
Bean Scripting Framework
(Version 2.1)

User’s Guide
Sanjiva Weerawarana

IBM TJ Watson Research Center
Hawthorne, NY 10532.

December 09, 1999

http://www.alphaWorks.ibm.com/tech/bsf
mailto:sanjiva@watson.ibm.com

ABSTRACT

The Bean Scripting Framework (BSF) is an architecture for incorporating scripting into, and
enabling scripting against, Java applications and applets. Using BSF, an application can use
scripting, and become scriptable, against any BSF-supported language. When BSF supports
additional languages, the application will automatically support the additional languages. Scripts in
any BSF-supported language can be run directly on the command line as well.

The list of scripting languages supported by BSF is ever-growing. Both Java-implemented
languages (such as Netscape Rhino and Jacl) as well as non-Java ones such as Tcl and Perl will be
supported. On Win32 platforms, active scripting languages including VBScript and JScript are
supported.

This version of BSF adds ActiveScript languages to BSF and also improves the core BSF APIs for
compiling scripts to Java.

This document describes how to use BSF to make your application scriptable and use scripting.

TABLE OF CONTENTS

117. EXAMPLES .
116.8 PERLSCRIPT (ON WIN32 ONLY) .
116.7 JSCRIPT (ON WIN32 ONLY) .
106.6 VBSCRIPT (ON WIN32 ONLY) .
106.5 JPYTHON V1.1-BETA3 .
106.4 JACL V1.1.1 .
96.3 BML V2.4 .
96.2 NETREXX V1.148 UPWARDS .
96.1 MOZILLA RHINO (JAVASCRIPT) V1.4 RELEASE 3 .
86. LANGUAGE-SPECIFIC INFORMATION .
85. INTERACTING WITH JAVA FROM A SCRIPTING LANGUAGE. .
84. RUNNING BSF SCRIPTS DIRECTLY .
73. INCORPORATING BSF IN AN APPLICATION .
52.4 BINDING EVENTS TO SCRIPTS .
52.3 INTERPRETED AND COMPILED LANGUAGES .
42.2 REGISTERING AND DECLARING BEANS .
42.1 BSF FUNCTIONALITY .
32. BSF ARCHITECTURE .
31. INTRODUCTION .

2

1. INTRODUCTION
The Bean Scripting Framework (BSF) is an architecture for incorporating scripting into Java applications and applets.
Scripting languages such as Netscape Rhino (Javascript), VBScript, Perl, Tcl, Python, NetRexx and Rexx are
commonly used to augment an application's function or to script together a set of application components to form an
application.

There are many scripting languages implemented in Java, including Netscape's Rhino implementation of ECMAScript,
Jacl and JPython. While each of these is embeddable in Java and provides the ability to interact with Java from the
language, using a specific scripting language binds an application to that single language.

The Java world currently does not have a well-defined scripting architecture that allows Java applications to
incorporate scripting easily - BSF is such an architecture. The BSF architecture allows an application to be scripted
from, and to script against, any BSF supported language, without any scripting language-specific modifications.

BSF supports both directions of scripting: in one case where the Java-side is in charge and runs/evaluates scripts at
will, and in the other case the script runs and controls Java beans. Notice that while we use the word “bean”, it is
used loosely - BSF works with any Java object and not just a true bean.

2. BSF ARCHITECTURE
The BSF architecture is composed of two basic components: a manager that provides scripting services to
applications and bean services to scripting engines, and an abstraction of a scripting engine that must be supported
by any BSF-enabled engine.

� BSFManager: This bean provides scripting services for the application. The manager also has a registry of
known scripting engines (languages) which the application can load and interact with. A single instance of a
BSFManager can manage a single instance of a language interface for any number of languages. Once a manager
loads a scripting engine, it repeatedly uses that engine for all scripts evaluated by that manager in that language.

� BSFEngine: This interface must be implemented by a scripting language to become part of the bean scripting
framework. The interface consists of a few methods which allow interaction with the scripting engine from the
application side for running and compiling scripts. Scripts may manipulate new beans as well as any beans made
available for scripting by the application.

3

If the scripting engines are implemented in Java, then all of the components are contained within a JVM. However, if
they are in other languages, then the implementation of the BSFEngine interface would be split between Java and
non-Java with a JNI link between them and the scripting engine itself would be outside of the JVM.

2.1 BSF FUNCTIONALITY

What does it mean to be able to call into a scripting language from Java? You can:
� call a method (procedure) and get the return value, and
� evaluate some piece of script (say an expression) and get its return value
� execute some piece of script for the purposes of its side-effects
� compile a piece of script or an expression into Java code

To be interesting, the script must be able to access and modify some beans in your Java application. BSF supports
this by allowing you to register beans into the BSFManager's bean registry. Then, scripts can (in a scripting
language dependent way), get at pre-registered beans and manipulate them by doing all the usual bean things -
setting and getting properties and fields, calling methods, doing event bindings as well as creating new beans. All
bean operations are done in the Java VM and the result is returned into the scripting side in a manner compatible with
the scripting language.

For Java-based scripting languages like Netscape Rhino, this works very well because all Java types come down
naturally into the scripting environment. For non-Java languages like Tcl and Perl, you have to use BSF provided
accessor functions to manipulate Java objects from within the scripts.

What can you do from a scripting language? You can:
� look up a pre-registered bean and access a pre-declared bean
� register a newly created bean so that the Java side can get at it,
� do all bean operations (create new beans, modify them, do event bindings and call methods), and
� bind events to scripts in the scripting language.

BSFManager supports running scripts directly, i.e., a script that creates beans and performs some function can be
run by itself either from the command line or within the JVM. This allows BSF scripts to become first class
executables.

2.2 REGISTERING AND DECLARING BEANS

In order for scripts to manipulate Java beans that the application wishes to expose, the application must either
register or declare the bean into the BSFManager. When the application registers a bean (i.e., some Java object) by
giving it a name, the bean is placed in an object registry which is essentially a hashtable with the name as the key.
Scripts may then look up objects by using the name of the object as the key. Thus, registering beans is a way in
which the application may expose a set of beans which scripts may look up and use on an as-needed basis.

BSF supports a second way to expose beans to scripts: declaring beans. The difference between declaring and
registering is that engines are expected to make declared beans “pre-available” in the scripts as far as possible. That
is, if a script author needs a registered bean, (s)he needs to look it up in some way. However if (s)he needs a declared
bean, the engine has the responsibility to (attempt to) make those beans available “automatically” by the same name
(preferably) within the scripting language. That is, if a bean named “potato” is declared to a manager, then say a
Javascript script running in that manager would have access to a variable named “potato” which is a reference to the
Java object declared with the name “potato.” Because engines are strongly urged to make declared beans available
under the same name, applications are strongly urged to use a small character set when naming declared beans.
We recommend using names that correspond to this regular expression: [a-z][a-z0-9_]*.

In BSF 2.1, when a bean is declared it is automatically registered as well. Hence any declared bean can be accessed
by looking it up as well. Thus, engines which choose not to implement declared beans may do so safely assuming
that the declared beans can be accessed anyway. Note that BSF requires the type of declared beans to be given at
the time of declaration. This is needed to enable cases where the declared type is say an interface and the object’s
actual type is potentially a non-public implementation class.

4

When a bean is declared into the BSFManager, that is noted in the manager’s internals and then forwarded onto any
already running engines. If any of the already running language engines throw an exception when asked to declare
the bean, then the manager’s declare bean method will forward on that exception. That is, any engines that come
afterwards in the engine enumeration will not even be told about this new bean. Thus, in general it is best to declare
beans before the manager has been asked to load any engines because then the user can be informed when an
engine rejects it. Also, its much more likely that an engine can declare a bean at start time than it can at any time.

2.3 INTERPRETED AND COMPILED LANGUAGES

BSF supports both interpreted scripting languages (such as Netscape Rhino) as well as compiled ones (such as
NetRexx). When a compiled language engine is asked to evaluate or execute a script, it compiles the script the first
time its seen and executes it. Future calls to execute the same script do not need to be compiled. When asked to
compile a script or expression, such a language would generate customized Java code that when compiled and run
would produce the desired results. When an interpreted language (such as Jacl) engine is asked to compile a script, it
generates Java code which uses BSF to evaluate the script.

2.4 BINDING EVENTS TO SCRIPTS

For scripting languages that need assistance in binding scripts to be executed when events occur in some bean, BSF
provides an event binding service. The language-specific documentation indicate whether event bindings to scripts
are done this mechanism or a language provided mechanism.

The BSF mechanism is supported by event adapters, event processors and an event adapter registry. Basically, the
model consists of an event-type specific adapter that receives the event from the source, forwards it to a generic
event processor which then executes the script. Event-type specific event adapters are located from the event
adapter registry. The figure below illustrates the standard and extended binding architecture.

Event adapters must implement the com.ibm.cs.event.EventAdapter interface to be part of the BSF event
architecture. This interface is defined as follows:

public interface EventAdapter {
 public void setEventProcessor (EventProcessor eventProcessor);
}

A base implementation of this interface is available in com.ibm.cs.event.EventAdapterImpl that event
adapters may choose to extend. The code for EventAdapterImpl is as follows:

public class EventAdapterImpl implements EventAdapter {

5

 protected EventProcessor eventProcessor;

 public void setEventProcessor (EventProcessor eventProcessor) {
 this.eventProcessor = eventProcessor;
 }
}

For each type of event (actually, for each listener type), an event adapter must be implemented and available from the
event adapter registry. For example, the following event adapter is included in the BSF jar file for adapting
java.awt.event.KeyEvent events to the BSF event architecture:

public class java_awt_event_KeyAdapter extends EventAdapterImpl
 implements KeyListener {
 public void keyTyped (KeyEvent e) {
 eventProcessor.processEvent ("keyTyped", new Object[]{e});
 }
 public void keyPressed (KeyEvent e) {
 eventProcessor.processEvent ("keyPressed", new Object[]{e});
 }
 public void keyReleased (KeyEvent e) {
 eventProcessor.processEvent ("keyReleased", new Object[]{e});
 }
}

When the BSF runtime creates event adapters and adds them as listeners to the event sources, it tells the adapter
what event processor to forward (delegate) events to. Event processors are the entry point to the BSF runtime and
are responsible for delivering the event to the intended recepient script. The
com.ibm.cs.event.EventProcessor interface is defined as follows:

public interface EventProcessor {
 public void processEvent (String filter, Object[] eventInfo);
 public void processExceptionableEvent (String filter, Object[] eventInfo)
 throws Exception;
}

When an event adapter receives an event from an event source, it delegates the event to its event processor using
one of the above two methods. If the event method may throw an exception, then it should delegate it via the
processExceptionableEvent method, otherwise via the processEvent method. The filter argument is in
general the name of the method via which the event was received. The exception to this is for
java.beans.PropertyChangeListener and java.beans.VetoableChangeListener event
listener types, where the filter is the name of the property. The BSF event support class uses a single event
processor that actually delivers the event to a script and runs the script.

The event adapter registry (com.ibm.cs.event.EventAdapterRegistry) provides a static registration
and look up service for event adapters. The EventAdapterRegistry class has the following two methods:

public static void setClassLoader (ClassLoader cloader)
public static void register (Class listenerType, Class eventAdapterClass)
public static Class lookup (Class listenerType)

This implementation uses a simple hashtable as its registry. The BSF jar file contains adapters that the above registry
is aware of for the following listener types:
� all java.awt.event.* event listener types
� java.beans.PropertyChangeListener and java.beans.VetoableChangeListener event

listener types

6

NOTE: In BSF v2.1, the arguments of the event listener method are not available to the scripts. This will be fixed in
a later release.

If an application needs to enable scripts to bind to other events, then the appropriate adapter must be written and
registered with the event adapter registry.

3. INCORPORATING BSF IN AN APPLICATION
Incorporating BSF in an application is easy. The basic process is to create an instance of a BSFManager and then
load the appropriate scripting languages into it. The application can register any beans it wants to make available for
scripting into the bean registry of the manager. When engines run scripts, they can access these beans and interact
with them and do whatever the script needs to do.

You can have multiple BSFManager beans in your application. The motivation for that would be if you wanted to
have multiple instances of scripting languages running at the same time within the same JVM. In most cases that
would not be the case and you would have one manager per application.

Here are the steps to successful BSF integration:

1. Declare and create a BSF manager:

import com.ibm.bsf.*;

class YourClass {
 BSFManager mgr = new BSFManager ();

 ...
}

2. Register any new scripting languages:

String[] extensions = {”pos”};
mgr.registerScriptingEngine (“potatoscript”,
 edu.purdue.cs.bsf.engines.potatoscript,
 extensions);

3. Register or declare any beans you want to make available to scripting engines with appropriate names:

mgr.registerBean (“myFrame”, myFrame);
mgr.registerBean (“myOtherBean”, myOtherBean);
mgr.declareBean (“respose”, response, Response.class);

Note that any Java object (i.e., any bean) can be made available for scripting. There is no need for the object to
implement any specific interface etc..

4. (Optionally) Load any scripting engines that you want:

BSFEngine rhinoEngine = mgr.loadScriptingEngine (“javascript”);

Now you’re ready to call functions in the script or to evaluate/execute arbitrary scripts:

Object result = rhinoEngine.eval (“testString”, 0, 0, “2+32”);
result = rhinoEngine.call (null, “hello”, null);
rhinoEngine.exec (“testString2”, 0, 0, “hello ()”);

7

Alternatively, you can have the manager run any scripts directly:

Object result = mgr.eval (“javascript”, “testString”, 0, 0, “2+32”);
mgr.exec (“javascript”, “testString”, 0, 0, “hello ()”);

Or you can compile scripts or expressions into Java code:

import com.ibm.cs.util.CodeBuffer;

CodeBuffer cb = new CodeBuffer ();
rhinoEngine.compileScript (“testString”, 0, 0, “hello ()”, cb);
String res1 = cb.toString ();
cb = new CodeBuffer ();
mgr.compileScript (“javascript”, “testString”, 0, 0, “hello ()”, cb);
String res2 = cb.toString ();

In either case, res1 and res2 are:

public class Test
{
 com.ibm.bsf.BSFManager bsf = new com.ibm.bsf.BSFManager();

 public java.lang.Object exec() throws com.ibm.bsf.BSFException
 {
 return bsf.eval("javascript", "testString", 0, 0, "hello ()");
 }
}

(See the API docs for BSFManager and BSFEngine for details.)

The scripts you are evaluating can access the beans registered in the BSF registry using accessor functions in a
language dependent manner. This mechanism is described in the next section.

4. RUNNING BSF SCRIPTS DIRECTLY
BSF scripts can be run directly on the command line using a utility class provided in BSF:

% java com.ibm.bsf.Main
Usage:

 java com.ibm.bsf.BSFManager [args]

 args:

 [-in fileName] default: <STDIN>
 [-language languageName] default: <If -in is specified and -language
 is not, attempt to determine
 language from file extension;
 otherwise, -language is required.>
 [-compile (on|off)] default: off

 Additional args used only if -compile flag is set to "on":

 [-out className] default: Test

5. INTERACTING WITH JAVA FROM A SCRIPTING LANGUAGE

8

The BSF architecture allows a script to access Java and manipulate Java beans. The methodology for doing this is
scripting language-specific and is documented below for each currently supported language.

6. LANGUAGE-SPECIFIC INFORMATION
This section provides language-specific information that application authors and script authors need to be aware of.
Version 2.1 of BSF supports the following languages (with more under active development):
� Mozilla Rhino v1.4 Release 3
� NetRexx v1.148 upwards
� BML v2.4
� JPython v1.1-beta3
� Jacl v1.1.1
� LotusXSL v0.18.*
� Microsoft ActiveScript languages VBScript, JScript and ActiveState’s PerlScript.

6.1 MOZILLA RHINO (JAVASCRIPT) V1.4 RELEASE 3

http://www.mozilla.org/rhino/Language home

Uses Netscape’s LiveConnect technology; see
http://www.mozilla.org/js/liveconnect

Doing all bean operations

bsf.addEventListener (bean, "event-set-name”, “filter”, "script-to-exec”)
where event-set-name is the name of the event, filter is the specific method of
the event’s listener interface via which event must be received to be delivered
to the script (may be null), and script is the script to be exec’ed when the
event occurs.

Binding a script to be executed
upon event firing

bsf.unregisterBean (“name-of-bean”)Unregistering a bean
bsf.registerBean (“name-of-bean”, bean)Registering a bean
uses Rhino’s mechanismsCreate a new bean
x = bsf.lookupBean (“name-of-bean”)Looking up a bean
.jsFile extension(s)
javascriptLanguage identifier
DescriptionCategory

6.2 NETREXX V1.148 UPWARDS

http://www2.hursley.ibm.com/netrexx/Language home

NetRexx is in many ways an alternate syntax for Java. Java operations can be
done directly in NetRexx.

Doing all bean operations

Use NetRexx’s mechanisms.Binding a script to be executed
upon event firing

bsf.unregisterBean(“name-of-bean”)Unregistering a bean
bsf.registerBean(“name-of-bean”, bean)Registering a bean
uses NetRexx’s mechanismsCreate a new bean

x = bsf.lookupBean(“name-of-bean”)
Note that NetRexx does not allow whitespace between the function name and
the parenthesis!

Looking up a bean
.nrxFile extension(s)
netrexxLanguage identifier
DescriptionCategory

9

6.3 BML V2.4

http://www.alphaWorks.ibm.com/formula/bmlLanguage home
Use BML’s mechanisms.Doing all bean operations

Use BML’s mechanisms.Binding a script to be executed
upon event firing

<call-method target=”bsf” name=”unregisterBean”>
<string value=”name-of-bean”/>
</call-method>

Unregistering a bean

<call-method target=”bsf” name=”registerBean”>
<string value=”name-of-bean”/>
bean-to-register
</call-method>

Registering a bean
uses BML’s mechanismsCreate a new bean

<call-method target=”bsf” name=”lookupBean”>
 <string value=”name-of-bean”/>
</call-method>

Looking up a bean
.bmlFile extension(s)
bmlLanguage identifier
DescriptionCategory

6.4 JACL V1.1.1

http://www.scriptics.com/products/java/Language home
Use Jacl’s mechanisms.Doing all bean operations

bsf addEventListener $bean "event-set-name" "filter" "script"
where event-set-name is the name of the event, filter is the specific method of
the event’s listener interface via which event must be received to be delivered
to the script (may be empty), and script is the script to be exec’ed when the
event occurs.

Binding a script to be executed
upon event firing

bsf unregisterBean “bean-name”Unregistering a bean
bsf registerBean “bean-name” $beanRegistering a bean
uses Jacl’s mechanismsCreate a new bean
bsf lookupBean “bean-name”Looking up a bean
.jaclFile extension(s)
jaclLanguage identifier
DescriptionCategory

6.5 JPYTHON V1.1-BETA3

http://www.jpython.org/Language home
Use JPython’s mechanisms.Doing all bean operations

Use JPython’s mechanisms.Binding a script to be executed
upon event firing

bsf.unregisterBean (“name-of-bean”)Unregistering a bean
bsf.registerBean (“name-of-bean”, bean)Registering a bean
uses JPython’s mechanismsCreate a new bean
bsf.lookupBean (“name-of-bean”)Looking up a bean
.pyFile extension(s)
jpythonLanguage identifier
DescriptionCategory

10

6.6 VBSCRIPT (ON WIN32 ONLY)

http://msdn.microsoft.com/scriptingLanguage home

method calls: var.methodname args (same syntax as typical VB, method
names are case-insensitive as much as possible)
property setting: var.propertyname = value
property getting: var.propertyname
field access is not supported

Doing all bean operations

var.on<EventName> = script-to-execBinding a script to be executed
upon event firing

bsf.unregisterBean (“name-of-bean”)Unregistering a bean
bsf.registerBean (“name-of-bean”, bean)Registering a bean

set b = CreateBean (“type-of-bean”) or
set b = bsf.createBean (“type-of-bean”)

Create a new bean
bsf.lookupBean (“name-of-bean”)Looking up a bean
.vbsFile extension(s)
vbscriptLanguage identifier
DescriptionCategory

6.7 JSCRIPT (ON WIN32 ONLY)

http://msdn.microsoft.com/scriptingLanguage home

method calls: var.methodname (args) (same syntax as typical JScript)
property setting: var.propertyname = value
property getting: var.propertyname
field access is not supported

Doing all bean operations

var.on<EventName> = script-to-execBinding a script to be executed
upon event firing

bsf.unregisterBean (“name-of-bean”)Unregistering a bean
bsf.registerBean (“name-of-bean”, bean)Registering a bean

var b = CreateBean (“type-of-bean”) or
var b = bsf.createBean (“type-of-bean”)

Create a new bean
bsf.lookupBean (“name-of-bean”)Looking up a bean
.jssFile extension(s)
jscriptLanguage identifier
DescriptionCategory

6.8 PERLSCRIPT (ON WIN32 ONLY)

$var->on<EventName> = script-to-execBinding a script to be executed
upon event firing

$bsf->unregisterBean (“name-of-bean”)Unregistering a bean
$bsf->registerBean (“name-of-bean”, bean)Registering a bean

$b = CreateBean (“type-of-bean”) or
$ = $bsf->createBean (“type-of-bean”)

Create a new bean
$bsf->lookupBean (“name-of-bean”)Looking up a bean
.plsFile extension(s)
perlscriptLanguage identifier
DescriptionCategory

11

http://www.activestate.comLanguage home

method calls: $var->methodname (args) (same syntax as typical Perl)
property setting: $var->propertyname (value)
property getting: $var->propertyname
field access is not supported

Doing all bean operations

7. EXAMPLES
The demos directory in the distribution has some examples of using BSF.

The above examples are small examples that illustrate the basics of BSF usage. The following systems use BSF today
to satisfy their scripting needs:
� BML (http://www.alphaWorks.ibm.com/formula/bml) for implementing <script> elements in any

scripting language.
� LotusXSL (http://www.alphaWorks.ibm.com/tech/LotusXSL) for implementing the extension

framework.
� IBM WebSphere v3.0 upwards (http://www.software.ibm.com/websphere) uses BSF to get

multiple language JSPs.

12

