
Finding free registers

Andrei Broder Monika Rauch Henzinger

Systems Research Center

Digital Equipment Corporation

Palo Alto, CA 94301

fbroder,monikag@pa.dec.com

Abstract

We call a register r free at a node v of a program ow
graph if every path in the ow graph that starts at v

and ends at a read of r, contains a write to r. This note
presents a series of algorithms for �nding free registers,
at one, at several, or at all points of a program. Their
theoretical worst-case complexity does not improve over
previous approaches, but experiments indicate that our
algorithm are much faster in practice. The likely explana-
tion is that for the standard approaches the worst-case is
a common occurrence, while for our algorithms it arises
only in pathological situations, not encountered in real
programs.

1 Introduction

We call a register r free at a node v of a program ow
graph if every path in the ow graph that starts at v

and ends at a read of r, contains a write to r. Thus
the value currently stored in r at v is immaterial for any
possible execution path, since it is always overwritten by
a new value before r is read. This note presents a series
of algorithms for �nding free registers.

We invented these algorithms for use in a tool that
patches executable programs; that is, that replaces small
portions of the code with new code, for debugging, perfor-
mance instrumentation, architecture emulation, and sim-
ilar purposes. The newly inserted code will be more ef-
�cient if it uses registers, but to preserve the semantics
of the original program, the patch must use only regis-
ters that are available, that is, registers whose content at
the point of interest has no further use by the original
program under any execution path.

Our de�nition of \free" is purely syntactic. All free
registers are available in the sense above but a semantic
analysis of the program might �nd more registers that are
available. We do not address this issue further, but note
that in general the question whether a register is available
is undecidable.

Determining which registers are free at various points
in a program is a well-studied issue in compiler design,
for a variety of reasons, including the determination of
which registers must be saved and restored around pro-
cedure calls. Here however we are concerned with a some-
what di�erent situation: we are given an executable, and
we want to patch it at certain points. (The particular
application that motivated us is the emulation of unim-
plemented instructions on older architectures.)

It is often the case that the space available for patches
is limited, thus it is preferable to re-use patches whenever
possible. This can be done only if the registers used by
the patch are free at all locations where the patch is to be
re-used. Hence there is some advantage to �nding more
free registers than strictly necessary, but there is a trade-
o� between the amount of resources (time and space)
spent looking for free registers and the number of free
registers that we can �nd. This is usually a non-issue if
the looking is done at compile time, but often the patch
is done dynamically in which case we have to be more
careful. Depending on the application the user might be
interested in free registers at one point, at several points
within a particular procedure, or at all points within a
program. The worst case behaviour of our algorithms for
all these problems is the same, namely O(E � R) where
E is the number of edges in the ow graph associated
to the program, and R is the number of registers. In
this sense, this is not an improvement over the previous
approaches, see e.g. [1, 2], but experiments indicate that
our algorithm are much faster in practice. This seems to
be caused by the fact that the standard approach uses

(E � R) time in all instances, while the worst cases for
our algorithms arise only out of pathological situations,
not likely to occur in a real program.

An obvious algorithm is to �rst construct the com-
plete ow graph and then for each register, explore the
edges of the graph backwards starting from all \reads"
and stopping at all \writes", and marking the register as
\in-use" for all the reached nodes.

However this could be very wasteful in practice { it
might well be the case that only a very small portion
of the ow graph is reachable from the point of inter-
est. Furthermore, in a dynamic context, the user might
want to limit the amount of time spent searching to a rea-
sonable fraction of the expected gain. Thus it is prefer-
able to have algorithms that can \time-out" graciously,
that is the algorithm should be stoppable after a certain

time and return some subset of the free registers. (The
naive algorithm discussed above does not qualify since
the time spent constructing the graph dwarfs the time
spent searching.)

An obvious method for the discovery of free registers
at a particular point is to do for each register a depth
�rst search (DFS) on the portion of the ow graph acces-
sible from the point of interest. The disadvantage of this
method is that the ow graph has to be traversed many
times and that we do not have the \gracious time-out"
mentioned above. Our main contribution is an algorithm
that does this series of DFS's simultaneously, thus �nd-
ing quickly registers whose freedom is easy to deduce. In
fact we have several algorithms, depending whether we
are looking free registers at one point, at several points
within a particular procedure, or at all points within a
program. They all share the simultaneous DFS idea.

Our algorithms maintain for each node in the graph
the set of trees known to contain it. During the exe-
cution of the algorithm, for each node this set can only
grow, and at the end of the execution this set is exactly
the complete set of trees containing the node, with the
possible exceptions on registers known to be in use at the
start point { see below. The e�ciency of our algorithm
comes from two facts: (a) in typical situations, whenever
a node is visited for the �rst time this set is fairly close
to its �nal value and there are only few increments af-
terwards (b) as soon as a register is determined to be in
use, further exploration of the graph with respect to that
register ceases.

2 Preliminaries

We associate to the program under consideration a di-
rected graph. Every branch point or target of a branch is
represented as a node, and edges represent the sequence
of instructions between nodes. Often we have to deal
with only a part of a larger program: in this case we
might choose not to include branches outside the code of
interest and thus there might be nodes, called leaves that
have no outgoing edges. Leaves might also arise when
the program includes branches whose target can not be
determined. Of course, we make pessimal assumptions
about the use of registers at leaves.

We de�ne two predicates on edges and registers:

� write(i; e) is true if there exists an instruction on
edge e that uses register i and the �rst such in-
struction overwrites the content of i without using
it.

� read(i; e) is true if there exists an instruction on edge
e that uses register i and the �rst such instruction
uses the content of i.

An edge e that does not satisfy either write(i; e) or read(i; e)
is said to be clean with respect to register i, and a path is
said to be clean with respect to i if it is composed entirely
of clean edges with respect to i.

We say that a register i is in-use at v if there exists
a path from v that contains an edge e with read(i; e) not
preceded by any edge f with write(i; f) or if there exists
a clean path with respect to i from v to a leaf. Thus for
each leaf v we make the (worst case) assumption that all
registers are in use at v. A register not in use is called
free.

Given these de�nitions, it can be easily seen that a
register i is free at Root if and only if within every path
from Root that contains an edge e with read(i; e), the edge
e is preceded by an edge f with write(i; f), and there is
no clean path with respect to i from root to leaf.

As usual, we de�ne succ(v), respectively pred(v) to be
the set of nodes fug such that there exists an edge (v; u),
respectively (u; v).

3 Algorithms

3.1 Local search without saving information

In this section we present an algorithm for the case when
we are for looking for free registers at only one point
in the program, denoted Root. Information is not saved
between consecutive calls. As it will be explained below,
the algorithm has the \gracious time-out" property.

1. algorithm Local Search

2. LS := Procedure (v, R)

3. (* R is a set of registers for which
there are free paths from Root
to v. The procedure returns a
subset of R determined to be
not-free.*)

4. Local NewlyDead, R0, Rnew.

5. Rnew := R�Visited(v);

6. Visited(v) := Visited(v) [R;

7. if v is a leaf or Rnew = ; then

8. NewlyDead := Rnew;

9. return NewlyDead

10. �;

11. NewlyDead := ;;

12. for x 2 Succ(v) do

13. R
0 := Rnew;

14. for i 2 Rnew do

15. if read(i; (v; x)) then

16. NewlyDead :=
NewlyDead[fig;

17. R
0 := R

0 n fig

18. �;

19. if write(i; (v; x)) then
R

0 := R
0 n fig �;

20. od;

21. NewlyDead :=
NewlyDead [LS(x;R0);

22. Rnew := Rnew nNewlyDead;

23. od;

24. return NewlyDead

25. end

The calling sequence for this procedure is

1. for v 2 V do Visited(v) := ; od;

2. Free :=
AllRegisters n LS(Root;AllRegisters);

To prove the correctness of the algorithm above we
start by proving two lemmas.

Lemma 1 LS(Root;AllRegisters) equals the set of all the
registers ever included in NewlyDead within all the recur-
sive calls.
Proof: Obvious. 2

Lemma 2 For all nodes x, and for every register i =2
LS(Root;AllRegisters) such that there exist a clean path
with respect to i from Root to x, at termination i 2
Visited(x).

Proof: By induction on the length of the paths. Fix
a particular register i =2 LS(Root;AllRegisters) and as-
sume a clean path with respect to i from Root to x. The
condition holds at Root. Assume that it holds for x's pre-
decessor on the path, v. Then there was an invocation
LS(v;Rv) with i 2 Rv . Consider the �rst such invocation.
In this invocation i 2 Rnew. By the previous Lemma, i is
never added to NewlyDead, and thus it is not removed at
line 22 from Rnew. Since (v; x) is clean, i is not removed
from R

0 in either line 17 or line 19. Thus eventually there
was an invocation LS(x;R0) in line 21 with i 2 R

0. 2

Theorem 1 Register i belongs to LS(Root;AllRegisters)
at termination if and only if i is in use at Root.

Proof: For the \if" part assume that there is a clean path
with respect to i from Root to some node v, and either
an edge (v; x) with read(i; (v; x)) or v is a leaf. We must
prove that i 2 LS(Root;AllRegisters). Assume not. Then
by Lemma 2, at termination, i 2 Visited(v); hence there
was some invocation LS(v;Rv) with i 2 Rv. If v is a leaf
then i was added to NewlyDead in line 8; otherwise it was
added to NewlyDead in line 16. But then by Lemma 1,
at termination i 2 LS(Root;AllRegisters). Contradiction.

For the \only if" part, we claim that for each invoca-
tion LS(v;Rv) the following invariant holds at line 3:

R is a set of registers for which there are clean
paths from Root to v.

We prove this by induction on the depth of the recursion.
It clearly holds for v = Root. Consider an invocation
LS(x;Rx) with x 6= Root. By the induction hypothesis,
the invariant holds for the invocation LS(v;Rv) where v is
the predecessor of x in the recursion stack. Thus we know
that there is a clean path from Root to v with respect to
each register i 2 Rv. The tests in lines 14 to 20 imply
that if r 2 R

0 at line 21 then the edge from v to x is
clean with respect to r. But Rx = R

0 and R
0 � Rv and

therefore there exists clean paths from Root to x with
respect to each of the registers in Rx.

Returning to the \only if" part, note that if at termi-
nation register i 2 LS(Root;AllRegisters), then there was
some invocation LS(v;Rv) with i 2 Rv such that i was
added to NewlyDead at line 16 or line 8. By the invari-
ant, there exists a clean path from Root to v followed by
a Read(i) or v is a leaf. Hence the claim follows. 2

Observations:

1. Our algorithm tends to �nd quickly registers whose
freedom is easy to deduce. Since in many instances we
need few free registers we can time-out the algorithms
during execution. To this end, we add to the algorithm
the line

4.5. if TimeOut then return R �

With this modi�cation LS(Root;AllRegisters) becomes a
superset of the registers that are in use at Root.

2. Since we are interested only in the registers that are
free at Root, a register discovered to be \in-use" is re-
moved from consideration as soon as possible (in line 22).

3. The obvious way to determine whether i is in use at
Root is to do a DFS from Root using only edges that
are clean with respect to i. If either a Read(i) or a
leaf is reached then i is in use at at Root. Note that
if i 2 Visited(v) then v would be reached by the DFS al-
gorithm as well. Thus our algorithm makes no more edge
traversals than the total number of traversals made by
the DFS algorithms and Visited(v) represents a subset of
the DFS trees that include v.

3.2 Local search with information saving

In some situations we are interested in free registers at
more than one location. In this case we show how to
save some of the information gathered in earlier runs,
namely we will remember which registers were already
determined to be in use at a particular vertex. These
registers will be stored in an array denoted Dead(v).

1. algorithm Local Search 2

2. LS2 := Procedure (v, R)

3. (* R is a set of registers for which
there are free paths from Root
to v. The procedure returns a
subset of R determined to be
not-free.*)

4. Local NewlyDead, R0, Rnew.

5. Rnew := R�Visited(v);

6. Visited(v) := Visited(v) [R;

7. if v is a leaf or Rnew = ; then do

8. Dead(v) := Dead(v) [Rnew;

9. return R \Dead(v)

10. �;

11. for x 2 Succ(v) do

12. R
0 := Rnew;

13. for i 2 Rnew do

14. if read(i; (v; x)) then

15. Dead(v) :=
Dead(v) [fig;

16. R
0 := R

0 n fig

17. �;

18. if write(i; (v; x)) then
R

0 := R
0 n fig �;

19. od;

20. Dead(v) :=
Dead(v) [LS2(x;R0);

21. od;

22. return R \Dead(v)

23. end

The calling sequence for this procedure is

1. for v 2 V do Visited(v) := ;;
Dead(v) := ;; od;

2. LS2(point
1
;AllRegisters);

3. for v 2 V do Visited(v) := Dead(v); od;

4. LS2(point
2
;AllRegisters);

5. for v 2 V do Visited(v) := Dead(v); od;

6. LS2(point
3
;AllRegisters);

7. for v 2 V do Visited(v) := Dead(v); od;

8. : : :

To prove correctness, we start from the following

Observation 1 For any vertex x

LS2(x;R) � R \Dead(v):

Lemma 3 At all times, for all nodes v,

(a) Dead(v) � Visited(v)

(b) If i 2 Dead(v) then i is in use at v.

Proof: For (a) observe that whenever a register i is
added to Dead(v) it already belongs to Visited(v).

We prove (b) by contradiction. Consider the �rst time
the claim is violated with respect to a certain register i

and a certain node v. There are three cases to consider
based on where i is added to Dead(v).

1. Line 8: Then v must be a leaf.

2. Line 15: Then the path (v; x) ful�lls (b).

3. Line 20: Since no previous violations occurred, if
i 2 LS2(x;R0) then by the observation above, i 2
Dead(x), hence i is in use at x. We claim that the
edge (v; x) is clean with respect to i since otherwise
i would have been removed from R

0 in line 16 or 18
contradicting i 2 LS2(x; R0) � R

0. Thus i is in use
at v.

2

Lemma 4 LS2(Root;AllRegisters) equals the set of all
the registers returned by any induced recursive calls to
LS2.
Proof: Note that if an invocation LS2(v;R) recursively
calls LS2(x;R0) then LS2(v;R) � LS2(x;R0) because
LS2(x;R0) � R and is added to Dead(v). 2

Lemma 5 Let Root be one of the points where LS2 is in-
voked. For all nodes v, for all i =2 LS2(Root;AllRegisters)
and such that there exist a clean path with respect to
i from Root to v, at the termination of the procedure
LS2(Root;AllRegisters) the register i is contained in the
set Visited(v).

Proof: By induction on the length of the paths. Fix
a particular register i =2 LS2(Root;AllRegisters) and as-
sume a clean path with respect to i from Root to v. The
condition holds at Root. Assume that it holds for v's pre-
decessor on the path, w. Then there was an invocation
LS2(w;Rw) with i 2 Rw . Consider the �rst such invoca-
tion. If at this stage i 2 Dead(v) then i 2 LS2(w;Rw) �
LS2(Root;AllRegisters), contradiction. Otherwise, i =2
Dead(v) and since w is not a leaf and i 2 Rnew, we
execute line 11, with v = w, and x = v. Furthermore,
since the relevant edge is clear, the tests in lines 13{19
do not remove i from R

0. Thus the recursive invocation
at line 20 leads to i being added to Visited(v). 2

Theorem 2 Let Root be one of the points where LS2 is
invoked. Then register i belongs to LS2(Root;AllRegisters)
at termination if and only if i is in use at at Root.

Proof: For the \if" part assume that there is a clean path
with respect to i from Root to some node v, and either v
is leaf or there is an edge (v; x) with read(i; (v; x)). We
must prove that i 2 LS2(Root;AllRegisters). Assume
not. If prior to the call to LS2(Root;AllRegisters) we
have i 2 Dead(y) for all nodes y on the clean path then
i 2 Dead(Root) and clearly i 2 LS2(Root;AllRegisters).
Otherwise �x y to be the node farthest from Root on
the clean path such that y =2 Dead(y) prior to the call.
By Lemma 5, at termination, i 2 Visited(y), so there
was a �rst invocation LS2(y;Ry) with i 2 Ry. Within
this invocation i 2 Rnew. If y = v then i is added to
Dead(y) in line 8 or 15. Otherwise the recursive call to
the successor of y on the path adds i to Dead(y). Thus
i 2 LS2(y;Ry) � LS2(Root;AllRegisters). Contradiction.

For the \only if" part, we claim that for each invoca-
tion LS2(v;Rv) the following invariant holds at line 3:

R is a set of registers for which there are clean
paths from Root to v.

We prove this by induction on the depth of the recursion.
It clearly holds for v = Root. Consider an invocation
LS2(x;Rx) with x 6= Root. By the induction hypothesis,
the invariant holds for the invocation LS2(v;Rv) where
v is the predecessor of x in the recursion stack. Thus
we know that there is a clean path from Root to v with
respect to each register i 2 Rv. The tests in lines 13 to
19 imply that if register j 2 R

0 at line 20 then the edge
from v to x is clean with respect to j. But Rx = R

0 � Rv

and therefore there exists clean paths from Root to x with
respect to each of the registers in Rx.

Returning to the \only if" part, note that if at termi-
nation register i 2 LS2(Root;AllRegisters), then
(a) i 2 Dead(Root) before the call.
(b) There in an edge (Root; x) with read(i; (Root; x)).
(c) There was an invocation LS2(v;Rv) returning i with
v 6= Root.

In case (a) the claim follows from Lemma 3(b). In case
(b) the edge (Root; x) implies the claim. In case (c) we
have i 2 Rv \ Dead(v) and by the invariant and Lemma
3(b), there exists a clean path from Root to v and i is in
use at v, hence i in use at Root. 2

3.3 Global Search

We can use similar techniques to �nd the free registers
at all points within a program via a \backwards" explo-
ration of the entire graph. In this section we assume an
imaginary EndRoot such that every point in the program
can reach the EndRoot. If this is not the case (e.g. in�nite
loops or leaves) we add imaginary edges to ful�ll this con-
dition. The added edges from points in in�nite loops are
clean with respect to all registers, while the edges added
from leaves satisfy Read(i) with respect to every register
i.

1. algorithm Global Search

2. GS := Procedure (v;R)

3. (* R is a subset of the registers in
use at v. *)

4. if R � Visited(v) then return �;

5. Visited(v) := Visited(v) [R

6. for x 2 Pred(v) do

7. R
0 := R;

8. for i 2 AllRegisters do

9. if write(i; (x; v)) then
R

0 := R
0 n fig;

10. if read(i; (x; v)) then
R

0 := R
0 [fig;

11. od

12. GS(x;R0)

13. od

14. end

The calling sequence for this procedure is

1. for v 2 V do Visited(v) := ;;
Dead(v) := ;; od;

2. GS(EndRoot; ;)

Theorem 3 At termination register i belongs to Visited(v)
if and only if i is in use at v.

Proof: We claim that the algorithm maintains the the
following invariant at line 3:

R is a subset of the registers in use at v.

We prove the invariant by induction on the depth of the
recursion. Initially, R = ; and the invariant holds. As-
sume that it holds for an invocation GS(v;R), that calls
GS(x;R0). Consider some i 2 R

0; there are two cases to
consider:

� i 2 R and :write(i; (x; v)) { then inductively i is in
use at v and therefore at x.

� i =2 R and read(i; (x; v)) { then obviously i is in use
at x.

Thus the invariant holds for GS(x;R0).
Returning to the main proof, the invariant implies the

\only if" part since Visited(v) consists only of registers
that were in R for some invocation GS(v;R).

For the \if" part, consider a register i in use at x; we
use an induction on the length of the clean path from
x to the edge e with read(i; e). If this paths consists of
only one edge (x; v) with read(i; (x; v)) then there is a
�rst invocation involving v, say GS(v;R), where in line
10 i will be added to R

0 and then GS(x;R0) will be called
which will add i to Visited(x), if not already there. If
the path has length greater than 1, then let (x; v) be the
�rst edge on the path. Inductively i 2 Visited(v). Hence
there was a �rst invocation GS(v;R), with i 2 R and
since :write(i; (x; v)), register i is not removed from R

0

in line 9, and therefore there will be a call GS(x;R0) with
i 2 R

0 which will add i to Visited(x), if not already there.
2

Acknowledgment

We wish to thank Mike Burrows for introducing us to
this problem and for many stimulating discussions and
Greg Nelson and Lyle Ramshaw for their helpful com-
ments that improved our exposition.

References

[1] A. V. Aho, J. E. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley,
Reading, MA, 1986.

[2] R. Johnson and K Pingali. Dependence-based pro-
gram analysis. In Proceedings of the SIGPLAN '93
Conference on Programming Language Design and
Implementation, pages 78-79, 1993. Published as
ACM SIGPLAN Notices 28(6).

Biography

Monika Rauch Henzinger received her Ph.D. from Prince-
ton University in 1993. Afterwards, she was an assistant
professor in Computer Science at Cornell University. She
joined the Digital Systems Research Center in 1996.

Her main research interests are e�cient algorithms
and data structures, performance monitoring, and code
optimization.

