seesbeesbesbeeresreeseenes
2.14 COMPLEX SEAEIMENT ...vocvvicviciecieeie ettt st sre et s ne s

2.14.1 Standard COMPLEX Statementccccceveeveeeeiecreeceeereesreevee e

2.14.2 Extended COMPLEX Statement: Length Specification

2.14.3 Extended COMPLEX Statement: Data Initialization
2. 15 CONTINUE SEAEMENTooeieeeeeeee ettt eeeee e tee s e ree e saeee e eneeeean
A SN ORI S 7 (= 111 | SR
2.17 DATA SEAEMENL .vecviciieiicteete ettt be b be b e sresaeesreeneesreennes
2.18 DEALLOCATE StAtBMENTeoiveeiecriciectiere ettt
2.19 DIMENSION SEAtEMENTveiveeviiiietecieete ettt st st be e ere s
A O DI @ IS ¥ (= 111 o | AT

2.20.1 Standard DO Statement

~N~NOoOouuoa bbb wWW =

©

13
14
18
21
22
24
26
28
30
30
33

36
39
39
39
41
42
43

49
51
52
52

Table of Contents

2.20.2 Extended DO SEAEMENEccveeveeevicricieciecee et 52
2.20.3 Description of DO StAEMENEcoeveiieieeeie e 53
2.21 DOUBLE COMPLEX StateBMENtccccecveereirierieieiiecieeiecreseeeeee e 58
2.21.1 Simple DOUBLE COMPLEX Statementc.cccccevveeeveeerueennns 58
2.21.2 DOUBLE COMPLEX Statement: Data Initidization 59
2.22 DOUBLE PRECISION StateMENtveeeeeeeeeeee e 60
2.22.1 Standard DOUBLE PRECISION Statementcccceeveveeieennenen. 60

2.22.2 Extended DOUBLE PRECISION Statement: Data
INITAlIZALTION ..iveciiceece e e e 61
2.23 DO WHILE StAEMENE ...vecvvecriceieeiecee ettt sttt ere e sre e e 62
A S S v 10 1 | AP 64
2.25 ELSE |F SLAEMENE ..oviivvericeiicte ettt st sae st este bt sbeenessre e 65
2.26 END SEAEMENL ...ocviiviiieciecee ettt sttt st ee s s eessbeesaesaeas 67
2.27 END AT END SEAEEMENE ..voveeviieiecticeecte ettt sttt ere s 69
2.28 END BLOCK StAEMENToecveeviieieeticeecte ettt sttt sre s 70
2.29 END DO SLAEMENT ...ttt et e eeveeeeenee e eaee e sveeeeenreeens 71
2.30 ENDFILE SAEMENL ...ocviivierictieciecee ettt sttt ere e s 72
2.31 END GUESS StAEMENEveiviereciierecieeereeee ettt s sre et ssresresnnesneenns 74
2.32 END IF SEGEMENT ..ocviiviericeiecre ettt ebe e be e sre s 75
2.33 END LOOP SEAEMENT ...vecvvericereereeeecreeere e stesee e saesreetesreentesreesesreesesnns 76
2.34 END MAP SEAEMENT ..c.veiveeviceieciecee ettt sttt eve et sreeneens 77
2.35 END SELECT SAEMENT ...oovveiiciecticeecrecte et sttt s sre s 78
2.36 END STRUCTURE StAtEMENLccceiviiiieieeeeeeeeeeeeeee et 79
2.37 END UNION SEAEMENEocvecveeveeieerietecie ettt sttt e e ereenas 80
2.38 END WHILE StAEMENT ...t 81
2.39 ENTRY SEAEMENL ..ooviivieiiieieete ettt st see st sree b eaessre e s sre e 82
240 EQUIVALENCE StAEMENt ...ccveoeeireieeireeee ettt ere e sreene e 84
241 EXECUTE StAEMENE ..ccviiveericirecieeee ettt sre st sbe e b enesreeneens 87
242 EXIT SEAEMENT ..oocviceiieieceecte ettt be et sbeer e sreesnesreesresneas 88
243 EXTERNAL SEAEMENE ..ocviivieiectieie ettt sttt be e ere s 89
244 FORMAT SEAEMENL ...ecvicveeiicrieeie ettt ettt ste e sbesreesbeeneesbesnnesreenneenes 90
2.45 FUNCTION SEAEMENT ...ocvvicviciectieieceete ettt sre et v nre s 91
2.45.1 Standard FUNCTION Stafementcccceceeeeeiiieiecieieeceecieeeeenens 91
2.45.2 Extended FUNCTION Statementccccceeveeeeieiereereeeeieeieeeeeenens 92
2.46 Unconditional GO TO Statementccccceieeeeieere e 94
2.47 Computed GO TO SEAEMENEoereeirieerieerieereesees e 95
248 Assigned GO TO StatemMeNtccoceveveereereeereeesesese e e e s e e seeseeneenes 96
2.49 GUESS SEAEMENL ...ecviivieiicteecre ettt sttt st be e sbesree b e ereesreenresreennas 98
2.50 Arithmetic IF SLAEMENEccveeiveiieereceece ettt be s 99
251 Logica IF StaeMENtc.cceeveeieeeeee e e 100
2.52 BIOCK IF SEALEMENEooveiiieeceeereeceeee ettt ettt et ere e sare e 102
2.52.1 Standard Block |F Statementccceeveeeeieeeee i 102

Vi

Table of Contents

2.52.2 Extended Block IF Statementcccoeevverenennenneneseneseseeeene 102
2.53 IMPLICIT SEAEMENL ...cueiiereceeirerieieresesieiee et ebe e 104
2.53.1 Standard IMPLICIT Statementccceeeeerererenerineneee e 104
2.53.2 Extended IMPLICIT StAEMENtccocorerverererieereeeseee e 104
2533 IMPLICIT NONE Stalementc.cccovceveeenereenenieneeeese e 105
2.53.4 Description of IMPLICIT Statementcccoeevereeneieneienieeneene 105
2.54 INCLUDE SEBEMENTovrerereereerereeresrereee s sesnens 108
2.55 INQUIRE SEALEMENTcoovrevereiresrereisesiereee e 109
2551 INQUIRE DY FILE ..o 109
2552 INQUIRE DY UNIT .ottt 110
2553 INQUITY SPECITIENS ..oeiiiieeeee e 110
2.55.4 Definition Status of Specifiers- Inquireby Fileccccceeeee. 115
2.55.5 Definition Status of Specifiers- Inquire by Unitccccoveeeee. 116
2.56 INTEGER SEEEEMENT ...c.oeeereiererieieeses ettt 118
2.56.1 Standard INTEGER StaemMenNtcccoevernenneneneneeenee e 118
2.56.2 Extended INTEGER Statement: Length Specification 118
2.56.3 Extended INTEGER Statement: Data Initialization 120
2.57 INTRINSIC SEAEMENT .c.eveeiereeeesere et 121
2.58 LOGICAL SEBEMENEoeiveeeeirerieieeresiereese s tese e 122
2.58.1 Standard LOGICAL Statementccccoveeenenneeenereneeeeeneseenenene 122
2.58.2 Extended LOGICAL Statement: Length Specification 122
2.58.3 Extended LOGICAL Statement: Data Initiaization 124
2.59 LOOP SEELEMENeouieieiiiieririeeeseresietesesesie e sesbsie e bbb ses 125
2.60 MAP SEAEEIMENLceeiererieieersiee ettt sene s 126
2.61 NAMELIST SEA@MENT ...cceieieieeeeeeeere e 127
2.62 OPEN SEEEEMENT ..veieeieeieecreeieee st sesie e ess e es e senene s 131
2.63 OTHERWISE SEAEMENToovvvereeiirerrereineneereenese e 136
2.64 PARAMETER SEEEMENToovovireiiiiierereseeee s 137
2.65 PAUSE SEAEMENTooveeeiiiiieeeeese e 138
2.66 PRINT SEAEMENTovvieeeiiirieieeseres et 139
2.66.1 Standard PRINT SEEEMENtcccovereerneneerrenieenesesieeesesees 139
2.66.2 Extended PRINT SEtEMENtccoveeeerererieenerenieese s 139
2.66.3 Description of PRINT Statementccooveieveieneieneieneneseennee 139
2.67 PROGRAM SEAEMENTcveeiieieieeresieie sttt 143
2.68 QUIT SLAEMENT ...c.eeieiieeeeeee e 144
2.6 READ SEAEMENTeoiieeeeiiceeee e 145
2.69.1 Standard READ SEAEMENEccvovvvreeriierenrereenese e 145
2.69.2 Extended READ StAEMENEcvvvrvrrerriereeierenesesrereesesee e 145
2.69.3 Description of READ Statementcccceveeevevinenieseseeseeenieenens 146
2. 70 REAL SEELEMENTvoiiieiiierieieieseses ettt 150
2.70.1 Standard REAL StAtementcccoveeeenreneennesieeeseseseeesesesens 150
2.70.2 Extended REAL Statement: Length Specificationc.ccceeeee 150

vii

Table of Contents

2.70.3 Extended REAL Statement: Data Initializationccccceeeneee. 152

2.71 RECORD SAEMENE ...cveveviieeeiiieiiieisieesieesesessesae s see e ssssessesessensssensess 153
2.72 REMOTE BLOCK StafemeNtcccviererrererrenesinseeseeesieesseesesessesesseseens 154
2. 73 RETURN SEAEMENT ...c.oiveveiieeiiiciiieisteest st senens 156
2. 74 REWIND SEAEMENT ...cevieieieeee et ee e et e e enee s 157
2.75 SAVE STAEMENT ..ottt 159
2.76 SELECT SEAEMENooviiiiiieiereeie ettt s seene e 161
2.77 STOP SEAEMENT ..ottt b e sre e 163
2.78 STRUCTURE StaLEMENEcceeireeririeririeisieesteesieesiesesseseeseseesesessessesessenes 164
2.79 SUBROUTINE SEEEEMENEovevieeiirieirieesieieiesesiesee s seesessssesseessenes 166
2.80 UNION SEAEMENT ...cvveveriereieieseeieseeiesieeseeeseeseseesesseessesessesessesessesessesessesens 167
2.8LUNTIL SEAEMENE ..veviieeieieieiereeeseeie et ste st se e sessesessenens 168
2.82 VOLATILE SAEMENE ...vevevvieieeiiciiieteseete e ssens 169
2.83 BIOCK WHILE SEAEMENLcvvveviiceiiieeisieeseesreeseee et 171
2.84 WHILE StAEMENLooiveeiiieeie ettt et e e et snneenneesnne e 172
2.85WRITE STAEMENToooviieieccee ettt sreesnee e 173
3 Names, Data Types and CONSLANLScccccveerrirrereseseeseseeseeseeeesessessesesessessessesnens 177
3.1 SYMDBOIIC NAIMES ..o re b e snens 177
B2 DA TYPES ...eeeveeeeeieeie ettt et r e b e st e e e resae e re e 178
3.3 DAaTYPE Of ANEME ..ot e e 179
34 CONSLANES ...eeieieieeiee ettt sttt ea e b st b e sae e s be et e saeseesaeeneesbeenresneans 180
3.4.11Nteger CONSLANESceeeiriiririiri e 180

3.4.2 REAl CONSLANLSoouvevireeieisiesiesiesieseeie e seeeeee e sse s sresee e see e nes 180

3.4.3 Double PreciSion CONSLANtccooveerereenieneneeseeneeneeneeseeseeeeeenens 181

3.4.4 CoMPIEX CONSLANEovveiiieiiecrierie e 182

3.4.5 Double Precision Complex Constant (EXtension)cccceeeeeenene. 182

3.4.6 Logical CONSLANEcccceeeereririeeresiesieses e e e see e 182

3.4.7 CharaCter CONSLANTccoveevveerieririreeeseee e nes 182

3.4.8 String Constant (EXLENSION)cccceveviieiieeiesieeese e 183

3.4.9 Hollerith Constants (EXtENSION)cccceerererienienieneeeeeeeeesieseeeens 183

3.4.10 Hexadecimal Constants (EXtENSION)ccccceeeveeienerienenenenieseenens 184

3.4.11 Octal Constants (EXLENSION)ccovveeereereeirieenieesiene e 184

3.5 SymbBOliC CONSLANEScoveiiiiirieeeie e 185
N = YA T PPN 187
0 1 g1 o [H o1 o] o PP PSP 187
4.2 Properti€S Of AITAYS ..ocuvceieieeieeeeeeieees s e st sre et e s e e e enenns 187
G N 4 - Y == 04T= 01 ¢ 189
4.4 Classifying Array Declarators by Dimension Declaratorcccccoveeevennenns 191
4.4.1 Constant Array DeClaratorccccceeervererienene e 191

4.4.2 Adjustable Array DeClaratorccocooeeeveienienenesesere e 191

viii

Table of Contents

4.4.3 Assumed-size Array DeClaratorcocoevenereeneieeneeienenene e 192

4.4.4 Allocatable Array DeClaratorocooeeerereeierienienenene e 193

4.5 Classifying Array Declarators by Array Nameccococvevvinninsenecnene 193

4.5.1 Actual Array DeClaratorccoccoveeenennennenee e 193

4.5.2 Dummy Array DECIaratorcoooorenrenirererenee e 193

4.6 USe Of Array NAIMES ...cvoiieiirieiirieerie ettt 194

5 CharaCter SUDSITINGS ...vovieiieieiiiise e seesieee e e ettt st sae e ae e enee e e e enesnenns 195
B5.LINFOJUCTION .ottt 195

5.2 SUDSIHNG NAMES ... e e 195

B3 EXIENSIONS ..ottt 196

6 Structures, Unions and RECOITScoceieiriiiiriiiniseseeee s 199
6.1 Structures and RECONScoeoiiuieriiiriireneseeeree et 199

6.2 ArrayS Of RECOITSc.ovvieiiiiirieerieste et 201

LG 0 1 0] 201

7 EXPIESSIONS ...uveueeueeuieieeteetestestestesteseessessessessessesessessessessesaessesseseessessensesesnsnsensessessessensens 205
7.1 ArithmetiC EXPrESSIONSccviueiieeiiiieiiisieseseeseeae e e e e ssesre e sne st tesnesneeas 205

7.1.1 ArithmetiC OPEraLOrSocveiverieieieieeeeeeeeee et 205

7.1.2 Rules for Forming Standard Arithmetic Expressionsc........ 207

7.1.3 Arithmetic Constant EXPressioncoeoeveereneneeiesiesiesesesesnens 208

7.1.4 Data Type of Arithmetic EXPressionscccoevevevereenecncieneens 210

7.2 CharaCter EXPreESSIONSceveiriiirieerieesieseeie et 211

7.2.1 CharaCter OPEratorsScoeereeerieerieirieesenesie e 211

7.2.2 Rules for Forming Character EXPressions ccccveeeveereeneeennns 211

7.2.3 Character Constant EXPreSSiONScccvvevvreerierieneeseesessesesesennens 212

7.3 Relational EXPreSSIONSc.ccveeeeeieeiesestestesestessesieseeseeeees e sse e snesne e seesrenean 212

7.3.1 Relational OPEratorsccccccvevieiieieeieeeeeseee s e st s sae e snens 213

7.3.2 Form of a Relational EXPreSSioNccoeverererieneenieneeieeesenennens 213

7.3.2.1 Arithmetic Relational EXPressionsccooeeevevenenieneens 213

7.3.2.2 Character Relational EXpressionsoccoeveveneeeeeieeene 213

7.4 LOQiCal EXPIESSIONScoveueiriiererieteseeteseete ettt seese s sse s b seereseene e 214
7.4.1L0OQICAl OPEFALOIS ...cooveeieeierieiirieierieesieesr et snenes 214

7.4.2 Rulesfor Forming Logical EXPreSsionsoccoeveeveerienenenenienens 217

7.4.3 Logica Constant EXPreSSiONScoeeveeereeenienesenesienese e 219

7.5 Evaluating EXPreSSIONScccccvvieieieieiseseseeseeseeseeseeeesesessessessessessessessessenees 219

7.6 CONStant EXPrESSIONSccvviveiieriiieieneeeeeeieeeeesessesresteseesteste e seensssaesaessssens 220

8 ASSIGNMENE SLALEMIENESevecieeiieiecieee ettt e re e e e ae e e ens 221
B.LINIrOTUCTION ..ottt 221

8.2 ArithmetiC ASSIGNIMENToouiiiiiiiiie e b 221

Table of Contents

8.3 L0giICal ASSIONMENTceieiiiieieeieee ettt e e eneas 222
8.4 Statement Label ASSIONMENT ... 222
8.5 CharaCter ASSIONMENTccecvirieireierteert et 224
8.6 Extended AsSignment SEAtEMENTccoeeeveeririnieereese e 225
9 Program Structure Control SEALEMENESccceereirieirereere e 227
Q.1 INEFOTUCTION .ottt 227
Q.21F - ELSE - END IF .ot 227
O.3ELSE IR ettt 229
9.4 DO - END DO ..ottt s 231
9.5 DO WHILE - END DO ...ttt 232
9.6 LOOP - END LOOP ..ottt sttt et 234
9.7 WHILE - END WHILE ..ottt 235
9.8 WHILE - Executable-Statementcoceverererereeieieeeeeeese e 235
LS T |V TR 236
9.10 SELECT - END SELECT ...t 237
9.11 EXECUTE and REMOTE BLOCK oovitiiiierieie s 241
9.12 GUESS-ADMIT-END GUESScccceiirirsrereenesre e 244
QLB QUIT ottt 246
QLA EXIT ettt bbb 248
QIS5 CY CLE et 249
.16 AT END oottt e bbb 251
9.17 Notes on Structured Programming Statementsccoceoeveereeneieneieneens 252
1O TNPUL/OULPUL ..ttt ettt 255
0 50 I 1 o [T 4o o 255
10.2 Reading @and WItINGccocveeriererieseseseeeeeseeeeeseee e ssese e re e seessesseneens 256
L0.3 RECOMIS ..oevreerierereeteie st 256
10.3.1 Formatted RECOIdcceirrieieineririeeesesieiee e 256

10.3.2 Unformatted RECOIcceirerrereerireeireeerieenieesise s 256

10.3.3 ENGfil@ RECOIAooveiieieieeeteeeteree e 257

LOA FIES ettt bbbt 257
10.4.1 EXEENEl FIlES ...ccooeieiiiiirieiceiresiete et 257

10.4.2 INLEINAl FIlES ..ottt e 259

08 T 261
10.6 SPECITIENS .ottt 262
10.6.1 The Unit SPECITIerccvveveeeeeeeceseee s 263

10.6.2 FOrmat SPECITIEN ...oveeeeeicecee e 263

10.6.3 RECOrd SPECITIEN ..ooviieecececeeeeec e 264

10.6.4 Input/Output Status SPECITIErcoeveiieieeee e 264

10.6.5 Error SPECITIEr ..o 265

10.6.6 End-0f-File SPeCITier ..o 265

Table of Contents

10.7 Printing of Formatted RECOIASccoceveiiriiieiereee e 265
I o 0= PSRRI 267
0 1 o [T o o SRS 267
11.2 The FORMAT SEEEMENTeoeeieieeeeeeceeee et enens 267
11.3 FORMAT as a Character EXPreSSionccccoeeverreninenieesieese e s 268
11.4 Format SPECITICALIONccvcveeiie e 269
11.5 Repeatable Edit DESCIIPLOISocvieiieieiereereeeeee et 270
11.6 Nonrepeatable Edit DESCIIPLOIScccvceieiisieiesesieie e 270
LL.7 EQIfING ottt 272
11.7.1 Apostrophe EQitingccocooererenieieree s 272
L11.7.2H EAItING wveiiieieieieresieie sttt 272
11.7.3 Positional Editing: T, TL, TR and X Editingc.cccveveveienenens 273
11.7.4 Sash EQItiNG ..cvoovierieeeeiriieerree e 273
11.7.5 COlON EAItING ..vevvevereeieieierieerieesieeeie sttt 274
11.7.6 S, SPand SSEAItiNGccccvvivverirererereieeeeeeses e 274
L11.7.7 PEAIIING oovveeereercreeneseeeer e 274
11.7.8 BN @nd BZ EGitiNGcccovvvereereriereireresreeeseseseesesesnereese e 275
11.7.9 $ or \ Editing (EXIENSION) ...covcveeerieeiereiesieieeeeseseseesesesasseeesnseenas 275
11.7.10 Numeric Editing: |, F, E, D and G Edit Descriptors 276
11.7.10.1 Integer Editing: Iw and lw.m Edit Descriptors 276

11.7.10.2 Floating-point Editing: F, E, D and G Edit
DESCIIPLOIS ...ttt 277
11.7.10.3 F EAItiNG c.covevceeeerieieeeeie et 277
11.7.10.4Eand D Editing ...ccoveeerereeieereneseeseee e 278
11.7.20.5 G EQItING w.vovvvoeeveeecreeeeeeeereesseseeesteesseeseeseessenseessnnenes 280
11.7.10.6 Complex EAItiNgccccevveeeeeeeererese e seese e 281
e I T = T T o o o 281
11.7.12 A Edit DESCIPLOT ..ocveiveieeieieseeeeteee et 282
11.7.13 Z Editing (EXENSION) ...ccvieeieeeee et 283
11.8 Format-Directed INPUL/OULPULcoerueieerieierie e 284
11.9 List-Directed FOrMAaLtiNGccoceerieriererere e 285
11.9.1 List-Directed INPULccooveeriiriineeeeeeeseeesee s 286
11.9.2 List-Directed OULPULc.covevireerireeierieerieerieeseeesieese e 287
11.10 Namelist-Directed Formatting (EXtENSION)c.cccoveineiinencnenenenesieen 287
11.10.1 Namelist-Directed Input (EXTENSION) ..ccovevereeiererieneeereeeseeeee 288
11.10.2 Namelist-Directed OULPULccveveeeeerereeereresese s seesieseeseens 290
12 FUNCLiONS 8N SUDFOULINEScveveuierieieeeseseeee st 291
T2, 1 INErOTUCTION ..ottt 291
12.2 Statement FUNCLIONScoviriieeiereerereer et 291
12.2.1 Referencing a Statement FUNCHIONc.ooiirininienecee e 293

Xi

Table of Contents

12.2.2 Statement FUNCtion RESLICHIONScoeviiinene e 294
123 INLHNSIC FUNCHIONS ...ttt 295
12.3.1 Specific Names and Generic Names of Intrinsic Functions 295
12.3.2 Type Conversion: Conversion t0 iNtegercccveeerererenerieennnne 297
12.3.3 Type Conversion: Conversion to realccccveeeveeereeecneeneneeneneenes 297
12.3.4 Type Conversion: Conversion to double precisioncce...... 298
12.3.5 Type Conversion: Conversion to Complexccccvevvevveriererennnns 298
12.3.6 Type Conversion: Conversion to double complexccccceueueee. 299
12.3.7 Type Conversion: Character conversion to integerc.coeveuee. 299
12.3.8 Type Conversion: Conversion to characterc.ccccocvvenienereenns 300
ARG B I (V10 o 1 o] o PO SRR 300
12.3.10 Nearest Whole NUMDBEr ... 301
12.3.11 Nearest INTEOESccveeeereeeeereeee s 301
12.3.12 ADSOIULE VEIUE ...t 301
12313 REMAINAEY ...ooeeieieiieeee ettt st seenean 302
12.3. 14 Transfer Of SIgN .o 303
12.3.15 POSItiVe DIffEreNnCeocoovireirnerenereere s 303
12.3.16 Double Precision ProduCtcccoeeveereninensenieese s 304
12.3.17 Choosing Largest ValUecccovvveeeieieiesie e 304
12.3.18 Choosing Smallest VAlUEcceceveeveieeiecereeese e 305
12319 LENGEN v e 305
12.3.20 Length Without Trailing Blanksccccooeiiiinineniieeeeens 306
12.3.21 Index of @ SUDSIIING ..oeovereeeireeeeriecreceree s 306
12.3.22 Imaginary Part of Complex NUMDErcccoovernennenreneeee 306
12.3.23 Conjugate of a Complex NUMDES ..o 307
12.3.24 SQUAIE ROOLooueiiiitirierieetee ettt 307
12.3.25 EXPONENLIAl ..c.ecveeeeeeeiecece et e s 308
12.3.26 Natural Logarithmccccceveveiceseceeeeese s 308
12.3.27 Common Logarithmccccoceiiie v 309
12.3.28 SINE ittt 309
R 2 N 00 = | L= SRS 310
R G (O 10 1= | SRS 310
12.3.31 COANGENLooveirirriirieriie et e 311
12.3.32 ATCSINE .oiiciieeeesiete ettt st sttt st 311
12.3.33 ATCCOSINEveveeveiereisteieseeseeieee et esesseseeseesaeseestesseseensenseneeneenens 312
12.3.34 ATCEANGENT ...oeeieiriiiiereee e e 312
12.3.35 HYPerboliC SINEooveeeeeeceeere e 313
12.3.36 HYperboliC COSINEcccecevierieicieeeeceees et 313
12.3.37 Hyperbolic Tangentccccoeveveneseseeeeeeeses e 314
12.3.38 GAaMMA FUNCLIONoeiieieieeeee e 314
12.3.39 Natural Log of Gamma FUNCLionccccceerenienenenenenenenens 314
12.3. 40 EXror FUNCHIONoviiiieieericeeee et 315

Xii

Table of Contents

12.3.41 Complement of Error FUNCLIONccooveieieniiee e
12.3.42 Lexicaly Greater Than or EQUalcccceveieiniineneneieeeeeeans
12.3.43 Lexically Greater Thanccccveerirnineinieeneereeseeeseeesees
12.3.44 Lexicaly Less Than or EQUalccccecereineineincneeeee
12.3.45 Lexicaly LESSThan ...t
12.3.46 Binary Pattern Processing Functions: Boolean AND
12.3.47 Binary Pattern Processing Functions: Boolean Inclusive OR ...
12.3.48 Binary Pattern Processing Functions: Boolean Exclusive OR ...
12.3.49 Binary Pattern Processing Functions: Boolean Complement ...
12.3.50 Binary Pattern Processing Functions: Logical Shift
12.3.51 Binary Pattern Processing Functions: Arithmetic Shift
12.3.52 Binary Pattern Processing Functions: Circular Shift
12.3.53 Binary Pattern Processing Functions: Bit Testingc.cccuevee.
12.3.54 Binary Pattern Processing Functions: Set Bitcccoceveneienee
12.3.55 Binary Pattern Processing Functions: Clear Bitc.ccccoeuneee
12.3.56 Binary Pattern Processing Functions: Change Bit
12.3.57 Binary Pattern Processing Functions: Arithmetic Shifts
GRS AN Lo o= (o [N - Y/
12.3.59 MemMOry LOCAHIONccevveeieierieieieeeeeteetese ettt s
12.3.60 Size of Variable or StruCtUreccocveeneeneieneneseseseeeeee
12.3.61 Volatile REFENENCEcocvvereierieecee s

12.4 EXTENGl FUNCHIONSeveeecieie ettt et et s s era e e st e e s saae s snnis

12.4.1 Referencing an External FUNCLIONcccocviivineieneicneeneeee
12.4.2 Actual Arguments for an External FUNCLIONccoccceveevcinienene
12.4.3 External Function Subprogram Restrictionscocccveeeveeeniencns

12.5 SUBIOULINES ...ttt ettt e et e s et e s st eeeetaeesenaeessaeessaseesserneesareees

12.5.1 Referencing a Subroutine: The CALL Statementcccceeeeeeeee.
12.5.2 Actual Argumentsfor a SUbroutingcccceceeveeeeeienienieseeseseieens
12.5.3 Subroutine Subprogram ReSIICLIONScccceveeveevecieinieceeeieieens

12.6 The ENTRY SEEEMENTocviiiiiiciiecereeeeeseresre e

12.6.1 ENTRY Statementsin External FUNctionsccccocevevceeeviveeenne
12.6.2 ENTRY Statement RESIICHIONScoocceeeivieieciee e

12.7 The RETURN SEBEMENTooviiiiiieiieete et

12.7.1 RETURN Statement in the Main Program (Extension)
12.7.2 RETURN Statement in Function Subprogramsc.cceceeeveenee
12.7.3 RETURN Statement in Subroutine Subprogramscceeeu.e.

12.8 SUbProgram ATQUIMENESccueeeereresresesieseesieseeseeseseeseesessessessessessessessens

12.8.1 DUMMY ATQUMENLSccvvieeeiiereesieeiesieeeesseesesneesseeeeseseesseesensees
12.8.2 Actual ATQUMENLES ...ccvecveeeveeeeeectee ettt st
12.8.3 Association of Actual and Dummy Argumentsccceceveennene
12.8.3.1 Length of Character Actual and Dummy Arguments
12.8.3.2 Variables as Dummy Argumentsccccoceeeerereneennenes

Xiii

Table of Contents

12.8.3.3 Arrays as Dummy Argumentsc.cceceeeeeveeneeneeseenens 336

12.8.3.4 Procedures as Dummy Argumentsccceeeveereneneenns 337

12.8.3.5 Asterisks as Dummy Argumentscoccoevereeereeeneenens 338

F N o] 1< 0o o= SO OSSPSR 339
A. Watcom FORTRAN 77 Extensions to Standard FORTRAN 77coveeivnrnienens 341

Xiv

Language Reference

Language Reference

1 FORTRAN Source Program Format

1.1 Character Set

The FORTRAN character set consists of twenty-six letters, ten digits, and thirteen special

characters.

The letters are:

ABCDEFGHI

Thedigitsare: 0 1 2 3 456 7 89

The special characters are:

Character Name of Character

+ 1

- N~~~ % 1

Blank

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

Decimal Point
Currency Symbol
Apostrophe
Colon

The FORTRAN character set is asubset of the character set of the computing system which

JKLMNOPQRSTUVWXYZ

you areusing. We shall refer to the larger character set as the processor character set.

Character Set

3

Language Reference

1.2 Extended Character Set

Watcom FORTRAN 77 aso includes the following special characters.

Character Name of Character

! Exclamation Mark
% Percentage Symbol
\ Back dash

1.3 Source Program Format

Watcom FORTRAN 77 supports one source program format. A FORTRAN program is
composed of lines. There are three types of lines; the comment line, the initial line, and the
continuation line.

1.3.1 Comment Line

Comment lines are denoted by placing a"C" or "*" in column one of the line. Watcom
FORTRAN 77 also allows the use of alowercase "c" asacomment indicator. Blank lines are
treated as comment lines. Comment lines may be placed anywhere in the program source
(i.e., they may appear before a FORTRAN statement, they may be intermingled with
continuation lines, or they may appear after a statement). There isno restriction on the
number of comment lines. Comment lines may contain any characters from the processor
character set.

Watcom FORTRAN 77 allows end-of-line comments. If a"!" character appearsin column 1
or anywhere in the statement portion of a source line, the remainder of that lineistreated asa
comment unlessthe "!" appears inside quotation marks or in column 6.

1.3.2 Debug Line (Extension)

Debug lines are denoted by placing a"D" or "d" in column one of the line. Debug lines
contain FORTRAN statements. Thereis no restriction on the number of debug lines.
Normally, the FORTRAN statements on debug lines are ignored by the compiler. Seethe
User’s Guide for information on activating debug statements.

4 Source Program Format

FORTRAN Source Program Format

1.3.3 Initial Line

Aninitial lineisthefirst line of a FORTRAN statement. Column 6 of this line must be blank
or contain the digit "0". A comment line can never be an initial line. Columns 1 through 5 of
aninitial line may contain a statement label. Statement labels are composed entirely of digits.
The statement label may be thought of as an integral number and, as such, leading O digits are
not significant. For example, the label composed of the digits "00123" is the same as the label
"123". The same label may not identify more than one statement in a programunit. A
program unit is a series of comment lines and FORTRAN statements ending inan END
statement. The body of the FORTRAN statement is entered starting in column 7 and stopping
at column 72. Column 73 and on is called the sequence field and isignored by the compiler.

1.3.4 Continuation Line

A statement may be continued on anew line. A continuation character is placed in column 6.
The continuation character may not be a blank character or a"0" character. FORTRAN 77
requires that the continuation character be selected from the FORTRAN character set but
Watcom FORTRAN 77 allows any character from the processor’ s character set. The
statement number field must be blank. The previous statement is continued on the new line,
starting in column 7 and continuing to column 72. Under the control of a compiler option,
Watcom FORTRAN 77 permits the source statement to extend to column 132.

FORTRAN 77 alows up to 19 continuation lines to continue a statement. Watcom
FORTRAN 77 extends this by allowing more than 19 continuation lines. A minimum of 61
continuation lines are permitted when the source statement ends at column 72. A minimum of
31 continuation lines are permitted when the source statement ends at column 132. The

maximum number of continuation lines depends on the sum of the lengths of all the
continuation lines.

1.3.5 Significance of the Blank Character
Except in the following cases, blank characters have no meaning within a program unit.
Q Character and Hollerith constants.
2 Apostrophe and H edit descriptors in format specifications.

For example, the symbolic name A B is the same as the symbolic name AB.

Source Program Format 5

Language Reference

1.3.6 Significance of Lower Case Characters (Extension)

Except in the following cases, lower case characters are treated as if they were the upper case
equivalent. ThisisaWatcom FORTRAN 77 extension to the usual rules of FORTRAN.

(1) Character and Hollerith constants.
(2 Apostrophe and H edit descriptors in format specifications.

Hence, TOTAL, total, and Tot al represent the same symbolic name and 3F10. 2 and
3f 10. 2 represent the same format edit descriptor.

1.3.7 Examples

6

Example:
C This and the following five Iines are comment |ines.
c The follow ng statenent "INDEX = INDEX + 2" has a
c statenent nunber and is continued by placing a "$"
c in colum 6.
* Col um Nunbers

*234567890
10 | NDEX = | NDEX
$+ 2

* The above blank lines are treated |ike comrent |ines.
The following example demonstrates the use of comment lines, blanks lines, and continuation

lines. We use the symbol "$" to denote continuation lines although any character other than a
blank or "0" could have been used.

Source Program Format

FORTRAN Source Program Format

Example:
* Fromthe quadratic equation
*
* 2
* ax +bx +c¢c =0
*
* we derive the followi ng two equati ons:
*
* + 12
* -b - \/ b - 4ac
* X = mmmm e e e e e e e e e m o
* 2a
*
*

and express these equations in FORTRAN as:

XL = (-B+ SQRT(B**2 - 4 * A* C))
$ (2*A)
X2 = (-B- SQRT(B**2 - 4 * A* C))
$ (2*A)

1.4 Order of FORTRAN Statements and Lines

Thefirst statement of a program unit may be a PROGRAM FUNCTI ON, SUBROUTI NE, or
BLOCK DATA statement. The PROGRAMSstatement identifies the start of amain program and
there may only be one of these in an executable FORTRAN program. Execution of a
FORTRAN program begins with the first executable statement in the main program. The
other statements identify the start of a subprogram. If the first statement of a program unit is
not one of the above then the program unit is considered to be amain program.

Although you may not be familiar with all of the terms used here, it isimportant that you
understand that FORTRAN 77 has specific rules regarding the ordering of FORTRAN
statements. Y ou may wish to refer to this section at later times. In general, the following
rules apply to the order of statements and comment lines within a program unit:

1. Commentlines and | NCLUDE statements may appear anywhere.

2. FORMAT statements may appear anywhere in a subprogram.

3. All specification statements must precede all DATA statements, statement function
statements, and executable statements.

4. All statement function statements must precede all executable statements.

Order of FORTRAN Statements and Lines 7

Language Reference

8

DATA statements may appear anywhere after the specification statements.

ENTRY statements may appear anywhere except between ablock | F statement and
its corresponding END | F statement, or between a DO statement and its
corresponding terminal statement. Watcom FORTRAN 77 extends these rules to
apply to al program structure blocks resulting from the use of statements
introduced to the language by Watcom FORTRAN 77 (e.g., WHI LE, LOOP,
SELECT).

| MPLI ClI T statements must precede all other specification statements, except
PARAMETER statements. A specification statement that defines the type of a
symbolic constant must appear before the PARAMETER statement that defines the
name and value of a symbolic constant. A PARAMETER statement that defines the
name and value of a symbolic constant must precede all other statements containing
areference to that symbolic constant.

The following chart illustrates the required order of FORTRAN statements. Vertica lines
delineate varieties of statements that may be interspersed, while horizontal lines mark
varieties of statements that may not be interspersed.

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA Statement
IMPLICIT
PARAMETER Statements
Comment ENTRY Statements Other
Lines Specification
and Statements
FORMAT Statement
INCLUDE Function
Statement Statements DATA Statements
Statements Executable
Statements
END Statement

Required Order of Comment Lines and Statements

For example, DATA statements may be interspersed with statement function statements and
executable statements but statement function statements must precede executabl e statements.

Order of FORTRAN Statements and Lines

2 FORTRAN Statements

2.1 Classifying Statements
The following table is a summary of Watcom FORTRAN 77 statement classification.
Column 1 indicates that the statement is a specification statement.
Column 2 indicates that the statement is not allowed as the terminal statement of a
DO-loop.
Column 3 indicates that the statement is not executable.
Column 4 indicates that the statement is not allowed as the object of alogical | F

or WVHI LE statement.

Column 5 indicates that the statement cannot have control of execution transferred to
it by using a statement label.

Column 6 indicates that the statement is allowed in a block data subprogram.
Statement 1 2 3 4 5 6
ADMIT * * *
ALLOCATE
ASSIGN
AT END * * *
BACKSPACE
BLOCK DATA * * * *

CALL

CASE * * *
CHARACTER * * * * * *
CLOSE

COM MON * * * * * *

Classifying Statements 9

Language Reference

Statement

COMPLEX
CONTINUE
CYCLE

DATA
DEALLOCATE
DIMENSION

DO

DOUBLE COMPLEX
DOUBLE PRECISION
DO WHILE

ELSE

ELSEIF

END

END AT END
END BLOCK

END DO
ENDFILE

END GUESS

END IF

END LOOP

END MAP

END SELECT
END STRUCTURE
END UNION

END WHILE
ENTRY
EQUIVALENCE
EXECUTE

EXIT

EXTERNAL
FORMAT
FUNCTION
assigned GO TO
computed GO TO
unconditional GO TO
GUESS

arithmetic IF

logical IF

block IF

* 0%k o X Ok X kX X X

* 0% kX X X X X X X

* % F X

*

E o S B R R B R

* 0% kX X X kX X X

L S I T R

10 Classifying Statements

FORTRAN Statements

Statement

IMPLICIT
INCLUDE
INQUIRE
INTEGER
INTRINSIC
LOGICAL
LOOP

MAP
NAMELIST
OPEN
OTHERWISE
PARAMETER
PAUSE
PRINT
PROGRAM
QUIT

READ

REAL
RECORD
REMOTE BLOCK
RETURN
REWIND
SAVE
SELECT
STOP
STRUCTURE
SUBROUTINE
UNION
UNTIL
VOLATILE
WHILE
WRITE

L T I *

* X * X *

L T A T

L T I *
* *
* *

*
*

*

* % %k X * X
* % F X %
*

Classifying Statements

11

Language Reference

2.2 FORTRAN Statement Summary

The following sections describe each FORTRAN 77 statement. The statement descriptions
are organized alphabetically for quick reference. The syntax models for each statement are
presented in shaded or unshaded boxes. The unshaded box denotes a standard FORTRAN 77
statement. The shaded box denotes a Watcom FORTRAN 77 extension to the language.
Users should note that extensions which are supported by this compiler may not be supported
by other compilers. We leave the choice to use a particular extension to the discretion of the
programmer.

In the following sections the use of square brackets ([]) denotes items which may be

optionally specified. The use of the ellipsis(...) denotes items which may be repeated as often
as desired.

12 FORTRAN Statement Summary

FORTRAN Statements

2.3 ADMIT Statement

ADM T

The ADM T statement is used in conjunction with the structured GUESS statement. The
ADM T statement marks the beginning of an aternative block of statements that are executed
if aQUI T statement is executed in a previous GUESS or ADM T block.

Example:
* Assume i ncorrect sex code
GUESS
IF(SEX .EQ "F YQUIT
IF(SEX .EQ "M YQUIT
PRINT *, "Invalid sex code encountered’
CALL | NVSEX(SEX)
* Wong assunption - sex code is fine
ADM T
END GUESS

For more information, see the chapter entitled "Program Structure Control Statements' on
page 227.

ADMIT Statement 13

Language Reference

2.4 ALLOCATE Statement

ALLOCATE (array([l:Ju[,[l:]Ju,...1)[,...]1[,LOCATI ON=Il oc])
or

ALLOCATE (array([l:]Ju[,[l:]Ju,...])[,...][,STAT=ierr])
or

ALLOCATE (char*1 en)

where:

array isthe name of an allocatable array.

I isan integer expression that sets the lower bound of the array dimension.
u is an integer expression that sets the upper bound of the array dimension.
char is the name of an allocatable character variable.

len isan integer expression that sets the length of the character variable.

LOCATION =loc
| oc isaninteger expression that specifies the location of the allocated memory.

STAT =ierr
i err isan allocation status specifier. Theinteger variable or integer array
element i err isdefined with O if the allocation succeeded, 1 if the allocation
failed, and 2 if the array is already allocated. The STAT= specifier may not be
used with the LOCATI ON= specifier.

Allocatable arrays and character variables may be dynamically alocated and deall ocated at

execution time. An array must have been declared allocatable by specifying its dimensions
using colons only. No array bounds are specified.

14 ALLOCATE Statement

FORTRAN Statements

Example:
DI MENSI ON A(:), B(:,:)

In the above example, A isdeclared to be a one-dimensional allocatable array and B is
declared to be atwo-dimensional allocatable array.

A character variable must have been declared allocatable by specifying its size as (*).

Example:
CHARACTER C*(*)

For an allocatable array, the ALLOCATE statement establishes the lower and upper bounds of
each array dimension and cal cul ates the amount of memory required for the array.

For an allocatable character variable, the ALLOCATE statement establishes the number of
charactersin the character variable and thus the size of the character variable.

If thereisno LOCATI ON= specifier, it then attempts to dynamically alocate memory for the
array or character variable. The success of the allocation can be checked by using the STAT=
specifier.

If thereisa LOCATI ON= specifier, the expression in the specification is evaluated and that
value is used as the address of the array or character variable. This permits the programmer to
specify a substitute memory alocator or to map the array or character variable onto afixed
memory location.

Example:
DI MENSI ON A(:), B(:,:)

ALLOCATE(A(N))
ALLOCATE(B(0:4,5))

More than one allocatable array or character variable may appear in an ALLOCATE statement,
separated by commas.

ALLOCATE Statement 15

Language Reference

Example:
DI MENSI ON A(:), B(:,:)

ALLOCATE(A(N), B(O:4,5))

If the allocation fails and the STAT= specifier was not used, an execution-time error occurs.
If the STAT= specifier is used, the specified variable returns a zero value if the allocation
succeeded, and a non-zero value if the allocation failed.

Example:
DI MENSI ON A(:), B(:,:)

ALLOCATE(A(N), B(0:4,5), STAT=IALLCC)
IF(1ALLOC .NE. 0) PRINT *, 'Allocation failure’

An attempt to allocate a previously allocated array or character variable resultsin an
execution-time error. |f the LOCATI ON= specifier was not used, the array or character
variable must be deallocated first before it can be allocated a second time (see the
DEALL OCATE statement).

An absolute memory location may be specified using the LOCATI ON= specifier.

Example:
CHARACTER*1 SCREEN(:, :)
N = 80*25
*$| FDEF __386__
ALLOCATE(SCREEN(0: 1, 0: N-1), LOCATI ON=" B8000O' x)

*$ELSE
ALLOCATE(SCREEN(O: 1, 0: N-1), LOCATI ON=' B8000000’ X)
*$ENDI F
DOI =0, N1
SCREEN(0, 1) = '*
ENDDO
END

The above example maps the array SCREEN onto the IBM PC colour monitor screen memory
and then fills the screen with asterisks (16-bit real-mode only). The character is stored in
SCREEN(0, ') and the character attribute (unchanged in this example) is stored in
SCREEN(1, I). The column major ordering of arrays must be taken into consideration
when mapping an array onto a fixed area of memory.

The following exampleis similar but uses an allocatable character variable.

16 ALLOCATE Statement

FORTRAN Statements

Example:
CHARACTER* (*) SCREEN
| NTEGER SCRSI ZE, |
PARAMETER (SCRSI ZE = 80*25*2)
*$| FDEF _ 386
ALLOCATE(SCREEN*SCRSI ZE, LOCATI ON=' B800O0’ X)

* $ELSE
ALLOCATE(SCREEN*SCRS| ZE, LOCATI ON=’ B8000000’ X)
* SENDI F
DO = 1, SCRSIZE, 2
SCREEN(1:1) = ' *’
ENDDO
END

A user-defined memory allocator may be specified using the LOCATI ON= specifier.

Example:
CHARACTER*1 BUFFER(:)
N = 128
ALLOCATE(BUFFER(0: N-1), LOCATI ON=MYALLOC(N))

END

Perhaps a better way to check for a successful allocation, in this case, would be the following.

Example:
CHARACTER* 1 BUFFER(:)
N = 128
LOC = MYALLOC(N)
IF(LOC .EQ 0) STOP
ALLOCATE(BUFFER(0: N-1), LOCATI ON=LOC)

END

For more information on arrays, see the chapter entitled "Arrays" on page 187.

ALLOCATE Statement 17

Language Reference

2.5 Statement Label Assignment (ASSIGN) Statement

ASSICN s TO i

where:
S is a statement |abel
[is an integer variable name

The statement label s isassigned to theinteger variable i . The statement label must appear
in the same program unit as the ASSI GN statement. The statement label must be that of an
executable statement or a FORMAT statement.

After astatement label has been assigned to an integer variable, that variable may only be
used in an assigned GO TOstatement or as aformat identifier in an input/output statement.
The integer variable must not be used in any other way (e.g., in an arithmetic expression). It
may, however, be redefined with another statement label using the ASSI GN statement or it
may be assigned an integer value (e.g., in an arithmetic assignment statement).

Example:
| NTEGER RET
X =0.0
ASSI GN 100 TO RET
GO TO 3000
100 X=X+1
ASSI GN 110 TO RET

GO TO 3000
110 X=X +1
* Print both X and its square root

3000 Y = SQRT(X)
PRINT *, X, Y
GO TO RET

In the above example, we illustrate the use of the ASSI GN statement and the assigned GO TO

statement to implement a"local subrouting" in a program unit. A sequence of often-used code
can be "called" using the unconditional GO TO statement and "return” is accomplished using

18 Statement Label Assignment (ASSIGN) Statement

FORTRAN Statements

the assigned GO TOstatement. Care must be exercised to properly assign the return label
value.

Example:
| F(FIRST) THEN
ASSI GN 100 TO LFRMT
ELSE
ASSI GN 200 TO LFRMT
END I F
WRI TE(UNI T=5, FMI=LFRMI) X, Y, Z
100 FORMAT(1X, 3F10.5)
200 FORVAT(1X, 3E15.7)

It should be noted that the ASSI GN statement does not assign the numeric value of the
statement label to the variable.

Example:
ASSI GN 100 TO LABEL2
PRI NT *, LABEL2

Try the above example; the value printed will not be 100.

Consider the following example.

Example:
* |llegal use of a GOTO statenent.
LABEL2 = 123
LABEL3 = LABEL2 + 10
GO TO LABEL3

LABEL 3 is assigned the integer value 133. The assigned GO TO statement, which followsiit,
isillegal and arun-time error will occur when it is executed.

Statement label values are quite different from integer values and the two should never be

mixed. In the following example, the assignment statement isillegal sinceit involves an
integer variable that was specified in an ASSI GN statement.

Statement Label Assignment (ASSIGN) Statement 19

Language Reference

Example:
* |llegal use of an ASSI GNed variable in an expression.
ASSI GN 100 TO LABEL2
LABEL3 = LABEL2 + 10
Note that if the assignment statement was preceded by
LABEL2 = 100

the assignment statement would have been legal.

20 Statement Label Assignment (ASSIGN) Statement

FORTRAN Statements

2.6 AT END Statement

AT END DO [: Dbl ock-1abel]
or

AT END, stnt

where:
stmt is an executable statement other than an AT END statement.

The AT END control statement is an extension of the END= option of the READ statement for
sequential files. It allows a statement or a block of code following the READ statement to be
executed when an end-of-file condition is encountered during theread. The AT END
statement or block is by-passed if no end-of-file occurs. It isnot valid to use this control
statement with direct-access or internal files. It isnot valid to use this statement when END=
is also specified in the READ statement. The AT END statement or block must immediately
follow the READ statement to which it applies.

Example:
READ(UNI T=1, FMr='(I15,F10.4)") I, X
AT END DO
PRINT *, " END- OF-FI LE ENCOUNTERED ON UNIT 1’
EOFSW = . TRUE.
END AT END

The second form of the AT END statement isillustrated below.
Example:
READ(UNI T=1, FMr='(F10.4)’) X
AT END, EOFSW = . TRUE.

For more information, see the chapter entitled "Program Structure Control Statements' on
page 227.

AT END Statement 21

Language Reference

2.7 BACKSPACE Statement

BACKSPACE u
BACKSPACE (al i st)

where:

u isan external unit identifier.

alist isalist of backspace specifiers separated by commas:
[UNIT =] u
| OSTAT = io0s
ERR = s

Execution of a BACKSPACE statement causes the file connected to the specified unit to be
positioned at the beginning of the preceding record. If the preceding record is an endfile
record then the file is positioned at the beginning of the endfile record.

Backspace Specifiers

[UNIT =] u
u isan external unit identifier. An externa unit identifier is a non-negative
integer expression. If the optional UNI T= specifier is omitted then the specifier
must be the first item in the list of specifiers.

|OSTAT =ios
isan input/output status specifier. The integer variable or integer array element
i os isdefined with zero if no error condition occurs or a positive integer value
if an error condition occurs.

ERR=s

isan error specifier and s isastatement label. When an error occurs, execution
istransferred to the statement labelled by s.

22 BACKSPACE Statement

FORTRAN Statements

Example:
LOOP
READ(UNI T=8, END=100, FMr=200) RECORD
ENDLCOP
100 BACKSPACE(UNI T=8)
VWRI TE(UNI T=8, FMI=200) NEWREC

In the previous example, we illustrate how one might append a record to the end of an existing
file.

Notes:
1. Theunit must be connected for sequential access.

2. If thefileis positioned before the first record then the BACKSPACE statement has
no effect.

3. ltisillegal to backspace afilethat does not exist.

The FORTRAN 77 standard specifiesthat it isillegal to backspace over records that were
written using list-directed formatting; Watcom FORTRAN 77 alowsiit.

If the file has been opened with access * APPEND , which isaform of sequential accessin
which the fileis positioned at the endfile record, then the BACKSPACE statement cannot be
used.

For more information on input/output, see the chapter entitled "Input/Output” on page 255.

BACKSPACE Statement 23

Language Reference

2.8 BLOCK DATA Statement

BLOCK DATA [sub]

where:

sub is an optional symbolic name of the block data subprogram and must not be the name

of an external procedure, main program, common block, other block data
subprogram, or any local name in the block data subprogram.

The BLOCK DATA statement is used to define the start of a block data subprogram. A block
data subprogram is used to provide initial values for variables and array elementsin named

common blocks.

The only statements which are allowed to appear in a block data subprogram are:

CoNo>UO~WDNPE

e
N = O

=
w

Example:

IMPLICIT
PARAVETER

DI MENSI ON

COVIVON

SAVE

EQUI VALENCE

DATA

STRUCTURE, END STRUCTURE
UNI ON, END UNI ON
MAP, END NAP
RECORD

END

type statements

BLOCK DATA | NI TCB

DI MENSI ON A(10), B(10)
COMMON / CB/ A, B

DATA A/ 10*1.0/, B/10*2.0/
END

In the above example, the arrays A and B in the named common block CB areinitialized.

24 BLOCK DATA Statement

FORTRAN Statements

Notes:
1. Morethan one named common block may appear in ablock data subprogram.
2. All entities of the named common block(s) must be specified.
3. Not al entities need be given initia values.

4. Only entitiesthat appear in (or are associated, through the EQUI VALENCE
statement, with entries in) a named common block may be given initial values.

5. Only one unnamed block data subprogram may occur in an executable program.

6. A named block data subprogram may occur only once in an executable program.

BLOCK DATA Statement 25

Language Reference

2.9 CALL Statement

CALL sub [([a [, a] ... 1)]
where:
sub is a symbolic name of a subroutine and must not be the name of amain program,
function, common block, or block data subprogram. Asan extension to FORTRAN
77, Watcom FORTRAN 77 permits the calling of functions.
a isan actual argument.

The CALL statement is used to invoke the execution of a subroutine subprogram or function.

Example:

N < X
I n

1.0
1.1
1.2

9

L QUAD(X, Y, Z)

END

SUBROUTI NE QUAD(ARGA, ARGB, ARGC)
REAL ARGA, ARGB, ARGC

PRINT *, 2.0*ARGA**2 + 4. 0*ARGB + ARCC
END

In the above example, the variables X, Y and Z are passed to the subroutine QUAD. This
subroutine computes an expression and prints the result.

Notes:
1. The parametersin the CALL statement are called actual arguments.
2. The parametersin the SUBROUTI NE statement are called dummy arguments.

3. Theactua argumentsin asubroutine or function reference must agreein order,
number and type with the corresponding dummy arguments.

26 CALL Statement

FORTRAN Statements

4. Anactua argument may be an expression, array hame, intrinsic function name,
external procedure name (i.e., a subroutine or function name), a dummy procedure
name (i.e., one that was an argument to the calling subroutine or function), or an
alternate return specifier (subroutines only). An alternate return specifier takes the
form*s, wheres isthe statement label of an executable statement that appearsin
the same program unit asthe CALL statement. An expression may not be a
character expression involving the concatenation of an operand whose length
specificationis (*) unlessthe operand is the symbolic name of a constant.

5. Actual arguments are associated with dummy arguments by passing the address of
the actual arguments.

It isimportant to note that versions of FORTRAN compilers that implement the
previous FORTRAN language standard may have associated arguments by passing
the value of the actual argument and assigning it to the dummy argument and then
updating the actual argument upon return from the subprogram (thisis called
"value-result" argument handling). The FORTRAN 77 language standard prohibits
this technique for handling argument association.

The following example illustrates the importance of thisrule.

Example:
=1
CALL ASsoC(I, 1)
END
SUBROUTI NE ASSOC(M N)
M=M+ 1
PRINT *, M N
END

In the above example, Mand N refer to the same variable; they are both associated
tol inthecaling subprogram. The value 2 will be printed twice.

For more information, see the chapter entitled "Functions and Subroutines" on page 291.

CALL Statement 27

Language Reference

2.10 CASE Statement

CASE cl

where:

cl isalist, enclosed in parentheses, of one or more cases separated by commas, or the
DEFAULT keyword. A caseis either

(@)
(b)

asingleinteger, logical or character constant expression or

aninteger, logical or character constant expression followed by a colon
followed by another expression or the same type. Thisform of acase
defines arange of values consisting of all integers or characters greater
than or equal to the value of the expression preceding the colon and less
than or equal to the value of the expression following the colon.

The CASE statement is used in conjunction with the SELECT statement. The CASE statement
marks the start of anew CASE block which is a series of zero or more statements ending in
another CASE statement, a CASE DEFAULT statement, or an END SELECT statement.

A particular case value or range of values must not be contained in more than one CASE

block.

The CASE DEFAULT statement is used to indicate a block of statements that are to be
executed when no other case is selected.

Example:

SELECT CASE (CH)

CASE ('a : 'z2')

PRI NT *, ' Lower case letter’
CASE ("A : 'Z)

PRI NT *, ' Upper case letter’
CASE ('0" : "9)

PRINT *, 'Digit’
CASE DEFAULT

PRI NT *, ’ Special character’
END SELECT

In order to retain compatibility with earlier versions of WATCOM FORTRAN 77 compilers,
the OTHERW SE statement may be used in place of the CASE DEFAULT statement.

28 CASE Statement

FORTRAN Statements

For more information, see the chapter entitled "Program Structure Control Statements™ on
page 227.

CASE Statement 29

Language Reference

2.11 CHARACTER Statement

The CHARACTER statement is a type declaration statement and can be used to declare a name
to be of type character. Theimplicit type of the name, whether defined by the "first letter
rule” (see the chapter entitled "Names, Data Types and Constants" on page 177) or by an

| MPLI CI T statement, is either confirmed or overridden. However, once a name has been
declared to be of type character, it cannot appear in another type declaration statement.

There are various forms of the CHARACTER statement. The following sections describe them.

2.11.1 Standard CHARACTER Statement

CHARACTER] *l en [,]] nane [, nane]

where:

name

is one of the following forms:
v[*l en]

a(d)[*l en]

al[*l en] (d)

is avariable name, symbolic name of a constant, function name or dummy
procedure name.

isan array name.
isthat part of the array declarator defining the dimensions of the array.
is called the length specification and is the length (number of characters) of a

character variable, character array element, symbolic character constant or
character function. It has one of the following forms:

30 CHARACTER Statement

FORTRAN Statements

D An unsigned positive integer constant.
2 A positive integer constant expression enclosed in parentheses.
(3) An asterisk in parentheses (*) .

The length specification immediately following the word CHARACTER is the length
specification for each entity in the statement not having its own length specification. If
omitted, the default is 1. An entity with its own length specification overrides the default
length specification or the length specification immediately following the word
CHARACTER. Notethat for an array the length specification applies to each element of the

array.

Example:
DI MENSI ON C(-5:5)
CHARACTER A, B*10(10), C*20
CHARACTER*7 X, Y, Z*4

The (*) length specification is only allowed for external functions, dummy arguments or
symbolic character constants. If adummy argument has a length specification of (*), it
assumes the length of the corresponding actual argument. |If the actual argument is an array
name, the length assumed by the dummy argument is the length of an array element of the
actua array.

Example:
SUBROUTI NE QUTCHR(STR)
CHARACTER STR*(*)
PRI NT *, STR
END

In this example, STRis acharacter variable whose length is the length of the actual argument.
Thus OUTCHR can be called with a character entity of any length.

If an external function has alength specification of (*) declared in afunction subprogram,
the function name must appear as the name of afunctionin a FUNCTI ON or ENTRY statement
in the same subprogram. When the function is called, the function assumes the length
specified in the program unit that called it. In the following example, when F iscalled its
length is assumed to be 10.

CHARACTER Statement 31

Language Reference

Example:
CHARACTER* (10) F

PRINT *, F()

END
CHARACTER* (*) FUNCTI ON F

F = "HELLO
END

The following exampleisillegal since F does not appear in a FUNCTI ON or ENTRY
statement.

Example:
* |llegal definition of function F.
CHARACTER* (*) F

PRINT *, F()

END
The length specified for a character function in the program unit that referenced it must agree
with the length specified in the subprogram that defines the character function. Note that
thereis always agreement if the function is defined to have alength specification of (*) .

If asymbolic nameis of type character and has alength specification of (*), it assumesthe
length of the corresponding character constant expression in the PARAMETER statement.

The length specification of a character statement function or statement function dummy
argument must not be (*) .

32 CHARACTER Statement

FORTRAN Statements

2.11.2 Extended CHARACTER Statement; Data Initialization

CHARACTER] *l en[,]] nane [/cl/] [,nane[/cl/]]

where:

name

cl

Cc

r

is as described in the previous section.

is as described in the previous section.

isalist of the form:
k [,K]
is one of the forms:

c

r*c (equivalent to r successive appearances of c)

isaconstant or the symbolic name of a constant

is an unsigned positive integer constant or the symbolic name of a constant.

Thisform of the CHARACTER statement is an extension to the FORTRAN 77 language. The
rulesfor datainitialization are the same as for the DATA statement.

Example:

CHARACTER*5 A/ ' AAAAA [,

B*3(10)/10*’ 111’/

In the previous example, A isinitialized with the character constant * AAAAA’ and each
element of the array B isinitialized with the character constant * 111’ .

CHARACTER Statement 33

Language Reference

2.12 CLOSE Statement

CLCSE (cllist)

where:

cllist isalist of close specifiers separated by commas:
[UNIT =] u
| OSTAT = ios
ERR = s

STATUS = sta
A CLGOSE statement is used to terminate the connection of afile to the specified unit.
Close Specifiers

[UNIT =] u
u isan external unit identifier. An external unit identifier is anon-negative
integer expression. If the optional UNI T= specifier is omitted then the specifier
must be the first item in the list of specifiers.

IOSTAT =ios
is an input/output status specifier. Theinteger variable or integer array element
i os isdefined with zero if no error condition occurs or a positive integer value
if an error condition occurs.

ERR=s
isan error specifier and s isastatement label. When an error occurs, execution
istransferred to the statement labelled by s.

STATUS=da

isastatus specifier and st a is acharacter expression whose value when trailing
blanks are removed evaluatesto one of * KEEP’ or ' DELETE' .

34 CLOSE Statement

FORTRAN Statements

Example:

100

KEEP " KEEP' may not be specified for afile whose statusis
" SCRATCH (seedescription of the OPEN statement). If thefile
exists, it will exist after execution of the CLOSE statement. If the
file does not exist, it will not exist after execution of the CLOSE
statement. If not specified, * KEEP' isassumed, unlessthefile
statusis’ SCRATCH inwhichcase’ DELETE' isassumed.

DELETE If ' DELETE' is specified, the filewill not exist after execution of
the CLOSE statement.

LoOP

READ(UNI T=8, END=100, FMr=200) RECORD
ENDLOOP
CLOSE(UNIT=8)

In the previous example, we illustrate how one might process the records in afile and then
terminate the connection of the file to unit 8 using the CLOSE statement.

Notes:

1

Execution of a CLOSE statement specifying a unit that is not connected to afile or
aunit that is connected to afile that does not exist has no effect.

Itis possible to connect the unit to another file after a CLOSE statement has been
executed.

It is possible to connect the unit to the same file after a CLOSE statement has been
executed, provided that the file still exists.

It is possible to connect the file to another unit after a CLOSE statement has been
executed, provided that the file still exists.

At the termination of execution of the program, for whatever the reason of
termination, any units that are connected are closed. Each unit is closed with status
" KEEP' unlessthefile statuswas ' SCRATCH , in which case the unit is closed
with status’ DELETE' . The effect isthe same asif a CLOSE statement is
executed without a STATUS= specifier.

For more information on input/output, see the chapter entitled "Input/Output” on page 255.

CLOSE Statement 35

Language Reference

2.13 COMMON Statement

COMMON [/[cb]/] nlist [[,]/[cb]/ nlist]

where:
cb isacommon block name.
nlist isalist of names each separated by a comma.

If cb isomitted, the blank common block is assumed. |If specified, cb iscalled a named
common block. The names appearingin nl i st can be variable names, array names, and
array declarators. Dummy arguments are not allowed in nl i st .

The COMMON statement allows sharing of blocks of storage between subprograms. Each name
appearing inthe nl i st following acommon block name cb is declared to belong to that
common block. A variable or an array name can belong to only one common block. A
common block name can occur more than once in the same COMMON statement aswell asin
more than one COVMON statement. Lists following successive appearances of the same
common block name in COVMON statements are considered a continuation of the list of names
belonging to the common block. A variable or an array can appear in a COMMON statement
only once.

Common blocks are defined as follows. A common block is one consecutive block of storage.
It consists of all the storage sequences of all the entities specified in all the lists declared to
belong to that common block. The order in which each entity appearsin a common block is
defined by the order in which they appear in the lists. Storage sequences associated to a
common block through the EQUI VALENCE statement are considered to belong to that
common block. In thisway acommon block may only be extended beyond the last storage
unit. The size of acommon block isthe sum of all the storage sequences of all the names
belonging to that common block plus any storage sequence which extends the common block
through equivalence association.

An EQUI VALENCE statement must not cause storage sequences of two different common

blocks to become associated nor should they extend the common block by adding storage
units preceding the first storage unit of the common block.

36 COMMON Statement

FORTRAN Statements

Example:
DI MENSI ON A(5)
COWDON / COVBLK/ A, B(10), C

In this example, the common block COVBLK contains the array A followed by the array B and
finally the variable C.

Example:
REAL A, B, C D
DI MENSI ON D(5)
EQUI VALENCE (B, D)
COMWON A, B, C

Inthisexample, A, B, C, and D belong to the blank common block; A, B, and C have been
explicitly defined to be in the blank common block whereas D has been equivalenced to a
variablein common, namely B. Also note that the EQUI VALENCE statement has caused the
extension of the common block beyond its last storage unit. In this example, array D has
extended the common block by 3 storage units.

Example:
* |llegal definition of a comon bl ock.
DI MENSI ON A(5)
EQUI VALENCE (A(2), B)
COMMON / XYZ/ B

This example demonstrates an illegal use of the COMMON statement. B isin the named
common block XYZ since it appeared in a COVMON statement. A isin the common block XYZ
sinceit was equivalenced to B. However, Aillegally extends the common block by adding 1
storage unit before the first storage unit of the common block.

The following outlines the differences between a blank common block and a named common
block.

(1) All named common blocks with the same name in an executable program must
be the same size. Blank common blocks do not have to be the same size.

(2 Entities in named common blocks can beinitialized by using DATA statements
in block data subprograms; entities in blank common blocks cannot.

€] Entities in named common blocks can become undefined after the execution of a
RETURN or END statement; entities in blank common blocks cannot. This
situation can arise when all subprograms which refer to the named common
block become inactive. A typical case occurs when program overlays are used.
If the named common block is placed in an overlay, then the entitiesin the
named common block will become undefined when the overlay is replaced by

COMMON Statement 37

Language Reference

another. Of course, if the named common block is referenced in the main
program then this could never happen. The main program and any named
common blocks referenced in the main program remain memory-resident until
the application terminates.

The SAVE statement should be used if entities in named common blocks must
not become undefined.

The FORTRAN 77 standard specifies that a common block cannot contain both numeric and
character data; Watcom FORTRAN 77 allows common blocks to contain both numeric and
character data.

The FORTRAN 77 standard specifies that a named common block must be initialized in a

block data subprogram. Watcom FORTRAN 77 permits the initialization of named common
blocksin other subprograms.

38 COMMON Statement

FORTRAN Statements

2.14 COMPLEX Statement

The COVPLEX statement is a type declaration statement and can be used to declare anameto
be of type complex. Theimplicit type of the name, whether defined by the "first |etter rule"
(see the chapter entitled "Names, Data Types and Constants" on page 177) or by an

| MPLI CI T statement, is either confirmed or overridden. However, once a name has been
declared to be of type complex, it cannot appear in another type declaration statement.

There are various forms of the COVPLEX statement. The following sections describe them.

2.14.1 Standard COMPLEX Statement

COWPLEX nanme [, nane]

where:

name isavariable name, array name, array declarator, symbolic name of a constant,
function name or dummy procedure name.

Thisform is the standard form of the COVPLEX statement.
Example:

DI MENSI ON C(-5:5)

COWMPLEX A, B(10), C

In the previous example, A is defined to be a variable of type complex and B and C are defined
to be arrays of type complex.

2.14.2 Extended COMPLEX Statement: Length Specification

COWPLEX[*l en[,]] nane [, nane]

COMPLEX Statement 39

Language Reference

where:
name is one of the following forms:
v[*l en]
a[*l en] (d)
a(d)[*l en]
v isavariable name, array name, symbolic name of a constant, function name or
dummy procedure name.
a isan array name.
(d) isthat part of the array declarator defining the dimensions of the array.
len is called the length specification and is an unsigned positive integer constant or an

integer constant expression enclosed in parentheses whose value is 8 or 16.

Thisform of the COVPLEX statement is a Watcom FORTRAN 77 extension to the
FORTRAN 77 language. The length specification specifies the number of bytes of storage
that will be alocated for the name appearing in the COMPLEX statement. The default length
specificationis 8. A length specification of 16 specifies that the data type of the name
appearing in the COVPLEX statement is to be double precision complex.

The length specification immediately following the word COVPLEX is the length specification
for each entity in the statement not having its own length specification. If alength
specification is not specified the default length specification is used. An entity with its own
specification overrides the default length specification or the length specification immediately
following the word COMPLEX. Note that for an array the length specification appliesto each
element of the array.

Example:
DI MENSI ON C(-5:5)
COVPLEX A, B*16(10), C*16
COWVPLEX*16 X

In the previous example, X is declared to be a variable of type double precision complex, Ais

declared to be a variable of type complex and B and C are declared to be arrays of type double
precision complex.

40 COMPLEX Statement

FORTRAN Statements

2.14.3 Extended COMPLEX Statement: Data Initialization

COWPLEX[*l en[,]] nane [/cl/] [,name[/cl/]]

where:

name

cl

Cc

r

is as described in the previous section.

is as described in the previous section.

isalist of the form:

k [K]

isone of the forms:

c

r*c (equivalent to r successive appearances of c)
isaconstant or the symbolic name of a constant

is an unsigned positive integer constant or the symbolic name of a constant.

Thisform of the COVPLEX statement is an extension to the FORTRAN 77 language. The
rulesfor datainitialization are the same as for the DATA statement.

Example:

COVPLEX A/ (.4, -.3)/, B(10)/10*(0, 1)/

In the previous example, Aisinitialized with the complex constant (. 4, - . 3) and each
element of the array B isinitialized with the complex constant (0, 1) .

COMPLEX Statement 41

Language Reference

2.15 CONTINUE Statement

CONTI NUE

Execution of a CONTI NUE statement has no effect. This statement is often used in
conjunction with DO statements. It isusually identified with alabel. It often providesa
convenient reference for statements which have the ability to transfer control of execution.

Example:
DO 10 X = -5.1, 12.8, 0.125

10 CONTI NUE

om
> >
95
0w
88
— -
(oo
NN
[oNe]

20 CONTI NUE

42 CONTINUE Statement

FORTRAN Statements

2.16 CYCLE Statement

CYCLE [: block-Iabel]

The CYCLE statement may be used to cause atransfer of control from within aloop to the
terminal statement of a corresponding DO, DO WHI LE, WHI LE or LOCP statement. If
bl ock- 1 abel ispresent then control istransferred to the terminal statement of the block
identified by that block label. The CYCLE statement is an extension to the FORTRAN 77
language.

Example:

LOOP
WRI TE(UNI T=*, FMI="(A)’) 'Enter a nunber’
READ(UNI T=*, FMI=' (F10.4)’, | OSTAT=10S) X
IF(10S .NE. 0) CYCLE
IF(X .LT. 0) EXIT
PRINT *, X, SORT(X))

END LOCP

END

For more information, see the chapter entitled "Program Structure Control Statements' on
page 227.

CYCLE Statement 43

Language Reference

2.17 DATA Statement

DATA nlist/clist/ [[,]nlist/clist/]

where:
nlist isalist of variable names, array element names, substring names and implied-DO
lists.
clist isalist of the form:
a[,a]
a is one of the forms:
c
r*c (equivalent to r successive appearances of c)
c isaconstant or the symbolic name of a constant
r isan unsigned positive integer constant or the symbolic name of a constant.

Theitemsof nl i st areinitialized with the values specifiedin cl i st inthefollowing
manner. Thefirstiteminnl i st isassigned the value of thefirstitemin cl i st, the second
iteminnl i st isassigned the value of the second itemin cl i st, etc. Inthisway al items
of nl'i st areinitialized.

The number of itemsin nl i st must equal the number of itemsin cl i st sothat a
one-to-one correspondence exists between the two lists. If an array without a subscript list
appearsinnl i st there must be an element in cl i st for each element of the array.

If thetype of an entity in nl i st is character or logical then the type of its corresponding item
incl i st must also be character or logical respectively. Asan extension to FORTRAN 77,
Watcom FORTRAN 77 permits an item of type character to beinitialized with integer data.

An item of type character isinitialized using the rules of assignment. If the length of the item
innl i st isgreater than the length of the corresponding character constantin cl i st, the
rightmost remaining charactersin the item are initialized with blanks. If the length of the item
innl i st islessthan the length of the character constantin cl i st, the character constant is

44 DATA Statement

FORTRAN Statements

truncated to the length of theitemin nl i st. Notethat initializing a character entity causes
all of the charactersin the entity to become defined and that each character constant defines
exactly one character variable, array element or substring.

If the type of an entity in nl i st isinteger, real, double precision or complex then the
corresponding itemin cl i st can be one of integer, real, double precision or complex. If
necessary the constant in ¢l i st isconverted to the type of theitemin nl i st according to
the rules of arithmetic conversion (see the chapter entitled "Assignment Statements" on page
221).

A variable, array element or substring can only be initialized once. If two entities are
associated (for example equivalenced), only one of the items can be initialized.

Example:
CHARACTER* 30 MBG
LOd CAL TRUE
REAL X, Y(10)
DATA X/1.0/, TRUE/.TRUE./, MSG '’ ENTER DATA'/
DATA Y/ 10*5/

Animplied-DO list in a DATA statement has the following form:
(dlist, i =nl, n2[, nB])
where:
dlist isalist of array element names and implied-DO lists.
[is the name of an integer variable called the implied-DO-variable.

m1,m2,m3 are each integer constant expressions. The expressions may contain
implied-DO-variables of other implied-DO lists that have thisimplied-DO
list in their ranges.

Therange of theimplied-DO lististhelist dl i st. Aniteration count and the value of the
implied-DO-variable are computed from nil, n2 and n8 in the same way as for a DO-loop
except that the iteration count must be positive. Animplied-DO-variable does not affect the
definition of avariable by the same name in the same program unit. Animplied-DO listis
processed as follows. Each item in theimplied-DO list is processed once for each iteration
with the appropriate substitution of values for any occurrence of the implied-DO-variable.
The following example initializes the upper right triangle of the array A.

DATA Statement 45

Language Reference

Example:

DI MENSI ON A(5, 5)
DATA ((A(1,J),Jd=1,1),1=1,5)/15%0/

Dummy arguments, functions, and entities in blank common are not allowed in nl i st .
Entities in a named common block can beinitialized only within a block data subprogram.

The following extensions to datainitialization are supported by Watcom FORTRAN 77.

1

Character constants can initialize avariable of any type. If theitemin nl i st is
of numeric type and is being initialized with character data, the size of theitem in
nl i st isthe maximum number of characters that can be stored in the space
allocated for that item. Therulesfor initializing such items, are the same as for
items of type character. See the chapter entitled "Names, Data Types and
Constants' on page 177 for the number of bytes required for a particular data type.

Example:
| NTEGER |, J
DATA |/’ AA' [, 3/’ 123456’ /

In the previous example, | and J each occupy 4 character storage units. | will be
initialized with the characters AA followed by 2 blank characters. J will be
initialized with the characters 1234. Note the the character constant initializing J
is truncated on the right to the number of character storage units occupied by J.

Asan extension to FORTRAN 77, Watcom FORTRAN 77 permits an item of type
character to beinitialized with integer data.

Example:
CHARACTER C, D
DATA C/ 65/, D/ 66/
END

Watcom FORTRAN 77 allows data initialization using hollerith constants.
Initializing items using hollerith constants behaves in the same way as initializing
items using character constants. Note that hollerith data can initialize entities of
any type. Seethe chapter entitled "Names, Data Types and Constants' on page 177
for adescription of hollerith constants.

46 DATA Statement

FORTRAN Statements

4.

Watcom FORTRAN 77 alows data initialization using hexadecimal or octal
constants. Hexadecimal or octal constants can be used to initialize memory with
any binary pattern.

Items areinitialized with hexadecimal constantsin the following way. Two
hexadecimal digits are required to initialize one byte of storage. If the number of
characters in the hexadecimal constant is less than 2 times the number of bytes of
storage alocated for the entity being initialized, the entity is padded on the left with
zeroes. |f the number of characters in the hexadecimal constant is greater than 2
times the number of bytes of storage allocated for the entity being initialized, the
constant is truncated on the left to the size (in bytes) of the entity being initialized.

Items areinitialized with octal constants in the following way. Each octal digit
initializes three bits of storage. 1f the number of digitsin the octal constant times 3
is less than the number of bits of storage allocated for the entity being initialized,
the entity is padded on the left with zero bits. If the number of digitsin the octal
constant times 3 is greater than the number of bits of storage allocated for the entity
being initialized, bits are truncated on the | eft to the size (in bits) of the entity being
initialized.

Note that hexadecimal or octal data can initialize entities of any type. Seethe
chapter entitled "Names, Data Types and Constants' on page 177 for a description
of hexadecimal and octal constants.

Example:
DOUBLE PRECI SI ON DPREC
COWPLEX CMPLX
* Initialize an integer variable with the value 5
DATA 1/ z05/
* Initialize a real variable with the value 5.0
DATA X/ 241500000/
* |nitialize a double precision variable
with the val ue 5D0
DATA DPREC/ Z4150000000000000/
* |nitialize a conplex variable
* with the value (5.0,5.0)
DATA CMPLX/ Z4150000041500000/

*

END

DATA Statement 47

Language Reference

Caution should be used when initializing items with hexadecimal constants, in
particular those whose type isreal or double precision, since the data they represent
depends on the computer being used. In the previous example, the hexadecimal
constant used to initialize the variable X, represents the number 5.0 on a computer
with an IBM 370 architecture. The number 5.0 will have a different floating-point

representation on other computers.

48 DATA Statement

FORTRAN Statements

2.18 DEALLOCATE Statement

DEALLOCATE (arraylist [, STAT =ierr])

where:
arraylist isalist of allocatable array names separated by commas.
ierr isan integer variable that returns the status of the attempted deallocation.

Allocatable arrays may be dynamically allocated and deallocated at execution time. An array
must have been declared allocatable by specifying its dimensions using colons only. No array
bounds are specified.

Example:
DI MENSI ON A(:), B(:,:)

In the above example, A isdeclared to be a one-dimensional allocatable array and B is
declared to be atwo-dimensional allocatable array.

The DEALL OCATE statement frees up any memory allocated for the specified array(s). It
then disassociates the specified array(s) from the memory to which it was associated. The
deallocation does not necessarily succeed. For example, an attempt to deallocate an array that
was not previously allocated will cause an error.

Example:
DI MENSI ON A(:), B(:,:)

ALLOCATE(A(N), B(0:4,5))

DEALLOCATE(A)

More than one allocatable array may appear in an DEALLOCATE statement, separated by
commeas.

DEALLOCATE Statement 49

Language Reference

Example:
DI MENSI ON A(:), B(:,:)

ALLOCATE(A(N), B(O:4,5))

DEALLOCATE(A, B)
If the deallocation fails and the STAT= specifier was not used, an execution-time error occurs.
If the STAT= specifier is used, the specified variable returns a zero value if the deallocation
succeeded, and a non-zero value if the deallocation failed.

Example:
DI MENSI ON A(:), B(:,:)

ALLOCATE(A(N), B(0:4,5), STAT=IALLCC)
IF(TALLOC .NE. 0) PRINT *, "Allocation failure’

DEALLOCATE(A, B, STAT=IFREE)
IF(IFREE .NE. 0) PRINT *, ’Deallocation failure’

An attempt to deall ocate an unallocated array results in an execution-time error. The array
must be allocated first (see the ALLOCATE statement).

An array that was allocated using the LOCATI ON= specifier need not be deallocated.

For more information on arrays, see the chapter entitled "Arrays" on page 187.

50 DEALLOCATE Statement

FORTRAN Statements

2.19 DIMENSION Statement

DI MENSI ON a(d) [, a(d)]

where:
a isthe name of the array.

d defines the dimension of the array and the range of its subscripts. See the chapter
entitled "Arrays' on page 187 for more information on dimensioning arrays.

Each name a appearing in a DI MENSI ON statement defines a to be an array in the program
unit containing the DI MENSI ON statement. A name can only be dimensioned oncein a
program unit. Note that a name can also be dimensioned in a COMMON statement and type
declaration statements.

Example:
DI MENSI ON A(10), B(-5:5), C(I,J3), D4,*)

In thisexample Aisal1-dimensiona array containing 10 elements, each element referenced as
A(Ll), A(2), ..., A(9), A(10). Bisal-dimensiona array containing 11 elements,
each dement referencedas B(-5), B(-4), ..., B(4), B(5). Cisa2-dimensional
array containing | rowsand J columns. C, |, and J must be dummy arguments or belong to
acommon block. DisaZ2-dimensional array containing 4 rows. The * inthelast dimension
indicatesthat Disan assumed size array. D must be a dummy argument. The number of
columns is determined from the number of elements of the actual argument. For example, if
the actual argument contains 8 elements then Dwould contain 2 columns (i.e., 8 elements/ 4
rows).

For more information on dimensioning arrays refer to the chapter entitled "Arrays" on page

187. See dso the description of the ALLOCATE and DEALL OCATE statements for
information on dynamically alocatable arrays.

DIMENSION Statement 51

Language Reference

2.20 DO Statement

Two forms of the DO statement are presented. The second form is aWatcom FORTRAN 77
extension to the FORTRAN 77 language.

2.20.1 Standard DO Statement

DOs [,] i =el, e2 [, e3]
where:
S is the statement label of an executable statement, called the terminal
statement, which follows the DO statement in the same program unit.
[isan integer, real, or double precision variable, called the DO-variable.
el, e2, e3 are each an integer, real, or double precision expression.

2.20.2 Extended DO Statement

DO [s[,]] i =el, e2 [, e3] [: block-Iabel]

where:

S isan optional statement label of an executable statement, called the
terminal statement, which follows the DO statement in the same
program unit.

[isan integer, real, or double precision variable, called the
DO-variable.

el, e2, e3 are each an integer, real, or double precision expression.

block-label is an optional block label.

52 DO Statement

FORTRAN Statements

Thisform of the DO statement is an extension to the FORTRAN 77 language. If no statement
label is present then the terminal statement of the DO-loop must be an END DOstatement. In
all other respects, the rules are the same as those given for the standard DO statement.

2.20.3 Description of DO Statement

The range of a DO-loop consists of al of the executabl e statements that appear following the
DO statement that specifies the DO-loop, up to and including the terminal statement of the
DO-loop. Only certain statements can be the terminal statement of a DO-loop. Seethe
section entitled "Classifying Statements" on page 9 at the beginning of this chapter for alist of
these statements.

Transfer of control into the range of a DO-loop from outside the range is not permitted.

A DO-loop may be executed 0 or more times. The following sequence occurs when a DO
statement is encountered.

(i)

(if)
(iii)

Aninitial value, mL, iscalculated by evaluating expression el. A terminal
value, 2, iscalculated by evaluating expression e2. Anincrementation
value, B, iscalculated by evaluating expression e3 if it is present; otherwise
nB hasthevalue one. If e3 is specified, nB must not be zero. Thetype of L,
n2, and nB isdetermined from the DO-variable and any conversions of type
are done as required.

The DO-variable is defined with the initial value mil.

The iteration count (i.e., the maximum number of times that the DO-loop will be
executed) is calculated as follows:

MAX(INT((n2 - mL + nB)/nB), 0)
The iteration count will be zero whenever:

m. > nR and n8 > 0, or
m < nm2 and n8 < 0.

The number of times that the DO-loop is executed may be reduced if control is
transferred outside the range of the DO-loop, or if a RETURN or STOP statement
is executed.

The stepsinvolved in each iteration of the DO-loop are as follows:

DO Statement 53

Language Reference

0] Check theiteration count. If it isnot zero then start execution of the first
executable statement of the DO-loop. If the count is zero then iteration of the
DO-loop is complete.

(i) Execute statements until the terminal statement is encountered. During this
time, the DO-variable may not be redefined.

(iii) Execute the terminal statement. Unless execution of the terminal statement
causes atransfer of control, proceed with the next step which is"incrementation”
processing.

(iv) The DO-variableisincremented by the value 8. The iteration count is

decremented by one. Go back to step (i).

Example:
DO10 | = -5, 5
PRINT *, |, |*I
10 CONTI NUE

In this example, the initial valueis-5, the terminal valueis 5, and the incrementation valueis
1 (the default). The DO-variableis| . The DO-loop is executed

MAX(INT((5 - (-5) + 1)/1), 0)

or 11 times. The successivevaluesof |, inside the range of the DO-loop, are -5, -4, -3, ..., 0,
1, ..., 4,5. When the DO-loop isterminated, thevalue of | will be 6. It should be noted that
when a DO-loop variable is of type real, the iteration count may be one less than expected.
Because of rounding errors, thevalueof 2 - mil + nB may be dightly less than the exact
value and when the INT function is applied, the resulting iteration count is one less than
expected.

Example:
DO 10 X = -5, 6, 2
PRI NT *, X, X*X
10 CONTI NUE

In this example, the terminal value has been changed to 6 and the incrementation value has
been changed to 2. The DO-variableis X, areal variable. Thusthevaluesof el, e2 and
e3 are converted to typereal. The DO-loop is executed

MAX(INT((6 - (-5) + 2)/2), 0)
MAX(1 NT(13 /" 2), 0)

or 6 times. The successive valuesof X, inside the range of the DO-loop, are -5.0, -3.0, -1.0,
1.0, 3.0, 5.0. When the DO-loop is terminated, the value of X will be 7.0.

54 DO Statement

FORTRAN Statements

DO-loops may be nested, that is, another DO-loop may be contained within the range of the
outer DO-loop. More than one DO-loop may have the same terminal statement.

Example:
DO10 | = -5, 5
DO 10 J = -2, 3
10 ARRAY(I, J) =0.0

Thisis equivaent to the following example.

Example:
DO10 | = -5, 5
DO 20 J =-2, 3
ARRAY(I, J) =0.0
20 CONTI NUE
10 CONTI NUE

If a DO statement appears within the range of a DO-loop, its range must be entirely contained
within the range of the outer DO-loop.

Example:
* |1l egal use of nested DO | oops.
DO20 | = -5, 5
DO10 J = -2, 3
ARRAY(I, J) =0.0
20 CONTI NUE
10 CONTI NUE

The above exampleisillegal since the terminal statement of the first DO-loop precedes that of
the second DO-1oop.

Similarly, the range of a DO-loop that appears within the range of an IF-block, ELSE
IF-block, or ELSE-block must be entirely contained within that | F-block, EL SE IF-block, or
EL SE-block, respectively. Thisrule appliesto all Watcom FORTRAN 77 structured block
extensions.

Example:
* |llegal nesting of a DO loop and an | F-bl ock.
IF(A .LT. B)THEN
DO10 I =1, 5
PRINT *, 'Iteration nunber’, |
END I F
VECTOR(|) =1
10 CONTI NUE

DO Statement 55

Language Reference

The above exampleisillegal since the range of the IF-block must terminate after the range of
the DO-loop. Note how statement indentation helps to illustrate the problem with this
example.

Itisalsoillegal to attempt to transfer control into the range of a DO-loop. The following
exampleillustrates this error.

Example:
* |llegal transfer into the range of a DO | oop.
G0 TO 20
DO 10, | = 100, O, -1
PRI NT *, ’Counting down from 100 to O, |
20 PRINT *, |, SQRT(FLOAT(1))

10 CONTI NUE

The following example shows a more subtle form of this error.

Example:
* |llegal transfer into the range of a DO | oop.
DO10 | =1, 10
* Skip row 5 of 10x10 matrix

IF(| .EQ 5)GO TO 10
DO 10 J = 1, 10
ACl, J) =0.0
10 CONTI NUE

Since the CONTI NUE statement is included in the range of the inner DO-loop, an error
message is issued.

The following example illustrates the Watcom FORTRAN 77 structured DO statement.

Example:
DOl = -5, 5
DOJ = -2, 3
ARRAY(I, J) =0.0
END DO
END DO

In keeping with more modern programming practices, this feature allows the programmer to

write DO-loops without resorting to the use of statement labels. A well-chosen indentation
style further enhances the readability of the program.

56 DO Statement

FORTRAN Statements

For more information, see the chapter entitled "Program Structure Control Statements™ on
page 227.

DO Statement 57

Language Reference

2.21 DOUBLE COMPLEX Statement

The DOUBLE COVPLEX statement is a type declaration statement and can be used to declare
aname to be of type double complex. The implicit type of the name, whether defined by the
"first letter rule” (see the chapter entitled "Names, Data Types and Constants" on page 177) or
by an| MPLI ClI T statement, is either confirmed or overridden. However, once a name has
been declared to be of type double complex, it cannot appear in another type declaration
statement.

There are various forms of the DOUBLE COVPLEX statement. The following sections
describe them.

2.21.1 Simple DOUBLE COMPLEX Statement

DOUBLE COWPLEX nane [, nane]

where:

name isavariable name, array name, array declarator, symbolic name of a constant,
function name or dummy procedure name.

The DOUBLE COMPLEX statement is an extension to the FORTRAN 77 language.
Example:

DI MENSI ON C(-5:5)

DOUBLE COWPLEX A, B(10), C

In the previous example, A is defined to be a variable of type double complex and B and C are
defined to be arrays of type double complex.

58 DOUBLE COMPLEX Statement

FORTRAN Statements

2.21.2 DOUBLE COMPLEX Statement: Data Initialization

DOUBLE COWPLEX nane [/cl/] [,nane[/cl/]]

where:
name is as described in the previous section.
cl isalist of theform:
k [,K]
k is one of the forms:
c
r*c (equivalent to r successive appearances of ¢)
c isaconstant or the symbolic nhame of a constant
r isan unsigned positive integer constant or the symbolic name of a constant.

Thisform of the DOUBLE COMPLEX statement is also an extension to the FORTRAN 77
language. The rulesfor datainitialization are the same as for the DATA statement.

Example:
DOUBLE COMPLEX A/ (4D4,5.1D4)/, B(10)/10*(5D1, 3. 1D1)/

In the previous example, A isinitialized with the double precision complex constant

(4D4, 5. 1D4) and each element of the array Bisinitialized with the double precision
complex constant (5D1, 3. 1D1) .

DOUBLE COMPLEX Statement 59

Language Reference

2.22 DOUBLE PRECISION Statement

The DOUBLE PRECI SI ON statement is a type declaration statement and can be used to
declare a name to be of type double precision. Theimplicit type of the name, whether defined
by the "first letter rule" (see the chapter entitled "Names, Data Types and Constants’ on page
177) or by an | MPLI ClI T statement, is either confirmed or overridden. However, once a
name has been declared to be of type double precision, it cannot appear in another type
declaration statement.

There are various forms of the DOUBLE PRECI SI ON statement. The following sections
describe them.

2.22.1 Standard DOUBLE PRECISION Statement

DOUBLE PRECI SI ON nane [, nane]

where:

name isavariable name, array name, array declarator, symbolic name of a constant,
function name or dummy procedure name.

Thisform is the standard form of the DOUBLE PRECI S| ON statement.
Example:

DI MENSI ON C(-5:5)

DOUBLE PRECI SION A, B(10), C

In the previous example, A is defined to be a variable of type double precision and B and C are
defined to be arrays of type double precision.

60 DOUBLE PRECISION Statement

FORTRAN Statements

2.22.2 Extended DOUBLE PRECISION Statement: Data Initialization

DOUBLE PRECI SION nane [/cl/] [,nanme[/cl/]]

where:
name is as described in the previous section.
cl isalist of theform:
k [,K]
k is one of the forms:
c
r*c (equivalent to r successive appearances of ¢)
c isaconstant or the symbolic nhame of a constant
r isan unsigned positive integer constant or the symbolic name of a constant.

Thisform of the DOUBLE PRECI SI ON statement is an extension to the FORTRAN 77
language. The rulesfor datainitialization are the same as for the DATA statement.

Example:
DOUBLE PRECI SI ON A/ 4D4/, B(10)/10*5D1/

In the previous example, A isinitialized with the double precision constant 4D4 and each
element of the array B isinitialized with the double precision constant 5D1.

DOUBLE PRECISION Statement 61

Language Reference

2.23 DO WHILE Statement

DO [s[,]] WH LE (e) [: Dbl ock-1abel]

where:

S isan optional statement label of an executable statement, called the
terminal statement, which follows the DO statement in the same
program unit.

e isalogical expression or integer arithmetic expression, in which
case the result of the integer expression is compared for inequality
to the integer value 0.

block-label isan optional block label.

The DO WHI LE statement is an extension to the FORTRAN 77 language.

Example:
X =0.0
DO 10 WHI LE(X .LT. 100.0)
PRINT *, X, SORT(X)
X=X+1.0
10 CONTI NUE

If no statement label is present, the terminal statement of the DO-loop must bean END DO

Statement.
Example:
X =0.0
DO WHI LE(X .LT. 100.0)
PRINT *, X, SORT(X)
X=X+1.0
ENDDO

The following example illustrates the use of an integer arithmetic expression.

62 DO WHILE Statement

FORTRAN Statements

Example:
I =10
DO WHI LE(1)
PRI NT *, |
I =1 -1
ENDDO

END

The DO WHI LE statement, is similar to the DO statement. All nesting rules that apply to the
DO statement also apply to the DO WHI LE statement. The difference isthe way in which the
looping is accomplished; the DO-loop is executed while the logical expression of the DO

VWHI LE statement has atrue value or until control istransferred out of the DO-loop.

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

DO WHILE Statement 63

Language Reference

2.24 ELSE Statement

ELSE

The EL SE statement is used in conjunction with the | F or ELSE | F statement. The range of
the EL SE block is terminated by a matching END | F statement.

Example:
IF(A .LT. B)THEN
PRINT *, "Ais less than B
ELSE
PRINT *, "Ais greater than or equal to B
END I F

Transfer of control into the range of an ELSE block isillegal. It isinteresting to note that the
EL SE statement may be identified by a statement label but it must not be referenced by any

statement!
Example:
* |llegal branch to a labelled ELSE statenent.
IF(A .LT. B)THEN
PRINT *, "Ais less than B
100 ELSE
PRINT *, "Ais greater than or equal to B
GO TO 100
END I F

The aboveis an example of an illegal way to construct an infinitely repeating loop. The
following is the correct way to do this.

Example:
IF(A .LT. B)THEN
PRINT *, "Ais less than B
ELSE
100 PRINT *, "Ais greater than or equal to B
GO TO 100
END I F

For more information, see the chapter entitled "Program Structure Control Statements™ on
page 227.

64 ELSE Statement

FORTRAN Statements

2.25 ELSE IF Statement

ELSE | F (e) THEN

where:

e isalogical expression or integer arithmetic expression, in which case the result of the
integer expression is compared for inequality to the integer value O.

The ELSE | F statement is used in conjunction with the | F statement. The range of the
ELSE | F block isterminated by another ELSE | F statement, an EL SE statement, or an
END | F statement.

Example:

IF(A .LT. B)THEN

PRINT *, "Ais less than B
ELSE IF(A .EQ B)THEN

PRINT *, "Ais equal to B
ELSE

PRINT *, "Ais greater than B
END I F

Transfer of control into the range of an ELSE | F block isillegal. It isinteresting to note that
the ELSE | F statement may beidentified by a statement label but it must not be referenced

by any statement!
Example:
* ||llegal transfer into the range of

* an ELSE | F statement.
IF(A.EQ 0.0)GO TO 110
IF(A .LT. B)THEN
PRINT *, "Ais less than B
ELSE IF(A .EQ B)THEN
PRINT *, "Ais equal to B or’

110 PRINT *, "Ais equal to O’
ELSE
PRINT *, "Ais greater than B
END I F

The aboveis an example of anillegal attempt to branch into the range of an ELSE | F block.

ELSE IF Statement 65

Language Reference

For more information, see the chapter entitled "Program Structure Control Statements™ on
page 227.

66 ELSE IF Statement

FORTRAN Statements

2.26 END Statement

END

The END statement indicates the end of a sequence of statements and comment lines of a
program unit. Execution of an END statement in a function or subroutine subprogram has the
same effect asa RETURN statement. Control is returned to the invoking program unit.
Execution of an END statement in a main program causes termination of execution of the
program.

Example:
SUBROUTI NE EULER(X, Y, Z)

END
Upon executing the END statement, execution control is returned to the calling program unit.

Example:
PROGRAM PAYROL

END
Upon executing the END statement, execution of the program is terminated.
Some rather special rules apply to the END statement. The statement is written in columns 7
to 72 of aninitial line. In other words, it must not be continued. Also, no other statement in

the program unit may have an initial line that appears to be an END statement.

Example:
* An illegal ENDIF statenent.
IF(A .LT. B)THEN

END
& F

END Statement 67

Language Reference

The above END | F statement isillegal sincetheinitial line appearsto be an END statement.

68 END Statement

FORTRAN Statements

2.27 END AT END Statement

END AT END

The END AT END statement is used in conjunction with the structured AT END statement.
The END AT END statement marks the end of a sequence of statements which are part of an
AT END-block. The AT END statement marks the beginning of the AT END-block. The AT
END-block is executed when the preceding READ statement terminates because of an
end-of-file condition.

Example:
READ(UNIT=1, FMI="(315)") I, J, K
AT END DO
PRI NT *, ' END- OF- FI LE ENCOUNTERED ON UNI T 1’
EOFSW = . TRUE.
END AT END

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

END AT END Statement 69

Language Reference

2.28 END BLOCK Statement

END BLOCK

The END BLOCK statement is used to terminate a REMOTE-block. The END BLOCK
statement isimplicitly atransfer statement, since it returns program control from a
REMOTE-block.

Example:
REMOTE BLOCK A
=1 +1
PRINT *, 1= 1
END BLOCK

For more information, see the description of the EXECUTE and REMOTE BLOCK statements
or the chapter entitled "Program Structure Control Statements' on page 227.

70 END BLOCK Statement

FORTRAN Statements

2.29 END DO Statement

END DO

The END DOstatement is used to terminate the range of a"structured" DO statement. A
structured DO statement is one in which a statement label is not present. For more
information, see the description of the structured DO statement or the chapter entitled
"Program Structure Control Statements' on page 227.

Example:
DO X = -5.1, 12.8, 0.125
END DO

Example:
X =-51

DO WH LE(X .LE. 12.8)

X = X + 0.125
END DO

END DO Statement 71

Language Reference

2.30 ENDFILE Statement

ENDFI LE u
ENDFI LE (al i st)

where:

u isan external unit identifier.

alist isalist of endfile specifiers separated by commas:
[UNIT =] u
| OSTAT = io0s
ERR = s

Execution of an ENDFI LE statement causes an endfile record to be written to thefile
connected to the specified unit. Thefileisthen positioned after the endfile record. If thefile
may be connected for direct access, only those records before the endfile record are
considered to have been written. Thus, only those records before the endfile record may be
read during subsequent direct access connections to thefile.

Endfile Specifiers

[UNIT =] u
u isan external unit identifier. An external unit identifier is a non-negative
integer expression. If the optional UNI T= specifier is omitted then the specifier
must be thefirst item in the list of specifiers.

|OSTAT =ios
is an input/output status specifier. The integer variable or integer array element
i os isdefined with zero if no error condition exists or a positive integer value if
an error condition exists.

ERR=s

isan error specifier and s isastatement label. When an error occurs, execution
istransferred to the statement labelled by s.

72 ENDFILE Statement

FORTRAN Statements

Example:
LOOP
READ(UNI T=7, END=100, FMr=200) RECORD
WRI TE(UNI T=8, FMIr=200) RECORD
ENDLOOP
100 ENDFILE(UNIT=8)

In the previous example, we illustrate how one might read all the records from one file (unit
7), write them to another file (unit 8) and then write an endfile record to the end of thefile on
unit 8.
Notes:
1. Theunit must be connected for sequential access.
2. After execution of an ENDFI LE statement, a BACKSPACE or REW ND statement
must be used to reposition the file before any other input/output statement which

refersto thisfile can be executed.

3. If thefiledid not exist before execution of the ENDFI LE statement then it will be
created after execution of this statement.

For more information on input/output, see the chapter entitled "Input/Output” on page 255.

ENDFILE Statement 73

Language Reference

2.31 END GUESS Statement

END GUESS

The END GUESS statement is used in conjunction with the structured GUESS statement. The
END GUESS statement marks the end of a series of GUESS-ADMIT blocks.

Example:
CHARACTER CH
READ *, CH
GUESS
IF(CH.LT. "a)QUIT
IF(CH.GI. "z)QUIT
PRINT *, 'Lower case letter’
ADM T
IF(CH.LT. "A)QUIT
IF(CH.GI. "Z)QUIT
PRI NT *, " Upper case letter’
ADM T
IF(CH.LT. "0)QUIT
IF(CH.GT. "9 YQUIT
PRINT *, "Digit
ADM T
PRI NT *, ' Special character’
END GUESS
END

For more information, see the chapter entitled "Program Structure Control Statements' on
page 227.

74 END GUESS Statement

FORTRAN Statements

2.32 END IF Statement

END | F

The END | F statement is used in conjunction with the block | F statement. The END | F
statement marks the end of a sequence of statements which are to be conditionally executed.

Example:
IF(X .LT. 100.0) THEN
PRINT *, "X IS LESS THAN 100’
END | F

The END | F statement can also be used in conjunction with the ELSE and ELSE | F

statements. For more information, see the chapter entitled "Program Structure Control
Statements" on page 227.

END IF Statement 75

Language Reference

2.33 END LOOP Statement

END LOOP

The END LQOOP statement is used in conjunction with the structured LOOP statement. The
END LOOP statement marks the end of a sequence of statements which are to be repeated.
The LOOP statement marks the beginning of the loop. The LOOP-block is executed until
control istransferred out of the LOOP-block.

The QUI T statement may be used to transfer control out of a LOOP-block.

Example:
LOOP
READ *, X
IF(X .GI. 99.0) QUIT
PRI NT *, X
END LOCP

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

76 END LOOP Statement

FORTRAN Statements

2.34 END MAP Statement

END MAP

The END MAP statement is used in conjunction with the MAP declarative statement. The END
MAP statement marks the end of a MAP structure. The following example maps out a 4-byte
integer on an Intel 80x86-based processor.

Example:
STRUCTURE / MAPI NT/
UNI ON
VAP
| NTEGER*4 LONG
END MAP
VAP
| NTEGER*2 LO_WORD
I NTEGER*2 H _WORD
END MAP
MAP
| NTEGER*1 BYTE O
| NTEGER*1 BYTE_1
| NTEGER*1 BYTE_ 2
| NTEGER*1 BYTE_3
END MAP
END UNI ON
END STRUCTURE

RECORD / MAPI NT/ |
| 4ONG = ' 01020304’ x

PRINT ' (224)', 190 WORD, |%1 WORD
END

For more information, see the chapter entitled " Structures, Unions and Records" on page 199.

END MAP Statement 77

Language Reference

2.35 END SELECT Statement

END SELECT

The END SELECT statement is used in conjunction with the SELECT statement. The END
SELECT statement marks the end of a series of CASE blocks.

Example:

SELECT CASE (CH)
CASE ('a : 'z2')

PRI NT *, ' Lower case letter’
CASE ("A : 'Z)

PRINT *, ' Upper case letter’
CASE ('0" : "9)

PRINT *, 'Digit’
CASE DEFAULT

PRI NT *, ’ Special character’
END SELECT

For more information, see the chapter entitled "Program Structure Control Statements' on
page 227.

78 END SELECT Statement

FORTRAN Statements

2.36 END STRUCTURE Statement

END STRUCTURE

The END STRUCTURE statement is used in conjunction with the STRUCTURE declarative
statement. The END STRUCTURE statement marks the end of a structure definition.

Example:

STRUCTURE / ADDRESS/
CHARACTER* 20 STREET
CHARACTER*20 CI TY
CHARACTER* 20 STATE
CHARACTER* 20 COUNTRY
CHARACTER* 10 ZI P_CODE

END STRUCTURE

STRUCTURE / PECPLE/
CHARACTER* 20 NAME
RECORD / ADDRESS/ ADDR
| NTEGER*2 AGE

END STRUCTURE

For more information, see the chapter entitled " Structures, Unions and Records" on page 199.

END STRUCTURE Statement 79

Language Reference

2.37 END UNION Statement

END UNI ON

The END UNI ON statement is used in conjunction with the UNI ON declarative statement.
The END UNI ON statement marks the end of a series of MAP structures. The following
example maps out a 4-byte integer on an Intel 80x86-based processor.

Example:
STRUCTURE / MAPI NT/
UNI ON
VAP
| NTEGER*4 LONG
END MAP
VAP
| NTEGER*2 LO_WORD
I NTEGER*2 H _WORD
END MAP
MAP
| NTEGER*1 BYTE O
| NTEGER*1 BYTE_1
| NTEGER*1 BYTE_ 2
| NTEGER*1 BYTE_3
END MAP
END UNI ON
END STRUCTURE

RECORD / MAPI NT/ |
| 4ONG = ' 01020304’ x

PRINT ' (224)', 190 WORD, |%1 WORD
END

For more information, see the chapter entitled " Structures, Unions and Records" on page 199.

80 END UNION Statement

FORTRAN Statements

2.38 END WHILE Statement

END WHI LE

The END WHI LE statement is used in conjunction with the structured WHI LE statement. The
END WHI LE statement marks the end of a sequence of statements which are to be repeated.
The VWHI LE statement marks the beginning of the WHILE-block. The WHILE-block is
executed while the logical expression (or integer arithmetic expression) of the WHI LE
statement has a true (or non-zero) value or until control is transferred out of the
WHILE-block.

Example:
X=1.0
VHI LE(X .LT. 100)DO
PRINT *, X, SOQRT(X)
X=X+1.0
END WH LE

Example:
I =10
VWHI LE(|)DO
PRI NT *, |
I =1 -1
ENDWH LE
END

For more information, see the chapter entitled "Program Structure Control Statements' on
page 227.

END WHILE Statement 81

Language Reference

2.39 ENTRY Statement

ENTRY name [([d [, d] ...])]

where:

name is asymbolic name of an entry in afunction or subroutine subprogram. If the
ENTRY statement appears in a subroutine subprogram then narme is asubroutine
name. If the ENTRY statement appearsin a function subprogram then nane isan
external function name.

d isavariable name, array name, dummy procedure name, or an asterisk. d iscalled
adummy argument. An asterisk is allowed only in a subroutine subprogram.

The ENTRY statement is used to define an alternate entry into a subprogram.

Example:
PRI NT *, TMAX2(121.0, -290.0)
PRINT *, TMAX3(-1.0, 12.0, 5.0)
END

FUNCTI ON TMAX3(ARGA, ARGB, ARCC)
T3 = ARGC
GO TO 10

ENTRY TMAX2(ARGA, ARGB)
T3 = ARGA

10 TMAX2 = ARGA

| F(ARGB . GT. TMAX2) TMAX2 = ARGB
IF(T3 .GT. TMAX2) TMAX2 = T3

END

In the above example, an entry was defined to permit us to find the maximum of two real
variables. Either the entry name TIMAX2 or the function name TMAX3 could have been used
asthe variable for returning the maximum value since they agree in type. It isnot necessary
to precede an ENTRY statement with atransfer statement as the ENTRY statement is not an
executable statement; the next statement executed will be the first executable statement
following the ENTRY statement.

82 ENTRY Statement

FORTRAN Statements

Notes:

1. Nodummy arguments need be specified in the ENTRY statement. If thisisthe
case, the parentheses () are optional.

For more information, see the chapter entitled "Functions and Subroutines' on page 291.

ENTRY Statement 83

Language Reference

2.40 EQUIVALENCE Statement

EQUI VALENCE (nlist) [,(nlist)]

where:
nlist isalist of at least two names, each name separated by acomma.

The names appearing in nl i st can be variable names, array names, array element names,
character names, character substring names, and character array element substring names.
Dummy arguments are not allowed in nl i st .

The EQUI VALENCE statement specifies that the storage occupied by the entities appearing in
nli st all start at the same place. It in no way changes the characteristics of an object. For
example, if avariableis equivalenced to an array, the variable does not inherit the properties
of thearray. Similarly, if avariable of type integer is equivalenced to a variable of typereal,
thereis no implied type conversion.

If an array element name appearsin an EQUI VALENCE statement, the number of subscript
expressions must be the same as the number of dimensions specified when the array was
declared and each subscript expression must be in the range specified. Asan extension to
FORTRAN 77, Watcom FORTRAN 77 allows a single subscript expression for a
multi-dimensional array. An array name used by itself is equivalent to specifying the first
element of the array.

If acharacter substring appearsin an EQUI VAL ENCE statement, the substring defined by the
substring expression must be properly contained in the character entity being substrung. A
character name used by itself is equivalent to specifying the first character of the character
variable.

Example:
REAL A B
DI MENSI ON A(10) , B(20)
EQUI VALENCE (A, B(16))

In the above example, the first 5 elements of A occupy the same storage as the last 5 elements
of B.

84 EQUIVALENCE Statement

FORTRAN Statements

Example:
DI MENSI ON A(10)
EQUI VALENCE (C, A(2)), (D, A(4))

In the above example, Cis assigned the same storage unit as A(2) and Dis assigned the same
storage unit as A(4) .

The following example illustrates a Watcom FORTRAN 77 extension.
Example:

REAL A(2,10), B(20), C(2, 2,5)

EQUI VALENCE (A(5),B(1)),(B(1),C(1))

In the above example, a single subscript is specified for arrays Aand C. The following table
shows the mapping of a 2-dimensional array onto a 1-dimensiona array.

A(1,1) == A1
A(2,1) == A(2)
A(l,2) == A(3)
A(2,2) == A(4)
A(1,3) == A(5)
A(2,3) == A(6)
In the abovetable, "==" isread as "is equivalent to". In FORTRAN, arrays are stored in

"column magjor" format (i.e., arrays are stored column by column rather than row by row).

Example:
CHARACTER*5 A, D
EQUI VALENCE (A(3:5), D(1:3))

In this example, the last 3 characters of A occupy the same character storage units asthefirst 3
characters of D.

There are certain restrictions on EQUI VALENCE statements. It is not possible to equivalence
astorage unit to 2 different storage units. Thisisillustrated by the following example.

EQUIVALENCE Statement 85

Language Reference

Example:
* |llegally equivalencing a storage unit to
* 2 different storage units.
DI MENSI ON A(2)
EQUI VALENCE (A(1), B), (A(2), B)

B has been given 2 different storage units.

It is also not possible to specify that consecutive storage units be non-consecutive. For
example,

Example:
* ||l egally equival enci ng consecutive storage units to
* non-consecutive storage units.
DI MENSI ON A(2), B(2)
EQUI VALENCE (A(1),B(2)),(A(2),B(1))

A(1) and A(2) areconsecutive but B(1) and B(2) arenot.

The FORTRAN 77 standard specifies that character and numeric data cannot be
equivaenced; Watcom FORTRAN 77 allows character and numeric data to be equivalenced.

86 EQUIVALENCE Statement

FORTRAN Statements

2.41 EXECUTE Statement

EXECUTE nane

where:
name isthe name of a REMOTE BLOCK located in the same program unit.

The EXECUTE statement allows a named block of code to be executed. The named block of
code may be defined anywhere in the same program unit and is delimited by the REMOTE
BLOCK and END BLOCK statements. Executing a REMOTE-block is similar in concept to
calling a subroutine, with the advantage that shared variables do not need to be placed in a
COMMON block or passed in an argument list. When execution of the REMOTE-block is
complete (i.e., when the END BLOCK statement is executed), control returns to the statement
following the EXECUTE statement which invoked it.

Example:
EXECUTE | NCR
PRINT *, ' FIRST
EXECUTE | NCR
PRI NT *, ' SECOND

REMOTE BLOCK | NCR
I =I+1
PRINT *, " 1= 1
END BLOCK

For more information, see the chapter entitled "Program Structure Control Statements” on
page 227.

EXECUTE Statement 87

Language Reference

2.42 EXIT Statement

EXT [:

bl ock-1 abel]

The EXI T statement is used to transfer control:

1. from within aloop (DO, DO WHILE, WHILE or LOOP) to the statement
following the loop,

2. fromwithin a GUESS or ADMIT block to the statement following the ENDGUESS
statement, or

3. from within aremote block to the statement following the EXECUTE statement that
invoked the remote block.

The EXI T statement may be used to cause atransfer of control to the first executable
statement that follows the terminal statement of the block which containsit. Examples of
such terminal statementsare END DO, END LOOP, END WHI LE, UNTIL, etc. If

bl ock- 1 abel ispresent then control istransferred out of the block identified by that block
label. The EXI T statement is an extension to the FORTRAN 77 language.

Example:

LOOP
WRI TE(UNI T=*, FMI="(A)’) 'Enter a nunber’
READ(UNI T=*, FMI=' (F10.4)’, I OSTAT=10S) X
IF(10S .NE. 0) EXIT
IF(X .LT. 0) EXIT
PRINT *, X, SORT(X)

END LOOP

END

For more information, see the chapter entitled "Program Structure Control Statements' on

page 227.

88 EXIT Statement

FORTRAN Statements

2.43 EXTERNAL Statement

EXTERNAL p [, p]

where:
p is the name of an external procedure, dummy procedure or block data subprogram.

The EXTERNAL statement identifies a symbolic name to be a dummy procedure or an external
procedure and allows these names to be passed as an actual argument. In the following
example, SAM ERRRTNand POLY are declared to be external procedures.

Example:
EXTERNAL SAM ERRRTN, PCLY

In the following example, F isdeclared to be an external procedure and is passed as such to
subroutine SAM If the EXTERNAL statement were eliminated then the variable F would be
passed on to subroutine SAMsince there is no way of knowing that F is an external function.

Example:
EXTERNAL F

CALL SAM F)

The appearance of an intrinsic function in an EXTERNAL statement declares that name to be
an external procedure and the intrinsic function by that name is no longer available in that
program unit. This allows the programmer to define a function by the same name as an
intrinsic function. In the following example, the programmer’s SI N function will be called
instead of theintrinsic SI N function.

Example:
EXTERNAL SI N

CALL SIN(.1)

A statement function name must not appear in an EXTERNAL statement. A name must only
appear in an EXTERNAL statement once.

EXTERNAL Statement 89

Language Reference

2.44 FORMAT Statement
| abel FORMAT fs
where:
fs isaformat specification and is described in the chapter entitled "Format" on page
267.
label is the statement label used by an 1/0O statement to identify the FORNMAT statement

to be used. The FORVAT statement must be labelled.

Example:
REAL X
X = 234.43
PRI NT 100, X
100 FORMAT(F10. 2)
END

In the previous example, the PRI NT statement uses the format specification in the FORVAT
statement whose statement label is 100 to display the value of X.

For more information on the FORMAT statement, see the chapter entitled "Format" on page
267.

90 FORMAT Statement

FORTRAN Statements

2.45 FUNCTION Statement

A FUNCTI ON statement is used to define the start of afunction subprogram. There are two
forms of the FUNCTI ON function statement. The second form isaWatcom FORTRAN 77

extension.

2.45.1 Standard FUNCTION Statement

[type] FUNCTION fun ([d [, d] ...])

where:

type

fun

Example:

isoneof LOG CAL, | NTEGER, REAL, DOUBLE PRECI SI ON, COVPLEX or
CHARACTER][*I en] .

isa symbolic name of afunction subprogram.

isavariable name, array name, or adummy procedure name. d iscalled a dummy
argument.

is caled the length specification and is the length (number of characters) of the
result of the character function. It has one of the following forms:

D An unsigned positive integer constant.
2 A positive integer constant expression enclosed in parentheses.
3 An asterisk in parentheses, (*) .

PRINT *, TMAX3(-1.0, 12.0, 5.0)
END

FUNCTI ON TMAX3(ARGA, ARGB, ARGC)
TMAX3 = ARGA
| F(ARGB . GT. TMAX3) TMAX3
| F(ARGC . GT. TMAX3) TMAX3

ARGB
ARGC

END

FUNCTION Statement 91

Language Reference

In the above example, the function TMAX3 is defined to find the maximum of three rea

variables.

Notes:

1

No dummy arguments need be specified in the FUNCTI ON statement. However,
the parentheses () are mandatory.

For more information, see the chapter entitled "Functions and Subroutines" on page 291.

2.45.2 Extended FUNCTION Statement

[type[*l en]] FUNCTION fun[*len] ([d [, d] ...])

where:

type

fun

isoneof LOG CAL, | NTEGER, REAL, DOUBLE PRECI SI ON, COVPLEX,
CHARACTER or RECORD /t ypenane/

is a symbolic name of afunction subprogram.

isavariable name, array name, or adummy procedure name. d iscalled adummy
argument.

is called the length specification and has one of the following forms:

@ An unsigned positive integer constant.
(2 A positive integer constant expression enclosed in parentheses.
(3) An asterisk in parentheses, (*) .

For valid values of | en, refer to the appropriate type declaration statement.

Thisform of the FUNCTI ON statement is an extension to the FORTRAN 77 language.

92 FUNCTION Statement

FORTRAN Statements

Example:

| NTEGER*2 FUNCTI ON MOD2(
I NTEGCER*2 |, J

I NTEGER I'l, JJ

=1
JJ =1
MOD2 =
END

MOD(1 1, JJ)

Notes:

1. Nodummy arguments need be specified in the FUNCTI ON statement. However,

the parentheses () are mandatory.

1, J)

2. Thelength specification can appear only oncein the FUNCTI ON statement.

For more information, see the chapter entitled "Functions and Subroutines' on page 291.

FUNCTION Statement

93

Language Reference

2.46 Unconditional GO TO Statement

&0 TO s

where:

S is the statement label of an executable statement that appears in the same program unit
asthe GO TOstatement.

Example:
G0 TO 10

10 S=S+1

When the GO TOstatement is executed, control is transferred to the statement identified by
that label. In the above example, the GO TO statement causes execution to proceed to the
statement labelled 10.

Example:
* An illegal GO TO statenent
G0 TO 100
100 . FORMAT(1X, 3F10.2)

The above example contains an illegal GO TO statement since the statement identified by the
label 100 is not executable.

94 Unconditional GO TO Statement

FORTRAN Statements

2.47 Computed GO TO Statement

G TO(s [,s]...) [.]i

where:
[is an integer expression.
S isthe statement label of an executable statement that appears in the same program unit

as the computed GO TO statement.

Theinteger expression i isevaluated and the i th label is selected for transfer of control. If i
islessthan 1 or greater than the number of statement labelsin the list then execution control
continues with the next executabl e statement that follows the computed GO TO statement.

Example:
G0 TO (110, 120, 130, 140) I NDEX
100 CALL AUDIT

In the above example, control istransferred to the statement identified by the label 110 if

| NDEX has the value 1, the label 120 if | NDEX hasthe value 2, etc. If | NDEX hasavalue
that is negative, zero or larger than 4, control continues with the statement labelled 100. In
this example, the integer expression consists simply of an integer variable.

Example:
G0 TO (100, 200, 100, 200, 100, 200), 1/10

The above example illustrates that statement labels may be repeated in thelist and that a","
may follow the closing right parenthesis.

Computed GO TO Statement 95

Language Reference

2.48 Assigned GO TO Statement

O TOi [[,] (s [,s]...)]

where:
[is an integer variable name.

S isthe statement label of an executable statement that appears in the same program unit
asthe assigned GO TO statement.

Thevariablei must be defined with the value of a statement label of an executable statement
that appears in the same program unit (see the ASSI GN statement). The execution of the
assigned GO TOstatement causes atransfer of control to the statement that is identified by

that label.

Example:
| NTEGER RET
X=0.0
ASSI GN 100 TO RET
GO TO 3000

100 X=X+1
ASSI GN 110 TO RET
@GO TO 3000

110 X=X+1

* Print both X and its square root
3000 Y = SQRT(X))

PRINT *, X Y

G0 TO RET

In the above example, we illustrate the use of the ASSI GN statement and the assigned GO TO
statement to implement a"local subrouting” in a program unit. A sequence of often-used code
can be "called" using the unconditional GO TOstatement and "return” is accomplished using
the assigned GO TOstatement. Care must be exercised to properly assign the return label
value.

If alist of statement labelsis present then the statement label assignedto i must bein thelist.
If itisnot inthelist, an error will occur when the assigned GO TO statement is executed.

96 Assigned GO TO Statement

FORTRAN Statements

Unlike the computed GO TO statement, execution does not continue with the next statement.
Thisis demonstrated by the following example. Note that the"," preceding the statement
label list is optional.

Example:
* |1l egal use of the assigned GO TO
* Statement | abel 100 does not appear in the statenent
* | abel 1ist of the assigned GO TO statenent.
ASSI GN 100 TO | CASE
G0 TO | CASE, (110, 120, 130)

* begi nni ng of sel ections
100 PRI NT *, 100
GO TO 200
110 PRI NT *, 110
GO TO 200
120 PRI NT *, 120
GO TO 200
130 PRI NT *, 130
* end of sel ections
200 END

Assigned GO TO Statement 97

Language Reference

2.49 GUESS Statement

GUESS [: Dbl ock-1abel]

The GUESS statement is an extension to the FORTRAN 77 language. The GUESS statement
marks the beginning of a block of statements for which a certain assumption or hypothesis has
been made. This hypothesis may be tested using logical | F statementsin conjunction with
QUI T statements. The ADM T statement may be used to mark the beginning of an alternate
hypothesis. The END GUESS statement is used to mark the end of a series of
GUESS-ADMIT blocks.

Example:
CHARACTER CH
READ *, CH
GUESS
IF(CH .LT. "a")QUIT
IF(CH.GI. "z2")QUIT
PRINT *, 'Lower case letter’
ADM T
IF(CH .LT. "A YQUT
IF(CH.GI. 'Z YQUIT
PRINT *, ' Upper case letter’
ADM T
IF(CH.LT. "0)QUIT
IF(CH.GI. "9 YQUT
PRINT *, "Digit’
ADM T
PRI NT *, ' Special character’
END GUESS
END

An optional block label may be specified with the GUESS statement.

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

98 GUESS Statement

FORTRAN Statements

2.50 Arithmetic IF Statement

IF (e) sl1, s2, s3

where:
e isan integer, real, or double precision expression.
sl, s2,s3 are statement labels of executable statements that appear in the same

program unit as the arithmetic | F statement.

The expression e isevaluated and if the value is less than zero then transfer is made to the
statement identified by label s1. If the valueisequal to zero then transfer is made to the
statement identified by label s2. If the valueis greater than zero then transfer is made to the
statement identified by label s3.

Example:

IF(SINC X))) 10, 20, 30

10 PRINT *, "SIN(X) IS <O
GO TO 40

20 PRINT *, "SIN(X) = 0O
GO TO 40

30 PRINT *, "SIN(X) > 0O

40 CONTI NUE

The above example evaluates the sine of the real variable X and prints whether the result is
lessthan O, equal to O, or greater than O.

The same label may appear more than once in the arithmetic | F statement.

Example:
IF(SIN(X))) 10, 10, 30
10 PRINT *, "SIN(X) IS <=0
GO TO 40
30 PRINT *, "SIN(X) > O
40 CONTI NUE

The above example evaluates the sine of the real variable X and prints whether the result is
less than or equal to zero, or that it is greater than O.

Arithmetic IF Statement 99

Language Reference

2.51 Logical IF Statement

IF (e) st
where:
e isalogical expression or integer arithmetic expression, in which case the result of the
integer expression is compared for inequality to the integer value 0.
st is an executable statement. Only certain executable statements are allowed. Seethe

section entitled "Classifying Statements' on page 9 at the beginning of this chapter for
alist of allowable statements.

The expression e is evaluated and must result in atrue or afalse value. If theresult istrue
then the statement st is executed, otherwise it is not executed.

Example:
IF(A.LT. B)PRINT *, "A< B

In the above example, the logical expression A . LT. Bisevaluated and, if it istrue, the
message A < Bisprinted. A logical expression isonein which the result is either true or
fase. Anexpressonsuchas1l + 2 isclearly not an example of alogical expression.

Logical variables have logical values of true or false and may also be used in the logical
expression. Consider the following two examples.

Example:
LOd CAL RESULT
RESULT = A .LT. B
| F(RESULT)PRINT *, "A < B

The above example is equivalent to the preceding one but introduces the use of alogical
variable.

100 Logical IF Statement

FORTRAN Statements

Example:
LOd CAL RESULT
RESULT = A .LT. B
IF(.NOT. RESULT)PRINT *, "A >= B

In the above example, the logical expression is negated through the use of the . NOT.
operator in order to test for the inverse condition, namely . GE. .

Much more complex logical expressions can be constructed and then tested for their truth
value.

Example:
IF(ALT.B.OR CGED)PRINT *, "A<B or C=D

An example of an integer expression in an | F statement follows:

Example:
I =1
* Integer arithmetic expression
IF(|)THEN
PRI NT *, ’Yes’
ENDI F

* Equi val ent | ogi cal expression
IF(I .NE. O)THEN
PRI NT *, ' Yes’
ENDI F
END

Logical IF Statement 101

Language Reference

2.52 Block IF Statement

There are two forms of the block | F statement. The second is a Watcom FORTRAN 77
extension.

2.52.1 Standard Block IF Statement

IF (e) THEN
where:
e isalogical expression.

Theblock | F statement is used in conjunction withthe ELSE | F, ELSE, and END | F
statements.

Example:
IF(A .LT. B)THEN
PRINT *, 'A< B
END I F

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

2.52.2 Extended Block IF Statement

IF (e) THEN [: bl ock-1abel]

where:
e isalogica expression or integer arithmetic expression, in which

case the result of the integer expression is compared for inequality
to the integer value 0.

102 Block IF Statement

FORTRAN Statements

block-label isan optional block label.

Thisform of the block | F statement is an extension to the FORTRAN 77 language. Itis
identical to the standard form of the block | F statement with the exception that an integer
arithmetic expression and an optional block label are permitted.

Example:
IF(I .EQ 10)THEN : |FBLK
IF(J .EQ 20) THEN

IF(K. EQ 0)QUIT : IFBLK
END | F

END | F

In the previous example, the QUI T statement will transfer control to the statement following
the second END | F statement.

Block IF Statement 103

Language Reference

2.53 IMPLICIT Statement

Watcom FORTRAN 77 supports three forms of the | MPLI Cl T statement. The second and
third forms are extensions to the FORTRAN 77 language.

2.53.1 Standard IMPLICIT Statement

IMPLICIT type (a [,a] ...) [,type (a[,a] ...)]...

where:

type

isoneof LOG CAL, | NTEGER, REAL, DOUBLE PRECI SI ON, COWPLEX
or CHARACTER][*I en] .

iseither asingle letter or arange of letters denoted by separating the first letter in
the range from the last letter in the range by a minus sign.

isthe length of the character entities and is a positive unsigned integer constant or a
positive integer constant expression enclosed in parentheses. If | en isnot
specified, the length is 1.

2.53.2 Extended IMPLICIT Statement

IMPLICIT type[*len] (a[,a] ...)
[.type[*len] (a [,a] ...)]

where:

type

isoneof LOG CAL, | NTEGER, REAL, DOUBLE PRECI SI ON, COWVPLEX
or CHARACTER

is apositive unsigned integer constant or a positive integer constant expression
enclosed in parentheses. If t ype is CHARACTERthen (*) isalsoalowed. The
possible values of | en are asfollows:

104 IMPLICIT Statement

FORTRAN Statements

1. IftypeisLOG CAL thenl| en canbelor 4. Thedefaultis4.
2. Iftypeisl NTEGERthen| en canbel, 2 or 4. The defaultis4.
3. IftypeisREAL then| en canbe4 or 8. Thedefaultis4.

4. Iftype isDOUBLE PRECI SI ONthen | en cannot be specified.
5. IftypeisCOVPLEXthen| en canbe8or 16. The defaultis8.

6. Iftype isCHARACTERthen| en canbe (*) or any positive integer.

2.53.3 IMPLICIT NONE Statement

| MPLICI' T NONE

2.53.4 Description of IMPLICIT Statement

Thel MPLI ClI T statement defines the default type and length for all variables, arrays,
symbolic constants, external functions and statement functions that begin with any letter that
has appearedinan | MPLI CI T statement as a single letter or as a member of arange of
etters.

The following example specifies that any name beginning with the letters A, D, E, For G
will have default a default type of integer and any name beginning with the letters X, Y or Z
will have a default type of character and length 3.

Example:
IMPLICI T INTEGER (A DG, CHARACTER*3 (X-2)

The next example illustrates the extended form of the | MPLI CI T statement.
Example:

T INTEGER*2 (A B), LOG CAL*1 (C-F)

| MPLI CI
| MPLI CI T COWPLEX*16 (X, Y,Z), REAL*8 (P)

IMPLICIT Statement 105

Language Reference

106

Specifying NONE in the | MPLI CI T statement will cause Watcom FORTRAN 77 to issue an
error when a symbol is used and has not appeared in atype specification statement.

Example:
* Referencing X will cause an error
| MPLI CI' T NONE
X = 13143. 383

In the above example, the | MPLI ClI T statement specifies that the type of all symbols must be
explicitly declared in atype specification statement. The assignment statement will cause an
error since the type of X has not been explicitly declared.

Notes:

1. Theimplicittypeset by an | MPLI Cl T statement may be overridden or confirmed
for any variable, array, symbolic constant, external function or statement function
name by its appearance in atype statement. The default length specification may
also be overridden or confirmed in a type statement.

Example:
| MPLI I T CHARACTER*10 (S-U)
| MPLICI T | NTEGER*2 (P)
CHARACTER STRI NG
| NTEGER PO NTS

In the above example, the variable STRI NGis of type character but itslengthis 1
since it has appeared in a CHARACTER statement which has a default length of 1.
Also, thevariable PO NTS is of type integer but itslength is4 since it has
appeared in an | NTEGER statement which has a default length of 4.

2. A letter cannot appear more than once as asingle letter or be included in arange of
lettersinall | MPLI CI T statementsin aprogram unit.

3. Anl MPLI ClI T statement applies only to the program unit that containsiit.
4. Thel MPLI CI T statement does not change the type of intrinsic functions.
5. A program unit can contain more than one | MPLI Cl T statement.

6. Within the specification statements of a program unit, | MPLI Cl T statements must
precede all other specification statements except PARAMVETER statements.

IMPLICIT Statement

FORTRAN Statements

7. Thel MPLI CI T NONE statement is allowed only once in a program unit.
Furthermore, no other | MPLI CI T statement can be specified in the program unit
containingan | MPLI CI T NONE statement.

IMPLICIT Statement 107

Language Reference

2.54 INCLUDE Statement

I NCLUDE ' i nc_spec’

where:

inc_spec isan include specification. Y ou should refer to the compiler's User’s Guide
for a detailed description of an include specification and includefile
processing.

Example:

| NCLUDE * GBLDEFS

END

108 INCLUDE Statement

FORTRAN Statements

2.55 INQUIRE Statement

The | NQUI RE statement is used to ask about certain properties of anamed file or its
connection to a particular unit. There are two forms of the | NQUI RE statement; inquire by
file name and inquire by unit.

2.55.1 INQUIRE by FILE

INQURE (iflist)

where:

iflist includes the FI LE= specifier and may include at most one of each of the
inquiry specifierslisted below. Specifiers are separated by commas. The
FI LE= specifier hasthe form

FILE = fin

wheref i n isacharacter expression whose value when trailing blanks are
removed is the name of afile being inquired about. The file need not exist or be
connected to a unit.

Example:

LOG CAL EX, OD
I NTEGER NUM
I NQUI RE(FI LE=" ROLL’ , EXI ST=EX, OPENED=0D, NUMBER=NUM)

In the above example, information is requested on the file PAYROLL. In particular, we want

to know if it exists, whether it is connected to a unit, and what the unit number is (if itis
indeed connected).

INQUIRE Statement 109

Language Reference

2.55.2 INQUIRE by UNIT

I NQUI RE (i ulist)

where:

iulist includes the UNI T= specifier and may include at most one of each of the
inquiry specifierslisted below. Specifiers are separated by commas. The
UNI T= specified has the form

[UNIT =] u
where u isan external unit identifier. An external unit identifier isa
non-negative integer expression. If the optional UNI T= specifier is omitted
then the specifier must be the first item in the list of specifiers.
Example:
LOG CAL EX, OD
CHARACTER*30 FN
I NQUI RE(UNI T=7, EXI ST=EX, OPENED=CD, NAME=FN)

In the above example, information is requested on unit 7. In particular, we want to know if
the unit exists, whether it is connected to afile, and, if so, what the file nameis.

2.55.3 Inquiry Specifiers

The following inquiry specifiers are supported.

110 INQUIRE Statement

FORTRAN Statements

| OSTAT = ios
ERR = s

EXI ST = ex
OPENED = od
NUMBER = num
NAMVED = nnd
NAME = fn

ACCESS = acc
SEQUENTI AL = seq
DI RECT = dir
FORM = fm
FORVATTED = fnt
UNFORMATTED = unf

RECL = rcl
NEXTREC = nr
BLANK = bl nk

As an extension to the FORTRAN 77 language, the following inquiry specifiers are also
supported.

ACTI ON = act

CARRI AGECONTROL = cc
RECORDTYPE = rct
BLOCKSI ZE = bl

IOSTAT =ios
is an input/output status specifier. The integer variable or integer array element
i os isdefined with zero if no error condition exists or a positive integer value if
an error condition exists.

ERR=s isan error specifier and s is astatement label. When an error occurs, execution
istransferred to the statement labelled by s.

EXIST =ex ex isalogical variable or logical array element.

Inquire by file: Thevalue . TRUE. isassigned if afile exists with the specified
name; otherwise the value .FALSE. isassigned.

Inquire by unit: Thevalue . TRUE. isassigned if the specified unit exists;
otherwise the value .FALSE. isassigned.

OPENED =od
od isalogical variable or logical array element.

INQUIRE Statement 111

Language Reference

Inquire by file: Thevalue . TRUE. isassigned if the specified file is connected
to aunit; otherwise the value .FALSE. is assigned.

Inquire by unit: Thevalue . TRUE. isassigned if the specified unit is connected
to afile; otherwise the value .FALSE. isassigned.

NUMBER = num
numis an integer variable or integer array element that is assigned the value of
the unit number to which the fileis connected. If no unit is connected to the file
then numbecomes undefined.

NAMED = nmd
nid isalogical variable or logical array element name that is assigned the value
.TRUE. if the file has a name; otherwise the value .FALSE. isassigned.

NAME =fn f nisacharacter variable or character array element. Watcom FORTRAN 77
also permits f n to be a character substring.

It is assigned the name of thefile, if the file has a name; otherwise it becomes
undefined. The file name that is returned need not be the same as that givenin a
FI LE= specifier but it must be suitable for use in the FI LE= specification of an
OPEN statement (e.g., the file name returned may have additional system
gualifications attached to it).

ACCESS = acc
acc isacharacter variable or character array element. Watcom FORTRAN 77
also permits acc to be a character substring.

Itisassigned thevalue ' SEQUENTI AL’ if thefileis connected for sequential
access. Itisassignedthevalue’ DI RECT' if thefileis connected for direct
access. Itisassigned an undefined value if there is no connection.

SEQUENTIAL =seq
se(isacharacter variable or character array element. Watcom FORTRAN 77
also permits seq to be a character substring.

Itisassigned thevalue’ YES' if SEQUENTI AL isincluded in the set of allowed
access methods for thefile, thevalue ' NO if SEQUENTI AL isnot included in
the set of allowed access methods for the file, or * UNKNOWN' if Watcom
FORTRAN 77 is unable to determine whether or not SEQUENTI AL isincluded
in the set of alowed access methods for thefile.

112 INQUIRE Statement

FORTRAN Statements

DIRECT =dir

di r isacharacter variable or character array element. Watcom FORTRAN 77
also permits di r to be a character substring.

Itisassigned thevalue ' YES' if DI RECT isincluded in the set of allowed
access methods for thefile, thevalue ' NO if DI RECT is not included in the set
of allowed access methods for the file, or * UNKNOWN if Watcom FORTRAN
77 isunable to determine whether or not DI RECT isincluded in the set of
allowed access methods for the file.

FORM =fm f mis acharacter variable or character array element. Watcom FORTRAN 77

also permits f mto be a character substring.

Itisassigned thevalue ' FORVATTED if thefileis connected for formatted
input/output, the value” UNFORMATTED' if thefile is connected for
unformatted input/output, or an undefined value if there is no connection.

FORMATTED = fmt

f nt isacharacter variable or character array element. Watcom FORTRAN 77
also permits f nt to be a character substring.

Itisassigned thevalue’ YES' if FORMATTED isincluded in the set of allowed
formsfor thefile, thevalue ' NO if FORMATTED is not included in the set of
allowed forms for the file, or * UNKNOWN' if Watcom FORTRAN 77 isunable
to determine whether or not FORMATTED isincluded in the set of allowed forms
for thefile.

UNFORMATTED = unf

RECL =rcl

unf isacharacter variable or character array element. Watcom FORTRAN 77
also permits unf to be a character substring.

Itisassigned thevalue’ YES' if UNFORMATTED isincluded in the set of
alowed forms for thefile, thevalue ’ NO if UNFORMATTED is not included in
the set of allowed forms for the file, or * UNKNOAN' if Watcom FORTRAN 77
is unable to determine whether or not UNFORMATTED isincluded in the set of
alowed forms for the file.

rcl isaninteger variable or integer array element that is assigned the value of
the record length of the file connected for direct access. If thefileis connected
for formatted input/output, the length is the number of characters. If thefileis
connected for unformatted input/output, the length is measured in
processor-dependent units (bytes). See the compiler User’s Guide for a
discussion of record length or size. If thereisno connection or if the fileis not

INQUIRE Statement 113

Language Reference

connected for direct access then the valueisundefined. The RECL= specifier is
also allowed if thefile is connected for sequential access.

NEXTREC =nr
nr isaninteger variable or integer array element that is assigned the value
n+1, where n istherecord number of the last record read or written on thefile
connected for direct access. If the fileis connected but no records have been
read or written then the valueis 1. If thefileisnot connected for direct access
or if the position of the file can not be determined because of an input/output
error then nr becomes undefined.

BLANK = bInk
bl nk isacharacter variable or character array element. Watcom FORTRAN
77 also permits bl nk to be a character substring.

Itisassigned thevalue ' NULL' if null blank control isin effect for the file
connected for formatted input/output, and is assigned the value ' ZERO if zero
blank control isin effect for the file connected for formatted input/output. If
there is no connection, or if the fileis not connected for formatted input/output,
bl nk becomes undefined.

ACTION = act
act isacharacter variable or character array element. Watcom FORTRAN 77
also permits act to be a character substring.

Itisassigned thevalue ' READ if data can only be read from thefile,
"WRI TE' if datacan only be written from the file, and * READWRI TE' if data
can be both read and written.

CARRIAGECONTROL =cc
cc isacharacter variable or character array element. Watcom FORTRAN 77
also permits cc to be a character substring.

Itisassigned thevalue’ YES' if thefirst character of each record isinterpreted

as acarriage control character and * NO if no interpretation is placed on the
first character of each record.

114 INQUIRE Statement

FORTRAN Statements

RECORDTYPE = rct
r ct isacharacter variable or character array element. Watcom FORTRAN 77
also permitsr ct to be a character substring.

It is assigned avalue that represents the record type (or record structure) that is
used for the file. The value assigned depends on the system on which you are
running the program. See the compiler User’s Guide for a discussion of record

types.

BLOCKSIZE = bl
bl isaninteger variable or integer array element.

It is assigned avalue that represents the internal buffer size that is used for
input/output operations on the file. The value assigned depends on the system
on which you are running the program. See the compiler User’s Guide for a
discussion of default internal buffer size.

2.55.4 Definition Status of Specifiers - Inquire by File

The following table summarizes which specifier variables or array elements become defined
with values under what conditions when using the FI LE= specifier.

| OSTAT = ios (1)
EXI ST = ex (2)
OPENED = od (2)
NUMBER = num (4)
NAMVED = nnd (3)
NAME = fn (3)
ACCESS = acc (5)
SEQUENTI AL = seq (3)
DI RECT = dir (3)
FORM = fm (5)
FORMATTED = fnt (3)
UNFORMATTED = unf (3)
RECL = rcl (5)
NEXTREC = nr (5)
ACTI ON = act (5)
CARRI AGECONTRCL = cc (5)
RECORDTYPE = rct (5)
BLOCKSI ZE = bl (5)

1. Thel OSTAT= specifier variable is always defined with the most recent error
status. If an error occurs during execution of the | NQUI RE statement then the

INQUIRE Statement 115

Language Reference

error status is defined with a positive integer; otherwise the statusiis that of the
most recent input/output statement which referenced that file.

2. The specifier dways becomes defined unless an error condition occurs.

3. Thisspecifier becomes defined with avalue only if the file name specified in the
FI LE= specifier is an acceptable file name and the named file exists. Also, no
error condition can occur during the execution of the | NQUI RE statement.

4. This specifier becomes defined with avalue if and only if od becomes defined with
thevalue . TRUE.. Also, no error condition can occur during the execution of the
I NQUI RE statement.

5. This specifier may become defined with avalue only if od becomes defined with
the value .TRUE.. However, there may be other conditions under which this
specifier does not become defined with avalue. In other words, (5) is anecessary,
but not sufficient condition. For example, bl nk isundefined if the fileis not
connected for formatted input/output.

2.55.5 Definition Status of Specifiers - Inquire by Unit

The following table summarizes which specifier variables or array elements become defined
with values under what conditions when using the UNI T= specifier.

| OSTAT = ios (1)
EXI ST = ex (2)
OPENED = od (2)
NUMBER = num (3)
NAMED = nnd (3)
NAME = fn (3)
ACCESS = acc (3)
SEQUENTI AL = seq (3)
DIRECT = dir (3)
FORM = fm (3)
FORMATTED = fnt (3)
UNFORMATTED = unf (3)
RECL = rcl (3)
NEXTREC = nr (3)
ACTI ON = act (3)
CARRI AGCECONTROL = cc (3)
RECORDTYPE = rct (3)
BLOCKSI ZE = bl (3)

116 INQUIRE Statement

FORTRAN Statements

1. Thel OSTAT= specifier variable is always defined with the most recent error
status. If an error occurs during execution of the | NQUI RE statement then the
error status is defined with a positive integer; otherwise the statusiis that of the
most recent input/output statement which referenced that unit.

2. Thisspecifier always becomes defined unless an error condition occurs.
3. Thisspecifier becomes defined with avalue only if the specified unit existsand if a
fileis connected to the unit. Also, no error condition can occur during the

execution of the | NQUI RE statement.

For more information on input/output, see the chapter entitled "Input/Output” on page 255.

INQUIRE Statement 117

Language Reference

2.56 INTEGER Statement

The | NTEGER statement is a type declaration statement and can be used to declare anameto
be of type integer. The implicit type of the name, whether defined by the "first letter rule"
(see the chapter entitled "Names, Data Types and Constants" on page 177) or by an

| MPLI CI T statement, is either confirmed or overridden. However, once a name has been
declared to be of type integer, it cannot appear in another type declaration statement.

There are various forms of the | NTEGER statement. The following sections describe them.

2.56.1 Standard INTEGER Statement

| NTEGER nane [, nane]

where:

name isavariable name, array name, array declarator, symbolic name of a constant,
function name or dummy procedure name.

Thisform isthe standard form of the | NTEGER statement.
Example:

DI MENSI ON C(-5:5)

I NTEGER A, B(10), C

In the previous example, A is defined to be avariable of type integer and B and C are defined
to be arrays of type integer.

2.56.2 Extended INTEGER Statement: Length Specification

118

| NTEGER] *1 en[,]] nanme [, nane]

INTEGER Statement

FORTRAN Statements

where:
name is one of the following forms:
v[*l en]
a[*l en] (d)
a(d)[*l en]
v isavariable name, array name, symbolic name of a constant, function name or
dummy procedure name.
a isan array name.
(d) isthat part of the array declarator defining the dimensions of the array.
len is called the length specification and is an unsigned positive integer constant or an

integer constant expression enclosed in parentheses whose valueis 1, 2 or 4.

Thisform of the | NTECER statement is a Watcom FORTRAN 77 extension to the
FORTRAN 77 language. The length specification specifies the number of bytes of storage
that will be alocated for the name appearing in the | NTEGER statement. The default length
specificationis 4. A length specification of 1 or 2 does not change the data type; it merely
restricts the magnitude of the integer that can be represented. See the chapter entitled
"Names, Data Types and Constants" on page 177 for more information.

The length specification immediately following the word | NTEGER is the length specification
for each entity in the statement not having its own length specification. If alength
specification is not specified the default length specification isused. An entity with its own
specification overrides the default length specification or the length specification immediately
following theword | NTEGER. Note that for an array the length specification appliesto each
element of the array.

Example:
DI MENSI ON C(-5:5)
I NTEGER A, B*2(10), C*2
| NTEGER*1 X

In the previous example, X is declared to be a variable of type integer and occupying 1 byte of
storage, Ais declared to be avariable of type integer and occupying 4 bytes of storageand B
and C are declared to be arrays of type integer with each element of the array occupying 2
bytes.

INTEGER Statement 119

Language Reference

2.56.3 Extended INTEGER Statement; Data Initialization

120

| NTEGER] *1 en[,]] name [/cl/] [,name[/cl/]]

where:

name

cl

Cc

r

is as described in the previous section.

is as described in the previous section.

isalist of the form:

k [K]

isone of the forms:

c

r*c (equivalent to r successive appearances of c)
isaconstant or the symbolic name of a constant

is an unsigned positive integer constant or the symbolic name of a constant.

Thisform of the | NTEGER statement is an extension to the FORTRAN 77 language. The
rulesfor datainitialization are the same as for the DATA statement.

Example:

| NTEGER A/ 100/, B(10)/10*0/

In the previous example, Aisinitialized with the integer constant 100 and each element of the
array Bisinitialized with the integer constant O.

INTEGER Statement

FORTRAN Statements

2.57 INTRINSIC Statement

INTRINSIC f [,f]

where:
f is the name of an intrinsic function name.

An | NTRI NSI C statement is used to identify a symbolic name as the name of an intrinsic
function. It also alows a specific intrinsic function to be passed as an actual argument. The
names of intrinsic functions for type conversion (INT, IFIX, HFIX, IDINT, FLOAT,
DFLOAT, SNGL, REAL, DREAL, DBLE, CMPLX, DCMPLX, ICHAR, CHAR), lexica
relationship (LGE, LGT, LLE, LLT), for choosing the largest or smallest value (MAX,
MAXO0, AMAX1, DMAX1, AMAX0, MAX1, MIN, MINO, AMINZ1, DMIN1, AMINO,
MIN1), aswell asALLOCATED, ISIZEOF and LOC, must not be used as actual arguments.

A generic intrinsic function does not lose its generic property if it appearsinan | NTRI NSI C
Statement.

A name must only appear in an | NTRI NSI C statement once. A symbolic hame must not
appear in both an | NTRI NSI C and an EXTERNAL statement in a program unit.

Example:
I NTRINSI C SIN

CALL SAM SIN)

In the previous example, the intrinsic function SI N was passed to the subroutine SAM If the
I NTRI NSI C statement were eliminated then the variable SI Nwould be passed to the
subroutine SAM

INTRINSIC Statement 121

Language Reference

2.58 LOGICAL Statement

The LOd CAL statement is a type declaration statement and can be used to declare anameto
be of typelogical. The implicit type of the name, whether defined by the "first letter rule”
(see the chapter entitled "Names, Data Types and Constants" on page 177) or by an

| MPLI CI T statement, is either confirmed or overridden. However, once a name has been
declared to be of typelogical, it cannot appear in another type declaration statement.

There are various forms of the LOG CAL statement. The following sections describe them.

2.58.1 Standard LOGICAL Statement

LOd CAL nane [, nane]

where:

name isavariable name, array name, array declarator, symbolic name of a constant,
function name or dummy procedure name.

Thisform isthe standard form of the LOG CAL statement.
Example:

DI MENSI ON C(-5:5)

LOG CAL A, B(10), C

In the previous example, A is defined to be avariable of typelogical and B and C are defined
to be arrays of type logical.

2.58.2 Extended LOGICAL Statement: Length Specification

LOd CAL[*l en[,]] name [, nane]

122 LOGICAL Statement

FORTRAN Statements

where:
name is one of the following forms:
v[*l en]
a[*l en] (d)
a(d)[*l en]
v isavariable name, array name, symbolic name of a constant, function name or
dummy procedure name.
a isan array name.
(d) isthat part of the array declarator defining the dimensions of the array.
len is called the length specification and is an unsigned positive integer constant or an

integer constant expression enclosed in parentheses whose valueis 1 or 4.

Thisform of the LOG CAL statement is a Watcom FORTRAN 77 extension to the
FORTRAN 77 language. The length specification specifies the number of bytes of storage
that will be alocated for the name appearing in the LOG CAL statement. The default length
specificationis 4. A length specification of 1 only changes the storage requirement from 4
bytesto 1 byte; the values of true and false can be represented regardless of the length
specification.

The length specification immediately following theword LOG CAL isthe length specification
for each entity in the statement not having its own length specification. If alength
specification is not specified the default length specification isused. An entity with its own
specification overrides the default length specification or the length specification immediately
following theword LOG CAL. Note that for an array the length specification appliesto each
element of the array.

Example:
DI MENSI ON C(-5:5)
LOG CAL A, B*1(10), C*1
LOd CAL*4 X

In the previous example, X is declared to be avariable of type logical and occupying 4 bytes
of storage, A isdeclared to be avariable of typelogical and occupying 4 bytes of storage and
B and C are declared to be arrays of type logical with each element of the array occupying 1
byte.

LOGICAL Statement 123

Language Reference

2.58.3 Extended LOGICAL Statement: Data Initialization

LOd CAL[*l en[,]] name [/cl/] [,nanme[/cl/]]

where:
name is as described in the previous section.
len is as described in the previous section.
cl isalist of the form:
k [K]
k isone of the forms:
c
r*c (equivalent to r successive appearances of c)
c isaconstant or the symbolic name of a constant
r is an unsigned positive integer constant or the symbolic name of a constant.

Thisform of the LOG CAL statement is an extension to the FORTRAN 77 language. The
rulesfor datainitialization are the same as for the DATA statement.

Example:
LOd CAL A/ . TRUE./, B(10)/10*. FALSE./

In the previous example, Aisinitialized with thelogical constant . TRUE. and each element
of the array Bisinitialized with thelogical constant . FALSE. .

124 LOGICAL Statement

FORTRAN Statements

2.59 LOOP Statement

LOOP [: bl ock-1 abel]

The LOOP statement is used in conjunction with the structured END LOOP or UNTI L
statement. The LOOP statement marks the beginning of a sequence of statementswhich areto
be repeated. The END LOOP or UNTI L statement marks the end of the loop. The

L OOP-block is executed until control is transferred out of the LOOP-block or the logical
expression (or integer arithmetic expression) of the UNTI L statement has a true (or non-zero)
value.

The QUI T statement may be used to transfer control out of a LOOP-block.

Example:
LOOP
READ *, X
IF(X .GT. 99.0) QUIT
PRI NT *, X
END LOCP

Example:
X=1.0
LOOP
PRINT *, X, SORT(X)
X=X+1.0
UNTIL(X .GT. 10.0)

An optional block l1abel may be specified with the LOOP statement.

For more information, see the chapter entitled "Program Structure Control Statements' on
page 227.

LOOP Statement 125

Language Reference

2.60 MAP Statement

The MAP statement is used in conjunction with the END MAP declarative statement. The MAP
statement marks the start of a memory mapping structure. A MAP structure must appear
within a UNI ON block. Any number of variables of any type may appear within a memory
map. At least two MAP structures must appear within a UNI ON block. A UNI ON block
permits the mapping of the same storage in several different ways.

The following example maps out a 4-byte integer on an Intel 80x86-based processor.

Example:
STRUCTURE / MAPI NT/
UNI ON
MAP
| NTEGER*4 LONG
END MAP
VAP
| NTEGER*2 LO_WORD
| NTEGER*2 HI _WWORD
END MAP
MAP
| NTEGER*1 BYTE_O
| NTEGER*1 BYTE_1
| NTEGER*1 BYTE_2
| NTEGER*1 BYTE_3
END MAP
END UNI ON
END STRUCTURE

RECORD / MAPI NT/ |
I %4.ONG = ' 01020304’ x

PRINT ' (2z4)', 1% O_VWORD, |9% WORD
END

For more information, see the chapter entitled " Structures, Unions and Records' on page 199.

126 MAP Statement

FORTRAN Statements

2.61 NAMELIST Statement

NAMELI ST /nane/ vlist [[,]/name/ vlist]

where:

name is the name, enclosed in slashes, of agroup of variables. It may not be the same
asavariable or array name.

viist isalist of variable names and array names separated by commas.

The NAMELI ST statement is used to declare a group name for a set of variables so that they
may be read or written with a single namelist-directed READ, WRI TE, or PRI NT statement.

Thelist of variable or array names belonging to a NAMELI ST name ends with a new
NAMEL| ST name enclosed in slashes or with the end of the NAMELI ST statement. The same
variable name may appear in more than one namelist.

A dummy variable, dummy array name, or allocatable array may not appear in a NAMEL| ST
list. Also, avariable whosetypeis a user-defined structure may not appear ina NAMELI ST
list.

The NAMELI ST statement must precede any statement function definitions and all executable
statements. A NAMELI ST name must be declared in a NAMEL| ST statement and may be
declared only once. The name may appear only in input/output statements. The READ,

VRI TE, and PRI NT statements may be used to transmit data between afile and the variables
specified in anamelist.

NAMELIST Statement 127

Language Reference

Example:
CHARACTER* 20 NAME
CHARACTER* 20 STREET
CHARACTER*15 CI TY
CHARACTER* 20 STATE
CHARACTER* 20 COUNTRY
CHARACTER* 10 ZI P_CODE
| NTEGER AGE
| NTEGER MARKS(10)
NAMELI ST / PERSONV NAME, STREET, CITY, STATE,
+ COUNTRY, ZI P_CODE, ACE, MARKS

OPEN(UNI T=1, FILE=' PECPLE’)
LOooP
READ(UNI T=1, FMI=PERSON, END=99)
WRI TE(UNI T=6, FMT=PERSON)
ENDLOOP
99 CLOSE(UNIT=1)
END

The following example shows another form of a namelist-directed READ statement.

Example:
CHARACTER* 20 NANME
CHARACTER* 20 STREET
CHARACTER*15 CI TY
CHARACTER* 20 STATE
CHARACTER* 20 COUNTRY
CHARACTER* 10 ZI P_CODE
| NTEGER AGE
| NTEGER MARKS(10)
NAMELI ST / PERSON NAME, STREET, CITY, STATE,
+ COUNTRY, ZI P_CODE, AGE, MARKS

READ PERSON
PRI NT PERSON
END

The input data must be in a special format. Thefirst character in each record must be blank.
The second character in the first record of a group of data records must be an ampersand (&)
or dollar sign ($) immediately followed by the NAMELI ST name. The NAMELI ST name
must be followed by ablank and must not contain any imbedded blanks. Thisnameis
followed by dataitems separated by commas. The end of adata group is signaled by the
character "&" or "$", optionally followed by the string "END". If the"&" character was used
to start the group, then it must be used to end the group. If the"$" character was used to start
the group, then it must be used to end the group.

128 NAMELIST Statement

FORTRAN Statements

The form of the dataitemsin an input record is:

Name = Constant
The name may be avariable name or an array element name. The constant may
beinteger, real, complex, logical or character. Logical constants may bein the
form"T" or ".TRUE" and "F" or ".FALSE". Character constants must be
contained within apostrophes. Subscripts must be of integer type.

ArrayName = Set of Constants
The set of constants consists of constants of the type integer, real, complex,
logical or character. The constants are separated by commas. The number of
constants must be less than or equal to the number of elementsin the array.
Successive occurrences of the same constant may be represented in the form
r*const ant, wherer isanon-zero integer constant specifying the number
of times the constant isto occur.

The variable and array names specified in the input file must appear in the NAVELI ST list,
but the order is not important. A name that has been made equivalent to a name in the input
data cannot be substituted for that name in the NAMELI ST list. Thelist can contain names of
items in COVMON but must not contain dummy argument names.

Each data record must begin with a blank followed by a complete variable or array name or
constant. Embedded blanks are not permitted in name or constants. Trailing blanks after
integers and exponents are treated as zeros.

Example:

&PERSON
NAME = ' John Doe’
STREET = '22 Main St.’” CITY = "Smallville’
STATE = ' Texas’ COUNTRY = "U. S. A’
ZI P_CODE = ' 78910- 1203’
MARKS = 73, 82, 3*78, 89, 2*93, 91, 88
ACE = 23

&END

The form of the dataitems in an output record is suitable for input using a namelist-directed
READ statement.

1. Output records are written using the ampersand character (&), not the dollar sign
(%), although the dollar sign is accepted as an aternative during input. That is, the
output datais preceded by "&name" and is followed by "& END".

2. All variable and array names specified in the NAMELI ST list and their values are
written out, each according to its type.

NAMELIST Statement 129

Language Reference

3. Character datais enclosed in apostrophes.
4. Thefieldsfor the data are made large enough to contain all the significant digits.
5. Thevalues of acomplete array are written out in columns.

For more information, see the chapters entitled "Format" on page 267 and "I nput/Output” on
page 255.

130 NAMELIST Statement

FORTRAN Statements

2.62 OPEN Statement

OPEN (oplist)

where:

oplist must include the UNI T= specifier and may include at most one of each of
the open specifierslisted below. Specifiers are separated by commas.

[UNIT =] u

| OSTAT = ios
ERR = s

FILE = fin
STATUS = sta
ACCESS = acc
FORM = fm
RECL = rcl
BLANK = bl nk

As an extension to the FORTRAN 77 language, the following inquiry
specifiers are also supported.

ACTI ON = act

CARRI AGECONTROL = cc
RECORDTYPE = rct
BLOCKSI ZE = bl

SHARE = shr

The OPEN statement may be used to connect an existing fileto a unit, create afilethat is
preconnected, create afile and connect it to a unit, or change certain specifications of a
connection between afile and a unit.

Open Specifiers
[UNIT =] u
u isan external unit identifier. An externa unit identifier is a non-negative

integer expression. If the optional UNI T= specifier is omitted then the specifier
must be the first item in the list of specifiers.

OPEN Statement 131

Language Reference

IOSTAT =ios
is an input/output status specifier. The integer variable or integer array element
i os isdefined with zero if no error condition exists or a positive integer value if
an error condition exists.

ERR=s
isan error specifier and s isastatement label. When an error occurs, execution
istransferred to the statement labelled by s.
FILE =fin
fi n isacharacter expression whose value when trailing blanks are removed is
the name of afile to be connected to the specified unit. If this specifier is
omitted and the unit is not connected to afile, it becomes connected to afile
determined by Watcom FORTRAN 77. The name established by Watcom
FORTRAN 77 is described in the section entitled "Units" on page 261 of the
chapter entitled "Input/Output"
STATUS=sta
st a isacharacter expression whose value when trailing blanks are removed is
"OLD', ' NEW, ' SCRATCH , or’' UNKNOMW .
OoLD When OLD s specified, a FI LE= specifier must be given.
Thefile must exist.
NEW When NEWis specified, a Fl LE= specifier must be given.
The file must not exist. Successful execution of the OPEN
statement creates the file and changes the statusto OLD.
SCRATCH SCRATCH may only be specified for an unnamed file (i.e.
FI LE= isnot allowed). When thefileisclosed, it is deleted.
UNKNOWN If UNKNOWN is specified, the statusisignored. If the
STATUS= specifier is omitted then UNKNOWN is assumed.
ACCESS = acc

acc isacharacter expression whose value when trailing blanks are removed is

" SEQUENTI AL’ or’ DI RECT’ . It specifiesthe access method for thefile. If
the ACCESS= specifier is omitted then ' SEQUENTI AL’ isassumed. If thefile
exists then the access method must be in the set of allowed access methods for
thefile. If thefile does not exist then thefileis created with a set of allowed
access methods that includes the specified access method.

132 OPEN Statement

FORTRAN Statements

Watcom FORTRAN 77 also supports access * APPEND which isaform of
sequential accessin which thefileis positioned at the endfile record. Thefile
must exist or the append access method must be in the set of allowed access
methods for the file. In all other respects, the fileis treated as if

" SEQUENTI AL’ had been specified.

FORM =fm
f mis acharacter expression whose value when trailing blanks are removed is
" FORVATTED or ' UNFORMATTED . It specifiesthat thefileisbeing
connected for formatted or unformatted input/output. If the FORM= specifier is
omitted and the file is being connected for direct accessthen * UNFORVATTED
isassumed. If the FORME specifier is omitted and the file is being connected for
sequential accessthen’ FORMATTED' isassumed. If thefile existsthen the
specified form must be included in the set of allowed formsfor thefile. If the
file does not exist then thefile is created with a set of allowed forms that
includes the specified form.

RECL =rcl
rcl isaninteger expression whose value must be positive. It specifiesthe
length of each record in afile being connected for direct access. If thefileis
being connected for direct access, this specifier must be given; otherwise it must
be omitted. Watcom FORTRAN 77 allows the RECL = specifier for files
opened for sequential access.

BLANK = blnk
bl nk isacharacter expression whose value when trailing blanks are removed is
"NULL" or’ ZERO . If " NULL’ isspecified then all blank charactersin
numeric formatted input fields are ignored except that an entirely blank field has
avalueof zero. If * ZERO is specified then all blank characters other than
leading blanks are treated as zeroes. |f this specifier isomitted then " NULL' is
assumed. This specifier may only be present for afile being connected for
formatted input/output.

ACTION = act
act isacharacter expression whose value when trailing blanks are removed is
"READ , ' WRI TE' or’ READWRI TE' . If ' READ isspecified, datacan
only beread fromthefile. If * WRI TE' is specified, data can only be written to
thefile. If ' READWRI TE' is specified, data can both be read and written. The
default is’ READWRI TE' .

OPEN Statement 133

Language Reference

CARRIAGECONTROL =cc
cc isacharacter expression whose value when trailing blanks are removed is
"YES' , or' NO . If " YES' isspecified, Watcom FORTRAN 77 will
automatically add an extra character at the beginning of each record. This
character will be interpreted as a carriage control character. If ' NO is
specified, records will be written to the file without adding a carriage control
character at the beginning of the record. The defaultis ® NO .

RECORDTYPE =rct
r ct isacharacter expression whose value when trailing blanks are removed
specifies the type of record (or record structure) to be used for thefile. The
allowed valuesfor r ct depend on the system on which you are running the
program. See the compiler User’s Guide for a discussion of the RECORDTYPE=
specifier.

BLOCKSIZE = bl
bl isan integer expression whose value specifies the internal buffer size to be
used for file input/output. The allowed valuesfor bl depend on the system on
which you are running the program. Generally, the larger the buffer, the faster
the input/output. See the compiler User’s Guide for a discussion of the
BLOCKSI ZE= specifier.

SHARE = shr
shr isacharacter expression whose value when trailing blanks are removed
specifies the way in which other processes can simultaneously access the file.
The allowed values for shr depend on the system on which you are running the
program. See the compiler User’s Guide for a discussion of the SHARE=

specifier.
Example:
OPEN(UNIT=1, FILE="TEST', STATUS=" UNKNOW ,
+ ACCESS=" SEQUENTI AL’ ,
+ FORME' FORVATTED , BLANK=' ZERO)

In the above example, thefile” TEST' , containing FORMATTED records, is connected to
unit 1. The status of thefileis’ UNKNOAN' since we do not know if it already exists. We
will access the file sequentially, using formatted input/output statements. Blanksin numeric
input data are to be treated as zeroes.

134 OPEN Statement

FORTRAN Statements

Notes:

3.

If the unit is already connected to afile that exists, the execution of an OPEN
statement for that unit is permitted.

€)) If the samefile is opened then only the BLANK= specifier may be
different. The samefileisopened if no FI LE= specifier was given or
if the FI LE= specifier refersto the samefile.

(b) If adifferent file is opened then the currently connected fileis
automatically closed.

If the file to be connected to the unit does not exist, but is already preconnected to
the unit, any properties specified in the OPEN statement are merged with and
supersede those of the preconnection. For example, the RECL= specification will
override the record length attribute defined by a preconnection of thefile.

The same file may not be connected to two or more different units.

For more information on input/output, see the chapter entitled "Input/Output” on page 255.

OPEN Statement 135

Language Reference

2.63 OTHERWISE Statement

OTHERW SE

The OTHERW SE statement is used in conjunction with the SELECT statement. The
OTHERW SE statement marks the start of anew CASE block which is a series of zero or more
statementsending in an END SELECT statement.

When this statement is used and the value of a case expression is not found in any case list
then control of execution istransferred to the first executable statement following the
OTHERW SE statement.

The CASE DEFAULT statement may be used in place of the OTHERW SE statement.

Example:
SELECT CASE (CH)
CASE ('a" : 'z)
PRI NT *, ’'Lower case letter’
CASE ('A : "Z)
PRI NT *, " Upper case letter’
CASE ('0" : "9)
PRINT *, "Digit’
OTHERW SE
PRI NT *, ' Special character’
END SELECT
In the above example, if the character CHis not aletter or digit then the OTHERW SE block is
executed.
Note: The OTHERW SE or CASE DEFAULT block must follow all other CASE

blocks.

For more information, see the chapter entitled "Program Structure Control Statements' on
page 227.

136 OTHERWISE Statement

FORTRAN Statements

2.64 PARAMETER Statement

PARAMETER (p=e [, p=€] ...)

where:
p isasymbolic name.
e isaconstant expression. Refer to the chapter entitled "Expressions' on page 205 for

more information.

p is known as a symbolic constant whose value is determined by the value of the expression e
according to the rules of assignment as described in the chapter entitled " Assignment
Statements” on page 221. Any symbolic constant appearing in expression e must have been
previously defined in the same or a previous PARAMETER statement in the same program
unit. A symbolic constant may not be defined more than once in a program unit.

If the symbolic name p is of type integer, real, double precision or complex then the
corresponding expression e must be an arithmetic constant expression (see the chapter entitled
"Expressions' on page 205). If the symbolic name p is of type character or logical then the
expression e must be a character constant expression or alogical constant expression
respectively (see the chapter entitled "Expressions' on page 205).

Example:
PARAMETER (Pl =3. 14159, BUFFER=80, Pl BY2=PI / 2)
PARAMETER (ERRMSG=" AN ERROR HAS OCCURRED)

If asymbolic constant is not of default implied type, itstype must be specified in an

| MPLI CI T statement or atype statement before its occurrence in a PARANVETER statement.
Similarly, if the length of a character symbolic constant is not the default length of 1, its
length must be specifiedinan | MPLI CI T statement or a type statement before its occurrence
in a PARAVETER statement.

PARAMETER Statement 137

Language Reference

2.65 PAUSE Statement

PAUSE [n]

where:

n isacharacter constant or an unsigned integer constant of no more than five digits.
Watcom FORTRAN 77 alows n to be any unsigned integer constant.

Execution of a PAUSE statement causes a cessation of execution of the program. Execution

of the program may be resumed by the program operator by pressing the terminal line entering

key (e.g., ENTER or RETURN). The PAUSE statement may appear in any program unit.

If the Watcom FORTRAN 77 debugger was requested then execution of the PAUSE statement

will cause entry into the debugger. Program execution may be resumed by issuing the

debugger "go" command.

Example:
PAUSE 4341

The four digit number 4341 isdisplayed on the terminal. The program temporarily ceases
execution. Execution isresumed by pressing the terminal line entering key.

Example:
PAUSE ' Ready the paper and then resune execution’

The character string

Ready the paper and then resunme execution

isdisplayed on the terminal. Execution of the program may be resumed.

138 PAUSE Statement

FORTRAN Statements

2.66 PRINT Statement

Two forms of the PRI NT statement are supported by Watcom FORTRAN 77.

2.66.1 Standard PRINT Statement

PRINT f [,olist]

where:
f isaformat identifier.
olist isan optional output list.

2.66.2 Extended PRINT Statement

PRI NT, oli st

where:

olist isan output list.

2.66.3 Description of PRINT Statement

The PRI NT statement is used to transfer data from the executing FORTRAN program to an
external device or file.

Format Identifier - A format identifier is one of the following:

1. A statement label of a FORMAT statement that appears in the same program unit as
the format identifier.

2. Aninteger variable name that has been assigned the statement label of a FORMAT
statement that appears in the same program unit as the format identifier (see the
ASSI GN statement).

PRINT Statement 139

Language Reference

Aninteger array name.

A character array name.

Any character expression except one involving the concatenation of an operand
whose length specification is (*) unlessthe operand is asymbolic constant (see
the PARAMVETER statement).

6. Anasterisk (*), indicating list-directed formatting.

ok w

Watcom FORTRAN 77 supports a variation of list-directed formatting in which
the asterisk (*) may be omitted. Itisequivalent to

PRINT * [,olist]
7. A NAMELI ST name, indicating namelist-directed formatting.
Output list - An output list may contain one or more of the following:

1. Avaiable name.

2. Anarray element name.

3. A character substring name.

4. Anarray name except an assumed-size dummy array.

5. Any other expression except a character expression involving concatenation of an
operand whose length specification is an asterisk in parentheses unless the operand
is the symbol name of a constant (since the length can be determined at compile
time).

6. Animplied-DO list of the form:

(dlist, i =el, e2 [,e3])

wheredl i st iscomposed of one or more of items (1) through (6).

Example:
CHARACTER*5 S
COWLEX C
S ="Hello
| = 123
X =12.5
C = (12.5,4.58)
PRINT *, S, I, X C
END

140 PRINT Statement

FORTRAN Statements

The above example illustrates list-directed formatting using the PRI NT statement. The
asterisk specifies that the variablesin the output list are to be displayed in some format that is
appropriate to the type of the variable (hence the term "list-directed"). The CHARACTER
variable Sis printed using a suitable A format descriptor. The INTEGER variable | is printed
using asuitable | format descriptor. The REAL variable X is printed using a suitable G
format descriptor. The COMPLEX variable Cis printed using a suitable Gformat descriptor
and is displayed with enclosing parentheses and acomma. Output from the above program
would resembl e the following.

Hell o 123 12. 5000000 (12. 5000000, 4. 5799999)

Example:
CHARACTER*5 S
COWPLEX C
S = "Hello
I 123
X =12.5
C =(12.5,4.58)
PRINT, S, I, X, C
END

The above example illustrates a Watcom FORTRAN 77 extension of list-directed formatting
using the PRI NT statement. The asterisk is omitted but the results are exactly the same asin
the previous example.

Example:
PRI NT 100, X, Y, Z
100 FORMAT(3F10.5)
PRINT " (3F10.5)", X, Y, Z

The above gives two examples of the PRI NT statement. In both cases, the format conversion
isidentical but it was specified in different ways. When executed, the effect of both PRI NT
statementsis the same.

Example:
PRI NT ' (1X, 100A1)", ('*',1=1,J)

The above example illustrates a technique for producing histograms using the implied

DO-loop. Each time this statement is executed, a number of asterisks are printed, depending
on thevalueof J.

PRINT Statement 141

Language Reference

Notes:
1. ThePRI NT statement isimplicitly aformatted output statement.
2. Theunit number that isimplicitly used in the PRI NT statement is unit number 6.

3. If nooutput list is specified then the effect of the PRI NT statement is to produce
one or more records whose characters are al blanks.

4. FORTRAN 77 leaves the format of output in list-directed formatting to the
discretion of Watcom FORTRAN 77. Hence other FORTRAN compilers may
produce different results. If the format of output must be consistent from one
compiler to the next then list-directed formatting should not be used.

5. Animplication of point (6) aboveis that nesting of implied-DO listsis permitted.
For example, the output list

((AC1,J), B(1,J3), J =1, 5,1 =1, 10)
may be broken down into the following components:
A(l,J), B(1,J)

(....dlistl...., J =1, 5)
(..... dlist2. ..., , 1 =1, 10)

For more information on input/output, see the chapter entitled "Input/Output” on page 255.

For more information on formatted input/output, see the chapter entitled "Format" on page
267.

142 PRINT Statement

FORTRAN Statements

2.67 PROGRAM Statement

PROGRAM pgm

where:
pgm isthe symbolic name of the main program.

A PROGRAMstatement is optional in an executable program. If it does appear, it must be the
first statement in the main program.

Example:
PROGRAM CALC

CALL COWPUTE

END
The main program can contain any Watcom FORTRAN 77 statement except a FUNCTI ON,

SUBROUTI NE, BLOCK DATA, RETURNor ENTRY statement. Note that a SAVE statement
is allowed but has no effect in the main program.

PROGRAM Statement 143

Language Reference

2.68 QUIT Statement

QT [: Dbl ock-1abel]

The QUI T statement may be used to cause atransfer of control to the first executable
statement that follows the terminal statement of the block which containsit. Examples of
such terminal statementsare ADM T, CASE, END DO, END LOOP, END WHI LE,
UNTI L, etc. If bl ock- | abel ispresent then control istransferred out of the block
identified by that block label. The QUI T statement is an extension to the FORTRAN 77
language.

Example:

LOOP
VWRI TE(UNI T=*, FMI="(A)’) 'Enter a nunber’
READ(UNI T=*, FMI=' (F10.4)’, | OSTAT=10S) X
IF(10S .NE. 0) QUT
IF(X .LT. 0) QUT
PRINT *, X, SORT(X)

END LOCP

END

For more information, see the chapter entitled "Program Structure Control Statements' on
page 227.

144 QUIT Statement

FORTRAN Statements

2.69 READ Statement

Three forms of the READ statement are supported by Watcom FORTRAN 77.

2.69.1 Standard READ Statement

READ (cilist) [ilist]
READ f [,ilist]

where:

cilist isacontrol information list of specifiers separated by commas:

[UNIT =] u
[FMT =] f
REC = rn

| OSTAT = ios
ERR = s
END = s

f isaformat identifier.

ilist isan optional input list.

2.69.2 Extended READ Statement

READ, ili st

where:

ilist isaninput list.

READ Statement 145

Language Reference

2.69.3 Description of READ Statement

The READ statement is used to transfer data from a device or file into the executing
FORTRAN program. As shown above, Watcom FORTRAN 77 supports three forms of the

READ statement.

Control Information List and Format | dentifier

[UNIT =] u

u isan external unit identifier or an internal file identifier.

1.

2.

An external unit identifier is a non-negative integer expression or an
asterisk (*) inwhich case unit 5 is assumed.

Aninternal fileidentifier is the name of a character variable,
character array, character array element, or character substring.

If the optional UNI T= specifier is omitted then the unit specifier must be the
firstitem inthelist of specifiers.

[FMT =] f

f isaformat identifier. A format identifier is one of the following:

1.

ok w

146 READ Statement

A statement label of a FORMAT statement that appearsin the same
program unit as the format identifier.

An integer variable name that has been assigned the statement label of
a FORIVAT statement that appearsin the same program unit as the
format identifier (seethe ASSI GN statement).

An integer array name.

A character array name.

Any character expression except one involving the concatenation of
an operand whose length specification is (*) unlessthe operandisa
symbolic constant (see the PARAMETER statement).

An asterisk (*), indicating list-directed formatting.

Watcom FORTRAN 77 supports athird form of the READ statement
inwhich the asterisk (*) may be omitted. Thisisaform of
list-directed formatting in which unit 5 is assumed. It isequivalent to

READ * [,ilist]

A NAMELI ST name, indicating namelist-directed formatting.

FORTRAN Statements

If the optional FMT= specifier is omitted then the format specifier must be the
second item in the list of specifiersand UNI T= must not be specified for the first

itemin thelist.

REC=rn
r n isan integer expression whose value must be positive. It is the number of
the record to be read when afileis connected for direct access.

IOSTAT =ios
is an input/output status specifier. Theinteger variable or integer array element
i os isdefined with zero if no error occurs, a positive integer value if an error
occurs, or anegative integer value if an end-of-file occurs.

ERR=s
isan error specifier and s isastatement label. When an error occurs, execution
istransferred to the statement labelled by s.

END=s

is an end-of-file specifier and s is astatement label. When an end-of-file
occurs, execution istransferred to the statement labelled by s.

Input list - Aninput list may contain one or more of the following:
1. Avaiable name.
2. Anarray element name.
3. A character substring name.
4. Anarray name except an assumed-size dummy array.

5. Animplied-DO list of the form:
(dlist, i =el1, e2 [,e3])

wheredl i st iscomposed of one or more of items (1) through (5).

READ Statement 147

Language Reference

Example:
READ(5, 100)X, Y, Z
READ(UNI T=5, FMI=100)X, Y, Z
100 FORVMAT(3F10.5)
READ(UNI T=5, FMr="(3F10.5)")X Y, Z
READ(5, '(3F10.5)")X Y, Z

The above gives four examples of formatted READ statements, using the first of three
supported forms of the READ statement. In all cases, the format conversion isidentical but it
was specified in different ways. When executed, the effect of all READ statementsisthe
same. The unit number that is explicitly used in this form of the READ statement is unit
number 5. There are, in fact, many other ways in which the READ statement could have been
written, all of which would have the same effect when executed. We have not shown the use
of al the specifiers.

Example:
READ 100, X, Y, Z
100 FORMAT(3F10.5)
READ ' (3F10.5)', X, Y, Z

The above gives two examples of formatted READ statements, using the second of three
supported forms of the READ statement. In both cases, the format conversion isidentical but
it was specified in different ways. When executed, the effect of both READ statementsis the
same. The unit number that isimplicitly used in this form of the READ statement is unit

number 5.

Example:
READ(5, *)X Y, Z
READ(*, *)X, Y, Z
READ(UNI T=5, FMI=*)X, Y, Z
READ(UNI T=*, FMI=*)X, Y, Z
READ *, X, Y, Z
READ , X, VY, Z

The above six examples of list-directed formatted input are all equivalent. Watcom
FORTRAN 77 assumes unit 5 when the unit number identifier is an asterisk (as in the second
and fourth examples). In the fifth example, the asterisk is aformat identifier indicating
list-directed formatting. The fifth and sixth examples are examples of the second and third
forms, respectively, of the READ statement in which Watcom FORTRAN 77 assumes unit 5.
When the format identifier is an asterisk or when the third form of the READ statement is
used, we call thislist-directed list-directed formatting.

148 READ Statement

FORTRAN Statements

Example:
READ(8)X, Y, Z
READ(UNIT=8)X, Y, Z

The above gives two examples of unformatted READ statements. The unit number used in the
exampleis 8. When executed, the effect of both of these statementsis the same. The values
of thevariables X, Y and Z are read from the file connected to unit 8. The values are stored
inthe filein their binary form (aform quite incomprehensible to most human beings). An
advantage to using this particular form of the READ statement is that no conversion is required
between the internal binary representation of the values and their textual (human-readable)
form (which means it takes less computer time to process the data).

Notes:
1. The REC= specifier may not be used when list-directed output is specified.

2. If noinput list is specified then the effect of the READ statement isto skip one or
more records in thefile.

3. Animplication of point (5) aboveisthat nesting of implied-DO listsis permitted.
For example, the input list

((AC1,J), B(1,3), J =1, 5,1 =1, 10)
may be broken down into the following components:
ACl,J), B(I1,J)
(....dlistl...., J =1, 5)

For more information on input/output, see the chapter entitled "Input/Output” on page 255.
For more information on formatted input/output, see the chapter "Format" on page 267.

READ Statement 149

Language Reference

2.70 REAL Statement

The REAL statement is atype declaration statement and can be used to declare a name to be of
typereal. Theimplicit type of the name, whether defined by the "first letter rule” (see the
chapter entitled "Names, Data Types and Constants' on page177) orbyan | MPLICI T
statement, is either confirmed or overridden. However, once a name has been declared to be
of typereal, it cannot appear in another type declaration statement.

There are various forms of the REAL statement. The following sections describe them.

2.70.1 Standard REAL Statement

REAL nane [, nane]

where:

name isavariable name, array name, array declarator, symbolic name of a constant,
function name or dummy procedure name.

Thisform is the standard form of the REAL statement.
Example:

DI MENSI ON C(-5:5)

REAL A, B(10), C

In the previous example, A is defined to be avariable of type real and B and C are defined to
be arrays of typereal.

2.70.2 Extended REAL Statement: Length Specification

REAL[*l en[,]] nane [, nane]

150 REAL Statement

FORTRAN Statements

where:
name is one of the following forms:
v[*l en]
a[*l en] (d)
a(d)[*l en]
v isavariable name, array name, symbolic name of a constant, function name or
dummy procedure name.
a isan array name.
(d) isthat part of the array declarator defining the dimensions of the array.
len is called the length specification and is an unsigned positive integer constant or an

integer constant expression enclosed in parentheses whose value is 4 or 8.

Thisform of the REAL statement is a Watcom FORTRAN 77 extension to the FORTRAN 77
language. The length specification specifies the number of bytes of storage that will be
allocated for the name appearing in the REAL statement. The default length specificationis 4.
A length specification of 8 specifies that the data type of the name appearing in the REAL
statement is to be double precision.

The length specification immediately following the word REAL is the length specification for
each entity in the statement not having its own length specification. If alength specificationis
not specified the default length specification is used. An entity with its own specification
overrides the default length specification or the length specification immediately following the
word REAL. Notethat for an array the length specification applies to each element of the

array.

Example:
DI MENSI ON C(-5:5)
REAL A, B*8(10), C'8
REAL*8 X

In the previous example, X is declared to be a variable of type double precision, Aisdeclared
to be avariable of typereal and B and C are declared to be arrays of type double precision.

REAL Statement 151

Language Reference

2.70.3 Extended REAL Statement: Data Initialization

REAL[*l en[,]] name [/cl/] [,nanme[/cl/]]

where:
name is as described in the previous section.
len is as described in the previous section.
cl isalist of the form:
k [K]
k isone of the forms:
c
r*c (equivalent to r successive appearances of c)
c isaconstant or the symbolic name of a constant
r is an unsigned positive integer constant or the symbolic name of a constant.

Thisform of the REAL statement is an extension to the FORTRAN 77 language. Therulesfor
datainitialization are the same as for the DATA statement.

Example:
REAL A/ 1.2/, B(10)/10*5.0/

In the previous example, Aisinitialized with thereal constant 1. 2 and each element of the
array Bisinitialized with the real constant 5. 0.

152 REAL Statement

FORTRAN Statements

2.71 RECORD Statement

RECORD /typenanme/ nane [, nane]

where:
typename is the name of a user-defined structure type.
name isavariable name, array name, array declarator, function name or dummy

procedure name.
The RECORD statement is used to assign a structure type to avariable.

Example:

STRUCTURE / ADDRESS/
CHARACTER* 20 STREET
CHARACTER*15 CI TY
CHARACTER* 20 STATE
CHARACTER* 20 COUNTRY
CHARACTER* 10 ZI P_CODE

END STRUCTURE

STRUCTURE / PECPLE/
CHARACTER* 20 NANE
RECORD / ADDRESS/ ADDR
| NTEGER*2 ACE

END STRUCTURE

RECCRD / PEOPLE/ CUSTOVER

CUSTOVERYNAME = ’ John Doe’
CUSTOVERYADDR¥STREET = 22 Main St.’
CUSTOVERYADDRYCI TY = ' Snal lvill e’
CUSTOVER¥ADDR*STATE = ' Texas’
CUSTOVERYADDR¥COUNTRY = " U. S. A’
CUSTOVER¥ADDRZI P_CODE = ' 78910- 1203’
CUSTOVER¥ACGE = 23

For more information, see the chapter entitled " Structures, Unions and Records" on page 199.

RECORD Statement 153

Language Reference

2.72 REMOTE BLOCK Statement

REMOTE BLOCK nane

where:
name isavalid FORTRAN symbolic name.

The REMOTE BLOCK statement is used to define ablock of statements which may be
executed by an EXECUTE statement. A REMOTE-block must be defined in the program unit
inwhichitisused and isterminated by an END BLOCK statement. A REMOTE-block is
similar in concept to a subroutine, with the advantage that shared variables do not need to be
placed in a common block or passed in an argument list. When execution of the
REMOTE-block is complete, control returns to the statement following the EXECUTE
statement which invoked it.

Thisfeature is helpful in avoiding duplication of code for a common sequence of statements
required in a number of places throughout a program. It can also be an aid to writing awell
structured program. This feature can be mimicked using the ASSI GNand assigned GO TO
statements. However, statement numbers must be introduced which could lead to errors.

Each REMOTE-block must have a different name and it must not be a subprogram or variable
name. Note that a REMOTE-block islocal to the program unit in which it is defined and may
not be referenced (executed) from another program unit.

Note that the nested definition of REMOTE-blocks is not permitted.

Example:
EXECUTE | NCR
PRINT *, ' FIRST
EXECUTE | NCR
PRI NT *, ' SECOND

REMOTE BLOCK | NCR
I =I+1
PRINT *, " 1= 1
END BLOCK

154 REMOTE BLOCK Statement

FORTRAN Statements

Both EXECUTE statements will cause REMOTE-block | NCRto be executed. That is,
variable | will be incremented and its value will be printed. When the block has been
executed by the first EXECUTE statement, control returnsto the PRI NT statement following it
and the word FI RST isprinted. Similarly, when the block is executed by the second

EXECUTE statement, control returnsto the PRI NT statement following it and the word
SECOND is printed.

For more information, see the chapter entitled "Program Structure Control Statements' on
page 227.

REMOTE BLOCK Statement 155

Language Reference

2.73 RETURN Statement

RETURN [e]
where:
e is an integer expression.

A RETURN statement is used to terminate execution of a subprogram and return control to the
program unit that referenced it. As an extension to FORTRAN 77, Watcom FORTRAN 77
permits the use of the RETURN statement in the main program. When a RETURN statement is
executed in the main program, program execution terminates in the same manner asthe STOP
or END statement.

The expression e is not permitted when returning from an external function subprogram (or
main program); it can only be specified when returning from a subroutine subprogram.

Example:
FUNCTI ON ABS(A)
ABS = A
IF(A.CE 0)RETURN
ABS = -A
RETURN
END

For more information, see the chapter entitled "Functions and Subroutines’ on page 291.

156 RETURN Statement

FORTRAN Statements

2.74 REWIND Statement

REW ND u
REW ND (ali st)

where:

u isan external unit identifier.

alist isalist of rewind specifiers separated by commas:
[UNIT =] u
| OSTAT = io0s
ERR = s

Execution of a REW ND statement causes the file connected to the specified unit to be
positioned at the beginning (or before the first record) of thefile.

Rewind Specifiers

[UNIT =] u
u isan external unit identifier. An external unit identifier is a non-negative
integer expression. If the optional UNI T= specifier is omitted then the specifier
must be the first item in the list of specifiers.

IOSTAT =ios
is an input/output status specifier. The integer variable or integer array element
i os isdefined with zero if no error condition exists or apositive integer value if
an error condition exists.

ERR=s

isan error specifier and s isastatement label. When an error occurs, execution
istransferred to the statement labelled by s.

REWIND Statement 157

Language Reference

Example:
LOOP
READ(UNI T=7, END=100, FMr=200) RECORD
PRI NT *, RECORD
ENDLOOP
100 REWND(UNIT=7)
LOOP

READ(UNI T=7, END=101, FMr=200) RECORD
WRI TE(UNI T=8, FMIr=200) RECORD
ENDL COP
101 CONTI NUE
In the previous example, we illustrate how one might process the records in afile twice. After
reaching the endfile record, a REW ND statement is executed and the fileis read a second
time.
Notes:
1. Theunit must be connected for sequential access.

2. If thefileis positioned at the beginning of the file then the REW ND statement has
no effect.

3. Itispermissibleto rewind afile that does not exist but it has no effect.

For more information on input/output, see the chapter entitled "Input/Output” on page 255.

158 REWIND Statement

FORTRAN Statements

2.75 SAVE Statement

SAVE [a [,a] ...]

where:

a isanamed common block preceded and followed by a slash (/), avariable name or an
array name.

The SAVE statement is used to retain the value of an entity after the execution of a RETURN
or END statement in a subprogram. Upon re-entry to the subprogram, the entity will have the
same value it had when exit was made from the subprogram. However, an entity belonging to
acommon block that has appeared in a SAVE statement may become redefined in another
program unit.

Notes:

1. A name cannot appear in a SAVE statement more than once in the same program
unit.

2. Dummy arguments, procedure names and names belonging to a common block are
not permitted in a SAVE statement.

3. A SAVE statement with no list isidentical to a SAVE statement containing all
allowable namesin a program unit.

4. A common block name appearing in a SAVE statement has the same effect of
specifying all names belonging to that common block in the SAVE statement.

5. If anamed common block is specified in a SAVE statement in a subprogram, it
must be specified in a SAVE statement in every subprogram in which that common
block appears. Furthermore, upon executing a RETURN or END statement, the
current values of the entities in that common block are made available to the next
program unit executed in which that common block appears.

6. If anamed common block is specified in a SAVE statement in the main program
unit, the current values of the entities in that common block are made available to
every subprogram that specifies that common block. In this case, a SAVE
statement has no effect in the subprogram.

SAVE Statement 159

Language Reference

In the following example, the subroutine BLKI NI T initializes the entities of the common
block BLK and uses a SAVE statement to ensure that their values are made available to
subroutine BLKPRT.

Example:
PROGRAM MAI N

CALL BLKINIT
CALL BLKPRT

END

SUBROUTI NE BLKINI' T
COMMON / BLK/ A B, C

SAVE / BLK/
A=10
B=20
Cc=3.0
END

SUBROUTI NE BLKPRT
COWON / BLK/ A B, C

SAVE / BLK/
PRINT *, A B, C
END

160 SAVE Statement

FORTRAN Statements

2.76 SELECT Statement

SELECT [CASE] (e) [FROM [: bl ock-1abel]

The SELECT statement is used in conjunction with the CASE and END SELECT statements.
The form of a SELECT block is asfollows;

where:

case-list

SELECT [CASE] (e) [FROM [: bl ock-1abel]
CASE (case-list)

statenment (s)
CASE (case-list)

statement (s)

CASE (case-list)
statenent (s)
CASE DEFAULT
statenment (s)
END SELECT

isan integer expression.

isalist of one or more cases separated by commas. A caseis either

(@ asingleinteger, logical or character constant expression or
(b) an integer, logical or character constant expression followed

by a colon followed by another expression or the same type.
Thisform of a case defines arange of values consisting of all
integers or characters greater than or equal to the value of the
expression preceding the colon and less than or equal to the
value of the expression following the colon.

The CASE and FROMIkeywords are optional in the SELECT statement. An optional block
label may be specified with the SELECT statement.

The case expression eis evaluated and if the result is equal to one of the values covered by
case- | i st thenthe control of execution istransferred to the associated CASE block.

SELECT Statement 161

Language Reference

Example:

SELECT CASE (CH)
CASE ('a' : 'z')

PRI NT *, ' Lower case letter’
CASE ("A : 'Z)

PRINT *, ' Upper case letter’
CASE ('0" : "9)

PRINT *, '"Digit’
CASE DEFAULT

PRI NT *, ’ Special character’
END SELECT

In the above example, if the character CHis not aletter or digit then the CASE DEFAULT
block is executed.

The CASE DEFAULT statement isoptional. If it is present and the case expression is out of
range (i.e., no CASE blocks are executed) then the CASE DEFAULT block is executed. If it
is not present and the case expression is out of range then execution continues with the first
executable statement following the END SELECT statement. The CASE DEFAULT block
must follow all other CASE blocks.

Example:

X <N
(T

CASE DEFAULT

PRINT *, "CASE is not in range’
END SELECT
PRINT *, X, VY, Z

In order to retain compatibility with earlier versions of WATCOM FORTRAN 77 compilers,
the OTHERW SE statement may be used in place of the CASE DEFAULT statement.

For more information, see the chapter entitled "Program Structure Control Statements' on
page 227.

162 SELECT Statement

FORTRAN Statements

2.77 STOP Statement

STOP [n]

where:

n isacharacter constant or an unsigned integer constant of no more than five digits.
Watcom FORTRAN 77 alows n to be any unsigned integer constant.

Execution of a STOP statement causes termination of execution of the program. A STOP

statement may appear in any program unit (although good programming practice suggests that

the main program is the proper place for this statement).

Example:
STOP 943

The three digit number 943 is displayed on the console prior to program termination.

Example:
STOP ' Finished at |ast’

The character string

Fi ni shed at | ast

is displayed on the console prior to program termination.

STOP Statement 163

Language Reference

2.78 STRUCTURE Statement

STRUCTURE /t ypenane/

where:
typename is the name for a new, compound variable, data type.

The STRUCTURE statement is used in conjunction with the END STRUCTURE declarative
statement. The STRUCTURE statement marks the start of a structure definition.

The STRUCTURE statement defines anew variable type, called a structure. It does not
declare a specific program variable. The RECORD statement is used to declare variables and
arraysto be of this particular structure type.

Structures may be composed of simple FORTRAN types or more complex structure types.
Thisis shown in the following example.

Example:

STRUCTURE / ADDRESS/
CHARACTER* 20 STREET
CHARACTER*20 CI TY
CHARACTER* 20 STATE
CHARACTER* 20 COUNTRY
CHARACTER* 10 ZI P_CODE

END STRUCTURE

STRUCTURE / PECPLE/
CHARACTER* 20 NAME
RECORD / ADDRESS/ ADDR
| NTEGER*2 AGE

END STRUCTURE

RECORD / PEOPLE/ CUSTOVER

Element names are local to the structure in which they appear. The same element name can
appear in more than one structure. Nested structures may have elements with the same name.
A particular element is specified by listing the sequence of elements required to reach the
desired element, separated by percent symbols (%) or periods (.).

164 STRUCTURE Statement

FORTRAN Statements

Example:
CUSTOMERYNAME = ' John Doe’
CUSTOVERYADDR¥STREET = ' 22 Main St.’
CUSTOVERYADDRYCI TY = ' Smal lvil l e’
CUSTOVERYADDRUSTATE = ' Texas’
CUSTOVERYADDRZCOUNTRY = " U. S. A’
CUSTOVERYADDRYZI P_CODE = ' 78910- 1203’
CUSTOVER¥AGE = 23

For more information, see the chapter entitled " Structures, Unions and Records' on page 199.

STRUCTURE Statement 165

Language Reference

2.79 SUBROUTINE Statement

SUBROUTINE sub [([d [, d] ...])]

where:
sub is a symbolic name of a subroutine subprogram.
d isavariable name, array name, dummy procedure name or an asterisk (*). dis

called a dummy argument.

A SUBROUTI NE statement is used to define the start of a subroutine subprogram.

Example:
CALL TMAX3(-1.0, 12.0, 5.0)
END

SUBROUTI NE TMAX3(ARGA, ARGB, ARGC)
THEMAX = ARGA
| F(ARGB . GT. THEMAX) THEMAX = ARGB
| F(ARGC . GT. THEMAX) THEMAX = ARGC
PRINT *, THEMAX

END

In the above example, the subroutine TMAX3 is defined to find and print out the maximum
value of threereal variables.

Notes:

1. Nodummy arguments need be specified in the SUBROUTI NE statement. If suchis
the case, the parentheses () are optional.

For more information, see the chapter entitled "Functions and Subroutines’ on page 291.

166 SUBROUTINE Statement

FORTRAN Statements

2.80 UNION Statement

UNI ON

The UNI ON statement is used in conjunction with the END UNI ON declarative statement.
The UNI ON statement marks the start of a series of MAP structures. A UNI ON block must
contain at least two MAP structures. A UNI ON block permits the mapping of the same storage
in several different ways.

The following example maps out a 4-byte integer on an Intel 80x86-based processor.

Example:
STRUCTURE / MAPI NT/
UNI ON
MAP
| NTEGER*4 LONG
END MAP
VAP
| NTEGER*2 LO_WORD
I NTEGER*2 HI _WWORD
END VAP
MAP
| NTEGER*1 BYTE_O
| NTEGER*1 BYTE_1
| NTEGER*1 BYTE_ 2
| NTEGER*1 BYTE_3
END MAP
END UNI ON
END STRUCTURE

RECORD / MAPI NT/ |
| %4.ONG = ' 01020304’ x

PRINT ' (2z4)', 1% O_WVWORD, 1% WORD
END

For more information, see the chapter entitled " Structures, Unions and Records" on page 199.

UNION Statement 167

Language Reference

2.81 UNTIL Statement

UNTIL (e)
where:
e isalogical expression or integer arithmetic expression, in which case the result of the

integer expression is compared for inequality to the integer value O.

The UNTI L statement is used in conjunction with the structured LOOP or block WHI LE
statement. The LOOP or block VWHI LE statement marks the beginning of a sequence of
statements which are to be repeated. The UNTI L statement marks the end of the loop. The
LOOP-block or WHILE-block is executed until control istransferred out of the block or the
logical expression of the UNTI L statement has atrue value.

Example:
X =10
LOOP
PRINT *, X, SQRT(X)
X=X+1.0
UNTIL(X .GT. 10.0)
Example:
I =1
VWH LE(| .LT. 100)DO
J=4*1 *|
K=3*I
PRINT *, "4x**2 + 3x + 6 =", J + K+ 6
I =1 +1

UNTIL((J + K+ 6) .GI. 100)

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

168 UNTIL Statement

FORTRAN Statements

2.82 VOLATILE Statement

VOLATILE [a [,a] ...]

where:
a isavariable name or an array name.

The VOLATI LE statement is used to indicate that a variable or an element of an array may be
updated concurrently by other code. A volatile variable or array element will not be cached
(in aregister) by the code generator. Each time avolatile variable or array element is
referenced, it isloaded from memory. Each time avolatile variable or array element is
updated, it is stored back into memory.

Notes:

1. A name cannot appear in a VOLATI LE statement more than once in the same
program unit.

2. Dummy arguments, procedure names, and common block names are not permitted
inaVOLATI LE statement.

In the following example, the subroutine A_ THREAD waits on the Hol dThr eads
semaphore. It usesthe VOLATI LE statement to ensure that the variable is re-loaded from
memory each time through the loop.

Example:
SUBROUTI NE A_THREAD)

STRUCTURE / RTL_CRI TI CAL_SECTI ON/
| NTEGER* 4 Debugl nf o
| NTEGER*4 LockCount
| NTEGER*4 Recur si onCount
| NTEGER*4 Oani ngThr ead
| NTEGER*4 LockSenmaphor e
| NTEGER*4 Reserved
END STRUCTURE

VOLATILE Statement 169

Language Reference

| NTEGER NumThr eads

LOd CAL Hol dThr eads

VOLATI LE Hol dThr eads

RECORD / RTL_CRI TI CAL_SECTION Critical Section
COVMMON NuniThr eads, Hol dThreads, Critical Section
| NTEGER t hr eadi d

VWHI LE(Hol dThr eads) DO

CALL Sleep(1)
END WHI LE
PRINT "("'H fromthread ', i4)', threadid()
CALL EnterCritical Section(Critical Section)
NumThreads = NunThreads - 1
CALL LeaveCritical Section(Critical Section)
CALL endt hr ead()
END

170 VOLATILE Statement

FORTRAN Statements

2.83 Block WHILE Statement

VWH LE (e) DO [: Dbl ock-1abel]

where:

e isalogical expression or integer arithmetic expression, in which case the result of the
integer expression is compared for inequality to the integer value O.

The block WHI LE statement is used in conjunction with the structured END WHI LE or

UNTI L statement. The block WHI LE statement marks the beginning of a sequence of
statements which are to be repeated. The END WHI LE or UNTI L statement marks the end of
the WHILE-block. The WHILE-block is executed while the logical expression of the WHI LE
statement has a true value or until control is transferred out of the WHILE-block.

Example:
X =10
WH LE(X .LT. 100)DO
PRINT *, X, SQRT(X)
X=X+1.0
END WH LE
Example:
I =1
VWH LE(| .LT. 100)DO
J=4*1 *|
K=3*I
PRINT *, "4x**2 + 3x + 6 =", J + K+ 6
I =1 +1
UNTIL((J + K+ 6) .GI. 100)

END
An optional block label may be specified with the WHI LE statement.

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

Block WHILE Statement 171

Language Reference

2.84 WHILE Statement

VWH LE (e) stnt

where:
e isalogical expression.
stmt is an executable statement. Only certain executable statements are allowed. See

the section entitled "Classifying Statements® on page 9 at the beginning of this

chapter for alist of allowed statements.

Thisform of the WHI LE statement allows an executable statement to be repeatedly executed

until the logical expression eisfalse.

Example:
I =0
VWH LE(| .LE. 100) CALL PRTSQR(|)
END

SUBROUTI NE PRTSQR(J)
PRINT *, J, J**2
J=J+1

END

In the above example, the subroutine PRTSQR is called again and again until the value of |
has been incremented beyond 100. Note that the subroutine increments its argument thereby
guaranteeing that the program will eventually stop execution.

For more information, see the chapter entitled "Program Structure Control Statements' on
page 227 Control Statements”.

172 WHILE Statement

FORTRAN Statements

2.85 WRITE Statement

VWRITE (cilist) [olist]

where:
cilist isacontrol information list of specifiers separated by commas:
[UNIT =] u
[FMT =] f
REC = rn
| OSTAT = ios
ERR = s
olist isan output list.

The WRI TE statement is used to transfer data from the executing FORTRAN program to an
external deviceor file.

Control Information List

[UNIT =] u
u isan external unit identifier or an internal file identifier.

1. Anexternal unit identifier is a non-negative integer expression or an
asterisk (*) inwhich case unit 6 is assumed.

2. Aninternal fileidentifier is the name of acharacter variable,
character array, character array element, or character substring.

If the optional UNI T= specifier is omitted then the unit specifier must be the
firstitem inthelist of specifiers.

[FMT =] f
f isaformat identifier. A format identifier is one of the following:

1. A statement label of a FORMAT statement that appearsin the same
program unit as the format identifier.

2. Aninteger variable name that has been assigned the statement label of
a FORIVAT statement that appears in the same program unit as the
format identifier (seethe ASSI GN statement).

WRITE Statement 173

Language Reference

An integer array name.

A character array name.

Any character expression except one involving the concatenation of
an operand whose length specification is (*) unlessthe operandisa
symbolic constant (see the PARAMETER statement).

6. Anasterisk (*), indicating list-directed formatting.

7. A NAMELI ST name, indicating namelist-directed formatting.

ok w

If the optional FMT= specifier is omitted then the format specifier must be the
second item in the list of specifiersand UNI T= must not be specified for the first

itemin thelist.

REC=rn
r n isan integer expression whose value must be positive. It is the number of
the record to be written when afile is connected for direct access.

|OSTAT =ios
is an input/output status specifier. Theinteger variable or integer array element
i os isdefined with zero if no error condition occurs or a positive integer value
if an error condition occurs.

ERR=s

isan error specifier and s isastatement label. When an error occurs, execution
istransferred to the statement labelled by s.

Output list - An output list may contain one or more of the following:

1. Avaiable name.

2. Anarray eement name.

3. A character substring name.

4. Anarray name except an assumed-size dummy array.

5. Any other expression except a character expression involving concatenation of an
operand whose length specification is an asterisk in parentheses unless the operand
is the symbolic name of a constant (since the length can be determined at compile
time).

6. Animplied-DO list of the form:

(dlist, i =el1, e2 [,e3])

174 WRITE Statement

FORTRAN Statements

wheredl i st iscomposed of one or more of items (1) through (6).

Example:
WRI TE(6, 100)X, Y, Z
WRI TE(UNI T=6, FMI=100)X, Y, Z
100 FORMAT(3F10.5)
WRI TE(UNI T=6, FMIr="(3F10.5)")X Y, Z
WRITE(6, '(3F10.5)")X Y, Z

The above gives four examples of formatted WRI TE statements. In all cases, the format
conversion isidentical but it was specified in different ways. When executed, the effect of all
VARl TE statementsisthe same. The unit number, used here, is6. There are, in fact, many
other ways in which the WRI TE statement could have been written, all of which would have
the same effect when executed. We have not shown use of all the specifiers.

Example:
WRITE(6, *)X Y, Z
WRITE(*, *)X Y, Z
WRI TE(UNI T=6, FMI=*)X, Y, Z
WRI TE(UNI T=*, FMI=*)X, Y, Z

The above four examples of list-directed formatted output are al equivalent. Watcom
FORTRAN 77 assumes unit 6 when the unit number identifier is an asterisk (as in the second
and fourth examples). In the examples, the format identifier is an asterisk indicating
list-directed formatting.

Example:
WRITE(8)X VY, Z
VWRITE(UNIT=8)X, Y, Z

The above gives two examples of unformatted WRI TE statements. The unit number used in
the example is 8. When executed, the effect of both of these statementsisthe same. The
values of the variables X, Y and Z are written to the file connected to unit 8 in their binary
form (aform quite incomprehensible to most human beings). An advantage to using this
particular form of the Rl TE statement is that no conversion is required between the internal
binary representation of the values and their textual (human-readable) form (which meansit
takes less computer time to process the data).

Notes:

1. If nooutput list is specified then the effect of the WRI TE statement is to produce a
record whose characters are all blanks.

2. The REC= specifier may not be used when list-directed output is specified.

WRITE Statement 175

Language Reference

3. Animplication of point (6) above isthat nesting of implied-DO listsis permitted.
For example, the output list

((AC1,J), B(1,J3), 3 =1,5), 1 =1, 10)
may be broken down into the following components:
A(ll‘])l B(ll‘])

(....dlistl...., J =1, 5)
(... .. dlist2. oo, L1 =1, 10)

For more information on input/output, see the chapter entitled "Input/Output” on page 255.

For more information on formatted input/output, see the chapter entitled "Format" on page
267.

176

3 Names, Data Types and Constants

3.1 Symbolic Names

Symbolic names are names that represent variables, arrays, functions, etc. Names are formed
using any of the upper-case letters A-Z and the digits 0-9, the first of which must be aletter.
Symbolic names are limited to 6 charactersin length. The following are examples of
symbolic names.

AMOUNT
AGE
CUST73

Watcom FORTRAN 77 extends the allowable characters that can make up a symbolic name
to include the lower-case letters a-z, the dollar sign ($) and the underscore (). Note that the
dollar sign and the underscore are treated as | etters and are therefore allowed as the first letter
of asymbolic name. Furthermore, Watcom FORTRAN 77 allows symbolic names of up to 32
characters. The following are examples of permissible symbolic names.

Eval uat e
$Cheque

Comput eAver age
_devi ce

| GBERROR
student _tota

Watcom FORTRAN 77 makes no distinction between upper and lower case letters. The
following symbolic names are identical.

Account
ACCount
ACCOUNT

Spaces are allowed in symbolic names and areignored. The following symbolic names are

identical.
CREDT
CREDI T

Symbolic Names 177

Language Reference

FORTRAN 77 allows certain keywords such as WRITE to be used as symbolic names. In
Watcom FORTRAN 77, al keywords satisfy the requirements of a symbolic name. A
keyword is a sequence of lettersthat is interpreted in a special way by Watcom FORTRAN
77. Whether a string of charactersisinterpreted as akeyword or as a symbolic name depends
on the context in which it isused. In the following example, the first statement is an
assignment statement assigning the value 2 to the symbolic name DOLOI . The second
statement is the beginning of a DO-1oop.

Example:
DOL0I =1
DO10I =1, 10

3.2 Data Types

There are 6 basic data typesin FORTRAN 77; logical, integer, real, double precision,
complex and character. Watcom FORTRAN 77 provides an additional datatype, namely
double precision complex (DOUBLE COVPLEX or COMPLEX* 16). Watcom FORTRAN 77
also supports the creation of more complex user-defined data types using the STRUCTURE
statement.

Each data type can be classified as nhumeric, logical or character. Each datum occupiesa
seguence of storage units. Numeric data and logical data occupy numeric storage units
whereas character data occupy character storage units. In Watcom FORTRAN 77, anumeric
storage unit occupies 4 bytes and a character storage unit occupies 1 byte.

The following table summarizes al data types supported by Watcom FORTRAN 77.

178 Data Types

Names, Data Types and Constants

Data Type Size Standard
(in bytes) FORTRAN

LOGICAL 4 yes
LOGICAL*1 1 extension
LOGICAL*4 4 extension
INTEGER 4 yes
INTEGER* 1 1 extension
INTEGER*2 2 extension
INTEGER*4 4 extension
REAL 4 yes
REAL*4 4 extension
REAL*8 8 extension
DOUBLE PRECISION 8 yes
COMPLEX 8 yes
COMPLEX*8 8 extension
DOUBLE COMPLEX 16 extension
COMPLEX*16 16 extension
CHARACTER 1 yes
CHARACTER*n n yes

Detailed information on the size and range of values supported by each of these datatypesis
provided in the User’s Guide.

3.3 Data Type of a Name

A name must only have one datatype. Itstype is specified by the appearance of that namein
atype statement. |f a name does not appear in any type statement then an implied typeis
assigned to it by the "first letter rule”. A name not appearing in any type statement and
beginning with any of theletters1, J, K, L, M or N is assigned the type integer. A name not
appearing in any type statement and beginning with any other letter is assigned the type real.
The implied type of aletter can be changed by an | MPLI CI T statement.

The type associated with a name defines the type of the data it isto contain. For example, if A
is of type integer, then the storage unit which A occupiesis assumed to contain integer data.
Note that the data type of an array element is the same as the data type associated with the
array name.

The data type of afunction name specifies the type of the result returned by the function when
itisreferenced. A name that identifies a specific intrinsic function has type as specified in the

Data Type of a Name 179

Language Reference

chapter entitled "Functions and Subroutines” on page 291. A generic function name has no
type associated with it; its type is determined by the type of its argument(s). The appearance
of ageneric function in atype statement is not sufficient to remove the generic properties of
that name. For example, if SIN was declared to be of typereal, it could still be called with an
argument of type complex. The type of an external function referenceis determined in the
same way as for variables and arrays. The actual type of the external function is determined
implicitly by its name or explicitly by its appearancein a FUNCTI ON or type statement. Note
that an | MPLI Cl T statement can affect the type of the external function being defined.

3.4 Constants

A constant can be one of arithmetic, logical or character. Each constant has a data type and
value associated with it and, once established in a program, cannot be changed. Arithmetic
constants consist of those constants whose data type is one of integer, real, double precision,
complex or double precision complex. Logical constants consist of those constants whose
datatypeislogical and character constants consist of those constants whose datatypeis
character. The string of characters representing a constant determines its value and data type.
The blank character isinsignificant for all but character constants.

3.4.1 Integer Constants
An integer constant isformed by a non-empty string of digits preceded by an optional sign.

The following are examples of integer constants.
1423

+345
- 34565788

3.4.2 Real Constants

Wefirst defineasimplereal constant asfollows: an optional sign followed by an integer part
followed by a decimal point followed by afractiona part. Theinteger and fractional parts are
non-empty strings of digits. Either can be omitted but not both.

A real constant has one of the following forms.
1. A simplerea constant.

2. A simplereal constant followed by an E followed by an optionally signed integer
constant.

180 Constants

Names, Data Types and Constants

3. Aninteger constant followed by an E followed by an optionally signed integer
constant.

The optionally signed integer constant that followsthe E is called the exponent. The value of
areal constant that contains an exponent is the value of the constant preceding the E
multiplied by the power of ten determined by the exponent.

The following are examples of real constants.

123.764

. 4352344
1423. 34E12
+345. E- 4
-.4565788E3
2E6

1234.

3.4.3 Double Precision Constant
A double precision constant has one of the following forms.

1. A simplereal constant followed by a Dfollowed by an optionally signed integer
constant.

2. Aninteger constant followed by a D followed by an optionally signed integer
constant.

The optionally signed integer constant that follows the Dis called the exponent. The value of
adouble precision constant that contains an exponent is the value of the constant preceding
the D multiplied by the power of ten determined by the double precision exponent. Note that
the resulting approximation is of greater precision than the equivalent real constant. The
approximations may be of equal precision if the approximations are exact representations. For
example, 0DO and OEO are double and single precision constants respectively, both
representing zero with the same precision.

The following are examples of double precision constants.

1423. 34D12
+345.D-4
-.4565788D5
2D6

Constants 181

Language Reference

3.4.4 Complex Constant

A complex constant consists of aleft parenthesis, followed by areal or integer constant
representing the real part of the complex constant, followed by a comma, followed by areal or

integer constant representing the imaginary part of the complex constant, followed by aright
parenthesis.

The following are examples of complex constants.

(1423.34E12, 3)
(+345, 4)

3.4.5 Double Precision Complex Constant (Extension)

A double precision complex constant has the same form as a complex constant except that at
least one of the real and imaginary parts must be a double precision constant.

The following are examples of double precision complex constants.
(1423.34D12, 3)
(+345, 4D2)

3.4.6 Logical Constant

A logical constant can have one of the following forms.

1. . TRUE. representing thevaluetrue.
2. . FALSE. representing the value false.

3.4.7 Character Constant

A character constant consists of an apostrophe followed by any string of characters followed
by an apostrophe. The apostrophes are not part of the datum. If an apostropheisto appear as
part of the datum it must be followed immediately by another apostrophe. Note that blanks
aresignificant. The length of the character constant is the number of characters appearing
between the delimiting apostrophes. Consecutive apostrophesin a character datum represent
one character, namely the apostrophe. A character constant must not have length 0.

The following are examples of character constants.

182 Constants

Names, Data Types and Constants

' ABCDEFGL1234567’
"There’'s al ways tonorrow

3.4.8 String Constant (Extension)

A string constant consists of an apostrophe followed by any string of characters followed by
an apostrophe and then the letter Cor ¢c. The apostrophes are not part of the datum. The
datum is stored in memory with aterminating NUL character (CHAR(0)). If an apostropheis
to appear as part of the datum it must be followed immediately by another apostrophe. Note
that blanks are significant. The length of the string constant is the number of characters
appearing between the delimiting apostrophes plus one for the terminating NUL character
(CHAR(0)). Consecutive apostrophesin a string datum represent one character, namely the
apostrophe. A string constant must not have length 0. A string constant may be used
anywhere a character constant may be used.

The following are examples of string constants.

"Hello there’' C
"There'’s al ways tonorrow c
"The result for %=%lc

3.4.9 Hollerith Constants (Extension)

A hollerith constant consists of a positive unsigned integer constant n followed by the letter
H or h followed by astring of exactly n characters. The actual dataisthe n characters
following the letter Hor h. A hollerith constant is another way of representing character
data.

Actually, hollerith constants are treated as character constants and can be used wherever a
character constant can be used. Hollerith constants are different from character constantsin
that a quote is represented by two quotes in character constants and by a single quote in
hollerith constants.

The following are examples of hollerith constants.

5HABCDEFG
10h xxxxx ' 44

Constants 183

Language Reference

3.4.10 Hexadecimal Constants (Extension)

Two forms of hexadecimal constant are supported. The first form can only be used in type
declaration or DATA statements. The second form may be used anywhere an integer constant
may be used.

Thefirst form of hexadecimal constant consists of the letter Z or z followed by a string of
hexadecimal digits. A hexadecimal digit can be any digit or one of theletters A, B, C, D,
E or F (the lower case of these |ettersis also acceptable). The actual datais the hexadecimal
digitsfollowing the letter Z or z. Hexadecimal constants of this form can only be used in
type declaration statements and DATA statements for initializing memory with binary patterns.

The following are examples of the first form of hexadecimal constant.

21234
Zac

Thefirst example is equivalent to the binary pattern 0001 0010 0011 0100. The
second example is equivalent to the binary pattern 1010 1100.

The second form of hexadecimal constant consists of an apostrophe followed by any string of
hexadecimal digits followed by an apostrophe and then the letter X or x. A hexadecimal digit
can be any digit or one of theletters A, B, C, D, Eor F (thelower case of these lettersis
also acceptable). The actua dataisthe hexadecimal digits placed inside apostrophes.

The following are examples of the second form of hexadecimal constant.

11234’ x
ac’ X

Thefirst example is equivalent to the binary pattern 0001 0010 0011 0100. The
second example is equivalent to the binary pattern 1010 1100.

3.4.11 Octal Constants (Extension)

An octal constant consists of an apostrophe followed by any string of octal digits followed by
an apostrophe and then the letter Oor 0. An octal digit can be any of the digits 0 through 7.
The actual dataisthe octal digits placed inside apostrophes. An octal constant may be used
anywhere an integer constant may be used.

184 Constants

Names, Data Types and Constants

The following are examples of octal constants.

'1234’' o
370

Thefirst example is equivalent to the binary pattern 001 010 011 100. The second
exampleis equivalent to the binary pattern 011 111.

3.5 Symbolic Constants

It is possible to give a constant a symbolic name. Thisis done through PARAMETER
statements. For more details, see the section on the PARAMETER statement in the chapter
entitled "FORTRAN Statements" on page 9.

Symbolic Constants 185

Language Reference

186 Symbolic Constants

4 Arrays

4.1 Introduction

An array is anon-empty collection of data. Arrays allow a convenient way of manipulating
large quantities of data. An array can be referenced as an entity. Inthisway it is possible to
conveniently pass large quantities of data between subprograms. Alternatively, it is possible
to reference each element of an array individually so that data can be selectively processed.
Consider the task of managing the marks of 100 students. Without arrays one would have to
have a unique name for each mark. They might be M1, M2, etc. upto M100. Thisisclearly
cumbersome. Instead, we can use an array called MARKS containing 100 elements. Now
there is one name for all the marks. Each mark can be referenced by using that name followed
by a subscript. Furthermore, suppose the size of the class doubled. Do we add the names
M101, M102, etc. upto M200? Not if we use arrays. If the size of the class doubled, all that
need be doneis to define the array to contain 200 elements. It isnot hard to see that programs
that use arrays tend to be general in nature. Arrays also facilitate the repetitive computations
that must be performed on large amounts of datain that they lend themselves to loop
processing.

4.2 Properties of Arrays

Arrays are defined by an array declarator. The form of an array declarator is:

a(d [,d ...)
where:
a is the symbolic name of the array
d isadimension declarator.

The number of dimensions of the array is determined by the number of dimension declarators
appearing in the array declarator. Allowable dimensionsfor arraysrangefrom1to7. A

Properties of Arrays 187

Language Reference

1-dimensiona array can be viewed as a vector, a 2-dimensional array asamatrix and a
3-dimensional array as anumber of parallel matrices. Arrays with dimension higher than 3
are generally difficult to intuitively describe and hence examples will deal with arrays whose
dimensionisi, 2 or 3.

Each dimension has arange of values. When referencing elementsin that dimension, the
dimension expression must fall in that range. The range of adimension is defined in the
dimension declarator. A dimension declarator has the following form:

[lo:] hi
where:
lo isthe lower dimension bound.
hi is the upper dimension bound.

The lower and upper dimension bounds must be integer expressions and the upper dimension
bound must be greater than or equal to the lower dimension bound. The upper dimension
bound of the last dimension may be an asterisk (*). The meaning of thiswill be discussed
later. If the lower dimension bound is not specified then a default of 1 isassumed. Thesize
of adimensionisdefinedas hi —lo+ 1. Notethat if the lower dimension bound is not
specified the size of the dimension isjust hi . The size of the array (or the number of
elementsin the array) is defined as the product of all the sizes of the dimensions of the array.
The maximum number of elementsin any dimension is limited to 65535. The maximum size
of an array islimited by the amount of available memory.

Arrays are defined by the appearance of an array declarator ina DI MENSI ON statement, a
type statement or a COVMON statement.

Example:
DI MENSI ON A(10), B(-5:5,-10:10)
| NTEGER C(10, 20)
COWDN / DATA X, Y(30,30), Z

In the previous example, B isa 2-dimensional array with 11 rows and 21 columns and has 231
elements(i.e. 11* 21).

Each array has a data type associated with it. This datatype isinherited by all elements of the
array.

188 Properties of Arrays

Arrays

4.3 Array Elements

Each array is comprised of a sequence of array elements. An array element is referenced by
following the array name with a subscript. Different elements of the array are referenced by
simply changing the subscript. An array element has the following form:

a(s[,s]...)
where:
a isthe array name.
(d.9...) is a subscript.
S is asubscript expression.

Each subscript expression must be an integer expression and must be in the range defined by
the upper and lower dimension bounds of the corresponding dimension. The number of
subscript expressions must be equal to the dimension of the array.

If an array has n elements then there is a 1-to-1 correspondence between the elements of the
array and the integers from 1 to n. Each subscript has a subscript value associated with it
which determines which element of the array is being referenced. If the subscript valueisi
then the ith element of the array is the one referenced. The subscript value depends on the
subscript expressions and on the dimensions of the array. The following table describes how
to compute the subscript value.

Array Elements 189

Language Reference

n Dimension Subscript Subscript
Declarator Value
1 (J1:K1) (S1) 1+(S1-J1)
2 (J1:K1,J2:K2) (S1,82) 1+(S1-J1)
+(S2-12)*D1
3 (J1:K1,J2:K2,J3:K3) (S1,52,33) 1+(S1-J1)
+(S2-12)*D1
+(S3-13)*D2*D1
n (J1:K1,...,dn:Kn) (SL,...,.Sn) 1+(S1-J1)
+(S2-12)*D1
+(S3-J3)*D2*D1
+
+(Sn-Jn)*Dn-1*Dn-2*..*D1
Notes:
1. nisthenumber of dimensions, 1 <=n<=7.
2. Jiisthevalue of the lower bound of thei’th dimension.
3. Kiisthevalue of the upper bound of thei’th dimension.
4. If only the upper bound is specified, then Ji = 1
5. Siistheinteger value of the i’ th subscript expression.
6. Di=Ki-Ji+1listhesizeof thei’th dimension. If the value of the lower bound is 1,
then Di = Ki.
7. A subscript of the form (J1,...,Jn) has subscript value 1 and identifies the first

element of thearray. A subscript of the form (K1,...,Kn) has subscript value equal

to the size of the array and identifies the last element of the array.

190 Array Elements

Arrays

4.4 Classifying Array Declarators by Dimension
Declarator

Array declarators can be classified according to the characteristics of the dimension
declarator. The following sections discuss the three classifications.

4.4.1 Constant Array Declarator

A constant array declarator is one in which each of the dimension bound expressionsis an
integer constant expression. It is called a constant array declarator because the dimension
bound expressions can never change. 1n the following example both A(10) and B(-5:5) are
constant array declarators.

Example:
SUBROUTI NE SQUARE(A)
DI MENSI ON A(10), B(-5:5)

END

4.4.2 Adjustable Array Declarator

An adjustable array declarator isonethat contains at least one variable in all of its dimension
bound expressions. It is called an adjustable array declarator because the dimension bound
expressions can change depending on the current value of the variables in the dimension
bound expressions. The array name must be a dummy argument. In the following example,
A(M 2*N) isan adjustable array declarator. If SQUARE is called with Mhaving value 5 and
N having value 10, then the array A will be a 2-dimensional array having 5 rows and 20
columns.

Example:
SUBROUTI NE SQUARE(A, M N)
DI MENSI ON A(M 2*N)

END

Classifying Array Declarators by Dimension Declarator 191

Language Reference

4.4.3 Assumed-size Array Declarator

An assumed-size array declarator is a constant array declarator or an adjustable array
declarator whose upper dimension bound of the last dimension is an asterisk (e.g., A(M,N,*))
or theinteger value 1 (e.g., A(M,N,1)). Thearray name must be adummy argument. The
value of the upper bound of the last dimension is determined by the number of elements of the
actual array argument and is computed as follows. First we compute the size of the dummy
array. Note that thissize isreally an upper bound.

1. If the corresponding actual array argument is a non-character array name, the size
of the dummy array isthe size of the actual array.

2. If the corresponding actual array argument is a non-character array element name
with a subscript value of r in an array of size x, the size of the dummy array isx + 1
-r.

3. If the corresponding actual argument is a character array name, character array
element or a substrung character array element which begins at character t of an
array with ¢ characters then the size of the dummy array isINT((c+1-t)/¢€)
where eisthe size of an element of the dummy array.

If the assumed-size array has dimension n then the product of the first n — 1 dimensions must
be less than or equal to the size of the array as determined by one of the preceding rules. The
value of the assumed dimension is the largest integer such that the product of all of the

dimensionsisless than or equal to the size of the dummy array. In the following example,
A(4, *) isan assumed-size array declarator.

Example:
DI MENSI ON B(10)

CALL SQUARE(B)

END

SUBROUTI NE SQUARE(A)
DI MENSI ON A(4, *)

END

192 Classifying Array Declarators by Dimension Declarator

Arrays

By rule 1, the upper bound of the size of Ais10. We now look for the largest integer n such

that 4 * nislessthan or equal to 10. Clearly, nis2. Aistherefore a2-dimensiona array with
4 rows and 2 columns.

4.4.4 Allocatable Array Declarator

An allocatable array declarator is one that contains no dimension bound expressions. Itis
called an allocatable array declarator because the dimension bounds are specified at run-time
in an ALLOCATE statement.

Example:
DI MENSI ON A(:), B(:,:)

ALLOCATE(A(N))
ALLOCATE(B(0: 4,5))

In the previous example, A(:) isaone-dimensiona allocatable array declarator and B(: , :)
isatwo-dimensional allocatable array declarator. Thefirst ALLOCATE statement is used to
allocate the array A with bounds 1: N. The second ALLOCATE statement is used to allocate
the array B with bounds 0: 4 in thefirst dimension and 1: 5 in the second dimension.

4.5 Classifying Array Declarators by Array Name

Array declarators can also be classified according to the characteristic of the array name. The
following sections discuss the two classifications.

4.5.1 Actual Array Declarator

An actual array declarator is one in which the array name is not adummy argument. All
actual array declarators must also be constant array declarators. An actual array declarator is
permitted in a DI MENSI ON statement, a type statement or a COMMON statement.

4.5.2 Dummy Array Declarator

A dummy array declarator is one in which the array name is a dummy argument and hence
can only appear in afunction or subroutine subprogram. It can be a constant, adjustable or
assumed-size array declarator. A dummy array declarator can appear ina DI MENSI ON
statement or a type statement but not in a COMMON statement. It should be noted that the array

Classifying Array Declarators by Array Name 193

Language Reference

declarator for adummy array declarator need not be the same as the array declarator of the
corresponding actual array declarator. Also note that every array declarator in amain
program must be a constant array declarator.

4.6 Use of Array Names

The appearance of an array name must always be as part of an array element name except in
the following cases:

1. inalist of dummy arguments. For example, a subroutine that has as one of its
arguments an array.

2. ina COMMON statement to define that array as belonging to a common block.

3. inatype statement either as part of an array declarator or by itself to establish the
type of the array.

4. inan array declarator ina DI MENSI ON, type or COVMON statement.
5. inan EQUI VALENCE statement.

6. inaDATA statement.

7. inthelist of actual arguments when calling an external procedure.

8. Inthelist of an input/output statement.

9. asaunit identifier for aninternal filein an input/output statement.

10. asaformat identifier in an input/output statement.

11. in a SAVE statement.

194 Use of Array Names

5 Character Substrings

5.1 Introduction

A substring is a contiguous portion of a character entity. The substring operation selects a
substring from a character entity. The resulting substring can then be treated as a character
entity initself. Substringing also allows the replacement of substrings from character entities
with other character entities.

5.2 Substring Names

Substrings are formed by specifying a substring name. The forms of a substring name are:

v([el] @ [e2])
a(s [,s] ...)([el] : [e2])

where:

% is a character variable name.

a(y,g...) isacharacter array element name.

el isan integer expression identifying the leftmost character of the
substring.

€2 isan integer expression identifying the rightmost character of the
substring.

el and e2 are caled substring expressions. They must be such that

1 <=el <=e2 <= len

Substring Names 195

Language Reference

where | en isthe length of the character entity. If el isomitted, avalue of 1 isassumed. If
e2 isomitted, avalue of | en isassumed. Both el and e2 may be omitted. The length of the
substringise2 - el + 1.

Example:

CHARACTER A*8, B(4)*8, C'14

* A gets the string ' EVERYDAY
A = ' EVERYDAY’

* Replace "DAY with "ONE in A
A(6:8) = 'O\

* B(1l) gets the string ' OTHELLO
B(1) = 'OTHELLO

* B(2) gets sane value as B(1)
B(2)(:) =’ OTHELLO

* B(3) gets last 6 characters of B(1)
B(3) = B(1)(3:8)

B(4) gets first 4 characters of B(1)

concatenated with the letter 'R
B(4) =B(1)(1:4) // 'R

* Cgets last 6 characters of B(1)

* concatenated with the variable A
C=B(1)((3) /Il A

* Print out the results

PRINT *, A
PRINT ' (A8)', B
PRINT *, C

END

5.3 Extensions

Watcom FORTRAN 77 allows an external character function reference or a character
statement function reference as part of the substring name (see the chapter entitled "Functions
and Subroutines" on page 291. for more information).

196 Extensions

Character Substrings

Example:
CHARACTER*10 F, G
CHARACTER*10 X

* DEFI NE CHARACTER STATEMENT FUNCTI ON
*

X =X

PRINT *, F(’ 0123456789’)(1:5)

PRINT *, G’ 0123456789’)(6: 10)
END

* F X

DEFI NE CHARACTER EXTERNAL FUNCTI ON

CHARACTER* (*) FUNCTI ON F(X)
CHARACTER* 10 X

F=X

END

Extensions 197

Language Reference

198 Extensions

6 Structures, Unions and Records

6.1 Structures and Records

As an extension to the basic FORTRAN 77 types such as INTEGER, REAL, LOGICAL, etc.,
Watcom FORTRAN 77 supports the creation of hierarchical, composite data types called
structures. A structure is atemplate describing the form of arecord. It is composed of
members or fields of various types, including other structures. A structure does not reserve
any storage.

For example, you could describe the structure of the COMPLEX data type using the following
construction.

Example:
STRUCTURE / CVPLX/
REAL REAL_PART
REAL | MAG_PART
END STRUCTURE

Since the COMPLEX datatypeisan intrinsic type of FORTRAN, there is no need to do so.
The STRUCTURE and END STRUCTURE statements mark the start and end of a structure
definition.

There are, however, many practical examples of collections of data that may be described
using a structure. Consider, for example, the contents of adatarecord on disk. It may contain
fields such as last name, first name, and middle initial which describe the name of a customer.
Each of these fields are fixed in length. A sample structure declaration might be:

STRUCTURE / NAMVE/
CHARACTER* 20 LAST_NAME
CHARACTER* 20 FI RST_NAME
CHARACTER*1 M DDLE_I NI Tl AL
END STRUCTURE

Aswe stated above, a structure does not allocate storage. Instead, we have created a new type
called NAME which may be used to describe objects. Objects of the new type are defined
using the RECORD statement. For example, the following statements describe two objects,
STUDENT _1 and STUDENT _2, to be of type NAME.

Structures and Records 199

Language Reference

RECORD / NAME/ STUDENT _1
RECORD / NAME/ STUDENT_2

There are other attributes of a person besides one’ s name that could be recorded in the record.
For example, we can also store a person’s date of birth and sex. First, let usdefinea DATE
structure.

STRUCTURE / DATE/
| NTEGER*1 DAY
| NTEGER*1 MONTH
| NTEGER*2 YEAR
END STRUCTURE

Now we can describe a person in terms of name, date of birth, and sex.

STRUCTURE / PERSON/
RECORD / NAME/ NAME
RECORD / DATE/ BI RTH_DATE
CHARACTER*1 SEX

END STRUCTURE

RECORD / PERSON/ STUDENT

Having declared STUDENT to be of type PERSON, how do we reference the component parts
of STUDENT? The following example illustrates this.

STUDENT. NAME. LAST_NAME = ’ Pugsl ey’
STUDENT. NAME. FI RST_NAME = ' El mar’
STUDENT. NAME. M DDLE_INITIAL = "M
STUDENT. Bl RTH_DATE. DAY = 21
STUDENT. Bl RTH_DATE. MONTH = 11
STUDENT. Bl RTH_DATE. YEAR = 1959
STUDENT. SEX = ' M

The object’ s name is specified first, followed by a"." (or "%") and the structure member
name. If the structure member isitself arecord then another "." (or "%") and member nameis
specified. This continues until the desired structure member isidentified. The"." or "%" is

called afield selection operator.

The previous example contained both a structure called NAME (RECORD / NAME/) and a
structure member called NAME (RECORD / NAME/ NAME) . The structure nameis
enclosed within dashes ("/"). A structure name must be unique among structure names.
However, the same name can also be used to name either variables or structure members
(fields). Thusitis possibleto have avariable named X, astructure named X, and one or
more fields named X.

200 Structures and Records

Structures, Unions and Records

Structure, field, and variable names are all local to the program unit in which they are defined.

6.2 Arrays of Records

It is often the case that the individual attributes of objects are stored in separate arrays. If, for
example, your application deals with 1000 objects with attributes "size", "weight", and
"colour”, the traditional approach isto declare three different arrays.

PARAVETER (MAX_ELS=1000)
REAL Sl ZE(MAX_ELS)

| NTEGER WEI GHT(MAX_ELS)
CHARACTER* 2 COLOUR(MAX_ELS)

To read or write the attributes relating to an object, you would use a statement such as:
READ(UNI T=3) SI ZE(1), WEI GHT(Il), COLOUR(I)
Using a simple structure, we can express the problem as follows:
PARAMETER (MAX_ELS=1000)
STRUCTURE / OBJECT/
REAL S| ZE
| NTEGER VEI GHT
CHARACTER* 2 COLOUR
END STRUCTURE

RECORD / OBJECT/ | TEM MAX_ELS)

To read or write the attributes relating to an object, you would use a statement such as:

READ(UNI T=3) | TEMI)

6.3 Unions

Sometimesit is useful to be able to describe parts of structures in different waysin much the
same way that the EQUI VAL ENCE statement is used to describe a specific storage areain
different ways. The UNI ON- END UNI ON statements are used to mark a section of a
structure that will have aternate storage organizations (MAPs). The MAP - END MAP
statements are used to define the start and end of an alternate storage map. Thus several MAP
- END MAP pairswill appear between a UNI ON- END UNI ON section.

Unions 201

Language Reference

Consider the following example. The subroutine displays the contents of afield using
different names and formats depending on a TYPE field.

Example:
SUBROUTI NE PRINT_I TEM | TEM)
STRUCTURE / DATA_NAP/
| NTEGER TYPE
UNI ON
MAP
LOd CAL LG
END MAP
MAP
| NTEGER I NT
END MAP
MAP
REAL FLT
END MAP
MAP
DOUBLE PRECI SI ON DBL
END MAP
END UNI ON
END STRUCTURE

RECORD / DATA_NMAP/ | TEM

IF(ITEMAYPE .EQ 1) THEN
PRINT " (L2)’, | TEMAG

ELSEI F(| TEMAYPE .EQ 2) THEN
PRINT *(18)", | TEMA NT

ELSEI F(| TEMAYPE .EQ 3) THEN
PRINT ' (E12.5)", | TEMALT

ELSEI F(| TEMAYPE .EQ 4) THEN
PRINT ’ (D12.5)’, | TEM®BL

ENDI F

END

The organization of the record in memory is as follows:

202 Unions

Structures, Unions and Records

offset +0 +4 +8
i nt eger | ogi cal (sl ack)
i nteger (sl ack)
real (sl ack)
doubl e precision

Thefirst 4 bytes of storage are occupied by TYPE. The next 4 to 8 bytes of storage are
occupied by either LGL, | NT, FLT, or DBL depending on the interpretation of the contents
of thevariable TYPE. Thesize of therecord | TEMisatotal of 12 bytes. Based on the
conventions of the above program example, only 8 bytes of the record | TEMare used when
TYPEis1, 2, or 3. When TYPE is4 then 12 bytes of the record are used.

The following example maps out a 4-byte integer on an Intel 80x86-based processor.

Example:
STRUCTURE / MAPI NT/
UNI ON
MAP
| NTEGER*4 LONG
END MAP
VAP
| NTEGER*2 LO_WORD
| NTEGER*2 HI _WORD
END MAP
MAP
| NTEGER*1 BYTE_O
| NTEGER*1 BYTE_1
| NTEGER*1 BYTE_2
| NTEGER*1 BYTE_3
END MAP
END UNI ON
END STRUCTURE

RECORD / MAPI NT/ |

| .ONG = ’ 01020304’ X

PRINT ' (Z8)', 1%ONG

PRI NT * (Z4, 1X, Z4)’, 19%.0 WORD, | % WORD

PRINT ’ (Z2,3(1X,Z22))’, |9BYTE 0, |9%BYTE 1,
$ | 9BYTE 2, | 9BYTE 3
END

Unions 203

Language Reference

The above example produces the following output:
01020304

0304 0102
04 03 02 01

204 Unions

[Expressions

The following topics are discussed in this chapter.
* Arithmetic Expressions
* Character Expressions
* Relational Expressions
* Logical Expressions
* Evaluating Expressions

* Constant Expressions

7.1 Arithmetic Expressions

Arithmetic expressions are used to describe computations involving operands with numeric

datatype, arithmetic operators and left and right parentheses. The result of the computation is
of numeric data type.

7.1.1 Arithmetic Operators
The following table lists the arithmetic operators and the operation they perform.
Oper at or Arithnmetic Operation
** Exponenti ati on
/ Di vi si on
* Mul tiplication
- Subtraction or Negation
+ Addition or ldentity

Arithmetic Expressions 205

Language Reference

Some operators can be either binary or unary. A binary operator is one that requires two
operands. A unary operator isone that requires one operand. Each of the operators**, /, and
* are binary operators. The operators + and — can either be binary or unary operators. The
following table describes how each operator is used with their operands.

Qper at or Arithnetic Operation
X ** y X is raised to the power y
x Iy X is divided by y
X *y Xx is multiplied by y
X -y y i s subtracted from x
X +y y is added to x
- X X i's negated
+ X identity

Arithmetic expressions can contain more than one operator. It isthus necessary to define
rules of evaluation for such expressions. A precedence relation is defined between operators.
This relation defines the order in which operands are combined and hence describes the
evaluation sequence of an arithmetic expression. Operands of higher precedence operators are
combined using that operator to form an operand for an operator of lower precedence. The
following rules define the precedence relation among arithmetic operators.

1. Exponentiation (**) has highest precedence.

2. Multiplication (*) and division (/) have equal precedence but have lower
precedence than exponentiation.

3. Addition (+) and subtraction (-) have equal precedence but have lower precedence
than multiplication and division.

For example, to evaluate the expression
A-B**4
B israised to the exponent 4 first and the result is then subtracted from A.

Parentheses can be used to alter the eval uation sequence of an arithmetic expression. When a
left parenthesis is encountered, the entire expression enclosed in parentheses is eval uated.
Consider the following expression.

3* (4+5)

We first evaluate the expression in the parentheses, the result being 9. We now multiply the
result by 3 giving afinal result of 27. Now suppose we remove the parentheses. According to
the precedence rules, * has precedence over + so we perform the multiplication before the
addition. Theresultinthiscaseis17.

206 Arithmetic Expressions

Expressions

7.1.2 Rules for Forming Standard Arithmetic Expressions

The building blocks for arithmetic expressions are called arithmetic primaries. They are one
of the following:

unsigned arithmetic constant
arithmetic symbolic constant
arithmetic variable reference
arithmetic array element reference
arithmetic function reference
(arithmetic expression)

oukrwdhpE

A grammar for forming arithmetic expressions can be described which reflects the precedence
relation among arithmetic operators.

Exponentiation has highest precedence. We define afactor as:

1. primary
2. primary ** factor

A factor is simply a sequence of primaries, each separated by the exponentiation operator.
Rule (2) specifies that the primaries involving exponentiation operators are combined from
right to left when evaluating a factor.

Next in the precedence hierarchy are the multiplication and division operators. We definea
termas:

1. factor
2. term/factor
3. term* factor

A term is simply a sequence of factors, each separated by a multiplication operator or a
division operator. Rules (2) and (3) imply that in such a sequence, factors are combined from
left to right when evaluating aterm. Factors can be interpreted as the result obtained from
evaluating them. Thisimpliesthat all factors are evaluated before any of the multiplication or
division operands are combined. Thisinterpretation is consistent with the precedence relation
between the exponentiation operator and the division and multiplication operators.

An arithmetic expression can now be defined as follows.

1. term
2. +term
3. -—term

Arithmetic Expressions 207

Language Reference

4. arithmetic expression + term
5. arithmetic expression — term

An arithmetic expression is simply a sequence of terms, each separated by an addition
operator or asubtraction operator. Rules (4) and (5) imply that terms are evaluated from left
toright. Rules(2) and (3) imply that only the first term of an arithmetic expression can be

preceded by aunary + or — operator. Terms can be interpreted in the same way as factors
were interpreted in the definition of terms.

Note that consecutive operators are not permitted. For example, the expression
A+-B

isillegal. However, expressions of the form
A+(-B)

are dlowed.

7.1.3 Arithmetic Constant Expression

An arithmetic constant expression is an arithmetic expression in which all primaries are one
of the following.

1. arithmetic constant
2. symbolic arithmetic constant
3. (arithmetic constant expression)

Thereis afurther restriction with the exponentiation operator; the exponent must be of type
INTEGER.

As an extension to the FORTRAN 77 language, Watcom FORTRAN 77 supports the use of
theintrinsic function | SI ZECF in an arithmetic constant expression.

Example:
PARAMETER (I NTSI Z = | SI ZEOF(| NTEGER))

An integer constant expression is an arithmetic constant expression in which all constants and
symbolic constants are of type INTEGER.

208 Arithmetic Expressions

Expressions

Example:
123
- 753+2
-(12*13)

A real constant expression is an arithmetic constant expression in which at least one constant
or symbolic constant is of type REAL and all other constants or symbolic constants are of type
REAL or INTEGER.

Example:
123.
-753+2.0
- (13E0*12)

A double precision constant expression is an arithmetic constant expression in which at least
one constant or symbolic constant is of type DOUBLE PRECISION and all other constants or
symbolic constants are of type DOUBLE PRECISION, REAL or INTEGER.

Example:
123. 4D0
- 753D0*2+. 5
-(12D0*12. 2)

A complex constant expression is an arithmetic constant expression in which at least one
constant or symbolic constant is of type COMPLEX and all other constants or symbolic
constants are of type COMPLEX, REAL or INTEGER.

Example:
(123,0)
(-753,12.3)*2
-(12,-12.4)-(1.0,.2)

A double precision complex constant expression is an arithmetic constant expression in
which at |least one constant or symbolic constant is of type COMPLEX* 16 and all other
constants or symbolic constants are of type COMPLEX* 16, DOUBLE PRECISION, REAL or
INTEGER. If there are no constants or symbolic constants of type COMPLEX*16in a
constant expression, the type of the constant expression will be COMPLEX* 16 if it contains
at least one constant or symbolic constant of type COMPLEX and at least one constant or
symbolic constant of type DOUBLE PRECISION. Watcom FORTRAN 77 supports this type
of constant expression as an extension of the FORTRAN 77 language.

Arithmetic Expressions 209

Language Reference

Example:
(123, 0DO)
(-753,12.3D0)*2
-(12D0,-12.4)-(1.0,.2)

7.1.4 Data Type of Arithmetic Expressions

Evaluating an arithmetic expression produces aresult which has atype. The type of the result
is determined by the type of its operands. The following table describes the rules for
determining the type of arithmetic expressions. Theletters|, R, D, C and Z stand for
INTEGER, REAL, DOUBLE PRECISION, COMPLEX and COMPLEX*16 respectively.
An entry in the table represents the data type of the result when the operands are of the type
indicated by the row and column in which the entry belongs. The column represents the type
of the operand to the right of the operator, and the row represents the type of the operand to
the left of the operator. Thetableisvalid for al of the arithmetic operators.

op *1 [1*2 | 1*4 R D C Z

1 | I*1 [I*2 | I*4
*2 | 1*2 [I*2 | I*4

NOOD 2
NOOD 2
NOOD 2
NOoOD 2
NOOITTDUXD
NNOUOOUOO
NONOOOO
NNNNNNN

Notes:

1. I*1representsthe | NTEGER* 1 datatype, 1*2 representsthe | NTEGER* 2 data
type, and 1*4 representsthe | NTEGER or | NTEGER* 4 datatype.

2. Thedatatype of the result obtained by dividing an integer datum by an integer
datum is also of type INTEGER even though the mathematical result may not be an
integer. Thisresult iscaled the integer quotient and is defined as the integer part
of the mathematical quotient.

3. Watcom FORTRAN 77 supports the double precision complex data type
(COMPLEX* 16) as an extension of the FORTRAN 77 language. Combining an
operand of type DOUBLE PRECISION with an operand of type COMPLEX yields
aresult of type COMPLEX* 16.

210 Arithmetic Expressions

Expressions

7.2 Character Expressions

Character expressions are used to describe computations involving operands of type
CHARACTER, the concatenation operator (//) and left and right parentheses. The result of
the computation is of type CHARACTER.

7.2.1 Character Operators

There isonly one character operator, namely the concatenation operator (//). It requirestwo
operands of type CHARACTER. If x istheleft operand and y isthe right operand, then the
result isy concatenated to x. The length of the result is the sum of the lengths of the two
operands. For example, the result of

" AAAAA' /] BBB’

isthe string AAAAABBB.

7.2.2 Rules for Forming Character Expressions

The building blocks for character expressions are called character primaries. They are one of
the following.

character constant

character symbolic constant
character variable reference
character array element reference
character substring reference
character function reference

(character expression)

Nogah~wdE

Character expressions are defined as follows:

1. character primary
2. character expression // character primary

A character expression is simply a sequence of character primaries, each separated by the
concatenation operator (//). Rule 2 impliesthat character primaries are combined from left to
right. Except in a character assignment statement, the operandsin a character expression must
not contain operands whose length specification is (*) unless the operand is a symbolic
constant.

Character Expressions 211

Language Reference

Note that, unlike arithmetic expressions, parentheses have no effect on the result of evaluating
acharacter expression. For example, the result of the expressions

"A/I'B/I'C
and
"AI('B /I C)

isidentically the string ABC.

7.2.3 Character Constant Expressions

A character constant expression is a character expression in which all primaries are one of the
following.

1. character constant
2. symboalic character constant
3. (character constant expression)

As an extension to the FORTRAN 77 language, Watcom FORTRAN 77 supports the use of
theintrinsic function CHAR in a character constant expression.

Example:
CHARACTER*6 HELLO, WORLD
PARAMETER (HELLO = ' Hel |l o’ // CHAR(0))
PARAMETER (WORLD = "worl d’'// CHAR(7))
PRINT *, HELLO WORLD
END

7.3 Relational Expressions

A relational expression is used to compare two arithmetic expressions or two character
expressions. It isnot possibleto compare a character expression to an arithmetic expression.
Evaluation of arelational expression produces a result of type logical.

212 Relational Expressions

Expressions

7.3.1 Relational Operato

s

The following table lists the relational operators and the operation they perform.

Qper at or Rel ati onal Qperation
.LT. Less than

. LE. Less than or equal

. EQ Equal

. NE. Not equal

. GT. Greater than

. GE. Greater than or equal

7.3.2 Form of a Relational Expression

The form of arelational

expression is as follows.

el relop e2

where:
relop isarelational operator.
el, e2 are both arithmetic expressions or both character expressions.

7.3.2.1 Arithmetic Relational Expressions

An arithmetic relational expression isarelationa expression in which el and e2 are both
arithmetic expressions. An arithmetic relational expression has avalue of trueif the operands
satisfy the relation specified by the relational operator and false otherwise.

A complex operand is only permitted when using either the .EQ. or .NE. relational operators.
Watcom FORTRAN 77 allows operands of type COMPLEX* 16.

7.3.2.2 Character Relational Expressions

Character relational expressions are relational expressions whose operands are of type
CHARACTER. The value of arelation between character strings is established by using the
collating sequence of the processor character set. The collating sequenceis an ordering of the
charactersin the processor character set. Note, for example, that the EBCDIC character set

Relational Expressions 213

Language Reference

has a different collating sequence than that of the ASCII character set. For example, el is
greater than e2 if the value of el followsthe value of e2 in the processor collating sequence.
The value of acharacter relational expression depends on the collating sequence. In the case
of the NE. and .EQ. operators, the collating sequence has no effect.

Example:

IF(A .LT. "a)THEN
PRI NT *, ' The processor character set’
PRI NT *, "appears to be ASClI

ELSE
PRI NT *, " The processor character set’
PRI NT *, 'appears to be EBCDI C

END I F

END

The above example is a crude test for determining the character set used on your processor.
It is possible to have operands of unequal length. In this case, the character string of smaller

length istreated asif blanks were padded to the right of it to the length of the larger string.
The relational operator is then applied.

7.4 Logical Expressions

Logica expressions are used to describe computations involving operands whose typeis
LOGICAL or INTEGER , logical operators and left and right parentheses. The result of the
computation is of type LOGICAL unless both operands are of type INTEGER in which case
the result of the computation is of type INTEGER.

7.4.1 Logical Operators

The following table lists the logical operators and the operation they perform.

Qper at or Logi cal Operation
. NOT. Logi cal negation
. AND. Logi cal conjunction
.OR Logi cal inclusive disjunction
. EQV. Logi cal equi val ence
. NEQV. Logi cal non-equi val ence
. XOR. Excl usi ve or

214 Logical Expressions

Expressions

Thelogical operator .NOT. isaunary operator; al other logical operators are binary. The
following tables describe the result of each operator when it is used with logical operands.

X . NOT. x
true fal se
fal se true

X y X . AND. vy
true true true
true fal se fal se
fal se true fal se
fal se fal se fal se
X y X .OR vy
true true true
true fal se true
fal se true true
fal se fal se fal se
X y X .EQV. vy
true true true
true fal se fal se
fal se true fal se
fal se fal se true
X y X . NEQV. vy
............... X . XOR vy
true true fal se
true fal se true
fal se true true
fal se fal se fal se

Note that the operators .NEQV. and .XOR. perform the same logical operation.

Logical Expressions 215

Language Reference

The following tables describe the result of the logical operators when they are used with
integer operands. These operators apply to bits in the operand(s), hence we show only the
result of operations on individual bits. The way to read the entries in the following tablesis:

1. If thebitin"x" is 0 then the corresponding bit in ".NOT.x" is 1, and so on.

2. If thebitin"x" is 1 and the corresponding bit in "y" is 1 then the corresponding bit
in"x.AND.y" is 1, and so on.

X . NOT. x

0 1

1 0

X y X .AND. vy
1 1 1

1 0 0

0 1 0

0 0 0

X y X .OR Yy
1 1 1

1 0 1

0 1 1

0 0 0

X y X .EQV. y
1 1 1

1 0 0

0 1 0

0 0 1

216 Logical Expressions

Expressions

X y X . NEQV. y
............. . X XOR Y

OQORr Pk
OFr O
OrrFrOo

Note that the operators .NEQV. and .XOR. perform the same mathematical operation on
bits.

Asisthe case with arithmetic operators, we must define rulesin order to evaluate logical
expressions. Again we define rules of precedence for logical operators which dictate the
evaluation sequence of logical expressions. The following lists the logical operatorsin order

of precedence.
1. .NOT. (highest precedence)
2. .AND.
3. .OR.
4. .EQV.,.NEQV. and .XOR. (lowest precedence)

For example, in the expression

A.OR B .AND. C

the AND. operator has higher precedence than the .OR. operator so B and C are combined
first using the .AND. operator. Theresult isthen combined with A using the .OR. operator.

Parentheses can be used to alter the sequence of evaluation of logical expressions. If inthe
previous example we had written

(A.OR B) .AND. C

then A and B would have been combined first.

7.4.2 Rules for Forming Logical Expressions

Logica primaries are the building blocks for logical expressions. They are one of the
following.

1. logica orinteger constant
2. symboliclogical orinteger constant

Logical Expressions 217

Language Reference

logical orinteger variable reference
logical orinteger array element reference
logical orinteger function reference
relational expression

(logical orinteger expression)

NooA®

Aswas done with arithmetic expressions, a grammar can be defined which dictates the
precedence relation among logical operators.

The .NOT. logical operator has highest precedence. We define alogical factor as:

1. logical primary
2. .NOT. logica primary

Next in the precedence hierarchy isthe AND. operator. We define alogical term as:

1. logical factor
2. logica term .AND. logical factor

A logical termis simply a sequence of logical factors, each separated by the AND. operator.
Rule (2) specifiesthat the logical factors are combined from left to right.

Next isthe .OR. operator. We define alogical digunct as:

1. logical term
2. logicd digunct .OR. logical term

A logical disunct issimply a sequence of logical terms each separated by the .OR. operator.
Rule (2) specifiesthat the logical terms are combined from left to right.

A logical expression can now be defined as follows.

1. logical disunct

2. logical expression .EQV. logical disunct

3. logical expression .NEQV. logical disunct or logical expression .XOR. logical

disunct

A logical expression is therefore a sequence of logical disuncts, each separated by the .EQV.
operator or the NEQV. or .XOR. operator. Rules(2) and (3) indicate that logical disuncts
are combined from left to right.

Consider the following example.

A .OR .NOI. B.AND. C

218 Logical Expressions

Expressions

Sincethe .NOT. operator has highest precedence wefirst logically negate B. Theresultis
then combined with C using the .AND. operator. That result isthen combined with A using
the .OR. operator to form the final result.

7.4.3 Logical Constant Expressions

A logical constant expression isalogical expression in which each primary is one of the

following:
1. logical constant
2. symboalic logical constant
3. arelational expression in which each primary is a constant expression
4. (logica constant expression)

The following are examples of alogical constant expression (assumethat A, B, Cand Dare
arithmetic constants appearing in PARAMETER statements).

. TRUE. . AND. .NOT. .FALSE.
"ALLT. &
A*B.GI. C* D

7.5 Evaluating Expressions

Four different types of operators have been discussed; arithmetic, character, relational and
logical. Itispossible to form an expression which contains all of these operators. Consider
the following example.

A+B .LE. C.AND. X // Y .EQ Z .AND. L

where A, Band Careof numerictype, X, Y and Z are of type CHARACTER and L isof
type LOGICAL. Inthisexpression, + isan arithmetic operator, // is a character operator, .EQ.
isarelational operator and .AND. isalogical operator. Since we can mix these four types of
operators, it is necessary to define a precedence among these four classes of operators. The
following defines this precedence of operators.

arithmetic operators (highest precedence)
character operators

relational operators

logical operators (lowest precedence)

AL PE

With this precedence any expression can how be evaluated without ambiguity.

Evaluating Expressions 219

Language Reference

7.6 Constant Expressions

A constant expression is an arithmetic constant expression, a character constant expression or
alogical constant expression.

220 Constant Expressions

8 Assignment Statements

8.1 Introduction

Assignment statements are used to define entities. There are four different types of
assignment.

Arithmetic

Logical

Statement label (ASSIGN)
Character

PwWbdE

8.2 Arithmetic Assignment

The form of an arithmetic assignment statement is

where:

% isavariable name or array element name of type INTEGER, REAL, DOUBLE
PRECISION, COMPLEX or double precision complex (COMPLEX* 16).

e is an arithmetic expression.

The following are examples of arithmetic assignment statements.

Y = X**2 + 4.0*X + 3.0
Z(10) = 4.3*(X+Y)

Executing an arithmetic assignment statement causes the evaluation of the arithmetic

expression e, converting the type of the expression e to thetype of v, and defining v with
the result.

Arithmetic Assignment 221

Language Reference

If v isof type INTEGER* 1 or INTEGER* 2, then the value of the expression e isfirst
converted to type INTEGER. The resulting integer is then assigned to v in the following way.

1. If visof type INTEGER*2 and the value of e issuch that -32768 <= e <= 32767,
v will be assigned the value of e. Otherwise, v will be undefined.

2. Ifvisof type INTEGER*1 and the value of e issuchthat -128 <= e <=127,v
will be assigned thevalue of e. Otherwise, v will be undefined.

8.3 Logical Assignment

The form of alogical assignment statement is

vV = e

where:

% isavariable name or array element name of type LOGICAL.
e isalogical expression.

The following are examples of logical assignment statements.

LOGL = . TRUE.
LO®R = (X. GT.Y) .AND. (X LT.2)
LOG3(2) = LOG .EQV. LOGL

Executing alogical assignment statement causes the evaluation of the logical expression e,
and defining v with the result. Note that the type of v and e must be LOGICAL.

8.4 Statement Label Assignment

The form of a statement label assignment is

222 Statement Label Assignment

Assignment Statements

ASSIGN s to i

where:
S isastatement label.
[isthe name of an integer variable.

Thefollowing is an example of a statement label assignment statement.

ASSI GN 10 TO |

The result of executing an ASSI GN statement causes the integer variable i to be defined with
the value of the statement label s. s must be the statement label of an executable statement
or aformat statement in the same program unit in which the ASSI GN statement appears. Itis
possible to change the value of i by executing another ASSI GN statement.

During execution when i isused in an assigned GO TOstatement, an ASSI GN statement
which definesi must have been executed prior to the execution of the assigned GO TO
Statement.

Whilethevariable i isdefined with a statement label, it should not be used in any other way
other thanin an assigned GO TOstatement. Consider the following example.

Example:
10 ASSI GN 10 TO |
* |1l egal use of an ASSI GNed vari abl e
PRI NT *, |

The output produced by the PRI NT statement is not the integer 10. Itsvalueis undefined and
should be treated that way.

Statement Label Assignment 223

Language Reference

8.5 Character Assignment

The form of acharacter assignment statement is

v =e

where:

% isacharacter variable name, character array element, or character substring.
e isacharacter expression.

The following are examples of character assignment statements.

CHARACTER* 20 C, D(5)
C=" ABCDEF’

C(3: 5) =" XYZ'

D(5) (14: 15) =" 12’

Executing a character assignment statement causes the eval uation of the character expression
e and the definition of v with the result.

None of the character positions defined in v may be referenced in e. The following example
isillegal since the 4th and 5th character positions of A appear on the left and right hand side of

the equal sign.
Example:
* |1l egal character assignnent.

CHARACTER* 10 A, B*5
A(2:6) = A(4:5) /] B

The length of v and e may be different. If thelength of v islessthan the length of e then the
assignment has the effect of truncating e from the right to the length of v. If thelength of v
is greater than the length of e, the value assigned to v isthe value of e padded on the right
with blanks to the length of v.

224 Character Assignment

Assignment Statements

8.6 Extended Assignment Statement

Watcom FORTRAN 77 supports an extension to the FORTRAN 77 assignment statement,
namely the extended assignment statement.

v = v = v = = v =e
1 2 3 n
where:
Vi must be one of the following:
1. Variable namesor array element names of type INTEGER, REAL,
DOUBLE PRECISION, COMPLEX or double precision complex
(COMPLEX*16).
2. Variable names or array element names of type LOGICAL.
3. Character variable names, character array elements, or character substrings.
e must be one of the following and must follow the rules of the arithmetic, logical or

character assignment statements:
1. Anarithmetic expression.
2. Alogica expression.
3. A character expression.

The extended assignment statement is equivalent to the following individual statements.

Extended Assignment Statement 225

Language Reference

Y = e
n

\% = \%
n-1 n

\% = \%
2 3

Y = Y
1 2

When using an extended assignment statement involving variables of mixed type, itis
important to understand the exact way in which the assignments are performed. Assignment
of each variable is made using the value of the variable to itsimmediate right, starting with the
rightmost variable which is assigned the value of the expression. To help make this clear,
consider the following program.

Example:
CHARACTER C1*10, C2*5, C3*7
LOG CAL L1, L2, L3
I NTEGER*2 K, L

I =S=J=T=125
PRINT *, I, S J, T

I = K=J =1L = 70000
PRINT *, 1, K J, L

Cl = G2 = C3 =’ ABCDEFGH JKL’

PRINT *, C1, C2, C3
L1 = L2 = L3 = . TRUE
PRINT *, L1, L2, L3
END

The output from this program would be:

1 1.0000000 1 1.2500000
4464 4464 4464 4464
ABCDE ABCDEABCDEFG
T T T

Note that variables K and L are of type INTEGER* 2 and cannot contain any value greater
than 32767. Truncation resulted and this value (4464) was propagated to the | eft.

226 Extended Assignment Statement

9 Program Structure Control Statements

9.1 Introduction

The use of structured programming statements has been found to encourage better
programming and design practices among beginners, and aids the more experienced
programmer in writing error-free programs.

The format of these statements and their blocks isillustrated below. Following this, the use
and meaning of each statement is described and illustrated with examples. In each of these
illustrations, the blocks are denoted by st at enent (s) and are delimited by control
statements.

In the descriptions, | ogi cal - expr essi on can also be an integer expression, in which
case the result of the integer expression is compared for inequality to the integer value O.

Example:
| F(LEN - 1) THEN

In the preceding example, the expression LEN - 1lisinterpretedas LEN - 1 . NE. O.

9.2 |F - ELSE - END IF

The EL SE portion of this construct is optional, thus there are two possible formats.

(a) IF(Iogical-expression)THEN [: bl ock-1abel]
statement (s)
END | F

(b) I'F(Iogical-expression) THEN [: Dbl ock-1abel]
st at enent ('s)
ELSE
statenent (s)
END | F

IF - ELSE - END IF 227

Language Reference

228

This construct is an enhancement of the FORTRAN logical | F statement. If the value of the
parenthesized logical expression istruein (a), the block of statements following the | F
statement is executed, after which control passes to the statement following the END | F
statement; otherwise, control will pass directly to the statement following the END | F
statement. When the EL SE statement is used and the logical expression is true, the block of
statements between the | F and the EL SE statements is executed and then control passes to the
statement following the END | F statement; otherwise the block of statements following

EL SE statement is executed and then control passes to the statement followingthe END | F
statement.

An optional block label may be specified with the | F statement (seethe CYCLE, EXI T or
QUI T statement for more information).

Examples follow which illustrate the use of the two formats.

Example:
IF(I .EQ 0)THEN
PRINT *, "I 1S ZERO
I =1
END | F

If variable | iszero when the | F statement is executed, thestring | | S ZEROwill be
printed, variable | will be assigned the value 1, and the statement following the END | F will
be executed. If variable | isnot zero when the | F statement is executed, control will passto
the statement following the END | F statement.

Example:
IF(A.GI. B)THEN
PRI NT *, " A GREATER THAN B’
A=A-B
ELSE
PRINT *, ' A NOT GREATER THAN B’
END I F

If the value of variable A is greater than the value of variable B when this | F statement is
executed, the string A GREATER THAN B will be printed and variable A will be assigned
the value of the expression A - B. Control will then pass to the statement following the
END | F statement.

If the value of variable Aisnot greater than the value of variable B when the | F statement is
executed, thestring A NOT GREATER THAN B will be printed and control will passto the
statement following the END | F statement.

IF - ELSE - END IF

Program Structure Control Statements

9.3 ELSE IF

A further enhancement of the IF-THEN-EL SE construct isthe ELSE | F statement which
may be used in the following two formats:

(a) I'F(logical-expression-1)THEN [: bl ock-I1abel]
statement (s)
ELSE | F(| ogi cal - expressi on-2) THEN
statement (S)

END | F
(b) I'F(Iogical-expression-1)THEN [: block-1abel]

statenment (s)

ELSE | F(| ogi cal - expression-2) THEN
statement (s)

ELSE
statement (S)

END | F

The presence of the"..." in the above formats indicates that the ELSE | F statement may be
repeated as often asdesired. If thevalueof | ogi cal - expr essi on- 1 istruein case (a),
the block of statements following the | F statement up to the first ELSE | F statement is
executed, after which control passes to the statement following the END | F statement;
otherwise, control will passto thefirst ELSE | F statement. If the value of

| ogi cal - expr essi on- 2 istrue, the block of statements following thefirst ELSE | F
statement up to the next ELSE | F statement or END | F statement is executed, after which
control passesto the statement following the END | F statement; otherwise, control will pass
to the next ELSE | F statement, if there is one, or directly to the statement following the END
| F statement. When the EL SE statement is used, asin case (b), and the values of all the
logical expressionsinthe | F and ELSE | F statements are false, the block of statements
following the EL SE statement is executed and then control passes to the statement following
the END | F statement. An optional block label may be specified with the | F statement (see
the CYCLE, EXI T or QUI T statement for more information).

Examples follow which illustrate the use of the two formats.

ELSE IF 229

Language Reference

Example:
IF(I .EQ O)THEN
PRINT * "1 |S ZERO
ELSE IF(| .GI. 0)THEN
PRINT *, "I | S GREATER THAN ZERO
END | F

If variable | iszero whenthe | F statement is executed, thestring | | S ZEROwill be
printed and the statement following the END | F statement will be executed. If variable | is
not zero when the | F statement is executed, control will passto the ELSE | F statement. If
variable | isgreater than zero, thestring | 1S GREATER THAN ZEROwill be printed and
the statement following the END | F statement will be executed. If variable | islessthan
zero then nothing would be printed and control passes from the ELSE | F statement to the
statement following the END | F statement.

Example:
IF(A .GI. B)THEN
PRINT *, ' A GREATER THAN B’

ELSE IF(A .LT. B)THEN

PRI NT *, " A LESS THAN B’
A=B- A

ELSE
PRINT *, "A EQUAL TO B’
A=0.0

END | F

If the value of variable A is greater than the value of variable B when the | F statement is
executed, the string A GREATER THAN B will be printed and variable A will be assigned
the value of the expression A - B. Control will then pass to the statement following the
END | F statement.

If the value of variable Aisnot greater than the value of variable B when the | F statement is
executed, control passesto the ELSE | F statement. If the value of variable Aislessthan the
value of variable B, thestring A LESS THAN B will be printed and variable A will be
assigned the value of the expression B - A. Control will then pass to the statement
following the END | F statement.

If the value of variable A is not less than the value of variable B when the ELSE | F statement

is executed, the string A EQUAL TO B will be printed and variable A will be assigned the
value zero. Control will pass to the statement following the END | F statement.

230 ELSE IF

Program Structure Control Statements

9.4 DO - END DO

DO init-expr, end-val ue[,inc-value] [: block-I|abel]
st at enent (s)
END DO

This extension to FORTRAN 77 allows the creation of DO-loops without the introduction of
statement numbers. An optional block label may be specified (seethe CYCLE, EXI T or
QUI T statement for more information). The END DO statement is used to indicate the end of
the range of its corresponding DO statement. A statement number may not be specified in the
corresponding DO statement. Nested DO-loops of this form require separate END DO
statements to terminate the range of the corresponding DO statement. Since a statement
number may appear on the END DO statement, the number may be used to terminate outer
DO-loops. Thisis not arecommended practice (a CONTI NUE statement or a structured DO
statement should be used). A transfer of control from within the DO-loop to a statement
number on the END DO statement is treated in the same manner asif theword CONTI NUE
had been used instead of END DO.

Some examples follow.

Example:
DOl =1, 3
DOJ =1, 5
PRI *, MATRIX(I, J)
END DO
END DO

The aboveis equivalent to the following example which uses statement numbers.

Example:
DO10 I =1, 3
DO20J =1, 5
PRINT *, MATRIX(|, J)
20 CONTI NUE
10 CONTI NUE

The next example demonstrates the use of a GO TOstatement to control execution of all or
part of a DO-loop.

DO -END DO 231

Language Reference

Example:
DOl =1, 3
DOJ =1, 5
PRINT* "I NNER LOOP - J=", J
IF(J .LE. 3)GO TO 20
RINT* ') > 3
20 END DO
PRI NT *, " QUTER LOOP - J=", J
END DO

A result of thisexampleisthat the character string J > 3 isprinted 6 times (i.e., twice for
each iteration of the outer loop). Of course there isamuch better way of coding this
algorithm using the IF-END IF construct. The exampleisincluded to illustrate the behaviour
of transfers of control to an END DO statement. The following exampleis an equivalent
algorithm to the one above but the intent is much clearer.

Example:

PRINT *, 'INNER LOOP - J=', J
| .GT. 3)THEN
NT =, *J > 3

9.5 DO WHILE - END DO

DO WHI LE (e) [: bl ock-1abel]
st at enent (s)
END DO

This extension to FORTRAN 77 allows the creation of DO-loops without iterative techniques.
Instead, the DO-loop is executed while the parenthesized expression istrue. Thelogical
expression is evaluated before entry to the DO-loop. If the valueisfalse, control is
transferred to the statement following the END DO statement. If the logical expression if true,
the statements of the DO-loop are executed. When the END DO statement is reached, the
expression is re-evaluated and program control proceeds as previously described. An optional
block 1abel may be specified (seethe CYCLE, EXI T or QUI T statement for more
information).

232 DO WHILE - END DO

Program Structure Control Statements

An optional statement number can be specified after the DOkeyword. When the END DO
statement is used to indicate the end of the range of its corresponding DO WHI LE statement, a
statement number may not be specified.

Some examples follow.

Example:

I =1

DO WVHILE(| .LE 3)
J=1
DO WHILE(J .LE. 5)

PRINT *, MATRIX(I, J)

END DO

END DO

The aboveis equivalent to the following example which uses statement numbers.

Example:
| =

DO 1 LE(| .LE. 3)

<O

VI
=1
DO 20 WHILE(J .LE. 5)
PRINT *, MATRIX(I, J)
20 CONTI NUE
10 CONTI NUE

The next example demonstrates the use of a GO TOstatement to control execution of all or
part of a DO-loop.

Example:
I =1
DO VHILE(| .LE. 3)
J=1
DO WHILE(J .LE. 5)
PRINT* "I NNER LOCOP - J=", J
IF(C J LE. 3)G0 TO 20
PRINT *, 'J > 3
20 END DO
PRI NT *, ' QUTER LOOP - J=", J

END DO

A result of this example isthat the character string J > 3 isprinted 6 times (i.e., twice for
each iteration of the outer loop). Of course there isa much better way of coding this
algorithm using the IF-END IF construct. The example isincluded to illustrate the behaviour
of transfers of control to an END DO statement. The following exampleis an equivalent
algorithm to the one above but the intent is much clearer.

DO WHILE - END DO 233

Language Reference

Example:
I =1
DO WHI L | .LE. 3)
J =

E(
1
DO WH LE(J .LE. 5)
PRINT *, 'INNER LOOP - J=', J
IF(J .GT. 3)THEN
PRINT *, 'J > 3
END | F
END DO
PRINT *, 'OUTER LOOP - J=', J
END DO

9.6 LOOP - END LOOP

LOOP [: block-Iabel]
statenment (s)
END LOCP

This extension to FORTRAN 77 causes the statements between the LOOP and END LOOP
statements to be repeated until control is transferred out of the loop, usually by an EXI T or
QUI T statement. An optional block label may be specified (seethe CYCLE, EXI Tor QUI T
statement for more information). An example follows:;

Example:
LOOP
READ *, X
IF(X .EQ 99.0)EXIT
PRINT *, X
END LOOP

The above statements cause values to be read and printed, one to aline, until the value 99.0 is
read. When variable X hasthisvalue, the logical expression in the | F statement evaluates as
true and the EXI T statement causes atransfer of control to the statement following the END
LOOP statement. The EXI T statement is discussed in more detail in alater section.

234 LOOP - END LOOP

Program Structure Control Statements

9.7 WHILE - END WHILE

VWHI LE(| ogi cal - expressi on) DO [: bl ock-1abel]
st at enent (s)
END WHI LE

This extension to FORTRAN 77 causes its block of code to be executed repeatedly while the
parenthesized logical expressionistrue. Thelogical expression is evaluated before entry to
the block. If thevalueisfalse, control passesto the statement following the END WHI LE
statement. |If the logical expression istrue, the statements of the block are executed. When
the END WHI LE statement is reached, the WHI LE logical expression is re-evaluated and the
above program control decisions are repeated. An optional block label may be specified (see
the CYCLE, EXI T or QUI T statement for more information). An example follows:

Example:
VH LE(J .GTI. 0)DO
A(J) = B(I + J)
J=J-1
END WH LE

If variable J is zero or negative when the WHI LE statement is executed, the WHI LE block of
code will be by-passed and the statement following the END WHI LE statement will be
executed.

If variable J is greater than zero when the WHI LE statement is executed, the WHI LE block
will be executed repeatedly until J becomes equal to zero. The effect of thisloop will be to
assign values to elements of array A from array B, starting with the element of A
corresponding to the initial value of variable J and working backwards down the array to
element 1.

0.8 WHILE - Executable-statement

WHI LE(| ogi cal - expression)stnt

WHILE - Executable-statement 235

Language Reference

where:

stmt is an executable statement. Only certain executable statements are are alowed. See
the section entitled "Classifying Statements' on page 9 in the chapter entitled
"FORTRAN Statements' for alist of allowable statements.

This control statement is another form of the WHILE construct.

Example:
VWH LE(| .GT. 0)EXECUTE A

When this statement is executed, if the logical expression is not true, control passes to the next
statement. |If the expression istrue, REMOTE-block A (assumed to be defined elsewherein
the program unit) is executed, and the logical expression isre-evaluated. Thisis repeated

until the logical expression, when evaluated, is false; control then passes to the next statement.

9.9 UNTIL

LOOP [: block-1abel]
statement (s)
UNTI L(| ogi cal - expression)

or

VWHI LE(| ogi cal - expression) DO [: bl ock-1abel]
st at enent (s)
UNTI L(| ogi cal - expression)

The UNTI L statement, an extension to FORTRAN 77, may be combined with either a LOOP
or WHI LE statement by replacing the END LOOP or END WHI LE statement. It providesa
way of specifying a condition to be tested at the end of each iteration of aloop, which will
determine whether or not the loop isrepeated. After all of the statements in the block have
been executed, the logical expression inthe UNTI L statement is evaluated. If the result of the
condition isfalse, the loop is repeated; otherwise, control passes to the statement following the
UNTI L statement.

236 UNTIL

Program Structure Control Statements

In the following example, the statements between the LOOP and the UNTI L statements are
executed until the value of variable X is greater than 10.0.

Example:
X=10
LOOP
PRINT *, X, SORT(X)
X=X+1.0

UNTIL(X .GT. 10.0)

9.10 SELECT - END SELECT

SELECT [CASE] (e) [FROM [: bl ock-1 abel]
CASE (case-list)

statenment (s)
CASE (case-list)

statenment (s)

CASE DEFAULT
statenment (s)
END SELECT

where:
case-list isalist of one or more cases separated by commas. A caseis either
(@ asingleinteger, logical or character constant expression or

(b) an integer, logical or character constant expression followed by a
colon followed by another expression or the sametype. Thisform
of a case defines arange of values consisting of al integers or
characters greater than or equal to the value of the expression
preceding the colon and less than or equal to the value of the
expression following the colon.

The SELECT construct, an extension to FORTRAN 77, issimilar in concept to the
FORTRAN computed GO TOstatement. It allows one of a number of blocks of code (case

SELECT - END SELECT 237

Language Reference

blocks) to be selected for execution by means of an integer expression in the SELECT
statement.

The SELECT statement keywords, CASE and FROM are optional. The SELECT statement
may contain ablock label (seethe CYCLE, EXI T or QUI T statements for more information).

Each block must be started with a CASE statement; however, the last block may begin with a
CASE DEFAULT statement. The CASE DEFAULT block isoptional. In order to retain
compatibility with earlier versions of WATCOM FORTRAN 77 compilers, the OTHERW SE
statement may be used in place of the CASE DEFAULT statement. The last block is ended by
the END SELECT statement. The number of case blocksis optional, from one to many;
however, it is recommended that the SELECT construct not be used for fewer than 3 case
blocks. The conditional execution of one or two blocks of code is handled more efficiently by
the IF-THEN-EL SE construct.

A particular case value or range of values must not be contained in more than one
CASE-block. For example, thefollowing isillegal:

Example:
* ||l egal SELECT block - case value in nore
* than one CASE bl ock.

SELECT CASE (| - 3)
CASE (1, 3,7:10)
st atement (s)
CASE (5, 6, 8)
statenent (s)
CASE (-3:-2+4)
st atenent (s)
END SELECT

The second CA SE-block includes 8 which is aready handled by the first CASE-block. As
well, the third CASE-block handles cases -3, -2, -1, 0, 1, 2 but the first CASE-block also
handles case 1. Thus the second and third CASE-ranges arein error.

When the SELECT statement case expression is evaluated asi, the case block whose range
containsi is executed and control passes to the statement following the END SELECT
statement. If no range containsi, control is transferred to the statement following the CASE
DEFAULT statement, if oneis specified. If the CASE DEFAULT block is omitted and the
case expression is out of range when the SELECT statement is executed (that is, none of the
CASE-blocks handles the particular expression value), control is passed to the statement
following the END SELECT statement and none of the CA SE-blocks is executed.

238 SELECT - END SELECT

Program Structure Control Statements

Example:
SELECT CASE (|)
CASE (1)
Y=Y+ X
X=X* 3.2
CASE (2)
Z = Y*2 + X
PRINT *, X Y, Z
CASE (3)
Y=Y* 13. + X
X =X- 0.213
CASE (4)
X**2 + Y**2 - 3.0
Y+ 1.5
X * 32.0
PRINT *, "CASE 4, X Y, Z
END SELECT

X <N
I n

This example will execute in the manner described below for each of the possible values of
variable| .

() | iszero or negative:
- control will pass to the statement after the END SELECT statement

(i) I = 1:
- the value of X will beaddedto Y
- X will be multiplied by 3.2
- control will pass to the statement after the END SELECT statement

(iii) I = 2:
- Z will be assigned the value of the expression Y**2 + X
- thevaluesof X, Y and Z will be printed
- control will pass to the statement after the END SELECT statement

(iv) I = 3:
- Y will be assigned the value of theexpression Y * 13. + X
- 0.213 will be subtracted from X
- control will pass to the statement after the END SELECT statement

(v) | = 4:
-Z, Yand Xwill beassigned new values
- the string CASE 4, followed by the valuesof X, Y and Z will be printed
- control will pass to the statement after the END SELECT statement

SELECT - END SELECT 239

Language Reference

(vi) I =5, 6, -
- control will pass to the statement after the END SELECT statement

CASE DEFAULT alowsablock of code to be specified for execution when the SELECT
expression isout of range. It must follow all CASE-blocks and thus is ended by the END
SELECT statement. The CASE DEFAULT statement terminates the previous and last
CASE-block. Note that only one CASE DEFAULT block may be specified in a SELECT
construct.

If aCASE DEFAULT block wereincluded in the above example, it would be executed in
cases (i) and (vi) of the description. After a CASE DEFAULT block is executed, control then
passes to the statement after the END SELECT statement.

Empty or null case blocks are permitted (that is, two CASE statements with no statements
between). The net result of executing a null CASE-block isto effectively bypass the SELECT
construct.

Example:
SELECT CASE (| * 4 - J)
CASE (-10 : -5)
PRI NT *,’ First case:’
PRINT *,’-10 <= |*4-] <= -5
CASE (-4 : 2)
PRI NT *,’ Second case:’
PRINT *,’ -4 <= 1%4-] <= 2’
CASE (3, 5, 7)
PRINT *,” Third case:’
PRINT *,’1*4-J is one of 3, 5 or 7’
CASE (4, 6, 8:10)
PRI NT *,’ Fourth case:’
PRINT *,’1*4-J is one of 4, 6, 8, 9 or 10
CASE DEFAULT
PRINT *,” All other cases:’
PRINT *,’1*4-J < -10 or 1*4-J > 10’
END SELECT

This example will execute in the manner described below for each of the possible values of
expression | *4-J.

0] expression < -10
- control will passto the statement after the CASE DEFAULT statement
-thestring Al | ot her cases: will beprinted
-thestringl *4-J < -10 or |1*4-J > 10 will beprinted

240 SELECT - END SELECT

Program Structure Control Statements

(i) —10 <= expression <= -5:
- control will pass to the statement after the first CASE statement
-thestring Fi r st case: will be printed
-thestring- 10 <= 1*J-4 <= -5 will beprinted
- control will pass to the statement after the END SELECT statement

(iii) -4 <= expression <= 2:
- control will pass to the statement after the second CASE statement
- the string Second case: will be printed
-thestring-4 <= 1*J-4 <= 2 will be printed
- control will pass to the statement after the END SELECT statement

(iv) expresson=3,50r 7:
- control will pass to the statement after the third CASE statement
- the string Thi rd case: will be printed
-thestringl *J-4 is one of 3, 5 or 7 will beprinted
- control will pass to the statement after the END SELECT statement

(v) expression = 4, 6, 8, 9 or 10:
- control will pass to the statement after the fourth CASE statement
- thestring Fourt h case: will be printed
-thestringl *J-4 is one of 4, 6, 8, 9 or 10 will beprinted.
- control will pass to the statement after the END SELECT statement

(vi) expression > 10:
- control will pass to the statement after the CASE DEFAULT statement
-thestring Al | ot her cases: will beprinted
-thestringl *4-J < -10 or |1*4-J > 10 will beprinted

9.11 EXECUTE and REMOTE BLOCK

EXECUTE nane

REMOTE BLOCK narme
statement (s)
END BLOCK

EXECUTE and REMOTE BLOCK 241

Language Reference

where:
name isavaid FORTRAN symbolic name.

The EXECUTE statement, an extension to FORTRAN 77, allows a named block of code to be
executed. The named block of code may be defined anywhere in the same program unit and is
delimited by the REMOTE BLOCK and END BLOCK statements. Executing a
REMOTE-block is similar in concept to calling a subroutine, with the advantage that shared
variables do not need to be placed in a common block or passed in an argument list. In
addition thereis less overhead involved in executing a REMOTE-block than in calling a
subroutine (in both amount of object code and execution time). When execution of the
REMOTE-block is complete, control returns to the statement following the EXECUTE
statement which invoked it.

Thisfeature is helpful in avoiding duplication of code for afunction (such as 1/0O) required in
anumber of places throughout a program. It can also be an aid to writing awell-structured
program.

Each REMOTE-block within the same program unit must have a different name and it must
not be a subprogram or variable name. Note that a REMOTE-block islocal to the program
unit in which it is defined and may not be referenced (executed) from another program unit.

REMOTE-blocks may be defined anywhere in the program unit except as follows.

1. They must follow all specification statements.
2. They must not be defined within a control structure.

If aREMOTE BLOCK statement is encountered during execution, control is transferred to the
statement following the corresponding END BLOCK statement.

Note that the nested definition of REMOTE-blocksis not permitted.

242 EXECUTE and REMOTE BLOCK

Program Structure Control Statements

Example:
EXECUTE A
PRINT *, ' FIRST

EXECUTE A
PRI NT *, ' SECOND

REMOTE BLOCK A
=1 +1
PRINT *, "1=", |

END BLOCK

Both EXECUTE statements will cause REMOTE-block A to be executed. That is, variable |
will beincremented and its value will be printed. When the block has been executed by the
first EXECUTE statement, control returnsto the PRI NT statement following it and the word
FI RST isprinted. Similarly, when the block is executed by the second EXECUTE statement,
control returns to the PRI NT statement following it and the word SECOND is printed.

REMOTE-blocks may be executed from other REMOTE-blocks. For example,
REMOTE-block A might contain the statement EXECUTE B, where B isa REMOTE-block
defined elsewhere in the program unit. The execution of REMOTE-blocks from other
REMOTE-blocks may take place to any level; however, the recursive execution of
REMOTE-blocksis not permitted, either directly or through a chain of EXECUTE statements.
Attempts to execute REMOTE-blocks recursively are detected as errors at execution time.

EXECUTE and REMOTE BLOCK 243

Language Reference

9.12 GUESS-ADMIT-END GUESS

GUESS [: bl ock-1abel]
st at enent (s)

ADM T
statenment (s)

ADM T
statenment (s)

ADM T
statement (s)
END GUESS

The GUESS-ADMIT-END GUESS structure is a rejection mechanism which is useful when
sets of statements are to be conditionally chosen for execution, but not al of the conditions
required to make a selection are available beforehand. It isan extension to FORTRAN 77.
The sets of statements to be chosen may be thought of as alternatives, the first alternative
being statements immediately after the GUESS statement. Execution begins with the
statementsin the first alternative. If a condition is detected which indicates that the first
alternative was the wrong choice, a QUI T statement may be executed to cause control to be
passed to the statements after the ADM T statement (i.e., the second alternative). A QUI T
statement within the second alternative passes control to the third alternative, etc. A QUI T
statement within the last aternative passes control to the statement after the END GUESS
statement. |If an alternative completes execution without encountering a QUI T statement (i.e.,
all statements are executed up to the next ADM T statement) then control is passed to the
statement after the END GUESS statement. An optional block label may be specified
following the keyword GUESS (see the QUI T statement for more information).

In the following example, two sets of codes and numbers are read in and some simple
seguence checking is performed. If a sequence error is detected an error message is printed
and processing terminates; otherwise the numbers are processed and another pair of numbers
isread.

244 GUESS-ADMIT-END GUESS

Program Structure Control Statements

Example:
LOOP : PRLOOP
GUESS
LINE = LINE + 1
READ *, | CODE, X
AT END, QU T : PRLOOP
IF(ICODE .NE. 1)QUIT
LINE = LINE + 1
READ *, |CODE, Y
AT END, QUIT
IF(1CODE .NE. 2)QUIT
PRINT *, X Y
CALL PROCES(X, Y)

ADM T
PRINT *, I NVALI D SEQUENCE: LINE =, LINE
QU T : PRLOOP
END GUESS
END LOOP

The above example attempts to read a code and number. If an end of file occurs then the loop
isterminated by the QUI T statement.

If the codeis not 1 then we did not get what we expected and an error situation has arisen.
Control is passed to the statement following the ADM T statement. An error message is
printed and the loop is terminated by the QUI T statement.

If the codeis 1 then a second code and number areread. If an end of file occurs then we are
missing a set of data and an error situation has arisen. Control is passed to the statement
following the ADM T statement. An error message is printed and the loop is terminated by the
QUI T statement. Similarly if the expected codeis not 2 an error situation has arisen. Control
is passed to the statement following the ADM T statement. An error message is printed and
the loop is terminated by the QUI T statement.

If the second code is 2, the values of variables X and Y are printed. A subroutine isthen called
to processthe data. Control resumes at the statement following the END GUESS statement.
Since this statement isan END LOOP, control is transferred to the beginning of the loop.

The above exampleillustrates the point that all the information required to make a choice (in
this case between avalid set of dataand an invalid set) is not available from the beginning. In
this case we make an assumption that the data values are correct (our hypothesis) and then test
the assumption at various points in the algorithm. If any of the tests fail we reject the
hypothesis (and, perhaps, select a new hypothesis).

It should be noted that no alternative selection need be coded (i.e., we need not use any
ADMIT-blocks). Thisisillustrated in the following example.

GUESS-ADMIT-END GUESS 245

Language Reference

Example:

GUESS
X=SQRT(X)
IF(X .LT. EPS)QUIT
X=Y+SQRT(Y)
IF(X .LT. EPS)QUIT
CALL I NTGRT(X, Y)

END GUESS

It might be noted that the IF-EL SE-END IF construct is simply a specific instance of the more

general GUESS-ADMIT-END GUESS construct wherein the data values are known
beforehand (as could beillustrated using the previous example).

9.13 QUIT

QUT [: block-Iabel]

The QUI T statement may be used to transfer control to the first executable statement
following the terminal statement of the block in which it is contained.

When transferring out of aloop, control is passed to the statement following the END DO,
END WHI LE, END LOOP or UNTI L statement.

When transferring out of a GUESS block, control is passed to the statement after the next
ADM T or END GUESS statement.

When transferring out of an IF-block or SELECT-block, control is passed to the statement
after the corresponding END | F or END SELECT statement.

When transferring out of a REMOTE-block, control passes to the statement following the
EXECUTE statement that invoked the REM OTE-block.

If no block label is specified in the QUI T statement, control istransferred from the
immediately enclosing structure. If several structures or DO-loops are nested, it is possible to
exit from any one of them by specifying the block label of the corresponding block structure.

The QUI T statement is most commonly used as the statement in alogical | F or AT END

statement but may also be used to cause an unconditional transfer of control. (The AT END
statement is described in a subsequent section).

246 QUIT

Program Structure Control Statements

Examples of the QUI T statement with and without a block 1abel follow.

Example:
CHARACTER CH
READ *, CH
GUESS
IF(CH.LT. "a)QUIT
IF(CH.GT. "z7 Y)QUIT
PRINT *, 'Lower case letter’
ADM T
IF(CH.LT. "A)QUIT
IF(CH.GI. "Z YQUIT
PRI NT *, " Upper case letter’
ADM T
IF(CH.LT. "0)QUIT
IF(CH.GT. "9 YQUIT
PRINT *, 'Digit’
ADM T
PRI NT *, ' Special character’
END GUESS
END

The above statements read and print values until an end of file occurs. At that point control is
passed to the QUI T statement, as specified by the AT END statement. The QUI T statement
causes control to continue with the statement after the END L OOP statement.

Example:
CHARACTER RECORD(80)
LOOP : RDREC
READ(5, 100) RECCRD
AT END, STOP
DOl =1, 80
| F(RECORD(Il) .LT. 'O
+ .OR RECORD(I) .GI. "9)QUT : RDREC
END DO
WRI TE(6, 101) RECORD
END LOCP
PRI NT *, ' 1 NVALI D RECORD

The above example reads in records and verifies that they contain only numeric data. The
QUI T statement is within two levels of nesting: the DO-loop and the LOOP-END LOOP
structure. If anon-numeric character isfound, the QUI T : RDREC statement will cause
control to be passed to the PRI NT statement after the END L OOP statement.

QUIT 247

Language Reference

9.14 EXIT

EXIT [: block-Iabel]

The EXI T statement is used to transfer control:

1. from within aloop (DO, DO WHILE, WHILE or LOOP) to the statement
following the loop,

2. fromwithin a GUESS or ADMIT block to the statement following the ENDGUESS
statement, or

3. from within aremote block to the statement following the EXECUTE statement that
invoked the remote block.

When transferring out of aloop, control is passed to the statement following the END DO,
END WHI LE, END LOOP or UNTI L statement.

When transferring out of a GUESS block, control is passed to the statement after the
corresponding END GUESS statement.

When transferring out of a REMOTE-block, control passes to the statement following the
EXECUTE statement that invoked the REM OTE-block.

If no block label is specified in the EXI T statement, control is transferred from the
immediately enclosing structure. |f several structures or DO-loops are nested, it is possible to
exit from any one of them by specifying the block label of the corresponding block structure.
The EXI T statement is most commonly used as the statement in alogical | F or AT END
statement but may also be used to cause an unconditional transfer of control. (The AT END
statement is described in a subsequent section).

Examples of the EXI T statement with and without a block 1abel follow.

248 EXIT

Program Structure Control Statements

Example:
LOOP
READ *, X
AT END, EXIT
PRI NT *, X
END LOOP

The above statements read and print values until an end of file occurs. At that point control is
passed to the EXI T statement, as specified by the AT END statement. The EXI T statement
causes control to continue with the statement after the END LOOP statement.

Example:
CHARACTER RECORD(80)
LOOP : RDREC
READ(5, 100) RECCORD
AT END, STOP
DOl =1, 80
| F(RECORD(Il) .LT. 'O
+ .OR RECORD(I) .GI. "9)EXIT : RDREC
END DO
WRI TE(6, 101) RECORD
END LOCP
PRINT *, ' 1 NVALI D RECORD

The above example reads in records and verifies that they contain only numeric data. The
EXI T statement iswithin two levels of nesting: the DO-loop and the LOOP-END LOOP
structure. If anon-numeric character isfound, the EXI' T : RDREC statement will cause
control to be passed to the PRI NT statement after the END L OOP statement.

9.15 CYCLE

CYCLE [: bl ock-Iabel]

The CYCLE statement is used to cause atransfer of control from within aloop to the terminal
statement of a corresponding DO, DO WHI LE, WHI LE or LOOP statement. If

bl ock- 1 abel ispresent then control istransferred to the terminal statement of the block
identified by that block label.

If no block label is specified in the CYCLE statement, control is transferred to the terminal
statement of the immediately enclosing loop structure. If several loop structures are nested, it

CYCLE 249

Language Reference

is possible to cycle to the terminal statement of any one of them by specifying the block label
of the corresponding block structure.

The CYCLE statement is most commonly used as the statement in alogical | F statement but
may also be used to cause an unconditional transfer of control.

Examples of the CYCLE statement with and without a block label follow.

Example:

LOOP
WRI TE(UNIT=*, FMI="(A)’) ’'Enter a nunber’
READ(UNI T=*, FMrI='(F10.4)', I OSTAT=I0S) X
IF(108 .NE. 0) CYCLE
IF(X .LT. 0) EXIT
PRINT *, X, SQRT(X)

END LOCP

The above statements read and print values until a negative integer valueis entered. If an
input error occurs, the input operation (READ) isretried using the CYCLE statement. The
CYCLE statement causes control to resume at the END LOOP statement which then
immediately transfers control to the statement following the L OOP statement.

Example:
CHARACTER RECORD(80)
LOCOP : RDREC
READ(5, 100) RECORD
AT END, STOP

DO =1, 80
| F(RECORD(1) .LT. 'O’
+ _OR RECORD(1) .GT. '9)THEN

PRINT *, | NVALI D RECORD
CYCLE : RDREC
ENDI F
END DO
WRI TE(6, 101) RECORD
END LOOP

The above example reads in records and verifies that they contain only numeric data. If the
record does not, the input operation istried again. The CYCLE statement is within three levels
of nesting: the IF, the DO-loop, and the LOOP-END LOOP structure. If anon-numeric
character isfound, the CYCLE : RDREC statement will cause control to be passed to the
READ statement that follows the L OOP statement.

250 CYCLE

Program Structure Control Statements

9.16 AT END

(READ st at ement)

AT END DO [: bl ock-I abel]
statenment (s)

END AT END

or

(READ st at enent)
AT END, st atenent

The AT END control statement, an extension to FORTRAN 77, is an extension of the END=
option of the FORTRAN READ statement for sequentid files. It allows a statement or a block
of code following the READ statement to be executed when an end of file condition is
encountered during the READ and to be by-passed immediately following a READ statement.
It isnot valid to use this control statement with direct-access or memory-to-memory reads.
Clearly, it is not valid to use this statement when END= is specified in the READ statement.

Example:
READ(7, *) I, X
AT END DO
PRI NT *, ' END- OF- FI LE ENCOUNTERED
EOFSW = . TRUE.
END AT END

If the READ statement is executed without encountering end of file, control passesto the
statement following the END AT END statement. If an end of file condition occurs during
theread, the string, END- OF- FI LE ENCOUNTERED is printed, logical variable EOFSWis
assigned thevalue . TRUE. and control passesto the statement following the END AT END
statement.

ATEND 251

Language Reference

Example:
READ(7, *) X
AT END, ECFSW = . TRUE.

If an end of fileis not encountered by the READ statement, control passes to the statement
following the AT END statement. If an end-of-file condition occurs, variable EOFSWis set to
. TRUE. and control then passesto the statement following the AT END statement. Note
that the use of the second form of the AT END statement requires the use of acomma(,)
between the AT END word and the executable statement. Thisis necessary to distinguish the
case where the executabl e statement is an assignment statement. The executable statement
may be any statement that is also allowed as the operand of alogical | F statement.

9.17 Notes on Structured Programming Statements

In addition to the definitions and examples of these constructs, the following points should be
noted:

() Any of the new control statements with their blocks may be used within the
block of any other statement. For example, a WHILE-block may contain
another WHILE or an IF-THEN-EL SE block. Blocks may be nested in this
manner to any level within storage limitations. An important exception to this
rule isthe REMOTE-block A REMOTE-block may contain other types of
blocks (nested to any level); however, another REMOTE-block may not be
defined within it. Furthermore, REMOTE-blocks may not be defined within
another control structure. The following exampleisillegal.

Example:
* |llegal definition of a REMOTE- bl ock.
IF(1 .EQ 3)then
REMOTE BLOCK A

END BLOCK
END | F

(i) When nesting blocks, the inner blocks must always be completed with the
appropriate block-terminating END statement before the outer blocks are
terminated. Similarly, when nesting blocks with DO-loops, a DO-loop started
within ablock must be completed before the block is completed. A block
started within a DO-loop must be terminated before the DO-loop is completed.
Indenting the statements of each new block, as shown in the examples, is helpful

252 Notes on Structured Programming Statements

Program Structure Control Statements

(iii)

in avoiding invalid nesting and hel ps to make the structure of the program
visually obvious.

The normal flow of control of the new programming constructs described earlier
may be altered with standard FORTRAN control statements. For example, the
program may exit from ablock usinga GO TO, STOP, RETURN or arithmetic
| F statement. However, ablock may not be entered in the middle through use
of any control statement such as GO TOor the arithmetic | F.

Consider the following example.

Example:
G0 TO 20
10 IF(X .GI. Y)THEN
CALL REDUCE(X, Y)
20 X=X-1
ELSE
CALL SCALE(X)
END | F

Thisisan example of an illegal attempt to transfer execution into the middle of
an IF-block. The statement X = X - 1 iscontained within the IF-block and
may only be transferred to from within the block.

Example:
IF(X .GI. Y)THEN
20 CALL REDUCE(X, Y)

X=X-1
IF(X .GI. 0)GO TO 20

ELSE
CALL SCALE(X)

END | F

Thislast example demonstrates alegal transfer of control within an IF-block.
However, we have seen better ways to express the loop with this | F-block.

Example:
IF(X .GTI. Y)THEN
LOOP
CALL REDUCE(X, Y)
X=X-1
UNTIL(X .LE. 0)
ELSE
CALL SCALE(X))
END I F

Notes on Structured Programming Statements 253

Language Reference

(iv) Many control structure statements cannot be branched to usinga GO TO
statement. For alist of these statements, see the section entitled "Classifying
Statements' on page 9 in the chapter entitled "FORTRAN Statements'

(V) Many control structure statements cannot be the object statement of alogical | F
statement, or be the last statement of a DO-loop. For alist of these statements,
see the section entitled "Classifying Statements' on page 9 in the chapter entitled
"FORTRAN Statements'

254 Notes on Structured Programming Statements

10 Input/Output

10.1 Introduction

FORTRAN 77 provides a means of communicating information or data between a
FORTRAN program and the computing environment. The computing environment may
include a number of devices which are capable of the recording, retrieval, display, and input
of data. Disk and magnetic tape devices are capable of storing large amounts of data. Other
devices such as printers and display terminals can be used to present avisual (i.e.,
human-readable) representation of the data. Y et other devices such asterminal keyboards and
card-readers make possible the entry of new datainto the computing environment.

For the purposes of our discussion, datais any information which can be processed by an
executing FORTRAN program. Some examples of data are names, addresses, telephone
numbers, credit card balances, flight tragjectories, bus schedules, athletic records, etc. In
computing, such information is usually well-organized in order to make it useful for
processing.

To use an example, consider the entries in atelephone book. There are essentially three
pieces of datalisted for each entry; a name, an address, and a number.

Smith J 32 Arthur St-----e-omcomooomaaa o 555- 3208
Smith JW512 King St--------mmemcmmmmaaammaaa- 555- 9229
Smith Jack 255-113 Queen St Ne-------zcommmnn- 555- 0572

Each entry isarecord. The organization of the book isclear. The nameis always listed first,
the address second, and the number last. The records are sorted, for our convenience, by
name (within each city or geographical location). The length of each record isthe same. This
fixed length does sometimes lead to problems since entries which have along name or address
won't fit in arecord. The phone company solved this by continuing the information in
subsequent records. We might have solved this problem by increasing the length of arecord
with the disadvantage of wasting alot of printing space. Alternatively, we could have used a
variable length record. This solves the problem of wasted space but creates a severe problem
when trying to display the recordsin nice orderly columns. The telephone book itself isa
collection of records or afile.

We have introduced much of the terminology of data processing: "data", "records’, "fixed
and variable record sizes", "files", "sorted", etc.

Introduction 255

Language Reference

10.2 Reading and Writing

FORTRAN provides amechanism called "reading” for transferring data into the environment
of an executing program. The READ statement isused to do this. Similarly "writing" isthe
mechanism for transferring data out of an executing program. The WRI TE and PRI NT
statements are used to do this. Other statements provide additional functions such as
positioning to a certain record in afile, establishing which files are to be processed by the
program, or making inquiries about files.

10.3 Records

FORTRAN distinguishes between three kinds of records, namely:

1. Formatted
2. Unformatted
3. Endfile

We shall describe each of these in the following sections.

10.3.1 Formatted Record

A formatted record consists of characters. The length of aformatted record is determined by
the number of charactersinit. A formatted record may contain no characters at all and thus
has zero length. Formatted records are read or written using formatted input/output
statements. An excellent example of afile consisting of formatted recordsis our telephone
book example.

10.3.2 Unformatted Record

An unformatted record consists of values such as integers, real numbers, complex numbers,
etc. It may also consist of characters. Essentially, these values have the same representation
in arecord as they have in the computer’s memory. The length of an unformatted record
depends on the amount of storage required to represent these values in the computer’s
memory. For example, on this computer an integer value is stored using 4 bytes of memory (a
byte isagrouping of 8 binary digits). Thus, integer values in unformatted records also require
4 bytes of storage. For example, 3 integer values stored in an unformatted record would
require 12 bytes of storage. Unformatted records are read or written using unformatted
input/output statements.

256 Records

Input/Output

To illustrate the difference between a formatted and unformatted record consider the
following example.

Example:
| NTEGER NUMBER
NUMBER=12345
PRI NT 100, NUMBER
100 FORMAT(1X,15)
WRI TE(UNI T=7) NUMBER

If you print the variable NUMBER on a printer, it requires 5 character positions. If you write it
to afile using an unformatted Rl TE statement, it only requires 4 bytes or character positions
in the record. Note that a character is conveniently represented in one byte of storage, hence
we sometimes use the term "byte" or "character" interchangeably when talking about the size
of variables.

10.3.3 Endfile Record

An endfile record is a specia record that follows all other recordsin afile. Simply stated, an
endfile record occurs at the end of afile. Actualy, an endfile record is a conceptual thing. It
has no length. When the end of afileisreached (i.e., an attempt to read arecord resultsin the
endfile record being read), an "end-of-file" condition exists. There are no more records
following the endfile record. Thereisonly one endfilerecord soitisstrictly illegal to attempt
to read another record after the endfile record has been read (i.e., when the end-of-file
condition exists).

10.4 Files

Earlier we described the notion of afile asacollection of records. In FORTRAN, there are
two kinds of files:

1. Externa
2. Interna

10.4.1 External Files

External files arefiles that exist or can be created upon external media such as disks, printers,
terminal displays, etc. A file may exist before the execution of a FORTRAN program. It may
be brought into existence or "created" during execution. It may also be deleted and therefore
not exist after the execution of a FORTRAN program.

Files 257

Language Reference

All input/output statements may refer to filesthat exist. In addition, the | NQUI RE, OPEN,
CLOSE, WRI TE, PRI NT, and ENDFI LE statements may refer to files that do not exist (and
in so doing, may very well cause the file to be created).

Properties of External Files

Name

Access

258 Files

In FORTRAN, afile may or may not have aname. If it does have a name then,
not surprisingly, it is called anamed file. All filesin Watcom FORTRAN 77
have names and so it may seem odd to introduce this notion. However, we do
sincethe | NQUI RE statement lets you find out if afile is named and, if so, what
itsnameis. File naming conventions may differ from one computing system to
the next. Aswell, different FORTRAN 77 compilers may have different file
naming conventions.

"Access' simply refersto the way in which we can position to and read or write
the datain a particular record in afile. There are two waysin which records can
be accessed in afile; sequentially or directly.

Using the sequential access method, records may be read or written in order
starting with the first record and proceeding to the last record. For example, it
would be quite impossible to read or write the tenth record in afile and then read
or write the third record. Similarly the eleventh record must be read or written
before we can access the twelfth record. If we adopt the convention that each
record in afile has arecord number then the first record is record number 1, the
second is 2, and so on. This humbering convention is important when we [ook
at the other access method which is"direct".

Using the direct access method, records may be read or written in any order. It
is possible to read or write the tenth record of afile and then the third and then
the twelfth and so on. A caveat: arecord cannot be read if it has never been
written since the file was created. In direct access, the idea of arecord number
isvery important and so by convention, we number them starting at 1 asthe first
record and proceeding on up. With direct access, if you create a new file and
write record number 10 then the file has ten records regardless of the fact that
only one has been written. Y ou could, at some later time, write records 1
through 9 (in whatever order you please) and add additional records by writing
records with record numbers greater than 10.

Some files have the property of being able to sustain both of these access
methods. Some files may only have one of these properties. For example, most
line printers cannot be accessed directly. Y ou have no choice but to write
records sequentially. Sometimes afile that was created using the sequential
access method may not be accessed using the direct method or vice versa.
FORTRAN callsthis property of afilethe "set of allowed access methods'.

Input/Output

Record Form Some files have the property of being able to handle both formatted and
unformatted record formats. Some files may only have one of these properties.
For example, if you tried to write unformatted records to aline printer, the result
might be gibberish. On the other hand a graphics printer may readily accept
unformatted records for reproducing graphical images on paper. FORTRAN
callsthis property of afilethe "set of allowed forms".

Record Length Ancther property of afileisrecord length. Some files may have restrictions
on the length of arecord. Some files do not allow records of zero length. Other
files, such as printers, may restrict the length of arecord to some maximum.
FORTRAN calls this property the "set of allowed record lengths”.

10.4.2 Internal Files

Internal files are special files that reside only in memory. They do not exist before or after the
execution of a FORTRAN program, only during the execution of aprogram. An interna file
allowsyou to treat memory in the computer asif it were one or morerecordsin afile. The
file must be a character variable, character array element, character array, or character
substring. A record in thisfile may be a character variable, character array element or
character substring.

Another way of looking at thisisthat an internal file that is either a character variable,
character array element or character substring can contain only one record but an internal file
that is acharacter array can contain several records (as many as there are elementsin the

array).
Properties of Internal Files

Records Unless the name of a character array is used, only one record is contained in an
internal file. Thelength of this record isthe same as the length of the variable,
array element, or substring. If thefileisacharacter array then each element in
the array isarecord. The order of the records in the file is the same as the order
of the elementsin the array. Thelength of arecord in this case isthe same as
the length of the character array elements.

If the number of characters written to arecord in an internal file isless than the
length of the record then the record is padded with blanks.

Definition A record may be read only if the variable, array element, or substring is defined
(i.e., it has been assigned some value). Definition may not only result from an
output statement such as WRI TE. It may also be defined through other means,
for example, a character assignment statement.

Files 259

Language Reference

Position

Restrictions

For all input/output statements, the file is positioned at the beginning of the first
record. Multiple records may be read or written using the "slash” format edit
descriptor (see the chapter entitled "Format”" on page 267).

Only sequential access formatted input and output statements (READ and
VARl TE) may be used to transfer data to and from records in an internal file.

Although FORTRAN 77 states that list-directed formatted input/output to an
internal fileis not permitted, Watcom FORTRAN 77 alows you to use
list-directed formatted input/output statements. Thisis an extension to the
language standard.

Example:
WRI TE(I NTFIL,*) X, Y, Z

No other input/output statements (OPEN, ENDFI LE, REW ND, etc.) may be
used.

Internal files may be used to convert data from one format to another. The following example
illustrates one use of internal files.

Example:
CHARACTER* 11 | NPUT
PRINT *, "TYPE IN '’ 1'" FOLLOAED BY AN | NTEGER
PRINT *, "OR TYPE IN''R ' FOLLOMED BY A REAL’
READ 100, | NPUT
100 FORMAT(A1l)
IF(INPUT(1:1) .EQ 'I1’)THEN
READ(UNI T=I NPUT(2: 11), FMI="(110)") IVAR
PRI NT *, " AN | NTEGER WAS ENTERED ', | VAR
ELSE | F(INPUT(1:1) .EQ 'R)THEN
READ(UNI T=I NPUT(2:11), FMr="(F10.3)’) RVAR
PRI NT *, " A REAL NUMBER WAS ENTERED ', RVAR
END | F
END
After checkingforan "1 " or " R" asthefirst character of the character variable | NPUT, the

appropriate internal READ statement is executed.

260 Files

Input/Output

10.5 Units

Many FORTRAN 77 input/output statements refer to external files using a mechanism called
the unit. There are many units available to the FORTRAN 77 programmer. Watcom
FORTRAN 77 numbers these units from 0 to 999; thus the unit number is a non-negative
integer less than 1000.

A unit may be associated with a particular file. Thisassociation is called connection. Any
unit may or may not be connected to afile. There are anumber of waysin which this
connection may be established.

A unit may be preconnected to afile before execution of a program begins. The User’'s Guide
describes the mechanism for preconnecting a unit to afile.

Alternatively, aunit may become connected to afile by the execution of an OPEN statement.

All input/output statements except OPEN, CLOSE, and | NQUI RE must refer to aunit that is
connected to afile. Watcom FORTRAN 77 automatically establishes a connection of the unit
to afileif no connection previoudly existed. Consider the following example in which unit
number 1 is not previously connected to afile.

Example:
WRI TE(1,*) 'Qutput on unit 1
END

Watcom FORTRAN 77 constructs a file name using the specified unit number. The format of
the file name is described in the User’s Guide since it varies from one computer system to the
next.

Connection of a unit to afile does not imply that the file must exist. For example, it could be
anew file. When we speak of aunit being connected to afile, we can also say that afileis
connected to aunit. Under the rules of FORTRAN, it isillegal to connect the samefileto
more than one unit at the sametime. However, afile may be connected to different units at
different times. We shall explain how thisis possible.

A file may be disconnected from a unit by the use of the CL OSE statement.

Units 261

Language Reference

Example:
CLOSE(UNI T=1)

Under certain circumstances, the file may be disconnected from a unit by the use of the OPEN
Statement.

Example:
OPEN(UNI T=1, FI LE=" FI LE1")

OPEN(UNI T=1, FI LE=' FI LE2')

In the above example, the second OPEN statement disconnects unit 1 from one file and
connectsit to asecond file. Y ou may think of the second OPEN statement as automatically
closing the first file and then establishing a connection to the second file.

If aunit has been disconnected from afile through the execution of a CLOSE statement, the
unit may subsequently be connected to the same file or to a different file. It also follows that
afile which has been disconnected from one unit number may be connected to the same unit
number or adifferent unit number. The following example may help to illustrate this last
point.

Example:
OPEN(UNI T=1, FI LE=" FI LE1")

CLOSE(UNI T=1)
OPEN(UNI T=2, FI LE=' FI LEL')

Once afile has been disconnected, the only means for referring to thefile is by itsnamein an
OPEN statement or an | NQUI RE statement.

10.6 Specifiers

All input/output statements contain one or more specifiers. They appear in alist separated by
commas. Some of the more common specifiers are those listed below. Not all of them need
be used in every input/output statement. Y ou should consult the description of the
input/output statement under consideration to discover which specifiers are allowed and what
they mean.

262 Specifiers

Input/Output

[UNIT =] u
[FMT =] f
REC=rn
|OSTAT =ios
ERR=s

END=s

the unit specifier

the format specifier

the record specifier

the input/output status specifier
the error specifier

the end-of-file specifier

We shall ook at these specifiersin more detail.

10.6.1 The Unit Specifier

The form of a unit specifier in an input/output statement is:

[UNIT =] u uisanexternal unit identifier or an internal fileidentifier.

1

An external unit identifier is a non-negative integer expression or an
asterisk (*) inwhich case unit 5 is assumed for an input statement
and unit 6 is assumed for an output statement. The unit identifier
must not be an asterisk for the BACKSPACE, ENDFI LE and

REW ND statements.

Aninternal file identifier isthe name of a character variable,
character array, character array element, or character substring.

If the optional UNI T= specifier is omitted then the unit specifier must be the first item in the

list of specifiers.

10.6.2 Format Specifier

The form of aformat specifier in an input/output statement is:

[FMT =] f f isaformatidentifier. A format identifier isone of the following:

1

2.

A statement label of a FORVAT statement that appearsin the same
program unit as the format identifier.

An integer variable name that has been assigned the statement label of
a FORNVAT statement that appears in the same program unit as the
format identifier (seethe ASSI GN statement).

Specifiers 263

Language Reference

An integer array name.

A character array name.

Any character expression except one involving the concatenation of
an operand whose length specification is (*) unlessthe operandisa
symbolic constant (see the PARAMETER statement).

6. Anasterisk (*), indicating list-directed formatting.

7. A NAMELI ST name, indicating namelist-directed formatting.

ok w

If the optional FMT= specifier is omitted then the format specifier must be the second item in
thelist of specifiersand UNI T= must not be specified for thefirst itemin the list.

10.6.3 Record Specifier

The form of arecord specifier in an input/output statement is:

REC=rn rnisaninteger expression whose value must be positive. It isthe number of
the record to be read when afileis connected for direct access.

10.6.4 Input/Output Status Specifier

The form of an input/output status specifier in an input/output statement is:

IOSTAT =iosi os isaninteger variable or integer array element. It isdefined with zero if
No error occurs, a positive integer value if an error occurs, or a negative integer
value if an end-of-file occurs.

If an input/output error or end-of-file condition occurs during the execution of an input/output
statement and the input/output status specifier is present then execution of the program is not
terminated. Input/output errors may result from aviolation of the rules of FORTRAN or from
afile system error. For example, a negative unit number will result in an error since thisisa
violation of the rules of FORTRAN. An example of afile system error might be an attempt to
create afile on anon-existent file storage device.

Consult the User’s Guide for alist of Watcom FORTRAN 77 diagnostic messages. An
input/output status of nn corresponds to the message | G- nn. For example, if the status
returned is 3 then the error is:

| O 03 ENDFILE statenent requires sequential access node

264 Specifiers

Input/Output

10.6.5 Error Specifier

The form of an error specifier in an input/output statement is:

ERR=s s isastatement label. When an error occurs, execution is transferred to the
statement labelled by s.

If an input/output error occurs during the execution of an input/output statement and the ERR=
specifier is present then execution of the program is not terminated.

10.6.6 End-of-File Specifier

The form of an end-of-file specifier in an input/output statement is:

END =s s isastatement label. When an end-of-file condition occurs, execution is
transferred to the statement labelled by s.

If an end-of-file condition occurs during the execution of an input/output statement and the
END= specifier is present then execution of the program is not terminated.

10.7 Printing of Formatted Records

Printing occurs when formatted records are transferred to a device which interprets the first
character of the record as a special spacing command. The remaining charactersin the record
are"printed". Printing can be accomplished by use of either the PRI NT statement or the

WRI TE statement. What actually determines whether or not you are "printing" is the device
(or file) to which records are transferred.

Thefirst character of the record controls the vertical spacing. Thisfeature is quite often called
ASA (American Standards Association) carriage control.

Char act er Vertical Spacing Before Printing
Bl ank One Line

0 Two Lines

- Three Lines

1 To First Line of Next Page

+ No Advance

Printing of Formatted Records 265

Language Reference

The"-" control character is an extension to the FORTRAN 77 language that is supported by
many "printing" devices.

266 Printing of Formatted Records

11 Format

11.1 Introduction

A format specification used in conjunction with formatted I/O provides a means of specifying
the way internal datais converted to a character string and vice versa. A format specification
can be given in two ways.

1. InaFORVAT statement.
2. Asvalues of character expressions or character arrays.

11.2 The FORMAT Statement

The form of a FORNMAT statement is

| abel FORNMAT fs
where:
label isthe statement label used by an I/O statement to identify the FORMAT statement.
fs isaformat specification which will be described later.
Example:
REAL X
X = 234.43
PRI NT 100, X
100 FORMAT(F10. 2)
END

In the previous example, the PRI NT statement uses the format specification in the FORMVAT
statement whose statement label is 100 to display the value of X.

The FORMAT Statement 267

Language Reference

11.3 FORMAT as a Character Expression

Instead of specifying the statement label of a FORVAT statement, a character expression can
be used. The previous example could be modified as follows and achieve the identical result.

Example:
REAL X
X = 234.43
PRINT ' (F10.2)", X
END

When using a character expression to represent aformat specification, the format specification
can be preceded by blank characters and followed by any character data without affecting the
format specification. The following example produces the identical result to the previous

example.
Example:
REAL X
X = 234.43
PRI NT (F10.2) THHS IS FOR X, X
END

If acharacter array is used to describe the format specification, the format specification is
considered to be the concatenation of all the character array elements in the order given by
array element ordering described in the chapter entitled "Arrays' on page 187. Notethat if a
character array element is used, the format specification is considered to be only that array

element.

Example:
REAL X
CHARACTER*5 FMTSPEC(3)
X = 234.43

FMTSPEC(1) =’ (°
FMTSPEC(2) =’ F10. 2’
FMTSPEC(3) =’)’

PRI NT FMISPEC, X
END

268 FORMAT as a Character Expression

Format

11.4 Format Specification

A format specification has the following form.

([flist])
where:
flist isalist whose items are separated by commas. The forms of theitemsin
flist are
[r] ed
ned
[r] fs
ed is arepeatable edit descriptor.
ned is anonrepeatable edit descriptor.
fs is aformat specification with anonempty list f 1 i st .
r isapositive unsigned integer constant called a repeat specification.

The comma separating theitemsof f |1 i st can be omitted in the following cases.

1. BetweenaP editdescriptorandan F, E, Dor Gedit descriptor which
immediately follows.

2. Beforeor after aslash edit descriptor.

3. Beforeor after acolon edit descriptor.

Watcom FORTRAN 77 allows the omission of a comma between theitemsof fli st. Care
should be taken when omitting commas between edit descriptors. For example, the format
specification (15 21 3) may appear to bean | 5 edit descriptor followed by two | 3 edit
descriptors when in actuality it isinterpreted asan | 52 edit descriptor followed by an | 3 edit
descriptor.

Format Specification 269

Language Reference

11.5 Repeatable Edit Descriptors

The forms of repeatable edit descriptors are:

I w
lw.m
Fw. d
Ew. d
Ew. dEe
Dw. d
Gwn. d
Gwv. dEe
Lw

A

Aw

As an extension to the FORTRAN 77 language, the following repeatable edit descriptors are
also supported.

Ew. dDe
Zw

where:

I, F, EE Db G L, AandZindicatethe method of editing.
wand e are positive unsigned integer constants.

d and mare unsigned integer constants.

11.6 Nonrepeatable Edit Descriptors

The forms of nonrepeatable edit descriptors are:

270 Nonrepeatable Edit Descriptors

Format

"hh...h" (apostrophe)
nHhh. .. h
Tc

TLc

TRc

nXx

/

S

SP

SS

kP

BN

BZ

X

As an extension to the FORTRAN 77 language, the following nonrepeatable edit descriptors
are al so supported.

$
\

where:

Apostrophe, H, T, TL, TR, X, [/, :, S, SP, SS, P, BN, Bz, \ and
$ indicate the method of editing.

h isacharacter.
n and c are positive unsigned integer constants.
k isan optionally signed integer constant.

Watcom FORTRAN 77 allows edit descriptors to be specified using lower case |etters.

Nonrepeatable Edit Descriptors 271

Language Reference

11.7 Editing

Edit descriptors are used to describe the way the editing between internal representation of
data and the characters of arecord in afileisto take place. When the edit descriptors |, F,
E, DD G L, A H Zorapostrophe are processed, they process a sequence of
characters called afield. On input, the field is the character data read from a record; on output
it isthe character data written to arecord. The number of charactersin afield is called the
field width.

11.7.1 Apostrophe Editing

The apostrophe edit descriptor has the same form as a character constant and can only be used
on output. It causes the charactersin the format specification enclosed in quotes to be written.
The field width is the number of characters enclosed in quotes.
Example:
PRINT ' ('"'"H THERE ')’
END
In the previous example, the string
H THERE

would be the output produced by the PRI NT statement.

11.7.2 H Editing

The nH edit descriptor causes the n characters following the H, including blanks, to be
written. Like the apostrophe edit descriptor, it can only appear in aformat specification used
for output.

Example:

PRI NT ' (8HH THERE)’
END

In the previous example, the string

H THERE

would be the output produced by the PRI NT statement.

272 Editing

Format

11.7.3 Positional Editing: T, TL, TR and X Editing

TheT, TL, TRand X edit descriptors specify at which position the next character will be
read from or written to the record. In the case of input, this allows data to be read more than
once with different edit descriptors. On output, it is possible to overwrite data previously
written.

On output it is possible to use positional editing to create arecord in which gaps appear. That
is, there may be parts of the record where no data has been written. The parts of arecord in
which no data has been written are filled with blanks. The effect isasif the record was
previously initialized to blanks. Note that positioning does not cause any data to be
transmitted.

The Tc edit descriptor specifies that the next character to be transmitted isto be from the cth
character position in the record. The TLc edit descriptor specifies that the next character to
be transmitted is to be from the cth position backward from the current position. The TRc
edit descriptor isidentical to the TLc edit descriptor except that positioning is forward from
the current position. The nX edit descriptor behavesidentically to the TRc edit descriptor; the
transmission of the next character is n character positions forward from the current position.

If n is omitted then the transmission of the next character is 1 character position forward from
the current position.

Example:
PRINT ' (’ " THE NUMBER 'S AN | NTEGER ', TL19,
$ 1112345’ ")’
END

The output produced is

THE NUMBER 12345 IS AN | NTEGER

11.7.4 Slash Editing

The slash edit descriptor indicates the end of datatransfer on the current record. On input
from arecord connected for sequential access, the remaining charactersin the record are
skipped and the file is positioned to the start of the next record. Note that entire records may
be skipped. On output, a new record is created and becomes the last and current record of the
file. Notethat arecord with no characters can be written. If thefileisaninternal fileor a
direct accessfile, the record isfilled with blanks.

For afile connected for direct access, the current record number isincreased by one and the
fileis positioned at the beginning of that record.

Editing 273

Language Reference

11.7.5 Colon Editing

The colon edit descriptor terminates processing of the format specification if there are no
moreitemsin the I/O list. If there are itemsremaining in the 1/0O list, the colon edit descriptor
has no effect.

11.7.6 S, SP and SS Editing

The S, SP and SS edit descriptors control optional plus characters in numeric output fields.
They only effectthe |, F, E, Dand Gedit descriptors during output and have no effect on
input. The FORTRAN 77 standard specifies that before processing aformat specification, the
appearance of a plus sign in numeric output fieldsis optional and is determined by the
processor. Watcom FORTRAN 77 does not produce plus signs in numeric output fields.
When an SP edit descriptor is encountered, a plus sign is produced in any subsequent position
that optionally contains a plussign. When as SS edit descriptor is encountered, aplussignis
not produced in any subsequent position that optionally containsaplussign. If an S edit
descriptor is encountered, the option is returned to the processor.

Example:

PRINT " (1H<,15,SP,15,SS,15,1H)",1,2,3
END

The output produced by the PRI NT statement in the previous exampleis:

< 1 +2 3>

11.7.7 P Editing

274

The form of a P edit descriptor is kP where k is an optionally signed integer constant called
the scale factor. The value of the scale factor is zero at the beginning of each 1/0 statement.
The scale factor appliesto al subsequent F, E, Dand Gedit descriptors until another scale
factor is encountered. The scale factor affects editing in the following way.

1. Oninputwith F, E, Dand Gediting, provided that no exponent existsin thefield,
the effect is that the represented number equals the internally represented number
multiplied by 10* * k.

2. Oninputwith F, E, Dand Gediting, the scale factor has no effect if thereisan
exponent in the field.

3. OnF output editing, the effect isthat the represented number equalsthe internally
represented number multiplied by 10* * k.

Editing

Format

4. Onoutput with E and D editing, the simple real constant (see the chapter entitled
"Names, Data Types and Constants' on page 177) part of the datais multiplied by
10* * k and the exponent is reduced by k.

5. Onoutput with Gediting, the scale factor has no effect unless the magnitude of the
datum is outside the range that allows F editing (see the section entitled "G
Editing" on page 280). If E editing isrequired, the scale factor has the same effect
aswith E output editing.

11.7.8 BN and BZ Editing

The BN and BZ edit descriptors are used to describe the interpretation of embedded blanksin
numeric input fields. They only effect |, F, E, Dand Gediting and have no effect during
output. When a BN edit descriptor is encountered in aformat specification, embedded blanks
in subsequent numeric input fields areignored. However, afield of all blanks has the value of
zero. If aBZ edit descriptor is encountered, then all embedded blanks in subsequent numeric
input fields are treated as zeroes. At the beginning of each I/O statement, all blanks are
treated as zeroes or ignored depending on the value of the BLANK= specifier (see the OPEN
statement) currently in effect for the unit.

11.7.9 $ or \ Editing (Extension)

The $ and \ edit descriptors behaveidentically. The $and \ edit descriptors are intended for
output to an interactive device such asaterminal. They are aWatcom FORTRAN 77
extensions. The output record is displayed at the terminal leaving the cursor at the end of the
record; the carriage return at the end of the line is suppressed. Itsuseisintended for
prompting for input so that the response can be entered immediately following the prompt.

Depending on the type of terminal, the prompt may be returned as part of the input. An
application must be aware of the way a particular terminal behaves. The following example
demonstratesthis. Note that the format specification in the FORVAT statement labelled 20
ignoresthe first eleven characters of the response since the prompt also appearsin the
response.

Example:

| NTEGER AGE
WRI TE(6, FMI=10)

10 FORMVAT('Enter age: ',$)
READ(5, 20) AGE

20 FORMAT(11X, 12)
PRINT *,’ Your age is ', AGE
END

Editing 275

Language Reference

If the terminal you are using does not return the prompt as part of the response (that is, aread
from the terminal only includes characters typed at the terminal), the format specification in
the FORVAT statement labelled 20 must be changed, asin the following example, to achieve
the same result.

Example:

10

20

| NTEGER AGE

VRI TE(6, FMI=10)

FORMAT(' Enter age: ',\/)
READ(5, 20) AGE

FORMAT(12)
PRI NT *,’ Your age is ', AGE
END

11.7.10 Numeric Editing: I, F, E, D and G Edit Descriptors

Numeric edit descriptors are used to specify 1/0 of integer, real, double precision, complex
and double precision complex data. The following rules apply to all numeric edit descriptors.

1

On input, leading blanks are not significant. The interpretation of blanks other than
leading blanksis determined by any BN or BZ edit descriptorsin effect and the
BLANK= specifier (see the OPEN statement). A field of all blanksis always zero.
Plus signs are optional .

Oninput, with F, E, Dand Gediting, the decimal location specified in the edit
descriptor is overridden by a decimal point appearing in the input field.

On output, the plus sign is optional and is determined by the S, SP and SS edit
descriptors. A negative quantity is represented by a negative sign. A minussignis
never produced when outputting a value of zero.

On output, the representation is aways right justified in the field with leading
blanksinserted at the beginning of the field if the number of charactersin the
representation isless than the field width.

On output, if the number of charactersin the external representation is greater than
the field width or an exponent exceeds its specified length using Ew. dEe,

Gw. dEe, Ew. dDe or Gw. dDe edit descriptors, the entire field is filled with
asterisks.

11.7.10.1 Integer Editing: Iw and Iw.m Edit Descriptors

Thel wand | w. medit descriptorsindicate that the field width of the field to be edited is w.
Theiteminthel/O list must be of type integer; on input the I/O list item will be defined by
integer data, on output the 1/0O list item must be defined with an integer datum.

276 Editing

Format

Oninput, the | w. medit descriptor istreated identically to the | wedit descriptor. The output
field for the | wedit descriptor consists of zero or more leading blanks followed by a minus
sign if the value of the I/O list item is negative or an optional plus sign otherwise, followed by
the magnitude of the integer datum with no leading zeroes. Note that the integer constant
contains at least one digit. On output, the | w. medit descriptor specifiesthat at least mdigits
areto be displayed with leading zeroes if necessary. The value of mmust be less than or equal
to the value of w. If mis zero and the value of the datum is zero, then the output field isfilled
with blanks.

Example:
PRINT " (1H<,14.4,15,1H>)", 23, 2345

The output produced by the PRI NT statement in the previous example is the string:

<0023 2345>

11.7.10.2 Floating-point Editing: F, E, D and G Edit Descriptors

TheF, E, Dand Gedit descriptors describe the editing of real, double precision, complex
and double precision complex data. The /O list item corresponding to one of these edit
descriptors must be of type real, double precision, complex or double precision complex. On
input, the 1/O list item will become defined with a datum whose type is the same as that of the
[/O list item. On output, the 1/O list item must be defined with a datum whose typeis that of
the 1/O list item.

11.7.10.3 F Editing

An F edit descriptor hasthe form Fw. d where wisthe field width and d is the number of
digitsin the fractional part. Theinput field consists of an optional sign, followed by astring
of digits optionally containing adecimal point. If the decimal point is omitted, the rightmost
d digits with leading zeroes assumed if necessary, are interpreted as the fractional part of the
value represented. An exponent of one of the following forms may follow.

1. A signedinteger constant.
2. AnEor Dfollowed by an optionally signed integer constant.

Consider the following example, where the decimal point is omitted. The formula used in the
evaluation is:

-d (exponent subfi el d)
(integer subfield) x 10 x 10

Editing 277

Language Reference

If the specification is F10.8 and the input quantity is 31415E+5 then the following conversion

takes place.
-8 5
00031415 x 10 x 10
5
= . 00031415 x 10
= 31.415

In other words, the decimal point is assumed to lie to the left of the 8 digits (padded with
zeroes on the left) forming the fractional part of the input value.

The output field produced by an F edit descriptor consists of blanks if necessary followed by a
minus sign if theitem inthe 1/O list is negative or an optional plus sign otherwise, followed

by a string of digits containing a decimal point which represents the magnitude of the 1/0O list
item. The string representing the magnitude of the I/O list item is modified according to the
scale factor and isrounded to d fractional digits. An optional leading zero is produced only if
the magnitude of the 1/O list item isless than one. Notethat aleading zero isrequired if there
would otherwise be no digitsin the output field.

Example:
PRI NT ' (1H<, F8.4,1H>)’, 234.43

The output produced by the PRI NT statement in the previous example is the string:

<234. 4300>

11.7.10.4 E and D Editing

The Ew. d, Dw. d and Ew. dEe edit descriptors indicate that the field widthis w, the
fractional part contains d digits unless a scale factor greater than oneisin effect, and the
exponent consists of e digits. The e has no effect on input.

The form of the input field and processing of it isthe same asthat for F editing. The form of
the output field is:

[4] [0] . x x ... X exp
[-] 1 2 d

278 Editing

Format

where:

p indicates a plus or minus sign.

x's arethe d most significant digits of the value after rounding.
exp isadecimal exponent.
The form of the exponent is as follows.
1. Whenusing the Ew. d edit descriptor, the form of the exponent is
E+nn
or if |exp| <= 99
E- nn
and
+nnn
or if 99 < |exp| <= 999

-nnn

2. When using the Ew. dEe edit descriptor, the form of the exponent is

E+n ... n where |exp| <= (10**e)-1
-1 e

3. When using the Dw. d edit descriptor, the form of the exponent is
D+nn
or if |expl <= 99
D-nn

and

+nnn
or if 99 < |exp| <= 999
-nnn

Note that asign in the exponent is always present. If the exponent is0, aplussign is used.
Theforms Ew. d and Dw. d are not to beused if | exp| > 999.

Editing 279

Language Reference

Example:
PRI NT ' (1H<, E10. 4, 1H>, 1H<, E9. 4, 1H>, 1H<, E12. 4E3, 1H>) ',
$.5, .5, .5
END

The output from the PRI NT statement in the previous exampleis the string:

<0. 5000E+00><. 5000E+00>< 0. 5000E+000>
The scale factor k in a P edit descriptor controls decimal normalization as follows:

1. If-d < k <= 0, thentheoutput field contains | k| leading zeroesand d- | k|
significant digits after the decimal point.

2. If0 < k < d+2, theoutput field contains exactly k significant digits to the left
of the decimal point and d- k+1 significant digitsto the right of the decimal point.

3. Other values of k are not permitted.

The Ew. dDe edit descriptor behaves in the same way asthe Ew. dEe edit descriptor on
input; on output the only differenceis that the letter Dis used to mark the exponent instead of
the letter E.

11.7.10.5 G Editing

The Gw. d and Gw. dEe edit descriptorsindicate that the field width is w, the fractional part
contains d digits unless a scale factor greater than one isin effect, and the exponent consists
of e digits.

Ginput editing is the same as F input editing.

The representation on G output editing depends on the magnitude of the datum being edited.
L et Mbe the magnitude of the datum being edited. Then Goutput editing behaves as follows.

1. IfM< 0.1lorM>= 10**d, Gw. d output editing is equivalent to kPEw. d
output editing and Gw. dEe output editing is equivalent to kPEw. dEe output
editing where k is the scaling factor currently in effect.

2. 1f0.1 <= M < 10**d, thescalefactor has no effect and the value of M
determines the editing as shown in the following table.

280 Editing

Format

Magnitude of Datum

Equivalent Edit Descriptor

0.1<=M<1
1<=M<10

10** (d-2)<=M<10** (d-1)
10**(d-1)<=M<10**d

F<w-n>.d followed by n blanks
F<w-n>.<d-1> followed by n blanks

F<w-n>.1 followed by n blanks
F<w-n>.0 followed by n blanks

where:

<w-n> stands for the integer represented by evaluating w- n.
<d-1> stands for the integer represented by evaluating d- 1.
n is4for Gw. d editing and e+2 for Gwn. dEe editing.
Example:

PRI NT ' (1H<, Gl2. 6, 1H>, 1H<, G12. 4E4, 1H>) ',

END

The output from the PRI NT statement in the previous example is the string:

<0. 500000 ><0. 5000 >

11.7.10.6 Complex Editing

.5, .5

Since a complex datum consists of a pair of real or double precision data, the editing of a
complex datum is specified by two successive pairsof F, E, D or Gedit descriptors. Thetwo
descriptors may be different and may be separated by any number of non-repeatabl e edit
descriptors. Double precision complex editing isidentical to complex editing.

11.7.11 L Edit Descriptor

The Lw edit descriptor isused for 1/0O list items of typelogical. Thefield widthis w.

On input the 1/0O list item will become defined with a datum of type logical. Theinput field
consists of optional blanks, followed by an optional decimal point followed by a T or F for

Editing 281

Language Reference

true or false respectively. The T and F may be followed by additional charactersin the field.
Watcom FORTRAN 77 allowst andf inadditionto T and F on input.

On output, the 1/0O list item must be defined with a datum of typelogical. The output field
consists of w 1 blanks followed by a T for true or F for false.

Example:
PRI NT ' (1H<, L3, L5,1H>)",. TRUE., . FALSE.

The output produced by the PRI NT statement in the previous example is the string:

< T >

11.7.12 A Edit Descriptor

The Al W] edit descriptor isused for I/O list items of type character. On input, the 1/O list
item becomes defined with character data. On output, the I/O list item must be defined with
character data. If wis specified in the edit descriptor, the field width is w otherwise the field
width is the number of charactersin the 1/O list item.

Watcom FORTRAN 77 aso permits 1/O list items of non-character datatypes. On input, the
1/O list item becomes defined with the binary representation of the character data. On output,
the I/O list item is assumed to be defined with character data.

If | en isthelength of the /O list item and wis specified in A input editing so that wis greater

than| en, therightmost | en characters of the input field will be taken. If wislessthan
| en, then the wcharactersin theinput field will be taken and padded with | en- whblanks.

If wis specified in A output editing so that wis greater than | en, then the output field will
consist of w- | en blanksfollowed by the | en characters of the I/O list item. If wislessthan
or equal to | en, the output field will consist of the first w characters of the I/O list item.

Example:
PRI NT ' (1H<, A5, A8, 1H>) ', " ABCDEFG ,’ 123’

The output produced by the PRI NT statement in the previous example is the string:

<ABCDE 123>

282 Editing

Format

11.7.13 Z Editing (Extension)

The Zw edit descriptor is used to display the hexadecimal representation of data or read
hexadecimal data. It isaWatcom FORTRAN 77 extension. The Zw edit descriptor can be
used for 1/O list items of any type. Thefield widthis w.

On output, wmust be greater than or equal to twice the size (in bytes) of the /O list item since
each byte is represented by two hexadecimal digits. For example, rea datarequires four
bytes. Hence, wmust be at least eight.

Example:
PRINT ' (1H<, Z8, 1H>)', 256

The output produced by the PRI NT statement in the previous example is the string:

<00000100>

If wis greater then the number of hexadecimal digits required to represent the data, the
leftmost print positions of the output field are filled with blanks.

Example:
PRI NT ’ (1H<, 710, 1H>) ', ABCD

The output produced by the PRI NT statement in the previous example is the string

< clccc>

if the EBCDIC character set is being used or

< 41424344>
if the ASCII character set isbeing used.

Oninput, if wis greater than twice the size (in bytes) of the I/O list item, the leftmost
characters are truncated from the input field. For example, if the input field contains the
string

91A2C3D4

and isread into a character variable whose length is two, the character would contain the
hexadecimal data C3D4. If wislessthan twicethe size (in bytes) of the I/O item, the I/O
item is padded to the left with hexadecimal zeroes. For example, if the input field contains the
string

Editing 283

Language Reference

81C1

and isread into a character variable whose length is four, the character would contain the
hexadecimal data 000081Cl1.

11.8 Format-Directed Input/Output

Format-directed input/output (1/0) is formatted input or output controlled by a format
specification. The action taken during formatted input or output depends on the next edit
descriptor in the format specification and the next item in the input/output list if one exists.

A format specification is processed from left to right. An edit descriptor or aformat
specification with arepest specification of r isprocessed asalist of r edit descriptors or
format specifications. A repeat specification of oneis equivalent to no repeat specification.

For each repeatabl e edit descriptor in the format specification, there corresponds one itemin
the 1/0 list except an I/O list item of type complex where two repeatable floating-point edit
descriptors are required. Non-repeatable edit descriptors do not correspond to any 1/0 list
item; they communicate information directly with the record. Whenever arepeatable edit
descriptor is encountered in aformat specification, there must be a corresponding item in the
[/Olist. The edited information is transmitted appropriately between the item and the record.

Format processing is terminated when any of the following conditions occur.

1. When an edit descriptor has no corresponding item in the I/O list.

2. When acolon edit descriptor is encountered and there are no moreitemsin the 1/O
list.

3. When theright parenthesis is encountered and there are no more itemsin the I/O
list.

If the right parenthesis of the complete format specification is encountered and the 1/0 list has
not been exhausted, thefile is positioned at the next record and format processing resumes at
the start of the format specification terminated by the last preceding right parenthesis. If there
is no such right parenthesis, format processing resumes at the start of the complete format
specification. The part of the format specification that is reused must contain at least one
repeatable edit descriptor. |f format processing resumes at a left parenthesis preceded by a
repeat specification, the repeat specification is also reused. The scale factor, sign control edit
descriptors and blank control edit descriptors are not affected when part of aformat
specification is reused.

284 Format-Directed Input/Output

Format

11.9 List-Directed Formatting

List-directed formatting is input/output without a format specification.

Example:
READ(un, *) X, Y, Z
READ(UNI T=un, FMI=*) X, Y, Z
READ *, X, Y, Z
WRITE(un, *) X Y, Z
WRI TE(UNI T=un, FMI=*) X, Y, Z
PRINT *, X, VY, Z

In the previous example, an asterisk instead of aformat specification indicates list-directed
formatting.

Omitting the asterisk and format specification also indicates list-directed formatting.

Example:
READ, X, Y, Z
PRINT, X, Y, Z

Records used during list-directed formatting are called list-directed records. A list-directed
record is a sequence of values and value separators. Any sequence of blanksistreated asa
single blank except when it appearsin a character constant. The end of arecord has the same
effect as ablank character.

A valueis one of the following:

1. A constant.

2. Anull vaue

3. r*c

4, r*
where:
r is an unsigned, nonzero integer constant.
c is a constant.

Ther *c formisequivalent to r successive occurrencesof ¢c. Ther * formisequivalent to
r successive occurrences of the null value. In these two forms, blanks are permitted only
where they are allowed in the constant c.

List-Directed Formatting 285

Language Reference

A value separator is one of the following:

1
2.

3.

A comma preceded and followed by any number of blanks.

A dlash preceded and followed by any number of blanks. A slash asavalue
separator terminates the execution of the input statement. The definition status of
the remaining input itemsin the input list remains the same as it was prior to the
input statement.

Any number of blanks between two values.

A null valueis specified by having no character between successive value separators, no
characters preceding the first value separator in arecord or the r * form. It has no effect on
the current value of the input item. Note that the end of record following a value separator
does not specify anull value.

11.9.1 List-Directed Input

Theinput forms acceptable to format specifications for a given type are a so acceptable for
list-directed formatting with certain exceptions.

1

Blanks are never used as zeroes and blanks embedded in constants are not allowed
except in character constants.

Aninput item of type real or double precision must have an input field suitable for
F editing except that no fractional digits are assumed unless a decimal point is
present in the field. Such afield will be called a numeric input field.

An input item of type complex or double precision complex must consist of aleft
parenthesis followed by two numeric input fields separated by a comma and
followed by aright parenthesis. The numeric input fields may be preceded or
followed by blanks. The end of record can only appear between the first numeric
field and the comma or between the comma and the second numeric field. Note
that anull value must not be used as the real or imaginary part but may represent
the entire complex constant.

Aninput item of type logical must not include either a slash or acomma among the
optional charactersallowed in L editing.

An input item of type character consists of a non-empty string of characters
enclosed in apostrophes. Apostrophes in character constants are represented by
two consecutive apostrophes without a blank or end of record separating them.
Character constants may span records. If thisisthe case, the end of record does
cause ablanksto be inserted into the character constant. Note that a comma or

286 List-Directed Formatting

Format

dlash in acharacter constant is not avalue separator. A character input field is
assigned to a character input item as though it were a character assignment.

11.9.2 List-Directed Output

The form of the output field produced by list-directed output is similar to the form required by
list-directed input. The output of a character constant does not include the enclosing quotes
and an apostrophe in a character constant is output as a single apostrophe. The values are
separated by one or more blanks. When printed, each record will start with ablank if thefile
isacarriage-control oriented file. For example, the source listing file produced by Watcom
FORTRAN 77 issuch afile.

11.10 Namelist-Directed Formatting (Extension)

The READ, WRI TE, and PRI NT statements may be used to transmit data between afile and
the variables specified in a NAMELI ST statement.

Example:

CHARACTER* 20 NAVE

CHARACTER* 20 STREET

CHARACTER*15 CI TY

CHARACTER* 20 STATE

CHARACTER* 20 COUNTRY

CHARACTER* 10 ZI P_CODE

| NTEGER AGE

| NTEGER MARKS(10)

NAVELI ST /nl/ NAME, STREET, CITY, STATE,
COUNTRY, ZI P_CODE, AGE, MARKS

READ(un, nl)

READ(UNI T=un, FMr=nl)
READ nl

VWRI TE(un, nl

WRI TE(UNI T=un, FMI=nl)
PRI NT nl

Namelist-Directed Formatting (Extension) 287

Language Reference

11.10.1 Namelist-Directed Input (Extension)

Theinput data must bein a specia format. Thefirst character in each record must be blank.
The second character in the first record of a group of data records must be an ampersand (&)
or dollar sign ($) immediately followed by the NAMELI ST name. The NAMELI ST name
must be followed by ablank and must not contain any imbedded blanks. Thisnameis
followed by dataitems, optionally separated by commas. The end of a data group issignaled
by the character "&" or "$", optionally followed by the string "END". If the"&" character
was used to start the group, then it must be used to end the group. If the"$" character was
used to start the group, then it must be used to end the group.

12345678901234567890. . .
&NL
iteml, itenR, itenB,
itemd, itenb,

The form of the dataitemsin an input record is:

Name = Constant
The name may be avariable name, an array element name, or a character
substring name. The constant may be integer, real, complex, logical or
character. Logical constants may beintheform"T" or ".TRUE" and "F" or
".FALSE". Character constants must be contained within apostrophes.
Subscripts and substring indices must be of integer type.

ArrayName = Set of Constants
The set of constants consists of constants of the type integer, real, complex,
logical or character. The constants are separated by commas. The number of
constants must be less than or equal to the number of elementsin the array.
Successive occurrences of the same constant may be represented in the form
r*const ant, wherer isanon-zero integer constant specifying the number
of times the constant isto occur. Consecutive commas within alist indicate that
the values of the array elements remain unchanged.

The variable and array names specified in the input file must appear in the NAVELI ST list,
but the order is not important. A name that has been made equivalent to a name in the input
data cannot be substituted for that name in the NAMELI ST list. Thelist can contain names of
itemsin COVMON but must not contain dummy argument names.

Each data record must begin with a blank followed by a complete variable or array hame or

constant. Embedded blanks are not permitted in names or constants. Trailing blanks after
integers and exponents are treated as zeros.

288 Namelist-Directed Formatting (Extension)

Format

Example:

&PERSON
NAME = ' John Doe’
STREET = '22 Main St.” CITY = "Smallville’
STATE = ' Texas’ COUNTRY = "U. S. A’
ZI P_CODE = ' 78910- 1203’
MARKS = 73, 82, 3*78, 89, 2*93, 91, 88
AGE = 23

&END

Theinput forms acceptable to format specifications for a given type are a so acceptable for
namelist-directed formatting with certain exceptions.

1

Blanks are never used as zeroes and blanks embedded in constants are not allowed
except in character constants.

Aninput item of type real or double precision must have an input field suitable for
F editing except that no fractional digits are assumed unless a decimal point is
present in the field. Such afield will be called a numeric input field.

An input item of type complex or double precision complex must consist of aleft
parenthesis followed by two numeric input fields separated by a comma and
followed by aright parenthesis. The numeric input fields may be preceded or
followed by blanks. The end of record can only appear between the first numeric
field and the comma or between the comma and the second numeric field. Note
that anull value must not be used as the real or imaginary part but may represent
the entire complex constant.

Aninput item of type logical must not include either a slash or acomma among the
optional charactersallowed in L editing.

An input item of type character consists of a non-empty string of characters
enclosed in apostrophes. Apostrophes in character constants are represented by
two consecutive apostrophes without a blank or end of record separating them.
Character constants may span records. If thisisthe case, the end of record does
cause ablank to be inserted into the character constant. Note that a comma or slash
in acharacter constant is not avalue separator. A character input field is assigned
to a character input item as though it were a character assignment.

Namelist-Directed Formatting (Extension) 289

Language Reference

11.10.2 Namelist-Directed Output

The form of the dataitems in an output record is suitable for input using a namelist-directed
READ statement.

1

Output records are written using the ampersand character (&), not the dollar sign
(%), although the dollar sign is accepted as an alternative during input. That is, the
output datais preceded by "&name" and is followed by "&END".

All variable and array names specified in the NAMELI ST list and their values are
written out, each according to its type.

Character datais enclosed in apostrophes.
The fields for the data are made large enough to contain all the significant digits.

The values of a complete array are written out in columns.

290 Namelist-Directed Formatting (Extension)

12 Functions and Subroutines

12.1 Introduction

Functions and subroutines are procedures that fall into one of the following categories.

Statement functions
Intrinsic functions
External functions
Subroutines

APwWDdDE

First let us introduce some terminology.

A program unit is a collection of Watcom FORTRAN 77 statements and comments that can
be either amain program or a subprogram.

A main program identifies the program unit where execution isto begin. A main programisa
program unit which has asits first statement a PROGRAMstatement or one which does not
have a PROGRAM FUNCTI ON, SUBROUTI NE or BLOCK DATA statement asitsfirst
statement. Complete execution of the main program implies the complete execution of the
program. Each executable program can contain only one main program.

A subprogramis a program unit that either hasa FUNCTI ON, SUBROUTI NE or BLOCK

DATA statement asits first statement. This chapter will only deal with subprograms that have
aFUNCTI ON or SUBRQOUTI NE statement asiits first statement.

12.2 Statement Functions

A statement function is a procedure defined by a single statement. Its definition must follow
all specification statements and precede the first executable statement. The statement defining
a statement function is not an executabl e statement.

A statement function has the following form.

Statement Functions 291

Language Reference

sf ([d],d ...]) =¢e
where:
sf is the name of the statement function.
d is a statement function dummy argument.
e isan expression.

The expression e and the statement function name sf must conform according to the rules of
assignment as described in the chapter entitled " Assignment Statements" on page 221.

The statement function dummy arguments are variable names and are used to indicate the
order, number and type of the arguments of the statement function. A dummy argument name
of astatement function must only appear once in the dummy argument list of the statement
function. Its scopeisthe statement defining the statement function. That is, it becomes
defined when the statement function is referenced and undefined when execution of the
statement function is completed. A name that is a statement function dummy argument can
also be the name of a variable, a common block, the dummy argument of another statement
function or appear in the dummy argument list of a FUNCTI QN, SUBROUTI NE or ENTRY
statement. It cannot be used in any other context.

The expression e can contain any of the following as operands.

1. A constant.

2. A symbolic constant.

3. Avaiablereference. Thiscan be areference to a statement function dummy
argument or to a variable that appears within the same program unit which defines
the statement function. If the statement function dummy argument has the same
name as a variable in the same program unit, the statement function dummy
argument isused. The variable reference can also be adummy argument that
appears in the dummy argument list of a FUNCTI ON or SUBROUTI NE statement.
If it isadummy argument that has appeared in the dummy argument list of an
ENTRY statement, then the ENTRY statement must have previously appeared.

An array element reference.

An intrinsic function reference.

A reference to a statement function whose defining statement has previously
appeared.

7. Anexterna function reference.

o0 A

292 Statement Functions

Functions and Subroutines

8. A dummy procedure reference.
9. Anexpression enclosed in parentheses which adheres to the rules specified for the
expression e.

12.2.1 Referencing a Statement Function

A statement function is referenced by its use in an expression. The process of executing a
statement function involves the following steps.

1. Theexpressionsthat form the actual arguments to the statement function are
evaluated.

2. The dummy arguments of the statement function are associated with the actual
arguments.

3. Theexpression e isevauated.

4. Thevalue of theresult is converted to the type of the statement function according
to the rules of assignment and is available to the expression that contained the
reference to the statement function.

The actual arguments must agree in order, number and type with the corresponding dummy
arguments.

Example:

SUBROUTI NE CALC(U, V)
REAL POLY, X, Y, U, V, Z, CONST

* Define a Statement Function.

*
POLY(X,Y) = X*¥*2 + Y**2 + 2. 0*X*Y + CONST

| nvoke the Statenent Function.

CONST = 23.5
Z =POLY(U V)

PRINT *, Z
END

In the previous exampl e, note that after the execution of the statement function, the values of
Xand Y are not equal to the value of Uand V respectively; they are undefined.

Statement Functions 293

Language Reference

12.2.2 Statement Function Restrictions

1.

A statement function islocal to the program unit in which it isdefined. Thus, a
statement function nameis not allowed to appear in an EXTERNAL statement and
cannot be passed to another procedure as an actual argument. The following
exampleillegally attempts to pass the statement function F to the subroutine SAM

Example:
* |llegally passing a statement function
* to a subroutine.
PROGRAM MAI N

A = X
CALL SAM F)

END

If a statement function F contains a reference to another statement function G then
the statement defining Gmust have previously appeared. In the following example,
the expression defining the statement function F illegally references a statement
function Gwhose defining statement follows the statement defining F.

Example:
* |1l egal order of statement functions.

F(X)

X + G X
G X) X+ 2

The statement function name must not be the same name of any other entity in the
program unit except possibly the name of a common block.

If adummy argument of a statement function is of type CHARACTER, then its
length specification must be an integer constant expression. The following is

illegal.

294 Statement Functions

Functions and Subroutines

Example:
SUBROUTI NE SAM X)
CHARACTER* (*) X
* |l legal - CHARACTER*(*) dunmy argunent not
* all owed in staterment function.
F(X) = X
PRI NT *, F(' ABC)
END

5. Anactua argument to a statement function can be any expression, except character
expressions involving the concatenation of an operand whose length specification
is(*) unlessthe operand is a symbolic constant.

12.3 Intrinsic Functions

Anintrinsic function is afunction that is provided by Watcom FORTRAN 77.

12.3.1 Specific Names and Generic Names of Intrinsic Functions

All intrinsic functions can be referenced by using the generic hame or the specific name of the
intrinsic function. The specific name uniquely identifies the function to be performed. The
type of the result is predefined thus its name need not appear in atype statement. For
example, CLOG is a specific name of the generic LOG function and computes the natural
logarithm of acomplex number. Thetype of the result is also COMPLEX.

When the generic name is used, a specific name is selected based on the data type of the actual
argument. For example, the generic name of the natural logarithm intrinsic functionis LOG.
To compute the natural logarithm of REAL, DOUBLE PRECISION, COMPLEX or
DOUBLE PRECISION COMPLEX data, the generic name LOG can be used. Generic names
simplify the use of intrinsic functions because the same name can be used with more than one
type of argument.

Notes:
1. Itisaso possibleto passintrinsic functionsto subprograms. When doing so, only
the specific name of the intrinsic function can be used as an actual argument. The

specific name must have appeared in an | NTRI NSI C statement.

2. If anintrinsic function has more than one argument, each argument must be of the
same type.

Intrinsic Functions 295

Language Reference

296

3. Thegeneric and specific name of an intrinsic function is the same for someintrinsic
functions. For example, the specific name of the intrinsic function which computes
the sine of an argument whose typeis REAL iscalled SIN which is aso the generic
name of the sine function.

The following sections present all generic and specific names of intrinsic functions and
describe how they are used. Thefollowing is a guide to interpreting the information
presented.

Data types are represented by letter codes.

1. CHARACTER isrepresented by CH.

2. LOGICAL isrepresented by L.

3. INTEGERisrepresented by I.

4. INTEGER*1 isrepresented by I1.

5. INTEGER*2isrepresented by 12.

6. REAL (REAL*4) isrepresented by R.

7. DOUBLE PRECISION (REAL*8) isrepresented by D.

8. Single precision COMPLEX (COMPLEX*8) isrepresented by C.
9 Double precision COMPLEX (COMPLEX*16) is represented by Z.

The "Definition" description gives the mathematical definition of the function performed by
theintrinsic function. There are two fields for each intrinsic function. The "Name" field lists
the specific and generic names of the intrinsic functions. When the name of anintrinsic
function is ageneric name, it isindicated by the word "generic" in parentheses; al other
names are specific names. The "Usage" field describes how the intrinsic functions are used.
"R « ATAN2(R,R)" isatypical entry in thisfield. The name of the intrinsic function always
followsthe" ~". Inthisexamplethe name of theintrinsic functionis ATANZ2. The datatype
of the arguments to the intrinsic function are enclosed in parentheses, are separated by
commas, and always follow the name of the intrinsic function. In this case, ATAN2 requires
two arguments both of type REAL. Thetype of the result of the intrinsic function isindicated
by the type preceding the™ . In this case, the result of ATAN2 is of type REAL.

Watcom FORTRAN 77 extensions to the FORTRAN 77 language are flagged by a dagger (7).

Intrinsic Functions

Functions and Subroutines

12.3.2 Type Conversion: Conversion to integer

Definition:
Name:

INT (generic)
INT

HFIX

IFIX

IDINT

Notes:

int(a)

Usage:

| <INT(1),! <INT(R),| <INT(D),! <INT(C),| «INT(Z) t

I «INT(R)

12 «HFIX(R) T

I < IFIX(R)

| —IDINT(D)

The value of int(X) is X if X isof type INTEGER. If X is of type REAL
or DOUBLE PRECISION, thenint(X) is 0 if |X|<1 and the integer
whose magnitude is the largest integer that does not exceed the
magnitude of X and has the same sign of X if [X|> 1. If X isof type
COMPLEX or COMPLEX*16, int(X) isint(real part of X).

T isan extension to FORTRAN 77.

12.3.3 Type Conversion: Conversion to real

Name:

REAL (generic)

REAL
FLOAT
SNGL

Notes:

Usage:

R « REAL(l), R < REAL(R), R « REAL(D), R —« REAL(C), R
~REAL(Z) t

R —~REAL(l)

R —~FLOAT(l)

R —~SNGL(D)

For X of type COMPLEX, REAL(X) isthereal part of X. For X of
type COMPLEX* 16, REAL (X) isthe single precision representation of

thereal part of X.

T isan extension to FORTRAN 77.

Intrinsic Functions 297

Language Reference

12.3.4 Type Conversion: Conversion to double precision

Name:

DBLE (generic)

DREAL
DFLOAT

Notes:

Usage:

D «DBLE(l), D — DBLE(R), D — DBLE(D), D —DBLE(C), D
~DBLE(2) t

D - DREAL(Z) T

D - DFLOAT(l) t

For X of type COMPLEX, DBLE(X) is the double precision
representation of thereal part of X. For X of type COMPLEX* 186,
DBLE(X) istherea part of X.

Tisan extension to FORTRAN 77.

12.3.5 Type Conversion: Conversion to complex

298

Name:

CMPLX (generic)

Notes:

Intrinsic Functions

Usage:

C < CMPLX(l), C « CMPLX(l,l), C —« CMPLX(R), C —« CMPLX(RR),
C < CMPLX(D), C — CMPLX(D,D), C « CMPLX(C), C — CMPLX(2)
T

If X isof type COMPLEX, then CMPLX(X) isX. If X isof type
COMPLEX*16, then CMPLX(X) is acomplex number whose real part
isREAL (real part of X) and imaginary part is REAL (imaginary part of
X).

If X isnot of type COMPLEX, then CMPLX(X) is the complex number
whose real part is REAL(X) and imaginary part is REAL(0).
CMPLX(X,Y) isthe complex number whose real part is REAL(X) and
whose imaginary part is REAL(Y) for X,Y not of type COMPLEX.

T isan extension to FORTRAN 77.

Functions and Subroutines

12.3.6 Type Conversion: Conversion to double complex

Name:

Usage:

DCMPLX (generic) t Z « DCMPLX(l), Z — DCMPLX(1,I), Z < DCMPLX(R), Z

Notes:

~DCMPLX(RR), Z - DCMPLX(D), Z — DCMPLX(D,D), Z
~DCMPLX(C), Z — DCMPLX(2)

If X isof type COMPLEX* 16, then DCMPLX(X) is X. If X isof type
COMPLEX, then DCMPLX(X) isa COMPLEX*16 number whose real
part is DBLE(real part of X) and imaginary part is DBLE(imaginary part
of X).

If X isnot of type COMPLEX* 16, then DCMPL X(X) isthe
COMPLEX*16 number whose real part is DBLE(X) and imaginary part
isDBLE(0). DCMPLX(X,Y) isthe COMPLEX* 16 number whose rea
part is DBLE(X) and whose imaginary part is DBLE(Y) for X,Y not of
type COMPLEX.

T isan extension to FORTRAN 77.

12.3.7 Type Conversion: Character conversion to integer

Name:

ICHAR

Notes:

Usage:
| «ICHAR(CH)

ICHAR returns an integer which describes the position of the character
in the processor collating sequence. Thefirst character in the collating
sequence isin position 0 and the last character of the collating sequence
isin position n—1 where n is the number of charactersin the collating
sequence. Thevalue of ICHAR(X) for X acharacter of length oneis
such that 0 <= ICHAR(X) <= n-1. For any characters X and Y, the
following holds true.

1. X .LT. Yif andonly if ICHAR(X) .LT. ICHAR(Y)
2. X.EQ. Y if and only if ICHAR(X) .EQ. ICHAR(Y)

CHARistheinverse of ICHAR.

Intrinsic Functions 299

Language Reference

12.3.8 Type Conversion: Conversion to character

Name:

CHAR

Notes:

12.3.9 Truncation

300

Definition:
Name:

AINT (generic)
AINT

DINT

Notes:

Intrinsic Functions

Usage:

CH — CHAR(I)

CHAR returns the character in the i’ th position of the processor collating
sequence. Thefirst character in the collating sequenceisin position O
and the last character of the collating sequenceisin position n—1 where
n is the number of charactersin the collating sequence. The value of
CHAR(l) is of type CHARACTER of length one. The argument | must
beintherange0<=1<=n-1.

ICHAR istheinverse of CHAR.

int(a)

Usage:

R <AINT(R), D — AINT(D)

R <AINT(R)

D ~DINT(D)

The value of int(X) is X if X isof type INTEGER. If X is of type REAL
or DOUBLE PRECISION, thenint(X) is 0 if [X|<1 and the integer
whose magnitude is the largest integer that does not exceed the

magnitude of X and has the same sign of X if [X|> 1. If X isof type
COMPLEX or COMPLEX*16, int(X) isint(real part of X).

Functions and Subroutines

12.3.10 Nearest Whole Number
Definition: i nt(a+.5) ifa>=0;int(a-.5) ifa<0
Name: Usage:
ANINT (generic) R —ANINT(R), D — ANINT(D)
ANINT R —~ANINT(R)

DNINT D —DNINT(D)

12.3.11 Nearest Integer

Definition: i nt (a+.5) ifa>=0;int(a-.5) ifa<0
Name: Usage:
NINT (generic) | «NINT(R), | < NINT(D)
NINT | < NINT(R)
IDNINT | —IDNINT(D)
12.3.12 Absolute Value
Definition: (ar**2+ai **2)**1/ 2 if aiscomplex; | a] otherwise
Name: Usage:
ABS (generic) | «ABS(l), 11 «AB(I1) 1,12 «ABS(12) 1, R < ABS(R), D —ABS(D),
R —~ABS(C),D «ABY(Z) t
IABS | —IABS(I)
|1ABS 11 —11IABS(11) T
|2ABS 12 —12AB(12) t
ABS R —«ABS(R)

Intrinsic Functions 301

Language Reference

DABS

CABS

CDABS

Notes:

12.3.13 Remainder

302

Definition:
Name:

MQOD (generic)

MOD

[IMOD
12MOD
AMOD
DMOD

Notes:

Intrinsic Functions

D —DABS(D)
R — CABS(C)
D - CDABS(2)

A complex number is an ordered pair of real numbers, (ar, ai) where
ar istherea part and ai istheimaginary part of the complex number.

T isan extension to FORTRAN 77.

nod(al, a2) = al-int(al/a2)*a2
Usage:

| «MOD(l,I), 11 «MOD(I1,11) 1,12 «MOD(12,12) , R < MOD(R,R),
D —~MOD(D,D),

| «MOD(l,])

11 ~11IMOD(I1,12) T

12 —«12MOD(12,12) T

R « AMOD(R,R)

D - DMOD(D,D)

Thevalue of int(X) is X if X isof type INTEGER. If X isof type REAL
or DOUBLE PRECISION, then int(X) is 0 if |X|<1 and the integer
whose magnitude is the largest integer that does not exceed the
magnitude of X and has the same sign of X if [X|> 1. If X isof type
COMPLEX or COMPLEX*16, int(X) isint(real part of X).

The value of MOD, 1IMOD, 12MOD, AMOD or DMOD is undefined if
the value of a2 is 0.

Functions and Subroutines

12.3.14 Transfer of Sign
Definition: sign(al, a2) = |al] ifa2>=0; - | al]| if a2<0
Name: Usage:
SIGN (generic) | «SIGN(I,I), 11 «SIGN(11,11) 1,12 < SIGN(12,12) T, R « SIGN(R,R),
D —SIGN(D,D)
ISIGN | —ISIGN(I,I)
I1SIGN 11 < I11SIGN(11,11) T
12SIGN 12 <12SIGN(12,12) T
SIGN R «SIGN(R,R)
DSIGN D —DSIGN(D,D)
Notes: If the value of al is 0, the result is 0 which has no sign.
12.3.15 Positive Difference
Definition: al- a2 if al>a2; 0 if al<=a2
Name: Usage:
DIM (generic) | «DIM(1,), 11 <DIM(I1,11) 1,12 < DIM(12,12) 1, R — DIM(R,R), D
~DIM(D,D)
IDIM | < IDIM(1,1)
[1IDIM 11 ~11DIM(I1L,12) T
12IDIM 12 <12DIM(12,12) T
DIM R -« DIM(R,R)
DDIM D - DDIM(D,D)

Intrinsic Functions 303

Language Reference

12.3.16 Double Precision Product

Definition: al*a2
Name: Usage:
DPROD D - DPROD(R,R)

12.3.17 Choosing Largest Value

Definition: max(al, a2,...)
Name: Usage:
MAX (generic) | « MAX(l,..), 11 < MAX(I1,..) 1,12 « MAX(I2,..) T, R < MAX(R,...),
D —«MAX(D.,...)
MAXO | « MAXO(,...)
IIMAXO 11 «I1IMAXO(11,...) T
12MAX0 12 < 12MAX0(12,..) T
AMAX1 R « AMAX1(R,...)
DMAX1 D - DMAX1(D.,...)
AMAXO R < AMAXO(I,...)
MAX1 | « MAX1L(R,...)

304 Intrinsic Functions

Functions and Subroutines

12.3.18 Choosing Smallest Value

Definition: mn(al, a2,...)

Name: Usage:

MIN (generic) | «MIN(,..), 11 < MIN(I1,...) 1,12 <MIN(12,..) T, R <« MIN(R,...), D
~MIN(D,...)

MINO | «MINO(,...)

[IMINO 11 «I1IMINO(11,...) T

[2MINO 12 «12MINO(12,...) T

AMIN1 R « AMINL(R,...)

DMIN1 D —DMIN1(D,..)

AMINO R « AMINO(,...)

MIN1 | « MINL(R,...)

12.3.19 Length

Definition: Length of character entity

Name: Usage:

LEN | — LEN(CH)

Notes: The argument to the LEN function need not be defined.

Intrinsic Functions 305

Language Reference

12.3.20 Length Without Trailing Blanks

Definition:

Name:

LENTRIM

Length of character entity excluding trailing blanks
Usage:

| —« LENTRIM(CH)

12.3.21 Index of a Substring

Definition:

Name:

INDEX

Notes:

i ndex(al, a2) islocation of substring a2 instring al

Usage:

| — INDEX(CH,CH)

INDEX(x,y) returns the starting position of asubstring in x whichis

identical toy. The position of the first such substring isreturned. Ifyis
not contained in x, zero is returned.

12.3.22 Imaginary Part of Complex Number

306

Definition:
Name:

IMAG (generic) T
AIMAG

DIMAG

Notes:

Intrinsic Functions

ai

Usage:

R «IMAG(C), D —IMAG(2)
R < AIMAG(C)

D —DIMAG(Z) t

A complex number is an ordered pair of real numbers, (ar, ai) where
ar isthereal part and ai istheimaginary part of the complex number.

T isan extension to FORTRAN 77.

Functions and Subroutines

12.3.23 Conjugate of a Complex Number

Definition:

Name:

CONJG (generic) T
CONJG

DCONJG

Notes:

12.3.24 Square Root
Definition:
Name:
SQRT (generic)
SQRT
DSQRT
CSQRT
CDSQRT

Notes:

(ar,-ai)

Usage:

C ~CONJG(C), Z — CONJIG(Z)
C — CONJG(C)

Z - DCONJG(Z) t

A complex number is an ordered pair of real numbers, (ar, ai) where
ar isthereal part and ai istheimaginary part of the complex number.

Tisan extension to FORTRAN 77.

a**1/2

Usage:

R <« SQRT(R), D — SQRT(D), C —SQRT(C), Z — SQRT(2) t

R « SQRT(R)

D —DSQRT(D)

C ~CSQRT(C)

Z — CDSQRT(Z) t

The argument to SQRT must be >= 0. The result of CSQRT and
CDSQRT isthe principa value with thereal part >= 0. When the real

part of the result is 0, the imaginary part is >= 0.

Tisan extension to FORTRAN 77.

Intrinsic Functions 307

Language Reference

12.3.25 Exponential

Definition:
Name:

EXP (generic)
EXP

DEXP

CEXP
CDEXP

Notes:

e**a

Usage:

R < EXP(R), D — EXP(D), C — EXP(C),Z - EXP(Z) t
R « EXP(R)

D — DEXP(D)

C ~CEXP(C)

Z - CDEXP(Z) t

Theresult of acomplex function is the principal value.

T isan extension to FORTRAN 77.

12.3.26 Natural Logarithm

308

Definition:

Name:

LOG (generic)
ALOG

DLOG

CLOG
CDLOG

Notes:

Intrinsic Functions

log (a)
e

Usage:

R < LOG(R),D —LOG(D), C —LOG(C),Z —LOG(Z) t

R —«ALOG(R)

D —DLOG(D)

C ~CLOG(C)

Z - CDLOG(2) T

The value of a must be > 0. The argument of CLOG and CDLOG must

not be (0,0). Theresult of CLOG and CDLOG is such that -Tt<
imaginary part of the result <= 1. Theimaginary part of the result is 1t

Functions and Subroutines

only when the real part of the argument is < 0 and the imaginary part of
the argument = 0.

Theresult of acomplex function isthe principal value.

Tisan extension to FORTRAN 77.

12.3.27 Common Logarithm
Definition:

log (a)
10

Name: Usage:

LOGI10 (generic) R ~LOGI10(R),D ~LOG10(D)

ALOG10 R —~ALOGI10(R)
DLOG10 D - DLOG10(D)
12.3.28 Sine
Definition: sin(a)
Name: Usage:
SIN (generic) R <« SIN(R), D ~SIN(D), C ~SIN(C), Z - SIN(Z) t
SIN R < SIN(R)
DSIN D —DSIN(D)
CSIN C ~CSIN(C)
CDSIN Z —~CDSIN(Z) t
Notes: All angles are assumed to be in radians.

The result of acomplex function isthe principal value.

Intrinsic Functions 309

Language Reference

T isan extension to FORTRAN 77.

12.3.29 Cosine
Definition: cos(a)
Name: Usage:

COS (generic) R « COS(R), D —COS(D), C — COS(C), Z — COS(Z) t

COos R — COS(R)

DCOS D —DCOS(D)

CCOS C ~CCOS(C)

CDCOS Z —~CDCOS(2) t

Notes: All angles are assumed to be in radians.

Theresult of acomplex function isthe principal value.

T isan extension to FORTRAN 77.

12.3.30 Tangent
Definition: tan(a)
Name: Usage:
TAN (generic) R < TAN(R), D - TAN(D)
TAN R « TAN(R)
DTAN D ~DTAN(D)
Notes: All angles are assumed to be in radians.

310 Intrinsic Functions

Functions and Subroutines

12.3.31 Cotangent
Definition: cot an(a)
Name: Usage:

COTAN (generic) T R « COTAN(R), D - COTAN(D)

COTAN R « COTAN(R) t
DCOTAN D —DCOTAN(D) t
Notes: All angles are assumed to be in radians.

Tisan extension to FORTRAN 77.

12.3.32 Arcsine
Definition: arcsin(a)
Name: Usage:

ASIN (generic) R < ASIN(R), D — ASIN(D)

ASIN R <« ASIN(R)
DASIN D ~DASIN(D)
Notes: The absolute value of the argument of ASIN and DASIN must be <= 1.

The result is such that -17/2 <= result <= 172.

Intrinsic Functions 311

Language Reference

12.3.33 Arccosine

Definition:
Name:

ACOS (generic)
ACOS

DACOS

Notes:

12.3.34 Arctangent

312

Definition:
Name:

ATAN (generic)
ATAN

DATAN
Definition:
Name:

ATAN2 (generic)
ATAN2
DATAN2

Notes:

Intrinsic Functions

arccos(a)

Usage:

R <« ACOS(R), D — ACOS(D)
R — ACOS(R)

D — DACOS(D)

The absolute value of the argument of ACOS and DACOS must be <= 1.
Theresult is such that 0 <= result <=T1.

arctan(a)

Usage:

R —«ATAN(R), D - ATAN(D)

R —«ATAN(R)

D —DATAN(D)

arctan(al/ a2)

Usage:

R «ATAN2(R,R), D - ATAN2(D,D)

R — ATAN2(R,R)

D - DATAN2(D,D)

The result of ATAN and DATAN is such that -172 <= result <= 102. If

the value of the first argument of ATAN2 and DATAN2 is positive then
theresult is positive. If the value of the first argument is O, the result is

0 if the second argument is positive and Ttif the second argument is
negative. If the value of the first argument is negative, theresult is

Functions and Subroutines

negative. If the value of the second argument is 0, the absolute value of
theresult isT/2. The arguments must not both be 0. The result of
ATANZ2 and DATANZ issuch that -Tt< result <= Tt

12.3.35 Hyperbolic Sine
Definition: si nh(a)
Name: Usage:
SINH (generic) R < SINH(R) D — SINH(D)
SINH R ~SINH(R)

DSINH D — DSINH(D)

12.3.36 Hyperbolic Cosine
Definition: cosh(a)
Name: Usage:
COSH (generic) R <« COSH(R), D - COSH(D)
COSH R —~ COSH(R)

DCOSH D . DCOSH(D)

Intrinsic Functions 313

Language Reference

12.3.37 Hyperbolic Tangent
Definition: t anh(a)
Name: Usage:
TANH (generic) R —TANH(R), D - TANH(D)
TANH R —« TANH(R)

DTANH D — DTANH(D)

12.3.38 Gamma Function
Definition: ganma(a)
Name: Usage:
GAMMA (generic) R —« GAMMA(R), D — GAMMA(D)
GAMMA R « GAMMA(R)

DGAMMA D - DGAMMA(D)

12.3.39 Natural Log of Gamma Function
Definition:

l'og (ganma(a))
e

Name: Usage:
LGAMMA (generic) R -« LGAMMA(R), D -« LGAMMA(D)
ALGAMA R « ALGAMA(R)

DLGAMA D —DLGAMA(D)

314 Intrinsic Functions

Functions and Subroutines

12.3.40 Error Function
Definition: erf(a)
Name: Usage:
ERF (generic) R — ERF(R), D — ERF(D)
ERF R — ERF(R)
DERF D — DERF(D)

12.3.41 Complement of Error Function

Definition:

Name:

ERFC (generic)

ERFC

DERFC

l-erf(a)

Usage:

R - ERFC(R), D — ERFC(D)
R — ERFC(R)

D — DERFC(D)

12.3.42 Lexically Greater Than or Equal

Definition:

Name:

LGE

Notes:

al>=a2
Usage:
L < LGE(CH,CH)

The ASCII collating sequenceis used to evaluate the relation.

Intrinsic Functions 315

Language Reference

12.3.43 Lexically Greater Than

Definition: al>a2

Name: Usage:

LGT L —LGT(CH,CH)

Notes: The ASCII collating sequenceis used to evaluate the relation.

12.3.44 Lexically Less Than or Equal

Definition: al<=a2

Name: Usage:

LLE L < LLE(CH,CH)

Notes: The ASCII collating sequenceis used to evaluate the relation.

12.3.45 Lexically Less Than

316

Definition: al<a2

Name: Usage:

LLT L —LLT(CH,CH)

Notes: The ASCII collating sequence is used to evaluate the relation.

Intrinsic Functions

Functions and Subroutines

12.3.46 Binary Pattern Processing Functions: Boolean AND

Definition:
Name:

IAND (generic)
IAND

I1AND

[2AND

i and(i,j) Boolean AND

Usage:

| —IAND(1,), 11 —<IAND(11,12), 12 —~IAND(12,12)
| —IAND(I,1)

11 —11AND(I1,12)

12 — 12AND(12,12)

12.3.47 Binary Pattern Processing Functions: Boolean Inclusive OR

Definition:
Name:

IOR (generic)
IOR

I10R

[20R

ior(i,j) Booleaninclusive OR

Usage:

| —1OR(l,1), 11 —~IOR(IL,11), 12 —IOR(I2,12)
| —10OR(l,1)

11 —110R(11,11)

12 < 120R(12,12)

Intrinsic Functions 317

Language Reference

12.3.48 Binary Pattern Processing Functions: Boolean Exclusive OR

Definition: i eor(i,]j) Boolean exclusive OR

Name: Usage:

| EOR (generic) | <1EOR(I,I), 11 < IEOR(I1,11), 12 — IEOR(12,12)
[EOR | < 1EOR(I,I)

I1IEOR 11 ~11EOR(11,11)

I2EOR 12 < 12EOR(12,12)

12.3.49 Binary Pattern Processing Functions: Boolean Complement

Definition: not (i) Boolean complement

Name: Usage:

NOT (generic) | « NOT(I), 11 < NOT(I2), 12 — NOT(I2)
NOT | « NOT(l)

[INOT 11 <« I1INOT(12)

12NOT 12 «12NOT(12)

318 Intrinsic Functions

Functions and Subroutines

Definition:
Name:

ISHL (generic)
ISHL

[1ISHL
121SHL
Definition:
Name:

ISHFT (generic)
ISHFT
[1ISHFT
I21SHFT

Notes:

12.3.50 Binary Pattern Processing Functions: Logical Shift

i shl (j,n) Logical shift
Usage:

| —ISHL(L,1), 11 <ISHL(I1,11), 12 < ISHL(12,12)

| —ISHL(I,I)

11 —I11SHL(11,12)

12 —12SHL(12,12)

i shft(j,n) Logical shift

Usage:

| <ISHFT(,1), 11 < ISHFT(11,12), 12 < ISHFT(12,12)

| < ISHFT(l,1)

11 —I1SHFT(I11,11)

12 —12SHFT(12,12)

There are three shift operations: logical, arithmetic and circular. These
shift operations are implemented as integer functions having two
arguments. Thefirst argument, j , isthe value to be shifted and the
second argument, n, isthe number of bitsto shift. If nislessthan0, a
right shift isperformed. If n isgreater than 0, aleft shift is performed.
If nisequal to 0, no shift is performed. Note that the arguments are not

modified.

Inalogical shift, bits shifted out from the left or right are lost. Zeros are
shifted in from the opposite end.

In an arithmetic shift, j isconsidered asigned integer. In the case of a
right shift, zeros are shifted into the left if | ispositiveand onesif | is
negative. Bits shifted out of theright are lost. In the case of aleft shift,
zeros are shifted into the right and hits shifted out of the left are lost.

Intrinsic Functions 319

Language Reference

In acircular shift, bits shifted out one end are shifted into the opposite
end. No bhitsare lost.

12.3.51 Binary Pattern Processing Functions: Arithmetic Shift

320

Definition:
Name:

ISHA (generic)
ISHA

[1ISHA
I21SHA

Notes:

Intrinsic Functions

i sha(j, n) Arithmetic shift

Usage:

I <ISHA(I,), 11 <« ISHA(11,11), 12 < ISHA(12,12)
I <ISHA(,I)

11 —11SHA(IL,11)

12 —12SHA(12,12)

There are three shift operations: logical, arithmetic and circular. These
shift operations are implemented as integer functions having two
arguments. Thefirst argument, j , isthe value to be shifted and the
second argument, n, isthe number of bitsto shift. If nislessthan 0, a
right shift isperformed. If n isgreater than 0, aleft shift is performed.
If nisequal to 0, no shift is performed. Note that the arguments are not
modified.

Inalogical shift, bits shifted out from the left or right are lost. Zeros are
shifted in from the opposite end.

In an arithmetic shift, j isconsidered asigned integer. In the case of a
right shift, zeros are shifted into the left if | ispositiveand onesif j is
negative. Bits shifted out of theright are lost. In the case of aleft shift,
zeros are shifted into the right and hits shifted out of the left are lost.

In acircular shift, bits shifted out one end are shifted into the opposite
end. No bitsarelost.

Functions and Subroutines

12.3.52 Binary Pattern Processing Functions: Circular Shift

Definition:
Name:

ISHC (generic)
ISHC

[1ISHC
[21SHC

Notes:

i shc(j, n) Circular shift

Usage:

| —ISHC(I,1), 11 —ISHC(I11,11), 12 — ISHC(I2,12)
| —ISHC(,1)

11 —11SHC(I1,11)

12 —12SHC(12,12)

There are three shift operations: logical, arithmetic and circular. These
shift operations are implemented as integer functions having two
arguments. Thefirst argument, j , isthe value to be shifted and the
second argument, n, isthe number of bitsto shift. If nislessthan 0, a
right shift isperformed. If n isgreater than 0, aleft shift is performed.
If nisequal to 0, no shift is performed. Note that the arguments are not
modified.

Inalogica shift, bits shifted out from the left or right are lost. Zeros are
shifted in from the opposite end.

In an arithmetic shift, j isconsidered asigned integer. In the case of a
right shift, zeros are shifted into the left if | ispositive and onesif | is
negative. Bits shifted out of theright arelost. In the case of aleft shift,
zeros are shifted into the right and bits shifted out of the left are lost.

In acircular shift, bits shifted out one end are shifted into the opposite
end. No bitsarelost.

Intrinsic Functions 321

Language Reference

12.3.53 Binary Pattern Processing Functions: Bit Testing

Definition: Test bit - a2'th bit of al istested. If itis1, .TRUE. isreturned. If itis
0, .FALSE. isreturned.

Name: Usage:

BTEST (generic) L «BTEST(l,), L —BTEST(11,11), L — BTEST(I2,12)

BTEST L < BTEST(,))
|1BTEST L < I1BTEST(I1,12)
|2BTEST L < I2BTEST(12,12)

12.3.54 Binary Pattern Processing Functions: Set Bit
Definition: Set bit - Return al with a2'th bit set.
Name: Usage:

IBSET (generic) | < IBSET(I,1), 11 IBSET(I1,11), 12 IBSET(12,12)

IBSET | —IBSET(I,l)
| 1I1BSET 11 < 11BSET(11,11)
121BSET 12 < 12BSET(12,12)

322 Intrinsic Functions

Functions and Subroutines

12.3.55 Binary Pattern Processing Functions: Clear Bit

Definition: Clear bit - Return al with a2'th bit cleared.

Name: Usage:

IBCLR (generic) | —IBCLR(l,), 11 —<IBCLR(11,11), 12 — IBCLR(12,12)
IBCLR | «IBCLR(,))

[1IBCLR 11 ~11BCLR(11,12)

I2IBCLR 12 «12BCLR(12,12)

12.3.56 Binary Pattern Processing Functions: Change Bit
Definition: Change bit - Return al with a2’ th bit complemented.
Name: Usage:

IBCHNG (generic) | —IBCHNG(I,), 11 < IBCHNG(11,11), 12 — IBCHNG(I2,12)

IBCHNG | < IBCHNG(I,I)
[1IBCHNG 11 —~11BCHNG(I1,11)
[2IBCHNG 12 —«12BCHNG(12,12)

Intrinsic Functions 323

Language Reference

12.3.57 Binary Pattern Processing Functions: Arithmetic Shifts
Definition: [shift(j,n) Arithmeticleft shift
Name: Usage:

LSHIFT (generic) | «LSHIFT(I1), 11 « LSHIFT(I1,I11), 12 — LSHIFT(I2,12)

LSHIFT | <« LSHIFT(,I)

[ILSHIFT 1 < I11LSHIFT(11,11)

[2LSHIFT 12 < 12LSHIFT(12,12)

Definition: rshift(j,n) Arithmetic right shift
Name: Usage:

RSHIFT (generic) | —RSHIFT(l,), I1 « RSHIFT(I1,11), 12 « RSHIFT(12,12)

RSHIFT | « RSHIFT(l,I)
IIRSHIFT 11 <« I1IRSHIFT(11,12)
I2RSHIFT 12 <« I12RSHIFT(12,12)
Notes:

With these shift functions, n must be a non-negative integer. Inan
arithmetic shift, j isconsidered asigned integer. Inthe case of aleft
shift, zeros are shifted into the right and bits shifted out of the left are
lost. Inthe case of aright shift, zeros are shifted into the left if | is
positive and onesif j isnegative. Bits shifted out of theright are lost.

If n isequal to O, no shift is performed. Note that the arguments are not
modified.

These functions are compiled as in-line code unless they are passed as
arguments.

324 Intrinsic Functions

Functions and Subroutines

12.3.58 Allocated Array

Definition: Isarray A alocated?
Name: Usage:
ALLOCATED L « ALLOCATED(A)
12.3.59 Memory Location
Definition: Location of A where A isany variable, array or array element
Name: Usage:
LOC | «LOC(A)

12.3.60 Size of Variable or Structure

Definition:

Name:

|SIZEOF

Notes:

Size of A in byteswhere A is any constant, variable, array, or structure
Usage:
| < ISIZEOF(A)

The size reported for a constant or simple variable is based on its type.
The size of a CHARACTER constant is the number of charactersin the
constant. The sizereported for an array is the size of the storage area
required for the array. The size reported for a structure is the size of the
storage area required for the structure. An assumed-size CHARACTER
variable, assumed-size array, or alocatable array has size 0.

Intrinsic Functions 325

Language Reference

12.3.61 Volatile Reference

Definition: A isavolatile reference

Name: Usage:

VOLATILE A ~VOLATILE(A)

Notes: A volatile reference to a symbol indicates that the value of the symbol

may be modified in ways that are unknown to the subprogram. For
example, a symbol in common being referenced in a subprogram may be
modified by another subprogram that is processing an asynchronous
interrupt. Therefore, any subprogram that is referencing the symbol to
determine its value should reference this symbol using the VOLATI LE
intrinsic function so that the value currently being evaluated agrees with
the value last stored.

12.4 External Functions

An external function is a program unit that hasa FUNCTI ON statement as itsfirst statement.
It is defined externally to the program units that referenceit. Theform of a FUNCTI ON
statement is defined in the chapter entitled "FORTRAN Statements’ on page 9.

The name of an external function istreated asif it was avariable. It isthrough the function
name that the result of an external function becomes defined. This variable must become
defined before the execution of the external function is completed. Once defined, it can be
referenced or redefined. The value of this variable when a RETURN or END statement is
executed is the result returned by the external function.

Example:
| NTEGER FUNCTI ON VECSUM A, N)
| NTEGER A(N), |
VECSUM = 0
DO10 I =1, N
VECSUM = VECSUM + A()
10 CONTI NUE
END

If the variable representing the return value of the external function is of type CHARACTER
with alength specification of (*), it must not be the operand of a concatenation operator
unlessit appearsin a character assignment statement.

326 External Functions

Functions and Subroutines

It isalso possible for an external function to return results through its dummy arguments by
assigning to them. The following example demonstrates this.

Example:
| NTEGER MARKS(40), N
REAL AVG STDDEV, MEAN
PRINT *, 'Enter nunber of marks’
READ(5, *) N
PRI NT *, 'Enter marks’
READ(5, *) (MARKS(I), I =1, N
AVG = MEAN(MARKS, N, STDDEV)
PRINT *, "Mean = ', AVG
$ ' Standard Deviation = ', STDDEV
END
*
* Define function MEAN to return the average by
* defining the function name and return the standard
* deviation by defining a dumry argunent.
*

REAL FUNCTI ON MEAN(A, N, STDDEV)
INTEGER A, N, |
REAL STDDEV
DI MENSI ON A(N)
MEAN = 0
DO10 | =1, N
MEAN = MEAN + A(1)
10 CONTI NUE
MEAN = MEAN / N
STDDEV = 0
DO20 | =1, N
STDDEV = STDDEV + (A(l) - MEAN)**2
20 CONTI NUE
STDDEV = SQRT(STDDEV / (N - 1))
END

12.4.1 Referencing an External Function

When an external function is referenced in an expression or a CALL statement, the following
steps are performed.

1. Theactua arguments are evaluated.

2. Theactual arguments are associated with the corresponding dummy arguments.
3. Theexterna function is executed.

External Functions 327

Language Reference

The type of the external function reference must be the same as the type of the function name
in the external function subprogram. If the external function is of type CHARACTER, the
length must also match.

12.4.2 Actual Arguments for an External Function

An actual argument must be one of the following.

1

2.
3.

4.
5

Any expression except a character expression involving the concatenation of an
operand whose length specification is (*) unless the operand is asymbolic
constant.

An array name.

An intrinsic function name (must be the specific name) that has appeared in an
| NTRI NSI C statement.

An external procedure name.

A dummy procedure name.

The actual arguments of an external function reference must match the order, number and type
of the corresponding dummy arguments. |f a subroutine isan actual argument, then type
agreement is not required since a subroutine has no type.

12.4.3 External Function Subprogram Restrictions

1.

The name of an external function is a global name and must not be the same as any
other global name or name local to the subprogram whose name is that of the
external function. Note that the external function name is treated as a variable
within the external function subprogram.

The name of adummy argument is a name local to the subprogram and must not
appear inan EQUI VALENCE, PARAMETER, SAVE, | NTRI NSI Cor DATA
statement within the same subprogram. It may appear in a COVIMON statement only
as the name of a common block.

The name of the external function can in no way, directly or indirectly, be
referenced as a subprogram from within the subprogram it defines. It can appear in
atype statement to establish its type only if the type has not been established in the
FUNCTI ON statement.

328 External Functions

Functions and Subroutines

12.5 Subroutines

A subroutine is a program unit that has a SUBROUT| NE statement asiit first statement. Itis
defined externally to the program units that referenceit. The form of a SUBROUTI NE
statement can be found in the chapter entitled "FORTRAN Statements" on page 9.

A subroutine differs from afunction in that it does not return aresult and hence has no type
associated with it. However, it is possible to return values from a subroutine by defining or
redefining the dummy arguments of the subroutine.

12.5.1 Referencing a Subroutine: The CALL Statement

Unlike a function, a subroutine cannot appear in an expression. Subroutines are referenced by
using a CALL statement. See the chapter entitled "FORTRAN Statements" on page 9 for
details on the CALL statement. When a CALL statement is executed, the following steps are
performed.

1. Theactua arguments are evaluated.
2. Theactual arguments are associated with the corresponding dummy arguments.
3. Thesubroutineis executed.

A subroutine can be called from any subprogram but must not be called by itself, indirectly or
directly.

12.5.2 Actual Arguments for a Subroutine
Each actual argument in a subroutine call must be one of the following.

1. Any expression except acharacter expression involving the concatenation of an
operand whose length specification is (*) unless the operand isasymbolic
constant.

An array name.

3. Anintrinsic function name (must be the specific name) that has appeared in an

I NTRI NSI C statement.

An external procedure name.

A dummy procedure name.

An alternate return specifier of theform * s where s is a statement number of an
executable statement in the subprogram which contained the CALL statement. This
will be covered in more detail when the RETURN statement is discussed.

N

o 0 A

Subroutines 329

Language Reference

The actual arguments must agree in order, number and type with the corresponding dummy
arguments. The type agreement does not apply to an actual argument which is an alternate
return specifier or a subroutine name since neither has atype.

12.5.3 Subroutine Subprogram Restrictions

1. A subroutine subprogram can contain any statement except a FUNCTI QN, BLOCK
DATA or PROGRAMstatement.

2. Thename of asubroutineis agloba name and must not be used as another global
name. Furthermore, no local name in the subroutine subprogram can have the same
name as the subroutine.

3. Thename of adummy argument islocal to the subroutine subprogram and must not
appear in an EQUI VALENCE, PARAMETER, SAVE, | NTRI NSI Cor DATA
statement. 1t may appear in a COMMON statement only as the name of a common
block.

12.6 The ENTRY Statement

An ENTRY statement allows execution of a subprogram to begin at a particular executable
statement within the subprogram in which it appears. An ENTRY statement defines an
alternate entry point into a subprogram and can appear anywhere after the FUNCTI ON
statement in a function subprogram or the SUBROUTI NE statement in a subroutine
subprogram. Also, it must not appear as a statement between the beginning and end of a
control structure. For example, an ENTRY statement cannot appear between ablock | F
statement and its corresponding END | F statement or between a DO statement and the
corresponding terminal statement. It is possible to have more than one ENTRY statement in a
subprogram. An ENTRY statement is a non-executable statement. The form of an ENTRY
statement can be found in the chapter entitled "FORTRAN Statements" on page 9.

Each entry name defines an externa function if it appearsin afunction, or an external
subroutineif it appearsin asubroutine and is referenced in the same way as the actual
function or subroutine name would be referenced. Execution begins at the first executable
statement that follows the ENTRY statement. The order, number, type and names of the
dummy argument lists of an ENTRY statement may be different from that of a FUNCTI ON,
SUBROUTI NE or other ENTRY statement. However, there must still be agreement between
the actual argument list used to reference an entry name and the dummy argument list in the
corresponding ENTRY statement.

330 The ENTRY Statement

Functions and Subroutines

12.6.1 ENTRY Statements in External Functions

Entry names may also appear in type statements. Their type may or may not be the same type
as other entry names or the actual name of the external function unless the function is of type
CHARACTER. If the function is of type CHARACTER then the type of all the entry names
must be of type CHARACTER. Conversdly, if an entry nameis of type CHARACTER, then
all other entry names and the function name must be of type CHARACTER. An entry name,
like external function names, istreated as a variable within the subprogram it appears. Within
afunction subprogram, there is an association between variables whose name is an entry name
and the variable whose name corresponds to the external function. When such avariable
becomes defined, all other such variables of the same type a so become defined and other such
variables not of the same type become undefined. This can be best illustrated by an example.

Example:
PRI NT *, EVAL(2), EVAL3(4.0)
END

| NTEGER FUNCTI ON EVAL(X)
| NTEGER EVAL2, X
REAL EVAL3, Y
c=1
GOTO 10
ENTRY EVAL2(X)
cC=2
GOTO 10
ENTRY EVAL3(Y)
c=3

10 EVAL2 = C * X
END

In the previous example, invoking EVAL would cause the result of 2 to be returned even
though EVAL was never assigned to in the function EVAL but since EVAL2 and EVAL are of
the same type they are associated and hence defining EVAL2 causes EVAL to be defined.
However, invoking EVAL3 would cause an undefined result to be returned since EVAL3 is of
type REAL and EVAL2 is of type INTEGER and hence are not associated. EVAL3 does not
become defined.

12.6.2 ENTRY Statement Restrictions

1. Anentry name may not appear in any statement previousto the ENTRY statement
containing the entry name except in atype statement.

The ENTRY Statement 331

Language Reference

If an entry name in afunction is of type CHARACTER, each entry name and the
name of the function must also be of type CHARACTER. If the name of the
function or the name of any entry point has alength specification of (*), thenall
such entities must have alength specification of (*) otherwisethey must al have
alength specification of the same integer value.

If adummy argument appears in an executabl e statement, then that statement can
be executed provided that the dummy argument isin the dummy argument list of
the procedure name referenced.

A name that appears as a dummy argument in an ENTRY statement must not appear
in the expression of a statement function unless it is adummy argument of the
statement function, it has appeared in the dummy argument list of a FUNCTI ON or
SUBROUTI NE statement, or the ENTRY statement appears before the statement
function statement.

A name that appears as adummy argument in an ENTRY statement must not appear
in an executable statement preceding the ENTRY statement unless it has also
appeared in a FUNCTI ON, SUBRQOUTI NE, or ENTRY statement that precedes the
executable statement.

12.7 The RETURN Statement

A RETURN statement is away to terminate the execution of afunction or subroutine
subprogram and return control to the program unit that referenced it. Asan extension to
FORTRAN 77, Watcom FORTRAN 77 permits the use of the RETURN statement in the main
program. A subprogram (or main program) may contain more than one RETURN statement
or it may contain no RETURN statement. In the latter case, the END statement has the same
effect as a RETURN statement.

Execution of a RETURN or END statement causes all local entities to become undefined except
for the following.

AwWDdDE

Entities specified in a SAVE statement.

Entities in blank common.

Initially defined entities that have neither been redefined nor become undefined.
Entities in a named common block that appears in the subprogram and in a program
unit that references the subprogram directly or indirectly.

332 The RETURN Statement

Functions and Subroutines

12.7.1 RETURN Statement in the Main Program (Extension)

The form of a RETURN statement in a main program is:

RETURN

When a RETURN statement is executed in the main program, program execution terminates in
the same manner asthe STOP or END statement. Thisisan extension to FORTRAN 77.

12.7.2 RETURN Statement in Function Subprograms

The form of a RETURN statement in a function subprogram is:

RETURN

When a RETURN statement is executed in a function subprogram, the function value must be
defined. Control isthen passed back to the program unit that referenced it.

12.7.3 RETURN Statement in Subroutine Subprograms

The form of a RETURN statement in a subroutine subprogram is:

RETURN [e]

where:

e isan integer expression.

If the expression e is omitted or has a value less than one or greater than the number of
asterisks appearing in the dummy argument list of the subroutine or entry name referenced,

then control is returned to the next executable statement that follows the CALL statement in
the referencing program unit. If 1 <= e <=n where n isthe number of asterisks appearing in

The RETURN Statement 333

Language Reference

the SUBROUTI NE or ENTRY statement which contains the referenced name, then the
expression e identifies the eth asterisk in the dummy argument list. Control isreturned to the
statement identified by the alternate return specified in the CALL statement that corresponds
to the eth asterisk in the dummy argument list of the referenced subroutine. The following
example demonstrates the use of aternate return specifiersin conjunction with the RETURN

Statement.
Example:
REAL X, Y
READ *, X, Y
CALL CWMP(X, Y, *10, *20)
PRINT *, ' X equals Y
GOTO 30
10 PRINT *, "X less than Y’
GOTOo 30
20 PRINT *, "X greater than Y’
30 END

SUBROUTINE CMP(X, Y, *, *)
IF(X .LT. Y)RETURN 1

IF(X .GT. Y)RETURN 2
RETURN

END

12.8 Subprogram Arguments

Arguments provide a means of communication between program units. Arguments are passed
to subprograms through argument lists and are received by subprograms through argument
lists. The argument list used to pass arguments to a subprogram is called the actual argument
list and the arguments are called actual arguments. The argument list of the receiving
subprogram is called the dummy argument list and the arguments are called dummy
arguments. The actual argument list must agree with the dummy argument list in number,
order and type.

12.8.1 Dummy Arguments

Statement function, external functions and subroutines use dummy arguments to define the
type of actual arguments they expect. A dummy argument is one of the following.

1. Vaiable.

2. Array.
3. Dummy procedure.

334 Subprogram Arguments

Functions and Subroutines

4, Asterisk (*) indicating a statement label.
Notes:
1. A statement function dummy argument may only be avariable.
2. Anasterisk can only be adummy argument for a subroutine subprogram.

Dummy arguments that are variables of type INTEGER can be used in dummy array
declarators. No dummy argument may appear in an EQUI VALENCE, DATA, PARANVETER,
SAVE, | NTRI NSI Cor COMVON statement except as a common block name. A dummy
argument must not be the same name as the subprogram name specified in the FUNCTI ON,
SUBROUTI NE or ENTRY statement. Other than these restrictions, dummy arguments can be
used in the same way an actual name of the same class would be used.

12.8.2 Actual Arguments

Actua arguments specify the entities that are to be associated with the dummy arguments
when referencing a subroutine or function. Actua arguments can be any of the following.

1. Any expression, except character expression involving the concatenation of an
operand whose length specification is (*) unless the operand is asymbolic
constant.

An array name.

An intrinsic function name.

An external function or subroutine name.

A dummy procedure name.

An alternate return specifier of theform * s where s is a statement number of an
executable statement in the subprogram which contained the CALL statement.

ok wWN

Notes:
1. A statement function actual argument can only be a variable or an expression.

2. Anadternate return specifier can only be an actual argument in the actual argument
list of asubroutine reference.

Subprogram Arguments 335

Language Reference

12.8.3 Association of Actual and Dummy Arguments

When afunction or subroutine reference is executed, an association is established between the
actual arguments and the corresponding dummy arguments. The first dummy argument is
associated with the first actual argument, the second dummy argument is associated with the
second actual argument, etc. Association requires that the types of the actual and dummy
arguments agree. A subroutine has no type and when used as an actual argument must be
associated with a dummy procedure. An aternate return specifier has no type and must be
associated with an asterisk. Arguments can be passed through more than one level of
procedure reference. In this case, valid association must exist at all intermediate levels as well
asthelast level. Argument association isterminated upon the execution of a RETURN or END
statement.

12.8.3.1 Length of Character Actual and Dummy Arguments

If adummy argument is of type CHARACTER, the corresponding actual argument must also
be of type CHARACTER and the length of the dummy argument must be less than or equal to
the length of the actual argument. If the length of the dummy argument is | en thenthel en
leftmost characters of the actual argument are associated with the dummy argument.

If adummy argument of type CHARACTER is an array name, then the restriction on the
length is on the whole array and not for each array element. The length of an array element of
the dummy argument may be different from the length of the array element of the
corresponding actual array, array element, or array element substring, but the dummy array
argument must not extend beyond the end of the associated actua array.

12.8.3.2 Variables as Dummy Arguments

A dummy argument that is a variable may be associated with an actual argument that isa
variable, array element, substring or expression. Only if the actual argument isavariable,
array element or substring can the corresponding actual argument be redefined.

12.8.3.3 Arrays as Dummy Arguments

A dummy argument that is an array may be associated with an actual argument that is an
array, array element or array element substring. The number and size of the dimensionsin the
actual argument array declarator may be different from the number and size of the dimensions
in the dummy argument array declarator.

If the actual argument is a non-character array name, then the size of the dummy argument
array must not exceed the size of the actual argument array. An element of the actual array

336 Subprogram Arguments

Functions and Subroutines

becomes associated with the element in the dummy array with the same subscript value.
Association by array element of character arrays exists only if the lengths of the array
elements are the same. If their lengths are not the same, the dummy and actual array elements
will not consist of the same characters.

If the actual argument is anon-character array element name whose subscript value is asv the
size of the dummy argument array must not exceed the size of the actual argument array less
asv - 1. Furthermore, the dummy argument array element whose subscript value is dsv
becomes associated with the actual argument array element whose subscript valueisasv + dsv
- 1. Consider the following example.

Example:
DI MENSI ON A(10)
CALL SAM A(3))
END

SUBROUTI NE SAM B)
DI MENSI ON B(5)

END

In the previous example, array Aisan actual argument and the array B isthe dummy
argument. Suppose we wanted to know which element of A isassociated with the 4th element
of B. Then asv would have value 3 since the array element A(3) isthe actua argument, and
dsvis4. Thenthe 4th elementin Bis3 + 4 - 1 = 6th element of A.

If the actual argument is a character array name, character array element name or character
array element substring which begins at character storage unit ach, then the character storage
unit dch of the dummy argument array is associated with the character storage unit ach + dch
- 1 of the actual array. The size of the dummy character array must not exceed the size of the
actual argument array.

12.8.3.4 Procedures as Dummy Arguments

A dummy argument that is a dummy procedure can only be associated with an actual
argument that is one of the following.

Intrinsic function.

External function.

External Subroutine.
Another dummy procedure.

AL PE

Subprogram Arguments 337

Language Reference

If the dummy argument is used as a subroutine (that isit isinvoked using a CALL statement)
then the corresponding actual argument must either be a subroutine or a dummy procedure. 1f
the dummy argument is used as an external function, then the corresponding actual argument
must be an intrinsic function, external function or dummy procedure. Note that it may not be
possible to determine in a given program unit whether a dummy procedure is associated with
afunction or subroutine. In the following exampleit is not possible to tell by looking at this
program unit whether PROC is an external subroutine or function.

Example:
SUBROUTI NE SAM PRCC)
EXTERNAL PRCC

CALL SAML(PROC)

END

12.8.3.5 Asterisks as Dummy Arguments

A dummy argument that is an asterisk may only appear in the dummy argument list of a
SUBROUTI NE statement or an ENTRY statement in a subroutine subprogram and may be
associated only with an actual argument that is an alternate return specifier ina CALL
statement which references the subroutine.

Example:
CHARACTER* 10 RECORD(5)
| =2
CALL SAM |, *999, 3HSAM)
PRINT *, "I should be skipped’
999 PRINT *, "1 should be printed

END

SUBROUTI NE SAM |, *, K)
CHARACTER* 3 K

PRINT *, K

RETURN 1

END

338 Subprogram Arguments

Appendices

Appendices

340

Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

A. Watcom FORTRAN 77 Extensions to
Standard FORTRAN 77

This appendix summarizes the extensions supported by Watcom FORTRAN 77.

1. Thel NCLUDE statement for embedding source from another file is supported.

I NCLUDE * SRC

2. Symbolic names are unique up to 32 characters. Also,’'$,
letters are allowed in symbolic names.

and lowercase

3. Lowercase and uppercase letters are treated in the same way except in:

1. character and hollerith constants
2. apostrophe and H edit descriptors

4. End-of-line comments are permitted.

PRINT *, "Hello world” ! print "Hello World’
5. Thel MPLI CI T NONE statement is supported.

6. Anasterisk enclosed in parentheses is allowed with the type CHARACTER when
specifiedinan | MPLI CI T statement.

| MPLI O T CHARACTER* (*) (2)

7. Length specifiers are allowed with types specified in | MPLI Cl T statements.

IMPLICI T I NTEGER*2 (I-N)

8. Length specifiers are allowed with type specification statements.

Watcom FORTRAN 77 Extensions to Standard FORTRAN 77 341

Appendices

10.

11.

12.

13.

14.

15.

LOG CAL*1, LOG CAL*4

| NTEGER*1, | NTECER*2, | NTECGER*4
REAL* 4, REAL*S8

COVMPLEX*8, COWPLEX*16

Length specifiers are also allowed with the type specified in FUNCTI ON
statements.

COVPLEX*16 FUNCTI ON ZADD(X, Y)
Length specifiers are allowed with symbol names.
| NTEGER 1*2, A*2(10), B(20)*2
COVPLEX FUNCTI ON ZADD*16(X, Y)
The DOUBLE COVPLEX statement is supported (equivalent to COVPLEX* 16).

Double precision complex constants are allowed.
Z = (1D0, 2D0)

Mixing operands of type DOUBLE PRECI S| ONand COVPLEX toyield a
COVPLEX* 16 result is alowed.

DOUBLE PRECI SI ON X
COWPLEX Y, Z*16
Z=X+Y

User-defined structures are supported.

STRUCTURE/ END STRUCTURE
UNI OV END UNI ON

MAP/ END MAP

RECORD

Both character and non-character data are alowed in the same common block.

I NTEGER X
CHARACTER C
COMWDON /BLK/ X, C

Datainitialization of variablesin common without a block data subprogram is
allowed.

342 Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

16.

17.

18.

19.

20.

21.

22.

23.

24,

Equivalencing character to non-character data is permitted.
| NTEGER X

CHARACTER C
EQUI VALENCE (X, ©)

Single subscripts for multi-dimensional arraysis permitted in EQUI VALENCE
statements.

Datainitialization in atype specification statement is allowed.
DOUBLE PRECI SI ON X/ 4. 3D1/
Data initialization with hexadecimal constantsis allowed.
| NTEGER |/ 200000007/
Initializing character items with numeric datais permitted.
Hexadecimal and octal constants of theform ' abc’ x and’ 567’ o are supported.

A character constant of theform ' abcdef ’ ¢ placesaNUL character (CHAR(Q))
at the end of the character string.

Hollerith constants can be used interchangeably with character constants.

CHARACTER*10 A, B
A = '1234567890
B = 10H123456790

Severa additional intrinsic functions are supported:

ALGAVA ALLCCATED BTEST CDABS
CDCOs CDSI N CDEXP CDSQRT
CDLCG COTAN DCMVPLX DCONJG
DCOTAN DERF DERFC DFLOAT
DGAMVA DI MAG DLGAVA DREAL
ERF ERFC GAMVA HFI X

I AND | BCHNG | BCLR | BSET

| EOR I OR I SHA | SHC

| SHFT | SHL I SI ZEOF LENTRI M
LGAMVA LOC NOT VOLATI LE

25. TheLQOCintrinsic function returns the address of an expression.

Watcom FORTRAN 77 Extensions to Standard FORTRAN 77 343

Appendices

26.

27.

28.

29.

30.

31.

32.

33.

35.

36.

Thel SI ZECF intrinsic function returns the size of a structure name, the size of an
array with a constant array declarator, or the size of avariable.

The CHAR intrinsic function is allowed in constant expressions.

The ALLOCATE and DEALL OCATE statements may be used to dynamically
allocate and deallocate arrays.

The ALLOCATED intrinsic function may be used to determine if an allocatable
array is alocated.

The following additional 1/0 specifiers for the OPEN statement are supported.

ACTI ON=

CARRI AGECONTROL=

RECORDTYPE=

RECL= is also allowed for files opened for
sequential access

ACCESS=" APPEND

BLOCKSI ZE=

SHARE=

The following additional 1/O specifiersfor the | NQUI RE statement are supported.
ACTI ON=
CARRI AGECONTROL=
RECORDTYPE=

BLOCKSI ZE=
SHARE=

Inthe | NQUI RE statement, character data may also be returned in variables or
array elements with a substring operation.

CHARACTER FN*20
I NQUI RE(UNI T=1, FI LE=FN(10: 20))

List-directed I/O is alowed with internal files.

No asterisk is required for list-directed 1/0.
PRINT, X, Y

The NAMELI ST statement is supported.

Non-character arrays are allowed as format specifiers.

344 Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

37.

38.

39.

40.

41.

42.

43.

45.

46.

47.

The following format edit descriptors are allowed:

4 for displaying data in hexadecimal format

Ew.dDe same as Ew.dEe except D is used as exponentiation character
$or\ leave cursor at end of line

A repeat count is not required for the X edit descriptor (arepeat count of oneis
assumed).

Commas are optional between format edit descriptors.
100 FORMAT(1X 15)
It is possible to substring the return values of functions and statement functions.
CHARACTER*7 F, G
F() = '1234567
PRINT *, F()(1:3), &)(4:7)

Functions may be invoked viathe CALL statement. This allows the return value of
functions to be ignored.

A RETURN statement is allowed in the main program.

Integer constants with more than 5 digits are allowed in the STOP and PAUSE
statements.

PAUSE 123456

STOP 123456
Multiple assignment is allowed.
X=Y=2Z=0.0
The. XOR. operator is supported (equivalent to . NEQV.).

The. AND., . OR, . NEQV., . EQV. and. XOR. operators may take integer
arguments. They can be used to perform bit operations on integers.

Several additional program structure control statements are supported:

Watcom FORTRAN 77 Extensions to Standard FORTRAN 77 345

Appendices

LOOP- ENDLOOP

UNTIL (can be used with WH LE and LOOP)
VWHI LE- ENDW LE

GUESS- ADM T- ENDGUESS

ATENDDO- ENDATEND

ATEND

SELECT- ENDSELECT

DOWHI LE- ENDDO

DO ENDDO (no st at enent numnber)
REMOTEBL OCK- ENDBL OCK

EXECUTE

QT

EXIT

CYCLE

48. Block labels can be used to identify blocks of code.

LOOP : OUTER LOOP
<st at enent s>
LOOP : | NNER LOOP
<st at enent s>
IF(X .GT.100) QU T : OUTER LOOP
<st at enent s>
ENDLOOP
<st at enent s>
ENDLOOP

49. Aninteger expressioninan | F, ELSE | F, DO WHI LE, WHI LE or UNTI L
statement is allowed. The result of the integer expression is compared for
inequality to the integer value O.

346 Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

Index

$ edit descriptor 270, 275

i

AND 345
EQV 345
NEQV 345
OR 345
XOR 345

\ edit descriptor 270, 275

A edit descriptor 282
ABS 301
access 258
direct 258, 264
sequential 258
ACCESS= 132
ACOS 312
actual argument 26, 51, 334
actual argument list 334
actual array declarator 193
adjustable array declarator 191

ADMIT 13, 98, 144, 244-246
AIMAG 306
AINT 300
ALGAMA 314
allocatable array declarator 193
ALLOCATE 15, 50-51, 193, 344
ALLOCATED 344
ALLOCATED 325
ALOG 308
ALOG10 309
alternate return specifier 27, 329, 335
AMAXO0 304
AMAX1 304
AMINO 305
AMIN1 305
AMOD 302
ANINT 301
apostrophe edit descriptor 272
argument

actual 51, 334

dummy 51, 82, 91-92, 166, 334
arithmetic assignment statement 221
arithmetic constant expression 208
arithmetic expression 207

factor 207

primary 207

term 207

type of 210
arithmetic operators

precedence 206
arithmetic relational expression 213
array

assumed-size 51

maximum size 188
array declarator 187

actual 193

adjustable 191

alocatable 193

assumed-size 192

constant 191

dummy 193

maximum number of elements 188
array element 189
array elements

347

Index

maximum 188 CASE DEFAULT 28, 136, 162, 238, 240-241
ASA 265 caselist 161
ASIN 311 CCOS 310
ASSIGN 18-19, 96, 139, 146, 154, 173, 223, 263 CDABS 301
assignment statement CDCOS 310

arithmetic 221 CDEXP 308

character 224 CDLOG 308

extended 225 CDSIN 309

logical 222 CDSQRT 307

statement label 222 CEXP 308
assumed-size array 51 CHAR 212, 344
assumed-size array declarator 192 CHAR 212, 300
AT END 21, 69, 246-249, 251-252 CHARACTER 30, 33, 106, 341
ATAN 312 character assignment statement 224
ATAN2 312 character constant 182

character constant expression 212
character expression 211

primaries 211
B character relational expression 213
character set
FORTRAN 3
processor 3
BACKSPACE 22-23, 73, 263 CLOG 308
binary operator 206 CLOSE 34-35, 258, 261-262
blank common block 36 CMPLX 298

blank line 4

BLANK= 135, 275-276

BLOCK DATA 7, 24, 143, 291, 330
block data subprogram 46 comment line 4
BLOCKSIZE= 134 comments

BN edit descriptor 275 end-of-line 4

BTEST 322 COMMON 24, 36-37, 51, 87, 129, 188, 193-194,
BZ edit descriptor 275 288 328. 330. 335

collating sequence 213
colon edit descriptor 274
column major 85

common block
blank 36
named 24, 36
C COMPLEX 39-41, 342
complex constant 182
complex constant expression 209

CABS 301 complex edit descriptor 281
CALL 26-27, 327, 329, 333-335, 338, 345 COMPLEX*16 178, 342
carriage control 265 CONJG_ 307
CASE 28, 78, 136, 144, 161-162, 238, 240-241 Co?f}ecuzgri

ile

348

Index

unit 261
constant 180
character 182
complex 182
double precision 181
double precision complex 182
hexadecimal 184
hollerith 183
integer 180
logical 182
octal 184
rea 180
string 183
constant array declarator 191
constant expression 220
continuation line 5
CONTINUE 42, 56, 231
COS 310
COSH 313
COTAN 311
CSIN 309
CSQRT 307
CYCLE 43, 228-229, 231-232, 234-235, 238,
249-250

D edit descriptor 278, 280
DABS 301
DACOS 312
DASIN 311
DATA 7-8, 24, 33, 37, 41, 45, 59, 61, 120, 124,
152, 184, 194, 328, 330, 335
data 255
datatype
summary 178
DATAN 312
DATAN2 312
DBLE 298
DCMPLX 299

DCONJD 307

DCOS 310

DCOSH 313

DCOTAN 311

DDIM 303

DEALLOCATE 16, 49, 51, 344

debug line 4

DEFAULT 28

DERF 315

DERFC 315

DEXP 308

DFLOAT 298

DGAMMA 314

DIM 303

DIMAG 306

DIMENSION 24, 51, 188, 193-194

dimension declarator 188

DINT 300

DIRECT 113

direct access 258, 264

disconnection 261

DLGAMA 314

DLOG 308

DLOG10 309

DMAX1 304

DMIN1 305

DMOD 302

DNINT 301

DO 8, 42-43, 52-53, 55-56, 62-63, 71, 231, 233,
249, 330

DO WHILE 43, 62-63, 233, 249, 346

dollar sign ($)

in symbolic names 177

DOUBLE COMPLEX 58-59, 178, 342

DOUBLE PRECISION 60-61, 342

double precision complex constant 182

double precision complex constant expression
209

double precision constant 181

double precision constant expression 209

DPROD 304

DREAL 298

DSIGN 303

DSIN 309

349

Index

DSINH 313
DSQRT 307
DTAN 310
DTANH 314
dummy argument 26, 51, 82, 91-92, 166, 334
array 336
asterisk 338
dummy procedure 337
of type CHARACTER 336
variable 336
dummy argument list 334
dummy array declarator 193

E edit descriptor 278
edit descriptor
$ 275
\ 275
A 282
apostrophe 272
BN 275
BZ 275
colon 274
H 272
L 281
numeric 276-278, 280-281
complex 281
D 278,280
E 278
F 277
| 276
P 274
positional 273
T 273
TL 273
TR 273
X 273
repeatable 270
S 274

350

slash 273
SP 274
SS 274
Z 283
ELSE 64-65, 75, 102, 227-229
ELSE IF 64-65, 75, 102, 229-230, 346
END 5, 24, 37, 67-68, 156, 159, 252, 326,
332-333, 336
END AT END 69, 251
END BLOCK 70, 87, 154, 242
END DO 53, 62, 71, 88, 144, 231-233, 246, 248
END GUESS 74, 98, 244-246, 248
END IF 8, 64-65, 68, 75, 102-103, 228-230, 246,
330
END LOOP 76, 88, 125, 144, 234, 236, 245-250
END MAP 77, 126, 201
END SELECT 28, 78, 136, 161-162, 238-241,
246
END STRUCTURE 79, 164, 199
END UNION 80, 167, 201
END WHILE 81, 88, 144, 171, 235-236, 246, 248
end-of-file 257
end-of-file specifier 265
end-of-line
comments 4
END= 21, 251, 265
END= 263, 265
ENDFILE 72-73, 258, 260, 263
endfile record 257
ENDGUESS 88, 248
ENTRY 8, 31-32, 82-83, 143, 292, 330-332,
334-335, 338
entry point 330
EQUIVALENCE 24-25, 36-37, 84-85, 194, 201,
328, 330, 335, 343
ERF 315
ERFC 315
ERR= 265
ERR= 263, 265
error specifier 265
EXECUTE 70, 87-88, 154-155, 242-243, 246,
248
EXIT 88, 228-229, 231-232, 234-235, 238,
248-249

Index

EXP 308 file 255, 257
exponent 181 external 257
expression internal 259
arithmetic 207 name 258
arithmetic constant 208 file existence 257
complex constant 209 FILE= 109, 112, 115-116, 132, 135
double precision complex constant 209 FLOAT 297
double precision constant 209 FMT= 147, 174, 264
evaluation of 219 FMT= 263
factor 207 FORM= 133
integer constant 208 FORMAT 7, 18, 90, 139, 146, 173, 263, 267-268,
logical 218 275-276
logical constant 219 format
primary 207 field 272
real constant 209 field width 272
relational 213 list-directed 140-141, 146, 148, 174, 264
term 207 namelist-directed 140, 146, 174, 264
extended assignment statement 225 repeat specification 269
extension seealso 269
$ edit descriptor 270 edit descriptor 269
\ edit descriptor 270 format specification 269
E edit descriptor 270 format specifier 263
X edit descriptor 270 format-directed 1/0 284
Z edit descriptor 270 FORMATTED 113
extensions formatted input 148
language 341 formatted input/output 256
summary 341 formatted record 256
EXTERNAL 89, 121, 294 FORTRAN 77
externa file 257 language extensions 341
access 258 FROM 161, 238
name 258 FUNCTION 7, 31-32, 91-93, 143, 180, 291-292,
properties 258 326, 328, 330, 332, 335, 342
record form 259 function
record length 259 external 326
external function 326 external name 82
external function name 82 generic 180
intrinsic 295
statement 291
F

F edit descriptor 277

351

Index

352

MIN 305

MOD 302
G NINT 301

NOT 318

REAL 297

GAMMA 314 RSHIFT 324
generic function 180 SIGN 303

ABS 301 SIN 309
ACOS 312 SINH 313
AINT 300 SQRT 307
ANINT 301 TAN 310
ASIN 311 TANH 314
ATAN 312 generic name 295
ATAN2 312 GO TO 18-19, 94-97, 154, 223, 231, 233, 237,
BTEST 322 253-254
CMPLX 298 GUESS 13, 74, 98, 244
CONJG 307
COS 310
COSH 313
COTAN 311 H
DBLE 298
DCMPLX 299
DIM 303 H edit descriptor 272
ERF 315 hexadecimal constant 184
ERFC 315 HFIX 297
EXP 308 hollerith constant 183
GAMMA 314
IAND 317
IBCHNG 323
IBCLR 323
IBSET 322
IEOR 318
IMAG 306
INT 297 | edit descriptor 276
IOR 317 11ABS 301
ISHA 320 I1IAND 317
ISHC 321 I11BCHNG 323
ISHFT 319 11BCLR 323
ISHL 319 I11BSET 322
LOG 308 I1BTEST 322
LOG10 309 11DIM 303
LSHIFT 324 I1IEOR 318
MAX 304 IILSHIFT 324

Index

IIMAXO0 304
[IMINO 305
[IMOD 302
[INOT 318
[10R 317
I1IRSHIFT 324
[1SHA 320
[1SHC 321
[1SHFT 319
[1SHL 319
[1SIGN 303
[2ABS 301
[2AND 317
[2BCHNG 323
I2BCLR 323
I2BSET 322
I2BTEST 322
12DIM 303
I2EOR 318
[2LSHIFT 324
[2MAXO0 304
[2MINO 305
12MOD 302
[2NOT 318
[20R 317
I2RSHIFT 324
I2SHA 320
[2SHC 321
[2SHFT 319
[2SHL 319
12SIGN 303
IABS 301
IAND 317
IBCHNG 323
IBCLR 323
IBSET 322
ICHAR 299
IDIM 303
IDINT 297
IDNINT 301
I[EOR 318

IF 8-9, 64-65, 75, 98-99, 101-103, 228-230, 234,
246, 248, 250, 252-254, 330, 346

IFIX 297

IMPLICIT 8, 24, 30, 39, 58, 60, 104-107, 118,

122, 137, 150, 179-180, 341
IMPLICIT NONE 107, 341
implied-DO list 45
INCLUDE 7, 341

INDEX 306
initial line 5
input

formatted 148

list-directed 148
unformatted 149

input/output
formatted 256

unformatted 256

INQUIRE 109, 115-117, 258, 261-262, 344

INT 297

INTEGER 106, 118-120
integer constant 180

integer constant expression 208
integer quotient 210

internal file 259
definition 259
position 260
properties 259
records 259

restrictions 260
INTRINSIC 121, 295, 328-330, 335
intrinsic function 295

ABS 301
ACOS 312
AIMAG 306
AINT 300

ALGAMA 314
ALLOCATED 325

ALOG 308
ALOG10 309
AMAXO 304
AMAX1 304
AMINO 305
AMIN1 305
AMOD 302
ANINT 301
ASIN 311
ATAN 312

353

Index

ATANZ2 312
BTEST 322
CABS 301
CCOS 310
CDABS 301
CDCOS 310
CDEXP 308
CDLOG 308
CDSIN 309
CDSQRT 307
CEXP 308
CHAR 212, 300
CLOG 308
CMPLX 298
CONJG 307
COS 310
COSH 313
COTAN 311
CSIN 309
CSOQRT 307
DABS 301
DACOS 312
DASIN 311
DATAN 312
DATAN2 312
DBLE 298
DCMPLX 299
DCONJG 307
DCOS 310
DCOSH 313
DCOTAN 311
DDIM 303
DERF 315
DERFC 315
DEXP 308
DFLOAT 298
DGAMMA 314
DIM 303
DIMAG 306
DINT 300
DLGAMA 314
DLOG 308
DLOG10 309
DMAX1 304

354

DMINZ1 305
DMOD 302
DNINT 301
DPROD 304
DREAL 298
DSIGN 303
DSIN 309
DSINH 313
DSQRT 307
DTAN 310
DTANH 314
ERF 315
ERFC 315
EXP 308
FLOAT 297
GAMMA 314
HFIX 297
I1ABS 301
I1AND 317
I1BCHNG 323
I11BCLR 323
I1BSET 322
I1BTEST 322
11DIM 303
I1EOR 318
I1LSHIFT 324
ITMAXO 304
I1IMINO 305
IIMOD 302
IINOT 318
I10R 317
I1RSHIFT 324
I1SHA 320
I1SHC 321
I1SHFT 319
I1SHL 319
I1SIGN 303
I2ABS 301
I2AND 317
I2BCHNG 323
I2BCLR 323
I2BSET 322
I2BTEST 322
12DIM 303

Index

I2EOR 318
I2LSHIFT 324
IZMAXO0 304
[2MINO 305
12MOD 302
I2NOT 318
I20R 317
I2RSHIFT 324
[2SHA 320
I2SHC 321
I2SHFT 319
I2SHL 319
I2SIGN 303
IABS 301
IAND 317
IBCHNG 323
IBCLR 323
IBSET 322
ICHAR 299
IDIM 303
IDINT 297
IDNINT 301
IEOR 318
IFIX 297
INDEX 306
INT 297
IOR 317
ISHA 320
ISHC 321
ISHFT 319
ISHL 319
ISIGN 303

ISIZEOF 208, 325

LEN 305
LENTRIM 306
LGE 315
LGT 316
LLE 316
LLT 316
LOC 325
LSHIFT 324
MAXO 304
MAX1 304
MINO 305

MIN1 305
MOD 302
NINT 301
NOT 318
REAL 297
RSHIFT 324
SIGN 303
SIN 309
SINH 313
SNGL 297
SQRT 307
TAN 310
TANH 314

VOLATILE 326

IOR 317

IOSTAT= 115, 117
IOSTAT= 263-264

ISHA 320
ISHC 321
ISHFT 319
ISHL 319
ISIGN 303

ISIZEOF 208, 344
ISIZEOF 208, 325

keywords 178

L edit descriptor 281

LEN 305

length specification 30, 40, 119, 123, 151

LENTRIM 306
LGE 315

355

Index

LGT 316
line

blank 4

comment 4

continuation 5

debug 4

initial 5
list-directed 260
list-directed format 140-141, 146, 148, 174, 264
list-directed formatting 285
list-directed input 148
list-directed output 175
LLE 316
LLT 316
LOC 343
LOC 325
LOCATION= 14-17, 50
LOGICAL 122-124
logical assignment statement 222
logical constant 182
logical constant expression 219
logical expression 218

logical digunct 218

logical factor 218

logical term 218
logical operator 214

LOOP 8, 43, 76, 125, 168, 234, 236-237, 249-250

lower case 6
lower case letters

in symbolic names 177
LSHIFT 324

main program 7, 291
MAP 77, 80, 126, 167, 201
MAP, END MAP 24
MAXO 304

MAX1 304

maximum

356

number of array elements 188
sizeof anarray 188

MINO 305

MIN1 305

MOD 302

named common block 24, 36

NAMELIST 127-129, 140, 146, 174, 264,
287-288, 290, 344

namelist-directed format 140, 146, 174, 264

NINT 301

nonrepestable edit descriptors 270

NOT 318

octal constant 184
OPEN 35, 112, 131-132, 135, 258, 260-262,
275-276, 344
operator
binary 206
precedence 206
relational 213
unary 206
order
Statement 8
OTHERWISE 28, 136, 162, 238
output
list-directed 175

Index

P edit descriptor 274

PARAMETER 8, 24, 32, 106, 137, 140, 146, 174,
185, 219, 264, 328, 330, 335

PAUSE 138, 345

positional edit descriptor 273

preconnection 261

PRINT 90, 127, 139, 141-142, 155, 223, 243,
247, 249, 256, 258, 265, 267, 272, 274,
277-278, 280-283, 287

printing 265

PROGRAM 7, 143, 291, 330

program unit 5, 291

QUIT 13,76, 98, 103, 125, 144, 228-229,
231-232, 234-235, 238, 244-247

READ 21, 69, 127-129, 145-146, 148-149,
250-252, 256, 260, 287, 290

REAL 150-152

REAL 297

real constant 180

real constant expression 209

REC= 149, 175

REC= 263-264

RECL= 114, 133, 135

RECORD 24, 153, 164, 199

record 199, 256

endfile 257

fixed length 255

form 259

formatted 256

length 259

unformatted 256

variable length 255
record specifier 264
RECORDTYPE= 134
relational expression 213
relational operator 213
REMOTE BLOCK 70, 87, 154, 242
repeatable edit descriptor 270
RETURN 37, 53, 67, 143, 156, 159, 253, 326,

329, 332-334, 336, 345

REWIND 73, 157-158, 260, 263
RSHIFT 324

S edit descriptor 274

SAVE 24, 38, 143, 159-160, 194, 328, 330, 332,
335

scale factor 274

SELECT 8, 28, 78, 136, 161, 237-238, 240

sequence field 5

SEQUENTIAL 112

sequential access 258

SHARE= 134

SIGN 303

simplereal constant 180

SIN 309

SINH 313

slash edit descriptor 273

SNGL 297

SP edit descriptor 274

specific name 295

specifier

end-of-file 265
error 265

357

Index

format 263
record 264
status 264
unit 263
SQRT 307
SS edit descriptor 274
STAT= 14-16,50
statement 5
statement function 7, 291
statement label 5
statement label assignment 222
statement order 8
status specifier 264
STATUS= 35,132
STOP 53, 156, 163, 253, 333, 345
string constant 183
STRUCTURE 79, 164, 178, 199
structure 199
STRUCTURE, END STRUCTURE 24
subprogram 7, 291
block data 46
SUBROUTINE 7, 26, 143, 166, 291-292,
329-330, 332, 334-335, 338
subroutine 329
name 82
subscript 189
subscript expression 189
subscript value 189
substring 195
substring expression 195
substring name 195
symbolic names 177
dollar sign ($) in 177
lower case lettersin 177
underscore (1) in 177

T edit descriptor 273
TAN 310

358

TANH 314
TL edit descriptor 273
TR edit descriptor 273

unary operator 206
underscore ()

in symbolic names 177
UNFORMATTED 113
unformatted input 149
unformatted input/output 256
unformatted record 256
UNION 80, 126, 167, 201
UNION, END UNION 24
unit 261
unit specifier 263
UNIT= 22, 34, 72, 110, 116, 131, 146-147,

173-174, 263-264

UNIT= 263
UNTIL 88, 125, 144, 168, 171, 236-237, 246,
248, 346
V

VOLATILE 169
VOLATILE 326

W

WHILE 8-9, 43, 81, 168, 171-172, 235-236, 249,
346
WRITE 127, 173, 175, 256-260, 265, 287

Index

X edit descriptor 273

Z edit descriptor 283

359

