
SDL Extentions for
OpenVMS
Installation and User Guide

June 2006

This guide describes the SDLEXT SDL backends. It covers installation,
release notes and use.

Revision/Update Information: This is a new manual

Operating System/Version: OpenVMS VAX V7.3

OpenVMS Alpha V7.3-2

OpenVMS I64 V8.2

Software Version: ALPHA_SDL EV1-65

SDL V2.1-5

SDLEXT V1.0

November 2008

Copyright ©2003-2008 Tim E. Sneddon.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Contents

PREFACE v

CHAPTER 1 GETTING STARTED 1–1

1.1 INSTALLATION 1–1

1.2 HOW TO INSTALL SDLEXT WITHOUT PCSI 1–2

1.3 POST INSTALLATION 1–3

1.4 REMOVAL 1–4

CHAPTER 2 USER GUIDE 2–1

2.1 INVOKING THE BACKENDS 2–1

2.2 JAVA 2–1
2.2.1 Translation Summary 2–1
2.2.2 Qualifiers 2–3
2.2.3 Feature Logicals 2–4

2.3 XSD 2–4
2.3.1 Translation Summary 2–4
2.3.2 Qualifiers 2–7
2.3.3 Feature Logicals 2–7
2.3.4 Names 2–7

EXAMPLES
1–1 Installing SDLEXT 1–2
1–2 Manual Product Installation 1–3
1–3 Removing SDLEXT 1–4

iii

Contents

TABLES
1 Conventions Used in this Manual v
1–1 Installation Options 1–1
1–2 SDL Backend Logicals 1–4
2–1 Java Translation Summary 2–1
2–2 Java Feature Logicals 2–4
2–3 XSD Translation Summary 2–4
2–4 XSD Type Translations 2–6
2–5 SDLXSD_OPTIONS Keyword 2–7

iv

Preface

This document is the definitive source for information on the SDLEXT
collection of SDL backends. It contains release notes, installation
information and a general user guide.

Intended Audience
This manual is intended for anyone looking to install or use the the
SDLEXT collection. It is expected that readers will have a working
knowledge of SDL.

Associated Documents
All SDL documentation is available from the Kednos website here:

http://www.kednos.com/kednos/Integration/SDL

Conventions
Table 1 lists the conventions used in this manual.

Table 1 Conventions Used in this Manual

Conventions Meaning

ALPHA_SDL This name refers to the port of the original VAX SDL (not
publically available) product to Alpha. The last release
was EV1-65 and is available on the OpenVMS Freeware
distribution. It comes with full PL/I and BLISS source code

SDL This name referes to the most recent release of the SDL
compiler. The latest release is V2.3-0. This is a binary-
only release and at present this product is closed source.
It too is available on the OpenVMS Freeware distribution.

v

1 Getting Started

The SDLEXT product offers a growing collection of backend code
generators for the Structure Definition Language compilers (SDL and
ALPHA_SDL) available from HP.

This release of SDLEXT includes the following SDL backends:

• Java: The Java backend can be used to generate external routine
definitions and structure declarations that can be used with the
J2VMS product.

• XSD: The XML Schema Definition generator constructs XML schema
documents that accurately describe SDL data structures. This can be
very useful, particularly in parsing configuration data.

The SDL backends contained in this product are supported under ALPHA_
SDL EV1-65 (possibly earlier versions) and HP SDL V2.1-5 and higher.

The rest of this chapter covers installation and removal of the SDLEXT
software product.

1.1 Installation
Installation of the SDLEXT product is quite simple. The product is
distributed in a PCSI kit that can be installed with the command
PRODUCT INSTALL. Table 1–1 details the different options available
at the time of installation. Example 1–1 demonstrates how to install the
software product and the expected output.

Table 1–1 Installation Options

Options Meaning

Documentation The SDLEXT manual is installed by default to SYS$HELP. To
prevent installation answer ’No’ when prompted.

Examples SDLEXT provides an example procedure that can be used to
demonstrate the output of a backend. This output can then
be used when comparing results from different backends. The
particular example is adapted from the one that appeared in the
VAX SDL manual.

1–1

Getting Started
How To Install SDLEXT Without PCSI

Example 1–1 Installing SDLEXT

$ PRODUCT INSTALL SDLEXT

The following product has been selected:
KEDNOS VMS SDLEXT V2.0 Layered Product

Do you want to continue? [YES]

Configuration phase starting ...

You will be asked to choose options, if any, for each selected product and for
any products that may be installed to satisfy software dependency requirements.

KEDNOS VMS SDLEXT V2.0: SDL Extentions for OpenVMS

(C) Copyright 2003-2008 Tim E. Sneddon

This software is distributed by Kednos Enterprises

This product uses the PAK: SDLEXT

Do you want the defaults for all options? [YES] NO

Install SDLEXT Documentation? [YES] YES

Do you want the defaults for all suboptions? [YES] NO

Install SDLEXT User Guide & Release Notes in HTML format? [YES] YES

Install SDLEXT User Guide & Release Notes in PS format? [YES] YES

Install SDLEXT User Guide & Release Notes in PDF format? [YES] YES

Do you want to review the options? [NO] NO

Execution phase starting ...

The following product will be installed to destination:
KEDNOS VMS SDLEXT V2.0 DISK$AXP082:[VMS$COMMON.]

Portion done: 0%...10%...20%...30%...40%...80%...100%

The following product has been installed:
KEDNOS VMS SDLEXT V2.0 Layered Product

KEDNOS VMS SDLEXT V2.0: SDL Extentions for OpenVMS

Release Notes are included in the User Guide.

SDLEXT release notes are included in the User Guide & Release Notes
manual. To install these locally ensure that at least one
documentation option is selected. Otherwise the manual can be
found at the Kednos website.

Insert the following lines in SYS$MANAGER:SYSTARTUP_VMS.COM:
@SYS$STARTUP:SDLEXT_STARTUP.COM

1.2 How To Install SDLEXT Without PCSI
Sometimes it may not be feasible to install SDLEXT from the PCSI kit.
This could be for any number of reasons, including a lack of privilege. It
is possible to perform the installation manually by removing the backend
images and procedures from the PCSI kit using the PRODUCT commands.

To get a listing of the files included in the kit use the PRODUCT LIST
command and then use the PRODUCT EXTRACT FILE command to
extract the necessary files. The example Example 1–2 demonstrates
extracting the Java and XSD backends.

1–2

Getting Started
Post Installation

Example 1–2 Manual Product Installation

$ PRODUCT EXTRACT SDLEXT -
_$ /SELECT=(SDLEXT_JAVA.EXE,SDLEXT_XSD.EXE)

The following product has been selected:
KEDNOS VMS SDLEXT V2.0 Layered Product

Do you want to continue? [YES]

Portion done: 0%...100%
$ DEFINE SDL$JAVA SYS$DISK:[]SDLEXT_JAVA.EXE
$ DEFINE SDL$XSD SYS$DISK:[]SDLEXT_XSD.EXE

1.3 Post Installation
Following a successful installation the startup procedure,
SYS$STARTUP:SDLEXT_STARTUP.COM should be added to the
system startup procedure, most commonly SYS$STARTUP:SYSTARTUP_
VMS.COM.

Executing this procedure at system startup ensures that the logicals
necessary to use the backends provided by SDLEXT are setup. Table 1–2
shows the logicals that will be declared and the images the point to. Two
sets of logicals are defined to ensure that the backends will work with both
ALPHA_SDL and SDL.

1–3

Getting Started
Post Installation

Table 1–2 SDL Backend Logicals

Backend ALPHA_SDL Logicals SDL Logicals Location

Java ALPHA_SDLJAVA SDL$JAVA SYS$LIBRARY:SDLEXT_
SDLJAVA.EXE

XSD ALPHA_SDLXSD SDL$XSD SYS$LIBRARY:SDLEXT_
SDLXSD.EXE

1.4 Removal
Removal of the SDLEXT software product is performed using the PCSI
command PRODUCT REMOVE. Example 1–3 demonstrates the removal
of SDLEXT and the expected output.

Example 1–3 Removing SDLEXT

$ PRODUCT REMOVE SDLEXT

The following product has been selected:
KEDNOS VMS SDLEXT V2.0 Layered Product

Do you want to continue? [YES]

The following product will be removed from destination:
KEDNOS VMS SDLEXT V2.0 DISK$AXP082:[VMS$COMMON.]

Portion done: 0%...50%...60%...70%...80%...100%

The following product has been removed:
KEDNOS VMS SDLEXT V2.0 Layered Product

1–4

2 User Guide

This section of the manual covers how to use the SDLEXT backends, this
includes example output as well as a summary of the code generated by
the various backends.

2.1 Invoking The Backends
Invoking the backends is quite simple. They conform to the requirements
set forth by the SDL compiler and so can be called as any other SDL code
generator might be.

Under ALPHA_SDL the following command could be used to generate
Java code suitable for used with J2VMS from the module EXAMPLE.SDL
that ships with the product.

$ SDL/ALPHA/LANGUAGE=JAVA EXAMPLE.SDL/VMS_DEVELOPMENT

Under SDL the above command will suffice. However, it is nolonger
necessary to specify either /VAX or /ALPHA.

The remainder of this chapter covers the different backends provided as
part of the SDLEXT software product and the output the generate.

2.2 Java
The Java backend can be used to generate structure and external routine
declarations that can then be used with the product J2VMS. The structure
declarations mimic those generated by the BLISS backend as both
languages use similar mechanisms when accessing native data structures.
The following sections describe the output in close detail.

2.2.1 Translation Summary
This sections details what Java code is generated by which SDL
statements. See Table 2–1 for details.

Table 2–1 Java Translation Summary

SDL Declaration Java Output

MODULE name public class name {

IDENT string // IDENT string

/* comment // comment

CONSTANT x EQUALS n public static final int x = n;

2–1

User Guide
Java

Table 2–1 (Cont.) Java Translation Summary

SDL Declaration Java Output

ENTRY name private static SystemCall nullclass;
private static final String libname = "libname";
private static SystemCall sdl$name;
private static int sdl$name(VMSparam[] args) {

if (sdl$name_return = = nullclass) {
sdl$name_return = new SystemCall("sdl$name ",

libname);
}
return sdl$name_return.call(args);

}

PARAMETER
(type, . . .)

n/a

ANY n/a

DESCRIPTOR n/a

IN n/a

OUT n/a

NAMED param-name n/a

VALUE n/a

REF n/a

DEFAULT n/a

OPTIONAL n/a

TYPENAME type-name n/a

RETURNS return-type n/a

VARIABLE n/a

ALIAS n/a

LINKAGE n/a

name STRUCTURE Each aggregate or member declaration in SDL produces
a J2VMS FieldDescriptor definition of the form:

name UNION
public static final FieldDescriptor name =

new FieldDescriptor(off,pos,size,ext);

BYTE

WORD off

LONGWORD Byte offset of this aggregate or item

QUADWORD within the current aggregate.

OCTAWORD

BYTE UNSIGNED pos

WORD UNSIGNED The bit position from the offset

LONGWORD UNSIGNED

QUADWORD UNSIGNED size

OCTAWORD UNSIGNED The size of the aggregate or item,

2–2

User Guide
Java

Table 2–1 (Cont.) Java Translation Summary

SDL Declaration Java Output

F_FLOATING in bits, if the size is 4 bytes

D_FLOATING or less. Otherwise, this field contains

DECIMAL PRECISION (p,
q)

0, and SDLJAVA generates the size declaration

BITFIELD LENGTH n

MASK S_name = size;

SIGNED

BOOLEAN where the size is given in bytes

CHARACTER LENGTH n

VARYING

ADDRESS ext
Contains 0 if the value is zero
extended, or 1 if the value is sign
extended or SIGNED bit.

COMMON storage class n/a

GLOBAL storage class n/a

with /GLOBALREF n/a

BASED pointer-name n/a

DIMENSION
[lbound :]hbound

ORIGIN member-name n/a

Note: Field and routine names can change when using the
/VMS_DEVELOPMENT qualifier. Read the following section
carfully to determine if this is right for you.

2.2.2 Qualifiers
The architecture specific qualifiers /ALPHA and /VAX have no bearing on
the the output generated by this backend. The Java VM only offers a 32-
bit virtual machine and has no support for architecture specific features.
The JVM is not even available on OpenVMS VAX. However, it is still
possible to run the Java backend on OpenVMS VAX.

The /VMS_DEVELOPMENT qualifier causes names to be normalized
much in the same way as the CC backend. The only major difference here
is that both all-upper and all-lower case names are provided. This is to
provide names that conform to the CC backend, as well as names that
conform to the Starlet library provided with J2VMS V1.2.

2–3

User Guide
Java

2.2.3 Feature Logicals
The Java backend relies on a couple of logicals to ensure that some Java
specific details, not covered by the SDL compiler, make it into the output.
Table 2–2 describes these logicals and their purposes.

Table 2–2 Java Feature Logicals

Logicals Description

SDLJAVA_LIBNAME Use this logical to define the name of the shareable image
containing all the ENTRY definitions

SDLJAVA_PACKAGE This logical controls the name of the Java package the
module is associated with. It can be defined like so:

$ DEFINE/USER SDLJAVA_LIBNAME -

_$ "org.tes.sdlext"This will generate code
similar to:

package org.tes.sdlext;

2.3 XSD
The section documents the behaviour of the XSD backend.

2.3.1 Translation Summary
The following SDL output summary is based on those found in the "VAX
SDL (Structure Definition Language)", Software Version VAX SDL 3.0
manual.

Table 2–3 XSD Translation Summary

SDL Declaration XSD Output

MODULE name <!– *** MODULE name *** –>

IDENT string <!– string –>

/* comment <!– comment –>

CONSTANT x EQUALS n n/a

ENTRY name n/a

PARAMETER (type, . . .) n/a

ANY n/a

DESCRIPTOR n/a

IN n/a

OUT n/a

NAMED param-name n/a

VALUE n/a

REF n/a

2–4

User Guide
XSD

Table 2–3 (Cont.) XSD Translation Summary

SDL Declaration XSD Output

DEFAULT n/a

OPTIONAL n/a

TYPENAME type-name n/a

RETURNS return-type n/a

VARIABLE n/a

ALIAS n/a

LINKAGE n/a

name STRUCTURE <xsd:element name="name ">
<xsd:complexType>

<xsd:sequence>
.
.
. </xsd:sequence>

</xsd:complexType>
</xsd:element>

name UNION <xsd:element name="name ">
<xsd:complexType>

<xsd:sequence>
<xsd:choice>

<xsd:element>
.
.
.

<xsd:element>
.
.
.

</xsd:choice>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

COMMON storage class n/a

GLOBAL storage class n/a

with /GLOBALREF n/a

BASED pointer-name n/a

DIMENSION [lbound :]hbound Arrays are handled a bit differently. An array will
generate an element of the array name containing
an element with a "maxOccurs" of hbound . This
element is named prefix + tag + "_item" with the
base type of the array.

ORIGIN member-name n/a

Table 2–4 shows the SDL data types and their correspondence to XSD data
types. The code example below shows the code template used to generate
field definitions.

2–5

User Guide
XSD

<xsd:element name="field-name">
<xsd:simpleType>
<xsd:restriction base="type-name"/>

</xsd:simpleType>
</xsd:element>

Table 2–4 XSD Type Translations

SDL Type Constraints XSD Type Constraints

BYTE xsd:byte

WORD xsd:short

LONGWORD xsd:int

QUADWORD xsd:long

OCTAWORD xsd:integer

BYTE UNSIGNED xsd:unsignedByte

WORD UNSIGNED xsd:unsignedShort

LONGWORD UNSIGNED xsd:unsignedInt

QUADWORD UNSIGNED xsd:unsignedLong

OCTAWORD UNSIGNED xsd:integer
xsd:minInclusive="0"

F_FLOATING xsd:float

D_FLOATING xsd:double

G_FLOATING xsd:anyType

H_FLOATING xsd:anyType

DECIMAL PRECISION xsd:decimal

(p, q) xsd:totalDigits="p"
xsd:fractionDigits="q"

BITFIELD LENGTH n xsd:integer
xsd:minInclusive="0"
xsd:maxInclusive="(2^n - 1")

MASK n/a

SIGNED n/a

BOOLEAN xsd:boolean

CHARACTER LENGTH n xsd:string

VARYING xsd:maxLength="n"

ADDRESS xsd:unsignedInt1

xsd:unsignedLong2

1VAX only
2Alpha and I64 only

Note: If an element is within a structure or union then the facet
"maxOccurs" on the element will be set to 0.

2–6

User Guide
XSD

2.3.2 Qualifiers
The XSD output in not effected by the /xxx_DEVELOPMENT qualifiers.
All other qualifiers, such as /SUPPRESS, apply as normal.

2.3.3 Feature Logicals
The SDLXSD_OPTIONS feature logical has been deprecated. However, it
is still available and although documented below it is recommended that
/SUPPRESS be used instead.

This logical was introduced specifically for generating configuration
file schemas. This allows the XML to have the same fields and value
restrictions as the configuration block, just without the prefix and/or tag.

SDLXSD_OPTIONS translates to a comman delimited list. Currently the
only two options are:

Table 2–5 SDLXSD_OPTIONS Keyword

Keyword Description

NOPREFIX Disables the prefix set in the SDL source module.
It is equivalent to /SUPPRESS=PREFIX.

NOTAG Disables the tag set in the SDL source module.
It is equivalent to /SUPPRESS=TAG.

2.3.4 Names
Unfortunately, the XML standard says that the dollar sign is not
acceptable in a name so SDLXSD converts this to an underscore. There is
no command line qualifier or feature logical to switch this on or off as no
correctly conforming schema based XML parser would allow it.

2–7

