
Guide to the MMK Make
Utility

March, 2013

This manual describes the MMK Make Utility, a ‘‘make’’ utility for VMS
systems.

Revision/Update Information: This is a revised manual.

Operating System and Version: VAX/VMS V5.2 or later; OpenVMS Alpha
V1.5 or later; OpenVMS IA64 V8.2 or later

Software Version: MMK V5.0

Endless Software Solutions
Perth, Western Australia

07 March 2013

Copyright ©2008 Matthew Madison.

Copyright ©2013 Endless Software Solutions.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

• Neither the name of the copyright owner nor the names of any other contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Portions of the software were adapted from other open source projects. Refer to the
Release Notes for copyright and license information.

The following are trademarks of Hewlett-Packard Development Company, LP:

AXP DEC OpenVMS
VAX VMS

UNIX is a registered trademark of USL, Inc.

Contents

PREFACE vii

CHAPTER 1 INTRODUCTION 1–1

1.1 OVERVIEW 1–1

1.2 INVOKING MMK 1–1

CHAPTER 2 DESCRIPTION FILES 2–1

2.1 DESCRIPTION FILE COMPONENTS 2–1

2.2 USING INFERENCE RULES 2–1

2.3 DEFINING INFERENCE RULES 2–2

2.4 FORCED SETUP/TEARDOWN ACTIONS IN INFERENCE RULES 2–3

2.5 MODIFYING THE SUFFIX LIST 2–3

2.6 USING CONDITIONALS 2–4
2.6.1 GNU Make Conditionals 2–5

2.7 MACRO DEFINITIONS 2–6
2.7.1 Command Assignment 2–6
2.7.2 Evaluated Assignment 2–7

2.8 DEFERRING MACRO SUBSTITUTION 2–7

2.9 MACRO STRING SUBSTITUTION 2–8

iii

Contents

2.9.1 Suffix Substitution 2–8
2.9.2 General String Substitution 2–8

2.10 BUILTIN FUNCTIONS 2–9
ADDPREFIX 2–10
ADDSUFFIX 2–11
AND 2–12
BASENAME 2–13
CALL 2–14
COLLAPSE 2–15
DIR 2–16
DIRECTORY 2–17
FILENAME 2–18
FILETYPE 2–19
FILEVERSION 2–20
FILTER 2–21
FILTER-OUT 2–22
FINDSTRING 2–23
FIRSTWORD 2–24
FOREACH 2–25
IF 2–26
JOIN 2–27
LASTWORD 2–28
NOTDIR 2–29
OR 2–30
ORIGIN 2–31
PATSUBST 2–32
SORT 2–33
STRIP 2–34
SUBST 2–35
WILDCARD 2–36
WORD 2–37
WORDLIST 2–38
WORDS 2–39

CHAPTER 3 USING DEC/CMS WITH MMK 3–1

3.1 THE /CMS QUALIFIER 3–1

3.2 EXPLICIT CMS ELEMENT REFERENCES 3–1
3.2.1 Specifying the Element Generation 3–1

3.3 INFERENCE RULES FOR CMS FILES 3–2
3.3.1 CMS and Prefixed Inference Rules 3–2

MMK 3–3

iv

Contents

APPENDIX A DIFFERENCES BETWEEN MMK AND DEC/MMS A–1

A.1 DEC/MMS FEATURES NOT SUPPORTED IN MMK A–1

A.2 MMK EXTENDED FEATURES A–1

A.3 OTHER DIFFERENCES A–3

APPENDIX B BUILT-IN DEPENDENCY RULES B–1

FIGURES
B–1 MMK default dependency rules - VAX B–1
B–2 MMK default dependency rules - Alpha B–5
B–3 MMK default dependency rules - IA64 B–10

TABLES
2–1 Conditional Expression Operators 2–5
2–2 Macro Assignment Operator 2–6
2–3 Macro Definition Origins 2–31
2–4 PATSUBST Pattern Operators 2–32

v

Preface

This guide explains how to install and use MMK.

Intended Audience
This manual is intended for all MMK users, primarily programmers who
need to build software systems.

MMK is patterned after VAX DEC/Module Management System
(DEC/MMS), which is in turn based on the UNIX make utility. The reader
is assumed to have at least cursory knowledge of make or DEC/MMS.

Further information regarding MMK, including release details and support
agreements can be found at the Endless Software Solutions website:

http://www.endlesssoftware.com.au

Note: This document does not provide a general tutorial on make
utilities. New users are advised to learn more about description
files (makefiles) by reviewing either DEC/MMS documentation or
books on the UNIX make utility.

Document Structure
tbs

Related Documents
The following documents might also be helpful when using MMK:

• The MMK Release Notes contain further information related to new
and deprecated features of MMK.

• The Guide to the Module Management System (order number:
AA-P119J-TE) contains further information related to DEC/MMS
and can be found at http://h71000.www7.hp.com/doc/decset.html.

• The GNU Make Manual contains information related to make and can
be found at http://www.gnu.org/software/make/manual/.

Conventions
In this document, the following convention will be used for the names of
the three similar utilities:

• MMK refers to the package described in this document.

• DEC/MMS refers to DEC/Module Management System, a product of
Digital Equipment Corporation.

• make refers to the UNIX make utility.

vii

1 Introduction

This chapter describes MMK. It includes an overview of MMK and basic
information on its use.

1.1 Overview
MMK is a tool for building a ‘‘software system;’’ that is, a collection of
one or more executable images or other types of files that are related to a
particular project. Building a complex system by hand can be a difficult
and time-consuming task; using command procedures can make the task
easier, but it may still be time-consuming.

With MMK, you create a file called a Makefile or MMS description file to
describe your software system: the objects (i.e., source files, object files,
etc.) that comprise the system, the dependencies between those objects,
and the commands used to build the system. When you invoke MMK, it
performs the following steps:

1 MMK reads and parses the description file, constructing a tree from
the objects and dependencies listed in the file.

2 It then identifies the object to be built (called the target).

3 The tree of dependencies is traced from the target, and the revision
dates for the files in that path are compared. If an object doesn’t exist
or is older than the object it depends on, the commands to build the
object are executed in a subprocess. This continues until all objects
along the dependency path have been checked and the target has been
brought completely up-to-date.

In this way, MMK can execute the commands to rebuild only those pieces
of your software system that need rebuilding due to a change that you
have made. This can drastically reduce development time for a project.

1.2 Invoking MMK
Provided that MMK has been installed using the steps laid out in the
installation instructions (file AAAREADME.INSTALL in the kit), you can
invoke MMK from DCL as a foreign command:

$MMK

Full command syntax is given in MMK. By default, MMK looks for a
description file called DESCRIP.MMS in the current directory; if that file
does not exist, it then looks for a file called MAKEFILE. If it cannot find
that file, an error is signaled. You can use the /DESCRIPTION qualifier to
specify a different name for your description file, if needed.

1–1

Introduction

MMK starts by reading the description file and constructing a tree from
the objects listed in the description file (e.g., source files, include files,
object files, etc.) and a tree of dependencies between those objects. It then
identifies the target object to be built, and traverses the dependency tree
to identify those objects that need to be built (called intermediate targets)
in order to build the target.

MMK compares each target’s revision date/time against the objects on
which it depends and executes the actions for that building the target
only if needed. You can force a complete rebuild by using the /FROM_
SOURCES qualifier on the MMK command.

1–2

2 Description Files

The key to successfully building your software system with MMK is the
creation of a complete and accurate description file. This chapter describes
the format for a description file and its components.

2.1 Description File Components
A description file is a collection of the following components:

• Dependencies, which describe how one object depends on one or more
other objects.

• Actions, which are commands to be executed when an object needs to
be built.

• Macro definitions, for defining symbols that may be used in rules or
actions.

• Inference rule definitions, which are rules based on suffixes (and
possibly directories as well), from which MMK can infer dependencies
and actions without you having to list them explicitly in your makefile.

• MMK directives, which provide a means for adding commands to be
executed before or after all other actions, provide a simple conditional-
build mechanism, and other directives for modifying MMK’s behavior.

Here is an example of a simple description file:

PROGRAM.EXE : MAIN.OBJ,SUBROUTINES.OBJ
LINK/EXEC=PROGRAM.EXE MAIN.OBJ,SUBROUTINES.OBJ

MAIN.OBJ : MAIN.FOR
FORTRAN MAIN

SUBROUTINES.OBJ : SUBROUTINES.MAR
MACRO SUBROUTINES

This is a simple collection of dependencies and actions for building an
image called PROGRAM.EXE. PROGRAM.EXE depends on two object
files, called MAIN.OBJ and SUBROUTINES.OBJ; MAIN is a FORTRAN
module and SUBROUTINES is a MACRO module.

MMK accepts either a colon or the DEC/MMS DEPENDS_ON keyword
to separate a target object from its sources. In either case, the separator
must be surrounded by blanks—this differs from make, but is consistent
with DEC/MMS syntax.

2.2 Using Inference Rules
MMK includes a collection of built-in inference rules and actions for most
VMS programming languages. The rules are driven by the file type suffix
attached to the object name; you must use the default file types in order to
make use of the default rules.

2–1

Description Files

For example, the description file in the last section could be simplified to
just:

PROGRAM.EXE : MAIN.OBJ,SUBROUTINES.OBJ
LINK/EXEC=PROGRAM.EXE MAIN.OBJ,SUBROUTINES.OBJ

MAIN.OBJ : MAIN.FOR
SUBROUTINES.OBJ : SUBROUTINES.MAR

MMK’s built-in inference rules automatically define the actions for
building a .OBJ file from a .FOR (using the FORTRAN command) and
for building a .OBJ file from a .MAR file (using the MACRO command).

The description file could even be simplified further, to just:

PROGRAM.EXE : MAIN.OBJ,SUBROUTINES.OBJ
LINK/EXEC=PROGRAM.EXE MAIN.OBJ,SUBROUTINES.OBJ

MMK automatically searches the suffixes list when constructing
the dependency tree and locates inference rules for the .OBJ files
automatically. This illustrates the second use for inference rules: they
are used not only for inferring actions for a dependency that omits them,
but they may also be used for inferring dependencies themselves based
on a combination of source and target suffixes. This second purpose
can greatly simplify your makefiles, and makes the build process more
automatic.

2.3 Defining Inference Rules
You can define your own inference rules, either to extend or replace the
ones built into MMK. You may include these rule definitions in your
makefile, or in a separate file called a rules file. Rules files can be included
by the use of a logical name or through the /RULES qualifier on the MMK
command; see the MMK for further information.

MMK supports two types of inference rules: generic and prefixed. Generic
rules are based solely on suffixes (file types), as in:

.C.OBJ :
CC/OBJECT=$(MMS$TARGET) $(MMS$SOURCE)

which says, ‘‘to build filename.OBJ from an existing file called filename.C,
use the CC command.’’ In general, generic rules work best when the
source and target files reside in the same directory.

Prefixed inference rules are based on both suffixes and ‘‘prefixes’’—
device and directory specifications. This provides a way to have MMK
automatically infer dependenices between files that reside in different
directories. For example: For example, the prefixed rule:

{SRC$:}.C{OBJ$:}.OBJ :
CC/OBJECT=$(MMS$TARGET) $(MMS$SOURCE)

tells MMK, ‘‘to build OBJ$:filename.OBJ from an existing file called
SRC$:filename.C, use the CC command.’’ This works like the generic rule
above, but with the additional provision of having the source and target
reside in different locations.

2–2

Description Files

You can have more than one prefixed rule for a particular pair of suffixes;
you may also mix generic rules and prefixed rules for a pair of suffixes.
When attempting to infer a dependency, MMK will first use the prefixed
rules, then fall back to using the generic rule.

In prefixed rules, the curly braces (‘‘{’’ and ‘‘}’’) are required. One of the
two prefixes may be null, but specifying two null prefixes is equivalent to
defining a generic rule.

In order to match a prefixed rule, file specification as it exists in the
description file must match the prefix in the rule; MMK performs no
logical name translation on prefixes, nor can it identify equivalencies
between two prefixes that reference the same directory using different
syntax.

The first inference rule for a pair of suffixes, whether it is generic or
prefixed, must specify an action list; subsequent rules for the same pair of
suffixes (with different prefixes) may have the action list omitted, in which
case MMK will use the action list from the first rule. For example, MMK
already has a built-in generic rule for .C.OBJ, which is:

.C.OBJ :
(CC)(CFLAGS) $(MMS$SOURCE)

If you are simply adding a set of prefixed rules for the .C.OBJ suffix pair,
you do not need to specify an action list on those rules; MMK will use the
action list from the built-in generic rule.

2.4 Forced Setup/Teardown Actions in Inference Rules
MMK recognizes two special modifiers on action lines specified for
inference rules. The setup modifier, ‘‘<’’, forces the execution of an action
prior to any unmodified action. The teardown modifier, ‘‘>’’, forces the
execution of an action after all other actions. Setup and teardown actions
are performed for all dependencies matching the inference rule, even if a
dependency includes explicit actions.

For example, the inference rule

.C.OBJ :
< DEFINE/USER DECC$SHR V6_ROOT:[SYSLIB]DECC$SHR
(CC)(CFLAGS) $(MMS$SOURCE)

would cause the logical name DECC$SHR to be defined prior to the
invocation of the C compiler for all compilations into .OBJ files. This
would apply even on dependencies containing explicit actions, such as

FRED.OBJ : FRED.C
(CC)(CFLAGS)/DEFINE=FRED $(MMS$SOURCE)

2.5 Modifying the Suffix List
MMK uses a suffix list to determine the inference rules it should search
for inferring a dependency. MMK has a built-in suffix list which goes with
its list of built-in inference rules; see Appendix B for more information on
the built-in rules and suffix list.

2–3

Description Files

You can augment or replace the built-in suffix list with your own suffixes
by using the .SUFFIXES directive in a rules file or a makefile.

For example, let’s say you have a Modula-2 compiler on your system,
whose source files have a file type (suffix) of .MOD. MMK has no built-in
inference rules for this file type; you could add one with the following
sequence:

.SUFFIXES : .MOD

.MOD.OBJ :
MODULA2/OBJECT=$(MMS$TARGET) $(MMS$SOURCE)

The .SUFFIXES directive above adds the .MOD suffix to the end of the
suffix list. This is followed by the inference rule for creating an object file
from a Modula-2 source file.

Specifying the .SUFFIXES directive with nothing to the right of the colon
clears the current suffix list. You can do this to prevent MMK from using
any inference rules for the current build, or to follow it with another
.SUFFIXES directive that specifies only those suffixes for which you want
inference rules to be enabled.

2.6 Using Conditionals
MMK provides several directives that can be used to modify the build
sequence based on conditions. These directives are .IF, .IFDEF, .IFNDEF,
.ELSE, .ELSIF and .ENDIF. The .IFDEF directive checks if the specified
macro is defined and .IFNDEF is the logical inverse, the syntax of which
is:

.IFDEF VEGETABLE

...

.ENDIF

or,

.IFNDEF VEGETABLE

...

.ENDIF

The .IF directive supports more general comparison (and thus greater
power) by allowing the specification of a boolean expression, like so:

.IF expression

...
[.ELSEIF expression]
[...]
[.ELSE]
[...]
.ENDIF

In the example above, expression can be replaced by any operations
consisting of the operators (both MMS and MMK operators are listed)
listed in Table 2–1.

2–4

Description Files

Table 2–1 Conditional Expression Operators

MMS Syntax MMK Syntax Example

Boolean Operators

.AND AND expression .AND expression

.NOT NOT .NOT expression

.OR OR expression .OR expression

Comparison Operators

.EQ EQL expression .EQ expression

.GE GEQ expression .GE expression

.GT GTR expression .GT expression

.LE LEQ expression .LE expression

.LT LSS expression .LT expression

.NE NEQ expression .NE expression

All expressions evaluate to a boolean result. After all macro substitution is
performed and the the operand is not an empty string it is the equivalent
of a boolean TRUE. All comparisons are performed without regard to
upper/lower case.

2.6.1 GNU Make Conditionals
Supplemental to the MMS/MMK conditionals, MMK also supports
the specification of the GNU Make-style conditionals ifeq, ifneq, ifdef,
ifndef, else and endif. The ifdef and ifndef conditionals behave exactly as
their MMS/MMK counter-parts. However, ifeq and ifneq have a slightly
different syntax:

ifeq (arg1, arg2)
ifeq ’arg1’ ’arg2’
ifeq "arg1" "arg2"
ifeq "arg1" ’arg2’
ifeq ’arg1’ "arg2"

Although the example lists ifeq, it can be replaced with its logical inverse,
ifneq. These two directives simply compare their arguments (ignoring
case) and test for equality. The following is an example adapted from the
GNU Make manual:

ifeq ($(strip $(foo)),)
Come in here if foo is an empty string
...
endif

In order to use the conditionals it is necessary to first enable them.
This can be done from the command line with the specification of the
/EXTENDED_SYNTAX=GNU_SYNTAX qualifier or with the .GNU_
SYNTAX directive in the description file.

2–5

Description Files

2.7 Macro Definitions
MMK supports a range of operators for assigning values to macros. To
simplyfy description files it is possible to concatenate and test before
assignment. Table 2–2 defines the available assignment operators.

Table 2–2 Macro Assignment Operator

Operator Description Example

= Assign value. FOO = BAR
+= Concatenate to existing

value.
FOR += ,NEXT

?= Assign if macro is undefined. FOO ?= FIRST
!= Assign command results. FOO != DIRECTORY
~= Completely evaluate value

before assignment

Two of these assignment operators behave a little differently than the
others. They are both described in more detail below.

2.7.1 Command Assignment
Command assignment is the != operator. The assigned value is taken as
a command and executed, with the results being assigned to the macro.
Using this mechanism it would be possible to determine some details of
the running system, like so:

FOO != SHOW SYSTEM/NOPROCESS
ALL :

@ WRITE SYS$OUTPUT "$(FOO)"

the results of which might look something like:

$ MMK
OpenVMS V7.3 on node BENDER 15-FEB-2013 16:05:10.03 Uptime 37 15:54:40

Note:

The ’!’ character is already a comment delimiter in MMK. To
resolve this, the MMK description file parser now tests for a ’=’
character immediately following a ’!’. Usually when detecting a
’!’ character the remainder of the line (including the comment
delimiter) will be stripped from the output. However, in this
special case the delimiter and the following characters will not be
stripped and instead parsed as an assignment. This may create
issues for existing procedures that contain comments that match
this pattern.

However, it is worth noting that this restriction only applies to the
’!’ comment delimiter. It is still possible to use ’#’ in any place and
achieve the desired result.

2–6

Description Files

2.7.2 Evaluated Assignment
Evaluated assignment is the ~= operator. This assignment operator is
special in that it completely evaluated the value before assigning it to the
macro.

All records in the description file are evaluated and an attempt is made
to resolve all macros as they are read in to the parser. However, if an
unresolved macro, or a builtin function call is found it is not evaluated to
the empty string, rather it is retained for a time when those macros are
available. An example from the default definitions within MMK is:

BASIC = BASIC
BASFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

The definition of BASFLAGS will not be evaluated fully as the description file is processed, leaving
MMS$TARGET_NAME and OBJ unresolved until BASFLAGS is resolved as a part of executing
the build actions that include this definition (shown below).

.BAS$(OBJ) :
$(BASIC)$(BASFLAGS) $(MMS$SOURCE)

Sometimes this is not what is wanted and it is necessary to evaluate the
definition completely. The following is an excert from the procedure that
builds MMK’s PCSI Product Definition File.

DOCUMENTATION ~= $(ADDPREFIX $(KITDIR),$(WILDCARD $(KITDIR)*.HTML)) -
$(ADDPREFIX $(KITDIR),$(WILDCARD $(KITDIR)*.PDF)) -
$(ADDPREFIX $(KITDIR),$(WILDCARD $(KITDIR)*.PS)) -
$(ADDPREFIX $(KITDIR),$(WILDCARD $(KITDIR)*.TXT))

Without being able to evaluate the macro definition for DOCUMENTATION the list documentation
files would actually evaluate to the function calls, not the results of the builtin function calls.

2.8 Deferring Macro Substitution
MMK provides a way to defer the resolution of a macro that is referenced
in the right-hand side of a macro definition, as an extension to MMS.
Macros are normally referenced using the $(name) syntax, which causes
the value of the macro to be substituted immediately when a line is
parsed (except for MMK’s ‘‘special’’ macros, such as MMS$SOURCE and
MMS$TARGET).

You can defer this substitution in MMK by using the syntax ${name}
instead. However, this syntax is only recognized on the right-hand side
of a macro definition. This can be useful when defining macros in a rules
file that rely on macros that do not get defined until another rules file or a
description file gets processed. For example, you might have the following
definition in a rules file:

CFLAGS = /OBJECT=$(MMS$TARGET)/NOLIST/DEFINE=(VMS_BUILD,${MOREDEFINES})

then in your description file, you can define the MOREDEFINES macro:

MOREDEFINES = ANOTHER_C_DEFINE

This will complete the CFLAGS macro value when it is referenced later in
the description file.

2–7

Description Files

2.9 Macro String Substitution
MMK provides two mechanisms for causing string substitution to occur
when resolving a macro reference: suffix substitution and general string
substitution.

2.9.1 Suffix Substitution
When a string contains a list of file specifications, you can replace the file
type suffixes on each file specification with a different suffix. The general
form of this type of substitution is:

$(macro-name:old-sfx=new-sfx)

which causes the replacement of all occurences of the file type suffix old-sfx
with new-sfx. Both suffixes must begin with a dot.

For example, in these macro definitions:

SOURCES = FIRST.C, SECOND.C, THIRD.C
OBJECTS = $(SOURCES:.C=.OBJ)

the OBJECTS macro would have the value ‘‘FIRST.OBJ, SECOND.OBJ,
THIRD.OBJ’’. This form of substitution works with file specification
lists separated by either blanks, commas, or both. The substitution
rule following the colon may also contain blanks, which are ignored.
Substitutions are case-insensitive.

2.9.2 General String Substitution
General string substitution in macro references is an extended feature
of MMK. It looks very similar to suffix substitution, but uses a double
colon (‘‘::’’) instead of a single colon and allows the substitution to occur
anywhere within the string. The syntax is:

$(macro-name::old-str=new-str)

which causes the replacement of all occurences of the string old-str with
new-str. You may use a backslash ‘‘\ ’’ as a ‘‘literal-next’’ escape when one
of the strings contains an equals sign. Neither string may contain a right
parenthesis character (‘‘)’’), even quoted with a backslash, although this
restriction will be lifted in a future release of MMK. For example, the
following macro definitions:

SOURCES = FIRST.C,SECOND.C,THIRD.C
SOURCEPLUS = $(SOURCES::,=+)

would cause SOURCEPLUS to contain the list of filenames separated with
plus signs (‘‘+’’) rather than commas.

General string substitutions in macro references are case-insensitive, but
do not ignore blanks in the macro value or in the substitution rule. For
example, in the following definitions:

2–8

Description Files

TEST = Xyz xYz xyZ
REPLACED = $(TEST::YZ =YZ,)

the REPLACED macro would have the value ‘‘XYZ,xYZ,xyZ’’, due to
the case-blind comparisons and the inclusion of the space in the old-str
specification.

2.10 Builtin Functions
As well as symbol substituion it is also possible to call a number of builtin
functions that can process text to automate and simplify build definitions.
The following reference describes what each of these functions does, with
examples.

2–9

ADDPREFIX

ADDPREFIX—Prefix List Elements
$(ADDPREFIX prefix,text[...])

DESCRIPTION
ADDPREFIX treats text as a whitespace delimited list of words. Each
word is prefixed with prefix and returned in a space delimited list.

EXAMPLE The following examples show how to call the ADDPREFIX builtin function
and demonstrate the expected output.

LIST = CAT, DOG, SECRET, HEAVY
ALL :

@ WRITE SYS$OUTPUT "Unprefixed = $(LIST)"
@ WRITE SYS$OUTPUT "Prefixed = $(ADDPREFIX TOP ,$(LIST))"

Description file to demonstrate the ADDPREFIX function.

Unprefixed = CAT, DOG, SECRET, HEAVY
Prefixed = TOP CAT, TOP DOG, TOP SECRET, TOP HEAVY

The output the above description file would generate.

2–10

ADDSUFFIX

ADDSUFFIX—Suffix List Elements
$(ADDSUFFIX suffix,text[...])

DESCRIPTION
ADDSUFFIX treats text as a whitespace delimited list of words. Each
word is suffixed with suffix and returned in a space delimited list.

EXAMPLE The following examples show how to call the ADDSUFFIX builtin function
and demonstrate the expected output.

LIST = OX VAX
SUFFIX = EN,
ALL :

@ WRITE SYS$OUTPUT "Unsuffixed = $(LIST)"
@ WRITE SYS$OUTPUT "Suffixed = $(ADDSUFFIX $(SUFFIX),$(LIST))"

Description file to demonstrate the ADDSUFFIX function. Notice that
the suffix to be appended to each word is a symbol. This is so that the
text EN, will recognize the ’,’ character as part of the suffix and not an
argument delimiter in the builtin function.

Unsuffixed = OX VAX QUICK LENGTH STRENGTH
Suffixed = OXEN, VAXEN, QUICKEN, LENGTHEN, STRENGTHEN,

The output the above description file would generate.

2–11

AND

AND—Logical And
$(AND condition[,condition[,...]])

DESCRIPTION
The AND function provides a logical and operation. Each of the condition
arguments are expanded until one evaluates to the empty string. The
arguments are evaluated individually and consecutively, so if one should
fail (evaluate to an empty string) then the remaining conditions will not
be evaluated.

If all conditions evaluate to a non-empty string, then the result of this
function is the expansion of the final condition. Otherwise this function
will return the empty string.

EXAMPLE The following examples show how to call the AND builtin function and
demonstrate the expected output.

A = A
B = B
C = C
D =
FOO = $(AND $(A),$(B),$(C))
BAR = $(AND $(A),$(B),$(C),$(D))
ALL :

@ WRITE SYS$OUTPUT "FOO = $(FOO)"
@ WRITE SYS$OUTPUT "BAR = $(BAR)"

Description file to demonstrate the AND function.

FOO = C
BAR =

The output the above description file would generate.

2–12

BASENAME

BASENAME—Get File Specification Without Type
$(BASENAME text[...])

DESCRIPTION
BASENAME returns the device, directory and file name portions of the
specifications found in text. The result does not include the file type.
If multiple specifications are supplied, they will each be evaluated and
returned in a space delimited list.

EXAMPLE The following examples show how to call the BASENAME builtin function
and demonstrate the expected output.

FOO = $(BASENAME SYS$LOGIN:LOGIN.COM)
ALL :

@ WRITE SYS$OUTPUT "FOO = $(FOO)"

Description file to demonstrate the BASENAME function.

FOO = USER$:[FLYNN]LOGIN

The output the above description file would generate.

2–13

CALL

CALL—Call User-defined Function
$(CALL macro[,param[,...]])

DESCRIPTION
The CALL function makes it possible for a user to develop their own macro
functions. To call a macro function, specify the name in macro, not the
substitution, and pass up to 31 arguments in param.

Before macro is call (looked up and resolved) the arguments passed in
param are resolved and defined as symbols $(1)-$(31), with $(0) being
macro.

It is important to remember certain escaping rules when defining
callable macros. MMK supports the concept of deferred substitution (see
Section 2.8 by using ${ and } as the substitution delimiters. It is necessary
to use this method of substitution when specifying the macro arguments
outside of any builtin function call, for example:

REVERSE = ${2} ${1}
FOO = $(CALL REVERSE,A,B)

EXAMPLE The following examples show how to call the CALL builtin function and
demonstrate the expected output. Another example can be found under
the documentation for FINDSTRING.

ORIGINS = $(FOREACH VAR,$(1),$(ORIGIN $(VAR)))
ECHO = WRITE SYS$OUTPUT

ALL :
@ $(ECHO) "$(CALL ORIGINS,MMSALPHA MMSIA64 MMSVAX)"

This description file shows the definition of the user defined function
ORIGINS, which is a multi-argument version of the ORIGIN builtin.

This example also demonstrates that because the $(1) substitution is made
within the FOREACH call, there is no need to use deferred substitution.

UNDEFINED UNDEFINED SPECIAL

The output the above description file would generate when run on a VAX
system.

2–14

COLLAPSE

COLLAPSE—Collapse Whitespace
$(COLLAPSE text)

DESCRIPTION
The COLLAPSE function removes all whitespace fomr text.

EXAMPLE The following examples show how to call the COLLAPSE builtin function
and demonstrate the expected output.

FOO = $(COLLAPSE 1 2 3 4 5 6 7) 8 9 10
ECHO = WRITE SYS$OUTPUT

ALL :
@ $(ECHO) "FOO = $(FOO)"

Description file to demonstrate the COLLAPSE function.

FOO = 1234567 8 9 10

The output the above description file would generate.

2–15

DIR

DIR—Get Device and Directory
$(DIR text[...])

DESCRIPTION
DIR returns the device and directory portion of the specifications found in
text. If multiple specifications are supplied, they will each be evaluated
and returned in a space delimited list.

To retrieve only the directory, please see DIRECTORY.

EXAMPLE The following examples show how to call the DIR builtin function and
demonstrate the expected output.

FOO = $(DIR SYS$LOGIN)
ECHO = WRITE SYS$OUTPUT

ALL :
@ $(ECHO) "FOO = $(FOO)"

Description file to demonstrate the DIR function.

FOO = USER$:[FLYNN]

The output the above description file would generate.

2–16

DIRECTORY

DIRECTORY—Get Directory
$(DIRECTORY text[...])

DESCRIPTION
DIRECTORY returns only the directory portion of the specifications
found in text. This is different to DIR which returns both the device and
directory.

If multiple specifications are supplied, they will each be evaluated and
returned in a space delimited list.

EXAMPLE The following examples show how to call the DIRECTORY builtin function
and demonstrate the expected output.

FOO = $(DIRECTORY SYS$LOGIN)
ECHO = WRITE SYS$OUTPUT

ALL :
@ $(ECHO) "FOO = $(FOO)"

Description file to demonstrate the DIRECTORY function.

FOO = [FLYNN]

The output the above description file would generate.

2–17

FILENAME

FILENAME—Get Filename
$(FILENAME text[...])

DESCRIPTION
FILENAME returns only the file name portion of the specifications found
in text. If multiple specifications are supplied, they will each be evaluated
and returned in a space delimited list.

EXAMPLE The following examples show how to call the FILENAME builtin function
and demonstrate the expected output.

FOO = $(FILENAME SYS$LOGIN:LOGIN.COM)
ECHO = WRITE SYS$OUTPUT

ALL :
@ $(ECHO) "FOO = $(FOO)"

Description file to demonstrate the FILENAME function.

FOO = LOGIN

The output the above description file would generate.

2–18

FILETYPE

FILETYPE—Get File Type
$(FILETYPE text[...])

DESCRIPTION
FILETYPE returns only the file type portion of the specifications found in
text. If multiple specifications are supplied, they will each be evaluated
and returned in a space delimited list.

EXAMPLE The following examples show how to call the FILETYPE builtin function
and demonstrate the expected output.

FOO = $(FILENAME SYS$LOGIN:LOGIN.COM)
ECHO = WRITE SYS$OUTPUT

ALL :
@ $(ECHO) "FOO = $(FOO)"

Description file to demonstrate the FILETYPE function.

FOO = .COM

The output the above description file would generate.

2–19

FILEVERSION

FILEVERSION—Get File Version
$(FILEVERSION text[...])

DESCRIPTION
FILEVERSION returns only the file version portion of the specifications
found in text. If multiple specifications are supplied, they will each be
evaluated and returned in a space delimited list.

FILEVERSION retrieves the version information calling the $PARSE and
then the $SEARCH system services. In the event that the file does not
exist, the version number is returned as ";" so that a missing element does
not disrupt the list.

EXAMPLE The following examples show how to call the FILEVERSION builtin
function and demonstrate the expected output.

FOO = $(FILEVERSION SYS$LOGIN:LOGIN.COM SYS$LOGIN:DOESNOTEXIST.TXT)

ALL :
@ $(ECHO) "FOO = $(FOO)"

Description file to demonstrate the FILEVERSION function.

FOO = ;17 ;

The output the above description file would generate.

2–20

FILTER

FILTER—Filter Words
$(FILTER pattern[...],text[...])

DESCRIPTION
FILTER treats text as a whitespace delimited list for words. It compares
each word against pattern, which itself is a whitespace delimited list of
petterns, to determine if it should be included in the result. If the pattern
matches the word, the word is included in the space delimited result list.
The pattern wildcard characters are ’%’ and ’*’.

EXAMPLE The following examples show how to call the FILTER builtin function and
demonstrate the expected output.

SOURCES = FOO.C BAR.C BAZ.S UGH.H
ALL :

@ WRITE SYS$OUTPUT "$(FILTER *.C *.S,$(SOURCES))"
@ WRITE SYS$OUTPUT "$(FILTER *.H,$(SOURCES))"
@ WRITE SYS$OUTPUT "$(FILTER *.T,$(SOURCES))"

Description file to demonstrate the FILTER function.

FOO.C BAR.C BAZ.S
UGH.H

The output the above description file would generate.

2–21

FILTER-OUT

FILTER-OUT—Filter Out Words
$(FILTER-OUT pattern[...],text[...])

DESCRIPTION
FILTER treats text as a whitespace delimited list for words. It compares
each word against pattern, which itself is a whitespace delimited list of
petterns, to determine if it should be included in the result. If the pattern
matches the word, the word is not included in the space delimited result
list. The pattern wildcard characters are ’%’ and ’*’.

EXAMPLE The following examples show how to call the FILTER-OUT builtin function
and demonstrate the expected output.

SOURCES = FOO.C BAR.C BAZ.S UGH.H
ALL :

@ WRITE SYS$OUTPUT "$(FILTER-OUT *.C *.S,$(SOURCES))"
@ WRITE SYS$OUTPUT "$(FILTER-OUT *.H,$(SOURCES))"
@ WRITE SYS$OUTPUT "$(FILTER-OUT *.T,$(SOURCES))"

Description file to demonstrate the FILTER-OUT function.

UGH.H
FOO.C BAR.C BAZ.S
FOO.C BAR.C BAZ.S UGH.H

The output the above description file would generate.

2–22

FINDSTRING

FINDSTRING—String Search
$(FINDSTRING find,text)

DESCRIPTION
FINDSTRING searchs text for any occurrence of find. If find is found
then the result is find. Otherwise the result is an empty string.

EXAMPLE The following examples show how to call the FINDSTRING builtin
function and demonstrate the expected output.

ISPRESENT = ${IF $(FINDSTRING $(1),$(2)),YES,NO}

TEXT = KERMIT PIGGY FOZZIE
ALL :

@ WRITE SYS$OUTPUT "LIST = $(LIST)"
@ WRITE SYS$OUTPUT "1. KERMIT? $(CALL ISPRESENT,KERMIT,$(TEXT))
@ WRITE SYS$OUTPUT "2. GONZO? $(CALL ISPRESENT,GONZO,$(TEXT))"

Description file to demonstrate the FINDSTRING function. In this
example FINDSTRING is being called indirectly via a macro call. For
further information on this, please see the documentation for the CALL
builtin function.

LIST = KERMIT PIGGY FOZZIE
1. KERMIT? YES
2. GONZO? NO

The output the above description file would generate.

2–23

FIRSTWORD

FIRSTWORD—Get First Word
$(FIRSTWORD text[...])

DESCRIPTION
FIRSTWORD fetches the first word in the whitespace separated list in
text. This is equivalent to:

$(word 1, text)

EXAMPLE The following examples show how to call the FIRSTWORD builtin function
and demonstrate the expected output.

LIST = kermit the frog
FOO = $(FIRSTWORD $(LIST))
BAR = $(WORD 1,$(LIST))
ALL :

@ WRITE SYS$OUTPUT "$(FOO) = $(BAR)"

Description file to demonstrate the FIRSTWORD function.

kermit = kermit

The output the above description file would generate.

2–24

FOREACH

FOREACH—Repeat Expansion
$(FOREACH macro,list[...text],text)

DESCRIPTION
FOREACH provides a basic "for" loop construct by treating list as a
whitespace delimited lost of words and executing text for each word in
list. The temporary variable macro is defined to the next word before
each execution of text.

EXAMPLE The following examples show how to call the FOREACH builtin function
and demonstrate the expected output. An example of FOREACH can also
be found in the examples for CALL.

LETTERS = A B C D
ALL :

@ WRITE SYS$OUTPUT "$(FOREACH LETTER,$(LETTERS),A$(LETTER))"

Description file to demonstrate the FIRSTWORD function.

AA AB AC AD

The output the above description file would generate.

2–25

IF

IF—Conditional Evaluation
$(IF condition,then[,else]])

DESCRIPTION
The IF function evaluates condition. If it evaluates to a non-empty
string, then the then argument is evaluated and returned as the result.
Otherwise, if condition evaluates to an empty string (false) and the else
argument is present, it is evaluated and returned as the result.

The then and else arguments are not evaluated until condition has been
evaluated. Then only the appropriate argument is evaluated.

EXAMPLE The following examples show how to call the IF builtin function and
demonstrate the expected output.

TRUE = TRUE
FALSE =

FOO = $(IF $(TRUE),TRUE)
BAR = $(IF $(FALSE),,FALSE)
ALL :

@ WRITE SYS$OUTPUT "FOO = $(FOO)"
@ WRITE SYS$OUTPUT "BAR = $(BAR)"

Description file to demonstrate the IF function.

FOO = TRUE
BAR = FALSE

The output the above description file would generate.

2–26

JOIN

JOIN—Merge Lists
$(JOIN list,text)

DESCRIPTION
JOIN merges the whitespace delimited lists in list and text. If the length
of the two lists are not the same, then the remainder of the longer list is
concatenated to the result.

EXAMPLE The following examples show how to call the JOIN builtin function and
demonstrate the expected output.

FOO = $(JOIN A B C D, 1 2 3 4)
BAR = $(JOIN A , 1 2 3 4)
ALL :

@ WRITE SYS$OUTPUT "FOO = $(FOO)"
@ WRITE SYS$OUTPUT "BAR = $(BAR)"

Description file to demonstrate the JOIN function.

FOO = A1 B2 C3 D4
BAR = A1 2 3 4

The output the above description file would generate.

2–27

LASTWORD

LASTWORD—Get Last Word
$(LASTWORD text ...)

DESCRIPTION
LASTWORD fetches the last word in the whitespace separated list in text.
This is equivalent to:

$(word $(words text), text)

EXAMPLE The following examples show how to call the LASTWORD builtin function
and demonstrate the expected output.

LIST = kermit the frog
FOO = $(LASTWORD $(LIST))
BAR = $(WORD $(WORDS $(LIST)),$(LIST))
ALL :

@ WRITE SYS$OUTPUT "$(FOO) = $(BAR)"

Description file to demonstrate the LASTWORD function.

frog = frog

The output the above description file would generate.

2–28

NOTDIR

NOTDIR—Get Filename
$(NOTDIR text[...])

DESCRIPTION
NOTDIR is the opposite of DIR. NOTDIR returns the file name and type
portion of the specifications found in text. If multiple specifications are
supplied, they will each be evaluated and returned in a space delimited
list.

To retrieve only filename, type or version, consider using FILENAME,
FILETYPE or FILEVERSION respectively.

Note: NOTDIR performs a "syntax only" parse. It does not test for the
existance of the file specified before parsing.

EXAMPLE The following examples show how to call the NOTDIR builtin function and
demonstrate the expected output.

FOO = $(NOTDIR SYS$LOGIN:A.A)
ECHO = WRITE SYS$OUTPUT

ALL :
@ $(ECHO) "FOO = $(FOO)"

Description file to demonstrate the NOTDIR function.

FOO = A.A

The output the above description file would generate.

2–29

OR

OR—Logical Or
$(OR condition[,condition[,...]])

DESCRIPTION
The OR function provides a logical or operation. Each of the condition
arguments are expanded until one evaluates to a non-empty string. The
arguments are evaluated individually and consecutively, so if one should
succeed (evaluate to a non-empty string) then the remaining conditions
will not be evaluated.

If all conditions evaluate to an empty string, then the result of this
function is the empty string. Otherwise this function will return the result
of the last condition evaluated.

EXAMPLE The following examples show how to call the OR builtin function and
demonstrate the expected output.

A =
B =
C =
D = D
FOO = $(OR $(A),$(B),$(C))
BAR = $(OR $(A),$(B),$(C),$(D))
ALL :

@ WRITE SYS$OUTPUT "FOO = $(FOO)"
@ WRITE SYS$OUTPUT "BAR = $(BAR)"

Description file to demonstrate the OR function.

FOO =
BAR = D

The output the above description file would generate.

2–30

ORIGIN

ORIGIN—Symbol Origin
$(ORIGIN macro)

DESCRIPTION
ORIGIN returns a string describing in which context macro was defined.
Table 2–3 lists the possible results and what they mean.

Table 2–3 Macro Definition Origins

Type Description

UNDEFINED The symbol is not yet defined.

FILE These symbols have been defined within the description file.

COMMAND
LINE

These symbols have been defined through use of the /MACRO=
command line qualifier.

SPECIAL Special symbols are defined per target, these include $(MMS$TARGET)
and $(MMS$SOURCE).

DEFAULT This includes all symbols defined by the default rules.

CLI
SYMBOL

This macro takes its definition from a DCL symbol.

TEMPORARY These symbols are defined through the use of CALL, like $(0) amd $(1),
or FOREACH and the definition of the loop symbol.

EXAMPLE The following examples show how to call the ORIGIN builtin function and
demonstrate the expected output.

FOO = BAR
BAR = $(ORIGIN 0)
ALL :

@ WRITE SYS$OUTPUT "MMSVAX = $(ORIGIN MMSVAX)"
@ WRITE SYS$OUTPUT "MMSALPHA = $(ORIGIN MMSALPHA)"
@ WRITE SYS$OUTPUT "CC = $(ORIGIN CC)"
@ WRITE SYS$OUTPUT "CALL ARGUMENT 0 = $(CALL BAR)"
@ WRITE SYS$OUTPUT "FOO = $(ORIGIN FOO)"
@ WRITE SYS$OUTPUT "VARIANT = $(ORIGIN VARIANT)"
@ WRITE SYS$OUTPUT "CLISYM = $(ORIGIN CLISYM)"

Description file to demonstrate the ORIGIN function.

MMSVAX = SPECIAL
MMSALPHA = UNDEFINED
CC = DEFAULT
CALL ARGUMENT 0 = TEMPORARY
FOO = FILE
VARIANT = COMMAND LINE
CLISYM = CLI SYMBOL

The output the above description file would generate if run on a VAX
system. With the following commands:

$ CLISYM == 1
$ MMK/MACRO=VARIANT=1

2–31

PATSUBST

PATSUBST—Pattern Substitution
$(PATSUBST pattern, to, text)

DESCRIPTION
PATSUBST replaces all instances of pattern with to in text. However,
unlike the function SUBST this builtin allows the specification of a
pattern. Table 2–4 details the pattern operators.

Table 2–4 PATSUBST Pattern Operators

Operator Match Replace

* Match any sequence of any
length.

Insert the entire matched sequence.

% Match any single character. Insert the first character of the matched
sequence.

When matching the words in text if a match is found, the wild-carded
portions of the match are placed in a queue. Therefore, when specifying
to it is also possible to include pattern operators which will insert the
wildcarded portions back into the output.

Note: Unlike the substitution mentioned in Section 2.9, Macro String
Substitution the comparison done by PATSUBST is case-sensitive.

EXAMPLE The following examples show how to call the PATSUBST builtin function
and demonstrate the expected output.

LIST = FIRST.C SECOND.C THIRD.C

FOO = $(PATSUBST *.C,*.OBJ,$(LIST))
BAR = $(PATSUBST *.*,*.%,$(FOO))

ALL :
@ WRITE SYS$OUTPUT "FOO = $(FOO)"
@ WRITE SYS$OUTPUT "BAR = $(BAR)"

Description file to demonstrate the PATSUBST function.

FOO = FIRST.OBJ SECOND.OBJ THIRD.OBJ
BAR = FIRST.O SECOND.O THIRD.O

The output the above description file would generate.

2–32

SORT

SORT—Sort Words
$(SORT text[...])

DESCRIPTION
SORT treats text as a whitespace delimited list of words. These words are
then sorted into into lexical order, removing duplicates and returned to the
caller.

EXAMPLE The following examples show how to call the SORT builtin function and
demonstrate the expected output.

ECHO = WRITE SYS$OUTPUT
MUPPETS = PIGGY FOZZIE KERMIT GONZO BEAKER ROWLF
DILBERT = DILBERT ALICE WALLY ASOK DOGBERT RATBERT
ALL :

@ $(ECHO) "$(SORT $(DILBERT))
@ $(ECHO) "$(SORT $(MUPPETS))

Description file to demonstrate the SORT function.

ALICE ASOK DILBERT DOGBERT RATBERT WALLY
BEAKER FOZZIE GONZO KERMIT PIGGY ROWLF

The output the above description file would generate.

2–33

STRIP

STRIP—Compress Whitespace
$(STRIP text)

DESCRIPTION
STRIP replaces all whitespace characters with a single space as well as
removing the leading and trailing whitespace from text.

EXAMPLE The following examples show how to call the STRIP builtin function and
demonstrate the expected output.

FOO = $(STRIP This has lots of space)
ALL :

@ WRITE SYS$OUTPUT "FOO = $(FOO)"

Description file to demonstrate the STRIP function.

FOO = This has lots of space

The output the above description file would generate.

2–34

SUBST

SUBST—String Substiution
$(SUBST from,to,text)

DESCRIPTION
SUBST replaces all instances of from found in text with to.

Note: This builtin function, like PATSUBST, is case sensitive in its
matching. For case-insensitive string substitution please use,
Section 2.9, Macro String Substitution.

EXAMPLE The following examples show how to call the SUBST builtin function and
demonstrate the expected output.

ALL :
@ WRITE SYS$OUTPUT "$(SUBST ee,EE,feet on the street)"
@ WRITE SYS$OUTPUT "$(SUBST EE,ee,feet on the street)"

Description file to demonstrate the SUBST function.

fEEt on the strEEt
feet on the street

The output the above description file would generate.

2–35

WILDCARD

WILDCARD—File Search
$(WILDCARD text)

DESCRIPTION
WILDCARD searches for the files matching the specification in text and
returns the name and type portions as a space delimited list. It is also
possible to list multiple specifications in text, each must be separated by
whitespace. The wildcard characters ’%’ and ’*’ can also be used.

It is possible to specify multiple search specifications by separating them
with space.

EXAMPLE The following examples show how to call the WILDCARD builtin function
and demonstrate the expected output.

FOO = $(WILDCARD BLISS32_BLD:LEX*.BLI)
BAR = $(WILDCARD BLISS32_BLD:K*.BLI BLISS32_BLD:LEX*.BLI)
ALL :

@ WRITE SYS$OUTPUT "FOO = $(FOO)"
@ WRITE SYS$OUTPUT "BAR = $(BAR)"

Description file to demonstrate the WILDCARD function.

FOO = LEXAN.BLI LEXFUN.BLI
BAR = KFOLD.BLI KOST.BLI LEXAN.BLI LEXFUN.BLI

The output the above description file would generate.

2–36

WORD

WORD—Return the n’th Word
$(WORD n, text)

DESCRIPTION
WORD treats text as a space delimited (multiple consecutive whitespace
characters are treated as one) array of words. The parameter n is an
index into this array, specifying which word to return.

If you specify a value of n that is less than 1 or greater than the number
of elements in text, then the result will be an empty string, "". The builtin
function WORDS can be used to determine the upper limit of the array in
text.

EXAMPLE The following examples show how to call the WORDS builtin function and
demonstrate the expected output.

FOO = $(WORD 2, first second third)
BAR = $(WORD 5, kermit the frog)
ALL :

@ WRITE SYS$OUTPUT "FOO = $(FOO)"
@ WRITE SYS$OUTPUT "BAR = $(BAR)"

Description file to demonstrate the WORD function.

FOO = second
BAR =

The output the above description file would generate.

2–37

WORDLIST

WORDLIST—Extract Words
$(WORDLIST start,end,text[...])

DESCRIPTION
WORDLIST treats text as a whitespace delimited list of words. The
words, start with start and ending at end (inclusive) are extracted from
text and resturned as a space delimited list. The first word in text is 1.

EXAMPLE The following examples show how to call the WORDLIST builtin function
and demonstrate the expected output.

ALL :
@ WRITE SYS$OUTPUT "$(WORDLIST 2, 3, FOO BAR BAZ)"

Description file to demonstrate the WORDLIST function.

BAR BAZ

The output the above description file would generate.

2–38

WORDS

WORDS—Count Words
$(WORDS text)

DESCRIPTION
WORDS counts the number of words in text. The contents of text is
treated as a space delimited (multiple consecutive whitespace characters
are treated as one) array of words.

EXAMPLE The following examples show how to call the WORDS builtin function and
demonstrate the expected output.

FOO = $(WORDS first second third)
BAR = $(WORDS)
ALL :

@ WRITE SYS$OUTPUT "FOO = $(FOO)"
@ WRITE SYS$OUTPUT "BAR = $(BAR)"

Description file to demonstrate the WORDS function.

FOO = 3
BAR = 0

The output the above description file would generate.

2–39

3 Using DEC/CMS with MMK

This chapter describes the use of Digital’s DEC/Code Management System
(DEC/CMS) with MMK.

3.1 The /CMS Qualifier
The MMK command supports a /CMS qualifier, which activates the
automatic use of the currently set DEC/CMS library, or another DEC/CMS
library that you specify, for the current build. This causes source files
to be fetched out of the DEC/CMS library automatically, if needed. In
addition, the MMK description file will automatically be fetched out of the
DEC/CMS library if it does not exist.

The built-in suffix list and dependency rules in MMK include default
rules for fetching source files out of DEC/CMS libraries. Suffixes ending
in a tilde character (‘‘~’’) signify DEC/CMS library elements. The built-in
DEC/CMS element rules are used only if /CMS is specified on the MMK
command.

3.2 Explicit CMS Element References
You can explicitly reference a CMS library element in your MMK
description file by adding a tilde to the end of the file specification. For
example:

MAIN.FOR : MAIN.FOR~

You can also explicitly name the CMS library from which the element
should be fetched, by specifying a device and/or directory name:

MAIN.FOR : SOURCE_DISK:[CMS_SOURCE]MAIN.FOR~

If you do not explicitly name the CMS library, the currently set CMS
library (set with CMS SET LIBRARY) will be used.

3.2.1 Specifying the Element Generation
By default, MMK uses the qualifier /GENERATION=1+ on all CMS
FETCH operations, to get the highest-numbered generation of a particular
element, or whichever generation you specify on the MMK /GENERATION
qualifier. If you need to build a dependency on a specific generation of an
element, you may do so by specifying the /GENERATION qualifier on the
file name:

MAIN.FOR : MAIN.FOR~/GENERATION=37

The above example would cause generation 37 of the MAIN.FOR file in the
current CMS library to be used for the build.

3–1

Using DEC/CMS with MMK

3.3 Inference Rules for CMS Files
MMK comes with built-in inference rules for fetching source files from
a CMS library. Like DEC/MMS, MMK uses these rules only when you
specify the /CMS qualifier on the MMK command. This allows you to have
a makefile like the following:

TEST.EXE : TEST.OBJ
$(LINK)$(LINKFLAGS) $(MMS$SOURCE)

TEST.OBJ : TEST.FOR

If you have a CMS library set and you specify the /CMS qualifier on
the MMK command, MMK will automatically check to see if TEST.FOR
resides in the CMS library and will fetch it out of the library if needed.

However, MMK also allows you to omit the second dependency in the
makefile, and will automatically ‘‘double-infer’’ the existence the .FOR file,
even if it has not yet been fetched out of the CMS library.

3.3.1 CMS and Prefixed Inference Rules
You can have MMK automatically search specific CMS libraries for source
files by using prefixed inference rules. For example, if you were working
on a cross-platform development project which used two CMS libraries -
one for OS-specific source code and another for common source code - you
might use the following prefixed rules:

{CMSSRC:[VMS_SPECIFIC]}.FOR~{}.FOR :
{CMSSRC:[COMMON]}.FOR~{}.FOR :

This sequence would cause MMK to automatically search the
CMSSRC:[VMS_SPECIFIC] CMS library for a FORTRAN source file,
then search the CMSSRC:[COMMON] library. If the file were not located
in either library, MMK would fall back to using the currently set CMS
library. You must still have a CMS library set and you must specify the
/CMS qualifier for prefixed CMS inference rules to be tried.

3–2

MMK

MMK

Invokes the MMK utility to build a software system.

FORMAT MMK [target-name ...]

Command Qualifiers Defaults
/[NO]ACTION /ACTION
/[NO]CHECK_STATUS /NOCHECK_STATUS
/[NO]CMS /NOCMS
/CMS_LIBRARY=(dir-spec...)
/DESCRIPTION=file-spec
/DUMP
/EXTENDED_SYNTAX
/[NO]FORCE /NOFORCE
/[NO]FROM_SOURCES /NOFROM_SOURCES
/GENERATION=string /GENERATION="1+"
/IDENTIFICATION
/[NO]IGNORE[=level] /NOIGNORE
/[NO]LOCAL_RULES /LOCAL_RULES
/[NO]LOG /NOLOG
/MACRO=file-spec | definition...
/OUTPUT=file-spec
/[NO]OVERRIDE /NOOVERRIDE
/[NO]RULES_FILE=file-spec...
/[NO]SKIP_INTERMEDIATES /NOSKIP_INTERMEDIATES
/[NO]VERIFY /VERIFY[=ALL]
/WORKING_DIRECTORY=dir-spec

PARAMETERS target-name
Name of the target to be built. The target name must be listed in the
description file. If no target name is specified, MMK builds the first target
it finds in the description file. Multiple targets may be specified as a
comma-separated list.

DESCRIPTION The MMK utility builds a software system from the objects and
dependencies listed in a description file. See the documentation for
additional information.

QUALIFIERS /[NO]ACTION
Determines whether action lines are executed or just displayed. Specifying
/NOACTION causes MMK to display the action lines that would be
executed to build the target, without actually executing them.

3–3

MMK

/[NO]CHECK_STATUS
Directs MMK to determine whether a target is up-to-date, without
executing any action lines to do so. MMK sets the global symbol
MMS$STATUS to 0 if the target requires updating, or 1 if the target
is up-to-date. This qualifier overrides the /ACTION qualifier.

/[NO]CMS
Determines whether a DEC/Code Management System (CMS) library is
automatically searched for the MMK description file and for any source
files. The default is /NOCMS, which omits any CMS checks.

/CMS_LIBRARY=(dir-spec...)
Specifies one or more DEC/Code Management System (CMS) libraries to
be searched for the MMK description file and for any source files that do
not have explicit CMS library specifications. Effective only when /CMS is
also specified. If omitted, the default CMS library or libraries (from the
logical name CMS$LIB or the CMS SET LIBRARY command) are used.

/DESCRIPTION=file-spec
Specifies an alternative name for the MMK description file. The default
description file name is DESCRIP.MMS (in the current default directory),
with MAKEFILE. being used if DESCRIP.MMS does not exist.

/DUMP
Causes MMK to dump the suffix list, all currently defined macros, all
inference rules, and all dependencies to the current output before starting
the build. This qualifier is useful in debugging problems in rules files and
makefiles.

/EXTENDED_SYNTAX
...describe what this does, largely for MMS compatability...

/[NO]FORCE
Specifying /FORCE causes MMK to execute only the action lines from
the dependency rule for the target, without performing any revision date
checks and without building any intermediate targets.

/[NO]FROM_SOURCES
Specifying /FROM_SOURCES causes MMK to perform a complete build
of the target, ignoring revision dates. All actions to build all intermediate
targets are executed.

/GENERATION=string
Specifies the default generation to be used when MMK fetches elements
out of a CMS library. If omitted, the default generation is ‘‘1+’’, which
fetches the highest-numbered generation of an element. You can use this
qualifier in combination with CMS classes to have MMK build a specific
version of your software system, provided that all source code for the
system is fetched from CMS during the build.

/IDENTIFICATION
Specifying /IDENTIFICATION causes MMK to display its revision
information and a copyright message, without performing any other
action.

3–4

MMK

/[NO]IGNORE[=level]
By default, MMK stops when an executed action line results in a warning,
error, or fatal error status. You can override this by specifying /IGNORE.
Using /IGNORE or /IGNORE=FATAL causes all errors to be ignored;
specifying /IGNORE=ERROR causes errors and warnings to be ignored;
specifying /IGNORE=WARNING causes only warnings to be ignored.

/[NO]LOCAL_RULES
Controls whether site-specific inference rule definitions are read in. By
default, they are if the logical name MMK_LOCAL_RULES is defined
and points to a readable description file. Specifying /NOLOCAL_RULES
prevents this from occurring.

/[NO]LOG
Controls whether MMK logs a detailed description of its activity. By
default, it does not.

/MACRO=file-spec | definintion...
Defines one or more macros that can be referenced by the description file.
If a name is specified with no equals sign (‘‘=’’), it is first assumed to be
a file specification; if the file exists, macro definitions are read from the
file. A file type of .MMS is assumed if no file type is specified. If the file
cannot be found, the name is treated as macro definition, and a value of 1
is assigned to the macro by default.

If an equals sign is present, the macro definition is taken directly from the
command line.

Macro definitions contained in a file should have the same syntax as macro
definitions in description files, with the added restrictions that comments
and line continuations are not allowed.

/OUTPUT=file-spec
Directs MMK output to a location other than the default, SYS$OUTPUT.

/[NO]OVERRIDE
Determines the order in which macro references are resolved. The default
order is to resolve macros from command-line definitions, followed by
definitions in the description file and any rules files, followed by MMK
built-ins. If a macro cannot be resolved from any of these sources, a
check is made for a DCL symbol with the same name as the macro, and if
present, the symbol’s value is used.

When /OVERRIDE is specified, DCL symbols are checked before the macro
definitions in the description and rules files, and before the MMK built-in
macros.

/[NO]RULES_FILE[=file-spec...]
Specifies the name of one or more description files containing inference
rules. If /RULES_FILE is specified with no file specification, the name
MMS$RULES is used by default (this can be a logical name or can
reference a file called MMS$RULES.MMS in the current directory).

If /NORULES_FILE is specified, the compiled-in default rules are not
loaded when MMK is started, nor is any personal rules file (pointed to
by the logical name MMK_PERSONAL_RULES). /NORULES_FILE does
not prevent the loading of local rules; you must also specify /NOLOCAL_
RULES to prevent local rules from being loaded.

3–5

MMK

/[NO]SKIP_INTERMEDIATES
By default, MMK attempts to build missing source files if they can be
built through the application of dependency or inference rules. Specifying
/SKIP_INTERMEDIATES causes MMK to treat these missing sources as if
they exist and have the same revision date/time stamp as the target that
depends on them.

For example, if the target is a .EXE file which depends on a .OBJ file,
and that .OBJ file in turn depends on a .C file, by default MMK will build
the .OBJ file if it is missing, and then in turn build the .EXE. If /SKIP_
INTERMEDIATES is specified, the missing .OBJ file will not trigger a
build; the build will only occur if the .C file is newer than the .EXE file.

/[NO]VERIFY[=ALL]
Controls whether MMK echoes action lines to SYS$OUTPUT. Enabled by
default. By specifying the keyword ALL it is possible to force MMK to
echo all command output, including that which is prefixed with @. For
debugging purposes it is possible to specify the keyword ALL which will
cause MMK to verify all action lines, even those prefixed with @ (silent)
action line prefix. This also overrides the .SILENT directive.

/WORKING_DIRECTORY=dir-spec
Causes MMK to SET DEFAULT to the specified directory before processing
the description file. This can be useful when using the /NOACTION
qualifier for a build in a directory containing subdirectories with their own
description files, since only actions invoking $(MMS) get executed when
/NOACTION is used. By replacing the actions:

SET DEFAULT [.subdirectory]
$(MMS) $(MMSQUALIFIERS)

with the action

$(MMS) $(MMSQUALIFIERS)/WORKING_DIRECTORY=[.subdirectory]

the entire multi-directory build can be tested with /NOACTION
successfully.

3–6

A Differences between MMK and DEC/MMS

MMK is patterned after DEC/MMS, but does not fully implement all
DEC/MMS functionality and provides other extended functionality. This
appendix lists some of the differences between MMK and DEC/MMS.

Besides the differences in features, there are some differences in
processing between MMK and DEC/MMS which may lead to different
results or syntax errors in MMK for description files which operate
properly under DEC/MMS. If possible, please report any such differences
to the author so that they can be fixed.

A.1 DEC/MMS Features Not Supported in MMK
MMK does not support the following DEC/MMS features:

• MMK does not support FMS forms libraries or CDD/Repository
libraries.

• MMK does not honor the ‘‘; action’’ syntax on dependency rule lines
that can be used with DEC/MMS. Make sure all actions are on
separate lines.

• MMK requires the leading dot on the .INCLUDE directive.

• MMK does not handle wildcard dependency rules.

• MMK does not support all of the command qualifiers supported
by DEC/MMS. In addition, the MMK’s /GENERATION qualifier is
completely different from DEC/MMS’s /GENERATE qualifier.

• MMK does not have a DECwindows interface.

• MMK does not automatically load the MMS$RULES file if that logical
name is defined or that file exists in the current directory; you must
specify /RULES on the MMK command to have it loaded. Use the
MMK_LOCAL_RULES or MMK_PERSONAL_RULES logical names to
have rules automatically loaded by MMK.

A.2 MMK Extended Features
MMK includes the following features not found in DEC/MMS:

• MMK gives you more options for rules files, and is set up to allow
multiple rules files to be present. Rule file processing follows this
sequence:

1 The default rules compiled into MMK are loaded automatically
unless /NORULES_FILE is specified on the MMK command.

2 A site-defined local rules file is loaded automatically if the logical
name MMK_LOCAL_RULES is defined (use /NOLOCAL_RULES
to override).

A–1

Differences between MMK and DEC/MMS

3 If the /RULES_FILE qualifier is specified, any rules files listed
there are loaded; if none are listed, the default is to load the file
MMS$RULES.MMS (or the file pointed to by the logical name
MMS$RULES).

If the /RULES_FILE qualifier is omitted, a personal rules file is
loaded if the logical name MMK_PERSONAL_RULES is defined.
MMS$RULES is not loaded in this case.

If /NORULES_FILE is specified, neither MMS$RULES nor the
personal rules file is loaded.

These rules-processing features, coupled with the ability to redefine
macros defined in rules files, make it easier to customize MMK’s
behavior when needed.

• MMK trims blanks out of $(MMS$SOURCE_LIST).

• MMK includes support for the following special local macros:

• $(MMS$SOURCE_LIST_SPACES) - source list with spaces as
separators instead of commas.

• $(MMS$CHANGED_LIST_SPACES) - list of changed sources with
spaces as separators instead of commas.

• $(MMS$SOURCE_NAME) - like $(MMS$TARGET_NAME), but for
$(MMS$SOURCE).

• $(MMS$TARGET_FNAME) - like $(MMS$TARGET_NAME),
but does not include the device/directory specification, just the
filename.

• $(MMS$TARGET_MODULE) - name of the module being replaced
in a text, help, macro, or object library.

• MMK will display activity in the subprocess while action lines are
being executed when you press CTRL/T.

• MMK allows you to redefine macros.

• MMK, in most cases, has more flexible syntax rules for its description
files, allowing blanks where MMS does not (e.g., in library module
specifications).

• MMK pre-defines the macros _ _VAX_ _ for builds on VAX systems,
_ _AXP_ _ for builds on Alpha systems, and _ _I64_ _ for builds on IA64
systems.

• MMK supports prefixed inference rules (described in Section 2.3).

• When used with DEC/CMS, MMK will ‘‘double-infer’’ a dependency
on a non-existent source file, if that file currently resides in a CMS
library.

• MMK includes a /DUMP qualifier for debugging problems with
makefiles.

• MMK provides a /GENERATION qualifier on the MMK command for
specifying the default CMS generation to be used when elements are
checked for revisions and fetched out of CMS.

A–2

Differences between MMK and DEC/MMS

• MMK provides the /WORKING_DIRECTORY qualifier.

• MMK allows "generic" targets (those that do not refer to an actual file)
to have null action lists. MMS requires all targets to have an action
list.

• MMK adds the ${name} syntax for deferring resolution of macros on
the right-hand side of a macro definition.

• MMK adds a generic string-susbstitution function for macro references.

You should avoid using these extended features if you need to maintain
compatibility with DEC/MMS.

A.3 Other Differences
Besides the feature differences alrady mentioned, MMK operates
somewhat differently from DEC/MMS in some of its processing. In
most cases, these differences are not significant, but they are worth
remembering if you need to port DEC/MMS description files to or from
MMK.

• MMK allows any rule, including built-in rules, to override the
.DEFAULT actions. DEC/MMS lets .DEFAULT actions override
built-in rules.

• When a build action does not update a target, MMK will issue an
information message, except for generic targets. DEC/MMS only
issues such messages in certain cases.

• MMK explicitly builds dependency rules for files on which library
modules depend, even if those files are not mentioned in the
description file. This may lead to MMK behaving differently from
DEC/MMS, although if the description file is correct, the end result
will be the same.

• MMK parses comments and continuation lines differently, so that a
hyphen at the end of a comment is not considered a continuation of the
comment.

• MMK is more lenient about applying inference rules. It only checks
for a match on the suffix and, if present, the prefix. If you have a
dependency with an explicit target and source that match by suffix
(and possibly prefix), even if the base names do not match, the
inference rule can be applied. MMS requires that base names match
to apply an inference rule. Note that MMK’s behavior may change to
match MMS in a future release.

As other differences are brought to the author’s attention, they will either
be fixed or noted here.

A–3

B Built-in Dependency Rules

The dependency rules built into MMK for VAX systems are shown in
Figure B–1; those for Alpha systems are shown in Figure B–2; and those
for IA64 systems are show in Figure B–3.

Figure B–1 MMK default dependency rules - VAX

! MMK_DEFAULT_RULES.MMS
!
! COPYRIGHT © 1993, 1994, 1997 MADGOAT SOFTWARE. ALL RIGHTS RESERVED.
! COPYRIGHT © 2012 ENDLESS SOFTWARE SOLUTIONS. ALL RIGHTS RESERVED.
!
! Default build rules for use with MMK. (for VAX systems)
!
! Modification history:
!
! 23-DEC-1992 V1.0 Madison Initial coding.
! 17-OCT-1993 V1.1 Madison Elimination of intermediate libfiles.
! 11-APR-1994 V1.2 Madison Make rules more like MMS’s.
! 01-JUL-1994 V2.0 Madison Add CMS support.
! 16-JUL-1994 V2.1 Madison Update for V3.2.
! 22-AUG-1994 V2.1-1 Madison Eliminate DELETE_SOURCE checks.
! 14-OCT-1994 V2.2 Madison Add CXX support.
! 28-DEC-1994 V2.3 Madison Make IF commands silent.
! 20-JUN-1997 V2.3-1 Madison Add .MAR.MLB inference rule.
! 22-AUG-2012 V2.4 Sneddon Add GENCAT support.
!

!
! These symbols can be used to distinguish MMK from DEC’s DEC/MMS product
! using .IFDEF directives.
!
__MATTS_MMS__ = __MATTS_MMS__
__MMK__ = __MMK__
__MMK_V32__ = 1

!
! This symbol can be used to distinguish a VAX-based build from an
! AXP-based build. (or use .IFDEF __AXP__ .ELSEENDIF)
!
__VAX__ = 1

EXE = .EXE
OLB = .OLB
OBJ = .OBJ
OPT = .OPT
L32 = .L32

.SUFFIXES : ! clear the suffix list first

.SUFFIXES : $(EXE) $(OLB) $(OBJ) .TLB .HLB .MLB $(L32) .CAT .C .CXX .BAS .B32 .BLI .FOR -
.COB .COR .DBL .RPG .SCN .PLI .PEN .PAS .MAC .MAR .MSG .MSGX .CLD .R32 -
.REQ .TXT .H .MEM .HLP .RNH .RNO .MMS .DAT .OPT .SDML .COM -
.C~ .CXX~ .BAS~ .B32~ .BLI~ .FOR~ .COB~ .COR~ .DBL~ .RPG~ .SCN~ -
.PLI~ .PAS~ .MAC~ .MAR~ .MSG~ .CLD~ .R32~ .REQ~ .TXT~ -
.H~ .HLP~ .RNH~ .RNO~ .MMS~ .DAT~ .OPT~ .SDML~ .COM~

LINK = LINK
LINKFLAGS = /EXEC=$(MMS$TARGET)

Figure B–1 Cont’d on next page

B–1

Built-in Dependency Rules

Figure B–1 (Cont.) MMK default dependency rules - VAX

(OBJ)(OLB) :
@ IF F$SEARCH("$(MMS$TARGET)") .EQS. "" THEN $(LIBR)/CREATE $(MMS$TARGET)
$(LIBR)$(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE)

.TXT.TLB :
@ IF F$SEARCH("$(MMS$TARGET)") .EQS. "" THEN $(LIBR)/CREATE/TEXT $(MMS$TARGET)
$(LIBR)$(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE)/MODULE=$(MMS$TARGET_MODULE)

.HLP.HLB :
@ IF F$SEARCH("$(MMS$TARGET)") .EQS. "" THEN $(LIBR)/CREATE/HELP $(MMS$TARGET)
$(LIBR)$(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE)

.MAC.MLB :
@ IF F$SEARCH("$(MMS$TARGET)") .EQS. "" THEN $(LIBR)/CREATE/MACRO $(MMS$TARGET)
$(LIBR)$(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE)

.MAR.MLB :
@ IF F$SEARCH("$(MMS$TARGET)") .EQS. "" THEN $(LIBR)/CREATE/MACRO $(MMS$TARGET)
$(LIBR)$(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE)

LIBR = LIBRARY
LIBRFLAGS = /REPLACE

.BAS$(OBJ) :
$(BASIC)$(BASFLAGS) $(MMS$SOURCE)

BASIC = BASIC
BASFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.BLI$(OBJ) :
$(BLISS)$(BFLAGS) $(MMS$SOURCE)

.B32$(OBJ) :
$(BLISS)$(BFLAGS) $(MMS$SOURCE)

BFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.C$(OBJ) :
(CC)(CFLAGS) $(MMS$SOURCE)

CC = CC
CFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.COB$(OBJ) :
$(COBOL)$(COBFLAGS) $(MMS$SOURCE)

COBOL = COBOL
COBFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.COR$(OBJ) :
$(CORAL)$(CORFLAGS) $(MMS$SOURCE)

CORAL = CORAL
CORFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.CXX$(OBJ) :
(CXX)(CXXFLAGS) $(MMS$SOURCE)

CXX = CXX
CXXFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.DBL$(OBJ) :
$(DIBOL)$(DBLFLAGS) $(MMS$SOURCE)

DIBOL = DIBOL
DBLFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.CLD$(OBJ) :
$(SETCMD)$(SETCMDFLAGS) $(MMS$SOURCE)

SETCMD = SET COMMAND
SETCMDFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

Figure B–1 Cont’d on next page

B–2

Built-in Dependency Rules

Figure B–1 (Cont.) MMK default dependency rules - VAX

.FOR$(OBJ) :
$(FORT)$(FFLAGS) $(MMS$SOURCE)

FORT = FORTRAN
FFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.MAR$(OBJ) :
$(MACRO)$(MFLAGS) $(MMS$SOURCE)

MACRO = MACRO
MFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.MSG$(OBJ) :
$(MESSAGE)$(MSGFLAGS) $(MMS$SOURCE)

MESSAGE = MESSAGE
MSGFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.PAS$(OBJ) :
$(PASCAL)$(PFLAGS) $(MMS$SOURCE)

.PAS.PEN :
$(PASCAL)$(PENVFLAGS) $(MMS$SOURCE)

PASCAL = PASCAL
PFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)
PENVFLAGS = /ENVIRONMENT=$(MMS$TARGET_NAME).PEN/NOLIST

.PLI$(OBJ) :
(PLI)(PLIFLAGS) $(MMS$SOURCE)

PLI = PLI
PLIFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.REQ$(L32) :
$(BLISS)/LIBR=$(MMS$TARGET_NAME)$(L32)$(BLIBFLAGS) $(MMS$SOURCE)

.R32$(L32) :
$(BLISS)/LIBR=$(MMS$TARGET_NAME)$(L32)$(BLIBFLAGS) $(MMS$SOURCE)

BLISS = BLISS
BLIBFLAGS = /NOLIST

.RPG$(OBJ) :
(RPG)(RPGFLAGS) $(MMS$SOURCE)

RPG = RPG
RPGFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.RNH.HLP :
$(RUNOFF)$(RFLAGS) $(MMS$SOURCE)

.RNO.MEM :
$(RUNOFF)$(RFLAGS) $(MMS$SOURCE)

RUNOFF = RUNOFF
RFLAGS = /OUTPUT=$(MMS$TARGET)

.SCN$(OBJ) :
$(SCAN)$(SCANFLAGS) $(MMS$SOURCE)

SCAN = SCAN
SCANFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.MSGX.CAT :
$(GENCAT)$(GENCATFLAGS) $(MMS$SOURCE) $(MMS$TARGET)

GENCAT = GENCAT
GENCATFLAGS =

CMS = CMS
CMSCOMMENT = ""
CMSFLAGS = /GENERATION=$(MMS$CMS_GEN)

Figure B–1 Cont’d on next page

B–3

Built-in Dependency Rules

Figure B–1 (Cont.) MMK default dependency rules - VAX

.B32~.B32 :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).B32 $(CMSFLAGS) $(CMSCOMMENT)

.BAS~.BAS :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).BAS $(CMSFLAGS) $(CMSCOMMENT)

.BLI~.BLI :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).BLI $(CMSFLAGS) $(CMSCOMMENT)

.C~.C :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).C $(CMSFLAGS) $(CMSCOMMENT)

.CLD~.CLD :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).CLD $(CMSFLAGS) $(CMSCOMMENT)

.COB~.COB :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).COB $(CMSFLAGS) $(CMSCOMMENT)

.COR~.COR :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).COR $(CMSFLAGS) $(CMSCOMMENT)

.COM~.COM :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).COM $(CMSFLAGS) $(CMSCOMMENT)

.CXX~.CXX :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).CXX $(CMSFLAGS) $(CMSCOMMENT)

.DAT~.DAT :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).DAT $(CMSFLAGS) $(CMSCOMMENT)

.DBL~.DBL :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).DBL $(CMSFLAGS) $(CMSCOMMENT)

.FOR~.FOR :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).FOR $(CMSFLAGS) $(CMSCOMMENT)

.H~.H :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).H $(CMSFLAGS) $(CMSCOMMENT)

.HLP~.HLP :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).HLP $(CMSFLAGS) $(CMSCOMMENT)

.MAC~.MAC :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).MAC $(CMSFLAGS) $(CMSCOMMENT)

.MAR~.MAR :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).MAR $(CMSFLAGS) $(CMSCOMMENT)

.MMS~.MMS :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).MMS $(CMSFLAGS) $(CMSCOMMENT)

Figure B–1 Cont’d on next page

B–4

Built-in Dependency Rules

Figure B–1 (Cont.) MMK default dependency rules - VAX

.MSG~.MSG :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).MSG $(CMSFLAGS) $(CMSCOMMENT)

.MSGX~.MSGX :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).MSGX $(CMSFLAGS) $(CMSCOMMENT)

.OPT~.OPT :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).OPT $(CMSFLAGS) $(CMSCOMMENT)

.PAS~.PAS :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).PAS $(CMSFLAGS) $(CMSCOMMENT)

.PLI~.PLI :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).PLI $(CMSFLAGS) $(CMSCOMMENT)

.R32~.R32 :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).R32 $(CMSFLAGS) $(CMSCOMMENT)

.REQ~.REQ :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).REQ $(CMSFLAGS) $(CMSCOMMENT)

.RNH~.RNH :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).RNH $(CMSFLAGS) $(CMSCOMMENT)

.RNO~.RNO :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).RNO $(CMSFLAGS) $(CMSCOMMENT)

.SCN~.SCN :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).SCN $(CMSFLAGS) $(CMSCOMMENT)

.SDML~.SDML :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).SDML $(CMSFLAGS) $(CMSCOMMENT)

.TXT~.TXT :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).TXT $(CMSFLAGS) $(CMSCOMMENT)

Figure B–2 MMK default dependency rules - Alpha

Figure B–2 Cont’d on next page

B–5

Built-in Dependency Rules

Figure B–2 (Cont.) MMK default dependency rules - Alpha

! MMK_DEFAULT_RULES_AXP.MMS
!
! COPYRIGHT © 1993, 1997 MADGOAT SOFTWARE. ALL RIGHTS RESERVED.
! COPYRIGHT © 2012 ENDLESS SOFTWARE SOLUTIONS. ALL RIGHTS RESERVED.
!
! Default build rules for use with MMK. (for OpenVMS AXP)
!
! Modification history:
!
! 23-DEC-1992 V1.0 Madison Initial coding.
! 17-OCT-1993 V1.1 Madison Delete intermediate libfiles.
! 11-APR-1994 V1.2 Madison Make rules more like MMS’s.
! 05-JUL-1994 V2.0 Madison Add CMS support.
! 16-JUL-1994 V2.1 Madison Update for V3.2.
! 22-AUG-1994 V2.1-1 Madison Eliminate DELETE_SOURCE checks.
! 14-OCT-1994 V2.2 Madison Add CXX support.
! 28-DEC-1994 V2.3 Madison Make IF commands silent.
! 20-JUN-1997 V2.3-1 Madison Add .MAR.MLB inference rule.
! 22-AUG-2012 V2.4 Sneddon Add GENCAT support.
!

!
! This symbol can be used to distinguish MMK from DEC’s DEC/MMS product
! using .IFDEF directives.
!
__MATTS_MMS__ = __MATTS_MMS__
__MMK__ = __MMK__
__MMK_V32__ = 1
!
! These symbols can be used to distinguish an AXP-based build from a
! VAX-based build.
!
__ALPHA__ = 1
__AXP__ = 1

EXE = .EXE
OLB = .OLB
OBJ = .OBJ
OPT = .OPT
L32 = .L32

.SUFFIXES : ! clear the suffix list first

.SUFFIXES : $(EXE) $(OLB) $(OBJ) .TLB .HLB .MLB $(L32) .CAT .C .CXX .BAS .B32 .BLI .FOR -
.COB .COR .DBL .RPG .SCN .PLI .PEN .PAS .MAC .MAR .M64 .MSG .MSGX .CLD -
.R32 .REQ .TXT .H .MEM .HLP .RNH .RNO .MMS .DAT .OPT .SDML .COM -
.C~ .CXX~ .BAS~ .B32~ .BLI~ .FOR~ .COB~ .COR~ .DBL~ .RPG~ .SCN~ -
.PLI~ .PAS~ .MAC~ .MAR~ .M64~ .MSG~ .CLD~ .R32~ .REQ~ .TXT~ -
.H~ .HLP~ .RNH~ .RNO~ .MMS~ .DAT~ .OPT~ .SDML~ .COM~

LINK = LINK
LINKFLAGS = /EXEC=$(MMS$TARGET)

(OBJ)(OLB) :
@ IF F$SEARCH("$(MMS$TARGET)") .EQS. "" THEN $(LIBR)/CREATE $(MMS$TARGET)
$(LIBR)$(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE)

.TXT.TLB :
@ IF F$SEARCH("$(MMS$TARGET)") .EQS. "" THEN $(LIBR)/CREATE/TEXT $(MMS$TARGET)
$(LIBR)$(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE)/MODULE=$(MMS$TARGET_MODULE)

.HLP.HLB :
@ IF F$SEARCH("$(MMS$TARGET)") .EQS. "" THEN $(LIBR)/CREATE/HELP $(MMS$TARGET)
$(LIBR)$(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE)

Figure B–2 Cont’d on next page

B–6

Built-in Dependency Rules

Figure B–2 (Cont.) MMK default dependency rules - Alpha

.MAC.MLB :
@ IF F$SEARCH("$(MMS$TARGET)") .EQS. "" THEN $(LIBR)/CREATE/MACRO $(MMS$TARGET)
$(LIBR)$(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE)

.MAR.MLB :
@ IF F$SEARCH("$(MMS$TARGET)") .EQS. "" THEN $(LIBR)/CREATE/MACRO $(MMS$TARGET)
$(LIBR)$(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE)

LIBR = LIBRARY
LIBRFLAGS = /REPLACE

.BAS$(OBJ) :
$(BASIC)$(BASFLAGS) $(MMS$SOURCE)

BASIC = BASIC
BASFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.BLI$(OBJ) :
$(BLISS)$(BFLAGS) $(MMS$SOURCE)

.B32$(OBJ) :
$(BLISS)$(BFLAGS) $(MMS$SOURCE)

BFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.C$(OBJ) :
(CC)(CFLAGS) $(MMS$SOURCE)

CC = CC
CFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.COB$(OBJ) :
$(COBOL)$(COBFLAGS) $(MMS$SOURCE)

COBOL = COBOL
COBFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.COR$(OBJ) :
$(CORAL)$(CORFLAGS) $(MMS$SOURCE)

CORAL = CORAL
CORFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.CXX$(OBJ) :
(CXX)(CXXFLAGS) $(MMS$SOURCE)

CXX = CXX
CXXFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.DBL$(OBJ) :
$(DIBOL)$(DBLFLAGS) $(MMS$SOURCE)

DIBOL = DIBOL
DBLFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.CLD$(OBJ) :
$(SETCMD)$(SETCMDFLAGS) $(MMS$SOURCE)

SETCMD = SET COMMAND
SETCMDFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.FOR$(OBJ) :
$(FORT)$(FFLAGS) $(MMS$SOURCE)

FORT = FORTRAN
FFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.MAR$(OBJ) :
$(MACRO)$(MFLAGS) $(MMS$SOURCE)

MACRO = MACRO/MIGRATION
MFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

Figure B–2 Cont’d on next page

B–7

Built-in Dependency Rules

Figure B–2 (Cont.) MMK default dependency rules - Alpha

.M64$(OBJ) :
$(TASM)$(TASMFLAGS) $(MMS$SOURCE)

TASM = MACRO
TASMFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.MSG$(OBJ) :
$(MESSAGE)$(MSGFLAGS) $(MMS$SOURCE)

MESSAGE = MESSAGE
MSGFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.PAS$(OBJ) :
$(PASCAL)$(PFLAGS) $(MMS$SOURCE)

.PAS.PEN :
$(PASCAL)$(PENVFLAGS) $(MMS$SOURCE)

PASCAL = PASCAL
PFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)
PENVFLAGS = /ENVIRONMENT=$(MMS$TARGET_NAME).ENV/NOLIST

.PLI$(OBJ) :
(PLI)(PLIFLAGS) $(MMS$SOURCE)

PLI = PLI
PLIFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.REQ$(L32) :
$(BLISS)/LIBR=$(MMS$TARGET_NAME)$(L32)$(BLIBFLAGS) $(MMS$SOURCE)

.R32$(L32) :
$(BLISS)/LIBR=$(MMS$TARGET_NAME)$(L32)$(BLIBFLAGS) $(MMS$SOURCE)

BLISS = BLISS
BLIBFLAGS = /NOLIST

.RPG$(OBJ) :
(RPG)(RPGFLAGS) $(MMS$SOURCE)

RPG = RPG
RPGFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.RNH.HLP :
$(RUNOFF)$(RFLAGS) $(MMS$SOURCE)

.RNO.MEM :
$(RUNOFF)$(RFLAGS) $(MMS$SOURCE)

RUNOFF = RUNOFF
RFLAGS = /OUTPUT=$(MMS$TARGET)

.SCN$(OBJ) :
$(SCAN)$(SCANFLAGS) $(MMS$SOURCE)

SCAN = SCAN
SCANFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.MSGX.CAT :
$(GENCAT)$(GENCATFLAGS) $(MMS$SOURCE) $(MMS$TARGET)

GENCAT = GENCAT
GENCATFLAGS =

CMS = CMS
CMSCOMMENT = ""
CMSFLAGS = /GENERATION=$(MMS$CMS_GEN)

.B32~.B32 :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).B32 $(CMSFLAGS) $(CMSCOMMENT)

Figure B–2 Cont’d on next page

B–8

Built-in Dependency Rules

Figure B–2 (Cont.) MMK default dependency rules - Alpha

.BAS~.BAS :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).BAS $(CMSFLAGS) $(CMSCOMMENT)

.BLI~.BLI :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).BLI $(CMSFLAGS) $(CMSCOMMENT)

.C~.C :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).C $(CMSFLAGS) $(CMSCOMMENT)

.CLD~.CLD :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).CLD $(CMSFLAGS) $(CMSCOMMENT)

.COB~.COB :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).COB $(CMSFLAGS) $(CMSCOMMENT)

.COR~.COR :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).COR $(CMSFLAGS) $(CMSCOMMENT)

.COM~.COM :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).COM $(CMSFLAGS) $(CMSCOMMENT)

.CXX~.CXX :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).CXX $(CMSFLAGS) $(CMSCOMMENT)

.DAT~.DAT :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).DAT $(CMSFLAGS) $(CMSCOMMENT)

.DBL~.DBL :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).DBL $(CMSFLAGS) $(CMSCOMMENT)

.FOR~.FOR :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).FOR $(CMSFLAGS) $(CMSCOMMENT)

.H~.H :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).H $(CMSFLAGS) $(CMSCOMMENT)

.HLP~.HLP :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).HLP $(CMSFLAGS) $(CMSCOMMENT)

.MAC~.MAC :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).MAC $(CMSFLAGS) $(CMSCOMMENT)

.MAR~.MAR :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).MAR $(CMSFLAGS) $(CMSCOMMENT)

.M64~.M64 :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).M64 $(CMSFLAGS) $(CMSCOMMENT)

.MMS~.MMS :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).MMS $(CMSFLAGS) $(CMSCOMMENT)

Figure B–2 Cont’d on next page

B–9

Built-in Dependency Rules

Figure B–2 (Cont.) MMK default dependency rules - Alpha

.MSG~.MSG :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).MSG $(CMSFLAGS) $(CMSCOMMENT)

.MSGX~.MSGX :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).MSGX $(CMSFLAGS) $(CMSCOMMENT)

.OPT~.OPT :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).OPT $(CMSFLAGS) $(CMSCOMMENT)

.PAS~.PAS :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).PAS $(CMSFLAGS) $(CMSCOMMENT)

.PLI~.PLI :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).PLI $(CMSFLAGS) $(CMSCOMMENT)

.R32~.R32 :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).R32 $(CMSFLAGS) $(CMSCOMMENT)

.REQ~.REQ :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).REQ $(CMSFLAGS) $(CMSCOMMENT)

.RNH~.RNH :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).RNH $(CMSFLAGS) $(CMSCOMMENT)

.RNO~.RNO :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).RNO $(CMSFLAGS) $(CMSCOMMENT)

.SCN~.SCN :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).SCN $(CMSFLAGS) $(CMSCOMMENT)

.SDML~.SDML :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).SDML $(CMSFLAGS) $(CMSCOMMENT)

.TXT~.TXT :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).TXT $(CMSFLAGS) $(CMSCOMMENT)

Figure B–3 MMK default dependency rules - IA64

! MMK_DEFAULT_RULES_I64.MMS
!
! COPYRIGHT © 2004 MADGOAT SOFTWARE. ALL RIGHTS RESERVED.
! COPYRIGHT © 2012 ENDLESS SOFTWARE SOLUTIONS. ALL RIGHTS RESERVED.
!
! Default build rules for use with MMK. (for OpenVMS IA64)
!
! Modification history:
!
! 03-MAY-2004 V1.0 Madison Initial coding (from ACP)
! 22-AUG-2012 V2.4 Sneddon Add GENCAT support.
!

Figure B–3 Cont’d on next page

B–10

Built-in Dependency Rules

Figure B–3 (Cont.) MMK default dependency rules - IA64

!
! This symbol can be used to distinguish MMK from DEC’s DEC/MMS product
! using .IFDEF directives.
!
__MATTS_MMS__ = __MATTS_MMS__
__MMK__ = __MMK__
__MMK_V32__ = 1
!
! These symbols can be used to distinguish an IA64-based build from a
! VAX or Alpha one.
!
__IA64__ = 1
__I64__ = 1

EXE = .EXE
OLB = .OLB
OBJ = .OBJ
OPT = .OPT
L32 = .L32

.SUFFIXES : ! clear the suffix list first

.SUFFIXES : $(EXE) $(OLB) $(OBJ) .TLB .HLB .MLB $(L32) .CAT .C .CXX .BAS .B32 .BLI .FOR -
.COB .COR .DBL .RPG .SCN .PLI .PEN .PAS .MAC .MAR .M64 .MSG .MSGX .CLD -
.R32 .REQ .TXT .H .MEM .HLP .RNH .RNO .MMS .DAT .OPT .SDML .COM -
.C~ .CXX~ .BAS~ .B32~ .BLI~ .FOR~ .COB~ .COR~ .DBL~ .RPG~ .SCN~ -
.PLI~ .PAS~ .MAC~ .MAR~ .M64~ .MSG~ .CLD~ .R32~ .REQ~ .TXT~ -
.H~ .HLP~ .RNH~ .RNO~ .MMS~ .DAT~ .OPT~ .SDML~ .COM~

LINK = LINK
LINKFLAGS = /EXEC=$(MMS$TARGET)

(OBJ)(OLB) :
@ IF F$SEARCH("$(MMS$TARGET)") .EQS. "" THEN $(LIBR)/CREATE $(MMS$TARGET)
$(LIBR)$(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE)

.TXT.TLB :
@ IF F$SEARCH("$(MMS$TARGET)") .EQS. "" THEN $(LIBR)/CREATE/TEXT $(MMS$TARGET)
$(LIBR)$(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE)/MODULE=$(MMS$TARGET_MODULE)

.HLP.HLB :
@ IF F$SEARCH("$(MMS$TARGET)") .EQS. "" THEN $(LIBR)/CREATE/HELP $(MMS$TARGET)
$(LIBR)$(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE)

.MAC.MLB :
@ IF F$SEARCH("$(MMS$TARGET)") .EQS. "" THEN $(LIBR)/CREATE/MACRO $(MMS$TARGET)
$(LIBR)$(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE)

.MAR.MLB :
@ IF F$SEARCH("$(MMS$TARGET)") .EQS. "" THEN $(LIBR)/CREATE/MACRO $(MMS$TARGET)
$(LIBR)$(LIBRFLAGS) $(MMS$TARGET) $(MMS$SOURCE)

LIBR = LIBRARY
LIBRFLAGS = /REPLACE

.BAS$(OBJ) :
$(BASIC)$(BASFLAGS) $(MMS$SOURCE)

BASIC = BASIC
BASFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.BLI$(OBJ) :
$(BLISS)$(BFLAGS) $(MMS$SOURCE)

.B32$(OBJ) :
$(BLISS)$(BFLAGS) $(MMS$SOURCE)

BFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

Figure B–3 Cont’d on next page

B–11

Built-in Dependency Rules

Figure B–3 (Cont.) MMK default dependency rules - IA64

.C$(OBJ) :
(CC)(CFLAGS) $(MMS$SOURCE)

CC = CC
CFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.COB$(OBJ) :
$(COBOL)$(COBFLAGS) $(MMS$SOURCE)

COBOL = COBOL
COBFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.COR$(OBJ) :
$(CORAL)$(CORFLAGS) $(MMS$SOURCE)

CORAL = CORAL
CORFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.CXX$(OBJ) :
(CXX)(CXXFLAGS) $(MMS$SOURCE)

CXX = CXX
CXXFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.DBL$(OBJ) :
$(DIBOL)$(DBLFLAGS) $(MMS$SOURCE)

DIBOL = DIBOL
DBLFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.CLD$(OBJ) :
$(SETCMD)$(SETCMDFLAGS) $(MMS$SOURCE)

SETCMD = SET COMMAND
SETCMDFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.FOR$(OBJ) :
$(FORT)$(FFLAGS) $(MMS$SOURCE)

FORT = FORTRAN
FFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.MAR$(OBJ) :
$(MACRO)$(MFLAGS) $(MMS$SOURCE)

MACRO = MACRO/MIGRATION
MFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.M64$(OBJ) :
$(TASM)$(TASMFLAGS) $(MMS$SOURCE)

TASM = MACRO
TASMFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.MSG$(OBJ) :
$(MESSAGE)$(MSGFLAGS) $(MMS$SOURCE)

MESSAGE = MESSAGE
MSGFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.PAS$(OBJ) :
$(PASCAL)$(PFLAGS) $(MMS$SOURCE)

.PAS.PEN :
$(PASCAL)$(PENVFLAGS) $(MMS$SOURCE)

PASCAL = PASCAL
PFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)
PENVFLAGS = /ENVIRONMENT=$(MMS$TARGET_NAME).ENV/NOLIST

Figure B–3 Cont’d on next page

B–12

Built-in Dependency Rules

Figure B–3 (Cont.) MMK default dependency rules - IA64

.PLI$(OBJ) :
(PLI)(PLIFLAGS) $(MMS$SOURCE)

PLI = PLI
PLIFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.REQ$(L32) :
$(BLISS)/LIBR=$(MMS$TARGET_NAME)$(L32)$(BLIBFLAGS) $(MMS$SOURCE)

.R32$(L32) :
$(BLISS)/LIBR=$(MMS$TARGET_NAME)$(L32)$(BLIBFLAGS) $(MMS$SOURCE)

BLISS = BLISS
BLIBFLAGS = /NOLIST

.RPG$(OBJ) :
(RPG)(RPGFLAGS) $(MMS$SOURCE)

RPG = RPG
RPGFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.RNH.HLP :
$(RUNOFF)$(RFLAGS) $(MMS$SOURCE)

.RNO.MEM :
$(RUNOFF)$(RFLAGS) $(MMS$SOURCE)

RUNOFF = RUNOFF
RFLAGS = /OUTPUT=$(MMS$TARGET)

.SCN$(OBJ) :
$(SCAN)$(SCANFLAGS) $(MMS$SOURCE)

SCAN = SCAN
SCANFLAGS = /NOLIST/OBJECT=$(MMS$TARGET_NAME)$(OBJ)

.MSGX.CAT :
$(GENCAT)$(GENCATFLAGS) $(MMS$SOURCE) $(MMS$TARGET)

GENCAT = GENCAT
GENCATFLAGS =

CMS = CMS
CMSCOMMENT = ""
CMSFLAGS = /GENERATION=$(MMS$CMS_GEN)

.B32~.B32 :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).B32 $(CMSFLAGS) $(CMSCOMMENT)

.BAS~.BAS :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).BAS $(CMSFLAGS) $(CMSCOMMENT)

.BLI~.BLI :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).BLI $(CMSFLAGS) $(CMSCOMMENT)

.C~.C :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).C $(CMSFLAGS) $(CMSCOMMENT)

.CLD~.CLD :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).CLD $(CMSFLAGS) $(CMSCOMMENT)

.COB~.COB :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).COB $(CMSFLAGS) $(CMSCOMMENT)

Figure B–3 Cont’d on next page

B–13

Built-in Dependency Rules

Figure B–3 (Cont.) MMK default dependency rules - IA64

.COR~.COR :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).COR $(CMSFLAGS) $(CMSCOMMENT)

.COM~.COM :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).COM $(CMSFLAGS) $(CMSCOMMENT)

.CXX~.CXX :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).CXX $(CMSFLAGS) $(CMSCOMMENT)

.DAT~.DAT :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).DAT $(CMSFLAGS) $(CMSCOMMENT)

.DBL~.DBL :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).DBL $(CMSFLAGS) $(CMSCOMMENT)

.FOR~.FOR :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).FOR $(CMSFLAGS) $(CMSCOMMENT)

.H~.H :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).H $(CMSFLAGS) $(CMSCOMMENT)

.HLP~.HLP :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).HLP $(CMSFLAGS) $(CMSCOMMENT)

.MAC~.MAC :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).MAC $(CMSFLAGS) $(CMSCOMMENT)

.MAR~.MAR :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).MAR $(CMSFLAGS) $(CMSCOMMENT)

.M64~.M64 :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).M64 $(CMSFLAGS) $(CMSCOMMENT)

.MMS~.MMS :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).MMS $(CMSFLAGS) $(CMSCOMMENT)

.MSG~.MSG :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).MSG $(CMSFLAGS) $(CMSCOMMENT)

.MSGX~.MSGX :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).MSGX $(CMSFLAGS) $(CMSCOMMENT)

.OPT~.OPT :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).OPT $(CMSFLAGS) $(CMSCOMMENT)

.PAS~.PAS :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).PAS $(CMSFLAGS) $(CMSCOMMENT)

.PLI~.PLI :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).PLI $(CMSFLAGS) $(CMSCOMMENT)

Figure B–3 Cont’d on next page

B–14

Built-in Dependency Rules

Figure B–3 (Cont.) MMK default dependency rules - IA64

.R32~.R32 :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).R32 $(CMSFLAGS) $(CMSCOMMENT)

.REQ~.REQ :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).REQ $(CMSFLAGS) $(CMSCOMMENT)

.RNH~.RNH :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).RNH $(CMSFLAGS) $(CMSCOMMENT)

.RNO~.RNO :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).RNO $(CMSFLAGS) $(CMSCOMMENT)

.SCN~.SCN :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).SCN $(CMSFLAGS) $(CMSCOMMENT)

.SDML~.SDML :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).SDML $(CMSFLAGS) $(CMSCOMMENT)

.TXT~.TXT :
@ IF "$(MMS$CMS_LIBRARY)" .NES. "" THEN DEFINE/USER CMS$LIB $(MMS$CMS_LIBRARY)
$(CMS) FETCH $(MMS$CMS_ELEMENT) /OUTPUT=$(MMS$TARGET_NAME).TXT $(CMSFLAGS) $(CMSCOMMENT)

B–15

