
Watcom FORTRAN 77

Language Reference

Edition 11.0c

Notice of Copyright
Copyright 2000 Sybase, Inc. and its subsidiaries. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of Sybase, Inc. and its subsidiaries.

Printed in U.S.A.

ii

Preface
Watcom FORTRAN 77 is an implementation of the American National Standard
programming language FORTRAN, ANSI X3.9-1978, commonly referred to as FORTRAN
77. The language level supported by Watcom FORTRAN 77 compilers includes the full
language definition as well as significant extensions to the language. Watcom FORTRAN 77
compilers are based upon some well known FORTRAN language compilers, namely the
University of Waterloo’s WATFOR and WATFIV-S compilers (implementations for the
International Business Machines 370 series) and the WATFOR-11 compiler (an
implementation for the Digital Equipment PDP11).

This manual describes the language level supported by Watcom FORTRAN 77 including
extensions to the standard language. Shaded areas in the book denote a Watcom FORTRAN
77 language extension. Occasionally, where an entire section or chapter deals with a language
extension, the text may not be shaded. Users should note that extensions which are supported
by this compiler may not be supported by other compilers. We leave the choice to use a
particular extension to the discretion of the programmer.

An accompanying manual, the User’s Guide, contains system specific topics such as how to
run the software on your system, file system support, compiler options, etc.

Acknowledgements
This book was produced with the Watcom GML electronic publishing system, a software tool
developed by WATCOM. In this system, writers use an ASCII text editor to create source
files containing text annotated with tags. These tags label the structural elements of the
document, such as chapters, sections, paragraphs, and lists. The Watcom GML software,
which runs on a variety of operating systems, interprets the tags to format the text into a form
such as you see here. Writers can produce output for a variety of printers, including laser
printers, using separately specified layout directives for such things as font selection, column
width and height, number of columns, etc. The result is type-set quality copy containing
integrated text and graphics.

Much of the information contained in this document was taken from the ANSI publication
"American National Standard Programming Language FORTRAN, ANSI X3.9-1978". We
recommend that anyone who is interested in the definitive description of FORTRAN 77
obtain a copy of this document. Their address is: American National Standards Institute, Inc.,
1430 Broadway, New York, New York, U.S.A. 10018.

iii

September, 2000.

iv

Table of Contents

Language Reference .. 1

1 FORTRAN Source Program Format ... 3
1.1 Character Set ... 3
1.2 Extended Character Set .. 4
1.3 Source Program Format .. 4

1.3.1 Comment Line .. 4
1.3.2 Debug Line (Extension) ... 4
1.3.3 Initial Line .. 5
1.3.4 Continuation Line ... 5
1.3.5 Significance of the Blank Character .. 5
1.3.6 Significance of Lower Case Characters (Extension) 6
1.3.7 Examples .. 6

1.4 Order of FORTRAN Statements and Lines .. 7

2 FORTRAN Statements .. 9
2.1 Classifying Statements .. 9
2.2 FORTRAN Statement Summary .. 12
2.3 ADMIT Statement .. 13
2.4 ALLOCATE Statement .. 14
2.5 Statement Label Assignment (ASSIGN) Statement 18
2.6 AT END Statement ... 21
2.7 BACKSPACE Statement .. 22
2.8 BLOCK DATA Statement .. 24
2.9 CALL Statement ... 26
2.10 CASE Statement ... 28
2.11 CHARACTER Statement ... 30

2.11.1 Standard CHARACTER Statement ... 30
2.11.2 Extended CHARACTER Statement: Data Initialization 33

2.12 CLOSE Statement ... 34
2.13 COMMON Statement ... 36
2.14 COMPLEX Statement .. 39

2.14.1 Standard COMPLEX Statement ... 39
2.14.2 Extended COMPLEX Statement: Length Specification 39
2.14.3 Extended COMPLEX Statement: Data Initialization 41

2.15 CONTINUE Statement ... 42
2.16 CYCLE Statement .. 43
2.17 DATA Statement .. 44
2.18 DEALLOCATE Statement ... 49
2.19 DIMENSION Statement ... 51
2.20 DO Statement ... 52

2.20.1 Standard DO Statement .. 52

v

Table of Contents

2.20.2 Extended DO Statement ... 52
2.20.3 Description of DO Statement ... 53

2.21 DOUBLE COMPLEX Statement ... 58
2.21.1 Simple DOUBLE COMPLEX Statement 58
2.21.2 DOUBLE COMPLEX Statement: Data Initialization 59

2.22 DOUBLE PRECISION Statement ... 60
2.22.1 Standard DOUBLE PRECISION Statement 60
2.22.2 Extended DOUBLE PRECISION Statement: Data

Initialization ... 61
2.23 DO WHILE Statement .. 62
2.24 ELSE Statement .. 64
2.25 ELSE IF Statement ... 65
2.26 END Statement ... 67
2.27 END AT END Statement .. 69
2.28 END BLOCK Statement ... 70
2.29 END DO Statement .. 71
2.30 ENDFILE Statement ... 72
2.31 END GUESS Statement ... 74
2.32 END IF Statement .. 75
2.33 END LOOP Statement .. 76
2.34 END MAP Statement ... 77
2.35 END SELECT Statement ... 78
2.36 END STRUCTURE Statement ... 79
2.37 END UNION Statement ... 80
2.38 END WHILE Statement ... 81
2.39 ENTRY Statement .. 82
2.40 EQUIVALENCE Statement ... 84
2.41 EXECUTE Statement ... 87
2.42 EXIT Statement .. 88
2.43 EXTERNAL Statement .. 89
2.44 FORMAT Statement ... 90
2.45 FUNCTION Statement ... 91

2.45.1 Standard FUNCTION Statement ... 91
2.45.2 Extended FUNCTION Statement ... 92

2.46 Unconditional GO TO Statement ... 94
2.47 Computed GO TO Statement .. 95
2.48 Assigned GO TO Statement ... 96
2.49 GUESS Statement ... 98
2.50 Arithmetic IF Statement ... 99
2.51 Logical IF Statement .. 100
2.52 Block IF Statement ... 102

2.52.1 Standard Block IF Statement ... 102

vi

Table of Contents

2.52.2 Extended Block IF Statement ... 102
2.53 IMPLICIT Statement .. 104

2.53.1 Standard IMPLICIT Statement .. 104
2.53.2 Extended IMPLICIT Statement ... 104
2.53.3 IMPLICIT NONE Statement ... 105
2.53.4 Description of IMPLICIT Statement .. 105

2.54 INCLUDE Statement .. 108
2.55 INQUIRE Statement ... 109

2.55.1 INQUIRE by FILE ... 109
2.55.2 INQUIRE by UNIT .. 110
2.55.3 Inquiry Specifiers ... 110
2.55.4 Definition Status of Specifiers - Inquire by File 115
2.55.5 Definition Status of Specifiers - Inquire by Unit 116

2.56 INTEGER Statement .. 118
2.56.1 Standard INTEGER Statement ... 118
2.56.2 Extended INTEGER Statement: Length Specification 118
2.56.3 Extended INTEGER Statement: Data Initialization 120

2.57 INTRINSIC Statement ... 121
2.58 LOGICAL Statement .. 122

2.58.1 Standard LOGICAL Statement .. 122
2.58.2 Extended LOGICAL Statement: Length Specification 122
2.58.3 Extended LOGICAL Statement: Data Initialization 124

2.59 LOOP Statement ... 125
2.60 MAP Statement ... 126
2.61 NAMELIST Statement ... 127
2.62 OPEN Statement ... 131
2.63 OTHERWISE Statement .. 136
2.64 PARAMETER Statement ... 137
2.65 PAUSE Statement ... 138
2.66 PRINT Statement .. 139

2.66.1 Standard PRINT Statement .. 139
2.66.2 Extended PRINT Statement ... 139
2.66.3 Description of PRINT Statement ... 139

2.67 PROGRAM Statement .. 143
2.68 QUIT Statement .. 144
2.69 READ Statement .. 145

2.69.1 Standard READ Statement ... 145
2.69.2 Extended READ Statement .. 145
2.69.3 Description of READ Statement .. 146

2.70 REAL Statement ... 150
2.70.1 Standard REAL Statement ... 150
2.70.2 Extended REAL Statement: Length Specification 150

vii

Table of Contents

2.70.3 Extended REAL Statement: Data Initialization 152
2.71 RECORD Statement ... 153
2.72 REMOTE BLOCK Statement .. 154
2.73 RETURN Statement ... 156
2.74 REWIND Statement ... 157
2.75 SAVE Statement ... 159
2.76 SELECT Statement ... 161
2.77 STOP Statement ... 163
2.78 STRUCTURE Statement .. 164
2.79 SUBROUTINE Statement .. 166
2.80 UNION Statement .. 167
2.81 UNTIL Statement ... 168
2.82 VOLATILE Statement .. 169
2.83 Block WHILE Statement .. 171
2.84 WHILE Statement .. 172
2.85 WRITE Statement ... 173

3 Names, Data Types and Constants .. 177
3.1 Symbolic Names ... 177
3.2 Data Types .. 178
3.3 Data Type of a Name .. 179
3.4 Constants .. 180

3.4.1 Integer Constants .. 180
3.4.2 Real Constants .. 180
3.4.3 Double Precision Constant ... 181
3.4.4 Complex Constant .. 182
3.4.5 Double Precision Complex Constant (Extension) 182
3.4.6 Logical Constant .. 182
3.4.7 Character Constant ... 182
3.4.8 String Constant (Extension) ... 183
3.4.9 Hollerith Constants (Extension) ... 183
3.4.10 Hexadecimal Constants (Extension) .. 184
3.4.11 Octal Constants (Extension) ... 184

3.5 Symbolic Constants .. 185

4 Arrays .. 187
4.1 Introduction .. 187
4.2 Properties of Arrays .. 187
4.3 Array Elements ... 189
4.4 Classifying Array Declarators by Dimension Declarator 191

4.4.1 Constant Array Declarator ... 191
4.4.2 Adjustable Array Declarator .. 191

viii

Table of Contents

4.4.3 Assumed-size Array Declarator ... 192
4.4.4 Allocatable Array Declarator ... 193

4.5 Classifying Array Declarators by Array Name .. 193
4.5.1 Actual Array Declarator ... 193
4.5.2 Dummy Array Declarator ... 193

4.6 Use of Array Names ... 194

5 Character Substrings ... 195
5.1 Introduction .. 195
5.2 Substring Names ... 195
5.3 Extensions ... 196

6 Structures, Unions and Records .. 199
6.1 Structures and Records ... 199
6.2 Arrays of Records ... 201
6.3 Unions ... 201

7 Expressions ... 205
7.1 Arithmetic Expressions ... 205

7.1.1 Arithmetic Operators .. 205
7.1.2 Rules for Forming Standard Arithmetic Expressions 207
7.1.3 Arithmetic Constant Expression ... 208
7.1.4 Data Type of Arithmetic Expressions .. 210

7.2 Character Expressions .. 211
7.2.1 Character Operators ... 211
7.2.2 Rules for Forming Character Expressions 211
7.2.3 Character Constant Expressions ... 212

7.3 Relational Expressions .. 212
7.3.1 Relational Operators ... 213
7.3.2 Form of a Relational Expression .. 213

7.3.2.1 Arithmetic Relational Expressions 213
7.3.2.2 Character Relational Expressions 213

7.4 Logical Expressions .. 214
7.4.1 Logical Operators ... 214
7.4.2 Rules for Forming Logical Expressions ... 217
7.4.3 Logical Constant Expressions .. 219

7.5 Evaluating Expressions ... 219
7.6 Constant Expressions .. 220

8 Assignment Statements ... 221
8.1 Introduction .. 221
8.2 Arithmetic Assignment ... 221

ix

Table of Contents

8.3 Logical Assignment .. 222
8.4 Statement Label Assignment .. 222
8.5 Character Assignment ... 224
8.6 Extended Assignment Statement .. 225

9 Program Structure Control Statements ... 227
9.1 Introduction .. 227
9.2 IF - ELSE - END IF .. 227
9.3 ELSE IF .. 229
9.4 DO - END DO .. 231
9.5 DO WHILE - END DO .. 232
9.6 LOOP - END LOOP ... 234
9.7 WHILE - END WHILE .. 235
9.8 WHILE - Executable-statement .. 235
9.9 UNTIL .. 236
9.10 SELECT - END SELECT .. 237
9.11 EXECUTE and REMOTE BLOCK ... 241
9.12 GUESS-ADMIT-END GUESS .. 244
9.13 QUIT ... 246
9.14 EXIT ... 248
9.15 CYCLE ... 249
9.16 AT END .. 251
9.17 Notes on Structured Programming Statements ... 252

10 Input/Output .. 255
10.1 Introduction .. 255
10.2 Reading and Writing ... 256
10.3 Records ... 256

10.3.1 Formatted Record ... 256
10.3.2 Unformatted Record ... 256
10.3.3 Endfile Record ... 257

10.4 Files .. 257
10.4.1 External Files ... 257
10.4.2 Internal Files ... 259

10.5 Units .. 261
10.6 Specifiers .. 262

10.6.1 The Unit Specifier .. 263
10.6.2 Format Specifier ... 263
10.6.3 Record Specifier ... 264
10.6.4 Input/Output Status Specifier ... 264
10.6.5 Error Specifier .. 265
10.6.6 End-of-File Specifier .. 265

x

Table of Contents

10.7 Printing of Formatted Records ... 265

11 Format ... 267
11.1 Introduction .. 267
11.2 The FORMAT Statement ... 267
11.3 FORMAT as a Character Expression ... 268
11.4 Format Specification ... 269
11.5 Repeatable Edit Descriptors ... 270
11.6 Nonrepeatable Edit Descriptors .. 270
11.7 Editing .. 272

11.7.1 Apostrophe Editing .. 272
11.7.2 H Editing .. 272
11.7.3 Positional Editing: T, TL, TR and X Editing 273
11.7.4 Slash Editing .. 273
11.7.5 Colon Editing ... 274
11.7.6 S, SP and SS Editing .. 274
11.7.7 P Editing ... 274
11.7.8 BN and BZ Editing ... 275
11.7.9 $ or \ Editing (Extension) ... 275
11.7.10 Numeric Editing: I, F, E, D and G Edit Descriptors 276

11.7.10.1 Integer Editing: Iw and Iw.m Edit Descriptors 276
11.7.10.2 Floating-point Editing: F, E, D and G Edit

Descriptors ... 277
11.7.10.3 F Editing .. 277
11.7.10.4 E and D Editing .. 278
11.7.10.5 G Editing .. 280
11.7.10.6 Complex Editing .. 281

11.7.11 L Edit Descriptor .. 281
11.7.12 A Edit Descriptor ... 282
11.7.13 Z Editing (Extension) ... 283

11.8 Format-Directed Input/Output .. 284
11.9 List-Directed Formatting .. 285

11.9.1 List-Directed Input ... 286
11.9.2 List-Directed Output .. 287

11.10 Namelist-Directed Formatting (Extension) .. 287
11.10.1 Namelist-Directed Input (Extension) ... 288
11.10.2 Namelist-Directed Output .. 290

12 Functions and Subroutines .. 291
12.1 Introduction .. 291
12.2 Statement Functions ... 291

12.2.1 Referencing a Statement Function ... 293

xi

Table of Contents

12.2.2 Statement Function Restrictions ... 294
12.3 Intrinsic Functions .. 295

12.3.1 Specific Names and Generic Names of Intrinsic Functions 295
12.3.2 Type Conversion: Conversion to integer 297
12.3.3 Type Conversion: Conversion to real ... 297
12.3.4 Type Conversion: Conversion to double precision 298
12.3.5 Type Conversion: Conversion to complex 298
12.3.6 Type Conversion: Conversion to double complex 299
12.3.7 Type Conversion: Character conversion to integer 299
12.3.8 Type Conversion: Conversion to character 300
12.3.9 Truncation .. 300
12.3.10 Nearest Whole Number .. 301
12.3.11 Nearest Integer ... 301
12.3.12 Absolute Value ... 301
12.3.13 Remainder .. 302
12.3.14 Transfer of Sign .. 303
12.3.15 Positive Difference ... 303
12.3.16 Double Precision Product ... 304
12.3.17 Choosing Largest Value ... 304
12.3.18 Choosing Smallest Value ... 305
12.3.19 Length .. 305
12.3.20 Length Without Trailing Blanks .. 306
12.3.21 Index of a Substring ... 306
12.3.22 Imaginary Part of Complex Number .. 306
12.3.23 Conjugate of a Complex Number ... 307
12.3.24 Square Root .. 307
12.3.25 Exponential .. 308
12.3.26 Natural Logarithm .. 308
12.3.27 Common Logarithm ... 309
12.3.28 Sine ... 309
12.3.29 Cosine ... 310
12.3.30 Tangent ... 310
12.3.31 Cotangent ... 311
12.3.32 Arcsine ... 311
12.3.33 Arccosine .. 312
12.3.34 Arctangent .. 312
12.3.35 Hyperbolic Sine .. 313
12.3.36 Hyperbolic Cosine .. 313
12.3.37 Hyperbolic Tangent .. 314
12.3.38 Gamma Function .. 314
12.3.39 Natural Log of Gamma Function ... 314
12.3.40 Error Function .. 315

xii

Table of Contents

12.3.41 Complement of Error Function .. 315
12.3.42 Lexically Greater Than or Equal .. 315
12.3.43 Lexically Greater Than ... 316
12.3.44 Lexically Less Than or Equal ... 316
12.3.45 Lexically Less Than ... 316
12.3.46 Binary Pattern Processing Functions: Boolean AND 317
12.3.47 Binary Pattern Processing Functions: Boolean Inclusive OR 317
12.3.48 Binary Pattern Processing Functions: Boolean Exclusive OR ... 318
12.3.49 Binary Pattern Processing Functions: Boolean Complement 318
12.3.50 Binary Pattern Processing Functions: Logical Shift 319
12.3.51 Binary Pattern Processing Functions: Arithmetic Shift 320
12.3.52 Binary Pattern Processing Functions: Circular Shift 321
12.3.53 Binary Pattern Processing Functions: Bit Testing 322
12.3.54 Binary Pattern Processing Functions: Set Bit 322
12.3.55 Binary Pattern Processing Functions: Clear Bit 323
12.3.56 Binary Pattern Processing Functions: Change Bit 323
12.3.57 Binary Pattern Processing Functions: Arithmetic Shifts 324
12.3.58 Allocated Array .. 325
12.3.59 Memory Location ... 325
12.3.60 Size of Variable or Structure .. 325
12.3.61 Volatile Reference .. 326

12.4 External Functions .. 326
12.4.1 Referencing an External Function .. 327
12.4.2 Actual Arguments for an External Function 328
12.4.3 External Function Subprogram Restrictions 328

12.5 Subroutines ... 329
12.5.1 Referencing a Subroutine: The CALL Statement 329
12.5.2 Actual Arguments for a Subroutine ... 329
12.5.3 Subroutine Subprogram Restrictions ... 330

12.6 The ENTRY Statement ... 330
12.6.1 ENTRY Statements in External Functions 331
12.6.2 ENTRY Statement Restrictions ... 331

12.7 The RETURN Statement .. 332
12.7.1 RETURN Statement in the Main Program (Extension) 333
12.7.2 RETURN Statement in Function Subprograms 333
12.7.3 RETURN Statement in Subroutine Subprograms 333

12.8 Subprogram Arguments .. 334
12.8.1 Dummy Arguments .. 334
12.8.2 Actual Arguments .. 335
12.8.3 Association of Actual and Dummy Arguments 336

12.8.3.1 Length of Character Actual and Dummy Arguments 336
12.8.3.2 Variables as Dummy Arguments 336

xiii

Table of Contents

12.8.3.3 Arrays as Dummy Arguments 336
12.8.3.4 Procedures as Dummy Arguments 337
12.8.3.5 Asterisks as Dummy Arguments 338

Appendices .. 339

A. Watcom FORTRAN 77 Extensions to Standard FORTRAN 77 341

xiv

Language Reference

Language Reference

2

1 FORTRAN Source Program Format

1.1 Character Set
The FORTRAN character set consists of twenty-six letters, ten digits, and thirteen special
characters.

The letters are:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

The digits are: 0 1 2 3 4 5 6 7 8 9

The special characters are:

Character Name of Character

Blank
= Equals
+ Plus
- Minus
* Asterisk
/ Slash
(Left Parenthesis
) Right Parenthesis
, Comma
. Decimal Point
$ Currency Symbol
’ Apostrophe
: Colon

The FORTRAN character set is a subset of the character set of the computing system which
you are using. We shall refer to the larger character set as the processor character set.

Character Set 3

Language Reference

1.2 Extended Character Set
Watcom FORTRAN 77 also includes the following special characters.

Character Name of Character

! Exclamation Mark
% Percentage Symbol
\ Back slash

1.3 Source Program Format
Watcom FORTRAN 77 supports one source program format. A FORTRAN program is
composed of lines. There are three types of lines; the comment line, the initial line, and the
continuation line.

1.3.1 Comment Line

Comment lines are denoted by placing a "C" or "*" in column one of the line. Watcom
FORTRAN 77 also allows the use of a lowercase "c" as a comment indicator. Blank lines are
treated as comment lines. Comment lines may be placed anywhere in the program source
(i.e., they may appear before a FORTRAN statement, they may be intermingled with
continuation lines, or they may appear after a statement). There is no restriction on the
number of comment lines. Comment lines may contain any characters from the processor
character set.

Watcom FORTRAN 77 allows end-of-line comments. If a "!" character appears in column 1
or anywhere in the statement portion of a source line, the remainder of that line is treated as a
comment unless the "!" appears inside quotation marks or in column 6.

1.3.2 Debug Line (Extension)

Debug lines are denoted by placing a "D" or "d" in column one of the line. Debug lines
contain FORTRAN statements. There is no restriction on the number of debug lines.
Normally, the FORTRAN statements on debug lines are ignored by the compiler. See the
User’s Guide for information on activating debug statements.

4 Source Program Format

FORTRAN Source Program Format

1.3.3 Initial Line

An initial line is the first line of a FORTRAN statement. Column 6 of this line must be blank
or contain the digit "0". A comment line can never be an initial line. Columns 1 through 5 of
an initial line may contain a statement label. Statement labels are composed entirely of digits.
The statement label may be thought of as an integral number and, as such, leading 0 digits are
not significant. For example, the label composed of the digits "00123" is the same as the label
"123". The same label may not identify more than one statement in a program unit. A
program unit is a series of comment lines and FORTRAN statements ending in an END
statement. The body of the FORTRAN statement is entered starting in column 7 and stopping
at column 72. Column 73 and on is called the sequence field and is ignored by the compiler.

1.3.4 Continuation Line

A statement may be continued on a new line. A continuation character is placed in column 6.
The continuation character may not be a blank character or a "0" character. FORTRAN 77
requires that the continuation character be selected from the FORTRAN character set but
Watcom FORTRAN 77 allows any character from the processor’s character set. The
statement number field must be blank. The previous statement is continued on the new line,
starting in column 7 and continuing to column 72. Under the control of a compiler option,
Watcom FORTRAN 77 permits the source statement to extend to column 132.

FORTRAN 77 allows up to 19 continuation lines to continue a statement. Watcom
FORTRAN 77 extends this by allowing more than 19 continuation lines. A minimum of 61
continuation lines are permitted when the source statement ends at column 72. A minimum of
31 continuation lines are permitted when the source statement ends at column 132. The
maximum number of continuation lines depends on the sum of the lengths of all the
continuation lines.

1.3.5 Significance of the Blank Character

Except in the following cases, blank characters have no meaning within a program unit.

(1) Character and Hollerith constants.

(2) Apostrophe and H edit descriptors in format specifications.

For example, the symbolic name A B is the same as the symbolic name AB.

Source Program Format 5

Language Reference

1.3.6 Significance of Lower Case Characters (Extension)

Except in the following cases, lower case characters are treated as if they were the upper case
equivalent. This is a Watcom FORTRAN 77 extension to the usual rules of FORTRAN.

(1) Character and Hollerith constants.

(2) Apostrophe and H edit descriptors in format specifications.

Hence, TOTAL, total, and Total represent the same symbolic name and 3F10.2 and
3f10.2 represent the same format edit descriptor.

1.3.7 Examples

Example:
C This and the following five lines are comment lines.
c The following statement "INDEX = INDEX + 2" has a
c statement number and is continued by placing a "$"
c in column 6.
* Column Numbers
*234567890

10 INDEX = INDEX
$ + 2

* The above blank lines are treated like comment lines.

The following example demonstrates the use of comment lines, blanks lines, and continuation
lines. We use the symbol "$" to denote continuation lines although any character other than a
blank or "0" could have been used.

6 Source Program Format

FORTRAN Source Program Format

Example:
* From the quadratic equation
*
* 2
* ax + bx + c = 0
*
* we derive the following two equations:
*
* + / 2
* -b - \/ b - 4ac
* x = ---------------------
* 2a
*
* and express these equations in FORTRAN as:

X1 = (-B + SQRT(B**2 - 4 * A * C))
$ / (2 * A)

X2 = (-B - SQRT(B**2 - 4 * A * C))
$ / (2 * A)

1.4 Order of FORTRAN Statements and Lines
The first statement of a program unit may be a PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA statement. The PROGRAM statement identifies the start of a main program and
there may only be one of these in an executable FORTRAN program. Execution of a
FORTRAN program begins with the first executable statement in the main program. The
other statements identify the start of a subprogram. If the first statement of a program unit is
not one of the above then the program unit is considered to be a main program.

Although you may not be familiar with all of the terms used here, it is important that you
understand that FORTRAN 77 has specific rules regarding the ordering of FORTRAN
statements. You may wish to refer to this section at later times. In general, the following
rules apply to the order of statements and comment lines within a program unit:

1. Comment lines and INCLUDE statements may appear anywhere.

2. FORMAT statements may appear anywhere in a subprogram.

3. All specification statements must precede all DATA statements, statement function
statements, and executable statements.

4. All statement function statements must precede all executable statements.

Order of FORTRAN Statements and Lines 7

Language Reference

5. DATA statements may appear anywhere after the specification statements.

6. ENTRY statements may appear anywhere except between a block IF statement and
its corresponding END IF statement, or between a DO statement and its
corresponding terminal statement. Watcom FORTRAN 77 extends these rules to
apply to all program structure blocks resulting from the use of statements
introduced to the language by Watcom FORTRAN 77 (e.g., WHILE, LOOP,
SELECT).

7. IMPLICIT statements must precede all other specification statements, except
PARAMETER statements. A specification statement that defines the type of a
symbolic constant must appear before the PARAMETER statement that defines the
name and value of a symbolic constant. A PARAMETER statement that defines the
name and value of a symbolic constant must precede all other statements containing
a reference to that symbolic constant.

The following chart illustrates the required order of FORTRAN statements. Vertical lines
delineate varieties of statements that may be interspersed, while horizontal lines mark
varieties of statements that may not be interspersed.

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA Statement

IMPLICIT
PARAMETER Statements

Comment ENTRY Statements Other
Lines Specification

and Statements

FORMAT Statement
INCLUDE Function
Statement Statements DATA Statements

Statements Executable
Statements

END Statement

Required Order of Comment Lines and Statements

For example, DATA statements may be interspersed with statement function statements and
executable statements but statement function statements must precede executable statements.

8 Order of FORTRAN Statements and Lines

2 FORTRAN Statements

2.1 Classifying Statements
The following table is a summary of Watcom FORTRAN 77 statement classification.

Column 1 indicates that the statement is a specification statement.

Column 2 indicates that the statement is not allowed as the terminal statement of a
DO-loop.

Column 3 indicates that the statement is not executable.

Column 4 indicates that the statement is not allowed as the object of a logical IF
or WHILE statement.

Column 5 indicates that the statement cannot have control of execution transferred to
it by using a statement label.

Column 6 indicates that the statement is allowed in a block data subprogram.

Statement 1 2 3 4 5 6

ADMIT * * *
ALLOCATE
ASSIGN
AT END * * *
BACKSPACE
BLOCK DATA * * * *
CALL
CASE * * *
CHARACTER * * * * * *
CLOSE
COMMON * * * * * *

Classifying Statements 9

Language Reference

Statement 1 2 3 4 5 6

COMPLEX * * * * * *
CONTINUE
CYCLE
DATA * * * * *
DEALLOCATE
DIMENSION * * * * * *
DO * *
DOUBLE COMPLEX * * * * * *
DOUBLE PRECISION * * * * * *
DO WHILE * *
ELSE * * *
ELSE IF * * *
END * * *
END AT END * * *
END BLOCK * * *
END DO * *
ENDFILE
END GUESS * *
END IF * *
END LOOP * * *
END MAP * * * * * *
END SELECT * * * * *
END STRUCTURE * * * * * *
END UNION * * * *
END WHILE * * *
ENTRY * * *
EQUIVALENCE * * * * * *
EXECUTE
EXIT
EXTERNAL * * * * *
FORMAT * * * *
FUNCTION * * * *
assigned GO TO *
computed GO TO
unconditional GO TO *
GUESS * *
arithmetic IF *
logical IF *
block IF * *

10 Classifying Statements

FORTRAN Statements

Statement 1 2 3 4 5 6

IMPLICIT * * * * * *
INCLUDE * * * * *
INQUIRE
INTEGER * * * * * *
INTRINSIC * * * * *
LOGICAL * * * * * *
LOOP * *
MAP * * * * * *
NAMELIST * * * * *
OPEN
OTHERWISE * * *
PARAMETER * * * * * *
PAUSE
PRINT
PROGRAM * * * *
QUIT
READ
REAL * * * * * *
RECORD * * * * * *
REMOTE BLOCK * * * *
RETURN *
REWIND
SAVE * * * * * *
SELECT * *
STOP *
STRUCTURE * * * * * *
SUBROUTINE * * * *
UNION * * * * * *
UNTIL * * *
VOLATILE * * * * * *
WHILE * *
WRITE

Classifying Statements 11

Language Reference

2.2 FORTRAN Statement Summary
The following sections describe each FORTRAN 77 statement. The statement descriptions
are organized alphabetically for quick reference. The syntax models for each statement are
presented in shaded or unshaded boxes. The unshaded box denotes a standard FORTRAN 77
statement. The shaded box denotes a Watcom FORTRAN 77 extension to the language.
Users should note that extensions which are supported by this compiler may not be supported
by other compilers. We leave the choice to use a particular extension to the discretion of the
programmer.

In the following sections the use of square brackets ([]) denotes items which may be
optionally specified. The use of the ellipsis (...) denotes items which may be repeated as often
as desired.

12 FORTRAN Statement Summary

FORTRAN Statements

2.3 ADMIT Statement

ADMIT

The ADMIT statement is used in conjunction with the structured GUESS statement. The
ADMIT statement marks the beginning of an alternative block of statements that are executed
if a QUIT statement is executed in a previous GUESS or ADMIT block.

Example:
* Assume incorrect sex code

GUESS
IF(SEX .EQ. ’F’)QUIT
IF(SEX .EQ. ’M’)QUIT
PRINT *, ’Invalid sex code encountered’
CALL INVSEX(SEX)
.
.
.

* Wrong assumption - sex code is fine
ADMIT

.

.

.
END GUESS

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

ADMIT Statement 13

Language Reference

2.4 ALLOCATE Statement

ALLOCATE (array([l:]u[,[l:]u,...])[,...][,LOCATION=loc])
or

ALLOCATE (array([l:]u[,[l:]u,...])[,...][,STAT=ierr])
or

ALLOCATE (char*len)

where:

array is the name of an allocatable array.

l is an integer expression that sets the lower bound of the array dimension.

u is an integer expression that sets the upper bound of the array dimension.

char is the name of an allocatable character variable.

len is an integer expression that sets the length of the character variable.

LOCATION = loc
loc is an integer expression that specifies the location of the allocated memory.

STAT = ierr
ierr is an allocation status specifier. The integer variable or integer array
element ierr is defined with 0 if the allocation succeeded, 1 if the allocation
failed, and 2 if the array is already allocated. The STAT= specifier may not be
used with the LOCATION= specifier.

Allocatable arrays and character variables may be dynamically allocated and deallocated at
execution time. An array must have been declared allocatable by specifying its dimensions
using colons only. No array bounds are specified.

14 ALLOCATE Statement

FORTRAN Statements

Example:
DIMENSION A(:), B(:,:)

In the above example, A is declared to be a one-dimensional allocatable array and B is
declared to be a two-dimensional allocatable array.

A character variable must have been declared allocatable by specifying its size as (*).

Example:
CHARACTER C*(*)

For an allocatable array, the ALLOCATE statement establishes the lower and upper bounds of
each array dimension and calculates the amount of memory required for the array.

For an allocatable character variable, the ALLOCATE statement establishes the number of
characters in the character variable and thus the size of the character variable.

If there is no LOCATION= specifier, it then attempts to dynamically allocate memory for the
array or character variable. The success of the allocation can be checked by using the STAT=
specifier.

If there is a LOCATION= specifier, the expression in the specification is evaluated and that
value is used as the address of the array or character variable. This permits the programmer to
specify a substitute memory allocator or to map the array or character variable onto a fixed
memory location.

Example:
DIMENSION A(:), B(:,:)

.

.

.
ALLOCATE(A(N))
ALLOCATE(B(0:4,5))

More than one allocatable array or character variable may appear in an ALLOCATE statement,
separated by commas.

ALLOCATE Statement 15

Language Reference

Example:
DIMENSION A(:), B(:,:)

.

.

.
ALLOCATE(A(N), B(0:4,5))

If the allocation fails and the STAT= specifier was not used, an execution-time error occurs.
If the STAT= specifier is used, the specified variable returns a zero value if the allocation
succeeded, and a non-zero value if the allocation failed.

Example:
DIMENSION A(:), B(:,:)

.

.

.
ALLOCATE(A(N), B(0:4,5), STAT=IALLOC)
IF(IALLOC .NE. 0) PRINT *, ’Allocation failure’

An attempt to allocate a previously allocated array or character variable results in an
execution-time error. If the LOCATION= specifier was not used, the array or character
variable must be deallocated first before it can be allocated a second time (see the
DEALLOCATE statement).

An absolute memory location may be specified using the LOCATION= specifier.

Example:
CHARACTER*1 SCREEN(:,:)
N = 80*25

*$IFDEF 386
ALLOCATE(SCREEN(0:1,0:N-1), LOCATION=’B8000’x)

*$ELSE
ALLOCATE(SCREEN(0:1,0:N-1), LOCATION=’B8000000’x)

*$ENDIF
DO I = 0, N-1

SCREEN(0,I) = ’*’
ENDDO
END

The above example maps the array SCREEN onto the IBM PC colour monitor screen memory
and then fills the screen with asterisks (16-bit real-mode only). The character is stored in
SCREEN(0,I) and the character attribute (unchanged in this example) is stored in
SCREEN(1,I). The column major ordering of arrays must be taken into consideration
when mapping an array onto a fixed area of memory.

The following example is similar but uses an allocatable character variable.

16 ALLOCATE Statement

FORTRAN Statements

Example:
CHARACTER*(*) SCREEN
INTEGER SCRSIZE, I
PARAMETER (SCRSIZE = 80*25*2)

*$IFDEF 386
ALLOCATE(SCREEN*SCRSIZE, LOCATION=’B8000’X)

*$ELSE
ALLOCATE(SCREEN*SCRSIZE, LOCATION=’B8000000’X)

*$ENDIF
DO I = 1, SCRSIZE, 2

SCREEN(I:I) = ’*’
ENDDO
END

A user-defined memory allocator may be specified using the LOCATION= specifier.

Example:
CHARACTER*1 BUFFER(:)
N = 128
ALLOCATE(BUFFER(0:N-1), LOCATION=MYALLOC(N))

.

.

.
END

Perhaps a better way to check for a successful allocation, in this case, would be the following.

Example:
CHARACTER*1 BUFFER(:)
N = 128
LOC = MYALLOC(N)
IF(LOC .EQ. 0) STOP
ALLOCATE(BUFFER(0:N-1), LOCATION=LOC)

.

.

.
END

For more information on arrays, see the chapter entitled "Arrays" on page 187.

ALLOCATE Statement 17

Language Reference

2.5 Statement Label Assignment (ASSIGN) Statement

ASSIGN s TO i

where:

s is a statement label

i is an integer variable name

The statement label s is assigned to the integer variable i. The statement label must appear
in the same program unit as the ASSIGN statement. The statement label must be that of an
executable statement or a FORMAT statement.

After a statement label has been assigned to an integer variable, that variable may only be
used in an assigned GO TO statement or as a format identifier in an input/output statement.
The integer variable must not be used in any other way (e.g., in an arithmetic expression). It
may, however, be redefined with another statement label using the ASSIGN statement or it
may be assigned an integer value (e.g., in an arithmetic assignment statement).

Example:
INTEGER RET
X = 0.0
ASSIGN 100 TO RET
GO TO 3000

100 X = X + 1
ASSIGN 110 TO RET
GO TO 3000

110 X = X + 1
.
.
.

* Print both X and its square root
3000 Y = SQRT(X)

PRINT *, X, Y
GO TO RET

In the above example, we illustrate the use of the ASSIGN statement and the assigned GO TO
statement to implement a "local subroutine" in a program unit. A sequence of often-used code
can be "called" using the unconditional GO TO statement and "return" is accomplished using

18 Statement Label Assignment (ASSIGN) Statement

FORTRAN Statements

the assigned GO TO statement. Care must be exercised to properly assign the return label
value.

Example:
IF(FIRST)THEN

ASSIGN 100 TO LFRMT
ELSE

ASSIGN 200 TO LFRMT
END IF
WRITE(UNIT=5, FMT=LFRMT) X, Y, Z

100 FORMAT(1X,3F10.5)
200 FORMAT(1X,3E15.7)

It should be noted that the ASSIGN statement does not assign the numeric value of the
statement label to the variable.

Example:
ASSIGN 100 TO LABEL2
PRINT *, LABEL2

Try the above example; the value printed will not be 100.

Consider the following example.

Example:
* Illegal use of a GOTO statement.

LABEL2 = 123
LABEL3 = LABEL2 + 10
GO TO LABEL3

LABEL3 is assigned the integer value 133. The assigned GO TO statement, which follows it,
is illegal and a run-time error will occur when it is executed.

Statement label values are quite different from integer values and the two should never be
mixed. In the following example, the assignment statement is illegal since it involves an
integer variable that was specified in an ASSIGN statement.

Statement Label Assignment (ASSIGN) Statement 19

Language Reference

Example:
* Illegal use of an ASSIGNed variable in an expression.

ASSIGN 100 TO LABEL2
LABEL3 = LABEL2 + 10

Note that if the assignment statement was preceded by

LABEL2 = 100

the assignment statement would have been legal.

20 Statement Label Assignment (ASSIGN) Statement

FORTRAN Statements

2.6 AT END Statement

AT END DO [: block-label]

or

AT END, stmt

where:

stmt is an executable statement other than an AT END statement.

The AT END control statement is an extension of the END= option of the READ statement for
sequential files. It allows a statement or a block of code following the READ statement to be
executed when an end-of-file condition is encountered during the read. The AT END
statement or block is by-passed if no end-of-file occurs. It is not valid to use this control
statement with direct-access or internal files. It is not valid to use this statement when END=
is also specified in the READ statement. The AT END statement or block must immediately
follow the READ statement to which it applies.

Example:
READ(UNIT=1, FMT=’(I5,F10.4)’) I, X
AT END DO

PRINT *, ’END-OF-FILE ENCOUNTERED ON UNIT 1’
EOFSW = .TRUE.

END AT END

The second form of the AT END statement is illustrated below.

Example:
READ(UNIT=1, FMT=’(F10.4)’) X
AT END, EOFSW = .TRUE.

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

AT END Statement 21

Language Reference

2.7 BACKSPACE Statement

BACKSPACE u
BACKSPACE (alist)

where:

u is an external unit identifier.

alist is a list of backspace specifiers separated by commas:

[UNIT =] u
IOSTAT = ios
ERR = s

Execution of a BACKSPACE statement causes the file connected to the specified unit to be
positioned at the beginning of the preceding record. If the preceding record is an endfile
record then the file is positioned at the beginning of the endfile record.

Backspace Specifiers

[UNIT =] u
u is an external unit identifier. An external unit identifier is a non-negative
integer expression. If the optional UNIT= specifier is omitted then the specifier
must be the first item in the list of specifiers.

IOSTAT = ios
is an input/output status specifier. The integer variable or integer array element
ios is defined with zero if no error condition occurs or a positive integer value
if an error condition occurs.

ERR = s
is an error specifier and s is a statement label. When an error occurs, execution
is transferred to the statement labelled by s.

22 BACKSPACE Statement

FORTRAN Statements

Example:
LOOP

READ(UNIT=8, END=100, FMT=200) RECORD
ENDLOOP

100 BACKSPACE(UNIT=8)
WRITE(UNIT=8, FMT=200) NEWREC

In the previous example, we illustrate how one might append a record to the end of an existing
file.

Notes:

1. The unit must be connected for sequential access.

2. If the file is positioned before the first record then the BACKSPACE statement has
no effect.

3. It is illegal to backspace a file that does not exist.

The FORTRAN 77 standard specifies that it is illegal to backspace over records that were
written using list-directed formatting; Watcom FORTRAN 77 allows it.

If the file has been opened with access ’APPEND’, which is a form of sequential access in
which the file is positioned at the endfile record, then the BACKSPACE statement cannot be
used.

For more information on input/output, see the chapter entitled "Input/Output" on page 255.

BACKSPACE Statement 23

Language Reference

2.8 BLOCK DATA Statement

BLOCK DATA [sub]

where:

sub is an optional symbolic name of the block data subprogram and must not be the name
of an external procedure, main program, common block, other block data
subprogram, or any local name in the block data subprogram.

The BLOCK DATA statement is used to define the start of a block data subprogram. A block
data subprogram is used to provide initial values for variables and array elements in named
common blocks.

The only statements which are allowed to appear in a block data subprogram are:

1. IMPLICIT
2. PARAMETER
3. DIMENSION
4. COMMON
5. SAVE
6. EQUIVALENCE
7. DATA
8. STRUCTURE, END STRUCTURE
9. UNION, END UNION
10. MAP, END MAP
11. RECORD
12. END
13. type statements

Example:
BLOCK DATA INITCB
DIMENSION A(10), B(10)
COMMON /CB/ A, B
DATA A/10*1.0/, B/10*2.0/
END

In the above example, the arrays A and B in the named common block CB are initialized.

24 BLOCK DATA Statement

FORTRAN Statements

Notes:

1. More than one named common block may appear in a block data subprogram.

2. All entities of the named common block(s) must be specified.

3. Not all entities need be given initial values.

4. Only entities that appear in (or are associated, through the EQUIVALENCE
statement, with entries in) a named common block may be given initial values.

5. Only one unnamed block data subprogram may occur in an executable program.

6. A named block data subprogram may occur only once in an executable program.

BLOCK DATA Statement 25

Language Reference

2.9 CALL Statement

CALL sub [([a [, a] ...])]

where:

sub is a symbolic name of a subroutine and must not be the name of a main program,
function, common block, or block data subprogram. As an extension to FORTRAN
77, Watcom FORTRAN 77 permits the calling of functions.

a is an actual argument.

The CALL statement is used to invoke the execution of a subroutine subprogram or function.

Example:
X = 1.0
Y = 1.1
Z = 1.2
CALL QUAD(X, Y, Z)

.

.

.
END

SUBROUTINE QUAD(ARGA, ARGB, ARGC)
REAL ARGA, ARGB, ARGC
PRINT *, 2.0*ARGA**2 + 4.0*ARGB + ARGC
END

In the above example, the variables X, Y and Z are passed to the subroutine QUAD. This
subroutine computes an expression and prints the result.

Notes:

1. The parameters in the CALL statement are called actual arguments.

2. The parameters in the SUBROUTINE statement are called dummy arguments.

3. The actual arguments in a subroutine or function reference must agree in order,
number and type with the corresponding dummy arguments.

26 CALL Statement

FORTRAN Statements

4. An actual argument may be an expression, array name, intrinsic function name,
external procedure name (i.e., a subroutine or function name), a dummy procedure
name (i.e., one that was an argument to the calling subroutine or function), or an
alternate return specifier (subroutines only). An alternate return specifier takes the
form *s, where s is the statement label of an executable statement that appears in
the same program unit as the CALL statement. An expression may not be a
character expression involving the concatenation of an operand whose length
specification is (*) unless the operand is the symbolic name of a constant.

5. Actual arguments are associated with dummy arguments by passing the address of
the actual arguments.

It is important to note that versions of FORTRAN compilers that implement the
previous FORTRAN language standard may have associated arguments by passing
the value of the actual argument and assigning it to the dummy argument and then
updating the actual argument upon return from the subprogram (this is called
"value-result" argument handling). The FORTRAN 77 language standard prohibits
this technique for handling argument association.

The following example illustrates the importance of this rule.

Example:
I=1
CALL ASSOC(I, I)
END
SUBROUTINE ASSOC(M, N)
M = M + 1
PRINT *, M, N
END

In the above example, M and N refer to the same variable; they are both associated
to I in the calling subprogram. The value 2 will be printed twice.

For more information, see the chapter entitled "Functions and Subroutines" on page 291.

CALL Statement 27

Language Reference

2.10 CASE Statement

CASE cl

where:

cl is a list, enclosed in parentheses, of one or more cases separated by commas, or the
DEFAULT keyword. A case is either

(a) a single integer, logical or character constant expression or

(b) an integer, logical or character constant expression followed by a colon
followed by another expression or the same type. This form of a case
defines a range of values consisting of all integers or characters greater
than or equal to the value of the expression preceding the colon and less
than or equal to the value of the expression following the colon.

The CASE statement is used in conjunction with the SELECT statement. The CASE statement
marks the start of a new CASE block which is a series of zero or more statements ending in
another CASE statement, a CASE DEFAULT statement, or an END SELECT statement.

A particular case value or range of values must not be contained in more than one CASE
block.

The CASE DEFAULT statement is used to indicate a block of statements that are to be
executed when no other case is selected.

Example:
SELECT CASE (CH)
CASE (’a’ : ’z’)

PRINT *, ’Lower case letter’
CASE (’A’ : ’Z’)

PRINT *, ’Upper case letter’
CASE (’0’ : ’9’)

PRINT *, ’Digit’
CASE DEFAULT

PRINT *, ’Special character’
END SELECT

In order to retain compatibility with earlier versions of WATCOM FORTRAN 77 compilers,
the OTHERWISE statement may be used in place of the CASE DEFAULT statement.

28 CASE Statement

FORTRAN Statements

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

CASE Statement 29

Language Reference

2.11 CHARACTER Statement
The CHARACTER statement is a type declaration statement and can be used to declare a name
to be of type character. The implicit type of the name, whether defined by the "first letter
rule" (see the chapter entitled "Names, Data Types and Constants" on page 177) or by an
IMPLICIT statement, is either confirmed or overridden. However, once a name has been
declared to be of type character, it cannot appear in another type declaration statement.

There are various forms of the CHARACTER statement. The following sections describe them.

2.11.1 Standard CHARACTER Statement

CHARACTER[*len [,]] name [,name] ...

where:

name is one of the following forms:

v[*len]

a(d)[*len]

a[*len](d)

v is a variable name, symbolic name of a constant, function name or dummy
procedure name.

a is an array name.

(d) is that part of the array declarator defining the dimensions of the array.

len is called the length specification and is the length (number of characters) of a
character variable, character array element, symbolic character constant or
character function. It has one of the following forms:

30 CHARACTER Statement

FORTRAN Statements

(1) An unsigned positive integer constant.

(2) A positive integer constant expression enclosed in parentheses.

(3) An asterisk in parentheses (*).

The length specification immediately following the word CHARACTER is the length
specification for each entity in the statement not having its own length specification. If
omitted, the default is 1. An entity with its own length specification overrides the default
length specification or the length specification immediately following the word
CHARACTER. Note that for an array the length specification applies to each element of the
array.

Example:
DIMENSION C(-5:5)
CHARACTER A, B*10(10), C*20
CHARACTER*7 X, Y, Z*4

The (*) length specification is only allowed for external functions, dummy arguments or
symbolic character constants. If a dummy argument has a length specification of (*), it
assumes the length of the corresponding actual argument. If the actual argument is an array
name, the length assumed by the dummy argument is the length of an array element of the
actual array.

Example:
SUBROUTINE OUTCHR(STR)
CHARACTER STR*(*)
PRINT *, STR
END

In this example, STR is a character variable whose length is the length of the actual argument.
Thus OUTCHR can be called with a character entity of any length.

If an external function has a length specification of (*) declared in a function subprogram,
the function name must appear as the name of a function in a FUNCTION or ENTRY statement
in the same subprogram. When the function is called, the function assumes the length
specified in the program unit that called it. In the following example, when F is called its
length is assumed to be 10.

CHARACTER Statement 31

Language Reference

Example:
CHARACTER*(10) F

.

.

.
PRINT *, F()

.

.

.
END

CHARACTER*(*) FUNCTION F
F = ’HELLO’
END

The following example is illegal since F does not appear in a FUNCTION or ENTRY
statement.

Example:
* Illegal definition of function F.

CHARACTER*(*) F
.
.
.

PRINT *, F()
.
.
.

END

The length specified for a character function in the program unit that referenced it must agree
with the length specified in the subprogram that defines the character function. Note that
there is always agreement if the function is defined to have a length specification of (*).

If a symbolic name is of type character and has a length specification of (*), it assumes the
length of the corresponding character constant expression in the PARAMETER statement.

The length specification of a character statement function or statement function dummy
argument must not be (*).

32 CHARACTER Statement

FORTRAN Statements

2.11.2 Extended CHARACTER Statement: Data Initialization

CHARACTER[*len[,]] name [/cl/] [,name[/cl/]] ...

where:

name is as described in the previous section.

len is as described in the previous section.

cl is a list of the form:

k [,k] ...

k is one of the forms:

c

r*c (equivalent to r successive appearances of c)

c is a constant or the symbolic name of a constant

r is an unsigned positive integer constant or the symbolic name of a constant.

This form of the CHARACTER statement is an extension to the FORTRAN 77 language. The
rules for data initialization are the same as for the DATA statement.

Example:
CHARACTER*5 A/’AAAAA’/, B*3(10)/10*’111’/

In the previous example, A is initialized with the character constant ’AAAAA’ and each
element of the array B is initialized with the character constant ’111’.

CHARACTER Statement 33

Language Reference

2.12 CLOSE Statement

CLOSE (cllist)

where:

cllist is a list of close specifiers separated by commas:

[UNIT =] u
IOSTAT = ios
ERR = s
STATUS = sta

A CLOSE statement is used to terminate the connection of a file to the specified unit.

Close Specifiers

[UNIT =] u
u is an external unit identifier. An external unit identifier is a non-negative
integer expression. If the optional UNIT= specifier is omitted then the specifier
must be the first item in the list of specifiers.

IOSTAT = ios
is an input/output status specifier. The integer variable or integer array element
ios is defined with zero if no error condition occurs or a positive integer value
if an error condition occurs.

ERR = s
is an error specifier and s is a statement label. When an error occurs, execution
is transferred to the statement labelled by s.

STATUS = sta
is a status specifier and sta is a character expression whose value when trailing
blanks are removed evaluates to one of ’KEEP’ or ’DELETE’.

34 CLOSE Statement

FORTRAN Statements

KEEP ’KEEP’ may not be specified for a file whose status is
’SCRATCH’ (see description of the OPEN statement). If the file
exists, it will exist after execution of the CLOSE statement. If the
file does not exist, it will not exist after execution of the CLOSE
statement. If not specified, ’KEEP’ is assumed, unless the file
status is ’SCRATCH’ in which case ’DELETE’ is assumed.

DELETE If ’DELETE’ is specified, the file will not exist after execution of
the CLOSE statement.

Example:
LOOP

READ(UNIT=8, END=100, FMT=200) RECORD
ENDLOOP

100 CLOSE(UNIT=8)

In the previous example, we illustrate how one might process the records in a file and then
terminate the connection of the file to unit 8 using the CLOSE statement.

Notes:

1. Execution of a CLOSE statement specifying a unit that is not connected to a file or
a unit that is connected to a file that does not exist has no effect.

2. It is possible to connect the unit to another file after a CLOSE statement has been
executed.

3. It is possible to connect the unit to the same file after a CLOSE statement has been
executed, provided that the file still exists.

4. It is possible to connect the file to another unit after a CLOSE statement has been
executed, provided that the file still exists.

5. At the termination of execution of the program, for whatever the reason of
termination, any units that are connected are closed. Each unit is closed with status
’KEEP’ unless the file status was ’SCRATCH’, in which case the unit is closed
with status ’DELETE’. The effect is the same as if a CLOSE statement is
executed without a STATUS= specifier.

For more information on input/output, see the chapter entitled "Input/Output" on page 255.

CLOSE Statement 35

Language Reference

2.13 COMMON Statement

COMMON [/[cb]/] nlist [[,]/[cb]/ nlist] ...

where:

cb is a common block name.

nlist is a list of names each separated by a comma.

If cb is omitted, the blank common block is assumed. If specified, cb is called a named
common block. The names appearing in nlist can be variable names, array names, and
array declarators. Dummy arguments are not allowed in nlist.

The COMMON statement allows sharing of blocks of storage between subprograms. Each name
appearing in the nlist following a common block name cb is declared to belong to that
common block. A variable or an array name can belong to only one common block. A
common block name can occur more than once in the same COMMON statement as well as in
more than one COMMON statement. Lists following successive appearances of the same
common block name in COMMON statements are considered a continuation of the list of names
belonging to the common block. A variable or an array can appear in a COMMON statement
only once.

Common blocks are defined as follows. A common block is one consecutive block of storage.
It consists of all the storage sequences of all the entities specified in all the lists declared to
belong to that common block. The order in which each entity appears in a common block is
defined by the order in which they appear in the lists. Storage sequences associated to a
common block through the EQUIVALENCE statement are considered to belong to that
common block. In this way a common block may only be extended beyond the last storage
unit. The size of a common block is the sum of all the storage sequences of all the names
belonging to that common block plus any storage sequence which extends the common block
through equivalence association.

An EQUIVALENCE statement must not cause storage sequences of two different common
blocks to become associated nor should they extend the common block by adding storage
units preceding the first storage unit of the common block.

36 COMMON Statement

FORTRAN Statements

Example:
DIMENSION A(5)
COMMON /COMBLK/ A,B(10),C

In this example, the common block COMBLK contains the array A followed by the array B and
finally the variable C.

Example:
REAL A,B,C,D
DIMENSION D(5)
EQUIVALENCE (B,D)
COMMON A,B,C

In this example, A, B, C, and D belong to the blank common block; A, B, and C have been
explicitly defined to be in the blank common block whereas D has been equivalenced to a
variable in common, namely B. Also note that the EQUIVALENCE statement has caused the
extension of the common block beyond its last storage unit. In this example, array D has
extended the common block by 3 storage units.

Example:
* Illegal definition of a common block.

DIMENSION A(5)
EQUIVALENCE (A(2),B)
COMMON /XYZ/ B

This example demonstrates an illegal use of the COMMON statement. B is in the named
common block XYZ since it appeared in a COMMON statement. A is in the common block XYZ
since it was equivalenced to B. However, A illegally extends the common block by adding 1
storage unit before the first storage unit of the common block.

The following outlines the differences between a blank common block and a named common
block.

(1) All named common blocks with the same name in an executable program must
be the same size. Blank common blocks do not have to be the same size.

(2) Entities in named common blocks can be initialized by using DATA statements
in block data subprograms; entities in blank common blocks cannot.

(3) Entities in named common blocks can become undefined after the execution of a
RETURN or END statement; entities in blank common blocks cannot. This
situation can arise when all subprograms which refer to the named common
block become inactive. A typical case occurs when program overlays are used.
If the named common block is placed in an overlay, then the entities in the
named common block will become undefined when the overlay is replaced by

COMMON Statement 37

Language Reference

another. Of course, if the named common block is referenced in the main
program then this could never happen. The main program and any named
common blocks referenced in the main program remain memory-resident until
the application terminates.

The SAVE statement should be used if entities in named common blocks must
not become undefined.

The FORTRAN 77 standard specifies that a common block cannot contain both numeric and
character data; Watcom FORTRAN 77 allows common blocks to contain both numeric and
character data.

The FORTRAN 77 standard specifies that a named common block must be initialized in a
block data subprogram. Watcom FORTRAN 77 permits the initialization of named common
blocks in other subprograms.

38 COMMON Statement

FORTRAN Statements

2.14 COMPLEX Statement
The COMPLEX statement is a type declaration statement and can be used to declare a name to
be of type complex. The implicit type of the name, whether defined by the "first letter rule"
(see the chapter entitled "Names, Data Types and Constants" on page 177) or by an
IMPLICIT statement, is either confirmed or overridden. However, once a name has been
declared to be of type complex, it cannot appear in another type declaration statement.

There are various forms of the COMPLEX statement. The following sections describe them.

2.14.1 Standard COMPLEX Statement

COMPLEX name [,name] ...

where:

name is a variable name, array name, array declarator, symbolic name of a constant,
function name or dummy procedure name.

This form is the standard form of the COMPLEX statement.

Example:
DIMENSION C(-5:5)
COMPLEX A, B(10), C

In the previous example, A is defined to be a variable of type complex and B and C are defined
to be arrays of type complex.

2.14.2 Extended COMPLEX Statement: Length Specification

COMPLEX[*len[,]] name [,name] ...

COMPLEX Statement 39

Language Reference

where:

name is one of the following forms:

v[*len]

a[*len](d)

a(d)[*len]

v is a variable name, array name, symbolic name of a constant, function name or
dummy procedure name.

a is an array name.

(d) is that part of the array declarator defining the dimensions of the array.

len is called the length specification and is an unsigned positive integer constant or an
integer constant expression enclosed in parentheses whose value is 8 or 16.

This form of the COMPLEX statement is a Watcom FORTRAN 77 extension to the
FORTRAN 77 language. The length specification specifies the number of bytes of storage
that will be allocated for the name appearing in the COMPLEX statement. The default length
specification is 8. A length specification of 16 specifies that the data type of the name
appearing in the COMPLEX statement is to be double precision complex.

The length specification immediately following the word COMPLEX is the length specification
for each entity in the statement not having its own length specification. If a length
specification is not specified the default length specification is used. An entity with its own
specification overrides the default length specification or the length specification immediately
following the word COMPLEX. Note that for an array the length specification applies to each
element of the array.

Example:
DIMENSION C(-5:5)
COMPLEX A, B*16(10), C*16
COMPLEX*16 X

In the previous example, X is declared to be a variable of type double precision complex, A is
declared to be a variable of type complex and B and C are declared to be arrays of type double
precision complex.

40 COMPLEX Statement

FORTRAN Statements

2.14.3 Extended COMPLEX Statement: Data Initialization

COMPLEX[*len[,]] name [/cl/] [,name[/cl/]] ...

where:

name is as described in the previous section.

len is as described in the previous section.

cl is a list of the form:

k [,k] ...

k is one of the forms:

c

r*c (equivalent to r successive appearances of c)

c is a constant or the symbolic name of a constant

r is an unsigned positive integer constant or the symbolic name of a constant.

This form of the COMPLEX statement is an extension to the FORTRAN 77 language. The
rules for data initialization are the same as for the DATA statement.

Example:
COMPLEX A/(.4,-.3)/, B(10)/10*(0,1)/

In the previous example, A is initialized with the complex constant (.4,-.3) and each
element of the array B is initialized with the complex constant (0,1).

COMPLEX Statement 41

Language Reference

2.15 CONTINUE Statement

CONTINUE

Execution of a CONTINUE statement has no effect. This statement is often used in
conjunction with DO statements. It is usually identified with a label. It often provides a
convenient reference for statements which have the ability to transfer control of execution.

Example:
DO 10 X = -5.1, 12.8, 0.125

.

.

.
10 CONTINUE

IF(A .LT. B) GO TO 20
IF(A .GT. C) GO TO 20

.

.

.
20 CONTINUE

42 CONTINUE Statement

FORTRAN Statements

2.16 CYCLE Statement

CYCLE [: block-label]

The CYCLE statement may be used to cause a transfer of control from within a loop to the
terminal statement of a corresponding DO, DO WHILE, WHILE or LOOP statement. If
block-label is present then control is transferred to the terminal statement of the block
identified by that block label. The CYCLE statement is an extension to the FORTRAN 77
language.

Example:
LOOP

WRITE(UNIT=*, FMT=’(A)’) ’Enter a number’
READ(UNIT=*, FMT=’(F10.4)’, IOSTAT=IOS) X
IF(IOS .NE. 0) CYCLE
IF(X .LT. 0) EXIT
PRINT *, X, SQRT(X)

END LOOP
END

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

CYCLE Statement 43

Language Reference

2.17 DATA Statement

DATA nlist/clist/ [[,]nlist/clist/] ...

where:

nlist is a list of variable names, array element names, substring names and implied-DO
lists.

clist is a list of the form:

a [,a] ...

a is one of the forms:

c

r*c (equivalent to r successive appearances of c)

c is a constant or the symbolic name of a constant

r is an unsigned positive integer constant or the symbolic name of a constant.

The items of nlist are initialized with the values specified in clist in the following
manner. The first item in nlist is assigned the value of the first item in clist, the second
item in nlist is assigned the value of the second item in clist, etc. In this way all items
of nlist are initialized.

The number of items in nlist must equal the number of items in clist so that a
one-to-one correspondence exists between the two lists. If an array without a subscript list
appears in nlist there must be an element in clist for each element of the array.

If the type of an entity in nlist is character or logical then the type of its corresponding item
in clist must also be character or logical respectively. As an extension to FORTRAN 77,
Watcom FORTRAN 77 permits an item of type character to be initialized with integer data.

An item of type character is initialized using the rules of assignment. If the length of the item
in nlist is greater than the length of the corresponding character constant in clist, the
rightmost remaining characters in the item are initialized with blanks. If the length of the item
in nlist is less than the length of the character constant in clist, the character constant is

44 DATA Statement

FORTRAN Statements

truncated to the length of the item in nlist. Note that initializing a character entity causes
all of the characters in the entity to become defined and that each character constant defines
exactly one character variable, array element or substring.

If the type of an entity in nlist is integer, real, double precision or complex then the
corresponding item in clist can be one of integer, real, double precision or complex. If
necessary the constant in clist is converted to the type of the item in nlist according to
the rules of arithmetic conversion (see the chapter entitled "Assignment Statements" on page
221).

A variable, array element or substring can only be initialized once. If two entities are
associated (for example equivalenced), only one of the items can be initialized.

Example:
CHARACTER*30 MSG
LOGICAL TRUE
REAL X, Y(10)
DATA X/1.0/, TRUE/.TRUE./, MSG/’ENTER DATA’/
DATA Y/10*5/

An implied-DO list in a DATA statement has the following form:

(dlist, i = m1, m2[, m3])

where:

dlist is a list of array element names and implied-DO lists.

i is the name of an integer variable called the implied-DO-variable.

m1,m2,m3 are each integer constant expressions. The expressions may contain
implied-DO-variables of other implied-DO lists that have this implied-DO
list in their ranges.

The range of the implied-DO list is the list dlist. An iteration count and the value of the
implied-DO-variable are computed from m1,m2 and m3 in the same way as for a DO-loop
except that the iteration count must be positive. An implied-DO-variable does not affect the
definition of a variable by the same name in the same program unit. An implied-DO list is
processed as follows. Each item in the implied-DO list is processed once for each iteration
with the appropriate substitution of values for any occurrence of the implied-DO-variable.
The following example initializes the upper right triangle of the array A.

DATA Statement 45

Language Reference

Example:
DIMENSION A(5,5)
DATA ((A(I,J),J=1,I),I=1,5)/15*0/

Dummy arguments, functions, and entities in blank common are not allowed in nlist.
Entities in a named common block can be initialized only within a block data subprogram.

The following extensions to data initialization are supported by Watcom FORTRAN 77.

1. Character constants can initialize a variable of any type. If the item in nlist is
of numeric type and is being initialized with character data, the size of the item in
nlist is the maximum number of characters that can be stored in the space
allocated for that item. The rules for initializing such items, are the same as for
items of type character. See the chapter entitled "Names, Data Types and
Constants" on page 177 for the number of bytes required for a particular data type.

Example:
INTEGER I,J
DATA I/’AA’/,J/’123456’/

In the previous example, I and J each occupy 4 character storage units. I will be
initialized with the characters AA followed by 2 blank characters. J will be
initialized with the characters 1234. Note the the character constant initializing J
is truncated on the right to the number of character storage units occupied by J.

2. As an extension to FORTRAN 77, Watcom FORTRAN 77 permits an item of type
character to be initialized with integer data.

Example:
CHARACTER C, D
DATA C/65/, D/66/
END

3. Watcom FORTRAN 77 allows data initialization using hollerith constants.
Initializing items using hollerith constants behaves in the same way as initializing
items using character constants. Note that hollerith data can initialize entities of
any type. See the chapter entitled "Names, Data Types and Constants" on page 177
for a description of hollerith constants.

46 DATA Statement

FORTRAN Statements

4. Watcom FORTRAN 77 allows data initialization using hexadecimal or octal
constants. Hexadecimal or octal constants can be used to initialize memory with
any binary pattern.

Items are initialized with hexadecimal constants in the following way. Two
hexadecimal digits are required to initialize one byte of storage. If the number of
characters in the hexadecimal constant is less than 2 times the number of bytes of
storage allocated for the entity being initialized, the entity is padded on the left with
zeroes. If the number of characters in the hexadecimal constant is greater than 2
times the number of bytes of storage allocated for the entity being initialized, the
constant is truncated on the left to the size (in bytes) of the entity being initialized.

Items are initialized with octal constants in the following way. Each octal digit
initializes three bits of storage. If the number of digits in the octal constant times 3
is less than the number of bits of storage allocated for the entity being initialized,
the entity is padded on the left with zero bits. If the number of digits in the octal
constant times 3 is greater than the number of bits of storage allocated for the entity
being initialized, bits are truncated on the left to the size (in bits) of the entity being
initialized.

Note that hexadecimal or octal data can initialize entities of any type. See the
chapter entitled "Names, Data Types and Constants" on page 177 for a description
of hexadecimal and octal constants.

Example:
DOUBLE PRECISION DPREC
COMPLEX CMPLX

* Initialize an integer variable with the value 5
DATA I/Z05/

* Initialize a real variable with the value 5.0
DATA X/Z41500000/

* Initialize a double precision variable
* with the value 5D0

DATA DPREC/Z4150000000000000/
* Initialize a complex variable
* with the value (5.0,5.0)

DATA CMPLX/Z4150000041500000/
.
.
.

END

DATA Statement 47

Language Reference

Caution should be used when initializing items with hexadecimal constants, in
particular those whose type is real or double precision, since the data they represent
depends on the computer being used. In the previous example, the hexadecimal
constant used to initialize the variable X, represents the number 5.0 on a computer
with an IBM 370 architecture. The number 5.0 will have a different floating-point
representation on other computers.

48 DATA Statement

FORTRAN Statements

2.18 DEALLOCATE Statement

DEALLOCATE (arraylist [, STAT = ierr])

where:

arraylist is a list of allocatable array names separated by commas.

ierr is an integer variable that returns the status of the attempted deallocation.

Allocatable arrays may be dynamically allocated and deallocated at execution time. An array
must have been declared allocatable by specifying its dimensions using colons only. No array
bounds are specified.

Example:
DIMENSION A(:), B(:,:)

In the above example, A is declared to be a one-dimensional allocatable array and B is
declared to be a two-dimensional allocatable array.

The DEALLOCATE statement frees up any memory allocated for the specified array(s). It
then disassociates the specified array(s) from the memory to which it was associated. The
deallocation does not necessarily succeed. For example, an attempt to deallocate an array that
was not previously allocated will cause an error.

Example:
DIMENSION A(:), B(:,:)

.

.

.
ALLOCATE(A(N), B(0:4,5))

.

.

.
DEALLOCATE(A)

More than one allocatable array may appear in an DEALLOCATE statement, separated by
commas.

DEALLOCATE Statement 49

Language Reference

Example:
DIMENSION A(:), B(:,:)

.

.

.
ALLOCATE(A(N), B(0:4,5))

.

.

.
DEALLOCATE(A, B)

If the deallocation fails and the STAT= specifier was not used, an execution-time error occurs.
If the STAT= specifier is used, the specified variable returns a zero value if the deallocation
succeeded, and a non-zero value if the deallocation failed.

Example:
DIMENSION A(:), B(:,:)

.

.

.
ALLOCATE(A(N), B(0:4,5), STAT=IALLOC)
IF(IALLOC .NE. 0) PRINT *, ’Allocation failure’

.

.

.
DEALLOCATE(A, B, STAT=IFREE)
IF(IFREE .NE. 0) PRINT *, ’Deallocation failure’

An attempt to deallocate an unallocated array results in an execution-time error. The array
must be allocated first (see the ALLOCATE statement).

An array that was allocated using the LOCATION= specifier need not be deallocated.

For more information on arrays, see the chapter entitled "Arrays" on page 187.

50 DEALLOCATE Statement

FORTRAN Statements

2.19 DIMENSION Statement

DIMENSION a(d) [,a(d)] ...

where:

a is the name of the array.

d defines the dimension of the array and the range of its subscripts. See the chapter
entitled "Arrays" on page 187 for more information on dimensioning arrays.

Each name a appearing in a DIMENSION statement defines a to be an array in the program
unit containing the DIMENSION statement. A name can only be dimensioned once in a
program unit. Note that a name can also be dimensioned in a COMMON statement and type
declaration statements.

Example:
DIMENSION A(10), B(-5:5), C(I,J), D(4,*)

In this example A is a 1-dimensional array containing 10 elements, each element referenced as
A(1), A(2), ..., A(9), A(10). B is a 1-dimensional array containing 11 elements,
each element referenced as B(-5), B(-4), ..., B(4), B(5). C is a 2-dimensional
array containing I rows and J columns. C, I, and J must be dummy arguments or belong to
a common block. D is a 2-dimensional array containing 4 rows. The * in the last dimension
indicates that D is an assumed size array. D must be a dummy argument. The number of
columns is determined from the number of elements of the actual argument. For example, if
the actual argument contains 8 elements then D would contain 2 columns (i.e., 8 elements / 4
rows).

For more information on dimensioning arrays refer to the chapter entitled "Arrays" on page
187. See also the description of the ALLOCATE and DEALLOCATE statements for
information on dynamically allocatable arrays.

DIMENSION Statement 51

Language Reference

2.20 DO Statement
Two forms of the DO statement are presented. The second form is a Watcom FORTRAN 77
extension to the FORTRAN 77 language.

2.20.1 Standard DO Statement

DO s [,] i = e1, e2 [, e3]

where:

s is the statement label of an executable statement, called the terminal
statement, which follows the DO statement in the same program unit.

i is an integer, real, or double precision variable, called the DO-variable.

e1, e2, e3 are each an integer, real, or double precision expression.

2.20.2 Extended DO Statement

DO [s[,]] i = e1, e2 [, e3] [: block-label]

where:

s is an optional statement label of an executable statement, called the
terminal statement, which follows the DO statement in the same
program unit.

i is an integer, real, or double precision variable, called the
DO-variable.

e1, e2, e3 are each an integer, real, or double precision expression.

block-label is an optional block label.

52 DO Statement

FORTRAN Statements

This form of the DO statement is an extension to the FORTRAN 77 language. If no statement
label is present then the terminal statement of the DO-loop must be an END DO statement. In
all other respects, the rules are the same as those given for the standard DO statement.

2.20.3 Description of DO Statement

The range of a DO-loop consists of all of the executable statements that appear following the
DO statement that specifies the DO-loop, up to and including the terminal statement of the
DO-loop. Only certain statements can be the terminal statement of a DO-loop. See the
section entitled "Classifying Statements" on page 9 at the beginning of this chapter for a list of
these statements.

Transfer of control into the range of a DO-loop from outside the range is not permitted.

A DO-loop may be executed 0 or more times. The following sequence occurs when a DO
statement is encountered.

(i) An initial value, m1, is calculated by evaluating expression e1. A terminal
value, m2, is calculated by evaluating expression e2. An incrementation
value, m3, is calculated by evaluating expression e3 if it is present; otherwise
m3 has the value one. If e3 is specified, m3 must not be zero. The type of m1,
m2, and m3 is determined from the DO-variable and any conversions of type
are done as required.

(ii) The DO-variable is defined with the initial value m1.

(iii) The iteration count (i.e., the maximum number of times that the DO-loop will be
executed) is calculated as follows:

MAX(INT((m2 - m1 + m3)/m3), 0)

The iteration count will be zero whenever:

m1 > m2 and m3 > 0, or
m1 < m2 and m3 < 0.

The number of times that the DO-loop is executed may be reduced if control is
transferred outside the range of the DO-loop, or if a RETURN or STOP statement
is executed.

The steps involved in each iteration of the DO-loop are as follows:

DO Statement 53

Language Reference

(i) Check the iteration count. If it is not zero then start execution of the first
executable statement of the DO-loop. If the count is zero then iteration of the
DO-loop is complete.

(ii) Execute statements until the terminal statement is encountered. During this
time, the DO-variable may not be redefined.

(iii) Execute the terminal statement. Unless execution of the terminal statement
causes a transfer of control, proceed with the next step which is "incrementation"
processing.

(iv) The DO-variable is incremented by the value m3. The iteration count is
decremented by one. Go back to step (i).

Example:
DO 10 I = -5, 5

PRINT *, I, I*I
10 CONTINUE

In this example, the initial value is -5, the terminal value is 5, and the incrementation value is
1 (the default). The DO-variable is I. The DO-loop is executed

MAX(INT((5 - (-5) + 1)/1), 0)

or 11 times. The successive values of I, inside the range of the DO-loop, are -5, -4, -3, ..., 0,
1, ..., 4, 5. When the DO-loop is terminated, the value of I will be 6. It should be noted that
when a DO-loop variable is of type real, the iteration count may be one less than expected.
Because of rounding errors, the value of m2 - m1 + m3 may be slightly less than the exact
value and when the INT function is applied, the resulting iteration count is one less than
expected.

Example:
DO 10 X = -5, 6, 2

PRINT *, X, X*X
10 CONTINUE

In this example, the terminal value has been changed to 6 and the incrementation value has
been changed to 2. The DO-variable is X, a real variable. Thus the values of e1, e2 and
e3 are converted to type real. The DO-loop is executed

MAX(INT((6 - (-5) + 2)/2), 0)
MAX(INT(13 / 2), 0)

or 6 times. The successive values of X, inside the range of the DO-loop, are -5.0, -3.0, -1.0,
1.0, 3.0, 5.0. When the DO-loop is terminated, the value of X will be 7.0.

54 DO Statement

FORTRAN Statements

DO-loops may be nested, that is, another DO-loop may be contained within the range of the
outer DO-loop. More than one DO-loop may have the same terminal statement.

Example:
DO 10 I = -5, 5
DO 10 J = -2, 3

10 ARRAY(I, J) = 0.0

This is equivalent to the following example.

Example:
DO 10 I = -5, 5

DO 20 J = -2, 3
ARRAY(I, J) = 0.0

20 CONTINUE
10 CONTINUE

If a DO statement appears within the range of a DO-loop, its range must be entirely contained
within the range of the outer DO-loop.

Example:
* Illegal use of nested DO-loops.

DO 20 I = -5, 5
DO 10 J = -2, 3

ARRAY(I, J) = 0.0
20 CONTINUE
10 CONTINUE

The above example is illegal since the terminal statement of the first DO-loop precedes that of
the second DO-loop.

Similarly, the range of a DO-loop that appears within the range of an IF-block, ELSE
IF-block, or ELSE-block must be entirely contained within that IF-block, ELSE IF-block, or
ELSE-block, respectively. This rule applies to all Watcom FORTRAN 77 structured block
extensions.

Example:
* Illegal nesting of a DO-loop and an IF-block.

IF(A .LT. B)THEN
DO 10 I = 1, 5

PRINT *, ’Iteration number’, I
END IF

VECTOR(I) = I
10 CONTINUE

DO Statement 55

Language Reference

The above example is illegal since the range of the IF-block must terminate after the range of
the DO-loop. Note how statement indentation helps to illustrate the problem with this
example.

It is also illegal to attempt to transfer control into the range of a DO-loop. The following
example illustrates this error.

Example:
* Illegal transfer into the range of a DO-loop.

GO TO 20
.
.
.
DO 10, I = 100, 0, -1

PRINT *, ’Counting down from 100 to 0’, I
20 PRINT *, I, SQRT(FLOAT(I))
10 CONTINUE

The following example shows a more subtle form of this error.

Example:
* Illegal transfer into the range of a DO-loop.

DO 10 I = 1, 10
* Skip row 5 of 10x10 matrix

IF(I .EQ. 5)GO TO 10
DO 10 J = 1, 10

A(I, J) = 0.0
10 CONTINUE

Since the CONTINUE statement is included in the range of the inner DO-loop, an error
message is issued.

The following example illustrates the Watcom FORTRAN 77 structured DO statement.

Example:
DO I = -5, 5

DO J = -2, 3
ARRAY(I, J) = 0.0

END DO
END DO

In keeping with more modern programming practices, this feature allows the programmer to
write DO-loops without resorting to the use of statement labels. A well-chosen indentation
style further enhances the readability of the program.

56 DO Statement

FORTRAN Statements

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

DO Statement 57

Language Reference

2.21 DOUBLE COMPLEX Statement
The DOUBLE COMPLEX statement is a type declaration statement and can be used to declare
a name to be of type double complex. The implicit type of the name, whether defined by the
"first letter rule" (see the chapter entitled "Names, Data Types and Constants" on page 177) or
by an IMPLICIT statement, is either confirmed or overridden. However, once a name has
been declared to be of type double complex, it cannot appear in another type declaration
statement.

There are various forms of the DOUBLE COMPLEX statement. The following sections
describe them.

2.21.1 Simple DOUBLE COMPLEX Statement

DOUBLE COMPLEX name [,name] ...

where:

name is a variable name, array name, array declarator, symbolic name of a constant,
function name or dummy procedure name.

The DOUBLE COMPLEX statement is an extension to the FORTRAN 77 language.

Example:
DIMENSION C(-5:5)
DOUBLE COMPLEX A, B(10), C

In the previous example, A is defined to be a variable of type double complex and B and C are
defined to be arrays of type double complex.

58 DOUBLE COMPLEX Statement

FORTRAN Statements

2.21.2 DOUBLE COMPLEX Statement: Data Initialization

DOUBLE COMPLEX name [/cl/] [,name[/cl/]] ...

where:

name is as described in the previous section.

cl is a list of the form:

k [,k] ...

k is one of the forms:

c

r*c (equivalent to r successive appearances of c)

c is a constant or the symbolic name of a constant

r is an unsigned positive integer constant or the symbolic name of a constant.

This form of the DOUBLE COMPLEX statement is also an extension to the FORTRAN 77
language. The rules for data initialization are the same as for the DATA statement.

Example:
DOUBLE COMPLEX A/(4D4,5.1D4)/, B(10)/10*(5D1,3.1D1)/

In the previous example, A is initialized with the double precision complex constant
(4D4,5.1D4) and each element of the array B is initialized with the double precision
complex constant (5D1,3.1D1).

DOUBLE COMPLEX Statement 59

Language Reference

2.22 DOUBLE PRECISION Statement
The DOUBLE PRECISION statement is a type declaration statement and can be used to
declare a name to be of type double precision. The implicit type of the name, whether defined
by the "first letter rule" (see the chapter entitled "Names, Data Types and Constants" on page
177) or by an IMPLICIT statement, is either confirmed or overridden. However, once a
name has been declared to be of type double precision, it cannot appear in another type
declaration statement.

There are various forms of the DOUBLE PRECISION statement. The following sections
describe them.

2.22.1 Standard DOUBLE PRECISION Statement

DOUBLE PRECISION name [,name] ...

where:

name is a variable name, array name, array declarator, symbolic name of a constant,
function name or dummy procedure name.

This form is the standard form of the DOUBLE PRECISION statement.

Example:
DIMENSION C(-5:5)
DOUBLE PRECISION A, B(10), C

In the previous example, A is defined to be a variable of type double precision and B and C are
defined to be arrays of type double precision.

60 DOUBLE PRECISION Statement

FORTRAN Statements

2.22.2 Extended DOUBLE PRECISION Statement: Data Initialization

DOUBLE PRECISION name [/cl/] [,name[/cl/]] ...

where:

name is as described in the previous section.

cl is a list of the form:

k [,k] ...

k is one of the forms:

c

r*c (equivalent to r successive appearances of c)

c is a constant or the symbolic name of a constant

r is an unsigned positive integer constant or the symbolic name of a constant.

This form of the DOUBLE PRECISION statement is an extension to the FORTRAN 77
language. The rules for data initialization are the same as for the DATA statement.

Example:
DOUBLE PRECISION A/4D4/, B(10)/10*5D1/

In the previous example, A is initialized with the double precision constant 4D4 and each
element of the array B is initialized with the double precision constant 5D1.

DOUBLE PRECISION Statement 61

Language Reference

2.23 DO WHILE Statement

DO [s[,]] WHILE (e) [: block-label]

where:

s is an optional statement label of an executable statement, called the
terminal statement, which follows the DO statement in the same
program unit.

e is a logical expression or integer arithmetic expression, in which
case the result of the integer expression is compared for inequality
to the integer value 0.

block-label is an optional block label.

The DO WHILE statement is an extension to the FORTRAN 77 language.

Example:
X = 0.0
DO 10 WHILE(X .LT. 100.0)

PRINT *, X, SQRT(X)
X = X + 1.0

10 CONTINUE

If no statement label is present, the terminal statement of the DO-loop must be an END DO
statement.

Example:
X = 0.0
DO WHILE(X .LT. 100.0)

PRINT *, X, SQRT(X)
X = X + 1.0

ENDDO

The following example illustrates the use of an integer arithmetic expression.

62 DO WHILE Statement

FORTRAN Statements

Example:
I = 10
DO WHILE(I)

PRINT *, I
I = I - 1

ENDDO
END

The DO WHILE statement, is similar to the DO statement. All nesting rules that apply to the
DO statement also apply to the DO WHILE statement. The difference is the way in which the
looping is accomplished; the DO-loop is executed while the logical expression of the DO
WHILE statement has a true value or until control is transferred out of the DO-loop.

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

DO WHILE Statement 63

Language Reference

2.24 ELSE Statement

ELSE

The ELSE statement is used in conjunction with the IF or ELSE IF statement. The range of
the ELSE block is terminated by a matching END IF statement.

Example:
IF(A .LT. B)THEN

PRINT *, ’A is less than B’
ELSE

PRINT *, ’A is greater than or equal to B’
END IF

Transfer of control into the range of an ELSE block is illegal. It is interesting to note that the
ELSE statement may be identified by a statement label but it must not be referenced by any
statement!

Example:
* Illegal branch to a labelled ELSE statement.

IF(A .LT. B)THEN
PRINT *, ’A is less than B’

100 ELSE
PRINT *, ’A is greater than or equal to B’
GO TO 100

END IF

The above is an example of an illegal way to construct an infinitely repeating loop. The
following is the correct way to do this.

Example:
IF(A .LT. B)THEN

PRINT *, ’A is less than B’
ELSE

100 PRINT *, ’A is greater than or equal to B’
GO TO 100

END IF

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

64 ELSE Statement

FORTRAN Statements

2.25 ELSE IF Statement

ELSE IF (e) THEN

where:

e is a logical expression or integer arithmetic expression, in which case the result of the
integer expression is compared for inequality to the integer value 0.

The ELSE IF statement is used in conjunction with the IF statement. The range of the
ELSE IF block is terminated by another ELSE IF statement, an ELSE statement, or an
END IF statement.

Example:
IF(A .LT. B)THEN

PRINT *, ’A is less than B’
ELSE IF(A .EQ. B)THEN

PRINT *, ’A is equal to B’
ELSE

PRINT *, ’A is greater than B’
END IF

Transfer of control into the range of an ELSE IF block is illegal. It is interesting to note that
the ELSE IF statement may be identified by a statement label but it must not be referenced
by any statement!

Example:
* Illegal transfer into the range of
* an ELSE IF statement.

IF(A .EQ. 0.0)GO TO 110
IF(A .LT. B)THEN

PRINT *, ’A is less than B’
ELSE IF(A .EQ. B)THEN

PRINT *, ’A is equal to B or’
110 PRINT *, ’A is equal to 0’

ELSE
PRINT *, ’A is greater than B’

END IF

The above is an example of an illegal attempt to branch into the range of an ELSE IF block.

ELSE IF Statement 65

Language Reference

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

66 ELSE IF Statement

FORTRAN Statements

2.26 END Statement

END

The END statement indicates the end of a sequence of statements and comment lines of a
program unit. Execution of an END statement in a function or subroutine subprogram has the
same effect as a RETURN statement. Control is returned to the invoking program unit.
Execution of an END statement in a main program causes termination of execution of the
program.

Example:
SUBROUTINE EULER(X, Y, Z)

.

.

.
END

Upon executing the END statement, execution control is returned to the calling program unit.

Example:
PROGRAM PAYROL

.

.

.
END

Upon executing the END statement, execution of the program is terminated.

Some rather special rules apply to the END statement. The statement is written in columns 7
to 72 of an initial line. In other words, it must not be continued. Also, no other statement in
the program unit may have an initial line that appears to be an END statement.

Example:
* An illegal ENDIF statement.

IF(A .LT. B)THEN
.
.
.

END
&IF

END Statement 67

Language Reference

The above END IF statement is illegal since the initial line appears to be an END statement.

68 END Statement

FORTRAN Statements

2.27 END AT END Statement

END AT END

The END AT END statement is used in conjunction with the structured AT END statement.
The END AT END statement marks the end of a sequence of statements which are part of an
AT END-block. The AT END statement marks the beginning of the AT END-block. The AT
END-block is executed when the preceding READ statement terminates because of an
end-of-file condition.

Example:
READ(UNIT=1, FMT=’(3I5)’) I, J, K
AT END DO

PRINT *, ’END-OF-FILE ENCOUNTERED ON UNIT 1’
EOFSW = .TRUE.

END AT END

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

END AT END Statement 69

Language Reference

2.28 END BLOCK Statement

END BLOCK

The END BLOCK statement is used to terminate a REMOTE-block. The END BLOCK
statement is implicitly a transfer statement, since it returns program control from a
REMOTE-block.

Example:
REMOTE BLOCK A

I=I+1
PRINT *, ’I=’,I

END BLOCK

For more information, see the description of the EXECUTE and REMOTE BLOCK statements
or the chapter entitled "Program Structure Control Statements" on page 227.

70 END BLOCK Statement

FORTRAN Statements

2.29 END DO Statement

END DO

The END DO statement is used to terminate the range of a "structured" DO statement. A
structured DO statement is one in which a statement label is not present. For more
information, see the description of the structured DO statement or the chapter entitled
"Program Structure Control Statements" on page 227.

Example:
DO X = -5.1, 12.8, 0.125

.

.

.
END DO

Example:
X = -5.1
DO WHILE(X .LE. 12.8)

.

.

.
X = X + 0.125

END DO

END DO Statement 71

Language Reference

2.30 ENDFILE Statement

ENDFILE u
ENDFILE (alist)

where:

u is an external unit identifier.

alist is a list of endfile specifiers separated by commas:

[UNIT =] u
IOSTAT = ios
ERR = s

Execution of an ENDFILE statement causes an endfile record to be written to the file
connected to the specified unit. The file is then positioned after the endfile record. If the file
may be connected for direct access, only those records before the endfile record are
considered to have been written. Thus, only those records before the endfile record may be
read during subsequent direct access connections to the file.

Endfile Specifiers

[UNIT =] u
u is an external unit identifier. An external unit identifier is a non-negative
integer expression. If the optional UNIT= specifier is omitted then the specifier
must be the first item in the list of specifiers.

IOSTAT = ios
is an input/output status specifier. The integer variable or integer array element
ios is defined with zero if no error condition exists or a positive integer value if
an error condition exists.

ERR = s
is an error specifier and s is a statement label. When an error occurs, execution
is transferred to the statement labelled by s.

72 ENDFILE Statement

FORTRAN Statements

Example:
LOOP

READ(UNIT=7, END=100, FMT=200)RECORD
WRITE(UNIT=8, FMT=200)RECORD

ENDLOOP
100 ENDFILE(UNIT=8)

In the previous example, we illustrate how one might read all the records from one file (unit
7), write them to another file (unit 8) and then write an endfile record to the end of the file on
unit 8.

Notes:

1. The unit must be connected for sequential access.

2. After execution of an ENDFILE statement, a BACKSPACE or REWIND statement
must be used to reposition the file before any other input/output statement which
refers to this file can be executed.

3. If the file did not exist before execution of the ENDFILE statement then it will be
created after execution of this statement.

For more information on input/output, see the chapter entitled "Input/Output" on page 255.

ENDFILE Statement 73

Language Reference

2.31 END GUESS Statement

END GUESS

The END GUESS statement is used in conjunction with the structured GUESS statement. The
END GUESS statement marks the end of a series of GUESS-ADMIT blocks.

Example:
CHARACTER CH
READ *, CH
GUESS

IF(CH .LT. ’a’)QUIT
IF(CH .GT. ’z’)QUIT
PRINT *, ’Lower case letter’

ADMIT
IF(CH .LT. ’A’)QUIT
IF(CH .GT. ’Z’)QUIT
PRINT *, ’Upper case letter’

ADMIT
IF(CH .LT. ’0’)QUIT
IF(CH .GT. ’9’)QUIT
PRINT *, ’Digit’

ADMIT
PRINT *, ’Special character’

END GUESS
END

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

74 END GUESS Statement

FORTRAN Statements

2.32 END IF Statement

END IF

The END IF statement is used in conjunction with the block IF statement. The END IF
statement marks the end of a sequence of statements which are to be conditionally executed.

Example:
IF(X .LT. 100.0)THEN

PRINT *, ’X IS LESS THAN 100’
END IF

The END IF statement can also be used in conjunction with the ELSE and ELSE IF
statements. For more information, see the chapter entitled "Program Structure Control
Statements" on page 227.

END IF Statement 75

Language Reference

2.33 END LOOP Statement

END LOOP

The END LOOP statement is used in conjunction with the structured LOOP statement. The
END LOOP statement marks the end of a sequence of statements which are to be repeated.
The LOOP statement marks the beginning of the loop. The LOOP-block is executed until
control is transferred out of the LOOP-block.

The QUIT statement may be used to transfer control out of a LOOP-block.

Example:
LOOP

READ *, X
IF(X .GT. 99.0) QUIT
PRINT *, X

END LOOP

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

76 END LOOP Statement

FORTRAN Statements

2.34 END MAP Statement

END MAP

The END MAP statement is used in conjunction with the MAP declarative statement. The END
MAP statement marks the end of a MAP structure. The following example maps out a 4-byte
integer on an Intel 80x86-based processor.

Example:
STRUCTURE /MAPINT/

UNION
MAP

INTEGER*4 LONG
END MAP
MAP

INTEGER*2 LO WORD
INTEGER*2 HI WORD

END MAP
MAP

INTEGER*1 BYTE 0
INTEGER*1 BYTE 1
INTEGER*1 BYTE 2
INTEGER*1 BYTE 3

END MAP
END UNION

END STRUCTURE

RECORD /MAPINT/ I

I%LONG = ’01020304’x
PRINT ’(2Z4)’, I%LO WORD, I%HI WORD
END

For more information, see the chapter entitled "Structures, Unions and Records" on page 199.

END MAP Statement 77

Language Reference

2.35 END SELECT Statement

END SELECT

The END SELECT statement is used in conjunction with the SELECT statement. The END
SELECT statement marks the end of a series of CASE blocks.

Example:
SELECT CASE (CH)
CASE (’a’ : ’z’)

PRINT *, ’Lower case letter’
CASE (’A’ : ’Z’)

PRINT *, ’Upper case letter’
CASE (’0’ : ’9’)

PRINT *, ’Digit’
CASE DEFAULT

PRINT *, ’Special character’
END SELECT

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

78 END SELECT Statement

FORTRAN Statements

2.36 END STRUCTURE Statement

END STRUCTURE

The END STRUCTURE statement is used in conjunction with the STRUCTURE declarative
statement. The END STRUCTURE statement marks the end of a structure definition.

Example:
STRUCTURE /ADDRESS/

CHARACTER*20 STREET
CHARACTER*20 CITY
CHARACTER*20 STATE
CHARACTER*20 COUNTRY
CHARACTER*10 ZIP CODE

END STRUCTURE

STRUCTURE /PEOPLE/
CHARACTER*20 NAME
RECORD /ADDRESS/ ADDR
INTEGER*2 AGE

END STRUCTURE

For more information, see the chapter entitled "Structures, Unions and Records" on page 199.

END STRUCTURE Statement 79

Language Reference

2.37 END UNION Statement

END UNION

The END UNION statement is used in conjunction with the UNION declarative statement.
The END UNION statement marks the end of a series of MAP structures. The following
example maps out a 4-byte integer on an Intel 80x86-based processor.

Example:
STRUCTURE /MAPINT/

UNION
MAP

INTEGER*4 LONG
END MAP
MAP

INTEGER*2 LO WORD
INTEGER*2 HI WORD

END MAP
MAP

INTEGER*1 BYTE 0
INTEGER*1 BYTE 1
INTEGER*1 BYTE 2
INTEGER*1 BYTE 3

END MAP
END UNION

END STRUCTURE

RECORD /MAPINT/ I

I%LONG = ’01020304’x
PRINT ’(2Z4)’, I%LO WORD, I%HI WORD
END

For more information, see the chapter entitled "Structures, Unions and Records" on page 199.

80 END UNION Statement

FORTRAN Statements

2.38 END WHILE Statement

END WHILE

The END WHILE statement is used in conjunction with the structured WHILE statement. The
END WHILE statement marks the end of a sequence of statements which are to be repeated.
The WHILE statement marks the beginning of the WHILE-block. The WHILE-block is
executed while the logical expression (or integer arithmetic expression) of the WHILE
statement has a true (or non-zero) value or until control is transferred out of the
WHILE-block.

Example:
X = 1.0
WHILE(X .LT. 100)DO

PRINT *, X, SQRT(X)
X = X + 1.0

END WHILE

Example:
I = 10
WHILE(I)DO

PRINT *, I
I = I - 1

ENDWHILE
END

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

END WHILE Statement 81

Language Reference

2.39 ENTRY Statement

ENTRY name [([d [, d] ...])]

where:

name is a symbolic name of an entry in a function or subroutine subprogram. If the
ENTRY statement appears in a subroutine subprogram then name is a subroutine
name. If the ENTRY statement appears in a function subprogram then name is an
external function name.

d is a variable name, array name, dummy procedure name, or an asterisk. d is called
a dummy argument. An asterisk is allowed only in a subroutine subprogram.

The ENTRY statement is used to define an alternate entry into a subprogram.

Example:
PRINT *, TMAX2(121.0, -290.0)
PRINT *, TMAX3(-1.0, 12.0, 5.0)
END

FUNCTION TMAX3(ARGA, ARGB, ARGC)
T3 = ARGC
GO TO 10

ENTRY TMAX2(ARGA, ARGB)
T3 = ARGA

10 TMAX2 = ARGA
IF(ARGB .GT. TMAX2) TMAX2 = ARGB
IF(T3 .GT. TMAX2) TMAX2 = T3

END

In the above example, an entry was defined to permit us to find the maximum of two real
variables. Either the entry name TMAX2 or the function name TMAX3 could have been used
as the variable for returning the maximum value since they agree in type. It is not necessary
to precede an ENTRY statement with a transfer statement as the ENTRY statement is not an
executable statement; the next statement executed will be the first executable statement
following the ENTRY statement.

82 ENTRY Statement

FORTRAN Statements

Notes:

1. No dummy arguments need be specified in the ENTRY statement. If this is the
case, the parentheses () are optional.

For more information, see the chapter entitled "Functions and Subroutines" on page 291.

ENTRY Statement 83

Language Reference

2.40 EQUIVALENCE Statement

EQUIVALENCE (nlist) [,(nlist)] ...

where:

nlist is a list of at least two names, each name separated by a comma.

The names appearing in nlist can be variable names, array names, array element names,
character names, character substring names, and character array element substring names.
Dummy arguments are not allowed in nlist.

The EQUIVALENCE statement specifies that the storage occupied by the entities appearing in
nlist all start at the same place. It in no way changes the characteristics of an object. For
example, if a variable is equivalenced to an array, the variable does not inherit the properties
of the array. Similarly, if a variable of type integer is equivalenced to a variable of type real,
there is no implied type conversion.

If an array element name appears in an EQUIVALENCE statement, the number of subscript
expressions must be the same as the number of dimensions specified when the array was
declared and each subscript expression must be in the range specified. As an extension to
FORTRAN 77, Watcom FORTRAN 77 allows a single subscript expression for a
multi-dimensional array. An array name used by itself is equivalent to specifying the first
element of the array.

If a character substring appears in an EQUIVALENCE statement, the substring defined by the
substring expression must be properly contained in the character entity being substrung. A
character name used by itself is equivalent to specifying the first character of the character
variable.

Example:
REAL A,B
DIMENSION A(10),B(20)
EQUIVALENCE (A,B(16))

In the above example, the first 5 elements of A occupy the same storage as the last 5 elements
of B.

84 EQUIVALENCE Statement

FORTRAN Statements

Example:
DIMENSION A(10)
EQUIVALENCE (C,A(2)),(D,A(4))

In the above example, C is assigned the same storage unit as A(2) and D is assigned the same
storage unit as A(4).

The following example illustrates a Watcom FORTRAN 77 extension.

Example:
REAL A(2,10),B(20),C(2,2,5)
EQUIVALENCE (A(5),B(1)),(B(1),C(1))

In the above example, a single subscript is specified for arrays A and C. The following table
shows the mapping of a 2-dimensional array onto a 1-dimensional array.

A(1,1) == A(1)
A(2,1) == A(2)
A(1,2) == A(3)
A(2,2) == A(4)
A(1,3) == A(5)
A(2,3) == A(6)

.

.

.

In the above table, "==" is read as "is equivalent to". In FORTRAN, arrays are stored in
"column major" format (i.e., arrays are stored column by column rather than row by row).

Example:
CHARACTER*5 A, D
EQUIVALENCE (A(3:5), D(1:3))

In this example, the last 3 characters of A occupy the same character storage units as the first 3
characters of D.

There are certain restrictions on EQUIVALENCE statements. It is not possible to equivalence
a storage unit to 2 different storage units. This is illustrated by the following example.

EQUIVALENCE Statement 85

Language Reference

Example:
* Illegally equivalencing a storage unit to
* 2 different storage units.

DIMENSION A(2)
EQUIVALENCE (A(1),B),(A(2),B)

B has been given 2 different storage units.

It is also not possible to specify that consecutive storage units be non-consecutive. For
example,

Example:
* Illegally equivalencing consecutive storage units to
* non-consecutive storage units.

DIMENSION A(2),B(2)
EQUIVALENCE (A(1),B(2)),(A(2),B(1))

A(1) and A(2) are consecutive but B(1) and B(2) are not.

The FORTRAN 77 standard specifies that character and numeric data cannot be
equivalenced; Watcom FORTRAN 77 allows character and numeric data to be equivalenced.

86 EQUIVALENCE Statement

FORTRAN Statements

2.41 EXECUTE Statement

EXECUTE name

where:

name is the name of a REMOTE BLOCK located in the same program unit.

The EXECUTE statement allows a named block of code to be executed. The named block of
code may be defined anywhere in the same program unit and is delimited by the REMOTE
BLOCK and END BLOCK statements. Executing a REMOTE-block is similar in concept to
calling a subroutine, with the advantage that shared variables do not need to be placed in a
COMMON block or passed in an argument list. When execution of the REMOTE-block is
complete (i.e., when the END BLOCK statement is executed), control returns to the statement
following the EXECUTE statement which invoked it.

Example:
EXECUTE INCR
PRINT *, ’FIRST’
EXECUTE INCR
PRINT *, ’SECOND’

.

.

.
REMOTE BLOCK INCR

I=I+1
PRINT *, ’I=’,I

END BLOCK

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

EXECUTE Statement 87

Language Reference

2.42 EXIT Statement

EXIT [: block-label]

The EXIT statement is used to transfer control:

1. from within a loop (DO, DO WHILE, WHILE or LOOP) to the statement
following the loop,

2. from within a GUESS or ADMIT block to the statement following the ENDGUESS
statement, or

3. from within a remote block to the statement following the EXECUTE statement that
invoked the remote block.

The EXIT statement may be used to cause a transfer of control to the first executable
statement that follows the terminal statement of the block which contains it. Examples of
such terminal statements are END DO, END LOOP, END WHILE, UNTIL, etc. If
block-label is present then control is transferred out of the block identified by that block
label. The EXIT statement is an extension to the FORTRAN 77 language.

Example:
LOOP

WRITE(UNIT=*, FMT=’(A)’) ’Enter a number’
READ(UNIT=*, FMT=’(F10.4)’, IOSTAT=IOS) X
IF(IOS .NE. 0) EXIT
IF(X .LT. 0) EXIT
PRINT *, X, SQRT(X)

END LOOP
END

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

88 EXIT Statement

FORTRAN Statements

2.43 EXTERNAL Statement

EXTERNAL p [,p] ...

where:

p is the name of an external procedure, dummy procedure or block data subprogram.

The EXTERNAL statement identifies a symbolic name to be a dummy procedure or an external
procedure and allows these names to be passed as an actual argument. In the following
example, SAM, ERRRTN and POLY are declared to be external procedures.

Example:
EXTERNAL SAM, ERRRTN, POLY

In the following example, F is declared to be an external procedure and is passed as such to
subroutine SAM. If the EXTERNAL statement were eliminated then the variable F would be
passed on to subroutine SAM since there is no way of knowing that F is an external function.

Example:
EXTERNAL F

.

.

.
CALL SAM(F)

The appearance of an intrinsic function in an EXTERNAL statement declares that name to be
an external procedure and the intrinsic function by that name is no longer available in that
program unit. This allows the programmer to define a function by the same name as an
intrinsic function. In the following example, the programmer’s SIN function will be called
instead of the intrinsic SIN function.

Example:
EXTERNAL SIN

.

.

.
CALL SIN(.1)

A statement function name must not appear in an EXTERNAL statement. A name must only
appear in an EXTERNAL statement once.

EXTERNAL Statement 89

Language Reference

2.44 FORMAT Statement

label FORMAT fs

where:

fs is a format specification and is described in the chapter entitled "Format" on page
267.

label is the statement label used by an I/O statement to identify the FORMAT statement
to be used. The FORMAT statement must be labelled.

Example:
REAL X
X = 234.43
PRINT 100, X

100 FORMAT(F10.2)
END

In the previous example, the PRINT statement uses the format specification in the FORMAT
statement whose statement label is 100 to display the value of X.

For more information on the FORMAT statement, see the chapter entitled "Format" on page
267.

90 FORMAT Statement

FORTRAN Statements

2.45 FUNCTION Statement
A FUNCTION statement is used to define the start of a function subprogram. There are two
forms of the FUNCTION function statement. The second form is a Watcom FORTRAN 77
extension.

2.45.1 Standard FUNCTION Statement

[type] FUNCTION fun ([d [, d] ...])

where:

type is one of LOGICAL, INTEGER, REAL, DOUBLE PRECISION, COMPLEX or
CHARACTER [*len].

fun is a symbolic name of a function subprogram.

d is a variable name, array name, or a dummy procedure name. d is called a dummy
argument.

len is called the length specification and is the length (number of characters) of the
result of the character function. It has one of the following forms:

(1) An unsigned positive integer constant.

(2) A positive integer constant expression enclosed in parentheses.

(3) An asterisk in parentheses, (*).

Example:
PRINT *, TMAX3(-1.0, 12.0, 5.0)
END

FUNCTION TMAX3(ARGA, ARGB, ARGC)
TMAX3 = ARGA
IF(ARGB .GT. TMAX3) TMAX3 = ARGB
IF(ARGC .GT. TMAX3) TMAX3 = ARGC

END

FUNCTION Statement 91

Language Reference

In the above example, the function TMAX3 is defined to find the maximum of three real
variables.

Notes:

1. No dummy arguments need be specified in the FUNCTION statement. However,
the parentheses () are mandatory.

For more information, see the chapter entitled "Functions and Subroutines" on page 291.

2.45.2 Extended FUNCTION Statement

[type[*len]] FUNCTION fun[*len] ([d [, d] ...])

where:

type is one of LOGICAL, INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
CHARACTER or RECORD /typename/

fun is a symbolic name of a function subprogram.

d is a variable name, array name, or a dummy procedure name. d is called a dummy
argument.

len is called the length specification and has one of the following forms:

(1) An unsigned positive integer constant.

(2) A positive integer constant expression enclosed in parentheses.

(3) An asterisk in parentheses, (*).

For valid values of len, refer to the appropriate type declaration statement.

This form of the FUNCTION statement is an extension to the FORTRAN 77 language.

92 FUNCTION Statement

FORTRAN Statements

Example:
INTEGER*2 MOD2, I, J
I = 12
J = 5
PRINT *, MOD2(I, J)
END

INTEGER*2 FUNCTION MOD2(I, J)
INTEGER*2 I, J
INTEGER II, JJ
II = I
JJ = J
MOD2 = MOD(II, JJ)
END

Notes:

1. No dummy arguments need be specified in the FUNCTION statement. However,
the parentheses () are mandatory.

2. The length specification can appear only once in the FUNCTION statement.

For more information, see the chapter entitled "Functions and Subroutines" on page 291.

FUNCTION Statement 93

Language Reference

2.46 Unconditional GO TO Statement

GO TO s

where:

s is the statement label of an executable statement that appears in the same program unit
as the GO TO statement.

Example:
GO TO 10
.
.
.

10 S = S + 1

When the GO TO statement is executed, control is transferred to the statement identified by
that label. In the above example, the GO TO statement causes execution to proceed to the
statement labelled 10.

Example:
* An illegal GO TO statement

GO TO 100
.
.
.

100 FORMAT(1X, 3F10.2)

The above example contains an illegal GO TO statement since the statement identified by the
label 100 is not executable.

94 Unconditional GO TO Statement

FORTRAN Statements

2.47 Computed GO TO Statement

GO TO (s [,s]...) [,] i

where:

i is an integer expression.

s is the statement label of an executable statement that appears in the same program unit
as the computed GO TO statement.

The integer expression i is evaluated and the ith label is selected for transfer of control. If i
is less than 1 or greater than the number of statement labels in the list then execution control
continues with the next executable statement that follows the computed GO TO statement.

Example:
GO TO (110, 120, 130, 140) INDEX

100 CALL AUDIT

In the above example, control is transferred to the statement identified by the label 110 if
INDEX has the value 1, the label 120 if INDEX has the value 2, etc. If INDEX has a value
that is negative, zero or larger than 4, control continues with the statement labelled 100. In
this example, the integer expression consists simply of an integer variable.

Example:
GO TO (100, 200, 100, 200, 100, 200), I/10

The above example illustrates that statement labels may be repeated in the list and that a ","
may follow the closing right parenthesis.

Computed GO TO Statement 95

Language Reference

2.48 Assigned GO TO Statement

GO TO i [[,] (s [,s]...)]

where:

i is an integer variable name.

s is the statement label of an executable statement that appears in the same program unit
as the assigned GO TO statement.

The variable i must be defined with the value of a statement label of an executable statement
that appears in the same program unit (see the ASSIGN statement). The execution of the
assigned GO TO statement causes a transfer of control to the statement that is identified by
that label.

Example:
INTEGER RET
X = 0.0
ASSIGN 100 TO RET
GO TO 3000

100 X = X + 1
ASSIGN 110 TO RET
GO TO 3000

110 X = X + 1
.
.
.

* Print both X and its square root
3000 Y = SQRT(X)

PRINT *, X, Y
GO TO RET

In the above example, we illustrate the use of the ASSIGN statement and the assigned GO TO
statement to implement a "local subroutine" in a program unit. A sequence of often-used code
can be "called" using the unconditional GO TO statement and "return" is accomplished using
the assigned GO TO statement. Care must be exercised to properly assign the return label
value.

If a list of statement labels is present then the statement label assigned to i must be in the list.
If it is not in the list, an error will occur when the assigned GO TO statement is executed.

96 Assigned GO TO Statement

FORTRAN Statements

Unlike the computed GO TO statement, execution does not continue with the next statement.
This is demonstrated by the following example. Note that the "," preceding the statement
label list is optional.

Example:
* Illegal use of the assigned GO TO:
* Statement label 100 does not appear in the statement
* label list of the assigned GO TO statement.

ASSIGN 100 TO ICASE
GO TO ICASE, (110, 120, 130)

* beginning of selections
100 PRINT *, 100

GO TO 200
110 PRINT *, 110

GO TO 200
120 PRINT *, 120

GO TO 200
130 PRINT *, 130
* end of selections
200 END

Assigned GO TO Statement 97

Language Reference

2.49 GUESS Statement

GUESS [: block-label]

The GUESS statement is an extension to the FORTRAN 77 language. The GUESS statement
marks the beginning of a block of statements for which a certain assumption or hypothesis has
been made. This hypothesis may be tested using logical IF statements in conjunction with
QUIT statements. The ADMIT statement may be used to mark the beginning of an alternate
hypothesis. The END GUESS statement is used to mark the end of a series of
GUESS-ADMIT blocks.

Example:
CHARACTER CH
READ *, CH
GUESS

IF(CH .LT. ’a’)QUIT
IF(CH .GT. ’z’)QUIT
PRINT *, ’Lower case letter’

ADMIT
IF(CH .LT. ’A’)QUIT
IF(CH .GT. ’Z’)QUIT
PRINT *, ’Upper case letter’

ADMIT
IF(CH .LT. ’0’)QUIT
IF(CH .GT. ’9’)QUIT
PRINT *, ’Digit’

ADMIT
PRINT *, ’Special character’

END GUESS
END

An optional block label may be specified with the GUESS statement.

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

98 GUESS Statement

FORTRAN Statements

2.50 Arithmetic IF Statement

IF (e) s1, s2, s3

where:

e is an integer, real, or double precision expression.

s1, s2, s3 are statement labels of executable statements that appear in the same
program unit as the arithmetic IF statement.

The expression e is evaluated and if the value is less than zero then transfer is made to the
statement identified by label s1. If the value is equal to zero then transfer is made to the
statement identified by label s2. If the value is greater than zero then transfer is made to the
statement identified by label s3.

Example:
IF(SIN(X)) 10, 20, 30

10 PRINT *, ’SIN(X) IS < 0’
GO TO 40

20 PRINT *, ’SIN(X) = 0’
GO TO 40

30 PRINT *, ’SIN(X) > 0’
40 CONTINUE

The above example evaluates the sine of the real variable X and prints whether the result is
less than 0, equal to 0, or greater than 0.

The same label may appear more than once in the arithmetic IF statement.

Example:
IF(SIN(X)) 10, 10, 30

10 PRINT *, ’SIN(X) IS <= 0’
GO TO 40

30 PRINT *, ’SIN(X) > 0’
40 CONTINUE

The above example evaluates the sine of the real variable X and prints whether the result is
less than or equal to zero, or that it is greater than 0.

Arithmetic IF Statement 99

Language Reference

2.51 Logical IF Statement

IF (e) st

where:

e is a logical expression or integer arithmetic expression, in which case the result of the
integer expression is compared for inequality to the integer value 0.

st is an executable statement. Only certain executable statements are allowed. See the
section entitled "Classifying Statements" on page 9 at the beginning of this chapter for
a list of allowable statements.

The expression e is evaluated and must result in a true or a false value. If the result is true
then the statement st is executed, otherwise it is not executed.

Example:
IF(A .LT. B)PRINT *, ’A < B’

In the above example, the logical expression A .LT. B is evaluated and, if it is true, the
message A < B is printed. A logical expression is one in which the result is either true or
false. An expression such as 1 + 2 is clearly not an example of a logical expression.

Logical variables have logical values of true or false and may also be used in the logical
expression. Consider the following two examples.

Example:
LOGICAL RESULT
RESULT = A .LT. B
IF(RESULT)PRINT *, ’A < B’

The above example is equivalent to the preceding one but introduces the use of a logical
variable.

100 Logical IF Statement

FORTRAN Statements

Example:
LOGICAL RESULT
RESULT = A .LT. B
IF(.NOT. RESULT)PRINT *, ’A >= B’

In the above example, the logical expression is negated through the use of the .NOT.
operator in order to test for the inverse condition, namely .GE..

Much more complex logical expressions can be constructed and then tested for their truth
value.

Example:
IF(A.LT.B .OR. C.GE.D)PRINT *, ’A<B or C>=D’

An example of an integer expression in an IF statement follows:

Example:
I = 1

* Integer arithmetic expression
IF(I)THEN

PRINT *, ’Yes’
ENDIF

* Equivalent logical expression
IF(I .NE. 0)THEN

PRINT *, ’Yes’
ENDIF
END

Logical IF Statement 101

Language Reference

2.52 Block IF Statement
There are two forms of the block IF statement. The second is a Watcom FORTRAN 77
extension.

2.52.1 Standard Block IF Statement

IF (e) THEN

where:

e is a logical expression.

The block IF statement is used in conjunction with the ELSE IF, ELSE, and END IF
statements.

Example:
IF(A .LT. B)THEN

PRINT *, ’A < B’
END IF

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

2.52.2 Extended Block IF Statement

IF (e) THEN [: block-label]

where:

e is a logical expression or integer arithmetic expression, in which
case the result of the integer expression is compared for inequality
to the integer value 0.

102 Block IF Statement

FORTRAN Statements

block-label is an optional block label.

This form of the block IF statement is an extension to the FORTRAN 77 language. It is
identical to the standard form of the block IF statement with the exception that an integer
arithmetic expression and an optional block label are permitted.

Example:
IF(I .EQ. 10)THEN : IFBLK

IF(J .EQ. 20)THEN
.
.
.
IF(K. EQ. 0)QUIT : IFBLK
.
.
.

END IF
.
.
.

END IF

In the previous example, the QUIT statement will transfer control to the statement following
the second END IF statement.

Block IF Statement 103

Language Reference

2.53 IMPLICIT Statement
Watcom FORTRAN 77 supports three forms of the IMPLICIT statement. The second and
third forms are extensions to the FORTRAN 77 language.

2.53.1 Standard IMPLICIT Statement

IMPLICIT type (a [,a] ...) [,type (a [,a] ...)]...

where:

type is one of LOGICAL, INTEGER, REAL, DOUBLE PRECISION, COMPLEX
or CHARACTER[*len].

a is either a single letter or a range of letters denoted by separating the first letter in
the range from the last letter in the range by a minus sign.

len is the length of the character entities and is a positive unsigned integer constant or a
positive integer constant expression enclosed in parentheses. If len is not
specified, the length is 1.

2.53.2 Extended IMPLICIT Statement

IMPLICIT type[*len] (a [,a] ...)
[,type[*len] (a [,a] ...)] ...

where:

type is one of LOGICAL, INTEGER, REAL, DOUBLE PRECISION, COMPLEX
or CHARACTER.

len is a positive unsigned integer constant or a positive integer constant expression
enclosed in parentheses. If type is CHARACTER then (*) is also allowed. The
possible values of len are as follows:

104 IMPLICIT Statement

FORTRAN Statements

1. If type is LOGICAL then len can be 1 or 4. The default is 4.

2. If type is INTEGER then len can be 1, 2 or 4. The default is 4.

3. If type is REAL then len can be 4 or 8. The default is 4.

4. If type is DOUBLE PRECISION then len cannot be specified.

5. If type is COMPLEX then len can be 8 or 16. The default is 8.

6. If type is CHARACTER then len can be (*) or any positive integer.

2.53.3 IMPLICIT NONE Statement

IMPLICIT NONE

2.53.4 Description of IMPLICIT Statement

The IMPLICIT statement defines the default type and length for all variables, arrays,
symbolic constants, external functions and statement functions that begin with any letter that
has appeared in an IMPLICIT statement as a single letter or as a member of a range of
letters.

The following example specifies that any name beginning with the letters A, D, E, F or G
will have default a default type of integer and any name beginning with the letters X, Y or Z
will have a default type of character and length 3.

Example:
IMPLICIT INTEGER (A,D-G), CHARACTER*3 (X-Z)

The next example illustrates the extended form of the IMPLICIT statement.

Example:
IMPLICIT INTEGER*2 (A,B), LOGICAL*1 (C-F)
IMPLICIT COMPLEX*16 (X,Y,Z), REAL*8 (P)

IMPLICIT Statement 105

Language Reference

Specifying NONE in the IMPLICIT statement will cause Watcom FORTRAN 77 to issue an
error when a symbol is used and has not appeared in a type specification statement.

Example:
* Referencing X will cause an error

IMPLICIT NONE
X = 13143.383

In the above example, the IMPLICIT statement specifies that the type of all symbols must be
explicitly declared in a type specification statement. The assignment statement will cause an
error since the type of X has not been explicitly declared.

Notes:

1. The implicit type set by an IMPLICIT statement may be overridden or confirmed
for any variable, array, symbolic constant, external function or statement function
name by its appearance in a type statement. The default length specification may
also be overridden or confirmed in a type statement.

Example:
IMPLICIT CHARACTER*10 (S-U)
IMPLICIT INTEGER*2 (P)
CHARACTER STRING
INTEGER POINTS

In the above example, the variable STRING is of type character but its length is 1
since it has appeared in a CHARACTER statement which has a default length of 1.
Also, the variable POINTS is of type integer but its length is 4 since it has
appeared in an INTEGER statement which has a default length of 4.

2. A letter cannot appear more than once as a single letter or be included in a range of
letters in all IMPLICIT statements in a program unit.

3. An IMPLICIT statement applies only to the program unit that contains it.

4. The IMPLICIT statement does not change the type of intrinsic functions.

5. A program unit can contain more than one IMPLICIT statement.

6. Within the specification statements of a program unit, IMPLICIT statements must
precede all other specification statements except PARAMETER statements.

106 IMPLICIT Statement

FORTRAN Statements

7. The IMPLICIT NONE statement is allowed only once in a program unit.
Furthermore, no other IMPLICIT statement can be specified in the program unit
containing an IMPLICIT NONE statement.

IMPLICIT Statement 107

Language Reference

2.54 INCLUDE Statement

INCLUDE ’inc_spec’

where:

inc_spec is an include specification. You should refer to the compiler’s User’s Guide
for a detailed description of an include specification and include file
processing.

Example:
INCLUDE ’GBLDEFS’

.

.

.
END

108 INCLUDE Statement

FORTRAN Statements

2.55 INQUIRE Statement
The INQUIRE statement is used to ask about certain properties of a named file or its
connection to a particular unit. There are two forms of the INQUIRE statement; inquire by
file name and inquire by unit.

2.55.1 INQUIRE by FILE

INQUIRE (iflist)

where:

iflist includes the FILE= specifier and may include at most one of each of the
inquiry specifiers listed below. Specifiers are separated by commas. The
FILE= specifier has the form

FILE = fin

where fin is a character expression whose value when trailing blanks are
removed is the name of a file being inquired about. The file need not exist or be
connected to a unit.

Example:
LOGICAL EX, OD
INTEGER NUM
INQUIRE(FILE=’ROLL’,EXIST=EX,OPENED=OD,NUMBER=NUM)

In the above example, information is requested on the file PAYROLL. In particular, we want
to know if it exists, whether it is connected to a unit, and what the unit number is (if it is
indeed connected).

INQUIRE Statement 109

Language Reference

2.55.2 INQUIRE by UNIT

INQUIRE (iulist)

where:

iulist includes the UNIT= specifier and may include at most one of each of the
inquiry specifiers listed below. Specifiers are separated by commas. The
UNIT= specified has the form

[UNIT =] u

where u is an external unit identifier. An external unit identifier is a
non-negative integer expression. If the optional UNIT= specifier is omitted
then the specifier must be the first item in the list of specifiers.

Example:
LOGICAL EX, OD
CHARACTER*30 FN
INQUIRE(UNIT=7, EXIST=EX, OPENED=OD, NAME=FN)

In the above example, information is requested on unit 7. In particular, we want to know if
the unit exists, whether it is connected to a file, and, if so, what the file name is.

2.55.3 Inquiry Specifiers

The following inquiry specifiers are supported.

110 INQUIRE Statement

FORTRAN Statements

IOSTAT = ios
ERR = s
EXIST = ex
OPENED = od
NUMBER = num
NAMED = nmd
NAME = fn
ACCESS = acc
SEQUENTIAL = seq
DIRECT = dir
FORM = fm
FORMATTED = fmt
UNFORMATTED = unf
RECL = rcl
NEXTREC = nr
BLANK = blnk

As an extension to the FORTRAN 77 language, the following inquiry specifiers are also
supported.

ACTION = act
CARRIAGECONTROL = cc
RECORDTYPE = rct
BLOCKSIZE = bl

IOSTAT = ios
is an input/output status specifier. The integer variable or integer array element
ios is defined with zero if no error condition exists or a positive integer value if
an error condition exists.

ERR = s is an error specifier and s is a statement label. When an error occurs, execution
is transferred to the statement labelled by s.

EXIST = ex ex is a logical variable or logical array element.

Inquire by file: The value .TRUE. is assigned if a file exists with the specified
name; otherwise the value .FALSE. is assigned.

Inquire by unit: The value .TRUE. is assigned if the specified unit exists;
otherwise the value .FALSE. is assigned.

OPENED = od
od is a logical variable or logical array element.

INQUIRE Statement 111

Language Reference

Inquire by file: The value .TRUE. is assigned if the specified file is connected
to a unit; otherwise the value .FALSE. is assigned.

Inquire by unit: The value .TRUE. is assigned if the specified unit is connected
to a file; otherwise the value .FALSE. is assigned.

NUMBER = num
num is an integer variable or integer array element that is assigned the value of
the unit number to which the file is connected. If no unit is connected to the file
then num becomes undefined.

NAMED = nmd
nmd is a logical variable or logical array element name that is assigned the value
.TRUE. if the file has a name; otherwise the value .FALSE. is assigned.

NAME = fn fn is a character variable or character array element. Watcom FORTRAN 77
also permits fn to be a character substring.

It is assigned the name of the file, if the file has a name; otherwise it becomes
undefined. The file name that is returned need not be the same as that given in a
FILE= specifier but it must be suitable for use in the FILE= specification of an
OPEN statement (e.g., the file name returned may have additional system
qualifications attached to it).

ACCESS = acc
acc is a character variable or character array element. Watcom FORTRAN 77
also permits acc to be a character substring.

It is assigned the value ’SEQUENTIAL’ if the file is connected for sequential
access. It is assigned the value ’DIRECT’ if the file is connected for direct
access. It is assigned an undefined value if there is no connection.

SEQUENTIAL = seq
seq is a character variable or character array element. Watcom FORTRAN 77
also permits seq to be a character substring.

It is assigned the value ’YES’ if SEQUENTIAL is included in the set of allowed
access methods for the file, the value ’NO’ if SEQUENTIAL is not included in
the set of allowed access methods for the file, or ’UNKNOWN’ if Watcom
FORTRAN 77 is unable to determine whether or not SEQUENTIAL is included
in the set of allowed access methods for the file.

112 INQUIRE Statement

FORTRAN Statements

DIRECT = dir
dir is a character variable or character array element. Watcom FORTRAN 77
also permits dir to be a character substring.

It is assigned the value ’YES’ if DIRECT is included in the set of allowed
access methods for the file, the value ’NO’ if DIRECT is not included in the set
of allowed access methods for the file, or ’UNKNOWN’ if Watcom FORTRAN
77 is unable to determine whether or not DIRECT is included in the set of
allowed access methods for the file.

FORM = fm fm is a character variable or character array element. Watcom FORTRAN 77
also permits fm to be a character substring.

It is assigned the value ’FORMATTED’ if the file is connected for formatted
input/output, the value ’UNFORMATTED’ if the file is connected for
unformatted input/output, or an undefined value if there is no connection.

FORMATTED = fmt
fmt is a character variable or character array element. Watcom FORTRAN 77
also permits fmt to be a character substring.

It is assigned the value ’YES’ if FORMATTED is included in the set of allowed
forms for the file, the value ’NO’ if FORMATTED is not included in the set of
allowed forms for the file, or ’UNKNOWN’ if Watcom FORTRAN 77 is unable
to determine whether or not FORMATTED is included in the set of allowed forms
for the file.

UNFORMATTED = unf
unf is a character variable or character array element. Watcom FORTRAN 77
also permits unf to be a character substring.

It is assigned the value ’YES’ if UNFORMATTED is included in the set of
allowed forms for the file, the value ’NO’ if UNFORMATTED is not included in
the set of allowed forms for the file, or ’UNKNOWN’ if Watcom FORTRAN 77
is unable to determine whether or not UNFORMATTED is included in the set of
allowed forms for the file.

RECL = rcl rcl is an integer variable or integer array element that is assigned the value of
the record length of the file connected for direct access. If the file is connected
for formatted input/output, the length is the number of characters. If the file is
connected for unformatted input/output, the length is measured in
processor-dependent units (bytes). See the compiler User’s Guide for a
discussion of record length or size. If there is no connection or if the file is not

INQUIRE Statement 113

Language Reference

connected for direct access then the value is undefined. The RECL= specifier is
also allowed if the file is connected for sequential access.

NEXTREC = nr
nr is an integer variable or integer array element that is assigned the value
n+1, where n is the record number of the last record read or written on the file
connected for direct access. If the file is connected but no records have been
read or written then the value is 1. If the file is not connected for direct access
or if the position of the file can not be determined because of an input/output
error then nr becomes undefined.

BLANK = blnk
blnk is a character variable or character array element. Watcom FORTRAN
77 also permits blnk to be a character substring.

It is assigned the value ’NULL’ if null blank control is in effect for the file
connected for formatted input/output, and is assigned the value ’ZERO’ if zero
blank control is in effect for the file connected for formatted input/output. If
there is no connection, or if the file is not connected for formatted input/output,
blnk becomes undefined.

ACTION = act
act is a character variable or character array element. Watcom FORTRAN 77

also permits act to be a character substring.

It is assigned the value ’READ’ if data can only be read from the file,
’WRITE’ if data can only be written from the file, and ’READWRITE’ if data
can be both read and written.

CARRIAGECONTROL = cc
cc is a character variable or character array element. Watcom FORTRAN 77

also permits cc to be a character substring.

It is assigned the value ’YES’ if the first character of each record is interpreted
as a carriage control character and ’NO’ if no interpretation is placed on the
first character of each record.

114 INQUIRE Statement

FORTRAN Statements

RECORDTYPE = rct
rct is a character variable or character array element. Watcom FORTRAN 77

also permits rct to be a character substring.

It is assigned a value that represents the record type (or record structure) that is
used for the file. The value assigned depends on the system on which you are
running the program. See the compiler User’s Guide for a discussion of record
types.

BLOCKSIZE = bl
bl is an integer variable or integer array element.

It is assigned a value that represents the internal buffer size that is used for
input/output operations on the file. The value assigned depends on the system
on which you are running the program. See the compiler User’s Guide for a
discussion of default internal buffer size.

2.55.4 Definition Status of Specifiers - Inquire by File

The following table summarizes which specifier variables or array elements become defined
with values under what conditions when using the FILE= specifier.

IOSTAT = ios (1)
EXIST = ex (2)
OPENED = od (2)
NUMBER = num (4)
NAMED = nmd (3)
NAME = fn (3)
ACCESS = acc (5)
SEQUENTIAL = seq (3)
DIRECT = dir (3)
FORM = fm (5)
FORMATTED = fmt (3)
UNFORMATTED = unf (3)
RECL = rcl (5)
NEXTREC = nr (5)
BLANK = blnk (5)
ACTION = act (5)
CARRIAGECONTROL = cc (5)
RECORDTYPE = rct (5)
BLOCKSIZE = bl (5)

1. The IOSTAT= specifier variable is always defined with the most recent error
status. If an error occurs during execution of the INQUIRE statement then the

INQUIRE Statement 115

Language Reference

error status is defined with a positive integer; otherwise the status is that of the
most recent input/output statement which referenced that file.

2. The specifier always becomes defined unless an error condition occurs.

3. This specifier becomes defined with a value only if the file name specified in the
FILE= specifier is an acceptable file name and the named file exists. Also, no
error condition can occur during the execution of the INQUIRE statement.

4. This specifier becomes defined with a value if and only if od becomes defined with
the value .TRUE.. Also, no error condition can occur during the execution of the
INQUIRE statement.

5. This specifier may become defined with a value only if od becomes defined with
the value .TRUE.. However, there may be other conditions under which this
specifier does not become defined with a value. In other words, (5) is a necessary,
but not sufficient condition. For example, blnk is undefined if the file is not
connected for formatted input/output.

2.55.5 Definition Status of Specifiers - Inquire by Unit

The following table summarizes which specifier variables or array elements become defined
with values under what conditions when using the UNIT= specifier.

IOSTAT = ios (1)
EXIST = ex (2)
OPENED = od (2)
NUMBER = num (3)
NAMED = nmd (3)
NAME = fn (3)
ACCESS = acc (3)
SEQUENTIAL = seq (3)
DIRECT = dir (3)
FORM = fm (3)
FORMATTED = fmt (3)
UNFORMATTED = unf (3)
RECL = rcl (3)
NEXTREC = nr (3)
BLANK = blnk (3)
ACTION = act (3)
CARRIAGECONTROL = cc (3)
RECORDTYPE = rct (3)
BLOCKSIZE = bl (3)

116 INQUIRE Statement

FORTRAN Statements

1. The IOSTAT= specifier variable is always defined with the most recent error
status. If an error occurs during execution of the INQUIRE statement then the
error status is defined with a positive integer; otherwise the status is that of the
most recent input/output statement which referenced that unit.

2. This specifier always becomes defined unless an error condition occurs.

3. This specifier becomes defined with a value only if the specified unit exists and if a
file is connected to the unit. Also, no error condition can occur during the
execution of the INQUIRE statement.

For more information on input/output, see the chapter entitled "Input/Output" on page 255.

INQUIRE Statement 117

Language Reference

2.56 INTEGER Statement
The INTEGER statement is a type declaration statement and can be used to declare a name to
be of type integer. The implicit type of the name, whether defined by the "first letter rule"
(see the chapter entitled "Names, Data Types and Constants" on page 177) or by an
IMPLICIT statement, is either confirmed or overridden. However, once a name has been
declared to be of type integer, it cannot appear in another type declaration statement.

There are various forms of the INTEGER statement. The following sections describe them.

2.56.1 Standard INTEGER Statement

INTEGER name [,name] ...

where:

name is a variable name, array name, array declarator, symbolic name of a constant,
function name or dummy procedure name.

This form is the standard form of the INTEGER statement.

Example:
DIMENSION C(-5:5)
INTEGER A, B(10), C

In the previous example, A is defined to be a variable of type integer and B and C are defined
to be arrays of type integer.

2.56.2 Extended INTEGER Statement: Length Specification

INTEGER[*len[,]] name [,name] ...

118 INTEGER Statement

FORTRAN Statements

where:

name is one of the following forms:

v[*len]

a[*len](d)

a(d)[*len]

v is a variable name, array name, symbolic name of a constant, function name or
dummy procedure name.

a is an array name.

(d) is that part of the array declarator defining the dimensions of the array.

len is called the length specification and is an unsigned positive integer constant or an
integer constant expression enclosed in parentheses whose value is 1, 2 or 4.

This form of the INTEGER statement is a Watcom FORTRAN 77 extension to the
FORTRAN 77 language. The length specification specifies the number of bytes of storage
that will be allocated for the name appearing in the INTEGER statement. The default length
specification is 4. A length specification of 1 or 2 does not change the data type; it merely
restricts the magnitude of the integer that can be represented. See the chapter entitled
"Names, Data Types and Constants" on page 177 for more information.

The length specification immediately following the word INTEGER is the length specification
for each entity in the statement not having its own length specification. If a length
specification is not specified the default length specification is used. An entity with its own
specification overrides the default length specification or the length specification immediately
following the word INTEGER. Note that for an array the length specification applies to each
element of the array.

Example:
DIMENSION C(-5:5)
INTEGER A, B*2(10), C*2
INTEGER*1 X

In the previous example, X is declared to be a variable of type integer and occupying 1 byte of
storage, A is declared to be a variable of type integer and occupying 4 bytes of storage and B
and C are declared to be arrays of type integer with each element of the array occupying 2
bytes.

INTEGER Statement 119

Language Reference

2.56.3 Extended INTEGER Statement: Data Initialization

INTEGER[*len[,]] name [/cl/] [,name[/cl/]] ...

where:

name is as described in the previous section.

len is as described in the previous section.

cl is a list of the form:

k [,k] ...

k is one of the forms:

c

r*c (equivalent to r successive appearances of c)

c is a constant or the symbolic name of a constant

r is an unsigned positive integer constant or the symbolic name of a constant.

This form of the INTEGER statement is an extension to the FORTRAN 77 language. The
rules for data initialization are the same as for the DATA statement.

Example:
INTEGER A/100/, B(10)/10*0/

In the previous example, A is initialized with the integer constant 100 and each element of the
array B is initialized with the integer constant 0.

120 INTEGER Statement

FORTRAN Statements

2.57 INTRINSIC Statement

INTRINSIC f [,f] ...

where:

f is the name of an intrinsic function name.

An INTRINSIC statement is used to identify a symbolic name as the name of an intrinsic
function. It also allows a specific intrinsic function to be passed as an actual argument. The
names of intrinsic functions for type conversion (INT, IFIX, HFIX, IDINT, FLOAT,
DFLOAT, SNGL, REAL, DREAL, DBLE, CMPLX, DCMPLX, ICHAR, CHAR), lexical
relationship (LGE, LGT, LLE, LLT), for choosing the largest or smallest value (MAX,
MAX0, AMAX1, DMAX1, AMAX0, MAX1, MIN, MIN0, AMIN1, DMIN1, AMIN0,
MIN1), as well as ALLOCATED, ISIZEOF and LOC, must not be used as actual arguments.

A generic intrinsic function does not lose its generic property if it appears in an INTRINSIC
statement.

A name must only appear in an INTRINSIC statement once. A symbolic name must not
appear in both an INTRINSIC and an EXTERNAL statement in a program unit.

Example:
INTRINSIC SIN

.

.

.
CALL SAM(SIN)

In the previous example, the intrinsic function SIN was passed to the subroutine SAM. If the
INTRINSIC statement were eliminated then the variable SIN would be passed to the
subroutine SAM.

INTRINSIC Statement 121

Language Reference

2.58 LOGICAL Statement
The LOGICAL statement is a type declaration statement and can be used to declare a name to
be of type logical. The implicit type of the name, whether defined by the "first letter rule"
(see the chapter entitled "Names, Data Types and Constants" on page 177) or by an
IMPLICIT statement, is either confirmed or overridden. However, once a name has been
declared to be of type logical, it cannot appear in another type declaration statement.

There are various forms of the LOGICAL statement. The following sections describe them.

2.58.1 Standard LOGICAL Statement

LOGICAL name [,name] ...

where:

name is a variable name, array name, array declarator, symbolic name of a constant,
function name or dummy procedure name.

This form is the standard form of the LOGICAL statement.

Example:
DIMENSION C(-5:5)
LOGICAL A, B(10), C

In the previous example, A is defined to be a variable of type logical and B and C are defined
to be arrays of type logical.

2.58.2 Extended LOGICAL Statement: Length Specification

LOGICAL[*len[,]] name [,name] ...

122 LOGICAL Statement

FORTRAN Statements

where:

name is one of the following forms:

v[*len]

a[*len](d)

a(d)[*len]

v is a variable name, array name, symbolic name of a constant, function name or
dummy procedure name.

a is an array name.

(d) is that part of the array declarator defining the dimensions of the array.

len is called the length specification and is an unsigned positive integer constant or an
integer constant expression enclosed in parentheses whose value is 1 or 4.

This form of the LOGICAL statement is a Watcom FORTRAN 77 extension to the
FORTRAN 77 language. The length specification specifies the number of bytes of storage
that will be allocated for the name appearing in the LOGICAL statement. The default length
specification is 4. A length specification of 1 only changes the storage requirement from 4
bytes to 1 byte; the values of true and false can be represented regardless of the length
specification.

The length specification immediately following the word LOGICAL is the length specification
for each entity in the statement not having its own length specification. If a length
specification is not specified the default length specification is used. An entity with its own
specification overrides the default length specification or the length specification immediately
following the word LOGICAL. Note that for an array the length specification applies to each
element of the array.

Example:
DIMENSION C(-5:5)
LOGICAL A, B*1(10), C*1
LOGICAL*4 X

In the previous example, X is declared to be a variable of type logical and occupying 4 bytes
of storage, A is declared to be a variable of type logical and occupying 4 bytes of storage and
B and C are declared to be arrays of type logical with each element of the array occupying 1
byte.

LOGICAL Statement 123

Language Reference

2.58.3 Extended LOGICAL Statement: Data Initialization

LOGICAL[*len[,]] name [/cl/] [,name[/cl/]] ...

where:

name is as described in the previous section.

len is as described in the previous section.

cl is a list of the form:

k [,k] ...

k is one of the forms:

c

r*c (equivalent to r successive appearances of c)

c is a constant or the symbolic name of a constant

r is an unsigned positive integer constant or the symbolic name of a constant.

This form of the LOGICAL statement is an extension to the FORTRAN 77 language. The
rules for data initialization are the same as for the DATA statement.

Example:
LOGICAL A/.TRUE./, B(10)/10*.FALSE./

In the previous example, A is initialized with the logical constant .TRUE. and each element
of the array B is initialized with the logical constant .FALSE..

124 LOGICAL Statement

FORTRAN Statements

2.59 LOOP Statement

LOOP [:block-label]

The LOOP statement is used in conjunction with the structured END LOOP or UNTIL
statement. The LOOP statement marks the beginning of a sequence of statements which are to
be repeated. The END LOOP or UNTIL statement marks the end of the loop. The
LOOP-block is executed until control is transferred out of the LOOP-block or the logical
expression (or integer arithmetic expression) of the UNTIL statement has a true (or non-zero)
value.

The QUIT statement may be used to transfer control out of a LOOP-block.

Example:
LOOP

READ *, X
IF(X .GT. 99.0) QUIT
PRINT *, X

END LOOP

Example:
X = 1.0
LOOP

PRINT *, X, SQRT(X)
X = X + 1.0

UNTIL(X .GT. 10.0)

An optional block label may be specified with the LOOP statement.

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

LOOP Statement 125

Language Reference

2.60 MAP Statement

MAP

The MAP statement is used in conjunction with the END MAP declarative statement. The MAP
statement marks the start of a memory mapping structure. A MAP structure must appear
within a UNION block. Any number of variables of any type may appear within a memory
map. At least two MAP structures must appear within a UNION block. A UNION block
permits the mapping of the same storage in several different ways.

The following example maps out a 4-byte integer on an Intel 80x86-based processor.

Example:
STRUCTURE /MAPINT/

UNION
MAP

INTEGER*4 LONG
END MAP
MAP

INTEGER*2 LO WORD
INTEGER*2 HI WORD

END MAP
MAP

INTEGER*1 BYTE 0
INTEGER*1 BYTE 1
INTEGER*1 BYTE 2
INTEGER*1 BYTE 3

END MAP
END UNION

END STRUCTURE

RECORD /MAPINT/ I

I%LONG = ’01020304’x
PRINT ’(2Z4)’, I%LO WORD, I%HI WORD
END

For more information, see the chapter entitled "Structures, Unions and Records" on page 199.

126 MAP Statement

FORTRAN Statements

2.61 NAMELIST Statement

NAMELIST /name/ vlist [[,]/name/ vlist] ...

where:

name is the name, enclosed in slashes, of a group of variables. It may not be the same
as a variable or array name.

vlist is a list of variable names and array names separated by commas.

The NAMELIST statement is used to declare a group name for a set of variables so that they
may be read or written with a single namelist-directed READ, WRITE, or PRINT statement.

The list of variable or array names belonging to a NAMELIST name ends with a new
NAMELIST name enclosed in slashes or with the end of the NAMELIST statement. The same
variable name may appear in more than one namelist.

A dummy variable, dummy array name, or allocatable array may not appear in a NAMELIST
list. Also, a variable whose type is a user-defined structure may not appear in a NAMELIST
list.

The NAMELIST statement must precede any statement function definitions and all executable
statements. A NAMELIST name must be declared in a NAMELIST statement and may be
declared only once. The name may appear only in input/output statements. The READ,
WRITE, and PRINT statements may be used to transmit data between a file and the variables
specified in a namelist.

NAMELIST Statement 127

Language Reference

Example:
CHARACTER*20 NAME
CHARACTER*20 STREET
CHARACTER*15 CITY
CHARACTER*20 STATE
CHARACTER*20 COUNTRY
CHARACTER*10 ZIP CODE
INTEGER AGE
INTEGER MARKS(10)
NAMELIST /PERSON/ NAME, STREET, CITY, STATE,

+ COUNTRY, ZIP CODE, AGE, MARKS

OPEN(UNIT=1, FILE=’PEOPLE’)
LOOP

READ(UNIT=1, FMT=PERSON, END=99)
WRITE(UNIT=6, FMT=PERSON)

ENDLOOP
99 CLOSE(UNIT=1)

END

The following example shows another form of a namelist-directed READ statement.

Example:
CHARACTER*20 NAME
CHARACTER*20 STREET
CHARACTER*15 CITY
CHARACTER*20 STATE
CHARACTER*20 COUNTRY
CHARACTER*10 ZIP CODE
INTEGER AGE
INTEGER MARKS(10)
NAMELIST /PERSON/ NAME, STREET, CITY, STATE,

+ COUNTRY, ZIP CODE, AGE, MARKS

READ PERSON
PRINT PERSON
END

The input data must be in a special format. The first character in each record must be blank.
The second character in the first record of a group of data records must be an ampersand (&)
or dollar sign ($) immediately followed by the NAMELIST name. The NAMELIST name
must be followed by a blank and must not contain any imbedded blanks. This name is
followed by data items separated by commas. The end of a data group is signaled by the
character "&" or "$", optionally followed by the string "END". If the "&" character was used
to start the group, then it must be used to end the group. If the "$" character was used to start
the group, then it must be used to end the group.

128 NAMELIST Statement

FORTRAN Statements

The form of the data items in an input record is:

Name = Constant
The name may be a variable name or an array element name. The constant may
be integer, real, complex, logical or character. Logical constants may be in the
form "T" or ".TRUE" and "F" or ".FALSE". Character constants must be
contained within apostrophes. Subscripts must be of integer type.

ArrayName = Set of Constants
The set of constants consists of constants of the type integer, real, complex,
logical or character. The constants are separated by commas. The number of
constants must be less than or equal to the number of elements in the array.
Successive occurrences of the same constant may be represented in the form
r*constant, where r is a non-zero integer constant specifying the number
of times the constant is to occur.

The variable and array names specified in the input file must appear in the NAMELIST list,
but the order is not important. A name that has been made equivalent to a name in the input
data cannot be substituted for that name in the NAMELIST list. The list can contain names of
items in COMMON but must not contain dummy argument names.

Each data record must begin with a blank followed by a complete variable or array name or
constant. Embedded blanks are not permitted in name or constants. Trailing blanks after
integers and exponents are treated as zeros.

Example:
&PERSON

NAME = ’John Doe’
STREET = ’22 Main St.’ CITY = ’Smallville’
STATE = ’Texas’ COUNTRY = ’U.S.A.’
ZIP CODE = ’78910-1203’
MARKS = 73, 82, 3*78, 89, 2*93, 91, 88
AGE = 23

&END

The form of the data items in an output record is suitable for input using a namelist-directed
READ statement.

1. Output records are written using the ampersand character (&), not the dollar sign
($), although the dollar sign is accepted as an alternative during input. That is, the
output data is preceded by "&name" and is followed by "&END".

2. All variable and array names specified in the NAMELIST list and their values are
written out, each according to its type.

NAMELIST Statement 129

Language Reference

3. Character data is enclosed in apostrophes.

4. The fields for the data are made large enough to contain all the significant digits.

5. The values of a complete array are written out in columns.

For more information, see the chapters entitled "Format" on page 267 and "Input/Output" on
page 255.

130 NAMELIST Statement

FORTRAN Statements

2.62 OPEN Statement

OPEN (oplist)

where:

oplist must include the UNIT= specifier and may include at most one of each of
the open specifiers listed below. Specifiers are separated by commas.

[UNIT =] u
IOSTAT = ios
ERR = s
FILE = fin
STATUS = sta
ACCESS = acc
FORM = fm
RECL = rcl
BLANK = blnk

As an extension to the FORTRAN 77 language, the following inquiry
specifiers are also supported.

ACTION = act
CARRIAGECONTROL = cc
RECORDTYPE = rct
BLOCKSIZE = bl
SHARE = shr

The OPEN statement may be used to connect an existing file to a unit, create a file that is
preconnected, create a file and connect it to a unit, or change certain specifications of a
connection between a file and a unit.

Open Specifiers

[UNIT =] u
u is an external unit identifier. An external unit identifier is a non-negative
integer expression. If the optional UNIT= specifier is omitted then the specifier
must be the first item in the list of specifiers.

OPEN Statement 131

Language Reference

IOSTAT = ios
is an input/output status specifier. The integer variable or integer array element
ios is defined with zero if no error condition exists or a positive integer value if
an error condition exists.

ERR = s
is an error specifier and s is a statement label. When an error occurs, execution
is transferred to the statement labelled by s.

FILE = fin
fin is a character expression whose value when trailing blanks are removed is
the name of a file to be connected to the specified unit. If this specifier is
omitted and the unit is not connected to a file, it becomes connected to a file
determined by Watcom FORTRAN 77. The name established by Watcom
FORTRAN 77 is described in the section entitled "Units" on page 261 of the
chapter entitled "Input/Output"

STATUS = sta
sta is a character expression whose value when trailing blanks are removed is
’OLD’, ’NEW’, ’SCRATCH’, or ’UNKNOWN’.

OLD When OLD is specified, a FILE= specifier must be given.
The file must exist.

NEW When NEW is specified, a FILE= specifier must be given.
The file must not exist. Successful execution of the OPEN
statement creates the file and changes the status to OLD.

SCRATCH SCRATCH may only be specified for an unnamed file (i.e.
FILE= is not allowed). When the file is closed, it is deleted.

UNKNOWN If UNKNOWN is specified, the status is ignored. If the
STATUS= specifier is omitted then UNKNOWN is assumed.

ACCESS = acc
acc is a character expression whose value when trailing blanks are removed is
’SEQUENTIAL’ or ’DIRECT’. It specifies the access method for the file. If
the ACCESS= specifier is omitted then ’SEQUENTIAL’ is assumed. If the file
exists then the access method must be in the set of allowed access methods for
the file. If the file does not exist then the file is created with a set of allowed
access methods that includes the specified access method.

132 OPEN Statement

FORTRAN Statements

Watcom FORTRAN 77 also supports access ’APPEND’ which is a form of
sequential access in which the file is positioned at the endfile record. The file
must exist or the append access method must be in the set of allowed access
methods for the file. In all other respects, the file is treated as if
’SEQUENTIAL’ had been specified.

FORM = fm
fm is a character expression whose value when trailing blanks are removed is
’FORMATTED’ or ’UNFORMATTED’. It specifies that the file is being
connected for formatted or unformatted input/output. If the FORM= specifier is
omitted and the file is being connected for direct access then ’UNFORMATTED’
is assumed. If the FORM= specifier is omitted and the file is being connected for
sequential access then ’FORMATTED’ is assumed. If the file exists then the
specified form must be included in the set of allowed forms for the file. If the
file does not exist then the file is created with a set of allowed forms that
includes the specified form.

RECL = rcl
rcl is an integer expression whose value must be positive. It specifies the
length of each record in a file being connected for direct access. If the file is
being connected for direct access, this specifier must be given; otherwise it must
be omitted. Watcom FORTRAN 77 allows the RECL= specifier for files
opened for sequential access.

BLANK = blnk
blnk is a character expression whose value when trailing blanks are removed is
’NULL’ or ’ZERO’. If ’NULL’ is specified then all blank characters in
numeric formatted input fields are ignored except that an entirely blank field has
a value of zero. If ’ZERO’ is specified then all blank characters other than
leading blanks are treated as zeroes. If this specifier is omitted then ’NULL’ is
assumed. This specifier may only be present for a file being connected for
formatted input/output.

ACTION = act
act is a character expression whose value when trailing blanks are removed is
’READ’, ’WRITE’ or ’READWRITE’. If ’READ’ is specified, data can
only be read from the file. If ’WRITE’ is specified, data can only be written to
the file. If ’READWRITE’ is specified, data can both be read and written. The
default is ’READWRITE’.

OPEN Statement 133

Language Reference

CARRIAGECONTROL = cc
cc is a character expression whose value when trailing blanks are removed is
’YES’, or ’NO’. If ’YES’ is specified, Watcom FORTRAN 77 will
automatically add an extra character at the beginning of each record. This
character will be interpreted as a carriage control character. If ’NO’ is
specified, records will be written to the file without adding a carriage control
character at the beginning of the record. The default is ’NO’.

RECORDTYPE = rct
rct is a character expression whose value when trailing blanks are removed

specifies the type of record (or record structure) to be used for the file. The
allowed values for rct depend on the system on which you are running the
program. See the compiler User’s Guide for a discussion of the RECORDTYPE=
specifier.

BLOCKSIZE = bl
bl is an integer expression whose value specifies the internal buffer size to be

used for file input/output. The allowed values for bl depend on the system on
which you are running the program. Generally, the larger the buffer, the faster
the input/output. See the compiler User’s Guide for a discussion of the
BLOCKSIZE= specifier.

SHARE = shr
shr is a character expression whose value when trailing blanks are removed

specifies the way in which other processes can simultaneously access the file.
The allowed values for shr depend on the system on which you are running the
program. See the compiler User’s Guide for a discussion of the SHARE=
specifier.

Example:
OPEN(UNIT=1, FILE=’TEST’, STATUS=’UNKNOWN’,

+ ACCESS=’SEQUENTIAL’,
+ FORM=’FORMATTED’, BLANK=’ZERO’)

In the above example, the file ’TEST’, containing FORMATTED records, is connected to
unit 1. The status of the file is ’UNKNOWN’ since we do not know if it already exists. We
will access the file sequentially, using formatted input/output statements. Blanks in numeric
input data are to be treated as zeroes.

134 OPEN Statement

FORTRAN Statements

Notes:

1. If the unit is already connected to a file that exists, the execution of an OPEN
statement for that unit is permitted.

(a) If the same file is opened then only the BLANK= specifier may be
different. The same file is opened if no FILE= specifier was given or
if the FILE= specifier refers to the same file.

(b) If a different file is opened then the currently connected file is
automatically closed.

2. If the file to be connected to the unit does not exist, but is already preconnected to
the unit, any properties specified in the OPEN statement are merged with and
supersede those of the preconnection. For example, the RECL= specification will
override the record length attribute defined by a preconnection of the file.

3. The same file may not be connected to two or more different units.

For more information on input/output, see the chapter entitled "Input/Output" on page 255.

OPEN Statement 135

Language Reference

2.63 OTHERWISE Statement

OTHERWISE

The OTHERWISE statement is used in conjunction with the SELECT statement. The
OTHERWISE statement marks the start of a new CASE block which is a series of zero or more
statements ending in an END SELECT statement.

When this statement is used and the value of a case expression is not found in any case list
then control of execution is transferred to the first executable statement following the
OTHERWISE statement.

The CASE DEFAULT statement may be used in place of the OTHERWISE statement.

Example:
SELECT CASE (CH)
CASE (’a’ : ’z’)

PRINT *, ’Lower case letter’
CASE (’A’ : ’Z’)

PRINT *, ’Upper case letter’
CASE (’0’ : ’9’)

PRINT *, ’Digit’
OTHERWISE

PRINT *, ’Special character’
END SELECT

In the above example, if the character CH is not a letter or digit then the OTHERWISE block is
executed.

Note: The OTHERWISE or CASE DEFAULT block must follow all other CASE
blocks.

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

136 OTHERWISE Statement

FORTRAN Statements

2.64 PARAMETER Statement

PARAMETER (p=e [,p=e] ...)

where:

p is a symbolic name.

e is a constant expression. Refer to the chapter entitled "Expressions" on page 205 for
more information.

p is known as a symbolic constant whose value is determined by the value of the expression e
according to the rules of assignment as described in the chapter entitled "Assignment
Statements" on page 221. Any symbolic constant appearing in expression e must have been
previously defined in the same or a previous PARAMETER statement in the same program
unit. A symbolic constant may not be defined more than once in a program unit.

If the symbolic name p is of type integer, real, double precision or complex then the
corresponding expression e must be an arithmetic constant expression (see the chapter entitled
"Expressions" on page 205). If the symbolic name p is of type character or logical then the
expression e must be a character constant expression or a logical constant expression
respectively (see the chapter entitled "Expressions" on page 205).

Example:
PARAMETER (PI=3.14159,BUFFER=80,PIBY2=PI/2)
PARAMETER (ERRMSG=’AN ERROR HAS OCCURRED’)

If a symbolic constant is not of default implied type, its type must be specified in an
IMPLICIT statement or a type statement before its occurrence in a PARAMETER statement.
Similarly, if the length of a character symbolic constant is not the default length of 1, its
length must be specified in an IMPLICIT statement or a type statement before its occurrence
in a PARAMETER statement.

PARAMETER Statement 137

Language Reference

2.65 PAUSE Statement

PAUSE [n]

where:

n is a character constant or an unsigned integer constant of no more than five digits.

Watcom FORTRAN 77 allows n to be any unsigned integer constant.

Execution of a PAUSE statement causes a cessation of execution of the program. Execution
of the program may be resumed by the program operator by pressing the terminal line entering
key (e.g., ENTER or RETURN). The PAUSE statement may appear in any program unit.

If the Watcom FORTRAN 77 debugger was requested then execution of the PAUSE statement
will cause entry into the debugger. Program execution may be resumed by issuing the
debugger "go" command.

Example:
PAUSE 4341

The four digit number 4341 is displayed on the terminal. The program temporarily ceases
execution. Execution is resumed by pressing the terminal line entering key.

Example:
PAUSE ’Ready the paper and then resume execution’

The character string

Ready the paper and then resume execution

is displayed on the terminal. Execution of the program may be resumed.

138 PAUSE Statement

FORTRAN Statements

2.66 PRINT Statement
Two forms of the PRINT statement are supported by Watcom FORTRAN 77.

2.66.1 Standard PRINT Statement

PRINT f [,olist]

where:

f is a format identifier.

olist is an optional output list.

2.66.2 Extended PRINT Statement

PRINT, olist

where:

olist is an output list.

2.66.3 Description of PRINT Statement

The PRINT statement is used to transfer data from the executing FORTRAN program to an
external device or file.

Format Identifier - A format identifier is one of the following:

1. A statement label of a FORMAT statement that appears in the same program unit as
the format identifier.

2. An integer variable name that has been assigned the statement label of a FORMAT
statement that appears in the same program unit as the format identifier (see the
ASSIGN statement).

PRINT Statement 139

Language Reference

3. An integer array name.
4. A character array name.
5. Any character expression except one involving the concatenation of an operand

whose length specification is (*) unless the operand is a symbolic constant (see
the PARAMETER statement).

6. An asterisk (*), indicating list-directed formatting.

Watcom FORTRAN 77 supports a variation of list-directed formatting in which
the asterisk (*) may be omitted. It is equivalent to

PRINT * [,olist]

7. A NAMELIST name, indicating namelist-directed formatting.

Output list - An output list may contain one or more of the following:

1. A variable name.

2. An array element name.

3. A character substring name.

4. An array name except an assumed-size dummy array.

5. Any other expression except a character expression involving concatenation of an
operand whose length specification is an asterisk in parentheses unless the operand
is the symbol name of a constant (since the length can be determined at compile
time).

6. An implied-DO list of the form:

(dlist, i = e1, e2 [,e3])

where dlist is composed of one or more of items (1) through (6).

Example:
CHARACTER*5 S
COMPLEX C
S = ’Hello’
I = 123
X = 12.5
C = (12.5,4.58)
PRINT *, S, I, X, C
END

140 PRINT Statement

FORTRAN Statements

The above example illustrates list-directed formatting using the PRINT statement. The
asterisk specifies that the variables in the output list are to be displayed in some format that is
appropriate to the type of the variable (hence the term "list-directed"). The CHARACTER
variable S is printed using a suitable A format descriptor. The INTEGER variable I is printed
using a suitable I format descriptor. The REAL variable X is printed using a suitable G
format descriptor. The COMPLEX variable C is printed using a suitable G format descriptor
and is displayed with enclosing parentheses and a comma. Output from the above program
would resemble the following.

Hello 123 12.5000000 (12.5000000,4.5799999)

Example:
CHARACTER*5 S
COMPLEX C
S = ’Hello’
I = 123
X = 12.5
C = (12.5,4.58)
PRINT, S, I, X, C
END

The above example illustrates a Watcom FORTRAN 77 extension of list-directed formatting
using the PRINT statement. The asterisk is omitted but the results are exactly the same as in
the previous example.

Example:
PRINT 100, X, Y, Z

100 FORMAT(3F10.5)
PRINT ’(3F10.5)’, X, Y, Z

The above gives two examples of the PRINT statement. In both cases, the format conversion
is identical but it was specified in different ways. When executed, the effect of both PRINT
statements is the same.

Example:
PRINT ’(1X,100A1)’, (’*’,I=1,J)

The above example illustrates a technique for producing histograms using the implied
DO-loop. Each time this statement is executed, a number of asterisks are printed, depending
on the value of J.

PRINT Statement 141

Language Reference

Notes:

1. The PRINT statement is implicitly a formatted output statement.

2. The unit number that is implicitly used in the PRINT statement is unit number 6.

3. If no output list is specified then the effect of the PRINT statement is to produce
one or more records whose characters are all blanks.

4. FORTRAN 77 leaves the format of output in list-directed formatting to the
discretion of Watcom FORTRAN 77. Hence other FORTRAN compilers may
produce different results. If the format of output must be consistent from one
compiler to the next then list-directed formatting should not be used.

5. An implication of point (6) above is that nesting of implied-DO lists is permitted.
For example, the output list

((A(I,J), B(I,J), J = 1, 5), I = 1, 10)

may be broken down into the following components:

A(I,J), B(I,J)
(....dlist1...., J = 1, 5)

(.....dlist2..............., I = 1, 10)

For more information on input/output, see the chapter entitled "Input/Output" on page 255.
For more information on formatted input/output, see the chapter entitled "Format" on page
267.

142 PRINT Statement

FORTRAN Statements

2.67 PROGRAM Statement

PROGRAM pgm

where:

pgm is the symbolic name of the main program.

A PROGRAM statement is optional in an executable program. If it does appear, it must be the
first statement in the main program.

Example:
PROGRAM CALC

.

.

.
CALL COMPUTE

.

.

.
END

The main program can contain any Watcom FORTRAN 77 statement except a FUNCTION,
SUBROUTINE, BLOCK DATA, RETURN or ENTRY statement. Note that a SAVE statement
is allowed but has no effect in the main program.

PROGRAM Statement 143

Language Reference

2.68 QUIT Statement

QUIT [: block-label]

The QUIT statement may be used to cause a transfer of control to the first executable
statement that follows the terminal statement of the block which contains it. Examples of
such terminal statements are ADMIT, CASE, END DO, END LOOP, END WHILE,
UNTIL, etc. If block-label is present then control is transferred out of the block
identified by that block label. The QUIT statement is an extension to the FORTRAN 77
language.

Example:
LOOP

WRITE(UNIT=*, FMT=’(A)’) ’Enter a number’
READ(UNIT=*, FMT=’(F10.4)’, IOSTAT=IOS) X
IF(IOS .NE. 0) QUIT
IF(X .LT. 0) QUIT
PRINT *, X, SQRT(X)

END LOOP
END

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

144 QUIT Statement

FORTRAN Statements

2.69 READ Statement
Three forms of the READ statement are supported by Watcom FORTRAN 77.

2.69.1 Standard READ Statement

READ (cilist) [ilist]
READ f [,ilist]

where:

cilist is a control information list of specifiers separated by commas:

[UNIT =] u
[FMT =] f
REC = rn
IOSTAT = ios
ERR = s
END = s

f is a format identifier.

ilist is an optional input list.

2.69.2 Extended READ Statement

READ, ilist

where:

ilist is an input list.

READ Statement 145

Language Reference

2.69.3 Description of READ Statement

The READ statement is used to transfer data from a device or file into the executing
FORTRAN program. As shown above, Watcom FORTRAN 77 supports three forms of the
READ statement.

Control Information List and Format Identifier

[UNIT =] u
u is an external unit identifier or an internal file identifier.

1. An external unit identifier is a non-negative integer expression or an
asterisk (*) in which case unit 5 is assumed.

2. An internal file identifier is the name of a character variable,
character array, character array element, or character substring.

If the optional UNIT= specifier is omitted then the unit specifier must be the
first item in the list of specifiers.

[FMT =] f
f is a format identifier. A format identifier is one of the following:

1. A statement label of a FORMAT statement that appears in the same
program unit as the format identifier.

2. An integer variable name that has been assigned the statement label of
a FORMAT statement that appears in the same program unit as the
format identifier (see the ASSIGN statement).

3. An integer array name.
4. A character array name.
5. Any character expression except one involving the concatenation of

an operand whose length specification is (*) unless the operand is a
symbolic constant (see the PARAMETER statement).

6. An asterisk (*), indicating list-directed formatting.

Watcom FORTRAN 77 supports a third form of the READ statement
in which the asterisk (*) may be omitted. This is a form of
list-directed formatting in which unit 5 is assumed. It is equivalent to

READ * [,ilist]

7. A NAMELIST name, indicating namelist-directed formatting.

146 READ Statement

FORTRAN Statements

If the optional FMT= specifier is omitted then the format specifier must be the
second item in the list of specifiers and UNIT= must not be specified for the first
item in the list.

REC = rn
rn is an integer expression whose value must be positive. It is the number of
the record to be read when a file is connected for direct access.

IOSTAT = ios
is an input/output status specifier. The integer variable or integer array element
ios is defined with zero if no error occurs, a positive integer value if an error
occurs, or a negative integer value if an end-of-file occurs.

ERR = s
is an error specifier and s is a statement label. When an error occurs, execution
is transferred to the statement labelled by s.

END = s
is an end-of-file specifier and s is a statement label. When an end-of-file
occurs, execution is transferred to the statement labelled by s.

Input list - An input list may contain one or more of the following:

1. A variable name.

2. An array element name.

3. A character substring name.

4. An array name except an assumed-size dummy array.

5. An implied-DO list of the form:

(dlist, i = e1, e2 [,e3])

where dlist is composed of one or more of items (1) through (5).

READ Statement 147

Language Reference

Example:
READ(5, 100)X, Y, Z
READ(UNIT=5, FMT=100)X, Y, Z

100 FORMAT(3F10.5)
READ(UNIT=5, FMT=’(3F10.5)’)X, Y, Z
READ(5, ’(3F10.5)’)X, Y, Z

The above gives four examples of formatted READ statements, using the first of three
supported forms of the READ statement. In all cases, the format conversion is identical but it
was specified in different ways. When executed, the effect of all READ statements is the
same. The unit number that is explicitly used in this form of the READ statement is unit
number 5. There are, in fact, many other ways in which the READ statement could have been
written, all of which would have the same effect when executed. We have not shown the use
of all the specifiers.

Example:
READ 100, X, Y, Z

100 FORMAT(3F10.5)
READ ’(3F10.5)’, X, Y, Z

The above gives two examples of formatted READ statements, using the second of three
supported forms of the READ statement. In both cases, the format conversion is identical but
it was specified in different ways. When executed, the effect of both READ statements is the
same. The unit number that is implicitly used in this form of the READ statement is unit
number 5.

Example:
READ(5, *)X, Y, Z
READ(*, *)X, Y, Z
READ(UNIT=5, FMT=*)X, Y, Z
READ(UNIT=*, FMT=*)X, Y, Z
READ *, X, Y, Z
READ , X, Y, Z

The above six examples of list-directed formatted input are all equivalent. Watcom
FORTRAN 77 assumes unit 5 when the unit number identifier is an asterisk (as in the second
and fourth examples). In the fifth example, the asterisk is a format identifier indicating
list-directed formatting. The fifth and sixth examples are examples of the second and third
forms, respectively, of the READ statement in which Watcom FORTRAN 77 assumes unit 5.
When the format identifier is an asterisk or when the third form of the READ statement is
used, we call this list-directed list-directed formatting.

148 READ Statement

FORTRAN Statements

Example:
READ(8)X, Y, Z
READ(UNIT=8)X, Y, Z

The above gives two examples of unformatted READ statements. The unit number used in the
example is 8. When executed, the effect of both of these statements is the same. The values
of the variables X, Y and Z are read from the file connected to unit 8. The values are stored
in the file in their binary form (a form quite incomprehensible to most human beings). An
advantage to using this particular form of the READ statement is that no conversion is required
between the internal binary representation of the values and their textual (human-readable)
form (which means it takes less computer time to process the data).

Notes:

1. The REC= specifier may not be used when list-directed output is specified.

2. If no input list is specified then the effect of the READ statement is to skip one or
more records in the file.

3. An implication of point (5) above is that nesting of implied-DO lists is permitted.
For example, the input list

((A(I,J), B(I,J), J = 1, 5), I = 1, 10)

may be broken down into the following components:

A(I,J), B(I,J)
(....dlist1...., J = 1, 5)

(.....dlist2..............., I = 1, 10)

For more information on input/output, see the chapter entitled "Input/Output" on page 255.
For more information on formatted input/output, see the chapter "Format" on page 267.

READ Statement 149

Language Reference

2.70 REAL Statement
The REAL statement is a type declaration statement and can be used to declare a name to be of
type real. The implicit type of the name, whether defined by the "first letter rule" (see the
chapter entitled "Names, Data Types and Constants" on page 177) or by an IMPLICIT
statement, is either confirmed or overridden. However, once a name has been declared to be
of type real, it cannot appear in another type declaration statement.

There are various forms of the REAL statement. The following sections describe them.

2.70.1 Standard REAL Statement

REAL name [,name] ...

where:

name is a variable name, array name, array declarator, symbolic name of a constant,
function name or dummy procedure name.

This form is the standard form of the REAL statement.

Example:
DIMENSION C(-5:5)
REAL A, B(10), C

In the previous example, A is defined to be a variable of type real and B and C are defined to
be arrays of type real.

2.70.2 Extended REAL Statement: Length Specification

REAL[*len[,]] name [,name] ...

150 REAL Statement

FORTRAN Statements

where:

name is one of the following forms:

v[*len]

a[*len](d)

a(d)[*len]

v is a variable name, array name, symbolic name of a constant, function name or
dummy procedure name.

a is an array name.

(d) is that part of the array declarator defining the dimensions of the array.

len is called the length specification and is an unsigned positive integer constant or an
integer constant expression enclosed in parentheses whose value is 4 or 8.

This form of the REAL statement is a Watcom FORTRAN 77 extension to the FORTRAN 77
language. The length specification specifies the number of bytes of storage that will be
allocated for the name appearing in the REAL statement. The default length specification is 4.
A length specification of 8 specifies that the data type of the name appearing in the REAL
statement is to be double precision.

The length specification immediately following the word REAL is the length specification for
each entity in the statement not having its own length specification. If a length specification is
not specified the default length specification is used. An entity with its own specification
overrides the default length specification or the length specification immediately following the
word REAL. Note that for an array the length specification applies to each element of the
array.

Example:
DIMENSION C(-5:5)
REAL A, B*8(10), C*8
REAL*8 X

In the previous example, X is declared to be a variable of type double precision, A is declared
to be a variable of type real and B and C are declared to be arrays of type double precision.

REAL Statement 151

Language Reference

2.70.3 Extended REAL Statement: Data Initialization

REAL[*len[,]] name [/cl/] [,name[/cl/]] ...

where:

name is as described in the previous section.

len is as described in the previous section.

cl is a list of the form:

k [,k] ...

k is one of the forms:

c

r*c (equivalent to r successive appearances of c)

c is a constant or the symbolic name of a constant

r is an unsigned positive integer constant or the symbolic name of a constant.

This form of the REAL statement is an extension to the FORTRAN 77 language. The rules for
data initialization are the same as for the DATA statement.

Example:
REAL A/1.2/, B(10)/10*5.0/

In the previous example, A is initialized with the real constant 1.2 and each element of the
array B is initialized with the real constant 5.0.

152 REAL Statement

FORTRAN Statements

2.71 RECORD Statement

RECORD /typename/ name [,name] ...

where:

typename is the name of a user-defined structure type.

name is a variable name, array name, array declarator, function name or dummy
procedure name.

The RECORD statement is used to assign a structure type to a variable.

Example:
STRUCTURE /ADDRESS/

CHARACTER*20 STREET
CHARACTER*15 CITY
CHARACTER*20 STATE
CHARACTER*20 COUNTRY
CHARACTER*10 ZIP CODE

END STRUCTURE

STRUCTURE /PEOPLE/
CHARACTER*20 NAME
RECORD /ADDRESS/ ADDR
INTEGER*2 AGE

END STRUCTURE

RECORD /PEOPLE/ CUSTOMER

CUSTOMER%NAME = ’John Doe’
CUSTOMER%ADDR%STREET = ’22 Main St.’
CUSTOMER%ADDR%CITY = ’Smallville’
CUSTOMER%ADDR%STATE = ’Texas’
CUSTOMER%ADDR%COUNTRY = ’U.S.A.’
CUSTOMER%ADDR%ZIP CODE = ’78910-1203’
CUSTOMER%AGE = 23

For more information, see the chapter entitled "Structures, Unions and Records" on page 199.

RECORD Statement 153

Language Reference

2.72 REMOTE BLOCK Statement

REMOTE BLOCK name

where:

name is a valid FORTRAN symbolic name.

The REMOTE BLOCK statement is used to define a block of statements which may be
executed by an EXECUTE statement. A REMOTE-block must be defined in the program unit
in which it is used and is terminated by an END BLOCK statement. A REMOTE-block is
similar in concept to a subroutine, with the advantage that shared variables do not need to be
placed in a common block or passed in an argument list. When execution of the
REMOTE-block is complete, control returns to the statement following the EXECUTE
statement which invoked it.

This feature is helpful in avoiding duplication of code for a common sequence of statements
required in a number of places throughout a program. It can also be an aid to writing a well
structured program. This feature can be mimicked using the ASSIGN and assigned GO TO
statements. However, statement numbers must be introduced which could lead to errors.

Each REMOTE-block must have a different name and it must not be a subprogram or variable
name. Note that a REMOTE-block is local to the program unit in which it is defined and may
not be referenced (executed) from another program unit.

Note that the nested definition of REMOTE-blocks is not permitted.

Example:
EXECUTE INCR
PRINT *, ’FIRST’
EXECUTE INCR
PRINT *, ’SECOND’

.

.

.
REMOTE BLOCK INCR

I=I+1
PRINT *, ’I=’,I

END BLOCK

154 REMOTE BLOCK Statement

FORTRAN Statements

Both EXECUTE statements will cause REMOTE-block INCR to be executed. That is,
variable I will be incremented and its value will be printed. When the block has been
executed by the first EXECUTE statement, control returns to the PRINT statement following it
and the word FIRST is printed. Similarly, when the block is executed by the second
EXECUTE statement, control returns to the PRINT statement following it and the word
SECOND is printed.

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

REMOTE BLOCK Statement 155

Language Reference

2.73 RETURN Statement

RETURN [e]

where:

e is an integer expression.

A RETURN statement is used to terminate execution of a subprogram and return control to the
program unit that referenced it. As an extension to FORTRAN 77, Watcom FORTRAN 77
permits the use of the RETURN statement in the main program. When a RETURN statement is
executed in the main program, program execution terminates in the same manner as the STOP
or END statement.

The expression e is not permitted when returning from an external function subprogram (or
main program); it can only be specified when returning from a subroutine subprogram.

Example:
FUNCTION ABS(A)
ABS = A
IF(A .GE. 0)RETURN
ABS = -A
RETURN
END

For more information, see the chapter entitled "Functions and Subroutines" on page 291.

156 RETURN Statement

FORTRAN Statements

2.74 REWIND Statement

REWIND u
REWIND (alist)

where:

u is an external unit identifier.

alist is a list of rewind specifiers separated by commas:

[UNIT =] u
IOSTAT = ios
ERR = s

Execution of a REWIND statement causes the file connected to the specified unit to be
positioned at the beginning (or before the first record) of the file.

Rewind Specifiers

[UNIT =] u
u is an external unit identifier. An external unit identifier is a non-negative
integer expression. If the optional UNIT= specifier is omitted then the specifier
must be the first item in the list of specifiers.

IOSTAT = ios
is an input/output status specifier. The integer variable or integer array element
ios is defined with zero if no error condition exists or a positive integer value if
an error condition exists.

ERR = s
is an error specifier and s is a statement label. When an error occurs, execution
is transferred to the statement labelled by s.

REWIND Statement 157

Language Reference

Example:
LOOP

READ(UNIT=7, END=100, FMT=200)RECORD
PRINT *, RECORD

ENDLOOP
100 REWIND(UNIT=7)

LOOP
READ(UNIT=7, END=101, FMT=200)RECORD
WRITE(UNIT=8, FMT=200)RECORD

ENDLOOP
101 CONTINUE

In the previous example, we illustrate how one might process the records in a file twice. After
reaching the endfile record, a REWIND statement is executed and the file is read a second
time.

Notes:

1. The unit must be connected for sequential access.

2. If the file is positioned at the beginning of the file then the REWIND statement has
no effect.

3. It is permissible to rewind a file that does not exist but it has no effect.

For more information on input/output, see the chapter entitled "Input/Output" on page 255.

158 REWIND Statement

FORTRAN Statements

2.75 SAVE Statement

SAVE [a [,a] ...]

where:

a is a named common block preceded and followed by a slash (/), a variable name or an
array name.

The SAVE statement is used to retain the value of an entity after the execution of a RETURN
or END statement in a subprogram. Upon re-entry to the subprogram, the entity will have the
same value it had when exit was made from the subprogram. However, an entity belonging to
a common block that has appeared in a SAVE statement may become redefined in another
program unit.

Notes:

1. A name cannot appear in a SAVE statement more than once in the same program
unit.

2. Dummy arguments, procedure names and names belonging to a common block are
not permitted in a SAVE statement.

3. A SAVE statement with no list is identical to a SAVE statement containing all
allowable names in a program unit.

4. A common block name appearing in a SAVE statement has the same effect of
specifying all names belonging to that common block in the SAVE statement.

5. If a named common block is specified in a SAVE statement in a subprogram, it
must be specified in a SAVE statement in every subprogram in which that common
block appears. Furthermore, upon executing a RETURN or END statement, the
current values of the entities in that common block are made available to the next
program unit executed in which that common block appears.

6. If a named common block is specified in a SAVE statement in the main program
unit, the current values of the entities in that common block are made available to
every subprogram that specifies that common block. In this case, a SAVE
statement has no effect in the subprogram.

SAVE Statement 159

Language Reference

In the following example, the subroutine BLKINIT initializes the entities of the common
block BLK and uses a SAVE statement to ensure that their values are made available to
subroutine BLKPRT.

Example:
PROGRAM MAIN

.

.

.
CALL BLKINIT
CALL BLKPRT

.

.

.
END

SUBROUTINE BLKINIT
COMMON /BLK/ A,B,C
SAVE /BLK/
A = 1.0
B = 2.0
C = 3.0
END

SUBROUTINE BLKPRT
COMMON /BLK/ A,B,C
SAVE /BLK/
PRINT *, A, B, C
END

160 SAVE Statement

FORTRAN Statements

2.76 SELECT Statement

SELECT [CASE] (e) [FROM] [: block-label]

The SELECT statement is used in conjunction with the CASE and END SELECT statements.
The form of a SELECT block is as follows:

SELECT [CASE] (e) [FROM] [: block-label]
CASE (case-list)

statement (s)
CASE (case-list)

statement (s)
.
.
.

CASE (case-list)
statement(s)

CASE DEFAULT
statement(s)

END SELECT

where:

e is an integer expression.

case-list is a list of one or more cases separated by commas. A case is either

(a) a single integer, logical or character constant expression or

(b) an integer, logical or character constant expression followed
by a colon followed by another expression or the same type.
This form of a case defines a range of values consisting of all
integers or characters greater than or equal to the value of the
expression preceding the colon and less than or equal to the
value of the expression following the colon.

The CASE and FROM keywords are optional in the SELECT statement. An optional block
label may be specified with the SELECT statement.

The case expression e is evaluated and if the result is equal to one of the values covered by
case-list then the control of execution is transferred to the associated CASE block.

SELECT Statement 161

Language Reference

Example:
SELECT CASE (CH)
CASE (’a’ : ’z’)

PRINT *, ’Lower case letter’
CASE (’A’ : ’Z’)

PRINT *, ’Upper case letter’
CASE (’0’ : ’9’)

PRINT *, ’Digit’
CASE DEFAULT

PRINT *, ’Special character’
END SELECT

In the above example, if the character CH is not a letter or digit then the CASE DEFAULT
block is executed.

The CASE DEFAULT statement is optional. If it is present and the case expression is out of
range (i.e., no CASE blocks are executed) then the CASE DEFAULT block is executed. If it
is not present and the case expression is out of range then execution continues with the first
executable statement following the END SELECT statement. The CASE DEFAULT block
must follow all other CASE blocks.

Example:
SELECT CASE (I)
CASE (1)

Y = Y + X
X = X * 3.2

CASE (2)
Z = Y**2 + X

CASE (3)
Y = Y * 13. + X
X = X - 0.213

CASE (4)
Z = X**2 + Y**2 - 3.0
Y = Y + 1.5
X = X * 32.0

CASE DEFAULT
PRINT *, ’CASE is not in range’

END SELECT
PRINT *, X, Y, Z

In order to retain compatibility with earlier versions of WATCOM FORTRAN 77 compilers,
the OTHERWISE statement may be used in place of the CASE DEFAULT statement.

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

162 SELECT Statement

FORTRAN Statements

2.77 STOP Statement

STOP [n]

where:

n is a character constant or an unsigned integer constant of no more than five digits.

Watcom FORTRAN 77 allows n to be any unsigned integer constant.

Execution of a STOP statement causes termination of execution of the program. A STOP
statement may appear in any program unit (although good programming practice suggests that
the main program is the proper place for this statement).

Example:
STOP 943

The three digit number 943 is displayed on the console prior to program termination.

Example:
STOP ’Finished at last’

The character string

Finished at last

is displayed on the console prior to program termination.

STOP Statement 163

Language Reference

2.78 STRUCTURE Statement

STRUCTURE /typename/

where:

typename is the name for a new, compound variable, data type.

The STRUCTURE statement is used in conjunction with the END STRUCTURE declarative
statement. The STRUCTURE statement marks the start of a structure definition.

The STRUCTURE statement defines a new variable type, called a structure. It does not
declare a specific program variable. The RECORD statement is used to declare variables and
arrays to be of this particular structure type.

Structures may be composed of simple FORTRAN types or more complex structure types.
This is shown in the following example.

Example:
STRUCTURE /ADDRESS/

CHARACTER*20 STREET
CHARACTER*20 CITY
CHARACTER*20 STATE
CHARACTER*20 COUNTRY
CHARACTER*10 ZIP CODE

END STRUCTURE

STRUCTURE /PEOPLE/
CHARACTER*20 NAME
RECORD /ADDRESS/ ADDR
INTEGER*2 AGE

END STRUCTURE

RECORD /PEOPLE/ CUSTOMER

Element names are local to the structure in which they appear. The same element name can
appear in more than one structure. Nested structures may have elements with the same name.
A particular element is specified by listing the sequence of elements required to reach the
desired element, separated by percent symbols (%) or periods (.).

164 STRUCTURE Statement

FORTRAN Statements

Example:
CUSTOMER%NAME = ’John Doe’
CUSTOMER%ADDR%STREET = ’22 Main St.’
CUSTOMER%ADDR%CITY = ’Smallville’
CUSTOMER%ADDR%STATE = ’Texas’
CUSTOMER%ADDR%COUNTRY = ’U.S.A.’
CUSTOMER%ADDR%ZIP CODE = ’78910-1203’
CUSTOMER%AGE = 23

For more information, see the chapter entitled "Structures, Unions and Records" on page 199.

STRUCTURE Statement 165

Language Reference

2.79 SUBROUTINE Statement

SUBROUTINE sub [([d [, d] ...])]

where:

sub is a symbolic name of a subroutine subprogram.

d is a variable name, array name, dummy procedure name or an asterisk (*). d is
called a dummy argument.

A SUBROUTINE statement is used to define the start of a subroutine subprogram.

Example:
CALL TMAX3(-1.0, 12.0, 5.0)
END

SUBROUTINE TMAX3(ARGA, ARGB, ARGC)
THEMAX = ARGA
IF(ARGB .GT. THEMAX) THEMAX = ARGB
IF(ARGC .GT. THEMAX) THEMAX = ARGC
PRINT *, THEMAX

END

In the above example, the subroutine TMAX3 is defined to find and print out the maximum
value of three real variables.

Notes:

1. No dummy arguments need be specified in the SUBROUTINE statement. If such is
the case, the parentheses () are optional.

For more information, see the chapter entitled "Functions and Subroutines" on page 291.

166 SUBROUTINE Statement

FORTRAN Statements

2.80 UNION Statement

UNION

The UNION statement is used in conjunction with the END UNION declarative statement.
The UNION statement marks the start of a series of MAP structures. A UNION block must
contain at least two MAP structures. A UNION block permits the mapping of the same storage
in several different ways.

The following example maps out a 4-byte integer on an Intel 80x86-based processor.

Example:
STRUCTURE /MAPINT/

UNION
MAP

INTEGER*4 LONG
END MAP
MAP

INTEGER*2 LO WORD
INTEGER*2 HI WORD

END MAP
MAP

INTEGER*1 BYTE 0
INTEGER*1 BYTE 1
INTEGER*1 BYTE 2
INTEGER*1 BYTE 3

END MAP
END UNION

END STRUCTURE

RECORD /MAPINT/ I

I%LONG = ’01020304’x
PRINT ’(2Z4)’, I%LO WORD, I%HI WORD
END

For more information, see the chapter entitled "Structures, Unions and Records" on page 199.

UNION Statement 167

Language Reference

2.81 UNTIL Statement

UNTIL (e)

where:

e is a logical expression or integer arithmetic expression, in which case the result of the
integer expression is compared for inequality to the integer value 0.

The UNTIL statement is used in conjunction with the structured LOOP or block WHILE
statement. The LOOP or block WHILE statement marks the beginning of a sequence of
statements which are to be repeated. The UNTIL statement marks the end of the loop. The
LOOP-block or WHILE-block is executed until control is transferred out of the block or the
logical expression of the UNTIL statement has a true value.

Example:
X = 1.0
LOOP

PRINT *, X, SQRT(X)
X = X + 1.0

UNTIL(X .GT. 10.0)

Example:
I = 1
WHILE(I .LT. 100)DO

J = 4 * I * I
K = 3 * I
PRINT *, ’4x**2 + 3x + 6 = ’, J + K + 6
I = I + 1

UNTIL((J + K + 6) .GT. 100)

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

168 UNTIL Statement

FORTRAN Statements

2.82 VOLATILE Statement

VOLATILE [a [,a] ...]

where:

a is a variable name or an array name.

The VOLATILE statement is used to indicate that a variable or an element of an array may be
updated concurrently by other code. A volatile variable or array element will not be cached
(in a register) by the code generator. Each time a volatile variable or array element is
referenced, it is loaded from memory. Each time a volatile variable or array element is
updated, it is stored back into memory.

Notes:

1. A name cannot appear in a VOLATILE statement more than once in the same
program unit.

2. Dummy arguments, procedure names, and common block names are not permitted
in a VOLATILE statement.

In the following example, the subroutine A THREAD waits on the HoldThreads
semaphore. It uses the VOLATILE statement to ensure that the variable is re-loaded from
memory each time through the loop.

Example:
SUBROUTINE A THREAD()

STRUCTURE /RTL CRITICAL SECTION/
INTEGER*4 DebugInfo
INTEGER*4 LockCount
INTEGER*4 RecursionCount
INTEGER*4 OwningThread
INTEGER*4 LockSemaphore
INTEGER*4 Reserved

END STRUCTURE

VOLATILE Statement 169

Language Reference

INTEGER NumThreads
LOGICAL HoldThreads
VOLATILE HoldThreads
RECORD /RTL CRITICAL SECTION/ CriticalSection
COMMON NumThreads, HoldThreads, CriticalSection
INTEGER threadid

WHILE(HoldThreads)DO

CALL Sleep(1)
END WHILE
PRINT ’(’’Hi from thread ’’, i4)’, threadid()
CALL EnterCriticalSection(CriticalSection)
NumThreads = NumThreads - 1
CALL LeaveCriticalSection(CriticalSection)
CALL endthread()
END

170 VOLATILE Statement

FORTRAN Statements

2.83 Block WHILE Statement

WHILE (e) DO [: block-label]

where:

e is a logical expression or integer arithmetic expression, in which case the result of the
integer expression is compared for inequality to the integer value 0.

The block WHILE statement is used in conjunction with the structured END WHILE or
UNTIL statement. The block WHILE statement marks the beginning of a sequence of
statements which are to be repeated. The END WHILE or UNTIL statement marks the end of
the WHILE-block. The WHILE-block is executed while the logical expression of the WHILE
statement has a true value or until control is transferred out of the WHILE-block.

Example:
X = 1.0
WHILE(X .LT. 100)DO

PRINT *, X, SQRT(X)
X = X + 1.0

END WHILE

Example:
I = 1
WHILE(I .LT. 100)DO

J = 4 * I * I
K = 3 * I
PRINT *, ’4x**2 + 3x + 6 = ’, J + K + 6
I = I + 1

UNTIL((J + K + 6) .GT. 100)
END

An optional block label may be specified with the WHILE statement.

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227.

Block WHILE Statement 171

Language Reference

2.84 WHILE Statement

WHILE (e) stmt

where:

e is a logical expression.

stmt is an executable statement. Only certain executable statements are allowed. See
the section entitled "Classifying Statements" on page 9 at the beginning of this
chapter for a list of allowed statements.

This form of the WHILE statement allows an executable statement to be repeatedly executed
until the logical expression e is false.

Example:
I = 0
WHILE(I .LE. 100) CALL PRTSQR(I)
END

SUBROUTINE PRTSQR(J)
PRINT *, J, J**2
J = J + 1
END

In the above example, the subroutine PRTSQR is called again and again until the value of I
has been incremented beyond 100. Note that the subroutine increments its argument thereby
guaranteeing that the program will eventually stop execution.

For more information, see the chapter entitled "Program Structure Control Statements" on
page 227 Control Statements".

172 WHILE Statement

FORTRAN Statements

2.85 WRITE Statement

WRITE (cilist) [olist]

where:

cilist is a control information list of specifiers separated by commas:

[UNIT =] u
[FMT =] f
REC = rn
IOSTAT = ios
ERR = s

olist is an output list.

The WRITE statement is used to transfer data from the executing FORTRAN program to an
external device or file.

Control Information List

[UNIT =] u
u is an external unit identifier or an internal file identifier.

1. An external unit identifier is a non-negative integer expression or an
asterisk (*) in which case unit 6 is assumed.

2. An internal file identifier is the name of a character variable,
character array, character array element, or character substring.

If the optional UNIT= specifier is omitted then the unit specifier must be the
first item in the list of specifiers.

[FMT =] f
f is a format identifier. A format identifier is one of the following:

1. A statement label of a FORMAT statement that appears in the same
program unit as the format identifier.

2. An integer variable name that has been assigned the statement label of
a FORMAT statement that appears in the same program unit as the
format identifier (see the ASSIGN statement).

WRITE Statement 173

Language Reference

3. An integer array name.
4. A character array name.
5. Any character expression except one involving the concatenation of

an operand whose length specification is (*) unless the operand is a
symbolic constant (see the PARAMETER statement).

6. An asterisk (*), indicating list-directed formatting.
7. A NAMELIST name, indicating namelist-directed formatting.

If the optional FMT= specifier is omitted then the format specifier must be the
second item in the list of specifiers and UNIT= must not be specified for the first
item in the list.

REC = rn
rn is an integer expression whose value must be positive. It is the number of
the record to be written when a file is connected for direct access.

IOSTAT = ios
is an input/output status specifier. The integer variable or integer array element
ios is defined with zero if no error condition occurs or a positive integer value
if an error condition occurs.

ERR = s
is an error specifier and s is a statement label. When an error occurs, execution
is transferred to the statement labelled by s.

Output list - An output list may contain one or more of the following:

1. A variable name.

2. An array element name.

3. A character substring name.

4. An array name except an assumed-size dummy array.

5. Any other expression except a character expression involving concatenation of an
operand whose length specification is an asterisk in parentheses unless the operand
is the symbolic name of a constant (since the length can be determined at compile
time).

6. An implied-DO list of the form:

(dlist, i = e1, e2 [,e3])

174 WRITE Statement

FORTRAN Statements

where dlist is composed of one or more of items (1) through (6).

Example:
WRITE(6, 100)X, Y, Z
WRITE(UNIT=6, FMT=100)X, Y, Z

100 FORMAT(3F10.5)
WRITE(UNIT=6, FMT=’(3F10.5)’)X, Y, Z
WRITE(6, ’(3F10.5)’)X, Y, Z

The above gives four examples of formatted WRITE statements. In all cases, the format
conversion is identical but it was specified in different ways. When executed, the effect of all
WRITE statements is the same. The unit number, used here, is 6. There are, in fact, many
other ways in which the WRITE statement could have been written, all of which would have
the same effect when executed. We have not shown use of all the specifiers.

Example:
WRITE(6, *)X, Y, Z
WRITE(*, *)X, Y, Z
WRITE(UNIT=6, FMT=*)X, Y, Z
WRITE(UNIT=*, FMT=*)X, Y, Z

The above four examples of list-directed formatted output are all equivalent. Watcom
FORTRAN 77 assumes unit 6 when the unit number identifier is an asterisk (as in the second
and fourth examples). In the examples, the format identifier is an asterisk indicating
list-directed formatting.

Example:
WRITE(8)X, Y, Z
WRITE(UNIT=8)X, Y, Z

The above gives two examples of unformatted WRITE statements. The unit number used in
the example is 8. When executed, the effect of both of these statements is the same. The
values of the variables X, Y and Z are written to the file connected to unit 8 in their binary
form (a form quite incomprehensible to most human beings). An advantage to using this
particular form of the WRITE statement is that no conversion is required between the internal
binary representation of the values and their textual (human-readable) form (which means it
takes less computer time to process the data).

Notes:

1. If no output list is specified then the effect of the WRITE statement is to produce a
record whose characters are all blanks.

2. The REC= specifier may not be used when list-directed output is specified.

WRITE Statement 175

Language Reference

3. An implication of point (6) above is that nesting of implied-DO lists is permitted.
For example, the output list

((A(I,J), B(I,J), J = 1, 5), I = 1, 10)

may be broken down into the following components:

A(I,J), B(I,J)
(....dlist1...., J = 1, 5)

(.....dlist2..............., I = 1, 10)

For more information on input/output, see the chapter entitled "Input/Output" on page 255.
For more information on formatted input/output, see the chapter entitled "Format" on page
267.

176

3 Names, Data Types and Constants

3.1 Symbolic Names
Symbolic names are names that represent variables, arrays, functions, etc. Names are formed
using any of the upper-case letters A-Z and the digits 0-9, the first of which must be a letter.
Symbolic names are limited to 6 characters in length. The following are examples of
symbolic names.

AMOUNT
AGE
CUST73

Watcom FORTRAN 77 extends the allowable characters that can make up a symbolic name
to include the lower-case letters a-z, the dollar sign ($) and the underscore (_). Note that the
dollar sign and the underscore are treated as letters and are therefore allowed as the first letter
of a symbolic name. Furthermore, Watcom FORTRAN 77 allows symbolic names of up to 32
characters. The following are examples of permissible symbolic names.

Evaluate
$Cheque
ComputeAverage
device
IO$ERROR
student total

Watcom FORTRAN 77 makes no distinction between upper and lower case letters. The
following symbolic names are identical.

Account
ACCount
ACCOUNT

Spaces are allowed in symbolic names and are ignored. The following symbolic names are
identical.

C R E DIT
CRE D I T

Symbolic Names 177

Language Reference

FORTRAN 77 allows certain keywords such as WRITE to be used as symbolic names. In
Watcom FORTRAN 77, all keywords satisfy the requirements of a symbolic name. A
keyword is a sequence of letters that is interpreted in a special way by Watcom FORTRAN
77. Whether a string of characters is interpreted as a keyword or as a symbolic name depends
on the context in which it is used. In the following example, the first statement is an
assignment statement assigning the value 2 to the symbolic name DO10I. The second
statement is the beginning of a DO-loop.

Example:
DO10I=1
DO10I=1,10

3.2 Data Types
There are 6 basic data types in FORTRAN 77; logical, integer, real, double precision,
complex and character. Watcom FORTRAN 77 provides an additional data type, namely
double precision complex (DOUBLE COMPLEX or COMPLEX*16). Watcom FORTRAN 77
also supports the creation of more complex user-defined data types using the STRUCTURE
statement.

Each data type can be classified as numeric, logical or character. Each datum occupies a
sequence of storage units. Numeric data and logical data occupy numeric storage units
whereas character data occupy character storage units. In Watcom FORTRAN 77, a numeric
storage unit occupies 4 bytes and a character storage unit occupies 1 byte.

The following table summarizes all data types supported by Watcom FORTRAN 77.

178 Data Types

Names, Data Types and Constants

Data Type Size Standard
(in bytes) FORTRAN

LOGICAL 4 yes
LOGICAL*1 1 extension
LOGICAL*4 4 extension
INTEGER 4 yes
INTEGER*1 1 extension
INTEGER*2 2 extension
INTEGER*4 4 extension
REAL 4 yes
REAL*4 4 extension
REAL*8 8 extension
DOUBLE PRECISION 8 yes
COMPLEX 8 yes
COMPLEX*8 8 extension
DOUBLE COMPLEX 16 extension
COMPLEX*16 16 extension
CHARACTER 1 yes
CHARACTER*n n yes

Detailed information on the size and range of values supported by each of these data types is
provided in the User’s Guide.

3.3 Data Type of a Name
A name must only have one data type. Its type is specified by the appearance of that name in
a type statement. If a name does not appear in any type statement then an implied type is
assigned to it by the "first letter rule". A name not appearing in any type statement and
beginning with any of the letters I, J, K, L, M or N is assigned the type integer. A name not
appearing in any type statement and beginning with any other letter is assigned the type real.
The implied type of a letter can be changed by an IMPLICIT statement.

The type associated with a name defines the type of the data it is to contain. For example, if A
is of type integer, then the storage unit which A occupies is assumed to contain integer data.
Note that the data type of an array element is the same as the data type associated with the
array name.

The data type of a function name specifies the type of the result returned by the function when
it is referenced. A name that identifies a specific intrinsic function has type as specified in the

Data Type of a Name 179

Language Reference

chapter entitled "Functions and Subroutines" on page 291. A generic function name has no
type associated with it; its type is determined by the type of its argument(s). The appearance
of a generic function in a type statement is not sufficient to remove the generic properties of
that name. For example, if SIN was declared to be of type real, it could still be called with an
argument of type complex. The type of an external function reference is determined in the
same way as for variables and arrays. The actual type of the external function is determined
implicitly by its name or explicitly by its appearance in a FUNCTION or type statement. Note
that an IMPLICIT statement can affect the type of the external function being defined.

3.4 Constants
A constant can be one of arithmetic, logical or character. Each constant has a data type and
value associated with it and, once established in a program, cannot be changed. Arithmetic
constants consist of those constants whose data type is one of integer, real, double precision,
complex or double precision complex. Logical constants consist of those constants whose
data type is logical and character constants consist of those constants whose data type is
character. The string of characters representing a constant determines its value and data type.
The blank character is insignificant for all but character constants.

3.4.1 Integer Constants

An integer constant is formed by a non-empty string of digits preceded by an optional sign.

The following are examples of integer constants.

1423
+345
-34565788

3.4.2 Real Constants

We first define a simple real constant as follows: an optional sign followed by an integer part
followed by a decimal point followed by a fractional part. The integer and fractional parts are
non-empty strings of digits. Either can be omitted but not both.

A real constant has one of the following forms.

1. A simple real constant.
2. A simple real constant followed by an E followed by an optionally signed integer

constant.

180 Constants

Names, Data Types and Constants

3. An integer constant followed by an E followed by an optionally signed integer
constant.

The optionally signed integer constant that follows the E is called the exponent. The value of
a real constant that contains an exponent is the value of the constant preceding the E
multiplied by the power of ten determined by the exponent.

The following are examples of real constants.

123.764
.4352344
1423.34E12
+345.E-4
-.4565788E3
2E6
1234.

3.4.3 Double Precision Constant

A double precision constant has one of the following forms.

1. A simple real constant followed by a D followed by an optionally signed integer
constant.

2. An integer constant followed by a D followed by an optionally signed integer
constant.

The optionally signed integer constant that follows the D is called the exponent. The value of
a double precision constant that contains an exponent is the value of the constant preceding
the D multiplied by the power of ten determined by the double precision exponent. Note that
the resulting approximation is of greater precision than the equivalent real constant. The
approximations may be of equal precision if the approximations are exact representations. For
example, 0D0 and 0E0 are double and single precision constants respectively, both
representing zero with the same precision.

The following are examples of double precision constants.

1423.34D12
+345.D-4
-.4565788D5
2D6

Constants 181

Language Reference

3.4.4 Complex Constant

A complex constant consists of a left parenthesis, followed by a real or integer constant
representing the real part of the complex constant, followed by a comma, followed by a real or
integer constant representing the imaginary part of the complex constant, followed by a right
parenthesis.

The following are examples of complex constants.

(1423.34E12, 3)
(+345, 4)

3.4.5 Double Precision Complex Constant (Extension)

A double precision complex constant has the same form as a complex constant except that at
least one of the real and imaginary parts must be a double precision constant.

The following are examples of double precision complex constants.

(1423.34D12, 3)
(+345, 4D2)

3.4.6 Logical Constant

A logical constant can have one of the following forms.

1. .TRUE. representing the value true.
2. .FALSE. representing the value false.

3.4.7 Character Constant

A character constant consists of an apostrophe followed by any string of characters followed
by an apostrophe. The apostrophes are not part of the datum. If an apostrophe is to appear as
part of the datum it must be followed immediately by another apostrophe. Note that blanks
are significant. The length of the character constant is the number of characters appearing
between the delimiting apostrophes. Consecutive apostrophes in a character datum represent
one character, namely the apostrophe. A character constant must not have length 0.

The following are examples of character constants.

182 Constants

Names, Data Types and Constants

’ABCDEFG1234567’
’There’’s always tomorrow’

3.4.8 String Constant (Extension)

A string constant consists of an apostrophe followed by any string of characters followed by
an apostrophe and then the letter C or c. The apostrophes are not part of the datum. The
datum is stored in memory with a terminating NUL character (CHAR(0)). If an apostrophe is
to appear as part of the datum it must be followed immediately by another apostrophe. Note
that blanks are significant. The length of the string constant is the number of characters
appearing between the delimiting apostrophes plus one for the terminating NUL character
(CHAR(0)). Consecutive apostrophes in a string datum represent one character, namely the
apostrophe. A string constant must not have length 0. A string constant may be used
anywhere a character constant may be used.

The following are examples of string constants.

’Hello there’C
’There’’s always tomorrow’c
’The result for %s=%d’c

3.4.9 Hollerith Constants (Extension)

A hollerith constant consists of a positive unsigned integer constant n followed by the letter
H or h followed by a string of exactly n characters. The actual data is the n characters
following the letter H or h. A hollerith constant is another way of representing character
data.

Actually, hollerith constants are treated as character constants and can be used wherever a
character constant can be used. Hollerith constants are different from character constants in
that a quote is represented by two quotes in character constants and by a single quote in
hollerith constants.

The following are examples of hollerith constants.

5HABCDEFG
10h xxxxx ’44

Constants 183

Language Reference

3.4.10 Hexadecimal Constants (Extension)

Two forms of hexadecimal constant are supported. The first form can only be used in type
declaration or DATA statements. The second form may be used anywhere an integer constant
may be used.

The first form of hexadecimal constant consists of the letter Z or z followed by a string of
hexadecimal digits. A hexadecimal digit can be any digit or one of the letters A, B, C, D,
E or F (the lower case of these letters is also acceptable). The actual data is the hexadecimal
digits following the letter Z or z. Hexadecimal constants of this form can only be used in
type declaration statements and DATA statements for initializing memory with binary patterns.

The following are examples of the first form of hexadecimal constant.

z1234
Zac

The first example is equivalent to the binary pattern 0001 0010 0011 0100. The
second example is equivalent to the binary pattern 1010 1100.

The second form of hexadecimal constant consists of an apostrophe followed by any string of
hexadecimal digits followed by an apostrophe and then the letter X or x. A hexadecimal digit
can be any digit or one of the letters A, B, C, D, E or F (the lower case of these letters is
also acceptable). The actual data is the hexadecimal digits placed inside apostrophes.

The following are examples of the second form of hexadecimal constant.

’1234’x
’ac’X

The first example is equivalent to the binary pattern 0001 0010 0011 0100. The
second example is equivalent to the binary pattern 1010 1100.

3.4.11 Octal Constants (Extension)

An octal constant consists of an apostrophe followed by any string of octal digits followed by
an apostrophe and then the letter O or o. An octal digit can be any of the digits 0 through 7.
The actual data is the octal digits placed inside apostrophes. An octal constant may be used
anywhere an integer constant may be used.

184 Constants

Names, Data Types and Constants

The following are examples of octal constants.

’1234’o
’37’O

The first example is equivalent to the binary pattern 001 010 011 100. The second
example is equivalent to the binary pattern 011 111.

3.5 Symbolic Constants
It is possible to give a constant a symbolic name. This is done through PARAMETER
statements. For more details, see the section on the PARAMETER statement in the chapter
entitled "FORTRAN Statements" on page 9.

Symbolic Constants 185

Language Reference

186 Symbolic Constants

4 Arrays

4.1 Introduction
An array is a non-empty collection of data. Arrays allow a convenient way of manipulating
large quantities of data. An array can be referenced as an entity. In this way it is possible to
conveniently pass large quantities of data between subprograms. Alternatively, it is possible
to reference each element of an array individually so that data can be selectively processed.
Consider the task of managing the marks of 100 students. Without arrays one would have to
have a unique name for each mark. They might be M1, M2, etc. up to M100. This is clearly
cumbersome. Instead, we can use an array called MARKS containing 100 elements. Now
there is one name for all the marks. Each mark can be referenced by using that name followed
by a subscript. Furthermore, suppose the size of the class doubled. Do we add the names
M101, M102, etc. up to M200? Not if we use arrays. If the size of the class doubled, all that
need be done is to define the array to contain 200 elements. It is not hard to see that programs
that use arrays tend to be general in nature. Arrays also facilitate the repetitive computations
that must be performed on large amounts of data in that they lend themselves to loop
processing.

4.2 Properties of Arrays
Arrays are defined by an array declarator. The form of an array declarator is:

a(d [,d] ...)

where:

a is the symbolic name of the array

d is a dimension declarator.

The number of dimensions of the array is determined by the number of dimension declarators
appearing in the array declarator. Allowable dimensions for arrays range from 1 to 7. A

Properties of Arrays 187

Language Reference

1-dimensional array can be viewed as a vector, a 2-dimensional array as a matrix and a
3-dimensional array as a number of parallel matrices. Arrays with dimension higher than 3
are generally difficult to intuitively describe and hence examples will deal with arrays whose
dimension is 1, 2 or 3.

Each dimension has a range of values. When referencing elements in that dimension, the
dimension expression must fall in that range. The range of a dimension is defined in the
dimension declarator. A dimension declarator has the following form:

[lo:] hi

where:

lo is the lower dimension bound.

hi is the upper dimension bound.

The lower and upper dimension bounds must be integer expressions and the upper dimension
bound must be greater than or equal to the lower dimension bound. The upper dimension
bound of the last dimension may be an asterisk (*). The meaning of this will be discussed
later. If the lower dimension bound is not specified then a default of 1 is assumed. The size
of a dimension is defined as hi − lo + 1. Note that if the lower dimension bound is not
specified the size of the dimension is just hi. The size of the array (or the number of
elements in the array) is defined as the product of all the sizes of the dimensions of the array.
The maximum number of elements in any dimension is limited to 65535. The maximum size
of an array is limited by the amount of available memory.

Arrays are defined by the appearance of an array declarator in a DIMENSION statement, a
type statement or a COMMON statement.

Example:
DIMENSION A(10), B(-5:5,-10:10)
INTEGER C(10,20)
COMMON /DATA/ X,Y(30,30),Z

In the previous example, B is a 2-dimensional array with 11 rows and 21 columns and has 231
elements (i.e. 11 * 21).

Each array has a data type associated with it. This data type is inherited by all elements of the
array.

188 Properties of Arrays

Arrays

4.3 Array Elements
Each array is comprised of a sequence of array elements. An array element is referenced by
following the array name with a subscript. Different elements of the array are referenced by
simply changing the subscript. An array element has the following form:

a(s[,s]...)

where:

a is the array name.

(s[,s]...) is a subscript.

s is a subscript expression.

Each subscript expression must be an integer expression and must be in the range defined by
the upper and lower dimension bounds of the corresponding dimension. The number of
subscript expressions must be equal to the dimension of the array.

If an array has n elements then there is a 1-to-1 correspondence between the elements of the
array and the integers from 1 to n. Each subscript has a subscript value associated with it
which determines which element of the array is being referenced. If the subscript value is i
then the ith element of the array is the one referenced. The subscript value depends on the
subscript expressions and on the dimensions of the array. The following table describes how
to compute the subscript value.

Array Elements 189

Language Reference

n Dimension Subscript Subscript
Declarator Value

1 (J1:K1) (S1) 1+(S1-J1)

2 (J1:K1,J2:K2) (S1,S2) 1+(S1-J1)
+(S2-J2)*D1

3 (J1:K1,J2:K2,J3:K3) (S1,S2,S3) 1+(S1-J1)
+(S2-J2)*D1
+(S3-J3)*D2*D1

. . . .

. . . .

. . . .

n (J1:K1,...,Jn:Kn) (S1,...,Sn) 1+(S1-J1)
+(S2-J2)*D1
+(S3-J3)*D2*D1
+
+(Sn-Jn)*Dn-1*Dn-2*...*D1

Notes:

1. n is the number of dimensions, 1 <= n <= 7.

2. Ji is the value of the lower bound of the i’th dimension.

3. Ki is the value of the upper bound of the i’th dimension.

4. If only the upper bound is specified, then Ji = 1

5. Si is the integer value of the i’th subscript expression.

6. Di = Ki-Ji+1 is the size of the i’th dimension. If the value of the lower bound is 1,
then Di = Ki.

7. A subscript of the form (J1,...,Jn) has subscript value 1 and identifies the first
element of the array. A subscript of the form (K1,...,Kn) has subscript value equal
to the size of the array and identifies the last element of the array.

190 Array Elements

Arrays

4.4 Classifying Array Declarators by Dimension
Declarator

Array declarators can be classified according to the characteristics of the dimension
declarator. The following sections discuss the three classifications.

4.4.1 Constant Array Declarator

A constant array declarator is one in which each of the dimension bound expressions is an
integer constant expression. It is called a constant array declarator because the dimension
bound expressions can never change. In the following example both A(10) and B(−5:5) are
constant array declarators.

Example:
SUBROUTINE SQUARE(A)
DIMENSION A(10), B(-5:5)
.
.
.
END

4.4.2 Adjustable Array Declarator

An adjustable array declarator is one that contains at least one variable in all of its dimension
bound expressions. It is called an adjustable array declarator because the dimension bound
expressions can change depending on the current value of the variables in the dimension
bound expressions. The array name must be a dummy argument. In the following example,
A(M,2*N) is an adjustable array declarator. If SQUARE is called with M having value 5 and
N having value 10, then the array A will be a 2-dimensional array having 5 rows and 20
columns.

Example:
SUBROUTINE SQUARE(A, M, N)
DIMENSION A(M,2*N)
.
.
.
END

Classifying Array Declarators by Dimension Declarator 191

Language Reference

4.4.3 Assumed-size Array Declarator

An assumed-size array declarator is a constant array declarator or an adjustable array
declarator whose upper dimension bound of the last dimension is an asterisk (e.g., A(M,N,*))
or the integer value 1 (e.g., A(M,N,1)). The array name must be a dummy argument. The
value of the upper bound of the last dimension is determined by the number of elements of the
actual array argument and is computed as follows. First we compute the size of the dummy
array. Note that this size is really an upper bound.

1. If the corresponding actual array argument is a non-character array name, the size
of the dummy array is the size of the actual array.

2. If the corresponding actual array argument is a non-character array element name
with a subscript value of r in an array of size x, the size of the dummy array is x + 1
− r.

3. If the corresponding actual argument is a character array name, character array
element or a substrung character array element which begins at character t of an
array with c characters then the size of the dummy array is INT((c + 1 − t) / e)
where e is the size of an element of the dummy array.

If the assumed-size array has dimension n then the product of the first n − 1 dimensions must
be less than or equal to the size of the array as determined by one of the preceding rules. The
value of the assumed dimension is the largest integer such that the product of all of the
dimensions is less than or equal to the size of the dummy array. In the following example,
A(4,*) is an assumed-size array declarator.

Example:
DIMENSION B(10)
.
.
.
CALL SQUARE(B)
.
.
.
END

SUBROUTINE SQUARE(A)
DIMENSION A(4,*)
.
.
.
END

192 Classifying Array Declarators by Dimension Declarator

Arrays

By rule 1, the upper bound of the size of A is 10. We now look for the largest integer n such
that 4 * n is less than or equal to 10. Clearly, n is 2. A is therefore a 2-dimensional array with
4 rows and 2 columns.

4.4.4 Allocatable Array Declarator

An allocatable array declarator is one that contains no dimension bound expressions. It is
called an allocatable array declarator because the dimension bounds are specified at run-time
in an ALLOCATE statement.

Example:
DIMENSION A(:), B(:,:)

.

.

.
ALLOCATE(A(N))
ALLOCATE(B(0:4,5))

In the previous example, A(:) is a one-dimensional allocatable array declarator and B(:,:)
is a two-dimensional allocatable array declarator. The first ALLOCATE statement is used to
allocate the array A with bounds 1:N. The second ALLOCATE statement is used to allocate
the array B with bounds 0:4 in the first dimension and 1:5 in the second dimension.

4.5 Classifying Array Declarators by Array Name
Array declarators can also be classified according to the characteristic of the array name. The
following sections discuss the two classifications.

4.5.1 Actual Array Declarator

An actual array declarator is one in which the array name is not a dummy argument. All
actual array declarators must also be constant array declarators. An actual array declarator is
permitted in a DIMENSION statement, a type statement or a COMMON statement.

4.5.2 Dummy Array Declarator

A dummy array declarator is one in which the array name is a dummy argument and hence
can only appear in a function or subroutine subprogram. It can be a constant, adjustable or
assumed-size array declarator. A dummy array declarator can appear in a DIMENSION
statement or a type statement but not in a COMMON statement. It should be noted that the array

Classifying Array Declarators by Array Name 193

Language Reference

declarator for a dummy array declarator need not be the same as the array declarator of the
corresponding actual array declarator. Also note that every array declarator in a main
program must be a constant array declarator.

4.6 Use of Array Names
The appearance of an array name must always be as part of an array element name except in
the following cases:

1. in a list of dummy arguments. For example, a subroutine that has as one of its
arguments an array.

2. in a COMMON statement to define that array as belonging to a common block.

3. in a type statement either as part of an array declarator or by itself to establish the
type of the array.

4. in an array declarator in a DIMENSION, type or COMMON statement.

5. in an EQUIVALENCE statement.

6. in a DATA statement.

7. in the list of actual arguments when calling an external procedure.

8. In the list of an input/output statement.

9. as a unit identifier for an internal file in an input/output statement.

10. as a format identifier in an input/output statement.

11. in a SAVE statement.

194 Use of Array Names

5 Character Substrings

5.1 Introduction
A substring is a contiguous portion of a character entity. The substring operation selects a
substring from a character entity. The resulting substring can then be treated as a character
entity in itself. Substringing also allows the replacement of substrings from character entities
with other character entities.

5.2 Substring Names
Substrings are formed by specifying a substring name. The forms of a substring name are:

v([e1] : [e2])
a(s [,s] ...)([e1] : [e2])

where:

v is a character variable name.

a(s[,s]...) is a character array element name.

e1 is an integer expression identifying the leftmost character of the
substring.

e2 is an integer expression identifying the rightmost character of the
substring.

e1 and e2 are called substring expressions. They must be such that

1 <= e1 <= e2 <= len

Substring Names 195

Language Reference

where len is the length of the character entity. If e1 is omitted, a value of 1 is assumed. If
e2 is omitted, a value of len is assumed. Both e1 and e2 may be omitted. The length of the
substring is e2 - e1 + 1.

Example:
CHARACTER A*8, B(4)*8, C*14

* A gets the string ’EVERYDAY’
A = ’EVERYDAY’

* Replace ’DAY’ with ’ONE’ in A
A(6:8) = ’ONE’

* B(1) gets the string ’OTHELLO’
B(1) = ’OTHELLO’

* B(2) gets same value as B(1)
B(2)(:) = ’OTHELLO’

* B(3) gets last 6 characters of B(1)
B(3) = B(1)(3:8)

* B(4) gets first 4 characters of B(1)
* concatenated with the letter ’R’

B(4) = B(1)(1:4) // ’R’
* C gets last 6 characters of B(1)
* concatenated with the variable A

C = B(1)(3:) // A
* Print out the results

PRINT *, A
PRINT ’(A8)’, B
PRINT *, C
END

5.3 Extensions
Watcom FORTRAN 77 allows an external character function reference or a character

statement function reference as part of the substring name (see the chapter entitled "Functions
and Subroutines" on page 291. for more information).

196 Extensions

Character Substrings

Example:
CHARACTER*10 F,G
CHARACTER*10 X

*
* DEFINE CHARACTER STATEMENT FUNCTION
*

G(X) = X
*

PRINT *, F(’0123456789’)(1:5)
PRINT *, G(’0123456789’)(6:10)
END

*
* DEFINE CHARACTER EXTERNAL FUNCTION
*

CHARACTER*(*) FUNCTION F(X)
CHARACTER*10 X
F = X
END

Extensions 197

Language Reference

198 Extensions

6 Structures, Unions and Records

6.1 Structures and Records
As an extension to the basic FORTRAN 77 types such as INTEGER, REAL, LOGICAL, etc.,
Watcom FORTRAN 77 supports the creation of hierarchical, composite data types called
structures. A structure is a template describing the form of a record. It is composed of
members or fields of various types, including other structures. A structure does not reserve
any storage.

For example, you could describe the structure of the COMPLEX data type using the following
construction.

Example:
STRUCTURE /CMPLX/

REAL REAL PART
REAL IMAG PART

END STRUCTURE

Since the COMPLEX data type is an intrinsic type of FORTRAN, there is no need to do so.
The STRUCTURE and END STRUCTURE statements mark the start and end of a structure
definition.

There are, however, many practical examples of collections of data that may be described
using a structure. Consider, for example, the contents of a data record on disk. It may contain
fields such as last name, first name, and middle initial which describe the name of a customer.
Each of these fields are fixed in length. A sample structure declaration might be:

STRUCTURE /NAME/

CHARACTER*20 LAST NAME
CHARACTER*20 FIRST NAME
CHARACTER*1 MIDDLE INITIAL

END STRUCTURE

As we stated above, a structure does not allocate storage. Instead, we have created a new type
called NAME which may be used to describe objects. Objects of the new type are defined
using the RECORD statement. For example, the following statements describe two objects,
STUDENT 1 and STUDENT 2, to be of type NAME.

Structures and Records 199

Language Reference

RECORD /NAME/ STUDENT 1
RECORD /NAME/ STUDENT 2

There are other attributes of a person besides one’s name that could be recorded in the record.
For example, we can also store a person’s date of birth and sex. First, let us define a DATE
structure.

STRUCTURE /DATE/

INTEGER*1 DAY
INTEGER*1 MONTH
INTEGER*2 YEAR

END STRUCTURE

Now we can describe a person in terms of name, date of birth, and sex.

STRUCTURE /PERSON/
RECORD /NAME/ NAME
RECORD /DATE/ BIRTH DATE
CHARACTER*1 SEX

END STRUCTURE

RECORD /PERSON/ STUDENT

Having declared STUDENT to be of type PERSON, how do we reference the component parts
of STUDENT? The following example illustrates this.

STUDENT.NAME.LAST NAME = ’Pugsley’
STUDENT.NAME.FIRST NAME = ’Elmar’
STUDENT.NAME.MIDDLE INITIAL = ’M’
STUDENT.BIRTH DATE.DAY = 21
STUDENT.BIRTH DATE.MONTH = 11
STUDENT.BIRTH DATE.YEAR = 1959
STUDENT.SEX = ’M’

The object’s name is specified first, followed by a "." (or "%") and the structure member
name. If the structure member is itself a record then another "." (or "%") and member name is
specified. This continues until the desired structure member is identified. The "." or "%" is
called a field selection operator.

The previous example contained both a structure called NAME (RECORD /NAME/) and a
structure member called NAME (RECORD /NAME/ NAME). The structure name is
enclosed within slashes ("/"). A structure name must be unique among structure names.
However, the same name can also be used to name either variables or structure members
(fields). Thus it is possible to have a variable named X, a structure named X, and one or
more fields named X.

200 Structures and Records

Structures, Unions and Records

Structure, field, and variable names are all local to the program unit in which they are defined.

6.2 Arrays of Records
It is often the case that the individual attributes of objects are stored in separate arrays. If, for
example, your application deals with 1000 objects with attributes "size", "weight", and
"colour", the traditional approach is to declare three different arrays.

PARAMETER (MAX ELS=1000)

REAL SIZE(MAX ELS)
INTEGER WEIGHT(MAX ELS)
CHARACTER*2 COLOUR(MAX ELS)

To read or write the attributes relating to an object, you would use a statement such as:

READ(UNIT=3) SIZE(I), WEIGHT(I), COLOUR(I)

Using a simple structure, we can express the problem as follows:

PARAMETER (MAX ELS=1000)

STRUCTURE /OBJECT/
REAL SIZE
INTEGER WEIGHT
CHARACTER*2 COLOUR

END STRUCTURE

RECORD /OBJECT/ ITEM(MAX ELS)

To read or write the attributes relating to an object, you would use a statement such as:

READ(UNIT=3) ITEM(I)

6.3 Unions
Sometimes it is useful to be able to describe parts of structures in different ways in much the
same way that the EQUIVALENCE statement is used to describe a specific storage area in
different ways. The UNION - END UNION statements are used to mark a section of a
structure that will have alternate storage organizations (MAPs). The MAP - END MAP
statements are used to define the start and end of an alternate storage map. Thus several MAP
- END MAP pairs will appear between a UNION - END UNION section.

Unions 201

Language Reference

Consider the following example. The subroutine displays the contents of a field using
different names and formats depending on a TYPE field.

Example:
SUBROUTINE PRINT ITEM(ITEM)

STRUCTURE /DATA MAP/
INTEGER TYPE
UNION

MAP
LOGICAL LGL

END MAP
MAP

INTEGER INT
END MAP
MAP

REAL FLT
END MAP
MAP

DOUBLE PRECISION DBL
END MAP

END UNION
END STRUCTURE

RECORD /DATA MAP/ ITEM

IF(ITEM%TYPE .EQ. 1) THEN
PRINT ’(L2)’, ITEM%LGL

ELSEIF(ITEM%TYPE .EQ. 2) THEN
PRINT ’(I8)’, ITEM%INT

ELSEIF(ITEM%TYPE .EQ. 3) THEN
PRINT ’(E12.5)’, ITEM%FLT

ELSEIF(ITEM%TYPE .EQ. 4) THEN
PRINT ’(D12.5)’, ITEM%DBL

ENDIF
END

The organization of the record in memory is as follows:

202 Unions

Structures, Unions and Records

offset +0 +4 +8

integer logical (slack)

integer (slack)

real (slack)

double precision

The first 4 bytes of storage are occupied by TYPE. The next 4 to 8 bytes of storage are
occupied by either LGL, INT, FLT, or DBL depending on the interpretation of the contents
of the variable TYPE. The size of the record ITEM is a total of 12 bytes. Based on the
conventions of the above program example, only 8 bytes of the record ITEM are used when
TYPE is 1, 2, or 3. When TYPE is 4 then 12 bytes of the record are used.

The following example maps out a 4-byte integer on an Intel 80x86-based processor.

Example:
STRUCTURE /MAPINT/

UNION
MAP

INTEGER*4 LONG
END MAP
MAP

INTEGER*2 LO WORD
INTEGER*2 HI WORD

END MAP
MAP

INTEGER*1 BYTE 0
INTEGER*1 BYTE 1
INTEGER*1 BYTE 2
INTEGER*1 BYTE 3

END MAP
END UNION

END STRUCTURE

RECORD /MAPINT/ I

I%LONG = ’01020304’x
PRINT ’(Z8)’, I%LONG
PRINT ’(Z4,1X,Z4)’, I%LO WORD, I%HI WORD
PRINT ’(Z2,3(1X,Z2))’, I%BYTE 0, I%BYTE 1,

$ I%BYTE 2, I%BYTE 3
END

Unions 203

Language Reference

The above example produces the following output:

01020304
0304 0102
04 03 02 01

204 Unions

7 Expressions

The following topics are discussed in this chapter.

• Arithmetic Expressions

• Character Expressions

• Relational Expressions

• Logical Expressions

• Evaluating Expressions

• Constant Expressions

7.1 Arithmetic Expressions
Arithmetic expressions are used to describe computations involving operands with numeric
data type, arithmetic operators and left and right parentheses. The result of the computation is
of numeric data type.

7.1.1 Arithmetic Operators

The following table lists the arithmetic operators and the operation they perform.

Operator Arithmetic Operation

** Exponentiation
/ Division
* Multiplication
- Subtraction or Negation
+ Addition or Identity

Arithmetic Expressions 205

Language Reference

Some operators can be either binary or unary. A binary operator is one that requires two
operands. A unary operator is one that requires one operand. Each of the operators **, /, and
* are binary operators. The operators + and − can either be binary or unary operators. The
following table describes how each operator is used with their operands.

Operator Arithmetic Operation

x ** y x is raised to the power y
x / y x is divided by y
x * y x is multiplied by y
x - y y is subtracted from x
x + y y is added to x

- x x is negated
+ x identity

Arithmetic expressions can contain more than one operator. It is thus necessary to define
rules of evaluation for such expressions. A precedence relation is defined between operators.
This relation defines the order in which operands are combined and hence describes the
evaluation sequence of an arithmetic expression. Operands of higher precedence operators are
combined using that operator to form an operand for an operator of lower precedence. The
following rules define the precedence relation among arithmetic operators.

1. Exponentiation (**) has highest precedence.
2. Multiplication (*) and division (/) have equal precedence but have lower

precedence than exponentiation.
3. Addition (+) and subtraction (−) have equal precedence but have lower precedence

than multiplication and division.

For example, to evaluate the expression

A-B**4

B is raised to the exponent 4 first and the result is then subtracted from A.

Parentheses can be used to alter the evaluation sequence of an arithmetic expression. When a
left parenthesis is encountered, the entire expression enclosed in parentheses is evaluated.
Consider the following expression.

3*(4+5)

We first evaluate the expression in the parentheses, the result being 9. We now multiply the
result by 3 giving a final result of 27. Now suppose we remove the parentheses. According to
the precedence rules, * has precedence over + so we perform the multiplication before the
addition. The result in this case is 17.

206 Arithmetic Expressions

Expressions

7.1.2 Rules for Forming Standard Arithmetic Expressions

The building blocks for arithmetic expressions are called arithmetic primaries. They are one
of the following:

1. unsigned arithmetic constant
2. arithmetic symbolic constant
3. arithmetic variable reference
4. arithmetic array element reference
5. arithmetic function reference
6. (arithmetic expression)

A grammar for forming arithmetic expressions can be described which reflects the precedence
relation among arithmetic operators.

Exponentiation has highest precedence. We define a factor as:

1. primary
2. primary ** factor

A factor is simply a sequence of primaries, each separated by the exponentiation operator.
Rule (2) specifies that the primaries involving exponentiation operators are combined from
right to left when evaluating a factor.

Next in the precedence hierarchy are the multiplication and division operators. We define a
term as:

1. factor
2. term / factor
3. term * factor

A term is simply a sequence of factors, each separated by a multiplication operator or a
division operator. Rules (2) and (3) imply that in such a sequence, factors are combined from
left to right when evaluating a term. Factors can be interpreted as the result obtained from
evaluating them. This implies that all factors are evaluated before any of the multiplication or
division operands are combined. This interpretation is consistent with the precedence relation
between the exponentiation operator and the division and multiplication operators.

An arithmetic expression can now be defined as follows.

1. term
2. + term
3. − term

Arithmetic Expressions 207

Language Reference

4. arithmetic expression + term
5. arithmetic expression − term

An arithmetic expression is simply a sequence of terms, each separated by an addition
operator or a subtraction operator. Rules (4) and (5) imply that terms are evaluated from left
to right. Rules (2) and (3) imply that only the first term of an arithmetic expression can be
preceded by a unary + or − operator. Terms can be interpreted in the same way as factors
were interpreted in the definition of terms.

Note that consecutive operators are not permitted. For example, the expression

A+-B

is illegal. However, expressions of the form

A+(-B)

are allowed.

7.1.3 Arithmetic Constant Expression

An arithmetic constant expression is an arithmetic expression in which all primaries are one
of the following.

1. arithmetic constant
2. symbolic arithmetic constant
3. (arithmetic constant expression)

There is a further restriction with the exponentiation operator; the exponent must be of type
INTEGER.

As an extension to the FORTRAN 77 language, Watcom FORTRAN 77 supports the use of
the intrinsic function ISIZEOF in an arithmetic constant expression.

Example:
PARAMETER (INTSIZ = ISIZEOF(INTEGER))

An integer constant expression is an arithmetic constant expression in which all constants and
symbolic constants are of type INTEGER.

208 Arithmetic Expressions

Expressions

Example:
123
-753+2
-(12*13)

A real constant expression is an arithmetic constant expression in which at least one constant
or symbolic constant is of type REAL and all other constants or symbolic constants are of type
REAL or INTEGER.

Example:
123.
-753+2.0
-(13E0*12)

A double precision constant expression is an arithmetic constant expression in which at least
one constant or symbolic constant is of type DOUBLE PRECISION and all other constants or
symbolic constants are of type DOUBLE PRECISION, REAL or INTEGER.

Example:
123.4D0
-753D0*2+.5
-(12D0*12.2)

A complex constant expression is an arithmetic constant expression in which at least one
constant or symbolic constant is of type COMPLEX and all other constants or symbolic
constants are of type COMPLEX, REAL or INTEGER.

Example:
(123,0)
(-753,12.3)*2
-(12,-12.4)-(1.0,.2)

A double precision complex constant expression is an arithmetic constant expression in
which at least one constant or symbolic constant is of type COMPLEX*16 and all other
constants or symbolic constants are of type COMPLEX*16, DOUBLE PRECISION, REAL or
INTEGER. If there are no constants or symbolic constants of type COMPLEX*16 in a
constant expression, the type of the constant expression will be COMPLEX*16 if it contains
at least one constant or symbolic constant of type COMPLEX and at least one constant or
symbolic constant of type DOUBLE PRECISION. Watcom FORTRAN 77 supports this type
of constant expression as an extension of the FORTRAN 77 language.

Arithmetic Expressions 209

Language Reference

Example:
(123,0D0)
(-753,12.3D0)*2
-(12D0,-12.4)-(1.0,.2)

7.1.4 Data Type of Arithmetic Expressions

Evaluating an arithmetic expression produces a result which has a type. The type of the result
is determined by the type of its operands. The following table describes the rules for
determining the type of arithmetic expressions. The letters I, R, D, C and Z stand for
INTEGER, REAL, DOUBLE PRECISION, COMPLEX and COMPLEX*16 respectively.
An entry in the table represents the data type of the result when the operands are of the type
indicated by the row and column in which the entry belongs. The column represents the type
of the operand to the right of the operator, and the row represents the type of the operand to
the left of the operator. The table is valid for all of the arithmetic operators.

op I*1 I*2 I*4 R D C Z

I*1 I*1 I*2 I*4 R D C Z
I*2 I*2 I*2 I*4 R D C Z
I*4 I*4 I*4 I*4 R D C Z
R R R R R D C Z
D D D D D D Z Z
C C C C C Z C Z
Z Z Z Z Z Z Z Z

Notes:

1. I*1 represents the INTEGER*1 data type, I*2 represents the INTEGER*2 data
type, and I*4 represents the INTEGER or INTEGER*4 data type.

2. The data type of the result obtained by dividing an integer datum by an integer
datum is also of type INTEGER even though the mathematical result may not be an
integer. This result is called the integer quotient and is defined as the integer part
of the mathematical quotient.

3. Watcom FORTRAN 77 supports the double precision complex data type
(COMPLEX*16) as an extension of the FORTRAN 77 language. Combining an
operand of type DOUBLE PRECISION with an operand of type COMPLEX yields
a result of type COMPLEX*16.

210 Arithmetic Expressions

Expressions

7.2 Character Expressions
Character expressions are used to describe computations involving operands of type
CHARACTER, the concatenation operator (//) and left and right parentheses. The result of
the computation is of type CHARACTER.

7.2.1 Character Operators

There is only one character operator, namely the concatenation operator (//). It requires two
operands of type CHARACTER. If x is the left operand and y is the right operand, then the
result is y concatenated to x. The length of the result is the sum of the lengths of the two
operands. For example, the result of

’AAAAA’//’BBB’

is the string AAAAABBB.

7.2.2 Rules for Forming Character Expressions

The building blocks for character expressions are called character primaries. They are one of
the following.

1. character constant
2. character symbolic constant
3. character variable reference
4. character array element reference
5. character substring reference
6. character function reference
7. (character expression)

Character expressions are defined as follows:

1. character primary
2. character expression // character primary

A character expression is simply a sequence of character primaries, each separated by the
concatenation operator (//). Rule 2 implies that character primaries are combined from left to
right. Except in a character assignment statement, the operands in a character expression must
not contain operands whose length specification is (*) unless the operand is a symbolic
constant.

Character Expressions 211

Language Reference

Note that, unlike arithmetic expressions, parentheses have no effect on the result of evaluating
a character expression. For example, the result of the expressions

’A’//’B’//’C’

and

’A’//(’B’//’C’)

is identically the string ABC.

7.2.3 Character Constant Expressions

A character constant expression is a character expression in which all primaries are one of the
following.

1. character constant
2. symbolic character constant
3. (character constant expression)

As an extension to the FORTRAN 77 language, Watcom FORTRAN 77 supports the use of
the intrinsic function CHAR in a character constant expression.

Example:
CHARACTER*6 HELLO, WORLD
PARAMETER (HELLO = ’Hello’//CHAR(0))
PARAMETER (WORLD = ’world’//CHAR(7))
PRINT *, HELLO, WORLD
END

7.3 Relational Expressions
A relational expression is used to compare two arithmetic expressions or two character
expressions. It is not possible to compare a character expression to an arithmetic expression.
Evaluation of a relational expression produces a result of type logical.

212 Relational Expressions

Expressions

7.3.1 Relational Operators

The following table lists the relational operators and the operation they perform.

Operator Relational Operation

.LT. Less than

.LE. Less than or equal

.EQ. Equal

.NE. Not equal

.GT. Greater than

.GE. Greater than or equal

7.3.2 Form of a Relational Expression

The form of a relational expression is as follows.

e1 relop e2

where:

relop is a relational operator.

e1, e2 are both arithmetic expressions or both character expressions.

7.3.2.1 Arithmetic Relational Expressions

An arithmetic relational expression is a relational expression in which e1 and e2 are both
arithmetic expressions. An arithmetic relational expression has a value of true if the operands
satisfy the relation specified by the relational operator and false otherwise.

A complex operand is only permitted when using either the .EQ. or .NE. relational operators.
Watcom FORTRAN 77 allows operands of type COMPLEX*16.

7.3.2.2 Character Relational Expressions

Character relational expressions are relational expressions whose operands are of type
CHARACTER. The value of a relation between character strings is established by using the
collating sequence of the processor character set. The collating sequence is an ordering of the
characters in the processor character set. Note, for example, that the EBCDIC character set

Relational Expressions 213

Language Reference

has a different collating sequence than that of the ASCII character set. For example, e1 is
greater than e2 if the value of e1 follows the value of e2 in the processor collating sequence.
The value of a character relational expression depends on the collating sequence. In the case
of the .NE. and .EQ. operators, the collating sequence has no effect.

Example:
IF(’A’ .LT. ’a’)THEN

PRINT *, ’The processor character set’
PRINT *, ’appears to be ASCII’

ELSE
PRINT *, ’The processor character set’
PRINT *, ’appears to be EBCDIC’

END IF
END

The above example is a crude test for determining the character set used on your processor.

It is possible to have operands of unequal length. In this case, the character string of smaller
length is treated as if blanks were padded to the right of it to the length of the larger string.
The relational operator is then applied.

7.4 Logical Expressions
Logical expressions are used to describe computations involving operands whose type is
LOGICAL or INTEGER , logical operators and left and right parentheses. The result of the
computation is of type LOGICAL unless both operands are of type INTEGER in which case
the result of the computation is of type INTEGER.

7.4.1 Logical Operators

The following table lists the logical operators and the operation they perform.

Operator Logical Operation

.NOT. Logical negation

.AND. Logical conjunction

.OR. Logical inclusive disjunction

.EQV. Logical equivalence

.NEQV. Logical non-equivalence

.XOR. Exclusive or

214 Logical Expressions

Expressions

The logical operator .NOT. is a unary operator; all other logical operators are binary. The
following tables describe the result of each operator when it is used with logical operands.

x .NOT. x

true false
false true

x y x .AND. y

true true true
true false false
false true false
false false false

x y x .OR. y

true true true
true false true
false true true
false false false

x y x .EQV. y

true true true
true false false
false true false
false false true

x y x .NEQV. y
................ x .XOR. y

true true false
true false true
false true true
false false false

Note that the operators .NEQV. and .XOR. perform the same logical operation.

Logical Expressions 215

Language Reference

The following tables describe the result of the logical operators when they are used with
integer operands. These operators apply to bits in the operand(s), hence we show only the
result of operations on individual bits. The way to read the entries in the following tables is:

1. If the bit in "x" is 0 then the corresponding bit in ".NOT.x" is 1, and so on.

2. If the bit in "x" is 1 and the corresponding bit in "y" is 1 then the corresponding bit
in "x.AND.y" is 1, and so on.

x .NOT. x

0 1
1 0

x y x .AND. y

1 1 1
1 0 0
0 1 0
0 0 0

x y x .OR. y

1 1 1
1 0 1
0 1 1
0 0 0

x y x .EQV. y

1 1 1
1 0 0
0 1 0
0 0 1

216 Logical Expressions

Expressions

x y x .NEQV. y
.............. x .XOR. y

1 1 0
1 0 1
0 1 1
0 0 0

Note that the operators .NEQV. and .XOR. perform the same mathematical operation on
bits.

As is the case with arithmetic operators, we must define rules in order to evaluate logical
expressions. Again we define rules of precedence for logical operators which dictate the
evaluation sequence of logical expressions. The following lists the logical operators in order
of precedence.

1. .NOT. (highest precedence)
2. .AND.
3. .OR.
4. .EQV., .NEQV. and .XOR. (lowest precedence)

For example, in the expression

A .OR. B .AND. C

the .AND. operator has higher precedence than the .OR. operator so B and C are combined
first using the .AND. operator. The result is then combined with A using the .OR. operator.

Parentheses can be used to alter the sequence of evaluation of logical expressions. If in the
previous example we had written

(A .OR. B) .AND. C

then A and B would have been combined first.

7.4.2 Rules for Forming Logical Expressions

Logical primaries are the building blocks for logical expressions. They are one of the
following.

1. logical or integer constant
2. symbolic logical or integer constant

Logical Expressions 217

Language Reference

3. logical or integer variable reference
4. logical or integer array element reference
5. logical or integer function reference
6. relational expression
7. (logical or integer expression)

As was done with arithmetic expressions, a grammar can be defined which dictates the
precedence relation among logical operators.

The .NOT. logical operator has highest precedence. We define a logical factor as:

1. logical primary
2. .NOT. logical primary

Next in the precedence hierarchy is the .AND. operator. We define a logical term as:

1. logical factor
2. logical term .AND. logical factor

A logical term is simply a sequence of logical factors, each separated by the .AND. operator.
Rule (2) specifies that the logical factors are combined from left to right.

Next is the .OR. operator. We define a logical disjunct as:

1. logical term
2. logical disjunct .OR. logical term

A logical disjunct is simply a sequence of logical terms each separated by the .OR. operator.
Rule (2) specifies that the logical terms are combined from left to right.

A logical expression can now be defined as follows.

1. logical disjunct
2. logical expression .EQV. logical disjunct
3. logical expression .NEQV. logical disjunct or logical expression .XOR. logical

disjunct

A logical expression is therefore a sequence of logical disjuncts, each separated by the .EQV.
operator or the .NEQV. or .XOR. operator. Rules (2) and (3) indicate that logical disjuncts
are combined from left to right.

Consider the following example.

A .OR. .NOT. B .AND. C

218 Logical Expressions

Expressions

Since the .NOT. operator has highest precedence we first logically negate B. The result is
then combined with C using the .AND. operator. That result is then combined with A using
the .OR. operator to form the final result.

7.4.3 Logical Constant Expressions

A logical constant expression is a logical expression in which each primary is one of the
following:

1. logical constant
2. symbolic logical constant
3. a relational expression in which each primary is a constant expression
4. (logical constant expression)

The following are examples of a logical constant expression (assume that A, B, C and D are
arithmetic constants appearing in PARAMETER statements).

.TRUE. .AND. .NOT. .FALSE.
’A’ .LT. ’a’
A * B .GT. C * D

7.5 Evaluating Expressions
Four different types of operators have been discussed; arithmetic, character, relational and
logical. It is possible to form an expression which contains all of these operators. Consider
the following example.

A+B .LE. C .AND. X // Y .EQ. Z .AND. L

where A, B and C are of numeric type, X, Y and Z are of type CHARACTER and L is of
type LOGICAL. In this expression, + is an arithmetic operator, // is a character operator, .EQ.
is a relational operator and .AND. is a logical operator. Since we can mix these four types of
operators, it is necessary to define a precedence among these four classes of operators. The
following defines this precedence of operators.

1. arithmetic operators (highest precedence)
2. character operators
3. relational operators
4. logical operators (lowest precedence)

With this precedence any expression can now be evaluated without ambiguity.

Evaluating Expressions 219

Language Reference

7.6 Constant Expressions
A constant expression is an arithmetic constant expression, a character constant expression or
a logical constant expression.

220 Constant Expressions

8 Assignment Statements

8.1 Introduction
Assignment statements are used to define entities. There are four different types of
assignment.

1. Arithmetic
2. Logical
3. Statement label (ASSIGN)
4. Character

8.2 Arithmetic Assignment
The form of an arithmetic assignment statement is

v = e

where:

v is a variable name or array element name of type INTEGER, REAL, DOUBLE
PRECISION, COMPLEX or double precision complex (COMPLEX*16).

e is an arithmetic expression.

The following are examples of arithmetic assignment statements.

Y = X**2 + 4.0*X + 3.0
Z(10) = 4.3*(X+Y)

Executing an arithmetic assignment statement causes the evaluation of the arithmetic
expression e, converting the type of the expression e to the type of v, and defining v with
the result.

Arithmetic Assignment 221

Language Reference

If v is of type INTEGER*1 or INTEGER*2, then the value of the expression e is first
converted to type INTEGER. The resulting integer is then assigned to v in the following way.

1. If v is of type INTEGER*2 and the value of e is such that −32768 <= e <= 32767,
v will be assigned the value of e. Otherwise, v will be undefined.

2. If v is of type INTEGER*1 and the value of e is such that −128 <= e <= 127, v
will be assigned the value of e. Otherwise, v will be undefined.

8.3 Logical Assignment
The form of a logical assignment statement is

v = e

where:

v is a variable name or array element name of type LOGICAL.

e is a logical expression.

The following are examples of logical assignment statements.

LOG1 = .TRUE.
LOG2 = (X.GT.Y) .AND. (X.LT.Z)
LOG3(2) = LOG2 .EQV. LOG1

Executing a logical assignment statement causes the evaluation of the logical expression e,
and defining v with the result. Note that the type of v and e must be LOGICAL.

8.4 Statement Label Assignment
The form of a statement label assignment is

222 Statement Label Assignment

Assignment Statements

ASSIGN s to i

where:

s is a statement label.

i is the name of an integer variable.

The following is an example of a statement label assignment statement.

ASSIGN 10 TO I

The result of executing an ASSIGN statement causes the integer variable i to be defined with
the value of the statement label s. s must be the statement label of an executable statement
or a format statement in the same program unit in which the ASSIGN statement appears. It is
possible to change the value of i by executing another ASSIGN statement.

During execution when i is used in an assigned GO TO statement, an ASSIGN statement
which defines i must have been executed prior to the execution of the assigned GO TO
statement.

While the variable i is defined with a statement label, it should not be used in any other way
other than in an assigned GO TO statement. Consider the following example.

Example:
10 ASSIGN 10 TO I
* Illegal use of an ASSIGNed variable

PRINT *, I

The output produced by the PRINT statement is not the integer 10. Its value is undefined and
should be treated that way.

Statement Label Assignment 223

Language Reference

8.5 Character Assignment
The form of a character assignment statement is

v = e

where:

v is a character variable name, character array element, or character substring.

e is a character expression.

The following are examples of character assignment statements.

CHARACTER*20 C,D(5)
C=’ABCDEF’
C(3:5)=’XYZ’
D(5)(14:15)=’12’

Executing a character assignment statement causes the evaluation of the character expression
e and the definition of v with the result.

None of the character positions defined in v may be referenced in e. The following example
is illegal since the 4th and 5th character positions of A appear on the left and right hand side of
the equal sign.

Example:
* Illegal character assignment.

CHARACTER*10 A,B*5
A(2:6) = A(4:5) // B

The length of v and e may be different. If the length of v is less than the length of e then the
assignment has the effect of truncating e from the right to the length of v. If the length of v
is greater than the length of e, the value assigned to v is the value of e padded on the right
with blanks to the length of v.

224 Character Assignment

Assignment Statements

8.6 Extended Assignment Statement
Watcom FORTRAN 77 supports an extension to the FORTRAN 77 assignment statement,
namely the extended assignment statement.

v = v = v = ... = v = e
1 2 3 n

where:

v’i must be one of the following:

1. Variable names or array element names of type INTEGER, REAL,
DOUBLE PRECISION, COMPLEX or double precision complex
(COMPLEX*16).

2. Variable names or array element names of type LOGICAL.

3. Character variable names, character array elements, or character substrings.

e must be one of the following and must follow the rules of the arithmetic, logical or
character assignment statements:

1. An arithmetic expression.

2. A logical expression.

3. A character expression.

The extended assignment statement is equivalent to the following individual statements.

Extended Assignment Statement 225

Language Reference

v = e
n

v = v
n-1 n

.

.

.
v = v
2 3

v = v
1 2

When using an extended assignment statement involving variables of mixed type, it is
important to understand the exact way in which the assignments are performed. Assignment
of each variable is made using the value of the variable to its immediate right, starting with the
rightmost variable which is assigned the value of the expression. To help make this clear,
consider the following program.

Example:
CHARACTER C1*10, C2*5, C3*7
LOGICAL L1, L2, L3
INTEGER*2 K, L
I = S = J = T = 1.25
PRINT *, I, S, J, T
I = K = J = L = 70000
PRINT *, I, K, J, L
C1 = C2 = C3 = ’ABCDEFGHIJKL’
PRINT *, C1, C2, C3
L1 = L2 = L3 = .TRUE.
PRINT *, L1, L2, L3
END

The output from this program would be:

1 1.0000000 1 1.2500000
4464 4464 4464 4464

ABCDE ABCDEABCDEFG
T T T

Note that variables K and L are of type INTEGER*2 and cannot contain any value greater
than 32767. Truncation resulted and this value (4464) was propagated to the left.

226 Extended Assignment Statement

9 Program Structure Control Statements

9.1 Introduction
The use of structured programming statements has been found to encourage better
programming and design practices among beginners, and aids the more experienced
programmer in writing error-free programs.

The format of these statements and their blocks is illustrated below. Following this, the use
and meaning of each statement is described and illustrated with examples. In each of these
illustrations, the blocks are denoted by statement(s) and are delimited by control
statements.

In the descriptions, logical-expression can also be an integer expression, in which
case the result of the integer expression is compared for inequality to the integer value 0.

Example:
IF(LEN - 1)THEN

In the preceding example, the expression LEN - 1 is interpreted as LEN - 1 .NE. 0.

9.2 IF - ELSE - END IF
The ELSE portion of this construct is optional, thus there are two possible formats.

(a) IF(logical-expression)THEN [: block-label]
statement(s)

END IF

(b) IF(logical-expression)THEN [: block-label]
statement(s)

ELSE
statement(s)

END IF

IF - ELSE - END IF 227

Language Reference

This construct is an enhancement of the FORTRAN logical IF statement. If the value of the
parenthesized logical expression is true in (a), the block of statements following the IF
statement is executed, after which control passes to the statement following the END IF
statement; otherwise, control will pass directly to the statement following the END IF
statement. When the ELSE statement is used and the logical expression is true, the block of
statements between the IF and the ELSE statements is executed and then control passes to the
statement following the END IF statement; otherwise the block of statements following
ELSE statement is executed and then control passes to the statement following the END IF
statement.

An optional block label may be specified with the IF statement (see the CYCLE, EXIT or
QUIT statement for more information).

Examples follow which illustrate the use of the two formats.

Example:
IF(I .EQ. 0)THEN

PRINT *, ’I IS ZERO’
I = 1

END IF

If variable I is zero when the IF statement is executed, the string I IS ZERO will be
printed, variable I will be assigned the value 1, and the statement following the END IF will
be executed. If variable I is not zero when the IF statement is executed, control will pass to
the statement following the END IF statement.

Example:
IF(A .GT. B)THEN

PRINT *, ’A GREATER THAN B’
A = A - B

ELSE
PRINT *, ’A NOT GREATER THAN B’

END IF

If the value of variable A is greater than the value of variable B when this IF statement is
executed, the string A GREATER THAN B will be printed and variable A will be assigned
the value of the expression A - B. Control will then pass to the statement following the
END IF statement.

If the value of variable A is not greater than the value of variable B when the IF statement is
executed, the string A NOT GREATER THAN B will be printed and control will pass to the
statement following the END IF statement.

228 IF - ELSE - END IF

Program Structure Control Statements

9.3 ELSE IF
A further enhancement of the IF-THEN-ELSE construct is the ELSE IF statement which
may be used in the following two formats:

(a) IF(logical-expression-1)THEN [: block-label]
statement(s)

ELSE IF(logical-expression-2)THEN
statement(s)

...
END IF

(b) IF(logical-expression-1)THEN [: block-label]
statement(s)

ELSE IF(logical-expression-2)THEN
statement(s)

...
ELSE

statement(s)
END IF

The presence of the "..." in the above formats indicates that the ELSE IF statement may be
repeated as often as desired. If the value of logical-expression-1 is true in case (a),
the block of statements following the IF statement up to the first ELSE IF statement is
executed, after which control passes to the statement following the END IF statement;
otherwise, control will pass to the first ELSE IF statement. If the value of
logical-expression-2 is true, the block of statements following the first ELSE IF
statement up to the next ELSE IF statement or END IF statement is executed, after which
control passes to the statement following the END IF statement; otherwise, control will pass
to the next ELSE IF statement, if there is one, or directly to the statement following the END
IF statement. When the ELSE statement is used, as in case (b), and the values of all the
logical expressions in the IF and ELSE IF statements are false, the block of statements
following the ELSE statement is executed and then control passes to the statement following
the END IF statement. An optional block label may be specified with the IF statement (see
the CYCLE, EXIT or QUIT statement for more information).

Examples follow which illustrate the use of the two formats.

ELSE IF 229

Language Reference

Example:
IF(I .EQ. 0)THEN

PRINT *, ’I IS ZERO’
ELSE IF(I .GT. 0)THEN

PRINT *, ’I IS GREATER THAN ZERO’
END IF

If variable I is zero when the IF statement is executed, the string I IS ZERO will be
printed and the statement following the END IF statement will be executed. If variable I is
not zero when the IF statement is executed, control will pass to the ELSE IF statement. If
variable I is greater than zero, the string I IS GREATER THAN ZERO will be printed and
the statement following the END IF statement will be executed. If variable I is less than
zero then nothing would be printed and control passes from the ELSE IF statement to the
statement following the END IF statement.

Example:
IF(A .GT. B)THEN

PRINT *, ’A GREATER THAN B’
A = A - B

ELSE IF(A .LT. B)THEN
PRINT *, ’A LESS THAN B’
A = B - A

ELSE
PRINT *, ’A EQUAL TO B’
A = 0.0

END IF

If the value of variable A is greater than the value of variable B when the IF statement is
executed, the string A GREATER THAN B will be printed and variable A will be assigned
the value of the expression A - B. Control will then pass to the statement following the
END IF statement.

If the value of variable A is not greater than the value of variable B when the IF statement is
executed, control passes to the ELSE IF statement. If the value of variable A is less than the
value of variable B, the string A LESS THAN B will be printed and variable A will be
assigned the value of the expression B - A. Control will then pass to the statement
following the END IF statement.

If the value of variable A is not less than the value of variable B when the ELSE IF statement
is executed, the string A EQUAL TO B will be printed and variable A will be assigned the
value zero. Control will pass to the statement following the END IF statement.

230 ELSE IF

Program Structure Control Statements

9.4 DO - END DO

DO init-expr,end-value[,inc-value] [: block-label]
statement(s)

END DO

This extension to FORTRAN 77 allows the creation of DO-loops without the introduction of
statement numbers. An optional block label may be specified (see the CYCLE, EXIT or
QUIT statement for more information). The END DO statement is used to indicate the end of
the range of its corresponding DO statement. A statement number may not be specified in the
corresponding DO statement. Nested DO-loops of this form require separate END DO
statements to terminate the range of the corresponding DO statement. Since a statement
number may appear on the END DO statement, the number may be used to terminate outer
DO-loops. This is not a recommended practice (a CONTINUE statement or a structured DO
statement should be used). A transfer of control from within the DO-loop to a statement
number on the END DO statement is treated in the same manner as if the word CONTINUE
had been used instead of END DO.

Some examples follow.

Example:
DO I = 1, 3

DO J = 1, 5
PRINT *, MATRIX(I, J)

END DO
END DO

The above is equivalent to the following example which uses statement numbers.

Example:
DO 10 I = 1, 3

DO 20 J = 1, 5
PRINT *, MATRIX(I, J)

20 CONTINUE
10 CONTINUE

The next example demonstrates the use of a GO TO statement to control execution of all or
part of a DO-loop.

DO - END DO 231

Language Reference

Example:
DO I = 1, 3

DO J = 1, 5
PRINT *, ’INNER LOOP - J=’, J
IF(J .LE. 3)GO TO 20
PRINT *, ’J > 3’

20 END DO
PRINT *, ’OUTER LOOP - J=’, J

END DO

A result of this example is that the character string J > 3 is printed 6 times (i.e., twice for
each iteration of the outer loop). Of course there is a much better way of coding this
algorithm using the IF-END IF construct. The example is included to illustrate the behaviour
of transfers of control to an END DO statement. The following example is an equivalent
algorithm to the one above but the intent is much clearer.

Example:
DO I = 1, 3

DO J = 1, 5
PRINT *, ’INNER LOOP - J=’, J
IF(J .GT. 3)THEN

PRINT *, ’J > 3’
END IF

END DO
PRINT *, ’OUTER LOOP - J=’, J

END DO

9.5 DO WHILE - END DO

DO WHILE (e) [: block-label]
statement(s)

END DO

This extension to FORTRAN 77 allows the creation of DO-loops without iterative techniques.
Instead, the DO-loop is executed while the parenthesized expression is true. The logical
expression is evaluated before entry to the DO-loop. If the value is false, control is
transferred to the statement following the END DO statement. If the logical expression if true,
the statements of the DO-loop are executed. When the END DO statement is reached, the
expression is re-evaluated and program control proceeds as previously described. An optional
block label may be specified (see the CYCLE, EXIT or QUIT statement for more
information).

232 DO WHILE - END DO

Program Structure Control Statements

An optional statement number can be specified after the DO keyword. When the END DO
statement is used to indicate the end of the range of its corresponding DO WHILE statement, a
statement number may not be specified.

Some examples follow.

Example:
I = 1
DO WHILE(I .LE. 3)

J = 1
DO WHILE(J .LE. 5)

PRINT *, MATRIX(I, J)
END DO

END DO

The above is equivalent to the following example which uses statement numbers.

Example:
I = 1
DO 10 WHILE(I .LE. 3)

J = 1
DO 20 WHILE(J .LE. 5)

PRINT *, MATRIX(I, J)
20 CONTINUE
10 CONTINUE

The next example demonstrates the use of a GO TO statement to control execution of all or
part of a DO-loop.

Example:
I = 1
DO WHILE(I .LE. 3)

J = 1
DO WHILE(J .LE. 5)

PRINT *, ’INNER LOOP - J=’, J
IF(J .LE. 3)GO TO 20
PRINT *, ’J > 3’

20 END DO
PRINT *, ’OUTER LOOP - J=’, J

END DO

A result of this example is that the character string J > 3 is printed 6 times (i.e., twice for
each iteration of the outer loop). Of course there is a much better way of coding this
algorithm using the IF-END IF construct. The example is included to illustrate the behaviour
of transfers of control to an END DO statement. The following example is an equivalent
algorithm to the one above but the intent is much clearer.

DO WHILE - END DO 233

Language Reference

Example:
I = 1
DO WHILE(I .LE. 3)

J = 1
DO WHILE(J .LE. 5)

PRINT *, ’INNER LOOP - J=’, J
IF(J .GT. 3)THEN

PRINT *, ’J > 3’
END IF

END DO
PRINT *, ’OUTER LOOP - J=’, J

END DO

9.6 LOOP - END LOOP

LOOP [: block-label]
statement(s)

END LOOP

This extension to FORTRAN 77 causes the statements between the LOOP and END LOOP
statements to be repeated until control is transferred out of the loop, usually by an EXIT or
QUIT statement. An optional block label may be specified (see the CYCLE, EXIT or QUIT
statement for more information). An example follows:

Example:
LOOP

READ *, X
IF(X .EQ. 99.0)EXIT
PRINT *, X

END LOOP

The above statements cause values to be read and printed, one to a line, until the value 99.0 is
read. When variable X has this value, the logical expression in the IF statement evaluates as
true and the EXIT statement causes a transfer of control to the statement following the END
LOOP statement. The EXIT statement is discussed in more detail in a later section.

234 LOOP - END LOOP

Program Structure Control Statements

9.7 WHILE - END WHILE

WHILE(logical-expression)DO [: block-label]
statement(s)

END WHILE

This extension to FORTRAN 77 causes its block of code to be executed repeatedly while the
parenthesized logical expression is true. The logical expression is evaluated before entry to
the block. If the value is false, control passes to the statement following the END WHILE
statement. If the logical expression is true, the statements of the block are executed. When
the END WHILE statement is reached, the WHILE logical expression is re-evaluated and the
above program control decisions are repeated. An optional block label may be specified (see
the CYCLE, EXIT or QUIT statement for more information). An example follows:

Example:
WHILE(J .GT. 0)DO

A(J) = B(I + J)
J = J - 1

END WHILE

If variable J is zero or negative when the WHILE statement is executed, the WHILE block of
code will be by-passed and the statement following the END WHILE statement will be
executed.

If variable J is greater than zero when the WHILE statement is executed, the WHILE block
will be executed repeatedly until J becomes equal to zero. The effect of this loop will be to
assign values to elements of array A from array B, starting with the element of A
corresponding to the initial value of variable J and working backwards down the array to
element 1.

9.8 WHILE - Executable-statement

WHILE(logical-expression)stmt

WHILE - Executable-statement 235

Language Reference

where:

stmt is an executable statement. Only certain executable statements are are allowed. See
the section entitled "Classifying Statements" on page 9 in the chapter entitled
"FORTRAN Statements" for a list of allowable statements.

This control statement is another form of the WHILE construct.

Example:
WHILE(I .GT. 0)EXECUTE A

When this statement is executed, if the logical expression is not true, control passes to the next
statement. If the expression is true, REMOTE-block A (assumed to be defined elsewhere in
the program unit) is executed, and the logical expression is re-evaluated. This is repeated
until the logical expression, when evaluated, is false; control then passes to the next statement.

9.9 UNTIL

LOOP [: block-label]
statement(s)

UNTIL(logical-expression)

or

WHILE(logical-expression)DO [: block-label]
statement(s)

UNTIL(logical-expression)

The UNTIL statement, an extension to FORTRAN 77, may be combined with either a LOOP
or WHILE statement by replacing the END LOOP or END WHILE statement. It provides a
way of specifying a condition to be tested at the end of each iteration of a loop, which will
determine whether or not the loop is repeated. After all of the statements in the block have
been executed, the logical expression in the UNTIL statement is evaluated. If the result of the
condition is false, the loop is repeated; otherwise, control passes to the statement following the
UNTIL statement.

236 UNTIL

Program Structure Control Statements

In the following example, the statements between the LOOP and the UNTIL statements are
executed until the value of variable X is greater than 10.0.

Example:
X = 1.0
LOOP

PRINT *, X, SQRT(X)
X = X + 1.0

UNTIL(X .GT. 10.0)

9.10 SELECT - END SELECT

SELECT [CASE] (e) [FROM] [: block-label]
CASE (case-list)

statement (s)
CASE (case-list)

statement (s)
.
.
.

CASE DEFAULT
statement(s)

END SELECT

where:

case-list is a list of one or more cases separated by commas. A case is either

(a) a single integer, logical or character constant expression or

(b) an integer, logical or character constant expression followed by a
colon followed by another expression or the same type. This form
of a case defines a range of values consisting of all integers or
characters greater than or equal to the value of the expression
preceding the colon and less than or equal to the value of the
expression following the colon.

The SELECT construct, an extension to FORTRAN 77, is similar in concept to the
FORTRAN computed GO TO statement. It allows one of a number of blocks of code (case

SELECT - END SELECT 237

Language Reference

blocks) to be selected for execution by means of an integer expression in the SELECT
statement.

The SELECT statement keywords, CASE and FROM, are optional. The SELECT statement
may contain a block label (see the CYCLE, EXIT or QUIT statements for more information).

Each block must be started with a CASE statement; however, the last block may begin with a
CASE DEFAULT statement. The CASE DEFAULT block is optional. In order to retain
compatibility with earlier versions of WATCOM FORTRAN 77 compilers, the OTHERWISE
statement may be used in place of the CASE DEFAULT statement. The last block is ended by
the END SELECT statement. The number of case blocks is optional, from one to many;
however, it is recommended that the SELECT construct not be used for fewer than 3 case
blocks. The conditional execution of one or two blocks of code is handled more efficiently by
the IF-THEN-ELSE construct.

A particular case value or range of values must not be contained in more than one
CASE-block. For example, the following is illegal:

Example:
* Illegal SELECT block - case value in more
* than one CASE block.

SELECT CASE (I - 3)
CASE (1,3,7:10)

statement(s)
CASE (5,6,8)

statement(s)
CASE (-3:-2+4)

statement(s)
END SELECT

The second CASE-block includes 8 which is already handled by the first CASE-block. As
well, the third CASE-block handles cases −3, −2, −1, 0, 1, 2 but the first CASE-block also
handles case 1. Thus the second and third CASE-ranges are in error.

When the SELECT statement case expression is evaluated as i, the case block whose range
contains i is executed and control passes to the statement following the END SELECT
statement. If no range contains i, control is transferred to the statement following the CASE
DEFAULT statement, if one is specified. If the CASE DEFAULT block is omitted and the
case expression is out of range when the SELECT statement is executed (that is, none of the
CASE-blocks handles the particular expression value), control is passed to the statement
following the END SELECT statement and none of the CASE-blocks is executed.

238 SELECT - END SELECT

Program Structure Control Statements

Example:
SELECT CASE (I)
CASE (1)

Y = Y + X
X = X * 3.2

CASE (2)
Z = Y**2 + X
PRINT *, X, Y, Z

CASE (3)
Y = Y * 13. + X
X = X - 0.213

CASE (4)
Z = X**2 + Y**2 - 3.0
Y = Y + 1.5
X = X * 32.0
PRINT *, ’CASE 4’, X, Y, Z

END SELECT

This example will execute in the manner described below for each of the possible values of
variable I.

(i) I is zero or negative:
- control will pass to the statement after the END SELECT statement

(ii) I = 1:
- the value of X will be added to Y
- X will be multiplied by 3.2
- control will pass to the statement after the END SELECT statement

(iii) I = 2:
- Z will be assigned the value of the expression Y**2 + X
- the values of X, Y and Z will be printed
- control will pass to the statement after the END SELECT statement

(iv) I = 3:
- Y will be assigned the value of the expression Y * 13. + X
- 0.213 will be subtracted from X
- control will pass to the statement after the END SELECT statement

(v) I = 4:
- Z, Y and X will be assigned new values
- the string CASE 4, followed by the values of X, Y and Z will be printed
- control will pass to the statement after the END SELECT statement

SELECT - END SELECT 239

Language Reference

(vi) I = 5, 6, ...:
- control will pass to the statement after the END SELECT statement

CASE DEFAULT allows a block of code to be specified for execution when the SELECT
expression is out of range. It must follow all CASE-blocks and thus is ended by the END
SELECT statement. The CASE DEFAULT statement terminates the previous and last
CASE-block. Note that only one CASE DEFAULT block may be specified in a SELECT
construct.

If a CASE DEFAULT block were included in the above example, it would be executed in
cases (i) and (vi) of the description. After a CASE DEFAULT block is executed, control then
passes to the statement after the END SELECT statement.

Empty or null case blocks are permitted (that is, two CASE statements with no statements
between). The net result of executing a null CASE-block is to effectively bypass the SELECT
construct.

Example:
SELECT CASE (I * 4 - J)
CASE (-10 : -5)

PRINT *,’First case:’
PRINT *,’-10 <= I*4-J <= -5’

CASE (-4 : 2)
PRINT *,’Second case:’
PRINT *,’-4 <= I*4-J <= 2’

CASE (3, 5, 7)
PRINT *,’Third case:’
PRINT *,’I*4-J is one of 3, 5 or 7’

CASE (4, 6, 8:10)
PRINT *,’Fourth case:’
PRINT *,’I*4-J is one of 4, 6, 8, 9 or 10’

CASE DEFAULT
PRINT *,’All other cases:’
PRINT *,’I*4-J < -10 or I*4-J > 10’

END SELECT

This example will execute in the manner described below for each of the possible values of
expression I*4-J.

(i) expression < −10
- control will pass to the statement after the CASE DEFAULT statement
- the string All other cases: will be printed
- the string I*4-J < -10 or I*4-J > 10 will be printed

240 SELECT - END SELECT

Program Structure Control Statements

(ii) −10 <= expression <= −5:
- control will pass to the statement after the first CASE statement
- the string First case: will be printed
- the string -10 <= I*J-4 <= -5 will be printed
- control will pass to the statement after the END SELECT statement

(iii) −4 <= expression <= 2:
- control will pass to the statement after the second CASE statement
- the string Second case: will be printed
- the string -4 <= I*J-4 <= 2 will be printed
- control will pass to the statement after the END SELECT statement

(iv) expression = 3, 5 or 7:
- control will pass to the statement after the third CASE statement
- the string Third case: will be printed
- the string I*J-4 is one of 3, 5 or 7 will be printed
- control will pass to the statement after the END SELECT statement

(v) expression = 4, 6, 8, 9 or 10:
- control will pass to the statement after the fourth CASE statement
- the string Fourth case: will be printed
- the string I*J-4 is one of 4, 6, 8, 9 or 10 will be printed.
- control will pass to the statement after the END SELECT statement

(vi) expression > 10:
- control will pass to the statement after the CASE DEFAULT statement
- the string All other cases: will be printed
- the string I*4-J < -10 or I*4-J > 10 will be printed

9.11 EXECUTE and REMOTE BLOCK

EXECUTE name
.
.
.

REMOTE BLOCK name
statement(s)

END BLOCK

EXECUTE and REMOTE BLOCK 241

Language Reference

where:

name is a valid FORTRAN symbolic name.

The EXECUTE statement, an extension to FORTRAN 77, allows a named block of code to be
executed. The named block of code may be defined anywhere in the same program unit and is
delimited by the REMOTE BLOCK and END BLOCK statements. Executing a
REMOTE-block is similar in concept to calling a subroutine, with the advantage that shared
variables do not need to be placed in a common block or passed in an argument list. In
addition there is less overhead involved in executing a REMOTE-block than in calling a
subroutine (in both amount of object code and execution time). When execution of the
REMOTE-block is complete, control returns to the statement following the EXECUTE
statement which invoked it.

This feature is helpful in avoiding duplication of code for a function (such as I/O) required in
a number of places throughout a program. It can also be an aid to writing a well-structured
program.

Each REMOTE-block within the same program unit must have a different name and it must
not be a subprogram or variable name. Note that a REMOTE-block is local to the program
unit in which it is defined and may not be referenced (executed) from another program unit.

REMOTE-blocks may be defined anywhere in the program unit except as follows.

1. They must follow all specification statements.
2. They must not be defined within a control structure.

If a REMOTE BLOCK statement is encountered during execution, control is transferred to the
statement following the corresponding END BLOCK statement.

Note that the nested definition of REMOTE-blocks is not permitted.

242 EXECUTE and REMOTE BLOCK

Program Structure Control Statements

Example:
EXECUTE A
PRINT *, ’FIRST’

.

.

.
EXECUTE A
PRINT *, ’SECOND’

.

.

.
REMOTE BLOCK A

I = I + 1
PRINT *, ’I=’, I

END BLOCK

Both EXECUTE statements will cause REMOTE-block A to be executed. That is, variable I
will be incremented and its value will be printed. When the block has been executed by the
first EXECUTE statement, control returns to the PRINT statement following it and the word
FIRST is printed. Similarly, when the block is executed by the second EXECUTE statement,
control returns to the PRINT statement following it and the word SECOND is printed.

REMOTE-blocks may be executed from other REMOTE-blocks. For example,
REMOTE-block A might contain the statement EXECUTE B, where B is a REMOTE-block
defined elsewhere in the program unit. The execution of REMOTE-blocks from other
REMOTE-blocks may take place to any level; however, the recursive execution of
REMOTE-blocks is not permitted, either directly or through a chain of EXECUTE statements.
Attempts to execute REMOTE-blocks recursively are detected as errors at execution time.

EXECUTE and REMOTE BLOCK 243

Language Reference

9.12 GUESS-ADMIT-END GUESS

GUESS [: block-label]
statement(s)

ADMIT
statement(s)

ADMIT
statement(s)
.
.
.

ADMIT
statement(s)

END GUESS

The GUESS-ADMIT-END GUESS structure is a rejection mechanism which is useful when
sets of statements are to be conditionally chosen for execution, but not all of the conditions
required to make a selection are available beforehand. It is an extension to FORTRAN 77.
The sets of statements to be chosen may be thought of as alternatives, the first alternative
being statements immediately after the GUESS statement. Execution begins with the
statements in the first alternative. If a condition is detected which indicates that the first
alternative was the wrong choice, a QUIT statement may be executed to cause control to be
passed to the statements after the ADMIT statement (i.e., the second alternative). A QUIT
statement within the second alternative passes control to the third alternative, etc. A QUIT
statement within the last alternative passes control to the statement after the END GUESS
statement. If an alternative completes execution without encountering a QUIT statement (i.e.,
all statements are executed up to the next ADMIT statement) then control is passed to the
statement after the END GUESS statement. An optional block label may be specified
following the keyword GUESS (see the QUIT statement for more information).

In the following example, two sets of codes and numbers are read in and some simple
sequence checking is performed. If a sequence error is detected an error message is printed
and processing terminates; otherwise the numbers are processed and another pair of numbers
is read.

244 GUESS-ADMIT-END GUESS

Program Structure Control Statements

Example:
LOOP : PRLOOP

GUESS
LINE = LINE + 1
READ *, ICODE, X
AT END, QUIT :PRLOOP
IF(ICODE .NE. 1)QUIT
LINE = LINE + 1
READ *, ICODE, Y
AT END, QUIT
IF(ICODE .NE. 2)QUIT
PRINT *, X, Y
CALL PROCES(X, Y)

ADMIT
PRINT *, ’INVALID SEQUENCE: LINE =’, LINE
QUIT :PRLOOP

END GUESS
END LOOP

The above example attempts to read a code and number. If an end of file occurs then the loop
is terminated by the QUIT statement.

If the code is not 1 then we did not get what we expected and an error situation has arisen.
Control is passed to the statement following the ADMIT statement. An error message is
printed and the loop is terminated by the QUIT statement.

If the code is 1 then a second code and number are read. If an end of file occurs then we are
missing a set of data and an error situation has arisen. Control is passed to the statement
following the ADMIT statement. An error message is printed and the loop is terminated by the
QUIT statement. Similarly if the expected code is not 2 an error situation has arisen. Control
is passed to the statement following the ADMIT statement. An error message is printed and
the loop is terminated by the QUIT statement.

If the second code is 2, the values of variables X and Y are printed. A subroutine is then called
to process the data. Control resumes at the statement following the END GUESS statement.
Since this statement is an END LOOP, control is transferred to the beginning of the loop.

The above example illustrates the point that all the information required to make a choice (in
this case between a valid set of data and an invalid set) is not available from the beginning. In
this case we make an assumption that the data values are correct (our hypothesis) and then test
the assumption at various points in the algorithm. If any of the tests fail we reject the
hypothesis (and, perhaps, select a new hypothesis).

It should be noted that no alternative selection need be coded (i.e., we need not use any
ADMIT-blocks). This is illustrated in the following example.

GUESS-ADMIT-END GUESS 245

Language Reference

Example:
GUESS

X=SQRT(X)
IF(X .LT. EPS)QUIT
X=Y+SQRT(Y)
IF(X .LT. EPS)QUIT
CALL INTGRT(X, Y)

END GUESS

It might be noted that the IF-ELSE-END IF construct is simply a specific instance of the more
general GUESS-ADMIT-END GUESS construct wherein the data values are known
beforehand (as could be illustrated using the previous example).

9.13 QUIT

QUIT [: block-label]

The QUIT statement may be used to transfer control to the first executable statement
following the terminal statement of the block in which it is contained.

When transferring out of a loop, control is passed to the statement following the END DO,
END WHILE, END LOOP or UNTIL statement.

When transferring out of a GUESS block, control is passed to the statement after the next
ADMIT or END GUESS statement.

When transferring out of an IF-block or SELECT-block, control is passed to the statement
after the corresponding END IF or END SELECT statement.

When transferring out of a REMOTE-block, control passes to the statement following the
EXECUTE statement that invoked the REMOTE-block.

If no block label is specified in the QUIT statement, control is transferred from the
immediately enclosing structure. If several structures or DO-loops are nested, it is possible to
exit from any one of them by specifying the block label of the corresponding block structure.

The QUIT statement is most commonly used as the statement in a logical IF or AT END
statement but may also be used to cause an unconditional transfer of control. (The AT END
statement is described in a subsequent section).

246 QUIT

Program Structure Control Statements

Examples of the QUIT statement with and without a block label follow.

Example:
CHARACTER CH
READ *, CH
GUESS

IF(CH .LT. ’a’)QUIT
IF(CH .GT. ’z’)QUIT
PRINT *, ’Lower case letter’

ADMIT
IF(CH .LT. ’A’)QUIT
IF(CH .GT. ’Z’)QUIT
PRINT *, ’Upper case letter’

ADMIT
IF(CH .LT. ’0’)QUIT
IF(CH .GT. ’9’)QUIT
PRINT *, ’Digit’

ADMIT
PRINT *, ’Special character’

END GUESS
END

The above statements read and print values until an end of file occurs. At that point control is
passed to the QUIT statement, as specified by the AT END statement. The QUIT statement
causes control to continue with the statement after the END LOOP statement.

Example:
CHARACTER RECORD(80)
LOOP : RDREC

READ(5,100) RECORD
AT END, STOP
DO I = 1, 80

IF(RECORD(I) .LT. ’0’
+ .OR. RECORD(I) .GT. ’9’)QUIT : RDREC

END DO
WRITE(6,101) RECORD

END LOOP
PRINT *, ’INVALID RECORD’

The above example reads in records and verifies that they contain only numeric data. The
QUIT statement is within two levels of nesting: the DO-loop and the LOOP-END LOOP
structure. If a non-numeric character is found, the QUIT : RDREC statement will cause
control to be passed to the PRINT statement after the END LOOP statement.

QUIT 247

Language Reference

9.14 EXIT

EXIT [: block-label]

The EXIT statement is used to transfer control:

1. from within a loop (DO, DO WHILE, WHILE or LOOP) to the statement
following the loop,

2. from within a GUESS or ADMIT block to the statement following the ENDGUESS
statement, or

3. from within a remote block to the statement following the EXECUTE statement that
invoked the remote block.

When transferring out of a loop, control is passed to the statement following the END DO,
END WHILE, END LOOP or UNTIL statement.

When transferring out of a GUESS block, control is passed to the statement after the
corresponding END GUESS statement.

When transferring out of a REMOTE-block, control passes to the statement following the
EXECUTE statement that invoked the REMOTE-block.

If no block label is specified in the EXIT statement, control is transferred from the
immediately enclosing structure. If several structures or DO-loops are nested, it is possible to
exit from any one of them by specifying the block label of the corresponding block structure.

The EXIT statement is most commonly used as the statement in a logical IF or AT END
statement but may also be used to cause an unconditional transfer of control. (The AT END
statement is described in a subsequent section).

Examples of the EXIT statement with and without a block label follow.

248 EXIT

Program Structure Control Statements

Example:
LOOP

READ *, X
AT END, EXIT
PRINT *, X

END LOOP

The above statements read and print values until an end of file occurs. At that point control is
passed to the EXIT statement, as specified by the AT END statement. The EXIT statement
causes control to continue with the statement after the END LOOP statement.

Example:
CHARACTER RECORD(80)
LOOP : RDREC

READ(5,100) RECORD
AT END, STOP
DO I = 1, 80

IF(RECORD(I) .LT. ’0’
+ .OR. RECORD(I) .GT. ’9’)EXIT : RDREC

END DO
WRITE(6,101) RECORD

END LOOP
PRINT *, ’INVALID RECORD’

The above example reads in records and verifies that they contain only numeric data. The
EXIT statement is within two levels of nesting: the DO-loop and the LOOP-END LOOP
structure. If a non-numeric character is found, the EXIT : RDREC statement will cause
control to be passed to the PRINT statement after the END LOOP statement.

9.15 CYCLE

CYCLE [: block-label]

The CYCLE statement is used to cause a transfer of control from within a loop to the terminal
statement of a corresponding DO, DO WHILE, WHILE or LOOP statement. If
block-label is present then control is transferred to the terminal statement of the block
identified by that block label.

If no block label is specified in the CYCLE statement, control is transferred to the terminal
statement of the immediately enclosing loop structure. If several loop structures are nested, it

CYCLE 249

Language Reference

is possible to cycle to the terminal statement of any one of them by specifying the block label
of the corresponding block structure.

The CYCLE statement is most commonly used as the statement in a logical IF statement but
may also be used to cause an unconditional transfer of control.

Examples of the CYCLE statement with and without a block label follow.

Example:
LOOP

WRITE(UNIT=*, FMT=’(A)’) ’Enter a number’
READ(UNIT=*, FMT=’(F10.4)’, IOSTAT=IOS) X
IF(IOS .NE. 0) CYCLE
IF(X .LT. 0) EXIT
PRINT *, X, SQRT(X)

END LOOP

The above statements read and print values until a negative integer value is entered. If an
input error occurs, the input operation (READ) is retried using the CYCLE statement. The
CYCLE statement causes control to resume at the END LOOP statement which then
immediately transfers control to the statement following the LOOP statement.

Example:
CHARACTER RECORD(80)
LOOP : RDREC

READ(5,100) RECORD
AT END, STOP
DO I = 1, 80

IF(RECORD(I) .LT. ’0’
+ .OR. RECORD(I) .GT. ’9’)THEN

PRINT *, ’INVALID RECORD’
CYCLE : RDREC

ENDIF
END DO
WRITE(6,101) RECORD

END LOOP

The above example reads in records and verifies that they contain only numeric data. If the
record does not, the input operation is tried again. The CYCLE statement is within three levels
of nesting: the IF, the DO-loop, and the LOOP-END LOOP structure. If a non-numeric
character is found, the CYCLE : RDREC statement will cause control to be passed to the
READ statement that follows the LOOP statement.

250 CYCLE

Program Structure Control Statements

9.16 AT END

(READ statement)
AT END DO [: block-label]

statement(s)
END AT END

or

(READ statement)
AT END, statement

The AT END control statement, an extension to FORTRAN 77, is an extension of the END=
option of the FORTRAN READ statement for sequential files. It allows a statement or a block
of code following the READ statement to be executed when an end of file condition is
encountered during the READ and to be by-passed immediately following a READ statement.
It is not valid to use this control statement with direct-access or memory-to-memory reads.
Clearly, it is not valid to use this statement when END= is specified in the READ statement.

Example:
READ(7, *) I, X
AT END DO

PRINT *, ’END-OF-FILE ENCOUNTERED’
EOFSW = .TRUE.

END AT END

If the READ statement is executed without encountering end of file, control passes to the
statement following the END AT END statement. If an end of file condition occurs during
the read, the string, END-OF-FILE ENCOUNTERED is printed, logical variable EOFSW is
assigned the value .TRUE. and control passes to the statement following the END AT END
statement.

AT END 251

Language Reference

Example:
READ(7, *) X
AT END, EOFSW = .TRUE.

If an end of file is not encountered by the READ statement, control passes to the statement
following the AT END statement. If an end-of-file condition occurs, variable EOFSW is set to
.TRUE. and control then passes to the statement following the AT END statement. Note
that the use of the second form of the AT END statement requires the use of a comma (,)
between the AT END word and the executable statement. This is necessary to distinguish the
case where the executable statement is an assignment statement. The executable statement
may be any statement that is also allowed as the operand of a logical IF statement.

9.17 Notes on Structured Programming Statements
In addition to the definitions and examples of these constructs, the following points should be
noted:

(i) Any of the new control statements with their blocks may be used within the
block of any other statement. For example, a WHILE-block may contain
another WHILE or an IF-THEN-ELSE block. Blocks may be nested in this
manner to any level within storage limitations. An important exception to this
rule is the REMOTE-block A REMOTE-block may contain other types of
blocks (nested to any level); however, another REMOTE-block may not be
defined within it. Furthermore, REMOTE-blocks may not be defined within
another control structure. The following example is illegal.

Example:
* Illegal definition of a REMOTE-block.

IF(I .EQ. 3)then
REMOTE BLOCK A

.

.

.
END BLOCK

END IF

(ii) When nesting blocks, the inner blocks must always be completed with the
appropriate block-terminating END statement before the outer blocks are
terminated. Similarly, when nesting blocks with DO-loops, a DO-loop started
within a block must be completed before the block is completed. A block
started within a DO-loop must be terminated before the DO-loop is completed.
Indenting the statements of each new block, as shown in the examples, is helpful

252 Notes on Structured Programming Statements

Program Structure Control Statements

in avoiding invalid nesting and helps to make the structure of the program
visually obvious.

(iii) The normal flow of control of the new programming constructs described earlier
may be altered with standard FORTRAN control statements. For example, the
program may exit from a block using a GO TO, STOP, RETURN or arithmetic
IF statement. However, a block may not be entered in the middle through use
of any control statement such as GO TO or the arithmetic IF.

Consider the following example.

Example:
GO TO 20

10 IF(X .GT. Y)THEN
CALL REDUCE(X, Y)

20 X = X - 1
ELSE

CALL SCALE(X)
END IF

This is an example of an illegal attempt to transfer execution into the middle of
an IF-block. The statement X = X - 1 is contained within the IF-block and
may only be transferred to from within the block.

Example:
IF(X .GT. Y)THEN

20 CALL REDUCE(X, Y)
X = X - 1
IF(X .GT. 0)GO TO 20

ELSE
CALL SCALE(X)

END IF

This last example demonstrates a legal transfer of control within an IF-block.
However, we have seen better ways to express the loop with this IF-block.

Example:
IF(X .GT. Y)THEN

LOOP
CALL REDUCE(X, Y)
X = X - 1

UNTIL(X .LE. 0)
ELSE

CALL SCALE(X)
END IF

Notes on Structured Programming Statements 253

Language Reference

(iv) Many control structure statements cannot be branched to using a GO TO
statement. For a list of these statements, see the section entitled "Classifying
Statements" on page 9 in the chapter entitled "FORTRAN Statements"

(v) Many control structure statements cannot be the object statement of a logical IF
statement, or be the last statement of a DO-loop. For a list of these statements,
see the section entitled "Classifying Statements" on page 9 in the chapter entitled
"FORTRAN Statements"

254 Notes on Structured Programming Statements

10 Input/Output

10.1 Introduction
FORTRAN 77 provides a means of communicating information or data between a
FORTRAN program and the computing environment. The computing environment may
include a number of devices which are capable of the recording, retrieval, display, and input
of data. Disk and magnetic tape devices are capable of storing large amounts of data. Other
devices such as printers and display terminals can be used to present a visual (i.e.,
human-readable) representation of the data. Yet other devices such as terminal keyboards and
card-readers make possible the entry of new data into the computing environment.

For the purposes of our discussion, data is any information which can be processed by an
executing FORTRAN program. Some examples of data are names, addresses, telephone
numbers, credit card balances, flight trajectories, bus schedules, athletic records, etc. In
computing, such information is usually well-organized in order to make it useful for
processing.

To use an example, consider the entries in a telephone book. There are essentially three
pieces of data listed for each entry; a name, an address, and a number.

Smith J 32 Arthur St--------------------------555-3208
Smith JW 512 King St--------------------------555-9229
Smith Jack 255-113 Queen St N-----------------555-0572

Each entry is a record. The organization of the book is clear. The name is always listed first,
the address second, and the number last. The records are sorted, for our convenience, by
name (within each city or geographical location). The length of each record is the same. This
fixed length does sometimes lead to problems since entries which have a long name or address
won’t fit in a record. The phone company solved this by continuing the information in
subsequent records. We might have solved this problem by increasing the length of a record
with the disadvantage of wasting a lot of printing space. Alternatively, we could have used a
variable length record. This solves the problem of wasted space but creates a severe problem
when trying to display the records in nice orderly columns. The telephone book itself is a
collection of records or a file.

We have introduced much of the terminology of data processing: "data", "records", "fixed
and variable record sizes", "files", "sorted", etc.

Introduction 255

Language Reference

10.2 Reading and Writing
FORTRAN provides a mechanism called "reading" for transferring data into the environment
of an executing program. The READ statement is used to do this. Similarly "writing" is the
mechanism for transferring data out of an executing program. The WRITE and PRINT
statements are used to do this. Other statements provide additional functions such as
positioning to a certain record in a file, establishing which files are to be processed by the
program, or making inquiries about files.

10.3 Records
FORTRAN distinguishes between three kinds of records, namely:

1. Formatted
2. Unformatted
3. Endfile

We shall describe each of these in the following sections.

10.3.1 Formatted Record

A formatted record consists of characters. The length of a formatted record is determined by
the number of characters in it. A formatted record may contain no characters at all and thus
has zero length. Formatted records are read or written using formatted input/output
statements. An excellent example of a file consisting of formatted records is our telephone
book example.

10.3.2 Unformatted Record

An unformatted record consists of values such as integers, real numbers, complex numbers,
etc. It may also consist of characters. Essentially, these values have the same representation
in a record as they have in the computer’s memory. The length of an unformatted record
depends on the amount of storage required to represent these values in the computer’s
memory. For example, on this computer an integer value is stored using 4 bytes of memory (a
byte is a grouping of 8 binary digits). Thus, integer values in unformatted records also require
4 bytes of storage. For example, 3 integer values stored in an unformatted record would
require 12 bytes of storage. Unformatted records are read or written using unformatted
input/output statements.

256 Records

Input/Output

To illustrate the difference between a formatted and unformatted record consider the
following example.

Example:
INTEGER NUMBER
NUMBER=12345
PRINT 100, NUMBER

100 FORMAT(1X,I5)
WRITE(UNIT=7) NUMBER

If you print the variable NUMBER on a printer, it requires 5 character positions. If you write it
to a file using an unformatted WRITE statement, it only requires 4 bytes or character positions
in the record. Note that a character is conveniently represented in one byte of storage, hence
we sometimes use the term "byte" or "character" interchangeably when talking about the size
of variables.

10.3.3 Endfile Record

An endfile record is a special record that follows all other records in a file. Simply stated, an
endfile record occurs at the end of a file. Actually, an endfile record is a conceptual thing. It
has no length. When the end of a file is reached (i.e., an attempt to read a record results in the
endfile record being read), an "end-of-file" condition exists. There are no more records
following the endfile record. There is only one endfile record so it is strictly illegal to attempt
to read another record after the endfile record has been read (i.e., when the end-of-file
condition exists).

10.4 Files
Earlier we described the notion of a file as a collection of records. In FORTRAN, there are
two kinds of files:

1. External
2. Internal

10.4.1 External Files

External files are files that exist or can be created upon external media such as disks, printers,
terminal displays, etc. A file may exist before the execution of a FORTRAN program. It may
be brought into existence or "created" during execution. It may also be deleted and therefore
not exist after the execution of a FORTRAN program.

Files 257

Language Reference

All input/output statements may refer to files that exist. In addition, the INQUIRE, OPEN,
CLOSE, WRITE, PRINT, and ENDFILE statements may refer to files that do not exist (and
in so doing, may very well cause the file to be created).

Properties of External Files

Name In FORTRAN, a file may or may not have a name. If it does have a name then,
not surprisingly, it is called a named file. All files in Watcom FORTRAN 77
have names and so it may seem odd to introduce this notion. However, we do
since the INQUIRE statement lets you find out if a file is named and, if so, what
its name is. File naming conventions may differ from one computing system to
the next. As well, different FORTRAN 77 compilers may have different file
naming conventions.

Access "Access" simply refers to the way in which we can position to and read or write
the data in a particular record in a file. There are two ways in which records can
be accessed in a file; sequentially or directly.

Using the sequential access method, records may be read or written in order
starting with the first record and proceeding to the last record. For example, it
would be quite impossible to read or write the tenth record in a file and then read
or write the third record. Similarly the eleventh record must be read or written
before we can access the twelfth record. If we adopt the convention that each
record in a file has a record number then the first record is record number 1, the
second is 2, and so on. This numbering convention is important when we look
at the other access method which is "direct".

Using the direct access method, records may be read or written in any order. It
is possible to read or write the tenth record of a file and then the third and then
the twelfth and so on. A caveat: a record cannot be read if it has never been
written since the file was created. In direct access, the idea of a record number
is very important and so by convention, we number them starting at 1 as the first
record and proceeding on up. With direct access, if you create a new file and
write record number 10 then the file has ten records regardless of the fact that
only one has been written. You could, at some later time, write records 1
through 9 (in whatever order you please) and add additional records by writing
records with record numbers greater than 10.

Some files have the property of being able to sustain both of these access
methods. Some files may only have one of these properties. For example, most
line printers cannot be accessed directly. You have no choice but to write
records sequentially. Sometimes a file that was created using the sequential
access method may not be accessed using the direct method or vice versa.
FORTRAN calls this property of a file the "set of allowed access methods".

258 Files

Input/Output

Record Form Some files have the property of being able to handle both formatted and
unformatted record formats. Some files may only have one of these properties.
For example, if you tried to write unformatted records to a line printer, the result
might be gibberish. On the other hand a graphics printer may readily accept
unformatted records for reproducing graphical images on paper. FORTRAN
calls this property of a file the "set of allowed forms".

Record Length Another property of a file is record length. Some files may have restrictions
on the length of a record. Some files do not allow records of zero length. Other
files, such as printers, may restrict the length of a record to some maximum.
FORTRAN calls this property the "set of allowed record lengths".

10.4.2 Internal Files

Internal files are special files that reside only in memory. They do not exist before or after the
execution of a FORTRAN program, only during the execution of a program. An internal file
allows you to treat memory in the computer as if it were one or more records in a file. The
file must be a character variable, character array element, character array, or character
substring. A record in this file may be a character variable, character array element or
character substring.

Another way of looking at this is that an internal file that is either a character variable,
character array element or character substring can contain only one record but an internal file
that is a character array can contain several records (as many as there are elements in the
array).

Properties of Internal Files

Records Unless the name of a character array is used, only one record is contained in an
internal file. The length of this record is the same as the length of the variable,
array element, or substring. If the file is a character array then each element in
the array is a record. The order of the records in the file is the same as the order
of the elements in the array. The length of a record in this case is the same as
the length of the character array elements.

If the number of characters written to a record in an internal file is less than the
length of the record then the record is padded with blanks.

Definition A record may be read only if the variable, array element, or substring is defined
(i.e., it has been assigned some value). Definition may not only result from an
output statement such as WRITE. It may also be defined through other means;
for example, a character assignment statement.

Files 259

Language Reference

Position For all input/output statements, the file is positioned at the beginning of the first
record. Multiple records may be read or written using the "slash" format edit
descriptor (see the chapter entitled "Format" on page 267).

Restrictions Only sequential access formatted input and output statements (READ and
WRITE) may be used to transfer data to and from records in an internal file.

Although FORTRAN 77 states that list-directed formatted input/output to an
internal file is not permitted, Watcom FORTRAN 77 allows you to use
list-directed formatted input/output statements. This is an extension to the
language standard.

Example:
WRITE(INTFIL,*) X, Y, Z

No other input/output statements (OPEN, ENDFILE, REWIND, etc.) may be
used.

Internal files may be used to convert data from one format to another. The following example
illustrates one use of internal files.

Example:
CHARACTER*11 INPUT
PRINT *, ’TYPE IN ’’I’’ FOLLOWED BY AN INTEGER’
PRINT *, ’OR TYPE IN ’’R’’ FOLLOWED BY A REAL’
READ 100, INPUT

100 FORMAT(A11)
IF(INPUT(1:1) .EQ. ’I’)THEN

READ(UNIT=INPUT(2:11), FMT=’(I10)’) IVAR
PRINT *, ’AN INTEGER WAS ENTERED ’, IVAR

ELSE IF(INPUT(1:1) .EQ. ’R’)THEN
READ(UNIT=INPUT(2:11), FMT=’(F10.3)’) RVAR
PRINT *, ’A REAL NUMBER WAS ENTERED ’, RVAR

END IF
END

After checking for an "I" or "R" as the first character of the character variable INPUT, the
appropriate internal READ statement is executed.

260 Files

Input/Output

10.5 Units
Many FORTRAN 77 input/output statements refer to external files using a mechanism called
the unit. There are many units available to the FORTRAN 77 programmer. Watcom
FORTRAN 77 numbers these units from 0 to 999; thus the unit number is a non-negative
integer less than 1000.

A unit may be associated with a particular file. This association is called connection. Any
unit may or may not be connected to a file. There are a number of ways in which this
connection may be established.

A unit may be preconnected to a file before execution of a program begins. The User’s Guide
describes the mechanism for preconnecting a unit to a file.

Alternatively, a unit may become connected to a file by the execution of an OPEN statement.

All input/output statements except OPEN, CLOSE, and INQUIRE must refer to a unit that is
connected to a file. Watcom FORTRAN 77 automatically establishes a connection of the unit
to a file if no connection previously existed. Consider the following example in which unit
number 1 is not previously connected to a file.

Example:
WRITE(1,*) ’Output on unit 1’
END

Watcom FORTRAN 77 constructs a file name using the specified unit number. The format of
the file name is described in the User’s Guide since it varies from one computer system to the
next.

Connection of a unit to a file does not imply that the file must exist. For example, it could be
a new file. When we speak of a unit being connected to a file, we can also say that a file is
connected to a unit. Under the rules of FORTRAN, it is illegal to connect the same file to
more than one unit at the same time. However, a file may be connected to different units at
different times. We shall explain how this is possible.

A file may be disconnected from a unit by the use of the CLOSE statement.

Units 261

Language Reference

Example:
CLOSE(UNIT=1)

Under certain circumstances, the file may be disconnected from a unit by the use of the OPEN
statement.

Example:
OPEN(UNIT=1,FILE=’FILE1’)
.
.
.
OPEN(UNIT=1,FILE=’FILE2’)

In the above example, the second OPEN statement disconnects unit 1 from one file and
connects it to a second file. You may think of the second OPEN statement as automatically
closing the first file and then establishing a connection to the second file.

If a unit has been disconnected from a file through the execution of a CLOSE statement, the
unit may subsequently be connected to the same file or to a different file. It also follows that
a file which has been disconnected from one unit number may be connected to the same unit
number or a different unit number. The following example may help to illustrate this last
point.

Example:
OPEN(UNIT=1,FILE=’FILE1’)
.
.
.
CLOSE(UNIT=1)
OPEN(UNIT=2,FILE=’FILE1’)

Once a file has been disconnected, the only means for referring to the file is by its name in an
OPEN statement or an INQUIRE statement.

10.6 Specifiers
All input/output statements contain one or more specifiers. They appear in a list separated by
commas. Some of the more common specifiers are those listed below. Not all of them need
be used in every input/output statement. You should consult the description of the
input/output statement under consideration to discover which specifiers are allowed and what
they mean.

262 Specifiers

Input/Output

[UNIT =] u the unit specifier

[FMT =] f the format specifier

REC = rn the record specifier

IOSTAT = ios the input/output status specifier

ERR = s the error specifier

END = s the end-of-file specifier

We shall look at these specifiers in more detail.

10.6.1 The Unit Specifier

The form of a unit specifier in an input/output statement is:

[UNIT =] u u is an external unit identifier or an internal file identifier.

1. An external unit identifier is a non-negative integer expression or an
asterisk (*) in which case unit 5 is assumed for an input statement
and unit 6 is assumed for an output statement. The unit identifier
must not be an asterisk for the BACKSPACE, ENDFILE and
REWIND statements.

2. An internal file identifier is the name of a character variable,
character array, character array element, or character substring.

If the optional UNIT= specifier is omitted then the unit specifier must be the first item in the
list of specifiers.

10.6.2 Format Specifier

The form of a format specifier in an input/output statement is:

[FMT =] f f is a format identifier. A format identifier is one of the following:

1. A statement label of a FORMAT statement that appears in the same
program unit as the format identifier.

2. An integer variable name that has been assigned the statement label of
a FORMAT statement that appears in the same program unit as the
format identifier (see the ASSIGN statement).

Specifiers 263

Language Reference

3. An integer array name.
4. A character array name.
5. Any character expression except one involving the concatenation of

an operand whose length specification is (*) unless the operand is a
symbolic constant (see the PARAMETER statement).

6. An asterisk (*), indicating list-directed formatting.
7. A NAMELIST name, indicating namelist-directed formatting.

If the optional FMT= specifier is omitted then the format specifier must be the second item in
the list of specifiers and UNIT= must not be specified for the first item in the list.

10.6.3 Record Specifier

The form of a record specifier in an input/output statement is:

REC = rn rn is an integer expression whose value must be positive. It is the number of
the record to be read when a file is connected for direct access.

10.6.4 Input/Output Status Specifier

The form of an input/output status specifier in an input/output statement is:

IOSTAT = ios ios is an integer variable or integer array element. It is defined with zero if
no error occurs, a positive integer value if an error occurs, or a negative integer
value if an end-of-file occurs.

If an input/output error or end-of-file condition occurs during the execution of an input/output
statement and the input/output status specifier is present then execution of the program is not
terminated. Input/output errors may result from a violation of the rules of FORTRAN or from
a file system error. For example, a negative unit number will result in an error since this is a
violation of the rules of FORTRAN. An example of a file system error might be an attempt to
create a file on a non-existent file storage device.

Consult the User’s Guide for a list of Watcom FORTRAN 77 diagnostic messages. An
input/output status of nn corresponds to the message IO-nn. For example, if the status
returned is 3 then the error is:

IO-03 ENDFILE statement requires sequential access mode

264 Specifiers

Input/Output

10.6.5 Error Specifier

The form of an error specifier in an input/output statement is:

ERR = s s is a statement label. When an error occurs, execution is transferred to the
statement labelled by s.

If an input/output error occurs during the execution of an input/output statement and the ERR=
specifier is present then execution of the program is not terminated.

10.6.6 End-of-File Specifier

The form of an end-of-file specifier in an input/output statement is:

END = s s is a statement label. When an end-of-file condition occurs, execution is
transferred to the statement labelled by s.

If an end-of-file condition occurs during the execution of an input/output statement and the
END= specifier is present then execution of the program is not terminated.

10.7 Printing of Formatted Records
Printing occurs when formatted records are transferred to a device which interprets the first
character of the record as a special spacing command. The remaining characters in the record
are "printed". Printing can be accomplished by use of either the PRINT statement or the
WRITE statement. What actually determines whether or not you are "printing" is the device
(or file) to which records are transferred.

The first character of the record controls the vertical spacing. This feature is quite often called
ASA (American Standards Association) carriage control.

Character Vertical Spacing Before Printing

Blank One Line
0 Two Lines
- Three Lines
1 To First Line of Next Page
+ No Advance

Printing of Formatted Records 265

Language Reference

The "−" control character is an extension to the FORTRAN 77 language that is supported by
many "printing" devices.

266 Printing of Formatted Records

11 Format

11.1 Introduction
A format specification used in conjunction with formatted I/O provides a means of specifying
the way internal data is converted to a character string and vice versa. A format specification
can be given in two ways.

1. In a FORMAT statement.
2. As values of character expressions or character arrays.

11.2 The FORMAT Statement
The form of a FORMAT statement is

label FORMAT fs

where:

label is the statement label used by an I/O statement to identify the FORMAT statement.

fs is a format specification which will be described later.

Example:
REAL X
X = 234.43
PRINT 100, X

100 FORMAT(F10.2)
END

In the previous example, the PRINT statement uses the format specification in the FORMAT
statement whose statement label is 100 to display the value of X.

The FORMAT Statement 267

Language Reference

11.3 FORMAT as a Character Expression
Instead of specifying the statement label of a FORMAT statement, a character expression can
be used. The previous example could be modified as follows and achieve the identical result.

Example:
REAL X
X = 234.43
PRINT ’(F10.2)’, X
END

When using a character expression to represent a format specification, the format specification
can be preceded by blank characters and followed by any character data without affecting the
format specification. The following example produces the identical result to the previous
example.

Example:
REAL X
X = 234.43
PRINT ’ (F10.2) THIS IS FOR X’, X
END

If a character array is used to describe the format specification, the format specification is
considered to be the concatenation of all the character array elements in the order given by
array element ordering described in the chapter entitled "Arrays" on page 187. Note that if a
character array element is used, the format specification is considered to be only that array
element.

Example:
REAL X
CHARACTER*5 FMTSPEC(3)
X = 234.43
FMTSPEC(1)=’(’
FMTSPEC(2)=’F10.2’
FMTSPEC(3)=’)’
PRINT FMTSPEC, X
END

268 FORMAT as a Character Expression

Format

11.4 Format Specification
A format specification has the following form.

([flist])

where:

flist is a list whose items are separated by commas. The forms of the items in
flist are:

[r] ed

ned

[r] fs

ed is a repeatable edit descriptor.

ned is a nonrepeatable edit descriptor.

fs is a format specification with a nonempty list flist.

r is a positive unsigned integer constant called a repeat specification.

The comma separating the items of flist can be omitted in the following cases.

1. Between a P edit descriptor and an F, E, D or G edit descriptor which
immediately follows.

2. Before or after a slash edit descriptor.
3. Before or after a colon edit descriptor.

Watcom FORTRAN 77 allows the omission of a comma between the items of flist. Care
should be taken when omitting commas between edit descriptors. For example, the format
specification (I5 2I3) may appear to be an I5 edit descriptor followed by two I3 edit
descriptors when in actuality it is interpreted as an I52 edit descriptor followed by an I3 edit
descriptor.

Format Specification 269

Language Reference

11.5 Repeatable Edit Descriptors
The forms of repeatable edit descriptors are:

Iw
Iw.m
Fw.d
Ew.d
Ew.dEe
Dw.d
Gw.d
Gw.dEe
Lw
A
Aw

As an extension to the FORTRAN 77 language, the following repeatable edit descriptors are
also supported.

Ew.dDe
Zw

where:

 I, F, E, D, G, L, A and Z indicate the method of editing.

w and e are positive unsigned integer constants.

d and m are unsigned integer constants.

11.6 Nonrepeatable Edit Descriptors
The forms of nonrepeatable edit descriptors are:

270 Nonrepeatable Edit Descriptors

Format

’hh...h’ (apostrophe)
nHhh...h
Tc
TLc
TRc
nX
/
:
S
SP
SS
kP
BN
BZ
X

As an extension to the FORTRAN 77 language, the following nonrepeatable edit descriptors
are also supported.

$
\

where:

 Apostrophe, H, T, TL, TR, X, /, :, S, SP, SS, P, BN, BZ, \ and
$ indicate the method of editing.

h is a character.

n and c are positive unsigned integer constants.

k is an optionally signed integer constant.

Watcom FORTRAN 77 allows edit descriptors to be specified using lower case letters.

Nonrepeatable Edit Descriptors 271

Language Reference

11.7 Editing
Edit descriptors are used to describe the way the editing between internal representation of
data and the characters of a record in a file is to take place. When the edit descriptors I, F,
E, D, G, L, A, H, Z or apostrophe are processed, they process a sequence of
characters called a field. On input, the field is the character data read from a record; on output
it is the character data written to a record. The number of characters in a field is called the
field width.

11.7.1 Apostrophe Editing

The apostrophe edit descriptor has the same form as a character constant and can only be used
on output. It causes the characters in the format specification enclosed in quotes to be written.
The field width is the number of characters enclosed in quotes.

Example:
PRINT ’(’’HI THERE’’)’
END

In the previous example, the string

HI THERE

would be the output produced by the PRINT statement.

11.7.2 H Editing

The nH edit descriptor causes the n characters following the H, including blanks, to be
written. Like the apostrophe edit descriptor, it can only appear in a format specification used
for output.

Example:
PRINT ’(8HHI THERE)’
END

In the previous example, the string

HI THERE

would be the output produced by the PRINT statement.

272 Editing

Format

11.7.3 Positional Editing: T, TL, TR and X Editing

The T, TL, TR and X edit descriptors specify at which position the next character will be
read from or written to the record. In the case of input, this allows data to be read more than
once with different edit descriptors. On output, it is possible to overwrite data previously
written.

On output it is possible to use positional editing to create a record in which gaps appear. That
is, there may be parts of the record where no data has been written. The parts of a record in
which no data has been written are filled with blanks. The effect is as if the record was
previously initialized to blanks. Note that positioning does not cause any data to be
transmitted.

The Tc edit descriptor specifies that the next character to be transmitted is to be from the cth
character position in the record. The TLc edit descriptor specifies that the next character to
be transmitted is to be from the cth position backward from the current position. The TRc
edit descriptor is identical to the TLc edit descriptor except that positioning is forward from
the current position. The nX edit descriptor behaves identically to the TRc edit descriptor; the
transmission of the next character is n character positions forward from the current position.
If n is omitted then the transmission of the next character is 1 character position forward from
the current position.

Example:
PRINT ’(’’THE NUMBER IS AN INTEGER’’,TL19,

$ ’’12345’’)’
END

The output produced is

THE NUMBER 12345 IS AN INTEGER

11.7.4 Slash Editing

The slash edit descriptor indicates the end of data transfer on the current record. On input
from a record connected for sequential access, the remaining characters in the record are
skipped and the file is positioned to the start of the next record. Note that entire records may
be skipped. On output, a new record is created and becomes the last and current record of the
file. Note that a record with no characters can be written. If the file is an internal file or a
direct access file, the record is filled with blanks.

For a file connected for direct access, the current record number is increased by one and the
file is positioned at the beginning of that record.

Editing 273

Language Reference

11.7.5 Colon Editing

The colon edit descriptor terminates processing of the format specification if there are no
more items in the I/O list. If there are items remaining in the I/O list, the colon edit descriptor
has no effect.

11.7.6 S, SP and SS Editing

The S, SP and SS edit descriptors control optional plus characters in numeric output fields.
They only effect the I, F, E, D and G edit descriptors during output and have no effect on
input. The FORTRAN 77 standard specifies that before processing a format specification, the
appearance of a plus sign in numeric output fields is optional and is determined by the
processor. Watcom FORTRAN 77 does not produce plus signs in numeric output fields.
When an SP edit descriptor is encountered, a plus sign is produced in any subsequent position
that optionally contains a plus sign. When as SS edit descriptor is encountered, a plus sign is
not produced in any subsequent position that optionally contains a plus sign. If an S edit
descriptor is encountered, the option is returned to the processor.

Example:
PRINT ’(1H<,I5,SP,I5,SS,I5,1H>)’,1,2,3
END

The output produced by the PRINT statement in the previous example is:

< 1 +2 3>

11.7.7 P Editing

The form of a P edit descriptor is kP where k is an optionally signed integer constant called
the scale factor. The value of the scale factor is zero at the beginning of each I/O statement.
The scale factor applies to all subsequent F, E, D and G edit descriptors until another scale
factor is encountered. The scale factor affects editing in the following way.

1. On input with F, E, D and G editing, provided that no exponent exists in the field,
the effect is that the represented number equals the internally represented number
multiplied by 10**k.

2. On input with F, E, D and G editing, the scale factor has no effect if there is an
exponent in the field.

3. On F output editing, the effect is that the represented number equals the internally
represented number multiplied by 10**k.

274 Editing

Format

4. On output with E and D editing, the simple real constant (see the chapter entitled
"Names, Data Types and Constants" on page 177) part of the data is multiplied by
10**k and the exponent is reduced by k.

5. On output with G editing, the scale factor has no effect unless the magnitude of the
datum is outside the range that allows F editing (see the section entitled "G
Editing" on page 280). If E editing is required, the scale factor has the same effect
as with E output editing.

11.7.8 BN and BZ Editing

The BN and BZ edit descriptors are used to describe the interpretation of embedded blanks in
numeric input fields. They only effect I, F, E, D and G editing and have no effect during
output. When a BN edit descriptor is encountered in a format specification, embedded blanks
in subsequent numeric input fields are ignored. However, a field of all blanks has the value of
zero. If a BZ edit descriptor is encountered, then all embedded blanks in subsequent numeric
input fields are treated as zeroes. At the beginning of each I/O statement, all blanks are
treated as zeroes or ignored depending on the value of the BLANK= specifier (see the OPEN
statement) currently in effect for the unit.

11.7.9 $ or \ Editing (Extension)

The $ and \ edit descriptors behave identically. The $ and \ edit descriptors are intended for
output to an interactive device such as a terminal. They are a Watcom FORTRAN 77
extensions. The output record is displayed at the terminal leaving the cursor at the end of the
record; the carriage return at the end of the line is suppressed. Its use is intended for
prompting for input so that the response can be entered immediately following the prompt.

Depending on the type of terminal, the prompt may be returned as part of the input. An
application must be aware of the way a particular terminal behaves. The following example
demonstrates this. Note that the format specification in the FORMAT statement labelled 20
ignores the first eleven characters of the response since the prompt also appears in the
response.

Example:
INTEGER AGE
WRITE(6,FMT=10)

10 FORMAT(’Enter age: ’,$)
READ(5,20) AGE

20 FORMAT(11X, I2)
PRINT *,’Your age is ’,AGE
END

Editing 275

Language Reference

If the terminal you are using does not return the prompt as part of the response (that is, a read
from the terminal only includes characters typed at the terminal), the format specification in
the FORMAT statement labelled 20 must be changed, as in the following example, to achieve
the same result.

Example:
INTEGER AGE
WRITE(6,FMT=10)

10 FORMAT(’Enter age: ’,\/)
READ(5,20) AGE

20 FORMAT(I2)
PRINT *,’Your age is ’,AGE
END

11.7.10 Numeric Editing: I, F, E, D and G Edit Descriptors

Numeric edit descriptors are used to specify I/O of integer, real, double precision, complex
and double precision complex data. The following rules apply to all numeric edit descriptors.

1. On input, leading blanks are not significant. The interpretation of blanks other than
leading blanks is determined by any BN or BZ edit descriptors in effect and the
BLANK= specifier (see the OPEN statement). A field of all blanks is always zero.
Plus signs are optional.

2. On input, with F, E, D and G editing, the decimal location specified in the edit
descriptor is overridden by a decimal point appearing in the input field.

3. On output, the plus sign is optional and is determined by the S, SP and SS edit
descriptors. A negative quantity is represented by a negative sign. A minus sign is
never produced when outputting a value of zero.

4. On output, the representation is always right justified in the field with leading
blanks inserted at the beginning of the field if the number of characters in the
representation is less than the field width.

5. On output, if the number of characters in the external representation is greater than
the field width or an exponent exceeds its specified length using Ew.dEe,
Gw.dEe, Ew.dDe or Gw.dDe edit descriptors, the entire field is filled with
asterisks.

11.7.10.1 Integer Editing: Iw and Iw.m Edit Descriptors

The Iw and Iw.m edit descriptors indicate that the field width of the field to be edited is w.
The item in the I/O list must be of type integer; on input the I/O list item will be defined by
integer data, on output the I/O list item must be defined with an integer datum.

276 Editing

Format

On input, the Iw.m edit descriptor is treated identically to the Iw edit descriptor. The output
field for the Iw edit descriptor consists of zero or more leading blanks followed by a minus
sign if the value of the I/O list item is negative or an optional plus sign otherwise, followed by
the magnitude of the integer datum with no leading zeroes. Note that the integer constant
contains at least one digit. On output, the Iw.m edit descriptor specifies that at least m digits
are to be displayed with leading zeroes if necessary. The value of m must be less than or equal
to the value of w. If m is zero and the value of the datum is zero, then the output field is filled
with blanks.

Example:
PRINT ’(1H<,I4.4,I5,1H>)’,23,2345

The output produced by the PRINT statement in the previous example is the string:

<0023 2345>

11.7.10.2 Floating-point Editing: F, E, D and G Edit Descriptors

The F, E, D and G edit descriptors describe the editing of real, double precision, complex
and double precision complex data. The I/O list item corresponding to one of these edit
descriptors must be of type real, double precision, complex or double precision complex. On
input, the I/O list item will become defined with a datum whose type is the same as that of the
I/O list item. On output, the I/O list item must be defined with a datum whose type is that of
the I/O list item.

11.7.10.3 F Editing

An F edit descriptor has the form Fw.d where w is the field width and d is the number of
digits in the fractional part. The input field consists of an optional sign, followed by a string
of digits optionally containing a decimal point. If the decimal point is omitted, the rightmost
d digits with leading zeroes assumed if necessary, are interpreted as the fractional part of the
value represented. An exponent of one of the following forms may follow.

1. A signed integer constant.
2. An E or D followed by an optionally signed integer constant.

Consider the following example, where the decimal point is omitted. The formula used in the
evaluation is:

-d (exponent subfield)

(integer subfield) x 10 x 10

Editing 277

Language Reference

If the specification is F10.8 and the input quantity is 31415E+5 then the following conversion
takes place.

-8 5

00031415 x 10 x 10

5
= .00031415 x 10

= 31.415

In other words, the decimal point is assumed to lie to the left of the 8 digits (padded with
zeroes on the left) forming the fractional part of the input value.

The output field produced by an F edit descriptor consists of blanks if necessary followed by a
minus sign if the item in the I/O list is negative or an optional plus sign otherwise, followed
by a string of digits containing a decimal point which represents the magnitude of the I/O list
item. The string representing the magnitude of the I/O list item is modified according to the
scale factor and is rounded to d fractional digits. An optional leading zero is produced only if
the magnitude of the I/O list item is less than one. Note that a leading zero is required if there
would otherwise be no digits in the output field.

Example:
PRINT ’(1H<,F8.4,1H>)’, 234.43

The output produced by the PRINT statement in the previous example is the string:

<234.4300>

11.7.10.4 E and D Editing

The Ew.d, Dw.d and Ew.dEe edit descriptors indicate that the field width is w, the
fractional part contains d digits unless a scale factor greater than one is in effect, and the
exponent consists of e digits. The e has no effect on input.

The form of the input field and processing of it is the same as that for F editing. The form of
the output field is:

[+] [0] . x x ... x exp
[-] 1 2 d

278 Editing

Format

where:

p indicates a plus or minus sign.

x’s are the d most significant digits of the value after rounding.

exp is a decimal exponent.

The form of the exponent is as follows.

1. When using the Ew.d edit descriptor, the form of the exponent is

E+nn
or if |exp| <= 99

E-nn

and

+nnn
or if 99 < |exp| <= 999

-nnn

2. When using the Ew.dEe edit descriptor, the form of the exponent is

E+n ... n where |exp| <= (10**e)-1
- 1 e

3. When using the Dw.d edit descriptor, the form of the exponent is

D+nn
or if |exp| <= 99

D-nn

and

+nnn
or if 99 < |exp| <= 999

-nnn

Note that a sign in the exponent is always present. If the exponent is 0, a plus sign is used.
The forms Ew.d and Dw.d are not to be used if |exp| > 999.

Editing 279

Language Reference

Example:
PRINT ’(1H<,E10.4,1H>,1H<,E9.4,1H>,1H<,E12.4E3,1H>)’,

$.5, .5, .5
END

The output from the PRINT statement in the previous example is the string:

<0.5000E+00><.5000E+00>< 0.5000E+000>

The scale factor k in a P edit descriptor controls decimal normalization as follows:

1. If -d < k <= 0, then the output field contains |k| leading zeroes and d-|k|
significant digits after the decimal point.

2. If 0 < k < d+2, the output field contains exactly k significant digits to the left
of the decimal point and d-k+1 significant digits to the right of the decimal point.

3. Other values of k are not permitted.

The Ew.dDe edit descriptor behaves in the same way as the Ew.dEe edit descriptor on
input; on output the only difference is that the letter D is used to mark the exponent instead of
the letter E.

11.7.10.5 G Editing

The Gw.d and Gw.dEe edit descriptors indicate that the field width is w, the fractional part
contains d digits unless a scale factor greater than one is in effect, and the exponent consists
of e digits.

G input editing is the same as F input editing.

The representation on G output editing depends on the magnitude of the datum being edited.
Let M be the magnitude of the datum being edited. Then G output editing behaves as follows.

1. If M < 0.1 or M >= 10**d, Gw.d output editing is equivalent to kPEw.d
output editing and Gw.dEe output editing is equivalent to kPEw.dEe output
editing where k is the scaling factor currently in effect.

2. If 0.1 <= M < 10**d, the scale factor has no effect and the value of M
determines the editing as shown in the following table.

280 Editing

Format

Magnitude of Datum Equivalent Edit Descriptor

0.1<=M<1 F<w-n>.d followed by n blanks
1<=M<10 F<w-n>.<d-1> followed by n blanks

. .

. .

. .
10**(d-2)<=M<10**(d-1) F<w-n>.1 followed by n blanks
10**(d-1)<=M<10**d F<w-n>.0 followed by n blanks

where:

<w-n> stands for the integer represented by evaluating w-n.

<d-1> stands for the integer represented by evaluating d-1.

n is 4 for Gw.d editing and e+2 for Gw.dEe editing.

Example:
PRINT ’(1H<,G12.6,1H>,1H<,G12.4E4,1H>)’, .5, .5
END

The output from the PRINT statement in the previous example is the string:

<0.500000 ><0.5000 >

11.7.10.6 Complex Editing

Since a complex datum consists of a pair of real or double precision data, the editing of a
complex datum is specified by two successive pairs of F, E, D or G edit descriptors. The two
descriptors may be different and may be separated by any number of non-repeatable edit
descriptors. Double precision complex editing is identical to complex editing.

11.7.11 L Edit Descriptor

The Lw edit descriptor is used for I/O list items of type logical. The field width is w.

On input the I/O list item will become defined with a datum of type logical. The input field
consists of optional blanks, followed by an optional decimal point followed by a T or F for

Editing 281

Language Reference

true or false respectively. The T and F may be followed by additional characters in the field.
Watcom FORTRAN 77 allows t and f in addition to T and F on input.

On output, the I/O list item must be defined with a datum of type logical. The output field
consists of w-1 blanks followed by a T for true or F for false.

Example:
PRINT ’(1H<,L3,L5,1H>)’,.TRUE.,.FALSE.

The output produced by the PRINT statement in the previous example is the string:

< T F>

11.7.12 A Edit Descriptor

The A[w] edit descriptor is used for I/O list items of type character. On input, the I/O list
item becomes defined with character data. On output, the I/O list item must be defined with
character data. If w is specified in the edit descriptor, the field width is w otherwise the field
width is the number of characters in the I/O list item.

Watcom FORTRAN 77 also permits I/O list items of non-character data types. On input, the
I/O list item becomes defined with the binary representation of the character data. On output,
the I/O list item is assumed to be defined with character data.

If len is the length of the I/O list item and w is specified in A input editing so that w is greater
than len, the rightmost len characters of the input field will be taken. If w is less than
len, then the w characters in the input field will be taken and padded with len-w blanks.

If w is specified in A output editing so that w is greater than len, then the output field will
consist of w-len blanks followed by the len characters of the I/O list item. If w is less than
or equal to len, the output field will consist of the first w characters of the I/O list item.

Example:
PRINT ’(1H<,A5,A8,1H>)’,’ABCDEFG’,’123’

The output produced by the PRINT statement in the previous example is the string:

<ABCDE 123>

282 Editing

Format

11.7.13 Z Editing (Extension)

The Zw edit descriptor is used to display the hexadecimal representation of data or read
hexadecimal data. It is a Watcom FORTRAN 77 extension. The Zw edit descriptor can be
used for I/O list items of any type. The field width is w.

On output, w must be greater than or equal to twice the size (in bytes) of the I/O list item since
each byte is represented by two hexadecimal digits. For example, real data requires four
bytes. Hence, w must be at least eight.

Example:
PRINT ’(1H<,Z8,1H>)’, 256

The output produced by the PRINT statement in the previous example is the string:

<00000100>

If w is greater then the number of hexadecimal digits required to represent the data, the
leftmost print positions of the output field are filled with blanks.

Example:
PRINT ’(1H<,Z10,1H>)’,’ABCD’

The output produced by the PRINT statement in the previous example is the string

< C1C2C3C4>

if the EBCDIC character set is being used or

< 41424344>

if the ASCII character set is being used.

On input, if w is greater than twice the size (in bytes) of the I/O list item, the leftmost
characters are truncated from the input field. For example, if the input field contains the
string

91A2C3D4

and is read into a character variable whose length is two, the character would contain the
hexadecimal data C3D4. If w is less than twice the size (in bytes) of the I/O item, the I/O
item is padded to the left with hexadecimal zeroes. For example, if the input field contains the
string

Editing 283

Language Reference

81C1

and is read into a character variable whose length is four, the character would contain the
hexadecimal data 000081C1.

11.8 Format-Directed Input/Output
Format-directed input/output (I/O) is formatted input or output controlled by a format
specification. The action taken during formatted input or output depends on the next edit
descriptor in the format specification and the next item in the input/output list if one exists.

A format specification is processed from left to right. An edit descriptor or a format
specification with a repeat specification of r is processed as a list of r edit descriptors or
format specifications. A repeat specification of one is equivalent to no repeat specification.

For each repeatable edit descriptor in the format specification, there corresponds one item in
the I/O list except an I/O list item of type complex where two repeatable floating-point edit
descriptors are required. Non-repeatable edit descriptors do not correspond to any I/O list
item; they communicate information directly with the record. Whenever a repeatable edit
descriptor is encountered in a format specification, there must be a corresponding item in the
I/O list. The edited information is transmitted appropriately between the item and the record.

Format processing is terminated when any of the following conditions occur.

1. When an edit descriptor has no corresponding item in the I/O list.
2. When a colon edit descriptor is encountered and there are no more items in the I/O

list.
3. When the right parenthesis is encountered and there are no more items in the I/O

list.

If the right parenthesis of the complete format specification is encountered and the I/O list has
not been exhausted, the file is positioned at the next record and format processing resumes at
the start of the format specification terminated by the last preceding right parenthesis. If there
is no such right parenthesis, format processing resumes at the start of the complete format
specification. The part of the format specification that is reused must contain at least one
repeatable edit descriptor. If format processing resumes at a left parenthesis preceded by a
repeat specification, the repeat specification is also reused. The scale factor, sign control edit
descriptors and blank control edit descriptors are not affected when part of a format
specification is reused.

284 Format-Directed Input/Output

Format

11.9 List-Directed Formatting
List-directed formatting is input/output without a format specification.

Example:
READ(un, *) X, Y, Z
READ(UNIT=un, FMT=*) X, Y, Z
READ *, X, Y, Z
WRITE(un, *) X, Y, Z
WRITE(UNIT=un, FMT=*) X, Y, Z
PRINT *, X, Y, Z

In the previous example, an asterisk instead of a format specification indicates list-directed
formatting.

Omitting the asterisk and format specification also indicates list-directed formatting.

Example:
READ, X, Y, Z
PRINT, X, Y, Z

Records used during list-directed formatting are called list-directed records. A list-directed
record is a sequence of values and value separators. Any sequence of blanks is treated as a
single blank except when it appears in a character constant. The end of a record has the same
effect as a blank character.

A value is one of the following:

1. A constant.
2. A null value.
3. r*c
4. r*

where:

r is an unsigned, nonzero integer constant.

c is a constant.

The r*c form is equivalent to r successive occurrences of c. The r* form is equivalent to
r successive occurrences of the null value. In these two forms, blanks are permitted only
where they are allowed in the constant c.

List-Directed Formatting 285

Language Reference

A value separator is one of the following:

1. A comma preceded and followed by any number of blanks.
2. A slash preceded and followed by any number of blanks. A slash as a value

separator terminates the execution of the input statement. The definition status of
the remaining input items in the input list remains the same as it was prior to the
input statement.

3. Any number of blanks between two values.

A null value is specified by having no character between successive value separators, no
characters preceding the first value separator in a record or the r* form. It has no effect on
the current value of the input item. Note that the end of record following a value separator
does not specify a null value.

11.9.1 List-Directed Input

The input forms acceptable to format specifications for a given type are also acceptable for
list-directed formatting with certain exceptions.

1. Blanks are never used as zeroes and blanks embedded in constants are not allowed
except in character constants.

2. An input item of type real or double precision must have an input field suitable for
F editing except that no fractional digits are assumed unless a decimal point is
present in the field. Such a field will be called a numeric input field.

3. An input item of type complex or double precision complex must consist of a left
parenthesis followed by two numeric input fields separated by a comma and
followed by a right parenthesis. The numeric input fields may be preceded or
followed by blanks. The end of record can only appear between the first numeric
field and the comma or between the comma and the second numeric field. Note
that a null value must not be used as the real or imaginary part but may represent
the entire complex constant.

4. An input item of type logical must not include either a slash or a comma among the
optional characters allowed in L editing.

5. An input item of type character consists of a non-empty string of characters
enclosed in apostrophes. Apostrophes in character constants are represented by
two consecutive apostrophes without a blank or end of record separating them.
Character constants may span records. If this is the case, the end of record does
cause a blanks to be inserted into the character constant. Note that a comma or

286 List-Directed Formatting

Format

slash in a character constant is not a value separator. A character input field is
assigned to a character input item as though it were a character assignment.

11.9.2 List-Directed Output

The form of the output field produced by list-directed output is similar to the form required by
list-directed input. The output of a character constant does not include the enclosing quotes
and an apostrophe in a character constant is output as a single apostrophe. The values are
separated by one or more blanks. When printed, each record will start with a blank if the file
is a carriage-control oriented file. For example, the source listing file produced by Watcom
FORTRAN 77 is such a file.

11.10 Namelist-Directed Formatting (Extension)
The READ, WRITE, and PRINT statements may be used to transmit data between a file and

the variables specified in a NAMELIST statement.

Example:
CHARACTER*20 NAME
CHARACTER*20 STREET
CHARACTER*15 CITY
CHARACTER*20 STATE
CHARACTER*20 COUNTRY
CHARACTER*10 ZIP CODE
INTEGER AGE
INTEGER MARKS(10)
NAMELIST /nl/ NAME, STREET, CITY, STATE,

+ COUNTRY, ZIP CODE, AGE, MARKS
.
.
.

READ(un, nl)
READ(UNIT=un, FMT=nl)
READ nl
WRITE(un, nl)
WRITE(UNIT=un, FMT=nl)
PRINT nl

Namelist-Directed Formatting (Extension) 287

Language Reference

11.10.1 Namelist-Directed Input (Extension)

The input data must be in a special format. The first character in each record must be blank.
The second character in the first record of a group of data records must be an ampersand (&)
or dollar sign ($) immediately followed by the NAMELIST name. The NAMELIST name
must be followed by a blank and must not contain any imbedded blanks. This name is
followed by data items, optionally separated by commas. The end of a data group is signaled
by the character "&" or "$", optionally followed by the string "END". If the "&" character
was used to start the group, then it must be used to end the group. If the "$" character was
used to start the group, then it must be used to end the group.

12345678901234567890...
&NL
item1, item2, item3,
item4, item5, ...

The form of the data items in an input record is:

Name = Constant
The name may be a variable name, an array element name, or a character
substring name. The constant may be integer, real, complex, logical or
character. Logical constants may be in the form "T" or ".TRUE" and "F" or
".FALSE". Character constants must be contained within apostrophes.
Subscripts and substring indices must be of integer type.

ArrayName = Set of Constants
The set of constants consists of constants of the type integer, real, complex,
logical or character. The constants are separated by commas. The number of
constants must be less than or equal to the number of elements in the array.
Successive occurrences of the same constant may be represented in the form
r*constant, where r is a non-zero integer constant specifying the number
of times the constant is to occur. Consecutive commas within a list indicate that
the values of the array elements remain unchanged.

The variable and array names specified in the input file must appear in the NAMELIST list,
but the order is not important. A name that has been made equivalent to a name in the input
data cannot be substituted for that name in the NAMELIST list. The list can contain names of
items in COMMON but must not contain dummy argument names.

Each data record must begin with a blank followed by a complete variable or array name or
constant. Embedded blanks are not permitted in names or constants. Trailing blanks after
integers and exponents are treated as zeros.

288 Namelist-Directed Formatting (Extension)

Format

Example:
&PERSON

NAME = ’John Doe’
STREET = ’22 Main St.’ CITY = ’Smallville’
STATE = ’Texas’ COUNTRY = ’U.S.A.’
ZIP CODE = ’78910-1203’
MARKS = 73, 82, 3*78, 89, 2*93, 91, 88
AGE = 23

&END

The input forms acceptable to format specifications for a given type are also acceptable for
namelist-directed formatting with certain exceptions.

1. Blanks are never used as zeroes and blanks embedded in constants are not allowed
except in character constants.

2. An input item of type real or double precision must have an input field suitable for
F editing except that no fractional digits are assumed unless a decimal point is
present in the field. Such a field will be called a numeric input field.

3. An input item of type complex or double precision complex must consist of a left
parenthesis followed by two numeric input fields separated by a comma and
followed by a right parenthesis. The numeric input fields may be preceded or
followed by blanks. The end of record can only appear between the first numeric
field and the comma or between the comma and the second numeric field. Note
that a null value must not be used as the real or imaginary part but may represent
the entire complex constant.

4. An input item of type logical must not include either a slash or a comma among the
optional characters allowed in L editing.

5. An input item of type character consists of a non-empty string of characters
enclosed in apostrophes. Apostrophes in character constants are represented by
two consecutive apostrophes without a blank or end of record separating them.
Character constants may span records. If this is the case, the end of record does
cause a blank to be inserted into the character constant. Note that a comma or slash
in a character constant is not a value separator. A character input field is assigned
to a character input item as though it were a character assignment.

Namelist-Directed Formatting (Extension) 289

Language Reference

11.10.2 Namelist-Directed Output

The form of the data items in an output record is suitable for input using a namelist-directed
READ statement.

1. Output records are written using the ampersand character (&), not the dollar sign
($), although the dollar sign is accepted as an alternative during input. That is, the
output data is preceded by "&name" and is followed by "&END".

2. All variable and array names specified in the NAMELIST list and their values are
written out, each according to its type.

3. Character data is enclosed in apostrophes.

4. The fields for the data are made large enough to contain all the significant digits.

5. The values of a complete array are written out in columns.

290 Namelist-Directed Formatting (Extension)

12 Functions and Subroutines

12.1 Introduction
Functions and subroutines are procedures that fall into one of the following categories.

1. Statement functions
2. Intrinsic functions
3. External functions
4. Subroutines

First let us introduce some terminology.

A program unit is a collection of Watcom FORTRAN 77 statements and comments that can
be either a main program or a subprogram.

A main program identifies the program unit where execution is to begin. A main program is a
program unit which has as its first statement a PROGRAM statement or one which does not
have a PROGRAM, FUNCTION, SUBROUTINE or BLOCK DATA statement as its first
statement. Complete execution of the main program implies the complete execution of the
program. Each executable program can contain only one main program.

A subprogram is a program unit that either has a FUNCTION, SUBROUTINE or BLOCK
DATA statement as its first statement. This chapter will only deal with subprograms that have
a FUNCTION or SUBROUTINE statement as its first statement.

12.2 Statement Functions
A statement function is a procedure defined by a single statement. Its definition must follow
all specification statements and precede the first executable statement. The statement defining
a statement function is not an executable statement.

A statement function has the following form.

Statement Functions 291

Language Reference

sf ([d [,d] ...]) = e

where:

sf is the name of the statement function.

d is a statement function dummy argument.

e is an expression.

The expression e and the statement function name sf must conform according to the rules of
assignment as described in the chapter entitled "Assignment Statements" on page 221.

The statement function dummy arguments are variable names and are used to indicate the
order, number and type of the arguments of the statement function. A dummy argument name
of a statement function must only appear once in the dummy argument list of the statement
function. Its scope is the statement defining the statement function. That is, it becomes
defined when the statement function is referenced and undefined when execution of the
statement function is completed. A name that is a statement function dummy argument can
also be the name of a variable, a common block, the dummy argument of another statement
function or appear in the dummy argument list of a FUNCTION, SUBROUTINE or ENTRY
statement. It cannot be used in any other context.

The expression e can contain any of the following as operands.

1. A constant.
2. A symbolic constant.
3. A variable reference. This can be a reference to a statement function dummy

argument or to a variable that appears within the same program unit which defines
the statement function. If the statement function dummy argument has the same
name as a variable in the same program unit, the statement function dummy
argument is used. The variable reference can also be a dummy argument that
appears in the dummy argument list of a FUNCTION or SUBROUTINE statement.
If it is a dummy argument that has appeared in the dummy argument list of an
ENTRY statement, then the ENTRY statement must have previously appeared.

4. An array element reference.
5. An intrinsic function reference.
6. A reference to a statement function whose defining statement has previously

appeared.
7. An external function reference.

292 Statement Functions

Functions and Subroutines

8. A dummy procedure reference.
9. An expression enclosed in parentheses which adheres to the rules specified for the

expression e.

12.2.1 Referencing a Statement Function

A statement function is referenced by its use in an expression. The process of executing a
statement function involves the following steps.

1. The expressions that form the actual arguments to the statement function are
evaluated.

2. The dummy arguments of the statement function are associated with the actual
arguments.

3. The expression e is evaluated.
4. The value of the result is converted to the type of the statement function according

to the rules of assignment and is available to the expression that contained the
reference to the statement function.

The actual arguments must agree in order, number and type with the corresponding dummy
arguments.

Example:
SUBROUTINE CALC(U, V)
REAL POLY, X, Y, U, V, Z, CONST

*
* Define a Statement Function.
*

POLY(X,Y) = X**2 + Y**2 + 2.0*X*Y + CONST
*
* Invoke the Statement Function.
*

CONST = 23.5
Z = POLY(U, V)
PRINT *, Z
END

In the previous example, note that after the execution of the statement function, the values of
X and Y are not equal to the value of U and V respectively; they are undefined.

Statement Functions 293

Language Reference

12.2.2 Statement Function Restrictions

1. A statement function is local to the program unit in which it is defined. Thus, a
statement function name is not allowed to appear in an EXTERNAL statement and
cannot be passed to another procedure as an actual argument. The following
example illegally attempts to pass the statement function F to the subroutine SAM.

Example:
* Illegally passing a statement function
* to a subroutine.

PROGRAM MAIN
F(X) = X

.

.

.
CALL SAM(F)

.

.

.
END

2. If a statement function F contains a reference to another statement function G, then
the statement defining G must have previously appeared. In the following example,
the expression defining the statement function F illegally references a statement
function G whose defining statement follows the statement defining F.

Example:
* Illegal order of statement functions.

.

.

.
F(X) = X + G(X)
G(X) = X + 2

.

.

.

3. The statement function name must not be the same name of any other entity in the
program unit except possibly the name of a common block.

4. If a dummy argument of a statement function is of type CHARACTER, then its
length specification must be an integer constant expression. The following is
illegal.

294 Statement Functions

Functions and Subroutines

Example:
SUBROUTINE SAM(X)
CHARACTER*(*) X

* Illegal - CHARACTER*(*) dummy argument not
* allowed in statement function.

F(X) = X
PRINT *, F(’ABC’)
END

5. An actual argument to a statement function can be any expression, except character
expressions involving the concatenation of an operand whose length specification
is (*) unless the operand is a symbolic constant.

12.3 Intrinsic Functions
An intrinsic function is a function that is provided by Watcom FORTRAN 77.

12.3.1 Specific Names and Generic Names of Intrinsic Functions

All intrinsic functions can be referenced by using the generic name or the specific name of the
intrinsic function. The specific name uniquely identifies the function to be performed. The
type of the result is predefined thus its name need not appear in a type statement. For
example, CLOG is a specific name of the generic LOG function and computes the natural
logarithm of a complex number. The type of the result is also COMPLEX.

When the generic name is used, a specific name is selected based on the data type of the actual
argument. For example, the generic name of the natural logarithm intrinsic function is LOG.
To compute the natural logarithm of REAL, DOUBLE PRECISION, COMPLEX or
DOUBLE PRECISION COMPLEX data, the generic name LOG can be used. Generic names
simplify the use of intrinsic functions because the same name can be used with more than one
type of argument.

Notes:

1. It is also possible to pass intrinsic functions to subprograms. When doing so, only
the specific name of the intrinsic function can be used as an actual argument. The
specific name must have appeared in an INTRINSIC statement.

2. If an intrinsic function has more than one argument, each argument must be of the
same type.

Intrinsic Functions 295

Language Reference

3. The generic and specific name of an intrinsic function is the same for some intrinsic
functions. For example, the specific name of the intrinsic function which computes
the sine of an argument whose type is REAL is called SIN which is also the generic
name of the sine function.

The following sections present all generic and specific names of intrinsic functions and
describe how they are used. The following is a guide to interpreting the information
presented.

Data types are represented by letter codes.

1. CHARACTER is represented by CH.
2. LOGICAL is represented by L.
3. INTEGER is represented by I.
4. INTEGER*1 is represented by I1.
5. INTEGER*2 is represented by I2.
6. REAL (REAL*4) is represented by R.
7. DOUBLE PRECISION (REAL*8) is represented by D.
8. Single precision COMPLEX (COMPLEX*8) is represented by C.
9. Double precision COMPLEX (COMPLEX*16) is represented by Z.

The "Definition" description gives the mathematical definition of the function performed by
the intrinsic function. There are two fields for each intrinsic function. The "Name" field lists
the specific and generic names of the intrinsic functions. When the name of an intrinsic
function is a generic name, it is indicated by the word "generic" in parentheses; all other
names are specific names. The "Usage" field describes how the intrinsic functions are used.
"R ←ATAN2(R,R)" is a typical entry in this field. The name of the intrinsic function always
follows the " ←". In this example the name of the intrinsic function is ATAN2. The data type
of the arguments to the intrinsic function are enclosed in parentheses, are separated by
commas, and always follow the name of the intrinsic function. In this case, ATAN2 requires
two arguments both of type REAL. The type of the result of the intrinsic function is indicated
by the type preceding the " ←". In this case, the result of ATAN2 is of type REAL.

Watcom FORTRAN 77 extensions to the FORTRAN 77 language are flagged by a dagger (†).

296 Intrinsic Functions

Functions and Subroutines

12.3.2 Type Conversion: Conversion to integer

Definition: int(a)

Name: Usage:

INT (generic) I ←INT(I), I ←INT(R), I ←INT(D), I ←INT(C), I ←INT(Z) †

INT I ←INT(R)

HFIX I2 ←HFIX(R) †

IFIX I ←IFIX(R)

IDINT I ←IDINT(D)

Notes: The value of int(X) is X if X is of type INTEGER. If X is of type REAL
or DOUBLE PRECISION, then int(X) is 0 if |X|<1 and the integer
whose magnitude is the largest integer that does not exceed the
magnitude of X and has the same sign of X if |X| > 1. If X is of type
COMPLEX or COMPLEX*16, int(X) is int(real part of X).

† is an extension to FORTRAN 77.

12.3.3 Type Conversion: Conversion to real

Name: Usage:

REAL (generic) R ←REAL(I), R ←REAL(R), R ←REAL(D), R ←REAL(C), R
←REAL(Z) †

REAL R ←REAL(I)

FLOAT R ←FLOAT(I)

SNGL R ←SNGL(D)

Notes: For X of type COMPLEX, REAL(X) is the real part of X. For X of
type COMPLEX*16, REAL(X) is the single precision representation of
the real part of X.

† is an extension to FORTRAN 77.

Intrinsic Functions 297

Language Reference

12.3.4 Type Conversion: Conversion to double precision

Name: Usage:

DBLE (generic) D ←DBLE(I), D ←DBLE(R), D ←DBLE(D), D ←DBLE(C), D
←DBLE(Z) †

DREAL D ←DREAL(Z) †

DFLOAT D ←DFLOAT(I) †

Notes: For X of type COMPLEX, DBLE(X) is the double precision
representation of the real part of X. For X of type COMPLEX*16,
DBLE(X) is the real part of X.

† is an extension to FORTRAN 77.

12.3.5 Type Conversion: Conversion to complex

Name: Usage:

CMPLX (generic) C ←CMPLX(I), C ←CMPLX(I,I), C ←CMPLX(R), C ←CMPLX(R,R),
C ←CMPLX(D), C ←CMPLX(D,D), C ←CMPLX(C), C ←CMPLX(Z)
†

Notes: If X is of type COMPLEX, then CMPLX(X) is X. If X is of type
COMPLEX*16, then CMPLX(X) is a complex number whose real part
is REAL(real part of X) and imaginary part is REAL(imaginary part of
X).

If X is not of type COMPLEX, then CMPLX(X) is the complex number
whose real part is REAL(X) and imaginary part is REAL(0).
CMPLX(X,Y) is the complex number whose real part is REAL(X) and
whose imaginary part is REAL(Y) for X,Y not of type COMPLEX.

† is an extension to FORTRAN 77.

298 Intrinsic Functions

Functions and Subroutines

12.3.6 Type Conversion: Conversion to double complex

Name: Usage:

DCMPLX (generic) † Z ←DCMPLX(I), Z ←DCMPLX(I,I), Z ←DCMPLX(R), Z
←DCMPLX(R,R), Z ←DCMPLX(D), Z ←DCMPLX(D,D), Z
←DCMPLX(C), Z ←DCMPLX(Z)

Notes: If X is of type COMPLEX*16, then DCMPLX(X) is X. If X is of type
COMPLEX, then DCMPLX(X) is a COMPLEX*16 number whose real
part is DBLE(real part of X) and imaginary part is DBLE(imaginary part
of X).

If X is not of type COMPLEX*16, then DCMPLX(X) is the
COMPLEX*16 number whose real part is DBLE(X) and imaginary part
is DBLE(0). DCMPLX(X,Y) is the COMPLEX*16 number whose real
part is DBLE(X) and whose imaginary part is DBLE(Y) for X,Y not of
type COMPLEX.

† is an extension to FORTRAN 77.

12.3.7 Type Conversion: Character conversion to integer

Name: Usage:

ICHAR I ←ICHAR(CH)

Notes: ICHAR returns an integer which describes the position of the character
in the processor collating sequence. The first character in the collating
sequence is in position 0 and the last character of the collating sequence
is in position n−1 where n is the number of characters in the collating
sequence. The value of ICHAR(X) for X a character of length one is
such that 0 <= ICHAR(X) <= n−1. For any characters X and Y, the
following holds true.

1. X .LT. Y if and only if ICHAR(X) .LT. ICHAR(Y)
2. X .EQ. Y if and only if ICHAR(X) .EQ. ICHAR(Y)

CHAR is the inverse of ICHAR.

Intrinsic Functions 299

Language Reference

12.3.8 Type Conversion: Conversion to character

Name: Usage:

CHAR CH ←CHAR(I)

Notes: CHAR returns the character in the i’th position of the processor collating
sequence. The first character in the collating sequence is in position 0
and the last character of the collating sequence is in position n−1 where
n is the number of characters in the collating sequence. The value of
CHAR(I) is of type CHARACTER of length one. The argument I must
be in the range 0 <= I <= n−1.

ICHAR is the inverse of CHAR.

12.3.9 Truncation

Definition: int(a)

Name: Usage:

AINT (generic) R ←AINT(R), D ←AINT(D)

AINT R ←AINT(R)

DINT D ←DINT(D)

Notes: The value of int(X) is X if X is of type INTEGER. If X is of type REAL
or DOUBLE PRECISION, then int(X) is 0 if |X|<1 and the integer
whose magnitude is the largest integer that does not exceed the
magnitude of X and has the same sign of X if |X| > 1. If X is of type
COMPLEX or COMPLEX*16, int(X) is int(real part of X).

300 Intrinsic Functions

Functions and Subroutines

12.3.10 Nearest Whole Number

Definition: int(a+.5) if a>=0; int(a-.5) if a<0

Name: Usage:

ANINT (generic) R ←ANINT(R), D ←ANINT(D)

ANINT R ←ANINT(R)

DNINT D ←DNINT(D)

12.3.11 Nearest Integer

Definition: int(a+.5) if a>=0; int(a-.5) if a<0

Name: Usage:

NINT (generic) I ←NINT(R), I ←NINT(D)

NINT I ←NINT(R)

IDNINT I ←IDNINT(D)

12.3.12 Absolute Value

Definition: (ar**2+ai**2)**1/2 if a is complex; |a| otherwise

Name: Usage:

ABS (generic) I ←ABS(I), I1 ←ABS(I1) †, I2 ←ABS(I2) †, R ←ABS(R), D ←ABS(D),
R ←ABS(C), D ←ABS(Z) †

IABS I ←IABS(I)

I1ABS I1 ←I1ABS(I1) †

I2ABS I2 ←I2ABS(I2) †

ABS R ←ABS(R)

Intrinsic Functions 301

Language Reference

DABS D ←DABS(D)

CABS R ←CABS(C)

CDABS † D ←CDABS(Z)

Notes: A complex number is an ordered pair of real numbers, (ar,ai) where
ar is the real part and ai is the imaginary part of the complex number.

† is an extension to FORTRAN 77.

12.3.13 Remainder

Definition: mod(a1,a2) = a1-int(a1/a2)*a2

Name: Usage:

MOD (generic) I ←MOD(I,I), I1 ←MOD(I1,I1) †, I2 ←MOD(I2,I2) †, R ←MOD(R,R),
D ←MOD(D,D),

MOD I ←MOD(I,I)

I1MOD I1 ←I1MOD(I1,I1) †

I2MOD I2 ←I2MOD(I2,I2) †

AMOD R ←AMOD(R,R)

DMOD D ←DMOD(D,D)

Notes: The value of int(X) is X if X is of type INTEGER. If X is of type REAL
or DOUBLE PRECISION, then int(X) is 0 if |X|<1 and the integer
whose magnitude is the largest integer that does not exceed the
magnitude of X and has the same sign of X if |X| > 1. If X is of type
COMPLEX or COMPLEX*16, int(X) is int(real part of X).

The value of MOD, I1MOD, I2MOD, AMOD or DMOD is undefined if
the value of a2 is 0.

302 Intrinsic Functions

Functions and Subroutines

12.3.14 Transfer of Sign

Definition: sign(a1,a2) = |a1| if a2>=0; -|a1| if a2<0

Name: Usage:

SIGN (generic) I ←SIGN(I,I), I1 ←SIGN(I1,I1) †, I2 ←SIGN(I2,I2) †, R ←SIGN(R,R),
D ←SIGN(D,D)

ISIGN I ←ISIGN(I,I)

I1SIGN I1 ←I1SIGN(I1,I1) †

I2SIGN I2 ←I2SIGN(I2,I2) †

SIGN R ←SIGN(R,R)

DSIGN D ←DSIGN(D,D)

Notes: If the value of a1 is 0, the result is 0 which has no sign.

12.3.15 Positive Difference

Definition: a1-a2 if a1>a2; 0 if a1<=a2

Name: Usage:

DIM (generic) I ←DIM(I,I), I1 ←DIM(I1,I1) †, I2 ←DIM(I2,I2) †, R ←DIM(R,R), D
←DIM(D,D)

IDIM I ←IDIM(I,I)

I1IDIM I1 ←I1DIM(I1,I1) †

I2IDIM I2 ←I2DIM(I2,I2) †

DIM R ←DIM(R,R)

DDIM D ←DDIM(D,D)

Intrinsic Functions 303

Language Reference

12.3.16 Double Precision Product

Definition: a1*a2

Name: Usage:

DPROD D ←DPROD(R,R)

12.3.17 Choosing Largest Value

Definition: max(a1,a2,...)

Name: Usage:

MAX (generic) I ←MAX(I,...), I1 ←MAX(I1,...) †, I2 ←MAX(I2,...) †, R ←MAX(R,...),
D ←MAX(D,...)

MAX0 I ←MAX0(I,...)

I1MAX0 I1 ←I1MAX0(I1,...) †

I2MAX0 I2 ←I2MAX0(I2,...) †

AMAX1 R ←AMAX1(R,...)

DMAX1 D ←DMAX1(D,...)

AMAX0 R ←AMAX0(I,...)

MAX1 I ←MAX1(R,...)

304 Intrinsic Functions

Functions and Subroutines

12.3.18 Choosing Smallest Value

Definition: min(a1,a2,...)

Name: Usage:

MIN (generic) I ←MIN(I,...), I1 ←MIN(I1,...) †, I2 ←MIN(I2,...) †, R ←MIN(R,...), D
←MIN(D,...)

MIN0 I ←MIN0(I,...)

I1MIN0 I1 ←I1MIN0(I1,...) †

I2MIN0 I2 ←I2MIN0(I2,...) †

AMIN1 R ←AMIN1(R,...)

DMIN1 D ←DMIN1(D,...)

AMIN0 R ←AMIN0(I,...)

MIN1 I ←MIN1(R,...)

12.3.19 Length

Definition: Length of character entity

Name: Usage:

LEN I ←LEN(CH)

Notes: The argument to the LEN function need not be defined.

Intrinsic Functions 305

Language Reference

12.3.20 Length Without Trailing Blanks

Definition: Length of character entity excluding trailing blanks

Name: Usage:

LENTRIM I ←LENTRIM(CH)

12.3.21 Index of a Substring

Definition: index(a1,a2) is location of substring a2 in string a1

Name: Usage:

INDEX I ←INDEX(CH,CH)

Notes: INDEX(x,y) returns the starting position of a substring in x which is
identical to y. The position of the first such substring is returned. If y is
not contained in x, zero is returned.

12.3.22 Imaginary Part of Complex Number

Definition: ai

Name: Usage:

IMAG (generic) † R ←IMAG(C), D ←IMAG(Z)

AIMAG R ←AIMAG(C)

DIMAG D ←DIMAG(Z) †

Notes: A complex number is an ordered pair of real numbers, (ar,ai) where
ar is the real part and ai is the imaginary part of the complex number.

† is an extension to FORTRAN 77.

306 Intrinsic Functions

Functions and Subroutines

12.3.23 Conjugate of a Complex Number

Definition: (ar,-ai)

Name: Usage:

CONJG (generic) † C ←CONJG(C), Z ←CONJG(Z)

CONJG C ←CONJG(C)

DCONJG Z ←DCONJG(Z) †

Notes: A complex number is an ordered pair of real numbers, (ar,ai) where
ar is the real part and ai is the imaginary part of the complex number.

† is an extension to FORTRAN 77.

12.3.24 Square Root

Definition: a**1/2

Name: Usage:

SQRT (generic) R ←SQRT(R), D ←SQRT(D), C ←SQRT(C), Z ←SQRT(Z) †

SQRT R ←SQRT(R)

DSQRT D ←DSQRT(D)

CSQRT C ←CSQRT(C)

CDSQRT Z ←CDSQRT(Z) †

Notes: The argument to SQRT must be >= 0. The result of CSQRT and
CDSQRT is the principal value with the real part >= 0. When the real
part of the result is 0, the imaginary part is >= 0.

† is an extension to FORTRAN 77.

Intrinsic Functions 307

Language Reference

12.3.25 Exponential

Definition: e**a

Name: Usage:

EXP (generic) R ←EXP(R), D ←EXP(D), C ←EXP(C), Z ←EXP(Z) †

EXP R ←EXP(R)

DEXP D ←DEXP(D)

CEXP C ←CEXP(C)

CDEXP Z ←CDEXP(Z) †

Notes: The result of a complex function is the principal value.

† is an extension to FORTRAN 77.

12.3.26 Natural Logarithm

Definition:

log (a)

e

Name: Usage:

LOG (generic) R ←LOG(R), D ←LOG(D), C ←LOG(C), Z ←LOG(Z) †

ALOG R ←ALOG(R)

DLOG D ←DLOG(D)

CLOG C ←CLOG(C)

CDLOG Z ←CDLOG(Z) †

Notes: The value of a must be > 0. The argument of CLOG and CDLOG must
not be (0,0). The result of CLOG and CDLOG is such that -π <
imaginary part of the result <= π. The imaginary part of the result is π

308 Intrinsic Functions

Functions and Subroutines

only when the real part of the argument is < 0 and the imaginary part of
the argument = 0.

The result of a complex function is the principal value.

† is an extension to FORTRAN 77.

12.3.27 Common Logarithm

Definition:

log (a)

10

Name: Usage:

LOG10 (generic) R ←LOG10(R), D ←LOG10(D)

ALOG10 R ←ALOG10(R)

DLOG10 D ←DLOG10(D)

12.3.28 Sine

Definition: sin(a)

Name: Usage:

SIN (generic) R ←SIN(R), D ←SIN(D), C ←SIN(C), Z ←SIN(Z) †

SIN R ←SIN(R)

DSIN D ←DSIN(D)

CSIN C ←CSIN(C)

CDSIN Z ←CDSIN(Z) †

Notes: All angles are assumed to be in radians.

The result of a complex function is the principal value.

Intrinsic Functions 309

Language Reference

† is an extension to FORTRAN 77.

12.3.29 Cosine

Definition: cos(a)

Name: Usage:

COS (generic) R ←COS(R), D ←COS(D), C ←COS(C), Z ←COS(Z) †

COS R ←COS(R)

DCOS D ←DCOS(D)

CCOS C ←CCOS(C)

CDCOS Z ←CDCOS(Z) †

Notes: All angles are assumed to be in radians.

The result of a complex function is the principal value.

† is an extension to FORTRAN 77.

12.3.30 Tangent

Definition: tan(a)

Name: Usage:

TAN (generic) R ←TAN(R), D ←TAN(D)

TAN R ←TAN(R)

DTAN D ←DTAN(D)

Notes: All angles are assumed to be in radians.

310 Intrinsic Functions

Functions and Subroutines

12.3.31 Cotangent

Definition: cotan(a)

Name: Usage:

COTAN (generic) † R ←COTAN(R), D ←COTAN(D)

COTAN R ←COTAN(R) †

DCOTAN D ←DCOTAN(D) †

Notes: All angles are assumed to be in radians.

† is an extension to FORTRAN 77.

12.3.32 Arcsine

Definition: arcsin(a)

Name: Usage:

ASIN (generic) R ←ASIN(R), D ←ASIN(D)

ASIN R ←ASIN(R)

DASIN D ←DASIN(D)

Notes: The absolute value of the argument of ASIN and DASIN must be <= 1.
The result is such that -π/2 <= result <= π/2.

Intrinsic Functions 311

Language Reference

12.3.33 Arccosine

Definition: arccos(a)

Name: Usage:

ACOS (generic) R ←ACOS(R), D ←ACOS(D)

ACOS R ←ACOS(R)

DACOS D ←DACOS(D)

Notes: The absolute value of the argument of ACOS and DACOS must be <= 1.
The result is such that 0 <= result <= π.

12.3.34 Arctangent

Definition: arctan(a)

Name: Usage:

ATAN (generic) R ←ATAN(R), D ←ATAN(D)

ATAN R ←ATAN(R)

DATAN D ←DATAN(D)

Definition: arctan(a1/a2)

Name: Usage:

ATAN2 (generic) R ←ATAN2(R,R), D ←ATAN2(D,D)

ATAN2 R ←ATAN2(R,R)

DATAN2 D ←DATAN2(D,D)

Notes: The result of ATAN and DATAN is such that -π/2 <= result <= π/2. If
the value of the first argument of ATAN2 and DATAN2 is positive then
the result is positive. If the value of the first argument is 0, the result is
0 if the second argument is positive and π if the second argument is
negative. If the value of the first argument is negative, the result is

312 Intrinsic Functions

Functions and Subroutines

negative. If the value of the second argument is 0, the absolute value of
the result is π/2. The arguments must not both be 0. The result of
ATAN2 and DATAN2 is such that -π < result <= π.

12.3.35 Hyperbolic Sine

Definition: sinh(a)

Name: Usage:

SINH (generic) R ←SINH(R) D ←SINH(D)

SINH R ←SINH(R)

DSINH D ←DSINH(D)

12.3.36 Hyperbolic Cosine

Definition: cosh(a)

Name: Usage:

COSH (generic) R ←COSH(R), D ←COSH(D)

COSH R ←COSH(R)

DCOSH D ←DCOSH(D)

Intrinsic Functions 313

Language Reference

12.3.37 Hyperbolic Tangent

Definition: tanh(a)

Name: Usage:

TANH (generic) R ←TANH(R), D ←TANH(D)

TANH R ←TANH(R)

DTANH D ←DTANH(D)

12.3.38 Gamma Function

Definition: gamma(a)

Name: Usage:

GAMMA (generic) R ←GAMMA(R), D ←GAMMA(D)

GAMMA R ←GAMMA(R)

DGAMMA D ←DGAMMA(D)

12.3.39 Natural Log of Gamma Function

Definition:

log (gamma(a))

e

Name: Usage:

LGAMMA (generic) R ←LGAMMA(R), D ←LGAMMA(D)

ALGAMA R ←ALGAMA(R)

DLGAMA D ←DLGAMA(D)

314 Intrinsic Functions

Functions and Subroutines

12.3.40 Error Function

Definition: erf(a)

Name: Usage:

ERF (generic) R ←ERF(R), D ←ERF(D)

ERF R ←ERF(R)

DERF D ←DERF(D)

12.3.41 Complement of Error Function

Definition: 1-erf(a)

Name: Usage:

ERFC (generic) R ←ERFC(R), D ←ERFC(D)

ERFC R ←ERFC(R)

DERFC D ←DERFC(D)

12.3.42 Lexically Greater Than or Equal

Definition: a1>=a2

Name: Usage:

LGE L ←LGE(CH,CH)

Notes: The ASCII collating sequence is used to evaluate the relation.

Intrinsic Functions 315

Language Reference

12.3.43 Lexically Greater Than

Definition: a1>a2

Name: Usage:

LGT L ←LGT(CH,CH)

Notes: The ASCII collating sequence is used to evaluate the relation.

12.3.44 Lexically Less Than or Equal

Definition: a1<=a2

Name: Usage:

LLE L ←LLE(CH,CH)

Notes: The ASCII collating sequence is used to evaluate the relation.

12.3.45 Lexically Less Than

Definition: a1<a2

Name: Usage:

LLT L ←LLT(CH,CH)

Notes: The ASCII collating sequence is used to evaluate the relation.

316 Intrinsic Functions

Functions and Subroutines

12.3.46 Binary Pattern Processing Functions: Boolean AND

Definition: iand(i,j) Boolean AND

Name: Usage:

IAND (generic) I ←IAND(I,I), I1 ←IAND(I1,I1), I2 ←IAND(I2,I2)

IAND I ←IAND(I,I)

I1AND I1 ←I1AND(I1,I1)

I2AND I2 ←I2AND(I2,I2)

12.3.47 Binary Pattern Processing Functions: Boolean Inclusive OR

Definition: ior(i,j) Boolean inclusive OR

Name: Usage:

IOR (generic) I ←IOR(I,I), I1 ←IOR(I1,I1), I2 ←IOR(I2,I2)

IOR I ←IOR(I,I)

I1OR I1 ←I1OR(I1,I1)

I2OR I2 ←I2OR(I2,I2)

Intrinsic Functions 317

Language Reference

12.3.48 Binary Pattern Processing Functions: Boolean Exclusive OR

Definition: ieor(i,j) Boolean exclusive OR

Name: Usage:

IEOR (generic) I ←IEOR(I,I), I1 ←IEOR(I1,I1), I2 ←IEOR(I2,I2)

IEOR I ←IEOR(I,I)

I1EOR I1 ←I1EOR(I1,I1)

I2EOR I2 ←I2EOR(I2,I2)

12.3.49 Binary Pattern Processing Functions: Boolean Complement

Definition: not(i) Boolean complement

Name: Usage:

NOT (generic) I ←NOT(I), I1 ←NOT(I1), I2 ←NOT(I2)

NOT I ←NOT(I)

I1NOT I1 ←I1NOT(I1)

I2NOT I2 ←I2NOT(I2)

318 Intrinsic Functions

Functions and Subroutines

12.3.50 Binary Pattern Processing Functions: Logical Shift

Definition: ishl(j,n) Logical shift

Name: Usage:

ISHL (generic) I ←ISHL(I,I), I1 ←ISHL(I1,I1), I2 ←ISHL(I2,I2)

ISHL I ←ISHL(I,I)

I1ISHL I1 ←I1SHL(I1,I1)

I2ISHL I2 ←I2SHL(I2,I2)

Definition: ishft(j,n) Logical shift

Name: Usage:

ISHFT (generic) I ←ISHFT(I,I), I1 ←ISHFT(I1,I1), I2 ←ISHFT(I2,I2)

ISHFT I ←ISHFT(I,I)

I1ISHFT I1 ←I1SHFT(I1,I1)

I2ISHFT I2 ←I2SHFT(I2,I2)

Notes: There are three shift operations: logical, arithmetic and circular. These
shift operations are implemented as integer functions having two
arguments. The first argument, j, is the value to be shifted and the
second argument, n, is the number of bits to shift. If n is less than 0, a
right shift is performed. If n is greater than 0, a left shift is performed.
If n is equal to 0, no shift is performed. Note that the arguments are not
modified.

In a logical shift, bits shifted out from the left or right are lost. Zeros are
shifted in from the opposite end.

In an arithmetic shift, j is considered a signed integer. In the case of a
right shift, zeros are shifted into the left if j is positive and ones if j is
negative. Bits shifted out of the right are lost. In the case of a left shift,
zeros are shifted into the right and bits shifted out of the left are lost.

Intrinsic Functions 319

Language Reference

In a circular shift, bits shifted out one end are shifted into the opposite
end. No bits are lost.

12.3.51 Binary Pattern Processing Functions: Arithmetic Shift

Definition: isha(j,n) Arithmetic shift

Name: Usage:

ISHA (generic) I ←ISHA(I,I), I1 ←ISHA(I1,I1), I2 ←ISHA(I2,I2)

ISHA I ←ISHA(I,I)

I1ISHA I1 ←I1SHA(I1,I1)

I2ISHA I2 ←I2SHA(I2,I2)

Notes: There are three shift operations: logical, arithmetic and circular. These
shift operations are implemented as integer functions having two
arguments. The first argument, j, is the value to be shifted and the
second argument, n, is the number of bits to shift. If n is less than 0, a
right shift is performed. If n is greater than 0, a left shift is performed.
If n is equal to 0, no shift is performed. Note that the arguments are not
modified.

In a logical shift, bits shifted out from the left or right are lost. Zeros are
shifted in from the opposite end.

In an arithmetic shift, j is considered a signed integer. In the case of a
right shift, zeros are shifted into the left if j is positive and ones if j is
negative. Bits shifted out of the right are lost. In the case of a left shift,
zeros are shifted into the right and bits shifted out of the left are lost.

In a circular shift, bits shifted out one end are shifted into the opposite
end. No bits are lost.

320 Intrinsic Functions

Functions and Subroutines

12.3.52 Binary Pattern Processing Functions: Circular Shift

Definition: ishc(j,n) Circular shift

Name: Usage:

ISHC (generic) I ←ISHC(I,I), I1 ←ISHC(I1,I1), I2 ←ISHC(I2,I2)

ISHC I ←ISHC(I,I)

I1ISHC I1 ←I1SHC(I1,I1)

I2ISHC I2 ←I2SHC(I2,I2)

Notes: There are three shift operations: logical, arithmetic and circular. These
shift operations are implemented as integer functions having two
arguments. The first argument, j, is the value to be shifted and the
second argument, n, is the number of bits to shift. If n is less than 0, a
right shift is performed. If n is greater than 0, a left shift is performed.
If n is equal to 0, no shift is performed. Note that the arguments are not
modified.

In a logical shift, bits shifted out from the left or right are lost. Zeros are
shifted in from the opposite end.

In an arithmetic shift, j is considered a signed integer. In the case of a
right shift, zeros are shifted into the left if j is positive and ones if j is
negative. Bits shifted out of the right are lost. In the case of a left shift,
zeros are shifted into the right and bits shifted out of the left are lost.

In a circular shift, bits shifted out one end are shifted into the opposite
end. No bits are lost.

Intrinsic Functions 321

Language Reference

12.3.53 Binary Pattern Processing Functions: Bit Testing

Definition: Test bit - a2’th bit of a1 is tested. If it is 1, .TRUE. is returned. If it is
0, .FALSE. is returned.

Name: Usage:

BTEST (generic) L ←BTEST(I,I), L ←BTEST(I1,I1), L ←BTEST(I2,I2)

BTEST L ←BTEST(I,I)

I1BTEST L ←I1BTEST(I1,I1)

I2BTEST L ←I2BTEST(I2,I2)

12.3.54 Binary Pattern Processing Functions: Set Bit

Definition: Set bit - Return a1 with a2’th bit set.

Name: Usage:

IBSET (generic) I ←IBSET(I,I), I1 ←IBSET(I1,I1), I2 ←IBSET(I2,I2)

IBSET I ←IBSET(I,I)

I1IBSET I1 ←I1BSET(I1,I1)

I2IBSET I2 ←I2BSET(I2,I2)

322 Intrinsic Functions

Functions and Subroutines

12.3.55 Binary Pattern Processing Functions: Clear Bit

Definition: Clear bit - Return a1 with a2’th bit cleared.

Name: Usage:

IBCLR (generic) I ←IBCLR(I,I), I1 ←IBCLR(I1,I1), I2 ←IBCLR(I2,I2)

IBCLR I ←IBCLR(I,I)

I1IBCLR I1 ←I1BCLR(I1,I1)

I2IBCLR I2 ←I2BCLR(I2,I2)

12.3.56 Binary Pattern Processing Functions: Change Bit

Definition: Change bit - Return a1 with a2’th bit complemented.

Name: Usage:

IBCHNG (generic) I ←IBCHNG(I,I), I1 ←IBCHNG(I1,I1), I2 ←IBCHNG(I2,I2)

IBCHNG I ←IBCHNG(I,I)

I1IBCHNG I1 ←I1BCHNG(I1,I1)

I2IBCHNG I2 ←I2BCHNG(I2,I2)

Intrinsic Functions 323

Language Reference

12.3.57 Binary Pattern Processing Functions: Arithmetic Shifts

Definition: lshift(j,n) Arithmetic left shift

Name: Usage:

LSHIFT (generic) I ←LSHIFT(I,I), I1 ←LSHIFT(I1,I1), I2 ←LSHIFT(I2,I2)

LSHIFT I ←LSHIFT(I,I)

I1LSHIFT I1 ←I1LSHIFT(I1,I1)

I2LSHIFT I2 ←I2LSHIFT(I2,I2)

Definition: rshift(j,n) Arithmetic right shift

Name: Usage:

RSHIFT (generic) I ←RSHIFT(I,I), I1 ←RSHIFT(I1,I1), I2 ←RSHIFT(I2,I2)

RSHIFT I ←RSHIFT(I,I)

I1RSHIFT I1 ←I1RSHIFT(I1,I1)

I2RSHIFT I2 ←I2RSHIFT(I2,I2)

Notes:

With these shift functions, n must be a non-negative integer. In an
arithmetic shift, j is considered a signed integer. In the case of a left
shift, zeros are shifted into the right and bits shifted out of the left are
lost. In the case of a right shift, zeros are shifted into the left if j is
positive and ones if j is negative. Bits shifted out of the right are lost.

If n is equal to 0, no shift is performed. Note that the arguments are not
modified.

These functions are compiled as in-line code unless they are passed as
arguments.

324 Intrinsic Functions

Functions and Subroutines

12.3.58 Allocated Array

Definition: Is array A allocated?

Name: Usage:

ALLOCATED L ←ALLOCATED(A)

12.3.59 Memory Location

Definition: Location of A where A is any variable, array or array element

Name: Usage:

LOC I ←LOC(A)

12.3.60 Size of Variable or Structure

Definition: Size of A in bytes where A is any constant, variable, array, or structure

Name: Usage:

ISIZEOF I ←ISIZEOF(A)

Notes: The size reported for a constant or simple variable is based on its type.
The size of a CHARACTER constant is the number of characters in the
constant. The size reported for an array is the size of the storage area
required for the array. The size reported for a structure is the size of the
storage area required for the structure. An assumed-size CHARACTER
variable, assumed-size array, or allocatable array has size 0.

Intrinsic Functions 325

Language Reference

12.3.61 Volatile Reference

Definition: A is a volatile reference

Name: Usage:

VOLATILE A ←VOLATILE(A)

Notes: A volatile reference to a symbol indicates that the value of the symbol
may be modified in ways that are unknown to the subprogram. For
example, a symbol in common being referenced in a subprogram may be
modified by another subprogram that is processing an asynchronous
interrupt. Therefore, any subprogram that is referencing the symbol to
determine its value should reference this symbol using the VOLATILE
intrinsic function so that the value currently being evaluated agrees with
the value last stored.

12.4 External Functions
An external function is a program unit that has a FUNCTION statement as its first statement.
It is defined externally to the program units that reference it. The form of a FUNCTION
statement is defined in the chapter entitled "FORTRAN Statements" on page 9.

The name of an external function is treated as if it was a variable. It is through the function
name that the result of an external function becomes defined. This variable must become
defined before the execution of the external function is completed. Once defined, it can be
referenced or redefined. The value of this variable when a RETURN or END statement is
executed is the result returned by the external function.

Example:
INTEGER FUNCTION VECSUM(A, N)
INTEGER A(N), I
VECSUM = 0
DO 10 I = 1, N

VECSUM = VECSUM + A(I)
10 CONTINUE

END

If the variable representing the return value of the external function is of type CHARACTER
with a length specification of (*), it must not be the operand of a concatenation operator
unless it appears in a character assignment statement.

326 External Functions

Functions and Subroutines

It is also possible for an external function to return results through its dummy arguments by
assigning to them. The following example demonstrates this.

Example:
INTEGER MARKS(40), N
REAL AVG, STDDEV, MEAN
PRINT *, ’Enter number of marks’
READ(5, *) N
PRINT *, ’Enter marks’
READ(5, *) (MARKS(I), I = 1, N)
AVG = MEAN(MARKS, N, STDDEV)
PRINT *, ’Mean = ’, AVG,

$ ’ Standard Deviation = ’, STDDEV
END

*
* Define function MEAN to return the average by
* defining the function name and return the standard
* deviation by defining a dummy argument.
*

REAL FUNCTION MEAN(A, N, STDDEV)
INTEGER A, N, I
REAL STDDEV
DIMENSION A(N)
MEAN = 0
DO 10 I = 1, N

MEAN = MEAN + A(I)
10 CONTINUE

MEAN = MEAN / N
STDDEV = 0
DO 20 I = 1, N

STDDEV = STDDEV + (A(I) - MEAN)**2
20 CONTINUE

STDDEV = SQRT(STDDEV / (N - 1))
END

12.4.1 Referencing an External Function

When an external function is referenced in an expression or a CALL statement, the following
steps are performed.

1. The actual arguments are evaluated.
2. The actual arguments are associated with the corresponding dummy arguments.
3. The external function is executed.

External Functions 327

Language Reference

The type of the external function reference must be the same as the type of the function name
in the external function subprogram. If the external function is of type CHARACTER, the
length must also match.

12.4.2 Actual Arguments for an External Function

An actual argument must be one of the following.

1. Any expression except a character expression involving the concatenation of an
operand whose length specification is (*) unless the operand is a symbolic
constant.

2. An array name.
3. An intrinsic function name (must be the specific name) that has appeared in an

INTRINSIC statement.
4. An external procedure name.
5. A dummy procedure name.

The actual arguments of an external function reference must match the order, number and type
of the corresponding dummy arguments. If a subroutine is an actual argument, then type
agreement is not required since a subroutine has no type.

12.4.3 External Function Subprogram Restrictions

1. The name of an external function is a global name and must not be the same as any
other global name or name local to the subprogram whose name is that of the
external function. Note that the external function name is treated as a variable
within the external function subprogram.

2. The name of a dummy argument is a name local to the subprogram and must not
appear in an EQUIVALENCE, PARAMETER, SAVE, INTRINSIC or DATA
statement within the same subprogram. It may appear in a COMMON statement only
as the name of a common block.

3. The name of the external function can in no way, directly or indirectly, be
referenced as a subprogram from within the subprogram it defines. It can appear in
a type statement to establish its type only if the type has not been established in the
FUNCTION statement.

328 External Functions

Functions and Subroutines

12.5 Subroutines
A subroutine is a program unit that has a SUBROUTINE statement as it first statement. It is
defined externally to the program units that reference it. The form of a SUBROUTINE
statement can be found in the chapter entitled "FORTRAN Statements" on page 9.

A subroutine differs from a function in that it does not return a result and hence has no type
associated with it. However, it is possible to return values from a subroutine by defining or
redefining the dummy arguments of the subroutine.

12.5.1 Referencing a Subroutine: The CALL Statement

Unlike a function, a subroutine cannot appear in an expression. Subroutines are referenced by
using a CALL statement. See the chapter entitled "FORTRAN Statements" on page 9 for
details on the CALL statement. When a CALL statement is executed, the following steps are
performed.

1. The actual arguments are evaluated.
2. The actual arguments are associated with the corresponding dummy arguments.
3. The subroutine is executed.

A subroutine can be called from any subprogram but must not be called by itself, indirectly or
directly.

12.5.2 Actual Arguments for a Subroutine

Each actual argument in a subroutine call must be one of the following.

1. Any expression except a character expression involving the concatenation of an
operand whose length specification is (*) unless the operand is a symbolic
constant.

2. An array name.
3. An intrinsic function name (must be the specific name) that has appeared in an

INTRINSIC statement.
4. An external procedure name.
5. A dummy procedure name.
6. An alternate return specifier of the form *s where s is a statement number of an

executable statement in the subprogram which contained the CALL statement. This
will be covered in more detail when the RETURN statement is discussed.

Subroutines 329

Language Reference

The actual arguments must agree in order, number and type with the corresponding dummy
arguments. The type agreement does not apply to an actual argument which is an alternate
return specifier or a subroutine name since neither has a type.

12.5.3 Subroutine Subprogram Restrictions

1. A subroutine subprogram can contain any statement except a FUNCTION, BLOCK
DATA or PROGRAM statement.

2. The name of a subroutine is a global name and must not be used as another global
name. Furthermore, no local name in the subroutine subprogram can have the same
name as the subroutine.

3. The name of a dummy argument is local to the subroutine subprogram and must not
appear in an EQUIVALENCE, PARAMETER, SAVE, INTRINSIC or DATA
statement. It may appear in a COMMON statement only as the name of a common
block.

12.6 The ENTRY Statement
An ENTRY statement allows execution of a subprogram to begin at a particular executable
statement within the subprogram in which it appears. An ENTRY statement defines an
alternate entry point into a subprogram and can appear anywhere after the FUNCTION
statement in a function subprogram or the SUBROUTINE statement in a subroutine
subprogram. Also, it must not appear as a statement between the beginning and end of a
control structure. For example, an ENTRY statement cannot appear between a block IF
statement and its corresponding END IF statement or between a DO statement and the
corresponding terminal statement. It is possible to have more than one ENTRY statement in a
subprogram. An ENTRY statement is a non-executable statement. The form of an ENTRY
statement can be found in the chapter entitled "FORTRAN Statements" on page 9.

Each entry name defines an external function if it appears in a function, or an external
subroutine if it appears in a subroutine and is referenced in the same way as the actual
function or subroutine name would be referenced. Execution begins at the first executable
statement that follows the ENTRY statement. The order, number, type and names of the
dummy argument lists of an ENTRY statement may be different from that of a FUNCTION,
SUBROUTINE or other ENTRY statement. However, there must still be agreement between
the actual argument list used to reference an entry name and the dummy argument list in the
corresponding ENTRY statement.

330 The ENTRY Statement

Functions and Subroutines

12.6.1 ENTRY Statements in External Functions

Entry names may also appear in type statements. Their type may or may not be the same type
as other entry names or the actual name of the external function unless the function is of type
CHARACTER. If the function is of type CHARACTER then the type of all the entry names
must be of type CHARACTER. Conversely, if an entry name is of type CHARACTER, then
all other entry names and the function name must be of type CHARACTER. An entry name,
like external function names, is treated as a variable within the subprogram it appears. Within
a function subprogram, there is an association between variables whose name is an entry name
and the variable whose name corresponds to the external function. When such a variable
becomes defined, all other such variables of the same type also become defined and other such
variables not of the same type become undefined. This can be best illustrated by an example.

Example:
PRINT *, EVAL(2), EVAL3(4.0)
END

INTEGER FUNCTION EVAL(X)
INTEGER EVAL2, X
REAL EVAL3, Y
C = 1
GOTO 10
ENTRY EVAL2(X)
C = 2
GOTO 10
ENTRY EVAL3(Y)
C = 3

10 EVAL2 = C * X
END

In the previous example, invoking EVAL would cause the result of 2 to be returned even
though EVAL was never assigned to in the function EVAL but since EVAL2 and EVAL are of
the same type they are associated and hence defining EVAL2 causes EVAL to be defined.
However, invoking EVAL3 would cause an undefined result to be returned since EVAL3 is of
type REAL and EVAL2 is of type INTEGER and hence are not associated. EVAL3 does not
become defined.

12.6.2 ENTRY Statement Restrictions

1. An entry name may not appear in any statement previous to the ENTRY statement
containing the entry name except in a type statement.

The ENTRY Statement 331

Language Reference

2. If an entry name in a function is of type CHARACTER, each entry name and the
name of the function must also be of type CHARACTER. If the name of the
function or the name of any entry point has a length specification of (*), then all
such entities must have a length specification of (*) otherwise they must all have
a length specification of the same integer value.

3. If a dummy argument appears in an executable statement, then that statement can
be executed provided that the dummy argument is in the dummy argument list of
the procedure name referenced.

4. A name that appears as a dummy argument in an ENTRY statement must not appear
in the expression of a statement function unless it is a dummy argument of the
statement function, it has appeared in the dummy argument list of a FUNCTION or
SUBROUTINE statement, or the ENTRY statement appears before the statement
function statement.

5. A name that appears as a dummy argument in an ENTRY statement must not appear
in an executable statement preceding the ENTRY statement unless it has also
appeared in a FUNCTION, SUBROUTINE, or ENTRY statement that precedes the
executable statement.

12.7 The RETURN Statement
A RETURN statement is a way to terminate the execution of a function or subroutine
subprogram and return control to the program unit that referenced it. As an extension to
FORTRAN 77, Watcom FORTRAN 77 permits the use of the RETURN statement in the main
program. A subprogram (or main program) may contain more than one RETURN statement
or it may contain no RETURN statement. In the latter case, the END statement has the same
effect as a RETURN statement.

Execution of a RETURN or END statement causes all local entities to become undefined except
for the following.

1. Entities specified in a SAVE statement.
2. Entities in blank common.
3. Initially defined entities that have neither been redefined nor become undefined.
4. Entities in a named common block that appears in the subprogram and in a program

unit that references the subprogram directly or indirectly.

332 The RETURN Statement

Functions and Subroutines

12.7.1 RETURN Statement in the Main Program (Extension)

The form of a RETURN statement in a main program is:

RETURN

When a RETURN statement is executed in the main program, program execution terminates in
the same manner as the STOP or END statement. This is an extension to FORTRAN 77.

12.7.2 RETURN Statement in Function Subprograms

The form of a RETURN statement in a function subprogram is:

RETURN

When a RETURN statement is executed in a function subprogram, the function value must be
defined. Control is then passed back to the program unit that referenced it.

12.7.3 RETURN Statement in Subroutine Subprograms

The form of a RETURN statement in a subroutine subprogram is:

RETURN [e]

where:

e is an integer expression.

If the expression e is omitted or has a value less than one or greater than the number of
asterisks appearing in the dummy argument list of the subroutine or entry name referenced,
then control is returned to the next executable statement that follows the CALL statement in
the referencing program unit. If 1 <= e <= n where n is the number of asterisks appearing in

The RETURN Statement 333

Language Reference

the SUBROUTINE or ENTRY statement which contains the referenced name, then the
expression e identifies the eth asterisk in the dummy argument list. Control is returned to the
statement identified by the alternate return specified in the CALL statement that corresponds
to the eth asterisk in the dummy argument list of the referenced subroutine. The following
example demonstrates the use of alternate return specifiers in conjunction with the RETURN
statement.

Example:
REAL X, Y
READ *, X, Y
CALL CMP(X, Y, *10, *20)
PRINT *, ’X equals Y’
GOTO 30

10 PRINT *, ’X less than Y’
GOTO 30

20 PRINT *, ’X greater than Y’
30 END

SUBROUTINE CMP(X, Y, *, *)
IF(X .LT. Y)RETURN 1
IF(X .GT. Y)RETURN 2
RETURN
END

12.8 Subprogram Arguments
Arguments provide a means of communication between program units. Arguments are passed
to subprograms through argument lists and are received by subprograms through argument
lists. The argument list used to pass arguments to a subprogram is called the actual argument
list and the arguments are called actual arguments. The argument list of the receiving
subprogram is called the dummy argument list and the arguments are called dummy
arguments. The actual argument list must agree with the dummy argument list in number,
order and type.

12.8.1 Dummy Arguments

Statement function, external functions and subroutines use dummy arguments to define the
type of actual arguments they expect. A dummy argument is one of the following.

1. Variable.
2. Array.
3. Dummy procedure.

334 Subprogram Arguments

Functions and Subroutines

4. Asterisk (*) indicating a statement label.

Notes:

1. A statement function dummy argument may only be a variable.

2. An asterisk can only be a dummy argument for a subroutine subprogram.

Dummy arguments that are variables of type INTEGER can be used in dummy array
declarators. No dummy argument may appear in an EQUIVALENCE, DATA, PARAMETER,
SAVE, INTRINSIC or COMMON statement except as a common block name. A dummy
argument must not be the same name as the subprogram name specified in the FUNCTION,
SUBROUTINE or ENTRY statement. Other than these restrictions, dummy arguments can be
used in the same way an actual name of the same class would be used.

12.8.2 Actual Arguments

Actual arguments specify the entities that are to be associated with the dummy arguments
when referencing a subroutine or function. Actual arguments can be any of the following.

1. Any expression, except character expression involving the concatenation of an
operand whose length specification is (*) unless the operand is a symbolic
constant.

2. An array name.
3. An intrinsic function name.
4. An external function or subroutine name.
5. A dummy procedure name.
6. An alternate return specifier of the form *s where s is a statement number of an

executable statement in the subprogram which contained the CALL statement.

Notes:

1. A statement function actual argument can only be a variable or an expression.

2. An alternate return specifier can only be an actual argument in the actual argument
list of a subroutine reference.

Subprogram Arguments 335

Language Reference

12.8.3 Association of Actual and Dummy Arguments

When a function or subroutine reference is executed, an association is established between the
actual arguments and the corresponding dummy arguments. The first dummy argument is
associated with the first actual argument, the second dummy argument is associated with the
second actual argument, etc. Association requires that the types of the actual and dummy
arguments agree. A subroutine has no type and when used as an actual argument must be
associated with a dummy procedure. An alternate return specifier has no type and must be
associated with an asterisk. Arguments can be passed through more than one level of
procedure reference. In this case, valid association must exist at all intermediate levels as well
as the last level. Argument association is terminated upon the execution of a RETURN or END
statement.

12.8.3.1 Length of Character Actual and Dummy Arguments

If a dummy argument is of type CHARACTER, the corresponding actual argument must also
be of type CHARACTER and the length of the dummy argument must be less than or equal to
the length of the actual argument. If the length of the dummy argument is len then the len
leftmost characters of the actual argument are associated with the dummy argument.

If a dummy argument of type CHARACTER is an array name, then the restriction on the
length is on the whole array and not for each array element. The length of an array element of
the dummy argument may be different from the length of the array element of the
corresponding actual array, array element, or array element substring, but the dummy array
argument must not extend beyond the end of the associated actual array.

12.8.3.2 Variables as Dummy Arguments

A dummy argument that is a variable may be associated with an actual argument that is a
variable, array element, substring or expression. Only if the actual argument is a variable,
array element or substring can the corresponding actual argument be redefined.

12.8.3.3 Arrays as Dummy Arguments

A dummy argument that is an array may be associated with an actual argument that is an
array, array element or array element substring. The number and size of the dimensions in the
actual argument array declarator may be different from the number and size of the dimensions
in the dummy argument array declarator.

If the actual argument is a non-character array name, then the size of the dummy argument
array must not exceed the size of the actual argument array. An element of the actual array

336 Subprogram Arguments

Functions and Subroutines

becomes associated with the element in the dummy array with the same subscript value.
Association by array element of character arrays exists only if the lengths of the array
elements are the same. If their lengths are not the same, the dummy and actual array elements
will not consist of the same characters.

If the actual argument is a non-character array element name whose subscript value is asv the
size of the dummy argument array must not exceed the size of the actual argument array less
asv - 1. Furthermore, the dummy argument array element whose subscript value is dsv
becomes associated with the actual argument array element whose subscript value is asv + dsv
- 1. Consider the following example.

Example:
DIMENSION A(10)
CALL SAM(A(3))
END

SUBROUTINE SAM(B)
DIMENSION B(5)

.

.

.
END

In the previous example, array A is an actual argument and the array B is the dummy
argument. Suppose we wanted to know which element of A is associated with the 4th element
of B. Then asv would have value 3 since the array element A(3) is the actual argument, and
dsv is 4. Then the 4th element in B is 3 + 4 - 1 = 6th element of A.

If the actual argument is a character array name, character array element name or character
array element substring which begins at character storage unit ach, then the character storage
unit dch of the dummy argument array is associated with the character storage unit ach + dch
- 1 of the actual array. The size of the dummy character array must not exceed the size of the
actual argument array.

12.8.3.4 Procedures as Dummy Arguments

A dummy argument that is a dummy procedure can only be associated with an actual
argument that is one of the following.

1. Intrinsic function.
2. External function.
3. External Subroutine.
4. Another dummy procedure.

Subprogram Arguments 337

Language Reference

If the dummy argument is used as a subroutine (that is it is invoked using a CALL statement)
then the corresponding actual argument must either be a subroutine or a dummy procedure. If
the dummy argument is used as an external function, then the corresponding actual argument
must be an intrinsic function, external function or dummy procedure. Note that it may not be
possible to determine in a given program unit whether a dummy procedure is associated with
a function or subroutine. In the following example it is not possible to tell by looking at this
program unit whether PROC is an external subroutine or function.

Example:
SUBROUTINE SAM(PROC)
EXTERNAL PROC

.

.
CALL SAM1(PROC)

.

.

.
END

12.8.3.5 Asterisks as Dummy Arguments

A dummy argument that is an asterisk may only appear in the dummy argument list of a
SUBROUTINE statement or an ENTRY statement in a subroutine subprogram and may be
associated only with an actual argument that is an alternate return specifier in a CALL
statement which references the subroutine.

Example:
CHARACTER*10 RECORD(5)
I = 2
CALL SAM(I, *999, 3HSAM)
PRINT *, ’I should be skipped’

999 PRINT *, ’I should be printed’
END
SUBROUTINE SAM(I, *, K)
CHARACTER*3 K
PRINT *, K
RETURN 1
END

338 Subprogram Arguments

Appendices

Appendices

340

Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

A. Watcom FORTRAN 77 Extensions to
Standard FORTRAN 77

This appendix summarizes the extensions supported by Watcom FORTRAN 77.

1. The INCLUDE statement for embedding source from another file is supported.

INCLUDE ’SRC’

2. Symbolic names are unique up to 32 characters. Also, ’$’, ’_’, and lowercase
letters are allowed in symbolic names.

3. Lowercase and uppercase letters are treated in the same way except in:

1. character and hollerith constants
2. apostrophe and H edit descriptors

4. End-of-line comments are permitted.

PRINT *, ’Hello world’ ! print ’Hello World’

5. The IMPLICIT NONE statement is supported.

6. An asterisk enclosed in parentheses is allowed with the type CHARACTER when
specified in an IMPLICIT statement.

IMPLICIT CHARACTER*(*) (Z)

7. Length specifiers are allowed with types specified in IMPLICIT statements.

IMPLICIT INTEGER*2 (I-N)

8. Length specifiers are allowed with type specification statements.

Watcom FORTRAN 77 Extensions to Standard FORTRAN 77 341

Appendices

LOGICAL*1, LOGICAL*4
INTEGER*1, INTEGER*2, INTEGER*4
REAL*4, REAL*8
COMPLEX*8, COMPLEX*16

Length specifiers are also allowed with the type specified in FUNCTION
statements.

COMPLEX*16 FUNCTION ZADD(X, Y)

9. Length specifiers are allowed with symbol names.

INTEGER I*2, A*2(10), B(20)*2

COMPLEX FUNCTION ZADD*16(X, Y)

10. The DOUBLE COMPLEX statement is supported (equivalent to COMPLEX*16).

11. Double precision complex constants are allowed.

Z = (1D0, 2D0)

12. Mixing operands of type DOUBLE PRECISION and COMPLEX to yield a
COMPLEX*16 result is allowed.

DOUBLE PRECISION X
COMPLEX Y, Z*16
Z = X + Y

13. User-defined structures are supported.

STRUCTURE/END STRUCTURE
UNION/END UNION
MAP/END MAP
RECORD

14. Both character and non-character data are allowed in the same common block.

INTEGER X
CHARACTER C
COMMON /BLK/ X, C

15. Data initialization of variables in common without a block data subprogram is
allowed.

342 Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

16. Equivalencing character to non-character data is permitted.

INTEGER X
CHARACTER C
EQUIVALENCE (X, C)

17. Single subscripts for multi-dimensional arrays is permitted in EQUIVALENCE
statements.

18. Data initialization in a type specification statement is allowed.

DOUBLE PRECISION X/4.3D1/

19. Data initialization with hexadecimal constants is allowed.

INTEGER I/Z00000007/

20. Initializing character items with numeric data is permitted.

21. Hexadecimal and octal constants of the form ’abc’x and ’567’o are supported.

22. A character constant of the form ’abcdef’c places a NUL character (CHAR(0))
at the end of the character string.

23. Hollerith constants can be used interchangeably with character constants.

CHARACTER*10 A, B
A = ’1234567890’
B = 10H123456790

24. Several additional intrinsic functions are supported:

ALGAMA ALLOCATED BTEST CDABS
CDCOS CDSIN CDEXP CDSQRT
CDLOG COTAN DCMPLX DCONJG
DCOTAN DERF DERFC DFLOAT
DGAMMA DIMAG DLGAMA DREAL
ERF ERFC GAMMA HFIX
IAND IBCHNG IBCLR IBSET
IEOR IOR ISHA ISHC
ISHFT ISHL ISIZEOF LENTRIM
LGAMMA LOC NOT VOLATILE

25. The LOC intrinsic function returns the address of an expression.

Watcom FORTRAN 77 Extensions to Standard FORTRAN 77 343

Appendices

26. The ISIZEOF intrinsic function returns the size of a structure name, the size of an
array with a constant array declarator, or the size of a variable.

27. The CHAR intrinsic function is allowed in constant expressions.

28. The ALLOCATE and DEALLOCATE statements may be used to dynamically
allocate and deallocate arrays.

29. The ALLOCATED intrinsic function may be used to determine if an allocatable
array is allocated.

30. The following additional I/O specifiers for the OPEN statement are supported.

ACTION=
CARRIAGECONTROL=
RECORDTYPE=
RECL= is also allowed for files opened for

sequential access
ACCESS=’APPEND’
BLOCKSIZE=
SHARE=

31. The following additional I/O specifiers for the INQUIRE statement are supported.

ACTION=
CARRIAGECONTROL=
RECORDTYPE=
BLOCKSIZE=
SHARE=

32. In the INQUIRE statement, character data may also be returned in variables or
array elements with a substring operation.

CHARACTER FN*20
INQUIRE(UNIT=1, FILE=FN(10:20))

33. List-directed I/O is allowed with internal files.

34. No asterisk is required for list-directed I/O.

PRINT, X, Y

35. The NAMELIST statement is supported.

36. Non-character arrays are allowed as format specifiers.

344 Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

37. The following format edit descriptors are allowed:

Z for displaying data in hexadecimal format

Ew.dDe same as Ew.dEe except D is used as exponentiation character

$ or \ leave cursor at end of line

38. A repeat count is not required for the X edit descriptor (a repeat count of one is
assumed).

39. Commas are optional between format edit descriptors.

100 FORMAT(1X I5)

40. It is possible to substring the return values of functions and statement functions.

CHARACTER*7 F, G
F() = ’1234567’
PRINT *, F()(1:3), G()(4:7)

41. Functions may be invoked via the CALL statement. This allows the return value of
functions to be ignored.

42. A RETURN statement is allowed in the main program.

43. Integer constants with more than 5 digits are allowed in the STOP and PAUSE
statements.

PAUSE 123456

STOP 123456

44. Multiple assignment is allowed.

X = Y = Z = 0.0

45. The .XOR. operator is supported (equivalent to .NEQV.).

46. The .AND., .OR., .NEQV., .EQV. and .XOR. operators may take integer
arguments. They can be used to perform bit operations on integers.

47. Several additional program structure control statements are supported:

Watcom FORTRAN 77 Extensions to Standard FORTRAN 77 345

Appendices

LOOP-ENDLOOP
UNTIL (can be used with WHILE and LOOP)
WHILE-ENDWILE
GUESS-ADMIT-ENDGUESS
ATENDDO-ENDATEND
ATEND
SELECT-ENDSELECT
DOWHILE-ENDDO
DO-ENDDO (no statement number)
REMOTEBLOCK-ENDBLOCK
EXECUTE
QUIT
EXIT
CYCLE

48. Block labels can be used to identify blocks of code.

LOOP : OUTER LOOP
<statements>
LOOP : INNER LOOP

<statements>
IF(X .GT.100) QUIT : OUTER LOOP
<statements>

ENDLOOP
<statements>

ENDLOOP

49. An integer expression in an IF, ELSE IF, DO WHILE, WHILE or UNTIL
statement is allowed. The result of the integer expression is compared for
inequality to the integer value 0.

346 Watcom FORTRAN 77 Extensions to Standard FORTRAN 77

Index

ADMIT 13, 98, 144, 244-246
AIMAG 306$ AINT 300
ALGAMA 314
allocatable array declarator 193
ALLOCATE 15, 50-51, 193, 344$ edit descriptor 270, 275
ALLOCATED 344
ALLOCATED 325
ALOG 308
ALOG10 309.
alternate return specifier 27, 329, 335
AMAX0 304
AMAX1 304
AMIN0 305.AND 345
AMIN1 305.EQV 345
AMOD 302.NEQV 345
ANINT 301.OR 345
apostrophe edit descriptor 272.XOR 345
argument

actual 51, 334
dummy 51, 82, 91-92, 166, 334

arithmetic assignment statement 221\
arithmetic constant expression 208
arithmetic expression 207

factor 207
\ edit descriptor 270, 275 primary 207

term 207
type of 210

arithmetic operators
A precedence 206

arithmetic relational expression 213
array

assumed-size 51A edit descriptor 282
maximum size 188ABS 301

array declarator 187access 258
actual 193direct 258, 264
adjustable 191sequential 258
allocatable 193ACCESS= 132
assumed-size 192ACOS 312
constant 191actual argument 26, 51, 334
dummy 193actual argument list 334
maximum number of elements 188actual array declarator 193

array element 189adjustable array declarator 191
array elements

347

Index

maximum 188 CASE DEFAULT 28, 136, 162, 238, 240-241
ASA 265 case list 161
ASIN 311 CCOS 310
ASSIGN 18-19, 96, 139, 146, 154, 173, 223, 263 CDABS 301
assignment statement CDCOS 310

arithmetic 221 CDEXP 308
character 224 CDLOG 308
extended 225 CDSIN 309
logical 222 CDSQRT 307
statement label 222 CEXP 308

assumed-size array 51 CHAR 212, 344
assumed-size array declarator 192 CHAR 212, 300
AT END 21, 69, 246-249, 251-252 CHARACTER 30, 33, 106, 341
ATAN 312 character assignment statement 224
ATAN2 312 character constant 182

character constant expression 212
character expression 211

primaries 211
character relational expression 213B
character set

FORTRAN 3
processor 3

BACKSPACE 22-23, 73, 263 CLOG 308
binary operator 206 CLOSE 34-35, 258, 261-262
blank common block 36 CMPLX 298
blank line 4 collating sequence 213
BLANK= 135, 275-276 colon edit descriptor 274
BLOCK DATA 7, 24, 143, 291, 330 column major 85
block data subprogram 46 comment line 4
BLOCKSIZE= 134 comments
BN edit descriptor 275 end-of-line 4
BTEST 322 COMMON 24, 36-37, 51, 87, 129, 188, 193-194,
BZ edit descriptor 275 288, 328, 330, 335

common block
blank 36
named 24, 36C COMPLEX 39-41, 342

complex constant 182
complex constant expression 209
complex edit descriptor 281CABS 301
COMPLEX*16 178, 342CALL 26-27, 327, 329, 333-335, 338, 345
CONJG 307carriage control 265
connectionCASE 28, 78, 136, 144, 161-162, 238, 240-241

file 261

348

Index

unit 261 DCONJD 307
constant 180 DCOS 310

character 182 DCOSH 313
complex 182 DCOTAN 311
double precision 181 DDIM 303
double precision complex 182 DEALLOCATE 16, 49, 51, 344
hexadecimal 184 debug line 4
hollerith 183 DEFAULT 28
integer 180 DERF 315
logical 182 DERFC 315
octal 184 DEXP 308
real 180 DFLOAT 298
string 183 DGAMMA 314

constant array declarator 191 DIM 303
constant expression 220 DIMAG 306
continuation line 5 DIMENSION 24, 51, 188, 193-194
CONTINUE 42, 56, 231 dimension declarator 188
COS 310 DINT 300
COSH 313 DIRECT 113
COTAN 311 direct access 258, 264
CSIN 309 disconnection 261
CSQRT 307 DLGAMA 314
CYCLE 43, 228-229, 231-232, 234-235, 238, DLOG 308

249-250 DLOG10 309
DMAX1 304
DMIN1 305
DMOD 302
DNINT 301D
DO 8, 42-43, 52-53, 55-56, 62-63, 71, 231, 233,

249, 330
DO WHILE 43, 62-63, 233, 249, 346

D edit descriptor 278, 280 dollar sign ($)
DABS 301 in symbolic names 177
DACOS 312 DOUBLE COMPLEX 58-59, 178, 342
DASIN 311 DOUBLE PRECISION 60-61, 342
DATA 7-8, 24, 33, 37, 41, 45, 59, 61, 120, 124, double precision complex constant 182

152, 184, 194, 328, 330, 335 double precision complex constant expression
data 255 209
data type double precision constant 181

summary 178 double precision constant expression 209
DATAN 312 DPROD 304
DATAN2 312 DREAL 298
DBLE 298 DSIGN 303
DCMPLX 299 DSIN 309

349

Index

DSINH 313 slash 273
DSQRT 307 SP 274
DTAN 310 SS 274
DTANH 314 Z 283
dummy argument 26, 51, 82, 91-92, 166, 334 ELSE 64-65, 75, 102, 227-229

array 336 ELSE IF 64-65, 75, 102, 229-230, 346
asterisk 338 END 5, 24, 37, 67-68, 156, 159, 252, 326,
dummy procedure 337 332-333, 336
of type CHARACTER 336 END AT END 69, 251
variable 336 END BLOCK 70, 87, 154, 242

dummy argument list 334 END DO 53, 62, 71, 88, 144, 231-233, 246, 248
dummy array declarator 193 END GUESS 74, 98, 244-246, 248

END IF 8, 64-65, 68, 75, 102-103, 228-230, 246,
330

END LOOP 76, 88, 125, 144, 234, 236, 245-250
END MAP 77, 126, 201E
END SELECT 28, 78, 136, 161-162, 238-241,

246
END STRUCTURE 79, 164, 199

E edit descriptor 278 END UNION 80, 167, 201
edit descriptor END WHILE 81, 88, 144, 171, 235-236, 246, 248

$ 275 end-of-file 257
\ 275 end-of-file specifier 265
A 282 end-of-line
apostrophe 272 comments 4
BN 275 END= 21, 251, 265
BZ 275 END= 263, 265
colon 274 ENDFILE 72-73, 258, 260, 263
H 272 endfile record 257
L 281 ENDGUESS 88, 248
numeric 276-278, 280-281 ENTRY 8, 31-32, 82-83, 143, 292, 330-332,

complex 281 334-335, 338
D 278, 280 entry point 330
E 278 EQUIVALENCE 24-25, 36-37, 84-85, 194, 201,
F 277 328, 330, 335, 343
I 276 ERF 315

P 274 ERFC 315
positional 273 ERR= 265

T 273 ERR= 263, 265
TL 273 error specifier 265
TR 273 EXECUTE 70, 87-88, 154-155, 242-243, 246,
X 273 248

repeatable 270 EXIT 88, 228-229, 231-232, 234-235, 238,
S 274 248-249

350

Index

EXP 308 file 255, 257
exponent 181 external 257
expression internal 259

arithmetic 207 name 258
arithmetic constant 208 file existence 257
complex constant 209 FILE= 109, 112, 115-116, 132, 135
double precision complex constant 209 FLOAT 297
double precision constant 209 FMT= 147, 174, 264
evaluation of 219 FMT= 263
factor 207 FORM= 133
integer constant 208 FORMAT 7, 18, 90, 139, 146, 173, 263, 267-268,
logical 218 275-276
logical constant 219 format
primary 207 field 272
real constant 209 field width 272
relational 213 list-directed 140-141, 146, 148, 174, 264
term 207 namelist-directed 140, 146, 174, 264

extended assignment statement 225 repeat specification 269
extension see also 269

$ edit descriptor 270 edit descriptor 269
\ edit descriptor 270 format specification 269
E edit descriptor 270 format specifier 263
X edit descriptor 270 format-directed I/O 284
Z edit descriptor 270 FORMATTED 113

extensions formatted input 148
language 341 formatted input/output 256
summary 341 formatted record 256

EXTERNAL 89, 121, 294 FORTRAN 77
external file 257 language extensions 341

access 258 FROM 161, 238
name 258 FUNCTION 7, 31-32, 91-93, 143, 180, 291-292,
properties 258 326, 328, 330, 332, 335, 342
record form 259 function
record length 259 external 326

external function 326 external name 82
external function name 82 generic 180

intrinsic 295
statement 291

F

F edit descriptor 277

351

Index

MIN 305
MOD 302G NINT 301
NOT 318
REAL 297
RSHIFT 324GAMMA 314
SIGN 303generic function 180
SIN 309ABS 301
SINH 313ACOS 312
SQRT 307AINT 300
TAN 310ANINT 301
TANH 314ASIN 311

generic name 295ATAN 312
GO TO 18-19, 94-97, 154, 223, 231, 233, 237,ATAN2 312

253-254BTEST 322
GUESS 13, 74, 98, 244CMPLX 298

CONJG 307
COS 310
COSH 313 HCOTAN 311
DBLE 298
DCMPLX 299
DIM 303 H edit descriptor 272
ERF 315 hexadecimal constant 184
ERFC 315 HFIX 297
EXP 308 hollerith constant 183
GAMMA 314
IAND 317
IBCHNG 323
IBCLR 323 I
IBSET 322
IEOR 318
IMAG 306
INT 297 I edit descriptor 276
IOR 317 I1ABS 301
ISHA 320 I1AND 317
ISHC 321 I1BCHNG 323
ISHFT 319 I1BCLR 323
ISHL 319 I1BSET 322
LOG 308 I1BTEST 322
LOG10 309 I1DIM 303
LSHIFT 324 I1EOR 318
MAX 304 I1LSHIFT 324

352

Index

I1MAX0 304 IMPLICIT 8, 24, 30, 39, 58, 60, 104-107, 118,
I1MIN0 305 122, 137, 150, 179-180, 341
I1MOD 302 IMPLICIT NONE 107, 341
I1NOT 318 implied-DO list 45
I1OR 317 INCLUDE 7, 341
I1RSHIFT 324 INDEX 306
I1SHA 320 initial line 5
I1SHC 321 input
I1SHFT 319 formatted 148
I1SHL 319 list-directed 148
I1SIGN 303 unformatted 149
I2ABS 301 input/output
I2AND 317 formatted 256
I2BCHNG 323 unformatted 256
I2BCLR 323 INQUIRE 109, 115-117, 258, 261-262, 344
I2BSET 322 INT 297
I2BTEST 322 INTEGER 106, 118-120
I2DIM 303 integer constant 180
I2EOR 318 integer constant expression 208
I2LSHIFT 324 integer quotient 210
I2MAX0 304 internal file 259
I2MIN0 305 definition 259
I2MOD 302 position 260
I2NOT 318 properties 259
I2OR 317 records 259
I2RSHIFT 324 restrictions 260
I2SHA 320 INTRINSIC 121, 295, 328-330, 335
I2SHC 321 intrinsic function 295
I2SHFT 319 ABS 301
I2SHL 319 ACOS 312
I2SIGN 303 AIMAG 306
IABS 301 AINT 300
IAND 317 ALGAMA 314
IBCHNG 323 ALLOCATED 325
IBCLR 323 ALOG 308
IBSET 322 ALOG10 309
ICHAR 299 AMAX0 304
IDIM 303 AMAX1 304
IDINT 297 AMIN0 305
IDNINT 301 AMIN1 305
IEOR 318 AMOD 302
IF 8-9, 64-65, 75, 98-99, 101-103, 228-230, 234, ANINT 301

246, 248, 250, 252-254, 330, 346 ASIN 311
IFIX 297 ATAN 312

353

Index

ATAN2 312 DMIN1 305
BTEST 322 DMOD 302
CABS 301 DNINT 301
CCOS 310 DPROD 304
CDABS 301 DREAL 298
CDCOS 310 DSIGN 303
CDEXP 308 DSIN 309
CDLOG 308 DSINH 313
CDSIN 309 DSQRT 307
CDSQRT 307 DTAN 310
CEXP 308 DTANH 314
CHAR 212, 300 ERF 315
CLOG 308 ERFC 315
CMPLX 298 EXP 308
CONJG 307 FLOAT 297
COS 310 GAMMA 314
COSH 313 HFIX 297
COTAN 311 I1ABS 301
CSIN 309 I1AND 317
CSQRT 307 I1BCHNG 323
DABS 301 I1BCLR 323
DACOS 312 I1BSET 322
DASIN 311 I1BTEST 322
DATAN 312 I1DIM 303
DATAN2 312 I1EOR 318
DBLE 298 I1LSHIFT 324
DCMPLX 299 I1MAX0 304
DCONJG 307 I1MIN0 305
DCOS 310 I1MOD 302
DCOSH 313 I1NOT 318
DCOTAN 311 I1OR 317
DDIM 303 I1RSHIFT 324
DERF 315 I1SHA 320
DERFC 315 I1SHC 321
DEXP 308 I1SHFT 319
DFLOAT 298 I1SHL 319
DGAMMA 314 I1SIGN 303
DIM 303 I2ABS 301
DIMAG 306 I2AND 317
DINT 300 I2BCHNG 323
DLGAMA 314 I2BCLR 323
DLOG 308 I2BSET 322
DLOG10 309 I2BTEST 322
DMAX1 304 I2DIM 303

354

Index

I2EOR 318 MIN1 305
I2LSHIFT 324 MOD 302
I2MAX0 304 NINT 301
I2MIN0 305 NOT 318
I2MOD 302 REAL 297
I2NOT 318 RSHIFT 324
I2OR 317 SIGN 303
I2RSHIFT 324 SIN 309
I2SHA 320 SINH 313
I2SHC 321 SNGL 297
I2SHFT 319 SQRT 307
I2SHL 319 TAN 310
I2SIGN 303 TANH 314
IABS 301 VOLATILE 326
IAND 317 IOR 317
IBCHNG 323 IOSTAT= 115, 117
IBCLR 323 IOSTAT= 263-264
IBSET 322 ISHA 320
ICHAR 299 ISHC 321
IDIM 303 ISHFT 319
IDINT 297 ISHL 319
IDNINT 301 ISIGN 303
IEOR 318 ISIZEOF 208, 344
IFIX 297 ISIZEOF 208, 325
INDEX 306
INT 297
IOR 317
ISHA 320 K
ISHC 321
ISHFT 319
ISHL 319

keywords 178ISIGN 303
ISIZEOF 208, 325
LEN 305
LENTRIM 306 LLGE 315
LGT 316
LLE 316
LLT 316 L edit descriptor 281
LOC 325 LEN 305
LSHIFT 324 length specification 30, 40, 119, 123, 151
MAX0 304 LENTRIM 306
MAX1 304 LGE 315
MIN0 305

355

Index

LGT 316 number of array elements 188
line size of an array 188

blank 4 MIN0 305
comment 4 MIN1 305
continuation 5 MOD 302
debug 4
initial 5

list-directed 260
list-directed format 140-141, 146, 148, 174, 264 N
list-directed formatting 285
list-directed input 148
list-directed output 175

named common block 24, 36LLE 316
NAMELIST 127-129, 140, 146, 174, 264,LLT 316

287-288, 290, 344LOC 343
namelist-directed format 140, 146, 174, 264LOC 325
NINT 301LOCATION= 14-17, 50
nonrepeatable edit descriptors 270LOGICAL 122-124
NOT 318logical assignment statement 222

logical constant 182
logical constant expression 219
logical expression 218 Ological disjunct 218

logical factor 218
logical term 218

logical operator 214 octal constant 184
LOOP 8, 43, 76, 125, 168, 234, 236-237, 249-250 OPEN 35, 112, 131-132, 135, 258, 260-262,
lower case 6 275-276, 344
lower case letters operator

in symbolic names 177 binary 206
LSHIFT 324 precedence 206

relational 213
unary 206

orderM statement 8
OTHERWISE 28, 136, 162, 238
output

list-directed 175main program 7, 291
MAP 77, 80, 126, 167, 201
MAP, END MAP 24
MAX0 304
MAX1 304
maximum

356

Index

endfile 257
fixed length 255P form 259
formatted 256
length 259
unformatted 256P edit descriptor 274
variable length 255PARAMETER 8, 24, 32, 106, 137, 140, 146, 174,

record specifier 264185, 219, 264, 328, 330, 335
RECORDTYPE= 134PAUSE 138, 345
relational expression 213positional edit descriptor 273
relational operator 213preconnection 261
REMOTE BLOCK 70, 87, 154, 242PRINT 90, 127, 139, 141-142, 155, 223, 243,
repeatable edit descriptor 270247, 249, 256, 258, 265, 267, 272, 274,
RETURN 37, 53, 67, 143, 156, 159, 253, 326,277-278, 280-283, 287

329, 332-334, 336, 345printing 265
REWIND 73, 157-158, 260, 263PROGRAM 7, 143, 291, 330
RSHIFT 324program unit 5, 291

SQ

S edit descriptor 274QUIT 13, 76, 98, 103, 125, 144, 228-229,
SAVE 24, 38, 143, 159-160, 194, 328, 330, 332,231-232, 234-235, 238, 244-247

335
scale factor 274
SELECT 8, 28, 78, 136, 161, 237-238, 240
sequence field 5R
SEQUENTIAL 112
sequential access 258
SHARE= 134
SIGN 303READ 21, 69, 127-129, 145-146, 148-149,
simple real constant 180250-252, 256, 260, 287, 290
SIN 309REAL 150-152
SINH 313REAL 297
slash edit descriptor 273real constant 180
SNGL 297real constant expression 209
SP edit descriptor 274REC= 149, 175
specific name 295REC= 263-264
specifierRECL= 114, 133, 135

end-of-file 265RECORD 24, 153, 164, 199
error 265record 199, 256

357

Index

format 263 TANH 314
record 264 TL edit descriptor 273
status 264 TR edit descriptor 273
unit 263

SQRT 307
SS edit descriptor 274
STAT= 14-16, 50 U
statement 5
statement function 7, 291
statement label 5

unary operator 206statement label assignment 222
underscore (_)statement order 8

in symbolic names 177status specifier 264
UNFORMATTED 113STATUS= 35, 132
unformatted input 149STOP 53, 156, 163, 253, 333, 345
unformatted input/output 256string constant 183
unformatted record 256STRUCTURE 79, 164, 178, 199
UNION 80, 126, 167, 201structure 199
UNION, END UNION 24STRUCTURE, END STRUCTURE 24
unit 261subprogram 7, 291
unit specifier 263block data 46
UNIT= 22, 34, 72, 110, 116, 131, 146-147,SUBROUTINE 7, 26, 143, 166, 291-292,

173-174, 263-264329-330, 332, 334-335, 338
UNIT= 263subroutine 329
UNTIL 88, 125, 144, 168, 171, 236-237, 246,name 82

248, 346subscript 189
subscript expression 189
subscript value 189
substring 195 Vsubstring expression 195
substring name 195
symbolic names 177

dollar sign ($) in 177 VOLATILE 169
lower case letters in 177 VOLATILE 326
underscore (_) in 177

WT

WHILE 8-9, 43, 81, 168, 171-172, 235-236, 249,
T edit descriptor 273 346
TAN 310 WRITE 127, 173, 175, 256-260, 265, 287

358

Index

X

X edit descriptor 273

Z

Z edit descriptor 283

359

