
Watcom C/C++

Getting Started

Edition 11.0c

Notice of Copyright
Copyright 2000 Sybase, Inc. and its subsidiaries. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of Sybase, Inc. and its subsidiaries.

Printed in U.S.A.

BA0614

ii

Table of Contents

1 Introduction to Watcom C/C++ .. 1
1.1 What is in version 11.0 of Watcom C/C++? .. 1
1.2 Technical Support and Services ... 5

Resources at Your Fingertips .. 5
Contacting Technical Support ... 5
Information Technical Support Will Need to Help You 6
Making Fixes Available to Developers: The Patch Utility 7

1.3 Third-party Support .. 8
1.4 Suggested Reading ... 8

C Programmers .. 8
C++ Programmers ... 8
DOS Developers .. 9
Extended DOS Developers .. 9
Windows 3.x Developers .. 9
Windows NT Developers .. 10
OS/2 Developers ... 10
Virtual Device Driver Developers .. 10

2 Installation ... 11
2.1 Send in Your Registration Card .. 11
2.2 Hardware and Software Requirements ... 11
2.3 The README File ... 12
2.4 Installing Watcom C/C++ ... 12
2.5 Incremental Installation .. 14
2.6 System Configuration File Modifications .. 15
2.7 Installation Notes for Windows 3.x .. 15
2.8 Installation Notes for OS/2 ... 16
2.9 Installation Notes for Win32s ... 17

3 Hands-on Introduction to Watcom C/C++ .. 19
3.1 Outline .. 19
3.2 The Watcom C/C++ Tutorial .. 20

Defining a Project ... 21
Adding Multiple Targets ... 24
Making a Target .. 24
Making All Targets ... 25
Executing the Program .. 25
Smart Editing .. 26
Debugging the Program .. 28
Using the Source Browser ... 31
Correcting an Error ... 33
Editing a Bitmap .. 34

iii

Table of Contents

Editing Menus ... 36
Sampling and Profiling an Executable .. 39
Saving the Project and Terminating the Session 40

3.3 Tutorial Review .. 40

4 Documentation .. 43
4.1 Accessing On-line Documentation ... 44

On-line Documentation under DOS .. 45
On-line Documentation under Windows 3.x, 95 and NT 46
On-line Documentation under OS/2 .. 49

5 Microsoft Foundation Classes ... 51
5.1 MFC 4.1 .. 51
5.2 MFC 2.52b .. 51
5.3 Debugging MFC Applications .. 51

6 SOMobjects Developer Toolkit .. 53

7 Benchmarking Hints ... 55

8 Additional Redistribution Rights .. 59
8.1 Redistributable Components ... 59
8.2 OS/2 Toolkit ... 60
8.3 IBM SOMobjects .. 61
8.4 Microsoft MFC, Win32s ... 61

9 Release Notes for Watcom C/C++ 11.0 .. 63
9.1 Changes in 11.0 that may Require Recompilation 63
9.2 Major Differences from Version 10.6 .. 63

Changes to the C++ Compiler for 11.0 ... 64
Changes to the C Compiler for 11.0 .. 66
Changes to the Code Generator for 11.0 ... 67
Changes to the Compiler Tools for 11.0 ... 67
Changes to the C/C++ Libraries for 11.0 .. 68
Changes to the DOS Graphics Library for 11.0 69
Changes in Microsoft Foundation Classes Support for 11.0 69
Changes in Microsoft Win32 SDK Support for 11.0 69
Changes in Blue Sky’s Visual Programmer for 11.0 69

9.3 Changes in 10.6 that may Require Recompilation 70
9.4 Major Differences from Version 10.5 .. 70

Windows 95 Help File Format .. 70
Changes to the C++ Compiler in 10.6 ... 70

iv

Table of Contents

Changes to the C Compiler in 10.6 ... 71
Changes to the C Library in 10.6 .. 71
Changes in Microsoft Foundation Classes Support for 10.6 72
Changes to the Image Editor in 10.6 ... 72
Changes to the Dialog Editor in 10.6 .. 72
Changes to the Resource Editor in 10.6 .. 72
Changes to the Resource Compiler in 10.6 ... 73

9.5 Major Differences from Version 10.0 .. 73
Changes in 10.5 that may Require Recompilation 87

9.6 Major Differences from Version 10.0 LA .. 87
9.7 Major Differences from WATCOM C9.5 /386 .. 87

Items No Longer Supported .. 89
Changes in 10.0 that may Require Recompilation 89

v

vi

1 Introduction to Watcom C/C++

Welcome to the Watcom C/C++ 11.0 development system. Version 11.0 of Watcom C/C++
is a professional, optimizing, multi-platform C and C++ compiler with a comprehensive suite
of development tools for developing and debugging both 16-bit and 32-bit applications for
DOS, extended DOS, Novell NLMs, 16-bit OS/2 1.x, 32-bit OS/2, Windows 3.x, Windows
95, Win32s, and Windows NT (Win32).

You should read the entire contents of this booklet, as it contains information on new
programs and modifications that have been made since the previous release.

Special NOTE to users of previous versions! See the section entitled "Release Notes for
Watcom C/C++ 11.0" on page 63 to determine if you need to recompile your application.

1.1 What is in version 11.0 of Watcom C/C++?
Version 11.0 incorporates the features professional developers have been demanding:

Open, Multi-target Integrated Development Environment
The IDE allows you to easily edit, compile, link, debug and build applications for
16-bit systems like DOS, OS/2 1.x, and Windows 3.x and 32-bit systems like
extended DOS, Novell NLMs, OS/2, Windows 3.x (Win32s), Windows 95, and
Windows NT. Projects can be made up of multiple targets which permit a project to
include EXEs and DLLs. The IDE produces makefiles for the project which can be
viewed and edited with a text editor. The IDE is hosted under Windows 3.x,
Windows 95, Windows NT, and 32-bit OS/2.

The Widest Range of Intel x86 Platforms

Host Platforms

• DOS (command line)
• 32-bit OS/2 (IDE and command line)
• Windows 3.x (IDE)
• Windows 95 (IDE and command line)
• Windows NT (IDE and command line)

What is in version 11.0 of Watcom C/C++? 1

Chapter 1

16-bit Target Platforms

• DOS
• Windows 3.x
• OS/2 1.x

32-bit Target Platforms

• Extended DOS
• Windows 3.x using our 32-bit extender technology
• Win32s
• Windows 95
• Windows NT
• 32-bit OS/2
• Novell NLMs
• AutoCAD ADS

Cross-Platform Development Tools
The core tools in the package permit cross-platform development that allows
developers to exploit the advanced features of today’s popular 32-bit operating
systems, including Windows 95, Windows NT, and OS/2. Cross-platform support
allows you to develop on a host development environment for execution on a
different target system.

Multi-Platform Debugger
The new debugger advances developer productivity. New features include
redesigned interface, ability to set breakpoints on nested function calls, improved
C++ and DLL debugging, reverse execution, and configurable interface. Graphical
versions of the debugger are available under Windows 3.x, Windows 95, Windows
NT, and 32-bit OS/2. Character versions of the debugger are available under DOS,
Windows 3.x, Windows NT, and 32-bit OS/2. For VIDEO fans, we have kept the
command line compatibility from the original debugger.

Class Browser
The Browser lets you visually navigate the object hierarchies, functions, variable
types, and constants of your C/C++ application.

Performance Analysis
The Watcom Execution Sampler and Watcom Execution Profiler are performance
analysis tools that locate heavily used sections of code so that you may focus your
efforts on these areas and improve your application’s performance.

Editor The Watcom Editor is a context sensitive source editor, integrated into the Windows
3.x, Windows 95 and Windows NT version of the IDE.

2 What is in version 11.0 of Watcom C/C++?

Introduction to Watcom C/C++

Visual Programmer
Blue Sky’s Visual Programmer is incorporated in the package. Visual Programmer is
powerful visual design environment for Windows 95 and Windows NT that helps
you build sophisticated Windows applications. Visual Programmer provides the
familiar elements of the Windows user interface, such as pull-down menus, toolbars,
dialog boxes, controls, and other elements as ready-made objects that you can
incorporate into your application instantly. In the visual design environment, you
paint your user interface directly on the screen and attach functionality to the
interface components by visually connecting them on the screen, without writing a
single line of code.

Graphical Development Tools
Watcom C/C++ includes a suite of graphical development tools to aid development
of Windows 3.x, Windows 95 and Windows NT applications. The development
tools include:

Resource Editors Enable you to create resources for your 16-bit and 32-bit
Windows applications. For 32-bit OS/2 PM development,
Watcom C/C++ includes IBM’s resource editors. These tools
have been seamlessly integrated into the IDE. The resource
compiler allows you to incorporate these resources into your
application.

Resource Compiler Produces a compiled resource file from a source file.

Zoom Magnifies selected sections of your screen.

Heap Walker Displays memory usage for testing and debugging purposes.

Spy Monitors messages passed between your application and
Windows.

DDESpy Monitors all DDE activity occurring in the system.

Dr. Watcom Enables you to debug your program by examining both the
program and the system after an exception occurs; monitors
native applications running under Windows 3.x, Windows 95 or
Windows NT.

Assembler
An assembler is now included in the package. It is compatible with a subset of the
Microsoft assembler.

What is in version 11.0 of Watcom C/C++? 3

Chapter 1

MFC Support
Watcom C/C++ allows you to recompile existing MFC applications for use under
Windows 3.x, Windows NT and Win32s. MFC 4.1 is supported for 32-bit
applications under Windows NT, Windows 95 and Win32s. MFC 2.52b is supported
for 16-bit applications under Windows 3.x.

Licensed components of OS/2 2.1 Toolkit
Includes the full OS/2 2.1 Presentation manager and character mode APIs, on-line
help and example programs.

Licensed components of Windows 3.1 Toolkit
Includes the full Windows 3.1 API libraries and on-line help.

Licensed components of Windows NT Toolkit
Includes the full Windows NT API libraries and on-line help.

Licensed components of Novell NLM SDK 4.0
Includes all header and import files needed to create an NLM.

Licensed components of the SOMobject’s Developer Toolkit for OS/2
Watcom C/C++ supports native binding for both C and C++ applications.

C++ Class Libraries
Watcom C/C++ includes container and stream class libraries.

Royalty-free 32-bit DOS Extender
Watcom C/C++ includes the DOS/4GW 32-bit DOS extender by Tenberry Software
with royalty-free run-time and virtual memory support up to 32MB.

Support for wide range of DOS Extenders
Watcom C/C++ allows you to develop and debug applications based on the following
DOS extender technology: Tenberry Software’s DOS/4G and Phar Lap’s TNT DOS
Extender. You can also develop applications using FlashTek’s DOS Extender but,
currently, there is no support for debugging these applications.

Sample programs and applications
Watcom C/C++ includes a large set of sample applications to demonstrate the new
integrated development environment.

4 What is in version 11.0 of Watcom C/C++?

Introduction to Watcom C/C++

1.2 Technical Support and Services
We are committed to ensuring that our products perform as they were designed. Although a
significant amount of testing has gone into this product, you may encounter errors in the
software or documentation. Our technical support offers a variety of services to help you
work around any problems you may encounter. Watcom C/C++ 11.0 includes 60-days of free
installation assistance. Installation assistance will include installing the product and
compiling and running the samples that are included with the product for your specific
environment. Subsequent to this 60-day period, technical assistance is available through our
fee-based support programs. Please contact us for more information.

In order to keep informed about product updates and announcements, we suggest that you
send in your registration card. Product registration cards are included in the package and can
be mailed or faxed to us.

Resources at Your Fingertips

Watcom C/C++ contains many resources to help you find answers to your questions. The
documentation is the first place to start. With each release of the product, we update the
manuals to answer the most frequently asked questions. Most of this information is also
accessible through on-line help.

The "README" file in the main product directory contains up-to-date information that
recently became available.

Answers to frequently asked questions are available on CompuServe, Powersoft’s World
Wide Web server, Powersoft’s FTP site, Powersoft’s bulletin board, or the Powersoft’s
Faxline fax back system. These services are available 24 hours a day. See the Powersoft
Customer Services Reference Guide for more information on Automated Technical Support
(ATS).

Contacting Technical Support

Our technical support is available to help resolve technical defects in the software. The
following are ways to contact technical support.

Technical Support and Services 5

Chapter 1

Telephone The telephone number for the Technical Support office nearest to you is listed in
the Customer Services Reference Guide.

Fax The telephone number of the facsimile machine for the Technical Support office
nearest to you is listed in the Customer Services Reference Guide.

World Wide Web You can also send bug reports or enhancement requests to Technical
Support using the Powersoft World Wide Web server. Electronic forms are
available for on-line completion.

FTP You can obtain a copies of the bug report or enhancement request forms from
the Powersoft FTP site.

ftp://ftp.powersoft.com/pub/watcom/general/wbugrep.zip
ftp://ftp.powersoft.com/pub/watcom/general/wenhreq.zip

The bug report form (WBUGREP.TXT) is available on Compuserve, the Powersoft BBS, and
Faxline (document #1014). The enhancement request form (WENHREQ.TXT) is available
on Compuserve, the Powersoft BBS, and Faxline (document #1015).

Information Technical Support Will Need to Help You

Your registration number will be required when you contact Technical Support.

The more information you can provide to your technical support representative, the faster they
can help you solve your problem. A detailed description of the problem, short sample
program, and a summary of steps to duplicate the problem (including compiler and linker
options) are essential. Concise problem reports allow technical support to quickly pinpoint
the problem and offer a resolution. Here is a list of information that will help technical
support solve the problem:

Contact information
We would like your name, as well as telephone and fax numbers where you can
be reached during the day.

Product information
Please tell us the product name, version number, patch level, and software
registration number.

Hardware configuration
Please tell us what type of processor you are using (e.g., 33MHz 486SX), how
much memory is present, what kind of graphics adapter you are using, and how
much memory it has.

6 Technical Support and Services

Introduction to Watcom C/C++

Software configuration
Please tell us what operating system and version you are using.

Output from the TECHINFO utility
Please provide the output from the Techinfo utility. It lists current patch levels,
environment variable settings, and the contents of your AUTOEXEC.BAT and
CONFIG.SYS files.

Concise problem report with short sample program
Please provide a complete description of the problem and the steps to reproduce
it. A small, self-contained program example with compile and link options is
ideal.

An electronic form of communication is often preferable for reporting technical problems. It
provides an easy and efficient way to receive sample code and complete problem details.

Making Fixes Available to Developers: The Patch Utility

We are dedicated to fixing problems in our products. We developed the patch utility to enable
timely responses to bugs in the software. Patches are frequently made available and are
designed to address problems with the software. When you call technical support one of the
first questions asked is your current patch level.

How do I determine the current patch level?
Here are two easy ways for you to determine your current patch level:

1. At the command line, type the command "techinfo". Among other
information, it displays the patch level of the various components in
the package.

2. If you are using the command line tools, both the C and C++ compiler
display a banner at startup that echo the version number with the
patch level.

How can I get the patches?
Patches are made available on CompuServe, our World Wide Web server, our
FTP site, and our bulletin board. They are available 24 hours a day. Patches are
also available on the current release CD-ROM.

How do I apply the patches?
Once you have downloaded the patches, issue the pkunzip command to unzip
the patch files. A "README" file provides information on the patch.

Technical Support and Services 7

Chapter 1

How can I ensure the patch applied correctly?
Running the Techinfo utility indicates the current patch level of the tools.
Ensure that the patch indication for the files is the one you just applied.

1.3 Third-party Support
A large number of third party software packages support the use of the Watcom C/C++. We
have included a document on the CD-ROM which describes some of these packages. The
information on these software packages was provided by the developers of these packages.
The document takes the form of a help file, of which versions are provided for DOS,
Windows 3.x, Windows 95, Windows NT, and OS/2.

1.4 Suggested Reading
There are a number of good books and references that can help you answer your questions.
Following is a list of some of the books and documents we feel might be helpful. This is by
no means an exhaustive list. Contact your local bookstore for additional information.

C Programmers

The C Programming Language, 2nd Edition
Brian W. Kernighan and Dennis M.Ritchie; Prentice Hall, 1988.

C DiskTutor
L. John Ribar; Osborne McGraw-Hill, 1992.

C++ Programmers

C++ Primer, 2nd Edition
Stanley B. Lippman; Addison-Wesley Publishing Company, 1991.

Teach Yourself C++ in 21 Days
Jesse Liberty; Sams Publishing, 1994.

8 Suggested Reading

Introduction to Watcom C/C++

DOS Developers

PC Interrupts, Second Edition
Ralf Brown and Jim Kyle; Addison-Wesley Publishing Company, 1994.

Relocatable Object Module Format Specification, V1.1
The Intel OMF specification can be obtained from the Intel ftp site. Here is the
URL.

ftp://ftp.intel.com/pub/tis/omf11g.zip

This ZIP file contains a Postscript version of the Intel OMF V1.1 specification.

Extended DOS Developers

Extending DOS—A Programmer’s Guide to Protected-Mode DOS, 2nd Edition
Ray Duncan, et al; Addison-Wesley Publishing Company, 1992.

DOS Protected-Mode Interface (DPMI) Specification
The DPMI 1.0 specification can be obtained from the Intel ftp site. Here is the
URL.

ftp://ftp.intel.com/pub/IAL/software specs/dpmiv1.zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

Windows 3.x Developers

Microsoft Windows Programmer’s Reference
Microsoft Corporation; Microsoft Press, 1990.

Programming Windows 3.1, Third Edition
Charles Petzold; Microsoft Press, 1992.

Windows Programming Primer Plus
Jim Conger; Waite Group Press, 1992.

Suggested Reading 9

Chapter 1

Windows NT Developers

Advanced Windows NT
Jeffrey Richter; Microsoft Press. 1994.

Inside Windows NT
Helen Custer; Microsoft Press. 1993.

Microsoft Win32 Programmer’s Reference, Volume One
Microsoft Corporation; Microsoft Press, 1993.

OS/2 Developers

The Design of OS/2
H.M. Deitel and M.S. Kogan; Addison-Wesley Publishing Company, 1992.

OS/2 Warp Unleashed, Deluxe Edition
David Moskowitz and David Kerr, et al; Sams Publishing, 1995.

OS/2 Technical Library.
To order the Technical Library, call one of the following numbers.

In Canada: 1-800-465-1234
In the United States: 1-800-426-7282 (OS/2 2.x)

1-800-879-2755 (OS/2 Warp)

You can also order copies of these books from an IBM authorized dealer or IBM
representative.

Virtual Device Driver Developers

Writing Windows Virtual Device Drivers
David Thielen and Bryan Woodruff; Addison-Wesley Publishing Company,
1994.

10 Suggested Reading

2 Installation

The package contains the following components:

• Watcom C/C++ CD-ROM
• This manual
• Registration Card
• Envelope containing important information
• Customer Services Reference Guide

2.1 Send in Your Registration Card
You should fill out and mail your registration card as soon as possible to ensure you are
informed of future upgrades and other special offers to registered users. Your registration
number is printed on the registration card. Retain the other portion of the registration card
for your records. Your registration number is printed on it. You will need this number
when you contact Technical Support.

2.2 Hardware and Software Requirements
Watcom C/C++ requires the following minimum configuration:

• IBM PC compatible

• An 80386 or higher processor

• 8 MB of memory

• 441 MB of disk space.

Note that the disk space requirement varies with the disk cluster size. The larger the
cluster size, the greater the disk requirement. If your hard disk has 8K clusters (257MB
to 512MB), a complete installation will require 441 MB megabytes of disk space. If
your hard disk has 16K clusters (513MB to 1GB), a complete installation will require
514 MB megabytes. A selective install will require considerably less space.

Hardware and Software Requirements 11

Chapter 2

• A CD-ROM disk drive

In addition to the above requirements, you need one of the following operating systems:

• DOS version 5.0 or higher
• Microsoft Windows version 3.1 running in enhanced mode
• Microsoft Windows 95
• Microsoft Windows NT version 3.1 or higher
• IBM OS/2 2.1 or higher

You must install the software from a CD-ROM drive. Unlike earlier releases, it is now no
longer possible to copy the installation files to diskettes and install the software from your
diskette drive.

2.3 The README File
Before you install Watcom C/C++, you should read the contents of the "README" file which
is stored in the root directory of the CD-ROM. It contains valuable, up-to-date information
concerning this product.

2.4 Installing Watcom C/C++
The installation program in this version has been completely redesigned with several new
"smart" features. If you have installed a previous version of Watcom C/C++ then you should
install Watcom C/C++ 11.0 into the same path (except for the reason described in the
following paragraph). It will examine a previous installation to determine what features were
previously installed. It will use this information to establish default settings for the
installation that you are about to attempt. Of course, you can add or remove features as you
progress through the installation steps.

If you are installing only one of the Watcom C/C++ or Watcom FORTRAN 77 products and
you have an older version of the other product, we do NOT recommend that you install the
new product into the same directory as the old product. The Watcom C/C++ and Watcom
FORTRAN 77 products are compatible at the same version number. However, the Watcom
C/C++ and Watcom FORTRAN 77 products are usually NOT compatible across different
version numbers (e.g., version 9.5 of Watcom FORTRAN 77 is not compatible with version
10.5 of Watcom C/C++ and vice versa). If this is the case, care must be exercised when
switching between use of the two products. Environment variables such as PATH and
WATCOM must be modified and/or corrected. System files such as CONFIG.SYS and
SYSTEM.INI must be modified and/or corrected.

12 Installing Watcom C/C++

Installation

If you are installing both Watcom C/C++ 11.0 and Watcom FORTRAN 77 11.0, we
recommend that you install both products under the same directory. This will eliminate
duplication of files and, as a result, reduce the total required disk space. The two products
share the use of certain environment variables which point to the installation directory. If
separate installation directories are used, problems will arise.

When you install Watcom C/C++ and Watcom FORTRAN 77 in the same directory, you
should not deselect any options when running the second installation; otherwise the second
product’s install may remove files that were installed (and are required) by the first product’s
install. This isn’t an issue if you only have one of Watcom C/C++ or Watcom FORTRAN 77.
The problem is that Watcom C/C++ and Watcom FORTRAN 77 don’t know about the
installation options you have selected for each other’s product.

If you wish to create a backup of your previous version, please do so before installing
Watcom C/C++ 11.0.

If you decide to install Watcom C/C++ 11.0 into a different directory than the previously
installed version, you will have to manually edit system files (e.g., CONFIG.SYS,
AUTOEXEC.BAT, SYSTEM.INI) after the installation process is complete to remove the old
version from various environment variables (e.g., PATH, DEVICE=). This is necessary since
the path to the new version will appear after the path to the old version. To avoid this extra
work, we recommend installing the new version into the same path as the old version.

As an example, here are a few of the environment variables and "RUN" directives that are
modified/added to the OS/2 CONFIG.SYS file. You should make sure that all references to
the older version of the software are removed.

Example:
LIBPATH=...;D:\WATCOM\BINP\DLL;...
SET PATH=...;D:\WATCOM\BINP;D:\WATCOM\BINW;...
SET HELP=...;D:\WATCOM\BINP\HELP;...
SET BOOKSHELF=...;D:\WATCOM\BINP\HELP;...
SET INCLUDE=...;D:\WATCOM\H\OS2;D:\WATCOM\H;
SET IPFC=D:\WATCOM\TOOLKT2X\IPFC
SET WATCOM=D:\WATCOM
SET EDPATH=D:\WATCOM\EDDAT
RUN=D:\WATCOM\BINP\BATSERV.EXE
RUN=D:\WATCOM\BINP\NMPBIND.EXE

You may wish to run Watcom C/C++ under more than one operating system on the same
personal computer. For every operating system that you use, simply start up the operating
system and run the corresponding install procedure.

If you run the Windows 3.x installation procedure, you do not need to run the DOS
installation procedure also.

Installing Watcom C/C++ 13

Chapter 2

If you plan to use Win-OS/2 as a development platform under OS/2, you must run the
Windows 3.1 install program (selecting Windows 3.1 host support).

Place the CD-ROM disk in your CD-ROM drive. Select one of the following procedures
depending on the host operating system that you are currently running. Below, substitute the
CD-ROM drive specification for "x:".

DOS Enter the following command:

x:\setup

Windows 3.x Start Windows 3.x and choose Run from the File menu of the Program
Manager. Enter the following command:

x:\setup

Windows 95 Choose Run from the Start menu and enter the following command:

x:\setup

Windows NT Log on to an account that is a member of the "Administrator" group so
that you have sufficient rights to modify the system environment.
Choose Run from the File menu of the Program Manager. Enter the
following command:

x:\setup

OS/2 Start an OS/2 session and enter the following command:

x:\install

2.5 Incremental Installation
You may wish to install Watcom C/C++, and subsequently install features that you omitted in
the first install. You can also remove features that you no longer wish to have installed. You
can achieve this as follows:

1. Start the installation program.
2. Select any new features that you wish to install.
3. Deselect any features that you wish to remove.
4. Re-run the installation program for each host operating system that you use.

14 Incremental Installation

Installation

2.6 System Configuration File Modifications
The install program makes changes to your operating system startup files to allow Watcom
C/C++ to run. We strongly recommend that you allow the install program to modify your
system configuration files for you, but you may do it by hand. The changes required may be
found in any of the following files which have been placed in the root of the installation
directory:

CONFIG.NEW Changes required for CONFIG.SYS (DOS, Windows, Windows
95, OS/2)

AUTOEXEC.NEW Changes required for AUTOEXEC.BAT (DOS, Windows, Windows
95, OS/2)

CHANGES.ENV Changes required for the Windows NT environment

2.7 Installation Notes for Windows 3.x
1. When you use the Integrated Development Environment under Windows 3.x, it is

important that the IDE’s batch server program be able to run in the background.
Therefore, make sure that the "Exclusive in Foreground" checkbox is NOT checked
in the "Scheduling" options of "386 Enhanced" in the "Control Panel".

2. When you use the Integrated Development Environment under Windows 3.x, the
line

OverlappedIO=ON

in your "SYSTEM.INI" file can cause problems. This controls (disables) the
queuing of DiskIO and makes some changes between DOS box timings to allow
some processes to finish.

3. When you use the Integrated Development Environment under Windows 3.x, it is
important that the line

NoEMMDriver=ON

not appear in your "SYSTEM.INI" file. It will prevent a link from succeeding in
the IDE..

4. When you use the Integrated Development Environment under Windows 3.x on the
NEC PC-9800 series, it is important that the line

Installation Notes for Windows 3.x 15

Chapter 2

InDOSPolling=TRUE

not appear in your "SYSTEM.INI" file. It will prevent a make from succeeding in
the IDE.

5. Central Point Software’s anti-virus programs (VDEFEND, VSAFE, VWATCH)
conflict with the Integrated Development Environment under Windows 3.x.

6. The Program Information File "BATCHBOX.PIF" is used by the Integrated
Development Environment (IDE) to start up a background batch server for
compiling, linking, etc. The PIF references "COMMAND.COM". If you are using
a substitute for "COMMAND.COM" such as "4DOS.COM" then you must modify
the PIF accordingly using a PIF editor.

2.8 Installation Notes for OS/2
1. The Integrated Development Environment (IDE) uses the IBM OS/2 Enhanced

System Editor (EPM) for editing text files. You must ensure that EPM is installed
in your OS/2 system if you are planning to use the IDE. You can selectively install
the Enhanced Editor by running the OS/2 Setup and Installation program (Selective
Install) and choosing "Enhanced Editor" from the "Tools and Games" detail page.

2. The Integrated Development Environment (IDE) requires that the BATSERV.EXE
program be started during OS/2 initialization. If you plan to use the IDE, do not
remove the "RUN=" line for this file from your CONFIG.SYS file.

3. On some systems with limited memory that use the UNDELETE feature of OS/2,
compile times may be slow because OS/2 is saving copies of compiler temporary
files. You may start the BATSERV process using the OS/2 STARTUP.CMD file
with DELDIR turned off as illustrated below.

SET OLD DEL DIR=%DELDIR%
SET DELDIR=
DETACH C:\WATCOM\BINP\BATSERV.EXE
SET DELDIR=%OLD DEL DIR%
SET OLD DEL DIR=

4. If you plan to use the Named Pipe Remote Debugging support of the Watcom
Debugger then the NMPSERV.EXE. program must be started during OS/2
initialization. If you plan to use this feature, do not remove the "RUN=" line for
this file from your CONFIG.SYS file.

16 Installation Notes for OS/2

Installation

2.9 Installation Notes for Win32s
There is a directory called WIN32S in the SDK directory of the CD-ROM. It contains the
entire Win32s directory structure. The Watcom C/C++ install program will install Win32s
onto your computer system, but it will not install the debug version of Win32s. If you want to
use the debug version of Win32s, type the commands:

X:
cd \sdk\win32s
install D:

where "X" is the drive letter of your CD-ROM drive, and "D" is the drive you want to install
Win32s on. Once you have done this, you can use SWITCH.BAT in the WIN32S\BIN
directory to switch between the debug and non-debug versions of Win32s.

As an alternative to installing Win32s using the Watcom C/C++ install program, you can run
X:\SDK\WIN32S\DISKS\DISK1\SETUP.EXE.

Installation Notes for Win32s 17

Chapter 2

18 Installation Notes for Win32s

3 Hands-on Introduction to Watcom C/C++

Let’s get started and introduce some of the new tools that are in version 11. The purpose of
this chapter is to briefly test out the new graphical tools in version 11 using an existing
application.

In this tutorial, we will take an existing set of C++ source files, create a project in our
integrated development environment, and perform the following tasks:

• Add multiple targets
• Make a target
• Make all targets
• Execute the program
• Debug the program
• Use the Browser
• Correct errors
• Sample and profile the executable
• Save the project
• Terminate the session

3.1 Outline
Watcom’s Integrated Development Environment (IDE) manages the files and tools that a
programmer uses when developing a project. This includes all the source files, include files,
libraries, compiler(s), linkers, preprocessors, etc. that one uses.

The IDE has a graphical interface that makes it easy to visualize the make-up of a project. A
single IDE session shows a project. If the project consists of a number of components, such
as two executables and one library, these are each shown as target windows in the project
window. Each target window shows the files that are needed to construct the target and is
associated via its filename extension with a rule that describes the construction mechanism.
For example, a filename with the extension ".EXE" may be associated with the rule for
constructing 32-bit Windows executables, or a filename with the extension ".LIB" may be
associated with the rule for constructing static libraries. Different projects can refer to the
same target. If they do, the target is shared and can be manipulated via either project, with
changes made through one affecting the other.

Outline 19

Chapter 3

The IDE itself is a collection of programs that manages the various files and tools used to
create the target libraries and executables. It creates makefile(s) from the information in the
target descriptions and invokes Watcom Make to construct the targets themselves. A
configuration file contains built-in knowledge of the Watcom compilers, editors, Profiler, and
Browser, as well as all their switches.

3.2 The Watcom C/C++ Tutorial
This tutorial walks you through the creation and execution of a C/C++ program under
Windows. This will give you an understanding of the basic concepts of the IDE and its
components, and it will detail the steps involved in project development. The result of this
tutorial is a three dimensional drawing of a kitchen which you can manipulate using either the
menus or the icons on the toolbar. You can rotate and resize the drawing, as well as adjust the
lighting and contrast.

To begin, start the IDE. This is done by double-clicking on the "IDE" icon in the Watcom
C/C++ window.

A status field at the bottom of the IDE window indicates the function of the icon on the
toolbar over which your mouse cursor is currently positioned. If the status area does not show
you the function of the icons as you move the mouse cursor over them, check that no item in
the menu bar is highlighted (if one is highlighted, press the Alt key).

Figure 1. The initial IDE screen

20 The Watcom C/C++ Tutorial

Hands-on Introduction to Watcom C/C++

Defining a Project

In this tutorial, you will be creating a new project called KITCHEN. Here are the steps
required to accomplish this task.

1. Define a new project by pulling down the File menu and selecting the New
Project... item. You can also define a new project by clicking on the "Create a
new project" icon on the toolbar.

2. A choice of different sample project directories is available. Assuming that you
installed the Watcom C/C++ software in the \WATCOM directory, you will find the
sample project directories in the following directory:

\WATCOM\SAMPLES\IDE

For purposes of this tutorial, we recommend that you select one of the following
project directories:

WIN for an example of 16-bit Windows 3.x application development when
using Windows 3.x under DOS as a host development system,

WIN386 for an example of 32-bit Windows 3.x application development when
using Windows 3.x under DOS as a host development system,

WIN32 for an example of 32-bit Win32 application development when using
Windows NT or Windows 95 as a host development system, and

OS2 for an example of 32-bit OS/2 application development when using
32-bit OS/2 as a host development system.

Thus the target that we refer to below should be one of WIN, WIN386,
WIN32, or OS2 depending on your selection. The tutorial uses the WIN32
example for illustrative purposes. You will find some minor variations from your
selected target environment.

When asked for a project name, you can do one of two things:

1. enter the following pathname:

d:[path]\SAMPLES\IDE\target\KITCHEN

where d:[path] is the drive and path where you installed the Watcom
software, or

The Watcom C/C++ Tutorial 21

Chapter 3

2. use the file browser to select the following directory:

d:[path]\SAMPLES\IDE\target

and specify the filename KITCHEN.

Figure 2. Creating a new project

Press the Enter key or click on OK (OPEN).

The project description will be stored in this file and the IDE will set the current
working directory to the specified path during your session.

3. You will be prompted for a target name. Since we will be attaching pre-defined
targets, just click the Browse button when prompted for the target name. Select the
"draw" target file (it will be one of DRAW16.TGT, DRAW.TGT, DRAW32.TGT,
DRAWOS2.TGT depending on your selection of target).

22 The Watcom C/C++ Tutorial

Hands-on Introduction to Watcom C/C++

Figure 3. Attaching existing targets

Press the Enter key or click on OK (OPEN).

4. You can ignore the settings displayed for Target Environment and Image Type
since the target definition already exists (we created it for you). The settings are
important when you a defining a new target (i.e., one that was not predefined).

Figure 4. Selecting a target type

Press the Enter key or click on OK.

The Watcom C/C++ Tutorial 23

Chapter 3

A target window is created in the project window for the "draw" target. This window contains
all of the files associated with the target. You can click on any of the "Folder" icons to hide or
un-hide all files with a particular extension. For example, you may wish to un-hide all the
files with a .BMP extension by clicking on the folder icon associated with bitmap files.

Adding Multiple Targets

Watcom’s IDE allows you to have multiple targets in any particular project. Note that targets
can be used by multiple projects. To add a new target to the project, do the following.

1. Pull down the Targets menu and select the New Target... item.

2. Enter BUTTON.TGT as the target name for the new target to be added to the
project. Do not forget to include the .TGT extension. It is required when selecting
a pre-existing target.

3. You can ignore the settings displayed for Target Environment and Image Type
since the target definition already exists (we created it for you). The settings are
important when you a defining a new target (i.e., one that was not predefined).

4. Press the Enter key or click on OK.

A target window is created in the project window for the button target.

Making a Target

Watcom’s IDE will automatically generate the sequence of steps required to build or "make"
each of the targets in a project. Note that the targets in a project can be made individually or
collectively. To make the button.lib target, do the following.

1. Click on the window of the target you wish to make. In this case, click on the
button.lib target window.

2. Pull down the Targets menu and select the Make item (you can also do this by
clicking on the "Make the current target" icon on the toolbar, or by right-clicking
on the target and selecting the Make item from the pop-up menu).

The IDE will now construct a makefile based on its knowledge of the target and construction
rules, and then invoke the make utility to create the target, in this case button.lib. The
output of this procedure is displayed in the Log window.

24 The Watcom C/C++ Tutorial

Hands-on Introduction to Watcom C/C++

Making All Targets

Click the "Make all targets in the project" icon on the toolbar to make all of the targets in the
current project. If one target depends on another target, the latter target will be made first. In
this tutorial BUTTON.LIB will be made first (there will be nothing to do since it was made
previously) and then DRAW???.EXE, since BUTTON.LIB is in the list of files associated
with DRAW???.EXE. In each case, the IDE constructs makefiles based on its knowledge of
the target and construction rules. The output of this procedure is displayed in the Log
window.

Figure 5. Making one or more targets

Executing the Program

The project should have built without errors, so now you are ready to execute the program you
have developed.

Click on the DRAW???.EXE target window and simply click on the "Run the current target"
icon on the toolbar. You can also do this by selecting Run from the Targets menu, or

The Watcom C/C++ Tutorial 25

Chapter 3

right-clicking anywhere on the target window outside of the inner frame and selecting Run
from the pop-up menu (right-clicking is context sensitive and the pop-up menu that results
will vary depending on the area of the window in which you right-click).

Figure 6. The kitchen demo

The demo you have created is a simple three dimensional drawing of a kitchen. By using
either the icons on the toolbar or the menus you can rotate the picture left, right, up, and
down, make the picture brighter or dimmer, move the picture closer or farther away, and
increase or decrease the amount of contrast (this latter feature is found in the "Lighting"
menu). Choose Exit from the File menu to exit the demo program when you are finished.

Smart Editing

The IDE recognizes the type of file you wish to edit, and invokes the appropriate editor for the
task. To edit a file, you either double-click on it or select it and click the "Edit" icon on the
toolbar. Files with a .C, .CPP, .H, .HPP, .FOR, .ASM or .RC extension are edited
with a text editor; files with a .BMP, .ICO, or .CUR extension are edited with the Image
Editor; files with a .DLG or .RES extension are edited with the Resource Editor.

26 The Watcom C/C++ Tutorial

Hands-on Introduction to Watcom C/C++

Figure 7. The Watcom Editor for Windows

Now we will edit one of the source files and introduce an error into the application.

1. Double-click on the "draw" source file (i.e., DRAW???.C) to load the source file
into the editor.

2. Scroll down to line 217 using the keyboard or mouse. You can also pull down the
Edit menu, select Goto Line..., and enter 217. The Watcom Editor makes full use
of colors and fonts to achieve syntax highlighting. File templates for C, C++, and
FORTRAN files are defined to assist you in distinguishing the components of your
code.

3. Pull down the Options menu and select the Colors item.

4. Click on a color from the palette, drag it to the word if on line 218, and release it.
All keywords are now displayed in the chosen color. Drag a different color to a
comment line (line 225) and all comments will display in that color. Similarly, you
can select the Fonts item from the Options menu, select a font style and size, and
drag it to your source file. Close the Fonts and Colors dialog by double-clicking in
the upper left hand corner.

5. You can now save this color and font configuration for all .CPP files by pulling
down the Options menu, selecting the General..., item and clicking next to Save
configuration on exit in the "Features" box. Press Enter or click on OK.

6. Now, to introduce an error into the application, replace the line #if 0 with #if
1.

The Watcom C/C++ Tutorial 27

Chapter 3

7. Save your changes by clicking on the "Write the current file to disk" icon or select
Save from the File menu.

8. Return to the IDE (by clicking on it if it is visible on your screen, or by using
Alt-Tab), re-make your project, and run it. A fault occurs in your application, so
the next step is to track down the problem using the Watcom Debugger.

Debugging the Program

To debug a program it must first be compiled to include debugging information. The IDE
maintains two sets of switches for each target in a project. These are known as the
Development Switches and the Release Switches.

1. Right click on DRAW???.C and select Source options from the pop-up menu.
Select C Compiler Switches from the sub-menu.

By default, your target is placed in development mode with the debugging switches
for the compiler and linker set to include debugging information. You can either
set the switches in each category manually or you can copy the default Release
switches using the CopyRel button. This method of setting switches is especially
convenient since you can specify everything from diagnostic, optimization, and
code generation switches to special linker switches all without having to memorize
a cryptic switch name — you simply click next to the switches you wish to use for
a particular item.

2. Scroll through the categories using the >> button until you get to:

6. Debugging Switches

We can see that full debugging information was used in the compile, so just click
on Cancel to exit this screen.

28 The Watcom C/C++ Tutorial

Hands-on Introduction to Watcom C/C++

Figure 8. Setting compiler switches

3. To invoke the debugger, pull down the Targets menu and choose the Debug item or
select the "Debug the current target" icon from the toolbar.

The Watcom Debugger is designed to be as convenient and intuitive as possible, while at the
same time providing a comprehensive and flexible environment for serious debugging. You
can configure your environment to display exactly the information you require to be most
productive. Among the windows available are source and assembly, modules, functions,
calls, threads, images, watches, locals, globals, file variables, registers, 80x87 FPU, stack, I/O
ports, memory display, and a log window. You can step through your source using the keys
or icons on the toolbar. Execute one line at a time by stepping over calls or stepping into
calls, or execute until the current function returns. Right-mouse button functionality gives
context-sensitive pop-up menus.

The Watcom C/C++ Tutorial 29

Chapter 3

Figure 9. The Watcom Debugger

We know that a fault has occurred in DRAW???.EXE, so we will run the application and
examine the state of the program when the fault occurs.

1. Click on the "go!" icon on the toolbar to begin execution of the program. The
exception occurs and the source window shows the line

*pwidth = bitmap.bmWidth + 5;

in the function button size as the last line executed before the exception.
Examining the Locals window you will see that pwidth is a NULL pointer, hence
the exception.

2. We can now move up the call stack by clicking on the "Move up the call stack"
icon on the toolbar (red up arrow) to follow the program’s execution. On the
previous line, we see button size is called from add button. Moving up
the call stack again, we see add button is called with NULL as its fifth

30 The Watcom C/C++ Tutorial

Hands-on Introduction to Watcom C/C++

parameter. An artificial error has been introduced for the purposes of this tutorial.
It is located several lines back in the source file.

3. By replacing the line #if 1 with #if 0 we can bypass this error. Right-click on
the line #if 1 and select Show, then Line... from the pop-up menus to see the
line number which must be corrected, then exit the debugger.

4. Double-click on DRAW???.C to load the source file into the editor.

5. Scroll down to line 217 using the keyboard or mouse, or pull down the Edit menu,
select Goto Line..., and enter 217.

6. Replace the line #if 1 with #if 0 and save your changes by clicking on the
"Write the current file to disk" icon or selecting Save from the File menu.

7. Return to the IDE (by clicking on it if it is visible on your screen, or by using
Alt-Tab) and re-make your project.

8. Run your project to see the kitchen demo.

Using the Source Browser

Suppose you wanted to change the color of the tabletop in your application. You can use the
Watcom Browser to determine the code you will need to change. The Watcom Browser
provides an easy way to examine the class definitions, member functions, and inheritance
trees associated with your C++ code. First, you need to instruct the compiler to emit Watcom
Browser information.

The Watcom C/C++ Tutorial 31

Chapter 3

Figure 10. The Watcom Browser

1. Right click on FURNITU.CPP, then select Source options from the pop-up
menus. Select C++ Compiler Switches from the sub-menu.

2. Go to the

6. Debugging Switches

category by selecting it from the drop-down list box or by scrolling through the
categories using the >> button.

3. Select Emit Browser information [-db] and click on OK.

4. Click the "Make all targets in the project" icon to re-make the project. The
compiler will emit Browser information for FURNITU.CPP in a file called
DRAW???.DBR. Now you are ready to browse the target’s source.

5. Pull down the Targets menu and select Browse, or click the "Browse the current
target" icon on the toolbar. The inheritance tree for the target is displayed.

6. To view details on any particular class, double-click on the item for information
such as the location of the class definition, the private, public, and protected

32 The Watcom C/C++ Tutorial

Hands-on Introduction to Watcom C/C++

functions of the class, and the class inheritance. Branches of the inheritance tree
can be collapsed and expanded. A variety of tools are available to help you
navigate your C++ source. Double-click on the table class.

7. Double-click on the function top and four legs() to see the details on this
function.

8. Select the variable tabletop, pull down the Detail menu, and select the Goto
Definition... item. The Editor is invoked, loading the file FURNITU.CPP which
contains the definition of top and four legs.

9. Next we will make some changes to FURNITU.CPP in order to change the color
of the tabletop. Scroll down to line 132 using the keyboard or mouse, or pull down
the Edit menu, select Goto Line..., and enter 132.

10. Replace the line

tabletop->rgb(0,255,255);

with

tabletop->black();

11. Save your changes by clicking on the "Write the current file to disk" icon or
selecting Save from the File menu.

12. Shut down the Browser before re-making the project.

13. Return to the IDE (by clicking on it if it is visible on your screen, or by using
Alt-Tab).

14. Click the "Make all targets in the project" icon to re-make the project.

Correcting an Error

An error is encountered during the make and error message(s) appear in the log window.
Additional information on the error is available by selecting the error, pulling down the Log
menu and selecting the Help on Message item.

1. Double-click on the error message

furnitu.cpp (132): Error! E029: (col 15) symbol ’black’ has not
been declared.

The Watcom C/C++ Tutorial 33

Chapter 3

The offending source file (FURNITU.CPP) is loaded into the Editor and the
cursor is positioned at the line which caused the error. Apparently, black has not
been defined as a color.

2. Restart the Browser.

3. Double-click on color in the Inheritance window to see the member functions of
the class color. Among our choices are blue(), green(), and red().

4. Press the Alt-Tab key combination to return to the Editor and replace the line

tabletop->black();

with

tabletop->red();

5. Save your changes.

6. Return to the IDE and re-make the project.

7. Run the program to see the changes you have made to the tabletop.

Editing a Bitmap

You can edit bitmaps, icons, or cursors associated with your project using Watcom’s Image
Editor. Double-click on a file with a .BMP, .ICO, or .CUR extension and the file is loaded
into the Image Editor. The editor has many features to design your images, including resizing,
rotation, shifting, and a utility to take a "snapshot" of another image and import it.

34 The Watcom C/C++ Tutorial

Hands-on Introduction to Watcom C/C++

Figure 11. The Watcom Image Editor

Suppose you wanted to change the color of the right-arrow icon in your application.

1. If the "Folder" icon next to .BMP is closed, click on it to restore all the files with a
.BMP extension to the file list.

2. Scroll the window until the file RIGHT.BMP is visible.

3. Double-click on RIGHT.BMP in the DRAW???.EXE target window.

4. Select the "Paint Can" icon from the Tool Palette.

5. Select a color from the Color Palette.

The Watcom C/C++ Tutorial 35

Chapter 3

6. Click on the arrow.

7. Save your changes using the "Save" icon on the toolbar and exit the Image Editor.

8. Click the "Make all targets in the project" icon to rebuild the project with the
change incorporated.

Editing Menus

Next, you will add source files to the list of items that make up DRAW???.EXE.

1. Pull down the Sources menu and select the New Source... item.

Note: You can do this either by choosing from the menu bar or by
positioning the mouse over the file list area and clicking the right
mouse button. The IDE displays a pop-up menu from which you can
choose the desired action.

2. Enter the filename DRAW.RES (or DRAWOS2.RES for OS/2). For OS/2, click OK
when you have entered the source file name. For all other systems, click on Add
when you have entered the source file name and then click on Close. Now we will
remove the .RC file from the project so that our changes to the .RES file will not
be overwritten. When an .RC file is present, the .RES file is generated from the
.RC file.

3. Right click on DRAW.RC (or DRAWOS2.RC for OS/2), then select Remove Source
from the pop-up menu.

4. Double-click on DRAW.RES (or DRAWOS2.RES). The Resource Editor is
invoked, displaying all the available resources (in this case, icons, bitmaps, and
menus).

36 The Watcom C/C++ Tutorial

Hands-on Introduction to Watcom C/C++

Figure 12. The Watcom Resource Editor

5. Click on "Menu Resources".

6. Double-click on "DrawMenu" in the right-hand box. This will bring up the Menu
Editor. The Menu Editor displays the menus defined for the resource DrawMenu.
You can specify pop-up menus, menu items and sub-items, text, separators,
attributes, break styles, and memory flags.

The Watcom C/C++ Tutorial 37

Chapter 3

Figure 13. The Watcom Menu Editor

7. Click on MENUITEM "&Dimmer" in the item list window.

8. In the "Item Text" window change the item to &Darker and then click on the
"Change" button.

9. Select Update from the File menu or click on the "Update the file with this menu"
icon.

10. Exit the Menu Editor.

38 The Watcom C/C++ Tutorial

Hands-on Introduction to Watcom C/C++

11. Now, select Save from the File menu or click on the "Save this file" icon and exit
the Resource Editor.

12. Click the "Make all targets in the project" icon to re-make the project.

Sampling and Profiling an Executable

Together, the Watcom Execution Sampler and the Watcom Execution Profiler allow you to
pinpoint the areas of your code that are the most heavily used, indicating possible candidates
for performance improvements.

1. Click on the DRAW???.EXE target.

2. Select the Sample item from the Targets menu item, or click on the "Run and
sample the current target" icon from the toolbar. The Watcom Execution Sampler
is invoked and your application begins to execute.

3. Try rotating and resizing the image a few times. The sampler takes a "snapshot" of
the code that is being executed at regular intervals. Exit the application. A samples
file with extension .SMP is created in the current directory. This file is input for
the profiler.

4. You are now ready to profile the executable. Do this by selecting Profile from the
Targets menu, or by clicking on the "Profile the current target" icon on the toolbar.
The profiler scans the .SMP file and reports the activity in the various modules of
the application. The percentage of time spent in the modules is indicated as an
absolute percentage (percent of total samples) and as a relative percentage (percent
of samples in the .EXE image).

5. Double-click on the module or routine names to step down to the exact source
being executed when a sample was taken. For more details, you can adjust the
sampling rate of the Sampler to get a better picture of your code. To do this, exit
the Profiler, pull down the Targets menu, and select Target options, then Sample
Switches... from the pop-up menus. Specify a sampling rate such as 2 (for 2
milliseconds), click on OK, then run the Sampler and Profiler again.

The Watcom C/C++ Tutorial 39

Chapter 3

Figure 14. The Watcom Execution Profiler

Saving the Project and Terminating the Session

You can now exit the IDE session by selecting Exit from the File menu. If you have not
already saved your project, you will be prompted to do so. Choose "Yes" and the session
ends.

3.3 Tutorial Review
In this tutorial, you created a project called KITCHEN.WPJ, which was composed of two
targets: DRAW???.EXE and BUTTON.LIB. You compiled and linked it into an executable
program using the WMAKE utility, the Watcom C and C++ compilers, and the Watcom
Linker. You executed it both directly and under the control of the Watcom Debugger.. You
browsed the source, and made changes using the text and resource editors. Finally, you
sampled and profiled the application.

When you saved the project, you created the following permanent files:

40 Tutorial Review

Hands-on Introduction to Watcom C/C++

• KITCHEN.WPJ — describes the screen layout and refers to the target files called
DRAW???.TGT and BUTTON.TGT.

• DRAW???.TGT — describes the target executable DRAW???.EXE and all switches
required to link it. It also describes the .C and .CPP files and switches required to
compile them.

• BUTTON.TGT — describes the target library and all switches required to create it. It
also describes the .C file and the switches used to build the library.

Tutorial Review 41

Chapter 3

42 Tutorial Review

4 Documentation

The following manuals comprise the Watcom C/C++ documentation set. Printed copies of
this documentation can be ordered from Watcom. When you install the software, portions of
the documentation set are provided as on-line help files. Subsequent sections describe how to
access this on-line help.

The following describes the titles in the Watcom C/C++ documentation set.

Watcom C/C++ User’s Guide
This manual describes how to use Watcom C/C++. It contains an introduction to
the compiler and a tutorial section. It also describes compiler options,
precompiled header files, libraries, memory models, calling conventions,
pragmas, in-line assembly, ROM based applications, and environment variables.

Watcom C/C++ Tools User’s Guide
This manual describes the command line oriented tools including the compile
and link utility, library manager, object file disassembler, far call optimization
tool, assembler, patch utility, strip utility, make utility, and touch utility.

Watcom Graphical Tools User’s Guide
This manual describes Watcom’s Windows and OS/2 graphical tools including
the Integrated Development Environment, Browser, Dr. Watcom, Spy, DDE
Spy, Image Editor, Resource Editor, Sampler/Profiler, Resource Compiler, Heap
Walker, Zoom, and Editor.

Watcom C/C++ Programmer’s Guide
This manual includes 5 major sections each of which describes operating system
specific development issues. The operating systems covered include extended
DOS, OS/2, Windows 3.x, Windows NT/Win32s, 32-bit Windows 3.x (using
Watcom’s Supervisor technology), AutoCAD ADS and Novell NLMs. Topics
include creating a sample program, operating system specific error messages,
and debugging techniques.

Watcom C Language Reference
This manual describes the ANSI C programming language and extensions which
are supported by Watcom C.

Documentation 43

Chapter 4

Watcom C Library Reference, Volumes 1 and 2
These manuals describe the C and graphics libraries supported by Watcom
C/C++.

Watcom C++ Class Library Reference
This manual provides a comprehensive reference to the C++ class libraries
provided with Watcom C/C++.

Watcom Debugger User’s Guide
This manual describes the Watcom Debugger and discusses advanced debugging
techniques.

Watcom Linker User’s Guide
This manual describes how to use the Watcom Linker to generate executables
for target systems such as extended DOS, Windows 3.x, Windows 95, Windows
NT, OS/2, and Novell NLMs.

Visual Programmer User’s Guide
This manual describes how to use Blue Sky’s Visual Programmer, an easy to use
Prototyper and C/C++ Code Generator for Windows, Win32 and Windows NT.

MFC Switch-It Module User’s Guide
Blue Sky’s MFC Switch-It Module (SIM) allows you to generate Microsoft
Foundation Classes (MFC) C++ code for your application design(s). You
prototype and test your application using Visual Programmer, then generate the
code using the MFC SIM.

The following book is included in the printed documentation set. It is not available as an
on-line document.

The C++ Programming Language by Bjarne Stroustrup
This book is an industry recognized authoritative standard on C++
programming. This manual begins with a tutorial to introduce the C++ concepts.
The second section consists of an in-depth C++ reference guide.

4.1 Accessing On-line Documentation
The following sections describe how to access the on-line help that is available for DOS,
Windows 3.x, Windows 95, Windows NT and OS/2.

44 Accessing On-line Documentation

Documentation

On-line Documentation under DOS

The Watcom Help program, WHELP, may be used under DOS to access on-line
documentation. The Watcom Help command line syntax is:

WHELP help file [topic name]

Notes:

1. If help_file is specified without an extension then ".IHP" is assumed.

2. The topic_name parameter is optional.

3. If topic_name is not specified, the default topic is "Table of Contents".

4. If topic_name contains spaces then it must be enclosed in quotes.

The following help files are available:

CGUIDE Watcom C/C++ User’s Guide (excludes C and C++ Diagnostic Messages
appendices which are available as separate help files)

CLIB Watcom C Library Reference

CLR Watcom C Language Reference

CMIX Watcom C/C++ Master Index

CPPLIB Watcom C++ Class Library Reference

ISVCPP Watcom C/C++ 11.0 Add-In Tools Guide

LGUIDE Watcom Linker User’s Guide

PGUIDE Watcom C/C++ Programmer’s Guide

C_README Watcom C/C++ Getting Started manual

RESCOMP Documentation for the Watcom Resource Compiler for Windows (excerpt from
the Watcom Graphical Tools User’s Guide)

TOOLS Watcom C/C++ Tools User’s Guide

Accessing On-line Documentation 45

Chapter 4

WD Watcom Debugger User’s Guide

WPROF Documentation for the Watcom Execution Sampler and Watcom Execution
Profiler (excerpt from the Watcom Graphical Tools User’s Guide)

WCCERRS Documentation for the Watcom C Diagnostic Messages (excerpt from the
Watcom C/C++ User’s Guide).

WPPERRS Documentation for the Watcom C++ Diagnostic Messages (excerpt from the
Watcom C/C++ User’s Guide).

On-line Documentation under Windows 3.x, 95 and NT

On-line documentation is presented in the form of Windows Help files (".HLP" files). When
the software is installed under Windows 3.x, Windows 95 or Windows NT, a number of
program groups are created. You can access the on-line document by opening a program
group and double-clicking on a help icon.

Watcom C/C++ Group

Getting Started Watcom C/C++ Getting Started

Watcom C/C++ Tools Help Group

Accelerator Editor Help Documentation for the Accelerator Editor (excerpt from the
Watcom Graphical Tools User’s Guide)

C Error Messages Documentation for the Watcom C Diagnostic Messages (excerpt
from the Watcom C/C++ User’s Guide)

C++ Error Messages Documentation for the Watcom C++ Diagnostic Messages (excerpt
from the Watcom C/C++ User’s Guide)

C Language Reference Watcom C Language Reference

C Library Reference Watcom C Library Reference

C++ Library Reference Watcom C++ Class Library Reference

C/C++ Master Index The master index for all of the Watcom C/C++ on-line help

DDE Spy Help Documentation for the DDE Spy utility (excerpt from the Watcom
Graphical Tools User’s Guide)

46 Accessing On-line Documentation

Documentation

Debugger Help Watcom Debugger User’s Guide

Dialog Editor Help Documentation for the Dialogue Editor (excerpt from the Watcom
Graphical Tools User’s Guide)

Dr. Watcom Help Documentation for Dr. Watcom (excerpt from the Watcom
Graphical Tools User’s Guide)

Editor Help Documentation for the Watcom Editor (excerpt from the Watcom
Graphical Tools User’s Guide)

Heap Walker Help Documentation for the Heap Walker utility (excerpt from the
Watcom Graphical Tools User’s Guide)

IDE Help Documentation for the Interactive Development Environment
(excerpt from the Watcom Graphical Tools User’s Guide)

Image Editor Help Documentation for the Image Editor (excerpt from the Watcom
Graphical Tools User’s Guide)

Linker Guide Watcom Linker User’s Guide

Menu Editor Help Documentation for the Menu Editor (excerpt from the Watcom
Graphical Tools User’s Guide)

Profiler Help Documentation for the Watcom Execution Sampler and Watcom
Execution Profiler (excerpt from the Watcom Graphical Tools
User’s Guide)

Programmer’s Guide Watcom C/C++ Programmer’s Guide

Resource Compiler Help Documentation for the Resource Compiler (excerpt from the
Watcom Graphical Tools User’s Guide)

Resource Editor Help Documentation for the Resource Editor (excerpt from the Watcom
Graphical Tools User’s Guide)

Source Browser Help Documentation for the Browser (excerpt from the Watcom
Graphical Tools User’s Guide)

Spy Help Documentation for the Spy utility (excerpt from the Watcom
Graphical Tools User’s Guide)

Accessing On-line Documentation 47

Chapter 4

String Editor Help Documentation for the String Editor (excerpt from the Watcom
Graphical Tools User’s Guide)

Tools Guide Watcom C/C++ Tools User’s Guide

User’s Guide Watcom C/C++ User’s Guide (excludes C and C++ Diagnostic
Messages appendices which are available as separate help files)

Visual Programmer Help Visual Programmer User’s Guide

Visual Programmer MFC Help MFC Switch-it Module User’s Guide

Zoom Help Documentation for the Zoom utility (excerpt from the Watcom
Graphical Tools User’s Guide)

The second set of help files, listed below, forms part of the Microsoft Windows SDK.

Watcom C/C++ Additional Help Group

Add-In Tools Guide A guide to third-party software tools/libraries

Hotspot Editor Help

MCI Command Strings

MFC 4.1 Library Help

MFC 4.1 Sample Program Help

MFC 4.1 Technical Notes

MFC 2.52b Library Help

MFC 2.52b Sample Program Help

MFC 2.52b Technical Notes

Multimedia Reference

Pen API Reference

Win32 API Help

48 Accessing On-line Documentation

Documentation

Windows API Reference

On-line Documentation under OS/2

On-line documentation is presented in the form of OS/2 Information files (".INF" files).
When the software is installed under OS/2, the Watcom C/C++ folder is created. You can
access the on-line document by opening the Watcom C/C++ folder and double-clicking on a
help icon.

C Error Messages Documentation for the C Diagnostic Messages (excerpt from the
Watcom C/C++ User’s Guide)

C++ Error Messages Documentation for the C++ Diagnostic Messages (excerpt from the
Watcom C/C++ User’s Guide)

C Language Reference Watcom C Language Reference

C Library Reference Watcom C Library Reference

C++ Library Reference Watcom C++ Class Library Reference

C/C++ Master Index The master index for all of the Watcom C/C++ on-line help

CP Reference OS/2 Control Program Reference

Debugger Help Watcom Debugger User’s Guide

Getting Started Watcom C/C++ Getting Started

IDE Help Documentation for the Interactive Development Environment
(excerpt from the Watcom Graphical Tools User’s Guide)

IPFC Reference OS/2 IPF Compiler Reference

Linker Guide Watcom Linker User’s Guide

PM Reference OS/2 Presentation Manager Reference

Profiler Help Documentation for the Watcom Execution Sampler and Watcom
Execution Profiler (excerpt from the Watcom Graphical Tools
User’s Guide)

Accessing On-line Documentation 49

Chapter 4

Programmer’s Guide Watcom C/C++ Programmer’s Guide

REXX Reference OS/2 REXX Reference

SOM Reference OS/2 System Object Model Reference

Source Browser Help Documentation for the Watcom Browser (excerpt from the Watcom
Graphical Tools User’s Guide)

Tools Guide Watcom C/C++ Tools User’s Guide

Tools Reference OS/2 Toolkit Reference

User’s Guide Watcom C/C++ User’s Guide (excludes C and C++ Diagnostic
Messages appendices which are available as separate help files)

50 Accessing On-line Documentation

5 Microsoft Foundation Classes

Two versions of MFC are included in this release of the compiler. Use version MFC 4.1 to
create 32-bit applications. Use version MFC 2.52b to create 16-bit applications. MFC help is
available by clicking on the MFC help icon in the Watcom C/C++ folder. MFC programs will
not run under the Watcom 32-bit Windows Extender.

5.1 MFC 4.1
MFC 4.1 is used to create 32-bit MFC applications that run under the Win32 API (Windows
NT, Windows 95) and Win32s. There is a batch file that creates the MFC 4.1 sample
programs.

C:\WATCOM\SAMPLES\MFC\V41\MKSAMPLE.BAT

5.2 MFC 2.52b
MFC 2.52b is used to create 16-bit MFC applications that run under the Windows API. There
is a batch file that creates the MFC 2.52b sample programs.

C:\WATCOM\SAMPLES\MFC\V252\MKSAMPLE.BAT

5.3 Debugging MFC Applications
Watcom C/C++ contains compiled libraries for MFC. For each library that is included, there
is a production library and a "DEBUG" library. The debug library usually has the same name
as the production library but with a "D" suffix on the file name. For example, NRFXCC.LIB
and NRFXCCD.LIB are the production and debug versions of one of the libraries included in
the package. The debug library is compiled with line number debugging information ("d1")
and with debugging "assertions" enabled.

If you wish to have a version of the library that contains "d2" type debugging information
then you must recompiled the MFC source code that is provided. Makefiles tailored for
Watcom C++ are provided for building the MFC libraries.

Debugging MFC Applications 51

Chapter 5

To debug an MFC application, you must ensure the following:

1. The debug libraries must be installed.
2. If you want to see the MFC source code when debugging an MFC function, you

must have installed the source code. You must also use the debugger’s "set source
path" to set the source path explicitly in the debugger for the MFC source (when
using libraries that were compiled by Watcom).

3. If you want to use the Watcom Browser to see MFC classes, you must select the
Watcom C++ "db" option when compiling your source code.

Please note that if you wish to profile the execution of you MFC application with the Watcom
Execution Profiler, you will not be able to drill down to MFC library source code unless you
have recompiled the source code on your own system.

52 Debugging MFC Applications

6 SOMobjects Developer Toolkit

Watcom C/C++ contains the SOMobjects Developer Toolkit for OS/2. This toolkit allows for
the creation of applications that use IBM’s System Object Model (SOM). SOM is a set of
libraries, utilities and conventions used to create binary class libraries.

A number of sample programs are provided with the SOMobjects Developer Toolkit for OS/2.
These samples are located in the SOM\SAMPLES directory of the directory in which you
installed the software. Each sample directory contains a "readme" file which describes the
procedures you should follow to create and run these samples. Please read this file before
attempting to create or run any of the sample programs.

The SOMobjects Developer Toolkit Publication is a complete set of manuals that describes
SOM and the tools that support its use. This publication is available from IBM and includes
the following:

• User’s Guide
• Programmer’s Reference
• Quick Reference
• Collection Classes Reference
• Emitter Guide and Reference
• Installation/Configuration Instructions

The SOMobjects Developer Toolkit for Windows is not included in Watcom C/C++ version
11.0.

SOMobjects Developer Toolkit 53

Chapter 6

54 SOMobjects Developer Toolkit

7 Benchmarking Hints

The Watcom C/C++ compiler contains many options for controlling the code to be produced.
It is impossible to have a certain set of compiler options that will produce the absolute fastest
execution times for all possible applications. With that said, we will list the compiler options
that we think will give the best execution times for most applications. You may have to
experiment with different options to see which combination of options generates the fastest
code for your particular application.

The recommended options for generating the fastest 16-bit Intel code are:

Pentium Pro /oneatx /oh /oi+ /ei /zp8 /6 /fpi87 /fp6

Pentium /oneatx /oh /oi+ /ei /zp8 /5 /fpi87 /fp5

486 /oneatx /oh /oi+ /ei /zp8 /4 /fpi87 /fp3

386 /oneatx /oh /oi+ /ei /zp8 /3 /fpi87 /fp3

286 /oneatx /oh /oi+ /ei /zp8 /2 /fpi87 /fp2

186 /oneatx /oh /oi+ /ei /zp8 /1 /fpi87

8086 /oneatx /oh /oi+ /ei /zp8 /0 /fpi87

The recommended options for generating the fastest 32-bit Intel code are:

Pentium Pro /oneatx /oh /oi+ /ei /zp8 /6 /fp6

Pentium /oneatx /oh /oi+ /ei /zp8 /5 /fp5

486 /oneatx /oh /oi+ /ei /zp8 /4 /fp3

386 /oneatx /oh /oi+ /ei /zp8 /3 /fp3

The "oi+" option is for C++ only. Under some circumstances, the "ob" and "ol+"
optimizations may also give better performance with 32-bit Intel code.

Benchmarking Hints 55

Chapter 7

Option "on" causes the compiler to replace floating-point divisions with multiplications by the
reciprocal. This generates faster code (multiplication is faster than division), but the result
may not be the same because the reciprocal may not be exactly representable.

Option "oe" causes small user written functions to be expanded in-line rather than generating
a call to the function. Expanding functions in-line can further expose other optimizations that
couldn’t otherwise be detected if a call was generated to the function.

Option "oa" causes the compiler to relax alias checking.

Option "ot" must be specified to cause the code generator to select code sequences which are
faster without any regard to the size of the code. The default is to select code sequences
which strike a balance between size and speed.

Option "ox" is equivalent to "obiklmr" and "s" which causes the compiler/code generator to do
branch prediction ("ob"), expand intrinsic functions in-line ("oi"), enable control flow
prologues and epilogues ("ok"), perform loop optimizations ("ol"), generate 387 instructions
in-line for math functions such as sin, cos, sqrt ("om"), reorder instructions to avoid pipeline
stalls ("or"), and to not generate any stack overflow checking ("s"). Option "or" is very
important for generating fast code for the Pentium and Pentium Pro processors.

Option "oh" causes the compiler to attempt repeated optimizations (which can result in longer
compiles but more optimal code).

Option "oi+" causes the C++ compiler to expand intrinsic functions in-line (just like "oi") but
also sets the inline_depth to its maximum (255). By default, inline_depth is 3. The
inline_depth can also be changed by using the C++ inline depth pragma.

Option "ei" causes the compiler to allocate at least an "int" for all enumerated types.

Option "zp8" causes all data to be aligned on 8 byte boundaries. The default is "zp2" for the
16-bit compiler and "zp8" for 32-bit compiler. If, for example, "zp1" packing was specified
then this would pack all data which would reduce the amount of data memory required but
would require extra clock cycles to access data that is not on an appropriate boundary.

Options "0", "1", "2", "3", "4", "5" and "6" emit Intel code sequences optimized for
processor-specific instruction set features and timings. For 16-bit Intel applications, the use of
these options may limit the range of systems on which the application will run but there are
execution performance improvements.

Options "fp2", "fp3", "fp5" and "fp6" emit Intel floating-point operations targetted at specific
features of the math coprocessor in the Intel series. For 16-bit Intel applications, the use of
these options may limit the range of systems on which the application will run but there are
execution performance improvements.

56 Benchmarking Hints

Benchmarking Hints

Option "fpi87" causes in-line Intel 80x87 numeric data processor instructions to be generated
into the object code for floating-point operations. Floating-point instruction emulation is not
included so as to obtain the best floating-point performance in 16-bit Intel applications.

For 32-bit Intel applications, the use of the "fp5" option will give good performance on the
Intel Pentium but less than optimal performance on the 386 and 486. The use of the "5"
option will give good performance on the Pentium and minimal, if any, impact on the 386 and
486. Thus, the following set of options gives good overall performance for the 386, 486 and
Pentium processors.

/oneatx /oh /oi+ /ei /zp8 /5 /fp3

Benchmarking Hints 57

Chapter 7

58 Benchmarking Hints

8 Additional Redistribution Rights

Please read carefully the information in the following sections if you plan to distribute your
application to others.

8.1 Redistributable Components
Subject to the terms and conditions of the Powersoft Language Products Software License
Agreement, in addition to any Redistribution Rights granted therein, you are hereby granted a
non-exclusive, royalty-free right to reproduce and distribute the Components specified below
provided that (a) it is distributed as part of and only with your software product; (b) you not
suppress, alter or remove proprietary rights notices contained therein; and (c) you indemnify,
hold harmless and defend Powersoft and its suppliers from and against any claims or lawsuits,
including attorney’s fees, that arise or result from the use or distribution of your software
product.

The Tenberry Software (formerly Rational Systems, Inc.) and Watcom Components are:

• DOS4GW.EXE Copyright 1990-1994 Tenberry Software, Inc.

• RMINFO.EXE Copyright 1987-1993 Tenberry Software, Inc.

• PMINFO.EXE Copyright 1987-1993 Tenberry Software, Inc.

• PRIVATXM.EXE Copyright 1991 Tenberry Software, Inc.

• DOS4GW.DOC Copyright 1991-1995 Tenberry Software, Inc.

• WEMU387.386 Copyright 1991-2000 Sybase, Inc.

The Microsoft Components from the Microsoft Windows SDK version 3.1, all Copyright
1992 Microsoft Corporation, are:

• COMMDLG.DLL
• COMMDLG.DAN
• COMMDLG.DUT
• COMMDLG.FIN

Redistributable Components 59

Chapter 8

• COMMDLG.FRN
• COMMDLG.GER
• COMMDLG.ITN
• COMMDLG.NOR
• COMMDLG.POR
• COMMDLG.SPA
• COMMDLG.SWE
• DDEML.DLL
• LZEXPAND.DLL
• OLECLI.DLL
• OLESVR.DLL
• PENWIN.DLL
• SHELL.DLL
• STRESS.DLL
• TOOLHELP.DLL
• VTD.386
• VER.DLL
• DIB.DRV
• EXPAND.EXE
• MARKMIDI.EXE
• REGLOAD.EXE
• WINHELP.EXE
• WINHELP.HLP

8.2 OS/2 Toolkit
You may distribute components from the OS/2 Toolkit included in the package which are
header files and include files and you may modify and distribute components from the OS/2
Toolkit included in the package which are sample programs provided that such header files,
include files and sample programs are distributed only for the purposes of developing, using,
marketing and distributing application programs written to the OS/2 application programming
interface. Further, with respect to sample programs, each copy of any portion thereof or any
derivative work which is so distributed must include a copyright notice as follows:

(c) Copyright (your company name) (year). All Rights Reserved.

60 OS/2 Toolkit

Additional Redistribution Rights

8.3 IBM SOMobjects
You may sublicense the IBM SOMobjects Kernel and Workstation DSOM, Version 2.0 for
OS/2 and for Windows but only if incorporated as part of your application and only if: your
application adds significant function to the function of the IBM SOM and DSOM
components; you retain in any copies made of the IBM SOM and DSOM components all IBM
copyright and proprietary rights notices contained therein. Further, you include a copyright
notice in the following format on the media label attached to any copies of your application
which includes the IBM SOM and DSOM components:

(c) Copyright (your company name) and others (date). All Rights Reserved.

you indemnify Powersoft and International Business Machines Corporation, including their
subsidiaries, from and against any claim arising from the distribution of your application or
otherwise arising hereunder excluding any claims that the IBM SOM and DSOM components
infringe a U.S. copyright held by a third party; your application and the IBM SOM and
DSOM components are sublicensed pursuant to a written license agreement between you and
your customer which conforms substantially to the terms and conditions of the Powersoft
Language Products Software License Agreement (printed elsewhere in this document)
together with the additional terms and conditions set forth herein. Without limiting the
generality of the foregoing, said license agreement shall indicate that you are the licensor and
shall contain provisions limiting Powersoft’s and IBM liability to the same extent as they are
limited in the Powersoft Language Products Software License Agreement and these additional
terms and conditions.

You may sublicense to your customers the rights to reproduce and distribute the IBM SOM
and DSOM components provided such sublicense is in writing and imposes terms and
conditions upon your customers which are no less restrictive as are imposed upon you as set
forth in the Powersoft Language Products Software License Agreement (printed elsewhere in
this document) together with the additional terms and conditions set forth herein.

8.4 Microsoft MFC, Win32s
You may sublicense the Microsoft Foundation Class Libraries and Win32s (collectively called
the "MS CODE") but only in object-code form and solely in conjunction with your application
developed using Watcom C/C++ and only if: your application and/or any documentation
bears copyright notices sufficient to protect Microsoft’s copyright in the MS CODE; the MS
CODE is not incorporated into any product which would enable such MS CODE to be used in
conjunction with, or to develop application programs for non-Microsoft operating systems
(This restriction does not apply to MS CODE which runs or can be run on non-Microsoft
operating systems without modification), you indemnify Powersoft and Microsoft from and
against any claim arising from the distribution of your application or otherwise arising

Microsoft MFC, Win32s 61

Chapter 8

hereunder excluding any claims that the MS CODE infringes a U.S. copyright held by a third
party; your application and the MS CODE are sublicensed pursuant to a written license
agreement between you and your customer which conforms substantially to the terms and
conditions of the Powersoft Language Products Software License Agreement (printed
elsewhere in this document) together with the additional terms and conditions set forth herein.
Without limiting the generality of the foregoing, said license agreement shall indicate that you
are the licensor and shall contain provisions limiting Powersoft’s and Microsoft’s liability to
the same extent as they are limited in the Powersoft Language Products Software License
Agreement and these additional terms and conditions. You may also modify the MFC
components of the MS CODE and reproduce and distribute such modifications in object-code
form as part of your application.

62 Microsoft MFC, Win32s

9 Release Notes for Watcom C/C++ 11.0

There are a number of enhancements and changes in this new version of Watcom C/C++. The
following sections outline most of the major changes. You should consult the User’s Guide
for full details on these and other changes made to the compiler and related tools. You should
check the next section to determine if you need to recompile your application.

9.1 Changes in 11.0 that may Require Recompilation
Do not attempt to mix object code generated by earlier versions of the compilers with object
code generated by this release or with the libraries provided in this release.

A new C++ object model has been implemented. If you have undefined references to
wcpp 3 * names, you have old object code. If you have undefined references to
wcpp 4 *, you have old libraries and new object code.

clock() The clock function accuracy has changed from 100 ticks per second to 1000
ticks per second (i.e., CLOCKS_PER_SEC has changed). Source code that uses
the clock function and CLOCKS_PER_SEC in its calculations must be
recompiled before linking the application with new libraries.

9.2 Major Differences from Version 10.6
The following sections summarize the major differences from the previous release of Watcom
C/C++.

• In general, we have improved Microsoft compatibility in our compilers (more warnings
instead of errors, support for MS extensions, etc.) and tools.

• Some of the Win32 and 32-bit OS/2 versions of our tools are now available in DLL
form.

Major Differences from Version 10.6 63

Chapter 9

EXE DLL Description
------ ------- -----------------------
wcc wccd 16-bit x86 C compiler
wcc386 wccd386 32-bit x86 C compiler
wpp wppdi86 16-bit x86 C++ compiler
wpp386 wppd386 32-bit x86 C++ compiler
wlink wlink Watcom Linker
wlib wlibd Watcom Library Manager

This provides better performance when using the Integrated Development Environment
or Watcom Make. See the description of the !loaddll preprocessing directive in
Watcom Make for more information.

Changes to the C++ Compiler for 11.0

• The C++ compiler now optimizes empty base-classes to occupy zero storage in the
derived class memory layout. The C++ Working Paper recently allowed this
optimization to be performed by conforming implementations. Furthermore, the
optimization has speed and size benefits. There are certain classes of (broken) C++
programs that may not function properly with the new optimization. If you explicitly
memset() an empty base class, you will be clearing memory that you may not expect to
be cleared since the "zero sized" base class in actual fact shares storage with the first
member of the derived class. A memset() of the entire derived class is fine though.

• We have added support for the mutable keyword which is used to indicate data
members that can be modified even if you have a const pointer to the class.

Example:
class S {

mutable int x;
void foo() const;

};

void S::foo() const {
x = 1; // OK since it is mutable

}

• We have added support for the bool type along with true and false.

• We have added support for the explicit attribute. It marks a constructor so that it
will not be considered for overloading during implicit conversions.

64 Major Differences from Version 10.6

Release Notes for Watcom C/C++ 11.0

Example:
struct S {

explicit S(int);
};

S v = 1; // error; cannot convert ’int’ to ’S’

Suppose the class was changed as follows:

Example:
struct S {

explicit S(int);
S(char);

};

S v = 1; // OK; S(char) is called

The fact that S(int) is not considered leaves S(char) as the only way to satisfy the
implicit conversion.

• We have added support for namespaces.

namespace x {

// anything that can go in file-scope
}
namespace {

// anything in here is local to your module!
}

In the above example, you can access names in the namespace "x" by "x::" scoping.
Alternatively, you can use the "using namespace x" statement (thereby eliminating the
need for "x::" scoping). You can include a part of the namespace into the current scope
with the "using x::member" statement. (also eliminating the need for "x::" scoping).

1. Namespaces eliminate the hand mangling of names. For example, instead of
prefixing names with a distinguishing string like "XPQ_" (e.g.,
XPQ_Lookup), you can put the names in a namespace called "XPQ".

2. Namespaces allow for private names in a module. This is most useful for
types which are used in a single module.

3. Namespaces encourage the meaningful classification of implementation
components. For example, code-generation components might reside in a
namespace called "CodeGen".

• We have added support for RTTI (Run-Time Type Information).

Major Differences from Version 10.6 65

Chapter 9

• We have added support for the new C++ cast notation. It allows you to use less
powerful casts that the all powerful C-style cast and to write more meaningful code.
The idea is to eliminate explicit casts by using a more meaningful new-style cast. The
new C++ casts are:

reinterpret_cast < type-id >(expr)
const_cast < type-id >(expr)
static_cast < type-id >(expr)
dynamic_cast < type-id >(expr) (part of RTTI)

• We have improved (faster) pre-compiled header support.

• We have added "long long" (64-bit floating-point) support in the form of a new __int64
type.

• The default structure packing was changed from "zp1" to "zp2" in the 16-bit compiler
and from "zp1" to "zp8" in the 32-bit compiler.

• The default type of debugging information that is included in object files is "Dwarf". It
used to be "Watcom".

• A new double-byte string processing option has been added (zkl). When this option is
specified, the local or current code page character set is used to decide if the compiler
should process strings as if they might contain double-byte characters.

Changes to the C Compiler for 11.0

• We have improved (faster) pre-compiled header support.

• We have added "long long" (64-bit floating-point) support in the form of a new __int64
type.

• The default structure packing was changed from "zp1" to "zp2" in the 16-bit compiler
and from "zp1" to "zp8" in the 32-bit compiler.

• The default type of debugging information that is included in object files is "Dwarf". It
used to be "Watcom".

• A new double-byte string processing option has been added (zkl). When this option is
specified, the local or current code page character set is used to decide if the compiler
should process strings as if they might contain double-byte characters.

66 Major Differences from Version 10.6

Release Notes for Watcom C/C++ 11.0

Changes to the Code Generator for 11.0

• We support Microsoft-compatible in-line assembly formats using the "_asm" keyword.

• A new optimization, "branch prediction", has been added. This optimization is enabled
by the "ob" or "ox" compiler options. The code generator tries to increase the density of
cache use by predicting branches based upon heuristics (this optimization is especially
important for Intel’s Pentium Pro).

• We have added Multi-media Extensions (MMX) support to the in-line assemblers.

• We have added "long long" (64-bit floating-point) support in the form of a new __int64
type.

Changes to the Compiler Tools for 11.0

• The Watcom Linker supports incremental linking.

• The Watcom Linker can now process COFF and ELF format object files, as well as
OMF et al. The Watcom Linker can now read both AR-format (Microsoft compatible)
libraries and old-style OMF libraries.

• Support for creating 16-bit DOS overlaid executables has been removed from the
linker.

• The Watcom Library Manager (WLIB) can now process COFF and ELF format object
files, as well as OMF et al. The Watcom Library Manager can now read/write both
AR-format (Microsoft compatible) libraries and old-style OMF libraries. The default
output format is AR-format and this can be changed by switches. The Watcom Library
Manager can output various format import libraries.

• We have added Multi-media Extensions (MMX) support to the Watcom Assembler
(WASM).

• A new version of the Watcom Disassembler (WDIS) is included. It can process ELF,
COFF or OMF object files and ELF, COFF or PE format (Win32) executables.

The old disassembler (WDISASM) has been retired and is not included in the package.

• We have added new tool front-ends that emulate Microsoft tools. These are:

Major Differences from Version 10.6 67

Chapter 9

• nmake
• cl
• link
• lib
• rc
• cvtres

These programs take the usual Microsoft arguments and translate them, where possible,
into equivalent Watcom arguments and spawn the equivalent Watcom tools.

• Watcom Make now processes Microsoft format makefiles when the "ms" option is
used.

Changes to the C/C++ Libraries for 11.0

• We have added multi-byte and wide character (including UNICODE) support to the
libraries.

• We include run-time DLLs for the C, Math and C++ Libraries.

• We have added Multi-media Extensions (MMX) support to the libraries.

• The following new functions were added to the library...

multi-byte functions

• The clock function accuracy has changed from 100 ticks per second to 1000 ticks per
second (i.e., CLOCKS_PER_SEC has changed).

• A "commit" flag ("c") was added to the fopen() mode argument.

• The global translation mode flag default is "text" unless you explicitly link your
program with BINMODE.OBJ.

• Processing of the "0" flag in the format string for the printf() family of functions has
been corrected such that when a precision is specified, the "0" flag is ignored.

68 Major Differences from Version 10.6

Release Notes for Watcom C/C++ 11.0

Example:
printf("%09.3lf\n", 1.34242); // "0" flag is ignored
printf("%09lf\n", 1.34242); // "0" flag is not
ignored

• Support for printing __int64 values was added to printf and related functions.

• Support for scanning __int64 values was added to scanf and related functions.

• The Win32 _osver variable was added to the library.

• The Win32 _winmajor, _winminor and _winver variables were added to the library.

Changes to the DOS Graphics Library for 11.0

• The graphics library now performs the VESA test before testing for vendor specific
graphics cards. This fix is intended to broaden the number of graphics cards that are
supported.

Changes in Microsoft Foundation Classes Support for 11.0

• Version 4.1 of the 32-bit MFC is included in the package.

• Version 2.52b of the 16-bit MFC is included in the package.

Changes in Microsoft Win32 SDK Support for 11.0

• The Win32 SDK is supported for Windows 95 and Windows NT platforms.

Changes in Blue Sky’s Visual Programmer for 11.0

• A new 32-bit version of Visual Programmer is included in the package. This version
runs on 32-bit Windows 95 and NT. The 16-bit version of Visual Programmer is no
longer included in the package.

• You can generate 16-bit applications with it, but you must be careful to avoid using
Win95 controls.

• This new version fixes all known bugs in the previous version.

Major Differences from Version 10.6 69

Chapter 9

9.3 Changes in 10.6 that may Require Recompilation
_diskfree_t The struct members of the _diskfree_t structure has been changed from

UNSIGNED SHORTs to UNSIGNED INTs. This is to deal with possible HPFS
partitions whose size will overflow a short, as well as Microsoft compatibility.

clock() The clock function accuracy has changed from 100 ticks per second to 1000
ticks per second (i.e., CLOCKS_PER_SEC has changed). Source code that uses
the clock function and CLOCKS_PER_SEC in its calculations must be
recompiled before linking the application with new libraries.

9.4 Major Differences from Version 10.5
The following sections summarize the major differences from the previous release of Watcom
C/C++.

Windows 95 Help File Format

We have included Windows 95 format help files.

Changes to the C++ Compiler in 10.6

We have improved Microsoft compatibility so that Win32 SDK and MFC header files can be
compiled without change. The following changes were required to support Win32 SDK
header files.

• We recognize the single underscore versions of stdcall, inline, and
fastcall keywords.

• The fastcall and fastcall keywords are scanned but ignored since they
refer to a particular Microsoft code generation technique. Watcom’s generated code is
always "fast".

The following changes were required to support MFC source code.

• When /bt=DOS is specified, define DOS.

• When /bt=WINDOWS is specified, define WINDOWS.

70 Major Differences from Version 10.5

Release Notes for Watcom C/C++ 11.0

• When /m[s|m|c|l|h] is specified, define SW M[S|M|C|L|H] and
M I86[S|M|C|L|H]M.

The compiler now supports the C++ Standard Template Library (STL). This library is
available at the ftp site "butler.hpl.hp.com". When compiling applications that use the STL,
you must use the "hd" compiler option for debugging info (the "hw" option causes too much
debug information to be generated).

Changes to the C Compiler in 10.6

We have improved Microsoft compatibility so that Win32 SDK and MFC header files can be
compiled without change. The following changes were required to support Win32 SDK
header files.

• Support for the single underscore version of the stdcall keyword.

• When /bt=DOS is specified, define DOS.

• When /bt=WINDOWS is specified, define WINDOWS.

The following changes were required to support SDK sample code.

• You can specify calling convention information in a function prototype and you do not
have to specify the same information in the definition. (Note: This is required by the
OS/2 Warp SDK samples.)

• Structured exception handling is supported (try, except and finally
keywords).

• Allow initialization of automatic array/struct data using variables and function calls.

Changes to the C Library in 10.6

The following new functions were added to the library.

_getw read int from stream file

_putw write int to stream file

The clock function accuracy has changed from 100 ticks per second to 1000 ticks per second
(i.e., CLOCKS_PER_SEC has changed).

Major Differences from Version 10.5 71

Chapter 9

Changes in Microsoft Foundation Classes Support for 10.6

• Version 3.2 of the 32-bit MFC is included in the package.

• Version 2.52b of the 16-bit MFC is included in the package.

Changes to the Image Editor in 10.6

• Support has been added for 256 colour bitmaps.

• Support has been added for 16 X 16 icons.

• Support has been added for 48 X 48 icons.

Changes to the Dialog Editor in 10.6

• Support has been added for Windows 95 controls.

• Support has been added for adding new control styles to existing controls.

• Support has been added for new dialog styles.

• Support has been added for allowing help IDs to be specified in dialog and control
statements.

• Support has been added for generating new resource statements in .RC files.

Changes to the Resource Editor in 10.6

• Support has been added for new Windows 95 DIALOGEX resource type.

• Support has been added for generating new DIALOGEX resource statements in .RC
files.

72 Major Differences from Version 10.5

Release Notes for Watcom C/C++ 11.0

Changes to the Resource Compiler in 10.6

• Support has been added for extended styles for dialogs.

• Support has been added for the RCINCLUDE keyword.

9.5 Major Differences from Version 10.0
• New installation program

• Visual Programmer for Windows (MFC) applications

• MFC 3.0 support

• Native C++ exception handling support

• Improved language compatibility with Microsoft

• Browser can now be used to browse C code

• OS/2 3.0 Warp support

• Toolkit for OS/2 1.3

• Windows NT 3.5 support

• Toolkit for Windows NT 3.5

• Windows 95 (Chicago) support

• Source Revision Control System hooks in editor

• TCP/IP remote debug servers for OS/2 and Windows NT/95

In addition to these new features, we have also made a number of improvements to the
software.

1. The editor is more tightly integrated with the IDE.

2. It is now easier to select your own favourite editor from the IDE.

Major Differences from Version 10.0 73

Chapter 9

3. The keyboard interface in the Integrated Development Environment (IDE) has been
improved.

4. The "fr" option, which is supported by the compilers & assembler, can be used to
name the error file drive, path, file name and/or extension.

5. We have added the "t<number>" option to the C++ compiler to set the number of
spaces in a tab stop (for column numbers in error messages).

6. The C compiler now supports @filename on the command line like the C++
compiler currently does.

7. The "__stdcall" linkage convention has changed. All C symbols (extern "C"
symbols in C++) are now suffixed by "@nnn" where "nnn" is the sum of the
argument sizes (each size is rounded up to a multiple of 4 bytes so that char and
short are size 4). When the argument list contains "...", the "@nnn" suffix is
omitted. This was done for compatibility with Microsoft. Use the "zz" option for
backwards compatibility.

8. The 32-bit "__cdecl" linkage convention has changed. Watcom C/C++ 10.0
__cdecl did not match the Microsoft Visual C++ __cdecl in terms of the binary
calling convention; Visual C++ saves EBX in a __cdecl function but Watcom
C/C++ 10.0 modified EBX. Watcom C/C++ has been changed to match Visual
C/C++.

If you wrote a "__cdecl" function in an earlier version of Watcom C/C++, the EBX
register was not saved/restored. Starting with release 10.5, the EBX register will be
saved/restored in the prologue/epilogue of a "__cdecl" function.

Another implication of this change is that "__cdecl" functions compiled with an
earlier version of Watcom C/C++ don’t match the calling conventions of the
current version. The solution is either to recompile the functions or to define a
"__cdecl_old" pragma that matches the old calling conventions.

74 Major Differences from Version 10.0

Release Notes for Watcom C/C++ 11.0

#pragma aux cdecl old " *" \

parm caller [] \
value struct float struct routine [eax]

\
modify [eax ebx ecx edx];

#pragma aux (cdecl old) foo;

extern int foo(int a, int b);

void main()
{

printf("%d\n", foo(1, 2));
}

9. We now allow:

extern "C" int cdecl x;

It must be extern "C" for cdecl to take effect since variables have their
type mangled into the name for "C++" linkage.

10. In C++, we have removed the warning for "always true/false" expressions if the
sub-expressions are constant values.

11. We have added support for:

#pragma pack(push,4);
#pragma pack(push);
#pragma pack(pop)

12. We have added support for:

#pragma comment(lib,"mylib.lib")

which has the same semantics as:

#pragma library("mylib.lib")

13. We have added support for expanding macros in the code_seg/data_seg pragmas:

Major Differences from Version 10.0 75

Chapter 9

#define DATA SEG NAME "MYDATA"
#define CODE SEG NAME "MYCODE"

#pragma data seg(DATA SEG NAME)
int x = 3;

#pragma code seg(CODE SEG NAME)
int fn() {

return x;
}

14. We have fixed the 16-bit compiler so that it matches the Microsoft 16-bit C
compiler for the following cases:

• If a pascal function is defined when compiling for Windows 3.x, use the fat
Windows 3.x prologue in the function.

• If a cdecl function is defined when compiling for Windows 3.x, use the fat
Windows 3.x prologue in the function.

15. We have fixed the compiler so that

#include </dir/file.h>

works as expected (it was searching along the INCLUDE path only).

16. In C++, we have fixed a problem where an import was generated in the object file
for a virtual function call. This will reduce the size of executables under certain
circumstances.

17. In C++, we have removed the prohibition of pointer to array of unknown size
declarations.

Example:
int (*p)[];

18. In C++, we have fixed the diagnosis of lexical problems during macro expansion to
remove spurious warnings.

76 Major Differences from Version 10.0

Release Notes for Watcom C/C++ 11.0

Example:
#define stringize(x) #x

stringize(2131231236172637126371273612763612731)

19. We have corrected the check for too many bytes in #pragma for assembler style aux
#pragmas.

20. Undeclared class names in elaborated class specifiers are now declared in the
nearest enclosing non-class scope. Undeclared classes are also allowed in
arguments now.

Example:
struct S {

// used to declared ::S::N but now declares ::N
struct N *p;

};

void foo(struct Z *p); // declares ::Z

21. We have fixed unduly harsh restriction on virtual ...-style functions. They are now
allowed in single inheritance hierarchies as long as the return type is not changed
when the virtual function is overridden. In multiple inheritance hierarchies, an
implementation restriction is still present for generating a ’this’ adjustment thunk
for virtual functions.

22. We have fixed line number information for multi-line statement expressions in
some weird cases.

23. We have fixed function template parsing of user-defined conversions that use an
uninstantiated class in their operator name.

Example:
void ack(int);

template <class T>
struct S {

S(T x)
{

ack(x);
}

};

Major Differences from Version 10.0 77

Chapter 9

template <class T>

struct W {
operator S<T>();

};

template <class T>

W<T>::operator S<T>() {
return 0;

}

24. We have fixed a compiler problem that caused a linker warning "lazy reference for
<virtual-fn> has different default resolutions" in cases where the compiler or
programmer optimized virtual function calls to direct calls in modules that also
contained virtual calls.

Example:
T.H

struct S {
virtual int foo() { return LINE ; }

};
struct T : S {

virtual int foo() { return LINE ; }
};

T1.CPP

#include "t.h"
struct Q : T {

virtual int foo() { return S::foo() +
LINE ; }

};

void foo(T *p)
{

Q y;
y.foo();
p->foo();

}

78 Major Differences from Version 10.0

Release Notes for Watcom C/C++ 11.0

T2.CPP

#include "t.h"

void foo(T *p);

void ack(T *p) {
p->foo();
foo(p);

}

main() {
T q;
ack(&q);

}

25. When a class value is returned and is immediately (in the same expression) used to
call a member function, the value may not be stored in memory.

Work around: introduce a temporary

Example:
struct S {

int v;
int member();

};

S foo();

void example(void)
{

// foo().member(); // replace this line with:
S temp = foo();
temp.member();

}

26. Throwing pointers to functions did not work when the size of a function pointer is
greater than the size of a data pointer.

Work around: place the function pointer in a class and throw the class object.

27. We have fixed default argument processing for const references to an abstract class.
The following example would not compile properly:

Major Differences from Version 10.0 79

Chapter 9

Example:
struct A {

virtual int foo() = 0;
};

A &foo();

void ack(A const &r = foo());

void bar() {
ack();

}

28. We have made "DllMain" default to extern "C" linkage for Microsoft Visual C++
compatibility.

29. We have duplicated a Microsoft Visual C++ extension that was required to parse
the Windows 95 SDK header files.

Example:
typedef struct S {
} S, const *CSP;

^^^^^- not allowed in ANSI C or current WP for
C++

30. We now do not warn about starting a nested comment if the comment is just about
to end.

We also fixed the code that figures out where a comment was started so that a
nested comment warning is more helpful.

Example:
/*/////////*/

^-

31. We have fixed a problem where extra informational notes were not being printed
for the error message that exceeded the error message limit.

80 Major Differences from Version 10.0

Release Notes for Watcom C/C++ 11.0

Example:
// compile -e2
struct S {

void foo();
};

void foo(S const *p)
{

p->foo();
p->foo();
p->foo();
p->foo();

}

32. We have fixed a problem where the line number for an error message was
incorrect.

Example:
struct S {

void foo() const;
void bar();

};

void S::foo() const
{

bar();

this->bar();

}

33. We have fixed output of browser information for instantiated function template
typedefs.

34. We have upgraded the C++ parser so that casts and member pointer dereferences
can appear on the left hand side of the assignment expression without parentheses.

Example:
p->*mp = 1;
(int&)x = 1;

35. In several cases, when a function return or a construction was immediately dotted
in an expression, the generated code was incorrect:

Major Differences from Version 10.0 81

Chapter 9

Example:
struct S {

int x;
int foo();

};

extern S gorf();

void bar()
{

gorf().foo();
}

The work around was to break the statement in two:

Example:
S temp = gorf();
temp.foo();

36. In several cases, when a function return or a construction was immediately
addressed in an expression, the generated code was incorrect:

Example:
struct S {

int x;
};

extern void fun(S*);

extern S gorf();

void bar()
{

fun(&gorf());
}

The work around was to break the statement in two:

82 Major Differences from Version 10.0

Release Notes for Watcom C/C++ 11.0

Example:
S temp = gorf();
fun(&temp);

37. We have added support for:

#pragma error "error message"

Use the ANSI method because it is more portable and acceptable (Microsoft header
files use the less portable #pragma when there is a perfectly fine, portable way to
issue a message).

The portable, acceptable method is:

#error "error message"

38. We have added support for declspec(dllexport),
declspec(dllimport), declspec(thread), and
declspec(naked) for Win32 (i.e., WinNT 3.5 and Win95) programs. Here

are some examples:

Example:
declspec(dllexport) int a; // export ’a’

variable
declspec(dllexport) int b() // export ’b’

function
{
}

struct declspec(dllexport) S {

static int a; // export ’a’
static member

void b(); // export ’b’
member fn
};

Major Differences from Version 10.0 83

Chapter 9

extern declspec(dllimport) int a; // import ’a’
from a .DLL
extern declspec(dllimport) int b();//import ’b’
from a .DLL

struct declspec(dllimport) I {
static int a; // import ’a’

static member
void b(); // import ’b’

member fn
};

39. The C++ compiler generates better error messages for in-class initializations and
pure virtual functions.

Example:
struct S {

static int const a = 0;
static int const b = 1;
void foo() = 0;
void bar() = 1;
virtual void ack() = 0;
virtual void sam() = 1;

};

40. We have fixed macro processing code so that the following program compiles
correctly. The compiler was not treating "catch" as a keyword after the expansion
of "catch_all".

Example:
#define catch(n) catch(n &exception)
#define xall (...)
#define catch all catch xall

main()
{

try{
}
catch all{
}

}

41. We have fixed a problem where #pragma code seg caused a page fault in the
compiler when the code_seg was empty.

84 Major Differences from Version 10.0

Release Notes for Watcom C/C++ 11.0

42. We have fixed a rare problem where a #include of a file that was previously
included caused the primary source file to finish up if the CR/LF pair for the line
that the #include was on, straddled the C++ compiler’s internal buffering boundary.

43. We have added support for #pragma message("message text"). It
outputs a message to stdout when encountered. It is used in Microsoft SDK header
files to warn about directly including header files and obsolete files.

44. We have fixed #pragma code_seg/data_seg to properly set the class name of the
new segment in the object file.

45. We have a fixed a problem with the -zm -d2 options that caused a compiler fault in
some circumstances.

46. We have fixed default library records in .OBJ file so that user libraries are ahead of
default compiler libraries in the linker search order.

47. We have fixed handling of intrinsic math functions so that the code generator will
treat functions like sqrt as an operator.

48. We have added support for using OS-specific exception handling mechanisms for
C++ exception handling during code generation. Enable it with the new -zo option.

49. stdcall functions now have Microsoft Visual C/C++ compatible name
mangling.

50. We have added a number of new functions to the C Library. These have been
added to improve Microsoft compatibility.

Major Differences from Version 10.0 85

Chapter 9

dllmain (nt only)
libmain (nt only)
access
dos commit
dup
ecvt
fcvt
fstat
fstrdup
gcvt
itoa
itoa
locking
lseek
ltoa
ltoa
memicmp
set new handler
stat
strdate
strdup
stricmp
strlwr
strnicmp
strrev
strtime
strupr
tolower
toupper
isascii
iscsym
iscsymf

51. In version 9.5, the linker used to include LIBFILE object files in reverse order (i.e.,
the last one listed was the first to be included). We have corrected this behaviour
so that they are included in the order listed.

Directive Old Order New Order
------------- --------- ---------
FILE obj a 3 3
LIBFILE obj b 2 1
LIBFILE obj c 1 2
FILE obj d 4 4

In the above example, the object files will be included in the order indicated
(LIBFILE object files are always included first).

86 Major Differences from Version 10.0

Release Notes for Watcom C/C++ 11.0

Changes in 10.5 that may Require Recompilation

__stdcall If you use the __stdcall attribute within a program then you must re-compile the
function definition and all callers of the __stdcall function.

__cdecl The __cdecl attribute is not heavily used in Win32 programming so the impact
should be minimal but if you do use __cdecl within your own programs, a
re-compilation will be necessary.

9.6 Major Differences from Version 10.0 LA
If you have .tgt files created with the Limited Availability or Beta Integrated Development
Environment, when you load them, the target window may say "Obsolete Form: rename
target type". If it does:

1. Select the target window by clicking in it,
2. Choose "rename target" from the target menu (a rename target dialog will appear),
3. Reselect the target type for this target (e.g., Win32 EXE), and
4. Select OK.

You should not continue to use .cfg files from the Limited Availability version of the
compiler. Several new features have been added. Using the old files will cause problems.

The C++ compiler calling conventions have changed. Any program that passes a "data only"
class or struct as a parameter, or returns a C++ object will need to be recompiled. We
recommend that you recompile your application.

The C++ compiler now supports the use of the __export, __cdecl, __pascal, __stdcall and
__syscall keyword on class definitions. These keywords will affect all members of the
defined class.

9.7 Major Differences from WATCOM C9.5 /386
• The functionality of Watcom C/C++16 and Watcom C/C++32 is included in a single
package.

• An Integrated Development Environment for Windows 3.x, Windows NT, Windows 95
and OS/2 PM is included.

Major Differences from WATCOM C9.5 /386 87

Chapter 9

• New, redesigned debugger with GUI interfaces for Windows 3.x, Windows NT,
Windows 95 and OS/2 PM is included.

• The optimizer has been enhanced.

• C++ Class Browser

• New, redesigned user interface for the Profiler.

• New support for C and C++ precompiled header files.

• Windows resource editing tools are included:

Dialog Editor
Bitmap Editor
Resource Editor
Menu Editor
String Editor
Accelerator Editor

• Windows development tools are included:

Dr. WATCOM (a post mortem debug utility)
Spy (Windows message spy program)
DDESpy
Heap Walker
Zoom

• On-line documentation is included.

• Microsoft Foundation Classes for 32-bit Windows applications (MFC 4.1) and 16-bit
Windows 3.1 applications (MFC 2.52b) is included.

• Creation of FlashTek DOS extender applications is supported.

• Compiler executables have been created that run under all supported operating systems.
They are located in the BINW directory.

88 Major Differences from WATCOM C9.5 /386

Release Notes for Watcom C/C++ 11.0

Items No Longer Supported

• PenPoint development

• Debugging of Ergo OS/386 DOS extender applications

• DESQView remote debugging

Changes in 10.0 that may Require Recompilation

All C++ applications will require recompilation due to changes in the underlying object
model. C applications should not require recompilation, but you should recompile your
application if you want to take full advantage new features in the debugger. The changes to
the C++ object model are:

• Virtual table layout changed (NULL entry at offset 0 removed)

• derived class packing adjusted to minimize padding bytes

• exception handling code is improved (incompatible with 9.5)

• name mangling for ’char’ reduced from two chars to one char

Major Differences from WATCOM C9.5 /386 89

Index

clock 63, 68, 70-71
CLOCKS_PER_SEC 63, 68, 70-713 COMMAND.COM 16
CONFIG.SYS 16
Control Panel 15
cross-platform 2386 Enhanced 15

D4

DDE spy 34DOS 16
debugger 16
DELDIR environment variable 16
diskettes 12
DOS extender 4A
DPMI specification 9
Dr. Watcom 3

anti-virus 16

E

B
editor 2
Enhanced System Editor 16
environment variablesbatch server 15

DELDIR 16BATCHBOX.PIF 16
PATH 12BATSERV 16
WATCOM 12benchmarking 55

EPM 16BINMODE 68
__export 87

C
F

CD-ROM 12
fastest 16-bit code 55__cdecl 87
fastest 32-bit code 55class browser 2
fixes 7class libraries 4

91

Index

G M

GUI tools 3 MFC 4

H N

hardware requirements 11 NMPBIND 16
heap walker 3 NoEMMDriver 15
host platforms supported 1

O
I

OMF specification 9
IDE 16 _osver 69
Image Type 23-24 OverlappedIO 15
independent software vendors 8 overview 1
InDOSPolling 15
INSTALL 14
installation

incremental 14 P
modifications to files 15
multiple operating systems 13
previous version 12

__pascal 87installing Watcom C/C++ 12
patch level 7DOS 14
patches 7OS/2 14

obtaining 7Windows 3.x 14
PATH environment variable 12Windows 95 14
performance analysis 2Windows NT 14
PIF 16__int64 66-67, 69
pkunzip 7ISV 8
platforms supported 1
printf 69
product overview 1

92

Index

Program Information File 16

U

R
UNDELETE 16

read-me file 5
registration number 6 Vresource compiler 3
resource editors 3

Visual Programmer 3

S

W
scanf 69
SDK 4
self-help 5 WATCOM environment variable 12
SETUP 14 WHELP 45
software requirements 12 Win32s 17
SOM 4 Windows
spy 3 386 Enhanced 15
__stdcall 87 Control Panel 15
__syscall 87 InDOSPolling 15
SYSTEM.INI 15 NoEMMDriver 15

OverlappedIO 15
SYSTEM.INI 15

_winmajor 69T _winminor 69
_winver 69

Target Environment 23-24
target platforms supported 2 ZTECHINFO 7
technical support 5
third-party software 8
toolkit 4 zoom 3

93

