
The GNU Pascal Manual

Jan-Jaap van der Heijden,

Peter Gerwinski,

Frank Heckenbach,

Berend de Boer,

Dominik Freche,

Eike Lange,

and others

Last updated Mar 2003

for version 20030507 (GCC 2.8.1, 2.95.x or 3.2.1)

Copyright c© 1988-2003 Free Software Foundation, Inc.

For GPC 20030507 (GCC 2.8.1, 2.95.x or 3.2.1)

Published by the Free Software Foundation
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.
Copyright (C) 1988-2003 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 published by the Free Software Foundation; with
the Invariant Sections being “GNU General Public License”, “GNU Lesser General Public Li-
cense”, “GNU Free Documentation License”, “The GNU Project”, “The GNU Manifesto” and
“Funding Free Software”, with the Front-Cover Texts being “The GNU Pascal Manual”, and
with no Back-Cover Texts. A copy of the license is included in the section entitled “Documen-
tation Copying – The GNU Free Documentation License”.

i

Short Contents

GNU Pascal . 1

Welcome to GNU Pascal . 3

1 Some of GPC’s most interesting features. 5

2 New Features of GNU Pascal. 9

3 The GNU Pascal Frequently Asked Questions List. 13

4 How to download, compile and install GNU Pascal. 25

5 Command Line Options supported by GNU Pascal. 33

6 The Programmer’s Guide to GPC . 45

7 A QuickStart Guide from Borland Pascal to GNU Pascal. 235

8 The Alphabetical GPC Language Reference 255

9 Pascal keywords and operators supported by GNU Pascal. 443

10 Where to get support for GNU Pascal; how to report bugs. 449

11 The GNU Pascal To-Do List. 455

12 The GPC Source Reference. 463

Appendix A GNU GENERAL PUBLIC LICENSE 481

Appendix B GNU LESSER GENERAL PUBLIC LICENSE 487

Appendix C GNU FREE DOCUMENTATION LICENSE 495

Appendix D DEMO COPYING . 501

Appendix E Contributors to GNU Pascal. 503

Appendix F Resources For Use With GPC. 507

Appendix G The GNU Project. 511

GPC Index . 519

ii The GNU Pascal Manual

iii

Table of Contents

GNU Pascal . 1

Welcome to GNU Pascal . 3

1 Some of GPC’s most interesting features. 5

2 New Features of GNU Pascal. 9

3 The GNU Pascal Frequently Asked Questions
List. 13
3.1 GNU Pascal . 13

3.1.1 What and why? . 13
3.1.2 What is the current version? . 13
3.1.3 Is it compatible with Turbo Pascal (R)? 14
3.1.4 Which platforms are supported by GNU Pascal? 14

3.2 Installing GPC . 14
3.2.1 What to read next . 14
3.2.2 Which components do I need to compile Pascal code?

. 15
3.2.3 How do I debug my Pascal programs? 15
3.2.4 What additional libraries should I have? 16
3.2.5 Contributed units . 17
3.2.6 Can you recommend an IDE? . 17

3.3 GNU Pascal on the DJGPP (MS-DOS) platform 17
3.3.1 What is DJGPP? . 17
3.3.2 If you need more information . 17
3.3.3 What do I download? . 18
3.3.4 How do I install the compiler? . 18
3.3.5 I cannot read the Info documentation! 19
3.3.6 GPC says: no DPMI . 19
3.3.7 I have troubles with assembly code 19
3.3.8 Tell me how to do DPMI, BIOS and other DOS related

things. 19
3.3.9 I got an exception when accessing an ‘array [1 ..

4000000] of Byte’. 21
3.4 Strings . 21

3.4.1 What’s this confusion about strings? 21
3.4.2 Overlaying strings in variant records 22
3.4.3 Why does ‘s[0]’ not contain the length? 22
3.4.4 Watch out when using strings as parameters 22
3.4.5 Support for BP compatible short strings 23
3.4.6 What about C strings? . 23

3.5 Getting Help . 23
3.6 Miscellaneous . 24

3.6.1 I want to contribute; where do I start? 24
3.6.2 Where is the GNU Pascal web site? 24
3.6.3 About this FAQ . 24

iv The GNU Pascal Manual

4 How to download, compile and install GNU
Pascal. 25
4.1 Where and what to download . 25
4.2 Installation instructions for a GPC binary distribution 27
4.3 Compiling GPC . 28
4.4 Compilation notes for specific platforms . 30

4.4.1 MS-DOS with DJGPP . 30
4.4.2 MS-DOS or OS/2 with EMX . 31
4.4.3 MS Windows 95/98/NT . 31

4.5 Building and Installing a cross-compiler . 31
4.6 Crossbuilding a compiler . 31

5 Command Line Options supported by GNU
Pascal. 33
5.1 GPC options besides those of GCC. 33
5.2 The most commonly used options to GPC . 40

6 The Programmer’s Guide to GPC 45
6.1 Source Structures . 45

6.1.1 The Source Structure of Programs 45
6.1.2 Label Declaration . 46
6.1.3 Constant Declaration . 46
6.1.4 Type Declaration . 48
6.1.5 Variable Declaration . 49
6.1.6 Subroutine Declaration . 50

6.1.6.1 The Procedure . 50
6.1.6.2 The Function . 51
6.1.6.3 The Operator . 51
6.1.6.4 Subroutine Parameter List Declaration 51

6.1.7 Statements . 54
6.1.7.1 Assignment . 54
6.1.7.2 begin end Compound Statement 54
6.1.7.3 if Statement . 54
6.1.7.4 case Statement . 54
6.1.7.5 for Statement . 55
6.1.7.6 while Statement . 56
6.1.7.7 repeat Statement . 57
6.1.7.8 asm Inline . 57
6.1.7.9 with Statement . 57
6.1.7.10 goto Statement . 57
6.1.7.11 Procedure Call . 57
6.1.7.12 The Declaring Statement 57
6.1.7.13 Loop Control Statements 58

6.1.8 Import Part and Module/Unit Concept 58
6.1.8.1 The Source Structure of ISO 10206 Extended

Pascal Modules . 58
6.1.8.2 The Source Structure of UCSD/Borland Pascal

Units. 61
6.2 Data Types . 62

6.2.1 Type Definition . 62
6.2.2 Ordinal Types . 62
6.2.3 Integer Types . 62

6.2.3.1 The CPU’s Natural Integer Types 63
6.2.3.2 The Main Branch of Integer Types 63

v

6.2.3.3 Integer Types with Specified Size 63
6.2.3.4 Integer Types and Compatibility 64
6.2.3.5 Summary of Integer Types 64

6.2.4 Built-in Real (Floating Point) Types 65
6.2.5 Strings Types . 66
6.2.6 Character Types . 66
6.2.7 Enumerated Types . 66
6.2.8 File Types . 67
6.2.9 Boolean (Intrinsic) . 67
6.2.10 Pointer (Intrinsic) . 67
6.2.11 Type Definition Possibilities . 68

6.2.11.1 Subrange Types . 68
6.2.11.2 Array Types . 68
6.2.11.3 Record Types . 69
6.2.11.4 Variant Records . 70
6.2.11.5 EP’s Schema Types including ‘String’ 70
6.2.11.6 Set Types . 74
6.2.11.7 Pointer Types . 74
6.2.11.8 Procedural and Functional Types 75
6.2.11.9 Object Types . 76
6.2.11.10 Initial values to type denoters 77
6.2.11.11 Restricted Types . 77

6.2.12 Machine-dependencies in Types . 78
6.2.12.1 Endianness . 78
6.2.12.2 Alignment . 79

6.3 Operators . 80
6.3.1 Built-in Operators . 80
6.3.2 User-defined Operators . 80

6.4 Procedure And Function Parameters . 81
6.4.1 Parameters declared as ‘protected’ or ‘const’ 81
6.4.2 The Standard way to pass arrays of variable size 81
6.4.3 BP’s alternative to Conformant Arrays 81

6.5 Accessing parts of strings (and other arrays) 81
6.6 Pointer Arithmetics. 82
6.7 Type Casts . 83
6.8 Object-Oriented Programming . 84
6.9 Compiler Directives And The Preprocessor 87
6.10 Routines Built-in or in the Run Time System 90

6.10.1 File Routines . 90
6.10.2 String Operations . 92
6.10.3 Accessing Command Line Arguments. 94
6.10.4 Memory Management Routines . 94
6.10.5 Operations for Integer and Ordinal Types 95
6.10.6 Complex Number Operations . 95
6.10.7 Set Operations . 96
6.10.8 Date And Time Routines . 97

6.11 Interfacing with Other Languages . 98
6.11.1 Importing Libraries from Other Languages 98
6.11.2 Exporting GPC Libraries to Other Languages 99

6.12 Notes for Debugging . 100
6.13 Pascal declarations for GPC’s Run Time System 100
6.14 Units included with GPC . 146

6.14.1 BP compatibility: CRT & WinCRT, portable, with
many extensions . 146

6.14.2 BP compatibility: Dos . 163
6.14.3 Overcome some differences between Dos and Unix . . 168

vi The GNU Pascal Manual

6.14.4 Higher level file and directory handling 170
6.14.5 Arithmetic with unlimited size and precision 172
6.14.6 Turbo Power compatibility, etc. 185
6.14.7 Primitive heap checking . 189
6.14.8 Internationalization . 190
6.14.9 ‘MD5’ Message Digests . 195
6.14.10 BP compatibility: Overlay. 196
6.14.11 Start a child process, connected with pipes, also on Dos

. 198
6.14.12 BP compatibility (partly): ‘Port’, ‘PortW’ arrays . . 202
6.14.13 BP compatibility: Printer, portable 203
6.14.14 Regular Expression matching and substituting 205
6.14.15 BP compatibility: Strings . 210
6.14.16 Higher level string handling . 212
6.14.17 BP compatibility: System . 217
6.14.18 Some text file tricks . 224
6.14.19 Trap runtime errors . 225
6.14.20 BP compatibility: Turbo3 . 227
6.14.21 BP compatibility: WinDos . 228

6.15 How to use I18N in own programs . 231

7 A QuickStart Guide from Borland Pascal to GNU
Pascal. 235
7.1 BP Compatibility . 235
7.2 BP Incompatibilities . 235

7.2.1 String type . 235
7.2.2 Qualified identifiers . 236
7.2.3 Assembler . 236
7.2.4 Move; FillChar . 236
7.2.5 Real type . 237
7.2.6 Graph unit . 237
7.2.7 OOP units . 237
7.2.8 Keep; GetIntVec; SetIntVec . 237
7.2.9 TFDDs . 237
7.2.10 Mem; Port; Ptr; Seg; Ofs; PrefixSeg; etc. 238
7.2.11 Endianness assumptions . 238
7.2.12 - -borland-pascal - disable GPC extensions 239
7.2.13 -w - disable all warnings . 239
7.2.14 - -uses=System - Swap; HeapError; etc. 239
7.2.15 -D BP TYPE SIZES - small integer types etc. . . . 239
7.2.16 - -pack-struct - disable structure alignment 239
7.2.17 -D BP RANDOM - BP compatible pseudo random

number generator . 239
7.2.18 -D BP UNPORTABLE ROUTINES - Intr;

DosVersion; etc. 240
7.2.19 -D BP PARAMSTR 0 - BP compatible ParamStr (0)

behaviour . 240
7.3 IDE versus command line . 240
7.4 Comments . 242
7.5 BP Compatible Compiler Directives . 242
7.6 Units, GPI files and Automake . 242
7.7 Optimization . 243
7.8 Debugging . 244
7.9 Objects . 244
7.10 Strings in BP and GPC . 244

vii

7.11 Typed Constants . 245
7.12 Bit, Byte and Memory Manipulation . 246
7.13 User-defined Operators in GPC. 247
7.14 Data Types in BP and GPC . 248
7.15 BP Procedural Types . 249
7.16 Files . 250
7.17 Built-in Constants . 250
7.18 Built-in Operators in BP and GPC . 250
7.19 Built-in Procedures and Functions . 250
7.20 Special Parameters . 251
7.21 Miscellaneous . 251
7.22 BP and Extended Pascal . 252
7.23 Portability hints. 253

8 The Alphabetical GPC Language Reference . . 255
Abs . 255
absolute . 256
abstract . 257
Addr . 258
AlignOf . 259
all . 259
and . 260
and then . 261
and then . 261
AnsiChar . 262
AnyFile . 263
Append . 264
ArcTan . 265
Arg . 266
array . 266
as . 267
asm . 268
asmname . 268
Assert . 268
Assign. 269
Assigned . 269
attribute . 270
begin . 272
Bind . 273
bindable . 273
Binding . 274
BindingType . 274
BitSizeOf . 275
BlockRead . 276
BlockWrite . 276
Boolean . 277
Break . 277
Byte . 278
ByteBool . 279
ByteCard . 280
ByteInt. 280
c . 281
Card . 281
Cardinal . 282
case . 283
CBoolean . 284

viii The GNU Pascal Manual

Char . 285
ChDir . 285
Chr . 286
c language . 287
class . 287
Close . 287
Cmplx . 288
Comp . 288
Complex . 289
Concat . 290
Conjugate . 290
const . 291
constructor . 292
Continue . 292
Copy . 293
Cos . 294
CString . 294
CString2String . 295
CStringCopyString . 295
CurrentRoutineName . 296
Date . 296
Dec . 297
DefineSize . 298
Delete . 298
destructor . 299
Dispose . 299
div . 300
do . 300
Double . 301
downto . 302
else . 302
Empty . 303
end . 303
EOF . 304
EOLn . 305
EpsReal . 305
EQ . 305
EQPad . 306
Erase . 306
Exclude . 307
Exit . 307
Exp . 308
export . 309
exports . 310
Extend . 310
Extended . 311
external . 312
Fail . 312
False . 313
far . 313
file . 314
FilePos . 315
FileSize . 315
FillChar . 315
finalization . 316
Finalize . 316

ix

Flush . 317
for . 317
FormatString . 318
forward. 318
Frac . 319
FrameAddress . 320
FreeMem . 320
function . 321
GE . 321
GEPad . 321
Get . 322
GetMem. 322
GetTimeStamp . 323
goto . 323
GT . 324
GTPad . 324
Halt. 325
High . 325
if . 326
Im . 327
implementation . 328
import . 328
in . 329
Inc . 329
Include . 330
Index . 331
inherited . 332
initialization . 332
Initialize. 332
InOutRes . 333
Input . 333
Insert . 334
Int . 334
Integer . 335
interface . 336
interrupt . 336
IOResult . 337
is . 337
label . 337
LastPosition . 338
LE . 338
Length . 339
LEPad . 339
library . 339
Ln . 340
LoCase . 340
LongBool . 341
LongCard . 341
LongestBool . 342
LongestCard . 343
LongestInt . 343
LongestReal . 344
LongestWord . 344
LongInt . 345
LongReal . 346
LongWord . 346

x The GNU Pascal Manual

Low . 347
LT . 348
LTPad . 348
Mark . 349
Max . 349
MaxChar . 349
MaxInt . 350
MaxReal . 350
MedBool . 351
MedCard . 351
MedInt . 352
MedReal . 353
MedWord . 353
Min . 354
MinReal . 354
MkDir . 355
mod. 355
module . 356
Move . 356
MoveLeft . 357
MoveRight. 357
name . 357
NE . 359
near . 359
NEPad . 360
New. 360
NewCString . 361
nil . 361
not. 362
Null . 363
object . 364
Odd . 365
of . 365
only . 366
operator . 366
or . 366
Ord . 368
or else . 368
or else . 369
otherwise . 370
Output . 371
Pack . 371
packed . 371
Page . 373
PAnsiChar . 373
ParamCount . 374
ParamStr . 374
PChar . 375
Pi . 376
PObjectType . 376
Pointer . 377
Polar . 377
Pos . 378
Position . 378
pow . 378
Pred . 379

xi

private . 380
procedure . 381
program . 381
property . 381
protected . 382
PtrCard . 382
PtrDiffType . 383
PtrInt . 384
PtrWord . 384
public . 385
published . 385
Put . 386
qualified . 386
Random . 387
Randomize . 387
Re . 387
Read . 388
ReadLn . 388
ReadStr . 389
Real . 389
record . 390
Release . 391
Rename . 392
repeat . 392
Reset . 393
resident . 394
restricted . 394
Result . 395
Return . 395
ReturnAddress . 396
Rewrite . 396
RmDir . 397
Round . 398
RunError . 399
Seek . 399
SeekEOF . 400
SeekEOLn . 400
SeekRead . 400
SeekUpdate . 401
SeekWrite . 401
segment . 402
Self . 402
set . 402
SetFileTime . 403
SetLength . 404
SetType . 404
shl . 406
ShortBool . 407
ShortCard . 408
ShortInt . 408
ShortReal . 409
ShortWord . 409
shr . 410
Sin . 411
Single . 411
SizeOf . 412

xii The GNU Pascal Manual

SizeType . 413
SmallInt . 413
Sqr . 414
SqRt . 415
StandardError . 415
StandardInput . 416
StandardOutput . 416
StdErr . 416
Str . 417
String . 418
String2CString . 418
SubStr . 418
Succ . 419
Text . 420
then . 421
Time . 421
TimeStamp . 422
to . 423
to begin do . 424
to end do . 424
Trim . 425
True . 425
Trunc . 426
Truncate . 426
type. 427
type of . 429
TypeOf. 429
Unbind . 430
unit . 430
Unpack . 431
until . 431
UpCase . 432
Update . 432
uses . 432
Val. 433
value . 434
var . 434
view . 436
virtual . 436
Void . 437
while . 437
with . 438
Word. 439
WordBool . 439
Write . 440
WriteLn . 440
WriteStr . 441
xor . 441

9 Pascal keywords and operators supported by
GNU Pascal. 443

xiii

10 Where to get support for GNU Pascal; how to
report bugs. 449
10.1 The GPC Mailing List . 449
10.2 The GPC Mailing List Archives . 450
10.3 Newsgroups relevant to GPC . 450
10.4 Where to get individual support for GPC 450
10.5 If the compiler crashes . 450
10.6 How to report GPC bugs . 451
10.7 Running the GPC Test Suite . 453

11 The GNU Pascal To-Do List. 455
11.1 Known bugs in GPC . 455
11.2 Features planned for GPC . 456

11.2.1 Planned features: Strings . 456
11.2.2 Planned features: Records/arrays 456
11.2.3 Planned features: Files . 457
11.2.4 Planned features: Other types . 457
11.2.5 Planned features: OOP . 457
11.2.6 Planned features: Misc . 458
11.2.7 Planned features: Utilities . 459

11.3 Problems that have been solved . 459

12 The GPC Source Reference 463
12.1 The Pascal preprocessor . 463
12.2 GPC’s Lexical Analyzer . 464
12.3 Interrelations between the lexer and parser 465
12.4 Language Definition: GPC’s Parser . 465
12.5 So many keywords, so many problems . 466

12.5.1 ‘attribute’ as a weak keyword 467
12.5.2 ‘external’ as a weak keyword . 468
12.5.3 ‘forward’, ‘near’ and ‘far’ as weak keywords 468
12.5.4 ‘implementation’, ‘constructor’, ‘destructor’,

‘operator’, ‘uses’, ‘import’ and ‘initialization’ as weak
keywords . 469

12.6 Expressions as lower bounds of subranges 471
12.7 Tree Nodes . 473
12.8 Parameter Passing . 475
12.9 GPI files – GNU Pascal Interfaces . 476
12.10 GPC’s Automake Mechanism – How it Works 479
12.11 Files that make up GPC; Integrating GNU Pascal in GCC . . 480

Appendix A GNU GENERAL PUBLIC LICENSE
. 481
GPL Preamble . 481
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION . 481
How to Apply These Terms to Your New Programs 485

xiv The GNU Pascal Manual

Appendix B GNU LESSER GENERAL PUBLIC
LICENSE . 487
LGPL Preamble . 487
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION . 488
How to Apply These Terms to Your New Libraries 494

Appendix C GNU FREE DOCUMENTATION
LICENSE . 495

C.0.1 ADDENDUM: How to use this License for your
documents. 500

Appendix D DEMO COPYING 501

Appendix E Contributors to GNU Pascal. 503

Appendix F Resources For Use With GPC. 507

Appendix G The GNU Project. 511
G.1 The GNU Manifesto . 511

G.1.1 What’s GNU? Gnu’s Not Unix! 512
G.1.2 Why I Must Write GNU . 512
G.1.3 Why GNU Will Be Compatible with Unix 513
G.1.4 How GNU Will Be Available . 513
G.1.5 Why Many Other Programmers Want to Help 513
G.1.6 How You Can Contribute . 513
G.1.7 Why All Computer Users Will Benefit 514
G.1.8 Some Easily Rebutted Objections to GNU’s Goals . . 514

G.2 Funding Free Software . 518

GPC Index . 519

GNU Pascal 1

GNU Pascal

This manual documents how to run, install and maintain the GNU Pascal Compiler (GPC),
as well as its new features and incompatibilities, and how to report bugs. It corresponds to GPC
20030507 (GCC 2.8.1, 2.95.x or 3.2.1).

2 The GNU Pascal Manual

Welcome to GNU Pascal . . . 3

Welcome to GNU Pascal . . .

. . . the free 32/64-bit Pascal compiler of the GNU Compiler Collection (GNU CC or GCC).
It combines a Pascal front-end with the proven GCC back-end for code generation and opti-
mization. Other compilers in the collection currently include compilers for the Ada, C, C++,
Objective C, Chill, FORTRAN, and Java languages. Unlike utilities such as p2c, this is a true
compiler, not just a converter.

This version of GPC corresponds to GCC version 2.8.1, 2.95.x or 3.2.1.
The purpose of the GNU Pascal project is to produce a Pascal compiler (called GNU Pascal

or GPC) which
• combines the clarity of Pascal with powerful tools suitable for real-life programming,
• supports both the Pascal standard and the Extended Pascal standard as defined by ISO,

ANSI and IEEE (ISO 7185:1990, ISO/IEC 10206:1991, ANSI/IEEE 770X3.160-1989),
• supports other Pascal standards (UCSD Pascal, Borland Pascal, parts of Borland Delphi,

Mac Pascal and Pascal-SC) in so far as this serves the goal of clarity and usability,
• may be distributed under GNU license conditions, and
• can generate code for and run on any computer for which the GNU C compiler can generate

code and run on.

Pascal was originally designed for teaching. GNU Pascal provides a smooth way to proceed
to challenging programming tasks without learning a completely different language.

The current release implements Standard Pascal (ISO 7185, levels 0 and 1), most of Extended
Pascal (ISO 10206, aiming for full compliance), is highly compatible to Borland Pascal (version
7.0), has some features for compatibility to other compilers (such as VAX Pascal, Sun Pascal,
Mac Pascal, Borland Delphi and Pascal-SC).

It provides a lot of useful GNU extensions not found in other Pascal compilers, e.g. to ease
the interfacing with C and other languages in a portable way, and to work with files, directories,
dates and more, mostly independent of the underlying operating system.

Included units provide support for regular expressions, arithmetic with integer, rational and
real numbers of unlimited size, internationalization, inter-process communication, message di-
gests and more. Demo programs show the usage of these units and of many compiler features.

This manual contains
• an overview of some of GPC’s most interesting features, see Chapter 1 [Highlights], page 5,
• a list of new features since the last release, see Chapter 2 [News], page 9,
• the GNU Pascal Frequently Asked Questions List, see Chapter 3 [FAQ], page 13,
• installation instructions, see Chapter 4 [Installation], page 25,
• a QuickStart Guide for programmers used to the Turbo Pascal/Borland Pascal compiler,

see Chapter 7 [Borland Pascal], page 235,
• a list of command-line options to invoke the compiler, see Chapter 5 [Invoking GPC],

page 33,
• the Programmer’s Guide to GPC, describing the Pascal programming language in general

and GPC specifc aspects, see Chapter 6 [Programming], page 45,
• the alphabetical GPC language reference, see Chapter 8 [Reference], page 255,
• a list of keywords and operators supported by GNU Pascal, see Chapter 9 [Keywords],

page 443,
• information on how to report bugs in GNU Pascal and how to get support, see Chapter 10

[Support], page 449,
• the list of known bugs and things to do, also listing bugs fixed and features implemented

recently, see Chapter 11 [To Do], page 455,

4 The GNU Pascal Manual

• some information for those who are interested in how GNU Pascal works internally, see
Chapter 12 [Internals], page 463,

• a list of contributors which tells you who developed and is maintaining GNU Pascal, see
Appendix E [Acknowledgments], page 503,

• the GNU General Public License which informs you about your rights and responsibilites
when using, modifying and distributing GNU Pascal, see Appendix A [Copying], page 481,

• and other texts about Free Software and the GNU Project intended to answer questions
like “what is GNU?” you might have in mind now, see Appendix G [GNU], page 511.

If you are familiar with Standard Pascal (ISO 7185) programming, you can probably just
go ahead and try to compile your programs. Also, most of the ISO Extended Pascal Standard
(ISO 10206) is implemented into GNU Pascal. The Extended Pascal features still missing from
GPC are qualified module import, protected module export variables, set types with variable
bounds, structured value initializers and expressions as subrange lower bounds.

If you are a Borland Pascal programmer, you should probably start reading the QuickStart
guide from BP to GNU Pascal, see Chapter 7 [Borland Pascal], page 235. If you are curious
about the new features GPC offers, you can get an idea in the overview of GPC highlights
(see Chapter 1 [Highlights], page 5), and read in more detail about them in the Programmer’s
Guide to GPC (see Chapter 6 [Programming], page 45) and in the alphabetical GPC Language
Reference (see Chapter 8 [Reference], page 255).

And, please, think about how you can contribute to the GNU Pascal project, too. Please sup-
port our work by contributing yours in form of example programs, bug reports, documentation,
or even actual improvements of the compiler.

All trademarks used in this manual are properties of their respective owners.

Chapter 1: Some of GPC’s most interesting features. 5

1 Some of GPC’s most interesting features.

The GNU Pascal Compiler (GPC) is, as the name says, the Pascal compiler of the GNU
family (see Appendix G [GNU], page 511). This means:
• GPC is a 32/64 bit compiler,
• does not have limits like the 64 kB or 640 kB limit known from certain operating systems

– even on those systems –,
• runs on all operating systems supported by GNU C, including

− Linux on Intel, Alpha, S390, and all other supported types of hardware,
− the BSD family: FreeBSD, NetBSD, OpenBSD,
− DOS with 32 bits, using DJGPP or EMX,
− MS-Windows 9x/NT, using CygWin or mingw,
− OS/2 with

EMX,
− Mac OS X,
− MIPS-SGI-IRIX,
− Alpha-DEC-OSF,
− Sparc-Sun-Solaris,
− HP/UX

and more,
• can act as a native or as a cross compiler between all supported systems,
• produces highly optimized code for all these systems,
• is Free Software (Open-Source Software) according to the GNU General Public License (see

Appendix G [GNU], page 511, for remarks and translations),
• is compatible to other GNU languages and tools such as GNU C and the GNU debugger.

The compiler supports the following language standards and quasi-standards:
• ISO 7185 Pascal (see Appendix F [Resources], page 507),
• most of ISO 10206 Extended Pascal,
• Borland Pascal 7.0,
• parts of Borland Delphi, Mac Pascal and Pascal-SC (PXSC).

Some highlights:
• From Standard Pascal: Many popular Pascal compilers claim to extend Standard Pascal

but miss these important features.
− Conformant array parameters – the standardized and comfortable way to pass arrays

of varying size to procedures and functions. [Example (conformantdemo.pas)]
− Passing local procedures as procedural parameters – with full access to all variables of

the “parent” procedure. [Example (iteratordemo.pas)]
− Automatic file buffers and standard ‘Get’ and ‘Put’ procedures. Read ahead from

files without temporary variables. [Example (filebuf1demo.pas)] This allows you, for
instance, to validate numeric input from text files before reading without conversion
through strings. [Example (filebuf2demo.pas)]

− True packed records and arrays. Pack 8 Booleans into 1 byte. [Example (pack-
demo.pas)]

− Internal files. You don’t have to worry about creating temporary file names and erasing
the files later. [Example (intfiledemo.pas)]

http://www.linux.org
http://www.freebsd.org
http://www.netbsd.org
http://www.openbsd.org
http://www.delorie.com/djgpp/
http://www.leo.org/pub/comp/os/os2/leo/gnu/emx+gcc/index.html
http://cygwin.com
http://www.mingw.org
http://www.leo.org/pub/comp/os/os2/leo/gnu/emx+gcc/index.html
http://www.gnu.org/philosophy/free-sw.html
http://www.opensource.org
http://www.gnu.org/copyleft/gpl.html

6 The GNU Pascal Manual

− Global ‘goto’. (Yes, ‘goto’ has its place when it is not restricted to the current routine.)
[Example (parserdemo.pas)]

− Automatically set discriminants of variant records in ‘New’. [Example (variant-
demo.pas)]

− Sets of arbitrary size. [Example (bigsetsdemo.pas)]
• From Extended Pascal:

− Strings of arbitrary length. [Example (stringschemademo.pas)]
− ‘ReadStr’ and ‘WriteStr’. Read from and write to strings with the full comfort of

‘ReadLn’/‘WriteLn’. [Example (rwstringdemo.pas)]
− System-independent date/time routines. [Example (datetimedemo.pas)]
− Set member iteration: ‘for Ch in [’A’ .. ’Z’, ’a’ .. ’z’] do ...’ [Example

(bigsetsdemo.pas)]
− Set extensions (symmetric difference, ‘Card’)
− Generalized ‘Succ’ and ‘Pred’ functions (foo := Succ (bar, 5);).
− Complex numbers. [Example (mandelbrot.pas)] [Example (parserdemo.pas)]
− Exponentiation operators (‘pow’ and ‘**’) for real and complex numbers.
− Initialized variables. [Example (initvardemo.pas)]
− Functions can return array or record values.
− Result variables. [Example (resultvardemo.pas)]
− Modules.
− Non-decimal numbers in base 2 through 36: ‘base#number’.
− ‘MinReal’, ‘MaxReal’, ‘EpsReal’, ‘MaxChar’ constants.
− Schemata – the Pascal way to get dynamic arrays without dirty tricks. [Example

(schemademo.pas)]
− Local variables may have dynamic size. [Example (dynamicarraydemo.pas)]
− Array Slice Acces – access parts of an array as a smaller array, even on the left side of

an assignment [Example (arrayslicedemo.pas)]
• Compatible to Borland Pascal 7.0 with objects (BP):

− Supports units, objects, . . . , and makes even things like ‘absolute’ variables portable.
[Example (absdemo.pas)]

− Comes with portable versions of the BP standard units with full source.
− True network-transparent CRT unit: You can run your CRT applications locally or

while being logged in remotely, without any need to worry about different terminal
types. Compatible to BP’s unit, but with many extensions, such as overlapping win-
dows. [Example (crtdemo.pas)]

− Fully functional GUI (X11) version of CRT (also completely network transparent).
− The ‘Random’ function can produce the same sequence of pseudo-random numbers as

BP does – if you need that instead of the much more elaborate default algorithm.
− Supports BP style procedural variables as well as Standard Pascal’s procedural param-

eters. [Example (procvardemo.pas)]
− A ‘Ports’ unit lets you access CPU I/O ports on systems where this makes sense.

[Example (portdemo.pas)]
− Special compatibility features to help migrating from BP to GPC, like a ‘GPC for BP’

unit which provides some of GPC’s features for BP, and some routines to access sets
of large memory blocks in a uniform way under GPC and BP (even in real mode).
[Example (bigmemdemo.pas)]

− Comes with a BP compatible ‘binobj’ utility. [Example (binobjdemo.pas)]

Chapter 1: Some of GPC’s most interesting features. 7

• From Borland Delphi:
− ‘abstract’ object types and methods
− ‘is’ and ‘as’ operators to test object type membership
− Comments with ‘//’
− A ‘SetLength’ procedure for strings makes it unnecessary to use dirty tricks like as-

signments to the “zeroth character”.
− ‘Initialize’ and ‘Finalize’ for low-level handling of variables.

• From Pascal-SC (PXSC):
− User-definable operators. Add your vectors with ‘+’.

• Carefully designed GNU extensions help you to make your real-world programs portable:
− 64-bit signed and unsigned integer types.
− Special types guarantee compatibility to other GNU languages such as GNU C. Direc-

tives like ‘{$L foo.c}’ make it easy to maintain projects written in multiple languages,
e.g., including code written in other languages into Pascal programs [Example (Pascal
part) (c gpc.pas)] [Example (C part) (c gpc c.c)],

− or including Pascal code into programs written in other languages. [Example (Pas-
cal part) (gpc c pas.pas)] [Example (Pascal unit) (gpc c unit.pas)] [Example (C part)
(gpc c c.c)]

− Extensions like ‘BitSizeOf’ and ‘ConvertFromBigEndian’ help you to deal with dif-
ferent data sizes and endianesses. [Example (endiandemo.pas)]

− Little somethings like ‘DirSeparator’, ‘PathSeparator’, ‘GetTempDirectory’ help you
to write programs that look and feel “at home” on all operating systems.

− The ‘PExecute’ routine lets you execute child processes in a portable way that takes
full advantage of multitasking environments. [Example (pexecutedemo.pas)]

− The GNU GetOpt routines give you comfortable access to Unix-style short and long
command-line options with and without arguments. [Example (getoptdemo.pas)]

− Routines like ‘FSplit’ or ‘FSearch’ or ‘FExpand’ know about the specifics of the various
different operating systems. [Example (fexpanddemo.pas)]

− The ‘FormatTime’ function lets you format date and time values, according to various
formatting rules. [Example (formattimedemo.pas)]

• Useful and portable GNU standard units:
− A ‘Pipe’ unit gives you inter-process communication even under plain DOS. [Example

(pipedemo.pas)] [Demo process for the example (demoproc.pas)]
− With the ‘RegEx’ unit you can do searches with regular expressions. [Example

(regexdemo.pas)]
− The GNU MultiPrecision (‘GMP’) unit allows you to do arithmetics with integer, real,

and rational numbers of arbitrary precision. [Example: factorial (factorial.pas)] [Ex-
ample: fibonacci (fibonacci.pas)] [Example: power (power.pas)] [Example: real power
(realpower.pas)] [Example: pi (pi.pas)]

− Posix functions like ‘ReadDir’, ‘StatFS’ or ‘FileLock’ provide an efficient, easy-to-use
and portable interface to the operating system. [Example (readdirdemo.pas)] [Example
(statfsdemo.pas)] [Example (filelockdemo.pas)]

− A ‘DosUnix’ unit compensates for some of the incompatibilities between two families
of operating systems. [Example (dosunixdemo.pas)]

− An ‘MD5’ unit to compute MD5 message digests, according to RFC 1321. [Example
(md5demo.pas)]

− A ‘FileUtils’ unit which provides some higher-level file and directory handling rou-
tines. [Example (findfilesdemo.pas)]

8 The GNU Pascal Manual

− A ‘StringUtils’ unit which provides some higher-level string handling routines. [Ex-
ample (stringhashdemo.pas)]

− An ‘Intl’ unit for internationalization. [Example (gettextdemo.pas)] [Example (lo-
caledemo.pas)]

− A ‘Trap’ unit to trap runtime errors and handle them within your program. [Example
(trapdemo.pas)]

− A ‘TFDD’ unit that provides some tricks with text files, e.g. a “tee” file which causes
everything written to it to be written to two other files. [Example (tfdddemo.pas)]

− A ‘HeapMon’ unit to help you find memory leaks in your programs.

The demo programs mentioned above are available both on the WWW and in GPC source
and binary distributions.

Disadvantages:
• The GNU debugger (GDB) does not yet understand Pascal syntax and types; you have to

use C syntax when debugging Pascal programs with GDB.
• With GPC you get longer compilation times than with, e.g., Borland Pascal.

Co-workers welcome!

Able, committed programmers are always welcome in the GNU Pascal team. If you want
to be independent of companies that you must pay for getting a compiler with more restrictive
licensing conditions that only runs on one operating system, be invited to join the development
team, Appendix E [Acknowledgments], page 503.

Chapter 2: New Features of GNU Pascal. 9

2 New Features of GNU Pascal.

GPC’s new or changed features since the last (non alpha/beta) GPC release are listed here.
Items without further description refer to new routines, variables or options.

Features implemented for compatibility to other compilers are marked with, e.g., ‘(B)’ for
BP compatibility.

A few old and obsolete features have been dropped or replaced by cleaner, more flexible or
otherwise more useful ones. This might lead to minor problems with old code, but we suppose
they’re rare and easy to overcome. They are marked with ‘(@)’.
• trimming string relations as functions (‘EQPad’ etc.) (fjf873.pas)
• new options ‘-W[no-]interface-file-name’
• ‘SeekEOF’ and ‘SeekEOLn’ use ‘Input’ implicitly when no file is given (fjf871.pas) (B)
• tagging for ‘with’ statements (Sun Pascal) (tom6.pas)
• new option ‘--sun-pascal’
• field names and array indices in initalizers are recognized (waldek5*.pas) (options

‘-W[no-]field-name-problem’ removed, @)
• object directives ‘published’, ‘public’ (both equivalent), ‘protected’ (scope limited to

object type and derived object types), ‘private’ (scope limited to current unit/module)
(fjf864*.pas) (options ‘-W[no-]object-directives’ removed, @)

• the operator precedence and associativity of ‘+’ and ‘-’ is now as defined in EP by
default (and as in BP with ‘--borland-pascal’) <Pine.LNX.4.44.0210251249500.6181-
100000@duch.mimuw.edu.pl> (fjf863*.pas) (@)

• ‘Integer (16)’ etc. changed to ‘Integer attribute (Size = 16)’ (works for integer and
Boolean types) (fjf861.pas) (@)

• types can have attributes (note: no preceding ‘;’) (fjf860*.pas)
• dynamic object methods (fjf859.pas) (B)
• in ‘--borland-pascal’ mode, ‘Assign’ unconditionally (re-)initializes its file parameter

(fjf858.pas)
• GPC doesn’t use ‘gpm’ files anymore (instead, each module has an implicit

‘modulename-all.gpi’ interface which is a regular ‘gpi’ file)
• make the program/module/unit finalizers non-public (‘static’ in C sense), omit them if

easily possible
• new options ‘-W[no-]parentheses’ (fjf848*.pas)
• non-‘interface’ modules with empty implementation part (pmod1.pas, fjf843.pas)
• ‘maximum-field-alignment’ and ‘[no-]field-widths’ work as local compiler directives

now (fjf842.pas)
• dropped ‘{$debug-statement}’ (should not be necessary anymore, now that debug info

mostly works)
• new options ‘--[no-]longjmp-all-nonlocal-labels’
• object methods can have attributes (fjf826*.pas)
• new attributes ‘iocritical’ (fjf824*.pas), ‘ignorable’ (fjf839*.pas) for routines
• dropped computed ‘goto’ (never worked for nonlocal ‘goto’ into the main program, imple-

menting it would be quite difficult, probably not worth it) (@)
• new type ‘AnyFile’ for parameters and pointer targets (fjf821*.pas)
• ‘TimeStamp’ is now a packed record (E)
• Mac Pascal specific features are supported according to the dialect options (M)

10 The GNU Pascal Manual

• ‘--interface-only’ does not require ‘-S’ or ‘-c’ anymore (and does not create an object
file)

• ‘initialization’, ‘finalization’ (D)
• ‘TimeZone’ in ‘TimeStamp’ counts seconds east of UTC now (not west, as before) (date-

timedemo.pas) (@)
• ‘export Foo = all (...)’ (fjf811*.pas)
• new options ‘-W[no-]local-external’ (implied by ‘-Wall’)
• type-casts are BP compatible now, in particular, value type-casts between ordinal and real

or complex types don’t work anymore (B) (@)
• all non-ISO-7185 keywords can be used as identifiers (with two small exceptions) (fjf440.pas)
• ‘pack-struct’ does not imply bit-level packing anymore (only explicit ‘packed’ records and

arrays do) (@)
• new options ‘--[no-]ignore-packed’ (‘--ignore-packed’ is the default in BP mode)

(fjf796*.pas) (B) (@)
• new option ‘--maximum-field-alignment=N ’
• new options ‘{$[no-]pack-struct}’ as a compiler directive
• ‘attribute’ for routines doesn’t imply ‘forward’ anymore (so you don’t have to declare

routines twice in a program or implementation part when setting the linker name or some
other attribute) (@)

• ‘static’, ‘volatile’ and ‘register’ for variables and ‘inline’ for routines are no prefix-
directives anymore, but ‘attribute’s (@)

• combining several dialect options (such as ‘--extended-pascal --borland-pascal’)
doesn’t work anymore (what should this mean, anyway? Combine the features, but also
the warnings from both!?!?!?) (@)

• ‘external’ without ‘name’ defaults to all-lowercase now (@)
• ‘c’, ‘c_language’ and ‘asmname’ are deprecated (@)
• ‘external name ’foo’’ (fjf780.pas), ‘external ’libname’ name ’foo’’ (where ‘libname’

is ignored) (B)
• Mac Pascal directives ‘definec’, ‘macro’, ‘undefc’, ‘ifc’, ‘ifoptc’, ‘elsec’, ‘elifc’, ‘endc’,

‘errorc’ (treated as equivalent to the corresponding existing ones) (M)
• units without ‘implementation’ part (M)
• new options ‘--vax-pascal’, ‘--mac-pascal’
• attributes ‘const’ for variables and ‘name’ for variables, routines and modules; assembler

names and module/unit file names can now be expressions (which must yield string con-
stants) (fjf781*.pas, fjf809*.pas)

• the utilities ‘gpidump’ and ‘binobj’ are installed with GPC (B)
• new options ‘-W[no-]identifier-case’, ‘-W[no-]identifier-case-local’ (fjf751*.pas)
• new compiler directive ‘$R foo’, equivalent to ‘$L foo.resource’ (B)
• dropped ‘--[no-]borland-char-constants’ (now simply coupled to dialect options) (@)
• test suite: support progress messages (‘TEST_RUN_FLAGS=-p’ from the Makefile; ‘-p’ in

testgpc); see http://fjf.gnu.de/misc/progress-messages.tar.gz

• ‘=’ and ‘<>’ comparisons of structures (arrays, records, ...) except strings and sets are
forbidden now (@) (E)

• irrelevant operands and arguments (e.g.: ‘foo in []’; ‘bar * []’; ‘Im (baz)’ if ‘baz’ is of
real type) are not necessarily evaluated anymore (which is allowed by the standard); instead,
a warning is given if they have side-effects (@)

http://fjf.gnu.de/misc/progress-messages.tar.gz

Chapter 2: New Features of GNU Pascal. 11

• accept only one program, unit, module interface or implementation or a module
interface and the implementation of the same module in one file; new options
‘--[no-]ignore-garbage-after-dot’ (fjf735*.pas) (@)

• new options ‘-W[no-]implicit-io’ (fjf734*.pas)
• new options ‘--enable-keyword’, ‘--disable-keyword’ (fjf733*.pas)
• ‘CBoolean’ (fjf727.pas)
• dropped the usage of ‘GetMem’ as a function with one parameter (only the BP compatible

usage as a procedure with two parameters remains) (@)
• accessing the variable ‘FileMode’ now requires using the ‘GPC’ (or, for BP compatibility,

the ‘System’) unit (@)
• ‘DupHandle’
• dropped the predefined dialect symbols ‘__CLASSIC_PASCAL__’, ‘__STANDARD_PASCAL__’,

‘__EXTENDED_PASCAL__’, ‘__OBJECT_PASCAL__’, ‘__UCSD_PASCAL__’,
‘__BORLAND_PASCAL__’, ‘__DELPHI__’, ‘__PASCAL_SC__’ and ‘__GNU_PASCAL__’ (one can
use ‘{$ifopt borland-pascal}’ etc. instead) (@)

• ‘Succ’, ‘Pred’, ‘Inc’, ‘Dec’ for real numbers (fjf714*.pas)
• use environment variables ‘GPC_UNIT_PATH’, ‘GPC_OBJECT_PATH’
• new options ‘-W[no-]float-equal’
• new option ‘--ucsd-pascal’
• dropped the syntax ‘type foo = procedure (Integer, Real)’ (i.e., without parameter

names) (@)
• CRT: new argument ‘On’ to ‘CRTSavePreviousScreen’
• ‘SetUserID’, ‘SetGroupID’
• ‘HeapChecking’
• new built-in procedure ‘Assert’; new switches ‘--[no]-assert’ (also ‘{$C+}’, ‘{$C-}’ for

Delphi compatibility) (fjf665*.pas) (D)
• ‘ProcessGroup’
• StringUtils: ‘QuoteEnum’
• ‘CurrentFunctionName’ (fjf752.pas)
• TFDD: new unit
• gpc-run: new options ‘-e FILE’ and ‘-E FILE’ (redirect/append standard error)

Have fun,
The GNU Pascal Development Team

12 The GNU Pascal Manual

Chapter 3: The GNU Pascal Frequently Asked Questions List. 13

3 The GNU Pascal Frequently Asked Questions List.

Edition 0.9, August 2000

This is the Frequently Asked Questions List (FAQ) for GNU Pascal. If the FAQ and the doc-
umentation do not help you, you have detected a bug in it which should be reported, Section 10.1
[Mailing List], page 449. Please really do it, so we can improve the documentation.

3.1 GNU Pascal

3.1.1 What and why?

The purpose of the GNU Pascal project is to produce a Pascal compiler (called GNU Pascal
or GPC) which

• combines the clarity of Pascal with powerful tools suitable for real-life programming,
• supports both the Pascal standard and the Extended Pascal standard as defined by ISO,

ANSI and IEEE (ISO 7185:1990, ISO/IEC 10206:1991, ANSI/IEEE 770X3.160-1989),
• supports other Pascal standards (UCSD Pascal, Borland Pascal, parts of Borland Delphi,

Mac Pascal and Pascal-SC) in so far as this serves the goal of clarity and usability,
• may be distributed under GNU license conditions, and
• can generate code for and run on any computer for which the GNU C compiler can generate

code and run on.

Pascal was originally designed for teaching. GNU Pascal provides a smooth way to proceed
to challenging programming tasks without learning a completely different language.

The current release implements Standard Pascal (ISO 7185, levels 0 and 1), most of Extended
Pascal (ISO 10206, aiming for full compliance), is highly compatible to Borland Pascal (version
7.0), has some features for compatibility to other compilers (such as VAX Pascal, Sun Pascal,
Mac Pascal, Borland Delphi and Pascal-SC).

It provides a lot of useful GNU extensions not found in other Pascal compilers, e.g. to ease
the interfacing with C and other languages in a portable way, and to work with files, directories,
dates and more, mostly independent of the underlying operating system.

Included units provide support for regular expressions, arithmetic with integer, rational and
real numbers of unlimited size, internationalization, inter-process communication, message di-
gests and more. Demo programs show the usage of these units and of many compiler features.

3.1.2 What is the current version?

Prior to July 2000 releases were several months apart. Since then there has been
a new release every few days, available as a source archive from the GPC web site,
http://www.gnu-pascal.de.

For details about new features, see the section ‘News’ on the web site. On bugs fixed recently,
see the ‘Done’ section of the To-Do list (on the same web site).

GPC uses GCC as a back-end. Patches for GCC 2.8.1 and GCC 2.95.x are provided but it
is recommended that you use GCC 2.95.x.

http://www.gnu-pascal.de

14 The GNU Pascal Manual

3.1.3 Is it compatible with Turbo Pascal (R)?

GPC is not a drop-in replacement for Borland’s Turbo Pascal (R). Almost all BP language
features are supported. Notable exceptions are the string format (as discussed below), or the
‘Mem’ and ‘Port’ pseudo arrays, though replacement functions for the latter on IA32 platforms
exist in the ‘Ports’ unit.

Almost all of BP’s run time library is supported in GPC, either by built-in compiler features
or in units with the same names as their BP counterparts.

For details about the compatibility, the few remaining incompatibilities and some useful al-
ternatives to BP features, see the ‘Borland Pascal’ chapter in the GPC Manual. (see Chapter 7
[Borland Pascal], page 235)

3.1.4 Which platforms are supported by GNU Pascal?

GPC uses the GCC backend, so it should run on any system that is supported by GNU
CC. This includes a large variety of Unix systems, MS-DOS, OS/2 and Win32. A full list of
platforms supported by GCC can be found in the file ‘INSTALL’ of the GCC distribution. Not
all of these have actually been tested, but it is known to run on these platforms:
ix86-linux (Linux 2.x, ELF)
i486-linuxaout
i486-linuxoldld
i386-freebsd1.2.0
AIX 4.2.1
AIX 4.3
DJGPP V2 (Dos)
EMX 0.9B (OS/2, Dos)
Cygwin32 beta20 and higher (MS-Windows95/98, MS-Windows NT)
mingw32 (MS-Windows95/98, MS-Windows NT)
mips-sgi-irix5.3
mips-sgi-irix6.5
sun-sparc-sunos4.1.4
sparc-sun-solaris2.x
sun-sparc-solaris 2.5.1
sun-sparc-solaris 2.6
sun-sparc-solaris 7
sun-sparc-solaris 8
alpha-unknown-linux
alpha-dec-osf4.0b
s390-ibm-linux-gnu

OK people – send us your success stories, with canonical machine name!

3.2 Installing GPC

You find the most up-to-date installation instructions in the GPC Manual or the file ‘INSTALL’
in source distributions, or on the GPC web site. (see Chapter 4 [Installation], page 25)

The following sections describe things you might need or want to install besides GPC itself.

3.2.1 What to read next

After installing GPC, please check the files in the directory ‘/usr/local/doc/gpc’:
‘README’ General Information about GPC
‘FAQ’ This FAQ :−)

Chapter 3: The GNU Pascal Frequently Asked Questions List. 15

‘NEWS’ Changes since the last release
‘BUGS’ How to report bugs, about the Test Suite
‘AUTHORS’ List of GPC authors
‘COPYING’ The GNU General Public License
‘COPYING.LIB’ The GNU Lesser General Public License

3.2.2 Which components do I need to compile Pascal code?

A complete Pascal compiler system should at least have:

1. The actual compiler, GPC.
2. An editor, assembler, linker, librarian and friends.
3. A C library. If you have a working C compiler, you already have this.
4. A debugger, if you want to debug your programs.

For most people, the GNU binutils and GNU debugger (‘gdb’) are a good choice, although
some may prefer to use vendor specific tools.

3.2.3 How do I debug my Pascal programs?

To debug your programs, (a) GNU Pascal must be able to generate executables with debug
info for your platform, and (b) you must have a debugger which understands this.

• If ‘gpc -g -o hello hello.p’ says:

gpc: -g not supported for this platform

then GPC is unable to generate debugging info. Usually, installing ‘gas’ (part of GNU
binutils) instead of your system’s assembler can overcome this. When you configure
the GCC used for GPC, specify ‘--with-gnu-as’, and possibly ‘--with-gnu-ld’ and/or
‘--with-stabs’. More information can be found in the ‘INSTALL’ file in the GNU CC
source directory.

• Your system’s debugger may not understand the debug info generated by GNU tools. In
this case, installing ‘gdb’ may help.

The bottom line: if you can debug GCC compiled programs, you should be able to do this
with GPC too.

The GNU debugger (‘gdb’) currently does not have a “Pascal” mode, so it is unable to
display certain Pascal structures etc. When debugging, please note that the Initial Letter In
Each Identifier Is In Upper Case And The Rest Are In Lower Case. If you want to display
variable ‘foo’ in the debugger, type ‘show Foo’ or ‘display Foo’ instead.

Although ‘gdb’ is an excellent debugger, it’s user interface is not everybody’s preference. If
you like to debug under X11, please refer to the comp.windows.x FAQ: “Where can I get an
X-based debugger?” at:
http://www.cis.ohio-state.edu/hypertext/faq/usenet/x-faq/part6/faq-doc-2.html

Some useful frontends include: XXGDB, tGDB and XWPE. See:
http://www.ee.ryerson.ca:8080/~elf/xapps/Q-IV.html

Very nice, but resource consuming is the Motif based DDD:
http://sol.ibr.cs.tu-bs.de/softech/ddd/

Furthermore, RHIDE (see Section 3.2.6 [IDE], page 17) contains built-in debugging suport,
similar to the IDE of BP.

http://www.cis.ohio-state.edu/hypertext/faq/usenet/x-faq/part6/faq-doc-2.html
http://www.ee.ryerson.ca:8080/~elf/xapps/Q-IV.html
http://sol.ibr.cs.tu-bs.de/softech/ddd/

16 The GNU Pascal Manual

3.2.4 What additional libraries should I have?

You will need certain additional libraries when you compile some of the units. These can be
found in the directory http://www.gnu-pascal.de/libs/.

Currently, there are the following libraries:

gmp Arithmetic for integers, rationals and real numbers with arbitrary size and precision.
Used by the GMP unit.

rx Regular expression matching and substitution. Used by the RegEx unit.

ncurses
PDCurses Screen handling. Used by the CRT unit. Depending on your system, you have the

following choices:
Unix: You can compile terminal applications with ncurses and applications that
run in an X11 window with PDCurses (though terminal applications can, of course,
also run in an xterm under X11). ncurses is used by default. If you want to use
PDCurses (a.k.a. XCurses), give the option ‘-DX11’ when compiling CRT.
Dos with DJGPP and MS-Windows with mingw: Only PDCurses is available and
will be used by default.
MS-Windows with Cygwin: PDCurses and ncurses are available. PDCurses is used
by default. If you want to use ncurses, give the option ‘-DUSE_NCURSES’ when
compiling CRT.
Other systems: Please see the ‘README’s and installation instructions of PDCurses
and ncurses to find out which one(s) can be built on your system. See the condition-
als at the end of crt.inc and crtc.h (and change them if necessary) on which library
is used by default.

intl Internationalization. Used by the Intl unit. On some systems, it is part of the
system library (libc).

ElectricFence
This library is not used by any GPC unit. It is a debugging tool to assist you in
finding memory allocation bugs. To use it, just link it to your program, either on
the command line (‘-lefence’) or in the source code (‘{$L efence}’) which you
might want to put into an ‘{$ifdef DEBUG}’ or similar since using libefence is only
recommended for debugging.

The source code of the libraries is available in the main ‘libs’ directory. Most libraries come
with one or several patches which should be applied before compiling them.

Binaries for some platforms are available in the ‘binary/platform’ subdirectories. If you
compile the libraries for other platforms, be invited to make the binaries available to us for
distribution on the web site.

There are also the following files:

‘terminfo-linux.tar.gz’
This is a patch to enable ncurses programs to make use of the ability of Linux 2.2
and newer kernels to produce a block cursor when needed. The present patch can be
installed without recompiling anything, just by copying some files into place. More
details can be found in the ‘README’ file included in this archive. The patch will not
do any harm on older kernels. Please note that not only on Linux machines it is
useful to install the patch. Installing them on any other machine will allow users who
telnet in from a Linux console to profit from the block cursor capability. Besides,
some Unix systems have installed older Linux terminfo entries or none at all, so it’s
a good thing, anyway, to give them a current version. The patch is included in the
terminfo database of ncurses 5.0, so if you install ncurses 5.0 (source or binary), you

http://www.gnu-pascal.de/libs/

Chapter 3: The GNU Pascal Frequently Asked Questions List. 17

don’t need to get the patch separately. But you can install it on a system with an
older ncurses version if you don’t feel like upgrading ncurses altogether.

‘tsort-2.9i.zip’
A little utility (extracted from util-linux-2.9i, but not Linux specific), needed for
the configuration of the rx library. You need it only if you compile rx yourself (and
if it’s not already present on your system), not when using a rx binary.

3.2.5 Contributed units

Several people have contributed units for GPC. They are usually announced on
the mailing list, Section 10.1 [Mailing List], page 449. Most of them can be found in
http://www.gnu-pascal.de/contrib/.

3.2.6 Can you recommend an IDE?

Users of Borland Pascal may wonder if there’s a replacement for the IDE (Integrated Devel-
opment Environment). Here’s a few suggestions:

• (X)Emacs. Some people think it’s the answer to the question of Life, the Universe and
Everything, others decide it’s uGNUsable. Available from your friendly GNU mirror and
most distributions.

• PENG. It’s not free software, but it was written with GPC. It’s very similar to Borland’s
IDE, but with many extensions. Binaries for DJGPP, Linux and Solaris can be downloaded
from http://fjf.gnu.de/peng/.

• RHIDE. DJGPP users might want to try RHIDE. The latest (beta) release is compatible
with GNU Pascal and allows stepping, tracing and watching like Borland’s IDE. It can be
downloaded from http://www.rhide.com.

• DevPascal. DevPascal is a Free Software IDE for mingw32. It can
be downloaded from http://www.gnu-pascal.de/contrib/chief/ or
http://www.bloodshed.net/devpascal.html

• XWPE is another imitation of the Borland IDE, so users of Borland Pascal may find it a
good alternative.

3.3 GNU Pascal on the DJGPP (MS-DOS) platform

This chapter discusses some potential problems with GNU Pascal on MS-DOS, using DJGPP.

3.3.1 What is DJGPP?

The following paragraph is from the site http://www.delorie.com/djgpp/:
DJGPP is a complete 32-bit C/C++ development system for Intel 80386 (and higher) PCs

running DOS. It includes ports of many GNU development utilities. The development tools
require a 80386 or newer computer to run, as do the programs they produce. In most cases, the
programs it produces can be sold commercially without license or royalties.

3.3.2 If you need more information

GPC/DJGPP is a DJGPP V2 application, and most of the DJGPP documen-
tation applies for GPC too. A great source of information is the DJGPP FAQ:
http://www.delorie.com/djgpp/v2faq/230b.zip

Another place to look for DJGPP documentation is the DJGPP Knowledge Base, at this
URL: http://www.delorie.com/djgpp/doc/kb/

http://www.gnu-pascal.de/contrib/
http://fjf.gnu.de/peng/
http://www.rhide.com
http://www.gnu-pascal.de/contrib/chief/
http://www.bloodshed.net/devpascal.html
http://www.delorie.com/djgpp/
http://www.delorie.com/djgpp/v2faq/230b.zip
http://www.delorie.com/djgpp/doc/kb/

18 The GNU Pascal Manual

3.3.3 What do I download?

As discussed in Section 3.2.2 [Components], page 15, other than GPC itself, you
need an assembler, linker and friends, a C library and possibly a debugger. The site
http://www.delorie.com/djgpp/ recommended the following files and they will help you find
a mirror:
‘v2/djdev203.zip’ (C library)
‘v2gnu/bnu2951b.zip’ (assembler, . . .)
‘v2gnu/gcc2952b.zip’ (gcc)
‘v2gnu/gdb418b.zip’ (debugger)
‘v2gnu/mak379b.zip’ (make)
‘v2gnu/txi40b.zip’ (texi)

This list is about 10 MB not counting GPC. You can use a binary version of GPC from the
web site.

3.3.4 How do I install the compiler?

If you don’t have DJGPP installed on your harddisk, create a directory for GNU Pascal
(‘c:\gpc’), and unzip the archives. Make sure you preserve the directory structure (use ‘pkunzip
-d’). Now, add the directory where ‘gpc.exe’ lives (‘c:\gpc\bin’) to your path and set the
DJGPP environment variable to point to your ‘djgpp.env’ file:

set DJGPP=c:\gpc\djgpp.env

Then, add this to your ‘djgpp.env’ file:

[gpcpp]
C_INCLUDE_PATH=%/>;C_INCLUDE_PATH%%DJDIR%/lang/pascal;%DJDIR%/include

[gpc]
COMPILER_PATH=%/>;COMPILER_PATH%%DJDIR%/bin
LIBRARY_PATH=%/>;LIBRARY_PATH%%DJDIR%/lib;%DJDIR%/contrib/grx20/lib

The binary distribution should come with a ‘djgpp.env’ which is already modified, so you
may not have to do this.

The GPC online documentation is in GNU info format; you need the Info reader
(‘txi390b.zip’) to read it, or use the built-in Info reader of the RHIDE or PENG IDE. To
add the GPC documentation to the info directory file, edit the ‘c:\gpc\info\dir’ file, and
locate this section:

* GCC: (gcc.inf).
The GNU C, C++, and Objective-C Compiler

* GDB: (gdb.inf).
The GNU Debugger (gdb and gdb-dpmi).

To add GPC, change it to look like this:

* GCC: (gcc.inf).
The GNU C, C++, and Objective-C Compiler

* GPC: (gpc.inf).

http://www.delorie.com/djgpp/

Chapter 3: The GNU Pascal Frequently Asked Questions List. 19

The GNU Pascal Compiler

* GDB: (gdb.inf).
The GNU Debugger (gdb and gdb-dpmi).

Specific information for low-memory conditions and more can be found in the DJGPP FAQ
and documentation.

3.3.5 I cannot read the Info documentation!

To read the Info documentation, you need the ‘info’ program from ‘txi390b.zip’ or an IDE
like RHIDE or PENG.

3.3.6 GPC says: no DPMI

You don’t have a DPMI server installed, and DJGPP v2 requires it to run. You can either
use one of the commercial DPMI servers (e.g., run ‘gpc’ in a DOS box under MS-Windows)
or download and install CWSDPMI (‘csdpmi3b.zip’) which is a free DPMI server written for
DJGPP.

3.3.7 I have troubles with assembly code

The GNU Assembler (‘as.exe’), or ‘gas’, called by GCC accepts “AT&T” syntax which is
different from “Intel” syntax. Differences are discussed in section 17.1 of the DJGPP FAQ.

A guide is available which was written by Brennan Mr. Wacko Underwood
brennan@mack.rt66.com and describes how to use inline assembly programming with
DJGPP, at this URL: http://www.delorie.com/djgpp/doc/brennan/brennan_att_inline_
djgpp.html

There’s also a GPC assembler tutorial at
http://www.gnu-pascal.de/contrib/misc/gpcasm.zip

Section 17.3 of the DJGPP FAQ discusses some methods to convert “Intel” syntax to “AT&T”
syntax.

However, please note that assembler code is unportable, i.e. it will work on IA32 (“x86”)
and compatible processors if written for them, but will not even compile for other processors.
So by writing assembler code in your programs, you will limit their usefulness substantially.

If you think you “need” assembler code for speed – and you’ve checked that your assembler
code actually runs faster than Pascal code compiled with suitable optimizations – you might
want to put both Pascal and assembler versions of the critical sections in your program, and let,
e.g., an ‘{$ifdef i386}’ decide which one to use. This way, your program will at least compile
on all processors.

3.3.8 Tell me how to do DPMI, BIOS and other DOS related things.

DPMI, BIOS and other functions are no different than other system functions. Refer to the
GPC Manual on how to access your system’s C-library. This small example shows how to use
DPMI, copying some structures and function prototypes of ‘<dpmi.h>’:

program DPMIDemo;

{ Only for DJGPP }

mailto:brennan@mack.rt66.com
http://www.delorie.com/djgpp/doc/brennan/brennan_att_inline_djgpp.html
http://www.delorie.com/djgpp/doc/brennan/brennan_att_inline_djgpp.html
http://www.gnu-pascal.de/contrib/misc/gpcasm.zip

20 The GNU Pascal Manual

{$X+}

{ ‘Byte’ is ‘unsigned char’ in C,
‘ShortCard’ is ‘unsigned short’ in C,
‘MedCard’ is ‘unsigned long’ in C,
‘Word’ is ‘unsigned’ in C,
etc. (all these types are built-in). }

type
TDpmiVersionRet = record
Major : Byte;
Minor : Byte;
Flags : ShortCard;
CPU : Byte;
Master_PIC: Byte;
Slave_PIC : Byte;

end;

type
TDpmiFreeMemInfo = record
LargestAvailableFreeBlockInBytes,
MaximumUnlockedPageAllocationInPages,
MaximumLockedPageAllocationInPages,
LinearAddressSpaceSizeInPages,
TotalNumberOfUnlockedPages,
TotalNumberOfFreePages,
TotalNumberOfPhysicalPages,
FreeLinearAddressSpaceInPages,
SizeOfPagingFilePartitionInPages,
Reserved1,
Reserved2,
Reserved3: MedCard;

end;

function DpmiGetVersion (var Version: TDpmiVersionRet): Integer;
external name ’__dpmi_get_version’;

function DpmiGetFreeMemoryInformation
(var MemInfo: TDpmiFreeMemInfo): Integer;
external name ’__dpmi_get_free_memory_information’;

var
Version: TDpmiVersionRet;
MemInfo: TDpmiFreeMemInfo;

begin
if DpmiGetVersion (Version) = 0 then
begin

WriteLn (’CPU type: ’, Version.CPU, ’86’);
WriteLn (’DPMI major: ’, Version.Major);
WriteLn (’DPMI minor: ’, Version.Minor);

Chapter 3: The GNU Pascal Frequently Asked Questions List. 21

end
else

WriteLn (’Error in DpmiGetVersion’);
if DpmiGetFreeMemoryInformation (MemInfo) = 0 then

WriteLn (’Free DPMI memory: ’,
MemInfo.TotalNumberOfFreePages, ’ pages.’)

else
WriteLn (’Error in DpmiGetMemoryInformation’);

end.

3.3.9 I got an exception when accessing an ‘array [1 .. 4000000] of
Byte’.

Per default, the maximum stack size of a DJGPP application is 256K. If you need more, you
have to adjust it with the stubedit program, i.e.:

stubedit your_app.exe minstack=5000K

Another way is to add the following code to your program to define a minimum stack size
(here: 2 MB). This value will be honored even if a user sets a lower value by using stubedit,
so this method might be a little safer. (The linker name ‘_stklen’ is essential; the Pascal
identifier doesn’t matter. The constant doesn’t have to be used anywhere in the program. It
is recommended to put this declaration in the main program file, not in any unit/module, so
programs using a unit/module can set whatever limit they need.)

{$ifdef __GO32__}
const

MinStackSize: Cardinal = $200000; attribute (name = ’_stklen’);
{$endif}

Still, it might be a good idea to use pointers for large structures, and allocate the memory
at runtime.

DJGPP has to allocate the stack in physical memory at program startup, so one might have
to be careful with too large stack limits. Most other systems allocate stack pages on demand,
so the only reason to set a limit at all might be to prevent a runaway recursion from eating up
all memory . . .

On Unix-like systems, you can set a resource limit, but you usually don’t do it in normal
programs, but rather in the shell settings (bash: ‘ulimit’; csh: ‘limit’; syscall: ‘setrlimit’(2)).

3.4 Strings

3.4.1 What’s this confusion about strings?

Turbo Pascal strings have a length byte in front. Since a byte has the range 0 .. 255,
this limits a string to 255 characters. However, the Pascal string schema, as defined in section
6.4.3.3.3 of the ISO 10206 Extended Pascal standard, is a schema record:

type
String (Capacity: Integer) = record

Length: 0 .. Capacity;
String: packed array [1 .. Capacity + 1] of Char

end;

The ‘+ 1’ is a GPC extension to make it feasible to automatically add the ‘#0’ terminator
when passing or assigning them to CStrings. Thus at the expense of a little added complexity
(must declare capacity, don’t use ‘GetMem’ without explicit initialization of the ‘Capacity’ field,
and the additional space requirement) you can now have very long strings.

22 The GNU Pascal Manual

3.4.2 Overlaying strings in variant records

Q: Should the different variants in a variant record overlay in the same memory? Previous
Pascals I have used have guaranteed this, and I’ve got low-level code that relies on this. The
variants are not the same length, and they are intended not to be.

A: No, this is intentional so that the discriminants are not overwritten, and they can be
properly initialized in the first place. Consider:

record
case Boolean of

False: (s1: String (42));
True: (s2: String (99));

end;

If the strings would overlay, in particular their discriminants would occupy the same place
in memory. How should it be initialized? Either way, it would be wrong for at least one of the
variants . . .

So, after a discussion in the ISO Pascal newsgroup where this topic came up concerning file
variables (which also require some automatic initialization and finalization), we decided to do
this in GPC for all types with automatic initialization and finalization (currently files, objects
and schemata, including strings, in the future this might also be Delphi compatible classes and
user-defined initialized and finalized types), since the standard does not guarantee variants to
overlay, anyway . . .

There are two ways in GPC to get guaranteed overlaying (both non-standard, of course, since
the standard does not assume anything about internal representations; both BP compatible),
‘absolute’ declarations and variable type casts. E.g., in order to overlay a byte array ‘b’ to a
variable ‘v’:

var
b: array [1 .. SizeOf (v)] of Byte absolute v;

Or you can use type-casting:
type

t = array [1 .. SizeOf (v)] of Byte;

then ‘t (v)’ can be used as a byte array overlayed to ‘v’.

3.4.3 Why does ‘s[0]’ not contain the length?

Q: In standard Pascal you expect ‘s[1]’ to align with the first character position of ‘s’ and
thus one character to the left is the length of ‘s’. Thus ‘s[0]’ is the length of ‘s’. True?

A: This holds for UCSD/BP strings (which GPC does not yet implement, but that’s planned).
The only strings Standard Pascal knows are arrays of char without any length field.

GPC also supports Extended Pascal string schemata (see Section 3.4.1 [String schema],
page 21), but they also don’t have a length byte at “position 0”, but rather a ‘Length’ field
(which is larger than one byte).

3.4.4 Watch out when using strings as parameters

Q: Any “gotchas” with string parameters?
A: Be careful when passing string literals as parameters to routines accepting the string as

a value parameter and that internally modify the value of the parameter. Inside the routine,
the value parameter gets a fixed capacity – the length of the string literal that was passed to it.
Any attempt to assign a longer value will not work.

This only applies if the value parameter is declared as ‘String’. If it is declared as a string
with a given capacity (e.g., ‘String (255)’), it gets this capacity within the routine.

news:comp.lang.pascal.ansi-iso

Chapter 3: The GNU Pascal Frequently Asked Questions List. 23

3.4.5 Support for BP compatible short strings

Q: Two different kinds of strings with the same name – ‘String’ – does make a bit of
confusion. Perhaps the oldstyle strings could be renamed ‘short string’ ?

A: When we implement the short strings, we’ll have to do such a distinction. Our current
planning goes like this:

‘String (n)’: string schema (EP compatible)
‘String [n]’: short string (UCSD/BP compatible, where n must be <= 255)
‘String’: dependent on flags, by default undiscriminated schema, but in BP mode (or with

a special switch) short string of capacity 255 (UCSD/BP compatible).
Q: So when will these short strings be available?
A: It’s been planned for over a year. The delay has been caused by more pressing problems.

3.4.6 What about C strings?

A C string (‘char *’) is an array of char, terminated with a ‘#0’ char.
C library functions require C, not Pascal style string arguments. However, Pascal style strings

are automatically converted to C style strings when passed to a routine that expects C style
strings. This works only if the routine reads from the string, not if it modifies it.

E.g., this is how you could access the ‘system()’ call in your C library (which is not necessary
anymore, since ‘Execute’ is already built-in):

program SysCall;

function System (CmdLine: CString): Integer; external name ’system’;

var
Result: Integer;

begin
Result := System (’ls -l’);
WriteLn (’system() call returned: ’, Result)

end.

You could use the type ‘PChar’ instead of ‘CString’. Both ‘CString’ and ‘PChar’ are prede-
fined as ‘^Char’ – though we recommend ‘CString’ because it makes it clearer that we’re talking
about some kind of string rather than a single character.

A lot of library routines in Pascal for many applications exist in the GPC unit and some
other units. Where available, they should be preferred (e.g. ‘Execute’ rather than ‘system()’,
and then you won’t have to worry about ‘CString’s.)

Do not pass a C style string as a ‘const’ or ‘var’ argument if the C prototype says ‘const
char *’ or you will probably get a segfault.

3.5 Getting Help

Please read the GPC Manual (info files or other formats) as well as the ‘README’ and ‘BUGS’
files that come with GPC (usually installed in directory ‘/usr/local/doc/gpc’), plus other
docs that might help (the DJGPP FAQ if you use DJGPP, etc.) before you send email to the
maintainers or mailing list.

In particular, the ‘BUGS’ file contains information on how to submit bug reports in the most
efficient way.

The ‘Support’ chapter of the GPC Manual tells you where to find more information about
GPC and how to contact the GPC developers. (see Chapter 10 [Support], page 449)

24 The GNU Pascal Manual

3.6 Miscellaneous

3.6.1 I want to contribute; where do I start?

If you want to contribute, please write to the mailing list, Section 10.1 [Mailing List], page 449.

3.6.2 Where is the GNU Pascal web site?

The GPC homepage on the web, for information and downloads, is
http://www.gnu-pascal.de.

The GPC To-Do list, listing the latest features and fixed bugs can also be found there.

3.6.3 About this FAQ

Current Maintainer: Russ Whitaker, russ@ashlandhome.net
This is the second incarnation of the GNU Pascal FAQ list, based on the previous FAQ by

J.J. van der Heijden. Comments about, suggestions for, or corrections to this FAQ list are
welcome.

Please make sure to include in your mail the version number of the document to which your
comments apply (you can find the version at the beginning of this FAQ list).

Many people have contributed to this FAQ, only some of them are acknowledged above.
Much of the info in, and inspiration for this FAQ list was taken from the GPC mailing list
traffic, so you may have (unbeknownst to you) contributed to this list.

http://www.gnu-pascal.de
mailto:russ@ashlandhome.net

Chapter 4: How to download, compile and install GNU Pascal. 25

4 How to download, compile and install GNU
Pascal.

This chapter covers:
• Downloading GPC sources or binaries
• Installation instructions for a GPC binary distribution
• Compilation of the source distribution on a Unix system
• Compilation notes for specific platforms
• Building and installing a cross-compiler
• Crossbuilding a compiler

4.1 Where and what to download

You can download the source code of the current GNU Pascal release from
http://www.gnu-pascal.de/current/

and binaries for some platforms from
http://www.gnu-pascal.de/binary/

The binary archive files are named ‘gpc-version.platform.extension’ – for example
‘gpc-2.1.alpha-unknown-linux-gnu.tar.gz’ for GPC version 2.1 on an Alpha workstation
running the Linux kernel with GNU C Library, or ‘gpc-20000616.i586-pc-djgppv201.zip’
for GPC version 20000616 on an i586 PC running DOS with DJGPP version 2.01.

After you have downloaded the correct archive file for your platform, please read the instal-
lation notes on how to install such a binary distribution.

If you are running Dos or MS Windows, you will need additional tools – see “What else to
download and where” below.

Current snapshots

GNU Pascal is subject to steady development. Alpha and beta snapshots (source only, use
at your own risk) can be found at:

http://www.gnu-pascal.de/alpha/
http://www.gnu-pascal.de/beta/

What else to download and where

When you are using GNU Pascal on a DOS system, you will need either the DJGPP or the
EMX development environment (see below). On an OS/2 system, you will need EMX. On an
MS Windows 95/98/NT system you will need either the CygWin or the mingw32 environment.

GNU Pascal uses the compiler back-end from the GNU Compiler Collection, GNU CC or
GCC. If you want to compile GPC, you will need the source of GCC as well as the source of
GPC itself. From the same place as GPC, please download GCC ‘2.8.1, 2.95.x or 3.2.1’.
(It is also available from any GNU mirror; see http://www.gnu.org/software/gcc/.)

Libraries

For some of GPC’s units, you will need some standard libraries. In particular:
Unit Platform Library
CRT Unix/terminal ncurses >= 5.0 (1), (2)
CRT Unix/X11 PDCurses (2)
CRT Dos, MS-Windows PDCurses (3)

http://www.gnu-pascal.de/current/
http://www.gnu-pascal.de/binary/
http://www.gnu-pascal.de/alpha/
http://www.gnu-pascal.de/beta/
http://www.gnu.org/software/gcc/

26 The GNU Pascal Manual

GMP any gmp
RegEx any rx
(debugging) Unix, MS-Windows ElectricFence (4)

Notes:
(1) ncurses version 5.0 or newer is strongly recommended because older versions contain a

bug that severely affects CRT programs.
(2) You can install both ncurses and PDCurses on a Unix system, and choose at compile

time whether to generate a terminal or X11 version of your program.
(3) ncurses also runs under MS-Windows with CygWin (not mingw32, however), but doesn’t

appear to behave much differently from PDCurses on that platform.
(4) ElectricFence is not used by any unit, but can be used for debugging memory allocation

bugs by simply linking it (see the accompanying documentation).
You can find those libraries on many places on the Net. Also, many GNU/Linux distributions,

DJGPP mirrors and other OS distributions already contain some of the libraries. In any case,
you can find the sources of the libraries (sometimes together with patches that you should apply
before building if you choose to build from the sources) and binaries for some platforms in

http://www.gnu-pascal.de/libs/

For more information and descriptions of these libraries, see Section 3.2.4 [Libraries], page 16.

DJGPP

DJGPP is available from any SimTel mirror in the ‘gnu/djgpp’ subdirectory; for addresses
look into the DJGPP FAQ. To use GNU Pascal you need at least
− the C library, ‘v2/djdev201.zip’, and
− ‘binutils’ (assembler, etc.), ‘v2gnu/bnu270b.zip’.

We also recommend you to get:
− the ‘make’ utility, ‘v2gnu/mak375b.zip’
− the GNU debugger, ‘v2gnu/gdb416b.zip’
− the DJGPP FAQ, ‘v2faq/faq211b.zip’
− the GRX graphics library, http://www.gnu.de/software/GRX/
− PENG, http://fjf.gnu.de/peng/, an integrated development environment, similar to

BP’s one, written in GNU Pascal, or
− RHIDE, ‘v2app/rhide.zip’, another integrated development environment, or
− DevPascal, http://www.bloodshed.net/devpascal.html, an integrated development en-

vironment for mingw32.

EMX

EMX is an environment for creating 32-bit applications for DOS and OS/2. It is available
from:

http://www.leo.org/pub/comp/os/os2/leo/gnu/emx+gcc/index.html

To develop EMX programs with GNU Pascal you need at least
− the EMX runtime package, ‘emxrt.zip’,
− the EMX development system, ‘emxdev*.zip’, and
− the GNU development tools, ‘gnudev*.zip’.

If your DOS box has DPMI (it does if you are using MS Windows or OS/2) you will also
need RSX, available from the same sites as EMX in the subdirectory ‘rsxnt’.

The GNU development tools contain the GNU C compiler which is in fact not needed to use
GNU Pascal. However, the C library is needed.

http://www.gnu-pascal.de/libs/
http://www.delorie.com/djgpp/
http://www.delorie.com/djgpp/v2faq/
http://www.gnu.de/software/GRX/
http://fjf.gnu.de/peng/
http://www.bloodshed.net/devpascal.html
http://www.leo.org/pub/comp/os/os2/leo/gnu/emx+gcc/index.html

Chapter 4: How to download, compile and install GNU Pascal. 27

CygWin

CygWin is an environment which implements a POSIX layer under MS Windows, giving
it large parts of the functionality of Unix. CygWin contains development tools such as an
assembler, a linker, etc. GPC needs for operation. More information about CygWin can be
found at

http://cygwin.com

mingw32

The Minimalists’ GNU Win32 environment, mingw32, allows a large number of Unix pro-
grams – including GPC and GCC – to run under MS Windows 95/98/NT using native MS
libraries. mingw32 ressources can be found at

http://www.mingw.org

4.2 Installation instructions for a GPC binary distribution

To install a binary distribution, cd to the root directory and unpack the archive while pre-
serving the stored directory structure. Under a Unix compatible system with GNU tar installed,
the following (performed as ‘root’) will do the job:

cd /
tar xzf archive.tar.gz

If you are using a ‘tar’ utility other than GNU tar, it might be necessary to do the above
in an explicit pipe:

cd /
gzip -c -d archive.tar.gz | tar xf -

If you want to install a GPC binary distribution in another directory than it was prepared for
(for example, if you do not have root access to the computer and want to install GPC somewhere
under your home directory), you can do the following:
− Unpack the archive file in a directory of your choice (see above).
− ‘cd’ to the “prefix” directory of the distribution (for instance ‘usr/local’).
− Run the script install-gpc-binary, available from

http://www.gnu-pascal.de/binary/.
− Follow the instructions in the script.

To install a ZIP archive under DOS with ‘PKunzip’, ‘cd’ to the appropriate directory (usually
‘\’ for EMX, ‘\DJGPP’ for DJGPP), then call ‘PKunzip’ with the ‘-d’ option:

C:\> cd djgpp
C:\DJGPP> pkunzip -d archive.zip

where ‘archive.zip’ is the name of the distribution file.
For DJGPP you must edit your ‘djgpp.env’ in the ‘DJGPP’ directory to complete the instal-

lation: Please copy the entries from ‘[gcc]’ to create a new ‘[gpc]’ section. The result may
look as follows:

[gcc]
COMPILER_PATH=%/>;COMPILER_PATH%%DJDIR%/bin
LIBRARY_PATH=%/>;LIBRARY_PATH%%DJDIR%/lib

[gpc]
COMPILER_PATH=%/>;COMPILER_PATH%%DJDIR%/bin
LIBRARY_PATH=%/>;LIBRARY_PATH%%DJDIR%/lib

http://cygwin.com
http://www.mingw.org
http://www.gnu-pascal.de/binary/

28 The GNU Pascal Manual

If you are using the DJGPP version of GPC but do not have a ‘DJGPP’ directory, please
download and install DJGPP (see Section 4.1 [Download], page 25).

Binary distributions include ‘libgcc.a’ and ‘specs’, files that are normally part of GCC. If
you have GCC installed, they will be replaced unless you manually install the archive.

4.3 Compiling GPC

The preferred way to distribute GNU software is distribution of the source code. However, it
can be a non-trivial exercise to build GNU Pascal on some non-Unix systems, so we also provide
ready-to-run binaries for a number of platforms. (See Section 4.2 [Binary Distributions], page 27
for how to install a binary distribution.)

GPC is based on the GNU Compiler Collection, GNU CC or GCC. You will need the GCC
sources to build it. It must be the same version as the one GPC is implemented with – 2.8.1,
2.95.x or 3.2.1 as of this writing. Although you need GCC to build the GNU Pascal compiler,
you don’t need GCC to compile Pascal programs once GNU Pascal is installed. (However, using
certain libraries will require compiling C wrappers, so it is a good idea to install the C compiler
as well.)

Because GNU Pascal shares its back-end with GCC, it should run on any system supported
by GCC. A full list of platforms supported by GCC can be found in section “Chapter 4” in
“Using and Porting GNU CC”.

The GCC source can be obtained from any mirror of the GNU FTP site,
ftp://ftp.gnu.org/gnu/gcc/. The “core” distribution is sufficient for GPC.

Here is the generic procedure for installing GNU Pascal on a Unix system. See Section 4.4
[Compilation Notes], page 30 for extra information needed to install GPC on DOS-like platforms.
1. Checking the prerequisites

Make sure that GNU make is installed and that you use it in the following
steps. When unsure, you can try ‘make --version’ and/or ‘gmake --version’. It
should tell you that it is GNU make. If you don’t have it, you can obtain it from
http://www.gnu.org/software/make/.
(In the following, we will simply speak of ‘make’ when invoking GNU make; you might need
to call ‘gmake’ instead.)
For extracting the example programs from the documentation to the ‘doc/docdemos’ direc-
tory a non-crippled ‘sed’ is needed. GNU sed is known to work.
If you have downloaded a “minimal” source distribution, most derived files have to be
rebuilt. This happens automatically, but you need additional tools: ‘bash’, GNU ‘sed’,
GNU ‘awk’, GNU ‘m4’, ‘bison’, ‘flex’, ‘autoconf’, ‘help2man’, ‘makeinfo’ (at least version
4.1). Make sure that these are installed. The minimal distributions are compressed with
‘bzip2’ instead of ‘gzip’, so use it accordingly.
If you want to build the GPC WWW pages you will also need: ‘makeinfo’ version 4.2 or
newer, ‘texi2dvi’, TEX, ‘pdftex’, ‘bzip2’ and ‘dvips’.
If you run into trouble during the installation process, please check whether you are using
outdated versions of the required utilities and upgrade if necessary.
The GNU versions of the packages above are available from the GNU FTP server or any of
its mirrors. Package package is usually located in the directory ‘gnu/package’.

2. Unpacking the source
From a directory of your choice (e.g. ‘/home/fred’), unpack the GCC and GNU Pascal
source distributions. This will create separate subdirectories for GCC and GPC. Let us
assume ‘gcc-2.95.3’ and ‘gpc-20030209’ in this example.

ftp://ftp.gnu.org/gnu/gcc/
http://www.gnu.org/software/make/
ftp://ftp.gnu.org

Chapter 4: How to download, compile and install GNU Pascal. 29

% cd /home/fred
% gzip -c -d gcc-core-2.95.3.tar.gz | tar xf -
% gzip -c -d gpc-20030209.tar.gz | tar xf -

‘cd’ to the GPC directory and move the contents (a subdirectory ‘p’) to the subdirectory
‘gcc’ of the GCC directory:

% mv /home/fred/gpc-20030209/p /home/fred/gcc-2.95.3/gcc/

Instead of moving the directory, it is now also possible to make a symbolic link (if the OS
supports symlinks). This is useful if you want to build GPC with several different GCC
versions:

% ln -s /home/fred/gpc-20030209/p /home/fred/gcc-2.95.3/gcc/p

It is recommended, though not required, to use a separate directory for building the
compiler, rather than compiling in the source directory. In this example, let us create
‘/home/fred/gpc-build’ for this purpose:

% mkdir /home/fred/gpc-build

If you use a separate directory, you do not need to write into the GCC source directory
once you have patched the GCC source (see below), and can build GPC for more than one
platform from the same source tree.
In case you are re-using a directory where you have already built GCC and/or GPC for a
different target machine, do ‘make distclean’ to delete all files that might be invalid. One
of the files this deletes is ‘Makefile’; if ‘make distclean’ complains that ‘Makefile’ does
not exist, it probably means that the directory is already suitably clean.

3. Configuring and building GCC
GNU Pascal is automatically configured with GCC. Configuration of GCC is treated in
depth in section “Chapter 4” in “Using and Porting GNU CC”. The normal procedure is
as follows:
‘cd’ to the GPC build directory. From there, run the ‘configure’ script in the GCC source
directory:

% cd /home/fred/gpc-build
% /home/fred/gcc-2.95.3/configure --enable-languages=pascal

This creates all the necessary config files, links and Makefile in the GCC object directory.
Note 1: The configuration will prompt you for patching the GCC source for GPC support,
so you need write access to that directory. All changes to GCC are surrounded by ‘#ifdef
GPC ... #endif’, so they should not interfere when you build a C compiler from this source
tree.
Note 2: The ‘--enable-languages=pascal’ option means that we only want to build the
Pascal compiler and not, for instance, the C++ compiler.
Note 3: The standard base directory for installing GCC and GPC is ‘/usr/local’. If
you want to install files to an alternate directory dir, specify ‘--prefix=dir’ when you run
‘configure’.

4. Putting other GNU tools in place
Some environments require other GNU tools (such as the GNU assembler or linker) instead
of the standard system tools for GCC to work. (See the GCC installation instructions for
details.) If this is the case for your system, install the required tools in the GPC build
directory under the names ‘as’, ‘ld’, or whatever is appropriate. This will enable the
compiler to find the proper tools for compilation of the program ‘enquire’ (a part of GCC)
and to install the GNU tools to a place where they are found by GCC but do not interfere
with the standard system tools.
Alternatively, you can do subsequent compilation using a value of the PATH environment
variable such that the necessary GNU tools come before the standard system tools.

30 The GNU Pascal Manual

5. Compiling GPC
Once you are satisfied with the configuration as determined by ‘configure’, you can build
the compiler:

% make

Notice that this procedure will build the C compiler (and maybe some other compilers) too,
because that is used to compile the GPC runtime library.
Optionally, you may supply CFLAGS, LDFLAGS or RTSFLAGS. CFLAGS is used for com-
piler and RTS, RTSFLAGS are for RTS only, i.e.: ‘make CFLAGS="-O2" RTSFLAGS=-Wall’

6. Completing the installation
When everything has been compiled, you can check the installation process with:

% make -n install

To complete the installation, run the command ‘make install’. You need write ac-
cess to the target directories (‘/usr/local/bin’, ‘/usr/local/lib’, ‘/usr/local/info’,
‘/usr/local/doc’, and ‘/usr/local/man’ in this example), so this is usually done as ‘root’:

% su -c "make install"

If you want to install only the Pascal compiler (for example if you already have the cor-
rect version of GCC installed), ‘cd’ to the ‘gcc’ subdirectory of the build directory (e.g.
‘/home/fred/gpc-build/gcc’) and run ‘make pascal.install’. This installation process
does not overwrite existing copies of ‘libgcc.a’ or ‘specs’, should they exist.
However, if you do not have the exactly matching GCC version installed, you might need
some additional files (otherwise GPC will complain about missing files at runtime). You
can install them by doing ‘make pascal.install-with-gcc’ in the ‘gcc’ subdirectory of
the build directory.
There is a (partial) translation of the GPC manual into Croatian available now. It is not
installed by default. If you want to install it, do a ‘pascal.install-hr’ in the ‘gcc’ direc-
tory. This will install the manpage ‘gpc-hr.1’ and the info documentation ‘gpc-hr.info*’.
Other formats like PS, PDF and HTML can be built manually (it’s also easy to add appro-
priate make targets for them when needed).
Also from the ‘gcc’ subdirectory you can do some more “exotic” builds. For instance, you
can build the GPC WWW pages by typing ‘make pascal.html’ or a binary distribution by
typing ‘make pascal.bindist’. See the ‘Makefile’ in that directory for more examples.

4.4 Compilation notes for specific platforms

4.4.1 MS-DOS with DJGPP

The only compiler that is capable of compiling the GNU Compiler Collection (GNU CC
or GCC) under MS-DOS is GCC itself. In order to compile GPC or GCC for MS-DOS with
DJGPP you will therefore need either a working copy of DJGPP installed, or you will have to
cross-build from a non-MS-DOS system.

Building GPC under MS-DOS with DJGPP follows the same scheme as building GPC under
a Unix-like system: Place the ‘p’ subdirectory in the ‘gcc’ directory and follow the instructions
for compiling GCC. This requires ‘bash’ and many other tools installed, and you must be very
careful at many places to circumvent the limitations of the DOS platform.

Our preferred way to build GPC for DJGPP is to cross-build it from a Unix-like platform –
which is much easier. For instructions, see Section 4.5 [Cross-Compilers], page 31 and Section 4.6
[Crossbuilding], page 31.

Chapter 4: How to download, compile and install GNU Pascal. 31

4.4.2 MS-DOS or OS/2 with EMX

EMX is a free 32-bit DOS extender which adds some properties of Unix to MS-compatible
DOS and IBM’s OS/2 operating systems.

As of this writing, we are not aware of current versions of GCC for EMX, and EMX support
in GPC has not been maintained. Please contact us if you know about recent development in
EMX and are interested in continuing EMX support in GPC.

4.4.3 MS Windows 95/98/NT

There are two ports of the GNU development tools to MS Windows 95/98/NT: CygWin and
mingw32.

The CygWin environment implements a POSIX layer under MS Windows, giving it large
parts of the functionality of Unix. Thus, compiling GCC and GPC under the CygWin envi-
ronment can be done following the instructions for compiling it under a Unix-like system (see
Section 4.3 [Compiling GPC], page 28).

The Minimalists’ GNU Win32 environment, mingw32, uses the native ‘crtdll.dll’ library of
MS Windows. It is much smaller than CygWin, but it is not self-hosting and must be crossbuilt
from another system (see Section 4.6 [Crossbuilding], page 31).

4.5 Building and Installing a cross-compiler

GNU Pascal can function as a cross-compiler for many machines. In-
formation about GNU tools in a cross-configuration can be found at
‘ftp://ftp.cygnus.com/pub/embedded/crossgcc/’.

Since GNU Pascal generates assembler code, you need a cross-assembler that GNU Pascal can
run, in order to produce object files. If you want to link on other than the target machine, you
need a cross-linker as well. It is straightforward to install the GNU binutils to act as cross-tools
– see the installation instructions of the GNU binutils for details.

You also need header files and libraries suitable for the target machine that you can in-
stall on the host machine. Please install them under ‘prefix/platform/include/’, for instance
‘/usr/local/i386-pc-msdosdjgpp/include/’ for a cross-compiler from a typical Unix-like en-
vironment to MS-DOS with DJGPP.

Configuration and compilation of the compiler can then be done using the scripts ‘cfgpc’
and ‘mkgpc’ which are included in the source distribution in the subdirectory ‘p/script’. Please
call them with the ‘-h’ option for instructions.

4.6 Crossbuilding a compiler

Using a cross-compiler to build GNU Pascal results in a compiler binary that runs on the
cross-target platform. This is called “crossbuilding”. A possible reason why anybody would
want to do this, is when the platform on which you want to run the GNU Pascal compiler is not
self-hosting. An example is mingw32.

To crossbuild GNU Pascal, you have to install a cross-compiler for your target first, see
Section 4.5 [Cross-Compilers], page 31.

As when building a cross-compiler, configuration and compilation of the compiler can be
done using the scripts ‘cfgpc’ and ‘mkgpc’ which are included in the source distribution in the
subdirectory ‘p/script’. Please call them with the ‘-h’ option for instructions.

32 The GNU Pascal Manual

Chapter 5: Command Line Options supported by GNU Pascal. 33

5 Command Line Options supported by GNU
Pascal.

GPC is a command-line compiler, i.e., to compile a program you have to invoke ‘gpc’ passing
it the name of the file you want to compile, plus options.

GPC supports all command-line options that GCC knows, except for many preprocessor
options. For a complete reference and descriptions of all options, see section “GCC Command
Options” in the GCC Manual. Below, you will find a list of the additional options that GPC
supports, and a list of GPC’s most important options (including some of those supported by
GCC as well).

You can mix options and file names on the command line. For the most part, the order
doesn’t matter. Order does matter, e.g., when you use several options of the same kind; for
example, if you specify ‘-L’ more than once, the directories are searched in the order specified.
Note: Since many options have multiletter names; multiple single-letter options may not be
grouped as is possible with many other programs: ‘-dr’ is very different from ‘-d -r’.

Many options have long names starting with ‘--’ or, completely equivalent ‘-f’. E.g.,
‘--mixed-comments’ is the same as ‘-fmixed-comments’. Some options tell GPC when to give
warnings, i.e. diagnostic messages that report constructs which are not inherently erroneous but
which are risky or suggest there may have been an error. Those options start with ‘-W’.

Most GPC specific options can also be changed during one compilation by using compiler
directives in the source, e.g. ‘{$X+}’ or ‘{$extended-syntax}’ for ‘--extended-syntax’ (see
Section 6.9 [Compiler Directives], page 87).

GPC understands the same environment variables GCC does (see section “Environment
Variables Affecting GCC” in the GCC manual). In addition, GPC recognizes
‘GPC_EXEC_PREFIX’ with the same meaning that ‘GCC_EXEC_PREFIX’ has to GCC. GPC also
recognizes ‘GCC_EXEC_PREFIX’, but ‘GPC_EXEC_PREFIX’ takes precedence.

Some of the long options (e.g., ‘--unit-path’) take an argument. This argument is separated
with a ‘=’ sign, e.g.:

--unit-path=/home/foo/units

5.1 GPC options besides those of GCC.

The following table lists the command line options GPC understands in addition to those
understood by GCC.

--classic-pascal-level-0
Reject conformant arrays and anything besides ISO 7185 Pascal.

--standard-pascal-level-0
Synonym for ‘--classic-pascal-level-0’.

--classic-pascal
Reject anything besides ISO 7185 Pascal.

--standard-pascal
Synonym for ‘--classic-pascal’.

--extended-pascal
Reject anything besides ISO 10206 Extended Pascal.

--object-pascal
Reject anything besides (the implemented parts of) ANSI draft Object Pascal.

--ucsd-pascal
Try to emulate UCSD Pascal.

34 The GNU Pascal Manual

--borland-pascal
Try to emulate Borland Pascal, version 7.0.

--delphi Try to emulate Borland Pascal, version 7.0, with some Delphi extensions.

--pascal-sc
Be strict about the implemented Pascal-SC extensions.

--vax-pascal
Support (a few features of) VAX Pascal.

--sun-pascal
Support (a few features of) Sun Pascal.

--mac-pascal
Support (some features of) traditional Macintosh Pascal compilers.

--gnu-pascal
Undo the effect of previous dialect options, allow all features again.

--debug-tree
(For GPC developers.) Show the internal representation of a given tree node (name
or address).

--debug-gpi
(For GPC developers.) Show what is written to and read from GPI files (huge
output!).

--debug-automake
(For GPC developers.) Give additional information about the actions of automake.

--debug-source
Output the source while it is processed.

--no-debug-info
Inhibit ‘-g’ options (temporary work-around, this option may disappear in the fu-
ture).

--progress-messages
Output source file names and line numbers while compiling.

--no-progress-messages
Do not output source file names and line numbers while compiling (default).

--progress-bar
Output number of processed lines while compiling.

--progress-bar
Do not output number of processed lines while compiling (default).

--autolink
Automatically link object files provided by units/modules or ‘{$L ...}’ (default).

--no-autolink
Do not automatically link object files provided by units/modules/‘{$L ...}’.

--automake
Automatically compile changed units/modules/‘{$L ...}’ files and link the object
files provided.

--no-automake
Same as ‘--no-autolink’.

Chapter 5: Command Line Options supported by GNU Pascal. 35

--autobuild
Automatically compile all units/modules/‘{$L ...}’ files and link the object files
provided.

--no-autobuild
Same as ‘--no-autolink’.

--automake-gpc
Set the Pascal compiler invoked by automake.

--automake-gcc
Set the C compiler invoked by automake.

--automake-g++
Set the C++ compiler invoked by automake.

--amtmpfile
(Internal switch used for automake).

--maximum-field-alignment
Set the maximum field alignment in bits if ‘pack-struct’ is in effect.

--ignore-packed
Ignore ‘packed’ in the source code (default in ‘--borland-pascal’).

--no-ignore-packed
Do not ignore ‘packed’ in the source code (default).

--ignore-garbage-after-dot
Ignore anything after the terminating ‘.’ (default in ‘--borland-pascal’).

--no-ignore-garbage-after-dot
Complain about anything after the terminating ‘.’ (default).

--extended-syntax
Enable certain ‘dangerous’ features such as ignoring function results, pointer arith-
metic or using ‘CString’s as strings (same as ‘{$X+}’).

--no-extended-syntax
Disable the dangerous features enabled by ‘--extended-syntax’ (default; same as
‘{$X-}’).

--short-circuit
Guarantee short-circuit Boolean evaluation (default; same as ‘{$B-}’).

--no-short-circuit
Do not guarantee short-circuit Boolean evaluation (same as ‘{$B+}’).

--mixed-comments
Allow comments like ‘{ ... *)’ as required in ISO Pascal (default in ISO 7185/10206
Pascal mode).

--no-mixed-comments
Ignore ‘{’ and ‘}’ within ‘(* ... *)’ comments and vice versa (default).

--nested-comments
Allow nested comments like ‘{ { } }’ and ‘(* (* *) *)’.

--no-nested-comments
Do not allow nested comments (default).

--delphi-comments
Allow Delphi style ‘//’ comments (default).

36 The GNU Pascal Manual

--no-delphi-comments
Do not allow Delphi style ‘//’ comments.

--macros Expand macros (default).

--no-macros
Do not expand macros (default with ‘--ucsd-pascal’, ‘--borland-pascal’ or
‘--delphi’).

--ignore-function-results
Do not complain when a function is called like a procedure.

--no-ignore-function-results
Complain when a function is called like a procedure (default).

--truncate-strings
Truncate strings being assigned to other strings of too short capacity..

--no-truncate-strings
Treat string assignments to other strings of too short capacity as errors..

--exact-compare-strings
Do not blank-pad strings for comparisons.

--no-exact-compare-strings
Blank-pad strings for comparisons.

--double-quoted-strings
Allow strings enclosed in "\"..

--no-double-quoted-strings
Do not allow strings enclosed in "\"..

--longjmp-all-nonlocal-labels
Use ‘longjmp’ for all nonlocal labels.

--no-longjmp-all-nonlocal-labels
Use ‘longjmp’ only for nonlocal labels in the main program (default).

--io-checking
Do automatic run-time checks after I/O operations (same as ‘{$I+}’).

--no-io-checking
Do not check I/O operations automatically (same as ‘{$I-}’).

--read-base-specifier
In read statements, allow input base specifier ‘n#’ (default).

--no-read-base-specifier
In read statements, do not allow input base specifier ‘n#’ (default in ISO 7185
Pascal).

--read-hex
In read statements, allow hexadecimal input with ‘$’ (default).

--no-read-hex
In read statements, do not allow hexadecimal input with ‘$’ (default in ISO 7185
Pascal).

--read-white-space
In read statements, require whitespace after numbers.

--no-read-white-space
In read statements, do not require whitespace after numbers (default).

Chapter 5: Command Line Options supported by GNU Pascal. 37

--write-clip-strings
In write statements, truncate strings exceeding their field width (‘Write
(SomeLongString : 3)’).

--no-write-clip-strings
Do not truncate strings exceeding their field width.

--write-real-blank
Output a blank in front of positive reals in exponential form (default).

--no-write-real-blank
Do not output a blank in front of positive reals in exponential form.

--write-capital-exponent
Write real exponents with a capital ‘E’.

--no-write-capital-exponent
Write real exponents with a lowercase ‘e’.

--transparent-file-names
Derive external file names from variable names.

--no-transparent-file-names
Do not derive external file names from variable names (default).

--field-widths
Comma-separated list of default field widths for Integer, Real, Boolean, LongInt,
LongReal.

--no-field-widths
Reset the default field widths.

--pedantic
Reject everything not allowed in some dialect, e.g. redefinition of its keywords.

--no-pedantic
Don’t give pedantic warnings.

--stack-checking
Enable stack checking (same as ‘{$S+}’).

--no-stack-checking
Disable stack checking (same as ‘{$S-}’).

--typed-address
Make the result of the address operator typed (same as ‘{$T+}’, default).

--no-typed-address
Make the result of the address operator an untyped pointer (same as ‘{$T-}’).

--enable-keyword
Enable a keyword, independently of dialect defaults.

--disable-keyword
Disable a keyword, independently of dialect defaults.

--assert Enable assertion checking (default).

--no-assert
Disable assertion checking.

--setlimit
Define the range for ‘set of Integer’ etc..

38 The GNU Pascal Manual

--gpc-main
External name for the program’s entry point (default: ‘main’).

--interface-only
Compile only the interface part of a unit/module and exit (creates ‘.gpi’ file, no
‘.o’ file.

--implementation-only
Do not produce a GPI file; only compile the implementation part.

--executable-file-name
Name for the output file, if specified; otherwise derive from main source file name.

--unit-path
Directories where to look for unit/module sources.

--no-unit-path
Forget about directories where to look for unit/module sources.

--object-path
Directories where to look for additional object (and source) files.

--no-object-path
Forget about directories where to look for additional object (and source) files.

--executable-path
Path where to create the executable file.

--no-executable-path
Create the executable file in the directory where the main source is (default).

--unit-destination-path
Path where to create object and GPI files of Pascal units.

--no-unit-destination-path
Create object and GPI files of Pascal units in the current directory (default).

--object-destination-path
Path where to create additional object files (e.g. of C files, not Pascal units).

--no-object-destination-path
Create additional object files (e.g. of C files, not Pascal units) in the current direc-
tory (default).

--no-default-paths
Do not add a default path to the unit and object path.

--gpi-destination-path
(Internal switch used for automake).

--uses Add an implicit ‘uses’ clause.

--init-modules
Initialize the named modules in addition to those imported regularly; kind of a
kludge.

--cidefine
Define a case-insensitive macro.

--csdefine
Define a case-sensitive macro.

--big-endian
Tell GPC that the system is big-endian (for those targets where it can vary).

Chapter 5: Command Line Options supported by GNU Pascal. 39

--little-endian
Tell GPC that the system is little-endian (for those targets where it can vary).

--print-needed-options
Print the needed options.

-Wwarnings
Enable warnings (same as ‘{$W+}’).

-Wno-warnings
Disable all warnings (same as ‘{$W-}’).

-Widentifier-case
Warn about an identifier written with varying case.

-Wno-identifier-case
Do not warn about an identifier written with varying case (default).

-Widentifier-case-local
Warn about an identifier written with varying case within one
program/module/unit.

-Wno-identifier-case-local
Same as ‘-Wno-identifier-case’.

-Winterface-file-name
Warn when a unit/module interface differs from the file name.

-Wno-interface-file-name
Do not warn when a unit/module interface differs from the file name (default).

-Wimplicit-abstract
Warn when an object type not declared ‘abstract’ contains an abstract method
(default).

-Wno-implicit-abstract
Do not warn when an object type not ‘declared’ abstract contains an abstract
method.

-Winherited-abstract
Warn when an abstract object type inherits from a non-abstract one (default).

-Wno-inherited-abstract
Do not warn when an abstract object type inherits from a non-abstract one.

-Wimplicit-io
Warn when ‘Input’ or ‘Output’ are used implicitly.

-Wno-implicit-io
Do not warn when ‘Input’ or ‘Output’ are used implicitly (default).

-Wfloat-equal
Warn about ‘=’ and ‘<>’ comparisons of real numbers.

-Wno-float-equal
Do not warn about ‘=’ and ‘<>’ comparisons of real numbers.

-Wtyped-const
Warn about misuse of typed constants as initialized variables (default).

-Wno-typed-const
Do not warn about misuse of typed constants as initialized variables.

-Wnear-far
Warn about use of useless ‘near’ or ‘far’ directives (default).

40 The GNU Pascal Manual

-Wno-near-far
Do not warn about use of useless ‘near’ or ‘far’ directives.

-Wunderscore
Warn about double/leading/trailing underscores in identifiers.

-Wno-underscore
Do not warn about double/leading/trailing underscores in identifiers.

-Wsemicolon
Warn about a semicolon after @samp{then}, @samp{else} or @samp{do} (default).

-Wno-semicolon
Do not warn about a semicolon after @samp{then}, @samp{else} or @samp{do}.

-Wlocal-external
Warn about local ‘external’ declarations.

-Wno-local-external
Do not warn about local ‘external’ declarations.

-Wmixed-comments
Warn about mixed comments like ‘{ ... *)’.

-Wno-mixed-comments
Do not warn about mixed comments.

-Wnested-comments
Warn about nested comments like ‘{ { } }’.

-Wno-nested-comments
Do not warn about nested comments.

5.2 The most commonly used options to GPC

As the most simple example, calling
gpc foo.pas

tells GPC to compile the source file ‘foo.pas’ and to produce an executable of the default
name which is ‘foo.exe’ on EMX, ‘a.exe’ on Cygwin, both ‘a.out’ and ‘a.exe’ on DJGPP,
and ‘a.out’ on most other platforms.

Users familiar with BP, please note that you have to give the file name extension ‘.pas’:
GPC is a common interface for a Pascal compiler, a C, ObjC and C++ compiler, an assembler, a
linker, and perhaps an Ada and a FORTRAN compiler. From the extension of your source file
GPC figures out which compiler to run. GPC recognizes Pascal sources by the extension ‘.pas’,
‘.p’, ‘.pp’ or ‘.dpr’. GPC also accepts source files in other languages (e.g., ‘.c’ for C) and
calls the appropriate compilers for them. Files with the extension ‘.o’ or without any special
recognized extension are considered to be object files or libraries to be linked.

Another example:
gpc -O2 -Wall --executable-file-name --automake --unit-path=units foo.pas

This will compile the source file ‘foo.pas’ to an executable named ‘foo’
(‘--executable-file-name’) with fairly good optimization (‘-O2’), warning about possible
problems (‘-Wall’). If the program uses units or imports modules, they will be searched
for in a directory called ‘units’ (‘--unit-path’) and automatically compiled and linked
(‘--automake’).

The following table lists the most commonly used options to GPC.

Chapter 5: Command Line Options supported by GNU Pascal. 41

--automake
Check whether modules/units used must be recompiled and do the recompilation
when necessary.

--unit-path=dir[:dir...]
Search the given directories for units and object files.

--object-path=dir[:dir...]
Search the given directories for object files.

--unit-destination-path=dir
Place compiled units (GPI and object files) into the directory dir. The default is
the current directory.

--object-destination-path=dir
Place compiled object files (e.g., from C files, but not from Pascal units) into the
directory dir. The default is the directory given with ‘--unit-destination-path’.

--executable-path=dir
Place the executable compiled into the directory dir. The default is the main source
file’s directory.

-o file Place output in file file. This applies regardless to whatever sort of output is being
produced, whether it be an executable file, an object file, an assembler file, etc.
Since only one output file can be specified, it does not make sense to use ‘-o’ when
compiling more than one input file, unless you are producing an executable file as
output.

--executable-file-name[=name]
Derive the executable file name from the source file name, or use name
as the executable file name. The difference to the ‘-o’ option is that
‘--executable-file-name’ considers the ‘--executable-path’, while
‘-o’ does not and accepts a file name with directory. Furthermore,
‘--executable-file-name’ only applies to executables, not to other output
formats selected.

-Ldir Search the directory dir for libraries. Can be given multiple times.

-Idir Search the directory dir for include files. Can be given multiple times.

-llibrary Search the library named library when linking. This option must be placed on the
command line after all source or object files or other libraries that reference the
library.

-O[n] Select the optimization level. Without optimization (or ‘-O0’ which is the default),
the compiler’s goal is to reduce the compilation time and to make debugging produce
the expected results. Statements are independent: if you stop the program with a
breakpoint between statements, you can then assign a new value to any variable or
change the program counter to any other statement in the same routine and get
exactly the results you would expect from the source code.
With optimization, the compiler tries to reduce code size and execution time. The
higher the value of n, the more optimizations will be done, but the longer the
compilation will take.
If you use multiple ‘-O’ options, with or without n, the last such option is the one
that is effective.

-g Produce debugging information suitable for ‘gdb’. Unlike some other compilers,
GNU Pascal allows you to use ‘-g’ with ‘-O’. The shortcuts taken by optimized
code may occasionally produce surprising results: some variables you declared may

42 The GNU Pascal Manual

not exist at all; flow of control may briefly move where you did not expect it;
some statements may not be executed because they compute constant results or
their values were already at hand; some statements may execute in different places
because they were moved out of loops. Nevertheless it proves possible to debug
optimized output. This makes it reasonable to use the optimizer for programs still
in the testing phase.

-s Remove all symbol table and relocation information from the executable. Note: this
has no influence on the performance of the compiled executable.

-Wall Give warnings for a number of constructs which are not inherently erroneous but
which are risky or suggest there may have been an error. There are additional
warning options not implied by ‘-Wall’, see the GCC warning options (see section
“Options to Request or Suppress Warnings” in the GCC manual), while ‘-Wall’ only
warns about such constructs that should be easy to avoid in programs. Therefore,
we suggest using ‘-Wall’ on most sources.
Note that some warnings (e.g., those about using uninitialized variables) are never
given unless you compile with optimization (see above), because otherwise the com-
piler doesn’t analyze the usage patterns of variables.

-Werror Turn all warnings into errors.

-S Stop after the stage of compilation proper; do not assemble. The output is in the
form of an assembler code file for each source file. By default, the assembler file
name for a source file is made by replacing the extension with ‘.s’.

-c Compile and assemble the source files, but do not link. The output is in the form
of an object file for each source file. By default, the object file name for a source
file is made by replacing the extension with ‘.o’.

-static On systems that support dynamic linking, this prevents linking with the shared
libraries, i.e. forces static linking. On other systems, this option has no effect.

-Dmacro[=def]
Define the macro and conditional symbol macro as def (or as ‘1’ if def is omitted).

-b machine
The argument machine specifies the target machine for compilation. This is useful
when you have installed GNU Pascal as a cross-compiler.

-v Print (on standard error) the commands executed to run the stages of compilation.
Also print the version number of the compiler driver program and of the preprocessor
and the compiler proper.

--classic-pascal-level-0
--classic-pascal
--extended-pascal
--object-pascal
--ucsd-pascal
--borland-pascal
--pascal-sc

GNU Pascal supports the features of several different Pascal standards and dialects.
By default, they are all enabled. These switches tell GPC to restrict itself to the
features of the specified standard. It does not enable any additional features. Warn-
ings about certain dangerous constructs which would be valid in the specified dialect
(e.g., assignment to a typed constant with ‘--borland-pascal’) are suppressed.
By default, GNU Pascal allows the redefinition of some keywords. Each of these
switches causes GNU Pascal to forbid the redefinition of keywords of the specified
standard.

Chapter 5: Command Line Options supported by GNU Pascal. 43

Valid ISO 7185 Pascal programs should compile properly with or without
‘--classic-pascal’. However, without this option, certain GNU extensions and
Pascal features from other dialects are supported as well. With this option, they
are rejected.
These options are not intended to be useful ; they exist only to satisfy pedants who
would otherwise claim that GNU Pascal fails to support the ISO Standard or is
not really compatible to Borland Pascal, or whatever. We recommend, rather, that
users take advantage of the extensions of GNU Pascal and disregard the limitations
of other compilers.

-pedantic-errors
Produce errors rather than warnings for portability violations. Unlike in C, this does
not imply the ‘-pedantic’ option, so you can, for instance, use ‘-pedantic-errors’
without ‘-pedantic’, but with ‘--extended-pascal’.

--gpc-main=name
Name the entry point of the main program ‘name’ instead of ‘main’ on the linker
level. This is useful, e.g., when working with some C libraries which define their own
‘main’ function and require the program’s main entry point to be named differently.
(This option should preferably be used as a compiler directive in the unit or module
which links to that strange C library, rather than be given on the command-line.)

44 The GNU Pascal Manual

Chapter 6: The Programmer’s Guide to GPC 45

6 The Programmer’s Guide to GPC

This chapter is still under development.

This chapter tells you how the source of a valid GNU Pascal program should look like. You
can use it as tutorial about the GNU Pascal language, but since the main goal is to document
all special GPC features, implementation-dependent stuff, etc., expect a steep learning curve.

This chapter does not cover how to compile your programs and to produce an executable –
this is discussed above in Chapter 5 [Invoking GPC], page 33.

6.1 Source Structures

A source file accepted by GNU Pascal may contain up to one program, zero or more ISO-
style modules, and/or zero or more UCSD-style units. Units and modules can be mixed in one
project.

One trivial example for a valid GPC source file follows. Note that the code below may either
be in one source file, or else the unit and the program may be in separate source files.

unit DemoUnit;

interface

procedure Hello;

implementation

procedure Hello;
begin

WriteLn (’Hello, world!’)
end;

end.

program UnitDemo;

uses
DemoUnit;

begin
Hello

end.

6.1.1 The Source Structure of Programs

A generic GNU Pascal program looks like the following:
program name (Input, Output);

import part

declaration part

begin
statement part

46 The GNU Pascal Manual

end.

The program headline may be omitted in GPC, but a warning will be given except in
‘--borland-pascal’ mode.

While the program parameters (usually ‘Input’, ‘Output’) are obligatory in ISO Pascal if you
want to use ‘ReadLn’ and ‘WriteLn’, they are optional in GNU Pascal. GPC will warn about
such missing parameters in ‘--extended-pascal’ mode. However if you give parameters to the
program headline, they work like ISO requires.

The import part consists either of an ISO-style ‘import’ specification or a UCSD/Borland-
style ‘uses’ clause. While ‘import’ is intended to be used with interfaces exported by ISO 10206
Extended Pascal modules, and ‘uses’ is intended to be used with units, this is not enforced.
(See also [uses], page 432, [import], page 328.)

The declaration part consists of label, constant, type, variable or subroutine declarations in
free order. However, every identifier must be declared before it is used. The only exception are
type identifiers pointing to another type identifier which may be declared below.

The statement part consists of a sequence of statements.
As an extension, GPC supports a “declaring statement” which can be used in the statement

part to declare variables (see [var], page 434).

6.1.2 Label Declaration

A label declaration has the following look:

label
label name, ..., label;

A label declaration part starts with the reserved word label, which contains a list of labels.

See also

[label], page 337, [goto], page 323

6.1.3 Constant Declaration

A constant declaration has the following look:

const
constant identifier = constant expression;
...
constant identifier = constant expression;

A constant declaration part starts with the reserved word const. It declares a con-
stant identifier which is defined by constant expression. This expression has to be evaluatable
during compilation time, i.e. it can include numbers, parentheses, predefined operators, sets and
type casts (the last, however, is a Borland extension). In ISO 7185 Pascal, constant expression
must be a constant or a set. All Pascal Dialects but ISO-Pascal allow the use of these intrinsic
functions in constant expression:

[Abs], page 255, [Round], page 398, [Trunc], page 426, [Chr], page 286, [Ord], page 368,
[Length], page 339, [Pred], page 379, [Succ], page 419, [SizeOf], page 412, [Odd], page 365.

In Borland Pascal, in the constant declaration part variables can be declared as well, which
are given an initial value. These variables are called “typed constants”. It is good style to
avoid this use, especially since Extended Pascal and GNU Pascal allow to initialize a variable
in variable declaration part or give a type a preset value on declaration.

Chapter 6: The Programmer’s Guide to GPC 47

const
FiveFoo = 5;
StringFoo = ’string constant’;
AlphabetSize = Ord (’Z’) - Ord (’A’) + 1;

type
PInteger = ^Integer; { Define a pointer to an Integer }

const
{ Constant which holds a pointer to an Integer at address 1234 }
AddressFoo = PInteger (1234);

• BP does not know initialized variables, only typed constants. Even worse, it allows them
to be misused as variables, without even warning. GPC supports this (unwillingly ;−), and
warns unless in ‘--borland-pascal’ mode.
An example of a typed constant:

const
i: Integer = 0;

If you want to use it as a constant only, that’s perfectly fine. However, if you modify ‘i’,
we suggest to translate the declaration to an initialized variable. The EP syntax is:

var
i: Integer value 0;

GPC supports this as well as the following mixture of dialects:
var

i: Integer = 0;

Furthermore, you can also assign initialization values to types:
program InitTypeDemo;

type
MyInteger = Integer value 42;

var
i: MyInteger;

begin
WriteLn (i)

end.

Here, all variables of type MyInteger are automatically initialized to 42 when created.
• Arrays initializers look like this in BP:

program BPArrayInitDemo;

const
MyStringsCount = 5;

type
Ident = String [20];

const
MyStrings: array [1 .. MyStringsCount] of Ident =

(’export’, ’implementation’, ’import’,

48 The GNU Pascal Manual

’interface’, ’module’);

begin
end.

And the following way in EP:
program EPArrayInitDemo;

const
MyStringsCount = 5;

type
Ident = String (20);

var
MyStrings: array [1 .. MyStringsCount] of Ident value

[1: ’export’; 2: ’implementation’; 3: ’import’;
4: ’interface’; 5: ’module’];

begin
end.

There seem to be pros and cons to each style. GPC supports both as well as just about
any thinkable mixture of them.
Some folks don’t like having to specify an index since it requires renumbering if you want
to add a new item to the middle. However, if you index by an enumerated type, you might
be able to avoid major renumbering by hand.

See also

Section 6.1.6.4 [Subroutine Parameter List Declaration], page 51

6.1.4 Type Declaration

A type declaration looks like this:
type

type identifier = type definition;
...
type identifier = type definition;

or, with preset content:
type

type identifier = type definition value constant expression;
...
type identifier = type definition value constant expression;

A type declaration part begins with the reserved word type. It declares a type identifier
which is defined by type definition. A type definition either can be an array, a record, a schema,
a set, an object, a subrange, an enumerated type, a pointer to another type identifier or simply
another type identifier which is to alias. If a schema type is to be declared, type identifier is
followed by a discriminant enclosed in parentheses:

type identifier (discriminant) = schema type definition;

If value is specified, followed by a constant satisfying the type definition, every variable
of this type is initialized with constant expression, unless it is initialized by value itself. The

Chapter 6: The Programmer’s Guide to GPC 49

reserved word value can be replaced by ‘=’, however value is not allowed in ISO-Pascal and
Borland Pascal, and the replacement by ‘=’ is not allowed in Extended Pascal.

Type declaration example

type
{ This side is the } { That side is the }
{ type declaration } { type definition }

Arrayfoo = array [0 .. 9] of Integer; { array definition }
Recordfoo = record { record definition }

Bar: Integer;
end;

{ schema def with discriminants ‘‘x, y: Integer’’ }
SchemaFoo (x, y: Integer) = array [x .. y] of Integer;
CharSetFoo = set of Char; { Def of a set }
ObjectFoo = object { Def of an object }

procedure DoAction;
constructor Init;
destructor Done;

end;
SubrangeFoo = -123..456; { subrange def }

EnumeratedFoo = (Pope,John,the,Second); { enum type def }
{ Def of a pointer to another type identifier }

PInteger = ^arrayfoo;
{ Def of an alias name for another type identifier }

IdentityFoo = Integer;
{ Def of an integer which was initialized by 123 }

InitializedFoo = Integer value 123;

See also

Section 6.2.1 [Type Definition], page 62, Section 6.2 [Data Types], page 62, Section 6.1.5
[Variable Declaration], page 49

6.1.5 Variable Declaration

A variable declaration looks like this:

var
var identifier: type identifier;
...
var identifier: type identifier;

or

var
var identifier: type definition;
...
var identifier: type definition;

and with initializing value:

50 The GNU Pascal Manual

var
var identifier: type identifier value constant expression;
...
var identifier: type identifier value constant expression;

or

var
var identifier: type definition value constant expression;
...
var identifier: type definition value constant expression;

A variable declaration part begins with the reserved word var. It declares a var identifier
whose type either can be specified by a type identifier, or by a type definion which either can
be an array, a record, a set, a subrange, an enumerated type or a pointer to an type identifier.
If value is specified followed by a constant expression satisfying the specified type, the variable
declared is initialized with constant expression. The reserved word value can be replaced by
‘=’, however value is not allowed in ISO-Pascal and Borland Pascal, and the replacement by ‘=’
is not allowed in Extended Pascal.

See also

Section 6.2.1 [Type Definition], page 62, Section 6.1.4 [Type Declaration], page 48, Section 6.2
[Data Types], page 62, Section 6.1.7.12 [The Declaring Statement], page 57, Section 6.1.6.4
[Subroutine Parameter List Declaration], page 51

6.1.6 Subroutine Declaration

6.1.6.1 The Procedure

procedure procedure identifier;
declaration part
begin

statement part
end;

or with a parameter list:

procedure procedure identifier (parameter list);
declaration part
begin

statement part
end;

A procedure is quite like a sub-program: The declaration part consists of label, constant,
type, variable or subroutine declarations in free order. The statement part consists of a sequence
of statements. If parameter list is specified, parameters can be passed to the procedure and can
be used in statement part. A recursive procedure call is allowed.

See also

Section 6.1.6.2 [The Function], page 51, Section 6.1.6.4 [Subroutine Parameter List Declara-
tion], page 51

Chapter 6: The Programmer’s Guide to GPC 51

6.1.6.2 The Function

function function identifier: function result type;
declaration part
begin

statement part
end;

or with a parameter list:
function function identifier (parameter list): result type;
declaration part
begin

statement part
end;

A function is a subroutine which has a return value of type function result type. It is struc-
tured like the program: the declaration part consists of label, constant, type, variable or sub-
routine declarations in free order. The statement part consists of a sequence of statements.
If parameter list is specified, parameters can be passed to the function and can be used in
statement part. The result is set via an assignment:

function identifier := expression

Recursive function calls are allowed. Concerning the result type, ISO 7185 Pascal and Borland
Pascal only allow the intrinsic types, subranges, enumerated types and pointer types to be
returned. In Extended Pascal, function result type can be every assignable type. Of course,
there are no type restrictions in GNU Pascal as well. If extended syntax is switched on, functions
can be called like procedures via procedure call statement.

See also

Section 6.1.6.1 [The Procedure], page 50, Section 6.1.6.4 [Subroutine Parameter List Decla-
ration], page 51, Section 6.2 [Data Types], page 62

6.1.6.3 The Operator

GNU Pascal allows to define operators which can be used the infix style in expressions. For
a more detailed description, see Section 6.3 [Operators], page 80

6.1.6.4 Subroutine Parameter List Declaration

parameter; ...; parameter

Each parameter can start with a prefix (see below) describing how the parameters are passed,
followed by a comma seperated list of one or more parameter identifiers and an optional param-
eter type.

procedure DoIt (var x, y, z: OneType; a, b: AnotherType; var q);

To understand parameter passing, first some definitions.

actual parameter
the parameter passed in to the routine.

formal parameter
the parameter as used inside the procedure.

by value the value of the actual parameter is copied on to the stack.

by reference
the address of the actual parameter is copied on to the stack.

52 The GNU Pascal Manual

L-value (left hand of a ‘:=’ statement) something that can be assigned to (not a constant,
or const or protected variable or other immutable item).

R-value (right hand of a ‘:=’ statement) anything you can get the value of (could be a
constant, an expression, a variable (whether const or protected or not) or just about
anything.

addressable
something you can get the address of (not a field of a packed structure or a variable
with ‘attribute (register)’ (GPC extension)).

aliasing accessing memory via two different names (e.g. a global variable passed by reference
to a procedure can be accessed either as the global variable or the formal paramater).
Generally this is very bad practice.

Technical note: Parameters are not always passed on the stack, they may also be passed in
registers, especially on RISC machines.

The prefix defines how a variable is passed on the stack and how you can access the for-
mal parameter inside the procedure. The prefix can be one of:

nothing
procedure DoIt (x: SomeType);

Technical: The actual parameter is passed by value or reference, but if passed by
reference, it is then copied to a local copy on the stack. Aliasing has no effect on x.
What it means: you can modify ‘x’ inside the routine, but your changes will not
affect the actual parameter (and vice versa). The actual parameter can be a constant
or other immutable object, or a protected or const variable.

protected
procedure DoIt (protected x: SomeType);

Technical: The actual parameter is passed by value or reference, but if passed by
reference, it is then copied to a local copy on the stack. Aliasing has no effect on x.
protected is a Extended Pascal extension.
What it means: if you modify the actual parameter, this will not affect ‘x’ inside the
routine. The actual parameter can be a constant or other immutable object, or a
protected or const variable. You are forbidden from modifying x inside the routine.

var
procedure DoIt (var x: SomeType);

Technical: The actual parameter is passed by reference. Aliasing will definitely
change ‘x’.
What it means: modifications to ‘x’ inside the routine will change the actual param-
eter passed in. The actual parameter must be an addressable L-value (ie, it must
be something you can take the address of and assign to).
A parameter of this kind is called variable parameter and internally corresponds
to an L-value pointer (to the specified type identifier if any). This declaration is
necessary if the parameter is to be modified within the routine and to hold its value
still after return.

const
procedure DoIt (const x: SomeType);

Technical: The actual parameter is passed by value or reference. The compiler
will make a copy of the actual parameter to have something it can address if the
actual parameter is not addressable. You are forbidden from modifying ‘x’ inside

Chapter 6: The Programmer’s Guide to GPC 53

the routine, and therefore you cannot modify the actual parameter. Aliasing may
or may not change ‘x’. const is a Borland Pascal extension.
What it means: You can pass any R-value. You cannot modify ‘x’ inside the routine.
If you change the actual parameter while inside the routine, ‘x’ will have an undefined
value.

protected var
procedure DoIt (protected var x: SomeType);

Technical: The actual parameter is passed by reference. The compiler will never
make a copy of the actual parameter. You are forbidden from modifying ‘x’ inside
the routine, and therefore you cannot modify the actual parameter. Aliasing will
definitely change ‘x’.
What it means: You can pass anything addressable. You cannot modify ‘x’ inside
the routine. If you change the actual parameter while inside the routine, ‘x’ will
change as well.
In GPC, the protected var mode guarantees that the parameter is always passed
by reference, making it the correct choice for calling C routines with ‘const’ pointer
parameters.

If you omit the formal parameter type specification, then any type may be passed to that
parameter. Generally this is a bad idea, but occasionally it can be useful, especially for low level
code.

As an Extended Pascal extension, you can also declare procedural parameters directly:

procedure parameter identifier

or:

function parameter identifier: parameter identifier result type

Example for parameter lists:

program ParameterDemo;

procedure Foo (var Bar; var Baz: Integer; const Fred: Integer);

procedure Glork1 (function Foo: Integer; procedure Bar (Baz: Integer));
begin

Bar (Foo)
end;

begin
Baz := Integer (Bar) + Fred

end;

var
a, b, c: Integer;

begin
Foo (a, b, c)

end.

See also

Section 6.2 [Data Types], page 62, [var], page 434, [const], page 291, [protected], page 382

54 The GNU Pascal Manual

6.1.7 Statements

6.1.7.1 Assignment

The way an assignment looks like:
L-value := expression;

This statement assigns any valid expression to L-value. Make sure that the result of ex-
pression is compatible with L-value, otherwise an compilation error is reported. The ‘:=’ is
called assignment operator. As long as L-value and expression are type compatible, they are
assignment compatible for any definable type as well.

6.1.7.2 begin end Compound Statement

It looks like that:
begin

statement;
statement;
...
statement

end

This statement joins several statements together into one compound statement which is
treated as a single statement by the compiler. The finishing semicolon before ‘end’ can be left
out.

6.1.7.3 if Statement

This statement has the following look:
if boolean expression then

statement

or with an alternative statement:
if boolean expression then

statement1
else

statement2

The ‘if’ . . . ‘then’ statement consists of a boolean expression and a statement, which is
conditionally executed if the evaluation of boolean expression yields true.

If ‘if’ . . . ‘then’ . . . ‘else’ is concerned, statement1 is executed depending on
boolean expression being true, otherwise statement2 is executed alternatively. Note: the
statement before else must not finish with a semicolon.

6.1.7.4 case Statement

case expression of
selector: statement;
...
selector: statement;

end

or, with alternative statement sequence:

Chapter 6: The Programmer’s Guide to GPC 55

case ordinal expression of
selector: statement;
...
selector: statement;

otherwise { ‘‘else’’ instead of ‘‘otherwise’’ allowed }
statement;
...
statement;

end

or, as part of the invariant record type definition:
type

foo = record
field declarations

case bar: variant type of
selector: (field declarations);
selector: (field declarations);
...

end;

or, without a variant selector field,
type

foo = record
field declarations

case variant type of
selector: (field declarations);
selector: (field declarations);
...

end;

The case statement compares the value of ordinal expression to each selector, which can be a
constant, a subrange, or a list of them separated by commas, being compatible with the result of
ordinal expression. Note: duplicate selectors or range crossing is not allowed unless {$borland-
pascal} is specified. In case of equality the corresponding statement is executed. If otherwise is
specified and no appropriate selector matched the expression, the series of statements following
otherwise is executed. As a synonym for otherwise, else can be used. The semicolon before
otherwise is optional.

@@ ???? The expression must match one of the selectors in order to continue, unless an
alternative statement series is specified.

For case in a variant record type definition, see Section 6.2.11.3 [Record Types], page 69.

See also

Section 6.1.7.3 [if Statement], page 54

6.1.7.5 for Statement

For ordinal index variables:
for ordinal variable := initial value to final value do

statement

or
for ordinal variable := initial value downto final value do

statement

For sets:

56 The GNU Pascal Manual

for set element type variable in some set do
statement

For pointer index variables:
for pointer variable := initial address to final address do

statement

or
for pointer variable := initial address downto final address do

statement

The for statement is a control statement where an index variable assumes every value of a
certain range and for every value the index variable assumes statement is executed. The range
can be specified by two bounds (which must be of the same type as the index variable, i.e.
ordinal or pointers) or by a set.

For ordinal index variables:
− If ‘to’ is specified, the index counter is increased by one as long as initial value is less or

equal to final value,
− if ‘downto’ is specified, it is decreased by one as long as initial value is greater or equal to

final value.

For pointer index variables:
− If ‘to’ is specified, the index counter is increased by the size of the type the index variable

points to (if it is a typed pointer, otherwise by one if it is typeless) as long as initial address
is less or equal to final address,

− if ‘downto’ is specified, it is decreased by a corresponding value as long as initial address is
greater or equal to final address.

Since gpc provides a flat memory modell, all addresses are linear, so they can be compared.
Still, such loops should be used (if at all) only for iterating through successive elements of an
array.

For sets:
− statement is executed with the index variable (which must be ordinal and of the same

type as the set elements) assuming every element in some set, however note that a set is a
not-ordered structure.

Note: A modification of the index variable may result in unpredictable action.

See also

Section 6.2.11.6 [Set Types], page 74, Section 6.6 [Pointer Arithmetics], page 82, Sec-
tion 6.1.7.7 [repeat Statement], page 57, Section 6.1.7.5 [for Statement], page 55

6.1.7.6 while Statement

The while loop has the following form
while boolean expression do

statement

The while statement declares a loop which is executed while boolean expression is true.
Since the terminating condition is checked before execution of the loop body, statement may
never be executed.

See also

Section 6.1.7.7 [repeat Statement], page 57, Section 6.1.7.5 [for Statement], page 55

Chapter 6: The Programmer’s Guide to GPC 57

6.1.7.7 repeat Statement

repeat
statement;
...
statement;

until boolean expression

The repeat . . . until statement declares a loop which is repeated until boolean expression is
true. Since the terminating condition is checked after execution of the loop body, the statement
sequence is executed at least once.

See also

Section 6.1.7.6 [while Statement], page 56, Section 6.1.7.5 [for Statement], page 55

6.1.7.8 asm Inline

@@ ????
asm (StatementList: String);

The asm inline statement is a GNU Pascal extension. It requires its parameter to be AT&T-
noted assembler statements, and therefore it is not compatible with that one of Borland Pascal.
statementlist is a string containing asm statements separated by semicolons.

6.1.7.9 with Statement

6.1.7.10 goto Statement

@@ ???? This statement looks like this:
goto label

(Under construction.)

6.1.7.11 Procedure Call

subroutine name;

This statement calls the subroutine subroutine name which can either be a procedure or, if
GNU extended syntax is turned on, a function. In this case, the result is ignored.

6.1.7.12 The Declaring Statement

This statement allows to declare a variable within a statement part. It looks like this:
var

var identifier: type identifier;

or
var

var identifier: type definition;

and with initializing value:
var

var identifier: type identifier value expression;

or

58 The GNU Pascal Manual

var
var identifier: type definition value expression;

Unlike in declaration parts, the initializing expression does not have to be a constant expres-
sion. Note that every declaring statement has to start with var. The name space of the variable
extends from its declaration to the end of the current matching statement sequence (which can
be a statement part (of the program, a function, a procedure or an operator) or, within that
part, a begin end compound statement, a repeat loop, or the else branch of a case statement).
This statement is a GNU Pascal extension.

See also

Section 6.2.1 [Type Definition], page 62, Section 6.2 [Data Types], page 62

6.1.7.13 Loop Control Statements

These are
Continue;

and
Break;

These simple statements must not occur outside a loop, i.e. a ‘for’, ‘while’ or ‘repeat’
statement. ‘Continue’ transfers control to the beginning of the loop right by its call, ‘Break’
exits the current loop turn and continues loop execution.

6.1.8 Import Part and Module/Unit Concept

6.1.8.1 The Source Structure of ISO 10206 Extended Pascal Modules

@@ Description missing here
A module can have one or more ‘export’ clauses and the name of an ‘export’ clause doesn’t

have to be equal to the name of the module.
Sample module code with separate interface and implementation parts:

module DemoModule interface; { interface part }

export DemoModule = (FooType, SetFoo, GetFoo);

type
FooType = Integer;

procedure SetFoo (f: FooType);
function GetFoo: FooType;

end.

module DemoModule implementation; { implementation part }

import
StandardInput;
StandardOutput;

var

Chapter 6: The Programmer’s Guide to GPC 59

Foo: FooType;

{ Note: the effect is the same as a ‘forward’ directive would have:
parameter lists and result types are not allowed in the
declaration of exported routines, according to EP. In GPC, they
are allowed, but not required. }

procedure SetFoo;
begin

Foo := f
end;

function GetFoo;
begin

GetFoo := Foo
end;

to begin do
begin
Foo := 59;
WriteLn (’Just an example of a module initializer. See comment below’)

end;

to end do
begin
Foo := 0;
WriteLn (’Goodbye’)

end;

end.

Alternatively the module interface and implementation may be combined as follows:

module DemoMod2; { Alternative method }

export Catch22 = (FooType, SetFoo, GetFoo);

type
FooType = Integer;

procedure SetFoo (f: FooType);
function GetFoo: FooType;

end; { note: this ‘end’ is required here, even if the
module-block below would be empty. }

var
Foo: FooType;

procedure SetFoo;
begin

Foo := f
end;

60 The GNU Pascal Manual

function GetFoo;
begin

GetFoo := Foo
end;

end.

Either one of the two methods may be used like this:
program ModuleDemo (Output);

import DemoModule;

begin
SetFoo (999);
WriteLn (GetFoo);

end.

program ModDemo2 (Output);

import Catch22 in ’demomod2.pas’;

begin
SetFoo (999);
WriteLn (GetFoo);

end.

Somewhat simpler GPC modules are also supported. Note: This is not supported in the
Extended Pascal standard.

This is a simpler module support that does not require exports, imports, module headers etc.
These non-standard simple GPC modules look like the following example. They do not have

an export part, do not have a separate module-block, do not use import/export features.
Instead, you have to emulate the exporting/importing yourself using ‘attribute’ and

‘external name’.
module DemoMod3;

type
FooType = Integer;

var
Foo: FooType;

procedure SetFoo (f: FooType); attribute (name = ’SetFoo’);
begin

Foo := f
end;

function GetFoo: FooType; attribute (name = ’GetFoo’);
begin

GetFoo := Foo;
end;

end.

program ModDemo3 (Output);

Chapter 6: The Programmer’s Guide to GPC 61

{$L demomod3.pas} { explicitly link module }

{ Manually do the "import" from DemoMod3 }
type

FooType = Integer;

procedure SetFoo (f: FooType); external name ’SetFoo’;
function GetFoo: FooType; external name ’GetFoo’;

begin
SetFoo (999);
WriteLn (GetFoo)

end.

Module initialization and finalization:
The to begin do module initialization and to end do module finalization constructs now

work on every target.
By the way: The “GPC specific” module definition is almost identical to the PXSC standard.

With an additional keyword ‘global’ which puts a declaration into an export interface with the
name of the module, it will be the same. @@This is planned.

6.1.8.2 The Source Structure of UCSD/Borland Pascal Units

A generic GNU Pascal unit looks like the following:
unit name;

interface

import part

interface part

implementation

implementation part

initialization part

end.

The name of the unit should coincide with the name of the file with the extension stripped.
(If not, you can tell GPC the file name with ‘uses foo in ’bar.pas’’, see [uses], page 432.)

The import part is either empty or contains a ‘uses’ clause to import other units. It may
also consist of an ISO-style ‘import’ specification. Note that the implementation part is not
preceeded by a second import part in GPC (see [import], page 328).

The interface part consists of constant, type, and variable declarations, procedure and func-
tion headings which may be freely mixed.

The implementation part is like the declaration part of a program, but the headers of proce-
dures and functions may be abbreviated: Parameter lists and function results may be omitted
for procedures and functions already declared in the interface part.

The initialization part may be missing, or it may be a ‘begin’ followed by one or more
statements, such that the unit has a statement part between this ‘begin’ and the final ‘end’.

62 The GNU Pascal Manual

Alternatively, a unit may have ISO-style module initializers and finalizers, see [to begin do],
page 424, [to end do], page 424.

Note that GPC does not yet check whether all interface declarations are resolved in the
same unit. The implementation of procedures and functions which are in fact not used may
be omitted, and/or procedures and functions may be implemented somewhere else, even in a
different language. However, relying on a GPC bug (that will eventually be fixed) is not a good
idea, so this is not recommended. Instead, declare such routines as ‘external’.

A unit exports everything declared in the interface section. The exported interface has the
name of the unit and is compatible with Extended Pascal module interfaces since GPC uses the
same code to handle both.

6.2 Data Types

6.2.1 Type Definition

As described in Section 6.1.4 [Type Declaration], page 48, a type declaration part looks like
this:

type
type identifier = type definition;
...
type identifier = type definition;

where the left side is the type declaration and the right one the type definition side. GNU
Pascal offers various possibilities to implement highly specialized and problem-specific data
types.

6.2.2 Ordinal Types

An ordinal type is one that can be mapped to a range of whole numbers. It includes integer
types, character types, enumerated types and subrange types of them.

A character type is represented by the intrinsic type ‘Char’ which can hold elements of
the operating system’s character set (usually ASCII). Conversion between character types and
integer types is possible with the intrinsic functions Ord and Chr.

An enumerated type defines a range of elements which are referred to by identifiers. Conver-
sion from enumerated types to integer types is possible with the intrinsic function Ord. Conver-
sion from integer to ordinal types is only possible by type-casting or using the extended form of
‘Succ’.

var
Foo: Char; { foo can hold a character }
Num: ’0’ .. ’9’; { Can hold decimal digits, is a subrange type of Char }
Day: (Monday, Tuesday, Wednesday, Thursday, Friday); { Can hold weekday }

See also

[Ord], page 368, [Chr], page 286, Section 6.7 [Type Casts], page 83

6.2.3 Integer Types

Besides ‘Integer’, GNU Pascal supports a large zoo of integer types. Some of them you
will find in other compilers, too, but most are GNU Pascal extensions, introduced for particular
needs. Many of these types are synonyms for each other. In total, GPC provides 20 built-in

Chapter 6: The Programmer’s Guide to GPC 63

integer types, plus seven families you can play with. (Four of these “families” are signed and
unsigned, packed and unpacked subrange types; the others are explained below.)

See also: Section 6.2.11.1 [Subrange Types], page 68.

6.2.3.1 The CPU’s Natural Integer Types

For most purposes, you will always use ‘Integer’, a signed integer type which has the “nat-
ural” size of such types for the machine. On most machines GPC runs on, this is a size of 32
bits, so ‘Integer’ usually has a range of ‘-2147483648..2147483647’ (see [Integer], page 335).

If you need an unsigned integer type, the “natural” choice is ‘Cardinal’, also called ‘Word’.
Like ‘Integer’, it has 32 bits on most machines and thus a range of ‘0..4294967295’ (see
[Cardinal], page 282, [Word], page 439).

These natural integer types should be your first choice for best performance. For instance
on an IA32 CPU operations with ‘Integer’ usually work faster than operations with shorter
integer types like ‘ShortInt’ or ‘ByteInt’ (see below).

6.2.3.2 The Main Branch of Integer Types

‘Integer’, ‘Cardinal’, and ‘Word’ define the three “main branches” of GPC’s integer types.
You won’t always be able to deal with the natural size; sometimes something smaller or longer
will be needed. Especially when interfacing with libraries written in other languages such as C,
you will need equivalents for their integer types.

The following variants of ‘Integer’, ‘Cardinal’ and ‘Word’ (plus one Boolean type) are
guaranteed to be compatible to the integer types of GNU C. The sizes given, however, are not
guaranteed. They are just typical values currently used on most platforms, but they may be
actually shorter or increase in the future.
signed unsigned also unsigned GNU C equivalent size in bits

(typically)
ByteInt ByteCard Byte [un]signed char 8
ShortInt ShortCard ShortWord [unsigned] short int 16
Integer Cardinal Word [unsigned] int 32
MedInt MedCard MedWord [unsigned] long int 32
LongInt LongCard LongWord [unsigned] long long int 64
— SizeType — size_t 32
PtrDiffType — — ptrdiff_t 32
PtrInt PtrCard PtrWord — 32
— CBoolean — _Bool, bool 8

Since we don’t know whether ‘LongInt’ will always remain the “longest” integer type available
– maybe GNU C will get ‘long long long int’, one day, which we will support as ‘LongLongInt’
– we have added the synonym ‘LongestInt’ for the longest available singed integer type, and
the same holds for ‘LongestCard’ and ‘LongestWord’.

6.2.3.3 Integer Types with Specified Size

In some situations you will need an integer type of a well-defined size. For this purpose, GNU
Pascal provides type attributes (see [attribute], page 270). The type

Integer attribute (Size = 42)

is guaranteed to have a precision of 42 bits. In a realistic context, you will most often give a
power of two as the number of bits, and the machine you will need it on will support variables of
that size. If this is the case, the specified precision will simultaneously be the amount of storage
needed for variables of this type.

64 The GNU Pascal Manual

In short: If you want to be sure that you have a signed integer with 32 bits width, write
‘Integer attribute (Size = 32)’, not just ‘Integer’ which might be bigger. The same works
with unsigned integer types such as ‘Cardinal’ and ‘Word’ and with Boolean types.

This way, you can’t get a higher precision than that of ‘LongestInt’ or ‘LongestCard’ (see
Section 6.2.3.2 [Main Branch Integer Types], page 63). If you need higher precision, you can
look at the ‘GMP’ unit (see Section 6.14.5 [GMP], page 172) which provides integer types with
arbitrary precision, but their usage is different from normal integer types.

6.2.3.4 Integer Types and Compatibility

If you care about ISO compliance, only use ‘Integer’ and subranges of ‘Integer’.
Some of GPC’s non-ISO integer types exist in Borland Pascal, too: ‘Byte’, ‘ShortInt’, ‘Word’,

and ‘LongInt’. The sizes of these types, however, are not the same as in Borland Pascal. Even
for ‘Byte’ this is not guaranteed (while probable, though).

When designing GNU Pascal, we thought about compatibility to Borland Pascal. Since GNU
Pascal is (at least) a 32-bit compiler, ‘Integer’ must have (at least) 32 bits. But what to do with
‘Word’? Same size as ‘Integer’ (like in BP) or 16 bits (like in BP)? We decided to make ‘Word’
the “natural-sized” unsigned integer type, thus making it (at least) 32 bits wide. Similarly, we
decided to give ‘LongInt’ twice the size of ‘Integer’ (like in BP) rather than making it 32 bits
wide (like in BP). So ‘LongInt’ has 64 bits, and ‘ShortInt’ has 16 bits on the IA32 platform.

On the other hand, to increase compatibility to Borland Pascal and Delphi, GPC provides
the alias name ‘Comp’ for ‘LongInt’ (64 bits on IA32) and ‘SmallInt’ for ‘ShortInt’ (16 bits on
IA32). Note that BP treats ‘Comp’ as a “real” type and allows assignments like ‘MyCompVar :=
42.0’. Since we don’t consider this a feature, GPC does not copy this behaviour.

6.2.3.5 Summary of Integer Types

Here is a summary of all integer types defined in GPC. The sizes and ranges are only typical
values, valid on some, but not all platforms. Compatibility to GNU C however is guaranteed.

[ByteInt], page 280
signed 8-bit integer type, ‘-128..128’,
compatible to ‘signed char’ in GNU C.

[ByteCard], page 280
unsigned 8-bit integer type, ‘0..255’,
compatible to ‘unsigned char’ in GNU C.

[ShortInt], page 408
signed 16-bit integer type, ‘-32768..32767’,
compatible to ‘short int’ in GNU C.

[ShortCard], page 408
unsigned 16-bit integer type, ‘0..65535’,
compatible to ‘unsigned short int’ in GNU C.

[Integer], page 335
signed 32-bit integer type, ‘-2147483648..2147483647’,
compatible to ‘int’ in GNU C.

[Cardinal], page 282
unsigned 32-bit integer type, ‘0..4294967295’,
compatible to ‘unsigned int’ in GNU C.

[MedInt], page 352
signed 32-bit integer type, ‘-2147483648..2147483647’,
compatible to ‘long int’ in GNU C.

Chapter 6: The Programmer’s Guide to GPC 65

[MedCard], page 351
unsigned 32-bit integer type, ‘0..4294967295’,
compatible to ‘unsigned long int’ in GNU C.

[LongInt], page 345
signed 64-bit integer type, ‘-9223372036854775808..9223372036854775807’,
compatible to ‘long long int’ in GNU C.

[LongCard], page 341
unsigned 64-bit integer type, ‘0..18446744073709551615’,
compatible to ‘unsigned long long int’ in GNU C.

[LongestInt], page 343
signed 64-bit integer type, ‘-9223372036854775808..9223372036854775807’.

[LongestCard], page 343
unsigned 64-bit integer type, ‘0..18446744073709551615’.

[Comp], page 288
signed 64-bit integer type, ‘-9223372036854775808..9223372036854775807’.

[SmallInt], page 413
signed 16-bit integer type, ‘-32768..32767’.

[SizeType], page 413
integer type (usually unsigned) to represent the size of objects in memory

[PtrDiffType], page 383
signed integer type to represent the difference between two positions in memory

[PtrInt], page 384
signed integer type of the same size as a pointer

[PtrCard], page 382
unsigned integer type of the same size as a pointer

To specify the number of bits definitely, use type attributes, [attribute], page 270.
program IntegerTypesDemo (Output);

var
ByteVar: Byte;
ShortIntVar: ShortInt;
Foo: MedCard;
Big: LongestInt;

begin
ShortIntVar := 1000;
Big := MaxInt * ShortIntVar;
ByteVar := 127;
Foo := 16#deadbeef

end.

See also: Section 6.2.11.1 [Subrange Types], page 68.

6.2.4 Built-in Real (Floating Point) Types

GPC has three built-in floating point types to represent real numbers. Each of them is
available under two names (for compatibility to other compilers and languages).

For most purposes, you will always use ‘Real’ which is the only one of them that is part
of Standard and Extended Pascal. If memory constraints apply, you might want to choose

66 The GNU Pascal Manual

‘ShortReal’ for larger arrays. On the other hand, if high precision is needed, you can use
‘LongReal’. When interfacing with libraries written in other languages such as C, you will need
the equivalents for their real types.

Note that not all machines support longer floating point types, so ‘LongReal’ is the same
as ‘Real’ on these machines. Also, some machines may support a longer type, but not do all
arithmetic operations (e.g. the ‘Sin’ function, [Sin], page 411) in a precision higher than that of
‘Real’. If you need higher precision, you can look at the ‘GMP’ unit (see Section 6.14.5 [GMP],
page 172) which provides rational and real numbers with arbitrary precision, but their usage is
different from normal real types.

The following real types are guaranteed to be compatible to the real types of GNU C. The sizes
given, however, are not guaranteed. They are just typical values used on any IEEE compatible
floating point hardware, but they may be different on some machines.

type name alternative name GNU C equivalent size in bits (typically)
ShortReal Single float 32
Real Double double 64
LongReal Extended long double 80

6.2.5 Strings Types

There are several ways to use strings in GNU Pascal. One of them is the use of the intrinsic
string type ‘String’ which is a predefined schema type. The schema discriminant of this type
holds the maximal length, which is of type Integer, so values up to MaxInt can be specified.
For ‘String’, an assignment is defined. There are many built-in functions and procedures for
comfortable strings handling.

@@ ???? String procedures and functions.

Another way to use strings is to use arrays of type ‘Char’. For these, an intrinsic assignment
is defined as well. Besides, ‘String’ and ‘Char’ are assignment compatible. The preferred way,
however, is ‘String’ because of the numerous possibilities for string handling.

6.2.6 Character Types

Character types are a special case of ordinal types.

See also

Section 6.2.2 [Ordinal Types], page 62, [Chr], page 286, [Ord], page 368, [Pred], page 379,
[Succ], page 419.

6.2.7 Enumerated Types

type
enum type identifier = (identifier, ..., identifier);

An enumerated type is a a special case of ordinal types and defines a range of elements which
are referred to by identifiers. Enumerated types are ordered by occurence in the identifier list.
So, they can be used as index types in an array definition, and it is possible to define subranges
of them. Since they are ordered, they can be compared to one another. The intrinsic function
Ord applied to name identifier returns the number of occurence in the identifier list (beginning
with zero), Pred and Succ return the predecessor and successor of name identifier. ‘Boolean’ is
a special case of an enumerated type.

Chapter 6: The Programmer’s Guide to GPC 67

See also

Section 6.2.2 [Ordinal Types], page 62, Section 6.2.11.2 [Array Types], page 68, Sec-
tion 6.2.11.1 [Subrange Types], page 68, [Ord], page 368, [Boolean], page 277, [Char], page 285,
[Pred], page 379, [Succ], page 419.

6.2.8 File Types

Files are used to store data permanently, normally on hard drives or floppies. There are tree
types of files available: text files, typed and untyped files.

Text files are used to store text in them, where typed files are used to store many entries of
the same type in them, e.g. addresses. Text files and typed files are accessible by ‘Read’ and
‘Write’ operations and do not need the parameter ‘BlockSize’ in ‘Reset’ or ‘Rewrite’. On the
other hand, untyped files are used to store any type of information in them but you need to use
‘BlockWrite’ or ‘BlockRead’ to store or retrieve data out of this file.

var
F1: Text; { a textfile }
F2: file of Real; { a typed filed used to store real values in it }
F3: File; { an untyped file }

See also

Section 6.10.1 [File Routines], page 90, [Write], page 440, [Read], page 388, [BlockRead],
page 276, [BlockWrite], page 276, [Reset], page 393, [Rewrite], page 396

6.2.9 Boolean (Intrinsic)

The intrinsic Boolean represents boolean values, i.e. it can only assume true and false (which
are predefined constants). This type corresponds to the enumerated type

type
Boolean = (False, True);

Since it is declared this way, it follows:
Ord (False) = 0
Ord (True) = 1
False < True

There are four intrinsic logical operators. The logical and, or and not. In Borland Pascal
and GNU Pascal, there is a logical “exclusive or” xor.

See also

Section 6.2.7 [Enumerated Types], page 66, [and], page 260, [or], page 366, [not], page 362,
[xor], page 441

6.2.10 Pointer (Intrinsic)

The intrinsic Pointer Type is a so-called unspecified or typeless pointer (i.e. a pointer which
does not point to any type but holds simply a memory address).

See also

Section 6.2.11.7 [Pointer Types], page 74, [nil], page 361

68 The GNU Pascal Manual

6.2.11 Type Definition Possibilities

6.2.11.1 Subrange Types

GNU Pascal supports Standard Pascal’s subrange types:
program SubrangeDemo;
type

MonthInt = 1 .. 12;
Capital = ’A’ .. ’Z’;
ControlChar = ^A .. ^Z; { ‘^A’ = ‘Chr (1)’ is a BP extension }

begin
end.

Also possible: Subranges of enumerated types:
program EnumSubrangeDemo;
type

{ This is an enumerated type. }
Days = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

{ This is a subrange of ‘Days’. }
Working = Mon .. Fri;

begin
end.

To increase performance, variables of such a type are aligned in a way which makes them
fastest to access by the CPU. As a result, ‘1 .. 12’ occupies 4 bytes of storage on an IA32 CPU.

For the case you want to save storage at the expense of speed, GPC provides a ‘packed’
variant of these as an extension:

program PackedSubrangeDemo;
type

MonthInt = packed 1 .. 12;
begin
end.

A variable of this type occupies the shortest possible (i.e., addressable) space in memory –
one byte on an IA32 compatible CPU.

See also: [packed], page 371.

6.2.11.2 Array Types

type
array type identifier = array [index type] of element type

or
type

array type identifier = array [index type, ..., index type] of element type

The reserved word array defines an array type. index type has to be an ordinal type, sub-
range type or an enumerated type, where several index types, separated by commas, are allowed.
element type is an arbitrary type. An element of an array is accessed by array type variable
[index number]. The upper and lower index bounds can be determined by the intrinsic functions
High and Low.

Chapter 6: The Programmer’s Guide to GPC 69

type
IntArray = array [1 .. 20] of Integer;
Foo = array [(Mo, Tu, We, Th, Fr, Sa, Su)] of Char;
Bar = array [0 .. 9, ’a’ .. ’z’, (Qux, Glork1, Fred)] of Real;
Baz1 = array [1 .. 10] of IntArray;
{ equal (but declared differently): }
Baz2 = array [1 .. 10, 1 .. 20] of Integer;

See also

[High], page 325, [Low], page 347

6.2.11.3 Record Types

type
record type identifier = record

field identifier: type definition;
...
field identifier: type definition;

end;

or, with a variant part,

type
record type identifier = record

field identifier: type definition;
...
field identifier: type definition;

case bar: variant type of
selector: (field declarations);
selector: (field declarations);
...

end;

or, without a variant selector field,

type
record type identifier = record

field identifier: type definition;
...
field identifier: type definition;

case variant type of
selector: (field declarations);
selector: (field declarations);
...

end;

The reserved word record defines a structure of fields. Records can be ‘packed’ to save
memory usage at the expense of speed.

The reserved word ‘record’ and record types are defined in ISO 7185 Pascal. According to
ISO Pascal, the variant type must be an identifier. GNU Pascal, like UCSD and Borland Pascal,
also allows a subrange here.

A record field is accessed by record type variable . field identifier

See also: [packed], page 371, Section 6.1.7.4 [case Statement], page 54.

70 The GNU Pascal Manual

6.2.11.4 Variant Records

GPC supports variant records like in EP and BP. The following construction is not allowed
in Extended Pascal, but in BP and GPC:

program BPVariantRecordDemo;

type
PersonRec = record

Age: Integer;
case EyeColor: (Red, Green, Blue, Brown) of

Red, Green : (WearsGlasses: Boolean);
Blue, Brown: (LengthOfLashes: Integer);

end;

begin
end.

In EP, the variant field needs a type identifier, which, of course, also works in GPC:
program EPVariantRecordDemo;

type
EyeColorType = (Red, Green, Blue, Brown);

PersonRec = record
Age: Integer;

case EyeColor: EyeColorType of
Red, Green : (WearsGlasses: Boolean);
Blue, Brown: (LengthOfLashes: Integer);

end;

begin
end.

6.2.11.5 EP’s Schema Types including ‘String’

Schemata are types that depend on one or more variables, called discriminants. They are an
ISO 10206 Extended Pascal feature.

type
RealArray (n: Integer) = array [1 .. n] of Real;
Matrix (n, m: PositiveInteger) = array [1 .. n, 1 .. m] of Integer;

The type ‘RealArray’ in this example is called a Schema with the discriminant ‘n’.
To declare a variable of such a type, write:

var
Foo: RealArray (42);

The discriminants of every global or local schema variable are initialized at the beginning of
the procedure, function or program where the schema variable is declared.

Schema-typed variables “know” about their discriminants. Discriminants can be accessed
just like record fields:

program Schema1Demo;
type

PositiveInteger = 1 .. MaxInt;

Chapter 6: The Programmer’s Guide to GPC 71

RealArray (n: Integer) = array [1 .. n] of Real;
Matrix (n, m: PositiveInteger) = array [1 .. n, 1 .. m] of Integer;

var
Foo: RealArray (42);

begin
WriteLn (Foo.n) { yields 42 }

end.

Schemata may be passed as parameters. While types of schema variables must always have
specified discriminants (which may be other variables), formal parameters (by reference or by
value) may be of a schema type without specified discriminant. In this, the actual parameter
may posses any discriminant. The discriminants of the parameters get their values from the
actual parameters.

Also, pointers to schema variables may be declared without a discriminant:
program Schema2Demo;
type

RealArray (n: Integer) = array [1 .. n] of Real;
RealArrayPtr = ^RealArray;

var
Bar: RealArrayPtr;

begin
end.

When applying ‘New’ to such a pointer, you must specify the intended value of the discrimi-
nant as a parameter:

New (Bar, 137)

As a GNU Pascal extension, the above can also be written as
Bar := New (RealArrayPtr, 137)

The allocated variable behaves like any other schema variable:
program Schema3Demo;
type

RealArray (n: Integer) = array [1 .. n] of Real;
RealArrayPtr = ^RealArray;

var
Bar: RealArrayPtr;
i: Integer;

begin
Bar := New (RealArrayPtr, 137);
for i := 1 to Bar^.n do

Bar^[i] := 42
end.

Since the schema variable “knows” its size, pointers to schemata can be disposed just like
other pointers:

Dispose (Bar)

Schemata are not limited to arrays. They can be of any type that normally requires constant
values in its definition, for instance subrange types, or records containing arrays etc. (Sets do
not yet work.)

References to the schema discriminants are allowed, and the with statement is also allowed,
so one can say:

72 The GNU Pascal Manual

program SchemaWithDemo;
type

RealArray (n: Integer) = array [1 .. n] of Real;
var

MyArray: RealArray (42);
begin

WriteLn (MyArray.n); { writes 42 }
with MyArray do
WriteLn (n); { writes 42 }

end.

Finally, here is a somewhat exotic example. Here, a ‘ColoredInteger’ behaves just like an
ordinary integer, but it has an additional property ‘Color’ which can be accessed like a record
field.

program SchemaExoticDemo;

type
ColorType = (Red, Green, Blue);
ColoredInteger (Color: ColorType) = Integer;

var
Foo: ColoredInteger (Green);

begin
Foo := 7;
if Foo.Color = Red then
Inc (Foo, 2)

else
Foo := Foo div 3

end.

An important schema is the predefined ‘String’ schema (according to Extended Pascal). It
has one predefined discriminant identifier Capacity. GPC implements the String schema as
follows:

type
String (Capacity: Cardinal) = record

Length: 0 .. Capacity;
Chars: packed array [1 .. Capacity + 1] of Char

end;

The Capacity field may be directly referenced by the user, the Length field is referenced by a
predefined string function Length (Str) and contains the current string length. Chars contains
the chars in the string. The Chars and Length fields cannot be directly referenced by a user
program.

If a formal value parameter is of type ‘String’ (with or without discriminant), the actual
parameter may be either a String schema, a fixed string (character array), a single character, a
string literal or a string expression. If the actual parameter is a ‘String’ schema, it is copied for
the parameter in the usual way. If it is not a schema, a ‘String’ schema is created automatically,
the actual parameter is copied to the new variable and the Capacity field of the new variable
is set to the length of the actual parameter.

Actual parameters to ‘var’ parameters of type ‘String’ must be ‘String’ schemata, not
string literals or character arrays.

program StringDemo (Output);

Chapter 6: The Programmer’s Guide to GPC 73

type
SType = String (10);
SPtr = ^String;

var
Str : SType;
Str2: String (100000);
Str3: String (20) value ’string expression’;
DStr: ^String;
ZStr: SPtr;
Len : Integer value 256;
Ch : Char value ’R’;

{ ‘String’ accepts any length of strings }
procedure Foo (z: String);
begin

WriteLn (’Capacity: ’, z.Capacity);
WriteLn (’Length : ’, Length (z));
WriteLn (’Contents: ’, z);

end;

{ Another way to use dynamic strings }
procedure Bar (SLen: Integer);
var

LString: String (SLen);
FooStr: type of LString;

begin
LString := ’Hello world!’;
Foo (LString);
FooStr := ’How are you?’;
Foo (FooStr);

end;

begin
Str := ’KUKKUU’;
Str2 := ’A longer string variable’;
New (DStr, 1000); { Select the string Capacity with ‘New’ }
DStr^ := ’The maximum length of this is 1000 chars’;
New (ZStr, Len);
ZStr^ := ’This should fit here’;
Foo (Str);
Foo (Str2);
Foo (’This is a constant string’);
Foo (’This is a ’ + Str3);
Foo (Ch); { A char parameter to string routine }
Foo (’’); { An empty string }
Foo (DStr^);
Foo (ZStr^);
Bar (10000);

end.

74 The GNU Pascal Manual

In the above example, the predefined procedure New was used to select the capacity of the
strings. Procedure Bar also has a string whose size depends of the parameter passed to it and
another string whose type will be the same as the type of the first string, using the type of
construct.

All string and character types are compatible as long as the destination string is long enough
to hold the source in assignments. If the source string is shorter than the destination, the
destination is automatically blank padded if the destination string is not of string schema type.

6.2.11.6 Set Types

set type identifier = set of set element type;

set type identifier is a set of elements from set element type which is either an ordinal type,
an enumerated type or a subrange type. Set element representatives are joined together into a
set by brackets:

[set element, ..., set element]

‘[]’ indicates the empty set, which is compatible with all set types. Note: Borland Pascal
restricts the maximal set size (i.e. the range of the set element type) to 256, GNU Pascal has
no such restriction. The number of elements a set variable is holding can be determined by the
intrinsic set function Card (which is a GNU Pascal extension, in Extended Pascal and Borland
Pascal you can use SizeOf instead but note the element type size in bytes, then) to the set. There
are four intrinsic binary set operations: the union ‘+’, the intersection ‘*’ and the difference ‘-’.
The symmetric difference ‘><’ is an Extended Pascal extension.

See also

[Card], page 281, [SizeOf], page 412

6.2.11.7 Pointer Types

pointer type identifier = ^type identifier;

A pointer of the type pointer type identifier holds the address at which data of the type
type identifier is situated. Unlike other identifier declarations, where all identifiers in definition
part have to be declared before, in a pointer type declaration type identifier may be declared after
pointer type identifier. The data pointed to is accessed by ‘pointer type variable^’. To mark an
unassigned pointer, the ‘nil’ constant (which stands for “not in list”) has to be assigned to it,
which is compatible with all pointer types.

type
ItselfFoo = ^ItselfFoo; { possible but mostly senseless }

PInt = ^Integer; { Pointer to an Integer }

PNode = ^TNode; { Linked list }
TNode = record

Key : Integer;
NextNode: PNode;

end;

var
Foo, Bar: PInt;

begin

Chapter 6: The Programmer’s Guide to GPC 75

Foo := Bar; { Modify address which foo is holding }
Foo^ := 5; { Access data foo is pointing to }

end.

GPC also suports pointers to procedures or function and calls through them. This is a
non-standard feature.

program ProcPtrDemo (Output);

type
ProcPtr = ^procedure (i: Integer);

var
PVar: ProcPtr;

procedure WriteInt (i: Integer);
begin

WriteLn (’Integer: ’, i : 1)
end;

begin
{ Let PVar point to function WriteInt }
PVar := @WriteInt;

{ Call the function by dereferencing the function pointer }
PVar^ (12345)

end.

See also: Section 6.2.10 [Pointer (Intrinsic)], page 67.

6.2.11.8 Procedural and Functional Types

For procedures without a parameter list:
procedure type identifier = procedure name identifier;

or functions:
function type identifier =

function name identifier: function result type;

For procedures with a parameter list:
procedure type identifier =

procedure name identifier (parameter list);

or functions:
function type identifier =

function name identifier (parameter list): function result type;

Procedural types can be used as procedures or functions respectively, but also a value can
be assigned to them. Procedural types are a Borland Pascal extension. In Borland Pascal,
function result type can only be one of these types: ordinal types, real types, pointer types,
the intrinsic ‘String’ type. In GNU Pascal every function result type for procedural types is
allowed.

BP has procedural and functional types:
type

CompareFunction = function (Key1, Key2: String): Integer;

76 The GNU Pascal Manual

function Sort (Compare: CompareFunction);
begin

...
end;

Standard Pascal has procedural and functional parameters:
function Sort (function Compare (Key1, Key2: String): Integer);
begin

...
end;

Both ways have pros and cons, e.g. in BP you can save, compare, trade, etc. procedural
values, or build arrays of them, while the SP way does not require a type declaration and
prevents problems with uninitialized or invalid pointers (which in BP will usually crash the
program).

GPC supports both ways. An important feature of Standard Pascal (but not BP) that GPC
also supports is the possibility to pass local routines as procedural or functional parameters,
even if the called routine is declared far remote. The called routine can then call the passed
local routine and it will have access to the original caller’s local variables.

program LocalProceduralParameterDemo;

procedure CallProcedure (procedure Proc);
begin

Proc
end;

procedure MainProcedure;
var LocalVariable: Integer;

procedure LocalProcedure;
begin
WriteLn (LocalVariable)

end;

begin
LocalVariable := 42;
CallProcedure (LocalProcedure)

end;

begin
MainProcedure

end.

See also: Section 6.1.6.1 [The Procedure], page 50, Section 6.1.6.2 [The Function], page 51,
Section 6.1.6.4 [Subroutine Parameter List Declaration], page 51, Section 6.1.7.11 [Procedure
Call], page 57.

6.2.11.9 Object Types

Object types are used to encapsulate data and methods. Furthermore, they implement a
mechanism for inheritance.

See also

Section 6.8 [OOP], page 84

Chapter 6: The Programmer’s Guide to GPC 77

6.2.11.10 Initial values to type denoters

A type may be initialized to a value of expression when it is declared, like a variable, as in:
program TypeVarInitDemo;
type

Int10 = Integer value 10;
FooType = Real;
MyType = Char value Pred (’A’);
EType = (a, b, c, d, e, f, g) value d;

const
Answer = 42;

var
ii : Int10; { Value of ii set to 10 }
ch : MyType value Pred (’z’);
aa : Integer value Answer + 10;
foo: FooType value Sqr (Answer);
e1 : EType; { value set to d }
e2 : EType value g; { value set to g }

begin
end.

Extended Pascal requires the type initializers to be constant expressions. GPC allows any
valid expression.

Note, however, that the expressions that affect the size of storage allocated for objects (e.g.
the length of arrays) may contain variables only inside functions or procedures.

GPC evaluates the initial values used for the type when an identifier is declared for that type.
If a variable is declared with a type-denoter that uses a type-name which already has an initial
value the latter initialization has precedence.

@@ GPC does not know how to calculate constant values for math functions in the run-
time library at compile time, e.g. ‘Exp (Sin (2.4567))’, so you should not use these kind of
expressions in object size expressions. (Extended Pascal allows this.)

6.2.11.11 Restricted Types

GPC supports ‘restricted’ types, defined in Extended Pascal. A value of a restricted type
may be passed as a value parameter to a formal parameter possessing its underlying type, or
returned as the result of a function. A variable of a restricted type may be passed as a variable
parameter to a formal parameter possessing the same type or its underlying type. No other
operations, such as accessing a component of a restricted type value or performing arithmetic,
are possible.

program RestrictedDemo;

type
UnrestrictedRecord = record

a: Integer;
end;
RestrictedRecord = restricted UnrestrictedRecord;

var
r1: UnrestrictedRecord;

78 The GNU Pascal Manual

r2: RestrictedRecord;
i: restricted Integer;
k: Integer;

function AccessRestricted (p: UnrestrictedRecord): RestrictedRecord;
var URes: UnrestrictedRecord;
begin

{ The parameter is treated as unrestricted, even though the actual
parameter may be a restricted object }

URes.a := p.a;
{ It is allowed to assign a function result }
AccessRestricted := URes;

end;

begin
r1.a := 354;

{ Assigning a restricted function result to a restricted object }
{ @@ Verify if this should really be allowed????? }
r2 := AccessRestricted (r1);

{ Passing a restricted object to unrestricted formal parameter is ok }
r2 := AccessRestricted (r2);

{$ifdef BUG}
{ *** The following statements are not allowed *** }
k := r2.a; { field access (reading) }
r2.a := 100; { field access (writing) }
r1 := r2; { assignment source is restricted }
r2 := r1; { assignment target is restricted }
r1 := AccessRestricted (r2); { assigning a restricted function

result to an unrestricted object }
i := 16#ffff; { assignment target is restricted }
k := i + 2; { arithmetic with restricted value }
{$endif}

end.

6.2.12 Machine-dependencies in Types

6.2.12.1 Endianness

Endianness means the order in which the bytes of a value larger than one byte are stored in
memory. This affects, e.g., integer values and pointers while, e.g., arrays of single-byte characters
are not affected. The GPC ‘String’ schema, however, contains ‘Capacity’ and ‘Length’ fields
before the character array. These fields are integer values larger than one byte, so the ‘String’
schema is affected by endianness.

Endianness depends on the hardware, especially the CPU. The most common forms are:
• Little-endian

Little-endian machines store the least significant byte on the lowest memory address (the
word is stored little-end-first).

Chapter 6: The Programmer’s Guide to GPC 79

E.g., if the 32 bit value $deadbeef is stored on memory address $1234 on a little-endian
machine, the following bytes will occupy the memory positions:
Address Value
$1234 $ef
$1235 $be
$1236 $ad
$1237 $de

Examples for little-endian machines are IA32 and compatible microprocessors and Alpha
processors.

• Big-endian

Big-endian machines store the most significant byte on the lowest memory address (the
word is stored big-end-first).
E.g., if the 32 bit value $deadbeef is stored on memory address $1234 on a big-endian
machine, the following bytes will occupy the memory positions:
Address Value
$1234 $de
$1235 $ad
$1236 $be
$1237 $ef

Examples for big-endian machines are the Sparc and Motorola m68k CPU families and most
RISC processors. Big-endian byte order is also used in the Internet protocols.

Note: There are processors which can run in both little-endian and big-endian mode, e.g. the
MIPS processors. A single program, however, (unless it uses special machine code instructions)
will always run in one endianness.

Under normal circumstances, programs do not need to worry about endianness, the CPU
handles it by itself. Endianness becomes important when exchanging data between different
machines, e.g. via binary files or over a network. To avoid problems, one has to choose the
endianness to use for the data exchange. E.g., the Internet uses big-endian data, and most
known data formats have a specified endianness (usually that of the CPU on which the format
was originally created). If you define your own binary data format, you’re free to choose the
endianness to use.

To deal with endianness, GPC predefines the symbol ‘__BYTES_LITTLE_ENDIAN__’ on little-
endian machines and ‘__BYTES_BIG_ENDIAN__’ on big-endian machines. Besides, the Run Time
System defines the constant ‘BytesBigEndian’ as False on little-endian machines and True on
big-endian machines.

There are also the symbols ‘__BITS_LITTLE_ENDIAN__’, ‘__BITS_BIG_ENDIAN__’,
‘__WORDS_LITTLE_ENDIAN__’, ‘__WORDS_BIG_ENDIAN__’ and the constants ‘BitsBigEndian’
and ‘WordsBigEndian’ which concern the order of bits within a byte (e.g., in packed records)
or of words within multiword-numbers, but these are usually less important.

The Run Time System also contains a number of routines to convert endianness and to read
or write data from/to binary files in a given endianness, independent of the CPU’s endian-
ness. These routines are described in the RTS reference (see Section 6.13 [Run Time System],
page 100), under ‘endianness’. The demo program ‘endiandemo.pas’ contains an example on
how to use these routines.

6.2.12.2 Alignment

(Under construction.) @@ ????

80 The GNU Pascal Manual

6.3 Operators

GNU Pascal supports all operators of ISO Pascal and Borland Pascal. In addition, you can
define your own operators according to the Pascal-SC (PXSC) syntax.

6.3.1 Built-in Operators

The following table lists all built-in GNU Pascal operators, ordered by precedence: ‘<’ etc.
have the lowest precedence, ‘not’ etc. the highest. As usual, the precedence of operators can be
superseded with parentheses.

In an assignment statement, ‘:=’ has lower precedence than all operators. (This is rather
obvious from the syntax of assignment statements, and is merely noted for programmers familiar
with C where ‘=’ is an operator.)

< = > in <> >= <=
+ - or +< -< +> ->
* / div mod and shl shr xor *< /< *> />
pow ** ><
not & @

The Pascal-SC (PXSC) operators ‘+<’, ‘-<’, ‘+>’, ‘->’, ‘*<’, ‘/<’, ‘*>’, and ‘/>’ are not yet
implemented into GNU Pascal but may be defined by the user (see below).

6.3.2 User-defined Operators

GNU Pascal allows the (re-)definition of binary operators according to the Pascal-SC (PXSC)
syntax. The following vector addition example illustrates how to do this:

program OperatorDemo;

type
Vector3 = record

x, y, z: Real;
end;

var
a, b, c: Vector3 = (1, 2, 3);

operator + (u, v: Vector3) w: Vector3;
begin

w.x := u.x + v.x;
w.y := u.y + v.y;
w.z := u.z + v.z;

end;

begin
c := a + b

end.

Between the closing parenthesis of the argument list and the result variable (‘w’ in the above
example), GPC allows an optional equal sign. This is not allowed in PXSC, but it is consistent
with Extended Pascal’s function result variable definitions, where the equal sign is obligatory
(but also optional in GPC).

The argument types needn’t be equal, and the name of the operator may be an identifier
instead of a known symbol. You cannot define new symbols in GPC.

Chapter 6: The Programmer’s Guide to GPC 81

The PXSC operators ‘+>’, ‘+<’, etc. for exact numerical calculations currently are not imple-
mented in GPC, but you can define them. Also, the other real-type operators do not meet the
requirements of PXSC; a module which fixes that would be a welcome contribution.

6.4 Procedure And Function Parameters

6.4.1 Parameters declared as ‘protected’ or ‘const’

All the following works in GPC:
procedure Foo (protected a, b, c: Integer); { 3 arguments }
procedure Foo (a, b, c, protected: Integer); { 4 arguments }
procedure Foo (a, b, protected, c: Integer); { 4 arguments }
procedure Foo (protected: Integer); { 1 argument }
procedure Foo (var protected: Integer); { 1 argument }
procedure Foo (protected protected: Integer); { 1 argument }

Furthermore, GPC supports const, according to BP, which is equivalent to either protected
or protected var, up to the compiler’s discretion.

6.4.2 The Standard way to pass arrays of variable size

@@ (Under construction.)
A feature of Standard Pascal level 1.

6.4.3 BP’s alternative to Conformant Arrays

Borland Pascal “open array” formal parameters are implemented into GPC. Within the
function body, they have integer type index with lower bound 0.

In constrast to conformant arrays (which are not supported by BP), open arrays allow any
ordinal type as the index of the actual parameter (which is useful, e.g., if you want to be able
to pass values of any enumeration type). However, they lose information about the lower bound
(which is a problem, e.g., if you want to return information to the caller that relates to the
actual array index, like the function ‘IOSelect’ in the Run Time System does).

6.5 Accessing parts of strings (and other arrays)

GPC allows the access of parts (“slices”) of strings as defined in Extended Pascal. For
example:

program StringSliceDemo;

const
HelloWorld = ’Hello, world!’;

begin
WriteLn (HelloWorld[8 .. 12]) { yields ‘world’ }

end.

As an extension, it also allows write access to a string slice:
program SliceWriteDemo;

var
s: String (42) = ’Hello, world!’;

82 The GNU Pascal Manual

begin
s[8 .. 12] := ’folks’;
WriteLn (s) { yields ‘Hello, folks!’ }

end.

As a further extension, GPC allows slice access also to non-string arrays. However, the
usefulness of this feature is rather limited because of Pascal’s strict type checking rules: If
you have, e.g., an ‘array [1 .. 10] of Integer’ and take a slice ‘[1 .. 5]’ of it, it will not
be compatible to another ‘array [1 .. 5] of Integer’ because distinct array types are not
compatible in Pascal, even if they look the same.

However, array slice access can be used in connection with conformant or open array param-
eters. See the program ‘arrayslicedemo.pas’ (in the ‘demos’ directory) for an example.

6.6 Pointer Arithmetics

GPC allows to increment, decrement, compare, and subtract pointers or to use them in ‘for’
loops just like the C language.

GPC implements the address operator @ (a Borland Pascal extension).

program PointerArithmeticDemo;
var

a: array [1 .. 7] of Char;
p, q: ^Char;
i: Integer;

{$X+} { We need extended syntax for pointer arithmetic }

begin
for p := @a[1] to @a[7] do
p^ := ’x’;

p := @a[7];
q := @a[3];
while p > q do
begin
p^ := ’y’;
Dec (p)

end;

p := @a[7];
q := @a[3];
i := q - p; { yields 4 }

end.

Incrementing a pointer by one means to increment the address it contains by the size of the
variable it is pointing to. For typeless pointers (‘Pointer’), the address is incremented by one
instead.

Similar things hold when decrementing a pointer.

Subtracting two pointers yields the number of variables pointed to between both pointers,
i.e. the difference of the addresses divided by the size of the variables pointed to. The pointers
must be of the same type.

Chapter 6: The Programmer’s Guide to GPC 83

6.7 Type Casts

In some cases, especially in low-level situations, Pascal’s strong typing can be an obstacle. To
temporarily circumvent this, GPC defines explicit “type casts” in a Borland Pascal compatible
way.

There are two kinds of type casts, value type casts and variable type casts.
Value type casts
To convert a value of one data type into another type, you can use the target type like the

name of a function that is called. The value to be converted can be a variable or an expression.
Both the value’s type and the destination type must be ordinal or pointer types. The ordinal
value (extended to pointers to mean the address) is preserved in the cast.

An example:
program TypeCastDemo;

var
Ch: Char;
i: Integer;

begin
i := Integer (Ch)

end.

Another, more complicated, example:
program TypeCst2Demo;

type
CharPtr = ^Char;
CharArray = array [0 .. 99] of Char;
CharArrayPtr = ^CharArray;

var
Foo1, Foo2: CharPtr;
Bar: CharArrayPtr;

{$X+} { We need extended syntax in order to use ‘‘Succ’’ on a pointer }

begin
Foo1 := CharPtr (Bar);
Foo2 := CharPtr (Succ (Bar))

end.

However, because of risks involved with type casts, explained below, and because type-casts
are non-standard, you should try to avoid type casts whenever possible – and it should be
possible in most cases. For instance, the first example above could use the built-in function
“Ord” instead of the type cast:

i := Ord (Ch);

The assignments in the second example could be written in the following way without any
type casts:

Foo1 := @Bar^[0];
Foo2 := @Bar^[1];

Note: In the case of pointers, a warning is issued if the dereferenced target type requires a
bigger alignment than the dereferenced source type (see Section 6.2.12.2 [Alignment], page 79).

84 The GNU Pascal Manual

Variable type casts
It is also possible to temporarily change the type of a variable (more generally, any “lvalue”,

i.e. something whose address can be taken), without converting its contents in any way. This is
called variable type casting.

The syntax is the same as for value type casting. The type-casted variable is still the same
variable (memory location) as the original one, just with a different type. Outside of the type
cast, the variable keeps its original type.

There are some important differences between value and variable type casting:
• Variable type casting only works on lvalues, not on expressions.
• The result of a variable type casting is still an lvalue, so it can be used, e.g., on the left

side of an assignment, or as the operand of an address operator, or passed by reference to
a procedure.

• No values are converted in variable type-casting. The contents of the variable, seen as a
raw bit pattern, are just interpreted according to the new type.

• Because bit patterns are just interpreted differently, the source and target type must have
the same size. If this is not the case, GPC will give a warning.

• Beware: Variable type casts might have unexpected effects on different platforms since you
cannot rely on a specific way the data is stored (e.g. see Section 6.2.12.1 [Endianness],
page 78).

There are cases where a type-cast could be either a value or a variable cast. This is when
both types are ordinal or pointer, and of the same size, and the value is an lvalue. Fortunately,
in those cases, the results of both forms are the same, since the same ordinal values (or pointer
addresses) are represented by the same bit patterns (when of the same size). Therefore, it
doesn’t matter which form of type-casting is actually used in these cases.

When dealing with objects (see Section 6.8 [OOP], page 84), it is sometimes necessary to
cast a polymorphic pointer to an object into a pointer to a more specialized (derived) object
(after checking the actual type). However, the ‘as’ operator is a safer approach, so type-casts
should be used there only for backward-compatibility (e.g., to BP).

See also: [absolute], page 256, Section 6.2.12.2 [Alignment], page 79, Section 6.2.12.1 [Endian-
ness], page 78, Section 6.8 [OOP], page 84, [Ord], page 368, [Chr], page 286, [Round], page 398,
[Trunc], page 426.

6.8 Object-Oriented Programming

GNU Pascal follows the object model of Borland Pascal 7.0. The BP object extensions are
almost fully implemented into GPC. This includes inheritance, virtual and non-virtual methods,
constructors, destructors, pointer compatibility, extended ‘New’ syntax (with constructor call
and/or as a Boolean function), extended ‘Dispose’ syntax (with destructor call).

The Borland object model is different from the ISO draft, but it will not be too difficult now
to implement that too (plus the Borland Delphi Object Extensions which are quite similar to
the ISO draft).

The syntax for an object type declaration is as follows:
program ObjectDemo;

type
Str100 = String (100);

FooParentPtr = ^FooParent;
FooPtr = ^Foo;

Chapter 6: The Programmer’s Guide to GPC 85

FooParent = object
constructor Init;
destructor Done; virtual;
procedure Bar (c: Real); virtual;
function Baz (b, a, z: Char): Str100; { not virtual }

end;

Foo = object (FooParent)
x, y: Integer;
constructor Init (a, b: Integer);
destructor Done; virtual;
procedure Bar (c: Real); virtual; { overrides ‘FooParent.Bar’ }
z: Real; { GPC extension: data fields after methods }
function Baz: Boolean; { new function }

end;

constructor FooParent.Init;
begin

WriteLn (’FooParent.Init’)
end;

destructor FooParent.Done;
begin

WriteLn (’I’’m also done.’)
end;

procedure FooParent.Bar (c: Real);
begin

WriteLn (’FooParent.Bar (’, c, ’)’)
end;

function FooParent.Baz (b, a, z: Char) = s: Str100;
begin

WriteStr (s, ’FooParent.Baz (’, b, ’, ’, a, ’, ’, z, ’)’)
end;

constructor Foo.Init (a, b: Integer);
begin

inherited Init;
x := a;
y := b;
z := 3.4;
FooParent.Bar (1.7)

end;

destructor Foo.Done;
begin

WriteLn (’I’’m done.’);
inherited Done

end;

86 The GNU Pascal Manual

procedure Foo.Bar (c: Real);
begin

WriteLn (’Foo.Bar (’, c, ’)’)
end;

function Foo.Baz: Boolean;
begin

Baz := True
end;

var
Ptr: FooParentPtr;

begin
Ptr := New (FooPtr, Init (2, 3));
Ptr^.Bar (3);
Dispose (Ptr, Done);
New (Ptr, Init);
with Ptr^ do
WriteLn (Baz (’b’, ’a’, ’z’))

end.

Remarks:
• Data fields and methods can be mixed.
• GPC currently does not support ‘private’ declarations and such. These directives are

syntactically accepted but ignored.
• Constructors and destructors are ordinary functions, internally. When a constructor is

called, GPC creates some inline code to initialize the object; destructors do nothing special.
• Currently, the compiler does not check whether all declared methods are really implemented.

Unimplemented methods will produce linking errors when they are called or if they are
virtual.

A pointer to ‘FooParent’ may be assigned the address of a ‘Foo’ object. A ‘FooParent’
formal ‘var’ parameter may get a ‘Foo’ object as the actual parameter. In such cases, a call to
a ‘virtual’ method calls the child’s method, whereas a call to a non-‘virtual’ method selects
the parent’s one:

var
MyFooParent: FooParentPtr;
SomeFoo: Foo;

[...]

SomeFoo.Init (4, 2);
MyFooParent := @SomeFoo;
MyFooParent^.bar (3.14); { calls ‘foo.bar’ }
MyFooParent^.baz (’b’, ’a’, ’z’); { calls ‘fooParent.baz’ }
if SomeFoo.baz then { calls ‘foo.baz’ }

WriteLn (’Baz!’);

In a method, an overwritten method of a parent object can be called either prefixing it with
the parent type name, or using the keyword ‘inherited’:

procedure Foo.Bar (c: Real);

Chapter 6: The Programmer’s Guide to GPC 87

begin
z := c;
inherited bar (z) { or: FooParent.Bar (z) }

end;

Use ‘FooParent.bar (z)’ if you want to be sure that this method is called, even if somebody
decides not to derive ‘foo’ directly from ‘fooParent’ but to have some intermediate object.
If you want to call the method ‘bar’ of the immediate parent – whether it be ‘fooParent’ or
whatever – use ‘inherited bar (z)’.

To allocate an object on the heap, use ‘New’ in one of the following manners:
var

MyFoo: FooPtr;

[...]

New (MyFoo, Init (4, 2));

MyFooParent := New (FooPtr, Init (4, 2))

The second possibility has the advantage that ‘MyFoo’ needn’t be a ‘FooPtr’ but can also be
a ‘FooParentPtr’, i.e. a pointer to an ancestor of ‘foo’.

Destructors can and should be called within Dispose:
Dispose (MyFooParent, Fini)

6.9 Compiler Directives And The Preprocessor

GPC, like UCSD Pascal and BP, treats comments beginning with a ‘$’ immediately following
the opening ‘{’ or ‘(*’ as a compiler directive. As in Borland Pascal, {$...} and (*$...*) are
equivalent. When a single character plus a ‘+’ or ‘-’ follows, this is also called a compiler switch.
All of these directives are case-insensitive (but some of them have case-sensitive arguments).
Directives are local and can be changed during one compilation (except include files etc. where
this makes no sense).

In general, compiler directives are compiler-dependent. (E.g., only the include directive {$I
FileName} is common to UCSD and BP.) Because of BP’s popularity, GPC supports all of BP’s
compiler directives (and ignores those that are unnecessary on its platforms – these are those
not listed below), but it knows a lot more directives.

Some BP directives are – of course not by chance – just an alternative notation for C prepro-
cessor directives. But there are differences: BP’s conditional definitions (‘{$define Foo}’) go
into another name space than the program’s definitions. Therefore you can define conditionals
and check them via {$ifdef Foo}, but the program will not see them as an identifier ‘Foo’, so
macros do not exist in Borland Pascal.

GPC does support macros, but disables this feature when the ‘--no-macros’ option or the
dialect option ‘--borland-pascal’ or ‘--delphi’ is given, to mimic BP’s behaviour. Therefore,
the following program will react differently when compiled with GPC either without special
options or with, e.g., the ‘--borland-pascal’ option (and in the latter case, it behaves the
same as when compiled with BP).

program MacroDemo;

const Foo = ’Borland Pascal’;

{$define Foo ’Default’}

88 The GNU Pascal Manual

begin
WriteLn (Foo)

end.

Of course, you should not rely on such constructs in your programs. To test if the program
is compiled with GPC, you can test the ‘__GPC__’ conditional, and to test the dialect used in
GPC, you can test the dialect, e.g., with ‘{$ifopt borland-pascal}’.

In general, almost every GPC specific command line option (see Section 5.1 [GPC Command
Line Options], page 33) can be turned into a compiler directive (exceptions are those options
that contain directory names, such as ‘--unit-path’, because they refer to the installation on
a particular system, and therefore should be set system-wide, rather than in a source file):

--foo {$foo}
--no-foo {$no-foo}
-Wbar {$W bar} { note the space after the ‘W’ }
-Wno-bar {$W no-bar}

The following table lists some such examples as well as all those directives that do not
correspond to command-line options or have syntactical alternatives (for convenience and/or
BP compatibility).

--[no-]short-circuit $B+ $B- like in Borland Pascal:
$B- means short-circuit Boolean
operators; $B+ complete evaluation

--[no-]io-checking $I+ $I- like in Borland Pascal:
enable/disable I/O checking

--[no-]stack-checking $S+ $S- like in Borland Pascal:
enable/disable stack checking

--[no-]typed-address $T+ $T- like in Borland Pascal:
make the result of the address
operator and the Addr function a
typed or untyped pointer

-W[no-]warnings $W+ $W- enable/disable warnings. Note: in
‘--borland-pascal’ mode, the
short version is disabled because
$W+/$W- has a different meaning in
Borland Pascal (which can safely be
ignored in GPC), but the long version
is still available.

--[no-]extended-syntax $X+ $X- mostly like in Borland Pascal:
enable/disable extended syntax
(ignore function resuls, operator
definitions, ‘PChar’, pointer
arithmetic, ...)

--borland-pascal disable or warn about GPC features
--extended-pascal not supported by the standard or
--pascal-sc dialect given, do not warn about its
etc. ‘‘dangerous’’ features (especially BP).

The dialect can be changed during one

Chapter 6: The Programmer’s Guide to GPC 89

compilation via directives like,
e.g., ‘{$borland-pascal}’.

{$M Hello!} write message ‘Hello!’ to
standard error during compilation. In
‘--borland-pascal’ mode, it is
ignored it if only numbers follow
(for compatibility to Borland
Pascal’s memory directive)

{$define FOO} like in Borland Pascal:
or define FOO (for conditional compilation)
{$CIDefine FOO} (case-insensitively)

--cidefine=FOO the same on the command line

{$CSDefine FOO} define FOO case-sensitively

-D FOO the same on the command line
or Note: ‘--define’ on the command
--csdefine=FOO line is case-sensitive like in GCC,
or but ‘{$define}’ in the source code
--define=FOO is case-insensitive like in BP

{$define loop while True do} define ‘loop’ to be ‘while True do’
or as a macro like in C. The name of the
{$CIDefine loop ...} macro is case-insensitive. Note:

Macros are disabled in
‘--borland-pascal’ mode because BP
doesn’t support macros.

--cidefine="loop=..." the same on the command line

{$CSDefine loop ...} define a case-sensitive macro

--csdefine="loop=..." the same on the command line
or
--define="loop=..."

{$I FileName} like in Borland Pascal:
include ‘filename.pas’
(the name is converted to lower case)

{$undef FOO} like in Borland Pascal: undefine FOO

{$ifdef FOO} conditional compilation
... (like in Borland Pascal).

{$else} Note: GPC predefines the symbol
... ‘__GPC__’ (with two leading

{$endif} and trailing underscores).

90 The GNU Pascal Manual

{$include "filename.pas"} include (case-sensitive)

{$include <filename.pas>} the same, but don’t search in the
current directory

. . . and all the other C preprocessor directives.
You also can use the preprocessor directives in C style, e.g. ‘#include’, but this is deprecated

because of possible confusion with Borland Pascal style ‘#42’ character constants. Besides, in
the Pascal style, e.g. ‘{$include "foo.bar"}’, there may be more than one directive in the
same line.

6.10 Routines Built-in or in the Run Time System

In this section we describe the routines and other declarations that are built into the compiler
or part of the Run Time System, sorted by topics.

6.10.1 File Routines

Extended Pascal treats files quite differently from Borland Pascal. GPC supports both forms,
even in mixed ways, and provides many extensions.

@@ A lot missing here
• An example of getting the size of a file (though a ‘FileSize’ function is already built-in).

function FileSize (FileName : String) : LongInt;
var

f: bindable file [0 .. MaxInt] of Char;
b: BindingType;

begin
Unbind (f);
b := Binding (f);
b.Name := FileName;
Bind(f, b);
b := Binding(f);
SeekRead (f, 0);
if Empty (f) then
FileSize := 0

else
FileSize := LastPosition (f) + 1;

Unbind(f);
end;

Prospero’s Extended Pascal has a bug in this case. Replace the MaxInt in the type definition
of f by a sufficiently large integer. GNU Pascal works correct in this case.

• GPC implements lazy text file I/O, i.e. does a Put as soon as possible and a Get as late
as possible. This should avoid most of the problems sometimes considered to be the most
stupid feature of Pascal. When passing a file buffer as parameter the buffer is validated
when the parameter is passed.

• GPC supports direct access files. E.g., declaring a type for a file that contains 100 integers.
program DirectAccessFileDemo;
type

DFile = file [1 .. 100] of Integer;
var

F: DFile;

Chapter 6: The Programmer’s Guide to GPC 91

P, N: 1 .. 100;
begin

Rewrite (F);
P := 42;
N := 17;
SeekWrite (F, P);
Write (F, N)

end.

The following direct access routines may be applied to a direct access file:

SeekRead (F, N); { Open file in inspection mode, seek to record N }

SeekWrite (F, N); { Open file in generation mode, seek to record N }

SeekUpdate (F, N); { Open file in update mode, seek to record N }

Update (F); { Writes F^, position not changed. F^ kept. }

p := Position (F); { Yield the current record number }

p := LastPosition (F); { Yield the last record number in file }

If the file is open for inspection or update, Get may be applied. If the file is open for
generation or update, Put may be applied.

• In BP, you can associate file variables with files using the ‘Assign’ procedure which GPC
supports.

program AssignTextDemo;
var

t: Text;
Line: String (4096);

begin
Assign (t, ’mytext.txt’);
Reset (t);
while not EOF (t) do

begin
ReadLn (t, Line);
WriteLn (Line)

end
end.

• In Extended Pascal, files are considered entities external to your program. External entities,
which don’t need to be files, need to be bound to a variable your program. Any variable
to which external entities can be bound needs to be declared ‘bindable’. Extended Pascal
has the ‘Bind’ function that binds a variable to an external entity as well as ‘Unbind’ to
undo a binding and the function ‘Binding’ to get the current binding of a variable.
GPC supports these routines when applied to files. The compiler will reject binding of other
object types.
Only the fields ‘Bound’ and ‘Name’ of the predefined record type ‘BindingType’ are required
by Extended Pascal. Additionally, GPC implements some extensions. For the full definition
of ‘BindingType’, see [BindingType], page 274.
The following is an example of binding:

program BindingDemo (Input, Output, f);

var
f: bindable Text;
b: BindingType;

92 The GNU Pascal Manual

procedure BindFile (var f: Text);
var

b: BindingType;
begin

Unbind (f);
b := Binding (f);
repeat
Write (’Enter a file name: ’);
ReadLn (b.Name);
Bind (f, b);
b := Binding (f);
if not b.Bound then

WriteLn (’File not bound -- try again.’)
until b.Bound

end;

begin
BindFile (f);
{ Now the file f is bound to an external file. We can use the
implementation defined fields of BindingType to check if the
file exists and is readable, writable or executable. }

b := Binding (f);
Write (’The file ’);
if b.Existing then
WriteLn (’exists.’)

else
WriteLn (’does not exist.’);

Write (’It is ’);
if not b.Readable then Write (’not ’);
Write (’readable, ’);
if not b.Writable then Write (’not ’);
Write (’writable and ’);
if not b.Executable then Write (’not ’);
WriteLn (’executable.’)

end.

Note that Prospero’s Pascal defaults to creating the file if it does not exists! You need to use
Prospero’s local addition of setting b.Existing to True to work-around this. GPC does not
behave like this.

6.10.2 String Operations

In the following description, s1 and s2 may be arbitrary string expressions, s is a variable of
string type.

WriteStr (s, write-parameter-list)

ReadStr (s1, read-parameter-list)
Write to a string and read from a string. The parameter lists are identical to
‘Write’/‘Read’ from Text files. The semantics is closely modeled after file I/O.

Index (s1, s2)
If s2 is empty, return 1 else if s1 is empty return 0 else returns the position of s2
in s1 (an integer).

Chapter 6: The Programmer’s Guide to GPC 93

Length (s1)
Return the length of s1 (an integer from 0 .. s1.Capacity).

Trim (s1) Returns a new string with spaces stripped of the end of s.
SubStr (s1, i)

SubStr (s1, i, j)
Return a new substring of s1 that contains j characters starting from i. If j is
missing, return all the characters starting from i.

EQ (s1, s2)

NE (s1, s2)

LT (s1, s2)

LE (s1, s2)

GT (s1, s2)

GE (s1, s2)
Lexicographic comparisons of s1 and s2. Returns a boolean result. Strings are not
padded with spaces.

s1 = s2

s1 <> s2

s1 < s2

s1 <= s2

s1 > s2

s1 >= s2 Lexicographic comparisons of s1 and s2. Returns a boolean result. The shorter
string is blank padded to length of the longer one, but only in ‘--extended-pascal’
mode.

GPC supports string catenation with the + operator or the ‘Concat’ function. All string-
types are compatible, so you may catenate any chars, fixed length strings and variable length
strings.

program ConcatDemo (Input, Output);

var
Ch : Char;
Str : String (100);
Str2: String (50);
FStr: packed array [1 .. 20] of Char;

begin
Ch := ’$’;
FStr := ’demo’; { padded with blanks }
Write (’Give me some chars to play with: ’);
ReadLn (Str);
Str := ’^’ + ’prefix:’ + Str + ’:suffix:’ + FStr + Ch;
WriteLn (Concat (’Le’, ’ng’, ’th’), ’ = ’, Length (Str));
WriteLn (Str)

end.

Note: The length of strings in GPC is limited only by the range of ‘Integer’ (at least 32
bits, i.e., 2 GB), or the available memory, whichever is smaller. :−)

When trying to write programs portable to other EP compilers, it is however safe to assume
a limit of about 32 KB. At least Prospero’s Extended Pascal compiler limits strings to 32760
bytes. DEC Pascal limits strings to 65535 bytes.

94 The GNU Pascal Manual

6.10.3 Accessing Command Line Arguments

GPC supports access to the command line arguments with the BP compatible ParamStr and
ParamCount functions.

• ParamStr[0] is the program name,
• ParamStr[1] .. ParamStr[ParamCount] are the arguments.

The program below accesses the command line arguments.

program CommandLineArgumentsDemo (Output);

var
Counter: Integer;

begin
WriteLn (’This program displays command line arguments one per line.’);
for Counter := 0 to ParamCount do
WriteLn (’Command line argument #’, Counter, ’ is ‘’,

ParamStr (Counter), ’’’’)
end.

6.10.4 Memory Management Routines

Besides the standard ‘New’ and ‘Dispose’ routines, GPC also allows BP style dynamic mem-
ory management with GetMem and FreeMem:

GetMem (MyPtr, 1024);
FreeMem (MyPtr, 1024);

One somehow strange feature of Borland is not supported: You cannot free parts of a variable
with FreeMem, while the rest is still used and can be freed later by another FreeMem call:

program PartialFreeMemDemo;

type
Vector = array [0 .. 1023] of Integer;
VecPtr = ^Vector;

var
p, q: VecPtr;

begin
GetMem (p, 1024 * SizeOf (Integer));
q := VecPtr (@p^[512]);

{ ... }

FreeMem (p, 512 * SizeOf (Integer));

{ ... }

FreeMem (q, 512 * SizeOf (Integer));
end.

Chapter 6: The Programmer’s Guide to GPC 95

6.10.5 Operations for Integer and Ordinal Types

• Bit manipulations: The BP style bit shift operators shl and shr exist in GPC as well as
bitwise and, or, xor and not for integer values.

2#100101 and (1 shl 5) = 2#100000

GPC also supports and, or, xor and not as procedures:
program BitOperatorProcedureDemo;
var x: Integer;
begin

x := 7;
and (x, 14); { sets x to 6 }
xor (x, 3); { sets x to 5 }

end.

• Succ, Pred: The standard functions ‘Succ’ and ‘Pred’ exist in GPC and accept a second
parameter.

• Increment, decrement: The BP built-in Procedures Inc and Dec exist in GPC.
program IncDecDemo;
var

i: Integer;
c: Char;

begin
Inc (i); { i := i + 1; }
Dec (i, 7); { i := i - 7; }
Inc (c, 3); { c := Succ (c, 3); }

end.

• Min, Max: These are a GNU Pascal extension and work for reals as well as for ordinal types.
Mixing reals and integers is okay, the result is real then.

6.10.6 Complex Number Operations

@@ A lot of details missing here
• binary operators +, -, *, / and unary -, +
• exponentiation operators (pow and **)
• functions (Sqr, ArcTan, SqRt, Exp, Ln, Sin, Cos)
• number info with Re, Im and Arg functions
• numbers constructed by Cmplx or Polar

The following sample programs illustrates most of the Complex type operations.
program ComplexOperationsDemo (Output);

var
z1, z2: Complex;
Len, Angle: Real;

begin
z1 := Cmplx (2, 1);
WriteLn;
WriteLn (’Complex number z1 is: (’, Re (z1) : 1, ’,’, Im (z1) : 1, ’)’);
WriteLn;
z2 := Conjugate(z1); { GPC extension }

96 The GNU Pascal Manual

WriteLn (’Conjugate of z1 is: (’, Re (z2) : 1, ’,’, Im (z2) : 1, ’)’);
WriteLn;
Len := Abs (z1);
Angle := Arg (z1);
WriteLn (’The polar representation of z1 is: Length=’, Len : 1,

’, Angle=’, Angle : 1);
WriteLn;
z2 := Polar (Len, Angle);
WriteLn (’Converting (Length, Angle) back to (x, y) gives: (’,

Re (z2) : 1, ’,’, Im (z2) : 1, ’)’);
WriteLn;
WriteLn (’The following operations operate on the complex number z1’);
WriteLn;
z2 := ArcTan (z1);
WriteLn (’ArcTan (z1) = (’, Re (z2), ’, ’, Im (z2), ’)’);
WriteLn;
z2 := z1 ** 3.141;
WriteLn (’z1 ** 3.141 =’, Re (z2), ’, ’, Im (z2), ’)’);
WriteLn;
z2 := Sin (z1);
WriteLn (’Sin (z1) = (’, Re (z2), ’, ’, Im (z2), ’)’);
WriteLn (’(Cos, Ln, Exp, SqRt and Sqr exist also.)’);
WriteLn;
z2 := z1 pow 8;
WriteLn (’z1 pow 8 = (’, Re (z2), ’, ’, Im (z2), ’)’);
WriteLn;
z2 := z1 pow (-8);
WriteLn (’z1 pow (-8) = (’, Re (z2), ’, ’, Im (z2), ’)’);

end.

6.10.7 Set Operations

GPC supports Standard Pascal set operations. In addition it supports the Extended Pas-
cal set operation symmetric difference (set1 >< set2) operation whose result consists of those
elements which are in exactly one of the operannds.

It also has a function that counts the elements in the set: ‘a := Card (set1)’.
In the following description, S1 and S2 are variables of set type, s is of the base type of the

set.

S1 := S2 Assign a set to a set variable.

S1 + S2 Union of sets.

S1 - S2 Difference between two sets.

S1 * S2 Intersection of two sets.

S1 >< S2 Symmetric difference

S1 = S2 Comparison between two sets. Returns boolean result. True if S1 has the same
elements as S2.

S1 <> S2 Comparison between two sets. Returns boolean result. True if S1 does not have the
same elements as S2.

S1 < S2

Chapter 6: The Programmer’s Guide to GPC 97

S2 > S1 Comparison between two sets. Returns boolean result. True if S1 is a strict subset
of S2.

S1 <= S2

S2 >= S1 Comparison between two sets. Returns boolean result. True if S1 is a subset of (or
equal to) S2.

s in S1 Set membership test between an element s and a set. Returns boolean result. True
if s is an element of S1.

The following example demonstrates some set operations. The results of the operations are
given in the comments.

program SetOpDemo;

type
TCharSet = set of Char;

var
S1, S2, S3: TCharSet;
Result: Boolean;

begin
S1 := [’a’, ’b’, ’c’];
S2 := [’c’, ’d’, ’e’];
S3 := S1 + S2; { S3 = [’a’, ’b’, ’c’, ’d’, ’e’] }
S3 := S1 * S2; { S3 = [’c’] }
S3 := S1 - S2; { S3 = [’a’, ’b’] }
S3 := S1 >< S2; { S3 = [’a’, ’b’, ’d’, ’e’] }

S1 := [’c’, ’d’, ’e’];
Result := S1 = S2; { False }
Result := S1 < S2; { False }
Result := S1 <= S2; { True }

S1 := [’c’, ’d’];
Result := S1 <> S2; { True }
Result := S2 > S1; { True }
Result := S2 >= S1 { True }

end.

6.10.8 Date And Time Routines

procedure GetTimeStamp (var t: TimeStamp);

function Date (t: TimeStamp): packed array [1 .. DateLength] of Char;

function Time (t: TimeStamp): packed array [1 .. TimeLength] of Char;

DateLength and TimeLength are implementation dependent constants.
GetTimeStamp (t) fills the record ‘t’ with values. If they are valid, the Boolean flags are set

to True.
TimeStamp is a predefined type in the Extended Pascal standard. It may be extended in

an implementation, and is indeed extended in GPC. For the full definition of ‘TimeStamp’, see
[TimeStamp], page 422.

98 The GNU Pascal Manual

6.11 Interfacing with Other Languages

The standardized GNU compiler back-end makes it relatively easy to share libraries between
GNU Pascal and other GNU compilers. On Unix-like platforms (not on Dos-like platforms), the
GNU compiler back-end usually complies to the standards defined for that system, so commu-
nication with other compilers should be easy, too.

In this chapter we discuss how to import libraries written in other languages, and how to
import libraries written in GNU Pascal from other languages. While the examples will specialize
to compatibility to GNU C, generalization is straightforward if you are familiar with the other
language in question.

6.11.1 Importing Libraries from Other Languages

To use a function written in another language, you need to provide an external declaration
for it – either in the program, or in the interface part of a unit, or an interface module.

Let’s say you want to use the following C library from Pascal:
File ‘callc.c’:

#include <unistd.h>
#include "callc.h"

int foo = 1;

void bar (void)
{

sleep (foo);
}

File ‘callc.h’:

/* Actually, we wouldn’t need this header file, and could instead
put these prototypes into callc.c, unless we want to use callc.c
also from other C source files. */

extern int foo;
extern void bar (void);

Then your program can look like this:
program CallCDemo;

{$L callc.c} { Or: ‘callc.o’ if you don’t have the source }

var
MyFoo: Integer; external name ’foo’;

procedure Bar; external name ’bar’;

begin
MyFoo := 42;
Bar

end.

Or, if you want to provide a ‘CallCUnit’ unit:

Chapter 6: The Programmer’s Guide to GPC 99

unit CallCUnit;

interface

var
MyFoo: Integer; external name ’foo’;

procedure Bar; external name ’bar’;

implementation

{$L callc.c} { Or: ‘callc.o’ if you don’t have the source }

end.

program CallCUDemo;

uses CallCUnit;

begin
MyFoo := 42;
Bar

end.

You can either link your program manually with ‘callc.o’ or put a compiler directive ‘{$L
callc.o}’ into your program or unit, and then GPC takes care of correct linking. If you have
the source of the C library (you always have it if it is Free Software), you can even write ‘{$L
callc.c}’ in the program (like above). Then GPC will also link with ‘callc.o’, but in addition
GPC will run the C compiler whenever ‘callc.c’ has changed if ‘--automake’ is given, too.

While it is often convenient, there is no must to give the C function ‘bar’ the name ‘Bar’
in Pascal; you can name it as you like (e.g., the variable ‘MyFoo’ has a C name of ‘foo’ in the
example above).

If you omit the ‘name’, the default is the Pascal identifier, converted to lower-case. So, in
this example, the ‘name’ could be omitted for ‘Bar’, but not for ‘MyFoo’.

It is important that data types of both languages are mapped correctly onto each other. C’s
‘int’, for instance, translates to GPC’s ‘Integer’, and C’s ‘unsigned long’ to ‘MedCard’. For
a complete list of integer types with their C counterparts, see Section 6.2.3 [Integer Types],
page 62.

In some cases it can be reasonable to translate a C pointer parameter to a Pascal ‘var’
parameter. Since const parameters in GPC can be passed by value or by reference internally,
possibly depending on the system, ‘const foo *’ parameters to C functions cannot reliably be
declared as ‘const’ in Pascal. However, Extended Pascal’s ‘protected var’ can be used since
this guarantees passing by reference.

Some libraries provide a ‘main’ function and require your program’s “main” to be named
differently. To achive this with GPC, invoke it with an option ‘--gpc-main="GPCmain"’ (where
‘GPCmain’ is an example how you might want to name the program). You can also write it into
your source as a directive ‘{$gpc-main="GPCmain"}’.

6.11.2 Exporting GPC Libraries to Other Languages

The ‘.o’ files produced by GPC are in the same format as those of all other GNU compilers,
so there is no problem in writing libraries for other languages in Pascal. To use them, you will
need to write kind of interface – a header file in C. However there are some things to take into
account, especially if your Pascal unit exports objects:

100 The GNU Pascal Manual

• By default, GPC capitalizes the first letter (only) of each identifier, so ‘procedure FooBAR’
must be imported as ‘extern void Foobar()’ from C.

• If you want to specify the external name explicitly, use ‘attribute’:
procedure FooBAR; attribute (name = ’FooBAR’);
begin

WriteLn (’FooBAR’)
end;

This one can be imported from C with ‘extern void FooBar()’.
• Objects are “records” internally. They have an implicit ‘vmt’ field which contains a pointer

to the “virtual method table”. This table is another record of the following structure:
type

VMT = record
ObjectSize: PtrInt; { Size of object in bytes }
NegObjectSize: PtrInt; { Negated size }
Methods: array [1 .. n] of procedure;

{ Pointers to the virtual methods. The entries are of the
repective procedure or function types. }

end;

You can call a virtual method of an object from C if you explicitly declare this ‘struct’
and explicitly dereference the ‘Fun’ array. The VMT of an object ‘FooBAR’ is an external
(in C sense) variable ‘vmt_Foobar’ internally.

• Methods of objects are named ‘Myobject_Mymethod’ (with exactly two capital letters) in-
ternally.

• If you want to put a program in a library for some reason, and you want to give the ‘main’
program an internal name different from ‘main’, call GPC with the command-line option
‘--gpc-main="GPCmain"’ (see the previous subsection).

6.12 Notes for Debugging

• The GNU debugger, ‘gdb’, does not yet understand Pascal sets, files or subranges. Now
‘gdb’ allows you to debug these things, even though it does not yet understand some stabs.

• Forward referencing pointers generate debug info that appears as generic pointers.
• No information of ‘with’ statements is currently given to the debugger.
• When debugging, please note that the Initial Letter In Each Identifier Is In Upper Case And

The Rest Are In Lower Case, unless explicitly overriden with ‘name’ (see [name], page 357).
This is to reduce name clashes with libc and other possible libraries.

• All visible GPC Run Time System routines have linker names starting with ‘_p_’.
• The linker name of the main program is ‘pascal_main_program’. This is done because ISO

Standard wants to have the program name in a separate name space.

6.13 Pascal declarations for GPC’s Run Time System

Below is a Pascal source of the declarations in GPC’s Run Time System (RTS). A file
‘gpc.pas’ with the same contents is included in the GPC distribution in a ‘units’ subdirectory
of the directory containing ‘libgcc.a’. (To find out the correct directory for your installation,
type ‘gpc --print-file-name=units’ on the command line.)

{ This file was generated automatically from gpc-pas.in.
DO NOT CHANGE THIS FILE MANUALLY! }

Chapter 6: The Programmer’s Guide to GPC 101

{ Pascal declarations of the GPC Run Time System that are visible to
each program.

This unit contains Pascal declarations of many RTS routines which
are not built into the compiler and can be called from programs.
Don’t copy the declarations from this unit into your programs, but
rather include this unit with a ‘uses’ statement. The reason is
that the internal declarations, e.g. the linker names, may change,
and this unit will be changed accordingly. @@In the future, this
unit might be included into every program automatically, so there
will be no need for a ‘uses’ statement to make the declarations
here available.

Note about ‘protected var’ parameters:
Since ‘const’ parameters in GPC may be passed by value *or* by
reference internally, possibly depending on the system,
‘const foo*’ parameters to C functions *cannot* reliably be
declared as ‘const’ in Pascal. However, Extended Pascal’s
‘protected var’ can be used since this guarantees passing by
reference.

Copyright (C) 1998-2003 Free Software Foundation, Inc.

Authors: Jukka Virtanen <jtv@hut.fi>
Peter Gerwinski <peter@gerwinski.de>
Frank Heckenbach <frank@pascal.gnu.de>
J.J. v.der Heijden <j.j.vanderheijden@student.utwente.nl>
Nicola Girardi <nicola@g-n-u.de>
Prof. Abimbola A. Olowofoyeku <African_Chief@bigfoot.com>
Emil Jerabek <jerabek@math.cas.cz>
Maurice Lombardi <Maurice.Lombardi@ujf-grenoble.fr>
Toby Ewing <ewing@iastate.edu>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled

102 The GNU Pascal Manual

with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ <> 20030507}
{$error
Trying to compile gpc.pas with a non-matching GPC version is likely
to cause problems.

In case you are building the RTS separately from GPC, make sure you
install a current GPC version previously. If you are building GPC
now and this message appears, something is wrong -- if you are
overriding the GCC_FOR_TARGET or GPC_FOR_TARGET make variables, this
might be the problem. If you are cross-building GPC, build and
install a current GPC cross-compiler first, sorry. If that’s not the
case, please report it as a bug.

If you are not building GPC or the RTS currently, you might have
installed things in the wrong place, so the compiler and RTS
versions do not match.}
{$endif}

{ Command-line options must not change the layout of RTS types
declared here. }

{$no-pack-struct, maximum-field-alignment 0}

module GPC;

export
GPC = all;
GPC_SP = (ERead { @@ not really, but an empty export doesn’t work
});
GPC_EP = (ERead { @@ not really, but an empty export doesn’t work
});
GPC_BP = (MaxLongInt, ExitCode, ErrorAddr, FileMode, Pos);
GPC_Delphi = (MaxLongInt, Int64, InitProc, EConvertError,

ExitCode, ErrorAddr, FileMode, Pos, SetString,
StringOfChar,

TextFile, AssignFile, CloseFile);

{ Pascal declarations of the GPC Run Time System routines that are
implemented in C, from rtsc.pas }

const
MaxLongInt = High (LongInt);

{ Maximum size of a variable }
MaxVarSize = MaxInt div 8;

Chapter 6: The Programmer’s Guide to GPC 103

{ If set, characters >= #$80 are assumed to be letters even if the
locale routines don’t say so. This is a kludge because some
systems don’t have correct non-English locale tables. }

var
FakeHighLetters: Boolean; attribute (name = ’_p_FakeHighLetters’);
external;

type
PCStrings = ^TCStrings;
TCStrings = array [0 .. MaxVarSize div SizeOf (CString) - 1] of
CString;

Int64 = Integer attribute (Size = 64);
UnixTimeType = LongInt; { This is hard-coded in the compiler. Do
not change here. }
MicroSecondTimeType = LongInt;
FileSizeType = LongInt;
SignedSizeType = Integer attribute (Size = BitSizeOf (SizeType));
TSignalHandler = procedure (Signal: Integer);

StatFSBuffer = record
BlockSize, BlocksTotal, BlocksFree: LongestInt;
FilesTotal, FilesFree: Integer

end;

InternalSelectType = record
Handle: Integer;
Read, Write, Exception: Boolean

end;

PString = ^String;

{ ‘Max’ so the size of the array is not zero for Count = 0 }
PPStrings = ^TPStrings;
TPStrings (Count: Cardinal) = array [1 .. Max (Count, 1)] of
PString;

GlobBuffer = record
Result: PPStrings;
Internal1: Pointer;
Internal2: PCStrings;
Internal3: Integer

end;

{ Mathematical routines }

function SinH (x: Real): Real; attribute (const); external
name ’_p_SinH’;

function CosH (x: Real): Real; attribute (const); external
name ’_p_CosH’;

104 The GNU Pascal Manual

function ArcTan2 (y: Real; x: Real): Real; attribute (const);
external name ’_p_ArcTan2’;

function IsInfinity (x: LongReal): Boolean; attribute (const);
external name ’_p_IsInfinity’;

function IsNotANumber (x: LongReal): Boolean; attribute (const);
external name ’_p_IsNotANumber’;

procedure SplitReal (x: LongReal; var Exponent: Integer; var
Mantissa: LongReal); external name ’_p_SplitReal’;

{ Character routines }

{ Convert a character to upper case, according to the current
locale.
Except in ‘--borland-pascal’ mode, ‘UpCase’ does the same. }

function UpCase (ch: Char): Char; attribute (const); external
name ’_p_UpCase’;

{ Convert a character to lower case, according to the current
locale.
Except in ‘--borland-pascal’ mode, ‘UpCase’ does the same. }

function LoCase (ch: Char): Char; attribute (const); external
name ’_p_LoCase’;

function IsUpCase (ch: Char): Boolean; attribute (const); external
name ’_p_IsUpCase’;

function IsLoCase (ch: Char): Boolean; attribute (const); external
name ’_p_IsLoCase’;

function IsAlpha (ch: Char): Boolean; attribute (const); external
name ’_p_IsAlpha’;

function IsAlphaNum (ch: Char): Boolean; attribute (const);
external name ’_p_IsAlphaNum’;

function IsAlphaNumUnderscore (ch: Char): Boolean; attribute
(const); external name ’_p_IsAlphaNumUnderscore’;

function IsSpace (ch: Char): Boolean; attribute (const); external
name ’_p_IsSpace’;

function IsPrintable (ch: Char): Boolean; attribute (const);
external name ’_p_IsPrintable’;

{ Time routines }

{ Sleep for a given number of seconds. }
procedure Sleep (Seconds: Integer); external name ’_p_Sleep’;

{ Sleep for a given number of microseconds. }
procedure SleepMicroSeconds (MicroSeconds: Integer); external

name ’_p_SleepMicroSeconds’;

{ Set an alarm timer. }
function Alarm (Seconds: Integer): Integer; external

name ’_p_Alarm’;

{ Convert a Unix time value to broken-down local time.

Chapter 6: The Programmer’s Guide to GPC 105

All parameters except Time may be Null. }
procedure UnixTimeToTime (Time: UnixTimeType; var Year: Integer; var

Month: Integer; var Day: Integer; var Hour: Integer; var Minute:
Integer; var Second: Integer;

var TimeZone: Integer; var DST:
Boolean; var TZName1: CString; var TZName2: CString); external
name ’_p_UnixTimeToTime’;

{ Convert broken-down local time to a Unix time value. }
function TimeToUnixTime (Year: Integer; Month: Integer; Day:

Integer; Hour: Integer; Minute: Integer; Second: Integer):
UnixTimeType; external name ’_p_TimeToUnixTime’;

{ Get the real time. MicroSecond can be Null and is ignored then. }
function GetUnixTime (var MicroSecond: Integer): UnixTimeType;

external name ’_p_GetUnixTime’;

{ Get the CPU time used. MicroSecond can be Null and is ignored
then. Now, GetCPUTime can measure long CPU times reliably on most
systems (e.g. Solaris where it didn’t work before). }

function GetCPUTime (var MicroSecond: Integer): Integer; external
name ’_p_GetCPUTime’;

{ Signal and process routines }

{ Extract information from the status returned by PWait }
function StatusExited (Status: Integer): Boolean; attribute

(const); external name ’_p_StatusExited’;
function StatusExitCode (Status: Integer): Integer; attribute

(const); external name ’_p_StatusExitCode’;
function StatusSignaled (Status: Integer): Boolean; attribute

(const); external name ’_p_StatusSignaled’;
function StatusTermSignal (Status: Integer): Integer; attribute

(const); external name ’_p_StatusTermSignal’;
function StatusStopped (Status: Integer): Boolean; attribute

(const); external name ’_p_StatusStopped’;
function StatusStopSignal (Status: Integer): Integer; attribute

(const); external name ’_p_StatusStopSignal’;

{ Install a signal handler and optionally return the previous
handler. OldHandler and OldRestart may be Null. }

function InstallSignalHandler (Signal: Integer; Handler:
TSignalHandler; Restart: Boolean; UnlessIgnored: Boolean;
var OldHandler: TSignalHandler; var OldRestart: Boolean): Boolean;
external name ’_p_InstallSignalHandler’;

{ Block or unblock a signal. }
procedure BlockSignal (Signal: Integer; Block: Boolean); external

name ’_p_BlockSignal’;

{ Test whether a signal is blocked. }

106 The GNU Pascal Manual

function SignalBlocked (Signal: Integer): Boolean; external
name ’_p_SignalBlocked’;

{ Sends a signal to a process. Returns True if successful. If Signal
is 0, it doesn’t send a signal, but still checks whether it would
be possible to send a signal to the given process. }

function Kill (PID: Integer; Signal: Integer): Boolean; external
name ’_p_Kill’;

{ Constant for WaitPID }
const

AnyChild = -1;

{ Waits for a child process with the given PID (or any child process
if PID = AnyChild) to terminate or be stopped. Returns the PID of
the process. WStatus will contain the status and can be evaluated
with StatusExited etc.. If nothing happened, and Block is False,
the function will return 0, and WStatus will be 0. If an error
occurred (especially on single tasking systems where WaitPID is
not possible), the function will return a negative value, and
WStatus will be 0. }

function WaitPID (PID: Integer; var WStatus: Integer; Block:
Boolean): Integer; external name ’_p_WaitPID’;

{ Returns the process ID. }
function ProcessID: Integer; external name ’_p_ProcessID’;

{ Returns the process group. }
function ProcessGroup: Integer; external name ’_p_ProcessGroup’;

{ Returns the real or effective user ID of the process. }
function UserID (Effective: Boolean): Integer; external

name ’_p_UserID’;

{ Tries to change the real and/or effective user ID. }
function SetUserID (Real: Integer; Effective: Integer): Boolean;

external name ’_p_SetUserID’;

{ Returns the real or effective group ID of the process. }
function GroupID (Effective: Boolean): Integer; external

name ’_p_GroupID’;

{ Tries to change the real and/or effective group ID. }
function SetGroupID (Real: Integer; Effective: Integer): Boolean;

external name ’_p_SetGroupID’;

{ Low-level file routines. Mostly for internal use. }

{ Get information about a file system. }
function StatFS (Path: CString; var Buf: StatFSBuffer): Boolean;

external name ’_p_StatFS’;

Chapter 6: The Programmer’s Guide to GPC 107

function CStringOpenDir (DirName: CString): Pointer; external
name ’_p_CStringOpenDir’;

function CStringReadDir (Dir: Pointer): CString; external
name ’_p_CStringReadDir’;

procedure CStringCloseDir (Dir: Pointer); external
name ’_p_CStringCloseDir’;

{ Returns the value of the symlink FileName in a CString allocated
from the heap. Returns nil if it is no symlink or the function
is not supported. }

function ReadLink (FileName: CString): CString; external
name ’_p_ReadLink’;

{ The result of the following function is a pointer to a *static*
buffer! }

function CStringRealPath (Path: CString): CString; external
name ’_p_CStringRealPath’;

{ File mode constants that are ORed for BindingType.Mode, ChMod,
CStringChMod and Stat. The values below are valid for all OSs
(as far as supported). If the OS uses different values, they’re
converted internally. }

const
fm_SetUID = 8#4000;
fm_SetGID = 8#2000;
fm_Sticky = 8#1000;
fm_UserReadable = 8#400;
fm_UserWritable = 8#200;
fm_UserExecutable = 8#100;
fm_GroupReadable = 8#40;
fm_GroupWritable = 8#20;
fm_GroupExecutable = 8#10;
fm_OthersReadable = 8#4;
fm_OthersWritable = 8#2;
fm_OthersExecutable = 8#1;

{ Constants for _p_Access() and _p_OpenHandle() }
const

MODE_EXEC = 1 shl 0;
MODE_WRITE = 1 shl 1;
MODE_READ = 1 shl 2;
MODE_FILE = 1 shl 3;
MODE_DIR = 1 shl 4;
MODE_SPECIAL = 1 shl 5;
MODE_SYMLINK = 1 shl 6;
MODE_CREATE = 1 shl 7;
MODE_TRUNCATE = 1 shl 8;
MODE_BINARY = 1 shl 9;

{ Check if a file name is accessible. }
function Access (FileName: CString; Request: Integer): Integer;

108 The GNU Pascal Manual

external name ’_p_Access’;

{ Get information about a file. Any argument except Name can
be Null. }

function Stat (FileName: CString; var Size: FileSizeType;
var ATime: UnixTimeType; var MTime: UnixTimeType; var CTime:
UnixTimeType;
var User: Integer; var Group: Integer; var Mode: Integer; var
Device: Integer; var INode: Integer; var Links: Integer;
var SymLink: Boolean; var Dir: Boolean; var Special: Boolean):
Integer; external name ’_p_Stat’;

function OpenHandle (FileName: CString; Mode: Integer): Integer;
external name ’_p_OpenHandle’;

function ReadHandle (Handle: Integer; Buffer: Pointer; Size:
SizeType): SignedSizeType; external name ’_p_ReadHandle’;

function WriteHandle (Handle: Integer; Buffer: Pointer; Size:
SizeType): SignedSizeType; external name ’_p_WriteHandle’;

function CloseHandle (Handle: Integer): Integer; external
name ’_p_CloseHandle’;

procedure FlushHandle (Handle: Integer); external
name ’_p_FlushHandle’;

function DupHandle (Src: Integer; Dest: Integer): Integer; external
name ’_p_DupHandle’;

function CStringRename (OldName: CString; NewName: CString):
Integer; external name ’_p_CStringRename’;

function CStringUnlink (FileName: CString): Integer; external
name ’_p_CStringUnlink’;

function CStringChDir (FileName: CString): Integer; external
name ’_p_CStringChDir’;

function CStringMkDir (FileName: CString): Integer; external
name ’_p_CStringMkDir’;

function CStringRmDir (FileName: CString): Integer; external
name ’_p_CStringRmDir’;

function CStringChMod (FileName: CString; Mode: Integer): Integer;
external name ’_p_CStringChMod’;

function CStringChOwn (FileName: CString; Owner: Integer; Group:
Integer): Integer; external name ’_p_CStringChOwn’;

function CStringUTime (FileName: CString; AccessTime: UnixTimeType;
ModificationTime: UnixTimeType): Integer; external
name ’_p_CStringUTime’;

function SeekHandle (Handle: Integer; Offset: FileSizeType; Whence:
Integer): FileSizeType; external name ’_p_SeekHandle’;

function TruncateHandle (Handle: Integer; Size: FileSizeType):
Integer; external name ’_p_TruncateHandle’;

function LockHandle (Handle: Integer; WriteLock: Boolean; Block:
Boolean): Boolean; external name ’_p_LockHandle’;

function UnlockHandle (Handle: Integer): Boolean; external
name ’_p_UnlockHandle’;

function SelectHandle (Count: Integer; var Events:
InternalSelectType; MicroSeconds: MicroSecondTimeType): Integer;
external name ’_p_SelectHandle’;

Chapter 6: The Programmer’s Guide to GPC 109

{ Constants for MMapHandle and MemoryMap }
const

mm_Readable = 1;
mm_Writable = 2;
mm_Executable = 4;

{ Try to map (a part of) a file to memory. }
function MMapHandle (Start: Pointer; Length: SizeType; Access:

Integer; Shared: Boolean; Handle: Integer; Offset: FileSizeType):
Pointer; external name ’_p_MMapHandle’;

{ Unmap a previous memory mapping. }
function MUnMapHandle (Start: Pointer; Length: SizeType): Integer;

external name ’_p_MUnMapHandle’;

{ Returns the file name of the terminal device that is open on
Handle. Returns nil if (and only if) Handle is not open or not
connected to a terminal. If NeedName is False, it doesn’t bother
to search for the real name and just returns DefaultName if it
is a terminal and nil otherwise. DefaultName is also returned if
NeedName is True, Handle is connected to a terminal, but the
system does not provide information about the real file name. }

function GetTerminalNameHandle (Handle: Integer; NeedName: Boolean;
DefaultName: CString): CString; external
name ’_p_GetTerminalNameHandle’;

{ I/O routines }

{ Sets the process group of Process (or the current one if Process
is 0) to ProcessGroup (or its PID if ProcessGroup is 0). Returns
True if successful. }

function SetProcessGroup (Process: Integer; ProcessGroup: Integer):
Boolean; external name ’_p_SetProcessGroup’;

{ Sets the process group of a terminal given by Terminal (as a file
handle) to ProcessGroup. ProcessGroup must be the ID of a process
group in the same session. Returns True if successful. }

function SetTerminalProcessGroup (Handle: Integer; ProcessGroup:
Integer): Boolean; external name ’_p_SetTerminalProcessGroup’;

{ Returns the process group of a terminal given by Terminal (as a
file handle), or -1 on error. }

function GetTerminalProcessGroup (Handle: Integer): Integer;
external name ’_p_GetTerminalProcessGroup’;

{ Set the standard input’s signal generation, if it is a terminal. }
procedure SetInputSignals (Signals: Boolean); external

name ’_p_SetInputSignals’;

{ Get the standard input’s signal generation, if it is a terminal. }

110 The GNU Pascal Manual

function GetInputSignals: Boolean; external
name ’_p_GetInputSignals’;

{ Internal routines }

{ Returns system information if available. Fields not available will
be set to nil. }

procedure CStringSystemInfo (var SysName: CString; var NodeName:
CString; var Release: CString; var Version: CString; var Machine:
CString; var DomainName: CString); external
name ’_p_CStringSystemInfo’;

{ Returns the path of the running executable *if possible*. }
function CStringExecutablePath (Buffer: CString): CString; external

name ’_p_CStringExecutablePath’;

{ Sets ErrNo to the value of ‘errno’ and returns the description
for this error. May return nil if not supported! ErrNo may be
Null (then only the description is returned). }

function CStringStrError (var ErrNo: Integer): CString; external
name ’_p_CStringStrError’;

{ File routines }

type
TOpenMode = (fo_None, fo_Reset, fo_Rewrite, fo_Append,
fo_SeekRead, fo_SeekWrite, fo_SeekUpdate);
PAnyFile = ^AnyFile;

var
FileMode: Integer; external name ’_p_FileMode’; external;

procedure GetBinding (protected var aFile: AnyFile; var aBinding:
BindingType); external name ’_p_Binding’;

procedure ClearBinding (var aBinding: BindingType); external
name ’_p_ClearBinding’;

{ TFDD interface @@ Subject to change! Use with caution! }

type
TOpenProc = procedure (var PrivateData; Mode: TOpenMode);
TSelectFunc = function (var PrivateData; Writing: Boolean):
Integer; { called before SelectHandle, must return a file handle
}
TSelectProc = procedure (var PrivateData; var ReadSelect,
WriteSelect, ExceptSelect: Boolean); { called before and after
SelectHandle }
TReadFunc = function (var PrivateData; var Buffer; Size:
SizeType): SizeType;
TWriteFunc = function (var PrivateData; const Buffer; Size:
SizeType): SizeType;

Chapter 6: The Programmer’s Guide to GPC 111

TFileProc = procedure (var PrivateData);
TFlushProc = TFileProc;
TCloseProc = TFileProc;
TDoneProc = TFileProc;

procedure AssignTFDD (var f: AnyFile;
OpenProc : TOpenProc;
SelectFunc : TSelectFunc;
SelectProc : TSelectProc;
ReadFunc : TReadFunc;
WriteFunc : TWriteFunc;
FlushProc : TFlushProc;
CloseProc : TCloseProc;
DoneProc : TDoneProc;
PrivateData: Pointer); external

name ’_p_AssignTFDD’;

procedure SetTFDD (var f: AnyFile;
OpenProc : TOpenProc;
SelectFunc : TSelectFunc;
SelectProc : TSelectProc;
ReadFunc : TReadFunc;
WriteFunc : TWriteFunc;
FlushProc : TFlushProc;
CloseProc : TCloseProc;
DoneProc : TDoneProc;
PrivateData: Pointer); external

name ’_p_SetTFDD’;

{ Any parameter except f may be Null }
procedure GetTFDD (var f: AnyFile;

var OpenProc : TOpenProc;
var SelectFunc : TSelectFunc;
var SelectProc : TSelectProc;
var ReadFunc : TReadFunc;
var WriteFunc : TWriteFunc;
var FlushProc : TFlushProc;
var CloseProc : TCloseProc;
var DoneProc : TDoneProc;
var PrivateData: Pointer); external

name ’_p_GetTFDD’;

procedure FileMove (var f: AnyFile; NewName: CString; Overwrite:
Boolean); attribute (iocritical); external name ’_p_Mv’;

{ Flags that can be ORed into FileMode. The default value of
FileMode is FileMode_Reset_ReadWrite. The somewhat confusing
values are meant to be compatible to BP (as far as BP supports
them). }

const
{ Allow writing to binary files opened with Reset }

112 The GNU Pascal Manual

FileMode_Reset_ReadWrite = 2;

{ Do not allow reading from files opened with Rewrite }
FileMode_Rewrite_WriteOnly = 4;

{ Do not allow reading from files opened with Extend }
FileMode_Extend_WriteOnly = 8;

{ Allow writing to text files opened with Reset }
FileMode_Text_Reset_ReadWrite = $100;

type
TextFile = Text;

const
NoChange = -1; { can be passed to ChOwn for Owner and/or Group to
not change that value }

procedure CloseFile (var aFile: AnyFile); external name ’_p_Close’;
procedure ChMod (var aFile: AnyFile; Mode: Integer); attribute

(iocritical); external name ’_p_ChMod’;
procedure ChOwn (var aFile: AnyFile; Owner, Group: Integer);

attribute (iocritical); external name ’_p_ChOwn’;

{ Checks if data are available to be read from aFile. This is
similar to ‘not EOF (aFile)’, but does not block on "files" that
can grow, like Ttys or pipes. }

function CanRead (var aFile: AnyFile): Boolean; external
name ’_p_CanRead’;

{ Get the file handle. }
function FileHandle (protected var aFile: AnyFile): Integer;

external name ’_p_FileHandle’;

{ Lock files }
function FileLock (var aFile: AnyFile; WriteLock, Block:

Boolean): Boolean; external name ’_p_FileLock’;
function FileUnlock (var aFile: AnyFile): Boolean; external

name ’_p_FileUnlock’;

{ Try to map (a part of) a file to memory. }
function MemoryMap (Start: Pointer; Length: SizeType; Access:

Integer; Shared: Boolean;
var aFile: AnyFile; Offset: FileSizeType):

Pointer; external name ’_p_MemoryMap’;

{ Unmap a previous memory mapping. }
procedure MemoryUnMap (Start: Pointer; Length: SizeType); external

name ’_p_MemoryUnMap’;

{ Mathematical routines, from math.pas }

Chapter 6: The Programmer’s Guide to GPC 113

function Ln1Plus (x: Real): Real; attribute (const, name
= ’_p_Ln1Plus’); external;

{ String handling routines (lower level), from string.pas }

{ TString is a string type that is used for function results and
local variables, as long as undiscriminated strings are not
allowed there. The default size of 2048 characters should be
enough for file names on any system, but can be changed when
necessary. It should be at least as big as MAXPATHLEN. }

const
TStringSize = 2048;
SpaceCharacters = [’ ’, #9];
NewLine = "\n"; { the separator of lines within a string }
LineBreak = {$if defined (__OS_DOS__) and not defined
(__CYGWIN__)}

"\r\n"
{$else}
"\n"
{$endif}; { the separator of lines within a file }

type
TString = String (TStringSize);
TStringBuf = packed array [0 .. TStringSize] of Char;
CharSet = set of Char;
Str64 = String (64);

var
CParamCount: Integer; attribute (name = ’_p_CParamCount’);
external;
CParameters: PCStrings; attribute (name = ’_p_CParameters’);
external;

function MemCmp (const s1, s2; Size: SizeType): Integer;
external name ’memcmp’;

function MemComp (const s1, s2; Size: SizeType): Integer;
external name ’memcmp’;

function MemCompCase (const s1, s2; Size: SizeType): Boolean;
attribute (name = ’_p_MemCompCase’); external;

procedure UpCaseString (var s: String); attribute (name
= ’_p_UpCaseString’); external;

procedure LoCaseString (var s: String); attribute (name
= ’_p_LoCaseString’); external;

function UpCaseStr (const s: String): TString; attribute
(name = ’_p_UpCaseStr’); external;

function LoCaseStr (const s: String): TString; attribute
(name = ’_p_LoCaseStr’); external;

114 The GNU Pascal Manual

function StrEqualCase (const s1, s2: String): Boolean; attribute
(name = ’_p_StrEqualCase’); external;

function Pos (const SubString, s: String): Integer;
attribute (name = ’_p_Pos’); external;

function LastPos (const SubString, s: String): Integer;
attribute (name = ’_p_LastPos’); external;

function PosCase (const SubString, s: String): Integer;
attribute (name = ’_p_PosCase’); external;

function LastPosCase (const SubString, s: String): Integer;
attribute (name = ’_p_LastPosCase’); external;

function CharPos (const Chars: CharSet; const s: String):
Integer; attribute (name = ’_p_CharPos’); external;

function LastCharPos (const Chars: CharSet; const s: String):
Integer; attribute (name = ’_p_LastCharPos’); external;

function PosFrom (const SubString, s: String; From:
Integer): Integer; attribute (name = ’_p_PosFrom’); external;

function LastPosTill (const SubString, s: String; Till:
Integer): Integer; attribute (name = ’_p_LastPosTill’); external;

function PosFromCase (const SubString, s: String; From:
Integer): Integer; attribute (name = ’_p_PosFromCase’); external;

function LastPosTillCase (const SubString, s: String; Till:
Integer): Integer; attribute (name = ’_p_LastPosTillCase’);
external;

function CharPosFrom (const Chars: CharSet; const s: String;
From: Integer): Integer; attribute (name = ’_p_CharPosFrom’);
external;

function LastCharPosTill (const Chars: CharSet; const s: String;
Till: Integer): Integer; attribute (name = ’_p_LastCharPosTill’);
external;

function IsPrefix (const Prefix, s: String): Boolean;
attribute (name = ’_p_IsPrefix’); external;

function IsSuffix (const Suffix, s: String): Boolean;
attribute (name = ’_p_IsSuffix’); external;

function IsPrefixCase (const Prefix, s: String): Boolean;
attribute (name = ’_p_IsPrefixCase’); external;

function IsSuffixCase (const Suffix, s: String): Boolean;
attribute (name = ’_p_IsSuffixCase’); external;

function CStringLength (Src: CString): SizeType; attribute
(inline, name = ’_p_CStringLength’); external;

function CStringEnd (Src: CString): CString; attribute
(inline, name = ’_p_CStringEnd’); external;

function CStringNew (Src: CString): CString; attribute
(name = ’_p_CStringNew’); external;

function CStringComp (s1, s2: CString): Integer; attribute
(name = ’_p_CStringComp’); external;

function CStringCaseComp (s1, s2: CString): Integer; attribute
(name = ’_p_CStringCaseComp’); external;

Chapter 6: The Programmer’s Guide to GPC 115

function CStringLComp (s1, s2: CString; MaxLen: SizeType):
Integer; attribute (name = ’_p_CStringLComp’); external;

function CStringLCaseComp (s1, s2: CString; MaxLen: SizeType):
Integer; attribute (name = ’_p_CStringLCaseComp’); external;

function CStringCopy (Dest, Source: CString): CString;
attribute (name = ’_p_CStringCopy’); external;

function CStringCopyEnd (Dest, Source: CString): CString;
attribute (name = ’_p_CStringCopyEnd’); external;

function CStringLCopy (Dest, Source: CString; MaxLen:
SizeType): CString; attribute (name = ’_p_CStringLCopy’);
external;

function CStringMove (Dest, Source: CString; Count:
SizeType): CString; attribute (name = ’_p_CStringMove’); external;

function CStringCat (Dest, Source: CString): CString;
attribute (name = ’_p_CStringCat’); external;

function CStringLCat (Dest, Source: CString; MaxLen:
SizeType): CString; attribute (name = ’_p_CStringLCat’); external;

function CStringChPos (Src: CString; ch: Char): CString;
attribute (inline, name = ’_p_CStringChPos’); external;

function CStringLastChPos (Src: CString; ch: Char): CString;
attribute (inline, name = ’_p_CStringLastChPos’); external;

function CStringPos (s, SubString: CString): CString;
attribute (name = ’_p_CStringPos’); external;

function CStringLastPos (s, SubString: CString): CString;
attribute (name = ’_p_CStringLastPos’); external;

function CStringCasePos (s, SubString: CString): CString;
attribute (name = ’_p_CStringCasePos’); external;

function CStringLastCasePos (s, SubString: CString): CString;
attribute (name = ’_p_CStringLastCasePos’); external;

function CStringUpCase (s: CString): CString; attribute (name
= ’_p_CStringUpCase’); external;

function CStringLoCase (s: CString): CString; attribute (name
= ’_p_CStringLoCase’); external;

function CStringIsEmpty (s: CString): Boolean; attribute (name
= ’_p_CStringIsEmpty’); external;

function NewCString (const Source: String): CString;
attribute (name = ’_p_NewCString’); external;

function CStringCopyString (Dest: CString; const Source: String):
CString; attribute (name = ’_p_CStringCopyString’); external;

procedure CopyCString (Source: CString; var Dest: String);
attribute (name = ’_p_CopyCString’); external;

function NewString (const s: String): PString; attribute
(name = ’_p_NewString’); external;

procedure DisposeString (p: PString); external name ’_p_Dispose’;

procedure SetString (var s: String; Buffer: PChar; Count:
Integer); attribute (name = ’_p_SetString’); external;

function StringOfChar (ch: Char; Count: Integer) = s: TString;
attribute (name = ’_p_StringOfChar’); external;

116 The GNU Pascal Manual

procedure TrimLeft (var s: String); attribute (name
= ’_p_TrimLeft’); external;

procedure TrimRight (var s: String); attribute (name
= ’_p_TrimRight’); external;

procedure TrimBoth (var s: String); attribute (name
= ’_p_TrimBoth’); external;

function TrimLeftStr (const s: String): TString; attribute
(name = ’_p_TrimLeftStr’); external;

function TrimRightStr (const s: String): TString; attribute
(name = ’_p_TrimRightStr’); external;

function TrimBothStr (const s: String): TString; attribute
(name = ’_p_TrimBothStr’); external;

function LTrim (const s: String): TString; external
name ’_p_TrimLeftStr’;

function GetStringCapacity (const s: String): Integer; attribute
(name = ’_p_GetStringCapacity’); external;

{ A shortcut for a common use of WriteStr as a function }
function Integer2String (i: Integer): Str64; attribute (name

= ’_p_Integer2String’); external;

{ String handling routines (higher level), from string2.pas }

type
PChars0 = ^TChars0;
TChars0 = array [0 .. MaxVarSize div SizeOf (Char) - 1] of Char;

PChars = ^TChars;
TChars = packed array [1 .. MaxVarSize div SizeOf (Char)] of Char;

{ Under development. Interface subject to change.
Use with caution. }

{ When a const or var AnyString parameter is passed, internally
these records are passed as const parameters. Value AnyString
parameters are passed like value string parameters. }

ConstAnyString = record
Length: Integer;
Chars: PChars

end;

{ Capacity is the allocated space (used internally). Count is the
actual number of environment strings. The CStrings array
contains the environment strings, terminated by a nil pointer,
which is not counted in Count. @CStrings can be passed to libc
routines like execve which expect an environment (see
GetCEnvironment). }

PEnvironment = ^TEnvironment;
TEnvironment (Capacity: Integer) = record
Count: Integer;
CStrings: array [1 .. Capacity + 1] of CString

Chapter 6: The Programmer’s Guide to GPC 117

end;

var
Environment: PEnvironment; attribute (name = ’_p_Environment’);
external;

{ Get an environment variable. If it does not exist, GetEnv returns
the empty string, which can’t be distinguished from a variable
with an empty value, while CStringGetEnv returns nil then. Note,
Dos doesn’t know empty environment variables, but treats them as
non-existing, and does not distinguish case in the names of
environment variables. However, even under Dos, empty environment
variables and variable names with different case can now be set
and used within GPC programs. }

function GetEnv (const EnvVar: String): TString; attribute (name
= ’_p_GetEnv’); external;

function CStringGetEnv (EnvVar: CString): CString; attribute (name
= ’_p_CStringGetEnv’); external;

{ Sets an environment variable with the name given in VarName to the
value Value. A previous value, if any, is overwritten. }

procedure SetEnv (const VarName, Value: String); attribute (name
= ’_p_SetEnv’); external;

{ Un-sets an environment variable with the name given in VarName. }
procedure UnSetEnv (const VarName: String); attribute (name

= ’_p_UnSetEnv’); external;

{ Returns @Environment^.CStrings, converted to PCStrings, to be
passed to libc routines like execve which expect an environment. }

function GetCEnvironment: PCStrings; attribute (name
= ’_p_GetCEnvironment’); external;

type
FormatStringTransformType = ^function (const Format: String):
TString;

var
FormatStringTransformPtr: FormatStringTransformType; attribute
(name = ’_p_FormatStringTransformPtr’); external;

{ Runtime error and signal handling routines, from error.pas }

const
EAssert = 381;
EAssertString = 382;
EOpen = 405;
EMMap = 408;
ERead = 413;
EWrite = 414;
EWriteReadOnly = 422;

118 The GNU Pascal Manual

EOpenRead = 442;
EOpenWrite = 443;
EOpenUpdate = 444;
EReading = 464;
EWriting = 466;
ECannotWriteAll = 467;
ECannotFork = 600;
ECannotSpawn = 601;
EProgramNotFound = 602;
EProgramNotExecutable = 603;
EPipe = 604;
EPrinterRead = 610;
EIOCtl = 630;
EConvertError = 875;
ELibraryFunction = 952;
EExitReturned = 953;

RuntimeErrorExitValue = 42;

DummyReturnAddress = Pointer ($deadbeef);

var
{ Error number (after runtime error) or exit status (after Halt)
or 0 (during program run and after succesful termination). }

ExitCode: Integer; attribute (name = ’_p_ExitCode’); external;

{ Contains the address of the code where a runtime occurred, nil
if no runtime error occurred. }

ErrorAddr: Pointer; attribute (name = ’_p_ErrorAddr’); external;

{ Error message }
ErrorMessageString: TString; attribute (name
= ’_p_ErrorMessageString’); external;

{ String parameter to some error messages, *not* the text of the
error message (the latter can be obtained with
GetErrorMessage). }

InOutResString: PString; attribute (name = ’_p_InOutResString’);
external;

{ Optional libc error string to some error messages. }
InOutResCErrorString: PString; attribute (name
= ’_p_InOutResCErrorString’); external;

RTSErrorFD: Integer; attribute (name = ’_p_ErrorFD’); external;
RTSErrorFileName: PString; attribute (name = ’_p_ErrorFileName’);
external;

function GetErrorMessage (n: Integer): CString;
attribute (name = ’_p_GetErrorMessage’); external;

procedure RuntimeError (n: Integer); attribute

Chapter 6: The Programmer’s Guide to GPC 119

(noreturn, name = ’_p_RuntimeError’); external;
procedure RuntimeErrorErrNo (n: Integer); attribute

(noreturn, name = ’_p_RuntimeErrorErrNo’); external;
procedure RuntimeErrorInteger (n: Integer; i: MedInt);

attribute (noreturn, name = ’_p_RuntimeErrorInteger’); external;
procedure RuntimeErrorCString (n: Integer; s: CString);

attribute (noreturn, name = ’_p_RuntimeErrorCString’); external;
procedure InternalError (n: Integer); attribute

(noreturn, name = ’_p_InternalError’); external;
procedure InternalErrorInteger (n: Integer; i: MedInt);

attribute (noreturn, name = ’_p_InternalErrorInteger’); external;
procedure InternalErrorCString (n: Integer; s: CString);

attribute (noreturn, name = ’_p_InternalErrorCString’); external;
procedure RuntimeWarning (Message: CString);

attribute (name = ’_p_RuntimeWarning’); external;
procedure RuntimeWarningInteger (Message: CString; i:

MedInt); attribute (name = ’_p_RuntimeWarningInteger’); external;
procedure RuntimeWarningCString (Message: CString; s:

CString); attribute (name = ’_p_RuntimeWarningCString’); external;
procedure DebugStatement (const FileName: String;

Line: Integer); attribute (name = ’_p_DebugStatement’); external;

procedure IOError (n: Integer; ErrNoFlag:
Boolean); attribute (iocritical, name = ’_p_IOError’); external;

procedure IOErrorInteger (n: Integer; i: MedInt;
ErrNoFlag: Boolean); attribute (iocritical, name
= ’_p_IOErrorInteger’); external;

procedure IOErrorCString (n: Integer; s: CString;
ErrNoFlag: Boolean); attribute (iocritical, name
= ’_p_IOErrorCString’); external;

procedure IOErrorFile (n: Integer; protected var
f: AnyFile; ErrNoFlag: Boolean); attribute (iocritical, name
= ’_p_IOErrorFile’); external;

function GetIOErrorMessage: TString; attribute (name
= ’_p_GetIOErrorMessage’); external;

procedure CheckInOutRes; attribute (name = ’_p_CheckInOutRes’);
external;

{ Registers a procedure to be called to restore the terminal for
another process that accesses the terminal, or back for the
program itself. Used e.g. by the CRT unit. The procedures must
allow for being called multiple times in any order, even at the
end of the program (see the comment for RestoreTerminal). }

procedure RegisterRestoreTerminal (ForAnotherProcess: Boolean;
procedure Proc); attribute (name = ’_p_RegisterRestoreTerminal’);
external;

{ Unregisters a procedure registered with RegisterRestoreTerminal.
Returns False if the procedure had not been registered, and True
if it had been registered and was unregistered successfully. }

120 The GNU Pascal Manual

function UnregisterRestoreTerminal (ForAnotherProcess: Boolean;
procedure Proc): Boolean; attribute (name
= ’_p_UnregisterRestoreTerminal’); external;

{ Calls the procedures registered by RegisterRestoreTerminal. When
restoring the terminal for another process, the procedures are
called in the opposite order of registration. When restoring back
for the program, they are called in the order of registration.

‘RestoreTerminal (True)’ will also be called at the end of the
program, before outputting any runtime error message. It can also
be used if you want to write an error message and exit the program
(especially when using e.g. the CRT unit). For this purpose, to
avoid side effects, call RestoreTerminal immediately before
writing the error message (to StdErr, not to Output!), and then
exit the program (e.g. with Halt). }

procedure RestoreTerminal (ForAnotherProcess: Boolean); attribute
(name = ’_p_RestoreTerminal’); external;

procedure AtExit (procedure Proc); attribute (name = ’_p_AtExit’);
external;

function ReturnAddr2Hex (p: Pointer): TString; attribute (name
= ’_p_ReturnAddr2Hex’); external;

{ This function is used to write error messages etc. It does not use
the Pascal I/O system here because it is usually called at the
very end of a program after the Pascal I/O system has been shut
down. }

function WriteErrorMessage (const s: String; StdErrFlag: Boolean):
Boolean; attribute (name = ’_p_WriteErrorMessage’); external;

procedure SetReturnAddress (Address: Pointer); attribute (name
= ’_p_SetReturnAddress’); external;

procedure RestoreReturnAddress; attribute (name
= ’_p_RestoreReturnAddress’); external;

function SetTempDummyReturnAddress: Pointer; attribute (name
= ’_p_SetTempDummyReturnAddress’); external;

procedure RestoreTempReturnAddress (Address: Pointer); attribute
(name = ’_p_RestoreTempReturnAddress’); external;

{ Returns a description for a signal }
function StrSignal (Signal: Integer): TString; attribute (name

= ’_p_StrSignal’); external;

{ Installs some signal handlers that cause runtime errors on certain
signals. This procedure runs only once, and returns immediately
when called again (so you can’t use it to set the signals again if
you changed them meanwhile). @@Does not work on all systems (since
the handler might have too little stack space). }

procedure InstallDefaultSignalHandlers; attribute (name

Chapter 6: The Programmer’s Guide to GPC 121

= ’_p_InstallDefaultSignalHandlers’); external;

var
{ Signal actions }
SignalDefault: TSignalHandler; attribute (const); external
name ’_p_SIG_DFL’;
SignalIgnore : TSignalHandler; attribute (const); external
name ’_p_SIG_IGN’;
SignalError : TSignalHandler; attribute (const); external
name ’_p_SIG_ERR’;

{ Signals. The constants are set to the signal numbers, and
are 0 for signals not defined. }

{ POSIX signals }
SigHUp : Integer; attribute (const); external name ’_p_SIGHUP’;
SigInt : Integer; attribute (const); external name ’_p_SIGINT’;
SigQuit : Integer; attribute (const); external name ’_p_SIGQUIT’;
SigIll : Integer; attribute (const); external name ’_p_SIGILL’;
SigAbrt : Integer; attribute (const); external name ’_p_SIGABRT’;
SigFPE : Integer; attribute (const); external name ’_p_SIGFPE’;
SigKill : Integer; attribute (const); external name ’_p_SIGKILL’;
SigSegV : Integer; attribute (const); external name ’_p_SIGSEGV’;
SigPipe : Integer; attribute (const); external name ’_p_SIGPIPE’;
SigAlrm : Integer; attribute (const); external name ’_p_SIGALRM’;
SigTerm : Integer; attribute (const); external name ’_p_SIGTERM’;
SigUsr1 : Integer; attribute (const); external name ’_p_SIGUSR1’;
SigUsr2 : Integer; attribute (const); external name ’_p_SIGUSR2’;
SigChld : Integer; attribute (const); external name ’_p_SIGCHLD’;
SigCont : Integer; attribute (const); external name ’_p_SIGCONT’;
SigStop : Integer; attribute (const); external name ’_p_SIGSTOP’;
SigTStp : Integer; attribute (const); external name ’_p_SIGTSTP’;
SigTTIn : Integer; attribute (const); external name ’_p_SIGTTIN’;
SigTTOu : Integer; attribute (const); external name ’_p_SIGTTOU’;

{ Non-POSIX signals }
SigTrap : Integer; attribute (const); external name ’_p_SIGTRAP’;
SigIOT : Integer; attribute (const); external name ’_p_SIGIOT’;
SigEMT : Integer; attribute (const); external name ’_p_SIGEMT’;
SigBus : Integer; attribute (const); external name ’_p_SIGBUS’;
SigSys : Integer; attribute (const); external name ’_p_SIGSYS’;
SigStkFlt: Integer; attribute (const); external
name ’_p_SIGSTKFLT’;
SigUrg : Integer; attribute (const); external name ’_p_SIGURG’;
SigIO : Integer; attribute (const); external name ’_p_SIGIO’;
SigPoll : Integer; attribute (const); external name ’_p_SIGPOLL’;
SigXCPU : Integer; attribute (const); external name ’_p_SIGXCPU’;
SigXFSz : Integer; attribute (const); external name ’_p_SIGXFSZ’;
SigVTAlrm: Integer; attribute (const); external
name ’_p_SIGVTALRM’;
SigProf : Integer; attribute (const); external name ’_p_SIGPROF’;
SigPwr : Integer; attribute (const); external name ’_p_SIGPWR’;

122 The GNU Pascal Manual

SigInfo : Integer; attribute (const); external name ’_p_SIGINFO’;
SigLost : Integer; attribute (const); external name ’_p_SIGLOST’;
SigWinCh : Integer; attribute (const); external
name ’_p_SIGWINCH’;

{ Signal subcodes (only used on some systems, -1 if not used) }
FPEIntegerOverflow : Integer; attribute (const); external
name ’_p_FPE_INTOVF_TRAP’;
FPEIntegerDivisionByZero: Integer; attribute (const); external
name ’_p_FPE_INTDIV_TRAP’;
FPESubscriptRange : Integer; attribute (const); external
name ’_p_FPE_SUBRNG_TRAP’;
FPERealOverflow : Integer; attribute (const); external
name ’_p_FPE_FLTOVF_TRAP’;
FPERealDivisionByZero : Integer; attribute (const); external
name ’_p_FPE_FLTDIV_TRAP’;
FPERealUnderflow : Integer; attribute (const); external
name ’_p_FPE_FLTUND_TRAP’;
FPEDecimalOverflow : Integer; attribute (const); external
name ’_p_FPE_DECOVF_TRAP’;

{ Routines called implicitly by the compiler. }
procedure GPC_Assert (Condition: Boolean; const Message: String);

attribute (name = ’_p_Assert’); external;
function ObjectTypeIs (Left, Right: PObjectType): Boolean;

attribute (const, name = ’_p_ObjectTypeIs’); external;
procedure ObjectTypeAsError; attribute (name

= ’_p_ObjectTypeAsError’); external;
procedure CaseNoMatchError; attribute (name

= ’_p_CaseNoMatchError’); external;
procedure ModRangeError; attribute (name = ’_p_ModRangeError’);

external;

{ Time and date routines, from time.pas }

const
InvalidYear = -MaxInt;

var
{ DayOfWeekName is a constant and therefore does not respect the
locale. Therefore, it’s recommended to use FormatTime instead. }

DayOfWeekName: array [0 .. 6] of String [9]; attribute (const,
name = ’_p_DayOfWeekName’); external;

{ MonthName is a constant and therefore does not respect the
locale. Therefore, it’s recommended to use FormatTime instead. }

MonthName: array [1 .. 12] of String [9]; attribute (const, name
= ’_p_MonthName’); external;

function GetDayOfWeek (Day, Month, Year: Integer): Integer;
attribute (name = ’_p_GetDayOfWeek’); external;

Chapter 6: The Programmer’s Guide to GPC 123

function GetDayOfYear (Day, Month, Year: Integer): Integer;
attribute (name = ’_p_GetDayOfYear’); external;

function GetSundayWeekOfYear (Day, Month, Year: Integer): Integer;
attribute (name = ’_p_GetSundayWeekOfYear’); external;

function GetMondayWeekOfYear (Day, Month, Year: Integer): Integer;
attribute (name = ’_p_GetMondayWeekOfYear’); external;

procedure GetISOWeekOfYear (Day, Month, Year: Integer; var ISOWeek,
ISOWeekYear: Integer); attribute (name = ’_p_GetISOWeekOfYear’);
external;

procedure UnixTimeToTimeStamp (UnixTime: UnixTimeType; var
aTimeStamp: TimeStamp); attribute (name
= ’_p_UnixTimeToTimeStamp’); external;

function TimeStampToUnixTime (protected var aTimeStamp: TimeStamp):
UnixTimeType; attribute (name = ’_p_TimeStampToUnixTime’);
external;

function GetMicroSecondTime: MicroSecondTimeType; attribute (name
= ’_p_GetMicroSecondTime’); external;

{ Is the year a leap year? }
function IsLeapYear (Year: Integer): Boolean; attribute (name

= ’_p_IsLeapYear’); external;

{ Returns the length of the month, taking leap years into account. }
function MonthLength (Month, Year: Integer): Integer; attribute

(name = ’_p_MonthLength’); external;

{ Formats a TimeStamp value according to a Format string. The format
string can contain date/time items consisting of ‘%’, followed by
the specifiers listed below. All characters outside of these items
are copied to the result unmodified. The specifiers correspond to
those of the C function strftime(), including POSIX.2 and glibc
extensions and some more extensions. The extensions are also
available on systems whose strftime() doesn’t support them.

The following modifiers may appear after the ‘%’:

‘_’ The item is left padded with spaces to the given or default
width.

‘-’ The item is not padded at all.

‘0’ The item is left padded with zeros to the given or default
width.

‘/’ The item is right trimmed if it is longer than the given
width.

‘^’ The item is converted to upper case.

‘~’ The item is converted to lower case.

124 The GNU Pascal Manual

After zero or more of these flags, an optional width may be
specified for padding and trimming. It must be given as a decimal
number (not starting with ‘0’ since ‘0’ has a meaning of its own,
see above).

Afterwards, the following optional modifiers may follow. Their
meaning is locale-dependent, and many systems and locales just
ignore them.

‘E’ Use the locale’s alternate representation for date and time.
In a Japanese locale, for example, ‘%Ex’ might yield a date
format based on the Japanese Emperors’ reigns.

‘O’ Use the locale’s alternate numeric symbols for numbers. This
modifier applies only to numeric format specifiers.

Finally, exactly one of the following specifiers must appear. The
padding rules listed here are the defaults that can be overriden
with the modifiers listed above.

‘a’ The abbreviated weekday name according to the current locale.

‘A’ The full weekday name according to the current locale.

‘b’ The abbreviated month name according to the current locale.

‘B’ The full month name according to the current locale.

‘c’ The preferred date and time representation for the current
locale.

‘C’ The century of the year. This is equivalent to the greatest
integer not greater than the year divided by 100.

‘d’ The day of the month as a decimal number (‘01’ .. ‘31’).

‘D’ The date using the format ‘%m/%d/%y’. NOTE: Don’t use this
format if it can be avoided. Things like this caused Y2K
bugs!

‘e’ The day of the month like with ‘%d’, but padded with blanks
(‘ 1’ .. ‘31’).

‘F’ The date using the format ‘%Y-%m-%d’. This is the form
specified in the ISO 8601 standard and is the preferred form
for all uses.

‘g’ The year corresponding to the ISO week number, but without
the century (‘00’ .. ‘99’). This has the same format and
value as ‘y’, except that if the ISO week number (see ‘V’)
belongs to the previous or next year, that year is used

Chapter 6: The Programmer’s Guide to GPC 125

instead. NOTE: Don’t use this format if it can be avoided.
Things like this caused Y2K bugs!

‘G’ The year corresponding to the ISO week number. This has the
same format and value as ‘Y’, except that if the ISO week
number (see ‘V’) belongs to the previous or next year, that
year is used instead.

‘h’ The abbreviated month name according to the current locale.
This is the same as ‘b’.

‘H’ The hour as a decimal number, using a 24-hour clock
(‘00’ .. ‘23’).

‘I’ The hour as a decimal number, using a 12-hour clock
(‘01’ .. ‘12’).

‘j’ The day of the year as a decimal number (‘001’ .. ‘366’).

‘k’ The hour as a decimal number, using a 24-hour clock like ‘H’,
but padded with blanks (‘ 0’ .. ‘23’).

‘l’ The hour as a decimal number, using a 12-hour clock like ‘I’,
but padded with blanks (‘ 1’ .. ‘12’).

‘m’ The month as a decimal number (‘01’ .. ‘12’).

‘M’ The minute as a decimal number (‘00’ .. ‘59’).

‘n’ A single newline character.

‘p’ Either ‘AM’ or ‘PM’, according to the given time value; or
the corresponding strings for the current locale. Noon is
treated as ‘PM’ and midnight as ‘AM’.

‘P’ Either ‘am’ or ‘pm’, according to the given time value; or
the corresponding strings for the current locale, printed in
lowercase characters. Noon is treated as ‘pm’ and midnight as
‘am’.

‘Q’ The fractional part of the second. This format has special
effects on the modifiers. The width, if given, determines the
number of digits to output. Therefore, no actual clipping or
trimming is done. However, if padding with spaces is
specified, any trailing (i.e., right!) zeros are converted to
spaces, and if "no padding" is specified, they are removed.
The default is "padding with zeros", i.e. trailing zeros are
left unchanged. The digits are cut when necessary without
rounding (otherwise, the value would not be consistent with
the seconds given by ‘S’ and ‘s’). Note that GPC’s TimeStamp
currently provides for microsecond resolution, so there are

126 The GNU Pascal Manual

at most 6 valid digits (which is also the default width), any
further digits will be 0 (but if TimeStamp will ever change,
this format will be adjusted). However, the actual resolution
provided by the operating system via GetTimeStamp etc. may be
far lower (e.g., ~1/18s under Dos).

‘r’ The complete time using the AM/PM format of the current
locale.

‘R’ The hour and minute in decimal numbers using the format
‘%H:%M’.

‘s’ Unix time, i.e. the number of seconds since the epoch, i.e.,
since 1970-01-01 00:00:00 UTC. Leap seconds are not counted
unless leap second support is available.

‘S’ The seconds as a decimal number (‘00’ .. ‘60’).

‘t’ A single tab character.

‘T’ The time using decimal numbers using the format ‘%H:%M:%S’.

‘u’ The day of the week as a decimal number (‘1’ .. ‘7’), Monday
being ‘1’.

‘U’ The week number of the current year as a decimal number
(‘00’ .. ‘53’), starting with the first Sunday as the first
day of the first week. Days preceding the first Sunday in the
year are considered to be in week ‘00’.

‘V’ The ISO 8601:1988 week number as a decimal number
(‘01’ .. ‘53’). ISO weeks start with Monday and end with
Sunday. Week ‘01’ of a year is the first week which has the
majority of its days in that year; this is equivalent to the
week containing the year’s first Thursday, and it is also
equivalent to the week containing January 4. Week ‘01’ of a
year can contain days from the previous year. The week before
week ‘01’ of a year is the last week (‘52’ or ‘53’) of the
previous year even if it contains days from the new year.

‘w’ The day of the week as a decimal number (‘0’ .. ‘6’), Sunday
being ‘0’.

‘W’ The week number of the current year as a decimal number
(‘00’ .. ‘53’), starting with the first Monday as the first
day of the first week. All days preceding the first Monday in
the year are considered to be in week ‘00’.

‘x’ The preferred date representation for the current locale, but
without the time.

Chapter 6: The Programmer’s Guide to GPC 127

‘X’ The preferred time representation for the current locale, but
with no date.

‘y’ The year without a century as a decimal number
(‘00’ .. ‘99’). This is equivalent to the year modulo 100.
NOTE: Don’t use this format if it can be avoided. Things like
this caused Y2K bugs!

‘Y’ The year as a decimal number, using the Gregorian calendar.
Years before the year ‘1’ are numbered ‘0’, ‘-1’, and so on.

‘z’ RFC 822/ISO 8601:1988 style numeric time zone (e.g., ‘-0600’
or ‘+0100’), or nothing if no time zone is determinable.

‘Z’ The time zone abbreviation (empty if the time zone can’t be
determined).

‘%’ (i.e., an item ‘%%’) A literal ‘%’ character. }
function FormatTime (const Time: TimeStamp; const Format: String):

TString; attribute (name = ’_p_FormatTime’); external;

{ Pseudo random number generator, from random.pas }

type
RandomSeedType = Cardinal attribute (Size = 32);
RandomizeType = ^procedure;
SeedRandomType = ^procedure (Seed: RandomSeedType);
RandRealType = ^function: LongestReal;
RandIntType = ^function (MaxValue: LongestCard): LongestCard;

var
RandomizePtr : RandomizeType; attribute (name
= ’_p_RandomizePtr’); external;
SeedRandomPtr: SeedRandomType; attribute (name
= ’_p_SeedRandomPtr’); external;
RandRealPtr : RandRealType; attribute (name = ’_p_RandRealPtr’);
external;
RandIntPtr : RandIntType; attribute (name = ’_p_RandIntPtr’);
external;

procedure SeedRandom (Seed: RandomSeedType); attribute (name
= ’_p_SeedRandom’); external;

{ File name routines, from filename.pas }

{ Define constants for different systems:

OSDosFlag: flag to indicate whether the target system is
Dos

QuotingCharacter: the character used to quote wild cards and

128 The GNU Pascal Manual

other special characters (#0 if not available)

PathSeparator: the separator of multiple paths, e.g. in the
PATH environment variable

DirSeparator: the separator of the directories within a full
file name

DirSeparators: a set of all possible directory and drive name
separators

ExtSeparator: the separator of a file name extension

DirRoot: the name of the root directory

DirSelf: the name of a directory in itself

DirParent: the name of the parent directory

MaskNoStdDir: a file name mask that matches all names except
the standard directories DirSelf and DirParent

NullDeviceName: the full file name of the null device

TtyDeviceName: the full file name of the current Tty

ConsoleDeviceName: the full file name of the system console. On
Dos systems, this is the same as the Tty, but
on systems that allow remote login, this is a
different thing and may reach a completely
different user than the one running the
program, so use it with care.

EnvVarCharsFirst: the characters accepted at the beginning of the
name of an environment variable without quoting

EnvVarChars: the characters accepted in the name of an
environment variable without quoting

PathEnvVar: the name of the environment variable which
(usually) contains the executable search path

ShellEnvVar: the name of the environment variable which
(usually) contains the path of the shell
executable (see GetShellPath)

ShellExecCommand: the option to the (default) shell to execute
the command specified in the following argument
(see GetShellPath)

ConfigFileMask: a mask for the option file name as returned by

Chapter 6: The Programmer’s Guide to GPC 129

ConfigFileName

FileNamesCaseSensitive:
flag to indicate whether file names are case
sensitive }

const
UnixShellEnvVar = ’SHELL’;
UnixShellExecCommand = ’-c’;

{$ifdef __OS_DOS__}

const
OSDosFlag = True;
QuotingCharacter = #0;
PathSeparator = {$ifdef __CYGWIN__} ’:’ {$else} ’;’
{$endif};
DirSeparator = ’\’;
DirSeparators = [’:’, ’\’, ’/’];
ExtSeparator = ’.’;
DirRoot = ’\’;
DirSelf = ’.’;
DirParent = ’..’;
MaskNoStdDir = ’{*,.[^.]*,..?*}’;
NullDeviceName = ’nul’;
TtyDeviceName = ’con’;
ConsoleDeviceName = ’con’;
EnvVarCharsFirst = [’A’ .. ’Z’, ’a’ .. ’z’, ’_’];
EnvVarChars = EnvVarCharsFirst + [’0’ .. ’9’];
PathEnvVar = ’PATH’;
ShellEnvVar = ’COMSPEC’;
ShellExecCommand = ’/c’;
ConfigFileMask = ’*.cfg’;
FileNamesCaseSensitive = False;

{$else}

const
OSDosFlag = False;
QuotingCharacter = ’\’;
PathSeparator = ’:’;
DirSeparator = ’/’;
DirSeparators = [’/’];
ExtSeparator = ’.’;
DirRoot = ’/’;
DirSelf = ’.’;
DirParent = ’..’;
MaskNoStdDir = ’{*,.[^.]*,..?*}’;
NullDeviceName = ’/dev/null’;
TtyDeviceName = ’/dev/tty’;
ConsoleDeviceName = ’/dev/console’;

130 The GNU Pascal Manual

EnvVarCharsFirst = [’A’ .. ’Z’, ’a’ .. ’z’, ’_’];
EnvVarChars = EnvVarCharsFirst + [’0’ .. ’9’];
PathEnvVar = ’PATH’;
ShellEnvVar = UnixShellEnvVar;
ShellExecCommand = UnixShellExecCommand;
ConfigFileMask = ’.*’;
FileNamesCaseSensitive = True;

{$endif}

const
WildCardChars = [’*’, ’?’, ’[’, ’]’];
FileNameSpecialChars = (WildCardChars + SpaceCharacters +
[’{’, ’}’, ’$’, QuotingCharacter]) - DirSeparators;

type
DirPtr = Pointer;

{ Convert ch to lower case if FileNamesCaseSensitive is False, leave
it unchanged otherwise. }

function FileNameLoCase (ch: Char): Char; attribute (name
= ’_p_FileNameLoCase’); external;

{ Change a file name to use the OS dependent directory separator }
function Slash2OSDirSeparator (const s: String): TString; attribute

(name = ’_p_Slash2OSDirSeparator’); external;

{ Change a file name to use ’/’ as directory separator }
function OSDirSeparator2Slash (const s: String): TString; attribute

(name = ’_p_OSDirSeparator2Slash’); external;

{ Like Slash2OSDirSeparator for CStrings. *Note*: overwrites the
CString }

function Slash2OSDirSeparator_CString (s: CString): CString;
attribute (name = ’_p_Slash2OSDirSeparator_CString’); external;

{ Like OSDirSeparator2Slash for CStrings. *Note*: overwrites the
CString }

function OSDirSeparator2Slash_CString (s: CString): CString;
attribute (name = ’_p_OSDirSeparator2Slash_CString’); external;

{ Add a DirSeparator to the end of s, if there is not already one
and s denotes an existing directory }

function AddDirSeparator (const s: String): TString; attribute
(name = ’_p_AddDirSeparator’); external;

{ Like AddDirSeparator, but also if the directory does not exist }
function ForceAddDirSeparator (const s: String): TString; attribute

(name = ’_p_ForceAddDirSeparator’); external;

{ Remove all trailing DirSeparators from s, if there are any, as

Chapter 6: The Programmer’s Guide to GPC 131

long as removing them doesn’t change the meaning (i.e., they don’t
denote the root directory. }

function RemoveDirSeparator (const s: String): TString; attribute
(name = ’_p_RemoveDirSeparator’); external;

{ Returns the current directory using OS dependent directory
separators }

function GetCurrentDirectory: TString; attribute (name
= ’_p_GetCurrentDirectory’); external;

{ Returns a directory suitable for storing temporary files using OS
dependent directory separators. If found, the result always ends
in DirSeparator. If no suitable directory is found, an empty
string is returned. }

function GetTempDirectory: TString; attribute (name
= ’_p_GetTempDirectory’); external;

{ Returns a non-existing file name in the directory given. If the
directory doesn’t exist or the Directory name is empty, an I/O
error is raised, and GetTempFileNameInDirectory returns the empty
string. }

function GetTempFileNameInDirectory (const Directory: String):
TString; attribute (iocritical, name
= ’_p_GetTempFileNameInDirectory’); external;

{ Returns a non-existing file name in GetTempDirectory. If no temp
directory is found, i.e. GetTempDirectory returns the empty
string, an I/O error is raised, and GetTempFileName returns the
empty string as well. }

function GetTempFileName: TString; attribute (iocritical, name
= ’_p_GetTempFileName’); external;

{ The same as GetTempFileName, but returns a CString allocated from
the heap. }

function GetTempFileName_CString: CString; attribute (iocritical,
name = ’_p_GetTempFileName_CString’); external;

{ Get the external name of a file }
function FileName (protected var f: AnyFile): TString; attribute

(name = ’_p_FileName’); external;

{ Returns True if the given file name is an existing plain file }
function FileExists (const aFileName: String): Boolean;

attribute (name = ’_p_FileExists’); external;

{ Returns True if the given file name is an existing directory }
function DirectoryExists (const aFileName: String): Boolean;

attribute (name = ’_p_DirectoryExists’); external;

{ Returns True if the given file name is an existing file, directory
or special file (device, pipe, socket, etc.) }

132 The GNU Pascal Manual

function PathExists (const aFileName: String): Boolean;
attribute (name = ’_p_PathExists’); external;

{ If a file of the given name exists in one of the directories given
in DirList (separated by PathSeparator), returns the full path,
otherwise returns an empty string. If aFileName already contains
an element of DirSeparators, returns Slash2OSDirSeparator
(aFileName) if it exists. }

function FSearch (const aFileName, DirList: String): TString;
attribute (name = ’_p_FSearch’); external;

{ Like FSearch, but only find executable files. Under Dos, if not
found, the function tries appending ’.com’, ’.exe’, ’.bat’ and
‘.cmd’ (the last one only if $COMSPEC points to a ‘cmd.exe’), so
you don’t have to specify these extensions in aFileName (and with
respect to portability, it might be preferable not to do so). }

function FSearchExecutable (const aFileName, DirList: String):
TString; attribute (name = ’_p_FSearchExecutable’); external;

{ Replaces all occurrences of ‘$FOO’ and ‘~’ in s by the value of
the environment variables FOO or HOME, respectively. If a variable
is not defined, the function returns False, and s contains the
name of the undefined variable (or the empty string if the
variable name is invalid, i.e., doesn’t start with a character
from EnvVarCharsFirst). Otherwise, if all variables are found, s
contains the replaced string, and True is returned. }

function ExpandEnvironment (var s: String): Boolean; attribute
(name = ’_p_ExpandEnvironment’); external;

{ Expands the given path name to a full path name. Relative paths
are expanded using the current directory, and occurrences of
DirSelf and DirParent are resolved. Under Dos, the result is
converted to lower case and a trailing ExtSeparator (except in a
trailing DirSelf or DirParent) is removed, like Dos does. If the
directory, i.e. the path without the file name, is invalid, the
empty string is returned. }

function FExpand (const Path: String): TString; attribute
(name = ’_p_FExpand’); external;

{ Like FExpand, but unquotes the directory before expanding it, and
quotes WildCardChars again afterwards. Does not check if the
directory is valid (because it may contain wild card characters).
Symlinks are expanded only in the directory part, not the file
name. }

function FExpandQuoted (const Path: String): TString; attribute
(name = ’_p_FExpandQuoted’); external;

{ FExpands Path, and then removes the current directory from it, if
it is a prefix of it. If OnlyCurDir is set, the current directory
will be removed only if Path denotes a file in, not below, it. }

function RelativePath (const Path: String; OnlyCurDir, Quoted:

Chapter 6: The Programmer’s Guide to GPC 133

Boolean): TString; attribute (name = ’_p_RelativePath’); external;

{ Is aFileName a UNC filename? (Always returns False on non-Dos
systems.) }

function IsUNC (const aFileName: String): Boolean; attribute (name
= ’_p_IsUNC’); external;

{ Splits a file name into directory, name and extension. Each of
Dir, BaseName and Ext may be Null. }

procedure FSplit (const Path: String; var Dir, BaseName, Ext:
String); attribute (name = ’_p_FSplit’); external;

{ Functions that extract one or two of the parts from FSplit.
DirFromPath returns DirSelf + DirSeparator if the path contains no
directory. }

function DirFromPath (const Path: String): TString; attribute
(name = ’_p_DirFromPath’); external;

function NameFromPath (const Path: String): TString; attribute
(name = ’_p_NameFromPath’); external;

function ExtFromPath (const Path: String): TString; attribute
(name = ’_p_ExtFromPath’); external;

function NameExtFromPath (const Path: String): TString; attribute
(name = ’_p_NameExtFromPath’); external;

{ Start reading a directory. If successful, a pointer is returned
that can be used for subsequent calls to ReadDir and finally
CloseDir. On failure, an I/O error is raised and (in case it is
ignored) nil is returned. }

function OpenDir (const DirName: String): DirPtr; attribute
(iocritical, name = ’_p_OpenDir’); external;

{ Reads one entry from the directory Dir, and returns the file name.
On errors or end of directory, the empty string is returned. }

function ReadDir (Dir: DirPtr): TString; attribute (name
= ’_p_ReadDir’); external;

{ Closes a directory opened with OpenDir. }
procedure CloseDir (Dir: DirPtr); attribute (name = ’_p_CloseDir’);

external;

{ Returns the first position of a non-quoted character of CharSet in
s, or 0 if no such character exists. }

function FindNonQuotedChar (Chars: CharSet; const s: String; From:
Integer): Integer; attribute (name = ’_p_FindNonQuotedChar’);
external;

{ Returns the first occurence of SubString in s that is not quoted
at the beginning, or 0 if no such occurence exists. }

function FindNonQuotedStr (const SubString, s: String; From:
Integer): Integer; attribute (name = ’_p_FindNonQuotedStr’);
external;

134 The GNU Pascal Manual

{ Does a string contain non-quoted wildcard characters? }
function HasWildCards (const s: String): Boolean; attribute (name

= ’_p_HasWildCards’); external;

{ Does a string contain non-quoted wildcard characters, braces or
spaces? }

function HasWildCardsOrBraces (const s: String): Boolean; attribute
(name = ’_p_HasWildCardsOrBraces’); external;

{ Insert QuotingCharacter into s before any special characters }
function QuoteFileName (const s: String; const SpecialCharacters:

CharSet): TString; attribute (name = ’_p_QuoteFileName’);
external;

{ Remove QuotingCharacter from s }
function UnQuoteFileName (const s: String): TString; attribute

(name = ’_p_UnQuoteFileName’); external;

{ Splits s at non-quoted spaces and expands non-quoted braces like
bash does. The result and its entries should be disposed after
usage, e.g. with DisposePPStrings. }

function BraceExpand (const s: String): PPStrings; attribute (name
= ’_p_BraceExpand’); external;

{ Dispose of a PPStrings array as well as the strings it contains.
If you want to keep the strings (by assigning them to other string
pointers), you should instead free the PPStrings array with
‘Dispose’. }

procedure DisposePPStrings (Strings: PPStrings); attribute (name
= ’_p_DisposePPStrings’); external;

{ Tests if a file name matches a shell wildcard pattern (?, *, []) }
function FileNameMatch (const Pattern, FileName: String): Boolean;

attribute (name = ’_p_FileNameMatch’); external;

{ FileNameMatch with BraceExpand }
function MultiFileNameMatch (const Pattern, FileName: String):

Boolean; attribute (name = ’_p_MultiFileNameMatch’); external;

{ File name globbing }
{ GlobInit is implied by Glob and MultiGlob, not by GlobOn and

MultiGlobOn. GlobOn and MultiGlobOn must be called after GlobInit,
Glob or MultiGlob. MultiGlob and MultiGlobOn do brace expansion,
Glob and GlobOn do not. GlobFree frees the memory allocated by the
globbing functions and invalidates the results in Buf. It should
be called after globbing. }

procedure GlobInit (var Buf: GlobBuffer); attribute (name
= ’_p_GlobInit’); external;

procedure Glob (var Buf: GlobBuffer; const Pattern: String);
attribute (name = ’_p_Glob’); external;

Chapter 6: The Programmer’s Guide to GPC 135

procedure GlobOn (var Buf: GlobBuffer; const Pattern: String);
attribute (name = ’_p_GlobOn’); external;

procedure MultiGlob (var Buf: GlobBuffer; const Pattern: String);
attribute (name = ’_p_MultiGlob’); external;

procedure MultiGlobOn (var Buf: GlobBuffer; const Pattern: String);
attribute (name = ’_p_MultiGlobOn’); external;

procedure GlobFree (var Buf: GlobBuffer); attribute (name
= ’_p_GlobFree’); external;

type
TPasswordEntry = record
UserName, RealName, Password, HomeDirectory, Shell: PString;
UID, GID: Integer

end;

PPasswordEntries = ^TPasswordEntries;
TPasswordEntries (Count: Integer) = array [1 .. Count] of
TPasswordEntry;

{ Finds a password entry by user name. Returns True if found, False
otherwise. }

function GetPasswordEntryByName (const UserName: String; var Entry:
TPasswordEntry): Boolean; attribute (name
= ’_p_GetPasswordEntryByName’); external;

{ Finds a password entry by UID. Returns True if found, False
otherwise. }

function GetPasswordEntryByUID (UID: Integer; var Entry:
TPasswordEntry): Boolean; attribute (name
= ’_p_GetPasswordEntryByUID’); external;

{ Returns all password entries, or nil if none found. }
function GetPasswordEntries: PPasswordEntries; attribute (name

= ’_p_GetPasswordEntries’); external;

{ Dispose of a TPasswordEntry. }
procedure DisposePasswordEntry (Entry: TPasswordEntry); attribute

(name = ’_p_DisposePasswordEntry’); external;

{ Dispose of a PPasswordEntries. }
procedure DisposePasswordEntries (Entries: PPasswordEntries);

attribute (name = ’_p_DisposePasswordEntries’); external;

{ Returns the mount point (Unix) or drive (Dos) which is part of the
given path. If the path does not contain any (i.e., is a relative
path), an empty string is returned. Therefore, if you want to get
the mount point or drive in any case, apply ‘FExpand’ or
‘RealPath’ to the argument. }

function GetMountPoint (const Path: String): TString; attribute
(name = ’_p_GetMountPoint’); external;

136 The GNU Pascal Manual

type
TSystemInfo = record
OSName,
OSRelease,
OSVersion,
MachineType,
HostName,
DomainName: TString

end;

{ Returns system information if available. Fields not available will
be empty. }

function SystemInfo: TSystemInfo; attribute (name
= ’_p_SystemInfo’); external;

{ Returns the path to the shell (as the result) and the option that
makes it execute the command specified in the following argument
(in ‘Option’). Usually these are the environment value of
ShellEnvVar, and ShellExecCommand, but on Dos systems, the
function will first try UnixShellEnvVar, and UnixShellExecCommand
because ShellEnvVar will usually point to command.com, but
UnixShellEnvVar can point to bash which is usually a better choice
when present. If UnixShellEnvVar is not set, or the shell given
does not exist, it will use ShellEnvVar, and ShellExecCommand.
Option may be Null (in case you want to invoke the shell
interactively). }

function GetShellPath (var Option: String): TString; attribute
(name = ’_p_GetShellPath’); external;

{ Returns the path of the running executable. *Note*: On most
systems, this is *not* guaranteed to be the full path, but often
just the same as ‘ParamStr (0)’ which usually is the name given on
the command line. Only on some systems with special support, it
returns the full path when ‘ParamStr (0)’ doesn’t. }

function ExecutablePath: TString; attribute (name
= ’_p_ExecutablePath’); external;

{ Returns a file name suitable for a global (system-wide) or local
(user-specific) configuration file, depending on the Global
parameter. The function does not guarantee that the file name
returned exists or is readable or writable.

In the following table, the base name ‘<base>’ is given with the
BaseName parameter. If it is empty, the base name is the name of
the running program (as returned by ExecutablePath, without
directory and extension. ‘<prefix>’ (Unix only) stands for the
value of the Prefix parameter (usual values include ’’, ’/usr’ and
’/usr/local’). ‘<dir>’ (Dos only) stands for the directory where
the running program resides. ‘$foo’ stands for the value of the
environment variable ‘foo’.

Chapter 6: The Programmer’s Guide to GPC 137

Global Local
Unix: <prefix>/etc/<base>.conf $HOME/.<base>

DJGPP: $DJDIR\etc\<base>.ini $HOME\<base>.cfg
<dir>\<base>.ini <dir>\<base>.cfg

Other $HOME\<base>.ini $HOME\<base>.cfg
Dos: <dir>\<base>.ini <dir>\<base>.cfg

As you see, there are two possibilities under Dos. If the first
file exists, it is returned. Otherwise, if the second file exists,
that is returned. If none of them exists (but the program might
want to create a file), if the environment variable (DJDIR or
HOME, respectively) is set, the first file name is returned,
otherwise the second one. This rather complicated scheme should
give the most reasonable results for systems with or without DJGPP
installed, and with or without already existing config files. Note
that DJDIR is always set on systems with DJGPP installed, while
HOME is not. However, it is easy for users to set it if they want
their config files in a certain directory rather than with the
executables. }

function ConfigFileName (const Prefix, BaseName: String; Global:
Boolean): TString; attribute (name = ’_p_ConfigFileName’);
external;

{ Returns a directory name suitable for global, machine-independent
data. The function garantees that the name returned ends with a
DirSeparator, but does not guarantee that it exists or is
readable or writable.

Note: If the prefix is empty, it is assumed to be ’/usr’. (If you
really want /share, you could pass ’/’ as the prefix, but that’s
very uncommon.)

Unix: <prefix>/share/<base>/

DJGPP: $DJDIR\share\<base>\
<dir>\

Other $HOME\<base>\
Dos: <dir>\

About the symbols used above, and the two possibilities under Dos,
see the comments for ConfigFileName. }

function DataDirectoryName (const Prefix, BaseName: String):
TString; attribute (name = ’_p_DataDirectoryName’); external;

{ Executes a command line. Reports execution errors via the IOResult
mechanism and returns the exit status of the executed program.
Execute calls RestoreTerminal with the argument True before and
False after executing the process, ExecuteNoTerminal does not. }

138 The GNU Pascal Manual

function Execute (const CmdLine: String): Integer; attribute
(iocritical, name = ’_p_Execute’); external;

function ExecuteNoTerminal (const CmdLine: String): Integer;
attribute (iocritical, name = ’_p_ExecuteNoTerminal’); external;

{ File handling routines, from files.pas }

type
Natural = 1 .. MaxInt;
IOSelectEvents = (SelectReadOrEOF, SelectRead, SelectEOF,
SelectWrite, SelectException, SelectAlways);

const
IOSelectEventMin = { @@ Low (IOSelectEvents); } SelectReadOrEOF;
IOSelectEventMax = Pred (SelectAlways);

type
IOSelectType = record
f: PAnyFile;
Wanted: set of IOSelectEvents;
Occurred: set of IOSelectEventMin .. IOSelectEventMax

end;

{ Waits for one of several events to happen. Returns when one or
more of the wanted events for one of the files occur. If they have
already occurred before calling the function, it returns
immediately. MicroSeconds can specify a timeout. If it is 0, the
function will return immediately, whether or not an event has
occurred. If it is negative, the function will wait forever until
an event occurs. The Events parameter can be Null, in which case
the function only waits for the timeout. If any of the file
pointers (f) in Events are nil or the files pointed to are closed,
they are simply ignored for convenience.

It returns the index of one of the files for which any event has
occurred. If events have occurred for several files, is it
undefined which of these file’s index is returned. If no event
occurs until the timeout, 0 is returned. If an error occurs or the
target system does not have a select() system call and Events is
not Null, a negative value is returned. In the Occurred field of
the elements of Events, events that have occurred are set. The
state of events not wanted is undefined.

The possible events are:
SelectReadOrEOF: the file is at EOF or data can be read now.
SelectRead: data can be read now.
SelectEOF: the file is at EOF.
SelectWrite: data can be written now.
SelectException: an exception occurred on the file.
SelectAlways: if this is set, *all* requested events will be

checked for this file in any case. Otherwise,

Chapter 6: The Programmer’s Guide to GPC 139

checks may be skipped if already another event
for this or another file was found.

Notes:
Checking for EOF requires some reading ahead internally (just like
the EOF function) which can be avoided by setting SelectReadOrEOF
instead of SelectRead and SelectEOF. If this is followed by, e.g.,
a BlockRead with 4 parameters, the last parameter will be 0 if and
only the file is at EOF, and otherwise, data will be read directly
from the file without reading ahead and buffering.

SelectAlways should be set for files for which events are
considered to be of higher priority than others. Otherwise, if one
is interested in just any event, not setting SelectAlways may be a
little faster. }

function IOSelect (var Events: array [m .. n: Natural] of
IOSelectType; MicroSeconds: MicroSecondTimeType): Integer;
attribute (name = ’_p_IOSelect’); external;

{ A simpler interface to SelectIO for the most common use. Waits for
SelectReadOrEOF on all files and returns an index. }

function IOSelectRead (const Files: array [m .. n: Natural] of
PAnyFile; MicroSeconds: MicroSecondTimeType): Integer; attribute
(name = ’_p_IOSelectRead’); external;

{ Bind a filename to an external file }
procedure AssignFile (var t: AnyFile; const FileName: String);

attribute (name = ’_p_Assign’); external;
procedure AssignBinary (var t: Text; const FileName: String);

attribute (name = ’_p_AssignBinary’); external;
procedure AssignHandle (var t: AnyFile; Handle: Integer; CloseFlag:

Boolean); attribute (name = ’_p_AssignHandle’); external;

{ BP compatible seeking routines }
function Internal_SeekEOF (var f: Text): Boolean; attribute (name

= ’_p_SeekEOF’); external;
function Internal_SeekEOLn (var f: Text): Boolean; attribute (name

= ’_p_SeekEOLn’); external;

{ Under development }
procedure AnyStringTFDD_Reset (var f: AnyFile; var Buf:

ConstAnyString); attribute (name = ’_p_AnyStringTFDD_Reset’);
external;

{ @@ procedure AnyStringTFDD_Rewrite (var f: AnyFile; var Buf:
VarAnyString); attribute (name = ’_p_AnyStringTFDD_Rewrite’); }

procedure StringTFDD_Reset (var f: AnyFile; var Buf: ConstAnyString;
const s: String); attribute (name = ’_p_StringTFDD_Reset’);
external;

{ @@ procedure StringTFDD_Rewrite (var f: AnyFile; var Buf:
VarAnyString; var s: String); attribute (name
= ’_p_StringTFDD_Rewrite’); }

140 The GNU Pascal Manual

{ Returns True is a terminal device is open on the file f, False if
f is not open or not connected to a terminal. }

function IsTerminal (protected var f: AnyFile): Boolean; attribute
(name = ’_p_IsTerminal’); external;

{ Returns the file name of the terminal device that is open on the
file f. Returns the empty string if (and only if) f is not open or
not connected to a terminal. }

function GetTerminalName (protected var f: AnyFile): TString;
attribute (name = ’_p_GetTerminalName’); external;

{ Command line option parsing, from getopt.pas }

const
EndOfOptions = #255;
NoOption = #1;
UnknownOption = ’?’;
LongOption = #0;
UnknownLongOption = ’?’;

var
FirstNonOption : Integer; attribute (name
= ’_p_FirstNonOption’); external;
HasOptionArgument : Boolean; attribute (name
= ’_p_HasOptionArgument’); external;
OptionArgument : TString; attribute (name
= ’_p_OptionArgument’); external;
UnknownOptionCharacter: Char; attribute (name
= ’_p_UnknownOptionCharacter’); external;
GetOptErrorFlag : Boolean; attribute (name
= ’_p_GetOptErrorFlag’); external;

{ Parses command line arguments for options and returns the next
one.

If a command line argument starts with ‘-’, and is not exactly ‘-’
or ‘--’, then it is an option element. The characters of this
element (aside from the initial ‘-’) are option characters. If
‘GetOpt’ is called repeatedly, it returns successively each of the
option characters from each of the option elements.

If ‘GetOpt’ finds another option character, it returns that
character, updating ‘FirstNonOption’ and internal variables so
that the next call to ‘GetOpt’ can resume the scan with the
following option character or command line argument.

If there are no more option characters, ‘GetOpt’ returns
EndOfOptions. Then ‘FirstNonOption’ is the index of the first
command line argument that is not an option. (The command line
arguments have been permuted so that those that are not options

Chapter 6: The Programmer’s Guide to GPC 141

now come last.)

OptString must be of the form ‘[+|-]abcd:e:f:g::h::i::’.

a, b, c are options without arguments
d, e, f are options with required arguments
g, h, i are options with optional arguments

Arguments are text following the option character in the same
command line argument, or the text of the following command line
argument. They are returned in OptionArgument. If an option has no
argument, OptionArgument is empty. The variable HasOptionArgument
tells whether an option has an argument. This is mostly useful for
options with optional arguments, if one wants to distinguish an
empty argument from no argument.

If the first character of OptString is ‘+’, GetOpt stops at the
first non-option argument.

If it is ‘-’, GetOpt treats non-option arguments as options and
return NoOption for them.

Otherwise, GetOpt permutes arguments and handles all options,
leaving all non-options at the end. However, if the environment
variable POSIXLY_CORRECT is set, the default behaviour is to stop
at the first non-option argument, as with ‘+’.

The special argument ‘--’ forces an end of option-scanning
regardless of the first character of OptString. In the case of
‘-’, only ‘--’ can cause GetOpt to return EndOfOptions with
FirstNonOption <= ParamCount.

If an option character is seen that is not listed in OptString,
UnknownOption is returned. The unrecognized option character is
stored in UnknownOptionCharacter. Unless GetOptErrorFlag is set to
False, an error message is printed to StdErr automatically. }

function GetOpt (const OptString: String): Char; attribute (name
= ’_p_GetOpt’); external;

type
OptArgType = (NoArgument, RequiredArgument, OptionalArgument);

OptionType = record
OptionName: CString;
Argument : OptArgType;
Flag : ^Char; { if nil, v is returned. Otherwise, Flag^ is

... }
v : Char { ... set to v, and LongOption is returned }

end;

{ Recognize short options, described by OptString as above, and long

142 The GNU Pascal Manual

options, described by LongOptions.

Long-named options begin with ‘--’ instead of ‘-’. Their names may
be abbreviated as long as the abbreviation is unique or is an
exact match for some defined option. If they have an argument, it
follows the option name in the same argument, separated from the
option name by a ‘=’, or else the in next argument. When GetOpt
finds a long-named option, it returns LongOption if that option’s
‘Flag’ field is non-nil, and the value of the option’s ‘v’ field
if the ‘Flag’ field is nil.

LongIndex, if not Null, returns the index in LongOptions of the
long-named option found. It is only valid when a long-named option
has been found by the most recent call.

If LongOnly is set, ‘-’ as well as ‘--’ can indicate a long
option. If an option that starts with ‘-’ (not ‘--’) doesn’t match
a long option, but does match a short option, it is parsed as a
short option instead. If an argument has the form ‘-f’, where f is
a valid short option, don’t consider it an abbreviated form of a
long option that starts with ‘f’. Otherwise there would be no way
to give the ‘-f’ short option. On the other hand, if there’s a
long option ‘fubar’ and the argument is ‘-fu’, do consider that an
abbreviation of the long option, just like ‘--fu’, and not ‘-f’
with argument ‘u’. This distinction seems to be the most useful
approach.

As an additional feature (not present in the C counterpart), if
the last character of OptString is ‘-’ (after a possible starting
‘+’ or ‘-’ character), or OptString is empty, all long options
with a nil ‘Flag’ field will automatically be recognized as short
options with the character given by the ‘v’ field. This means, in
the common (and recommended) case that all short options have long
equivalents, you can simply pass an empty OptString (or pass ‘+-’
or ‘--’ as OptString if you want this behaviour, see the comment
for GetOpt), and you will only have to maintain the LongOptions
array when you add or change options. }

function GetOptLong (const OptString: String; const LongOptions:
array [m .. n: Integer] of OptionType { can be Null };

var LongIndex: Integer { can be Null };
LongOnly: Boolean): Char; attribute (name = ’_p_GetOptLong’);
external;

{ Reset GetOpt’s state and make the next GetOpt or GetOptLong start
(again) with the StartArgument’th argument (may be 1). This is
useful for special purposes only. It is *necessary* to do this
after altering the contents of CParamCount/CParameters (which is
not usually done, either). }

procedure ResetGetOpt (StartArgument: Integer); attribute (name
= ’_p_ResetGetOpt’); external;

Chapter 6: The Programmer’s Guide to GPC 143

{ Set operations, from sets.pas }

{ All set operations are built-in identifiers and not declared in
gpc.pas. }

{ Heap management routines, from heap.pas }

{ GPC implements both Mark/Release and Dispose. Both can be mixed
freely in the same program. Dispose should be preferred, since
it’s faster. }

{ C heap management routines. NOTE: if Release is used anywhere in
the program, CFreeMem and CReAllocMem may not be used for pointers
that were not allocated with CGetMem. }

function CGetMem (Size: SizeType): Pointer; external
name ’malloc’;

procedure CFreeMem (aPointer: Pointer); external name ’free’;
function CReAllocMem (aPointer: Pointer; NewSize: SizeType):

Pointer; external name ’realloc’;

type
GetMemType = ^function (Size: SizeType): Pointer;
FreeMemType = ^procedure (aPointer: Pointer);
ReAllocMemType = ^function (aPointer: Pointer; NewSize: SizeType):
Pointer;

{ These variables can be set to user-defined routines for memory
allocation/deallocation. GetMemPtr may return nil when
insufficient memory is available. GetMem/New will produce a
runtime error then. }

var
GetMemPtr : GetMemType; attribute (name = ’_p_GetMemPtr’);
external;
FreeMemPtr : FreeMemType; attribute (name = ’_p_FreeMemPtr’);
external;
ReAllocMemPtr: ReAllocMemType; attribute (name
= ’_p_ReAllocMemPtr’); external;

{ Address of the lowest byte of heap used }
HeapLow: PtrCard; attribute (name = ’_p_HeapLow’); external;

{ Address of the highest byte of heap used }
HeapHigh: PtrCard; attribute (name = ’_p_HeapHigh’); external;

{ If set to true, ‘Dispose’ etc. will raise a runtime error if
given an invalid pointer. }

HeapChecking: Boolean; attribute (name = ’_p_HeapChecking’);
external;

const
UndocumentedReturnNil = Pointer (-1);

144 The GNU Pascal Manual

{ Calls the procedure Proc for each block that would be released
with ‘Release (aMark)’. aMark must have been marked with Mark. For
an example of its usage, see the HeapMon unit. }

procedure ForEachMarkedBlock (aMark: Pointer; procedure Proc
(aPointer: Pointer; aSize: SizeType; aCaller: Pointer)); attribute
(name = ’_p_ForEachMarkedBlock’); external;

procedure ReAllocMem (var aPointer: Pointer; NewSize: SizeType);
attribute (name = ’_p_ReAllocMem’); external;

{ Memory transfer procedures, from move.pas }

{ The move operations are built-in identifiers and not declared in
gpc.pas. }

{ Routines to handle endianness, from endian.pas }

{ Boolean constants about endianness and alignment }

const
BitsBigEndian = {$ifdef __BITS_LITTLE_ENDIAN__}

False
{$elif defined (__BITS_BIG_ENDIAN__)}
True
{$else}
{$error Bit endianness is not defined!}
{$endif};

BytesBigEndian = {$ifdef __BYTES_LITTLE_ENDIAN__}
False
{$elif defined (__BYTES_BIG_ENDIAN__)}
True
{$else}
{$error Byte endianness is not defined!}
{$endif};

WordsBigEndian = {$ifdef __WORDS_LITTLE_ENDIAN__}
False
{$elif defined (__WORDS_BIG_ENDIAN__)}
True
{$else}
{$error Word endianness is not defined!}
{$endif};

NeedAlignment = {$ifdef __NEED_ALIGNMENT__}
True
{$elif defined (__NEED_NO_ALIGNMENT__)}
False
{$else}
{$error Alignment is not defined!}

Chapter 6: The Programmer’s Guide to GPC 145

{$endif};

{ Convert single variables from or to little or big endian format.
This only works for a single variable or a plain array of a simple
type. For more complicated structures, this has to be done for
each component separately! Currently, ConvertFromFooEndian and
ConvertToFooEndian are the same, but this might not be the case on
middle-endian machines. Therefore, we provide different names. }

procedure ReverseBytes (var Buf; ElementSize, Count:
SizeType); attribute (name = ’_p_ReverseBytes’); external;

procedure ConvertFromLittleEndian (var Buf; ElementSize, Count:
SizeType); attribute (name = ’_p_ConvertLittleEndian’); external;

procedure ConvertFromBigEndian (var Buf; ElementSize, Count:
SizeType); attribute (name = ’_p_ConvertBigEndian’); external;

procedure ConvertToLittleEndian (var Buf; ElementSize, Count:
SizeType); external name ’_p_ConvertLittleEndian’;

procedure ConvertToBigEndian (var Buf; ElementSize, Count:
SizeType); external name ’_p_ConvertBigEndian’;

{ Read a block from a file and convert it from little or
big endian format. This only works for a single variable or a
plain array of a simple type, note the comment for
‘ConvertFromLittleEndian’ and ‘ConvertFromBigEndian’. }

procedure BlockReadLittleEndian (var aFile: File; var Buf;
ElementSize, Count: SizeType); attribute (iocritical, name
= ’_p_BlockRead_LittleEndian’); external;

procedure BlockReadBigEndian (var aFile: File; var Buf;
ElementSize, Count: SizeType); attribute (iocritical, name
= ’_p_BlockRead_BigEndian’); external;

{ Write a block variable to a file and convert it to little or big
endian format before. This only works for a single variable or a
plain array of a simple type. Apart from this, note the comment
for ‘ConvertToLittleEndian’ and ‘ConvertToBigEndian’. }

procedure BlockWriteLittleEndian (var aFile: File; const Buf;
ElementSize, Count: SizeType); attribute (iocritical, name
= ’_p_BlockWrite_LittleEndian’); external;

procedure BlockWriteBigEndian (var aFile: File; const Buf;
ElementSize, Count: SizeType); attribute (iocritical, name
= ’_p_BlockWrite_BigEndian’); external;

{ Read and write strings from/to binary files, where the length is
stored in the given endianness and with a fixed size (64 bits),
and therefore is independent of the system. }

procedure ReadStringLittleEndian (var f: File; var s: String);
attribute (iocritical, name = ’_p_ReadStringLittleEndian’);
external;

procedure ReadStringBigEndian (var f: File; var s: String);
attribute (iocritical, name = ’_p_ReadStringBigEndian’); external;

procedure WriteStringLittleEndian (var f: File; const s: String);
attribute (iocritical, name = ’_p_WriteStringLittleEndian’);

146 The GNU Pascal Manual

external;
procedure WriteStringBigEndian (var f: File; const s: String);

attribute (iocritical, name = ’_p_WriteStringBigEndian’);
external;

{ Initialization, from init.pas }

var
InitProc: ^procedure; attribute (name = ’_p_InitProc’); external;

6.14 Units included with GPC

GPC distributions now include a number of useful Pascal units and a complete set of BP
compatibility units – except for the ‘Graph’ unit (which is currently distributed separately due
to its license) and the OOP stuff. The main use of these units is to provide a way to port
BP programs to GPC as easily as possible. Some of the units also implement functionaliy not
available otherwise.

Most of the BP compatibility units – except ‘CRT’ and ‘Printer’ – are merely meant to let
programs written for BP compile with GPC as easily as possible. They should not be used
in newly written code, and for code ported from BP to GPC, it is suggested to replace them
successively with the more powerful – and often easier to use – alternatives that GPC’s Run
Time System (see Section 6.13 [Run Time System], page 100) offers.

The following sections describe all units included with GPC (besides the ‘GPC’ module which
describes the interface to the Run Time System, Section 6.13 [Run Time System], page 100).

6.14.1 BP compatibility: CRT & WinCRT, portable, with many
extensions

The following listing contains the interface of the CRT unit.
‘CRT’ is a ‘curses’ based unit for text screen handling. It is compatible to BP’s ‘CRT’ unit,

even in a lot of minor details like the values of function key codes and includes some routines for
compatibility with TP5’s ‘Win’ unit as well as BP’s ‘WinCRT’ and Turbo Power’s ‘TPCrt’ units,
and some extensions.

The unit has been extended by many functions that were lacking in BP’s unit and required
assembler code or direct memory/port access to be implemented under BP. The GPC version is
now fully suited for portable, real-world programming without any dirty tricks.

The unit is also available as ‘WinCRT’, completely identical to ‘CRT’. The only purpose of this
“feature” is to let programs written for TPW or BP, with a ‘uses WinCRT’ directive, compile
without changes. Unlike TPW/BP’s ‘WinCRT’ unit, GPC’s unit is not crippled, compared to
‘CRT’.

To use this unit, you will need the ‘ncurses’ (version 5.0 or newer) or ‘PDCurses’ library
which can be found in http://www.gnu-pascal.de/libs/.

{ CRT (Crt Replacement Tool)
Portable BP compatible CRT unit for GPC with many extensions

This unit is aware of terminal types. This means programs using
this unit will work whether run locally or while being logged in
remotely from a system with a completely different terminal type
(as long as the appropriate terminfo entry is present on the
system where the program is run).

http://www.gnu-pascal.de/libs/

Chapter 6: The Programmer’s Guide to GPC 147

NOTES:

- The CRT unit needs the ncurses and panel libraries which should
be available for almost any system. For Dos systems, where
ncurses is not available, it is configured to use the PDCurses
and its panel library instead. On Unix systems with X11, it can
also use PDCurses (xcurses) and xpanel to produce X11 programs.
The advantage is that the program won’t need an xterm with a
valid terminfo entry, the output may look a little nicer and
function keys work better than in an xterm, but the disadvantage
is that it will only run under X. The ncurses and PDCurses
libraries (including panel and xpanel, resp.) can be found in
http://www.gnu-pascal.de/libs/
(Note that ncurses is already installed on many Unix systems.)
For ncurses, version 5.0 or newer is strongly recommended
because older versions contain a bug that severely affects CRT
programs.

When an X11 version under Unix is wanted, give ‘-DX11’ when
compiling crt.pas and crtc.c (or when compiling crt.pas or a
program that uses CRT with ‘--automake’). On pre-X11R6 systems,
give ‘-DNOX11R6’ additionally. You might also have to give the
path to the X11 libraries with ‘-L’, e.g. ‘-L /usr/X11/lib’.

- A few features cannot be implemented in a portable way and are
only available on some systems:

Sound, NoSound 1) -----------------------.
GetShiftState ------------------. |
TextMode etc. 2) -------------. | |
CRTSavePreviousScreen --------. | | |
Interrupt signal (Ctrl-C) handling ---. | | | |

| | | | |
Linux/IA32 3) (terminal) X X 4) X 5) X 6) X 6)
Other Unix (terminal) X X 7) X 5) - -
Unix (X11 version) X X - 8) X -
Dos (DJGPP) X X X X X
MS-Windows (Cygwin or mingw) X - X 9) X -

Notes:

1) If you define NO_CRT_DUMMY_SOUND while compiling CRT, you
will get linking errors when your program tries to use
Sound/NoSound on a platform where it’s not supported (which
is useful to detect at compile time if playing sound is a
major task of your program). Otherwise, Sound/NoSound will
simply do nothing (which is usually acceptable if the program
uses these routines just for an occasional beep).

2) Changing to monochrome modes works on all platforms. Changing

148 The GNU Pascal Manual

the screen size only works on those indicated. However, even
on the platforms not supported, the program will react to
screen size changes by external means (e.g. changing the
window size with the mouse if running in a GUI window or
resizing a console or virtual terminal).

3) Probably also on other processors, but I’ve had no chance to
test this yet.

4) Only on a local console with access permissions to the
corresponding virtual console memory device or using the
‘crtscreen’ utility (see crtscreen.c in the demos directory).

5) Only if supported by an external command (e.g., in xterms and
on local Linux consoles). The command to be called can be
defined in the environment variable ‘RESIZETERM’ (where the
variables ‘columns’ and ‘lines’ in the command are set to the
size wanted). If not set, the code will try ‘resize -s’ in an
xterm and otherwise ‘SVGATextMode’ and ‘setfont’. For this to
work, these utilities need to be present in the PATH or
‘/usr/sbin’ or ‘/usr/local/sbin’. Furthermore, SVGATextMode
and setfont require root permissions, either to the
executable of the program compiled with CRT or to resizecons
(called by setfont) or SVGATextMode. To allow the latter, do
"chmod u+s ‘which resizecons‘" and/or
"chmod u+s ‘which SVGATextMode‘", as root once, but only if
you really want each user to be allowed to change the text
mode.

6) Only on local consoles.

7) Some terminals only. Most xterms etc. support it as well as
other terminals that support an "alternate screen" in the
smcup/rmcup terminal capabilities.

8) But the user can resize the window.

9) Only with PDCurses, not with ncurses. Changing the number of
screen *columns* doesn’t work in a full-screen session.

- When CRT is initialized (automatically or explicitly; see the
comments for CRTInit), the screen is cleared, and at the end of
the program, the cursor is placed at the bottom of the screen
(curses behaviour).

- All the other things (including most details like color and
function key constants) are compatible with BP’s CRT unit, and
there are many extensions that BP’s unit does not have.

- When the screen size is changed by an external event (e.g.,
resizing an xterm or changing the screen size from another VC

Chapter 6: The Programmer’s Guide to GPC 149

under Linux), the virtual "function key" kbScreenSizeChanged is
returned. Applications can use the virtual key to resize their
windows. kbScreenSizeChanged will not be returned if the screen
size change was initiated by the program itself (by using
TextMode or SetScreenSize). Note that TextMode sets the current
panel to the full screen size, sets the text attribute to the
default and clears the window (BP compatibility), while
SetScreenSize does not.

- After the screen size has been changed, whether by using
TextMode, SetScreenSize or by an external event, ScreenSize will
return the new screen size. The current window and all panels
will have been adjusted to the new screen size. This means, if
their right or lower ends are outside the new screen size, the
windows are moved to the left and/or top as far as necessary. If
this is not enough, i.e., if they are wider/higher than the new
screen size, they are shrinked to the total screen width/height.
When the screen size is enlarged, window sizes are not changed,
with one exception: Windows that extend through the whole screen
width/height are enlarged to the whole new screen width/height
(in particular, full-screen windows remain full-screen). This
behaviour might not be optimal for all purposes, but you can
always resize your windows in your application after the screen
size change.

- (ncurses only) The environment variable ‘ESCDELAY’ specifies the
number of milliseconds allowed between an ‘Esc’ character and
the rest of an escape sequence (default 1000). Setting it to a
value too small can cause problems with programs not recognizing
escape sequences such as function keys, especially over slow
network connections. Setting it to a value too large can delay
the recognition of an ‘ESC’ key press notably. On local Linux
consoles, e.g., 10 seems to be a good value.

- When trying to write portable programs, don’t rely on exactly
the same look of your output and the availability of all the key
combinations. Some kinds of terminals support only some of the
display attributes and special characters, and usually not all
of the keys declared are really available. Therefore, it’s safer
to provide the same function on different key combinations and
to not use the more exotic ones.

- CRT supports an additional modifier key (if present), called
‘Extra’. On DJGPP, it’s the <Scroll Lock> key, under X11 it’s
the modifier #4, and on a local Linux console, it’s the ‘CtrlL’
modifier (value 64) which is unused on many keytabs and can be
mapped to any key(s), e.g. to those keys on new keyboards with
these ugly symbols waiting to be replaced by penguins (keycodes
125 and 127) by inserting the following two lines into your
/etc/default.keytab and reloading the keytab with ‘loadkeys’
(you usually have to do this as root):

150 The GNU Pascal Manual

keycode 125 = CtrlL
keycode 127 = CtrlL

Copyright (C) 1998-2003 Free Software Foundation, Inc.

Author: Frank Heckenbach <frank@pascal.gnu.de>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License.

Please also note the license of the curses library used. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030303}
{$error This unit requires GPC release 20030303 or newer.}
{$endif}

unit {$ifdef THIS_IS_WINCRT} WinCRT {$else} CRT {$endif};

interface

uses GPC;

const
{ CRT modes }
BW40 = 0; { 40x25 Black/White }
CO40 = 1; { 40x25 Color }
BW80 = 2; { 80x25 Black/White }
CO80 = 3; { 80x25 Color }

Chapter 6: The Programmer’s Guide to GPC 151

Mono = 7; { 80x25 Black/White }
Font8x8 = 256; { Add-in for 80x43 or 80x50 mode }

{ Mode constants for Turbo Pascal 3.0 compatibility }
C40 = CO40;
C80 = CO80;

{ Foreground and background color constants }
Black = 0;
Blue = 1;
Green = 2;
Cyan = 3;
Red = 4;
Magenta = 5;
Brown = 6;
LightGray = 7;

{ Foreground color constants }
DarkGray = 8;
LightBlue = 9;
LightGreen = 10;
LightCyan = 11;
LightRed = 12;
LightMagenta = 13;
Yellow = 14;
White = 15;

{ Add-in for blinking }
Blink = 128;

type
TTextAttr = Byte;

var
{ If False (default: True), catch interrupt signals (SIGINT;
Ctrl-C), and other flow control characters as well as SIGTERM,
SIGHUP and perhaps other signals }

CheckBreak: Boolean = True; attribute (name = ’crt_CheckBreak’);

{ If True (default : False), replace Ctrl-Z by #0 in input }
CheckEOF: Boolean = False; attribute (name = ’crt_CheckEOF’);

{ Ignored -- meaningless here }
DirectVideo: Boolean = True;

{ Ignored -- curses or the terminal driver will take care of that
when necessary }

CheckSnow: Boolean = False;

{ Current (sic!) text mode }
LastMode: Word = 3; attribute (name = ’crt_LastMode’);

152 The GNU Pascal Manual

{ Current text attribute }
TextAttr: TTextAttr = 7; attribute (name = ’crt_TextAttr’);

{ Window upper left coordinates. *Obsolete*! Please see WindowMin
below. }

WindMin: Word = not Word (0); attribute (name = ’crt_WindMin’);

{ Window lower right coordinates. *Obsolete*! Please see WindowMax
below. }

WindMax: Word = not Word (0); attribute (name = ’crt_WindMax’);

procedure AssignCRT (var f: Text);
function KeyPressed: Boolean; external name ’crt_KeyPressed’;
function ReadKey: Char; external name ’crt_ReadKey’;

{ Not effective on all platforms, see above. See also SetScreenSize
and SetMonochrome. }

procedure TextMode (Mode: Integer);

procedure Window (x1, y1, x2, y2: Integer); external
name ’crt_Window’;

procedure GotoXY (x, y: Integer); external name ’crt_GotoXY’;
function WhereX: Integer; external name ’crt_WhereX’;
function WhereY: Integer; external name ’crt_WhereY’;
procedure ClrScr; external name ’crt_ClrScr’;
procedure ClrEOL; external name ’crt_ClrEOL’;
procedure InsLine; external name ’crt_InsLine’;
procedure DelLine; external name ’crt_DelLine’;
procedure TextColor (Color: TTextAttr);
procedure TextBackground (Color: TTextAttr);
procedure LowVideo;
procedure HighVideo;
procedure NormVideo;
procedure Delay (MS: Word); external name ’crt_Delay’;

{ Not available on all platforms, see above }
procedure Sound (Hz: Word); external name ’crt_Sound’;
procedure NoSound; external name ’crt_NoSound’;

{ =================== Extensions over BP’s CRT =================== }

{ Initializes the CRT unit. Should be called before using any of
CRT’s routines.

Note: For BP compatibility, CRT is initizalized automatically when
(almost) any of its routines are used for the first time. In this
case, some defaults are set to match BP more closely. In
particular, the PC charset (see SetPCCharSet) is enabled then
(disabled otherwise), and the update level (see SetCRTUpdate) is
set to UpdateRegularly (UpdateWaitInput otherwise). This feature

Chapter 6: The Programmer’s Guide to GPC 153

is meant for BP compatibility *only*. Don’t rely on it when
writing a new program. Use CRTInit then, and set the defaults to
the values you want explicitly.

SetCRTUpdate is one of those few routines which will not cause CRT
to be initialized immediately, and a value set with it will
survive both automatic and explicit initialization, so you can use
it to set the update level without caring which way CRT will be
initialized. (This does not apply to SetPCCharSet. Since it works
on a per-panel basis, it has to initialize CRT first, so there is
a panel to start with.)

If you terminate the program before calling CRTInit or any routine
that causes automatic initialization, curses will never be
initialized, so e.g., the screen won’t be cleared. This can be
useful, e.g., to check the command line arguments (or anything
else) and if there’s a problem, write an error and abort. Just be
sure to write the error to StdErr, not Output (because Output will
be assigned to CRT, and therefore writing to Output will cause CRT
to be initialized, and because errors belong to StdErr, anyway),
and to call ‘RestoreTerminal (True)’ before (just to be sure, in
case some code -- perhaps added later, or hidden in the
initialization of some unit -- does initialize CRT). }

procedure CRTInit; external name ’crt_Init’;

{ Changes the input and output file and the terminal description CRT
uses. Only effective with ncurses, and only if called before CRT
is initialized (automatically or explicitly; see the comments for
CRTInit). If TerminalType is nil, the default will be used. If
InputFile and/or OutputFile are Null, they remain unchanged. }

procedure CRTSetTerminal (TerminalType: CString; var InputFile,
OutputFile: AnyFile); attribute (name = ’crt_SetTerminal’);

{ If called with an argument True, it causes CRT to save the
previous screen contents if possible (see the comments at the
beginning of the unit), and restore them when calling
RestoreTerminal (True). After RestoreTerminal (False), they’re
saved again, and at the end of the program, they’re restored. If
called with an argument False, it will prohibit this behaviour.
The default, if this procedure is not called, depends on the
terminal (generally it is active on most xterms and similar and
not active on most other terminals).

This procedure should be called before initializing CRT (using
CRTInit or automatically), otherwise the previous screen contents
may already have been overwritten. It has no effect under XCurses,
because the program uses its own window, anyway. }

procedure CRTSavePreviousScreen (On: Boolean); external
name ’crt_SavePreviousScreen’;

{ Returns True if CRTSavePreviousScreen was called with argument

154 The GNU Pascal Manual

True and the functionality is really available. Note that the
result is not reliable until CRT is initialized, while
CRTSavePreviousScreen should be called before CRT is initialized.
That’s why they are two separate routines. }

function CRTSavePreviousScreenWorks: Boolean; external
name ’crt_SavePreviousScreenWorks’;

{ If CRT is initialized automatically, not via CRTInit, and
CRTAutoInitProc is not nil, it will be called before actually
initializing CRT. }

var
CRTAutoInitProc: procedure = nil; attribute (name
= ’crt_AutoInitProc’);

{ Aborts with a runtime error saying that CRT was not initialized.
If you set CRTAutoInitProc to this procedure, you can effectively
disable CRT’s automatic initialization. }

procedure CRTNotInitialized; attribute (name
= ’crt_NotInitialized’);

{ Set terminal to shell or curses mode. An internal procedure
registered by CRT via RegisterRestoreTerminal does this as well,
so CRTSetCursesMode has to be called only in unusual situations,
e.g. after executing a process that changes terminal modes, but
does not restore them (e.g. because it crashed or was killed), and
the process was not executed with the Execute routine, and
RestoreTerminal was not called otherwise. If you set it to False
temporarily, be sure to set it back to True before doing any
further CRT operations, otherwise the result may be strange. }

procedure CRTSetCursesMode (On: Boolean); external
name ’crt_SetCursesMode’;

{ Do the same as ‘RestoreTerminal (True)’, but also clear the screen
after restoring the terminal (except for XCurses, because the
program uses its own window, anyway). Does not restore and save
again the previous screen contents if CRTSavePreviousScreen was
called. }

procedure RestoreTerminalClearCRT; attribute (name
= ’crt_RestoreTerminalClearCRT’);

{ Keyboard and character graphics constants -- BP compatible! =:-}
{$i crt.inc}

var
{ Tells whether the XCurses version of CRT is used }
XCRT: Boolean = {$ifdef XCURSES} True {$else} False {$endif};
attribute (name = ’crt_XCRT’);

{ If True (default: False), the Beep procedure and writing #7 do a
Flash instead }

VisualBell: Boolean = False; attribute (name = ’crt_VisualBell’);

Chapter 6: The Programmer’s Guide to GPC 155

{ Cursor shape codes. Only to be used in very special cases. }
CursorShapeHidden: Integer = 0; attribute (name
= ’crt_CursorShapeHidden’);
CursorShapeNormal: Integer = 1; attribute (name
= ’crt_CursorShapeNormal’);
CursorShapeFull: Integer = 2; attribute (name
= ’crt_CursorShapeFull’);

type
TKey = Word;

TCursorShape = (CursorIgnored, CursorHidden, CursorNormal,
CursorFat, CursorBlock);

TCRTUpdate = (UpdateNever, UpdateWaitInput, UpdateInput,
UpdateRegularly, UpdateAlways);

TPoint = record
x, y: Integer

end;

PCharAttr = ^TCharAttr;
TCharAttr = record
ch : Char;
Attr : TTextAttr;
PCCharSet: Boolean

end;

PCharAttrs = ^TCharAttrs;
TCharAttrs = array [1 .. MaxVarSize div SizeOf (TCharAttr)] of
TCharAttr;

TWindowXYInternalCard8 = Cardinal attribute (Size = 8);
TWindowXYInternalFill = Integer attribute (Size = BitSizeOf (Word)
- 16);
TWindowXY = packed record
{$ifdef __BYTES_BIG_ENDIAN__}
Fill: TWindowXYInternalFill;
y, x: TWindowXYInternalCard8
{$elif defined (__BYTES_LITTLE_ENDIAN__)}
x, y: TWindowXYInternalCard8;
Fill: TWindowXYInternalFill
{$else}
{$error Endianness is not defined!}
{$endif}

end;

{ Make sure TWindowXY really has the same size as WindMin and
WindMax. If not, compilation will abort here with ‘division by
zero’. Otherwise, the value of the constant will always be 1, and

156 The GNU Pascal Manual

is of no further interest. }
const

AssertTWindowXYSize = 1 / Ord ((SizeOf (TWindowXY) = SizeOf
(WindMin)) and

(SizeOf (TWindowXY) = SizeOf
(WindMax)));

var
{ Window upper and left coordinates. More comfortable to access
than WindMin, but also *obsolete*. WindMin and WindowMin still
work, but have the problem that they implicitly limit the window
size to 255x255 characters. Though that’s not really small for a
text window, it’s easily possible to create bigger ones (e.g. in
an xterm with a small font, on a high resolution screen and/or
extending over several virutal desktops). When using coordinates
greater than 254, the corresponding bytes in WindowMin/WindowMax
will be set to 254, so, e.g., programs which do
‘Inc (WindowMin.x)’ will not fail quite as badly (but probably
still fail). The routines Window and GetWindow use Integer
coordinates, and don’t suffer from any of these problems, so
they should be used instead. }

WindowMin: TWindowXY absolute WindMin;

{ Window lower right coordinates. More comfortable to access than
WindMax, but also *obsolete* (see the comments for WindowMin).
Use Window and GetWindow instead. }

WindowMax: TWindowXY absolute WindMax;

{ The attribute set by NormVideo }
NormAttr: TTextAttr = 7; attribute (name = ’crt_NormAttr’);

{ Tells whether the current mode is monochrome }
IsMonochrome: Boolean = False; attribute (name
= ’crt_IsMonochrome’);

{ This value can be set to a combination of the shFoo constants
and will be ORed to the actual shift state returned by
GetShiftState. This can be used to easily simulate shift keys on
systems where they can’t be accessed. }

VirtualShiftState: Integer = 0; attribute (name
= ’crt_VirtualShiftState’);

{ Returns the size of the screen. Note: In BP’s WinCRT unit,
ScreenSize is a variable. But since writing to it from a program
is pointless, anyway, providing a function here should not cause
any incompatibility. }

function ScreenSize: TPoint; attribute (name
= ’crt_GetScreenSize’);

{ Change the screen size if possible. }
procedure SetScreenSize (x, y: Integer); external

Chapter 6: The Programmer’s Guide to GPC 157

name ’crt_SetScreenSize’;

{ Turns colors off or on. }
procedure SetMonochrome (Monochrome: Boolean); external

name ’crt_SetMonochrome’;

{ Tell which modifier keys are currently pressed. The result is a
combination of the shFoo constants defined in crt.inc, or 0 on
systems where this function is not supported -- but note
VirtualShiftState. If supported, ReadKey automatically converts
kbIns and kbDel keys to kbShIns and kbShDel, resp., if shift is
pressed. }

function GetShiftState: Integer; external name ’crt_GetShiftState’;

{ Get the extent of the current window. Use this procedure rather
than reading WindMin and WindMax or WindowMin and WindowMax, since
this routine allows for window sizes larger than 255. The
resulting coordinates are 1-based (like in Window, unlike WindMin,
WindMax, WindowMin and WindowMax). Any of the parameters may be
Null in case you’re interested in only some of the coordinates. }

procedure GetWindow (var x1, y1, x2, y2: Integer); external
name ’crt_GetWindow’;

{ Determine when to update the screen. The possible values are the
following. The given conditions *guarantee* updates. However,
updates may occur more frequently (even if the update level is set
to UpdateNever). About the default value, see the comments for
CRTInit.

UpdateNever : never (unless explicitly requested with
CRTUpdate)

UpdateWaitInput: before Delay and CRT input, unless typeahead is
detected

UpdateInput : before Delay and CRT input
UpdateRegularly: before Delay and CRT input and otherwise in

regular intervals without causing too much
refresh. This uses a timer on some systems
(currently, Unix with ncurses). This was created
for BP compatibility, but for many applications,
a lower value causes less flickering in the
output, and additionally, timer signals won’t
disturb other operations. Under DJGPP, this
always updates immediately, but this fact should
not mislead DJGPP users into thinking this is
always so.

UpdateAlways : after each output. This can be very slow. (Not so
under DJGPP, but this fact should not mislead
DJGPP users ...) }

procedure SetCRTUpdate (UpdateLevel: TCRTUpdate); external
name ’crt_SetUpdateLevel’;

158 The GNU Pascal Manual

{ Do an update now, independently of the update level }
procedure CRTUpdate; external name ’crt_Update’;

{ Do an update now and completely redraw the screen }
procedure CRTRedraw; external name ’crt_Redraw’;

{ Return Ord (key) for normal keys and $100 * Ord (fkey) for
function keys }

function ReadKeyWord: TKey; external name ’crt_ReadKeyWord’;

{ Extract the character and scan code from a TKey value }
function Key2Char (k: TKey): Char;
function Key2Scan (k: TKey): Char;

{ Convert a key to upper/lower case if it is a letter, leave it
unchanged otherwise }

function UpCaseKey (k: TKey): TKey;
function LoCaseKey (k: TKey): TKey;

{ Return key codes for the combination of the given key with Ctrl,
Alt, AltGr or Extra, resp. Returns 0 if the combination is
unknown. }

function CtrlKey (ch: Char): TKey; attribute (name
= ’crt_CtrlKey’);

function AltKey (ch: Char): TKey; external name ’crt_AltKey’;
function AltGrKey (ch: Char): TKey; external name ’crt_AltGrKey’;
function ExtraKey (ch: Char): TKey; external name ’crt_ExtraKey’;

{ Check if k is a pseudo key generated by a deadly signal trapped }
function IsDeadlySignal (k: TKey): Boolean;

{ Produce a beep or a screen flash }
procedure Beep; external name ’crt_Beep’;
procedure Flash; external name ’crt_Flash’;

{ Get size of current window (calculated using GetWindow) }
function GetXMax: Integer;
function GetYMax: Integer;

{ Get/goto an absolute position }
function WhereXAbs: Integer;
function WhereYAbs: Integer;
procedure GotoXYAbs (x, y: Integer);

{ Turn scrolling on or off }
procedure SetScroll (State: Boolean); external name ’crt_SetScroll’;

{ Read back whether scrolling is enabled }
function GetScroll: Boolean; external name ’crt_GetScroll’;

{ Determine whether to interpret non-ASCII characters as PC ROM

Chapter 6: The Programmer’s Guide to GPC 159

characters (True), or in a system dependent way (False). About the
default, see the comments for CRTInit. }

procedure SetPCCharSet (PCCharSet: Boolean); external
name ’crt_SetPCCharSet’;

{ Read back the value set by SetPCCharSet }
function GetPCCharSet: Boolean; external name ’crt_GetPCCharSet’;

{ Determine whether to interpret #7, #8, #10, #13 as control
characters (True, default), or as graphics characters (False) }

procedure SetControlChars (UseControlChars: Boolean); external
name ’crt_SetControlChars’;

{ Read back the value set by SetControlChars }
function GetControlChars: Boolean; external

name ’crt_GetControlChars’;

procedure SetCursorShape (Shape: TCursorShape); external
name ’crt_SetCursorShape’;

function GetCursorShape: TCursorShape; external
name ’crt_GetCursorShape’;

procedure HideCursor;
procedure HiddenCursor;
procedure NormalCursor;
procedure FatCursor;
procedure BlockCursor;
procedure IgnoreCursor;

{ Simulates a block cursor by writing a block character onto the
cursor position. The procedure automatically finds the topmost
visible panel whose shape is not CursorIgnored and places the
simulated cursor there (just like the hardware cursor), with
matching attributes, if the cursor shape is CursorFat or
CursorBlock (otherwise, no simulated cursor is shown).

Calling this procedure again makes the simulated cursor disappear.
In particular, to get the effect of a blinking cursor, you have to
call the procedure repeatedly (say, 8 times a second). CRT will
not do this for you, since it does not intend to be your main
event loop. }

procedure SimulateBlockCursor; external
name ’crt_SimulateBlockCursor’;

{ Makes the cursor simulated by SimulateBlockCursor disappear if it
is active. Does nothing otherwise. You should call this procedure
after using SimulateBlockCursor before doing any further CRT
output (though failing to do so should not hurt except for
possibly leaving the simulated cursor in its old position longer
than it should). }

procedure SimulateBlockCursorOff; external

160 The GNU Pascal Manual

name ’crt_SimulateBlockCursorOff’;

function GetTextColor: Integer;
function GetTextBackground: Integer;

{ Write string at the given position without moving the cursor.
Truncated at the right margin. }

procedure WriteStrAt (x, y: Integer; const s: String; Attr:
TTextAttr);

{ Write (several copies of) a char at then given position without
moving the cursor. Truncated at the right margin. }

procedure WriteCharAt (x, y, Count: Integer; ch: Char; Attr:
TTextAttr);

{ Write characters with specified attributes at the given position
without moving the cursor. Truncated at the right margin. }

procedure WriteCharAttrAt (x, y, Count: Integer; CharAttr:
PCharAttrs); external name ’crt_WriteCharAttrAt’;

{ Write a char while moving the cursor }
procedure WriteChar (ch: Char);

{ Read a character from a screen position }
procedure ReadChar (x, y: Integer; var ch: Char; var Attr:

TTextAttr); external name ’crt_ReadChar’;

{ Change only text attributes, leave characters. Truncated at the
right margin. }

procedure ChangeTextAttr (x, y, Count: Integer; NewAttr: TTextAttr);

{ Fill current window }
procedure FillWin (ch: Char; Attr: TTextAttr); external

name ’crt_FillWin’;

{ Calculate size of memory required for ReadWin in current window. }
function WinSize: SizeType; external name ’crt_WinSize’;

{ Save window contents. Buf must be WinSize bytes large. }
procedure ReadWin (var Buf); external name ’crt_ReadWin’;

{ Restore window contents saved by ReadWin. The size of the current
window must match the size of the window from which ReadWin was
used, but the position may be different. }

procedure WriteWin (const Buf); external name ’crt_WriteWin’;

type
WinState = record
x1, y1, x2, y2, WhereX, WhereY, NewX1, NewY1, NewX2, NewY2:

Integer;
TextAttr: TTextAttr;

Chapter 6: The Programmer’s Guide to GPC 161

CursorShape: TCursorShape;
ScreenSize: TPoint;
Buffer: ^Byte

end;

{ Save window position and size, cursor position, text attribute and
cursor shape -- *not* the window contents. }

procedure SaveWin (var State: WinState);

{ Make a new window (like Window), and save the contents of the
screen below the window as well as the position and size, cursor
position, text attribute and cursor shape of the old window. }

procedure MakeWin (var State: WinState; x1, y1, x2, y2: Integer);

{ Create window in full size, save previous text mode and all values
that MakeWin does. }

procedure SaveScreen (var State: WinState);

{ Restore the data saved by SaveWin, MakeWin or SaveScreen. }
procedure RestoreWin (var State: WinState);

{ Panels }

type
TPanel = Pointer;

function GetActivePanel: TPanel; external
name ’crt_GetActivePanel’;

procedure PanelNew (x1, y1, x2, y2: Integer;
BindToBackground: Boolean); external name ’crt_PanelNew’;

procedure PanelDelete (Panel: TPanel); external
name ’crt_PanelDelete’;

procedure PanelBindToBackground (Panel: TPanel; BindToBackground:
Boolean); external name ’crt_PanelBindToBackground’;

function PanelIsBoundToBackground (Panel: TPanel): Boolean;
external name ’crt_PanelIsBoundToBackground’;

procedure PanelActivate (Panel: TPanel); external
name ’crt_PanelActivate’;

procedure PanelHide (Panel: TPanel); external
name ’crt_PanelHide’;

procedure PanelShow (Panel: TPanel); external
name ’crt_PanelShow’;

function PanelHidden (Panel: TPanel): Boolean;
external name ’crt_PanelHidden’;

procedure PanelTop (Panel: TPanel); external
name ’crt_PanelTop’;

procedure PanelBottom (Panel: TPanel); external
name ’crt_PanelBottom’;

procedure PanelMoveAbove (Panel, Above: TPanel); external
name ’crt_PanelMoveAbove’;

procedure PanelMoveBelow (Panel, Below: TPanel); external

162 The GNU Pascal Manual

name ’crt_PanelMoveBelow’;
function PanelAbove (Panel: TPanel): TPanel; external

name ’crt_PanelAbove’;
function PanelBelow (Panel: TPanel): TPanel; external

name ’crt_PanelBelow’;

{ TPCRT compatibility }

{ Write a string at the given position without moving the cursor.
Truncated at the right margin. }

procedure WriteString (const s: String; y, x: Integer);

{ Write a string at the given position with the given attribute
without moving the cursor. Truncated at the right margin. }

procedure FastWriteWindow (const s: String; y, x: Integer; Attr:
TTextAttr);

{ Write a string at the given absolute position with the given
attribute without moving the cursor. Truncated at the right
margin. }

procedure FastWrite (const s: String; y, x: Integer; Attr:
TTextAttr);

{ WinCRT compatibility }

const
cw_UseDefault = Integer ($8000);

var
WindowOrg : TPoint = (cw_UseDefault, cw_UseDefault); { Ignored }
WindowSize: TPoint = (cw_UseDefault, cw_UseDefault); { Ignored }
Cursor : TPoint = (0, 0); attribute (name = ’crt_Cursor’);
{ Cursor location, 0-based }
Origin : TPoint = (0, 0); { Ignored }
InactiveTitle: PChar = ’(Inactive %s)’; { Ignored }
AutoTracking: Boolean = True; { Ignored }
WindowTitle: {$ifdef __BP_TYPE_SIZES__}

array [0 .. 79] of Char
{$else}
TStringBuf
{$endif}; { CRT window title, ignored }

procedure InitWinCRT; attribute (name = ’crt_InitWinCRT’);

{ Halts the program }
procedure DoneWinCRT; attribute (noreturn, name = ’crt_DoneWinCRT’);

procedure WriteBuf (Buffer: PChar; Count: SizeType); attribute (name
= ’crt_WriteBuf’);

function ReadBuf (Buffer: PChar; Count: SizeType): SizeType;

Chapter 6: The Programmer’s Guide to GPC 163

attribute (name = ’crt_ReadBuf’);

{ 0-based coordinates! }
procedure CursorTo (x, y: Integer); attribute (name

= ’crt_CursorTo’);

{ Dummy }
procedure ScrollTo (x, y: Integer); attribute (name

= ’crt_ScrollTo’);

{ Dummy }
procedure TrackCursor; attribute (name = ’crt_TrackCursor’);

6.14.2 BP compatibility: Dos

The following listing contains the interface of the Dos unit.
This is a portable implementation of most routines from BP’s ‘Dos’ unit. A few routines that

are Dos – or even IA32 real mode – specific, are only available if ‘__BP_UNPORTABLE_ROUTINES__’
is defined, Section 7.2 [BP Incompatibilities], page 235.

The same functionality and much more is available in the Run Time System, Section 6.13
[Run Time System], page 100. In some cases, the RTS routines have the same interface as the
routines in this unit (e.g. ‘GetEnv’, ‘FSplit’, ‘FExpand’, ‘FSearch’), in other cases, they have
different names and/or easier and less limiting interfaces (e.g. ‘ReadDir’ etc. vs. ‘FindFirst’
etc.), and are often more efficient.

Therefore, using this unit is not recommended in newly written programs.
{ Portable BP compatible Dos unit

This unit supports most of the routines and declarations of BP’s
Dos unit.

Notes:

- The procedures Keep, GetIntVec, SetIntVec are not supported
since they make only sense for Dos real-mode programs (and GPC
compiled programs do not run in real-mode, even on IA32 under
Dos). The procedures Intr and MsDos are only supported under
DJGPP if ‘__BP_UNPORTABLE_ROUTINES__’ is defined (with the
‘-D__BP_UNPORTABLE_ROUTINES__’ option). A few other routines are
also only supported with this define, but on all platforms (but
they are crude hacks, that’s why they are not supported without
this define).

- The internal structure of file variables (FileRec and TextRec)
is different in GPC. However, as far as TFDDs are concerned,
there are other ways to achieve the same in GPC, see the GPC
unit.

Copyright (C) 1998-2003 Free Software Foundation, Inc.

Authors: Frank Heckenbach <frank@pascal.gnu.de>

164 The GNU Pascal Manual

Prof. Abimbola A. Olowofoyeku <African_Chief@bigfoot.com>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030412}
{$error This unit requires GPC release 20030412 or newer.}
{$endif}

module Dos;

{ GPC and this unit use ‘AnyFile’ for different meanings. Export
renaming helps us to avoid a conflict here. If you use both units,
the meaning of the latter one will be effective, but you always
get the built-in meaning by using ‘GPC_AnyFile’. }

export Dos = all (DosAnyFile => AnyFile, FSearch, FExpand, FSplit,
GetEnv);

import GPC; System;

type
GPC_AnyFile = AnyFile;
Byte8 = Cardinal attribute (Size = 8);
Word16 = Cardinal attribute (Size = 16);
Word32 = Cardinal attribute (Size = 32);
TDosAttr = Word;

const
{ File attribute constants }

Chapter 6: The Programmer’s Guide to GPC 165

ReadOnly = $01;
Hidden = $02; { set for dot files except ’.’ and ’..’ }
SysFile = $04; { not supported }
VolumeID = $08; { not supported }
Directory = $10;
Archive = $20; { means: not executable }
DosAnyFile = $3f;

{ Flag bit masks -- only used by the unportable Dos routines }
FCarry = 1;
FParity = 4;
FAuxiliary = $10;
FZero = $40;
FSign = $80;
FOverflow = $800;

{ DosError codes }
DosError_FileNotFound = 2;
DosError_PathNotFound = 3;
DosError_AccessDenied = 5;
DosError_InvalidMem = 9;
DosErorr_InvalidEnv = 10;
DosError_NoMoreFiles = 18;
DosError_IOError = 29;
DosError_ReadFault = 30;

type
{ String types. Not used in this unit, but declared for
compatibility. }

ComStr = String [127]; { Command line string }
PathStr = String [79]; { File pathname string }
DirStr = String [67]; { Drive and directory string }
NameStr = String [8]; { File name string }
ExtStr = String [4]; { File extension string }

TextBuf = array [0 .. 127] of Char;

{ Search record used by FindFirst and FindNext }
SearchRecFill = packed array [1 .. 21] of Byte8;
SearchRec = record
Fill: SearchRecFill;
Attr: Byte8;
Time,
Size: LongInt;
Name: {$ifdef __BP_TYPE_SIZES__}

String [12]
{$else}
TString
{$endif}

end;

166 The GNU Pascal Manual

{ Date and time record used by PackTime and UnpackTime }
DateTime = record
Year, Month, Day, Hour, Min, Sec: Word

end;

{ 8086 CPU registers -- only used by the unportable Dos routines }
Registers = record
case Boolean of
False: (ax, bx, cx, dx, bp, si, di, ds, es, Flags: Word16);
True : (al, ah, bl, bh, cl, ch, dl, dh: Byte8)

end;

var
{ Error status variable }
DosError: Integer = 0;

procedure GetDate (var Year, Month, Day, DayOfWeek: Word); attribute
(name = ’_p_GetDate’);

procedure GetTime (var Hour, Minute, Second, Sec100: Word);
attribute (name = ’_p_GetTime’);

procedure GetCBreak (var BreakOn: Boolean); attribute (name
= ’_p_GetCBreak’);

procedure SetCBreak (BreakOn: Boolean); attribute (name
= ’_p_SetCBreak’);

{ GetVerify and SetVerify are dummies except for DJGPP (in the
assumption that any real OS knows by itself when and how to verify
its disks). }

procedure GetVerify (var VerifyOn: Boolean); attribute (name
= ’_p_GetVerify’);

procedure SetVerify (VerifyOn: Boolean); attribute (name
= ’_p_SetVerify’);

function DiskFree (Drive: Byte): LongInt; attribute (name
= ’_p_DiskFree’);

function DiskSize (Drive: Byte): LongInt; attribute (name
= ’_p_DiskSize’);

procedure GetFAttr (var f: GPC_AnyFile; var Attr: TDosAttr);
attribute (name = ’_p_GetFAttr’);

procedure SetFAttr (var f: GPC_AnyFile; Attr: TDosAttr); attribute
(name = ’_p_SetFAttr’);

procedure GetFTime (var f: GPC_AnyFile; var MTime: LongInt);
attribute (name = ’_p_GetFTime’);

procedure SetFTime (var f: GPC_AnyFile; MTime: LongInt); attribute
(name = ’_p_SetFTime’);

{ FindFirst and FindNext are quite inefficient since they emulate
all the brain-dead Dos stuff. If at all possible, the standard
routines OpenDir, ReadDir and CloseDir (in the GPC unit) should be
used instead. }

procedure FindFirst (const Path: String; Attr: TDosAttr; var SR:
SearchRec); attribute (name = ’_p_FindFirst’);

procedure FindNext (var SR: SearchRec); attribute (name

Chapter 6: The Programmer’s Guide to GPC 167

= ’_p_FindNext’);

procedure FindClose (var SR: SearchRec); attribute (name
= ’_p_FindClose’);

procedure UnpackTime (p: LongInt; var t: DateTime); attribute (name
= ’_p_UnpackTime’);

procedure PackTime (const t: DateTime; var p: LongInt); attribute
(name = ’_p_PackTime’);

function EnvCount: Integer;
function EnvStr (EnvIndex: Integer): TString;
procedure SwapVectors;
{ Exec executes a process via Execute, so RestoreTerminal is called

with the argument True before and False after executing the
process. }

procedure Exec (const Path, Params: String);
function DosExitCode: Word;

{ Unportable Dos-only routines and declarations }

{$ifdef __BP_UNPORTABLE_ROUTINES__}
{$ifdef __GO32__}
{ These are unportable Dos-only declarations and routines, since

interrupts are Dos and CPU specific (and have no place in a
high-level program, anyway). }

procedure Intr (IntNo: Byte; var Regs: Registers); attribute (name
= ’_p_Intr’);

procedure MsDos (var Regs: Registers); attribute (name
= ’_p_MsDos’);

{$endif}

{ Though probably all non-Dos systems have versions numbers as well,
returning them here would usually not do what is expected, e.g.
testing if certain Dos features are present by comparing the
version number. Therefore, this routine always returns 7 (i.e.,
version 7.0) on non-Dos systems, in the assumption that any real
OS has at least the features of Dos 7. }

function DosVersion: Word; attribute (name = ’_p_DosVersion’);

{ Changing the system date and time is a system administration task,
not allowed to a normal process. On non-Dos systems, these
routines emulate the changed date/time, but only for GetTime and
GetDate (not the RTS date/time routines), and only for this
process, not for child processes or even the parent process or
system-wide. }

procedure SetDate (Year, Month, Day: Word); attribute (name
= ’_p_SetDate’);

procedure SetTime (Hour, Minute, Second, Sec100: Word); attribute
(name = ’_p_SetTime’);

{$endif}

168 The GNU Pascal Manual

6.14.3 Overcome some differences between Dos and Unix

The following listing contains the interface of the DosUnix unit.

This unit is there to overcome some of those differences between Dos and Unix systems that
are not automatically hidden by GPC and the Run Time System. Currently features translation
of bash style input/output redirections (‘foo 2>&1’) into ‘redir’ calls for DJGPP (‘redir -eo
foo’) and a way to read files with Dos CR/LF pairs on any system.

When necessary, new features will be added to the unit in future releases.

{ Some routines to support writing programs portable between Dos and
Unix. Perhaps it would be a good idea not to put features to make
Dos programs Unix-compatible (shell redirections) and vice versa
(reading Dos files from Unix) together into one unit, but rather
into two units, DosCompat and UnixCompat or so -- let’s wait and
see, perhaps when more routines suited for this/these unit(s) will
be found, the design will become clearer ...

Copyright (C) 1998-2003 Free Software Foundation, Inc.

Author: Frank Heckenbach <frank@pascal.gnu.de>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030412}
{$error This unit requires GPC release 20030412 or newer.}
{$endif}

unit DosUnix;

Chapter 6: The Programmer’s Guide to GPC 169

interface

uses GPC;

{ This function is meant to be used when you want to invoke a system
shell command (e.g. via Execute or Exec from the Dos unit) and
want to specify input/output redirections for the command invoked.
It caters for the different syntax between DJGPP (with the ‘redir’
utility) and other systems.

To use it, code your redirections in bash style (see the table
below) in your command line string, pass this string to this
function, and the function’s result to Execute or the other
routines.

The function translates the following bash style redirections
(characters in brackets are optional) into a redir call under Dos
systems except EMX, and leave them unchanged under other systems.
Note: ‘redir’ comes with DJGPP, but it should be possible to
install it on other Dos systems as well. OS/2’s shell, however,
supports bash style redirections, I was told, so we don’t
translate on EMX.

[0]< file redirect standard input from file
[1]>[|] file redirect standard output to file
[1]>> file append standard output to file
[1]>&2 redirect standard output to standard error
2>[|] file redirect standard error to file
2>> file append standard error to file
2>&1 redirect standard error to standard output
&> file redirect both standard output and standard

error to file }
function TranslateRedirections (const Command: String): TString;

attribute (name = ’_p_TranslateRedirections’);

{ Under Unix, translates CR/LF pairs to single LF characters when
reading from f, and back when writing to f. Under Dos, does
nothing because the run time system alrady does this job. In the
result, you can read both Dos and Unix files, and files written
will be Dos. }

procedure AssignDos (var f: AnyFile; const FileName: String);
attribute (name = ’_p_AssignDos’);

{ Translates a character from the "OEM" charset used under Dos to
the ISO-8859-1 (AKA Latin1) character set. }

function OEM2Latin1 (ch: Char): Char; attribute (name
= ’_p_OEM2Latin1’);

{ Translates a character from the ISO-8859-1 (AKA Latin1) character
set to the "OEM" charset used under Dos. }

function Latin12OEM (ch: Char): Char; attribute (name

170 The GNU Pascal Manual

= ’_p_Latin12OEM’);

6.14.4 Higher level file and directory handling

The following listing contains the interface of the FileUtils unit.
This unit provides some routines for file and directory handling on a higher level than those

provided by the RTS.

{ Some routines for file and directory handling on a higher level
than those provided by the RTS.

Copyright (C) 2000-2003 Free Software Foundation, Inc.

Author: Frank Heckenbach <frank@pascal.gnu.de>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030412}
{$error This unit requires GPC release 20030412 or newer.}
{$endif}

unit FileUtils;

interface

uses GPC;

type

Chapter 6: The Programmer’s Guide to GPC 171

TStringProc = procedure (const s: String);

{ Finds all files matching the given Mask in the given Directory and
all subdirectories of it. The matching is done using all wildcards
and brace expansion, like MultiFileNameMatch does. For each file
found, FileAction is executed. For each directory found (including
‘.’ and ‘..’ if they match the Mask!), DirAction is executed. If
MainDirFirst is True, this happens before processing the files in
the directory and below, otherwise afterwards. (The former is
useful, e.g., if this is used to copy a directory tree and
DirAction does a MkDir, while the latter behaviour is required
when removing a directory tree and DirAction does a RmDir.) Both
FileAction and DirAction can be nil in which case nothing is done
for files or directories found, respectively. (If DirAction is
nil, the value of DirsFirst does not matter.) Of course,
FileAction and DirAction may also be identical. The procedure
leaves InOutRes set in case of any error. If FileAction or
DirAction return with InOutRes set, FindFiles recognizes this and
returns immediately. }

procedure FindFiles (const Directory, Mask: String; MainDirFirst:
Boolean;

FileAction, DirAction: TStringProc); attribute
(iocritical, name = ’_p_FindFiles’);

{ Creates the directory given by Path and all directories in between
that are necessary. Does not report an error if Path already
exists and is a directory, but, of course, if it cannot be created
because of missing permissions or because Path already exists as a
file. }

procedure MkDirs (const Path: String); attribute (iocritical, name
= ’_p_MkDirs’);

{ Removes Path if empty as well as any empty parent directories.
Does not report an error if Path is not empty. }

procedure RmDirs (const Path: String); attribute (iocritical, name
= ’_p_RmDirs’);

{ Copies the file Source to Dest, overwriting Dest if it exists and
can be written to. Returns any errors in IOResult. If Mode >= 0,
it will change the permissions of Dest to Mode immediately after
creating it and before writing any data to it. That’s useful,
e.g., if Dest is not meant to be world-readable, because if you’d
do a ChMod after FileCopy, you would leave the data readable
(depending on the umask) during the copying. If Mode < 0, Dest
will be set to the same permissions Source has. In any case, Dest
will be set to the modification time of Source after copying. On
any error, the destination file is erased. This is to avoid
leaving partial files in case of full file systems (one of the
most common reasons for errors). }

procedure FileCopy (const Source, Dest: String; Mode: Integer);
attribute (iocritical, name = ’_p_FileCopy’);

172 The GNU Pascal Manual

{ Creates a backup of FileName in the directory BackupDirectory or,
if BackupDirectory is empty, in the directory of FileName. Errors
are returned in IOResult (and on any error, no partial backup file
is left), but if FileName does not exist, this does *not* count as
an error (i.e., BackupFile will just return without setting
IOResult then). If OnlyUserReadable is True, the backup file will
be given only user-read permissions, nothing else.

The name chosen for the backup depends on the Simple and Short
parameters. The short names will fit into 8+3 characters (whenever
possible), while the long ones conform to the conventions used by
most GNU tools. If Simple is True, a simple backup file name will
be used, and previous backups under the same name will be
overwritten (if possible). Otherwise, backups will be numbered,
where the number is chosen to be larger than all existing backups,
so it will be unique and increasing in chronological order. In
particular:

Simple Short Backup name
True True Base name of FileName plus ’.bak’
False True Base name of FileName plus ’.b’ plus a number
True False Base name plus extension of FileName plus ’~’
False False Base name plus extension of FileName plus ’.~’, a

number and ’~’ }
procedure BackupFile (const FileName, BackupDirectory: String;

Simple, Short, OnlyUserReadable: Boolean); attribute (iocritical,
name = ’_p_BackupFile’);

6.14.5 Arithmetic with unlimited size and precision

The following listing contains the interface of the GMP unit.
This unit provides an interface to the GNU Multiprecision Library to perform arithmetic on

integer, rational and real numbers of unlimited size and precision.
To use this unit, you will need the ‘gmp’ library which can be found in

http://www.gnu-pascal.de/libs/.
{ Definitions for GNU multiple precision functions: arithmetic with

integer, rational and real numbers of arbitrary size and
precision.

Translation of the C header (gmp.h) of the GMP library. Tested
with GMP 2.0.2 and 3.0.1.

To use the GMP unit, you will need the GMP library which can be
found in http://www.gnu-pascal.de/libs/

Copyright (C) 1998-2003 Free Software Foundation, Inc.

Author: Frank Heckenbach <frank@pascal.gnu.de>

http://www.gnu-pascal.de/libs/

Chapter 6: The Programmer’s Guide to GPC 173

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License.

Please also note the license of the GMP library. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030303}
{$error This unit requires GPC release 20030303 or newer.}
{$endif}
{$nested-comments}

{ If HAVE_GMP3 is set, routines new in GMP 3.x will be made
available. The define will have no effect on the other interface
changes between GMP 2.x and 3.x, i.e. the other routines will work
correctly even if this define is set incorrectly, except on 64 bit
machines, Crays and other systems where the types are different
between the GMP versions. Otherwise, the only possible problem if
setting the define while using GMP 2.x are linking errors if you
actually use any of the new routines.

If HAVE_GMP4 is set (the default unless HAVE_GMP2 or HAVE_GMP3 are
set, some interface changes made in GMP 4 are taken into account.
I.e., if this is set wrong, programs might fail. However, this
only affects a few routines related to random numbers. }

{$if not defined (HAVE_GMP2) and not defined (HAVE_GMP3)}
{$define HAVE_GMP4}
{$endif}

{$undef GMP} { in case it’s set by the user }
unit GMP;

174 The GNU Pascal Manual

interface

uses GPC;

{$if defined (__mips) and defined (_ABIN32) and defined (HAVE_GMP3)}
{ Force the use of 64-bit limbs for all 64-bit MIPS CPUs if ABI

permits. }
{$define _LONG_LONG_LIMB}
{$endif}

type
{$ifdef _SHORT_LIMB}
mp_limb_t = Cardinal;
mp_limb_signed_t = Integer;
{$elif defined (_LONG_LONG_LIMB)}
mp_limb_t = LongCard;
mp_limb_signed_t = LongInt;
{$else}
mp_limb_t = MedCard;
mp_limb_signed_t = MedInt;
{$endif}

mp_ptr = ^mp_limb_t;

{$if defined (_CRAY) and not defined (_CRAYMPP) and defined
(HAVE_GMP3)}
mp_size_t = Integer;
mp_exp_t = Integer;
{$else}
mp_size_t = MedInt;
mp_exp_t = MedInt;
{$endif}

mpz_t = record
mp_alloc,
mp_size: {$if defined (__MP_SMALL__) and defined (HAVE_GMP3)}

ShortInt
{$else}
Integer
{$endif};

mp_d: mp_ptr
end;

mpz_array_ptr = ^mpz_array;
mpz_array = array [0 .. MaxVarSize div SizeOf (mpz_t) - 1] of
mpz_t;

mpq_t = record
mp_num,
mp_den: mpz_t

Chapter 6: The Programmer’s Guide to GPC 175

end;

mpf_t = record
mp_prec,
mp_size: Integer;
mp_exp: mp_exp_t;
mp_d: mp_ptr

end;

TAllocFunction = function (Size: SizeType): Pointer;
TReAllocFunction = function (var Dest: Pointer; OldSize, NewSize:
SizeType): Pointer;
TDeAllocProcedure = procedure (Src: Pointer; Size: SizeType);

procedure mp_set_memory_functions (AllocFunction: TAllocFunction;
ReAllocFunction:

TReAllocFunction;
DeAllocProcedure:

TDeAllocProcedure); external name ’__gmp_set_memory_functions’;

function mp_bits_per_limb: Integer; external
name ’_p_mp_bits_per_limb’;

{**************** Integer (i.e. Z) routines. ****************}

procedure mpz_init (var Dest: mpz_t); external
name ’__gmpz_init’;

procedure mpz_clear (var Dest: mpz_t); external
name ’__gmpz_clear’;

function mpz_realloc (var Dest: mpz_t; NewAlloc:
mp_size_t): Pointer; external name ’__gmpz_realloc’;

procedure mpz_array_init (Dest: mpz_array_ptr; ArraySize,
FixedNumBits: mp_size_t); external name ’__gmpz_array_init’;

procedure mpz_set (var Dest: mpz_t; protected var Src:
mpz_t); external name ’__gmpz_set’;

procedure mpz_set_ui (var Dest: mpz_t; Src: MedCard);
external name ’__gmpz_set_ui’;

procedure mpz_set_si (var Dest: mpz_t; Src: MedInt);
external name ’__gmpz_set_si’;

procedure mpz_set_d (var Dest: mpz_t; Src: Real);
external name ’__gmpz_set_d’;

procedure mpz_set_q (var Dest: mpz_t; Src: mpq_t);
external name ’__gmpz_set_q’;

procedure mpz_set_f (var Dest: mpz_t; Src: mpf_t);
external name ’__gmpz_set_f’;

function mpz_set_str (var Dest: mpz_t; Src: CString; Base:
Integer): Integer; external name ’__gmpz_set_str’;

procedure mpz_init_set (var Dest: mpz_t; protected var Src:
mpz_t); external name ’__gmpz_init_set’;

176 The GNU Pascal Manual

procedure mpz_init_set_ui (var Dest: mpz_t; Src: MedCard);
external name ’__gmpz_init_set_ui’;

procedure mpz_init_set_si (var Dest: mpz_t; Src: MedInt);
external name ’__gmpz_init_set_si’;

procedure mpz_init_set_d (var Dest: mpz_t; Src: Real);
external name ’__gmpz_init_set_d’;

function mpz_init_set_str (var Dest: mpz_t; Src: CString; Base:
Integer): Integer; external name ’__gmpz_init_set_str’;

function mpz_get_ui (protected var Src: mpz_t): MedCard;
external name ’__gmpz_get_ui’;

function mpz_get_si (protected var Src: mpz_t): MedInt;
external name ’__gmpz_get_si’;

function mpz_get_d (protected var Src: mpz_t): Real;
external name ’__gmpz_get_d’;

{ Pass nil for Dest to let the function allocate memory for it }
function mpz_get_str (Dest: CString; Base: Integer;

protected var Src: mpz_t): CString; external
name ’__gmpz_get_str’;

procedure mpz_add (var Dest: mpz_t; protected var Src1,
Src2: mpz_t); external name ’__gmpz_add’;

procedure mpz_add_ui (var Dest: mpz_t; protected var Src1:
mpz_t; Src2: MedCard); external name ’__gmpz_add_ui’;

procedure mpz_sub (var Dest: mpz_t; protected var Src1,
Src2: mpz_t); external name ’__gmpz_sub’;

procedure mpz_sub_ui (var Dest: mpz_t; protected var Src1:
mpz_t; Src2: MedCard); external name ’__gmpz_sub_ui’;

procedure mpz_mul (var Dest: mpz_t; protected var Src1,
Src2: mpz_t); external name ’__gmpz_mul’;

procedure mpz_mul_ui (var Dest: mpz_t; protected var Src1:
mpz_t; Src2: MedCard); external name ’__gmpz_mul_ui’;

procedure mpz_mul_2exp (var Dest: mpz_t; protected var Src1:
mpz_t; Src2: MedCard); external name ’__gmpz_mul_2exp’;

procedure mpz_neg (var Dest: mpz_t; protected var Src:
mpz_t); external name ’__gmpz_neg’;

procedure mpz_abs (var Dest: mpz_t; protected var Src:
mpz_t); external name ’__gmpz_abs’;

procedure mpz_fac_ui (var Dest: mpz_t; Src: MedCard);
external name ’__gmpz_fac_ui’;

procedure mpz_tdiv_q (var Dest: mpz_t; protected var Src1,
Src2: mpz_t); external name ’__gmpz_tdiv_q’;

procedure mpz_tdiv_q_ui (var Dest: mpz_t; protected var Src1:
mpz_t; Src2: MedCard); external name ’__gmpz_tdiv_q_ui’;

procedure mpz_tdiv_r (var Dest: mpz_t; protected var Src1,
Src2: mpz_t); external name ’__gmpz_tdiv_r’;

procedure mpz_tdiv_r_ui (var Dest: mpz_t; protected var Src1:
mpz_t; Src2: MedCard); external name ’__gmpz_tdiv_r_ui’;

procedure mpz_tdiv_qr (var DestQ, DestR: mpz_t; protected
var Src1, Src2: mpz_t); external name ’__gmpz_tdiv_qr’;

Chapter 6: The Programmer’s Guide to GPC 177

procedure mpz_tdiv_qr_ui (var DestQ, DestR: mpz_t; protected
var Src1: mpz_t; Src2: MedCard); external
name ’__gmpz_tdiv_qr_ui’;

procedure mpz_fdiv_q (var Dest: mpz_t; protected var Src1,
Src2: mpz_t); external name ’__gmpz_fdiv_q’;

function mpz_fdiv_q_ui (var Dest: mpz_t; protected var Src1:
mpz_t; Src2: MedCard): MedCard; external name ’__gmpz_fdiv_q_ui’;

procedure mpz_fdiv_r (var Dest: mpz_t; protected var Src1,
Src2: mpz_t); external name ’__gmpz_fdiv_r’;

function mpz_fdiv_r_ui (var Dest: mpz_t; protected var Src1:
mpz_t; Src2: MedCard): MedCard; external name ’__gmpz_fdiv_r_ui’;

procedure mpz_fdiv_qr (var DestQ, DestR: mpz_t; protected
var Src1, Src2: mpz_t); external name ’__gmpz_fdiv_qr’;

function mpz_fdiv_qr_ui (var DestQ, DestR: mpz_t; protected
var Src1: mpz_t; Src2: MedCard): MedCard; external
name ’__gmpz_fdiv_qr_ui’;

function mpz_fdiv_ui (protected var Src1: mpz_t; Src2:
MedCard): MedCard; external name ’__gmpz_fdiv_ui’;

procedure mpz_cdiv_q (var Dest: mpz_t; protected var Src1,
Src2: mpz_t); external name ’__gmpz_cdiv_q’;

function mpz_cdiv_q_ui (var Dest: mpz_t; protected var Src1:
mpz_t; Src2: MedCard): MedCard; external name ’__gmpz_cdiv_q_ui’;

procedure mpz_cdiv_r (var Dest: mpz_t; protected var Src1,
Src2: mpz_t); external name ’__gmpz_cdiv_r’;

function mpz_cdiv_r_ui (var Dest: mpz_t; protected var Src1:
mpz_t; Src2: MedCard): MedCard; external name ’__gmpz_cdiv_r_ui’;

procedure mpz_cdiv_qr (var DestQ, DestR: mpz_t; protected
var Src1,Src2: mpz_t); external name ’__gmpz_cdiv_qr’;

function mpz_cdiv_qr_ui (var DestQ, DestR: mpz_t; protected
var Src1: mpz_t; Src2: MedCard): MedCard; external
name ’__gmpz_cdiv_qr_ui’;

function mpz_cdiv_ui (protected var Src1: mpz_t;
Src2:MedCard): MedCard; external name ’__gmpz_cdiv_ui’;

procedure mpz_mod (var Dest: mpz_t; protected var
Src1,Src2: mpz_t); external name ’__gmpz_mod’;

procedure mpz_divexact (var Dest: mpz_t; protected var
Src1,Src2: mpz_t); external name ’__gmpz_divexact’;

procedure mpz_tdiv_q_2exp (var Dest: mpz_t; protected var Src1:
mpz_t; Src2: MedCard); external name ’__gmpz_tdiv_q_2exp’;

procedure mpz_tdiv_r_2exp (var Dest: mpz_t; protected var Src1:
mpz_t; Src2: MedCard); external name ’__gmpz_tdiv_r_2exp’;

procedure mpz_fdiv_q_2exp (var Dest: mpz_t; protected var Src1:
mpz_t; Src2: MedCard); external name ’__gmpz_fdiv_q_2exp’;

procedure mpz_fdiv_r_2exp (var Dest: mpz_t; protected var Src1:
mpz_t; Src2: MedCard); external name ’__gmpz_fdiv_r_2exp’;

procedure mpz_powm (var Dest: mpz_t; protected var Base,

178 The GNU Pascal Manual

Exponent, Modulus: mpz_t); external name ’__gmpz_powm’;
procedure mpz_powm_ui (var Dest: mpz_t; protected var Base:

mpz_t; Exponent: MedCard; protected var Modulus: mpz_t); external
name ’__gmpz_powm_ui’;

procedure mpz_pow_ui (var Dest: mpz_t; protected var Base:
mpz_t; Exponent: MedCard); external name ’__gmpz_pow_ui’;

procedure mpz_ui_pow_ui (var Dest: mpz_t; Base, Exponent:
MedCard); external name ’__gmpz_ui_pow_ui’;

procedure mpz_sqrt (var Dest: mpz_t; protected var Src:
mpz_t); external name ’__gmpz_sqrt’;

procedure mpz_sqrtrem (var Dest, DestR: mpz_t; protected
var Src: mpz_t); external name ’__gmpz_sqrtrem’;

function mpz_perfect_square_p (protected var Src: mpz_t): Integer;
external name ’__gmpz_perfect_square_p’;

function mpz_probab_prime_p (protected var Src: mpz_t;
Repetitions: Integer): Integer; external
name ’__gmpz_probab_prime_p’;

procedure mpz_gcd (var Dest: mpz_t; protected var Src1,
Src2: mpz_t); external name ’__gmpz_gcd’;

function mpz_gcd_ui (var Dest: mpz_t; protected var Src1:
mpz_t; Src2: MedCard): MedCard; external name ’__gmpz_gcd_ui’;

procedure mpz_gcdext (var Dest, DestA, DestB: mpz_t;
protected var SrcA, SrcB: mpz_t); external name ’__gmpz_gcdext’;

function mpz_invert (var Dest: mpz_t; protected var Src,
Modulus: mpz_t): Integer; external name ’__gmpz_invert’;

function mpz_jacobi (protected var Src1, Src2: mpz_t):
Integer; external name ’__gmpz_jacobi’;

function mpz_cmp (protected var Src1, Src2: mpz_t):
Integer; external name ’__gmpz_cmp’;

function mpz_cmp_ui (protected var Src1: mpz_t; Src2:
MedCard): Integer; external name ’__gmpz_cmp_ui’;

function mpz_cmp_si (protected var Src1: mpz_t; Src2:
MedInt): Integer; external name ’__gmpz_cmp_si’;

function mpz_sgn (protected var Src: mpz_t): Integer;

procedure mpz_and (var Dest: mpz_t; protected var Src1,
Src2: mpz_t); external name ’__gmpz_and’;

procedure mpz_ior (var Dest: mpz_t; protected var Src1,
Src2: mpz_t); external name ’__gmpz_ior’;

procedure mpz_com (var Dest: mpz_t; protected var Src:
mpz_t); external name ’__gmpz_com’;

function mpz_popcount (protected var Src: mpz_t): MedCard;
external name ’__gmpz_popcount’;

function mpz_hamdist (protected var Src1, Src2: mpz_t):
MedCard; external name ’__gmpz_hamdist’;

function mpz_scan0 (protected var Src: mpz_t;
StartingBit: MedCard): MedCard; external name ’__gmpz_scan0’;

function mpz_scan1 (protected var Src: mpz_t;

Chapter 6: The Programmer’s Guide to GPC 179

StartingBit: MedCard): MedCard; external name ’__gmpz_scan1’;
procedure mpz_setbit (var Dest: mpz_t; BitIndex: MedCard);

external name ’__gmpz_setbit’;
procedure mpz_clrbit (var Dest: mpz_t; BitIndex: MedCard);

external name ’__gmpz_clrbit’;

procedure mpz_random (var Dest: mpz_t; MaxSize:
mp_size_t); external name ’__gmpz_random’;

procedure mpz_random2 (var Dest: mpz_t; MaxSize:
mp_size_t); external name ’__gmpz_random2’;

function mpz_sizeinbase (protected var Src: mpz_t; Base:
Integer): SizeType; external name ’__gmpz_sizeinbase’;

{**************** Rational (i.e. Q) routines. ****************}

procedure mpq_canonicalize (var Dest: mpq_t); external
name ’__gmpq_canonicalize’;

procedure mpq_init (var Dest: mpq_t); external
name ’__gmpq_init’;

procedure mpq_clear (var Dest: mpq_t); external
name ’__gmpq_clear’;

procedure mpq_set (var Dest: mpq_t; protected var Src:
mpq_t); external name ’__gmpq_set’;

procedure mpq_set_z (var Dest: mpq_t; protected var Src:
mpz_t); external name ’__gmpq_set_z’;

procedure mpq_set_ui (var Dest: mpq_t; Nom, Den: MedCard);
external name ’__gmpq_set_ui’;

procedure mpq_set_si (var Dest: mpq_t; Nom: MedInt; Den:
MedCard); external name ’__gmpq_set_si’;

procedure mpq_add (var Dest: mpq_t; protected var Src1,
Src2: mpq_t); external name ’__gmpq_add’;

procedure mpq_sub (var Dest: mpq_t; protected var Src1,
Src2: mpq_t); external name ’__gmpq_sub’;

procedure mpq_mul (var Dest: mpq_t; protected var Src1,
Src2: mpq_t); external name ’__gmpq_mul’;

procedure mpq_div (var Dest: mpq_t; protected var Src1,
Src2: mpq_t); external name ’__gmpq_div’;

procedure mpq_neg (var Dest: mpq_t; protected var Src:
mpq_t); external name ’__gmpq_neg’;

procedure mpq_inv (var Dest: mpq_t; protected var Src:
mpq_t); external name ’__gmpq_inv’;

function mpq_cmp (protected var Src1, Src2: mpq_t):
Integer; external name ’__gmpq_cmp’;

function mpq_cmp_ui (protected var Src1: mpq_t; Nom2,
Den2: MedCard): Integer; external name ’__gmpq_cmp_ui’;

function mpq_sgn (protected var Src: mpq_t): Integer;
function mpq_equal (protected var Src1, Src2: mpq_t):

Integer; external name ’__gmpq_equal’;

180 The GNU Pascal Manual

function mpq_get_d (protected var Src: mpq_t): Real;
external name ’__gmpq_get_d’;

procedure mpq_set_num (var Dest: mpq_t; protected var Src:
mpz_t); external name ’__gmpq_set_num’;

procedure mpq_set_den (var Dest: mpq_t; protected var Src:
mpz_t); external name ’__gmpq_set_den’;

procedure mpq_get_num (var Dest: mpz_t; protected var Src:
mpq_t); external name ’__gmpq_get_num’;

procedure mpq_get_den (var Dest: mpz_t; protected var Src:
mpq_t); external name ’__gmpq_get_den’;

{**************** Float (i.e. R) routines. ****************}

procedure mpf_set_default_prec (Precision: MedCard); external
name ’__gmpf_set_default_prec’;

procedure mpf_init (var Dest: mpf_t); external
name ’__gmpf_init’;

procedure mpf_init2 (var Dest: mpf_t; Precision:
MedCard); external name ’__gmpf_init2’;

procedure mpf_clear (var Dest: mpf_t); external
name ’__gmpf_clear’;

procedure mpf_set_prec (var Dest: mpf_t; Precision:
MedCard); external name ’__gmpf_set_prec’;

function mpf_get_prec (protected var Src: mpf_t): MedCard;
external name ’__gmpf_get_prec’;

procedure mpf_set_prec_raw (var Dest: mpf_t; Precision:
MedCard); external name ’__gmpf_set_prec_raw’;

procedure mpf_set (var Dest: mpf_t; protected var Src:
mpf_t); external name ’__gmpf_set’;

procedure mpf_set_ui (var Dest: mpf_t; Src: MedCard);
external name ’__gmpf_set_ui’;

procedure mpf_set_si (var Dest: mpf_t; Src: MedInt);
external name ’__gmpf_set_si’;

procedure mpf_set_d (var Dest: mpf_t; Src: Real);
external name ’__gmpf_set_d’;

procedure mpf_set_z (var Dest: mpf_t; protected var Src:
mpz_t); external name ’__gmpf_set_z’;

procedure mpf_set_q (var Dest: mpf_t; protected var Src:
mpq_t); external name ’__gmpf_set_q’;

function mpf_set_str (var Dest: mpf_t; Src: CString; Base:
Integer): Integer; external name ’__gmpf_set_str’;

procedure mpf_init_set (var Dest: mpf_t; protected var Src:
mpf_t); external name ’__gmpf_init_set’;

procedure mpf_init_set_ui (var Dest: mpf_t; Src: MedCard);
external name ’__gmpf_init_set_ui’;

procedure mpf_init_set_si (var Dest: mpf_t; Src: MedInt);
external name ’__gmpf_init_set_si’;

procedure mpf_init_set_d (var Dest: mpf_t; Src: Real);

Chapter 6: The Programmer’s Guide to GPC 181

external name ’__gmpf_init_set_d’;
function mpf_init_set_str (var Dest: mpf_t; Src: CString; Base:

Integer): Integer; external name ’__gmpf_init_set_str’;

function mpf_get_d (protected var Src: mpf_t): Real;
external name ’__gmpf_get_d’;

{ Pass nil for Dest to let the function allocate memory for it }
function mpf_get_str (Dest: CString; var Exponent:

mp_exp_t; Base: Integer;
NumberOfDigits: SizeType; protected

var Src: mpf_t): CString; external name ’__gmpf_get_str’;

procedure mpf_add (var Dest: mpf_t; protected var Src1,
Src2: mpf_t); external name ’__gmpf_add’;

procedure mpf_add_ui (var Dest: mpf_t; protected var Src1:
mpf_t; Src2: MedCard); external name ’__gmpf_add_ui’;

procedure mpf_sub (var Dest: mpf_t; protected var Src1,
Src2: mpf_t); external name ’__gmpf_sub’;

procedure mpf_ui_sub (var Dest: mpf_t; Src1: MedCard;
protected var Src2: mpf_t); external name ’__gmpf_ui_sub’;

procedure mpf_sub_ui (var Dest: mpf_t; protected var Src1:
mpf_t; Src2: MedCard); external name ’__gmpf_sub_ui’;

procedure mpf_mul (var Dest: mpf_t; protected var Src1,
Src2: mpf_t); external name ’__gmpf_mul’;

procedure mpf_mul_ui (var Dest: mpf_t; protected var Src1:
mpf_t; Src2: MedCard); external name ’__gmpf_mul_ui’;

procedure mpf_div (var Dest: mpf_t; protected var Src1,
Src2: mpf_t); external name ’__gmpf_div’;

procedure mpf_ui_div (var Dest: mpf_t; Src1: MedCard;
protected var Src2: mpf_t); external name ’__gmpf_ui_div’;

procedure mpf_div_ui (var Dest: mpf_t; protected var Src1:
mpf_t; Src2: MedCard); external name ’__gmpf_div_ui’;

procedure mpf_sqrt (var Dest: mpf_t; protected var Src:
mpf_t); external name ’__gmpf_sqrt’;

procedure mpf_sqrt_ui (var Dest: mpf_t; Src: MedCard);
external name ’__gmpf_sqrt_ui’;

procedure mpf_neg (var Dest: mpf_t; protected var Src:
mpf_t); external name ’__gmpf_neg’;

procedure mpf_abs (var Dest: mpf_t; protected var Src:
mpf_t); external name ’__gmpf_abs’;

procedure mpf_mul_2exp (var Dest: mpf_t; protected var Src1:
mpf_t; Src2: MedCard); external name ’__gmpf_mul_2exp’;

procedure mpf_div_2exp (var Dest: mpf_t; protected var Src1:
mpf_t; Src2: MedCard); external name ’__gmpf_div_2exp’;

function mpf_cmp (protected var Src1, Src2: mpf_t):
Integer; external name ’__gmpf_cmp’;

function mpf_cmp_si (protected var Src1: mpf_t; Src2:
MedInt): Integer;

function mpf_cmp_ui (protected var Src1: mpf_t; Src2:
MedCard): Integer;

182 The GNU Pascal Manual

function mpf_eq (protected var Src1, Src2: mpf_t;
NumberOfBits: MedCard): Integer; external name ’__gmpf_eq’;

procedure mpf_reldiff (var Dest: mpf_t; protected var Src1,
Src2: mpf_t); external name ’__gmpf_reldiff’;

function mpf_sgn (protected var Src: mpf_t): Integer;

procedure mpf_random2 (var Dest: mpf_t; MaxSize: mp_size_t;
MaxExp: mp_exp_t); external name ’__gmpf_random2’;

{$if False} { @@ commented out because they use C file pointers }
function mpz_inp_str (var Dest: mpz_t; Src: CFilePtr;

Base: Integer): SizeType; external name ’__gmpz_inp_str’;
function mpz_inp_raw (var Dest: mpz_t; Src: CFilePtr):

SizeType ; external name ’__gmpz_inp_raw’;
function mpz_out_str (Dest: CFilePtr; Base: Integer;

protected var Src: mpz_t): SizeType; external
name ’__gmpz_out_str’;

function mpz_out_raw (Dest: CFilePtr; protected var Src:
mpz_t): SizeType ; external name ’__gmpz_out_raw’;

{ @@ mpf_out_str has a bug in GMP 2.0.2: it writes a spurious #0
before the exponent for negative numbers }

function mpf_out_str (Dest: CFilePtr; Base: Integer;
NumberOfDigits: SizeType; protected var Src: mpf_t): SizeType;
external name ’__gmpf_out_str’;

function mpf_inp_str (var Dest: mpf_t; Src: CFilePtr;
Base: Integer): SizeType; external name ’__gmpf_inp_str’;

{$endif}

{ New declarations in GMP 3.x. @@ Mostly untested! }
{$ifdef HAVE_GMP3}

{ Available random number generation algorithms. }
type

gmp_randalg_t = (GMPRandAlgLC { Linear congruential. });

const
GMPRandAlgDefault = GMPRandAlgLC;

{ Linear congruential data struct. }
type

gmp_randata_lc = record
a: mpz_t; { Multiplier. }
c: MedCard; { Adder. }
m: mpz_t; { Modulus (valid only if M2Exp = 0). }
M2Exp: MedCard; { If <> 0, modulus is 2 ^ M2Exp. }

end;

type
gmp_randstate_t = record
Seed: mpz_t; { Current seed. }
Alg: gmp_randalg_t; { Algorithm used. }

Chapter 6: The Programmer’s Guide to GPC 183

AlgData: record { Algorithm specific data. }
case gmp_randalg_t of
GMPRandAlgLC: (lc: ^gmp_randata_lc) { Linear congruential. }

end
end;

procedure gmp_randinit (var State: gmp_randstate_t; Alg:
gmp_randalg_t; ...); external name ’__gmp_randinit’;

procedure gmp_randinit_lc (var State: gmp_randstate_t; a:
{$ifdef HAVE_GMP4} protected var {$endif} mpz_t; c: MedCard; m:
{$ifdef HAVE_GMP4} protected var {$endif} mpz_t); external
name ’__gmp_randinit_lc’;

procedure gmp_randinit_lc_2exp (var State: gmp_randstate_t; a:
{$ifdef HAVE_GMP4} protected var {$endif} mpz_t; c: MedCard;
M2Exp: MedCard); external name ’__gmp_randinit_lc_2exp’;

procedure gmp_randseed (var State: gmp_randstate_t; Seed:
mpz_t); external name ’__gmp_randseed’;

procedure gmp_randseed_ui (var State: gmp_randstate_t; Seed:
MedCard); external name ’__gmp_randseed_ui’;

procedure gmp_randclear (var State: gmp_randstate_t);
external name ’__gmp_randclear’;

procedure mpz_addmul_ui (var Dest: mpz_t; protected var Src1:
mpz_t; Src2: MedCard); external name ’__gmpz_addmul_ui’;

procedure mpz_bin_ui (var Dest: mpz_t; protected var Src1:
mpz_t; Src2: MedCard); external name ’__gmpz_bin_ui’;

procedure mpz_bin_uiui (var Dest: mpz_t; Src1, Src2:
MedCard); external name ’__gmpz_bin_uiui’;

function mpz_cmpabs (protected var Src1, Src2: mpz_t):
Integer; external name ’__gmpz_cmpabs’;

function mpz_cmpabs_ui (protected var Src1: mpz_t; Src2:
MedCard): Integer; external name ’__gmpz_cmpabs_ui’;

procedure mpz_dump (protected var Src: mpz_t); external
name ’__gmpz_dump’;

procedure mpz_fib_ui (var Dest: mpz_t; Src: MedCard);
external name ’__gmpz_fib_ui’;

function mpz_fits_sint_p (protected var Src: mpz_t): Integer;
external name ’__gmpz_fits_sint_p’;

function mpz_fits_slong_p (protected var Src: mpz_t): Integer;
external name ’__gmpz_fits_slong_p’;

function mpz_fits_sshort_p (protected var Src: mpz_t): Integer;
external name ’__gmpz_fits_sshort_p’;

function mpz_fits_uint_p (protected var Src: mpz_t): Integer;
external name ’__gmpz_fits_uint_p’;

function mpz_fits_ulong_p (protected var Src: mpz_t): Integer;
external name ’__gmpz_fits_ulong_p’;

function mpz_fits_ushort_p (protected var Src: mpz_t): Integer;
external name ’__gmpz_fits_ushort_p’;

procedure mpz_lcm (var Dest: mpz_t; protected var Src1,
Src2: mpz_t); external name ’__gmpz_lcm’;

procedure mpz_nextprime (var Dest: mpz_t; protected var Src:

184 The GNU Pascal Manual

mpz_t); external name ’__gmpz_nextprime’;
function mpz_perfect_power_p (protected var Src: mpz_t): Integer;

external name ’__gmpz_perfect_power_p’;
function mpz_remove (var Dest: mpz_t; protected var Src1,

Src2: mpz_t): MedCard; external name ’__gmpz_remove’;
function mpz_root (var Dest: mpz_t; protected var Src:

mpz_t; n: MedCard): Integer; external name ’__gmpz_root’;
procedure mpz_rrandomb (var ROP: mpz_t; var State:

gmp_randstate_t; n: MedCard); external name ’__gmpz_rrandomb’;
procedure mpz_swap (var v1, v2: mpz_t); external

name ’__gmpz_swap’;
function mpz_tdiv_ui (protected var Src1: mpz_t; Src2:

MedCard): MedCard; external name ’__gmpz_tdiv_ui’;
function mpz_tstbit (protected var Src1: mpz_t; Src2:

MedCard): Integer; external name ’__gmpz_tstbit’;
procedure mpz_urandomb ({$ifdef HAVE_GMP4} var {$endif} ROP:

mpz_t; var State: gmp_randstate_t; n: MedCard); external
name ’__gmpz_urandomb’;

procedure mpz_urandomm ({$ifdef HAVE_GMP4} var {$endif} ROP:
mpz_t; var State: gmp_randstate_t; {$ifdef HAVE_GMP4} protected
var {$endif} n: mpz_t); external name ’__gmpz_urandomm’;

procedure mpz_xor (var Dest: mpz_t; protected var Src1,
Src2: mpz_t); external name ’__gmpz_xor’;

procedure mpq_set_d (var Dest: mpq_t; Src: Real);
external name ’__gmpq_set_d’;

procedure mpf_ceil (var Dest: mpf_t; protected var Src:
mpf_t); external name ’__gmpf_ceil’;

procedure mpf_floor (var Dest: mpf_t; protected var Src:
mpf_t); external name ’__gmpf_floor’;

procedure mpf_pow_ui (var Dest: mpf_t; protected var Src1:
mpf_t; Src2: MedCard); external name ’__gmpf_pow_ui’;

procedure mpf_trunc (var Dest: mpf_t; protected var Src:
mpf_t); external name ’__gmpf_trunc’;

procedure mpf_urandomb (ROP: mpf_t; var State:
gmp_randstate_t; n: MedCard); external name ’__gmpf_urandomb’;

const
GMPErrorNone = 0;
GMPErrorUnsupportedArgument = 1;
GMPErrorDivisionByZero = 2;
GMPErrorSqrtOfNegative = 4;
GMPErrorInvalidArgument = 8;
GMPErrorAllocate = 16;

var
gmp_errno: Integer; external name ’__gmp_errno’;

{$endif}

Chapter 6: The Programmer’s Guide to GPC 185

{ Extensions to the GMP library, implemented in this unit }

procedure mpf_exp (var Dest: mpf_t; protected var Src: mpf_t);
procedure mpf_ln (var Dest: mpf_t; protected var Src: mpf_t);
procedure mpf_pow (var Dest: mpf_t; protected var Src1, Src2:

mpf_t);
procedure mpf_arctan (var c: mpf_t; protected var x: mpf_t);
procedure mpf_pi (var c: mpf_t);

6.14.6 Turbo Power compatibility, etc.

The following listing contains the interface of the GPCUtil unit.
This unit provides some utility routines for compatibility to some units available for BP, like

some Turbo Power units.

{ Some utility routines for compatibility to some units available
for BP, like some ‘Turbo Power’ units.

@@NOTE - SOME OF THE ROUTINES IN THIS UNIT MAY NOT WORK CORRECTLY.
TEST CAREFULLY AND USE WITH CARE!

Copyright (C) 1998-2003 Free Software Foundation, Inc.

Authors: Prof. Abimbola A. Olowofoyeku <African_Chief@bigfoot.com>
Frank Heckenbach <frank@pascal.gnu.de>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}

186 The GNU Pascal Manual

{$if __GPC_RELEASE__ < 20030412}
{$error This unit requires GPC release 20030412 or newer.}
{$endif}

module GPCUtil;

export GPCUtil = all
(
{ Return the current working directory }
GetCurrentDirectory => ThisDirectory,

{ Does a directory exist? }
DirectoryExists => IsDirectory,

{ Does file name s exist? }
FileExists => ExistFile,

{ Return just the directory path of Path. Returns
DirSelf + DirSeparator if Path contains no directory. }

DirFromPath => JustPathName,

{ Return just the file name part without extension of Path.
Empty if Path contains no file name. }

NameFromPath => JustFileName,

{ Return just the extension of Path. Empty if Path contains
no extension. }

ExtFromPath => JustExtension,

{ Return the full pathname of Path }
FExpand => FullPathName,

{ Add a DirSeparator to the end of s if there is not
already one. }

ForceAddDirSeparator => AddBackSlash,

{ Return a string stripped of leading spaces }
TrimLeftStr => TrimLead,

{ Return a string stripped of trailing spaces }
TrimRightStr => TrimTrail,

{ Return a string stripped of leading and trailing spaces }
TrimBothStr => Trim,

{ Convert a string to lowercase }
LoCaseStr => StLoCase,

{ Convert a string to uppercase }
UpCaseStr => StUpCase
);

Chapter 6: The Programmer’s Guide to GPC 187

import GPC;

{ Replace all occurences of OldC with NewC in s and return the
result }

function ReplaceChar (const s: String; OldC, NewC: Char): TString;

{ Break a string into 2 parts, using Ch as a marker }
function BreakStr (const Src: String; var Dest1, Dest2: String; ch:

Char): Boolean;

{ Convert a CString to an Integer }
function PChar2Int (s: CString): Integer;

{ Convert a CString to a LongInt }
function PChar2Long (s: CString): LongInt;

{ Convert a CString to a Double }
function PChar2Double (s: CString): Double;

{ Search for s as an executable in the path and return its location
(full pathname) }

function PathLocate (const s: String): TString;

{ Copy file Src to Dest and return the number of bytes written }
function CopyFile (const Src, Dest: String; BufSize: Integer):

LongInt;

{ Copy file Src to Dest and return the number of bytes written;
report the number of bytes written versus total size of the source
file }

function CopyFileEx (const Src, Dest: String; BufSize: Integer;
function Report (Reached, Total: LongInt): LongInt): LongInt;

{ Turbo Power compatibility }

{ Execute the program prog. Dummy1 and Dummy2 are for compatibility
only; they are ignored. }

function ExecDos (const Prog: String; Dummy1: Boolean; Dummy2:
Pointer): Integer;

{ Return whether Src exists in the path as an executable -- if so
return its full location in Dest }

function ExistOnPath (const Src: String; var Dest: String):
Boolean;

{ Change the extension of s to Ext (do not include the dot!) }
function ForceExtension (const s, Ext: String): TString;

{ Convert Integer to PChar; uses NewCString to allocate memory for
the result, so you must call StrDispose to free the memory later }

188 The GNU Pascal Manual

function Int2PChar (i: Integer): PChar;

{ Convert Integer to string }
function Int2Str (i: Integer): TString;

{ Convert string to Integer }
function Str2Int (const s: String; var i: Integer): Boolean;

{ Convert string to LongInt }
function Str2Long (const s: String; var i: LongInt): Boolean;

{ Convert string to Double }
function Str2Real (const s: String; var i: Double): Boolean;

{ Return a string right-padded to length Len with ch }
function PadCh (const s: String; ch: Char; Len: Integer): TString;

{ Return a string right-padded to length Len with spaces }
function Pad (const s: String; Len: Integer): TString;

{ Return a string left-padded to length Len with ch }
function LeftPadCh (const s: String; ch: Char; Len: Byte): TString;

{ Return a string left-padded to length Len with blanks }
function LeftPad (const s: String; Len: Integer): TString;

{ Uniform access to big memory blocks for GPC and BP. Of course, for
programs that are meant only for GPC, you can use the usual
New/Dispose routines. But for programs that should compile with
GPC and BP, you can use the following routines for GPC. In the GPC
unit for BP (gpc-bp.pas), you can find emulations for BP that try
to provide access to as much memory as possible, despite the
limitations of BP. The drawback is that this memory cannot be used
freely, but only with the following moving routines. }

type
PBigMem = ^TBigMem;
TBigMem (MaxNumber: Integer) = record
{ Public fields }
Number, BlockSize: SizeType;
Mappable: Boolean;
{ Private fields }
Pointers: array [1 .. MaxNumber] of ^Byte

end;

{ Note: the number of blocks actually allocated may be smaller than
WantedNumber. Check the Number field of the result. }

function AllocateBigMem (WantedNumber, aBlockSize: SizeType;
WantMappable: Boolean): PBigMem;

procedure DisposeBigMem (p: PBigMem);
procedure MoveToBigMem (var Source; p: PBigMem; BlockNumber:

Chapter 6: The Programmer’s Guide to GPC 189

SizeType);
procedure MoveFromBigMem (p: PBigMem; BlockNumber: SizeType; var

Dest);
{ Maps a big memory block into normal addressable memory and returns

its address. The memory must have been allocated with
WantMappable = True. The mapping is only valid until the next
MapBigMem call. }

function MapBigMem (p: PBigMem; BlockNumber: SizeType): Pointer;

6.14.7 Primitive heap checking

The following listing contains the interface of the HeapMon unit.
This unit provide a rather primitive means to watch the heap, i.e. check if all pointers that

were allocated are released again. This is meant as a debugging help for avoiding memory leaks.
More extensive heap checking is provided by libraries like ‘efence’ which can be used in GPC

programs without special provisions.
{ A unit to watch the heap, i.e. check if all pointers that were

allocated are released again. It is meant as a debugging help to
detect memory leaks.

Use it in the main program before all other units. When, at the
end of the program, some pointers that were allocated, have not
been released, the unit writes a report to StdErr or another file
(see below). Only pointers allocated via the Pascal mechanisms
(New, GetMem) are tracked, not pointers allocated with direct libc
calls or from C code. After a runtime error, pointers are not
checked.

Note that many units and libraries allocate memory for their own
purposes and don’t always release it at the end. Therefore, the
usefulness of this unit is rather limited.

Copyright (C) 1998-2003 Free Software Foundation, Inc.

Author: Frank Heckenbach <frank@pascal.gnu.de>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the

190 The GNU Pascal Manual

Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030303}
{$error This unit requires GPC release 20030303 or newer.}
{$endif}

unit HeapMon;

interface

uses GPC;

{ This unit is automatically activated when used. The following
declarations are only needed for special purposes. }

{ The report generated at the end can be redirected to a certain
file by pointing HeapMonOutput to it. If not set, the report will
be printed to the error messages file given with ‘--gpc-rts’
options if given, and StdErr otherwise. }

var
HeapMonOutput: ^Text = nil;

{ HeapMonReport can be used to print a report on non-released memory
blocks at an arbitrary point during a program run to the file f.
It is invoked automatically at the end, so usually you don’t have
to call it. Returns True if any non-released blocks were found,
False otherwise. }

function HeapMonReport (var f: Text; DoRestoreTerminal: Boolean):
Boolean; attribute (name = ’_p_HeapMonReport’);

6.14.8 Internationalization

The following listing contains the interface of the Intl unit.
This unit provides national language support via locales and ‘.mo’ files.

{ Welcome to the wonderful world of
INTERNATIONALIZATION (i18n).

This unit provides the powerful mechanism of national language
support by accessing ‘.mo’ files and locale information.

It includes:

Chapter 6: The Programmer’s Guide to GPC 191

locales (not xlocales) and libintl.

See documentation for gettext (‘info gettext’) for details.

Because GPC can deal with both CStrings and Pascal Strings, there
is an interface for both types of arguments and function results
with slightly different names.

E.g. for Pascal strings:

function GetText (const MsgId: String): TString;

And the same as above, but with a C interface:

function GetTextC (MsgId: CString): CString;

‘PLConv’ in Pascal is very different from ‘struct lconv *’ in C.
Element names do not have underscores and have sometimes different
sizes. The conversion is done automatically and has correct
results.

Furthermore, we have a tool similar to ‘xgettext’ to extract all
strings out of a Pascal source. It extracts the strings and writes
a complete ‘.po’ file to a file. See
http://www.gnu-pascal.de/contrib/eike/
The filename is pas2po-VERSION.tar.gz.

Copyright (C) 2001-2003 Free Software Foundation, Inc.

Author: Eike Lange <eike.lange@uni-essen.de>

This unit is free software; you can redistribute it and/or modify
it under the terms of the GNU Library General Public License as
published by the Free Software Foundation, version 2.

This unit is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place -
Suite 330, Boston, MA 02111-1307, USA. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030303}
{$error This unit requires GPC release 20030303 or newer.}
{$endif}

unit Intl;

192 The GNU Pascal Manual

interface

uses GPC;

type
IntlString = String (16);

{ Pascal translation from OrigLConv in intlc.c }
PLConv = ^TLConv;
TLConv = record
{ Numeric (non-monetary) information. }

{ Decimal point character. }
DecimalPoint: IntlString;

{ Thousands separator. }
ThousandsSep: IntlString;

{ Each element is the number of digits in each group;
elements with higher indices are farther left.
An element with value CharMax means that no further grouping
is done.
An element with value Chr (0) means that the previous element
is used for all groups farther left. }

Grouping: IntlString;

{ Monetary information. }

{ First three chars are a currency symbol from ISO 4217.
Fourth char is the separator. Fifth char is Chr (0). }

IntCurrSymbol: IntlString;

{ Local currency symbol. }
CurrencySymbol: IntlString;

{ Decimal point character. }
MonDecimalPoint: IntlString;

{ Thousands separator. }
MonThousandsSep: IntlString;

{ Like ‘Grouping’ element (above). }
MonGrouping: IntlString;

{ Sign for positive values. }
PositiveSign: IntlString;

{ Sign for negative values. }
NegativeSign: IntlString;

Chapter 6: The Programmer’s Guide to GPC 193

{ Int’l fractional digits. }
IntFracDigits: ByteInt;

{ Local fractional digits. }
FracDigits: ByteInt;

{ 1 if CurrencySymbol precedes a positive value, 0 if it
succeeds. }

PCSPrecedes: ByteInt;

{ 1 iff a space separates CurrencySymbol from a positive
value. }

PSepBySpace: ByteInt;

{ 1 if CurrencySymbol precedes a negative value, 0 if it
succeeds. }

NCSPrecedes: ByteInt;

{ 1 iff a space separates CurrencySymbol from a negative
value. }

NSepBySpace: ByteInt;

{ Positive and negative sign positions:
0 Parentheses surround the quantity and CurrencySymbol.
1 The sign string precedes the quantity and CurrencySymbol.
2 The sign string follows the quantity and CurrencySymbol.
3 The sign string immediately precedes the CurrencySymbol.
4 The sign string immediately follows the CurrencySymbol. }

PSignPosn,
NSignPosn: ByteInt;

end;

{ Please do not assign anything to these identifiers! }
var

LC_CTYPE: Integer; external name ’_p_LC_CTYPE’;
LC_NUMERIC: Integer; external name ’_p_LC_NUMERIC’;
LC_TIME: Integer; external name ’_p_LC_TIME’;
LC_COLLATE: Integer; external name ’_p_LC_COLLATE’;
LC_MONETARY: Integer; external name ’_p_LC_MONETARY’;
LC_MESSAGES: Integer; external name ’_p_LC_MESSAGES’;
LC_ALL: Integer; external name ’_p_LC_ALL’;
CharMax: Char; external name ’_p_CHAR_MAX’;

{@section Locales }

{ Set and/or return the current locale. }
function SetLocale (Category: Integer; const Locale: String):

TString;

{ Set and/or return the current locale. Same as above, but returns
a CString. }

194 The GNU Pascal Manual

function SetLocaleC (Category: Integer; const Locale: String):
CString;

{ Return the numeric/monetary information for the current locale.
The result is allocated from the heap. You can Dispose it when
you don’t need it anymore. }

function LocaleConv: PLConv;

{@section GetText }

{ Look up MsgId in the current default message catalog for the
current LC_MESSAGES locale. If not found, returns MsgId itself
(the default text). }

function GetText (const MsgId: String): TString;

{ Same as above, but with a C interface }
function GetTextC (MsgId: CString): CString;

{ Look up MsgId in the DomainName message catalog for the current
LC_MESSAGES locale. }

function DGetText (const DomainName, MsgId: String): TString;

{ Same as above, but with a C interface }
function DGetTextC (DomainName, MsgId: CString): CString;

{ Look up MsgId in the DomainName message catalog for the current
Category locale. }

function DCGetText (const DomainName, MsgId: String; Category:
Integer): TString;

{ Same as above, but with a C interface }
function DCGetTextC (DomainName, MsgId: CString; Category: Integer):

CString;

{ Set the current default message catalog to DomainName.
If DomainName is empty, reset to the default of ‘messages’. }

function TextDomain (const DomainName: String): TString;

{ Same as above, but with a C interface.
If DomainName is nil, return the current default. }

function TextDomainC (DomainName: CString): CString;

{ Specify that the DomainName message catalog will be found
in DirName rather than in the system locale data base. }

function BindTextDomain (const DomainName, DirName: String):
TString;

{ Same as above, but with a C interface }
function BindTextDomainC (DomainName, DirName: CString): CString;

Chapter 6: The Programmer’s Guide to GPC 195

6.14.9 ‘MD5’ Message Digests

The following listing contains the interface of the MD5 unit.

This unit provides functions to compute ‘MD5’ message digest of files or memory blocks,
according to the definition of ‘MD5’ in RFC 1321 from April 1992.

{ Functions to compute MD5 message digest of files or memory blocks,
according to the definition of MD5 in RFC 1321 from April 1992.

IMPORTANT NOTE: This unit is distributed under the GNU GPL, NOT
under the GNU LGPL under which most of the other GPC units are
distributed. This means that you must distribute any code that
uses this unit under the GPL as well, which means that you have to
make the source code available whenever you distribute a binary of
the code, and that you must allow recipients to modify the code
and redistribute it under the GPL.

Copyright (C) 1995, 1996, 2000-2003 Free Software Foundation, Inc.

Based on the C code written by Ulrich Drepper
<drepper@gnu.ai.mit.edu>, 1995 as part of the GNU C Library.

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030303}
{$error This unit requires GPC release 20030303 or newer.}
{$endif}

unit MD5;

interface

uses GPC;

{ Representation of a MD5 value. It is always in little endian byte
order and therefore portable. }

196 The GNU Pascal Manual

type
Card8 = Cardinal attribute (Size = 8);
TMD5 = array [1 .. 16] of Card8;

const
MD5StrLength = 2 * High (TMD5);

{ Computes MD5 message digest for Length bytes in Buffer. }
procedure MD5Buffer (const Buffer; Length: SizeType; var MD5: TMD5);

attribute (name = ’_p_MD5Buffer’);

{ Computes MD5 message digest for the contents of the file f. }
procedure MD5File (var f: File; var MD5: TMD5); attribute

(iocritical, name = ’_p_MD5File’);

{ Initializes a MD5 value with zeros. }
procedure MD5Clear (var MD5: TMD5); attribute (name

= ’_p_MD5Clear’);

{ Compares two MD5 values for equality. }
function MD5Compare (const Value1, Value2: TMD5): Boolean; attribute

(name = ’_p_MD5Compare’);

{ Converts an MD5 value to a string. }
function MD5Str (const MD5: TMD5) = s: TString; attribute (name

= ’_p_MD5Str’);

{ Converts a string to an MD5 value. Returns True if successful. }
function MD5Val (const s: String; var MD5: TMD5): Boolean; attribute

(name = ’_p_MD5Val’);

{ Composes two MD5 values to a single one. }
function MD5Compose (const Value1, Value2: TMD5) = Dest: TMD5;

attribute (name = ’_p_MD5Compose’);

6.14.10 BP compatibility: Overlay

The following listing contains the interface of the Overlay unit.
This is just a dummy replacement for BP’s ‘Overlay’ unit, since GPC doesn’t need overlays.

{ Dummy BP compatible overlay unit for GPC

Copyright (C) 1998-2003 Free Software Foundation, Inc.

Author: Frank Heckenbach <frank@pascal.gnu.de>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your

Chapter 6: The Programmer’s Guide to GPC 197

option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030412}
{$error This unit requires GPC release 20030412 or newer.}
{$endif}

unit Overlay;

interface

const
OvrOK = 0;
OvrError = -1;
OvrNotFound = -2;
OvrNoMemory = -3;
OvrIOError = -4;
OvrNoEMSDriver = -5;
OvrNoEMSMemory = -6;

const
OvrEmsPages: Word = 0;
OvrTrapCount: Word = 0;
OvrLoadCount: Word = 0;
OvrFileMode: Byte = 0;

type
OvrReadFunc = function (OvrSeg: Word): Integer;

var
OvrReadBuf: OvrReadFunc;
OvrResult: Integer = 0;

procedure OvrInit (aFileName: String); attribute (name

198 The GNU Pascal Manual

= ’_p_OvrInit’);
procedure OvrInitEMS; attribute (name = ’_p_OvrInitEMS’);
procedure OvrSetBuf (Size: LongInt); attribute (name

= ’_p_OvrSetBuf’);
function OvrGetBuf: LongInt; attribute (name = ’_p_OvrGetBuf’);
procedure OvrSetRetry (Size: LongInt); attribute (name

= ’_p_OvrSetRetry’);
function OvrGetRetry: LongInt; attribute (name = ’_p_OvrGetRetry’);
procedure OvrClearBuf; attribute (name = ’_p_OvrClearBuf’);

6.14.11 Start a child process, connected with pipes, also on Dos

The following listing contains the interface of the Pipe unit.
This unit provides routines to start a child process and write to/read from its

Input/Output/StdErr via pipes. All of this is emulated transparently under Dos as far as
possible.

{ Piping data from and to processes

Copyright (C) 1998-2003 Free Software Foundation, Inc.

Author: Frank Heckenbach <frank@pascal.gnu.de>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030303}
{$error This unit requires GPC release 20030303 or newer.}
{$endif}

Chapter 6: The Programmer’s Guide to GPC 199

{ Keep this consistent with the one in pipec.c }
{$if defined (MSDOS) or defined (__MINGW32__)}
{$define NOFORK}
{$endif}

unit Pipe;

interface

uses GPC;

const
PipeForking = {$ifdef NOFORK} False {$else} True {$endif};

type
TProcedure = procedure;

PWaitPIDResult = ^TWaitPIDResult;
TWaitPIDResult = (PIDNothing, PIDExited, PIDSignaled, PIDStopped,
PIDUnknown);

PPipeProcess = ^TPipeProcess;
TPipeProcess = record
PID : Integer; { Process ID of process forked }
SignalPID: Integer; { Process ID to send the signal to.

Equals PID by default }
OpenPipes: Integer; { Number of pipes to/from the

process, for internal use }
Signal : Integer; { Send this signal (if not 0) to the

process after all pipes have been
closed after some time }

Seconds : Integer; { Wait so many seconds before
sending the signal if the process
has not terminated by itself }

Wait : Boolean; { Wait for the process, even longer
than Seconds seconds, after
sending the signal (if any) }

Result : PWaitPIDResult; { Default nil. If a pointer to a
variable is stored here, its
destination will contain the
information whether the process
terminated by itself, or was
terminated or stopped by a signal,
when waiting after closing the
pipes }

Status : ^Integer; { Default nil. If a pointer to a
variable is stored here, its
destination will contain the exit
status if the process terminated
by itself, or the number of the

200 The GNU Pascal Manual

signal otherwise, when waiting
after closing the pipes }

end;

var
{ Default values for TPipeProcess records created by Pipe }
DefaultPipeSignal : Integer = 0;
DefaultPipeSeconds: Integer = 0;
DefaultPipeWait : Boolean = True;

{ The procedure Pipe starts a process whose name is given by
ProcessName, with the given parameters (can be Null if no
parameters) and environment, and create pipes from and/or to the
process’ standard input/output/error. ProcessName is searched for
in the PATH with FSearchExecutable. Any of ToInputFile,
FromOutputFile and FromStdErrFile can be Null if the corresponding
pipe is not wanted. FromOutputFile and FromStdErrFile may be
identical, in which case standard output and standard error are
redirected to the same pipe. The behaviour of other pairs of files
being identical is undefined, and useless, anyway. The files are
Assigned and Reset or Rewritten as appropriate. Errors are
returned in IOResult. If Process is not Null, a pointer to a
record is stored there, from which the PID of the process created
can be read, and by writing to which the action after all pipes
have been closed can be changed. (The record is automatically
Dispose’d of after all pipes have been closed.) If automatic
waiting is turned off, the caller should get the PID from the
record before it’s Dispose’d of, and wait for the process sometime
in order to avoid zombies. If no redirections are performed (i.e.,
all 3 files are Null), the caller should wait for the process with
WaitPipeProcess. When an error occurs, Process is not assigned to,
and the state of the files is undefined, so be sure to check
IOResult before going on.

ChildProc, if not nil, is called in the child process after
forking and redirecting I/O, but before executing the new process.
It can even be called instead of executing a new process
(ProcessName can be empty then).

The procedure even works under Dos, but, of course, in a limited
sense: if ToInputFile is used, the process will not actually be
started until ToInputFile is closed. Signal, Seconds and Wait of
TPipeProcess are ignored, and PID and SignalPID do not contain a
Process ID, but an internal value without any meaning to the
caller. Result will always be PIDExited. So, Status is the only
interesting field (but Result should also be checked). Since there
is no forking under Dos, ChildProc, if not nil, is called in the
main process before spawning the program. So, to be portable, it
should not do any things that would influence the process after
the return of the Pipe function.

Chapter 6: The Programmer’s Guide to GPC 201

The only portable way to use "pipes" in both directions is to call
‘Pipe’, write all the Input data to ToInputFile, close
ToInputFile, and then read the Output and StdErr data from
FromOutputFile and FromStdErrFile. However, since the capacity of
pipes is limited, one should also check for Data from
FromOutputFile and FromStdErrFile (using CanRead, IOSelect or
IOSelectRead) while writing the Input data (under Dos, there
simply won’t be any data then, but checking for data doesn’t do
any harm). Please see pipedemo.pas for an example. }

procedure Pipe (var ToInputFile, FromOutputFile, FromStdErrFile:
AnyFile; const ProcessName: String; protected var Parameters:
TPStrings; ProcessEnvironment: PCStrings; var Process:
PPipeProcess; ChildProc: TProcedure); attribute (iocritical);

{ Waits for a process created by Pipe as determined in the Process
record. (Process is Dispose’d of afterwards.) Returns True if
successful. }

function WaitPipeProcess (Process: PPipeProcess): Boolean;

{ Alternative interface from PExecute }

const
PExecute_First = 1;
PExecute_Last = 2;
PExecute_One = PExecute_First or PExecute_Last;
PExecute_Search = 4;
PExecute_Verbose = 8;

{ PExecute: execute a chain of processes.

Program and Arguments are the arguments to execv/execvp.

Flags and PExecute_Search is non-zero if $PATH should be searched.
Flags and PExecute_First is nonzero for the first process in
chain. Flags and PExecute_Last is nonzero for the last process in
chain.

The result is the pid on systems like Unix where we fork/exec and
on systems like MS-Windows and OS2 where we use spawn. It is up to
the caller to wait for the child.

The result is the exit code on systems like MSDOS where we spawn
and wait for the child here.

Upon failure, ErrMsg is set to the text of the error message,
and -1 is returned. ‘errno’ is available to the caller to use.

PWait: cover function for wait.

PID is the process id of the task to wait for. Status is the
‘status’ argument to wait. Flags is currently unused (allows

202 The GNU Pascal Manual

future enhancement without breaking upward compatibility). Pass 0
for now.

The result is the process ID of the child reaped, or -1 for
failure.

On systems that don’t support waiting for a particular child, PID
is ignored. On systems like MSDOS that don’t really multitask
PWait is just a mechanism to provide a consistent interface for
the caller. }

function PExecute (ProgramName: CString; Arguments: PCStrings; var
ErrMsg: String; Flags: Integer): Integer; attribute (name
= ’_p_PExecute’);

function PWait (PID: Integer; var Status: Integer; Flags: Integer):
Integer; attribute (name = ’_p_PWait’);

6.14.12 BP compatibility (partly): ‘Port’, ‘PortW’ arrays

The following listing contains the interface of the Ports unit.
This unit provides access routines for the hardware ports on the IA32, as a partial replacement

for BP’s ‘Port’ and ‘PortW’ pseudo arrays.
Since port access is platform-specific, this unit cannot be used in code intended to be portable.

Even on the IA32, its use can often be avoided – e.g. Linux provides a number of ‘ioctl’
functions, and DJGPP provides some routines to achieve things that would require port access
under BP. Therefore, it is recommended to avoid using this unit whenever possible.

{ Access functions for I/O ports for GPC on an IA32 platform. This
unit is *not* portable. It works only on IA32 platforms (tested
under Linux and DJGPP). It is provided here only to serve as a
replacement for BP’s Port and PortW pseudo arrays.

Copyright (C) 1998-2003 Free Software Foundation, Inc.

Author: Frank Heckenbach <frank@pascal.gnu.de>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Chapter 6: The Programmer’s Guide to GPC 203

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030303}
{$error This unit requires GPC release 20030303 or newer.}
{$endif}
{$ifndef __i386__}
{$error The Ports unit is only for the IA32 platform}
{$endif}

unit Ports;

interface

{ Port access functions }
function InPortB (PortNumber: ShortWord): Byte;
function InPortW (PortNumber: ShortWord): ShortWord;
procedure OutPortB (PortNumber: ShortWord; aValue: Byte);
procedure OutPortW (PortNumber, aValue: ShortWord);

{ libc functions for getting access to the ports -- only for root
processes, of course -- and to give up root privileges after
getting access to the ports for setuid root programs. Dummies
under DJGPP. }

{$ifdef MSDOS}
function IOPerm (From, Num: MedCard; On: Integer): Integer;

attribute (name = ’ioperm’);
function IOPL (Level: Integer): Integer; attribute (name = ’iopl’);
function SetEUID (EUID: Integer): Integer; attribute (name

= ’seteuid’);
{$else}
function IOPerm (From, Num: MedCard; On: Integer): Integer;

external name ’ioperm’;
function IOPL (Level: Integer): Integer; external name ’iopl’;
function SetEUID (EUID: Integer): Integer; external name ’seteuid’;
{$endif}

6.14.13 BP compatibility: Printer, portable

The following listing contains the interface of the Printer unit.
This unit provides printer access, compatible to BP’s ‘Printer’ unit, for Dos (using printer

devices) and Unix systems (using printer utilities).
For BP compatibility, the variable ‘Lst’ is provided, but for newly written programs, it is

recommended to use the ‘AssignPrinter’ procedure on a text file, and close the file when done

204 The GNU Pascal Manual

(thereby committing the printer job). This method allows for sending multiple printer jobs in
the same program.

{ BP compatible printer unit with extensions

Copyright (C) 1998-2003 Free Software Foundation, Inc.

Author: Frank Heckenbach <frank@pascal.gnu.de>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030303}
{$error This unit requires GPC release 20030303 or newer.}
{$endif}

unit Printer;

interface

uses GPC {$ifndef __OS_DOS__}, Pipe {$endif};

var
{ Dos-like systems: writing to a printer device }

{ The file name to write printer output into }
PrinterDeviceName: PString = @’prn’;

{ Unix-like systems: printing via a printer program }

Chapter 6: The Programmer’s Guide to GPC 205

{ The file name of the printer program. If it contains a ’/’, it
will be taken as a complete path, otherwise the file name will
be searched for in the PATH with FSearchExecutable. }

PrinterCommand: PString = @’lpr’;

{ Optional command line parameters for the printer program.
Ignored when nil. }

PrinterArguments: PPStrings = nil;

{ How to deal with the printer spooler after the printer pipe is
closed, cf. the Pipe unit. }

PrinterPipeSignal : Integer = 0;
PrinterPipeSeconds: Integer = 0;
PrinterPipeWait : Boolean = True;

{ Text file opened to default printer }
var

Lst: Text;

{ Assign a file to the printer. Lst will be assigned to the default
printer at program start, but other files can be assigned to the
same or other printers (possibly after changing the variables
above). SpoolerOutput, if not Null, will be redirected from the
printer spooler’s standard output and error. If you use this, note
that a deadlock might arise when trying to write data to the
spooler while its output is not being read, though this seems
quite unlikely, since most printer spoolers don’t write so much
output that could fill a pipe. Under Dos, where no spooler is
involved, SpoolerOutput, if not Null, will be reset to an empty
file for compatibility. }

procedure AssignPrinter (var f: AnyFile; var SpoolerOutput:
AnyFile);

6.14.14 Regular Expression matching and substituting

The following listing contains the interface of the RegEx unit.
This unit provides routines to match strings against regular expressions and perform sub-

stitutions using matched subexpressions. Regular expressions are strings with some characters
having special meanings. They describe (match) a class of strings. They are similar to wild
cards used in file name matching, but much more powerful.

To use this unit, you will need the ‘rx’ library which can be found in
http://www.gnu-pascal.de/libs/.

{$nested-comments}

{ Regular expression matching and replacement

The RegEx unit provides routines to match strings against regular
expressions and perform substitutions using matched
subexpressions.

http://www.gnu-pascal.de/libs/

206 The GNU Pascal Manual

To use the RegEx unit, you will need the rx library which can be
found in http://www.gnu-pascal.de/libs/

Regular expressions are strings with some characters having
special meanings. They describe (match) a class of strings. They
are similar to wild cards used in file name matching, but much
more powerful.

There are two kinds of regular expressions supported by this unit,
basic and extended regular expressions. The difference between
them is not functionality, but only syntax. The following is a
short overview of regular expressions. For a more thorough
explanation see the literature, or the documentation of the rx
library, or man pages of programs like grep(1) and sed(1).

Basic Extended Meaning
‘.’ ‘.’ matches any single character
‘[aei-z]’ ‘[aei-z]’ matches either ‘a’, ‘e’, or any

character from ‘i’ to ‘z’
‘[^aei-z]’ ‘[^aei-z]’ matches any character but ‘a’,

‘e’, or ‘i’ .. ‘z’
To include in such a list the the
characters ‘]’, ‘^’, or ‘-’, put
them first, anywhere but first, or
first or last, resp.

‘[[:alnum:]]’ ‘[[:alnum:]]’ matches any alphanumeric character
‘[^[:digit:]]’ ‘[^[:digit:]]’ matches anything but a digit
‘[a[:space:]]’ ‘[a[:space:]]’ matches the letter ‘a’ or a space

character (space, tab)
... (there are more classes available)
‘\w’ ‘\w’ = [[:alnum:]]
‘\W’ ‘\W’ = [^[:alnum:]]
‘^’ ‘^’ matches the empty string at the

beginning of a line
‘$’ ‘$’ matches the empty string at the

end of a line
‘*’ ‘*’ matches zero or more occurences of

the preceding expression
‘\+’ ‘+’ matches one or more occurences of

the preceding expression
‘\?’ ‘?’ matches zero or one occurence of

the preceding expression
‘\{N\}’ ‘{N}’ matches exactly N occurences of

the preceding expression (N is an
integer number)

‘\{M,N\}’ ‘{M,N}’ matches M to N occurences of the
preceding expression (M and N are
integer numbers, M <= N)

‘AB’ ‘AB’ matches A followed by B (A and B
are regular expressions)

‘A\|B’ ‘A|B’ matches A or B (A and B are

Chapter 6: The Programmer’s Guide to GPC 207

regular expressions)
‘\(\)’ ‘()’ forms a subexpression, to override

precedence, and for subexpression
references

‘\7’ ‘\7’ matches the 7’th parenthesized
subexpression (counted by their
start in the regex), where 7 is a
number from 1 to 9 ;-).
Please note: using this feature
can be *very* slow or take very
much memory (exponential time and
space in the worst case, if you
know what that means ...).

‘\’ ‘\’ quotes the following character if
it’s special (i.e. listed above)

rest rest any other character matches itself

Precedence, from highest to lowest:
* parentheses (‘()’)
* repetition (‘*’, ‘+’, ‘?’, ‘{}’)
* concatenation
* alternation (‘|’)

When performing substitutions using matched subexpressions of a
regular expression (see ‘ReplaceSubExpressionReferences’), the
replacement string can reference the whole matched expression with
‘&’ or ‘\0’, the 7th subexpression with ‘\7’ (just like in the
regex itself, but using it in replacements is not slow), and the
7th subexpression converted to upper/lower case with ‘\u7’ or
‘\l7’, resp. (which also works for the whole matched expression
with ‘\u0’ or ‘\l0’). A verbatim ‘&’ or ‘\’ can be specified with
‘\&’ or ‘\\’, resp.

Copyright (C) 1998-2003 Free Software Foundation, Inc.

Author: Frank Heckenbach <frank@pascal.gnu.de>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the

208 The GNU Pascal Manual

Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License.

Please also note the license of the rx library. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030303}
{$error This unit requires GPC release 20030303 or newer.}
{$endif}

unit RegEx;

interface

uses GPC;

const
{ ‘BasicRegExSpecialChars’ contains all characters that have
special meanings in basic regular expressions.
‘ExtRegExSpecialChars’ contains those that have special meanings
in extended regular expressions. }

BasicRegExSpecialChars = [’.’, ’[’, ’]’, ’^’, ’$’, ’*’, ’\’];
ExtRegExSpecialChars =
[’.’, ’[’, ’]’, ’^’, ’$’, ’*’, ’+’, ’?’, ’{’, ’}’, ’|’, ’(’, ’)’, ’\’];

type
{ The type used by the routines of the ‘RegEx’ unit to store
regular expressions in an internal format. The fields RegEx,
RegMatch, ErrorInternal, From and Length are only used
internally. SubExpressions can be read after ‘NewRegEx’ and will
contain the number of parenthesized subexpressions. Error should
be checked after ‘NewRegEx’. It will be ‘nil’ when it succeeded,
and contain an error message otherwise. }

RegExType = record
RegEx, RegMatch: Pointer; { Internal }
ErrorInternal: CString; { Internal }
From, Length: Integer; { Internal }
SubExpressions: Integer;
Error: PString

end;

{ Simple interface to regular expression matching. Matches a regular
expression against a string starting from a specified position.
Returns the position of the first match, or 0 if it does not

Chapter 6: The Programmer’s Guide to GPC 209

match, or the regular expression is invalid. }
function RegExPosFrom (const Expression: String; ExtendedRegEx,

CaseInsensitive: Boolean; const s: String; From: Integer):
Integer; attribute (name = ’_p_RegExPosFrom’);

{ Creates the internal format of a regular expression. If
ExtendedRegEx is True, Expression is assumed to denote an extended
regular expression, otherwise a basic regular expression.
CaseInsensitive determines if the case of letters will be ignored
when matching the expression. If NewLines is True, ‘NewLine’
characters in a string matched against the expression will be
treated as dividing the string in multiple lines, so that ‘$’ can
match before the NewLine and ‘^’ can match after. Also, ‘.’ and
‘[^...]’ will not match a NewLine then. }

procedure NewRegEx (var RegEx: RegExType; const Expression: String;
ExtendedRegEx, CaseInsensitive, NewLines: Boolean); attribute
(name = ’_p_NewRegEx’);

{ Disposes of a regular expression created with ‘NewRegEx’. *Must*
be used after ‘NewRegEx’ before the RegEx variable becomes invalid
(i.e., goes out of scope or a pointer pointing to it is Dispose’d
of). }

procedure DisposeRegEx (var RegEx: RegExType); external
name ’_p_DisposeRegEx’;

{ Matches a regular expression created with ‘NewRegEx’ against a
string. }

function MatchRegEx (var RegEx: RegExType; const s: String;
NotBeginningOfLine, NotEndOfLine: Boolean): Boolean; attribute
(name = ’_p_MatchRegEx’);

{ Matches a regular expression created with ‘NewRegEx’ against a
string, starting from a specified position. }

function MatchRegExFrom (var RegEx: RegExType; const s: String;
NotBeginningOfLine, NotEndOfLine: Boolean; From: Integer):
Boolean; attribute (name = ’_p_MatchRegExFrom’);

{ Finds out where the regular expression matched, if ‘MatchRegEx’ or
‘MatchRegExFrom’ were successful. If n = 0, it returns the
position of the whole match, otherwise the position of the n’th
parenthesized subexpression. MatchPosition and MatchLength will
contain the position (counted from 1) and length of the match, or
0 if it didn’t match. (Note: MatchLength can also be 0 for a
successful empty match, so check whether MatchPosition is 0 to
find out if it matched at all.) MatchPosition or MatchLength may
be Null and is ignored then. }

procedure GetMatchRegEx (var RegEx: RegExType; n: Integer; var
MatchPosition, MatchLength: Integer); external
name ’_p_GetMatchRegEx’;

{ Checks if the string s contains any quoted characters or

210 The GNU Pascal Manual

(sub)expression references to the regular expression RegEx created
with ‘NewRegEx’. These are ‘&’ or ‘\0’ for the whole matched
expression (if OnlySub is not set) and ‘\1’ .. ‘\9’ for the n’th
parenthesized subexpression. Returns 0 if it does not contain any,
and the number of references and quoted characters if it does. If
an invalid reference (i.e. a number bigger than the number of
subexpressions in RegEx) is found, it returns the negative value
of the (first) invalid reference. }

function FindSubExpressionReferences (var RegEx: RegExType; const
s: String; OnlySub: Boolean): Integer; attribute (name
= ’_p_FindSubExpressionReferences’);

{ Replaces (sub)expression references in ReplaceStr by the actual
(sub)expressions and unquotes quoted characters. To be used after
the regular expression RegEx created with ‘NewRegEx’ was matched
against s successfully with ‘MatchRegEx’ or ‘MatchRegExFrom’. }

function ReplaceSubExpressionReferences (var RegEx: RegExType;
const s, ReplaceStr: String): TString; attribute (name
= ’_p_ReplaceSubExpressionReferences’);

{ Returns the string for a regular expression that matches exactly
one character out of the given set. It can be combined with the
usual operators to form more complex expressions. }

function CharSet2RegEx (const Characters: CharSet): TString;
attribute (name = ’_p_CharSet2RegEx’);

6.14.15 BP compatibility: Strings

The following listing contains the interface of the Strings unit.
This is a compatibility unit to BP’s ‘Strings’ unit to handle C style ‘#0’-terminated strings.
The same functionality and much more is available in the Run Time System, Section 6.13

[Run Time System], page 100, under clearer names (starting with a ‘CString’ prefix),
Moreover, the use of ‘#0’-terminated C-style strings (‘PChar’ or ‘CString’) is generally not

recommended in GPC, since GPC provides ways to deal with Pascal-style strings of arbitrary
and dynamic size in a comfortable way, as well as automatic conversion to C-style strings in
order to call external C functions.

Therefore, using this unit is not recommended in newly written programs.
{ BP compatible Strings unit

Copyright (C) 1999-2003 Free Software Foundation, Inc.

Author: Frank Heckenbach <frank@pascal.gnu.de>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

Chapter 6: The Programmer’s Guide to GPC 211

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030303}
{$error This unit requires GPC release 20030303 or newer.}
{$endif}

module Strings;

export Strings = all (CStringLength => StrLen, CStringEnd => StrEnd,
CStringMove => StrMove, CStringCopy =>

StrCopy,
CStringCopyEnd => StrECopy, CStringLCopy =>

StrLCopy,
CStringCopyString => StrPCopy, CStringCat =>

StrCat,
CStringLCat => StrLCat, CStringComp =>

StrComp,
CStringCaseComp => StrIComp, CStringLComp =>

StrLComp,
CStringLCaseComp => StrLIComp, CStringChPos =>

StrScan,
CStringLastChPos => StrRScan, CStringPos =>

StrPos,
CStringLastPos => StrRPos, CStringUpCase =>

StrUpper,
CStringLoCase => StrLower, CStringIsEmpty =>

StrEmpty,
CStringNew => StrNew);

import GPC;

function StrPas (aString: CString): TString; attribute (name
= ’_p_StrPas’);

procedure StrDispose (s: CString); external name ’_p_Dispose’;

212 The GNU Pascal Manual

6.14.16 Higher level string handling

The following listing contains the interface of the StringUtils unit.

This unit provides some routines for string handling on a higher level than those provided
by the RTS.

{ Some routines for string handling on a higher level than those
provided by the RTS.

Copyright (C) 1999-2003 Free Software Foundation, Inc.

Author: Frank Heckenbach <frank@pascal.gnu.de>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030303}
{$error This unit requires GPC release 20030303 or newer.}
{$endif}

unit StringUtils;

interface

uses GPC;

{ Various routines }

{ Appends Source to s, truncating the result if necessary. }
procedure AppendStr (var s: String; const Source: String);

Chapter 6: The Programmer’s Guide to GPC 213

{ Cuts s to MaxLength characters. If s is already MaxLength
characters or shorter, it doesn’t change anything. }

procedure StrCut (var s: String; MaxLength: Integer);

{ Returns the number of disjoint occurences of SubStr in s. Returns
0 if SubStr is empty. }

function StrCount (const SubStr: String; s: String): Integer;

{ Returns s, with all disjoint occurences of Source replaced by
Dest. }

function StrReplace (const s, Source, Dest: String): TString;

{ Sets of characters accepted for ‘True’ and ‘False’ by
Char2Boolean and StrReadBoolean. }

var
CharactersTrue : CharSet = [’Y’, ’y’];
CharactersFalse: CharSet = [’N’, ’n’];

{ If ch is an element of CharactersTrue, Dest is set to True,
otherwise if it is an element of CharactersFalse, Dest is set to
False. In both cases True is returned. If ch is not an element of
either set, Dest is set to False and False is returned. }

function Char2Boolean (ch: Char; var Dest: Boolean): Boolean;

{ Converts a digit character to its numeric value. Handles every
base up to 36 (0 .. 9, a .. z, upper and lower case recognized).
Returns -1 if the character is not a digit at all. If you want to
use it for a base < 36, you have to check if the result is smaller
than the base and not equal to -1. }

function Char2Digit (ch: Char): Integer;

{ Encode a string in a printable format (quoted printable and
surrounded with ‘"’). All occurences of ‘"’ within the string are
encoded, so the result string contains exactly two ‘"’ characters
(at the beginning and ending). This is useful to store arbitrary
strings in text files while keeping them as readable as possible
(which is the goal of the quoted printable encoding in general,
see RFC 1521, section 5.1) and being able to read them back
losslessly (with UnQuoteString). }

function QuoteString (const s: String): TString;

{ Encode a string in a printable format suitable for StrReadEnum.
All occurences of ‘,’ within the string are encoded. }

function QuoteEnum (const s: String): TString;

{ Decode a string encoded by QuoteString (removing the ‘"’ and
expanding quoted printable encoded characters). Returns True if
successful and False if the string has an invalid form. A string
returned by QuoteString is always valid. }

function UnQuoteString (var s: String): Boolean;

214 The GNU Pascal Manual

{ Decode a quoted-printable string (not enclosed in ‘"’, unlike for
UnQuoteString). Returns True if successful and False if the string
has an invalid form. In the latter case, it still decodes as much
as is valid, even after the error position. }

function UnQPString (var s: String): Boolean;

{ Quotes a string as done in shells, i.e. all special characters are
enclosed in either ‘"’ or ‘’’, where ‘"’, ‘$’ and ‘‘’ are always
enclosed in ‘’’ and ‘’’ is always enclosed in ‘"’. }

function ShellQuoteString (const s: String): TString;

{ Replaces all tab characters in s with the appropriate amount of
spaces, assuming tab stops at every TabSize columns. Returns True
if successful and False if the expanded string would exceed the
capacity of s. In the latter case, some, but not all of the tabs
in s may have been expanded. }

function ExpandTabs (var s: String; TabSize: Integer): Boolean;

{ Returns s, with all occurences of C style escape sequences (e.g.
‘\n’) replaced by the characters they mean. If AllowOctal is True,
also octal character specifications (e.g. ‘\007’) are replaced. If
RemoveQuoteChars is True, any other backslashes are removed (e.g.
‘*’ -> ‘*’ and ‘\\’ -> ‘\’), otherwise they are kept, and also
‘\\’ is left as two backslashes then. }

function ExpandCEscapeSequences (const s: String; RemoveQuoteChars,
AllowOctal: Boolean): TString;

{ Routines for TPStrings }

{ Initialise a TPStrings variable, allocate Size characters for each
element. This procedure does not dispose of any previously
allocated storage, so if you use it on a previously used variable
without freeing the storage yourself, this might cause memory
leaks. }

procedure AllocateTPStrings (var Strings: TPStrings; Size: Integer);

{ Clears all elements (set them to empty strings), does not free any
storage. }

procedure ClearTPStrings (var Strings: TPStrings);

{ Divide a string into substrings, using Separators as separator. A
single trailing separator is ignored. Further trailing separators
as well as any leading separators and multiple separators in a row
produce empty substrings. }

function TokenizeString (const Source: String; Separators: CharSet):
PPStrings;

{ Divide a string into substrings, using SpaceCharacters as
separators. The splitting is done according the usual rules of
shells, using (and removing) single and double quotes and

Chapter 6: The Programmer’s Guide to GPC 215

QuotingCharacter. Multiple, leading and trailing separators are
ignored. If there is an error, a message will be stored in ErrMsg,
and nil will be returned. Nil will also be returned (without an
error message) if s in empty. }

function ShellTokenizeString (const s: String; var ErrMsg: String):
PPStrings;

{ String parsing routines }

{ All the following StrReadFoo functions behave similarly. They read
items from a string s, starting at index i, to a variable Dest.
They skip any space characters (spaces and tabs) by incrementing i
first. They return True if successful, False otherwise. i is
incremented accordingly if successful, otherwise i is left
unchanged, apart from the skipping of space characters, and Dest
is undefined. This behaviour makes it easy to use the functions in
a row like this:

i := 1;
if StrReadInt (s, i, Size) and StrReadComma (s, i) and

StrReadQuoted (s, i, Name) and StrReadComma (s, i) and
...
StrReadReal (s, i, Angle) and (i > Length (s)) then ...

(The check ‘i > Length (s)’ is in case you don’t want to accept
trailing "garbage".) }

{ Just skip any space characters as described above. }
procedure StrSkipSpaces (const s: String; var i: Integer);

{ Read a quoted string (as produced by QuoteString) from a string
and unquote the result using UnQuoteString. It is considered
failure if the result (unquoted) would be longer than the capacity
of Dest. }

function StrReadQuoted (const s: String; var i: Integer; var Dest:
String): Boolean;

{ Read a string delimited with Delimiter from a string and return
the result with the delimiters removed. It is considered failure
if the result (without delimiters) would be longer than the
capacity of Dest. }

function StrReadDelimited (const s: String; var i: Integer; var
Dest: String; Delimiter: Char): Boolean;

{ Read a word (consisting of anything but space characters and
commas) from a string. It is considered failure if the result
would be longer than the capacity of Dest. }

function StrReadWord (const s: String; var i: Integer; var Dest:
String): Boolean;

{ Check that a certain string is contained in s (after possible

216 The GNU Pascal Manual

space characters). }
function StrReadConst (const s: String; var i: Integer; const

Expected: String): Boolean;

{ A simpler to use version of StrReadConst that expects a ‘,’. }
function StrReadComma (const s: String; var i: Integer): Boolean;

{ Read an integer number from a string. }
function StrReadInt (const s: String; var i: Integer; var Dest:

Integer): Boolean;

{ Read a real number from a string. }
function StrReadReal (const s: String; var i: Integer; var Dest:

Real): Boolean;

{ Read a Boolean value, represented by a single character
from CharactersTrue or CharactersFalse (cf. Char2Boolean), from a
string. }

function StrReadBoolean (const s: String; var i: Integer; var Dest:
Boolean): Boolean;

{ Read an enumerated value, i.e., one of the entries of IDs, from a
string, and stores the ordinal value, i.e., the index in IDs
(always zero-based) in Dest. }

function StrReadEnum (const s: String; var i: Integer; var Dest:
Integer; const IDs: array of PString): Boolean;

{ String hash table }

const
DefaultHashSize = 1403;

type
THash = Cardinal;

PStrHashList = ^TStrHashList;
TStrHashList = record
Next: PStrHashList;
s: PString;
i: Integer;
p: Pointer

end;

PStrHashTable = ^TStrHashTable;
TStrHashTable (Size: Cardinal) = record
CaseSensitive: Boolean;
Table: array [0 .. Size - 1] of PStrHashList

end;

function HashString (const s: String): THash;
function NewStrHashTable (Size: Cardinal; CaseSensitive:

Chapter 6: The Programmer’s Guide to GPC 217

Boolean): PStrHashTable;
procedure AddStrHashTable (HashTable: PStrHashTable; s: String;

i: Integer; p: Pointer);
procedure DeleteStrHashTable (HashTable: PStrHashTable; s: String);
function SearchStrHashTable (HashTable: PStrHashTable; const s:

String; var p: Pointer): Integer; { p may be Null }
procedure StrHashTableUsage (HashTable: PStrHashTable; var

Entries, Slots: Integer);
procedure DisposeStrHashTable (HashTable: PStrHashTable);

6.14.17 BP compatibility: System

The following listing contains the interface of the System unit.
This unit contains only BP’s more exotic routines which are not recommended to be used in

new programs. Most of their functionality can be achieved by more standard means already.
Note: ‘MemAvail’ and ‘MaxAvail’, provided in this unit, cannot easily be achieved by other

means. However, it is not recommended to use them on any multi-tasking system at all, where
memory is a shared resource. The notes in the unit give some hints about how to avoid using
them.

On special request, i.e., by defining the conditionals ‘__BP_TYPE_SIZES__’, ‘__BP_RANDOM__’
and/or ‘__BP_PARAMSTR_0__’, the unit also provides BP compatible integer type sizes, a 100%
BP compatible pseudo random number generator and/or BP compatible ‘ParamStr (0)’ be-
haviour (the latter, however, only on some systems).

{ BP and partly Delphi compatible System unit for GPC

This unit is released as part of the GNU Pascal project. It
implements some rather exotic BP and Delphi compatibility
features. Even many BP and Delphi programs don’t need them, but
they’re here for maximum compatibility. Most of BP’s and Delphi’s
System units’ features are built into the compiler or the RTS.

Note: The things in this unit are really exotic. If you haven’t
used BP or Delphi before, you don’t want to look at this unit. :-)

This unit depends on the conditional defines ‘__BP_TYPE_SIZES__’,
‘__BP_RANDOM__’ and ‘__BP_PARAMSTR_0__’.

If ‘__BP_TYPE_SIZES__’ is defined (with the ‘-D__BP_TYPE_SIZES__’
option), the integer data types will be redefined to the sizes
they have in BP or Delphi. Note that this might cause problems,
e.g. when passing var parameters of integer types between units
that do and don’t use System. However, of the BP compatibility
units, only Dos and WinDos use such parameters, and they have been
taken care of so they work.

If ‘__BP_RANDOM__’ is defined (‘-D__BP_RANDOM__’), this unit will
provide an exactly BP compatible pseudo random number generator.
In particular, the range for integer randoms will be truncated to
16 bits like in BP. The RandSeed variable is provided, and if it’s
set to the same value as BP’s RandSeed, it produces exactly the

218 The GNU Pascal Manual

same sequence of pseudo random numbers that BP’s pseudo random
number generator does (whoever might need this ... ;-). Even the
Randomize function will behave exactly like in BP. However, this
will not be noted unless one explicitly tests for it.

If ‘__BP_PARAMSTR_0__’ is defined (‘-D__BP_PARAMSTR_0__’), this
unit will change the value of ‘ParamStr (0)’ to that of
‘ExecutablePath’, overwriting the value actually passed by the
caller, to imitate BP’s/Dos’s behaviour. However *note*: On most
systems, ‘ExecutablePath’ is *not* guaranteed to return the full
path, so defining this symbol doesn’t change anything. In general,
you *cannot* expect to find the full executable path, so better
don’t even try it, or your program will (at best) run on some
systems. For most cases where BP programs access their own
executable, there are cleaner alternatives available.

Copyright (C) 1998-2003 Free Software Foundation, Inc.

Authors: Peter Gerwinski <peter@gerwinski.de>
Prof. Abimbola A. Olowofoyeku <African_Chief@bigfoot.com>
Frank Heckenbach <frank@pascal.gnu.de>
Dominik Freche <dominik.freche@gmx.net>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030303}
{$error This unit requires GPC release 20030303 or newer.}
{$endif}

Chapter 6: The Programmer’s Guide to GPC 219

module System;

export System = all (FileMode {$ifdef __BP_TYPE_SIZES__},
SystemInteger => Integer {$endif});

import GPC (MaxLongInt => GPC_MaxLongInt);

var
{ Chain of procedures to be executed at the end of the program }
ExitProc: ^procedure = nil;

{ Contains all the command line arguments passed to the program,
concatenated, with spaces between them }

CmdLine: CString;

{$ifdef __BP_RANDOM__}
{ Random seed, initialized by Randomize, but can also be set
explicitly }

RandSeed: Integer attribute (Size = 32) = 0;
{$endif}

type
OrigInt = Integer;
OrigWord = Word;

{ Delphi }
SmallInt = Integer attribute (Size = 16);
DWord = Cardinal attribute (Size = 32);

{ Short BP compatible type sizes if wanted }
{$ifdef __BP_TYPE_SIZES__}
ByteBool = Boolean attribute (Size = 8);
WordBool = Boolean attribute (Size = 16);
LongBool = Boolean attribute (Size = 32);
ShortInt = Integer attribute (Size = 8);
SystemInteger = Integer attribute (Size = 16);
LongInt = Integer attribute (Size = 32);
Comp = Integer attribute (Size = 64);
Byte = Cardinal attribute (Size = 8);
Word = Cardinal attribute (Size = 16);
LongWord = Cardinal attribute (Size = 32); { Delphi }
{$else}
SystemInteger = Integer;
{$endif}

{$if False} { @@ doesn’t work well (dialec3.pas) -- when GPC gets
short

strings, it will be unnecessary }
{$ifopt borland-pascal}
String = String [255];

220 The GNU Pascal Manual

{$endif}
{$endif}

const
MaxInt = High (SystemInteger);
MaxLongInt = High (LongInt);

{ Return the lowest-order byte of x }
function Lo (x: LongestInt): Byte; attribute (name = ’_p_Lo’);

{ Return the second-lowest-order byte of x }
function Hi (x: LongestInt): Byte; attribute (name = ’_p_Hi’);

{ Swap the lowest-order and second-lowest-order bytes, mask out the
higher-order ones }

function Swap (x: LongestInt): Word; attribute (name = ’_p_Swap’);

{ Store the current directory name (on the given drive number if
drive <> 0) in s }

procedure GetDir (Drive: Byte; var s: String); attribute (name
= ’_p_GetDir’);

{ Dummy routine for compatibility. @@Use two overloaded versions
rather than varargs when possible. }

procedure SetTextBuf (var f: Text; var Buf; ...); attribute (name
= ’_p_SetTextBuf’);

{ Mostly useless BP compatible variables }
var

SelectorInc: Word = $1000;
Seg0040: Word = $40;
SegA000: Word = $a000;
SegB000: Word = $b000;
SegB800: Word = $b800;
Test8086: Byte = 2;
Test8087: Byte = 3; { floating-point arithmetic is emulated

transparently by the OS if not present
in hardware }

OvrCodeList: Word = 0;
OvrHeapSize: Word = 0;
OvrDebugPtr: Pointer = nil;
OvrHeapOrg: Word = 0;
OvrHeapPtr: Word = 0;
OvrHeapEnd: Word = 0;
OvrLoadList: Word = 0;
OvrDosHandle: Word = 0;
OvrEmsHandle: Word = $ffff;
HeapOrg: Pointer absolute HeapLow;
HeapPtr: Pointer absolute HeapHigh;
HeapEnd: Pointer = Pointer (High (PtrCard));
FreeList: Pointer = nil;

Chapter 6: The Programmer’s Guide to GPC 221

FreeZero: Pointer = nil;
StackLimit: Word = 0;
HeapList: Word = 0;
HeapLimit: Word = 1024;
HeapBlock: Word = 8192;
HeapAllocFlags: Word = 2;
CmdShow: SystemInteger = 0;
SaveInt00: Pointer = nil;
SaveInt02: Pointer = nil;
SaveInt0C: Pointer = nil;
SaveInt0D: Pointer = nil;
SaveInt1B: Pointer = nil;
SaveInt21: Pointer = nil;
SaveInt23: Pointer = nil;
SaveInt24: Pointer = nil;
SaveInt34: Pointer = nil;
SaveInt35: Pointer = nil;
SaveInt36: Pointer = nil;
SaveInt37: Pointer = nil;
SaveInt38: Pointer = nil;
SaveInt39: Pointer = nil;
SaveInt3A: Pointer = nil;
SaveInt3B: Pointer = nil;
SaveInt3C: Pointer = nil;
SaveInt3D: Pointer = nil;
SaveInt3E: Pointer = nil;
SaveInt3F: Pointer = nil;
SaveInt75: Pointer = nil;
RealModeRegs: array [0 .. 49] of Byte =
(0, 0,
0, 0,
0, 0, 0, 0, 0, 0, 0, 0);

{ Mostly useless BP compatible pointer functions }
function Ofs (const x): PtrWord; attribute (name = ’_p_Ofs’);
function Seg (const x): PtrWord; attribute (name = ’_p_Seg’);
function Ptr (Seg, Ofs: PtrWord): Pointer; attribute (name

= ’_p_Ptr’);
function CSeg: PtrWord; attribute (name = ’_p_CSeg’);
function DSeg: PtrWord; attribute (name = ’_p_DSeg’);
function SSeg: PtrWord; attribute (name = ’_p_SSeg’);
function SPtr: PtrWord; attribute (name = ’_p_SPtr’);

{ Routines to handle BP’s 6 byte ‘Real’ type which is formatted like
this:

47 0
-|------- -------- -------- -------- --------|--------
| |
+----------+ +------------+
47 Sign Bit | 8..46 Mantissa | 0..7 Biased Exponent

222 The GNU Pascal Manual

This format does not support infinities, NaNs and denormalized
numbers. The first digit after the binary point is not stored and
assumed to be 1. (This is called the normalized representation of
a binary floating point number.)

In GPC, this type is represented by the type ‘BPReal’ which is
binary compatible to BP’s type, and can therefore be used in
connection with binary files used by BP programs.

The functions ‘RealToBPReal’ and ‘BPRealToReal’ convert between
this type and GPC’s ‘Real’ type. Apart from that, ‘BPReal’ should
be treated as opaque.

The variables ‘BPRealIgnoreOverflow’ and ‘BPRealIgnoreUnderflow’
determine what to do in the case of overflows and underflows. The
default values are BP compatible. }

var
{ Ignore overflows, and use the highest possible value instead. }
BPRealIgnoreOverflow: Boolean = False;

{ Ignore underflows, and use 0 instead. This is BP’s behaviour,
but has the disadvantage of diminishing computation precision. }

BPRealIgnoreUnderflow: Boolean = True;

type
BPRealInteral = Cardinal attribute (Size = 8);
BPReal = record
Format: array [1 .. 6] of BPRealInteral

end;

function RealToBPReal (R: Real): BPReal; attribute (name
= ’_p_RealToBPReal’);

function BPRealToReal (const BR: BPReal): Real; attribute (name
= ’_p_BPRealToReal’);

{ Heap management stuff }

const
{ Possible results for HeapError }
HeapErrorRunError = 0;
HeapErrorNil = 1;
HeapErrorRetry = 2;

var
{ If assigned to a function, it will be called when memory
allocations do not find enough free memory. Its result
determines if a run time error should be raised (the default),
or nil should be returned, or the allocation should be retried
(causing the routine to be called again if the allocation still

Chapter 6: The Programmer’s Guide to GPC 223

doesn’t succeed).

Notes:

- Returning nil can cause some routines of the RTS and units
(shipped with GPC or third-party) to crash when they don’t
expect nil, so better don’t use this mechanism, but rather
CGetMem where needed.

- Letting the allocation be retried, of course, only makes sense
if the routine freed some memory before -- otherwise it will
cause an infinite loop! So, a meaningful HeapError routine
should dispose of some temporary objects, if available, and
return HeapErrorRetry, and return HeapErrorRunError when no
(more) of them are available. }

HeapError: ^function (Size: Word): SystemInteger = nil;

{ Just returns HeapErrorNil. When this function is assigned to
HeapError, GetMem and New will return a nil pointer instead of
causing a runtime error when the allocation fails. See the comment
for HeapError above. }

function HeapErrorNilReturn (Size: Word): SystemInteger; attribute
(name = ’_p_HeapErrorNilReturn’);

{ Return the total free memory/biggest free memory block. Except
under Win32 and DJGPP, these are expensive routines -- try to
avoid them. Under Win32, MaxAvail returns the same as MemAvail, so
don’t rely on being able to allocate a block of memory as big as
MaxAvail indicates. Generally it’s preferable to not use these
functions at all in order to do a safe allocation, but just try to
allocate the memory needed using CGetMem, and check for a nil
result. What makes these routines unrealiable is, e.g., that on
multi-tasking systems, another process may allocate memory after
you’ve called MemAvail/MaxAvail and before you get to do the next
allocation. Also, please note that some systems over-commit
virtual memory which may cause MemAvail to return a value larger
than the actual (physical plus swap) memory available. Therefore,
if you want to be "sure" (modulo the above restrictions) that the
memory is actually available, use MaxAvail. }

function MemAvail: Cardinal; attribute (name = ’_p_MemAvail’);
function MaxAvail: Cardinal; attribute (name = ’_p_MaxAvail’);

{ Delphi compatibility }

function CompToDouble (x: Comp): Double; attribute (name
= ’_p_CompToDouble’);

function DoubleToComp (x: Double): Comp; attribute (name
= ’_p_DoubleToComp’);

function AllocMemCount: SystemInteger; attribute (name
= ’_p_AllocMemCount’);

function AllocMemSize: SizeType; attribute (name

224 The GNU Pascal Manual

= ’_p_AllocMemSize’);
procedure Assert (Condition: Boolean); attribute (name

= ’_p_System_Assert’);
procedure DefaultAssertErrorProc (const Message, FileName: String;

LineNumber: SystemInteger; ErrorAddr: Pointer); attribute (name
= ’_p_DefaultAssertErrorProc’);

var
AssertErrorProc: ^procedure (const Message, FileName: String;
LineNumber: SystemInteger; ErrorAddr: Pointer) =
@DefaultAssertErrorProc;
NoErrMsg: Boolean = False;

6.14.18 Some text file tricks

The following listing contains the interface of the TFDD unit.
This unit provides some tricks with text files, e.g. a “tee” file which causes everything written

to it to be written to two other files.

{ Some text file tricks.

Copyright (C) 2002-2003 Free Software Foundation, Inc.

Author: Frank Heckenbach <frank@pascal.gnu.de>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030412}

Chapter 6: The Programmer’s Guide to GPC 225

{$error This unit requires GPC release 20030412 or newer.}
{$endif}

unit TFDD;

interface

uses GPC;

{ Write to multiple files. Everything written to Dest after calling
this procedure will be written to both File1 and File2. Can be
chained. }

procedure MultiFileWrite (var Dest, File1, File2: AnyFile);
attribute (name = ’_p_MultiFileWrite’);

6.14.19 Trap runtime errors

The following listing contains the interface of the Trap unit.
This unit allows you to trap runtime errors, so a runtime error will not abort the program,

but pass the control back to a point within the program. Use with care, and read the notes in
the interface, please.

{ Trapping runtime errors

The Trap unit allows you to trap runtime errors, so a runtime
error will not abort the program, but pass the control back to a
point within the program.

The usage is simple. The TrapExec procedure can be called with a
function (p) as an argument. p must take a Boolean argument. p
will immediately be called with False given as its argument. When
a runtime error would otherwise be caused while p is active, p
will instead be called again with True as its argument. After p
returns, runtime error trapping ends.

When the program terminates (e.g. by reaching its end or by a Halt
statement) and a runtime error was trapped during the run, Trap
will set the ExitCode and ErrorAddr variables to indicate the
trapped error.

Notes:

- After trapping a runtime error, your program might not be in a
stable state. If the runtime error was a "minor" one (such as a
range checking or arithmetic error), it should not be a problem.
But if you, e.g., write a larger application and use Trap to
prevent a sudden abort caused by an unexpected runtime error,
you should make the program terminate regularly as soon as
possible after a trapped error (perhaps by telling the user to
save the data, then terminate the program and report the bug to
you).

226 The GNU Pascal Manual

- Since the trapping mechanism *jumps* back, it has all the
negative effects that a (non-local!) ‘goto’ can have! You should
be aware of the consequences of all active procedures being
terminated at an arbitrary point!

- Nested traps are supported, i.e. you can call TrapExec again
within a routine called by another TrapExec instance. Runtime
errors trapped within the inner TrapExec invocation will be
trapped by the inner TrapExec, while runtime errors trapped
after its termination will be trapped by the outer TrapExec
again.

Copyright (C) 1996-2003 Free Software Foundation, Inc.

Author: Frank Heckenbach <frank@pascal.gnu.de>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030303}
{$error This unit requires GPC release 20030303 or newer.}
{$endif}

unit Trap;

interface

uses GPC;

Chapter 6: The Programmer’s Guide to GPC 227

var
TrappedExitCode: Integer = 0;
TrappedErrorAddr: Pointer = nil;
TrappedErrorMessageString: TString = ’’;

{ Trap runtime errors. See the comment at the top. }
procedure TrapExec (procedure p (Trapped: Boolean)); attribute (name

= ’_p_TrapExec’);

{ Forget about saved errors from the innermost TrapExec instance. }
procedure TrapReset; attribute (name = ’_p_TrapReset’);

6.14.20 BP compatibility: Turbo3

The following listing contains the interface of the Turbo3 unit.
This is a compatibility unit to BP’s ‘Turbo3’ compatibility unit to TP3. ;−) It is not meant

to be used in any newly written code.

{ Turbo Pascal 3.0 compatibility unit

Copyright (C) 1998-2003 Free Software Foundation, Inc.

Author: Frank Heckenbach <frank@pascal.gnu.de>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030412}

228 The GNU Pascal Manual

{$error This unit requires GPC release 20030412 or newer.}
{$endif}

{ @@ Work-around for a problem with COFF debug info. Will hopefully
disappear with qualified identifiers. }

{$ifdef __GO32__}
{$local W-} {$no-debug-info} {$endlocal}
{$endif}

unit Turbo3;

interface

import GPC;
System (MemAvail => System_MemAvail,

MaxAvail => System_MaxAvail);
CRT (LowVideo => CRT_LowVideo,

HighVideo => CRT_HighVideo);

var
Kbd: Text;
CBreak: Boolean absolute CheckBreak;

procedure AssignKbd (var f: AnyFile);
function MemAvail: Integer; attribute (name = ’_p_MemAvail3’);
function MaxAvail: Integer; attribute (name = ’_p_MaxAvail3’);
function LongFileSize (var f: AnyFile): Real;
function LongFilePos (var f: AnyFile): Real;
procedure LongSeek (var f: AnyFile; aPosition: Real);
procedure LowVideo; attribute (name = ’_p_LowVideo3’);
procedure HighVideo; attribute (name = ’_p_HighVideo3’);

6.14.21 BP compatibility: WinDos

The following listing contains the interface of the WinDos unit.
This is a portable implementation of most routines from BP’s ‘WinDos’ unit. A

few routines that are Dos – or even IA32 real mode – specific, are only available if
‘__BP_UNPORTABLE_ROUTINES__’ is defined, Section 7.2 [BP Incompatibilities], page 235.

The same functionality and much more is available in the Run Time System, Section 6.13
[Run Time System], page 100. The RTS routines usually have different names and/or easier and
less limiting interfaces (e.g. ‘ReadDir’ etc. vs. ‘FindFirst’ etc.), and are often more efficient.

Therefore, using this unit is not recommended in newly written programs.
{ Mostly BP compatible portable WinDos unit

This unit supports most, but not all, of the routines and
declarations of BP’s WinDos unit.

Notes:

- The procedures GetIntVec and SetIntVec are not supported since

Chapter 6: The Programmer’s Guide to GPC 229

they make only sense for Dos real-mode programs (and GPC
compiled programs do not run in real-mode, even on IA32 under
Dos). The procedures Intr and MsDos are only supported under
DJGPP if ‘__BP_UNPORTABLE_ROUTINES__’ is defined (with the
‘-D__BP_UNPORTABLE_ROUTINES__’ option). A few other routines are
also only supported with this define, but on all platforms (but
they are crude hacks, that’s why they are not supported without
this define).

- The internal structure of file variables (TFileRec and TTextRec)
is different in GPC. However, as far as TFDDs are concerned,
there are other ways to achieve the same in GPC, see the GPC
unit.

Copyright (C) 1998-2003 Free Software Foundation, Inc.

Author: Frank Heckenbach <frank@pascal.gnu.de>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}
{$if __GPC_RELEASE__ < 20030412}
{$error This unit requires GPC release 20030412 or newer.}
{$endif}

{ @@ Work-around for a problem with COFF debug info. Will hopefully
disappear with qualified identifiers. }

{$ifdef __GO32__}
{$local W-} {$no-debug-info} {$endlocal}

230 The GNU Pascal Manual

{$endif}

module WinDos;

export WinDos = all (FCarry, FParity, FAuxiliary, FZero, FSign,
FOverflow,

DosError, GetDate, GetTime, GetCBreak,
SetCBreak,

GetVerify, SetVerify, DiskFree, DiskSize,
GetFAttr, SetFAttr, GetFTime, SetFTime,
UnpackTime, PackTime,
{$ifdef __BP_UNPORTABLE_ROUTINES__}
{$ifdef __GO32__}
Intr, MsDos,
{$endif}
DosVersion, SetDate, SetTime,
{$endif}
CStringGetEnv => GetEnvVar);

import GPC; System; Dos (FindFirst => Dos_FindFirst,
FindNext => Dos_FindNext,
FindClose => Dos_FindClose);

const
{ File attribute constants }
faReadOnly = ReadOnly;
faHidden = Hidden; { set for dot files except ‘.’ and ‘..’ }
faSysFile = SysFile; { not supported }
faVolumeID = VolumeID; { not supported }
faDirectory = Directory;
faArchive = Archive; { means: not executable }
faAnyFile = AnyFile;

{ Maximum file name component string lengths }
fsPathName = 79;
fsDirectory = 67;
fsFileName = 8;
fsExtension = 4;

{ FileSplit return flags }
fcExtension = 1;
fcFileName = 2;
fcDirectory = 4;
fcWildcards = 8;

type
PTextBuf = ^TTextBuf;
TTextBuf = TextBuf;

{ Search record used by FindFirst and FindNext }
TSearchRec = record

Chapter 6: The Programmer’s Guide to GPC 231

Fill: SearchRecFill;
Attr: Byte8;
Time, Size: LongInt;
Name: {$ifdef __BP_TYPE_SIZES__}

packed array [0 .. 12] of Char
{$else}
TStringBuf
{$endif};

Reserved: SearchRec
end;

{ Date and time record used by PackTime and UnpackTime }
TDateTime = DateTime;

{ 8086 CPU registers -- only used by the unportable Dos routines }
TRegisters = Registers;

{ FindFirst and FindNext are quite inefficient since they emulate
all the brain-dead Dos stuff. If at all possible, the standard
routines OpenDir, ReadDir and CloseDir (in the GPC unit) should be
used instead. }

procedure FindFirst (Path: PChar; Attr: Word; var SR: TSearchRec);
attribute (name = ’_p_WFindFirst’);

procedure FindNext (var SR: TSearchRec); attribute (name
= ’_p_WFindNext’);

procedure FindClose (var SR: TSearchRec); attribute (name
= ’_p_WFindClose’);

function FileSearch (Dest, FileName, List: PChar): PChar; attribute
(name = ’_p_WFileSearch’);

function FileExpand (Dest, FileName: PChar): PChar; attribute (name
= ’_p_WFileExpand’);

function FileSplit (Path, Dir, BaseName, Ext: PChar): Word;
attribute (name = ’_p_WFileSplit’);

function GetCurDir (Dir: PChar; Drive: Byte): PChar; attribute
(name = ’_p_WGetCurDir’);

procedure SetCurDir (Dir: PChar); attribute (name
= ’_p_WSetCurDir’);

procedure CreateDir (Dir: PChar); attribute (name
= ’_p_WCreateDir’);

procedure RemoveDir (Dir: PChar); attribute (name
= ’_p_WRemoveDir’);

function GetArgCount: Integer; attribute (name
= ’_p_WGetArgCount’);

function GetArgStr (Dest: PChar; ArgIndex: Integer; MaxLen: Word):
PChar; attribute (name = ’_p_WGetArgStr’);

6.15 How to use I18N in own programs

This chapter discusses shortly how to use the Internationalization (I18N) features of GNU
Pascal.

232 The GNU Pascal Manual

Prerequisite

You need to have gettext installed. Try to compile ‘demos/gettextdemo.pas’.
Furthermore, you should download a tool named ‘pas2po’ from
http://www.gnu-pascal.org/contrib/eike/.

The source

We would like to translate the messages provided with this simple example different languages
(here: German) without touching the source for each language:

program Hello1;

begin
WriteLn (’Hello, World!’);
WriteLn (’The answer of the questions is: ’, 42)

end.

Preparing the source

To do so, we must prepare the source to use gettext:
program Hello2;

uses GPC, Intl;

var Dummy, s: TString;

begin
Dummy := BindTextDomain (’hello2’, ’/usr/share/locale/’);
Dummy := TextDomain (’hello2’);
WriteLn (GetText (’Hello, World!’));
s := FormatString (GetText (’The answer of the questions is %s’), 42);
WriteLn (s)

end.

‘BindTextDomain’ sets the path to find our message catalogs in the system. This path is
system dependent. ‘TextDomain’ tells the program to use this catalog. ‘GetText’ looks up the
given string in the catalog and returns a translated string within the current locale settings.
‘FormatString’ replaces some format specifiers with the following argument. ‘%s’ is the first
following argument. After this step is done, we do not need to touch the sourcefile any longer.
The output of this program is as follows:

Hello, World!
The answer of the questions is 42

Getting the translatable strings

There are lots of strings in the above example, but only those surrounded with ‘GetText’
should be translated. We use ‘pas2po hello2.pas -o hello2.po’ to extract the messages. The
output is:

This file was created by pas2po with ’hello2.pas’.
Please change this file manually.
SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR Free Software Foundation, Inc.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.

http://www.gnu-pascal.org/contrib/eike/

Chapter 6: The Programmer’s Guide to GPC 233

#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"POT-Creation-Date: 2003-04-27 20:48+0200\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=CHARSET\n"
"Content-Transfer-Encoding: 8bit\n"

#hello2.pas:10
msgid "Hello, World!"
msgstr ""

#hello2.pas:11
msgid "The answer of the questions is %s"
msgstr ""

Now we translate the message ids into German language, and set some needful informations
at their appropriate places. The following steps must be repeated for each language we would
like to support:

This file was created by pas2po with ’hello2.pas’.
Copyright (C) 2003 Free Software Foundation, Inc.
Eike Lange <eike@g-n-u.de>, 2003.
msgid ""
msgstr ""
"Project-Id-Version: Hello2 1.0\n"
"POT-Creation-Date: 2003-04-27 12:00+0200\n"
"PO-Revision-Date: 2003-04-27 12:06+0200\n"
"Last-Translator: Eike Lange <eike@g-n-u.de>\n"
"Language-Team: de <de@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=ISO-8859-1\n"
"Content-Transfer-Encoding: 8bit\n"

#hello2.pas:10
msgid "Hello, World!"
msgstr "Hallo, Welt!"

#hello2.pas:11
msgid "The answer of the questions is %s"
msgstr "’%s’ lautet die Antwort auf die Frage."

Please note that we swapped text and numeric arguments and added some single quotes
arround the first argument. We compile the message catalog with ‘msgfmt -vv hello2.po -o
hello2.mo’ and install the file ‘hello2.mo’ at ‘/usr/share/locale/de/LC_MESSAGES/’ With a
german locale setting, the output should be as follows:

Hallo, Welt!
’42’ lautet die Antwort auf die Frage.

234 The GNU Pascal Manual

System dependent notes:

The topmost path where message catalogs reside is system dependent:

for DJGPP:
‘GetEnv (’$DJDIR’) + ’/share/locale’’

for Mac OS X:
‘/usr/share/locale’ or ‘/sw/share/locale’

for Linux, *BSD:
‘/usr/share/locale’ or ‘/usr/local/share/locale’

See also

see 〈undefined〉 [Gettext], page 〈undefined〉, See [FormatString], page 318, See Section 6.14.8
[Intl], page 190

Chapter 7: A QuickStart Guide from Borland Pascal to GNU Pascal. 235

7 A QuickStart Guide from Borland Pascal to GNU
Pascal.

This chapter is intended to be a QuickStart guide for programmers who are familiar with
Borland Pascal.

Throughout the manual, we talk of “Borland Pascal” or “BP” for short, to refer to Borland
Pascal version 7 for Dos protected mode. Other versions of Borland Pascal and Turbo Pascall
don’t differ too much, but this one was the very last Dos version Borland has published, so in
most if not all cases, you can safely substitute the version you’re familiar with.

“Borland Pascal” and “Turbo Pascal” are registered trademarks of Borland Inc.

7.1 BP Compatibility

GNU Pascal (GPC) is compatible to version 7 of Borland Pascal (BP) to a large extent and
comes with portable replacements of the BP standard units.

However, BP is a 16-bit compiler while GPC is a 32/64-bit compiler, so the size of the
‘Integer’ type, for instance, is 16 bits in BP, but at least 32 bits in GPC. If a BP program has
been designed with portability in mind from the ground up, it may work with GPC without any
change. Programs which rely on byte order, on the internals or sizes of data types or which use
unportable things like interrupts and assembler code, will need to be changed. The following
section lists the possible problems with solutions.

The GPC Run Time System (RTS) is fairly complete, and you can use all libraries written
for GNU C from GNU Pascal, so there is much less need to use unportable constructs than there
was in BP. (For example, BP’s Turbo Vision library uses assembler to call a local procedure
through a pointer. With GPC you can do this in Pascal just as with global procedures.) Please
do not throw away the advantage of full portability by sticking to those workarounds.

We have successfully ported real-world projects (with several 10000s of lines) from BP to
GPC, so this is possible for you, too.

7.2 BP Incompatibilities

This sections lists the remaining incompatibilities of GPC to BP, and the problems you might
encounter when porting BP programs from 16-bit Dos to other platforms, and gives solutions
for them.

By incompatibilites we mean problems that can arise when trying to compile a valid BP
program with GPC. Of course, there are many features in GPC that BP doesn’t know, but we
call them extensions unless they can break valid BP programs, so they are not mentioned here.
The subsequent sections of the ‘Borland Pascal’ chapter mention a number of useful extensions
that you might want to know about but which will not break your BP code.

Some of the differences can be “overcome” by command-line switches. As a summary:
--borland-pascal -w --uses=System -D__BP_TYPE_SIZES__ --pack-struct
-D__BP_RANDOM__ -D__BP_UNPORTABLE_ROUTINES__ -D__BP_PARAMSTR_0__

But please read the following notes, and don’t use these switches indiscriminately when not
necessary. There are reasons why they are not GPC’s defaults.

7.2.1 String type

GPC’s internal string format (Extended Pascal string schema) is different from BP’s. BP
compatible short strings will be implemented in GPC soon, but in the meantime, you’ll have to
live with the difference. In general, GPC’s format has many advantages (no length limit of 255
characters, constant and reference parameters always know about their capacity, etc.), but you
will see differences if you:

236 The GNU Pascal Manual

− declare a variable as ‘String’ without a capacity. However, GPC will assume 255 then (like
BP) and only warn about it (and not even this when using ‘--borland-pascal’, see below),
so that’s not a real problem. The “clean” way, however, is to declare ‘String [255]’ when
you mean so (but perhaps you’ll prefer ‘String (2000)’? :−).

− access “character 0” which happens to hold the length in BP. This does not work with
string schemata. Use ‘Length’ to get the length, and ‘SetLength’ to modify it.

− try to ‘FillChar’ a string, e.g. ‘FillChar (StringVar, 256, 0);’, which would overwrite
the ‘Capacity’ field. Using ‘FillChar (StringVar[1], ...);’ is alright since it accesses
the characters of the string, not the ‘Capacity’ and ‘Length’ fields. If you want to set the
length to zero, use ‘SetLength’ (see above) or simply assign an empty string (‘StringVar
:= ’’’). This is more efficient than clearing all the characters, anyway, and has the same
effect for all normal purposes.

− try to read or write strings from/to binary files (‘Text’ files are no problem). You will
have to rewrite the code. If you also want to get rid of the 255 character limit and handle
endianness issues (see below) in one go, you can use the ‘ReadStringLittleEndian’ etc.
routines (see Section 6.13 [Run Time System], page 100), but if you need BP compatible
strings (i.e., with a one-byte length field) in data files, you cannot use them (but you can
easily modify them for this purpose).

7.2.2 Qualified identifiers

GPC does not yet support qualified identifiers. They will be implemented soon. In the
meantime, just don’t use them, sorry. (In general, using the same global identifier in different
units can easily be confusing, so it’s not bad practice to avoid this, anyway.)

7.2.3 Assembler

GPC’s inline assembler is not compatible to BP’s. It uses AT&T syntax, supports a large
variety of processors and works together with GPC’s optimizer. So, either convert your inline
assembly to AT&T syntax, or (usually better) to Pascal, or put it into an external file which
you can assemble with your favourite (32 bit) assembler. A tutorial for using the GPC inline
assembler is available at
http://www.gnu-pascal.de/contrib/misc/gpcasm.zip

Since many things you usually do with assembler in BP are provided by GPC’s Run Time
System (RTS), you will not need the inline assembler as often as in BP. (See Section 7.23
[Portability hints], page 253.)

The same applies to BP’s ‘inline’ directive for hand-written machine code. GPC’s ‘inline’
directive works for Pascal routines (see Section 7.21 [Miscellaneous], page 251), so you’ll have to
convert any hand-written machine code to Pascal (and thereby make it more readable, portable
and easier to maintain while still getting the performance of inline code).

7.2.4 Move; FillChar

GPC supports ‘Move’ and ‘FillChar’, and they’re fully BP compatible. However, some
data structures have different internal formats which may become relevant when using these
procedures. E.g., using ‘Move’ on file variables does not work in GPC (there are reasons why
assigning file variables with ‘:=’ is not allowed in Pascal, and circumventing this restriction
with ‘Move’ is not a good idea). For other examples, see Section 7.2.1 [String type], page 235,
Section 7.2.5 [Real type], page 237, and Section 7.2.11 [Endianness assumptions], page 238.

http://www.gnu-pascal.de/contrib/misc/gpcasm.zip

Chapter 7: A QuickStart Guide from Borland Pascal to GNU Pascal. 237

7.2.5 Real type

GPC does not support BP’s 6-byte ‘Real’ type. It supports ‘Single’, ‘Double’ and
‘Extended’ which, at least on the IA32 and some other processors, are compatible to BP.

For BP’s 6-byte ‘Real’ type, GPC’s ‘System’ unit provides an emulation, called ‘BPReal’,
as well as conversion routines to GPC’s ‘Real’ type (which is the same as ‘Double’), called
‘RealToBPReal’ and ‘BPRealToReal’. You’ll probably only need them when reading or writing
binary files containing values of the BP 6-byte real type. There are no operators (e.g., ‘+’)
available for ‘BPReal’, but since GPC supports operator overloading, you could define them
yourself (e.g., convert to ‘Real’, do the operation, and convert back). Needless to say that this
is very inefficient and should not be done for any serious computations. Better convert your
data after reading them from the file and before writing them back, or simply convert your data
files once (the other types are more efficient even with BP on any non-prehistoric processor,
anyway).

7.2.6 Graph unit

A mostly BP compatible ‘Graph’ unit exists as part of the ‘GRX’ package. It is known to work
under DJGPP, Cygwin, mingw, Linux/IA32 with svgalib, and should work under any Unix
system with X11 (tested under Linux, Solaris, AIX, etc.).

There is a small difference in the color numbering, but it should be easy to work-around:
You can’t assume, e.g., that color 1 is always blue, and 2 is green, etc. On a system with 15
or more bits of color depth (i.e., 32768 or more colors, which most PCs today have), they will
all be very dark shades of blue. This is not really a bug, but simply a property of modern high
colors modes (whereas BP’s ‘Graph’ unit was only designed for 16 and 256 color modes).

However, the names ‘Blue’, ‘Green’ etc. stand for the correct colors in the ‘Graph’ unit of
GRX. They are no constants, but functions (because the color depth is in general not known
until runtime), so you can’t use them in contexts where constants are expected. Also, they
might conflict with the identifiers of the ‘CRT’ unit if you use both units at the same time. If you
want to use computed color values in the range 0 . . . 15, you can translate them to the correct
colors using the ‘EGAColor’ function.

7.2.7 OOP units

The OOP stuff (Turbo Vision etc.) is not yet completed, but work on several projects is
underway. If you want information about the current status or access to development source,
please contact the GPC mailing list.

7.2.8 Keep; GetIntVec; SetIntVec

The routines ‘Keep’, ‘GetIntVec’ and ‘SetIntVec’ in the ‘Dos’ unit do not even make sense on
DJGPP (32 bit Dos extender). If your program uses these, it is either a low-level Dos utility for
which porting to a 32 bit environment might cause bigger problems (because the internal issues
of DPMI become relevant which are usually hidden by DJGPP), or it installs interrupt handlers
which will have to be thought about more carefully because of things like locking memory,
knowing about and handling the differences between real and protected mode interrupts, etc.
For these kinds of things, we refer you to the DJGPP FAQ (see section “DJGPP FAQ” in the
DJGPP FAQ).

7.2.9 TFDDs

The internal structure of file variables (‘FileRec’ and ‘TextRec’ in BP’s ‘Dos’ unit and
‘TFileRec’ and ‘TTextRec’ in BP’s ‘WinDos’ unit) is different in GPC. However, as far as Text

238 The GNU Pascal Manual

File Device Drivers (TFDDs) are concerned, GPC offers a more powerful mechanism. Please
see the RTS reference (see Section 6.13 [Run Time System], page 100), under ‘AssignTFDD’.

7.2.10 Mem; Port; Ptr; Seg; Ofs; PrefixSeg; etc.

Those few routines in the ‘System’ unit that deal with segmented pointers (e.g., ‘Ptr’) are
emulated in such a way that such ugly BP constructs like

PInteger (Ptr (Seg (a), Ofs (a) + 6 * SizeOf (Integer)))^ = 42

work in GPC, but they do not provide access to absolute memory addresses. Neither do
‘absolute’ variables (which take a simple address in the program’s address space in GPC,
rather than a segmented address), and the ‘Mem’ and ‘Port’ arrays don’t exist in GPC.

As a replacement for ‘Port’ on IA32 processors, you can use the routines provided in the
‘Ports’ unit, Section 6.14.12 [Ports], page 202. If you want to access absolute memory addresses
in the first megabyte under DJGPP, you can’t do this with normal pointers because DJGPP
programs run in a protected memory environment, unless you use a dirty trick called near pointer
hack. Please see the DJGPP FAQ (see section “DJGPP FAQ” in the DJGPP FAQ) for this and
for other ways.

For similar reasons, the variable ‘PrefixSeg’ in the ‘System’ unit is not supported. Apart
from TSRs, its only meaningful use in BP might be the setting of environment variables. GPC
provides the ‘SetEnv’ and ‘UnSetEnv’ procedures for this purpose which you can use instead of
any BP equivalents based on ‘PrefixSeg’. (However note that they will modify the program’s
own and its childs’ environment, not its parent’s environment. This is a property – most people
call it a feature – of the environments, including DJGPP, that GPC compiled programs run in.)

7.2.11 Endianness assumptions

GPC also runs on big-endian systems (see Section 6.2.12.1 [Endianness], page 78). This is,
of course, a feature of GPC, but might affect your programs when running on a big-endian
system if they make assumptions about endianness, e.g., by using type casts (or ‘absolute’
declarations or variant records misused as type casts) in certain ways. Please see the demo
program ‘absdemo.pas’ for an example and how to solve it.

Endianness is also relevant (the more common case) when exchanging data between different
machines, e.g. via binary files or over a network. Since the latter is not easily possible in BP,
and the techniques to solve the problems are mostly the same as for files, we concentrate on files
here.

First, you have to choose the endianness to use for the file. Most known data formats have a
specified endianness (usually that of the processor on which the format was originally created).
If you define your own binary data format, you’re free to choose the endianness to use.

Then, when reading or writing values larger than one byte from/to the file, you have to
convert them. GPC’s Run Time System supports this by some routines. E.g., you can read
an array from a little-endian file with the procedure ‘BlockReadLittleEndian’, or write one to
a big-endian file with ‘BlockWriteBigEndian’. Note: The endianness in the procedure names
refers to the file, not the system – the routines know about the endianness of the system they
run on, but you have to tell them the endianness of the file to use. This means you do not have
to (and must not) use an ‘ifdef’ to use the version matching the system’s endianness.

When reading or writing records or other more complicated structures, either read/write them
field by field using ‘BlockReadBigEndian’ etc., or read/write them with the regular ‘BlockRead’
and ‘BlockWrite’ procedures and convert each field after reading or before writing using proce-
dures like ‘ConvertFromBigEndian’ or ‘ConvertToLittleEndian’ (but remember, when writing,
to undo the conversion afterwards, if you want to keep using the data – this is not necessary
with ‘BlockWriteLittleEndian’ etc.).

Chapter 7: A QuickStart Guide from Borland Pascal to GNU Pascal. 239

Especially for strings, there are ready-made procedures like ‘ReadStringBigEndian’ or
‘WriteStringLittleEndian’ which will read/write the length as a 64 bit value (much space
for really long strings :−) in the given endianness, followed by the characters (which have no
endianness problem).

All these routines are described in detail in the RTS reference (see Section 6.13 [Run Time
System], page 100), under ‘endianness’. The demo program ‘endiandemo.pas’ contains an
example on how to use these routines.

7.2.12 - -borland-pascal - disable GPC extensions

GPC warns about some BP constructs which are especially “dirty”, like misusing typed
constants as initialized variables. GPC also supports some features that may conflict with BP
code, like macros. The command line option ‘--borland-pascal’ disables both, so you might
want to use it for a first attempt to compile your BP code under GPC. However, we suggest you
try compiling without this switch and fixing any resulting problems as soon as you’ve become
acquainted with GPC.

7.2.13 -w - disable all warnings

Even in ‘--borland-pascal’ mode, GPC may warn about some dangerous things. To disable
all warnings, you can use the ‘-w’ option (note: lower-case ‘w’!). This is not recommended at
all, but you may consider it more BP compatible . . .

7.2.14 - -uses=System - Swap; HeapError; etc.

A few exotic BP routines and declarations (e.g., ‘Swap’ and ‘HeapError’) are contained in a
‘System’ unit, Section 6.14.17 [System], page 217, which GPC (unlike BP) does not automatically
use in each program. To use it, you can add a ‘uses System;’ clause to your program. If you
don’t want to change your code, the command line option ‘--uses=System’ will do the same.

7.2.15 -D BP TYPE SIZES - small integer types etc.

Since GPC runs on 32 and 64 bit platforms, integer types have larger sizes than in BP.
However, if you use the ‘System’ unit (see Section 7.2.14 [- -uses=System - Swap; HeapError;
etc.], page 239) and define the symbol ‘__BP_TYPE_SIZES__’ (by giving ‘-D__BP_TYPE_SIZES__’
on the command line), it will redeclare the types to the sizes used by BP. This is less efficient
and more limiting, but might be necessary if your program relies on the exact type sizes.

7.2.16 - -pack-struct - disable structure alignment

GPC by default aligns fields of records and arrays suitably for higher performance, while BP
doesn’t. If you don’t want the alignment (e.g., because the program relies on the internal format
of your structures), give the ‘--pack-struct’ option.

7.2.17 -D BP RANDOM - BP compatible pseudo random number
generator

GPC uses a more elaborate pseudo random number generator than BP does. Using the
‘Random’ and ‘Randomize’ functions works the same way, but there is no ‘RandSeed’ variable
(but a ‘SeedRandom’ procedure). However, if you use the ‘System’ unit (see Section 7.2.14 [-
-uses=System - Swap; HeapError; etc.], page 239) and define the symbol ‘__BP_RANDOM__’ (by
giving ‘-D__BP_RANDOM__’ on the command line), it will provide a 100% BP compatible pseudo
random number generator, including the ‘RandSeed’ variable, which will produce exactly the
same sequence of pseudo random numbers that BP’s pseudo random number generator does.
Even the ‘Randomize’ function will then behave exactly like in BP.

240 The GNU Pascal Manual

7.2.18 -D BP UNPORTABLE ROUTINES - Intr; DosVersion; etc.

A few more routines in the ‘Dos’ and ‘WinDos’ units besides the ones mentioned under Sec-
tion 7.2.8 [Keep; GetIntVec; SetIntVec], page 237, like ‘Intr’ or ‘DosVersion’, are meaningless
on non-Dos systems. By default, the ‘Dos’ unit does not provide these routines (it only provides
those that are meaningful on all systems, which are most of its routines, including the most
commonly used ones). If you need the unportable ones, you get them by using the ‘System’
unit (see Section 7.2.14 [- -uses=System - Swap; HeapError; etc.], page 239) and defining the
symbol ‘__BP_UNPORTABLE_ROUTINES__’ (by giving ‘-D__BP_UNPORTABLE_ROUTINES__’ on the
command line). If you use ‘Intr’ or ‘MsDos’, your program will only compile under DJGPP
then. Other routines, e.g. ‘DosVersion’ are emulated quite roughly on other systems. Please
see the notes in the ‘Dos’ unit (see Section 6.14.2 [Dos], page 163) for details.

7.2.19 -D BP PARAMSTR 0 - BP compatible ParamStr (0)
behaviour

In BP (or under Dos), ‘ParamStr (0)’ always contains the full path of the current executable.
Under GPC, by default it contains what was passed by the caller as the 0th argument – which
is often the name of the executable, but that’s merely a convention, and it usually does not
include the path.

If you use the ‘System’ unit (see Section 7.2.14 [- -uses=System - Swap; HeapError; etc.],
page 239) and define the symbol ‘__BP_PARAMSTR_0__’ (by giving ‘-D__BP_PARAMSTR_0__’ on
the command line), it will change the value of ‘ParamStr (0)’ to that of ‘ExecutablePath’,
overwriting the value actually passed by the caller, to imitate BP’s/Dos’s behaviour. However
note: On most systems, ‘ExecutablePath’ is not guaranteed to return the full path, so defining
this symbol doesn’t change anything. In general, you cannot expect to find the full executable
path, so better don’t even try it, or your program will (at best) run on some systems. For most
cases where BP programs access their own executable, there are cleaner alternatives available.

7.3 IDE versus command line

On the Dos (DJGPP) and Linux platforms, you can use RHIDE for GNU Pascal; check the
subdirectories of your DJGPP distribution.

Unfortunately, there is no IDE which would run on all platforms. We are working on it, but
this will take some time. Please be patient – or offer your help!

Without an IDE, the GNU Pascal Compiler, GPC, is called about like the command-line
version of the Borland Pascal Compiler, BPC. Edit your source file(s) with your favorite ASCII
editor, then call GNU Pascal with a command line like

C:\GNU-PAS> gpc hello.pas -o hello.exe

on your Dos or OS/2 box or
myhost:/home/joe/gnu-pascal> gpc hello.pas -o hello

on your Unix (or Unix-compatible) system.
Don’t omit the ‘.pas’ suffix: GPC is a common interface for a Pascal compiler, a C, ObjC

and C++ compiler, an assembler, a linker, and perhaps an Ada and a FORTRAN compiler. From
the extension of your source file GPC figures out which compiler to run. GPC recognizes Pascal
sources by the extension ‘.pas’, ‘.p’, ‘.pp’ or ‘.dpr’.

The -o is a command line option which tells GPC how the executable has to be named. If
not given, the executable will be called ‘a.out’ (Unix) or ‘a.exe’ (Dos). However, you can use
the ‘--executable-file-name’ to tell GPC to always call the executable like the source (with
the extension removed under Unix and changed to ‘.exe’ under Dos).

Note that GPC is case-sensitive concerning file names and options, so it will not work if you
type

Chapter 7: A QuickStart Guide from Borland Pascal to GNU Pascal. 241

C:\GNU-PAS> GPC HELLO.PAS -O HELLO.EXE

GPC is a very quiet compiler and doesn’t print anything on the screen unless you request it
or there is an error. If you want to see what is going on, invoke GPC with additional options:

-Q "don’t be quiet" (or: Quassel-Modus in German)

(with capital ‘Q’!) means that GPC prints out the names of procedures and functions it processes,
and

--verbose

or abbreviated
-v

means that GPC informs you about the stages of compilation, i.e. preprocessing, compiling,
assembling, and linking.

One example (this time for OS/2):
[C:\GNU-Pascal] gpc --verbose -Q hello.pas

Throughout this chapter, we will tell you about a lot of command-line switches. They are
all invoked this way.

After compilation, there will be an executable hello file in the current directory. (hello.exe
on Dos or OS/2.) Just run it and enjoy. If you’re new to Unix, please note that the current
directory is not on the PATH in most installations, so you might have to run your program
as ‘./hello’. This also helps to avoid name conflicts with other programs. Such conflicts are
especially common with the program name ‘test’ which happens to be a standard utility under
Unix that does not print any output. If you call your program ‘test.pas’, compile it, and then
invoke ‘test’, you will usually not run your program, but the utility which leads to mysterious
problems. So, invoke your program as ‘./test’ or, better yet, avoid the name ‘test’ for your
programs.

If there are compilation errors, GNU Pascal will not stop compilation after the first one –
as Borland Pascal does – but try to catch all errors in one compilation. If you get more error
messages than your screen can hold, you can catch them in a file (e.g. gpc.out) or pipe them
to a program like ‘more’ in the following way:

gpc hello.pas 2> gpc.out

This works with OS/2 and any bash-like shell under Unix; for Dos you must get a replacement
for command.com which supports this kind of redirection, or use the ‘redir’ utility (see also the
DJGPP FAQ, section “DJGPP FAQ” in the DJGPP FAQ.):

C:\GNU-PAS> redir -eo gpc hello.pas -o hello.exe | more

You can also use Borland’s IDE for GNU Pascal on the Dos platform: Install the GNU Pascal
Compiler in the Tools menu (via Options/Tools).

Name: GNU Pascal
Path: gpc
Arguments: $SAVE ALL --executable-file-name $NAME($EDNAME).pas
HotKey: Shift+F9

Note once more that GPC is case-sensitive, so it is important to specify .pas instead of the
.PAS Borland Pascal would append otherwise!

You can include more command-line arguments to GNU Pascal (e.g. ‘--automake’; see below)
as you will learn more about them.

Since Borland Pascal will try to recompile your program if you use its Run menu function,
you will need another tool to run your program:

Name: Run Program
Path: command.com
Arguments: /c $NAME($EDNAME)
HotKey: Shift+F10

242 The GNU Pascal Manual

7.4 Comments

GPC supports comments surrounded by ‘{ }’ and ‘(* *)’, just like BP does. According to
the ISO 7185 and ISO 10206 standards, Pascal allows comments opened with (* and closed
with }. Borland Pascal does not support such mixed comments, so you might have sources
where passages containing comments are “commented out” using the other kind of comment
delimiters. GPC’s default behaviour is (like BP) not to allow mixed comments, so you don’t
need to worry about this. However, if you happen to like mixed comments, you can turn them
on either by a command-line option, or by a compiler directive:

--mixed-comments {$mixed-comments} (*$mixed-comments*)

GPC supports nested comments (e.g., ‘{ foo { bar } baz }’), but they are disabled by default
(compatible to BP which doesn’t know nested comments at all). You can enable them with the
option ‘--nested-comments’ (or the equivalent compiler directive)

GPC also supports Delphi style comments starting with ‘//’ and extending until the end
of the line. This comment style is activated by default unless one of the ‘--classic-pascal’,
‘--extended-pascal’, ‘--object-pascal’ or ‘--borland-pascal’ dialect options is given. You
can turn them on or off with the ‘--[no-]delphi-comments’ option.

7.5 BP Compatible Compiler Directives

All of BP’s one-letter compiler directives (except H, P, Q, R, V) are supported by GPC,
though some of them are ignored because they are not necessary under GPC. Besides, GPC
supports a lot more directives. For an overview, see Section 6.9 [Compiler Directives], page 87.

7.6 Units, GPI files and Automake

You can use units in the same way as in Borland Pascal. However, there are some additional
features.

Concerning the syntax of a unit, you can, if you want, use Extended Pascal syntax to specify
a unit initializer, i.e., instead of writing

begin
...

end.

at the end of the unit, you can get the same result with
to begin do

begin
...

end;

and there also exists
to end do

begin
...

end;

which specifies a finalization routine. You can use this instead of Borland Pascal’s exit proce-
dures, but for compatibility, the included ‘System’ unit also provides the ‘ExitProc’ variable.
The ‘to begin do’ and/or ‘to end do’ parts must be followed by the final ‘end.’. See Sec-
tion 6.1.8.1 [Modules], page 58, for information about Extended Pascal modules, an alternative
to units.

When GPC compiles a unit, it produces two files: an .o object file (compatible with other
GNU compilers such as GNU C) plus a .gpi file which describes the interface.

Chapter 7: A QuickStart Guide from Borland Pascal to GNU Pascal. 243

If you are interested in the internal format of GPI file, see Section 12.9 [GPI files], page 476.
If you want to compile a program that uses units, you must “make” the project. (This is the

command-line switch ‘-M’ or the IDE keystroke ‘F9’ in BP.) For this purpose, GPC provides the
command-line switch ‘--automake’:

gpc --automake hello.pas

If you want to force everything to be rebuilt rather than only recompile changed files (‘-B’
or “build” in BP), use ‘--autobuild’ instead of ‘--automake’:

gpc --autobuild hello.pas

For more information about the automake mechanism, see Section 12.10 [Automake],
page 479.

If you do not want to use the automake mechanism for whatever reason, you can also compile
every unit manually and then link everything together.

GPC does not automatically recognize that something is a unit and cannot be linked; you
have to tell this by a command line switch:

-c only compile, don’t link.

(If you omit this switch when compiling a unit, you only get a linker error message ‘undefined
reference to ‘main’’. Nothing serious.)

For example, to compile two units, use:
gpc -c myunit1.pas myunit2.pas

When you have compiled all units, you can compile a program that uses them without using
‘--automake’:

gpc hello.pas

However, using ‘--automake’ is recommended, since it will recompile units that were modi-
fied.

You could also specify the program and the units in one command line:
gpc hello.pas myunit1.pas myunit2.pas

One of the purposes of writing units is to compile them separately. However, GNU Pascal
allows you to have one or more units in the same source file (producing only one .o file but
separate .gpi files). You even can have a program and one or more units in one source file; in
this case, no .o file is produced at all.

7.7 Optimization

GNU Pascal is a 32/64 bit compiler with excellent optimization algorithms (which are identi-
cally the same as those of GNU C). There are six optimization levels, specified by the command
line options ‘-O’, ‘-O2’, . . . , ‘-O6’.

One example:
program OptimizationDemo;

procedure Foo;
var

A, B: Integer;
begin

A := 3;
B := 4;
WriteLn (A + B)

end;

244 The GNU Pascal Manual

begin
Foo

end.

When GNU Pascal compiles this program with optimization (‘-O3’), it recognizes that the
argument to ‘WriteLn’ is the constant 7 – and optimizes away the variables A and B. If the
variables were global, they would not be optimized away because they might be accessed from
other places, but the constant 7 would still be optimized.

For more about optimization, see the GNU C documentation.

7.8 Debugging

The command line option ‘-g’ specifies generation of debugging information for GDB, the
GNU debugger. GDB comes with its own documentation. Currently, GDB does not understand
Pascal syntax, so you should be familiar with C expressions if you want to use it.

See also “Notes for debugging” in the “Programming” chapter; see Section 6.12 [Notes for
Debugging], page 100.

Sometimes it is nice to have a look at the assembler output of the compiler. You can do
this in a debugger or disassembler (which is the only way to do it in BP), but you can also tell
GPC to produce assembler code directly: When you specify the -S command line option, GPC
produces an .s file instead of an .o file. The .s file contains assembler source for your program.
More about this in the next section.

7.9 Objects

Objects in the Borland Pascal 7.0 notation are implemented into GNU Pascal with the
following differences:
• the ‘private’, ‘protected’, ‘public’ and ‘published’ directives are recognized but ignored,
• data fields and methods may be mixed:

type
MyObj = object
x: Integer;
procedure Foo; virtual;
y: Real;
function Bar: Char;

end;

7.10 Strings in BP and GPC

Strings are “Schema types” in GNU Pascal which is something more advanced than Borland-
style strings. For variables, you cannot specify just String as a type like in Borland Pascal;
for parameters and pointer types you can. There is no 255 characters length limit. According
to Extended Pascal, the maximum string length must be in (parentheses); GNU Pascal accepts
[brackets], too, however, like BP.

For more about strings and schema types see Section 6.2.11.5 [Schema Types], page 70.
GPC supports Borland Pascal’s string handling functions and some more (see Section 6.10.2

[String Operations], page 92):
Borland Pascal GNU Pascal
Length Length
Pos Pos, Index (1)
Str Str, WriteStr (1) (2)

Chapter 7: A QuickStart Guide from Borland Pascal to GNU Pascal. 245

Val Val, ReadStr (2)
Copy Copy, SubStr, MyStr[2 .. 7] (3)
Insert Insert
Delete Delete
MyStr[0] := #7 SetLength (MyStr, 7)
=, <>, <, <=, >, >= =, <>, <, <=, >, >= (4)

EQ, NE, LT, LE, GT, GE
n/a Trim

Notes:
(1) The order of parameters of the Extended Pascal routines (‘Index’, ‘WriteStr’) is different

from the Borland Pascal routines.
(2) ‘ReadStr’ and ‘WriteStr’ allow an arbitrary number of arguments, and the arguments

are not limited to numbers. ‘WriteStr’ also allows comfortable formatting like ‘WriteLn’ does,
e.g. ‘WriteStr (Dest, Foo : 20, Bar, 1/3 : 10 : 2)’.

(3) ‘SubStr’ reports a runtime error if the requested substring does not fit in the given string,
‘Copy’ does not (like in BP).

(4) By default, the string operators behave like in BP. However, if you use the option
‘--no-exact-compare-strings’ or ‘--extended-pascal’, they ignore differences of trailing
blanks, so, e.g., ‘’foo’’ and ‘’foo ’’ are considered equal. The corresponding functions (‘EQ’,
. . .) always do exact comparisons.

7.11 Typed Constants

GNU Pascal supports Borland Pascal’s “typed constants” but also Extended Pascal’s initial-
ized variables:

var
x: Integer value 7;

or
var

x: Integer = 7;

When a typed constant is misused as an initialized variable, a warning is given unless you
specify ‘--borland-pascal’.

When you want a local variable to preserve its value, define it as ‘static’ instead of using a
typed constant. Typed constants also become static automatically for Borland Pascal compati-
bility, but it’s better not to rely on this “feature” in new programs. Initialized variables do not
become static automatically.

program StaticDemo;

procedure Foo;
{ x keeps its value between two calls to this procedure }
var

x: Integer = 0; attribute (static);
begin

WriteLn (x);
Inc (x)

end;

begin
Foo;
Foo;

246 The GNU Pascal Manual

Foo;
end.

For records and arrays, GPC supports both BP style and Extended Pascal style initializers.
When you initialize a record, you may omit the field names. When you initialize an array, you
may provide indices with a :. However, this additional information is ignored completely, so
perhaps it’s best for the moment to only provide the values . . .

program BPInitVarDemo;
const

A: Integer = 7;
B: array [1 .. 3] of Char = (’F’, ’o’, ’o’);
C: array [1 .. 3] of Char = ’Bar’;
Foo: record

x, y: Integer;
end = (x: 3; y: 4);

begin
end.

7.12 Bit, Byte and Memory Manipulation

The bitwise operators ‘shl’, ‘shr’, ‘and’, ‘or’, ‘xor’ and ‘not’ work in GNU Pascal like in
Borland Pascal. As an extension, you can use them as procedures, for example

program AndProcedureDemo;
var x: Integer;
begin

and (x, $0000ffff);
end.

as an alternative to

program AndOperatorDemo;
var x: Integer;
begin

x := x and $0000ffff;
end.

GPC accepts the BP style notation ‘$abcd’ for hexadecimal numbers, but you also can use
Extended Pascal notation:

program EPBaseDemo;
const

Binary = 2#11111111;
Octal = 8#177;
Hex = 16#ff;

begin
end.

and so on up to a basis of 36. Of course, you can mix the notations as you like, e.g.:

program BPEPBaseDemo;
begin

WriteLn ($cafe = 2#1100101011111110)
end.

‘Inc’ and ‘Dec’ are implemented like in Borland Pascal. ‘Pred’ and ‘Succ’ are generalized
according to Extended Pascal and can have a second (optional) parameter:

Chapter 7: A QuickStart Guide from Borland Pascal to GNU Pascal. 247

procedure SuccDemo;
var a: Integer = 42;
begin

a := Succ (a, 5);
WriteLn (a) { 47 }

end.

BP style ‘absolute’ variables work in the context of overloading other variables as well as in
the context of specifying an absolute address, but the latter is highly unportable and not very
useful even in Dos protected mode.

program BPAbsoluteDemo;

type
TString = String (80);
TTypeChoice = (t_Integer, t_Char, t_String);

{ @@ WARNING: BAD STYLE! }
procedure ReadVar (var x: Void; TypeChoice: TTypeChoice);
var

xInt: Integer absolute x;
xChar: Char absolute x;
xStr: TString absolute x;

begin
case TypeChoice of
t_Integer: ReadLn (xInt);
t_Char : ReadLn (xChar);
t_String : ReadLn (xStr);

end
end;

var
i: Integer;
c: Char;
s: TString;

begin
ReadVar (i, t_Integer);
ReadVar (c, t_Char);
ReadVar (s, t_String);
WriteLn (i, ’ ’, c, ’ ’, s)

end.

GNU Pascal knows Borland Pascal’s procedures FillChar and Move. However, their use
can be dangerous because it often makes implicit unportable assumptions about type sizes,
endianness, internal structures or similar things. Therefore, avoid them whenever possible.
E.g., if you want to clear an array of strings, don’t ‘FillChar’ the whole array with zeros (this
would overwrite the Schema discriminants, see Section 6.14.15 [Strings], page 210), but rather
use a ‘for’ loop to assign the empty string to each string. In fact, this is also more efficient than
‘FillChar’, since it only has to set the length field of each string to zero.

7.13 User-defined Operators in GPC

GNU Pascal allows the user to define operators according to the Pascal-SC syntax:

248 The GNU Pascal Manual

program PXSCOperatorDemo;

type
Point = record
x, y: Real;

end;

operator + (a, b: Point) c: Point;
begin

c.x := a.x + b.x;
c.y := a.y + b.y;

end;

var
a, b, c: Point = (42, 0.5);

begin
c := a + b

end.

The Pascal-SC operators ‘+>’, ‘+<’, etc. for exact numerical calculations are not implemented,
but you can define them.

7.14 Data Types in BP and GPC

• Integer types have different sizes in Borland and GNU Pascal:
Borland Pascal GNU Pascal Bits (1) Signed
ShortInt ByteInt 8 yes
Integer ShortInt 16 yes
LongInt Integer 32 yes
Comp LongInt, Comp 64 yes
Byte Byte 8 no
Word ShortWord 16 no
n/a Word 32 no
n/a LongWord 64 no

(1) The size of the GNU Pascal types may depend on the platform. The sizes above apply
to 32 bit platforms, including the IA32.
If you care for types with exactly the same size as in Borland Pascal, take a look at the
‘System’ unit and read its comments.
You can get the size of a type with ‘SizeOf’ in bytes (like in Borland Pascal) and with
‘BitSizeOf’ in bits, and you can declare types with a specific size (given in bits), e.g.:

program IntegerSizeDemo;
type

MyInt = Integer attribute (Size = 42); { 42 bits, signed }
MyWord = Word attribute (Size = 2); { 2 bits, unsigned,

i.e., 0 .. 3 }
MyCard = Cardinal attribute (Size = 2); { the same }

HalfInt = Integer attribute (Size = BitSizeOf (Integer) div 2);
{ A signed integer type which is half as big as the normal

‘Integer’ type, regardless of how big ‘Integer’ is
on any platform the program is compiled on. }

Chapter 7: A QuickStart Guide from Borland Pascal to GNU Pascal. 249

begin
end.

• Borland’s real (floating point) types are supported except for the 6-byte software Real type
(but the ‘System’ unit provides conversion routines for it). GNU Pascals’s ‘Real’ type has
8 bytes on the IA32 and is the same as ‘Double’. In addition there are alternative names
for real types:
Borland Pascal GNU Pascal
Single Single, ShortReal
Real n/a (1)
Double Double, Real
Extended Extended, LongReal
Comp LongInt, Comp (see above)
(1) But see ‘BPReal’, ‘RealToBPReal’ and ‘BPRealToReal’ in GPC’s System unit.

• Complex numbers: According to Extended Pascal, GNU Pascal has built-in complex num-
bers and supports a number of mathematical functions on them, e.g. ‘Abs’, ‘Sqr’, ‘SqRt’,
‘Exp’, ‘Ln’, ‘Sin’, ‘Cos’, ‘ArcTan’.

• Record types: GNU Pascal by default aligns 32-bit fields on 4-byte addresses because this
improves performance. So, e.g., the record

type
MyRec = record
f, o, oo: Boolean;
Bar: Integer

end;

has 8 bytes, not 7. Use the --pack-struct option or declare the record as ‘packed’ to force
GPC to pack it to 7 bytes. However, note that this produces somewhat less efficient code on
the IA32 and far less efficient code on certain other processors. Packing records and arrays
is mostly useful only when using large structures where memory usage is a real concern, or
when reading or writing them from/to binary files where the exact layout matters.

7.15 BP Procedural Types

In addition to BP’s procedural types, GNU Pascal has pointers to procedures:
type

FuncPtr = ^function (Real): Real;

The differences between procedure pointers and procedural types are only syntactical:
• In the first case, one can pass/assign a procedure/function with ‘@myproc’, in the latter

case just with ‘myproc’ (which can lead to confusion in the case of functions – though GPC
should always recognize the situation and not try to call the function).

• In the first case, one can call the routine via ‘myprocptr^’, in the latter case just with
‘myprocvar’.

• To retrieve the address of a procedure stored in a variable, one can use ‘myprocptr’ in the
first case and ‘@myprocvar’ in the latter.

• If, for some reason, one needs the address of the variable itself, in the first case, that’s
obtained with ‘@myprocptr’, in the second case with ‘@@myprocvar’!

• Bottom line: BP style procedural types are simpler to use in normal cases, but somewhat
strange in the last example.

One can use both kinds in the same program, of course, though it is recommended to stick
to one kind throughout to avoid maximum confusion.

250 The GNU Pascal Manual

GNU Pascal also supports Standard Pascal’s procedural parameters (see Section 7.20 [Special
Parameters], page 251).

Furthermore, GNU Pascal allows you to call even local procedures through procedural point-
ers, variables or parameters without reverting to any dirty tricks (like assembler, which is nec-
essary in BP).

The differences between the various kinds of procedural types, pointers and parameters are
demonstrated in the demo program ‘procvardemo.pas’. An example for calling local routines
through procedural parameters can be found in the demo program ‘iteratordemo.pas’.

7.16 Files

• GPC supports files like in Borland Pascal, including untyped files, ‘BlockRead’,
‘BlockWrite’ and ‘Assign’. Instead of ‘Assign’, you can also use the ‘Bind’ mechanism of
Extended Pascal.
Besides the routines supproted by BP, there are many more routines available that deal
with files, file names and similar things in a portable way. In contrast to Borland Pas-
cal, you don’t have to use any platform-specific units to do these kinds of things, though
portable emulations of those units (e.g., of the ‘Dos’ and ‘WinDos’ units) are also available
for compatibility.

7.17 Built-in Constants

• The ‘MaxInt’, ‘MaxLongInt’, ‘Pi’ constants are supported like in BP.
• Other built-in constants: GNU Pascal has ‘MaxChar’, ‘MaxReal’, ‘MinReal’, ‘EpsReal’ and

a number of other useful constants.

7.18 Built-in Operators in BP and GPC

Besides the operators found in Borland Pascal, GNU Pascal supports the following operators:
• Exponentiation: According to Extended Pascal, GNU Pascal supports the exponentiation

operators pow and ** which do not exist in Borland Pascal. You can use x pow y for integer
and x ** y for real or complex exponents. The basis may be integer, real or complex in
both cases.

• GNU Pascal has a symmetric set difference operator set1 >< set2. For more about this,
see Section 6.10.7 [Set Operations], page 96.

7.19 Built-in Procedures and Functions

• ‘GetMem’ and ‘FreeMem’ are supported like in BP.
The second parameter to ‘FreeMem’ is ignored by GNU Pascal and may be omitted. Memory
blocks are always freed with the same size they were allocated with.
Remark: Extended Pascal Schema types provide a cleaner approach to most of the appli-
cations of ‘GetMem’ and ‘FreeMem’.

• ‘Min’ and ‘Max’: GNU Pascal has built-in ‘Min’ and ‘Max’ functions (two arguments) which
work for all ordinal types (‘Integer’, ‘Char’, . . .) plus ‘Real’.

• ‘UpCase’, ‘High’, ‘Low’ and similar functions are built-in. In contrast to Borland Pascal,
GNU Pascal’s ‘UpCase’ function is aware of non-ASCII characters of certain languages
(e.g., accented letters and “umlauts”), but for compatibility this feature is disables in
‘--borland-pascal’ mode. There is also a ‘LoCase’ function.

• ‘Lo’, ‘Hi’, ‘Swap’ functions: not built-in, but available in the ‘System’ unit.

Chapter 7: A QuickStart Guide from Borland Pascal to GNU Pascal. 251

7.20 Special Parameters

• Untyped reference parameters can be denoted by
procedure Foo (var x);

like in Borland Pascal. In GNU Pascal, you can also use
procedure Foo (var x: Void);

• GNU Pascal defines ellipsis parameters for variable argument lists:
procedure Foo (a: Integer; ...);

However, GPC does not (yet) provide a portable mechanism to access the additional argu-
ments.

• Structured function result types: According to Extended Pascal, GNU Pascal allows func-
tions to return records and arrays.

• BP style open array parameters

procedure Foo (a: array of Integer);

are implemented. However, Standard Pascal ‘conformant array parameters’ are usually
a cleaner mechanism to pass arrays of variable size.

• Besides BP compatible procedural types and procedure pointers (see Section 7.15 [BP Pro-
cedural Types], page 249), GNU Pascal supports Standard Pascal’s procedural parameters:

procedure DrawGraph (function f (x: Real): Real);

7.21 Miscellaneous

• Headlines: According to Extended Pascal, a program headline must contain the program’s
parameters:

program Foo (Input, Output);
begin
end.

In GNU Pascal, headline parameters are optional. If the headline is omitted entirely, a
warning is given unless you have specified ‘--borland-pascal’ in the command line.

• ‘case’ statements: In a ‘case’ statement, GNU Pascal allows otherwise (according to
Extended Pascal) as an alternative to else:

program CaseOtherwiseDemo;
var x: Integer;
begin

ReadLn (x);
case x of
1: WriteLn (’one’);
2: WriteLn (’two’);
otherwise

WriteLn (’many’)
end

end.

Note: In the absence of a ‘case’ or ‘otherwise’ branch, missing cases labels cause an error
in Extended Pascal (which goes unnoticed in Borland Pascal). GPC does not give this
error, but a warning if the ‘-Wswitch’ option is given, however only for enumeration types.

• Character constants: BP compatible character constants like ‘^M’ as well as ‘#13’ are im-
plemented into GNU Pascal.

• Sets: GNU Pascal has a Card function for sets which counts their elements. Unlike Borland
Pascal, GNU Pascal does not limit sets to the range 0 .. 255.

252 The GNU Pascal Manual

• Inline: GNU Pascal allows “inline” Pascal procedures and functions, while Borland Pascal
only allows machine code to be inlined:
Borland Pascal:

function Max (x, y: Integer): Integer;
inline ($58 / $59 / $3b / $c1 / $7f / $01 / $91);

GNU Pascal:
program InlineDemo;

function Max (x, y: Integer): Integer; attribute (inline);
begin

if x > y then
Max := x

else
Max := y

end;

begin
WriteLn (Max (42, 17), ’ ’, Max (-4, -2))

end.

(Actually, a more general ‘Max’ function is already built in.)
This feature is not so important as it might seem because in optimization level 3 or higher
(see Section 5.2 [GPC Options], page 40), GNU Pascal automatically inlines short proce-
dures and functions.

7.22 BP and Extended Pascal

Pascal is a well-known programming language and hardly needs to be described here. Note,
however, that there is a large difference between the language used by the BP compiler and the
Pascal Standards.

Extended Pascal is a standardized language based on the original Standard Pascal, but with
significant extensions. Unfortunately, Borland Pascal does not conform to any of the Pascal
standards. Writing a program that both complies to Extended Pascal (or even Standard Pascal)
and compiles with BP is almost impossible for any non-trivial task.

On the other hand, BP has some nice features that make it very powerful in the environments
in which it runs. However, some of those features are of little use on non-Dos systems and would
not be good candidates for standardization.

There are also several BP features which are semantically similar to features in Standard
Pascal or Extended Pascal, but syntactically different.

Therefore, in order to be useful to users coming from either side, GPC supports both the
standards and the BP dialect as good as possible. By default, GPC allows features from any di-
alect it knows. By giving a dialect option such as ‘--borland-pascal’ or ‘--extended-pascal’,
you can tell GPC to disable the features not found in that dialect, and to adjust its warning
behaviour to the dialect.

The different sets of reserved words are a little problem, but GPC solves it by making the
words in question only “conditionally reserved” which works transparently without problems in
most cases. Still, giving a dialect option will disable all keywords not part of this dialect.

Apart from this, there are surprisingly few real conflicts between the dialects. Therefore, you
can usually compile your BP code without the ‘--borland-pascal’ option and make use of all
of GPC’s features. You might be surprised, though, when GPC accepts things you didn’t know
were allowed. :−)

Chapter 7: A QuickStart Guide from Borland Pascal to GNU Pascal. 253

Finally, if you want to make use of some of GPC’s extensions (compared to BP) and still
keep the code compileable with BP without using ‘ifdef’s all over the place, we suggest you
look at the unit ‘gpc-bp.pas’, shipped with GPC, which contains BP versions of some of GPC’s
features. Please read the comments at the beginning of the unit to find out more about it.

7.23 Portability hints

GPC offers you the possibility to make your code fully portable to each of the many platforms
supported by GPC. It would be a pity not to make use of this.

This section lists some known pitfalls that often hinder otherwise well-written programs
to take full advantage of GPC. If you have never used any compiler but Borland Pascal and
similar compilers, some of the advices might look strange to you. But this is just the same
level of strangeness that your old programs will have for you once you have understood the
principles of cross-platform portability. Remember that many tricks you have always been
applying almost automatically in Borland Pascal were necessary to overcome certain limitations
of the Dos platform and to compensate for the compiler’s missing optimization. Programming
with an optimizing compiler like GPC for platforms without a 64 kB limit is a completely new
experience – and perhaps it is among the reasons why you are now working with GPC in the
first place?

Portability – why?

Okay – but why should I bother and make my program portable? I know that all who want to
use my program are running WXYZ-OS anyway.

Yes, but that’s the result of a self-fulfilling prophecy. It depends on you whether it will
always remain like this or not. Consider a program ABC written for a single platform, WXYZ-
OS. Naturally, only WXYZ-OS-users get interested in ABC. The author gets feedback only from
WXYZ-OS users and does not see any reason to make the program cross-platform. Then people
realize that if they want to run ABC they must move to WXYZ-OS. The author concludes that
people only want WXYZ-OS programs, and so on.

To break out, just create a portable version of your program now. Then all OSes have equal
chances to show their abilities when running your program, and your customers can choose their
OS. Then, maybe, they decide to use your program just for the reason that they can be sure
that it will run on all present and future platforms and not only on a specific one – who knows?

My program is a tool specifically designed to make the best of the STUV feature of WXYZ-OS.
There is no point in making it portable.

How much do you know about non-WXYZ-OSes? Just ask an expert how the STUV feature
is named elsewhere. Be sure, if it is of value, it exists almost everywhere.

Low-level features

I am using a lot of low-level stuff in my programs, so they cannot be portable.
You do not use those low-level routines directly in your high-level routines, do you? There

should always be a layer “in-between” that encapsulates the low-level routines and present an
API to your program that exactly reflects the needs of your application. This “API in between”
is the point where you can exchange the low-level routines by portable calls to GPC’s Run Time
System.

If you do not have such a layer in-between, then the API of the low-level routines you call
are your first approximation for such a layer. If you have ever thought “it would be great if
that API function had that additional parameter”, then your own extended version of that API
function that has that parameter can become part of your “API in between”. But then don’t

254 The GNU Pascal Manual

stop here: Certainly the API of the OS is not ideal for your program’s needs. Just create more
routines that encapsulate all OS-specific stuff . . .

When the low-level stuff in question consists of interrupts, assembler and similar things, then
the first thing you need is a portable replacement of the functionality. Fortunately, GPC covers
many things already in Pascal that require assembler in Borland Pascal:
• GPC’s libraries come with source. You do not need to learn assembler and to write a

complete replacement for the CRT unit if you only want to adapt some tiny detail in the
behavior of CRT to your personal needs.

• GPC’s Run Time System is fairly complete. For example, to extract the assigned name of
a ‘File’ variable, you do not need to mess around with the internal representation of those
variables, but you can type ‘uses GPC’ and then use the ‘FileName’ function. In the same
unit, you will find a ‘FileExists’ function and much more.

• Manually “constructing” an object is covered by the ‘SetType’ procedure in GPC. This is
where Turbo Vision uses assembler to load an object from a stream.

• Calling local procedures and functions via pointers simply works in GPC. This is another
place where, for instance, Turbo Vision’s ‘ForEach’ method uses assembler, while GPC lets
you do the same thing in Pascal.

• Interfacing with the OS can be done through library calls. GPC’s built-in functions and
the GPC unit offer a rather complete set of routines. And again: You have the source of
all this.

• Using ‘FillChar’ and ‘Move’ does not necessarily speed up your programs. Using them
to circumvent restrictions of the language (e.g. for direct assignments between variables of
object or file type) is asking for trouble. ‘FillChar’ was created in UCSD Pascal to set
consecutive chars in a string to the same value, and ‘Move’ was created to move the chars
within the same string. Better do not use them for other purposes.

Chapter 8: The Alphabetical GPC Language Reference 255

8 The Alphabetical GPC Language Reference

This chapter is still under development. All keywords and built-in identifiers are listed, but
not all with explanations.

This chapter contains an alphabetical list of all keywords (reserved words) and built-in iden-
tifiers of the GNU Pascal compiler. For detailed and comprehensive description of syntax and
reserved words, see Chapter 6 [Programming], page 45. This chapter explains only built-in
procedures and functions in detail. It does not cover extensions provided by external units and
libraries which are supposed to come with their own documentation.

Abs

Synopsis

function Abs (i: integer type): integer type;

or
function Abs (x: real type): real type;

or
function Abs (z: complex type): real type;

Description

Returns the absolute value of the argument. For integer or real values of ‘x’, the definition is
function Abs (x: integer or real type): integer or real type;
begin

if x < 0 then
Abs := -x

else
Abs := x

end;

whereas for complex values it is
function Abs (x: Complex): Real;
begin

Abs := SqRt (x * Conjugate (x))
end;

Conforming to

The function ‘Abs’ is defined in ISO 7185 Pascal; its application to complex values is defined
in ISO 10206 Extended Pascal.

Example

program AbsDemo;
var

i1: Complex;
begin

WriteLn (Abs (42)); { 42 }
WriteLn (Abs (-42)); { 42 }

256 The GNU Pascal Manual

WriteLn (Abs (-12.1) : 0 : 1); { 12.1 }
i1 := Cmplx (1, 1); { 1 + i }
WriteLn (Abs (i1) : 0 : 3) { 1.414, i.e. SqRt (2) }

end.

See also

[Sqr], page 414.

absolute

Synopsis

var
variable name: data type absolute variable reference;

or
var

variable name: data type absolute integer expression;

Description

The first meaning of the ‘absolute’ directive allows to put a variable to the address of another
one and thus provides a type-casting mechanism.

In most cases, variable reference will be just a variable name, but GPC also allows arbitrary
pointer expressions here. If variable reference has neither a constant address nor is a variable
parameter, GPC prints a warning. This warning is suppressed in “extended syntax” mode which
is switched on by the ‘--extended-syntax’ option or the ‘{$X+}’ compiler directive.

GPC also allows explicit type casts. Variant records (as defined in ISO 7185 Pascal), however,
have no guaranteed overlaying and are therefore not suitable for type casts.

The second meaning of ‘absolute’ places a variable at a specified address. This is useful on
machines without virtual memory addressing for doing certain low-level operations, but should
be avoided on systems with memory protection such as Unix-like systems. GPC does not check
whether the specified virtual address makes any sense and does not provide a built-in mechanism
to map it to a real address.

GPC warns about this second use of ‘absolute’ unless “extended syntax” has been requested.

Conforming to

‘absolute’ is a Borland Pascal extension.
Borland Pascal has a slightly different syntax for the second meaning related to the addressing

scheme of IA32 processors working in real mode.
Allowing arbitrary memory references instead of just variable names in the first meaning of

‘absolute’ is a GNU Pascal extension.

Example

program AbsoluteDemo;

{$X+}

Chapter 8: The Alphabetical GPC Language Reference 257

const
IOMem = $f0000000;
MaxVarSize = MaxInt div 8;

var
Mem: array [0 .. MaxVarSize - 1] of Byte absolute 0;

{ This address has no actual meaning }
MyPort: Byte absolute IOMem + $c030;

{ Beware: Using any of the variables above will crash
your program unless you know exactly what you do!
That’s why GPC warns about it without the $X+ directive. }

var
x: Real;
a: array [1 .. SizeOf (Real)] of Byte absolute x;
i: Integer;
b: Byte absolute a[i]; { GNU Pascal extension:

non-constant memory reference. }

begin
x := 3.14;

{ Look at the internal representation of a real variable. }
for i := 1 to SizeOf (Real) do
Write (a[i] : 4);

WriteLn;

{ The same again, more ugly ... }
for i := 1 to SizeOf (Real) do
Write (b : 4);

WriteLn;

{ And yes, there’s an even more ugly way to do it ... }
for i := 1 to SizeOf (Real) do
Write (Mem[PtrCard (@x) + i - 1] : 4);

WriteLn
end.

See also

Chapter 9 [Keywords], page 443, [record], page 390, Section 6.7 [Type Casts], page 83.

abstract

Not yet implemented.

Synopsis

258 The GNU Pascal Manual

Description

Abstract object type or method declaration.

Conforming to

‘abstract’ is an Object Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

Addr

Synopsis

function Addr (const Foo): Pointer;

Description

‘Addr’ returns the address of its argument. It is equivalent to the address operator and
provided for compatibility with Borland Pascal which in turn implements it for backward-
compatibility with Turbo Pascal.

Conforming to

‘Addr’ is a Borland Pascal extension.

Example

program AddrDemo;
var

Foo: ^Integer;
Bar: Integer;

begin
Foo := Addr (Bar); { Let ‘Foo’ point to ‘Bar’. }
Bar := 17;
Foo^ := 42; { Change the value of ‘Bar’ to 42 }
WriteLn (Bar)

end.

See also

Section 6.3 [Operators], page 80.

Chapter 8: The Alphabetical GPC Language Reference 259

AlignOf

Synopsis

function AlignOf (var x): Integer;

Description

Returns the alignment of a type or variable in bytes.

Conforming to

‘AlignOf’ is a GNU Pascal extension.

Example

program AlignOfDemo;
var

a: Integer;
b: array [1 .. 8] of Char;

begin
WriteLn (AlignOf (a)); { Alignment of ‘Integer’; usually 4 bytes. }
WriteLn (AlignOf (Integer)); { The same. }
WriteLn (AlignOf (b)); { Alignment of ‘Char’; usually 1 byte. }

end.

Although the array is bigger than a single char, it is accessed char by char, so there usually
is no need to align it on a 4 byte boundary or such. (This may be false on some platforms.)

See also

[SizeOf], page 412, [BitSizeOf], page 275, [TypeOf], page 429.

all

(Under construction.)

Synopsis

Description

‘export’ extension (‘export foo = all’).

Conforming to

‘all’ is a GNU Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

260 The GNU Pascal Manual

and

Synopsis

operator and (operand1, operand2: Boolean) = Result: Boolean;

or
operator and (operand1, operand2: integer type) = Result: integer type;

or
procedure and (var operand1: integer type; operand2: integer type);

Description

In GNU Pascal, ‘and’ has three built-in meanings:
1. Logical “and” between two ‘Boolean’-type expressions. The result of the operation is of

‘Boolean’ type.
By default, ‘and’ acts as a short-circuit operator in GPC: If the first operand is ‘False’, the
second operand is not evaluated because the result is already known to be ‘False’. You can
change this to complete evaluation using the ‘--no-short-circuit’ command-line option
or the ‘{$B+}’ compiler directive.

2. Bitwise “and” between two integer-type expressions. The result is of the common integer
type of both expressions.

3. Use as a “procedure”: ‘operand1’ is “and”ed bitwise with ‘operand2’; the result is stored
in ‘operand1’.

Conforming to

The logical ‘and’ operator is defined in ISO 7185 Pascal.
According to ISO, you cannot rely on ‘and’ being a short-circuit operator. On the other hand,

GPC’s default behaviour does not contradict the ISO standard. (See [and then], page 261.)
However, since it seems to be a de-facto standard among ISO Pascal compilers to evalu-
ate both operands of ‘and’, GPC switches to ‘--no-short-circuit’ mode if one of the lan-
guage dialect options selecting ISO Pascal, for instance ‘--extended-pascal’, is given. Use
‘--short-circuit’ to override.

Use of ‘and’ as a bitwise operator for integers is a Borland Pascal extension.
Use of ‘and’ as a “procedure” is a GNU Pascal extension.

Example

program AndDemo;
var

a, b, c: Integer;
begin

if (a = 0) and (b = 0) then { logical ‘and’ }
c := 1

else if (a and b) = 0 then { bitwise ‘and’ }
c := 2

else
and (c, a) { same as ‘c := c and a’ }

end.

Chapter 8: The Alphabetical GPC Language Reference 261

Note the difference between the logical ‘and’ and the bitwise ‘and’: When ‘a’ is 2 and ‘b’ is
4, then ‘a and b’ is 0. Beware: ‘a and b = 0’ has nothing to do with ‘(a = 0) and (b = 0)’!

Since bitwise ‘and’ has a higher priority than the ‘=’ operator, parentheses are needed in ‘if
(a = 0) and (b = 0)’ because otherwise ‘0 and b’ would be calculated first, and the remainder
would cause a parse error.

See also

Chapter 9 [Keywords], page 443, [and then], page 261, [and then], page 261, [or], page 366,
[xor], page 441, Section 6.3 [Operators], page 80.

and then

Synopsis

{ ‘and then’ is built in. A user-defined operator cannot consist of
two words. }

operator and then (operand1, operand2: Boolean) = Result: Boolean;

Description

‘and then’ is an alias for the short-circuit logical operator ‘and_then’.

Conforming to

While ‘and_then’ is defined in ISO 10206 Extended Pascal, ‘and then’ is a GNU Pascal
extension.

Example

program AndThenDemo;
var

p: ^Integer;
begin

New (p);
ReadLn (p^);
if (p <> nil) and then (p^ < 42) then { This is safe. }
WriteLn (p^, ’ is less than 42’)

end.

See also

Chapter 9 [Keywords], page 443, [and then], page 261, [and], page 260, [or else], page 368.

and then

Synopsis

operator and_then (operand1, operand2: Boolean) = Result: Boolean;

262 The GNU Pascal Manual

Description

The ‘and_then’ short-circuit logical operator performs the same operation as the logical
operator ‘and’. But while the ISO standard does not specify anything about the evaluation of
the operands of ‘and’ – they may be evaluated in any order, or not at all – ‘and_then’ has a
well-defined behaviour: It evaluates the first operand. If the result is ‘False’, ‘and_then’ returns
‘False’ without evaluating the second operand. If it is ‘True’, the second operand is evaluated
and returned.

Since the behaviour described above is the most efficient way to implement ‘and’, GPC by
default treats ‘and’ and ‘and_then’ exactly the same. If you want, for some reason, to have both
operands of ‘and’ evaluated completely, you must assign both to temporary variables and then
use ‘and’ – or ‘and_then’, it does not matter.

Conforming to

‘and_then’ is an ISO 10206 Extended Pascal extension.
Some people think that the ISO standard requires both operands of ‘and’ to be evaluated.

This is false. What the ISO standard does say is that you cannot rely on a certain order of
evaluation of the operands of ‘and’; in particular things like the following program can crash
according to ISO Pascal, although they cannot crash when compiled with GNU Pascal running
in default mode.

program AndBug;
var

p: ^Integer;
begin

New (p);
ReadLn (p^);
if (p <> nil) and (p^ < 42) then { This is NOT safe! }
WriteLn (’You’’re lucky. But the test could have crashed ...’)

end.

Example

program And_ThenDemo;
var

p: ^Integer;
begin

New (p);
ReadLn (p^);
if (p <> nil) and_then (p^ < 42) then { This is safe. }
WriteLn (p^, ’ is less than 42’)

end.

See also

Chapter 9 [Keywords], page 443, [and then], page 261, [and], page 260, [or else], page 369.

AnsiChar

Synopsis

type
AnsiChar = Char;

Chapter 8: The Alphabetical GPC Language Reference 263

Description

‘AnsiChar’ is an 8 bit char type. Currently, it is the same as ‘Char’, but this might change
in the future, once ‘wide chars’ (16 bit chars) will be introduced into GPC. Depending on the
platform, ‘Char’ might be either ‘AnsiChar’ or ‘WideChar’ then.

Conforming to

‘AnsiChar’ is a Borland Delphi extension.

Example

program AnsiCharDemo;
var

A: AnsiChar; { There is nothing special with ‘AnsiChar’. }
B: Char;

begin
A := ’A’;
A := B

end.

See also

[PAnsiChar], page 373, [Char], page 285.

AnyFile

Synopsis

type
AnyFile { built-in type }

Description

‘AnyFile’ is a built-in type that can only be used for parameters and pointer targets. Any
kind of file variable (‘Text’, untyped and typed ‘file’) can be passed to such a parameter and
their address assigned to such a pointer. On the other side, only generic file operations are
possible with ‘AnyFile’ parameters/pointer targets.

This type is useful for implementing generic file handling routines. Also some built-in file
routines use this type for their parameters, e.g. ‘IOSelectRead’ (see Section 6.13 [Run Time
System], page 100).

‘BlockRead’ (see [BlockRead], page 276) and ‘BlockWrite’ (see [BlockWrite], page 276) treat
‘AnyFile’ specially, in that they accept all ‘AnyFile’s as arguments (even if the actual file is a
typed or ‘Text’ file) and always use a block size of 1 (even if the actual file is an untyped file
with different block size or a typed file of a type with size not equal to one). This is the only
way to reliably read/write a certain amount of data from/to an ‘AnyFile’.

‘AnyFile’ pointers cannot be allocated with ‘New’ (because it would be unspecified which
kind of file to create).

Conforming to

‘AnyFile’ is a GNU Pascal extension.

264 The GNU Pascal Manual

Example

program AnyFileDemo;

procedure Test (var f: AnyFile);
var v: ^AnyFile;
begin

{ Generic file operations are allowed for ‘AnyFile’ }
Rewrite (f);

{ ‘AnyFile’ can also be accessed via pointers }
v := @f;
Close (v^)

end;

var
t: Text;
f: file;
g: file of Integer;

begin
{ Any kind of file variable can be passed as ‘AnyFile’ }
Test (t);
Test (f);
Test (g)

end.

See also

[Text], page 420, [file], page 314.

Append

Synopsis

procedure Append (var F: any file; [FileName: String;]
[BlockSize: Cardinal]);

Description

‘Append’ opens a file for writing. If the file does not exist, it is created. If it does exist, the
file pointer is positioned after the last element.

Like ‘Rewrite’, ‘Reset’ and ‘Extend’ do, ‘Append’ accepts an optional second and third
parameter for the name of the file in the filesystem and, for untyped files, the block size of the
file. (For details, see [Rewrite], page 396.)

Conforming to

‘Append’, including the ‘BlockSize’ parameter, is a Borland Pascal extension. ISO 10206
Extended Pascal has [Extend], page 310 instead. The ‘FileName’ parameter is a GNU Pascal
extension.

Chapter 8: The Alphabetical GPC Language Reference 265

Example

program AppendDemo;
var

Sample: Text;
begin

Assign (Sample, ’sample.txt’);
Rewrite (Sample);
WriteLn (Sample, ’Hello, World!’); { ‘sample.txt’ now has one line }
Close (Sample);

{ ... }

Append (Sample);
WriteLn (Sample, ’Hello again!’); { ‘sample.txt’ now has two lines }
Close (Sample)

end.

See also

[Assign], page 269, [Reset], page 393, [Rewrite], page 396, [Update], page 432, [Extend],
page 310.

ArcTan

Synopsis

function ArcTan (x: Real): Real;

or
function ArcTan (z: Complex): Complex;

Description

‘ArcTan’ returns the (principal value of the) arcus tangent of the argument. The result is in
the range ‘-Pi / 2 < ArcTan (x) < Pi / 2’ for real arguments.

Conforming to

The function ‘ArcTan’ is defined in ISO 7185 Pascal; its application to complex values is
defined in ISO 10206 Extended Pascal.

Example

program ArcTanDemo;
begin

{ yields 3.14159 as ArcTan (1) = Pi / 4 }
WriteLn (4 * ArcTan (1) : 0 : 5)

end.

See also

[Sin], page 411, [Cos], page 294, [Ln], page 340, [Arg], page 266.

266 The GNU Pascal Manual

Arg

Synopsis

function Arg (z: Complex): Real;

Description

‘Arg’ returns the complex “argument”, i.e. the angle (in radian) in the complex plane with
respect to the real axis, of its parameter ‘z’. The result is in the range of ‘-Pi < Arg (z) <= Pi’.

Conforming to

‘Arg’ is an ISO 10206 Extended Pascal extension.

Example

program ArgDemo;
var

z: Complex;
begin

z := Cmplx (1, 1); { 1 + i }
WriteLn (Arg (z) : 0 : 5) { yields 0.78540, i.e. Pi / 4 }

end.

See also

[ArcTan], page 265, [Ln], page 340, [Polar], page 377.

array

Synopsis

In type definitions:
array [index type] of element type

or
array [index type, ..., index type] of element type

In parameter list declarations:
array of element type

Description

The reserved word ‘array’ is used to define an array type.
@@conformant/open arrays

Conforming to

Array types are defined in ISO 7185 Pascal.

Chapter 8: The Alphabetical GPC Language Reference 267

Example

program ArrayDemo;
type

IntArray = array [1 .. 20] of Integer;
WeekDayChars = array [(Mon, Tue, Wed, Thu, Fri, Sat, Sun)] of Char;
Foo = array [0 .. 9, ’a’ .. ’z’, (Baz, Glork1, Fred)] of Real;
TwoDimIntArray = array [1 .. 10] of IntArray;
{ is equivalent to: }
TwoDimIntArray2 = array [1 .. 10, 1 .. 20] of Integer;

procedure PrintChars (F: array of Char);
var

i: Integer;
begin

for i := Low (F) to High (F) do
WriteLn (F[i])

end;

var
Waldo: WeekDayChars;

begin
Waldo := ’HiWorld’;
PrintChars (Waldo)

end.

See also

Chapter 9 [Keywords], page 443, Section 6.2.11.2 [Array Types], page 68, [High], page 325,
[Low], page 347

as

(Under construction.)

Synopsis

Description

Object type membership test and conversion.

Conforming to

‘as’ is an Object Pascal and a Borland Delphi extension.

Example

See also

Chapter 9 [Keywords], page 443, [is], page 337, [TypeOf], page 429, Section 6.8 [OOP],
page 84.

268 The GNU Pascal Manual

asm

(Under construction.)

Synopsis

Description

See ‘http://www.gnu-pascal.de/contrib/misc/gpcasm.zip’.

Conforming to

‘asm’, as implemented in GPC, is a GNU Pascal extension. It is mostly compatible to GCC’s
‘asm’, but not compatible to that of Borland Pascal.

Example

See also

Chapter 9 [Keywords], page 443.

asmname

Synopsis

Description

Deprecated! Use ‘external name’ now.

Conforming to

Example

See also

Chapter 9 [Keywords], page 443, [external], page 312, [name], page 357, Section 6.11.1 [Im-
porting Libraries from Other Languages], page 98.

Assert

Synopsis

procedure Assert (Condition: Boolean);

or
procedure Assert (Condition: Boolean; const Message: String);

Chapter 8: The Alphabetical GPC Language Reference 269

Description

‘Assert’ checks the given condition. If it is true, it does nothing. If it is false, it raises a
runtime error, using the second argument for the message if given.

However, if the switch ‘--no-assert’ is given (see Section 5.1 [GPC Command Line Options],
page 33), ‘Assert’ is deactivated. It still evaluates the condition if it has side effects, but never
raises a runtime error.

Conforming to

‘Assert’ is a Borland Delphi extension.

Example

See also

Assign

(Under contruction.)

Synopsis

procedure Assign (var F: any file; FileName: String);

Description

Conforming to

‘Assign’ is a Borland Pascal extension.

Example

See also

[Reset], page 393, [Rewrite], page 396, [Update], page 432, [Extend], page 310, [Append],
page 264.

Assigned

(Under construction.)

Synopsis

function Assigned (p: Pointer): Boolean;

or
function Assigned (p: procedural type): Boolean;

270 The GNU Pascal Manual

Description

The ‘Assigned’ function returns ‘True’ if the pointer parameter or the address of the proce-
dural parameter is not ‘nil’; it returns ‘False’ if it is ‘nil’.

Conforming to

‘Assigned’ is a Borland Pascal extension.

Example

program AssignedDemo;
type

PInt = ^Integer;

procedure TellIfOdd (p: PInt);
begin

if Assigned (p) and then Odd (p^) then
WriteLn (’The pointer p points to an odd value.’)

end;

var
foo: Integer;

begin
TellIfOdd (nil);
foo := 1;
TellIfOdd (@foo);
foo := 2;
TellIfOdd (@foo)

end.

See also

[Null], page 363, [nil], page 361, [Pointer], page 377.

attribute

(Under construction.)

Synopsis

declaration attribute (name);

or

declaration attribute (name = parameter);

or

declaration attribute (name (parameter, parameter ...));

Chapter 8: The Alphabetical GPC Language Reference 271

Description

Several attributes can be given in one ‘attribute’ directive, separated with ‘,’, or in several
‘attribute’ directives.

Besides the attributes that GCC supports (see section “Attribute Syntax” in the GCC man-
ual), GPC allows the following attributes for variables:
• static
• register
• volatile
• const
• external
• name (with a string constant parameter)

For routines it allows the following additional attributes:
• ignorable
• inline
• iocritical
• name (with a string constant parameter)

For types it allows the following additional attributes:
• iocritical (for procedural [pointer] types)
• size (with an integer constant parameter)

‘Size’ can be applied to integer and Boolean types to produce types with a specified size in
bits; for example

type
Card16 = Cardinal attribute (Size = 16);

defines an unsigned integer type with 16 bits.
Variable and routine attributes are preceded by a ‘;’, type attributes are not. So, e.g., in the

following example, the ‘Size’ attribute applies to the type, and the ‘static’ attribute to the
variable.

var a: Integer attribute (Size = 64); attribute (static);

Conforming to

‘attribute’ is a GNU Pascal extension.

Example

program AttributeDemo;

{ Demo for ‘iocritical’ attribute. }

{ Program will abort with a runtime error! }

{$I-}
procedure p; attribute (iocritical);
var t: Text;
begin

Reset (t) { Will not cause a runtime error here because I/O
checking is off, but leave InOutRes set. }

272 The GNU Pascal Manual

end;
{$I+}

begin

p;
{ Since ‘p’ was declared ‘iocritical’, and I/O checking is now on,
InOutRes is checked immediately after the call to p, and a
runtime error raised. }

{ So this statement is never reached. }
InOutRes := 0;

{ Neither this one, which would be reached without the
‘iocritical’ attribute. }

WriteLn (’never gets here’)

end.

See also

Chapter 9 [Keywords], page 443, [external], page 312.

begin

Synopsis

begin
statement;
statement;
...
statement

end;

Description

The reserved word ‘begin’ opens a ‘begin ... end’ statement which joins several statements
to one compound statement.

Conforming to

‘begin’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

program BeginDemo;
begin

if True then
WriteLn (’single statement’);

if True then
begin { clamp statement1 ... }

Chapter 8: The Alphabetical GPC Language Reference 273

WriteLn (’statement1’);
WriteLn (’statement2’)

end { ... to statement2 }
end.

See also

Chapter 9 [Keywords], page 443, Section 6.1.7.2 [begin end Compound Statement], page 54,
[end], page 303

Bind

(Under construction.)

Synopsis

procedure Bind (var F: any file; B: BindingType);

Description

Conforming to

‘Bind’ is an ISO 10206 Extended Pascal extension.

Example

See also

bindable

(Under construction.)

Synopsis

Description

External bindability of files.

Conforming to

‘bindable’ is an ISO 10206 Extended Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

274 The GNU Pascal Manual

Binding

(Under construction.)

Synopsis

function Binding (F: any file): BindingType;

Description

Conforming to

‘Binding’ is an ISO 10206 Extended Pascal extension.

Example

See also

BindingType

(Under construction.)

Synopsis

type
UnixTimeType = LongInt;
BindingType = {@@packed} record

Bound : Boolean;
Force : Boolean; { Can be set to allow binding to

directories or inaccessible files }
Extensions_Valid: Boolean;
Readable : Boolean;
Writable : Boolean;
Executable : Boolean;
Existing : Boolean; { Binding points to an existing file }
Directory : Boolean; { Binding points to an existing

directory; ‘Existing’ is False then }
Special : Boolean; { Binding points to an existing

special file (device, pipe, socket,
etc.); ‘Existing’ is False then }

SymLink : Boolean; { Binding points to a symbolic link }
AccessTime, { Time of last access }
ModificationTime, { Time of last modification }
ChangeTime : UnixTimeType; { Time of last change }
User, { User ID of owner }
Group, { Group ID of owner }
Mode, { Access permissions, cf. ChMod }
Device, { Device the file is on }
INode : Integer; { Unix INode number }
TextBinary : Boolean; { Open a Text file in binary mode }

Chapter 8: The Alphabetical GPC Language Reference 275

Handle : Integer; { Can be set to bind a Pascal file to
a given file handle }

CloseFlag : Boolean; { If Handle is used, tell whether to
close it when file is closed }

Name : String (Binding_Name_Length)
end;

(@@ Currently, in GPC, BindingType is not actually packed.)
The fields ‘Bound’ and ‘Name’ are required by Extended Pascal.
Binding_Name_Length is an implementation-defined constant.

Description

Conforming to

‘BindingType’ is an ISO 10206 Extended Pascal extension.

Example

See also

BitSizeOf

Synopsis

function BitSizeOf (var x): SizeType;

Description

Returns the size of a type or variable in bits.

Conforming to

‘BitSizeOf’ is a GNU Pascal extension.

Example

program BitSizeOfDemo;
type

Int12 = Integer attribute (Size = 12);
var

a: Integer;
b: array [1 .. 8] of Char;
c: Int12;
d: packed record

x: Int12;
y: 0 .. 3

end;
begin

276 The GNU Pascal Manual

WriteLn (BitSizeOf (a)); { Size of an ‘Integer’; usually 32 bits. }
WriteLn (BitSizeOf (Integer)); { The same. }
WriteLn (BitSizeOf (b)); { Size of eight ‘Char’s; usually 64 bits. }
WriteLn (BitSizeOf (c)); { e.g. 16 bits (smallest addressable space). }
WriteLn (BitSizeOf (d)); { e.g. 16 }
WriteLn (BitSizeOf (d.x)); { 12 }
WriteLn (BitSizeOf (d.y)) { 2 }

end.

See also

[SizeOf], page 412, [AlignOf], page 259, [TypeOf], page 429.

BlockRead

(Under construction.)

Synopsis

procedure BlockRead (var F: File; var Buffer; Blocks: Integer);

or
procedure BlockRead (var F: File; var Buffer; Blocks: Integer;

var BlocksRead: Integer);

Description

Conforming to

‘BlockRead’ is a UCSD Pascal extension.

Example

See also

BlockWrite

(Under construction.)

Synopsis

procedure BlockWrite (var F: File; const Buffer; Blocks: Integer);

or
procedure BlockWrite (var F: File; const Buffer; Blocks: Integer;

var BlocksWritten: Integer);

Description

Chapter 8: The Alphabetical GPC Language Reference 277

Conforming to

‘BlockWrite’ is a UCSD Pascal extension.

Example

See also

Boolean

Synopsis

type
Boolean = (False, True); { built-in type }

Description

The intrinsic ‘Boolean’ represents boolean values, i.e. it can only assume the two values
‘True’ and ‘False’ (which are predefined constants).

Conforming to

‘Boolean’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

program BooleanDemo;
var

a: Boolean;
begin

a := True;
WriteLn (a)

end.

See also

Section 6.2.9 [Boolean (Intrinsic)], page 67, [True], page 425, [False], page 313, [CBoolean],
page 284, [ByteBool], page 279, [ShortBool], page 407, [MedBool], page 351, [WordBool],
page 439, [LongBool], page 341, [LongestBool], page 342.

Break

Synopsis

Break { simple statement }

Description

With ‘Break’ you can exit the body of the current loop instantly. It can only be used within
a while, repeat or a for statement.

278 The GNU Pascal Manual

Conforming to

‘Break’ is a Borland Pascal extension.

Example

program BreakDemo;
var

Foo: Integer;
begin

while True do
begin
repeat

WriteLn (’Enter a number less than 100:’);
ReadLn (Foo);
if Foo < 100 then

Break; { Exits ‘repeat’ loop }
WriteLn (Foo, ’ is not exactly less than 100! Try again ...’)

until False;
if Foo > 50 then

Break; { Exits ‘while’ loop }
WriteLn (’The number entered was not greater than 50.’)

end
end.

See also

Section 6.1.7.13 [Loop Control Statements], page 58, [Continue], page 292, [Exit], page 307,
[Halt], page 325, [Return], page 395, [goto], page 323.

Byte

Synopsis

type
Byte { built-in type }

Description

‘Byte’ is an unsigned integer type which is one “unit” wide. On most platforms one unit has
8 bits, therefore the type is named “byte” and usually has a range of ‘0..255’. (It is the same
as [ByteCard], page 280.)

‘Byte’ in GNU Pascal is compatible to ‘unsigned char’ in GNU C.
There are lots of other integer types in GPC, see Section 6.2.3 [Integer Types], page 62.

Conforming to

‘Byte’ is a Borland Pascal extension. (For something equivalent in ISO Pascal, see Sec-
tion 6.2.11.1 [Subrange Types], page 68.)

Chapter 8: The Alphabetical GPC Language Reference 279

Example

program ByteDemo;
var

a: Byte;
begin

a := 42;
WriteLn (a)

end.

See also

Section 6.2.3 [Integer Types], page 62, Section 6.2.11.1 [Subrange Types], page 68.

ByteBool

Synopsis

type
ByteBool = Boolean attribute (Size = BitSizeOf (Byte)); { built-in type }

Description

The intrinsic ‘ByteBool’ represents boolean values, but occupies the same memory space as a
‘Byte’. It is used when you need to define a parameter or record that conforms to some external
library or system specification.

Conforming to

‘ByteBool’ is a Borland Pascal extension.

Example

program ByteBoolDemo;
var

a: ByteBool;
begin

Byte (a) := 1;
if a then WriteLn (’Ord (True) = 1’)

end.

See also

Section 6.2.9 [Boolean (Intrinsic)], page 67, [Boolean], page 277, [True], page 425, [False],
page 313, [CBoolean], page 284, [ShortBool], page 407, [MedBool], page 351, [WordBool],
page 439, [LongBool], page 341, [LongestBool], page 342.

280 The GNU Pascal Manual

ByteCard

Synopsis

type
ByteCard = Cardinal attribute (Size = BitSizeOf (Byte));

Description

‘ByteCard’ is an unsigned integer type which is one “unit” wide. On most platforms one unit
has 8 bits, therefore the type is prefixed “byte-” and usually has a range of ‘0..255’.

‘ByteCard’ in GNU Pascal is compatible to ‘unsigned char’ in GNU C.
There are lots of other integer types in GPC, see Section 6.2.3 [Integer Types], page 62.

Conforming to

‘ByteCard’ is a GNU Pascal extension.

Example

program ByteCardDemo;
var

a: ByteCard;
begin

a := 42;
WriteLn (a)

end.

See also

Section 6.2.3 [Integer Types], page 62, Section 6.2.11.1 [Subrange Types], page 68.

ByteInt

Synopsis

type
ByteInt = Integer attribute (Size = BitSizeOf (Byte));

Description

‘ByteInt’ is a signed integer type which is one “unit” wide. On most platforms one unit has
8 bits, therefore the type is prefixed “byte-” and usually has a range of ‘-128..127’.

‘ByteInt’ in GNU Pascal is compatible to ‘signed char’ in GNU C.
There are lots of other integer types in GPC, see Section 6.2.3 [Integer Types], page 62.

Conforming to

‘ByteInt’ is a GNU Pascal extension.
‘ByteInt’ in GNU Pascal corresponds to [ShortInt], page 408 in Borland Pascal.

Chapter 8: The Alphabetical GPC Language Reference 281

Example

program ByteIntDemo;
var

a: ByteInt;
begin

a := 42;
WriteLn (a)

end.

See also

Section 6.2.3 [Integer Types], page 62, Section 6.2.11.1 [Subrange Types], page 68.

c

Synopsis

Description

Deprecated! Use ‘external’ now.

Conforming to

Example

See also

Chapter 9 [Keywords], page 443, Section 6.11.1 [Importing Libraries from Other Languages],
page 98, [external], page 312.

Card

Synopsis

function Card (S: any set): Integer;

Description

The function ‘Card (S)’ returns the number of elements in the set ‘S’.

Conforming to

‘Card’ is an ISO 10206 Extended Pascal extension.

282 The GNU Pascal Manual

Example

program CardDemo;
var

Foo: set of 1 .. 100;
begin

Foo := [1, 2, 3, 5, 1, 1, 1, 2, 2, 2, 3, 3, 5, 5]; { four elements }
WriteLn (’foo consists of ’, Card (Foo), ’ elements’)

end.

See also

[set], page 402

Cardinal

Synopsis

type
Cardinal { built-in type }

Description

‘Cardinal’ is the “natural” unsigned integer type in GNU Pascal. On most platforms it is 32
bits wide and thus has a range of ‘0..4294967295’. Use it whenever you need a general-purpose
unsigned integer type and don’t need to care about compatibility to other Pascal dialects.

‘Cardinal’ in GNU Pascal is compatible to ‘unsigned int’ in GNU C.

There are lots of other integer types in GPC, see Section 6.2.3 [Integer Types], page 62.

Conforming to

‘Cardinal’ is not defined in ISO Pascal, but several Pascal compilers support it as an exten-
sion. In Borland Delphi, for instance, it is an unsigned 16-bit in version 1.0, an unsigned 31-bit
integer from version 2.0 on, and an unsigned 32-bit integer from version 4.0 on.

Example

program CardinalDemo;
var

a: Cardinal;
begin

a := 42;
WriteLn (a)

end.

See also

Section 6.2.3 [Integer Types], page 62, Section 6.2.11.1 [Subrange Types], page 68.

Chapter 8: The Alphabetical GPC Language Reference 283

case

Synopsis

case expression of
selector: statement;
...
selector: statement;

end;

or, with alternative statement sequence:
case expression of

selector: statement;
...
selector: statement;

otherwise { ‘‘else’’ instead of ‘‘otherwise’’ is allowed }
statement;
...
statement;

end;

or, as part of the invariant record type definition:
foo = record

field declarations
case bar: variant type of

selector: (field declarations);
selector: (field declarations);
...

end;

or, without a variant selector field,
foo = record

field declarations
case variant type of

selector: (field declarations);
selector: (field declarations);
...

end;

Description

‘case’ opens a case statement. For further description see Section 6.1.7.4 [case Statement],
page 54.

For ‘case’ in a variant record type definition, see Section 6.2.11.3 [Record Types], page 69.

Conforming to

The ‘case’ statement is defined in ISO 7185 Pascal and supported by all known Pascal
variants.

According to ISO 7185 Pascal, the selector type must be a named type. UCSD Pascal and
Borland Pascal allow any ordinal type here.

The alternative statement execution with ‘otherwise’ it is an Extended Pascal extension;
with ‘else’ it is a Borland Pascal extension. In GNU Pascal, both are allowed.

284 The GNU Pascal Manual

Example

program CaseDemo;
var

Foo: String (10);
Bar: Integer;

begin
WriteLn (’Enter up to ten arbitrary characters:’);
ReadLn (Foo);
for Bar := 1 to Length (Foo) do

begin
Write (Foo[Bar], ’ is ’);
case Foo[Bar] of

’A’ .. ’Z’, ’a’ .. ’z’:
WriteLn (’an English letter’);

’0’ .. ’9’:
WriteLn (’a number’);

otherwise
WriteLn (’an unrecognized character’)

end
end

end.

See also

Chapter 9 [Keywords], page 443, Section 6.1.7.3 [if Statement], page 54, Section 6.2.11.3
[Record Types], page 69, [else], page 302, [otherwise], page 370

CBoolean

(Under construction.)

Synopsis

type
CBoolean { built-in type }

Description

‘CBoolean’ is a Boolean type. In GNU Pascal it is compatible to ‘_Bool’ in GNU C (which
is defined as ‘bool’ in ‘stdbool.h’). This compatibility is the reason why ‘CBoolean’ exists.

Conforming to

‘CBoolean’ is a GNU Pascal extension.

Example

program CBooleanDemo;
var

a: CBoolean;
begin

Chapter 8: The Alphabetical GPC Language Reference 285

a := True;
if Ord (a) = 1 then WriteLn (’Ord (True) = 1’)

end.

See also

Section 6.2.9 [Boolean (Intrinsic)], page 67, Section 6.2.3 [Integer Types], page 62, [Boolean],
page 277, [True], page 425, [False], page 313, [ByteBool], page 279, [ShortBool], page 407,
[MedBool], page 351, [WordBool], page 439, [LongBool], page 341, [LongestBool], page 342.

Char

Synopsis

type
Char { built-in type }

Description

The built-in type ‘Char’ holds elements of the operating system’s character set (usually
ASCII). The ‘Char’ type is a special case of ordinal type. Conversion between character types
and ordinal types is possible with the built-in functions ‘Ord’ and ‘Chr’.

Conforming to

‘Char’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

program CharDemo;
var

a: Char;
begin

a := ’x’;
WriteLn (a)

end.

See also

Section 6.2.6 [Character Types], page 66, Section 6.2.2 [Ordinal Types], page 62, Section 6.7
[Type Casts], page 83, [Ord], page 368, [Chr], page 286.

ChDir

Synopsis

procedure ChDir (Directory: String);

Description

‘ChDir’ changes the current directory to Directory, if its argument is a valid parameter to
the related operating system’s function. Otherwise, a runtime error is caused.

286 The GNU Pascal Manual

Conforming to

‘ChDir’ is a Borland Pascal extension.

Example

program ChDirDemo;
var

Foo: String (127);
begin

WriteLn (’Enter directory name to change to:’);
ReadLn (Foo);
{$I-} { Don’t abort the program on error }
ChDir (Foo);
if IOResult <> 0 then

WriteLn (’Cannot change to directory ‘’, Foo, ’’’.’)
else

WriteLn (’Okay.’)
end.

See also

[MkDir], page 355, [RmDir], page 397

Chr

Synopsis

function Chr (AsciiCode: Integer): Char;

Description

‘Chr’ returns a character whose ASCII code corresponds to the value given by ‘AsciiCode’.

Conforming to

‘Chr’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

program ChrDemo;
var

x: Integer;
begin

for x := 32 to 122 do
Write (Chr (x))

end.

See also

Section 6.2.6 [Character Types], page 66, [Ord], page 368, [Char], page 285

Chapter 8: The Alphabetical GPC Language Reference 287

c language

Synopsis

Description

Deprecated! Use ‘external’ now.

Conforming to

Example

See also

Chapter 9 [Keywords], page 443, Section 6.11.1 [Importing Libraries from Other Languages],
page 98, [external], page 312.

class

Not yet implemented.

Synopsis

Description

OOE/Delphi style object class.

Conforming to

‘class’ is an Object Pascal and a Borland Delphi extension.

Example

See also

Chapter 9 [Keywords], page 443.

Close

(Under construction.)

Synopsis

procedure Close (var F: any file);

Description

288 The GNU Pascal Manual

Conforming to

‘Close’ is a UCSD Pascal extension.

Example

See also

Cmplx

Synopsis

function Cmplx (RealPart, ImaginaryPart: Real): Complex;

Description

‘Cmplx’ makes a complex number from ‘RealPart’ and ‘ImaginaryPart’.

Conforming to

‘Cmplx’ is an ISO 10206 Extended Pascal extension.

Example

program CmplxDemo;
var

z: Complex;
x, y: Real;

begin
z := Cmplx (x, y) { z := x + iy }

end.

See also

[Re], page 387, [Im], page 327, [Polar], page 377, [Arg], page 266

Comp

Synopsis

type
Comp = LongInt;

Description

‘Comp’ is a signed integer type which is longer than ‘Integer’. On most platforms it is 64
bits wide and thus has a range of ‘-9223372036854775808..9223372036854775807’.

There are lots of other integer types in GPC, see Section 6.2.3 [Integer Types], page 62.

Chapter 8: The Alphabetical GPC Language Reference 289

Conforming to

‘Comp’ is a Borland Pascal extension.
In some contexts, Borland Pascal treats ‘Comp’ as a “real” type – this behaviour is not

supported by GPC.

Example

program CompDemo;
var

a: Comp;
begin

a := 42;
WriteLn (a)

end.

See also

Section 6.2.3 [Integer Types], page 62, Section 6.2.11.1 [Subrange Types], page 68.

Complex

(Under construction.)

Synopsis

type
Internal_Complex = record { not visible }

RealPart, ImaginaryPart: Real
end;
Complex = restricted Internal_Complex;

Description

Conforming to

‘Complex’ is an ISO 10206 Extended Pascal extension.

Example

program ComplexDemo;
var

a: Complex;
begin

a := Cmplx (42, 3);
WriteLn (Re (a), ’ + ’, Im (a), ’ i’)

end.

See also

290 The GNU Pascal Manual

Concat

(Under construction.)

Synopsis

function Concat (S1, S2: String): String;

or
function Concat (S1, S2, S3: String): String;

or
...

Description

Conforming to

‘Concat’ is a UCSD Pascal extension.

Example

See also

Conjugate

Synopsis

function Conjugate (z: Complex): Complex;

Description

‘Conjugate’ computes the complex conjugate of the complex number ‘z’

Conforming to

‘Conjugate’ is a GNU Pascal extension.

Example

program ConjugateDemo;
var

z: Complex;
begin

z := Cmplx (2, 3); { z is 2 + i * 3 }
WriteLn (’z = ’, Re (z) : 0 : 5, ’ + i * ’, Im (z) : 0 : 5);
z := Conjugate (z); { z conjugate is 2 - i * 3 }
WriteLn (’z conjugate = ’, Re (z) : 0 : 5,’ + i * ’, Im (z) : 0 : 5)

end.

See also

[Cmplx], page 288, [Re], page 387, [Im], page 327, [Abs], page 255

Chapter 8: The Alphabetical GPC Language Reference 291

const

(Under construction.)

Synopsis

Description

Constant declaration or constant parameter declaration.

Conforming to

‘const’ is defined in ISO 7185 Pascal and supported by all known Pascal variants. ‘const’
parameters are a Borland Pascal extension. Pointers to ‘const’ are a GNU Pascal extension.

Constant declarations allow you to define names for constant (unchanging) values, such as
using ‘SecondsPerHour’ instead of 3600. This can make your program much more readable and
maintainable.

GNU Pascal allows you to define constant strings, records and arrays as well as simple numeric
constants.

GNU Pascal also implements the const parameter extension which allows the compiler to
pass parameters by reference while still allowing you to pass constant values as inputs. See
Section 6.1.6.4 [Subroutine Parameter List Declaration], page 51 for more information.

@@ Pointers to ‘const’ @@

Example

program ConstDemo;

type
Rec = record

x: Integer;
y: Integer;

end;

const
a = 5;
constr: Rec = (10, 12);

procedure doit (const r: Rec; const s: String);
begin

WriteLn (r.x);
WriteLn (r.y);
WriteLn (s);

end;

var
variabler: Rec;

begin
variabler.x := 16;
variabler.y := 7;

292 The GNU Pascal Manual

doit (variabler, ’Should be 16 and 7’);
doit (constr, ’Should be 10 and 12’);

end.

See also

Chapter 9 [Keywords], page 443, [var], page 434, [protected], page 382, Section 6.1.6.4 [Sub-
routine Parameter List Declaration], page 51.

constructor

(Under construction.) ;−)

Synopsis

Description

Object constructor.

Conforming to

‘constructor’ is an Object Pascal and a Borland Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

Continue

Synopsis

Continue { simple statement }

Description

‘Continue’ goes on with loop iteration by jumping to the end of the current loop body. Note:
‘Continue’ can only stand within a while, repeat or a for statement.

Conforming to

‘Continue’ is a Borland Pascal extension.

Chapter 8: The Alphabetical GPC Language Reference 293

Example

program ContinueDemo;
var

Foo, Bar: Integer;
begin

WriteLn (’Enter three numbers:’);
for Bar := 1 to 3 do

begin
ReadLn (Foo);
if Foo < 5 then

Continue;
WriteLn (’Your number was greater than 5.’)

end
end.

See also

Section 6.1.7.13 [Loop Control Statements], page 58, [Break], page 277, [Exit], page 307,
[Halt], page 325, [Return], page 395, [goto], page 323.

Copy

Synopsis

function Copy (S: String; FirstChar, Count: Integer): String;

or
function Copy (S: String; FirstChar: Integer): String;

Description

‘Copy’ returns a sub-string of ‘S’ starting with the character at position FirstChar. If Count
is given, such many characters will be copied into the sub-string. If Count is omitted, the
sub-string will range to the end of S.

If ‘Count’ is too large for the sub-string to fit in S, the result will be truncated at the end
of S. If ‘FirstChar’ exceeds the length of S, the empty string will be returned. (For a function
which does not truncate but triggers a runtime error instead, see [SubStr], page 418.)

Please note that GPC’s strings may be longer than 255 characters. If you want to isolate the
second half of a string S starting with the third character, use ‘Copy (S, 3)’ instead of ‘Copy
(S, 3, 255)’.

Conforming to

‘Copy’ is a UCSD Pascal extension. The possibility to omit the third parameter is a GNU
Pascal extension.

Example

program CopyDemo;
var

S: String (42);

294 The GNU Pascal Manual

begin
S := ’Hello’;
WriteLn (Copy (S, 2, 3)); { yields ‘ell’ }
WriteLn (Copy (S, 3)); { yields ‘llo’ }
WriteLn (Copy (S, 4, 7)); { yields ‘lo’ }
WriteLn (Copy (S, 42)) { yields the empty string }

end.

See also

[SubStr], page 418, Section 6.5 [String Slice Access], page 81.

Cos

Synopsis

function Cos (x: Real): Real;

or
function Cos (z: Complex): Complex;

Description

‘Cos’ returns the cosine of the argument. The result is in the range ‘-1 < Cos (x) < 1’ for
real arguments.

Conforming to

The function ‘Cos’ is defined in ISO 7185 Pascal; its application to complex values is defined
in ISO 10206 Extended Pascal.

Example

program CosDemo;
begin

{ yields 0.5 since Cos (Pi / 3) = 0.5 }
WriteLn (Cos (Pi / 3) : 0 : 5)

end.

See also

[ArcTan], page 265, [Sin], page 411, [Ln], page 340, [Arg], page 266.

CString

(Under construction.)

Synopsis

type
CString = ^Char;

Chapter 8: The Alphabetical GPC Language Reference 295

Description

Conforming to

‘CString’ is a GNU Pascal extension.

Example

program CStringDemo;
var

s: CString;
begin

s := ’Hello, world!’;
{$X+}
WriteLn (s)

end.

See also

CString2String

(Under construction.)

Synopsis

function CString2String (S: CString): String;

Description

Conforming to

‘CString2String’ is a GNU Pascal extension.

Example

See also

CStringCopyString

(Under construction.)

Synopsis

function CStringCopyString (Dest: CString; const Source: String): CString;

Description

296 The GNU Pascal Manual

Conforming to

‘CStringCopyString’ is a GNU Pascal extension.

Example

See also

CurrentRoutineName

Synopsis

function CurrentRoutineName: String;

Description

‘CurrentRoutineName’ returns the name of the current routine from where it’s called.

Conforming to

‘CurrentRoutineName’ is a GNU Pascal extension.

Example

program CurrentRoutineNameDemo;

procedure FooBar;
begin

WriteLn (CurrentRoutineName) { ‘FooBar’ }
end;

begin
WriteLn (CurrentRoutineName); { ‘main program’ }
FooBar

end.

See also

Date

Synopsis

function Date (T: TimeStamp): packed array [1 .. Date length] of Char;

Description

Date takes a TimeStamp parameter and returns the date as a string (in the form of a packed
array of Char). Date length is an implementation defined invisible constant.

Chapter 8: The Alphabetical GPC Language Reference 297

Conforming to

‘Date’ is an ISO 10206 Extended Pascal extension.

Example

Set [TimeStamp], page 422.

See also

[TimeStamp], page 422, [GetTimeStamp], page 323, [Time], page 421, Section 6.10.8 [Date
And Time Routines], page 97.

Dec

Synopsis

For ordinal types:
procedure Dec (var x: ordinal type);

or
procedure Dec (var x: ordinal type; Amount: Integer);

For pointer types:
procedure Dec (var p: any pointer type);

or
procedure Dec (var p: any pointer type; Amount: Integer);

Description

For ordinal types, ‘Dec’ decreases the value of ‘x’ by one or by ‘amount’ if specified.
If the argument ‘p’ is pointing to a specified type (typed pointer), ‘Dec’ decreases the address

of ‘p’ by the size of the type ‘p’ is pointing to or by ‘amount’ times that size respectively. If ‘p’
is an untyped pointer (i.e. ‘p’ is of type [Pointer], page 377), ‘p’ is decreased by one, otherwise
by ‘amount’ if specified.

Conforming to

‘Dec’ is a Borland Pascal extension. The combination of the second argument with application
to pointers is a GNU Pascal extension.

Example

program DecDemo;
var

x: Integer;
y: array [1 .. 5] of Integer;
p: ^Integer;

begin
x := 9;
Dec (x, 10); { yields -1 }
{$X+} { Turn on extended systax }

298 The GNU Pascal Manual

p := @y[5]; { p points to y[5] }
Dec (p, 3) { p points to y[2] }

end.

See also

[Inc], page 329, [Pred], page 379, [Succ], page 419, Section 6.6 [Pointer Arithmetics], page 82.

DefineSize

(Under construction.)

Synopsis

procedure DefineSize (var F: any file; NewSize: Integer);

Description

Conforming to

‘DefineSize’ is a GNU Pascal extension.

Example

See also

Delete

(Under construction.)

Synopsis

procedure Delete (var S: String; FirstChar, Count: Integer);

or
procedure Delete (var S: String; FirstChar: Integer);

Description

Conforming to

‘Delete’ is a UCSD Pascal extension. The possibility to omit the third parameter is a GNU
Pascal extension.

Example

See also

Chapter 8: The Alphabetical GPC Language Reference 299

destructor

(Under construction.)

Synopsis

Description

Object destructor.

Conforming to

‘destructor’ is an Object Pascal and a Borland Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

Dispose

(Under construction.)

Synopsis

Dispose (PointerVar: Pointer);

or

Dispose (PointerVar: Pointer; tag field values);

or

Dispose (ObjectPointerVar: Pointer; destructor call);

Description

Conforming to

‘Dispose’ is defined in ISO 7185 Pascal and supported by most known Pascal variants, but
not by UCSD Pascal. Its use for objects is a Borland Pascal extension.

Example

See also

300 The GNU Pascal Manual

div

Synopsis

operator div (p, q: Integer) = r: Integer;

Description

Integer division operator.

Conforming to

‘div’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

program DivDemo;

var
a, b: Integer;

begin
a := 16;
b := 7;
WriteLn (a div b); { ‘2’ }

end.

See also

Chapter 9 [Keywords], page 443.

do

Synopsis

for ... do
statement

or
while ... do

statement

or
with ... do

statement

or
to begin do

statement

or
to end do

statement

Chapter 8: The Alphabetical GPC Language Reference 301

Description

The ‘do’ reserved word is used in combination with other Pascal keywords in many ways. For
description and examples see the relevant reference sections: ‘for’, ‘while’, ‘with’, ‘to begin’,
‘to end’.

Conforming to

‘do’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

See references.

See also

Chapter 9 [Keywords], page 443, [for], page 317, [while], page 437, [with], page 438, [to begin
do], page 424, [to end do], page 424.

Double

(Under construction.)

Synopsis

type
Double = Real;

Description

‘Double’ is a synonym for the ‘Real’ data type and supported for compatibility with other
compilers.

Conforming to

‘Double’ is a Borland Pascal extension.

Example

program DoubleDemo;
var

A: Double; { There is nothing special with ‘Double’. }
B: Real;

begin
A := Pi;
A := B

end.

See also

302 The GNU Pascal Manual

downto

Synopsis

for variable := value1 downto value2 do
statement

Description

The ‘downto’ reserved word is used in combination with ‘for’ to build a ‘for’ loop.

Conforming to

‘downto’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

See [for], page 317.

See also

Chapter 9 [Keywords], page 443, [for], page 317.

else

Synopsis

As part of the if . . . then . . . else statement:
if Boolean expression then

statement1
else

statement2

or, as part of the case . . . else statement:
case expression of

selector: statement;
...
selector: statement

else { ‘‘otherwise’’ instead of ‘‘else’’ is allowed }
statement;
...
statement

end

Description

‘else’ is part of the ‘if ... then ... else’ statement which provides a possibility to execute
statements alternatively. In the case statement, ‘else’ starts a series of statements which is
executed if no selector fit in expression. In this situation, ‘else’ is a synonym for otherwise.

Chapter 8: The Alphabetical GPC Language Reference 303

Conforming to

‘else’ in ‘if’ statements is defined in ISO 7185 Pascal and supported by all known Pascal
variants. ‘else’ in ‘case’ statements is a Borland Pascal extension; ISO 10206 Extended Pascal
has ‘otherwise’ instead.

Example

program ElseDemo;
var

i: Integer;
begin

Write (’Enter a number: ’);
ReadLn (i);
if i > 42 then
WriteLn (’The number is greater than 42’)

else
WriteLn (’The number is not greater than 42’)

end.

See also

Chapter 9 [Keywords], page 443, [if], page 326, [case], page 283, [otherwise], page 370.

Empty

(Under construction.)

Synopsis

function Empty (var F: any file): Boolean;

Description

Conforming to

‘Empty’ is an ISO 10206 Extended Pascal extension.

Example

See also

end

Synopsis

begin
statement;
statement;
...
statement

end

304 The GNU Pascal Manual

Description

The reserved word ‘end’ closes a ‘begin’ . . . ‘end’; statement which joins several statements
together into one compound statement.

@@ end of a ‘case’ statement @@ end of a record or object declaration @@ part of a ‘to end
do’ module destructor

Conforming to

‘end’ is defined in ISO 7185 Pascal and supported by all Pascal variants.

Example

program EndDemo;
begin

if True then
WriteLn (’single statement’);

if True then
begin { clamp statement1 ... }
WriteLn (’statement1’);
WriteLn (’statement2’)

end { ... to statement2 }
end.

See also

Chapter 9 [Keywords], page 443, Section 6.1.7.2 [begin end Compound Statement], page 54,
[begin], page 272

EOF

(Under construction.)

Synopsis

function EOF ([var F: any file]): Boolean;

or
function EOF: Boolean;

Description

Conforming to

‘EOF’ is defined in ISO 7185 Pascal and supported by all Pascal variants.

Example

See also

Chapter 8: The Alphabetical GPC Language Reference 305

EOLn

(Under construction.)

Synopsis

function EOLn ([var F: Text]): Boolean;

or
function EOLn: Boolean;

Description

Conforming to

‘EOLn’ is defined in ISO 7185 Pascal and supported by all Pascal variants.

Example

See also

EpsReal

(Under construction.)

Synopsis

Description

Conforming to

‘EpsReal’ is an ISO 10206 Extended Pascal extension.

Example

See also

EQ

(Under construction.)

Synopsis

function EQ (S1, S2: String): Boolean;

Description

306 The GNU Pascal Manual

Conforming to

‘EQ’ is an ISO 10206 Extended Pascal extension.

Example

See also

EQPad

(Under construction.)

Synopsis

function EQPad (S1, S2: String): Boolean;

Description

Conforming to

‘EQPad’ is a GNU Pascal extension.

Example

See also

Erase

(Under construction.)

Synopsis

procedure Erase (var F: any file);

Description

Conforming to

‘Erase’ is a Borland Pascal extension.

Example

See also

Chapter 8: The Alphabetical GPC Language Reference 307

Exclude

Synopsis

Exclude (set variable, ordinal value);

Description

Remove (subtract) a single element from a set. ordinal value must be compatible with the
base type of set variable. Exclude is equivalent to:

set variable := set variable - [ordinal value];

If set variable does not contain ordinal value, nothing happens.

Conforming to

‘Exclude’ is a Borland Pascal extension.

Example

program ExcludeDemo;

var
Ch: Char;
MyCharSet: set of Char;

begin
MyCharSet := [’P’,’N’,’L’];
Exclude (MyCharSet , ’N’); { L, P }

end.

See other examples in [set], page 402 and Section 6.10.7 [Set Operations], page 96.

See also

Chapter 9 [Keywords], page 443, Section 6.10.7 [Set Operations], page 96, [set], page 402,
[in], page 329, [Include], page 330.

Exit

Synopsis

procedure Exit;

Description

‘Exit’ leaves the currently executed procedure or function. Note: If ‘Exit’ is called within
the main program, it will be terminated instantly.

Conforming to

‘Exit’ is a UCSD Pascal extension. GNU Pascal does not support all uses of ‘Exit’ but only
those defined in Borland Pascal.

308 The GNU Pascal Manual

Example

program ExitDemo;

procedure Foo (Bar: Integer);
var

Baz, Fac: Integer;
begin

if Bar < 1 then
Exit; { Exit ‘Foo’ }

Fac := 1;
for Baz := 1 to Bar do

begin
Fac := Fac * Baz;
if Fac >= Bar then

Exit; { Exit ‘Foo’ }
WriteLn (Bar,’ is greater than ’, Baz, ’!, which is equal to ’, Fac)

end
end;

begin
Foo (-1);
Foo (789);
Exit; { Terminates program }
Foo (987654321) { This is not executed anymore }

end.

See also

[Break], page 277, [Continue], page 292, [Halt], page 325

Exp

Synopsis

function Exp (x: Real): Real;

or

function Exp (z: Complex): Complex;

Description

The exponential function ‘Exp’ computes the value of e to the power of x, where the Euler
number e = Exp (1) is the base of the natural logarithm.

Conforming to

The function ‘Exp’ is defined in ISO 7185 Pascal; its application to complex values is defined
in ISO 10206 Extended Pascal.

Chapter 8: The Alphabetical GPC Language Reference 309

Example

program ExpDemo;
var

z: Complex;
begin

z := Cmplx (1, - 2 * Pi); { z = 1 - 2 pi i }
z := Exp (z); { yields e = Exp (1), since Exp ix = Cos x + i Sin x }
WriteLn (Ln (Re (z)) : 0 : 5) { prints 1 = Ln (Exp (1)) }

end.

See also

[Ln], page 340

export

(Under construction.)

Synopsis

export ‘interface_name’ = (identifier, identifier, ...);

or
export ‘interface_name’ = all;

Description

Interface export for Extended Pascal modules.
‘all’ means to automatically export all identifiers declared in the interface module.

Conforming to

‘export’ is an ISO 10206 Extended Pascal extension. It also exists in Borland Pascal, but
with a different meaning, not (yet) supported by GPC.

‘export all’ is a GNU Pascal extension.

Example

program ExportDemo;

import AllInterface in ’somemodule.pas’;

begin
Bar (a);
WriteLn (b)

end.

module SomeModule interface;

export
SomeInterface = (a);
AllInterface = all; { Same as ‘AllInterface = (a, b, Bar);’ }

310 The GNU Pascal Manual

var
a, b: Integer;

procedure Bar (i: Integer);

end.

module SomeModule implementation;

procedure Bar (i: Integer);
begin

b := a
end;

to begin do
a := 42;

end.

See also

Chapter 9 [Keywords], page 443, Section 6.1.8.1 [Modules], page 58.

exports

Not yet implemented.

Synopsis

Description

Library export.

Conforming to

‘exports’ is a Borland Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

Extend

(Under construction.)

Synopsis

procedure Extend (var F: any file; [FileName: String;]
[BlockSize: Cardinal]);

Chapter 8: The Alphabetical GPC Language Reference 311

Description

‘Extend’ opens a file for writing. If the file does not exist, it is created. If it does exist, the
file pointer is positioned after the last element.

Like ‘Rewrite’, ‘Reset’ and ‘Append’ do, ‘Extend’ accepts an optional second and third
parameter for the name of the file in the filesystem and, for untyped files, the block size of the
file. (For details, see [Rewrite], page 396.)

Conforming to

‘Extend’ is an ISO 10206 Extended extension. Borland Pascal has [Append], page 264 instead.
The ‘BlockSize’ parameter is a Borland Pascal extension. The ‘FileName’ parameter is a GNU
Pascal extension.

Example

program ExtendDemo;
var

Sample: Text;
begin

Assign (Sample, ’sample.txt’);
Rewrite (Sample);
WriteLn (Sample, ’Hello, World!’); { ‘sample.txt’ now has one line }
Close (Sample);

{ ... }

Extend (Sample);
WriteLn (Sample, ’Hello again!’); { ‘sample.txt’ now has two lines }
Close (Sample)

end.

See also

[Assign], page 269, [Reset], page 393, [Rewrite], page 396, [Update], page 432, [Append],
page 264.

Extended

(Under construction.)

Synopsis

type
Extended = LongReal;

Description

Conforming to

‘Extended’ is a Borland Pascal extension.

312 The GNU Pascal Manual

Example

program ExtendedDemo;
var

a: Extended;
begin

a := 42;
WriteLn (a)

end.

See also

external

(Under construction.)

Synopsis

declaration external;
or

declaration external name linker name;

Description

Declaration of external object.

Conforming to

‘external’ is a UCSD Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

Fail

(Under construction.)

Synopsis

Description

Conforming to

‘Fail’ is a Borland Pascal extension.

Example

See also

Chapter 8: The Alphabetical GPC Language Reference 313

False

Synopsis

type
Boolean = (False, True); { built-in type }

Description

‘False’ is one of the two Boolean values and is used to represent a condition which is never
fullfilled. For example, the expression, ‘1 = 2’ always yields ‘False’. It is the opposite of ‘True’.
‘False’ has the ordinal value 0.

Conforming to

‘False’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

program FalseDemo;

var
a: Boolean;

begin
a := 1 = 2; { yields False }
WriteLn (Ord (False)); { 0 }
WriteLn (a); { False }
if False then WriteLn (’This is not executed.’)

end.

See also

Section 6.2.9 [Boolean (Intrinsic)], page 67, [True], page 425, [Boolean], page 277.

far

Synopsis

Description

The ‘far’ directive can be appended to a procedure or function heading but is ignored by
GPC. It is there for Borland compatibility, only. (Since the GNU compilers provide a flat
memory model, the distinction between ‘near’ and ‘far’ pointers is void.)

Conforming to

‘far’ is a Borland Pascal extension.

314 The GNU Pascal Manual

Example

program FarDemo;

var
p: procedure;

{$W no-near-far} { Don’t warn about the uselessness of ‘far’ }

procedure Foo; far; { ‘far’ has no effect in GPC }
begin

WriteLn (’Foo’)
end;

begin
p := Foo; { Would also work without ‘far’ in GPC. }
p

end.

See also

Chapter 9 [Keywords], page 443, [near], page 359.

file

(Under construction.)

Synopsis

In type definitions:

File of Type

or

File

Description

Non-text file type declaration.

Conforming to

‘file’ is a Borland Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443, [Text], page 420, [AnyFile], page 263.

Chapter 8: The Alphabetical GPC Language Reference 315

FilePos

(Under construction.)

Synopsis

function FilePos (var F: any file): Integer;

Description

Conforming to

‘FilePos’ is a Borland Pascal extension.

Example

See also

FileSize

(Under construction.)

Synopsis

function FileSize (var F: any file): Integer;

Description

Conforming to

‘FileSize’ is a Borland Pascal extension.

Example

See also

FillChar

(Under construction.)

Synopsis

procedure FillChar (var Dest; Count: SizeType; Val: Char);

or
procedure FillChar (var Dest; Count: SizeType; Val: Byte);

Description

316 The GNU Pascal Manual

Conforming to

‘FillChar’ is a UCSD Pascal extension.

Example

See also

finalization

(Under construction.)

Synopsis

Description

Unit finalization.
It is equivalent to Extended Pascal’s ‘to end do’.

Conforming to

‘finalization’ is a Borland Delphi extension.

Example

See also

Chapter 9 [Keywords], page 443, [initialization], page 332, [to end do], page 424.

Finalize

(Under construction.)

Synopsis

procedure Finalize (var Aynthing);

Description

‘Finalize’ does all necessary clean-ups for the parameter. This is normally done automati-
cally when a variable goes out of scope, so you need to call ‘Finalize’ only in special situations,
e.g. when you deallocate a dynamic variable with ‘FreeMem’ rather than ‘Dispose’.

Conforming to

‘Finalize’ is a Borland Delphi extension.

Example

See also

[Initialize], page 332, [Dispose], page 299, [FreeMem], page 320.

Chapter 8: The Alphabetical GPC Language Reference 317

Flush

(Under construction.)

Synopsis

procedure Flush (var F: any file);

Description

Conforming to

‘Flush’ is a Borland Pascal extension.

Example

See also

for

Synopsis

For ordinal index variables:
for ordinal variable := initial value to final value do

statement

or
for ordinal variable := initial value downto final value do

statement

For sets:
for set element type variable in some set do

statement

For pointer index variables:
for pointer variable := initial address to final address do

statement

or
for pointer variable := initial address downto final address do

statement

@@ Set member iteration

Description

The ‘for’ statement is a count loop. For further information see Section 6.1.7.5 [for State-
ment], page 55.

Conforming to

‘for’ is defined in ISO 7185 Pascal and supported by all Pascal variants. Iteration of Pointers
is a Borland Pascal extension. Set member iteration is an ISO 10206 Extended Pascal extension.

318 The GNU Pascal Manual

Example

program ForDemo;
var

CharSet: set of Char;
c: Char;
n: Integer;
Fac: array [0 .. 10] of Integer;
PInt: ^Integer;

begin
CharSet := [’g’, ’p’, ’c’];
for c in CharSet do

WriteLn (c); { prints ‘c’, ‘g’, ‘p’ in three lines }
Fac[0] := 1;
for n := 1 to 10 do { computes the factorial of n for n = 0 .. 10 }

Fac[n] := Fac[n - 1] * n;
{$X+}
{ prints n! for n = 0 .. 10 }
for PInt := @Fac[0] to @Fac[10] do

WriteLn (PInt - @Fac[0], ’! = ’, PInt^)
end.

See also

Chapter 9 [Keywords], page 443, Section 6.2.11.6 [Set Types], page 74, Section 6.6 [Pointer
Arithmetics], page 82

FormatString

(Under construction.)

Synopsis

Description

Conforming to

‘FormatString’ is a GNU Pascal extension.

Example

See also

forward

(Under construction.)

Synopsis

Chapter 8: The Alphabetical GPC Language Reference 319

Description

Declaration of a routine whose definition follows below.

Conforming to

‘forward’ is a UCSD Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

Frac

Synopsis

function Frac (x: Real): Real;

Description

‘Frac’ returns the fractional part of a floating point number.

Conforming to

‘Frac’ is a Borland Pascal extension.

Example

program FracDemo;

begin
WriteLn (Frac (12.345) : 1 : 5); { 0.34500 }
WriteLn (Int (12.345) : 1 : 5); { 12.00000 }
WriteLn (Round (12.345) : 1); { 12 }
WriteLn (Trunc (12.345) : 1); { 12 }

WriteLn (Frac (-12.345) : 1 : 5); { -0.34500 }
WriteLn (Int (-12.345) : 1 : 5); { -12.00000 }
WriteLn (Round (-12.345) : 1); { -12 }
WriteLn (Trunc (-12.345) : 1); { -12 }

WriteLn (Frac (12.543) : 1 : 5); { 0.54300 }
WriteLn (Int (12.543) : 1 : 5); { 12.00000 }
WriteLn (Round (12.543) : 1); { 13 }
WriteLn (Trunc (12.543) : 1); { 12 }

WriteLn (Frac (-12.543) : 1 : 5); { -0.54300 }
WriteLn (Int (-12.543) : 1 : 5); { -12.00000 }
WriteLn (Round (-12.543) : 1); { -13 }
WriteLn (Trunc (-12.543) : 1); { -12 }

end.

320 The GNU Pascal Manual

See also

Section 6.2.4 [Real Types], page 65, [Real], page 389, [Int], page 334, [Round], page 398,
[Trunc], page 426.

FrameAddress

(Under construction.)

Synopsis

Description

Conforming to

‘FrameAddress’ is a GNU Pascal extension.

Example

See also

FreeMem

Synopsis

procedure FreeMem (var p: Pointer; Size: Cardinal);

or
procedure FreeMem (var p: Pointer);

Description

Releases a chunk of memory previously allocated using ‘GetMem’. The parameter Size is
optional. Its value is currently ignored.

Since Extended Pascal’s schemata provide a cleaner way to implement dynamical arrays
and such, we recommend using ‘GetMem’ and ‘FreeMem’ only for low-level applications or for
interfacing with other languages.

Conforming to

‘FreeMem’ is a Borland Pascal extension. ‘FreeMem’ with only one parameter is a GNU Pascal
extension.

Example

See [GetMem], page 322.

See also

[GetMem], page 322, Section 6.2.11.5 [Schema Types], page 70, [Dispose], page 299, [Mark],
page 349, [Release], page 391.

Chapter 8: The Alphabetical GPC Language Reference 321

function

(Under construction.)

Synopsis

Description

Function declaration.

Conforming to

‘function’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

See also

Chapter 9 [Keywords], page 443.

GE

(Under construction.)

Synopsis

function GE (S1, S2: String): Boolean;

Description

Conforming to

‘GE’ is an ISO 10206 Extended Pascal extension.

Example

See also

GEPad

(Under construction.)

Synopsis

function GEPad (S1, S2: String): Boolean;

Description

322 The GNU Pascal Manual

Conforming to

‘GEPad’ is a GNU Pascal extension.

Example

See also

Get

(Under construction.)

Synopsis

procedure Get (var F: typed file);

Description

Conforming to

‘Get’ is defined in ISO 7185 Pascal and supported by all known Pascal variants except
UCSD/Borland Pascal and its variants.

Example

See also

GetMem

Synopsis

procedure GetMem (var p: Pointeger; Size: Cardinal);

Description

Allocates dynamical storage on the heap and returns a pointer to it in ‘p’.

Since Extended Pascal’s schemata provide a cleaner way to implement dynamical arrays and
such, we recommend using ‘GetMem’ and ‘FreeMem’ only for low-level applications.

Conforming to

‘GetMem’ is a Borland Pascal extension.

Chapter 8: The Alphabetical GPC Language Reference 323

Example

The Borland-comatibility unit ‘Graph’ from the ‘BPcompat’ package supports a ‘GetImage’
and a ‘PutImage’ procedure which need a variable of size ‘ImageSize’ as a buffer. Since these
are “black box” routines, the buffer can’t reasonably be a schema providing a dynamical array.
Instead, we have to use ‘GetMem’ and ‘FreeMem’ for dynamical memory allocation.

program GetMemDemo;
var

Buffer: Pointer;
Size: Cardinal;

begin
Size := Random (10000); { the size can be determined at run time }
GetMem (Buffer, Size);
{ Do something with Buffer }
FreeMem (Buffer) { or: FreeMem (Buffer, Size) }

end.

See also

[FreeMem], page 320, [New], page 360, Section 6.2.11.5 [Schema Types], page 70.

GetTimeStamp

Synopsis

procedure GetTimeStamp (var T: TimeStamp);

Description

GetTimeStamp gets the current local date and time as a TimeStamp record containing the
Year, Month, Day, Hour, Minute, Second, and so on.

Conforming to

‘GetTimeStamp’ is an ISO 10206 Extended Pascal extension.

Example

Set [TimeStamp], page 422.

See also

[TimeStamp], page 422, [Date], page 296, [Time], page 421, Section 6.10.8 [Date And Time
Routines], page 97.

goto

(Under construction.)

Synopsis

goto label

324 The GNU Pascal Manual

Description

The ‘goto’ statement transfers control to statement with the label ‘label’.

Conforming to

‘goto’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

See also

Chapter 9 [Keywords], page 443.

GT

(Under construction.)

Synopsis

function GT (S1, S2: String): Boolean;

Description

Conforming to

‘GT’ is an ISO 10206 Extended Pascal extension.

Example

See also

GTPad

(Under construction.)

Synopsis

function GTPad (S1, S2: String): Boolean;

Description

Conforming to

‘GTPad’ is a GNU Pascal extension.

Example

See also

Chapter 8: The Alphabetical GPC Language Reference 325

Halt

Synopsis

Halt;

or
Halt (ExitCode: Integer);

Description

‘Halt’ terminates the program with exitcode 0. If ‘ExitCode’, is specified, it is returned by
‘Halt’ on exit.

Conforming to

‘Halt’ is an Extended Pascal and a UCSD Pascal extension.

Example

program HaltDemo;
begin

WriteLn (’This string will always be this program’’s output.’);
Halt; { Terminate right here and right now. }
WriteLn (’And this string won’’t ever!’)

end.

See also

[Break], page 277, [Continue], page 292, [Exit], page 307, [Return], page 395, [goto], page 323.

High

Synopsis

function High (ordinal type or variable): ordinal type;

or
function High (array type or variable): array index type;

or
function High (string variable): Integer;

Description

For ordinal types or variables of that type, ‘High’ returns the highest value a variable of that
type can assume.

For array types or variables of that type, ‘High’ returns the highest index a variable of that
type can assume. Note: the result is of the same type as the array index is. If the array has
more than one dimension, ‘High’ returns the highest index in the first dimension.

If the argument is a string variable, ‘High’ returns the discriminant of the string type (i.e.
its capacity).

326 The GNU Pascal Manual

Conforming to

‘High’ is a Borland Pascal extension.

Example

program HighDemo;
type

Colors = (Red, Green, Blue);
var

Col: array [Colors] of (Love, Hope, Faithfulness);
Foo: Colors;
Bar: Integer;
Baz: String (123);

begin
Foo := High (Col); { yields Blue }
Bar := Ord (High (Col[Foo])); { yields Ord (Faithfulness), i.e., 2 }
Bar := High (Integer); { returns highest possible ‘‘Integer’’ }
Bar := High (Baz) { returns 123 }

end.

See also

[Low], page 347

if

Synopsis

if Boolean expression then
statement

or with an alternative statement:
if Boolean expression then

statement1
else

statement2

Description

The ‘if ... then’ statement executes statement1 depending on ‘Boolean expression’ being
true. If ‘else’ is specified, it continues executing statement2 instead.

Conforming to

‘if’ is defined in ISO 7185 Pascal and supported by all Pascal variants.

Example

program IfDemo;
var

Foo, Bar: Boolean;

Chapter 8: The Alphabetical GPC Language Reference 327

begin
Foo := True;
Bar := False;
if ((1 = 1) or (2 = 3)) and (Foo = not Bar) then
begin

{ This is executed if either Foo is true but not Bar or vice versa }
WriteLn (’Either Foo or Bar is true.’);
if Bar then

WriteLn (’You will see this text if Bar is true.’)
end

else { This whole ‘else’ branch is not executed }
if 1 = 1 then

if True = False then
WriteLn (’This text is never written on screen.’)

else { Note: This ‘‘else’’ belongs to ‘‘if True = False’’ }
WriteLn (’This text is never written on screen as well.’)

else { Note: This ‘‘else’’ belongs to ‘‘if 1 = 1’’ }
WriteLn (’Nor is this.’)

end.

See also

Chapter 9 [Keywords], page 443, Section 6.1.7.3 [if Statement], page 54, [else], page 302,
[then], page 421

Im

Synopsis

function Im (z: Complex): Real;

Description

‘Im’ extracts the imaginary part of the complex number ‘z’. The result is a real value.

Conforming to

‘Im’ is an ISO 10206 Extended Pascal extension.

Example

program ImDemo;
var

z: Complex;
begin

z := Cmplx (1, 2); { 1 + i * 2 }
WriteLn (Im (z) : 0 : 5) { 2.00000 }

end.

See also

[Cmplx], page 288, [Re], page 387, [Arg], page 266.

328 The GNU Pascal Manual

implementation

(Under construction.)

Synopsis

Description

Module or unit implementation part.

Conforming to

‘implementation’ is an Extended Pascal and a UCSD Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

import

Synopsis

program @@fragment foo;

import
bar1;
bar3 (baz1 => glork1) in ’baz.pas’;
bar2 only (baz2, baz3 => glork2);

[...]

Description

The reserved word ‘import’ in the import part of a program makes the program import an
interface.

The ‘in’ above tells GPC to look for the module in the specified file; otherwise the file name
is derived from the name of the interface by adding first ‘.p’, then ‘.pas’ – which only works if
the name of the exported interface coincides with the file name.

The symbol ‘=>’ denotes import renaming: The entity which is exported under the name
‘baz1’ by the interface ‘bar3’ will be known under the new name ‘glork1’ in the program.

The ‘only’ qualifier means that only the listed identifiers will be imported from the interface.
Renaming works together with ‘only’, too.

There must be at most one import part in a program.
The interfaces needn’t be exported by Extended Pascal modules but may be UCSD/Borland

Pascal units as well.

Chapter 8: The Alphabetical GPC Language Reference 329

Conforming to

‘import’ and modules in general are an ISO 10206 Extended Pascal extension.

GNU Pascal does not yet support ‘qualified’ import.

Example

See also

Chapter 9 [Keywords], page 443, [module], page 356, [unit], page 430, [uses], page 432.

in

Synopsis

As part of the set membership test, as a boolean expression:

ordinal value in set expression

or, as part of a ‘for’ loop iterating through a set:

for ordinal variable in set expression do ...

Description

When ‘in’ is used as a membership test, it acts as a binary operator taking ordinal value as
its left parameter and set expression as its right parameter and returning a boolean result which
is true if set expression contains the element ordinal value.

When ‘in’ is used as part of a ‘for’ loop, it iterates ordinal variable over the elements
contained in set expression, that is every ordinal value that would return true if tested as ordi-
nal value in set expression.

Conforming to

‘in’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

Set [set], page 402

See also

Chapter 9 [Keywords], page 443, Section 6.10.7 [Set Operations], page 96, [set], page 402,
[Exclude], page 307, [Include], page 330, [for], page 317.

Inc

330 The GNU Pascal Manual

Synopsis

For ordinal types:
procedure Inc (var x: ordinal type);

or
procedure Inc (var x: ordinal type; Amount: Integer);

For pointer types:
procedure Inc (var p: any pointer type);

or
procedure Inc (var p: any pointer type; Amount: Integer);

Description

For ordinal types, ‘inc’ increases the value of ‘x’ by one or by ‘amount’ if it is given.
If the argument ‘p’ is pointing to a specified type (typed pointer), ‘inc’ increases the address

of ‘p’ by the size of the type ‘p’ is pointing to or by ‘amount’ times that size respectively. If ‘p’
is an untyped pointer (i.e. ‘p’ is of type [Pointer], page 377), ‘p’ is increased by one.

Conforming to

‘Inc’ is a Borland Pascal extension. Yet application of ‘Inc’ to pointers is defined in Borland
Pascal. The combination of the second argument with application to pointers is a GNU Pascal
extension.

Example

program IncDemo;
var

Foo: Integer;
Bar: array [1 .. 5] of Integer;
Baz: ^Integer;

begin
Foo := 4;
Inc (Foo, 5); { yields 9 }
{$X+} { Turn on extended systax }
Baz := @Bar[1]; { Baz points to y[1] }
Inc (Baz, 2); { Baz points to y[3] }

end.

See also

[Dec], page 297, [Pred], page 379, [Succ], page 419, Section 6.6 [Pointer Arithmetics], page 82.

Include

Synopsis

Include (set variable, ordinal value);

Chapter 8: The Alphabetical GPC Language Reference 331

Description

Add (join) a single element to a set. ordinal value must be compatible with the base type of
set variable. Include is equivalent to:

set variable := set variable + [ordinal value];

If set variable already contains ordinal value, nothing happens.

Conforming to

‘Include’ is a Borland Pascal extension.

Example

program IncludeDemo;

var
Ch: Char;
MyCharSet: set of Char;

begin
MyCharSet := [’P’,’N’,’L’];
Include (MyCharSet , ’A’); { A, L, N, P }

end.

See other examples in [set], page 402 and Section 6.10.7 [Set Operations], page 96.

See also

Chapter 9 [Keywords], page 443, Section 6.10.7 [Set Operations], page 96, [set], page 402,
[in], page 329, [Exclude], page 307.

Index

(Under construction.)

Synopsis

Description

Conforming to

‘Index’ is an ISO 10206 Extended Pascal extension.

Example

See also

332 The GNU Pascal Manual

inherited

(Under construction.)

Synopsis

Description

Reference to methods of ancestor object types.

Conforming to

‘inherited’ is an Object Pascal and a Borland Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

initialization

(Under construction.)

Synopsis

Description

Unit initialization.
It is equivalent to Extended Pascal’s ‘to begin do’.

Conforming to

‘initialization’ is a Borland Delphi extension.

Example

See also

Chapter 9 [Keywords], page 443, [finalization], page 316, [to begin do], page 424.

Initialize

(Under construction.)

Synopsis

procedure Initialize (var Aynthing);

Chapter 8: The Alphabetical GPC Language Reference 333

Description

‘Initialize’ does all necessary initializations for the parameter (e.g., setting of string and
schema discriminants, and object VMT pointers, initialization of file variables). This is normally
done automatically at the start of the lifetime of a variable, so you need to call ‘Initialize’
only in special situations, e.g. when you allocate a dynamic variable with ‘GetMem’ rather than
‘New’.

Conforming to

‘Initialize’ is a Borland Delphi extension.

Example

See also

[Finalize], page 316, [New], page 360, [GetMem], page 322.

InOutRes

(Under construction.)

Synopsis

var
InOutRes: Integer;

Description

Conforming to

‘InOutRes’ is a UCSD Pascal extension.

Example

See also

Input

(Under construction.)

Synopsis

var
Input: Text;

Description

334 The GNU Pascal Manual

Conforming to

‘Input’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

See also

Insert

(Under construction.)

Synopsis

procedure Insert (Source: String; var Dest: String; Position: Integer);

Description

Conforming to

‘Insert’ is a UCSD Pascal extension.

Example

See also

Int

Synopsis

function Int (x: Real): Real;

Description

‘Int’ returns the integer part of a floating point number as a floating point number. Use
‘Trunc’ to get the integer part as an integer.

Conforming to

‘Int’ is a UCSD Pascal extension.

Chapter 8: The Alphabetical GPC Language Reference 335

Example

program IntDemo;

begin
WriteLn (Frac (12.345) : 1 : 5); { 0.34500 }
WriteLn (Int (12.345) : 1 : 5); { 12.00000 }
WriteLn (Round (12.345) : 1); { 12 }
WriteLn (Trunc (12.345) : 1); { 12 }

WriteLn (Frac (-12.345) : 1 : 5); { -0.34500 }
WriteLn (Int (-12.345) : 1 : 5); { -12.00000 }
WriteLn (Round (-12.345) : 1); { -12 }
WriteLn (Trunc (-12.345) : 1); { -12 }

WriteLn (Frac (12.543) : 1 : 5); { 0.54300 }
WriteLn (Int (12.543) : 1 : 5); { 12.00000 }
WriteLn (Round (12.543) : 1); { 13 }
WriteLn (Trunc (12.543) : 1); { 12 }

WriteLn (Frac (-12.543) : 1 : 5); { -0.54300 }
WriteLn (Int (-12.543) : 1 : 5); { -12.00000 }
WriteLn (Round (-12.543) : 1); { -13 }
WriteLn (Trunc (-12.543) : 1); { -12 }

end.

See also

Section 6.2.4 [Real Types], page 65, [Real], page 389, [Frac], page 319, [Round], page 398,
[Trunc], page 426.

Integer

Synopsis

type
Integer { built-in type }

Description

‘Integer’ is the “natural” signed integer type in GNU Pascal. On most platforms it is 32
bits wide and thus has a range of ‘-2147483648 .. 2147483647’. Use it whenever you need a
general-purpose signed integer type.

‘Integer’ in GNU Pascal is compatible to ‘Int’ in GNU C.
There are lots of other integer types in GPC, see Section 6.2.3 [Integer Types], page 62.

Conforming to

In ISO Pascal, ‘Integer’ is the only built-in integer type. (However see Section 6.2.11.1
[Subrange Types], page 68.)

336 The GNU Pascal Manual

Example

program IntegerDemo;
var

a: Integer;
begin

a := 42;
WriteLn (a)

end.

See also

Section 6.2.3 [Integer Types], page 62, Section 6.2.11.1 [Subrange Types], page 68.

interface

(Under construction.)

Synopsis

Description

Module or unit interface part.

Conforming to

‘interface’ is an Extended Pascal and a UCSD Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

interrupt

Not yet implemented.

Synopsis

Description

Interrupt handler declaration (not yet implemented).

Conforming to

‘interrupt’ is a Borland Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

Chapter 8: The Alphabetical GPC Language Reference 337

IOResult

(Under construction.)

Synopsis

function IOResult: Integer;

Description

Conforming to

‘IOResult’ is a UCSD Pascal extension.

Example

See also

is

Synopsis

Description

Object type membership test.

Conforming to

‘is’ is an Object Pascal and a Borland Delphi extension.

Example

See also

Chapter 9 [Keywords], page 443, [as], page 267, [TypeOf], page 429, Section 6.8 [OOP],
page 84.

label

(Under construction.)

Synopsis

Description

Label declaration for a ‘goto’ statement.

338 The GNU Pascal Manual

Conforming to

‘label’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

See also

Chapter 9 [Keywords], page 443.

LastPosition

(Under construction.)

Synopsis

function LastPosition (var F: typed file): Integer;

Description

Conforming to

‘LastPosition’ is an ISO 10206 Extended Pascal extension.

Example

See also

LE

(Under construction.)

Synopsis

function LE (S1, S2: String): Boolean;

Description

Conforming to

‘LE’ is an ISO 10206 Extended Pascal extension.

Example

See also

Chapter 8: The Alphabetical GPC Language Reference 339

Length

(Under construction.)

Synopsis

function Length (S: String): Integer;

Description

Conforming to

‘Length’ is an Extended Pascal and a UCSD Pascal extension.

Example

See also

LEPad

(Under construction.)

Synopsis

function LEPad (S1, S2: String): Boolean;

Description

Conforming to

‘LEPad’ is a GNU Pascal extension.

Example

See also

library

Not yet implemented.

Synopsis

Description

Library declaration.

340 The GNU Pascal Manual

Conforming to

‘library’ is a Borland Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

Ln

Synopsis

function Ln (x: Real): Real;

or
function Ln (z: Complex): Complex;

Description

The natural logarith ‘Ln’ is the logarithm with base e, where e is the Euler number e = Exp
(1) = 2.718281828. . .

Conforming to

The function ‘Ln’ is defined in ISO 7185 Pascal; its application to complex values is defined
in ISO 10206 Extended Pascal.

Example

program LnDemo;
var

z: Complex;
begin

z := Cmplx (1, 1);
z := Ln (z) { yields Ln (SqRt (2)) + i * Pi / 4 }

{ since Ln (i * x) = Ln Abs (x) + i * Arg (x) }
end.

See also

LoCase

(Under construction.)

Synopsis

function LoCase (Ch: Char): Char;

Chapter 8: The Alphabetical GPC Language Reference 341

Description

Conforming to

‘LoCase’ is a GNU Pascal extension.

Example

See also

LongBool

Synopsis

type
LongBool = Boolean attribute (Size = BitSizeOf (LongInt));

Description

The intrinsic ‘LongBool’ represents boolean values, but occupies the same memory space as
a ‘LongInt’. It is used when you need to define a parameter or record that conforms to some
external library or system specification.

Conforming to

‘LongBool’ is a Borland Pascal extension.

Example

program LongBoolDemo;
var

a: LongBool;
begin

LongInt (a) := 1;
if a then WriteLn (’Ord (True) = 1’)

end.

See also

Section 6.2.9 [Boolean (Intrinsic)], page 67, [Boolean], page 277, [True], page 425, [False],
page 313, [CBoolean], page 284, [ByteBool], page 279, [ShortBool], page 407, [MedBool],
page 351, [WordBool], page 439, [LongestBool], page 342.

LongCard

Synopsis

type
LongCard = Cardinal attribute (Size = BitSizeOf (LongInt));

342 The GNU Pascal Manual

Description

‘LongCard’ is an unsigned integer type which is longer than ‘Cardinal’. On most platforms
it is 64 bits wide and thus has a range of ‘0..18446744073709551615’.

‘LongCard’ in GNU Pascal is compatible to ‘long long unsigned int’ in GNU C.
There are lots of other integer types in GPC, see Section 6.2.3 [Integer Types], page 62.

Conforming to

‘LongCard’ is a GNU Pascal extension.

Example

program LongCardDemo;
var

a: LongCard;
begin

a := 42;
WriteLn (a)

end.

See also

Section 6.2.3 [Integer Types], page 62, Section 6.2.11.1 [Subrange Types], page 68.

LongestBool

Synopsis

type
LongestBool = Boolean attribute (Size = BitSizeOf (LongestInt));

Description

The intrinsic ‘LongestBool’ represents boolean values, but occupies the same memory space
as a ‘LongestInt’. It is used when you need to define a parameter or record that conforms to
some external library or system specification.

Conforming to

‘LongestBool’ is a GNU Pascal extension.

Example

program LongestBoolDemo;
var

a: LongestBool;
begin

LongestInt (a) := 1;
if a then WriteLn (’Ord (True) = 1’)

end.

Chapter 8: The Alphabetical GPC Language Reference 343

See also

Section 6.2.9 [Boolean (Intrinsic)], page 67, [Boolean], page 277, [True], page 425, [False],
page 313, [CBoolean], page 284, [ByteBool], page 279, [ShortBool], page 407, [MedBool],
page 351, [WordBool], page 439, [LongBool], page 341.

LongestCard

Synopsis

type
LongestCard = Cardinal attribute (Size = BitSizeOf (LongestInt));

Description

‘LongestCard’ is GPC’s longest-possible unsigned integer type. Currently, this is the same
as [LongCard], page 341. On most platforms it is 64 bits wide and thus has a range of
‘0..18446744073709551615’.

There are lots of other integer types in GPC, see Section 6.2.3 [Integer Types], page 62.

Conforming to

‘LongestCard’ is a GNU Pascal extension.

Example

program LongestCardDemo;
var

a: LongestCard;
begin

a := 42;
WriteLn (a)

end.

See also

Section 6.2.3 [Integer Types], page 62, Section 6.2.11.1 [Subrange Types], page 68.

LongestInt

Synopsis

type
LongestInt = LongInt; { might get bigger than LongInt someday }

Description

‘LongestInt’ is GPC’s longest-possible signed integer type. Currently, this is the same
as [LongInt], page 345. On most platforms it is 64 bits wide and thus has a range of
‘-9223372036854775808..9223372036854775807’.

There are lots of other integer types in GPC, see Section 6.2.3 [Integer Types], page 62.

344 The GNU Pascal Manual

Conforming to

‘LongestInt’ is a GNU Pascal extension.

Example

program LongestIntDemo;
var

a: LongestInt;
begin

a := 42;
WriteLn (a)

end.

See also

Section 6.2.3 [Integer Types], page 62, Section 6.2.11.1 [Subrange Types], page 68.

LongestReal

(Under construction.)

Synopsis

type
LongestReal = LongReal; { might get bigger than LongReal someday }

Description

Conforming to

‘LongestReal’ is a GNU Pascal extension.

Example

program LongestRealDemo;
var

a: LongestReal;
begin

a := 42;
WriteLn (a)

end.

See also

LongestWord

Synopsis

type
LongestWord = LongestCard;

Chapter 8: The Alphabetical GPC Language Reference 345

Description

‘LongestWord’ is GPC’s longest-possible unsigned integer type. Currently, this is the same
as [LongWord], page 346. On most platforms it is 64 bits wide and thus has a range of
‘0..18446744073709551615’. (It is the same as [LongestCard], page 343.)

There are lots of other integer types in GPC, see Section 6.2.3 [Integer Types], page 62.

Conforming to

‘LongestWord’ is a GNU Pascal extension.

Example

program LongestWordDemo;
var

a: LongestWord;
begin

a := 42;
WriteLn (a)

end.

See also

Section 6.2.3 [Integer Types], page 62, Section 6.2.11.1 [Subrange Types], page 68.

LongInt

Synopsis

type
LongInt { built-in type }

Description

‘LongInt’ is a signed integer type which is longer than ‘Integer’. On most platforms it is
64 bits wide and thus has a range of ‘-9223372036854775808..9223372036854775807’.

‘LongInt’ in GNU Pascal is compatible to ‘long long int’ in GNU C.
There are lots of other integer types in GPC, see Section 6.2.3 [Integer Types], page 62.

Conforming to

‘LongInt’ is a Borland Pascal extension. Borland Pascal defines ‘LongInt’ as a 32-bit signed
integer type ([Integer], page 335 in GNU Pascal).

Example

program LongIntDemo;
var

a: LongInt;
begin

a := 42;
WriteLn (a)

end.

346 The GNU Pascal Manual

See also

Section 6.2.3 [Integer Types], page 62, Section 6.2.11.1 [Subrange Types], page 68.

LongReal

(Under construction.)

Synopsis

type
LongReal { built-in type }

Description

Conforming to

‘LongReal’ is a GNU Pascal extension.

Example

program LongRealDemo;
var

a: LongReal;
begin

a := 42;
WriteLn (a)

end.

See also

LongWord

Synopsis

type
LongWord = LongCard;

Description

‘LongWord’ is an unsigned integer type which is larger than ‘Word’. On most platforms it is
64 bits wide and thus has a range of ‘0..18446744073709551615’. It is the same as [LongCard],
page 341.

‘LongWord’ in GNU Pascal is compatible to ‘long long unsigned int’ in GNU C.
There are lots of other integer types in GPC, see Section 6.2.3 [Integer Types], page 62.

Conforming to

‘LongWord’ is a GNU Pascal extension.

Chapter 8: The Alphabetical GPC Language Reference 347

Example

program LongWordDemo;
var

a: LongWord;
begin

a := 42;
WriteLn (a)

end.

See also

Section 6.2.3 [Integer Types], page 62, Section 6.2.11.1 [Subrange Types], page 68.

Low

Synopsis

function Low (ordinal type or variable): ordinal type;

or
function Low (array type or variable): array element type;

or
function Low (string variable): Integer;

Description

For ordinal types or variables of that type, ‘Low’ returns the lowest value a variable of that
type can assume.

For array types or variables of that type, ‘Low’ returns the lowest index a variable of that
type can assume. Note: the result is of the same type as the array index is. If the array has
more than one dimension, ‘Low’ returns the lowest index in the first dimension.

If the argument is a string variable, ‘Low’ returns one.

Conforming to

‘Low’ is a Borland Pascal extension.

Example

program LowDemo;
type

Colors = (Red, Green, Blue);
var

Col: array [12 .. 20] of Colors;
Foo: 12 .. 20;
Bar: Integer;

begin
Foo := Low (Col); { returns 12 }
Col[Foo] := Low (Col[Foo]); { returns Red }
Bar := Low (Integer) { returns lowest ‘‘Integer’’ value }

end.

348 The GNU Pascal Manual

See also

[High], page 325

LT

(Under construction.)

Synopsis

function LT (S1, S2: String): Boolean;

Description

Conforming to

‘LT’ is an ISO 10206 Extended Pascal extension.

Example

See also

LTPad

(Under construction.)

Synopsis

function LTPad (S1, S2: String): Boolean;

Description

Conforming to

‘LTPad’ is a GNU Pascal extension.

Example

See also

Chapter 8: The Alphabetical GPC Language Reference 349

Mark

(Under construction.)

Synopsis

procedure Mark (var P: Pointer);

Description

Conforming to

‘Mark’ is a UCSD Pascal extension.

Example

See also

Max

(Under construction.)

Synopsis

function Max (x1, x2: ordinal or real type): same type;

Description

Conforming to

‘Max’ is a GNU Pascal extension.

Example

See also

MaxChar

(Under construction.)

Synopsis

Description

The value of MaxChar is the largest value of Char.

350 The GNU Pascal Manual

Conforming to

‘MaxChar’ is an ISO 10206 Extended Pascal extension.

Example

See also

MaxInt

(Under construction.)

Synopsis

Description

The MaxInt constant defines the maximum value of Integer. This constant is a built-in
compiler value.

Conforming to

‘MaxInt’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

See also

MaxReal

(Under construction.)

Synopsis

Description

Conforming to

‘MaxReal’ is an ISO 10206 Extended Pascal extension.

Example

See also

[MinReal], page 354.

Chapter 8: The Alphabetical GPC Language Reference 351

MedBool

Synopsis

type
MedBool = Boolean attribute (Size = BitSizeOf (MedInt));

Description

The intrinsic ‘MedBool’ represents boolean values, but occupies the same memory space as
a ‘MedInt’. It is used when you need to define a parameter or record that conforms to some
external library or system specification.

Conforming to

‘MedBool’ is a GNU Pascal extension.

Example

program MedBoolDemo;
var

a: MedBool;
begin

MedInt (a) := 1;
if a then WriteLn (’Ord (True) = 1’)

end.

See also

Section 6.2.9 [Boolean (Intrinsic)], page 67, [Boolean], page 277, [True], page 425, [False],
page 313, [CBoolean], page 284, [ByteBool], page 279, [ShortBool], page 407, [WordBool],
page 439, [LongBool], page 341, [LongestBool], page 342.

MedCard

Synopsis

type
MedCard = Cardinal attribute (Size = BitSizeOf (MedInt));

Description

‘MedCard’ is an unsigned integer type which is not smaller than ‘Cardinal’. On most
platforms it actually is the same as ‘Cardinal’ and 32 bits wide and thus has a range of
‘0..4294967295’.

‘MedCard’ in GNU Pascal is compatible to ‘long unsigned int’ in GNU C. This compatibility
is the reason why ‘MedCard’ exists.

There are lots of other integer types in GPC, see Section 6.2.3 [Integer Types], page 62.

Conforming to

‘MedCard’ is a GNU Pascal extension.

352 The GNU Pascal Manual

Example

program MedCardDemo;
var

a: MedCard;
begin

a := 42;
WriteLn (a)

end.

See also

Section 6.2.3 [Integer Types], page 62, Section 6.2.11.1 [Subrange Types], page 68.

MedInt

Synopsis

type
MedInt { built-in type }

Description

‘MedInt’ is a signed integer type which is not smaller than ‘Integer’. On most plat-
forms it actually is the same as ‘Integer’ and 32 bits wide and thus has a range of
‘-2147483648..2147483647’.

‘MedInt’ in GNU Pascal is compatible to ‘long int’ in GNU C. This compatibility is the
reason why ‘MedInt’ exists.

There are lots of other integer types in GPC, see Section 6.2.3 [Integer Types], page 62.

Conforming to

‘MedInt’ is a GNU Pascal extension.

Example

program MedIntDemo;
var

a: MedInt;
begin

a := 42;
WriteLn (a)

end.

See also

Section 6.2.3 [Integer Types], page 62, Section 6.2.11.1 [Subrange Types], page 68.

Chapter 8: The Alphabetical GPC Language Reference 353

MedReal

(Under construction.)

Synopsis

type
MedReal = Real;

Description

Conforming to

‘MedReal’ is a GNU Pascal extension.

Example

program MedRealDemo;
var

a: MedReal;
begin

a := 42;
WriteLn (a)

end.

See also

MedWord

Synopsis

type
MedWord = MedCard;

Description

‘MedWord’ is an unsigned integer type which is not smaller than ‘Word’. On most platforms
it actually is the same as ‘Word’ and 32 bits wide and thus has a range of ‘0..4294967295’. It
is the same as [MedCard], page 351.

‘MedWord’ in GNU Pascal is compatible to ‘long unsigned int’ in GNU C. This compatibility
is the reason why ‘MedWord’ exists.

There are lots of other integer types in GPC, see Section 6.2.3 [Integer Types], page 62.

Conforming to

‘MedWord’ is a GNU Pascal extension.

354 The GNU Pascal Manual

Example

program MedWordDemo;
var

a: MedWord;
begin

a := 42;
WriteLn (a)

end.

See also

Section 6.2.3 [Integer Types], page 62, Section 6.2.11.1 [Subrange Types], page 68.

Min

(Under construction.)

Synopsis

function Min (x1, x2: ordinal or real type): same type;

Description

Conforming to

‘Min’ is a GNU Pascal extension.

Example

See also

MinReal

(Under construction.)

Synopsis

Description

Conforming to

‘MinReal’ is an ISO 10206 Extended Pascal extension.

Example

See also

[MaxReal], page 350.

Chapter 8: The Alphabetical GPC Language Reference 355

MkDir

Synopsis

procedure MkDir (Directory: String);

Description

‘MkDir’ creates the given Directory, if its argument is a valid parameter to the related oper-
ating system’s function. Otherwise a runtime error is caused.

Conforming to

‘MkDir’ is a Borland Pascal extension.

Example

program MkDirDemo;
var

Foo: String (127);
begin

WriteLn (’Enter directory name to create:’);
ReadLn (Foo);
{$I-} { Don’t abort program on error }
MkDir (Foo);
if IOResult <> 0 then
WriteLn (’Directory ‘’, Foo, ’’’ could not be created’)

else
WriteLn (’Okay’)

end.

See also

[ChDir], page 285, [RmDir], page 397

mod

(Under construction.)

Synopsis

operator mod (p, q: Integer) = r: Integer;

Description

Integer remainder operator.

Conforming to

‘mod’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

356 The GNU Pascal Manual

Example

See also

Chapter 9 [Keywords], page 443.

module

(Under construction.)

Synopsis

Description

EP style or PXSC style module.

Conforming to

‘module’ is an ISO 10206 Extended Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

Move

(Under construction.)

Synopsis

procedure Move (const Source; var Dest; Count: Integer);

Description

Conforming to

‘Move’ is a Borland Pascal extension.

Example

See also

Chapter 8: The Alphabetical GPC Language Reference 357

MoveLeft

(Under construction.)

Synopsis

procedure MoveLeft (const Source; var Dest; Count: Integer);

Description

Conforming to

‘MoveLeft’ is a UCSD Pascal extension.

Example

See also

MoveRight

(Under construction.)

Synopsis

procedure MoveRight (const Source; var Dest; count: Integer);

Description

Conforming to

‘MoveRight’ is a UCSD Pascal extension.

Example

See also

name

(Under construction.)

Synopsis

procedure/function header; external name name;
procedure/function header; attribute (name = name);
or
variable declaration; external name name;
variable declaration; attribute (name = name);
or
unit Name; attribute (name = name);

358 The GNU Pascal Manual

Description

The ‘name’ directive declares the external name of a procedure, function or variable. It can
be used after ‘external’ or within ‘attribute’.

This directive declares the external name of a procedure, function or variable. The external
name of the routine is given explicitly as a case-sensitive constant string expression. This is
useful when interfacing with libraries written in other languages.

With this extension it is possible to access all external functions, for example the X11 interface
functions, and not only those written in lowercase.

‘name’ can also be applied to units and module interfaces. In this case it denotes the pre-
fix prepended to the external name of the initializer of the unit: While it is normally called
‘init_Modulename’, it is called ‘init_name_Modulename’ when ‘name’ is given.

This is not of interest under normal circumstances since the initializers are called automat-
ically. It can help avoiding conflicts when there are several units of the same name within one
program. Again, this does not happen normally, but e.g., when a program uses a unit/module
that has the same name as one of the units the RTS consists of: The RTS uses ‘GPC’ as the
name for its units to avoid conflicts.

In the future, a ‘name’ directive applied to units, modules and programs (the latter is recog-
nized syntactically already, but has no effect yet) will also affect the default external name of
routines and variables which have no ‘name’ directive themselves. Again, this is mostly useful
for libraries etc., and will not be necessary for normal units, modules and programs.

Conforming to

‘name’ is a Borland Pascal extension. ‘attribute’ and the application of ‘name’ to units,
modules and programs are GNU Pascal extensions.

Example

program NameDemo;

{ Make two variables aliases of each other by using ‘name’.
This is not good style. If you must have aliases for any reason,
‘absolute’ declarations may be the lesser evil ... }

var
Foo: Integer; attribute (name = ’Foo_Bar’);
Bar: Integer; external name ’Foo_Bar’;

{ A function from the C library }
function PutS (Str: CString): Integer; external name ’puts’;

var
Result: Integer;

begin
Result := PutS (’Hello World!’);
WriteLn (’puts wrote ’, Result, ’ characters (including a newline).’);
Foo := 42;
WriteLn (’Foo = ’, Foo);
Bar := 17;
WriteLn (’Setting Bar to 17.’);
WriteLn (’Now, Foo = ’, Foo, ’!!!’)

end.

Chapter 8: The Alphabetical GPC Language Reference 359

See also

Chapter 9 [Keywords], page 443, [attribute], page 270, [external], page 312, Section 6.11.1
[Importing Libraries from Other Languages], page 98.

NE

(Under construction.)

Synopsis

function NE (S1, S2: String): Boolean;

Description

Conforming to

‘NE’ is an ISO 10206 Extended Pascal extension.

Example

See also

near

Synopsis

Description

The ‘near’ directive can be appended to a procedure or function heading but is ignored
by GPC. It is there for Borland compatibility, only. (Since the GNU compilers provide a flat
memory model, the distinction between ‘near’ and ‘far’ pointers is void.)

Conforming to

‘near’ is a Borland Pascal extension.

Example

program NearDemo;

var
p: procedure;

{$W no-near-far} { Don’t warn about the uselessness of ‘near’ }

procedure Foo; near; { ‘near’ has no effect in GPC }
begin

360 The GNU Pascal Manual

WriteLn (’Foo’)
end;

begin
p := Foo; { Works, despite the ‘near’. }
p

end.

See also

Chapter 9 [Keywords], page 443, [far], page 313.

NEPad

(Under construction.)

Synopsis

function NEPad (S1, S2: String): Boolean;

Description

Conforming to

‘NEPad’ is a GNU Pascal extension.

Example

See also

New

(Under construction.)

Synopsis

procedure New (var P: any Pointer);

or
procedure New (var P: Pointer to a variant record; tag fields);

or
procedure New (var P: Pointer to a schema; discriminants);

or
procedure New (var P: Pointer to an object; constructor call);

or
function New (any Pointer type): same type;

or

Chapter 8: The Alphabetical GPC Language Reference 361

function New (variant record Pointer type;
tag fields): same type;

or
function New (schema Pointer type;

discriminants): same type;

or
function New (object Pointer type;

constructor call): same type;

Description

Conforming to

‘New’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

See also

NewCString

(Under construction.)

Synopsis

function NewCString (const S: String): CString;

Description

Conforming to

‘NewCString’ is a GNU Pascal extension.

Example

See also

nil

Synopsis

‘nil’ is a predefined constant

Description

‘nil’ is a predefined pointer constant that indicates an unassigned pointer. “nil” stands for
“not in list”. Every pointer type can be associated with this constant.

362 The GNU Pascal Manual

Conforming to

‘nil’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

program NilDemo;
const

NodeNum = 10;
type

PNode = ^TNode;
TNode = record

Key: Integer;
Next: PNode

end;
var

Root, Node: PNode;
Foo: Integer;

begin
New (Root);
Root^.Key := 1; { Set root key }
Node := Root;
for Foo := 2 to NodeNum do { Create linked list with NODE_NUM nodes }

begin
New (Node^.Next);
Node := Node^.Next;
Node^.Key := Foo { Set key }

end;
Node^.Next := nil; { Mark end of linked list }
{ Shorten list by removing its first element until list is empty }
while Root <> nil do

begin
Node := Root;
WriteLn (’Current key:’, Root^.Key);
Root := Root^.Next;
Dispose (Node);
Node := nil { Indicate old node is not assigned }

end
end.

See also

Chapter 9 [Keywords], page 443, [Assigned], page 269, [Pointer], page 377

not

(Under construction.)

Synopsis

operator not (b1, b2: Boolean) = Result: Boolean;
or

operator not (i1, i2: integer type) = Result: integer type;

Chapter 8: The Alphabetical GPC Language Reference 363

Description

Boolean or bitwise negation operator.

Conforming to

‘not’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

See also

Chapter 9 [Keywords], page 443.

Null

Synopsis

var
Null: Void absolute 0;

Description

‘Null’ is a predefined variable at address ‘nil’. ‘Null’ can be passed as a “void” argument to a
procedure, function or operator expecting a “var” parameter. Note: Make sure they can handle
this case, otherwise this is likely to cause an exception and the program will be terminated.
Since ‘Null’ is an L-value, it can be taken as “nil-reference”.

Conforming to

‘Null’ is a Borland Delphi extension.

Example

program NullDemo;
type

PString = ^String;
var

Com1: String (25) = ’This is an amazing number’;
Com2: String (25) = ’This is a boring number’;

procedure FooBar (Foo: Integer; var Comment: PString);
begin

if Odd (Foo) then
WriteLn (’FooBar:’, Foo, ’ is odd’)
else
WriteLn (’FooBar:’, Foo, ’ is even’);

if @Comment <> nil then
if not Odd (Foo) then

Comment := @Com1
else

364 The GNU Pascal Manual

Comment := @Com2
end;

var
S: String (25);
P: PString value @S;

begin
{ FooBar allows you to leave out variables

for any information you might not need }
FooBar (1, Null);
{ But FooBar is flexible, after all }
FooBar (6, P);
WriteLn (’FooBar said about 6: ‘’, P^, ’’’’)

end.

See also

[nil], page 361

object

Synopsis

Description

The keyword ‘object’ is used to declare a new object type:

type
foo = object
a: Integer;
constructor Init;
procedure Bar (x: Integer); virtual;

end;

(For a longer example, see Section 6.8 [OOP], page 84.)

Conforming to

GNU Pascal follows the Borland Pascal 7.0 object model.
ISO Pascal does not support Object-oriented programming. There is an ANSI draft for

an “Object Pascal” language which is not yet supported by GPC, but planned. The Delphi
language, also called “Object Pascal” by Borland, is currently not supported by GPC either.

Example

See also

Chapter 9 [Keywords], page 443, Section 6.8 [OOP], page 84, [record], page 390.

Chapter 8: The Alphabetical GPC Language Reference 365

Odd

Synopsis

function Odd (i: Integer): Boolean;

Description

‘Odd’ checks the parity of its argument ‘i’. It returns ‘True’ if the argument is odd, ‘False’
if it is even.

Conforming to

‘Odd’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

program OddDemo;
var

Foo: Integer;
begin

Write (’Please enter an odd number: ’);
ReadLn (Foo);
if not Odd (Foo) then

WriteLn (’Odd’’s not even! Something’’s odd out there ...’)
else

WriteLn (Foo, ’ is pretty odd.’)
end.

See also

of

(Under construction.)

Synopsis

Description

Part of an ‘array’, ‘set’ or typed ‘file’ type declaration, a ‘case’ statement, a variant
‘record’ type or a ‘type of’ type inquiry.

Conforming to

‘of’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

See also

Chapter 9 [Keywords], page 443.

366 The GNU Pascal Manual

only

(Under construction.)

Synopsis

Description

Import specification.

Conforming to

‘only’ is an ISO 10206 Extended Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

operator

(Under construction.)

Synopsis

Description

Operator declaration.

Conforming to

‘operator’ is PASCAL SC extension.

Example

See also

Chapter 9 [Keywords], page 443.

or

Synopsis

operator or (operand1, operand2: Boolean) = Result: Boolean;

or
operator or (operand1, operand2: integer type) = Result: integer type;

or
procedure or (var operand1: integer type; operand2: integer type);

Chapter 8: The Alphabetical GPC Language Reference 367

Description

In GNU Pascal, ‘or’ has three built-in meanings:
1. Logical “or” between two ‘Boolean’-type expressions. The result of the operation is of

‘Boolean’ type.
By default, ‘or’ acts as a short-circuit operator in GPC: If the first operand is ‘True’, the
second operand is not evaluated because the result is already known to be ‘True’. You can
change this to complete evaluation using the ‘--no-short-circuit’ command-line option
or the ‘{$B+}’ compiler directive.

2. Bitwise “or” between two integer-type expressions. The result is of the common integer
type of both expressions.

3. Use as a “procedure”: ‘operand1’ is “or”ed bitwise with ‘operand2’; the result is stored in
‘operand1’.

Conforming to

The logical ‘or’ operator is defined in ISO 7185 Pascal.
According to ISO, you cannot rely on ‘or’ being a short-circuit operator. On the other

hand, GPC’s default behaviour does not contradict the ISO standard. (See [or else], page 369.)
However, since it seems to be a de-facto standard among ISO Pascal compilers to evaluate both
operands of ‘or’, GPC switches to ‘--no-short-circuit’ mode if one of the language dialect op-
tions selecting ISO Pascal, for instance ‘--extended-pascal’, is given. Use ‘--short-circuit’
to override.

Use of ‘or’ as a bitwise operator for integers is a Borland Pascal extension.
Use of ‘or’ as a “procedure” is a GNU Pascal extension.

Example

program OrDemo;
var

a, b, c: Integer;
begin

if (a = 0) or (b = 0) then { logical ‘or’ }
c := 1

else if (a or b) = 0 then { bitwise ‘or’ }
c := 2

else
or (c, a) { same as ‘c := c or a’ }

end.

Note the difference between the logical ‘or’ and the bitwise ‘or’: When ‘a’ is 2 and ‘b’ is 4,
then ‘a or b’ is 6. Beware: ‘a or b = 0’ happens to mean the same as ‘(a = 0) and (b = 0)’.
(Note the ‘and’!)

Since bitwise ‘or’ has a higher priority than the ‘=’ operator, parentheses are needed in ‘if (a
= 0) or (b = 0)’ because otherwise ‘0 or b’ would be calculated first, and the remainder would
cause a parse error.

See also

Chapter 9 [Keywords], page 443, [and], page 260, [xor], page 441, Section 6.3 [Operators],
page 80.

368 The GNU Pascal Manual

Ord

Synopsis

function Ord (ordinal value): Integer;

Description

‘Ord’ returns the ordinal value of any ordinal variable or constant. For characters, this would
be the ASCII code corresponding to the character. For enumerated types, this would be the
ordinal value of the constant or variable (remember that ordinal value of enumerated constants
start from zero).

Conforming to

‘Ord’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

program OrdDemo;
var

Ch: Char;
Day: (Monday, Tuesday, Wednesday, Thursday, Friday);

begin
Ch := ’A’;
WriteLn (Ord (Ch)); { 65 }
Day := Thursday;
WriteLn (Ord (Day)); { 3 }

end.

See also

Section 6.2.6 [Character Types], page 66, Section 6.2.2 [Ordinal Types], page 62, [Chr],
page 286, [Char], page 285

or else

Synopsis

{ ‘or else’ is built in. A user-defined operator cannot consist of
two words. }

operator or else (operand1, operand2: Boolean) = Result: Boolean;

Description

‘or else’ is an alias for the short-circuit logical operator ‘or_else’.

Conforming to

While ‘or_else’ is defined in ISO 10206 Extended Pascal, ‘or else’ is a GNU Pascal exten-
sion.

Chapter 8: The Alphabetical GPC Language Reference 369

Example

program OrElseDemo;
var

a: Integer;
begin

ReadLn (a);
if (a = 0) or else (100 div a > 42) then { This is safe. }

WriteLn (’100 div a > 42’)
end.

See also

Chapter 9 [Keywords], page 443, [or else], page 369, [or], page 366, [and then], page 261.

or else

Synopsis

operator or_else (operand1, operand2: Boolean) = Result: Boolean;

Description

The ‘or_else’ short-circuit logical operator performs the same operation as the logical op-
erator ‘or’. But while the ISO standard does not specify anything about the evaluation of the
operands of ‘or’ – they may be evaluated in any order, or not at all – ‘or_else’ has a well-
defined behaviour: It evaluates the first operand. If the result is ‘True’, ‘or_else’ returns ‘True’
without evaluating the second operand. If it is ‘False’, the second operand is evaluated and
returned.

GPC by default treats ‘or’ and ‘or_else’ exactly the same. If you want, for some reason, to
have both operands of ‘or’ evaluated completely, you must assign both to temporary variables
and then use ‘or’ – or ‘or_else’, it does not matter.

Conforming to

‘or_else’ is an ISO 10206 Extended Pascal extension.
Some people think that the ISO standard requires both operands of ‘or’ to be evaluated.

This is false. What the ISO standard does say is that you cannot rely on a certain order of
evaluation of the operands of ‘or’; in particular things like the following program can crash
according to ISO Pascal, although they cannot crash when compiled with GNU Pascal running
in default mode.

program OrBug;
var

a: Integer;
begin

ReadLn (a);
if (a = 0) or (100 div a > 42) then { This is *not* safe! }
WriteLn (’You’’re lucky. But the test could have crashed ...’)

end.

370 The GNU Pascal Manual

Example

program Or_ElseDemo;
var

a: Integer;
begin

ReadLn (a);
if (a = 0) or_else (100 div a > 42) then { This is safe. }

WriteLn (’100 div a > 42’)
end.

See also

Chapter 9 [Keywords], page 443, [or else], page 368, [or], page 366, [and then], page 261.

otherwise

Synopsis

Default ‘case’ branch as part of the case . . . otherwise statement:

case expression of
selector: statement;
...
selector: statement

otherwise { ‘‘else’’ instead of ‘‘otherwise’’ is allowed }
statement;
...
statement

end

Description

‘otherwise’ starts a series of statements which is executed if no selector matches expression.
In this situation, ‘else’ is a synonym for otherwise.

Conforming to

‘otherwise’ is an ISO 10206 Extended Pascal extension.

Example

See [case], page 283.

See also

Chapter 9 [Keywords], page 443, Section 6.1.7.4 [case Statement], page 54, [case], page 283,
[else], page 302.

Chapter 8: The Alphabetical GPC Language Reference 371

Output

(Under construction.)

Synopsis

var
Output: Text;

Description

Conforming to

‘Output’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

See also

Pack

(Under construction.)

Synopsis

Description

procedure Pack (Source: unpacked array;
FirstElement: index type;
var Dest: packed array);

Conforming to

‘Pack’ is defined in ISO 7185 Pascal and supported by all known Pascal variants except
UCSD/Borland Pascal and its variants.

Example

See also

packed

Synopsis

372 The GNU Pascal Manual

Description

‘packed’ is a reserved word. According to ISO 7185 Pascal it can precede ‘array’ and ‘record’
type definitions to indicate that memory usage should be minimized for variables of this type,
possibly at the expense of loss of speed.

As a GNU Pascal extension, ‘packed’ can also be applied to Section 6.2.11.1 [Subrange
Types], page 68.

Conforming to

The reserved word ‘packed’ is defined in ISO 7185 Pascal.
According to ISO standard, only packed arrays of char with lower bound 1 qualify as strings

of fixed length. GNU Pascal neither requires ‘packed’ nor the lower bound of 1 here.

Example

program PackedDemo;

type
MonthInt = packed 1 .. 12; { needs one byte }
FastMonthInt = 1 .. 12; { needs e.g. four bytes }

FixString10 = packed array [1 .. 10] of Char;
FoxyString10 = array [0 .. 9] of Char;

Flags = packed array [1 .. 32] of Boolean; { needs four bytes }

Int15 = Integer attribute (Size = 15);
DateRec = packed record
Day: 1 .. 31; { five bits }
Month: MonthInt; { four bits }
Year: Int15 { 15 bits = -16384 .. 16383 }

end;

Dates = array [1 .. 1000] of DateRec;

var
S: FixString10;
T: FoxyString10;

begin
S := ’Hello!’; { blank padded }
WriteLn (S);

T := ’GNU Pascal’; { GPC extension: this also works. }
WriteLn (T)

end.
‘DateRec’ has 24 bits = 3 bytes in total; ‘Dates’ has 3000 bytes.

See also

Chapter 9 [Keywords], page 443, [Pack], page 371, [Unpack], page 431, [SizeOf], page 412,
[AlignOf], page 259, [BitSizeOf], page 275.

Chapter 8: The Alphabetical GPC Language Reference 373

Page

(Under construction.)

Synopsis

procedure Page ([var F: Text]);

or
procedure Page;

Description

Conforming to

‘Page’ is an ISO 10206 Extended Pascal extension.

Example

See also

PAnsiChar

(Under construction.)

Synopsis

type
PAnsiChar = ^AnsiChar;

Description

Conforming to

‘PAnsiChar’ is a Borland Delphi extension.

Example

program PAnsiCharDemo;
var

s: PAnsiChar;
begin

s := ’Hello, world!’;
{$X+}
WriteLn (s)

end.

See also

374 The GNU Pascal Manual

ParamCount

Synopsis

function ParamCount: Integer;

Description

‘ParamCount’ returns the number of command-line arguments given to the program.
‘ParamCount’ returns 0 if no arguments have been given to the program; the name of the
program as an implicit argument is not counted.

Conforming to

‘ParamCount’ is a Borland Pascal extension.

Example

program ParamCountDemo;

var
i: Integer;

begin
WriteLn (’You have invoked this program with ’,

ParamCount, ’ arguments.’);
WriteLn (’These are:’);
for i := 1 to ParamCount do

WriteLn (ParamStr (i))
end.

See also

[ParamStr], page 374.

ParamStr

(Under construction.)

Synopsis

function ParamStr (ParmNumber: Integer): String;

Description

Note: If you are using the Dos (DJGPP) or MS-Windows (mingw32) version of GPC and are
getting unexpected results from ‘ParamStr’, please see the section “Command-line Arguments
Handling in DJGPP” of the DJGPP FAQ list.

Conforming to

‘ParamStr’ is a Borland Pascal extension.

Chapter 8: The Alphabetical GPC Language Reference 375

Example

program ParamStrDemo;

var
i: Integer;

begin
WriteLn (’You have invoked this program with ’,

ParamCount, ’ arguments.’);
WriteLn (’These are:’);
for i := 1 to ParamCount do

WriteLn (ParamStr (i))
end.

See also

PChar

(Under construction.)

Synopsis

type
PChar = ^Char;

or

type
PChar = CString;

Description

Conforming to

‘PChar’ is a Borland Pascal extension.

Example

program PCharDemo;
var

s: PChar;
begin

s := ’Hello, world!’;
{$X+}
WriteLn (s)

end.

See also

376 The GNU Pascal Manual

Pi

(Under construction.)

Synopsis

Description

Conforming to

‘Pi’ is a Borland Pascal extension.

Example

See also

PObjectType

Synopsis

type
InternalSignedSizeType = Integer attribute (Size = BitSizeOf (SizeType));
PObjectType = ^const record

Size: SizeType;
NegSize: InternalSignedSizeType;
Parent: PObjectType;
Name: ^const String

end;

(Note: ‘^record’ is not valid syntax. It is just used here in the explanation because the
record type has no name by itself. Because of the added method pointers (see below), there is
no useful usage of the record type.)

Description

‘PObjectType’ is the type returned by ‘TypeOf’ and required by ‘SetType’. In fact, the record
pointed to (the VMT, “virtual method table”) also contains pointers to the virtual methods.
However, these are not declared in ‘PObjectType’ because they vary from object type to object
type. The fields declared here are those that are shared by every object type and can be accessed
via ‘TypeOf’.

‘Size’ contains the size of the object type, ‘NegSize’ contains the size negated (for runtime
checks). ‘Parent’ contains a pointer to the parent type’s VMT (or nil if the type has no parent).
‘Name’ points to a string containing the type’s name.

Conforming to

‘PObjectType’ is a GNU Pascal extension.

Example

Chapter 8: The Alphabetical GPC Language Reference 377

See also

[TypeOf], page 429, [SetType], page 404, Section 6.8 [OOP], page 84.

Pointer

(Under construction.)

Synopsis

type
Pointer { built-in type }

Description

Conforming to

‘Pointer’ is a Borland Pascal extension.

Example

program PointerDemo;
var

a: Integer;
b: Boolean;
p: Pointer;

begin
p := nil;
p := @a;
p := @b

end.

See also

Polar

(Under construction.)

Synopsis

function Polar (rho, phi: Real): Complex;

Description

Conforming to

‘Polar’ is an ISO 10206 Extended Pascal extension.

Example

See also

378 The GNU Pascal Manual

Pos

(Under construction.)

Synopsis

function Pos (SearchPattern, Source: String): Integer;

Description

Conforming to

‘Pos’ is a UCSD Pascal extension.

Example

See also

Position

(Under construction.)

Synopsis

function Position (var F: typed file);

Description

Conforming to

‘Position’ is an ISO 10206 Extended Pascal extension.

Example

See also

pow

(Under construction.)

Synopsis

operator pow (base: Real; exponent: Integer) = power: Real;

or
operator pow (base: Complex; exponent: Integer) = power: Complex;

Chapter 8: The Alphabetical GPC Language Reference 379

Description

Exponentiation operator with integer exponent.

Conforming to

‘pow’ is an ISO 10206 Extended Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

Pred

Synopsis

function Pred (i: ordinal type): ordinal type;

or

function Pred (i: ordinal type; j: Integer): ordinal type;

or, with extended syntax (‘--extended-syntax’ or ‘{$X+}’),

function Pred (p: Pointer type): Pointer type;

or

function Pred (p: Pointer type; j: Integer): Pointer type;

Description

Returns the predecessor of the ordinal type value ‘i’, or, if the second argument ‘j’ is given,
its ‘j’th predecessor. For integer values ‘i’, this is ‘i - 1’ (or ‘i - j’). (No, ‘Pred’ does not
work faster than plain subtraction. Both are optimized the same way, often to a single machine
instruction.)

If extended syntax is on, the argument may also be a pointer value. In this case, the address
is decremented by the size of the variable pointed to, or, if ‘j’ is given, by ‘j’ times the size of
the variable pointed to. If ‘p’ points to an element of an array, the returned pointer will point
to the (‘j’th) previous element of the array.

Conforming to

The ‘Pred’ function is defined in ISO 7185 Pascal. The optional second parameter is defined
in ISO 10206 Extended Pascal. Application of ‘Pred’ to pointers is defined in Borland Pascal.
The combination of the second argument with application to pointers is a GNU Pascal extension.

380 The GNU Pascal Manual

Example

program PredDemo;

type
Metasyntactical = (foo, bar, baz);

var
m: Metasyntactical;
c: Char;
a: array [1 .. 7] of Integer;
p: ^Integer;

begin
m := Pred (bar); { foo }
c := Pred (’Z’, 2); { ’X’ }
a[1] := 42;
a[4] := Pred (a[1]); { 41 }
a[5] := Pred (a[4], 3); { 38 }
{$X+}
p := @a[5];
p := Pred (p); { now p points to a[4] }
p := Pred (p, 3); { now p points to a[1] }

end.

See also

[Succ], page 419, [Dec], page 297, Section 6.6 [Pointer Arithmetics], page 82.

private

(Under construction.)

Synopsis

Description

GPC currently accepts but ignores the ‘private’ directive in object type declarations.

Conforming to

‘private’ is a Borland Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443, [protected], page 382, [public], page 385, [published],
page 385.

Chapter 8: The Alphabetical GPC Language Reference 381

procedure

(Under construction.)

Synopsis

Description

Procedure declaration.

Conforming to

‘procedure’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

See also

Chapter 9 [Keywords], page 443.

program

(Under construction.)

Synopsis

Description

Start of a Pascal program.

Conforming to

‘program’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

See also

Chapter 9 [Keywords], page 443.

property

Not yet implemented.

Synopsis

Description

Object properties.

382 The GNU Pascal Manual

Conforming to

‘property’ is an Object Pascal and a Borland Delphi extension.

Example

See also

Chapter 9 [Keywords], page 443.

protected

(Under construction.)

Synopsis

Description

The Extended Pascal meaning of ‘protected’ is supported by GPC.
GPC currently accepts but ignores the ‘protected’ directive in object type declarations.

Conforming to

Extended Pascal and Borland Pascal, but with different meanings.

Example

See also

Chapter 9 [Keywords], page 443, [const], page 291, [import], page 328, [private], page 380,
[public], page 385, [published], page 385.

PtrCard

(Under construction.)

Synopsis

type
PtrCard = Cardinal attribute (Size = BitSizeOf (Pointer));

Description

An unsigned integer type of the same size as a pointer.

Conforming to

‘PtrCard’ is a GNU Pascal extension.

Chapter 8: The Alphabetical GPC Language Reference 383

Example

program PtrCardDemo;
var

a: PtrCard;
p: Pointer;

begin
GetMem (p, 10);
a := PtrCard (p);
Inc (a);
p := Pointer (a)

end.

See also

PtrDiffType

(Under construction.)

Synopsis

type
PtrDiffType { built-in type }

Description

‘PtrDiffType’ is a (signed) integer type to represent the difference between two positions in
memory. It is not needed except for rather low-level purposes.

Conforming to

‘PtrDiffType’ is a GNU Pascal extension.

Example

program PtrDiffTypeDemo;
var

a: array [1 .. 10] of Integer;
d: PtrDiffType;
p, q: ^Integer;

begin
p := @a[1];
q := @a[4];
{$X+}
d := q - p

end.

See also

384 The GNU Pascal Manual

PtrInt

(Under construction.)

Synopsis

type
PtrCard = Integer attribute (Size = BitSizeOf (Pointer));

Description

A signed integer type of the same size as a pointer.

Conforming to

‘PtrInt’ is a GNU Pascal extension.

Example

program PtrIntDemo;
var

a: PtrInt;
p: Pointer;

begin
GetMem (p, 10);
a := PtrInt (p);
Inc (a);
p := Pointer (a)

end.

See also

PtrWord

(Under construction.)

Synopsis

type
PtrWord = PtrCard;

Description

An unsigned integer type of the same size as a pointer.

Conforming to

‘PtrWord’ is a GNU Pascal extension.

Chapter 8: The Alphabetical GPC Language Reference 385

Example

program PtrWordDemo;
var

a: PtrWord;
p: Pointer;

begin
GetMem (p, 10);
a := PtrWord (p);
Inc (a);
p := Pointer (a)

end.

See also

public

(Under construction.)

Synopsis

Description

GPC currently accepts but ignores the ‘public’ directive in object type declarations.

Conforming to

‘public’ is a Borland Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443, [private], page 380, [protected], page 382, [published],
page 385.

published

(Under construction.)

Synopsis

Description

GPC currently accepts but ignores the ‘published’ directive in object type declarations.

Conforming to

‘published’ is a Borland Delphi extension.

386 The GNU Pascal Manual

Example

See also

Chapter 9 [Keywords], page 443, [private], page 380, [protected], page 382, [public], page 385.

Put

(Under construction.)

Synopsis

procedure Put (var F: typed file);

Description

Conforming to

‘Put’ is defined in ISO 7185 Pascal and supported by all known Pascal variants except
UCSD/Borland Pascal and its variants.

Example

See also

qualified

(Under construction.)

Synopsis

Description

Import specification.

Conforming to

‘qualified’ is an ISO 10206 Extended Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

Chapter 8: The Alphabetical GPC Language Reference 387

Random

(Under construction.)

Synopsis

Description

Conforming to

‘Random’ is a UCSD Pascal extension.

Example

See also

Randomize

(Under construction.)

Synopsis

Description

Conforming to

‘Randomize’ is a UCSD Pascal extension.

Example

See also

Re

Synopsis

function Re (z: Complex): Real;

Description

‘Re’ extracts the real part of the complex number ‘z’.

Conforming to

‘Re’ is an ISO 10206 Extended Pascal extension.

388 The GNU Pascal Manual

Example

program ReDemo;
var

z: Complex;
begin

z := Cmplx (1, 2);
WriteLn (Re (z) : 0 : 5)

end.

See also

[Cmplx], page 288, [Im], page 327, [Arg], page 266

Read

(Under construction.)

Synopsis

procedure Read (var F: typed file; variable);

or
procedure Read (var F: Text; variables);

or
procedure Read (variables);

Description

Conforming to

‘Read’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

See also

ReadLn

(Under construction.)

Synopsis

procedure ReadLn (var F: Text; variables);

or
procedure ReadLn (variables);

Description

Chapter 8: The Alphabetical GPC Language Reference 389

Conforming to

‘ReadLn’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

See also

ReadStr

(Under construction.)

Synopsis

procedure ReadStr (const S: String; variables);

Description

Conforming to

‘ReadStr’ is an ISO 10206 Extended Pascal extension.

Example

See also

Real

(Under construction.)

Synopsis

type
Real { built-in type }

Description

Conforming to

‘Real’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

program RealDemo;
var

a: Real;
begin

a := 42;
WriteLn (a)

end.

390 The GNU Pascal Manual

See also

Section 6.2.4 [Real Types], page 65, [Int], page 334, [Frac], page 319, [Round], page 398,
[Trunc], page 426.

record

Synopsis

In type definitions:

record type identifier = record
field identifier: type definition
...
field identifier: type definition

end;

or, with a variant part,

record type identifier = record
field identifier: type definition
...
field identifier: type definition
case bar: variant type of

selector: (field declarations);
selector: (field declarations);
...

end;

or, without a variant selector field,

record type identifier = record
field identifier: type definition
...
field identifier: type definition
case variant type of

selector: (field declarations);
selector: (field declarations);
...

end;

Description

The reserved word ‘record’ starts the definition of a new record type.

Records can be ‘packed’ to save memory usage at the expense of speed.

The variants of a variant record may – but are not required to – share one location in memory
(inside the record).

Sometimes variant records are used to emulate type casting in ISO 7185 Pascal. This is in
fact a violation of the standard and not portable. There is intentionally no possibility in ISO
7185 Pascal to emulate type casting.

Chapter 8: The Alphabetical GPC Language Reference 391

Conforming to

The reserved word ‘record’ and record types are defined in ISO 7185 Pascal.
According to ISO Pascal, the variant type must be an identifier. GNU Pascal, like UCSD

and Borland Pascal, also allows a subrange here.
Subranges in the variant fields, e.g. case Integer of 2 .. 5, are a GPC extension.

Example

program RecordDemo;

type
FooPtr = ^Foo;

Foo = record
Bar: Integer;
NextFoo: FooPtr;
case Choice: 1 .. 3 of
1: (a: Integer); { These three choices may share }
2: (b: Real); { one location in memory. }
3: (c: Char;

d: Boolean);
end;

Int5 = Integer attribute (Size = 5);
SmallFoo = packed record

b: 0 .. 3;
a: Int5;
r: Boolean

end; { needs 1 byte }

var
f: Foo;

begin
f.b := 3.14;
WriteLn (f.a) { yields some strange number which is part of the }

{ internal representation of the real number ‘f.b’. }
end.

See also

Chapter 9 [Keywords], page 443, [packed], page 371, Section 6.1.7.4 [case Statement], page 54

Release

(Under construction.)

Synopsis

procedure Release (P: Pointer);

392 The GNU Pascal Manual

Description

Conforming to

‘Release’ is a UCSD Pascal extension.

Example

See also

Rename

(Under construction.)

Synopsis

procedure Rename (var F: any file; NewName: String);

Description

Conforming to

‘Rename’ is a Borland Pascal extension.

Example

See also

repeat

Synopsis

repeat
statement;
...
statement;

until boolean expression;

Description

The ‘repeat ... until’ statement declares a loop. For further description see Section 6.1.7.7
[repeat Statement], page 57.

Conforming to

‘repeat’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Chapter 8: The Alphabetical GPC Language Reference 393

Example

program RepeatDemo;
var

Number, Sum: Integer;
begin

WriteLn (’Black Jack for beginners.’);
WriteLn (’You can choose your cards yourself. :-)’);
Sum := 0;
repeat

Write (’Your card (number)? ’);
ReadLn (Number);
Inc (Sum, Number);
WriteLn (’You have ’, Sum, ’.’)

until Sum >= 21;
if Sum = 21 then

WriteLn (’You win!’)
else

WriteLn (’You lose.’)
end.

See also

Chapter 9 [Keywords], page 443, Section 6.1.7.6 [while Statement], page 56, Section 6.1.7.5
[for Statement], page 55.

Reset

(Under construction.)

Synopsis

procedure Reset (var F: any file; [FileName: String;]
[BlockSize: Cardinal]);

Description

‘Reset’ opens an existing file for reading. The file pointer is positioned at the beginning of
the file.

Like ‘Rewrite’, ‘Append’ and ‘Extend’ do, ‘Reset’ accepts an optional second and third
parameter for the name of the file in the filesystem and, for untyped files, the block size of the
file. (For details, see [Rewrite], page 396.)

Conforming to

‘Reset’ is defined in ISO 7185 Pascal. The ‘BlockSize’ parameter is a Borland Pascal
extension. The ‘FileName’ parameter is a GNU Pascal extension.

Example

394 The GNU Pascal Manual

program ResetDemo;
var

Sample: Text;
s: String (42);

begin
Rewrite (Sample); { Open an internal file for writing }
WriteLn (Sample, ’Hello, World!’);
Reset (Sample); { Open it again for reading }
ReadLn (Sample, s);
WriteLn (s);
Close (Sample)

end.

See also

[Assign], page 269, [Rewrite], page 396, [Append], page 264, [Extend], page 310.

resident

Not yet implemented.

Synopsis

Description

Library export specification.

Conforming to

‘resident’ is a Borland Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

restricted

(Under construction.)

Synopsis

Description

Restricted type specification.

Conforming to

‘restricted’ is an ISO 10206 Extended Pascal extension.

Chapter 8: The Alphabetical GPC Language Reference 395

Example

See also

Chapter 9 [Keywords], page 443.

Result

(Under construction.)

Synopsis

Description

Conforming to

‘Result’ is a Borland Delphi extension.

Example

See also

Return

(Under construction.)

Synopsis

Description

Conforming to

‘Return’ is a GNU Pascal extension.

Example

See also

396 The GNU Pascal Manual

ReturnAddress

(Under construction.)

Synopsis

Description

Conforming to

‘ReturnAddress’ is a GNU Pascal extension.

Example

See also

Rewrite

(Under construction.)

Synopsis

procedure Rewrite (var F: any file; [FileName: String;]
[BlockSize: Cardinal]);

Description

‘Rewrite’ opens a file for writing. If the file does not exist, it is created. The file pointer is
positioned at the beginning of the file.

Like ‘Reset’, ‘Append’ and ‘Extend’ do, ‘Rewrite’ accepts an optional second and third
parameter.

The second parameter can specify the name of the file in the filesystem. If it is omitted, the
following alternative ways can be used to specify the name. There are so many different ways
in order to be compatible to the idiosyncrasies of as many other Pascal compilers as possible.
(If you know about yet other ways, let us know . . .)
− The ‘Assign’ procedure (see [Assign], page 269)
− The ‘Bind’ procedure (see [Bind], page 273)

The following ways are only available if the file is external, i.e. a global variable which is
mentioned in the program header. Otherwise, the file will be internal, i.e. get no name in the
file system (it may get a name temporarily, but will then be erased automatically again). This is
useful to store some data and read them back within a program without the need for permanent
storage.
− A command-line parameter of the form ‘--gpc-rts=-nf :name’ where f is the identifier of

the file variable.
− If the file was mentioned in the program header and the option ‘--transparent file names’

(see Section 5.1 [GPC Command Line Options], page 33) was set, the file name will be
identical to the identifier converted to lower-case.

− Otherwise, the user will be prompted for a file name.

Chapter 8: The Alphabetical GPC Language Reference 397

The last optional parameter determines the block size of the file. It is valid only for untyped
files. Almost always, 1 is the most reasonable value here. However, the existence of this param-
eter is a BP compatibility feature, and in BP it defaults to 128 because of historic misdesign.
Therefore, GPC requires this parameter to be present. In ‘--borland-pascal’ mode, it makes
it optional (like BP does), but warns about the strange default if omitted.

Conforming to

‘Rewrite’ is defined in ISO 7185 Pascal. The ‘BlockSize’ parameter is a Borland Pascal
extension. The ‘FileName’ parameter is a GNU Pascal extension.

Example

program RewriteDemo;
var

Sample: Text;
begin

Assign (Sample, ’sample.txt’);
Rewrite (Sample);
WriteLn (Sample, ’Hello, World!’);
Close (Sample)

end.

See also

[Assign], page 269, [Reset], page 393, [Append], page 264, [Extend], page 310, [Update],
page 432.

RmDir

Synopsis

procedure RmDir (Directory: String);

Description

‘RmDir’ removes the given Directory if its argument is a valid parameter to the related
operating system’s function. Otherwise a runtime error is caused.

Conforming to

‘RmDir’ is a Borland Pascal extension.

Example

program RmDirDemo;
var

Foo: String (127);
begin

WriteLn (’Enter directory name to remove: ’);
ReadLn (Foo);

398 The GNU Pascal Manual

{$I-} { Don’t abort on I/O errors }
RmDir (Foo);
if IOResult <> 0 then
WriteLn (’Directory ’, Foo, ’ could not be removed.’)

else
WriteLn (’Okay.’)

end.

See also

[ChDir], page 285, [MkDir], page 355

Round

Synopsis

function Round (x: Real): Integer;

Description

‘Round’ returns the nearest integer to ‘x’. The result is of type integer. In the case of
equidistance, the result is machine-dependent (or depends on the behaviour of the processor).

Conforming to

‘Round’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

program RoundDemo;
var

Foo: Real;
begin

Foo := 9.876543;
WriteLn (Round (Foo)); { Prints 10 }
Foo := 3.456789;
WriteLn (Round (Foo)); { Prints 3 }

WriteLn (Frac (12.345) : 1 : 5); { 0.34500 }
WriteLn (Int (12.345) : 1 : 5); { 12.00000 }
WriteLn (Round (12.345) : 1); { 12 }
WriteLn (Trunc (12.345) : 1); { 12 }

WriteLn (Frac (-12.345) : 1 : 5); { -0.34500 }
WriteLn (Int (-12.345) : 1 : 5); { -12.00000 }
WriteLn (Round (-12.345) : 1); { -12 }
WriteLn (Trunc (-12.345) : 1); { -12 }

WriteLn (Frac (12.543) : 1 : 5); { 0.54300 }
WriteLn (Int (12.543) : 1 : 5); { 12.00000 }
WriteLn (Round (12.543) : 1); { 13 }

Chapter 8: The Alphabetical GPC Language Reference 399

WriteLn (Trunc (12.543) : 1); { 12 }

WriteLn (Frac (-12.543) : 1 : 5); { -0.54300 }
WriteLn (Int (-12.543) : 1 : 5); { -12.00000 }
WriteLn (Round (-12.543) : 1); { -13 }
WriteLn (Trunc (-12.543) : 1); { -12 }

end.

See also

Section 6.2.4 [Real Types], page 65, [Real], page 389, [Int], page 334, [Frac], page 319, [Trunc],
page 426.

RunError

(Under construction.)

Synopsis

procedure RunError (ErrorCode: Integer);

Description

Conforming to

‘RunError’ is a Borland Pascal extension.

Example

See also

Seek

(Under construction.)

Synopsis

procedure Seek (var F: typed file; NewPosition: Integer);

Description

Conforming to

‘Seek’ is a UCSD Pascal extension.

Example

See also

400 The GNU Pascal Manual

SeekEOF

(Under construction.)

Synopsis

function SeekEOF ([var F: Text]): Boolean;

Description

Conforming to

‘SeekEOF’ is a Borland Pascal extension.

Example

See also

SeekEOLn

(Under construction.)

Synopsis

function SeekEOLn ([var F: Text]): Boolean;

Description

Conforming to

‘SeekEOLn’ is a Borland Pascal extension.

Example

See also

SeekRead

(Under construction.)

Synopsis

procedure SeekRead (var F: typed file; NewPosition: Integer);

Description

Chapter 8: The Alphabetical GPC Language Reference 401

Conforming to

‘SeekRead’ is an ISO 10206 Extended Pascal extension.

Example

See also

SeekUpdate

(Under construction.)

Synopsis

procedure SeekUpdate (var F: typed file; NewPosition: Integer);

Description

Conforming to

‘SeekUpdate’ is an ISO 10206 Extended Pascal extension.

Example

See also

SeekWrite

(Under construction.)

Synopsis

procedure SeekWrite (var F: typed file; NewPosition: Integer);

Description

Conforming to

‘SeekWrite’ is an ISO 10206 Extended Pascal extension.

Example

See also

402 The GNU Pascal Manual

segment

Not yet implemented.

Synopsis

Description

Segment specification.

Conforming to

‘segment’ is a UCSD Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

Self

(Under construction.)

Synopsis

Description

Conforming to

‘Self’ is an Object Pascal and a Borland Pascal extension.

Example

See also

set

Synopsis

In type definitions:
set of Type { built-in type class }

Description

A set contains zero or more elements from an ordinal type, e.g. Char, a subrange of Char,
or a subrange of an enumerated type or integers. Sets do not have any ordering (that is a
set containing ’B’ and ’A’ is the same as a set containing ’A’ and ’B’), nor can an element be
included more than once. Sets simply store the information about which elements are included
in the set.

Chapter 8: The Alphabetical GPC Language Reference 403

Conforming to

‘set’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

program SetDemo;

type
TCharSet = set of Char;

var
Ch: Char;
MyCharSet: TCharSet;

begin
MyCharSet := [’P’,’N’,’L’];
if ’A’ in MyCharSet then

WriteLn (’Wrong: A in set MyCharSet’)
else

WriteLn (’Right: A is not in set MyCharSet’);
Include (MyCharSet, ’A’); { A, L, N, P }
Exclude (MyCharSet, ’N’); { A, L, P }
MyCharSet := MyCharSet + [’B’,’C’]; { A, B, C, L, P }
MyCharSet := MyCharSet - [’C’,’D’]; { A, B, L, P }
WriteLn (’set MyCharSet contains:’);
for Ch in MyCharSet do

WriteLn (Ch);
end.

Set also Section 6.10.7 [Set Operations], page 96 or examples of some of the many set oper-
ations.

See also

Chapter 9 [Keywords], page 443, Section 6.10.7 [Set Operations], page 96, [in], page 329,
[Exclude], page 307, [Include], page 330.

SetFileTime

procedure SetFileTime (var f: any file;
AccessTime, ModificationTime: UnixTimeType);

Synopsis

Description

Conforming to

‘SetFileTime’ is a GNU Pascal extension.

Example

404 The GNU Pascal Manual

See also

SetLength

Synopsis

procedure SetLength (var S: String; NewLength: Integer);

Description

‘SetLength’ explicitly assigns a new length ‘NewLength’ to the string parameter S. The
contents of the string is not changed; if the operation increases the length of the string, the
characters appended at the end are undefined.

Conforming to

‘SetLength’ is a Borland Delphi 2.0 extension.

Example

program SetLengthDemo;

var
S: String (26);

begin
S := ’Hello, world!’;
SetLength (S, Length (’Hello’));
WriteLn (S); { ’Hello’ }

SetLength (S, 26);
WriteLn (S); { ’Hello, world!(%$xy"!#&~+(/]’ }

{ undefined characters ^^^^^^^^^^^^^^ }

SetLength (S, 42); { The overflow is *not* (yet) detected. }
WriteLn (S); { This might cause a runtime error or crash. }

end.

See also

[Length], page 339, [String], page 418.

SetType

Synopsis

procedure SetType (var SomeObject; VMT: PObjectType);

Chapter 8: The Alphabetical GPC Language Reference 405

Description

The procedure ‘SetType’ explicitly assigns a value to the implicit VMT field of an object.
This is normally done implicitly when a constructor is called.

You can use this to write a polymorphic I/O routine which reads an object from a file. In this
case, you cannot reasonably use ‘New’ to allocate the storage, but you ‘GetMem’ it and initialize
the object manually using ‘SetType’ before calling the constructor explicitly.

The only values you should assign to an object via ‘SetType’ are actual VMT pointers that
were obtained via ‘TypeOf’. In particular, declaring a record like the one shown in the description
of ‘PObjectType’ and assigning a pointer to it to an object via ‘SetType’ will usually not work
because the virtual method pointers are missing.

Since ‘SetType’ is a dangerous feature, it yields a warning unless ‘{$X+}’ is given.

Conforming to

‘SetType’ is a GNU Pascal extension.

Example

program SetTypeDemo;

type
BasePtr = ^BaseObj;

BaseObj = object
constructor Load;

end;

ChildObj = object (BaseObj)
constructor Load;

end;

constructor BaseObj.Load;
begin
end;

constructor ChildObj.Load;
begin
end;

{$X+}

{ This is somewhat fragmentary code. }
function GetObject (var InputFile: File) = Result: BasePtr;
const

VMTTable: array [1 .. 2] of PObjectType =
(TypeOf (BaseObj), TypeOf (ChildObj));

var
Size: Cardinal;
TypeID: Integer;
VMT: PObjectType;

begin

406 The GNU Pascal Manual

{ Read the size of the object from some file and store it in ‘Size’. }
BlockRead (InputFile, Size, SizeOf (Size));

{ Allocate memory for the object. }
GetMem (Result, Size);

{ Read some ID from some file. }
BlockRead (InputFile, TypeID, SizeOf (TypeID));

{ Look up the ‘VMT’ from some table. }
{ Range checking wouldn’t be a bad idea here ... }
VMT := VMTTable[TypeID];

SetType (Result^, VMT);

{ Now the object is ready, and the constructor can be called. }
{ Look up the correct constructor from some table and call it. }

end;

begin
end.

See also

[PObjectType], page 376, [TypeOf], page 429, Section 6.8 [OOP], page 84.

shl

Synopsis

operator shl (operand1, operand2: integer type) = Result: integer type;

or

procedure shl (var operand1: integer type; operand2: integer type);

Description

In GNU Pascal, ‘shl’ has two built-in meanings:

1. Bitwise shift left of an integer-type expression by another integer value. The result is of the
type of the first operand.

2. Use as a “procedure”: ‘operand1’ is shifted left by ‘operand2’; the result is stored in
‘operand1’.

Conforming to

‘shl’ is a Borland Pascal extension.

Use of ‘shl’ as a “procedure” is a GNU Pascal extension.

Chapter 8: The Alphabetical GPC Language Reference 407

Example

program ShlDemo;
var

a: Integer;
begin

a := 1 shl 7; { yields 128 = 2 pow 7 }
shl (a, 4) { same as ‘a := a shl 4’ }

end.

See also

Chapter 9 [Keywords], page 443, [shr], page 410, Section 6.3 [Operators], page 80.

ShortBool

Synopsis

type
ShortBool = Boolean attribute (Size = BitSizeOf (ShortInt));

Description

The intrinsic ‘ShortBool’ represents boolean values, but occupies the same memory space as
a ‘ShortInt’. It is used when you need to define a parameter or record that conforms to some
external library or system specification.

Conforming to

‘ShortBool’ is a GNU Pascal extension.

Example

program ShortBoolDemo;
var

a: ShortBool;
begin

ShortInt (a) := 1;
if a then WriteLn (’Ord (True) = 1’)

end.

See also

Section 6.2.9 [Boolean (Intrinsic)], page 67, [Boolean], page 277, [True], page 425, [False],
page 313, [CBoolean], page 284, [ByteBool], page 279, [MedBool], page 351, [WordBool],
page 439, [LongBool], page 341, [LongestBool], page 342.

408 The GNU Pascal Manual

ShortCard

Synopsis

type
ShortCard = Cardinal attribute (Size = BitSizeOf (ShortInt));

Description

‘ShortCard’ is an unsigned integer type which is not larger than ‘Cardinal’. On most
platforms it is 16 bits wide and thus has a range of ‘0..65535’.

‘ShortCard’ in GNU Pascal is compatible to ‘short unsigned int’ in GNU C.
There are lots of other integer types in GPC, see Section 6.2.3 [Integer Types], page 62.

Conforming to

‘ShortCard’ is a GNU Pascal extension.

Example

program ShortCardDemo;
var

a: ShortCard;
begin

a := 42;
WriteLn (a)

end.

See also

Section 6.2.3 [Integer Types], page 62, Section 6.2.11.1 [Subrange Types], page 68.

ShortInt

Synopsis

type
ShortInt { built-in type }

Description

‘ShortInt’ is a signed integer type which is not larger than ‘Integer’. On most platforms it
is 16 bits wide and thus has a range of ‘-32768..32767’.

‘ShortInt’ in GNU Pascal is compatible to ‘short int’ in GNU C.
There are lots of other integer types in GPC, see Section 6.2.3 [Integer Types], page 62.

Conforming to

‘ShortInt’ is a Borland Pascal extension. In Borland Pascal, ‘ShortInt’ is an 8-bit signed
integer type (‘ByteInt’ in GNU Pascal).

Chapter 8: The Alphabetical GPC Language Reference 409

Example

program ShortIntDemo;
var

a: ShortInt;
begin

a := 42;
WriteLn (a)

end.

See also

Section 6.2.3 [Integer Types], page 62, Section 6.2.11.1 [Subrange Types], page 68.

ShortReal

(Under construction.)

Synopsis

type
ShortReal { built-in type }

Description

Conforming to

‘ShortReal’ is a GNU Pascal extension.

Example

program ShortRealDemo;
var

a: ShortReal;
begin

a := 42;
WriteLn (a)

end.

See also

ShortWord

Synopsis

type
ShortWord = ShortCard;

410 The GNU Pascal Manual

Description

‘ShortWord’ is an unsigned integer type which is not larger than ‘Word’. On most platforms
it is 16 bits wide and thus has a range of ‘0..65535’. It is the same as [ShortCard], page 408.

‘ShortWord’ in GNU Pascal is compatible to ‘short unsigned int’ in GNU C.
There are lots of other integer types in GPC, see Section 6.2.3 [Integer Types], page 62.

Conforming to

‘ShortWord’ is a GNU Pascal extension.
‘ShortWord’ in GNU Pascal essentially corresponds to ‘Word’ in Borland Pascal and Delphi

where it is a 16-bit unsigned integer type.

Example

program ShortWordDemo;
var

a: ShortWord;
begin

a := 42;
WriteLn (a)

end.

See also

Section 6.2.3 [Integer Types], page 62, Section 6.2.11.1 [Subrange Types], page 68.

shr

Synopsis

operator shr (operand1, operand2: integer type) = Result: integer type;

or
procedure shr (var operand1: integer type; operand2: integer type);

Description

In GNU Pascal, ‘shr’ has two built-in meanings:
1. Bitwise shift right of an integer-type expression by another integer value. The result is of

the type of the first operand.
2. Use as a “procedure”: ‘operand1’ is shifted right by ‘operand2’; the result is stored in

‘operand1’.

Conforming to

‘shr’ is a Borland Pascal extension.
Unlike the Borland compilers, GNU Pascal cares about the signedness of the first operand:

If a signed integer with a negative value is shifted right, “one” bits are filled in from the left.
Use of ‘shr’ as a “procedure” is a GNU Pascal extension.

Chapter 8: The Alphabetical GPC Language Reference 411

Example

program ShrDemo;
var

a: Integer;
begin

a := 1024 shr 4; { yields 64 }
a := -127 shr 4; { yields -8 }
shr (a, 2) { same as ‘a := a shr 2’ }

end.

See also

Chapter 9 [Keywords], page 443, [shl], page 406, Section 6.3 [Operators], page 80.

Sin

Synopsis

function Sin (x: Real): Real;

or

function Sin (z: Complex): Complex;

Description

‘Sin’ returns the sine of the argument. The result is in the range ‘-1 <= Sin (x) <= 1’ for
real arguments.

Conforming to

The function ‘Sin’ is defined in ISO 7185 Pascal; its application to complex values is defined
in ISO 10206 Extended Pascal.

Example

program SinDemo;
begin

{ yields 0.5 since Sin (Pi / 6) = 0.5 }
WriteLn (Sin (Pi / 6) : 0 : 5)

end.

See also

[ArcTan], page 265, [Cos], page 294, [Ln], page 340, [Arg], page 266.

Single

(Under construction.)

412 The GNU Pascal Manual

Synopsis

type
Single = ShortReal;

Description

Conforming to

‘Single’ is a Borland Pascal extension.

Example

See also

SizeOf

Synopsis

function SizeOf (var x): SizeType;

Description

Returns the size of a type or variable in bytes.
‘SizeOf’ can be applied to expressions and type names. If the argument is a polymorphic

object, the size of its actual type is returned.

Conforming to

‘SizeOf’ is a UCSD Pascal extension.

Example

program SizeOfDemo;
var

a: Integer;
b: array [1 .. 8] of Char;

begin
WriteLn (SizeOf (a)); { Size of an ‘Integer’; often 4 bytes. }
WriteLn (SizeOf (Integer)); { The same. }
WriteLn (SizeOf (b)) { Size of eight ‘Char’s; usually 8 bytes. }

end.

See also

[BitSizeOf], page 275, [AlignOf], page 259, [TypeOf], page 429.

Chapter 8: The Alphabetical GPC Language Reference 413

SizeType

Synopsis

type
SizeType { built-in type }

Description

‘SizeType’ is an integer type (usually unsigned) to represent the size of objects in memory.

Conforming to

‘SizeType’ is a GNU Pascal extension.

Example

program SizeTypeDemo;
var

a: array [1 .. 10] of Integer;
Size: SizeType;

begin
Size := SizeOf (a);
WriteLn (Size)

end.

See also

SmallInt

Synopsis

type
SmallInt = ShortInt;

Description

‘SmallInt’ is a signed integer type which is not larger than ‘Integer’. On most platforms
it is 16 bits wide and thus has a range of ‘-32768..32767’. It is the same as ‘ShortInt’ (see
[ShortInt], page 408).

There are lots of other integer types in GPC, see Section 6.2.3 [Integer Types], page 62.

Conforming to

‘SmallInt’ is a Borland Delphi 2.0 extension.

414 The GNU Pascal Manual

Example

program SmallIntDemo;
var

a: SmallInt;
begin

a := 42;
WriteLn (a)

end.

See also

[ShortInt], page 408, Section 6.2.3 [Integer Types], page 62, Section 6.2.11.1 [Subrange Types],
page 68.

Sqr

Synopsis

function Sqr (i: integer type): integer type;
or

function Sqr (x: real type): real type;
or

function Sqr (z: complex type): complex type;

Description

Returns the square of the argument:
function Sqr (x: some type): some type;
begin
Sqr := x * x { or: x pow 2 }

end;

Conforming to

The function ‘Sqr’ is defined in ISO 7185 Pascal; its application to complex values is defined
in ISO 10206 Extended Pascal.

Example

program SqrDemo;

var
i: Complex;

begin
i := Cmplx (0, 1);
WriteLn (Re (Sqr (i)) : 0 : 3) { yields -1.000 }

end.

See also

[pow], page 378, [SqRt], page 415, [Abs], page 255, Section 6.3 [Operators], page 80.

Chapter 8: The Alphabetical GPC Language Reference 415

SqRt

Synopsis

function SqRt (x: real type): real type;

or
function SqRt (z: complex type): complex type;

Description

Returns the positive square root of the argument.
For real arguments, it is an error if the argument is negative.
For complex arguments, ‘SqRt’ returns the principal value of the root of the argument, i.e.

the root with positive real part, or, if the real part is zero, that one with positive imaginary
part.

Conforming to

The function ‘SqRt’ is defined in ISO 7185 Pascal; its application to complex values is defined
in ISO 10206 Extended Pascal.

Example

program SqRtDemo;

var
m1: Complex;

begin
m1 := Cmplx (-1, 0); { -1 }
WriteLn (Re (SqRt (m1)) : 6 : 3, Im (SqRt (m1)) : 6 : 3);
{ yields 1.000 -1.000, i.e. the imaginary unit, i }

end.

See also

[pow], page 378, [Sqr], page 414, Section 6.3 [Operators], page 80.

StandardError

(Under construction.)

Synopsis

Description

Conforming to

‘StandardError’ is a GNU Pascal extension.

416 The GNU Pascal Manual

Example

See also

StandardInput

(Under construction.)

Synopsis

Description

Conforming to

‘StandardInput’ is an ISO 10206 Extended Pascal extension.

Example

See also

StandardOutput

(Under construction.)

Synopsis

Description

Conforming to

‘StandardOutput’ is an ISO 10206 Extended Pascal extension.

Example

See also

StdErr

Synopsis

var
StdErr: Text;

Chapter 8: The Alphabetical GPC Language Reference 417

Description

The ‘StdErr’ variable is connected to the standard error file handle. To report er-
rors, you should prefer ‘WriteLn (StdErr, ’everything wrong’)’ over ‘WriteLn (’everything
wrong’)’.

Conforming to

‘StdErr’ is a GNU Pascal extension.

Example

program StdErrDemo;
var

Denominator: Integer;
begin

ReadLn (Denominator);
if Denominator = 0 then

WriteLn (StdErr, ParamStr (0), ’: division by zero’)
else

WriteLn (’1 / ’, Denominator, ’ = ’, 1 / Denominator)
end.

See also

[StandardError], page 415, [Output], page 371, [Input], page 333.

Str

(Under construction.)

Synopsis

procedure Str (x: integer or real; var Dest: String);

or
procedure Str (x: integer or real : field width; var Dest: String);

or
procedure Str (x: Real : field width : precision; var Dest: String);

or
procedure Str (repeated constructs as described above; var Dest: String);

Description

Conforming to

‘Str’ is a UCSD Pascal extension, generalized by Borland Pascal. The possibility to handle
more than one variable with one call to ‘Str’ is a GNU Pascal extension.

ISO 10206 Extended Pascal defines ‘WriteStr’ instead of ‘Str’.

Example

418 The GNU Pascal Manual

See also

[WriteStr], page 441.

String

(Under construction.)

Synopsis

Description

Conforming to

‘String’ is an Extended Pascal and a UCSD Pascal extension.

Example

See also

String2CString

(Under construction.)

Synopsis

function String2CString (const S: String): CString;

Description

Conforming to

‘String2CString’ is a GNU Pascal extension.

Example

See also

SubStr

Synopsis

function SubStr (S: String; FirstChar: Integer): String;

or
function SubStr (S: String; FirstChar, Count: Integer): String;

Chapter 8: The Alphabetical GPC Language Reference 419

Description

‘SubStr’ returns a sub-string of S starting with the character at position FirstChar. If Count
is given, such many characters will be copied into the sub-string. If Count is omitted, the
sub-string will range to the end of S.

If ‘Count’ is too large for the sub-string to fit in S or if ‘FirstChar’ exceeds the length of
S, ‘SubStr’ triggers a runtime error. (For a function returning the empty string instead, see
[Copy], page 293.)

Conforming to

‘SubStr’ is an ISO 10206 Extended Pascal extension.

Example

program SubStrDemo;
var

S: String (42);
begin

S := ’Hello’;
WriteLn (SubStr (S, 2, 3)); { yields ‘ell’ }
WriteLn (SubStr (S, 3)); { yields ‘llo’ }
WriteLn (SubStr (S, 4, 7)); { yields a runtime error }
WriteLn (SubStr (S, 42)); { yields a runtime error }

end.

See also

[Copy], page 293, Section 6.5 [String Slice Access], page 81.

Succ

Synopsis

function Succ (i: ordinal type): ordinal type;

or
function Succ (i: ordinal type; j: Integer): ordinal type;

or, with extended syntax (‘--extended-syntax’ or ‘{$X+}’),
function Succ (p: Pointer type): Pointer type;

or
function Succ (p: Pointer type; j: Integer): Pointer type;

Description

Returns the successor of the ordinal type value ‘i’, or, if the second argument ‘j’ is given, its
‘j’th successor. For integer values ‘i’, this is ‘i + 1’ (or ‘i + j’). (No, ‘Succ’ does not work faster
than plain addition. Both are optimized the same way, often to a single machine instruction.)

If extended syntax is on, the argument may also be a pointer value. In this case, the address
is incremented by the size of the variable pointed to, or, if ‘j’ is given, by ‘j’ times the size of
the variable pointed to. If ‘p’ points to an element of an array, the returned pointer will point
to the (‘j’th) next element of the array.

420 The GNU Pascal Manual

Conforming to

The ‘Succ’ function is defined in ISO 7185 Pascal. The optional second parameter is defined
in ISO 10206 Extended Pascal. Application of ‘Succ’ to pointers is defined in Borland Pascal.
The combination of the second argument with application to pointers is a GNU Pascal extension.

Example

program SuccDemo;

type
Metasyntactical = (foo, bar, baz);

var
m: Metasyntactical;
c: Char;
a: array [1 .. 7] of Integer;
p: ^Integer;

begin
m := Succ (foo); { bar }
c := Succ (’A’, 4); { ’E’ }
a[1] := 42;
a[2] := Succ (a[1]); { 43 }
a[5] := Succ (a[2], 7); { 50 }
{$X+}
p := @a[1];
p := Succ (p); { points to ‘a[2]’ now }
p := Succ (p, 3); { points to ‘a[5]’ now }

end.

See also

[Pred], page 379, [Inc], page 329, Section 6.6 [Pointer Arithmetics], page 82.

Text

(Under construction.)

Synopsis

type
Text { built-in type }

Description

Conforming to

‘Text’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Chapter 8: The Alphabetical GPC Language Reference 421

Example

program TextDemo;
var

t: Text;
begin

Rewrite (t, ’hello.txt’);
WriteLn (t, ’Hello, world!’)

end.

See also

[file], page 314, [AnyFile], page 263.

then

(Under construction.)

Synopsis

Description

Part of an ‘if’ statement or part of the ‘and then’ operator.

Conforming to

‘then’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

program ThenDemo;
var

i: Integer;
begin

Write (’Enter a number: ’);
ReadLn (i);
if i > 42 then
WriteLn (’The number is greater than 42’)

end.

See also

Chapter 9 [Keywords], page 443.

Time

Synopsis

function Time (T: TimeStamp): packed array [1 .. Time Length] of Char;

422 The GNU Pascal Manual

Description

Date takes a TimeStamp parameter and returns the time as a string (in the form of a packed
array of Char). Time length is an implementation defined invisible constant.

Conforming to

‘Time’ is an ISO 10206 Extended Pascal extension.

Example

Set [TimeStamp], page 422.

See also

[TimeStamp], page 422, [GetTimeStamp], page 323, [Date], page 296, Section 6.10.8 [Date
And Time Routines], page 97.

TimeStamp

Synopsis

type
TimeStamp = packed record

DateValid,
TimeValid : Boolean;
Year : Integer;
Month : 1 .. 12;
Day : 1 .. 31;
DayOfWeek : 0 .. 6; { 0 means Sunday }
Hour : 0 .. 23;
Minute : 0 .. 59;
Second : 0 .. 61; { to allow for leap seconds }
MicroSecond: 0 .. 999999;
TimeZone : Integer; { in seconds east of UTC }
DST : Boolean;
TZName1,
TZName2 : String (32);

end;

The fields ‘DateValid’, ‘TimeValid’, ‘Year’, ‘Month’, ‘Day’, ‘Hour’, ‘Minute’, ‘Second’ are
required by Extended Pascal, the other ones are extensions.

Description

The TimeStamp record holds all the information about a particular time. You can get the
current time with GetTimeStamp and you can get the date or time in a printable form using the
Date and Time functions.

Conforming to

‘TimeStamp’ is an ISO 10206 Extended Pascal extension.

Chapter 8: The Alphabetical GPC Language Reference 423

Example

program TimeStampDemo;

var
t: TimeStamp;

begin
GetTimeStamp (t);
WriteLn (’DateValid: ’, t.DateValid);
WriteLn (’TimeValid: ’, t.TimeValid);
WriteLn (’Year: ’, t.Year);
WriteLn (’Month: ’, t.Month);
WriteLn (’Day: ’, t.Day);
WriteLn (’DayOfWeek (0..6, 0=Sunday): ’, t.DayOfWeek);
WriteLn (’Hour (0..23): ’, t.Hour);
WriteLn (’Minute (0..59): ’, t.Minute);
WriteLn (’Second (0..61): ’, t.Second);
WriteLn (’MicroSecond (0..999999): ’, t.MicroSecond);
WriteLn (’TimeZone (in seconds east of UTC): ’, t.TimeZone);
WriteLn (’DST: ’, t.DST);
WriteLn (’TZName1: ’, t.TZName1);
WriteLn (’TZName2: ’, t.TZName2);
WriteLn;
WriteLn (’Date is: ’, Date (t));
WriteLn (’Time is: ’, Time (t));

end.

See also

[GetTimeStamp], page 323, [Date], page 296, [Time], page 421, Section 6.10.8 [Date And
Time Routines], page 97.

to

(Under construction.)

Synopsis

Description

Part of a ‘for’ loop counting upwards or a ‘to begin do’ or ‘to end do’ module constructor
or destructor.

Conforming to

‘to’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

424 The GNU Pascal Manual

See also

Chapter 9 [Keywords], page 443.

to begin do

(Under construction.)

Synopsis

Description

Conforming to

‘to begin do’ is an ISO 10206 Extended Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

to end do

(Under construction.)

Synopsis

Description

Conforming to

‘to begin end’ is an ISO 10206 Extended Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

Chapter 8: The Alphabetical GPC Language Reference 425

Trim

(Under construction.)

Synopsis

function Trim (S: String): String;

Description

Conforming to

‘Trim’ is an ISO 10206 Extended Pascal extension.

Example

See also

True

Synopsis

type
Boolean = (False, True); { built-in type }

Description

‘True’ is one of the two Boolean values and is used to represent a condition which is always
fullfilled. For example, the expression 1 = 1 always yields the value ‘True’. It is the opposite of
‘False’. ‘True’ has the ordinal value 1.

Conforming to

‘True’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

program TrueDemo;

var
a: Boolean;

begin
a := 1 = 1; { yields True }
WriteLn (Ord (True)); { 1 }
WriteLn (a); { True }
if True then WriteLn (’This is executed.’)

end.

See also

Section 6.2.9 [Boolean (Intrinsic)], page 67, [False], page 313, [Boolean], page 277.

426 The GNU Pascal Manual

Trunc

Synopsis

function Trunc (x: Real): Integer;

Description

‘Trunc’ returns the integer part of a floating point number as an integer. Use ‘Int’ to get
the integer part as a floating point number.

Conforming to

‘Trunc’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

program TruncDemo;

begin
WriteLn (Frac (12.345) : 1 : 5); { 0.34500 }
WriteLn (Int (12.345) : 1 : 5); { 12.00000 }
WriteLn (Round (12.345) : 1); { 12 }
WriteLn (Trunc (12.345) : 1); { 12 }

WriteLn (Frac (-12.345) : 1 : 5); { -0.34500 }
WriteLn (Int (-12.345) : 1 : 5); { -12.00000 }
WriteLn (Round (-12.345) : 1); { -12 }
WriteLn (Trunc (-12.345) : 1); { -12 }

WriteLn (Frac (12.543) : 1 : 5); { 0.54300 }
WriteLn (Int (12.543) : 1 : 5); { 12.00000 }
WriteLn (Round (12.543) : 1); { 13 }
WriteLn (Trunc (12.543) : 1); { 12 }

WriteLn (Frac (-12.543) : 1 : 5); { -0.54300 }
WriteLn (Int (-12.543) : 1 : 5); { -12.00000 }
WriteLn (Round (-12.543) : 1); { -13 }
WriteLn (Trunc (-12.543) : 1); { -12 }

end.

See also

Section 6.2.4 [Real Types], page 65, [Real], page 389, [Int], page 334, [Frac], page 319, [Round],
page 398.

Truncate

(Under construction.)

Synopsis

procedure Truncate (var F: any file);

Chapter 8: The Alphabetical GPC Language Reference 427

Description

Conforming to

‘Truncate’ is a Borland Pascal extension.

Example

See also

type

Synopsis

As a type declaration:
type

type indentifier = type definition;

or with initialization:
type

type indentifier = type definition value constant expression;

Description

The reserved word ‘type’ starts the declaration of a type identifier which is defined by
type definition. For further description see Section 6.1.4 [Type Declaration], page 48, Sec-
tion 6.1.4 [Type Declaration], page 48, Section 6.2.1 [Type Definition], page 62, Section 6.2
[Data Types], page 62.

Conforming to

‘type’ is defined in ISO 7185 Pascal and supported by all known Pascal variants. Initializers
are an ISO 10206 Extended Pascal extension.

Example

program TypeDemo;
type

{ This side is the } { That side is the }
{ type declaration } { type definition }

{ array type }
ArrayType = array [0 .. 9] of Integer;

{ record type }
RecordType = record

Bar: Integer
end;

{ subrange type }

428 The GNU Pascal Manual

SubrangeType = -123 .. 456;

{ enumeration type }
EnumeratedType = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

{ set type }
CharSetType = set of Char;

{ object type }
ObjectType = object

constructor Init;
procedure Method;
destructor Done

end;

{ pointer type to another type identifier }
PArrayType = ^ArrayType;

{ an alias name for another type identifier }
IntegerType = Integer;

{ an integer which is initialized by 123 }
InitializedInt = Integer value 123;

{ a schema with discriminants x and y of type Integer }
SchemaType (x, y: Integer) = array [x .. y] of Integer;

{ Dummy methods of the object type }
constructor ObjectType.Init;
begin
end;

procedure ObjectType.Method;
begin
end;

destructor ObjectType.Done;
begin
end;

begin
end.

See also

Chapter 9 [Keywords], page 443, Section 6.1.4 [Type Declaration], page 48, Section 6.2.1
[Type Definition], page 62, Section 6.2 [Data Types], page 62, Section 6.1.5 [Variable Declara-
tion], page 49, [array], page 266, [record], page 390, [object], page 364, [set], page 402, [Pointer],
page 377, [value], page 434.

Chapter 8: The Alphabetical GPC Language Reference 429

type of

(Under construction.)

Synopsis

Description

Conforming to

Example

See also

Chapter 9 [Keywords], page 443.

TypeOf

Synopsis

function TypeOf (var x): PObjectType;

Description

Returns a pointer to the VMT of an object type or variable. This pointer can be used to
identify the type of an object.

‘TypeOf’ can be applied to expressions of object type and to object type names. In the former
case, the actual type of polymorphic objects is returned.

Conforming to

‘TypeOf’ is a Borland Pascal extension.

Example

program TypeOfDemo;
type

FooPtr = ^Foo;
BarPtr = ^Bar;

Foo = object { Has a VMT, though it doesn’t }
x: Integer; { contain virtual methods. }
constructor Init;

end;

Bar = object (Foo)
y: Integer;

end;

430 The GNU Pascal Manual

constructor Foo.Init;
begin
end;

var
MyFoo: FooPtr;

begin
MyFoo := New (BarPtr, Init);
if TypeOf (MyFoo^) = TypeOf (Bar) then { True }
WriteLn (’OK’)

end.

See also

[BitSizeOf], page 275, [AlignOf], page 259, [PObjectType], page 376, [SetType], page 404,
[SizeOf], page 412, Section 6.8 [OOP], page 84.

Unbind

(Under construction.)

Synopsis

procedure Unbind (var F: any file);

Description

Conforming to

‘Unbind’ is an ISO 10206 Extended Pascal extension.

Example

See also

unit

(Under construction.)

Synopsis

Description

UCSD and BP style unit declaration.

Conforming to

‘unit’ is a UCSD Pascal extension.

Chapter 8: The Alphabetical GPC Language Reference 431

Example

See also

Chapter 9 [Keywords], page 443.

Unpack

(Under construction.)

Synopsis

procedure Unpack (Source: packed array;
var Dest: unpacked array;
FirstElement: index type);

Description

Conforming to

‘Unpack’ is defined in ISO 7185 Pascal and supported by all known Pascal variants except
UCSD/Borland Pascal and its variants.

Example

See also

until

(Under construction.)

Synopsis

Description

‘until’ is part of the ‘repeat ... until’ loop statement.

Conforming to

‘until’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

See also

Chapter 9 [Keywords], page 443, [repeat], page 392, [while], page 437, [for], page 317.

432 The GNU Pascal Manual

UpCase

(Under construction.)

Synopsis

function UpCase (Ch: Char): Char;

Description

Conforming to

‘UpCase’ is a Borland Pascal extension.

Example

See also

Update

(Under construction.)

Synopsis

procedure Update (var F: any file);

Description

Conforming to

‘Update’ is an ISO 10206 Extended Pascal extension.

Example

See also

uses

Synopsis

In a program:
program @@fragment foo;

uses
bar1,
bar2 in ’baz.pas’,
bar3;

Chapter 8: The Alphabetical GPC Language Reference 433

[...]

In a unit:

unit @@fragment Bar3;

interface

uses
bar1,
bar2 in ’baz.pas’;

[...]

implementation

uses
bar3,
bar4 in ’qux.pas’;

[...]

Description

The reserved word ‘uses’ in the import part of a program or unit makes the program or unit
import an interface.

The keyword ‘in’ tells GPC to look for the ‘unit’ in the specified file; otherwise the file
name is derived from the name of the interface, coverted to lower-case, by adding first ‘.p’, then
‘.pas’.

There must be at most one import part in a program.
In a unit, there can be one import part in the interface part and one in the implementation

part.
The imported interface needn’t be a UCSD/Borland Pascal unit, it may be an interface

exported by an Extended Pascal module as well.

Conforming to

ISO Pascal does not define ‘uses’ and units at all. UCSD and Borland Pascal do, but without
the ‘in’ extension. Delphi supports ‘uses’ like described above.

Example

See also

Chapter 9 [Keywords], page 443, [unit], page 430, [module], page 356, [import], page 328.

Val

(Under construction.)

434 The GNU Pascal Manual

Synopsis

procedure Val (const Source: String; var x: integer or real);

or

procedure Val (const Source: String; var x: integer or real;
var ErrorCode: Integer);

Description

Conforming to

‘Val’ is a Borland Pascal extension.

Example

See also

value

Synopsis

Description

The reserved word ‘value’ is part of a type or var declaration. It can be replaced by ‘:=’ or
‘=’.

Conforming to

‘value’ is an ISO 10206 Extended Pascal extension. ‘:=’ in this context is a VAX Pascal
extension, and ‘=’ is a Borland Delphi extension.

Example

See also

Chapter 9 [Keywords], page 443, [var], page 434, [type], page 427, Section 6.1.5 [Variable
Declaration], page 49, Section 6.1.4 [Type Declaration], page 48.

var

Chapter 8: The Alphabetical GPC Language Reference 435

Synopsis

As part of a variable declaration part or in a statement block:
var variable identifier: type identifier;

or
var variable identifier: type definition;

and with initializing value:
var variable identifier: type identifier value constant expression;

or
var variable identifier: type definition value constant expression;

As part of a parameter list (passing by reference):
var var parameter: type identifier;

or without type declaration
var var parameter;

or protected (i.e., the called routine can’t modify the parameter):
protected var var parameter: type identifier;

or without type declaration
protected var var parameter;

Description

In a declaration part: The reserved word ‘var’ declares a variable identifier whose type is of
type identifier or which is defined by type definition. For further description see Section 6.1.5
[Variable Declaration], page 49, Section 6.1.4 [Type Declaration], page 48, Section 6.2.1 [Type
Definition], page 62, Section 6.2 [Data Types], page 62.

In a parameter list: see Section 6.1.6.4 [Subroutine Parameter List Declaration], page 51.

Conforming to

‘var’ is defined in ISO 7185 Pascal and supported by all known Pascal variants. Untyped ‘var’
parameters in parameter lists are a UCSD Pascal extension. The ability to do ‘var’ declarations
in a statement block is a GNU Pascal extension.

Example

program VarDemo;

type
FooType = Integer;

var
Bar: FooType;
ArrayFoo: array [0 .. 9] of Integer; { array var definition }
FecordFoo: record { record var definition }

Bar: Integer
end;

CharsetFoo: set of Char; { set var }
SubrangeFoo: -123 .. 456; { subrange var }
EnumeratedFoo: (Mon, Tue, Wed, Thu, Fri, Sat, Sun); {enumerated var }

436 The GNU Pascal Manual

PointerBar: ^FooType; { pointer var }

procedure ReadFoo (var Foo: FooType);
begin

ReadLn (Foo)
end;

begin
var Bar: Integer; { GNU Pascal extension }
Bar := 42

end.

See also

Chapter 9 [Keywords], page 443, [type], page 427, [array], page 266, [record], page 390, [set],
page 402, Section 6.2.11.1 [Subrange Types], page 68, [Pointer], page 377, [protected], page 382.

view

Not yet implemented.

Synopsis

Description

Object class view.

Conforming to

‘view’ is an Object Pascal extension.

Example

See also

Chapter 9 [Keywords], page 443.

virtual

(Under construction.)

Synopsis

Description

Virtual object method declaration.

Conforming to

‘virtual’ is an Object Pascal and a Borland Pascal extension.

Chapter 8: The Alphabetical GPC Language Reference 437

Example

See also

Chapter 9 [Keywords], page 443.

Void

(Under construction.)

Synopsis

type
Void { built-in type }

Description

Conforming to

‘Void’ is a GNU Pascal extension.

Example

program VoidDemo;

procedure p (var x: Void);
begin
end;

var
i: Integer;
s: String (42);

begin
p (i);
p (s)

end.

See also

while

Synopsis

while boolean expression do
statement

Description

The ‘while’ statement declares a loop. For further description see Section 6.1.7.6 [while
Statement], page 56.

438 The GNU Pascal Manual

Conforming to

‘while’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

program WhileDemo;
var

Foo, Bar: Integer;
begin

WriteLn (’Enter an descending series of integer numbers.’);
WriteLn (’Terminate by breaking this rule.’);
WriteLn (’Enter start number: ’);
Bar := MaxInt;
ReadLn (Foo);
while Foo < Bar do

begin
Bar := Foo;
ReadLn (Foo)

end;
WriteLn (’The last number of your series was: ’, Bar)

end.

See also

Chapter 9 [Keywords], page 443, Section 6.1.7.7 [repeat Statement], page 57, Section 6.1.7.5
[for Statement], page 55.

with

(Under construction.)

Synopsis

Description

Automatic ‘record’ or object field access.

Conforming to

‘with’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

...
{ Note bar is overwritten by foo.bar } ...

See also

Chapter 9 [Keywords], page 443.

Chapter 8: The Alphabetical GPC Language Reference 439

Word

Synopsis

type
Word = Cardinal;

Description

‘Word’ is the “natural” unsigned integer type in GNU Pascal. On most platforms it is 32 bits
wide and thus has a range of ‘0..4294967295’. It is the same as [Cardinal], page 282, introduced
for compatibility with other Pascal compilers.

‘Word’ in GNU Pascal is compatible to ‘unsigned int’ in GNU C.
There are lots of other integer types in GPC, see Section 6.2.3 [Integer Types], page 62.

Conforming to

ISO Pascal does not define ‘Cardinal’. (However see Section 6.2.11.1 [Subrange Types],
page 68.)

The ‘Word’ type appears in Borland Pascal and Delphi, too, where it is a 16-bit unsigned
integer type.

Example

program WordDemo;
var

a: Word;
begin

a := 42;
WriteLn (a)

end.

See also

Section 6.2.3 [Integer Types], page 62, Section 6.2.11.1 [Subrange Types], page 68.

WordBool

Synopsis

type
WordBool = Boolean attribute (Size = BitSizeOf (Word));

Description

The intrinsic ‘WordBool’ represents boolean values, but occupies the same memory space as a
‘Word’. It is used when you need to define a parameter or record that conforms to some external
library or system specification.

Conforming to

‘WordBool’ is a Borland Pascal extension.

440 The GNU Pascal Manual

Example

program WordBoolDemo;
var

a: WordBool;
begin

Word (a) := 1;
if a then WriteLn (’Ord (True) = 1’)

end.

See also

Section 6.2.9 [Boolean (Intrinsic)], page 67, [Boolean], page 277, [True], page 425, [False],
page 313, [CBoolean], page 284, [ByteBool], page 279, [ShortBool], page 407, [MedBool],
page 351, [LongBool], page 341, [LongestBool], page 342.

Write

(Under construction.)

Synopsis

procedure Write (var F: typed file; variable);

or
procedure Write (var F: Text; values and format specifications);

or
procedure Write (values and format specifications);

Description

Conforming to

‘Write’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

See also

WriteLn

(Under construction.)

Synopsis

procedure WriteLn (var F: Text; values and format specifications);

or
procedure WriteLn (values and format specifications);

Chapter 8: The Alphabetical GPC Language Reference 441

Description

Conforming to

‘WriteLn’ is defined in ISO 7185 Pascal and supported by all known Pascal variants.

Example

See also

WriteStr

(Under construction.)

Synopsis

procedure WriteStr (var Dest: String; values and format specifications);

Description

Conforming to

‘WriteStr’ is an ISO 10206 Extended Pascal extension.

Example

See also

xor

Synopsis

operator xor (operand1, operand2: Boolean) = Result: Boolean;

or
operator xor (operand1, operand2: integer type) = Result: integer type;

or
procedure xor (var operand1: integer type; operand2: integer type);

Description

In GNU Pascal, ‘xor’ has three built-in meanings:
1. Logical “exclusive or” between two ‘Boolean’-type expressions. The result of the operation

is of ‘Boolean’ type. (Logical ‘foo xor bar’ in fact has the same effect as ‘foo <> bar’.)
2. Bitwise “exclusive or” between two integer-type expressions. The result is of the common

integer type of both expressions.
3. Use as a “procedure”: ‘operand1’ is “xor”ed bitwise with ‘operand2’; the result is stored

in ‘operand1’.

442 The GNU Pascal Manual

Conforming to

ISO Pascal does not define the ‘xor’ operator; Borland Pascal and Delphi do.
Use of ‘xor’ as a “procedure” is a GNU Pascal extension.

Example

program XorDemo;
var

a, b, c: Integer;
begin

if (a = 0) xor (b = 0) then
c := 1 { happens if either ‘a’ or ‘b’ is zero, }

{ but not if both are zero or both nonzero }
else if (a xor b) = 0 then { bitwise xor }
c := 2 { happens if a = b }

else
xor (c, a) { same as ‘c := c xor a’ }

end.

See also

Chapter 9 [Keywords], page 443, [and], page 260, [or], page 366, Section 6.3 [Operators],
page 80.

Chapter 9: Pascal keywords and operators supported by GNU Pascal. 443

9 Pascal keywords and operators supported by GNU
Pascal.

This chapter lists all keywords understood by GNU Pascal. The keywords are taken from
the following standards:
• ISO 7185 Pascal (CP)
• ISO 10206 Extended Pascal (EP)
• ANSI draft Object Pascal (OP)
• UCSD Pascal (UCSD)
• Borland Pascal 7.0 (BP)
• Borland Delphi (BD)
• Pascal-SC (PXSC, Pascal eXtensions for Scientific Calculations)
• VAX Pascal (VP)
• Sun Pascal (SP)
• Traditional Macintosh Pascal (MP)
• GNU Pascal extensions (GPC)

The table below lists all known keywords with short descriptions. The links point to the
longer descriptions in the reference.

By default (using GPC extensions) all keywords are enabled. Only those are marked ‘GPC’
in the table below that are valid only in the GPC extensions.

All keywords that are specific to some dialects (i.e., not marked “any”) can also be used as
identifiers (with a few exceptions, see below). Then, however, they generally cannot be used as
keywords anymore. So you can compile code from dialects that use them as keywords and code
that uses them as identifiers, i.e., you do not have to modify your correct ISO 7185 programs
in order to compile them with GPC without any dialect option. Some words can even be used
as keywords and identifiers in parallel, including ‘forward’ (according to ISO 7185 Pascal), and
‘near’ and ‘far’ (according to Borland Pascal).

The exceptions are:
• ‘Operator’ can’t be used as a type, untyped constant or exported interface, i.e. when it

would be followed by ‘=’ (unless it’s disabled as a keyword explicitly or by dialect options,
see below). This is because of a conflict with a definition of the operator ‘=’. (It can be
used as a typed constant, but it might be confusing if you later decide to make it untyped,
so use with care.)

• The first statement after ‘initialization’ (Delphi specific unit initialization) must not
start with ‘(’. (Statements starting with ‘(’ are uncommon, anyway, but not impossible.)
This does not restrict the usage of ‘Initialization’ as an identifier.

• The following keywords can’t be used immediately after an ‘import’ part: ‘uses’,
‘implementation’, ‘operator’, ‘constructor’, ‘destructor’. Using ‘uses’ instead
of ‘import’, or putting some other declaration between ‘import’ and the problematic
keyword helps.

A dialect option turns off all keywords that do not belong to this dialect. Besides, any
keyword can be enabled and disabled with the compiler options ‘{$enable-keyword}’ and
‘{$disable-keyword}’.

absolute (BP, BD) (see [absolute], page 256)
overloaded variable declaration

abstract (OP) (see [abstract], page 257)
abstract object type or method declaration

all (GPC) (see [all], page 259)
‘export’ (see [export], page 309) extension (‘export foo = all’)

444 The GNU Pascal Manual

and (any) (see [and], page 260)
Boolean or bitwise ‘and’ operator or part of the ‘and then’ (see [and then], page 261)
operator

and then (EP, OP) (see [and then], page 261)
short-circuit Boolean ‘and’ (see [and], page 260) operator

array (any) (see [array], page 266)
array type declaration

as (OP, BD) (see [as], page 267)
object type membership test and conversion

asm (BP, BD) (see [asm], page 268)
GNU style inline assembler code

asmname (GPC) (see [asmname], page 268)
DEPRECATED! linker name of routines and variables

attribute (GPC) (see [attribute], page 270)
attributes of routines and variables

begin (any) (see [begin], page 272)
begin of a code block, part of a ‘to begin do’ (see [to begin do], page 424) module
constructor

bindable (EP, OP) (see [bindable], page 273)
external bindability of files

c (GPC) (see [c], page 281)
DEPRECATED! declaration of external routine

case (any) (see [case], page 283)
multi-branch conditional statement or variant ‘record’ (see [record], page 390) type

c language (GPC) (see [c language], page 287)
DEPRECATED! declaration of external routine

class (OP, BD) (see [class], page 287)
OOE/Delphi style object class (not yet implemented)

const (any) (see [const], page 291)
constant declaration or constant parameter declaration

constructor (OP, BP, BD) (see [constructor], page 292)
object constructor

destructor (OP, BP, BD) (see [destructor], page 299)
object destructor

div (any) (see [div], page 300)
integer division operator

do (any) (see [do], page 300)
part of a ‘while’ (see [while], page 437) or ‘for’ (see [for], page 317) loop, a ‘with’
(see [with], page 438) statement, or a ‘to begin do’ (see [to begin do], page 424) or
‘to end do’ (see [to end do], page 424) module constructor or destructor

downto (any) (see [downto], page 302)
part of a ‘for’ (see [for], page 317) loop counting downwards

else (any) (see [else], page 302)
alternative part of an ‘if’ (see [if], page 326) statement, default ‘case’ (see [case],
page 283) branch or part of the ‘or else’ (see [or else], page 368) operator

Chapter 9: Pascal keywords and operators supported by GNU Pascal. 445

end (any) (see [end], page 303)
end of a code block, end of a ‘case’ (see [case], page 283) statement, end of a
‘record’ (see [record], page 390) or object declaration, part of a ‘to end do’ (see [to
end do], page 424) module destructor

export (EP, OP) (see [export], page 309)
module interface export

exports (BP, BD) (see [exports], page 310)
library export (not yet implemented)

external (UCSD, BP, BD, MP) (see [external], page 312)
declaration of external object

far (BP, BD) (see [far], page 313)
BP directive (ignored)

file (any) (see [file], page 314)
non-text file type declaration

finalization (BD) (see [finalization], page 316)
unit finalization

for (any) (see [for], page 317)
loop statement where the number of loops is known in advance

forward (any) (see [forward], page 318)
declaration of a routine whose definition follows below

function (any) (see [function], page 321)
function declaration

goto (any) (see [goto], page 323)
statement to jump to a ‘label’ (see [label], page 337)

if (any) (see [if], page 326)
conditional statement

implementation (all except CP) (see [implementation], page 328)
module or unit implementation part

import (EP, OP) (see [import], page 328)
module interface import

in (any) (see [in], page 329)
set membership test or part of a ‘for’ (see [for], page 317) loop iterating through
sets

inherited (OP, BP, BD, MP) (see [inherited], page 332)
reference to methods of ancestor object types

initialization (BD) (see [initialization], page 332)
unit initialization

interface (all except CP) (see [interface], page 336)
module or unit interface part

interrupt (BP, BD) (see [interrupt], page 336)
interrupt handler declaration (not yet implemented)

is (OP, BD) (see [is], page 337)
object type membership test

label (any) (see [label], page 337)
label declaration for a ‘goto’ (see [goto], page 323) statement

446 The GNU Pascal Manual

library (BP, BD) (see [library], page 339)
library declaration (not yet implemented)

mod (any) (see [mod], page 355)
integer remainder operator

module (EP, OP) (see [module], page 356)
EP style or PXSC style module

name (BP, BD) (see [name], page 357)
linker name

near (BP, BD) (see [near], page 359)
BP directive (ignored)

nil (any) (see [nil], page 361)
reserved value for unassigned pointers

not (any) (see [not], page 362)
Boolean or bitwise negation operator

object (BP, BD, MP) (see [object], page 364)
BP style object declaration

of (any) (see [of], page 365)
part of an ‘array’ (see [array], page 266), ‘set’ (see [set], page 402) or typed ‘file’
(see [file], page 314) type declaration, a ‘case’ (see [case], page 283) statement, a
variant ‘record’ (see [record], page 390) type or a ‘type of’ (see [type of], page 429)
type inquiry

only (EP, OP) (see [only], page 366)
import specification

operator (PXSC) (see [operator], page 366)
operator declaration

or (any) (see [or], page 366)
Boolean or bitwise ‘or’ operator or part of the ‘or else’ (see [or else], page 368)
operator

or else (EP, OP) (see [or else], page 369)
short-circuit Boolean ‘or’ (see [or], page 366) operator

otherwise (EP, OP, MP) (see [otherwise], page 370)
default ‘case’ (see [case], page 283) branch

packed (any) (see [packed], page 371)
declaration of packed ‘record’ (see [record], page 390) or ‘array’ (see [array],
page 266) types, also packed ordinal subranges

pow (EP, OP) (see [pow], page 378)
exponentiation operator with integer exponent

private (BP, BD) (see [private], page 380)
private object fields

procedure (any) (see [procedure], page 381)
procedure declaration

program (any) (see [program], page 381)
start of a Pascal program

property (OP, BD) (see [property], page 381)
object properties (not yet implemented)

Chapter 9: Pascal keywords and operators supported by GNU Pascal. 447

protected (EP, OP, BP, BD) (see [protected], page 382)
read-only formal parameters or module export and protected object fields

public (BP, BD) (see [public], page 385)
public object fields

published (BP, BD) (see [published], page 385)
published object fields

qualified (EP, OP) (see [qualified], page 386)
import specification

record (any) (see [record], page 390)
structured type declaration

repeat (any) (see [repeat], page 392)
loop statement

resident (BP, BD) (see [resident], page 394)
library export specification (not yet implemented)

restricted (EP, OP) (see [restricted], page 394)
restricted type specification

segment (UCSD) (see [segment], page 402)
segment specification (not yet implemented)

set (any) (see [set], page 402)
set type declaration

shl (BP, BD, MP) (see [shl], page 406)
bitwise left shift operator

shr (BP, BD, MP) (see [shr], page 410)
bitwise right shift operator

then (any) (see [then], page 421)
part of an ‘if’ (see [if], page 326) statement or part of the ‘and then’ (see [and
then], page 261) operator

to (any) (see [to], page 423)
part of a ‘for’ (see [for], page 317) loop counting upwards or a ‘to begin do’ (see [to
begin do], page 424) or ‘to end do’ (see [to end do], page 424) module constructor
or destructor

type (any) (see [type], page 427)
type declaration or part of a ‘type of’ (see [type of], page 429) type inquiry

unit (UCSD, BP, BD, MP) (see [unit], page 430)
UCSD and BP style unit declaration

until (any) (see [until], page 431)
end of a ‘repeat’ (see [repeat], page 392) statement

uses (UCSD, BP, BD, MP) (see [uses], page 432)
unit import

value (EP, OP) (see [value], page 434)
variable/type initializer

var (any) (see [var], page 434)
variable declaration or reference parameter declaration

view (OP) (see [view], page 436)
object class view (not yet implemented)

448 The GNU Pascal Manual

virtual (OP, BP, BD, MP) (see [virtual], page 436)
virtual object method declaration

while (any) (see [while], page 437)
loop statement

with (any) (see [with], page 438)
automatic ‘record’ (see [record], page 390) or object field access

xor (BP, BD, MP) (see [xor], page 441)
Boolean or bitwise ‘exclusive or’ operator

Chapter 10: Where to get support for GNU Pascal; how to report bugs. 449

10 Where to get support for GNU Pascal; how to
report bugs.

Here you can find information on where to find the most up-to-date information about GPC,
how you can get support (professional or voluntary), how to use GPC’s Test Suite, and how to
report new bugs you might encounter.

If you have problems with GNU Pascal, please read the relevant sections
of the GPC Manual. The most current version of the manual is available at
http://www.gnu-pascal.de/gpc/index.html for online browsing. You can also download the
complete manual in HTML format (tar.bz2) (‘gpc-html.tar.bz2’ on GPC’s WWW home
page). The manual is also available in DVI format (compressed with bzip2) (‘gpc.dvi.bz2’ on
GPC’s WWW home page) and PostScript format (compressed with bzip2) (‘gpc.ps.bz2’ on
GPC’s WWW home page) for printing.

If the manual doesn’t help you, here is what we recommend you to do:
Chapter 3 [FAQ], page 13 Check the GPC FAQ

10.1 The GPC Mailing List

There is a mailing list devoted to GNU Pascal. You can write to the mailing list, e.g. if
you have problems installing GPC or if you found a problem with GPC (please see Section 10.6
[Reporting Bugs], page 451). You can also use it to discuss suggestions for improving GPC and,
most welcome, to offer your help or contribute code, documentation or other work. Mails to the
list should be in English.

To subscribe to the mailing list, send the command
subscribe gpc your@email.address

in the body of a mail to majordomo@gnu.de (not to ‘gpc@gnu.de’!). The subject is ignored.
(Please replace ‘your@email.address’ with your real email address.) For more info, send a line
‘help’ to majordomo@gnu.de.

After subscribing, you can send a message to the mailing list by sending email to the list
address gpc@gnu.de as if it were a person.

To leave the mailing list, send the command
unsubscribe gpc your@email.address

to majordomo@gnu.de.
You can reach a human moderator at gpc-owner@gnu.de.
There is a separate mailing list for discussions about GPC documentation, gpc-doc@gnu.de.

To subscribe, send the command
subscribe gpc-doc your@email.address

to majordomo@gnu.de.
There is also a (low-traffic) announce list, gpc-announce@gnu.de that you can subscribe to

stay up-to-date. To subscribe to the list, write an email with
subscribe gpc-announce your@email.address

in the body to majordomo@gnu.de. If you like to announce a contribution, a service or an
event related to GPC, you are invited to post to this list rather than ‘gpc@gnu.de’, but please
don’t use the announce list for questions or discussions. Please note that all mail sent to the
announce list is forwarded to the regular list, so you won’t have to subscribe to both lists if you
don’t want to miss anything. For the same reason, please don’t cross-post to both lists.

There is also a German speaking mailing list, gpc-de@gnu.de. To subscribe send the com-
mand

subscribe gpc-de your@email.address

in the body of a mail to majordomo@gnu.de (note the hints above).

http://www.gnu-pascal.de/gpc/index.html
mailto:majordomo@gnu.de
mailto:majordomo@gnu.de
mailto:gpc@gnu.de
mailto:majordomo@gnu.de
mailto:gpc-doc@gnu.de
mailto:majordomo@gnu.de
mailto:gpc-announce@gnu.de
mailto:majordomo@gnu.de
mailto:gpc-de@gnu.de
mailto:majordomo@gnu.de

450 The GNU Pascal Manual

10.2 The GPC Mailing List Archives

Perhaps your problem was already discussed on the list. There is a searchable archive of the
mailing list on the WWW. It can be browsed or searched at

http://www.gnu-pascal.de/crystal/gpc/en/

The archive of the documentation list is at

http://www.gnu-pascal.de/crystal/gpc-doc/en/

The archive of the announce list is at

http://www.gnu-pascal.de/crystal/gpc-announce/en/

The archive of the German GPC list is at

http://www.gnu-pascal.de/crystal/gpc-de/de/

10.3 Newsgroups relevant to GPC

To get support, you can also ask the Usenet newsgroups for help. There are several Pascal
related newsgroups, but none is dedicated just to GNU Pascal, so use the one which is most
appropriate for your problem. For general Pascal questions, we recommend the following one:
news://comp.lang.pascal.misc Pascal in general and ungrouped Pascals.

Pascal syntax related questions may be appropriate in:
news://comp.lang.pascal.ansi-iso Pascal according to ANSI and ISO standards.

The next newsgroup is a haven for beginners, answering questions that would apply to almost
any Pascal. However, if you have a GPC-specific question don’t post there – use the GPC mailing
list. And when in doubt use the GPC mailing list.
news://comp.lang.pascal.borland Borland Pascal questions.

Don’t forget to give back what you have obtained. None of us is getting money for answering
your questions (unless you pay us by yourself). Please do your part by answering the questions
of others instead.

10.4 Where to get individual support for GPC

GPC is free software and comes without any warranty.
If you want to get professional support, you can hire an individual or a company for providing

such a service.
G-N-U GmbH is doing large parts of the development of GNU Pascal. This company offers

special support for GPC and can be contacted at info@g-n-u.de.
More generally, to find a company or an individual who offers support and other consulting

services for free software, look into the GNU Service Directory.

10.5 If the compiler crashes . . .

If the compiler crashes, you have discovered a bug. A reliable compiler never crashes. To
help the maintainers fix this bug, it is important that you send us a problem report.

If you’re on Unix, you can find out where the compiler crashed if you enable coredumps,
then load the compiler (‘gpc1’) plus the core file in the debugger (‘gdb /your_path_here/gpc1
core’), then type ‘backtrace’ to get a stacktrace. Include this stacktrace in your bug report.

http://www.gnu-pascal.de/crystal/gpc/en/
http://www.gnu-pascal.de/crystal/gpc-doc/en/
http://www.gnu-pascal.de/crystal/gpc-announce/en/
http://www.gnu-pascal.de/crystal/gpc-de/de/
news://comp.lang.pascal.misc
news://comp.lang.pascal.ansi-iso
news://comp.lang.pascal.borland
http://www.g-n-u.de
mailto:info@g-n-u.de
http://www.gnu.org/prep/service.html

Chapter 10: Where to get support for GNU Pascal; how to report bugs. 451

10.6 How to report GPC bugs

If you encounter a bug with GPC, please check whether it is one of the known bugs(see
Section 11.1 [Known Bugs], page 455). If not, please report it to the GNU Pascal mailing
list(see Section 10.1 [Mailing List], page 449). That way, they always reach the maintainers.
Please note the following points.
• Please send a description of the problem. Try to give as much information as possible, with

the full text of any error messages encountered, or a description of how some output varies
from the expected output. Always specify the operating system type with version and the
machine type (try ‘uname -a’ if unsure) as well as the version of GPC which you get by
typing ‘gpc -v’.

• A good article on submitting bug reports can be found at either
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html or
http://freshmeat.net/news/2000/02/26/951627540.html

Another good article “How To Ask Questions The Smart Way” is available as
http://www.catb.org/~esr/faqs/smart-questions.html

If the problem is with the compiler itself, not an installation problem or something like this,
please provide a test program to reproduce the problem, and note the following hints. You can
also contribute test programs for features that are working in GPC to ensure they will not break
in future releases.
• The test program should be as short as possible, but by all means, please send a complete

program and make sure that it still reproduces the problem before you send it. Too often,
users have sent code which contained obvious syntax errors far before the actual problem,
or just code fragments that we could only make wild guesses about. This is unproductive
for us and doesn’t help you get your problem solved.

The preferred form for test programs is the form that the automated GPC Test Suite under-
stands. Please, if at all possible, send your test programs in this form which should be easy to
do, so we won’t have to waste our time to bring them into this form, and can concentrate on
fixing the problem.
• The file containing the main program must have a name ending with ‘.pas’ and contain

the keyword ‘program’ (case-insensitively) and a ‘;’ in the same line to be recognized by
the Test Suite at all. Other files whose name ends in ‘.pas’ (e.g., units or modules needed
by the program), must not contain this.

• Since the Test Suite must run under very . . . nah . . . strange operating systems, too, file
names must be distinguished in their first eight characters (case-insensitively) and should not
contain anything but letters, numbers, hyphens, underscores and a single dot. Furthermore,
any ancillary files (units, modules, includes, data files) should not be longer than “8+3”
characters; the same applies to the names of unit/module interfaces (because GPC will
create ‘.gpi’ file names based on those). It is often a good idea to use your name, nickname
or initials followed by a number as the file name.

• If your test program needs any units or modules, don’t give them (or their interfaces in
case of modules) common names like ‘Test’, ‘Foo’ or ‘MyUnit’, unless you have very special
reasons to, because there might be subtle problems if several test programs use the same
name. Instead, it is recommended to prefix the unit/module/interface names with the
name of the main test program or an abbreviation of it (if necessary because of the file
name restrictions). Furthermore, please avoid the use of units and modules at all if the bug
is not specific to them, in order to keep the test as simple as possible.

• The test program, when run, should produce a line of output consisting of the string ‘OK’
(followed by a newline) if everything went as expected, and something else (e.g. ‘failed’,
possibly followed by the reason of failure) if something went wrong. In the latter case you
might want to output additional information such as the values of important variables or
an indication in which place the program failed if there are several possible places.

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://freshmeat.net/news/2000/02/26/951627540.html
http://www.catb.org/~esr/faqs/smart-questions.html

452 The GNU Pascal Manual

• However, if the program is intended to check whether GPC catches an (intentional) error
in the program, place the string ‘WRONG’ somewhere in the test program, preferably in a
comment in the line that contains the intentional error. ‘WRONG’ tests will be run with the
option ‘-w’ to suppress all warnings, so only real errors will be detected.
Note: While it is possible to combine several ‘OK’ tests in a single test program (if you make
sure that it outputs ‘OK’ only if all tests pass), you cannot put several ‘WRONG’ tests into
one test program. This is because the compiler will fail (and the test therefore be regarded
as successful) already if one error occurs. So, for ‘WRONG’ tests, do only one check per test
program. Also, try to keep such a test program as small and simple as possible, to avoid
the risk that it will fail because of other problems (and therefore the test be mistakenly
considered successful).

• If the test should merely provoke a GPC warning, use ‘WARN’ instead of ‘WRONG’. This will
run the test without ‘-w’, but with ‘-Werror’. However, such tests will also appear to
succeed if they produce a compiler error, not only a warning. Therefore, when checking for
a warning, it is often a good idea to provide a complementary test (with expected success)
and with ‘-w’ in ‘FLAG’ or a compiler directive ‘{$W-}’ to make sure that it’s really just a
warning, not an error.

• For a test that reproduces an existing problem (which is not expected to be fixed soon),
please put a comment at the top that describes the problem in a few words, and start it
with ‘BUG’. This is not required by the test scripts, it’s just to make it easier for those
who will try to fix the problem to see immediately what the test is about. Tests for new
(planned) features should not say ‘BUG’.

The following special features of the Test Suite may be helpful for constructing slightly
unusual tests:
• If the expected output is something else than ‘OK’, place it in a file ‘<basename>.out’ (where

‘<basename>’ is the name of the test program without the ‘.pas’ extension).
• If the test program expects some input, place it in a file ‘<basename>.in’. It will automat-

ically be redirected to the program’s standard input.
• If the test needs some special flags to be given to the GPC command line, place them in a

comment preceded by ‘FLAG’, e.g.:
{ FLAG --extended-pascal -Werror }

• The source file name of the test program will be passed as the first command-line argument
to the test program run.

• If a test needs to be run in a special way, you can accompany the program with a script
‘<basename>.run’ that will do the actual test after the test program was compiled. This
script will be run by ‘sh’ (regardless of its first line). In order to be portable, it should
only use standard tools and features present in all ‘sh’ compatible shells (e.g., ‘ash’, ‘bash’,
but not necessarily ‘csh’). The source file name of the test program will be passed as the
first command-line argument to the run script in this case. The compiled file is called
‘./a.out’ on most systems, but, e.g., ‘./a.exe’ on Cygwin. The environment variable
‘A_OUT’ contains the base name (i.e., ‘a.out’ or ‘a.exe’, so you can always invoke the
program as ‘./"$A_OUT"’).

• If a test needs to be compiled in a special way (e.g., to decide whether to skip the test), place
the commands in a script (preferably called ‘<basename>.cmp’), and put the file name of the
script (without directory) in a comment preceded by ‘COMPILE-CMD:’ into the source of the
test program. The compile script will be run instead of the compiler and any other action
otherwise done for this test program, so it gives you maximum flexibility to do whatever
you need to do. This script will be run by ‘sh’ (regardless of its first line). In order to be
portable, it should only use standard tools and features present in all ‘sh’ compatible shells
(see above). The first command-line argument to the compile script will be the compiler
to use, including all options. The second argument will be the source file name of the test

Chapter 10: Where to get support for GNU Pascal; how to report bugs. 453

program. For some typical tests, there are standard compile scripts, e.g. ‘asm.cmp’ which
will skip the test unless run on a platform supported by the few tests that contain ‘asm’
statements. Of course, it’s generally better not to have to use such scripts when possible.

• In some cases you may want to write randomized tests. This is not usually recommended
since it makes problems found harder to reproduce, but sometimes it might be useful (e.g.,
if you want to cover a large parameter space). In such a case, the following strategy can be
used:

...

uses GPC;

var
RandomSeed: Integer;

begin
RandomSeed := Random (MaxInt);
SeedRandom (RandomSeed);

... { do your normal tests }

{ when printing an error message: }
if ... then

begin
WriteLn (’failed (’, RandomSeed, ’) ’,

... { possibly additional information });
Halt

end
end.

This is a little unnatural since a random number is used to (re-)seed the random number
generator, but there’s currently no way to retrieve the internal state of the random number
generator (and in fact, it’s not represented by a single number, but by an array).
Given the value of ‘RandomSeed’ in an error message, it should then be possible to reproduce
the problem by inserting this value in place of the ‘Random (MaxInt)’. Just be sure to print
this value in every message of failure the program may produce.

10.7 Running the GPC Test Suite

Note: If you have installed a GPC binary distribution, you usually don’t have the Test Suite
installed (you can download the GPC source distribution to get it, however), so this section does
not apply to you. Still, you can find in the section ‘Contributing Tests to the Test Suite’
how to report GPC bugs in the form of new test programs so we can fix them as fast as possible.

The files in the test directory and subdirectories are for testing GPC only and should not be
of any other use.

Note: A few of the tests do not make sense on all systems. They are equipped with checks
and will be skipped if they find the system not suitable. Skipped tests do not indicate a GPC
bug, unless you have a reason to be sure that the particular test should make sense on your
system.
• To run the whole Test Suite, type ‘make’ in the test directory (or ‘make check’ in the ‘p’

object directory after building GPC).
• The output will show all errors encountered (hopefully none) and tests skipped, and finally

display a summary giving the number of successful, failed and skipped tests. Any failed test

454 The GNU Pascal Manual

indicates a bug in GPC which should be reported to the GPC mailing list, gpc@gnu.de.
Don’t forget to mention the operating system you ran the test on and any other relevant
information about what you did.

• You can also type ‘make pascal.check-long’ to get a long output which is a sequence of
file names followed by ‘OK’ for successful tests, ‘SKIPPED’ for skipped tests (both in capital
letters), and anything else for failed tests.

• To run only some of the tests, you can type something like ‘make MASK="foo[1-7]*.pas"’
or ‘make MASK="foo42.pas" pascal.check-long’.

• To clean up after running the tests, type ‘make clean’.

mailto:gpc@gnu.de

Chapter 11: The GNU Pascal To-Do List. 455

11 The GNU Pascal To-Do List.

This is the To-Do list for the GNU Pascal Compiler.
The GNU Pascal development team is constantly working on making GNU Pascal more

reliable and more comfortable. However, there are some known bugs which will take some time
to be fixed (any help welcome!), and we do not want to hide them from you. You might also
be interested to know what features are planned to be implemented in the future. This list is
meant to keep track of the known bugs and wanted features of GPC.

If you want to report a new bug or suggest a new feature, the best way to do it is in the
mailing list. This way, other GPC users can provide additional ideas, perhaps work-arounds
for bugs, and the GPC maintainers can sooner start to think about how to solve the prob-
lem. The GPC mailing list is gpc@gnu.de. To subscribe, send the command ‘subscribe gpc
your@email.address’ in the body of a mail to majordomo@gnu.de (the subject is ignored). An
archive of the mailing list can be found on http://www.gnu-pascal.de/crystal/gpc/en/.

The list changes regularly. The present version refers to the current GPC snapshot, 20030507.
This list is part of the GNU Pascal Manual, included in GPC distributions and snapshots.

You can always browse the most current version of the list on GPC’s WWW page. If you check
the To-Do list regularly you can decide if and when to try a new snapshort.

11.1 Known bugs in GPC

In this section, you can find information about GPC bugs that are known to the developers.
If you encounter a bug with GPC, please check whether it is one of the known bugs. If not,

report it to the GNU Pascal mailing list. (But always report if you solve the problem! :−)
Solved problems are moved to “Fixed Bugs” (see Section 11.3 [Fixed Bugs], page 459), and

implemented features to the “News” chapter (see Chapter 2 [News], page 9).
A message ID (like ‘<42@foo.bar>’) refers to a message in the GPC mailing list or a news-

group where the topic was discussed (often a bug report). A note of the form ‘(xy20001231)’
refers to an internal message of the GPC developers. A file name like ‘(foo42.pas)’ refers to
the according program in the GPC test suite included in the GPC source distribution.
• give a warning rather than an error (and nothing in ‘--borland-pascal’) when assign-

ing/passing by value an object of derived type to one of a base type (and change the VMT
pointer in the destination/actual parameter), don’t change the VMT pointer when assigning
to a polymorphic object (chief35[ab].pas), don’t allow value parameters of abstract types,
handle value parameters like variables in ‘is’/‘as’

• ‘setlimit’ is applied when it shouldn’t be ((a) variable/constant declarations, (b) ‘set of
ShortCard’, (c) constant sets)

• problem with string operations and ‘goto’ (contourbug.pas, martin1.pas, berend3.pas)
• initializers of packed arrays don’t work (emil5.pas)
• arithmetic expressions don’t work as lower array/subrange bounds (fjf248.pas)
• global variables of dynamic size don’t work (john1.pas)
• check for using, incrementing, . . . unused variables

<199711270257.VAA06393@mint.mint.net> (kevin2.pas), especially for strings,
also for ‘for’-loop counters after the loop (EP 6.8.1)

• declaring a procedure in the implementation with the same name as an imported procedure
doesn’t work (chief18.pas), detect name collisions between imported EP modules (mod9.pas)

• dynamic sets don’t work (->PPS)
• there are some bugs with mathematical functions; GPC fails, for example, the Paranoia

test

mailto:gpc@gnu.de
mailto:majordomo@gnu.de
http://www.gnu-pascal.de/crystal/gpc/en/

456 The GNU Pascal Manual

• check ‘goto’ targets more strictly <261020020000077022%gpaeper@empirenet.com>,
<Pine.LNX.4.44.0210281004000.31943-100000@duch.mimuw.edu.pl> (fjf701*.pas)

• Sparc with gcc-2.95.x: ‘goto’ jumping out of two procedure nesting levels doesn’t work
(GCC bug; fixed in gcc-3) <200111170922.KAA09125@goedel.fjf.gnu.de> (fjf558[op].pas) (->
‘Trap’ unit)

• AIX: ‘ReturnAddress’ doesn’t work after use of dynmamic variables (GCC bug)

11.2 Features planned for GPC

In the following sections, you can find informations about features which have been suggested
and/or discussed for inclusion into GPC, usually in the GPC mailing list. The division into the
sections and the names of the sections may change when this seems useful. The entries within
each section are in no particular order.

Some of the entries may be a bit difficult to read. Double question marks (‘??’) within the
entries mean that it’s not yet clear how to do the thing. Triple question marks (‘???’) mean
that it’s not clear whether to do it at all. ;−)

11.2.1 Planned features: Strings

• const/var ‘AnyString’ parameters and pointers (records internally, cf. gpc.pas) (GetCa-
pacity; only for var parameters)

• ‘SetLength’ for non-Pascal string types; use truncate-flag
• make work on all string types: string functions from rts/string*.pas, Concat/+ (function

with conformant array; Optimize ‘s := s + ch’) (fh19971105)
• new option ‘--arrays-of-char-as-cstrings={none,zero-based,all}’ to allow assigning

[zero-based] arrays of char to cstring variables (warning otherwise) (cstrini2.pas); make
padding of those arrays in initialized variables and in assignments dependent on this switch
(fh19970921) (fjf57.pas, ok) and if the length matches exactly, give a warning (fh19971013)
(cstrassign.pas); pass those arrays as cstrings in read*, write*, str (P *STRING; current
length=-1 in two places); compile time warning (and treatment as non-zero-based) if it’s
not clear at compile time if a conformant array or schema is zero-based or not, and an
operation depends on this in the zero-based state

• Short strings (Length, Capacity) and switches (tc19980326.2,tc19980327); allow ‘type
x=string’ (undiscriminated) when switch is set so that strings don’t default to length
255 (fh19971113) (fjf97.pas, ok); don’t add a #0 terminator when passing as a CString
parameter (automatically use String2CString)

• automatically convert CStrings to Strings?
• general switch ‘--bp-strings’
• wide characters
• open array/string parameters (‘$P’, ‘$V’ in BP; undocumented ‘OpenString’ identifier in

BP)
• variables of type undiscriminated schema/strings -> remove pointers to string constants;

functions returning undiscriminated schemata (pg19980813.3)

11.2.2 Planned features: Records/arrays

• variant records: EP: check that all values of tag-type have exactly one matching variant
• ISO structured constants (constdef.pas); variant records

<C1256791.0021F002.00@synln01.synstar.de>; <200106170346.f5H3ksj22229@mail.bcpl.net>
• initialized types in records/arrays (inirec[24].pas)

Chapter 11: The GNU Pascal To-Do List. 457

• when applying ‘New’ to a variant record type with a selector given, only allocate the space
necessary for the selected variant (varrec2.pas) ???

• Oregon and Vax Pascal structured constants <80256540.005E7D08.00@buffer1.quantel.com>
???

• automatically detected upper array bounds in structured constants/intialized variables (->
PXSC)

• tagging feature for ‘with’ statements (Sun Pascal) (tom6.pas)
<200012022215.eB2MFD614424@wsinpa16.win.tue.nl>

• transpose arrays (Fortran)? <918557mke1@nnrp1.deja.com>

11.2.3 Planned features: Files

• keep files in FDRList while they live, not only while they’re open, so ‘DoneFDR’ can be
applied to all of them

• packed files (EP) ??
• improve TFDDs
• read/write operators ???

11.2.4 Planned features: Other types

• UCSD Pascal’s ‘Integer[n]’ ??? BCD?
• enum/record type extensions (syntax??)
• check for dereferencing nil pointers
• general subtypes ???
• type cast operators ???
• make ‘SizeOf’ work on specially declared untyped var and const parameters (‘AnyType’?)
• sparse sets; sets of arbitrary types ?? ???
• optimize set constructors even better ???
• superfluous warning with sets and variable elements (fh19970928)
• initalization and finalization code for arbitrary types (e.g. GMP types)
• ‘SELECTED_REAL_KIND’ for real types (cf. Fortran, drf) ?? ???
• resize schemata (cf. ‘SetLength’ in Delphi)
• subranges with variable limits (couper[23].pas)
• ‘ShortComplex’, ‘LongComplex’ <Pine.GSO.4.44.0207151258290.5058-

100000@bonsai.fernuni-hagen.de>

11.2.5 Planned features: OOP

• ‘ProcVar := Obj.Method’ {$X+}; method pointers (‘procedure/function of object’) (->
Delphi) ???

• destructor: reset VMT link to 0 ???
• checks: ‘@Obj <> nil’, ‘TypeOf (Obj) <> nil’, ‘TypeOf (Obj)^.Size = -TypeOf

(Obj)^.NegatedSize’; separate switches; function initialized (that does these 3 tests) ???
• ‘class is class’ (implemented in Pascal with ‘Parent’)
• BP compatible dynamic method dispatcher ?? ???
• interfaces (cf. OOE, Java); ‘obj is interface’ (not so easy?) ???; variables of type pointer

to more than one interface [and class] (also possible!)

458 The GNU Pascal Manual

• ‘class’ (reference to an object type); allow classes and object types to inherit from each
other; OOE; <01BD7A3A.6B187A20.prucha@helicon.co.at>; obpascal.zip

• ‘New’: Delphi syntax; Dispose?? (automatically?; set references automatically to nil) (->
FPC)

• ‘--base-class=foo’, ‘--base-object=bar’ ???
• properties <01BD7A3A.6B187A20.prucha@helicon.co.at>, <16131.199805071354@pot-

ter.cc.keele.ac.uk>
• virtual constructors; in interfaces (load)???
• VMT problem with interfaces (my solution??? also with dynamic linking???)
• VMTs (also for local classes (EP modules???)!) in GPI files, written to assembler file by

main program; ‘--cfiles=foo’: .s file with VMTs for C/assembler??? (also .h???)
• method overloading ??? ??
• class libraries (more or less TV compatible?/Free Vision/EFLIB) (streams as interface

type?)
• VMT: ClassID (64/128 bits?) default 0, error when duplicated, warning when 0 and inher-

ited from class with <>0 ?, not allowed for abstract classes!; ClassName (also for abstract
classes?); []; ProgrammerID, BaseClassID at beginning of unit (redeclarable?) ???

• VMT: Children: list of pVMT
• find class by ClassID/ClassName (implementable in Pascal with ‘Child’)
• object constants, class variables (-> other name for ‘VMT’); virtual/static
• store in GPI: whether ClassID used, ClassName used, which classes are instantiated

11.2.6 Planned features: Misc

• qualified identifiers <34508F33.4F685BD1@keele.ac.uk> (also
‘program_name.identifier’?) (problem module.id vs. record.field); also for
operators; ‘gpc’ for built-in identifiers; duplicate identifiers in different units
(fjf260[ab].pas); don’t capitalize variable names in error messages and file name queries
(store the casing of the first occurrence of an identifier) -> remove ‘{$no-debug-info}’;
‘name’ for units/modules; qualified import (mod10.pas)

• inline functions in GPI files
• unit inheritance (of a complete interface with one statement or selectively)

<Pine.HPP.3.96.971105161603.28577A-100000@tea.geophysik.tu-freiberg.de>,
<199711061008.LAA25341@agnes.dida.physik.uni-essen.de> ??; virtual procedures ???

• read Booleans and enum types from files, write enum types to files;
‘--[no-]read-range-checking’ (also for subtypes of Char, Boolean and enum types!)

• options to warn about everything that could cause portability problems
• libraries (static/shared; DLL) <Pine.HPP.3.96.971110183550.7996B-

100000@tea.geophysik.tu-freiberg.de>
• smart linking (split ‘foo.s’, as ‘foo*.s’, ar ‘foo*.o’ or split ‘foo.o’)
• range <Pine.LNX.4.21.0012091605570.8168-100000@rusty.russwhit.com>, overflow (right

operand of mod <=0 is an error), nil pointer, string length, variant, object VMT (pointer,
negative size field), etc. checking <199911040915.KAA11168@humulus.daimi.au.dk>; also
for array slice access (miklos1.pas); check that strings converted to CStrings don’t contain
#0 characters; initialize strings (length field), pointers, ordinal values and reals(?) with
invalid values if checking is on

• overloading of unary operators (‘+’, ‘-’, ‘not’)
• intel assembler syntax; BP BASM ???

Chapter 11: The GNU Pascal To-Do List. 459

• function overloading (in units and static methods?? – with different parameters, override or
overload?); linker name?? (perhaps: first occurrence of a procedure with normal name (=>
all non-overloaded procedures get normal names)?); cf. Delphi methods without ‘override’

• ‘?:’ (‘x := if c then bar else baz’)
• ‘for var: type = foo to bar do’ ???
• error/exception handling (Java,Delphi?) <01BD7A3A.6B187A20.prucha@helicon.co.at>

(tc20000623)
• RTS checking (libgpc g), switch?
• simplify math functions <199708091006.MAA26576@agnes.dida.physik.uni-essen.de>
• variable number of arguments <32F9CFE7.5CB@lmemw.ericsson.se> ?? ???
• multithreading support ?? ???
• ‘--wirth-pascal’ :−)
• PXSC standard . . . (‘pxsc.zip’, ‘contrib/peter/pxsc’) (??)
• Object Oriented Extensions (Technical Report) (??)
• generic types (cf. OOE section C.1) (gentypes.pas) ???
• default parameters (cf. OOE section C.4; Delphi 4?) (iniparm[12].pas) <E183vio-000IyH-

00@f12.mail.ru>
• Pascal++ standard . . . (??) ???
• compile time assertions ???
• Ignore{Value,Result}/Discard for arbitrary types (type-cast to ‘Void’?)
• Delphi features: CompToCurrency, CurrencyToComp, Slice, TypeInfo ???, dynamic arrays

(tc19991012)
• output column numbers in error messages ??
• consider assembler blocks volatile by default ??? (fh19980829.4)
• debug info: ‘with’ statements

11.2.7 Planned features: Utilities

• ‘gp’ make utility to replace automake; compile and link programs, but compile units without
linking and without a warning that there is nothing to link; store GPC version numbers,
platform and options in GPD files and re-compile automatically in ‘--automake’ mode when
they don’t match; ‘external lib’ like ‘$L’ (-> BP, Delphi) ?? (fh19990325.2)

• C header to Pascal translator
• gdb: Pascal types (sets, files, subranges, schemata, . . .)
• ‘indent’-like source code formatter for Pascal
• AT&T <-> Intel assembler syntax converter ???

11.3 Problems that have been solved

This section lists the bugs fixed since the last (non alpha/beta) GPC release, together with
the date (YYYYMMDD) on which they were fixed, so you can check if some problem has already
been solved in a recent release or developer version.

Note: New features are not listed here anymore, see Chapter 2 [News], page 9.
• 20030502: the parser does not always recover well after a parse error

<199911040915.KAA11168@humulus.daimi.au.dk> (fixed the case given in this report; if
there are other cases, please report)

• 20030430: packed array/record fields don’t work in ‘Read’ etc. (tom5.pas)

460 The GNU Pascal Manual

• 20030430: file parameters must not automatically be bindable in ‘--extended-pascal’
(fjf193[c-e].pas)

• 20030423: give an error rather than a warning when casting between types of different size
in {$X-}

• 20030423: simplify code generated to compute size of dynamical variables if no bitfields are
involved (ok with gcc-3)

• 20030422: initialized object variables don’t work (fjf445*.pas)
• 20030422: declarations of a module interface are not visible in the implementation

(kevin13.pas, mod12.pas) <Pine.BSI.3.96.971110210330.7570A-100000@malasada.lava.net>
• 20030422: detect invalid array slice access with constant indices at compile-time (pe-

ter2*.pas)
• 20030421: automatically close dynamically allocated files on ‘Dispose’ and files declared

in a statement block at the end of the statement block <6r9ir5$7v5$1@nntpd.lkg.dec.com>
(fjf219[a-d].pas, fjf502.pas)

• 20030421: initialize local static variables in the main constructor, not in each routine call
(fjf458*.pas)

• 20030421: check parameter and result variable names in repeated forward etc. declarations
<20010321204051.A611@plato> (fjf284.pas, markus8.pas, fjf850*.pas)

• 20030417: modifying ‘for’-loop counters within the loop or in a subroutine is not
allowed <200005240807.EAA05355@mail.bcpl.net>, <Pine.LNX.4.44.0210281004000.31943-
100000@duch.mimuw.edu.pl> (az47.pas, fjf837*.pas)

• 20030417: possible stack overflow when using string concatenation in a loop (fjf419*.pas,
fjf345e.pas, fjf460b.pas) – breaks berend3.pas (less important because strange test case, and
just another instance of contourbug.pas)

• 20030416: some functions in boolean shortcuts are always called (fjf226*.pas)
• 20030414: label declarations must not be allowed in unit/module interfaces and module im-

plementations (but in unit implementations, BP compatible, though we don’t allow nonlocal
‘goto’s into the constructor) (fjf835*.pas)

• 20030321: variables declared in interfaces of modules are not initialized (capacity of strings
etc.) (daj3.pas, sven14c.pas, nick1.pas)

• 20030321: subranges whose size is exactly one or two bytes are not packed in packed arrays
(daj14a.pas)

• 20030321: ‘prior parameter’s size depends on ‘Foo’’ with ‘const’ string parameters in
module interfaces (fjf667.pas)

• 20030313: operators don’t always work across units (fjf803.pas)
• 20030312: overloading ‘<=’, ‘>=’, ‘<>’ and some certain words doesn’t work (fjf789.pas,

fjf794*.pas, fjf800.pas, fjf802.pas, fjf804.pas)
• 20030311: when passing a schema variable as an untyped argument, the whole schema,

including the discriminants is passed (fjf798.pas)
• 20030302: discriminant identifiers as variant record selectors
• 20030227: GPC crashes when taking the address of local variables in an initializer

(nicola4*.pas)
• 20030225: the warnings about uninitialized/unused variables don’t work for strings, objects,

etc. (fjf779*.pas)
• 20030221: gcc-2.95.x: ‘configure --silent’ doesn’t work (passes wrong options to sub-

configures, so the subsequent make fails) (GCC bug; fixed in 3.x)
• 20030215: forward referencing pointers generate debug info that appears as generic pointers

Chapter 11: The GNU Pascal To-Do List. 461

• 20030202: count of parameters in error messages should not include
‘Self’ in methods or internal parameters for conformant/open arrays
<8F990E3D9A6FD1118F3B0000F81EA1D84985CE@exchsa2.dsto.defence.gov.au>

• 20030129: check for unresolved ‘forward’, interface and method declarations (az32.pas,
fjf758*.pas)

• 20030129: several standard conformance bugs (az{1..24,26..42,44..46}*.pas, emil23*.pas)
• 20030126: some bugs with complicated schema usage (emil22*.pas, fjf750*.pas)
• 20030122: subtraction of unsigned types with a negative result doesn’t work (ml4.pas)
• 20021229: declaring huge enum types and exporting subranges of them is very slow

(quadratic time behaviour); some bugs regarding exporting of subranges (fjf736*.pas)
• 20021213: Linux: ‘crtscreen’ should react to ‘SIGWINCH’
• 20021120: ‘Card’ doesn’t work with set constructors; ‘Include’ and ‘Exclude’ should not

accept set constructors (eike3*.pas)
• 20021105: type initializers are not type-checked until a variable of the type is declared

(fjf704.pas); with gcc-2.x: bug when variables of a type with initializer are declared locally
in more than one routine (couper13.pas)

• 20021105: ‘packed object’ should not be allowed (fjf703.pas)
• 20021101: bug when replacing a non-virtual method by a virtual one in a descendant object

type (fjf702.pas)
• 20021027: classic Pascal does not know the empty string

<Pine.LNX.4.44.0210181332470.29475-100000@duch.mimuw.edu.pl> (fjf693*.pas)
• 20021027: relational and exponentiation operators have no associativity

<Pine.LNX.4.44.0210210807410.18095-100000@duch.mimuw.edu.pl> (fjf692.pas,
fjf566[k-m].pas)

• 20021002: ‘gpc -Bdir’ requires a trailing dir separator
• 20021001: constructors are accepted as the argument to ‘Dispose’ (fjf674.pas)
• 20021001: align file fields in packed records on machines with strict alignment requirements

(chief38*.pas)
• 20021001: bug on machines with strict alignment requirements

<199906021618.MAA06228@sten27.software.mitel.com> (richard1.pas)
• 20020930: duplicate variable declarations are allowed
• 20020929: ‘attribute’s of variables are ignored (fjf673.pas)
• 20020929: ‘volatile’ for ‘external’ variables without ‘asmname’ is ignored (fjf672.pas)
• 20020926: numbers with base specifiers are allowed as labels (fjf417*.pas)
• 20020923: System: ‘MemAvail’/‘MaxAvail’ can go into an endless loop
• 20020920: the number of times the preprocessor is invoked by the automake

mechanism might grow exponentially with the number of units involved
<02091610572303.14626@dutw54.wbmt.tudelft.nl>

• 20020918: importing ‘StandardOutput’ etc. in the interface of a module doesn’t work
(sietse2*.pas)

• 20020904: comparisons between signed and unsigned integers sometimes give wrong results
(eike2.pas, fjf664.pas, martin5.pas)

• 20020903: ‘IOSelect’ fails with file handles >= 8 on some systems (e.g., Solaris) (fjf663.pas)
• 20020831: GPC creates wrong debug info for many built-in types

<200208280012.g7S0CWj07637@mail.bcpl.net>
• 20020827: comparisons of ‘packed’ subrange variables don’t work right (martin4[ab].pas)
• 20020824: operators defined in units don’t always work (maur11.pas)

462 The GNU Pascal Manual

• 20020824: object methods that contain an ISO style procedural parameter forget the im-
plicit ‘with Self do’ (fjf662a.pas)

• 20020615: ‘if Pass[i] in ’A’ .. ’Z’’ makes GPC crash (miklos6.pas)
• 20020603: compiling a program (not a unit or module) with ‘--interface-only’ or

‘--syntax-only’ segfaults (waldek1.pas)
• 20020603: ‘--nested-comments’ fails without ‘-Wall’ (waldek2.pas)
• 20020514: powerpc: ‘--strength-reduce’ doesn’t work with ‘for’ loops [kludged now]
• 20020514: guarantee complete evaluation in ‘{$B+}’ mode (fjf552*.pas)
• 20020514: spurious warning with ‘for’ loops using a ‘ByteCard’ counter (toby1.pas)

Chapter 12: The GPC Source Reference 463

12 The GPC Source Reference

“The Source will be with you. Always.”
This chapter describes internals of GPC. It is meant for GPC developers and those who want

to become developers, or just want to know more about how the compiler works. It does not
contain information needed when using GPC to compile programs.

This chapter tells you how to look up additional information about the GNU Pascal compiler
from its source code.

Note: If you intend to modify GPC’s source, please check the top of each file you’re going to
modify. A number of files are generated automatically by various tools. The top of these files
will tell you by which tool and from what file they were generated. Modifying a generated file is
pointless, since it will be overwritten the next time the tool is run. Instead, modify the original
source (which will usually be easier in fact, e.g. a bison input file vs. the generated C code).
This also holds for various documentation files.

Proprietary compilers often come with a lot of technical information about the internals of
the compiler. This is necessary because their vendors want to avoid to distribute the source of
the compiler – which is always the most definitive source of this technical information.

With GNU compilers, on the other hand, you are free to get the source code, look how your
compiler works internally, customize it for your own needs, and to re-distribute it in modified or
unmodified form. You may even take money for this redistribution. (For details, see the GNU
General Public License, Appendix A [Copying], page 481.)

The following subsections are your guide to the GNU Pascal source code. If you have further
questions, be welcome to ask them at the GNU Pascal mailing list (see Chapter 10 [Support],
page 449).

All file paths mentioned in this chapter are relative to the GNU Pascal source directory,
usually a subdirectory ‘p’ of the GCC source.

The following sections roughly coincide with the order of the steps a Pascal source passes
through during compilation (omitting the code generation which is the job of the GCC backend,
and the assembler and linker steps at the end which are done by the programs ‘as’ and ‘ld’ of
binutils and possibly other utilities like ‘collect2’). Also missing here is the compiler driver
‘gpc’ which behaves very similarly to ‘gcc’ and whose main job is to invoke the other parts in
the right order, with the right arguments etc.

@@ Under construction. Many more things are missing because nobody has yet had the time
to write something about them.

For more information, see chapters “Portability” through “Fragments” in section “Top” in
“Using and Porting GNU CC”.

12.1 The Pascal preprocessor

‘gpcpp’ is based on the C preprocessor, so it does everything ‘cpp’ does (see the cpp manual)
and some more. In particular:
• Comments like ‘cpp’ does, but within ‘{ ... }’ and ‘(* ... *)’, also after ‘//’ if

‘delphi-comments’ is active, never within ‘/* ... */’. Also mixed comments (‘{ ... *)’,
‘(* ... }’) if enabled (‘mixed-comments’) and nested comments (e.g. ‘{ ... { ... } ...
}’) if enabled (‘nested-comments’)

• Macros and conditionals like ‘cpp’ does, but both case sensitive and insensitive ones;
‘no-macros’ to turn macro expansion off (e.g., for BP compatibility)

• ‘ifopt’ for short and long options
• Include files like ‘cpp’ does, but also with ‘{$I ...}’ (BP style), which allows the file name

extension to be omitted

464 The GNU Pascal Manual

• Recognize Pascal strings (to avoid looking for comments and directives within strings)
enclosed in single (like Standard Pascal) or double quotes (like C).

• Option handling, sharing tables in ‘gpc-options.h’ with the compiler:
− Default option settings
− Options can imply other options (e.g., ‘borland-pascal’ -> ‘no-macros’ etc.)
− Short compiler directives
− Short directive ‘W’ (warnings) is disabled in ‘borland-pascal’ and ‘delphi’ because it

has another meaning there
• Compiler directives (‘{$...}’ or ‘(*$...*)’):

− pass them through, so the compiler can handle them
− keep track of them for ‘ifopt’
− handle those that affect the preprocessor (e.g., about comments)
− allow comments within compiler directives if nested comments are enabled
− local directives
− case insensitive

• Slightly Pascal-like syntax for conditional compilation (‘not’ -> ‘!’, ‘and’ -> ‘&&’, ‘or’ ->
‘||’, ‘xor’ -> ‘!=’, ‘shl’ -> ‘<<’, ‘shr’ -> ‘>>’, ‘False’ -> ‘0’, ‘True’ -> ‘1’, ‘<>’ -> ‘!=’, ‘=’ ->
‘==’)

• Line directives like ‘cpp’ does, but recognize BP style (‘#42’ or ‘#$f0’) character constants
and don’t confuse them with line directives (the latter seem to always have a space after
the ‘#’)

12.2 GPC’s Lexical Analyzer

The source file ‘gpc-lex.c’ contains the so-called lexical analyzer of the GNU Pascal com-
piler. (For those of you who know ‘flex’: This file was not created using ‘flex’ but is maintained
manually.) This very-first stage of the compiler (after the preprocessor which is a separate ex-
ecutable) is responsible for reading what you have written and dividing it into tokens, the
“atoms” of each computer language. The source ‘gpc-lex.c’ essentially contains one large
function, ‘yylex()’.

Here is, for example, where the real number ‘3.14’ and the subrange ‘3..14’ are distinguished,
and where Borland-style character constants like ‘#13’ and ‘^M’ are recognized. This is not always
a trivial task, for example look at the following type declaration:

type
X = ^Y;
Y = packed array [^A .. ^B] of Char;
Z = ^A .. ^Z;

If you wish to know how GPC distinguishes the pointer forward declaration ‘^Y’ and the sub-
range ‘^A..^Z’, see ‘gpc-lex.c’, function ‘yylex()’, ‘case ’^’:’ in the big ‘switch’ statement.

There are several situation where GPC’s lexical analzyer becomes context-sensitive. One
is described above, another example is the token ‘protected’, a reserved word in ISO 10206
Extended Pascal, but an ordinary identifier in ISO 7185 Pascal. It appears in parameter lists

procedure foo (protected bar: Integer);

and says that the parameter ‘bar’ must not be changed inside the body of the procedure.
OTOH, if you write a valid ISO 7185 Pascal program, you can declare a parameter

‘protected’:

Chapter 12: The GPC Source Reference 465

procedure foo (protected, bar: Integer);

Here both standards contradict each other. GPC solves this problem by checking explicitly for
“protected” in the lexical analyzer: If a comma or a colon follows, this is an ordinary identifier,
otherwise it’s a reserved word. Having this, GPC even understands

procedure foo (protected protected: Integer);

without losing the special meaning of ‘protected’ as a reserved word.
The responsible code is in ‘gpc-lex.c’ – look out for ‘PROTECTED’.
If you ever encouter a bug with the lexical analyzer – now you know where to hunt for it.

12.3 Interrelations between the lexer and parser

See ‘gpc-lex.c’, ‘parse.y’.
• ‘lex_const_equal’
• ‘lex_caret’
• declarations vs. weak keywords (see Section 12.5 [Parsing keywords], page 466)
• compiler directives (via ‘options.c’)

12.4 Language Definition: GPC’s Parser

The file ‘parse.y’ contains the “bison” source code of GNU Pascal’s parser. This stage of
the compilation analyzes and checks the syntax of your Pascal program, and it generates an
intermediate, language-independent code which is then passed to the GNU back-end.

The bison language essentially is a machine-readable form of the Backus-Naur Form, the
symbolic notation of grammars of computer languages. “Syntax diagrams” are a graphical
variant of the Backus-Naur Form.

For details about the “bison” language, see the Bison manual. A short overview how to pick
up some information you might need for programming follows.

Suppose you have forgotten how a variable is declared in Pascal. After some searching in
‘parse.y’ you have found the following:

/* variable declaration part */

variable_declaration_part:
LEX_VAR variable_declaration_list semi

| LEX_VAR semi
{ error ("missing variable declaration"); }

;

variable_declaration_list:
variable_declaration

| variable_declaration_list semi variable_declaration
{ yyerrok; }

| error
| variable_declaration_list error variable_declaration

{
error ("missing semicolon");
yyerrok;

}
| variable_declaration_list semi error
;

466 The GNU Pascal Manual

Translated into English, this means: “The variable declaration part consists of the reserved
word (lexical token) ‘var’ followed by a ‘variable declaration list’ and a semicolon. A semicolon
immediately following ‘var’ is an error. A ‘variable declaration list’ in turn consists of one or
more ‘variable declarations’, separated by semicolons.” (The latter explanation requires that
you understand the recursive nature of the definition of ‘variable_declaration_list’.)

Now we can go on and search for ‘variable_declaration’.

variable_declaration:
id_list

{
[...]

}
enable_caret ’:’ optional_qualifier_list type_denoter

{
[...]

}
absolute_or_value_specification

{
[...]

}
;

(The ‘[...]’ are placeholders for some C statements which aren’t important for understand-
ing GPC’s grammar.)

From this you can look up that a variable declaration in GNU Pascal consists of an “id list”,
followed by “enable caret” (whatever that means), a colon, an “optional qualifier list”, a “type
denoter”, and an “absolute or value specification”. Some of these parts are easy to understand,
the others you can look up from ‘parse.y’. Remember that the reserved word ‘var’ precedes
all this, and a semicolon follows all this.

Now you know the procedure how to get the exact grammar of the GNU Pascal language
from the source.

The C statements, not shown above, are in some sense the most important part of the
bison source, because they are responsible for the generation of the intermediate code of the
GNU Pascal front-end, the so-called tree nodes (which are used to represent most things in the
compiler). For instance, the C code in “type denoter” returns (assigns to ‘$$’) information about
the type in a variable of type ‘tree’.

The “variable declaration” gets this and other information in the numbered arguments (‘$1’
etc.) and passes it to some C functions declared in the other source files. Generally, those
functions do the real work, while the main job of the C statements in the parser is to call them
and pass their arguments around.

This, the parser, is the place where it becomes Pascal.

12.5 So many keywords, so many problems . . .

Keywords can be potential problems since they are (generally) not available for use as iden-
tifiers. Only those keywords that are defined in ISO 7185 Pascal are unproblematic because no
valid program should ever use them as identifiers.

To cope with this problem, GPC does several things:
• If a dialect option is set, only keywords of the specified dialect are enabled. All possible

keywords, together with their dialects, are defined in ‘predef.h’. However, compiling with
dialect options is usually not recommended, so this is no good general solution.

Chapter 12: The GPC Source Reference 467

• The user can turn off individual keywords using the compiler directive
‘{$disable-keyword}’. This makes sure that every conflict with a user’s identifier can be
avoided, but with extra work on part of the user.

• The parser used to enable and disable keywords in certain syntactic contexts. However, this
was rather fragile since it interacts with the parser’s read-ahead, and it requires attention
on every related change in the parser. Therefore, this mechanism was removed.

• Many of the problematic keywords are now treated as “weak”. This means, they are only
recognized as keywords if no current declaration of this name exists. However, so that this
can work, it must be possible to create new declarations of this name in the first place – at
this point, no declaration exists yet, so the name is recognized as a keyword.
This is solved by listing these keywords in the ‘new_identifier’ rule of the parser. This
means, first the lexer recognizes them as keywords, then the parser “turns them back” into
identifiers. The advantage, compared to explicit enabling and disabling of keywords, is that
bison automatically finds the places in which to apply the ‘new_identifier’ rule, i.e. treat
them as plain identifiers.
Of course, there is a catch. Since the keyword tokens are listed in ‘new_identifier’,
they can conflict with occurrences of the actual keywords (bison will find such cases as
S/R or R/R conflicts). Such conflicts have to be sorted out carefully. Fortunately, for many
keywords, this turned out quite easy – in some cases no conflicts at all arose. One especially
complicated example is explained below in detail. If it is not possible to solve the conflicts
for a particular keyword, this keyword cannot be handled this way.

The following sections describe the most problematic keywords:
These descriptions should make it clear that we’re walking on the bleeding edge of what’s

possible with LALR(1) and lexer tricks. Trying much more will probably increase the complexity
to the unmanageable.

12.5.1 ‘attribute’ as a weak keyword

Note that in the following we use the spelling ‘attribute’ when referring to the directive
and ‘Attribute’ for an identifier. This is according to the GPCS and might make the following
text clearer. However, it cannot be a criterion for resolving the conflict since the compiler must
treat both spellings equally. The same applies, of course, to the line-breaks and white-space
used here for readability.

Making ‘attribute’ a weak keyword leads to a S/R conflict in variable declarations (whereas
routine declarations go without conflicts). Consider this case:

var
a: Integer; attribute (...)

vs.
var

a: Integer;
Attribute: ...

After reading the ‘;’, the parser must decide whether to shift it, or to reduce to a variable
declaration. But the next token ‘attribute’ doesn’t decide it, and bison can only look ahead
one token.

The following token would resolve the problem, since the directive ‘attribute’ is always
followed by ‘(’ whereas an identifier in a variable declaration can be followed by ‘,’ or ‘:’, but
never ‘(’.

More generally, an identifier in an ‘id_list’ in the parser can never be followed by ‘(’ (while
identifiers in other contexts can be, e.g. in function calls). This must be carefully checked
manually through the whole grammar!

468 The GNU Pascal Manual

Thus, the solution consists of two steps. Firstly, the lexer does the additional look-ahead
that bison can’t do. When it reads the word ‘attribute’ (and it is not disabled by dialect
options or by the user or shadowed by some declaration), then if the next token is not ‘(’, it
can only be an identifier, so the lexer returns ‘LEX_ID’. If the next token is ‘(’, the lexer returns
‘p_attribute’.

Lexer look-ahead is not really nice, either, e.g. because it increases the “shift” of compiler
directives. At least, we only have to read ahead two characters plus preceding white-space (two
because of ‘(.’), and not an actual token – the latter would add additiional complications of
saving and restoring lexer semantic values and the state of lexer/parser interrelation variables
(see Section 12.3 [Lexer/parser], page 465) such as ‘lex_const_equal’, and then either lex the
token again later or handle the cases where the parser modifies these variables in between. This
would get really messy.

Secondly, the parser accepts ‘p_attribute’ as an identifier except in an ‘id_list’. To achieve
this, the nonterminal ‘new_identifier_limited’ is used within ‘id_list’.

Note: Using ‘new_identifier_limited’ does not mean that ‘Attribute’ can’t be used as
an identifier in this place. Instead, this nonterminal can never be followed by ‘(’, so the lexer
will have turned ‘Attribute’ into a ‘LEX_ID’ token already.

Actually, that’s not all: In a ‘constant_definition’, the conflict is not against ‘id_list’,
but against a simple ‘new_identifier’. But we can just use ‘new_identifier_limited’ instead
in the ‘constant_definition’ rule.

This finally solves all conflicts with ‘attribute’. ‘fjf792*.pas’ are test programs for these
cases.

12.5.2 ‘external’ as a weak keyword

The situation about ‘external’ is similar to ‘attribute’. However, on the positive side, we
don’t have to worry about constants which cannot be external – by definition, since initialization
and external declaration contradict each other.

The new problems are that an ‘external’ directive can be followed by ‘;’, ‘name’ and by
many more tokens if GPC will support a BP compatible ‘external libname’ where libname can
be a string constant expression.

So we have to consider the problem from the other side. In an ‘id_list’ of a variable
declaration (which is the only conflict, given the notes about attribute, Section 12.5.1 [attribute
as a weak keyword], page 467.), an identifier can be followed only by ‘,’ and ‘:’. These two
tokens cannot follow an ‘external’ directive (not even in ‘external libname’).

However, in other contexts, identifiers can be followed by other tokens (even in an
‘id_list’, e.g. ‘procedure Foo (var External; i: Integer);’), so we accept ‘p_external’
as a ‘new_identifier’ everywhere except in variable declarations (‘new_identifier_limited’
‘id_list_limited’).

‘fjf793*.pas’ are test programs for ‘external’.
(Basically the same applies to the deprecated ‘asmname’.)

12.5.3 ‘forward’, ‘near’ and ‘far’ as weak keywords

‘forward’ is a little special in ISO 7185 in that it is no keyword, so it may be used as an
identifier and a directive at the same time. That’s more than what our weak keywords allow.

This problem would be easy to solve if we just parsed it as a plain identifier (‘LEX_ID’) and
then check that it was in fact ‘forward’.

However, the same applies to the BP directives ‘near’ and ‘far’. (At least so it seems – the
BP documentation claims they’re reserved words, but the compiler seems to think otherwise.)

Chapter 12: The GPC Source Reference 469

Parsing all the three together as an identifier and then checking which one it was fails because
‘forward’ is a remote directive, i.e. a routine declared so has no body, while ‘near’ and ‘far’
are not. So it makes a syntactical difference for what follows.

So we need a new trick: We lex the three like regular (non-weak) keywords, but throw their
tokens together with ‘LEX_ID’ very early in the parser, in the ‘id’ rule which is used everywhere
an existing identifier is expected. But in the context of these three directives, no identifier is
allowed, so the three tokens can be used without conflicts between each other or with ‘id’.

12.5.4 ‘implementation’, ‘constructor’, ‘destructor’, ‘operator’, ‘uses’,
‘import’ and ‘initialization’ as weak keywords

In ISO 7185 Pascal, each section of the source code is uniquely introduced by a keyword
(‘program’, ‘const’, ‘type’, ‘var’, ‘label’, ‘procedure’, ‘function’, ‘begin’). However, the
ending of some of these sections (in particular ‘const’, ‘type’ and ‘var’) is not intrinsically de-
fined, but only by the context (the next of these “critical” keywords). E.g., ‘var Foo: Integer;’
can be a complete variable declaration part (if one of those keywords follows), or only a part
of one, as in ‘var Foo: Integer; Bar: Integer;’. (For the other keywords, the ending is in-
trinsically defined – the ‘program’ heading and ‘label’ declarations end with the next ‘;’. For
‘procedure’ and ‘function’ it’s a little more complicated, due to ‘forward’ declarations, but
still well-defined, and ‘begin’ ends with the matching ‘end’). The same applies to sections within
one routine, except that ‘program’ cannot occur there.

Extended Pascal adds ‘to’ (in ‘to begin do’ and ‘to end do’) and ‘end’ (in interface modules
and implementation modules without initializer and finalizer) to those “critical” keywords.

But it also adds two keywords which are not defined in classic Pascal, namely ‘export’ and
‘import’. But they can only occur at the beginning of the source or of a module implemen-
tation so they have fewer chances to conflict with those other keywords. The same applies
to UCSD/Borland Pascal’s ‘uses’ for units. (‘uses’ terminates at the first ‘;’, ‘export’ and
‘import’ do not necessarily, like ‘var’ etc.)

The problem gets bigger with UCSD/Borland Pascal’s ‘implementation’ in units. It can
occur after the interface part, so it might follow, e.g., a variable declaration part. And it is not
an ISO 7185 Pascal keyword.

If we want to treat ‘implementation’ as a weak keyword, it must not conflict with new
identifiers anywhere in the grammar.

However, variable declaration parts are not self-contained in the sense described above, so
after a variable declaration part it is not immediately clear if the part is finished or will continue.
So this is a place where a new identifier is acceptable. E.g.:

interface

var
Bar: Integer;
Implementation: Integer;

vs.
interface

var
Bar: Integer;

implementation

The same applies to ‘implementation’ after ‘const’, ‘type’, ‘export’ and ‘import’ parts.
The same problem also occurs with the Borland Pascal and Object Pascal keywords

‘constructor’ and ‘destructor’, the Borland Delphi keyword ‘initialization’, and the PXSC

470 The GNU Pascal Manual

keyword ‘operator’ since the respective declarations can follow variable declaration blocks etc.
It also happens with ‘import’ (but it is only possible after an ‘export’ part) and with ‘uses’ if
we allow it after other declarations (GPC extension).

Again, we play some lexer tricks. We observe that the new identifier in ‘export’, ‘var’,
‘const’ and ‘type’ is always followed by either ‘,’, ‘:’ or ‘=’ while none of the keywords
‘implementation’, ‘constructor’, ‘destructor’, ‘operator’, ‘import’ and ‘uses’ is ever fol-
lowed by one of these symbols . . . with two exceptions: ‘operator =’ is valid, overloading the
‘=’ operator. Consider:

type
Foo = record end;
Operator = (a, b); { enum type }

vs.
type

Foo = record end;

operator = (a, b: Foo) c: Foo;

To decide whether ‘operator’ is a keyword, we would have to look ahead six tokens! Anyway,
that seems to be a new record (where “record” in this sentence can be read either as a Pascal
keyword or in at least one of the usual English meanings ;–).

The other exception is that ‘initialization’ can, in principle, be followed by ‘(’, as in:
implementation

type
Foo = Integer;
Initialization (Obj: Integer)

vs.
implementation

type
Foo = Integer;

Initialization
(Obj as SubObj).Method;

This would require 3 tokens look-ahead. However, a ‘(’ at the beginning of a statement is
quite uncommon, so we just disallow that, so the use of ‘Initialization’ as an identifier is not
restricted.

Doing so much look-ahead would be a huge effort and cause some complications as noted
above. This seems inappropriate for such an academic example. So, until someone comes up
with a clever trick to cope with this case, we give up here and let ‘operator’ before ‘=’ be
a keyword, so overloading ‘=’ is possible. This means that ‘operator’ cannot be used as an
‘export’ interface, a type or an (untyped) constant, unless the keyword is disabled explicitly or
by dialect options. (Enabling and disabling the keyword by the parser would also have been no
option here, since the parser would need the 6-token look-ahead just as well, which it cannot
do.)

You may have noticed that we “forgot” ‘import’ (in the list of possibly unfinished sections;
not in the list of critical following keywords where it was alright; it actually plays both roles in
this discussion).

This is because the identifier at the beginning of an import specification can be followed by
‘qualified’, ‘only’, ‘in’, ‘(’ or ‘;’ – the former two of which are non-standard keywords as well
and would therefore conflict with a new identifier after, e.g., ‘uses’ and ‘operator’.

Chapter 12: The GPC Source Reference 471

This means that there’s no simple general solution. So let’s consider the problematic keywords
after an ‘import’ part in detail:
• ‘import’. Can’t happen since EP only allows only ‘import’ part (possibly containing mul-

tiple import specifications). So this one doesn’t cause a S/R conflict, unlike the following
ones.

• ‘uses’. Combining module-style ‘import’ with unit-style ‘uses’ is a direct mix of different
standards. According to the discussion above, it would lead to the following ambiguity:

import Foo; Uses only (a); { import only ‘a’ from ‘Uses’ }

vs.
import Foo;

uses Only (a); { import ‘a’ from ‘Only’ }

Though ‘uses’ with an import-list is another “cross-standard” extension, disallowing it
would only reduce the issue from an ambiguity to a two-token look-ahead conflict and not
really help much – whereas it would devalue the usefulness of ‘uses’ which otherwise can
always serve as a substitute for ‘import’, e.g. to avoid all the conflicts discussed here
(because ‘uses’ is terminated by the first ‘;’).

• ‘operator’.
import Foo; Operator only (a, b);

(i.e., import only ‘a’ and ‘b’ from an interface called ‘Operator’), vs.
import Foo;

operator Only (a, b: Integer) c: Integer;

As in the case of ‘operator =’, we would need 6 tokens of look-ahead. We have to give up.
• ‘implementation’. This does not happen for module implementations since their syntax is

different (‘module Foo implementation;’), but for unit implementations. Combining these
with module-style ‘import’ is therefore “cross-standard” already. In addition, it would
imply an empty interface part (apart from the imports) which is rather pointless in units
(whereas it might be useful in modules, containing only re-exports, but as noted, module
implementations are unproblematic here).

• ‘constructor’ and ‘destructor’. In an interface, these actually do not make sense imme-
diately after ‘import’ since their purpose is to implement constructors and destructors of
object types that must have been declared before (not imported). But it could happen in
an implementation.

We forbid all of these keywords immediately after an ‘import’ part. This is achieved using
parser precedence rules.

12.6 Expressions as lower bounds of subranges

Extended Pascal allows arbitrary expressions as the lower bounds of subrange types. This
leads to some following parsing difficulties:

type
a = (expr1) .. expr2;

(if ‘expr1’ starts with an identifier) vs.
type

a = (enum1, enum2);

If the enum type contains at least two items, we get no real conflicts, but what the bison
manual calls “mystery conflicts”, i.e. our grammer is LR(1), but not LALR(1) which bison
requires, 〈undefined〉 [Mystery Conflicts], page 〈undefined〉.

472 The GNU Pascal Manual

Our solution is the one suggested in the bison manual, to add a bogus rule. For that we
add a new terminal ‘BOGUS’ which is never used and a new nonterminal ‘conflict_id’ which
contains the identifiers that are responsible for the six conflicts.

It gets more difficult if the enum type has only one item, i.e.:

type
a = (enum1);

If further ‘expr1’ consists of a single identifier, the conflict cannot be resolved without reading
the token following the right parenthesis. (This is inherent in the EP language.)

But already after reading the identifier (‘expr1’ or ‘enum1’), our parser has to decide whether
to reduce it to an expression or to keep it as an identifier. (The alternative would be to define an
expression which is anything but a single identifier, and parse ‘(identifier)’ as a distinct thing,
but this would get quite hairy.)

We resolve it with a lexer hack. The lexer turns a right parenthesis which is followed by ‘..’
into the new token ‘LEX_RPAR’. Most places in the parser treat ‘LEX_RPAR’ and ‘)’ as equivalent
(nonterminal ‘rpar’). However, enum types allow only ‘)’ (they can never be followed by ‘..’),
and the lower bound of a subrange allows only ‘LEX_RPAR’ (it is always followed by ‘..’). This
resolves the conflict.

But there are more conflicts if the lower bound is not enclosed in parentheses:

type
a = Foo (42) .. expr2;

(where ‘Foo’ can be one of certain built-in functions such as ‘Sqr’, or a type name for a
type-cast) vs.

type
a = Bar (42);

(where ‘Bar’ is an undiscriminated schema type).

To resolve this, we let the lexer return a special token ‘LEX_SCHEMA’ for identifiers which
correspond to undiscriminated schema types. The parser accepts this token in ‘new_identifier’
(so schema identifiers can be redefined) and ‘typename’ (e.g. for parameters), but not in ‘id’
(which appears in expressions) where undiscriminated schema types are invalid.

The last conflict:

type
a = @Foo = (expr) .. expr2;

(where ‘@’ is the BP address operator – the ‘= (expr)’ is there to create an ordinal (namely,
Boolean) expression that starts with the address operator) vs.

type
a = @Bar = (expr);

(where ‘@’ is a lexical alternative for ‘^’, according to the standards).

The conflict arises already with the ‘@’ token. The ‘=’ (as a comparison operator in the first
case, and for a type initializer – EP extension, combined with a BP extension of using ‘=’ instead
of ‘value’) just adds to the problem. Since expr can be arbitrary long, the conflict is in fact not
solvable with any fixed number of lookup tokens.

This conflict is decided using parser precedence rules, in favour of the latter interpretation.
(BP itself can’t parse the supposedly BP compatible former syntax.)

Chapter 12: The GPC Source Reference 473

12.7 Tree Nodes

If you want really to understand how the GNU Pascal language front-end works internally
and perhaps want to improve the compiler, it is important that you understand GPC’s internal
data structures.

The data structure used by the language front-end to hold all information about your Pascal
program are the so-called “tree nodes”. (Well, it needn’t be Pascal source – tree nodes are
language independent.) The tree nodes are kind of objects, connected to each other via pointers.
Since the GNU compiler is written in C and was created at a time where nobody really thought
about object-oriented programming languages yet, a lot of effort has been taken to create these
“objects” in C.

Here is an extract from the “object hierarchy”. Omissions are marked with “. . . ”; nodes
in parentheses are “abstract”: They are never instantiated and aren’t really defined. They
only appear here to clarify the structure of the tree node hierarchy. The complete list is in
‘../tree.def’; additional information can be found in ‘../tree.h’.

(tree_node)
|
|--- ERROR_MARK { enables GPC to continue after an error }
|
|--- (identifier)
| |
| |--- IDENTIFIER_NODE
| |
| \--- OP_IDENTIFIER
|
|--- TREE_LIST { a list of nodes, also used as a
| general-purpose "container object" }
|
|--- TREE_VEC
|
|--- BLOCK
|
|--- (type) { information about types }
| |
| |--- VOID_TYPE
| |
| |--- INTEGER_TYPE
| ...
| |
| |--- RECORD_TYPE
| |
| |--- FUNCTION_TYPE
| |
| \--- LANG_TYPE { for language-specific extensions }
|
|--- INTEGER_CST { an integer constant }
|
|--- REAL_CST
|
|--- STRING_CST
|
|--- COMPLEX_CST

474 The GNU Pascal Manual

|
|--- (declaration)
| |
| |--- FUNCTION_DECL
| ...
| |
| |--- TYPE_DECL
| |
| \--- VAR_DECL
|
|--- (reference)
| |
| |--- COMPONENT_REF
| ...
| |
| \--- ARRAY_REF
|
|--- CONSTRUCTOR
|
\--- (expression)

|
|--- MODIFY_EXPR { assignment }
|
|--- PLUS_EXPR { addition }
...
|
|--- CALL_EXPR { procedure/function call }
|
|--- GOTO_EXPR
|
\--- LOOP_EXPR { for all loops }

Most of these tree nodes – struct variables in fact – contain pointers to other tree nodes.
A ‘TREE_LIST’ for instance has a ‘TREE_VALUE’ and a ‘TREE_PURPOSE’ slot which can contain
arbitrary data; a third pointer ‘TREE_CHAIN’ points to the next ‘TREE_LIST’ node and thus allows
us to create linked lists of tree nodes.

One example: When GPC reads the list of identifiers in a variable declaration
var

Foo, Bar, Baz: Integer;

the parser creates a chain of ‘TREE_LIST’s whose ‘TREE_VALUE’s hold ‘IDENTIFIER_NODE’s
for the identifiers ‘Foo’, ‘Bar’, and ‘Baz’. The function ‘declare_variables()’ (declared in
‘declarations.c’) gets this tree list as a parameter, does some magic, and finally passes a
chain of ‘VAR_DECL’ nodes to the back-end.

The ‘VAR_DECL’ nodes in turn have a pointer ‘TREE_TYPE’ which holds a ‘_TYPE’ node – an
‘INTEGER_TYPE’ node in the example above. Having this, GPC can do type-checking when a
variable is referenced.

For another example, let’s look at the following statement:
Baz := Foo + Bar;

Here the parser creates a ‘MODIFY_EXPR’ tree node. This node has two pointers,
‘TREE_OPERAND[0]’ which holds a representation of ‘Baz’, a ‘VAR_DECL’ node, and
‘TREE_OPERAND[1]’ which holds a representation of the sum ‘Foo + Bar’. The sum in turn is

Chapter 12: The GPC Source Reference 475

represented as a ‘PLUS_EXPR’ tree node whose ‘TREE_OPERAND[0]’ is the ‘VAR_DECL’ node ‘Foo’,
and whose ‘TREE_OPERAND[1]’ is the ‘VAR_DECL’ node ‘Bar’. Passing this (the ‘MODIFY_EXPR’
node) to the back-end results in assembler code for the assignment.

If you want to have a closer look at these tree nodes, write a line ‘{$debug-tree FooBar}’ into
your program with ‘FooBar’ being some identifier in your program. This tells GPC to output
the contents of the ‘IDENTIFIER_NODE’ to the standard error file handle in human-readable form.

While hacking and debugging GPC, you will also wish to have a look at these tree nodes in
other cases. Use the ‘debug_tree()’ function to do so. (In fact ‘{$debug-tree FooBar}’ does
nothing else than to ‘debug_tree()’ the ‘IDENTIFIER_NODE’ of the ‘Foobar’ identifier node –
note the capitalization of the first character in the internal representation.)

12.8 Parameter Passing

GPC supports a lot of funny things in parameter lists: ‘protected’ and ‘const’ parameters,
strings with specified or unspecified length, conformant arrays, objects as ‘var’ parameters, etc.
All this requires sophisticated type-checking; the responsible function is ‘convert_arguments()’
in the source file ‘typecheck.c’. Every detail can be looked up from there.

Some short notes about the most interesting cases follow.

Conformant arrays:
First, the array bounds are passed (an even number of parameters of an ordinal
type), then the address of the array itself.

Procedural parameters:
These need special care because a function passed as a parameter can be con-
fused with a call to the function whose result is then passed as a parameter. See
also the functions ‘maybe_call_function()’ and ‘probably_call_function()’ in
‘expressions.c’.

Chars: According to ISO 10206 Extended Pascal, formal char parameters accept string
values. GPC does the necessary conversion implicitly. The empty string produces
a space.

Strings and schemata:
Value parameter strings and schemata of known size are really passed by value.
Value parameter strings and schemata of unknown size are passed by reference, and
GPC creates temporary variable to hold a copy of the string.

‘const’ parameters:
If a constant value is passed to a ‘const’ parameter, GPC assigns the value to a
temporary variable whose address is passed. Exception: Small types (whose size is
known and not bigger than that of a pointer) as well as all integer, real and complex
types are really passed by value.

Typeless parameters:
These are denoted by ‘var foo’ or ‘var foo: Void’ and are compatible to C’s ‘void
*’ parameters; the size of such entities is not passed. Maybe we will change this in
the future and pass the size for ‘var foo’ parameters whereas ‘var foo: Void’ will
remain compatible to C. (Same with ‘const’ instead of ‘var’.)

‘CString’ parameters:
GPC implicitly converts any string value such that the address of the actual string
data is passed and appends a ‘Chr (0)’ terminator.

476 The GNU Pascal Manual

12.9 GPI files – GNU Pascal Interfaces

This section documents the mechanism how GPC transfers information from the exporting
modules and units to the program, module or unit which imports (uses) the information.

A GPI file contains a precompiled GNU Pascal interface. “Precompiled” means in this
context that the interface already has been parsed (i.e. the front-end has done its work), but
that no assembler output has been produced yet.

The GPI file format is an implementation-dependent (but not too implementation-dependent
;−) file format for storing GNU Pascal interfaces to be exported – Extended Pascal and PXSC
module interfaces as well as interface parts of UCSD/Borland Pascal units compiled with GNU
Pascal.

To see what information is stored in or loaded from a GPI file, run GPC with an additional
command-line option ‘--debug-gpi’. Then, GPC will write a human-readable version of what
is being stored/loaded to the standard error file handle. (See also: Section 12.7 [Tree nodes],
page 473.) Note: This will usually produce huge amounts of output!

While parsing an interface, GPC stores the names of exported objects in tree lists – look
for ‘handle_autoexport’ in the GPC source files. At the end of the interface, everything is
stored in one or more GPI files. This is done in ‘module.c’. There you can find the source of
‘create_gpi_files()’ which documents the file format:

First, a header of 33 bytes containing the string ‘GNU Pascal unit/module interface’ plus
a newline.

This is followed by an integer containing the “magic” value 12345678 (hexadecimal) to carry
information about the endianness. Note that, though a single GPI file is always specific to
a particular target architecture, the host architecture (i.e., the system on which GPC runs)
can be different (cross-compilers). Currently, GPC is not able to convert endianness in GPI
files “on the fly”, but at least it will detect and reject GPI files with the “wrong” endianness.
When writing GPI files, always the host’s endianness is used (this seems to be a good idea even
when converting on the fly will be supported in the future, since most often, GPI files created
by a cross-compiler will be read again by the same cross-compiler). “Integer” here and in the
following paragraphs means a ‘gpi_int’ (which is currently defined as ‘HOST_WIDE_INT’).

The rest of the GPI file consists of chunks. Each chunk starts with a one-byte code that
describes the type of the chunk. It is followed by an integer that describes the size of the chunk
(excluding this chunk header). The further contents depend on the type, as listed below.

For the numeric values of the chunk type codes, please refer to ‘GPI_CHUNKS’ in ‘module.c’.
Chunk types denoted with ‘(*)’ must occur exactly once in a GPI file. Other types may occur
any number of times (including zero times). The order of chunks is arbitrary. “String” here
simply means a character sequence whose length is the chunk’s length (so no terminator is
needed).

‘GPI_CHUNK_VERSION’ (String) (*)
The version of the GPI file which is the same as the GPC version. If
‘USE_GPI_DEBUG_KEY’ is used (which will insert a “magic” value at the beginning of
each node in the node table, see below, so errors in GPI files will be detected more
reliably), ‘ D’ is appended to this version string. (Currently, ‘USE_GPI_DEBUG_KEY’
is used by default.) Furthermore, the GCC backend version is appended, since it
also influences GPI files.

‘GPI_CHUNK_TARGET’ (String) (*)
The target system the GPI file was compiled for.

‘GPI_CHUNK_MODULE_NAME’ (String) (*)
The name of the unit/module.

‘GPI_CHUNK_SRCFILE’ (String) (*)
The name of the primary source file of the unit/module.

Chapter 12: The GPC Source Reference 477

‘GPI_CHUNK_IMPORT’
The name of an interface imported by the current interface. This chunk consists of
a string followed by the checksum of the imported interface’s nodes, so the chunk
length is the length of the string plus the size of an integer. Again, no terminator
of the string is needed.
The checksum is currently a simple weighted sum over the contents of the
‘GPI_CHUNK_NODES’ chunk’s contents (see below). This might be replaced in the
future by a MD5 hash or something else more elaborate.

‘GPI_CHUNK_LINK’ (String)
The name of a file to link.

‘GPI_CHUNK_LIB’ (String)
The name of a library to link (prefixed with ‘-l’).

‘GPI_CHUNK_INITIALIZER’ (String)
The name of a module initializer. For technical reasons, any such chunk must come
after the ‘GPI_CHUNK_MODULE_NAME’ chunk.

‘GPI_CHUNK_GPC_MAIN_NAME’ (String)
A ‘gpc-main’ option given in this interface. (More than one occurrence is pointless.)

‘GPI_CHUNK_NODES’ (*)
The exported names and the objects (i.e., constants, data types, variables and rou-
tines) they refer to are internally represented as so-called tree nodes as defined in
the files ‘../tree.h’ and ‘../tree.def’ from the GNU compiler back-end. (See
also: Section 12.7 [Tree nodes], page 473.)
The main problem when storing tree nodes is that they form a complicated structure
in memory with a lot of circular references (actually, not a tree, but a directed graph
in the usual terminology, so the name “tree nodes” is actually a misnomer), so the
storing mechanism must make sure that nothing is stored multiple times.
The functions ‘load_node()’ and ‘store_node_fields()’ do the main work of load-
ing/storing the contents of a tree node with references to all its contained pointers
in a GPI file. Each tree node has a ‘TREE_CODE’ indicating what kind of information
it contains. Each kind of tree nodes must be stored in a different way which is not
described here. See the source of these functions for details.
As most tree nodes contain pointers to other tree nodes, ‘load_node()’ is an (in-
directly) recursive function. Since this recursion can be circular (think of a record
containing a pointer to a record of the same type), we must resolve references to
tree nodes which already have been loaded. For this reason, all tree nodes being
loaded are kept in a table (‘rb.nodes’). They are entered there before all their fields
have been loaded (because loading them is what causes the recursion). So the table
contains some incomplete nodes during loading, but at the end of loading a GPI
file, they have all been completed.
On the other hand, for ‘store_node_fields()’ the (seeming) recursion must be
resolved to an iterative process so that the single tree nodes are stored one after
another in the file, and not mixed together. This is the job of ‘store_tree()’. It
uses a hash table (see ‘get_node_id()’) for efficiency.
When re-exporting (directly or indirectly) a node that was imported from another
interface, and a later compiler run imports both interfaces, it must merge the cor-
responding nodes loaded from both interfaces. Otherwise it would get only similar,
but not identical items. However, we cannot simply omit the re-exported nodes from
the new interface in case a later compiler run imports only one of them. The same
problem occurs when a module exports several interfaces. In this case, a program
that imports more than one of them must recognize their contents as identical where
they overlap.

478 The GNU Pascal Manual

Therefore, each node in a GPI file is prefixed (immediately before its tree code)
with information about the interface it was originally imported from or stored in
first. This information is represented as a reference to an ‘INTERFACE_NAME_NODE’
followed by the id (as an integer) of the node in that interface. If the node is
imported again and re-re-exported, this information is copied unchanged, so it will
always refer to the interface the node was originally contained it. For nodes that
appear in an interface for the first time (the normal case), a single 0 integer is
stored instead of interface ‘INTERFACE_NAME_NODE’ and id (for shortness, since this
information is implicit).
This mechanism is not applied to ‘INTERFACE_NAME_NODE’s since there would be a
problem when the identifier they represent is the name of the interface they come
from; neither to ‘IDENTIFIER_NODE’s because they are handled somewhat specially
by the backend (e.g., they contain fields like ‘IDENTIFIER_VALUE’ which depend on
the currently active declarations, so storing and loading them in GPI files would be
wrong) because there is only one ‘IDENTIFIER_NODE’ ever made for any particular
name. But for the same reason, it is no problem that the mechanism can’t be applied
to them.
‘INTERFACE_NAME_NODE’s are a special kind of tree nodes, only used for this pur-
pose. They contain the name of the interface, the name of the module (to detect the
unlikely case that different modules have interfaces of the same name which other-
wise might confuse GPC), and the checksum of that interface. The latter may seem
redundant with the checksum stored in the ‘GPI_CHUNK_IMPORT’ chunk, but in fact
it is not. On the one hand, ‘GPI_CHUNK_IMPORT’ chunks occur only for interfaces
imported directly, while the ‘INTERFACE_NAME_NODE’ mechanism might also refer
to interfaces imported indirectly. On the other hand, storing the checksum in the
‘GPI_CHUNK_IMPORT’ chunks allows the automake mechanism to detect discrepan-
cies and force recompilation of the imported module, whereas during the handling
of the ‘GPI_CHUNK_NODES’ chunk, the imported modules must already have been
loaded. (It would be possible to scan the ‘GPI_CHUNK_NODES’ chunk while deciding
whether to recompile, but that would be a lot of extra effort, compared to storing
the checksum in the ‘GPI_CHUNK_IMPORT’ chunks.)
Finally, at the end of the ‘GPI_CHUNK_NODES’ chunk, a checksum of its own contents
(excluding the checksum itself, of course) is appended. This is to detect corrupted
GPI files and is independent of the other uses of checksums.

‘GPI_CHUNK_OFFSETS’ (*)
An offset table for the tree nodes. Each node in a GPI file is assigned a unique
id (which is stored as an integer wherever nodes refer to other nodes). There are
some special tree nodes (e.g., ‘integer_type_node’ or ‘NULL_TREE’) which are used
very often and have fixed meanings. They have been assigned predefined ids, so they
don’t have to be stored in the GPI file at all. Their number and values are fixed (but
may change between different GPC versions), see ‘SPECIAL_NODES’ in ‘module.c’.
For the remaining nodes, the ‘GPI_CHUNK_OFFSETS’ table contains the file offsets as
integers where they are stored within the (only) ‘GPI_CHUNK_NODES’ chunk. The
offsets are relative to the start of that chunk, i.e. after the chunk header. After the
table (but still in this chunk) the id of the main node which contains the list of all
exported names is stored as an integer. (Currently, this is always the last node, but
for the file format definition, this is not guaranteed.)

‘GPI_CHUNK_IMPLEMENTATION’
This chunk contains no data (i.e., its size must be 0). Its only purpose is to signal
that the module implementation or the implementation part of the unit has been
compiled. (Stored, but not used currently.)

Chapter 12: The GPC Source Reference 479

That’s it. Now you should be able to “read” GPI files using GPC’s ‘--debug-gpi’ option.
There is also a utility ‘gpidump.pas’ in the ‘utils’ directory to decode and show the contents
of GPI files. It does also some amount of integrity checking (a little more than GPC does while
loading GPI files), so if you suspect a problem with GPI files, you might want to run ‘gpidump’
on them, discarding its standard output (it writes all error reports to standard error, of course).

If you encounter a case where the loaded information differs too much from the stored in-
formation, you have found a bug – congratulations! What “too much” means, depends on the
object being stored in or loaded from the GPI file. Remember that the order things are loaded
from a GPI file is the reversed order things are stored when considering different recursion levels,
but the same order when considering the same recursion level. (This is important when using
‘--debug-gpi’; with ‘gpidump’ you can read the file in any order you like.)

12.10 GPC’s Automake Mechanism – How it Works

When a program/module/unit imports (uses) an interface, GPC searches for the GPI file
(see Section 12.9 [GPI files], page 476) derived from the name of the interface.

Case 1: A GPI file was found.

Each GPI file contains the name of the primary source file (normally a ‘.pas’ or ‘.p’ file)
of the module/unit, and the names of all interfaces imported. GPC reads this information and
invokes itself with a command like

gpc foo.pas -M -o foo.d

This means: preprocess the file, and write down the name of the object file and those of all
its source files in ‘foo.d’. GPC reads ‘foo.d’ and looks if the object file exists and if the source
was modified since the creation of the object file and the gpi file. If so, GPC calls itself again
to compile the primary source file. When everything is done, the ‘.d’ file is removed. If there
was no need to recompile, all interfaces imported by the module/unit are processed in the same
way as this one.

Case 2: No GPI file was found.

In this case, GPC derives the name of the source file from that of the interface by trying
first ‘interface.p’, then ‘interface.pas’. This will almost always work with UCSD/Borland
Pascal units, but not always with Extended Pascal modules. The programmer can override this
assumption using ‘uses ... in’ or ‘import ... in’.

All this is done by the function ‘gpi_open()’ which uses some auxiliary functions such as
‘module_must_be_recompiled()’ and ‘compile_module()’.

Each time an object file is compiled or recognized as being up-to-date, its name is stored
in a temporary file with the same base name as all the other temporary files used by GPC
but the extension ‘.gpc’. When the top-level ‘gpc’ is invoked (which calls ‘gpc1’ later on), it
passes the name of this temporary file as an additional command line parameter to ‘gpc1’. After
compilation has been completed, the top-level ‘gpc’ reads the temporary file and adds the new
object files to the arguments passed to the linker.

The additional command ‘--amtmpfile’ (not to be specified by the user!) is passed to child
GPC processes, so all compiles use the same temporary file.

The source for this is merely in ‘module.c’, but there are also some hacks in ‘gpc.c’, ad-
ditional command line options in ‘lang-options.h’ and ‘options.c’, and ‘gpc.h’ contains
declarations for the functions and global variables.

480 The GNU Pascal Manual

12.11 Files that make up GPC; Integrating GNU Pascal in
GCC

The GNU back end (gbe) is used to convert RTL into asm. Supposed to be language inde-
pendent. Files are in the ‘..’ directory (i.e., the directory called ‘gcc’). It also uses files in the
‘../config’ subdirectories etc.

Unfortunately, some of them are not completely language independent and need patching for
GPC. These patches (against different GCC versions) are in the ‘diffs’ subdirectory.

The Pascal language implementation files are in the directory called ‘p’. Some of them were
written from scratch. Others are hacked from GCC sources. Their roots, if any, are mentioned
in the comment at the start.

Appendix A: GNU GENERAL PUBLIC LICENSE 481

Appendix A GNU GENERAL PUBLIC LICENSE

Version 2, June 1991
Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place – Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

GPL Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software – to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered
by the GNU Lesser General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want
it, that you can change the software or use pieces of it in new free programs; and that you know
you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities
for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone under-
stands that there is no warranty for this free software. If the software is modified by someone
else and passed on, we want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General Public
License. The “Program”, below, refers to any such program or work, and a “work based
on the Program” means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term “modification”.) Each licensee is addressed as “you”.

482 The GNU Pascal Manual

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of
the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices stating that you changed

the files and the date of any change.
b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to
print or display an announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide a warranty) and that
users may redistribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on the Program is not
required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also
do one of the following:
a. Accompany it with the complete corresponding machine-readable source code, which

must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distribution,
a complete machine-readable copy of the corresponding source code, to be distributed

Appendix A: GNU GENERAL PUBLIC LICENSE 483

under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

c. Accompany it with the information you received as to the offer to distribute corre-
sponding source code. (This alternative is allowed only for noncommercial distribution
and only if you received the program in object code or executable form with such an
offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all
modules it contains, plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a special exception, the
source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies
the executable.
If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not compelled
to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License. How-
ever, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works.
These actions are prohibited by law if you do not accept this License. Therefore, by modi-
fying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing
or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by all those who receive
copies directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended
to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that

484 The GNU Pascal Manual

system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which
is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICA-
BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix A: GNU GENERAL PUBLIC LICENSE 485

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the
public, the best way to achieve this is to make it free software which everyone can redistribute
and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source file to most effectively convey the exclusion of warranty; and each file should have
at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than
‘show w’ and ‘show c’; they could even be mouse-clicks or menu items – whatever suits your
program.

You should also get your employer (if you work as a programmer) or your school, if any, to
sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Lesser General Public License instead of this License.

486 The GNU Pascal Manual

Appendix B: GNU LESSER GENERAL PUBLIC LICENSE 487

Appendix B GNU LESSER GENERAL PUBLIC
LICENSE

Version 2.1, February 1999
Copyright c© 1991, 1999 Free Software Foundation, Inc.
59 Temple Place – Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence the
version number 2.1.]

LGPL Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to
share and change free software—to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated
software—typically libraries—of the Free Software Foundation and other authors who decide
to use it. You can use it too, but we suggest you first think carefully about whether this license
or the ordinary General Public License is the better strategy to use in any particular case, based
on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish); that you receive source code or can get it if
you want it; that you can change the software and use pieces of it in new free programs; and
that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you
these rights or to ask you to surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give
the recipients all the rights that we gave you. You must make sure that they, too, receive or can
get the source code. If you link other code with the library, you must provide complete object
files to the recipients, so that they can relink them with the library after making changes to the
library and recompiling it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer
you this license, which gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the
free library. Also, if the library is modified by someone else and passed on, the recipients should
know that what they have is not the original version, so that the original author’s reputation
will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We
wish to make sure that a company cannot effectively restrict the users of a free program by
obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license
obtained for a version of the library must be consistent with the full freedom of use specified in
this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public
License. This license, the GNU Lesser General Public License, applies to certain designated
libraries, and is quite different from the ordinary General Public License. We use this license
for certain libraries in order to permit linking those libraries into non-free programs.

488 The GNU Pascal Manual

When a program is linked with a library, whether statically or using a shared library, the
combination of the two is legally speaking a combined work, a derivative of the original library.
The ordinary General Public License therefore permits such linking only if the entire combination
fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking
other code with the library.

We call this license the Lesser General Public License because it does Less to protect the
user’s freedom than the ordinary General Public License. It also provides other free software
developers Less of an advantage over competing non-free programs. These disadvantages are
the reason we use the ordinary General Public License for many libraries. However, the Lesser
license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible
use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs
must be allowed to use the library. A more frequent case is that a free library does the same job
as widely used non-free libraries. In this case, there is little to gain by limiting the free library
to free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater
number of people to use a large body of free software. For example, permission to use the GNU
C Library in non-free programs enables many more people to use the whole GNU operating
system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does
ensure that the user of a program that is linked with the Library has the freedom and the
wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a “work based on the library” and a “work that uses
the library”. The former contains code derived from the library, whereas the latter must be
combined with the library in order to run.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains a
notice placed by the copyright holder or other authorized party saying it may be distributed
under the terms of this Lesser General Public License (also called “this License”). Each
licensee is addressed as “you”.
A “library” means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and data)
to form executables.
The “Library”, below, refers to any such software library or work which has been dis-
tributed under these terms. A “work based on the Library” means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or
a portion of it, either verbatim or with modifications and/or translated straightforwardly
into another language. (Hereinafter, translation is included without limitation in the term
“modification”.)
“Source code” for a work means the preferred form of the work for making modifications to
it. For a library, complete source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running a program using the Library is not restricted,
and output from such a program is covered only if its contents constitute a work based on
the Library (independent of the use of the Library in a tool for writing it). Whether that is
true depends on what the Library does and what the program that uses the Library does.

Appendix B: GNU LESSER GENERAL PUBLIC LICENSE 489

1. You may copy and distribute verbatim copies of the Library’s complete source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on
each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty; and distribute a copy
of this License along with the Library.
You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:
a. The modified work must itself be a software library.
b. You must cause the files modified to carry prominent notices stating that you changed

the files and the date of any change.
c. You must cause the whole of the work to be licensed at no charge to all third parties

under the terms of this License.
d. If a facility in the modified Library refers to a function or a table of data to be supplied

by an application program that uses the facility, other than as an argument passed
when the facility is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or table, the facility still
operates, and performs whatever part of its purpose remains meaningful.
(For example, a function in a library to compute square roots has a purpose that is
entirely well-defined independent of the application. Therefore, Subsection 2d requires
that any application-supplied function or table used by this function must be optional:
if the application does not supply it, the square root function must still compute square
roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Library, the distribution of the whole must
be on the terms of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.
In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this
License to a given copy of the Library. To do this, you must alter all the notices that refer
to this License, so that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the ordinary GNU General
Public License has appeared, then you can specify that version instead if you wish.) Do not
make any other change in these notices.
Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.
This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided that

490 The GNU Pascal Manual

you accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange.
If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled to
copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a “work that uses the
Library”. Such a work, in isolation, is not a derivative work of the Library, and therefore
falls outside the scope of this License.
However, linking a “work that uses the Library” with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than
a “work that uses the library”. The executable is therefore covered by this License. Section
6 states terms for distribution of such executables.
When a “work that uses the Library” uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for this to be true is
not precisely defined by law.
If such an object file uses only numerical parameters, data structure layouts and accessors,
and small macros and small inline functions (ten lines or less in length), then the use of the
object file is unrestricted, regardless of whether it is legally a derivative work. (Executables
containing this object code plus portions of the Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a “work that uses
the Library” with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit modifi-
cation of the work for the customer’s own use and reverse engineering for debugging such
modifications.
You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference directing the user to
the copy of this License. Also, you must do one of these things:
a. Accompany the work with the complete corresponding machine-readable source code

for the Library including whatever changes were used in the work (which must be
distributed under Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable “work that uses the Library”, as
object code and/or source code, so that the user can modify the Library and then relink
to produce a modified executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the Library will not
necessarily be able to recompile the application to use the modified definitions.)

b. Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (1) uses at run time a copy of the library already present on
the user’s computer system, rather than copying library functions into the executable,
and (2) will operate properly with a modified version of the library, if the user installs
one, as long as the modified version is interface-compatible with the version that the
work was made with.

Appendix B: GNU LESSER GENERAL PUBLIC LICENSE 491

c. Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Subsection 6a, above, for a charge no more than
the cost of performing this distribution.

d. If distribution of the work is made by offering access to copy from a designated place,
offer equivalent access to copy the above specified materials from the same place.

e. Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include any
data and utility programs needed for reproducing the executable from it. However, as a
special exception, the materials to be distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.
It may happen that this requirement contradicts the license restrictions of other proprietary
libraries that do not normally accompany the operating system. Such a contradiction means
you cannot use both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single
library together with other library facilities not covered by this License, and distribute such
a combined library, provided that the separate distribution of the work based on the Library
and of the other library facilities is otherwise permitted, and provided that you do these
two things:
a. Accompany the combined library with a copy of the same work based on the Library,

uncombined with any other library facilities. This must be distributed under the terms
of the Sections above.

b. Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined form
of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, link with,
or distribute the Library is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this License
will not have their licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Library or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Library (or any work based on the Library), you indicate your acceptance of
this License to do so, and all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with or
modify the Library subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then
as a consequence you may not distribute the Library at all. For example, if a patent license
would not permit royalty-free redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Library.

492 The GNU Pascal Manual

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply, and the section as a whole is intended
to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser Gen-
eral Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version number,
you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution
conditions are incompatible with these, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE
LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH

Appendix B: GNU LESSER GENERAL PUBLIC LICENSE 493

ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

494 The GNU Pascal Manual

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public,
we recommend making it free software that everyone can redistribute and change. You can
do so by permitting redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them
to the start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the library’s name and an idea of what it does.
Copyright (C) year name of author

This library is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version.

This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307,
USA.

Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your school, if any, to

sign a “copyright disclaimer” for the library, if necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the library
‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

signature of Ty Coon, 1 April 1990
Ty Coon, President of Vice

That’s all there is to it!

Appendix C: GNU FREE DOCUMENTATION LICENSE 495

Appendix C GNU FREE DOCUMENTATION
LICENSE

Version 1.1, March 2000
Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document free
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by the copy-
right holder saying it can be distributed under the terms of this License. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as “you”.
A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to
the Document’s overall subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (For example, if the Document is in part a textbook
of mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, whose contents can be viewed
and edited directly and straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage subsequent modification
by readers is not Transparent. A copy that is not “Transparent” is called “Opaque”.

496 The GNU Pascal Manual

Examples of suitable formats for Transparent copies include plain ascii without markup,
Texinfo input format, LaTEX input format, sgml or xml using a publicly available dtd,
and standard-conforming simple html designed for human modification. Opaque formats
include PostScript, pdf, proprietary formats that can be read and edited only by proprietary
word processors, sgml or xml for which the dtd and/or processing tools are not generally
available, and the machine-generated html produced by some word processors for output
purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the Docu-
ment’s license notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network location
containing a complete Transparent copy of the Document, free of added material, which
the general network-using public has access to download anonymously at no charge using
public-standard network protocols. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one
year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely

Appendix C: GNU FREE DOCUMENTATION LICENSE 497

this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has less than
five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copy-

right notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item stating at

least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”, preserve the section’s
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.
You may add a section entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review

498 The GNU Pascal Manual

or that the text has been approved by an organization as the authoritative definition of a
standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections entitled “History” in the various original
documents, forming one section entitled “History”; likewise combine any sections entitled
“Acknowledgments”, and any sections entitled “Dedications”. You must delete all sections
entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not as a
whole count as a Modified Version of the Document, provided no compilation copyright is
claimed for the compilation. Such a compilation is called an “aggregate”, and this License
does not apply to the other self-contained works thus compiled with the Document, on
account of their being thus compiled, if they are not themselves derivative works of the
Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts
may be placed on covers that surround only the Document within the aggregate. Otherwise
they must appear on covers around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant

Appendix C: GNU FREE DOCUMENTATION LICENSE 499

Sections. You may include a translation of this License provided that you also include the
original English version of this License. In case of a disagreement between the translation
and the original English version of this License, the original English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

http://www.gnu.org/copyleft/

500 The GNU Pascal Manual

C.0.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which
ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

Appendix D: DEMO COPYING 501

Appendix D DEMO COPYING

This is the common copying notice for all files found in ‘demos/’ and ‘docdemos/’ (unless
stated otherwise in the file itself). They are distributed under the GNU General Public License
with a notable exception:

Copyright (C) 1997-2003 Free Software Foundation, Inc.
Authors: See notice in the demo program. If not listed there, these are the authors of the

GNU Pascal Compiler.
This demo program is free software; you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation; either version
2, or (at your option) any later version.

This demo program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this demo
program; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place
- Suite 330, Boston, MA 02111-1307, USA. Appendix A [Copying], page 481.

As a special exception, if you incorporate even large parts of the code of this demo program
into another program with substantially different functionality, this does not cause the other
program to be covered by the GNU General Public License. This exception does not however
invalidate any other reasons why it might be covered by the GNU General Public License.

502 The GNU Pascal Manual

Appendix E: Contributors to GNU Pascal. 503

Appendix E Contributors to GNU Pascal.

Jukka Virtanen
invented GNU Pascal in March 1988, implemented the ISO 7185 and most of the
ISO 10206 standard, etc.

Dr. Peter Gerwinski
added Borland Pascal related and other extensions to GNU Pascal in summer 1995,
ported GPC to EMX, does most of the development of the compiler since 1996,
created and maintains the WWW home page, maintains the GNU Pascal mailing
list, does some other administrative stuff, etc.

Jan-Jaap van der Heijden
ported GPC to DJGPP and to Microsoft Windows 95/NT, added ELF support in
spring 1996, solved a lot of configuration and compatibility problems, created the
GPC FAQ, etc.

Frank Heckenbach
rewrote and maintains the Run Time System since July 1997, does much devel-
opment of the compiler since July 2001, wrote most of the units, demo programs,
scripts and utilities distributed with GPC, wrote many test programs, maintains
the GPC To-Do list (see Chapter 11 [To Do], page 455) etc.

Prof. Abimbola A. Olowofoyeku (“The African Chief”)
created the original versions of many BP compatibility units in May 1997, con-
tributed code to other units and the Run Time System, helped porting GPC and
the units to Cygwin and mingw, wrote a number of test programs, contributed a
Borland Delphi-compatible ‘SysUtils’ unit, etc.

Nick Burrett
fixed some bugs and cleaned up GPC in May 1998, etc.

Matthias Klose
integrated GPC into EGCS and Debian GNU/Linux in May 1998, improved the
installation process, etc.

Dominik Freche
improved and extended the GPC manual in August – September 1999 and wrote
conversion routines for Borland compatible 6 Byte floating point numbers in De-
cember 1999.

Alexey Volokhov
improved the performance of GPC’s module/unit support in June 1997.

Bill Currie
implemented more Borland extensions into GPC in July 1997.

Nicola Girardi
wrote the GNU Pascal Coding Standards in November 2001, contributed a GPC unit
for the ‘svgalib’ graphics library for some platforms in February 2000, provided
some portability enhancements to the RTS.

Eike Lange
wrote an internationalization unit, translated the GNU Pascal Coding Standards
into German and worked on the documentation.

Mirsad Todorovac
translated the GPC documentation into Croatian.

Russ Whitaker
updated and maintains the GNU Pascal FAQ. (see Chapter 3 [FAQ], page 13)

http://www.gerwinski.de/~peter/
http://fjf.gnu.de
http://www.bigfoot.com/~african_chief/
http://www.gnu-pascal.de/contrib/chief/
http://www.gnu-pascal.de/contrib/nicola/

504 The GNU Pascal Manual

The development of GNU Pascal profits a lot from independent contributions:

Anja Gerwinski
maintains the GPC mailing list, since September 1999.

Berend de Boer
wrote a lot of useful documentation about Extended Pascal in 1995.

Markus Gerwinski
created the drawing showing a Gnu with Blaise Pascal and helped to design the
WWW home page in October 1996.

Eike Lange
contributed http://www.gnu-pascal.de/contrib/eike/ to access MySQL, GNU
DBM and PostgreSQL databases in August 2000, and a unit (now part of GPC)
and tools for internationalization in October – December 2001.

Eike Lange and Nicola Girardi
together contributed a set of GTK units in February – May 2001.

Nicola Girardi
wrote the GNU Pascal Coding Standards in English. Eike Lange translated them
to German.

Prof. Phil Nelson
created a bug reporting system for GPC in October 1996.

Robert Hhne
wrote RHIDE, an integrated development environment for GNU compilers running
under Dos (DJGPP) and Linux, and added support for GNU Pascal in autumn
1996.

Sven Hilscher
wrote a mostly BP compatible ‘Graph’ unit for several platforms in December 1996,
now part of the GRX library.

Dario Anzani (“Predator Zeta”)
contributed documentation about the use of assembler in GNU Pascal in May 1997.
(see Section 7.2.3 [Assembler], page 236)

Dieter Schmitz
set up a German mailing list for GPC, Section 10.1 [Mailing List], page 449, in
March 2001.

Adriaan van Os
helped with the port of GPC to Mac OS X and set up a web site with sources,
binaries, patches and building instructions for this platform in January 2003.

(−:−−−−−−−−−:−)
This space is reserved for your name. ;−) Please contact us at the GPC mailing
list, Section 10.1 [Mailing List], page 449, if you have something interesting for us.

We thank everybody who supports us by reporting bugs, providing feedback, contributing
knowledge and good ideas, donating development tools, and giving us the opportunity to test
GPC on a large variety of systems. We are particularly indebted (in alphabetical order, indi-
viduals first) to
Sietse Achterop, Jawaad Ahmad, Montaz Ali, Jamie Allan, Strobe Anarkhos, John P. R. Archer,
Geoffrey Arnold, Artur Bac, Steven J. Backus, Geoff Bagley, Uwe Bauermann, Silvio a Bec-
cara, Michael Behm, Ariel Bendersky, Pablo Bendersky, John Blakeney, Nicolas Bley, Philip
Blundell, Preben Mikael Bohn, Ernst-Ludwig Bohnen, Nils Bokermann, J. Booij, Patrice Bouc-
hand, Jim Brander, Frank Thomas Braun, Matthias Braun, Marcus Brinkmann, Steve Brooker,

http://www.gerwinski.de/~markus/
http://www.gnu-pascal.de/contrib/eike/
http://www.gnu-pascal.de/contrib/nicola/
Robert H�hne
http://www.rhide.com
http://www.gnu.de/software/grx/
http://www.geocities.com/SiliconValley/Vista/6573
http://www.microbizz.nl/gpc.html

Appendix E: Contributors to GNU Pascal. 505

Doug Brookmann, J. David Bryan, Kev Buckley, Jason Burgon, Ricky W. Butler, Dr. E.
Buxbaum, Andrew Cagney, Loris Caren, Theo Carr-Brion, Fernando Carrilho, Larry Carter,
Fabio Casamatta, Janet Casey, Romain Chantereau, Emmanuel Chaput, Jean-Pierre Chevil-
lard, Carl Eric Codere, Jean-Philippe Combe, Paolo Cortelli, F. Couperin, Nicolas Courtel,
Miklos Cserzo, Tim Currie, Serafim Dahl, Martin G. C. Davies, Stefan A. Deutscher, Jerry
van Dijk, Thomas Dunbar, Andreas Eckleder, Stephan Eickschen, Frank D. Engel Jr., Sven
Engelhardt, Klaus Espenlaub, Toby Ewing, Chuck B. Falconer, Joachim Falk, Irfan Fazel, Carel
Fellinger, Francisco Javier Fernandez, Christopher Ferrall, David Fiddes, Alfredo Cesar Fontana,
Kevin A. Foss, Marius Gedminas, Philip George, Nicholas Geovanis, Jose Oliver Gil, Jing Gloria,
Roland Goretzki, Morten Gulbrandsen, Kocherlakota Harikrishna, Joe Hartley, Hans Hauska,
Waldek Hebisch, Jakob Heinemann, Boris Herman, Arvid Herzenberg, Thorsten Hindermann,
Honda Hirotaka, Stephen Hurd, Nick Ioffe, Mason Ip, Fredrik Ismyren, Richard D. Jackson,
Daniel Jacobowitz, Grant Jacobs, Andreas Jaeger, David James, Nathalie Jarosz, Sven Jau-
ring, Niels Kristian Bech Jensen, Emil Jerabek, Johanna Johnston, Achim Kalwa, Christine
Karow, Tim Kaulmann, Thomas Keller, Clark Kent, Victor Khimenko, Russell King, Niels Ole
Staub Kirkeby, Prof. Donald E. Knuth, Michael Kochiashvili, Tomasz Kowaltowski, Peter Ulrich
Kruppa, Jochen Kuepper, Casper ter Kuile, Oliver Kullmann, Krzysztof Kwapien, Randy La-
timer, Bernard Leak, Olivier Lecarme, Wren Lee, Peter N. Lewis, Martin Liddle, Kennith Linder,
Stephen Lindholm, Orlando Llanes, Miguel Lobo, Benedict Lofstedt, Steve Loft, John Logsdon,
Maurice Lombardi, Dmitry S. Luhtionov, Jesper Lund, Martin Maechler, Muhammad Umer
Mansoor, Claude Marinier, Michael McCarthy, Michael Meeks, Clyde Meli, Axel Mellinger, Jeff
Miller, John Miller, Russell Minnich, Rudy Moddemeijer, Jason Moore, Scott A. Moore, Jeffrey
Moskot, Pierre Muller, Adam Naumowicz, Andreas Neumann, Christian Neumann, Adam Old-
ham, Gerhard Olejniczak, Alexandre Oliva, John G. Ollason, Marius Onica, Ole Osterby, Klaus
Friis Ostergaard, Jean-Marc Ottorini, Michael Paap, Matija Papec, Miguel A. Alonso Pardo,
Laurent Parise, Andris Pavenis, Robert R. Payne, Opie Pecheux, Jose M. Perez, Ronald Per-
rella, Bjorn Persson, Per Persson, Michael Pfeiffer, Pierre Phaneuf, Pascal Pignard, Tam Pikey,
Nuno Pinhao, Philip Plant, Larry Poorman, Stuart Pope, Yuri Prokushev, Huge Rademaker,
Shafiek Rasdien, Mike Reid, Leon Renkema, John L. Ries, Phil Robertson, Clive Rodgers, Jim
Roland, Guillaume Rousse, Daniel Rudy, Marten Jan de Ruiter, Martin Rusko, Sven Sahle,
Carl-Johan Schenstrom, Robert B. Scher, Hartmut Schmider, Thomas D. Schneider, Dominique
Schuppli, Egbert Seibertz, George Shapovalov, Richard Sharman, Patrick Sharp, Joe da Silva,
Arcadio Alivio Sincero, Ian Sinclair, Kasper Souren, Tomas Srb, Anuradha Srinivasan, David
Starner, Andrew Stribblehill, Alan Sun, Veli Suorsa, Matthew Swift, Mark Taylor, Paul Tedaldi,
Robin S. Thompson, Ian Thurlbeck, Gerhard Tonn, Ivan Torshin, Bernhard Tschirren, Luiz Vaz,
Tom Verhoeff, Kresimir Veselic, Jean-Pierre Vial, Alejandro Villarroel, Bohdan Vlasyuk, Marco
van de Voort, Raymond Wang, Nic Webb, Peter Weber, Francisco Stefano Wechsler, Christian
Wendt, Benedikt Wildenhain, Gareth Wilson, Marc van Woerkom, David Wood, Michael Wors-
ley, Takashi Yamanoue, George L. Yang, Salaam Yitbarek, Dafi Yondra, Eli Zaretskii, Artur
Zaroda, Gerhard Zintel, Mariusz Zynel, the BIP at the University of Birmingham, UK, the
Institut fuer Festkoerperforschung (IFF) at the Forschungszentrum Juelich, Germany, CARNet
(Croatian Academic and Research NETwork), the Academy of Fine Arts and the Faculty of
Graphic Arts at the University of Zagreb, Croatia,
and everybody we might have forgotten to mention here. Thanks to all of you!

GNU Pascal is based on GNU CC by Richard Stallman. Several people have contributed to
GNU CC:
• The idea of using RTL and some of the optimization ideas came from the program PO

written at the University of Arizona by Jack Davidson and Christopher Fraser. See “Register
Allocation and Exhaustive Peephole Optimization”, Software Practice and Experience 14
(9), Sept. 1984, 857-866.

• Paul Rubin wrote most of the preprocessor.
• Leonard Tower wrote parts of the parser, RTL generator, and RTL definitions, and of the

Vax machine description.

506 The GNU Pascal Manual

• Ted Lemon wrote parts of the RTL reader and printer.
• Jim Wilson implemented loop strength reduction and some other loop optimizations.
• Nobuyuki Hikichi of Software Research Associates, Tokyo, contributed the support for the

Sony NEWS machine.
• Charles LaBrec contributed the support for the Integrated Solutions 68020 system.
• Michael Tiemann of Cygnus Support wrote the support for inline functions and instruction

scheduling. Also the descriptions of the National Semiconductor 32000 series cpu, the
SPARC cpu and part of the Motorola 88000 cpu.

• Jan Stein of the Chalmers Computer Society provided support for Genix, as well as part of
the 32000 machine description.

• Randy Smith finished the Sun FPA support.
• Robert Brown implemented the support for Encore 32000 systems.
• David Kashtan of SRI adapted GNU CC to VMS.
• Alex Crain provided changes for the 3b1.
• Greg Satz and Chris Hanson assisted in making GNU CC work on HP-UX for the 9000

series 300.
• William Schelter did most of the work on the Intel 80386 support.
• Christopher Smith did the port for Convex machines.
• Paul Petersen wrote the machine description for the Alliant FX/8.
• Dario Dariol contributed the four varieties of sample programs that print a copy of their

source.
• Alain Lichnewsky ported GNU CC to the Mips cpu.
• Devon Bowen, Dale Wiles and Kevin Zachmann ported GNU CC to the Tahoe.
• Jonathan Stone wrote the machine description for the Pyramid computer.
• Gary Miller ported GNU CC to Charles River Data Systems machines.
• Richard Kenner of the New York University Ultracomputer Research Laboratory wrote the

machine descriptions for the AMD 29000, the DEC Alpha, the IBM RT PC, and the IBM
RS/6000 as well as the support for instruction attributes. He also made changes to better
support RISC processors including changes to common subexpression elimination, strength
reduction, function calling sequence handling, and condition code support, in addition to
generalizing the code for frame pointer elimination.

• Richard Kenner and Michael Tiemann jointly developed reorg.c, the delay slot scheduler.
• Mike Meissner and Tom Wood of Data General finished the port to the Motorola 88000.
• Masanobu Yuhara of Fujitsu Laboratories implemented the machine description for the

Tron architecture (specifically, the Gmicro).
• James van Artsdalen wrote the code that makes efficient use of the Intel 80387 register

stack.
• Mike Meissner at the Open Software Foundation finished the port to the MIPS cpu, in-

cluding adding ECOFF debug support, and worked on the Intel port for the Intel 80386
cpu.

• Ron Guilmette implemented the protoize and unprotoize tools, the support for Dwarf
symbolic debugging information, and much of the support for System V Release 4. He has
also worked heavily on the Intel 386 and 860 support.

• Torbjorn Granlund implemented multiply- and divide-by-constant optimization, improved
long long support, and improved leaf function register allocation.

• Mike Stump implemented the support for Elxsi 64 bit CPU.
• John Wehle added the machine description for the Western Electric 32000 processor used

in several 3b series machines (no relation to the National Semiconductor 32000 processor).

Appendix F: Resources For Use With GPC. 507

Appendix F Resources For Use With GPC.

Many of the programs mentioned here, plus some more, can be found at

http://www.gnu-pascal.de/contrib/

GNU Pascal Drawing

On the web you can find our GNU Pascal drawing as a small (1 KB)
(‘images/GnuPascal-small.png’ on GPC’s WWW home page) and a large PNG image
(10 KB) (‘images/GnuPascal.png’ on GPC’s WWW home page), as an EPS file (45 KB)
(‘images/GnuPascal.eps’ on GPC’s WWW home page), and as a PDF file (18 KB)
(‘images/GnuPascal.pdf’ on GPC’s WWW home page).

Due to patent problems we do not use GIF files. Fortunately the PNG format, the successor
of GIF, does not have this problem – and introduces better compression and more advanced
features anyway.

By the way, the color gradient (‘images/gradient.png’ on GPC’s WWW home page) that
makes our page background is a PNG file of only 632 bytes. It was generated by a Pascal
program compiled with GPC and ‘pnmtopng’. [Example (gradient.pas)]

PENG

PENG is an integrated development environment (IDE) for GNU Compilers and other pur-
poses on any platform supported by GPC, written by Frank Heckenbach. The home page of
PENG is

http://fjf.gnu.de/peng/.

RHIDE

RHIDE is an integrated development environment (IDE) for GNU Compilers on DOS
(DJGPP) or Linux, written by Robert Hhne. The home page of RHIDE is

http://www.rhide.com.

DevPascal

DevPascal is an integrated development environment (IDE) for GNU Pascal on mingw32.
The home page of DevPascal is

http://www.bloodshed.net/devpascal.html.

http://www.gnu-pascal.de/contrib/
http://www.gnu.org/philosophy/gif.html
http://www.libpng.org
http://fjf.gnu.de/peng/
http://www.rhide.com
http://www.bloodshed.net/devpascal.html

508 The GNU Pascal Manual

GRX

GRX is a graphics library for C and GNU Pascal, including a mostly BP compatible ‘Graph’
unit. It is available from

http://www.gnu.de/software/grx/

Although GRX originated on DJGPP, a DOS programming platform, it is portable to Linux
with SVGAlib, to all Unix-like systems running the X11 window system, and to MS-Windows
9x/NT.

Internationalization

Units and tools for internationalization are available in
http://www.gnu-pascal.de/contrib/eike/

Database units

GNU Pascal units to access MySQL, GNU DBM and PostgreSQL databases are available in
http://www.gnu-pascal.de/contrib/eike/

GTK units

GNU Pascal units for the GTK+ and GTK+ GL libraries are available in
http://www.gnu-pascal.de/contrib/nicola/

Svgalib unit

Nicola Girardi wrote a unit which you can use to interface Svgalib. You can find it at
http://www.gnu-pascal.de/contrib/nicola/.

SysUtils unit

Prof. Abimbola A. Olowofoyeku (“The African Chief”) wrote a Delphi-compatible
(though a few routines are still missing) ‘SysUtils’ unit. It has been tested under
Cygwin, mingw, Linux (Mandrake 7.0), and Solaris 7. It can be downloaded from
http://www.gnu-pascal.de/contrib/chief/.

Crystal, a mailing list archive program

Crystal is a web based mailing list archive, written for GNU Pascal and used for the archives
of GPC’s mailing lists (see Section 10.2 [Mailing List Archives], page 450). The source code can
be found at http://fjf.gnu.de/crystal/.

ISO standards

The Pascal standard specifications are available in PostScript format at
http://ftp.digital.com/pub/Digital/Pascal/

Alternative addresses are
ftp://ftp.europe.digital.com/pub/DEC/Pascal/

ftp://ftp.digital.com/pub/DEC/Pascal/

There are also copies at

http://www.gnu.de/software/grx/
http://www.gnu-pascal.de/contrib/eike/
http://www.gnu-pascal.de/contrib/eike/
http://www.gnu-pascal.de/contrib/nicola/
http://www.gnu-pascal.de/contrib/nicola/
http://www.gnu-pascal.de/contrib/chief/
http://fjf.gnu.de/crystal/
http://ftp.digital.com/pub/Digital/Pascal/
ftp://ftp.europe.digital.com/pub/DEC/Pascal/
ftp://ftp.digital.com/pub/DEC/Pascal/

Appendix F: Resources For Use With GPC. 509

http://www.moorecad.com/standardpascal/iso7185.ps
(ISO 7185 Pascal)

http://www.moorecad.com/standardpascal/iso10206.ps
(ISO 10206 Extended Pascal)

Note: These documents are a bit hard to navigate (e.g., in ghostview) because they are
missing the so called “document structuring comments” (DSC). The GPC source distribution
contains a little script ‘ps2dsc’ to add the DSC again and make the documents easier to navigate.
Note that for reasons of copyright, you are probably only allowed to do this for your own use
and not to distribute the modified files.

You can find an easy-to-read introduction to Extended Pascal by Prospero Software at
http://www.prosperosoftware.com/epintro.html

Please note that Standard Pascal is not the same as Borland Pascal nor a subset of it. See
Chapter 1 [Highlights], page 5 for examples of Standard Pascal features that are missing in
Borland Pascal.

Scott A. Moore’s ANSI-ISO Pascal FAQ (132 KB) discusses the differences between both
dialects in detail.

The draft standard “Object-Oriented Extensions to Pascal” can be found at
http://pascal-central.com/OOE-stds.html

Protect your freedom!

Programming activities of small companies and individuals are threatened by software
patents. If you are a programmer, you are in danger, too! Your employer or yourself might
be sued by a large company holding a patent on some ideas you are using in your programs.
(You need not use foreign code in order to become vulnerable.)

For more information look at
http://lpf.ai.mit.edu/

http://www.moorecad.com/standardpascal/iso7185.ps
http://www.moorecad.com/standardpascal/iso10206.ps
http://www.prosperosoftware.com/epintro.html
http://www.moorecad.com/standardpascal/ansiiso.faq
http://pascal-central.com/OOE-stds.html
http://lpf.ai.mit.edu/

510 The GNU Pascal Manual

Appendix G: The GNU Project. 511

Appendix G The GNU Project.

GNU Pascal is part of the GNU project which was founded by Richard Stallman in 1984.
The aim of the GNU project is to provide a complete operating system with editors, compilers
etc. as Free Software.

People often confuse Free Software with public domain software or have other wrong infor-
mation about the GNU project. If you want to know it definitely, please read the GNU General
Public License.

For even more information, please consult the official GNU home page of the Free Software
Foundation (FSF),

− http://www.gnu.org/ (USA),

− [list of mirror sites].

Some small notes about common misunderstandings follow.

• It is legal to compile commercial, including non-free, programs written in Pascal with GNU
Pascal. They do not automatically become Free Software themselves.

• “Free” is opposed to “proprietary”, but not opposed to “commercial”. Free Softare can be –
and is in fact – distributed commercially for a real price. In contrast, most non-commercial
software does not meet the open source criteria and thus does not qualify as Free Software.

• When you modify a free program released under the GNU General Public License, e.g. the
GNU Pascal compiler itself, your modified work will become Free Software, too.

• When using libraries for writing proprietary programs, check the libraries’ licenses carefully.
The GNU Lesser General Public License allows linking a library to non-free software under
certain conditions, the ordinary GNU General Public License does not.

• It is legal to charge a fee for distributing Free Software. If somebody sold you a copy of
GNU Pascal you could have got without paying for it as well, that’s in agreement with the
GNU General Public License.

• However if somebody wants you to sign an agreement that you won’t re-distribute the Free
Software you have got, it would be illegal. That person would lose the right to use and
distribute that Free Software.

• The preferred form to distribute Free Software is in source code. This ensures that every-
body has the freedom to customize the software or to fix bugs by themselves. When we
also distribute GNU Pascal binaries we do it only to simplify installation and to encourage
its use.

G.1 The GNU Manifesto

The GNU Manifesto which appears below was written by Richard Stallman at the
beginning of the GNU project, to ask for participation and support. For the first
few years, it was updated in minor ways to account for developments, but now it
seems best to leave it unchanged as most people have seen it.

Since that time, we have learned about certain common misunderstandings that
different wording could help avoid. Footnotes added in 1993 help clarify these points.

For up-to-date information about the available GNU software, please see the latest
issue of the GNU’s Bulletin. The list is much too long to include here.

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/
http://www.gnu.org/server/list-mirrors.html
http://www.opensource.org/osd.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/lesser.html

512 The GNU Pascal Manual

G.1.1 What’s GNU? Gnu’s Not Unix!

GNU, which stands for Gnu’s Not Unix, is the name for the complete Unix-compatible
software system which I am writing so that I can give it away free to everyone who can use it.1
Several other volunteers are helping me. Contributions of time, money, programs and equipment
are greatly needed.

So far we have an Emacs text editor with Lisp for writing editor commands, a source level
debugger, a yacc-compatible parser generator, a linker, and around 35 utilities. A shell (com-
mand interpreter) is nearly completed. A new portable optimizing C compiler has compiled
itself and may be released this year. An initial kernel exists but many more features are needed
to emulate Unix. When the kernel and compiler are finished, it will be possible to distribute
a GNU system suitable for program development. We will use TEX as our text formatter, but
an nroff is being worked on. We will use the free, portable X window system as well. After
this we will add a portable Common Lisp, an Empire game, a spreadsheet, and hundreds of
other things, plus on-line documentation. We hope to supply, eventually, everything useful that
normally comes with a Unix system, and more.

GNU will be able to run Unix programs, but will not be identical to Unix. We will make
all improvements that are convenient, based on our experience with other operating systems.
In particular, we plan to have longer file names, file version numbers, a crashproof file system,
file name completion perhaps, terminal-independent display support, and perhaps eventually a
Lisp-based window system through which several Lisp programs and ordinary Unix programs
can share a screen. Both C and Lisp will be available as system programming languages. We
will try to support UUCP, MIT Chaosnet, and Internet protocols for communication.

GNU is aimed initially at machines in the 68000/16000 class with virtual memory, because
they are the easiest machines to make it run on. The extra effort to make it run on smaller
machines will be left to someone who wants to use it on them.

To avoid horrible confusion, please pronounce the ‘G’ in the word ‘GNU’ when it is the name
of this project.

G.1.2 Why I Must Write GNU

I consider that the golden rule requires that if I like a program I must share it with other
people who like it. Software sellers want to divide the users and conquer them, making each user
agree not to share with others. I refuse to break solidarity with other users in this way. I cannot
in good conscience sign a nondisclosure agreement or a software license agreement. For years I
worked within the Artificial Intelligence Lab to resist such tendencies and other inhospitalities,
but eventually they had gone too far: I could not remain in an institution where such things are
done for me against my will.

So that I can continue to use computers without dishonor, I have decided to put together
a sufficient body of free software so that I will be able to get along without any software that
is not free. I have resigned from the AI lab to deny MIT any legal excuse to prevent me from
giving GNU away.

1 The wording here was careless. The intention was that nobody would have to pay for permission to use the
GNU system. But the words don’t make this clear, and people often interpret them as saying that copies of
GNU should always be distributed at little or no charge. That was never the intent; later on, the manifesto
mentions the possibility of companies providing the service of distribution for a profit. Subsequently I have
learned to distinguish carefully between “free” in the sense of freedom and “free” in the sense of price. Free
software is software that users have the freedom to distribute and change. Some users may obtain copies at
no charge, while others pay to obtain copies – and if the funds help support improving the software, so much
the better. The important thing is that everyone who has a copy has the freedom to cooperate with others in
using it.

Appendix G: The GNU Project. 513

G.1.3 Why GNU Will Be Compatible with Unix

Unix is not my ideal system, but it is not too bad. The essential features of Unix seem to
be good ones, and I think I can fill in what Unix lacks without spoiling them. And a system
compatible with Unix would be convenient for many other people to adopt.

G.1.4 How GNU Will Be Available

GNU is not in the public domain. Everyone will be permitted to modify and redistribute
GNU, but no distributor will be allowed to restrict its further redistribution. That is to say,
proprietary modifications will not be allowed. I want to make sure that all versions of GNU
remain free.

G.1.5 Why Many Other Programmers Want to Help

I have found many other programmers who are excited about GNU and want to help.
Many programmers are unhappy about the commercialization of system software. It may

enable them to make more money, but it requires them to feel in conflict with other programmers
in general rather than feel as comrades. The fundamental act of friendship among programmers
is the sharing of programs; marketing arrangements now typically used essentially forbid pro-
grammers to treat others as friends. The purchaser of software must choose between friendship
and obeying the law. Naturally, many decide that friendship is more important. But those who
believe in law often do not feel at ease with either choice. They become cynical and think that
programming is just a way of making money.

By working on and using GNU rather than proprietary programs, we can be hospitable to
everyone and obey the law. In addition, GNU serves as an example to inspire and a banner to
rally others to join us in sharing. This can give us a feeling of harmony which is impossible if
we use software that is not free. For about half the programmers I talk to, this is an important
happiness that money cannot replace.

G.1.6 How You Can Contribute

I am asking computer manufacturers for donations of machines and money. I’m asking
individuals for donations of programs and work.

One consequence you can expect if you donate machines is that GNU will run on them at
an early date. The machines should be complete, ready to use systems, approved for use in a
residential area, and not in need of sophisticated cooling or power.

I have found very many programmers eager to contribute part-time work for GNU. For most
projects, such part-time distributed work would be very hard to coordinate; the independently-
written parts would not work together. But for the particular task of replacing Unix, this
problem is absent. A complete Unix system contains hundreds of utility programs, each of
which is documented separately. Most interface specifications are fixed by Unix compatibility.
If each contributor can write a compatible replacement for a single Unix utility, and make it
work properly in place of the original on a Unix system, then these utilities will work right when
put together. Even allowing for Murphy to create a few unexpected problems, assembling these
components will be a feasible task. (The kernel will require closer communication and will be
worked on by a small, tight group.)

If I get donations of money, I may be able to hire a few people full or part time. The
salary won’t be high by programmers’ standards, but I’m looking for people for whom building
community spirit is as important as making money. I view this as a way of enabling dedicated
people to devote their full energies to working on GNU by sparing them the need to make a
living in another way.

514 The GNU Pascal Manual

G.1.7 Why All Computer Users Will Benefit

Once GNU is written, everyone will be able to obtain good system software free, just like
air.2

This means much more than just saving everyone the price of a Unix license. It means that
much wasteful duplication of system programming effort will be avoided. This effort can go
instead into advancing the state of the art.

Complete system sources will be available to everyone. As a result, a user who needs changes
in the system will always be free to make them himself, or hire any available programmer or
company to make them for him. Users will no longer be at the mercy of one programmer or
company which owns the sources and is in sole position to make changes.

Schools will be able to provide a much more educational environment by encouraging all
students to study and improve the system code. Harvard’s computer lab used to have the policy
that no program could be installed on the system if its sources were not on public display, and
upheld it by actually refusing to install certain programs. I was very much inspired by this.

Finally, the overhead of considering who owns the system software and what one is or is not
entitled to do with it will be lifted.

Arrangements to make people pay for using a program, including licensing of copies, always
incur a tremendous cost to society through the cumbersome mechanisms necessary to figure out
how much (that is, which programs) a person must pay for. And only a police state can force
everyone to obey them. Consider a space station where air must be manufactured at great cost:
charging each breather per liter of air may be fair, but wearing the metered gas mask all day
and all night is intolerable even if everyone can afford to pay the air bill. And the TV cameras
everywhere to see if you ever take the mask off are outrageous. It’s better to support the air
plant with a head tax and chuck the masks.

Copying all or parts of a program is as natural to a programmer as breathing, and as pro-
ductive. It ought to be as free.

G.1.8 Some Easily Rebutted Objections to GNU’s Goals

“Nobody will use it if it is free, because that means they can’t rely on any support.”
“You have to charge for the program to pay for providing the support.”

If people would rather pay for GNU plus service than get GNU free without service, a
company to provide just service to people who have obtained GNU free ought to be profitable.3

We must distinguish between support in the form of real programming work and mere hand-
holding. The former is something one cannot rely on from a software vendor. If your problem
is not shared by enough people, the vendor will tell you to get lost.

If your business needs to be able to rely on support, the only way is to have all the necessary
sources and tools. Then you can hire any available person to fix your problem; you are not at
the mercy of any individual. With Unix, the price of sources puts this out of consideration for
most businesses. With GNU this will be easy. It is still possible for there to be no available
competent person, but this problem cannot be blamed on distribution arrangements. GNU does
not eliminate all the world’s problems, only some of them.

Meanwhile, the users who know nothing about computers need handholding: doing things
for them which they could easily do themselves but don’t know how.

Such services could be provided by companies that sell just hand-holding and repair service.
If it is true that users would rather spend money and get a product with service, they will also

2 This is another place I failed to distinguish carefully between the two different meanings of “free”. The
statement as it stands is not false – you can get copies of GNU software at no charge, from your friends or
over the net. But it does suggest the wrong idea.

3 Several such companies now exist.

Appendix G: The GNU Project. 515

be willing to buy the service having got the product free. The service companies will compete
in quality and price; users will not be tied to any particular one. Meanwhile, those of us who
don’t need the service should be able to use the program without paying for the service.

“You cannot reach many people without advertising, and you must charge for the
program to support that.”
“It’s no use advertising a program people can get free.”

There are various forms of free or very cheap publicity that can be used to inform numbers
of computer users about something like GNU. But it may be true that one can reach more
microcomputer users with advertising. If this is really so, a business which advertises the service
of copying and mailing GNU for a fee ought to be successful enough to pay for its advertising
and more. This way, only the users who benefit from the advertising pay for it.

On the other hand, if many people get GNU from their friends, and such companies don’t
succeed, this will show that advertising was not really necessary to spread GNU. Why is it that
free market advocates don’t want to let the free market decide this?4

“My company needs a proprietary operating system to get a competitive edge.”
GNU will remove operating system software from the realm of competition. You will not be

able to get an edge in this area, but neither will your competitors be able to get an edge over
you. You and they will compete in other areas, while benefiting mutually in this one. If your
business is selling an operating system, you will not like GNU, but that’s tough on you. If your
business is something else, GNU can save you from being pushed into the expensive business of
selling operating systems.

I would like to see GNU development supported by gifts from many manufacturers and users,
reducing the cost to each.5

“Don’t programmers deserve a reward for their creativity?”
If anything deserves a reward, it is social contribution. Creativity can be a social contribution,

but only in so far as society is free to use the results. If programmers deserve to be rewarded
for creating innovative programs, by the same token they deserve to be punished if they restrict
the use of these programs.

“Shouldn’t a programmer be able to ask for a reward for his creativity?”
There is nothing wrong with wanting pay for work, or seeking to maximize one’s income, as

long as one does not use means that are destructive. But the means customary in the field of
software today are based on destruction.

Extracting money from users of a program by restricting their use of it is destructive because
the restrictions reduce the amount and the ways that the program can be used. This reduces the
amount of wealth that humanity derives from the program. When there is a deliberate choice
to restrict, the harmful consequences are deliberate destruction.

The reason a good citizen does not use such destructive means to become wealthier is that, if
everyone did so, we would all become poorer from the mutual destructiveness. This is Kantian
ethics; or, the Golden Rule. Since I do not like the consequences that result if everyone hoards
information, I am required to consider it wrong for one to do so. Specifically, the desire to be
rewarded for one’s creativity does not justify depriving the world in general of all or part of that
creativity.

“Won’t programmers starve?”

4 The Free Software Foundation raises most of its funds from a distribution service, although it is a charity
rather than a company. If no one chooses to obtain copies by ordering from the FSF, it will be unable to do
its work. But this does not mean that proprietary restrictions are justified to force every user to pay. If a
small fraction of all the users order copies from the FSF, that is sufficient to keep the FSF afloat. So we ask
users to choose to support us in this way. Have you done your part?

5 A group of computer companies recently pooled funds to support maintenance of the GNU C Compiler.

516 The GNU Pascal Manual

I could answer that nobody is forced to be a programmer. Most of us cannot manage to get
any money for standing on the street and making faces. But we are not, as a result, condemned
to spend our lives standing on the street making faces, and starving. We do something else.

But that is the wrong answer because it accepts the questioner’s implicit assumption: that
without ownership of software, programmers cannot possibly be paid a cent. Supposedly it is
all or nothing.

The real reason programmers will not starve is that it will still be possible for them to get
paid for programming; just not paid as much as now.

Restricting copying is not the only basis for business in software. It is the most common basis
because it brings in the most money. If it were prohibited, or rejected by the customer, software
business would move to other bases of organization which are now used less often. There are
always numerous ways to organize any kind of business.

Probably programming will not be as lucrative on the new basis as it is now. But that is
not an argument against the change. It is not considered an injustice that sales clerks make
the salaries that they now do. If programmers made the same, that would not be an injustice
either. (In practice they would still make considerably more than that.)

“Don’t people have a right to control how their creativity is used?”
“Control over the use of one’s ideas” really constitutes control over other people’s lives; and

it is usually used to make their lives more difficult.
People who have studied the issue of intellectual property rights carefully (such as lawyers)

say that there is no intrinsic right to intellectual property. The kinds of supposed intellectual
property rights that the government recognizes were created by specific acts of legislation for
specific purposes.

For example, the patent system was established to encourage inventors to disclose the details
of their inventions. Its purpose was to help society rather than to help inventors. At the time,
the life span of 17 years for a patent was short compared with the rate of advance of the state
of the art. Since patents are an issue only among manufacturers, for whom the cost and effort
of a license agreement are small compared with setting up production, the patents often do not
do much harm. They do not obstruct most individuals who use patented products.

The idea of copyright did not exist in ancient times, when authors frequently copied other
authors at length in works of non-fiction. This practice was useful, and is the only way many
authors’ works have survived even in part. The copyright system was created expressly for the
purpose of encouraging authorship. In the domain for which it was invented – books, which
could be copied economically only on a printing press – it did little harm, and did not obstruct
most of the individuals who read the books.

All intellectual property rights are just licenses granted by society because it was thought,
rightly or wrongly, that society as a whole would benefit by granting them. But in any particular
situation, we have to ask: are we really better off granting such license? What kind of act are
we licensing a person to do?

The case of programs today is very different from that of books a hundred years ago. The
fact that the easiest way to copy a program is from one neighbor to another, the fact that a
program has both source code and object code which are distinct, and the fact that a program is
used rather than read and enjoyed, combine to create a situation in which a person who enforces
a copyright is harming society as a whole both materially and spiritually; in which a person
should not do so regardless of whether the law enables him to.

“Competition makes things get done better.”
The paradigm of competition is a race: by rewarding the winner, we encourage everyone to

run faster. When capitalism really works this way, it does a good job; but its defenders are
wrong in assuming it always works this way. If the runners forget why the reward is offered and
become intent on winning, no matter how, they may find other strategies – such as, attacking
other runners. If the runners get into a fist fight, they will all finish late.

Appendix G: The GNU Project. 517

Proprietary and secret software is the moral equivalent of runners in a fist fight. Sad to say,
the only referee we’ve got does not seem to object to fights; he just regulates them (“For every
ten yards you run, you can fire one shot”). He really ought to break them up, and penalize
runners for even trying to fight.

“Won’t everyone stop programming without a monetary incentive?”
Actually, many people will program with absolutely no monetary incentive. Programming

has an irresistible fascination for some people, usually the people who are best at it. There is
no shortage of professional musicians who keep at it even though they have no hope of making
a living that way.

But really this question, though commonly asked, is not appropriate to the situation. Pay for
programmers will not disappear, only become less. So the right question is, will anyone program
with a reduced monetary incentive? My experience shows that they will.

For more than ten years, many of the world’s best programmers worked at the Artificial
Intelligence Lab for far less money than they could have had anywhere else. They got many
kinds of non-monetary rewards: fame and appreciation, for example. And creativity is also fun,
a reward in itself.

Then most of them left when offered a chance to do the same interesting work for a lot of
money.

What the facts show is that people will program for reasons other than riches; but if given
a chance to make a lot of money as well, they will come to expect and demand it. Low-paying
organizations do poorly in competition with high-paying ones, but they do not have to do badly
if the high-paying ones are banned.

“We need the programmers desperately. If they demand that we stop helping our
neighbors, we have to obey.”

You’re never so desperate that you have to obey this sort of demand. Remember: millions
for defense, but not a cent for tribute!

“Programmers need to make a living somehow.”
In the short run, this is true. However, there are plenty of ways that programmers could

make a living without selling the right to use a program. This way is customary now because it
brings programmers and businessmen the most money, not because it is the only way to make
a living. It is easy to find other ways if you want to find them. Here are a number of examples.

A manufacturer introducing a new computer will pay for the porting of operating systems
onto the new hardware.

The sale of teaching, hand-holding and maintenance services could also employ programmers.
People with new ideas could distribute programs as freeware, asking for donations from

satisfied users, or selling hand-holding services. I have met people who are already working this
way successfully.

Users with related needs can form users’ groups, and pay dues. A group would contract with
programming companies to write programs that the group’s members would like to use.

All sorts of development can be funded with a Software Tax:
Suppose everyone who buys a computer has to pay x percent of the price as a
software tax. The government gives this to an agency like the NSF to spend on
software development.
But if the computer buyer makes a donation to software development himself, he
can take a credit against the tax. He can donate to the project of his own choosing
– often, chosen because he hopes to use the results when it is done. He can take a
credit for any amount of donation up to the total tax he had to pay.
The total tax rate could be decided by a vote of the payers of the tax, weighted
according to the amount they will be taxed on.

518 The GNU Pascal Manual

The consequences:
• The computer-using community supports software development.
• This community decides what level of support is needed.
• Users who care which projects their share is spent on can choose this for them-

selves.

In the long run, making programs free is a step toward the post-scarcity world, where nobody
will have to work very hard just to make a living. People will be free to devote themselves to
activities that are fun, such as programming, after spending the necessary ten hours a week
on required tasks such as legislation, family counseling, robot repair and asteroid prospecting.
There will be no need to be able to make a living from programming.

We have already greatly reduced the amount of work that the whole society must do for its
actual productivity, but only a little of this has translated itself into leisure for workers because
much nonproductive activity is required to accompany productive activity. The main causes
of this are bureaucracy and isometric struggles against competition. Free software will greatly
reduce these drains in the area of software production. We must do this, in order for technical
gains in productivity to translate into less work for us.

G.2 Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to help
encourage people to contribute funds for its development. The most effective approach known
is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-fee
distributors to donate part of their selling price to free software developers – the Free Software
Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So
when you compare distributors, judge them partly by how much they give to free software
development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as,
“We will donate ten dollars to the Frobnitz project for each disk sold.” Don’t be satisfied with
a vague promise, such as “A portion of the profits are donated,” since it doesn’t give a basis for
comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since creative
accounting and unrelated business decisions can greatly alter what fraction of the sales price
counts as profit. If the price you pay is $50, ten percent of the profit is probably less than a
dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep everyone
honest, you need to inquire how much they do, and what kind. Some kinds of development make
much more long-term difference than others. For example, maintaining a separate version of a
program contributes very little; maintaining the standard version of a program for the whole
community contributes much. Easy new ports contribute little, since someone else would surely
do them; difficult ports such as adding a new CPU to the GNU C compiler contribute more;
major new features or packages contribute the most.

By establishing the idea that supporting further development is “the proper thing to do”
when distributing free software for a fee, we can assure a steady flow of resources into making
more free software.

Copyright (C) 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.

GPC Index 519

GPC Index

*
* . 95, 96
** . 95

-
- . 95, 96
–amtmpfile . 35
–assert . 37
–autobuild . 35
–autolink . 34
–automake . 34
–automake-g++ . 35
–automake-gcc . 35
–automake-gpc . 35
–big-endian . 38
–borland-pascal . 34
–cidefine . 38
–classic-pascal . 33
–classic-pascal-level-0 . 33
–csdefine . 38
–debug-automake . 34
–debug-gpi . 34
–debug-source . 34
–debug-tree . 34
–delphi . 34
–delphi-comments . 35
–disable-keyword . 37
–double-quoted-strings . 36
–enable-keyword . 37
–exact-compare-strings . 36
–executable-file-name . 38
–executable-path . 38
–extended-pascal . 33
–extended-syntax . 35
–field-widths . 37
–gnu-pascal . 34
–gpc-main . 38, 99
–gpi-destination-path . 38
–ignore-function-results . 36
–ignore-garbage-after-dot . 35
–ignore-packed . 35
–implementation-only . 38
–init-modules . 38
–interface-only . 38
–io-checking . 36
–little-endian . 39
–longjmp-all-nonlocal-labels . 36
–mac-pascal . 34
–macros . 36
–maximum-field-alignment . 35
–mixed-comments . 35
–nested-comments . 35
–no-assert . 37
–no-autobuild . 35

–no-autolink . 34
–no-automake . 34
–no-debug-info . 34
–no-default-paths . 38
–no-delphi-comments . 36
–no-double-quoted-strings . 36
–no-exact-compare-strings . 36
–no-executable-path . 38
–no-extended-syntax. 35
–no-field-widths . 37
–no-ignore-function-results . 36
–no-ignore-garbage-after-dot . 35
–no-ignore-packed . 35
–no-io-checking . 36
–no-longjmp-all-nonlocal-labels 36
–no-macros . 36
–no-mixed-comments . 35
–no-nested-comments . 35
–no-object-destination-path . 38
–no-object-path . 38
–no-pedantic . 37
–no-progress-messages . 34
–no-read-base-specifier . 36
–no-read-hex . 36
–no-read-white-space . 36
–no-short-circuit . 35
–no-stack-checking . 37
–no-transparent-file-names . 37
–no-truncate-strings . 36
–no-typed-address . 37
–no-unit-destination-path . 38
–no-unit-path . 38
–no-write-capital-exponent . 37
–no-write-clip-strings . 37
–no-write-real-blank . 37
–object-destination-path . 38
–object-pascal . 33
–object-path . 38
–pascal-sc . 34
–pedantic . 37
–print-needed-options. 39
–progress-bar . 34
–progress-messages . 34
–read-base-specifier . 36
–read-hex . 36
–read-white-space . 36
–setlimit . 37
–short-circuit . 35
–stack-checking . 37
–standard-pascal . 33
–standard-pascal-level-0 . 33
–sun-pascal . 34
–transparent-file-names . 37
–truncate-strings . 36
–typed-address . 37

520 The GNU Pascal Manual

–ucsd-pascal . 33

–unit-destination-path . 38

–unit-path . 38

–uses . 38

–vax-pascal . 34

–write-capital-exponent . 37

–write-clip-strings . 37

–write-real-blank . 37

-Wfloat-equal . 39

-Widentifier-case . 39

-Widentifier-case-local . 39

-Wimplicit-abstract . 39

-Wimplicit-io . 39

-Winherited-abstract . 39

-Winterface-file-name . 39

-Wlocal-external . 40

-Wmixed-comments . 40

-Wnear-far . 39

-Wnested-comments . 40

-Wno-float-equal . 39

-Wno-identifier-case . 39

-Wno-identifier-case-local . 39

-Wno-implicit-abstract . 39

-Wno-implicit-io . 39

-Wno-inherited-abstract . 39

-Wno-interface-file-name . 39

-Wno-local-external . 40

-Wno-mixed-comments . 40

-Wno-near-far . 40

-Wno-nested-comments . 40

-Wno-semicolon . 40

-Wno-typed-const . 39

-Wno-underscore . 40

-Wno-warnings . 39

-Wsemicolon . 40

-Wtyped-const . 39

-Wunderscore . 40

-Wwarnings . 39

/
/ . 95

=
= . 96

+
+ . 92, 95, 96

>
> . 96

>= . 96

>< . 96

<
< . 96

<= . 96

<> . 96

A
Abs . 255

absolute . 256, 443

abstract . 257, 443

Acknowledgments . 503

Addr . 258

alignment . 259

Alignment, Type Implementation 79

AlignOf . 259

all . 259, 309, 443

and . 95, 260, 444

and then . 261

and then . 261, 444

ANSI . 508

AnsiChar . 262

AnyFile . 263

Append . 264

Archives, mailing list . 450

ArcTan . 95, 265

Arg . 95, 266

arguments, command line . 94

array . 266, 444

Array Types, Data Types . 68

array, conformant . 81

array, open . 81

array, slice access . 81

as . 267, 444

asm . 268, 444

asm, Statements, Source Structure 57

asmname . 268, 444

Assert . 268

Assign . 269

Assigned . 269

Assignment, Statements, Source Structure 54

attribute . 270, 444

attribute, internals . 467

authors . 503

Automake, internals . 479

GPC Index 521

B
begin . 272, 444
begin end, Statements, Source Structure 54
binary distributions, installing 27
Bind . 90, 273
bindable . 273, 444
Binding . 90, 274
BindingType . 274
bits . 275
BitSizeOf . 275
Blaise Pascal . 507
BlockRead . 276
BlockWrite . 276
Boolean . 277
Boolean, Intrinsic, Data Types 67
Break . 277
bugs . 449
Bugs, reporting . 451
Built-in . 90
Byte . 278
ByteBool . 279
ByteCard. 280
ByteInt . 280

C
c . 281, 444
C . 98
c language . 287, 444
Card . 96, 281
Cardinal . 282
case . 283, 444
case, Statements, Source Structure 54
CBoolean. 284
Char . 285
Char, Intrinsic, Data Types . 66
ChDir . 285
Chr . 286
class . 287, 444
Classic Pascal . 508
Close . 287
Cmplx . 95, 288
command line arguments . 94
command line options . 33
Commercial Support . 450
Comp . 288
Compilation notes for specific platforms 30
Compiler Crashes . 450
compiler directives . 87
Complex . 289
complex numbers, operations . 95
Concat. 92, 290
conformant arrays, internals 475
Conjugate . 290

const . 291, 444

Constant Declaration, Source Structures 46

constructor . 292, 444

constructor, internals . 469

Continue . 292

contributed units . 17

Contributions . 507

contributors . 503

Copy . 293

Copying . 481, 487, 495

Cos . 95, 294

Crash, of the compiler . 450

cross-compilers . 31

crossbuilding . 31

CRT . 146

Crystal . 508

CString . 294

CString2String . 295

CStringCopyString . 295

CurrentRoutineName . 296

curses . 146

D
Data Types . 66

Data Types, Definition . 62

Database . 508

Date . 97, 296

DBM . 508

debugging . 100

Dec . 95, 297

DefineSize . 298

Delete . 298

destructor . 299, 444

destructor, internals . 469

DevPascal . 17, 507

Dispose . 94, 299

distribution, minimal . 28

div . 300, 444

djgpp . 30

do . 300, 444

Documentation, License . 495

Dos . 163

DOS, MS- . 30, 31

DosUnix. 168

Double . 65, 301

download . 25

downto . 302, 444

Drawing . 507

522 The GNU Pascal Manual

E
Editor . 507
efence . 16
ElectricFence . 16
else . 302, 444
emacs . 17
Empty . 303
EMX . 31
end . 303, 445
endianness . 78
EOF . 304
EOLn . 305
EpsReal . 305
EQ . 305
EQPad . 306
Erase . 306
Exclude . 307
Exit. 307
Exp . 95, 308
export . 309, 445
exports . 310, 445
Extend . 310
Extended . 65, 311
Extended Pascal . 508
external . 98, 312, 445
external, internals . 468

F
Fail . 312
False . 313
FAQ . 13
far . 313, 445
far, internals . 468
FDL . 495
file . 314, 445
File Layout, internals . 480
File Types, Intrinsic, Data Types 67
FilePos . 315
files, operations . 90
FileSize . 315
FileUtils . 170
FillChar . 315
finalization . 316, 445
Finalize . 316
Flush . 317
for . 317, 445
for, Statements, Source Structure 55
FormatString . 231, 318
forward . 318, 445
forward, internals . 468
Frac . 319
FrameAddress . 320
Free Documentation License 495

Free Software . 511
Freedom . 481, 487, 495, 509
FreeMem. 94, 320
Frequently Asked Questions . 13
front-end, internals . 465, 473
function . 321, 445
function, Subroutine Declaration, Source Structure

. 51
functional type . 75
functions as parameters, internals 475
functions, predefined . 90

G
GDBM . 508
GE . 321
General Public License . 481
GEPad . 321
Get . 90, 322
GetMem . 94, 322
gettext . 508
GetText . 231
GetTimeStamp . 97, 323
GFDL. 495
gmp . 16
GMP . 172
GNU DBM . 508
GNU Free Documentation License 495
GNU General Public License 481
GNU Lesser General Public License 487
GNU Library General Public License 487
GNU Pascal command line options 33
GNU, project . 511
goto . 323, 445
goto, Statements, Source Structure 57
GPC and other languages . 98
GPC source, internals . 463
GPC, internals . 463
GPCUtil . 185
GPI files, internals . 476
GPL . 481
grammar, internals . 465
Graphics . 508
GRX . 508
GT . 324
GTK . 508
GTPad . 324
GUI . 508

H
Halt . 325
HeapMon . 189
help . 449
High . 325

GPC Index 523

highlights . 5

HTTP . 25

I
I18N . 231

IDE . 17, 507

if . 326, 445

if, Statements, Source Structure 54

Im . 95, 327

implementation . 328, 445

implementation, internals . 469

import . 328, 445

import part . 58, 61

Import Part, Source Structures 58

import, internals . 469

in . 96, 329, 445

Inc . 95, 329

Include . 330

Index . 331

inherited . 87, 332, 445

initialization . 332, 445

initialization, internals . 469

Initialize . 332

InOutRes . 333

Input . 333

Insert . 334

installing binary distributions 27

installing GNU Pascal . 25

installing source distributions 28

Int . 334

Integer . 335

Integer types . 62

integer types, compatibility . 64

integer types, main branch . 63

integer types, natural . 63

integer types, specified size . 63

integer types, summary . 64

integer, operations . 95

interface . 336, 445

interfaces, internals . 476

intermediate code, internals . 473

Internationalization . 231, 508

interrupt . 336, 445

Intl . 190

IOResult . 337

is . 337, 445

ISO 10206 . 508

ISO 7185 . 508

K
keywords, internals . 466

L
label . 337, 445
Label Declaration, Source Structures 46
language definition, internals 465
LastPosition . 90, 338
LE . 338
Length . 339
LEPad . 339
Lesser General Public License 487
lexer-parser interrelations, internals 465
lexical analyzer, internals . 464
LGPL . 487
libraries . 16
Libraries . 41
library . 339, 446
Library General Public License 487
linking . 99
Ln . 95, 340
LoCase . 340
LongBool . 341
LongCard . 341
LongestBool . 342
LongestCard . 343
LongestInt . 343
LongestReal . 344
LongestWord . 344
LongInt . 345
LongReal . 65, 346
LongWord . 346
Loops, Loop Control Statements 58
Low . 347
lower bounds, internals . 471
LT . 348
LTPad . 348

M
Machine-dependencies in Types 78
magic, internals . 474
Mailing List . 449
Mailing List Archives . 450, 508
main program. 99
Mark . 349
Max . 95, 349
MaxChar . 349
MaxInt . 350
MaxReal . 350
MD5 . 195
MedBool . 351
MedCard . 351
MedInt . 352
MedReal . 353
MedWord . 353
memory management . 94
Min . 95, 354

524 The GNU Pascal Manual

MinReal . 354
MkDir . 355
mod . 355, 446
module . 356, 446
modules, internals . 476
Modules, source structure . 58
Move . 356
MoveLeft . 357
MoveRight . 357
MS Windows 95/98/NT . 27, 31
MS-DOS . 30, 31
MySQL . 508

N
name . 98, 357, 446
ncurses . 16, 146
NE . 359
near . 359, 446
near, internals . 468
NEPad . 360
New . 87, 94, 360
new identifier limited, internals 467
NewCString . 361
news . 9
Newsgroups . 450
nil . 361, 446
not . 95, 362, 446
Null . 363

O
object . 364, 446
Object Types, Data Types . 76
object-oriented programming . 84
Objects . 100
Odd . 365
of . 365, 446
only . 366, 446
OOP . 84
operations, complex numbers . 95
operations, files . 90
operations, integer and ordinal 95
operations, sets . 96
operations, string . 92
operator . 366, 446
operator, internals . 469
operator, Subroutine Declaration, Source Structure

. 51
Operators . 80
operators, built-in . 80
operators, user-defined . 80
options, command line . 33
or . 95, 366, 446
or else . 368

or else . 369, 446
Ord . 368
Ordinal Types, Intrinsic, Data Types 62
ordinal, operations . 95
OS/2 . 31
otherwise . 370, 446
Output . 371
output file option . 41
Overlay . 196

P
Pack . 371
packed . 371, 446
Page . 373
PAnsiChar . 373
ParamCount . 94, 374
Parameter List, Subroutine Declaration, Source

Structure . 51
parameter passing, internals 475
parameter, protected . 81
ParamStr . 94, 374
parser, internals . 465
parser-lexer interrelations, internals 465
parsing, internals . 466, 471
Pascal standards . 508
Pascal, Blaise . 507
PChar . 375
PDCurses . 16, 146
PENG . 17, 507
Pi . 376
Pipe . 198
PObjectType . 376
Pointer . 377
pointer arithmetics . 82
pointer types . 74
Pointer, Intrinsic, Data Types 67
Polar . 95, 377
Ports . 202
Pos . 378
Position . 90, 378
PostgreSQL . 508
pow . 95, 378, 446
Pred . 95, 379
preprocessor . 87
preprocessor, internals . 463
Printer . 203
private . 380, 446
procedural parameters, internals 475
procedural type . 75
procedure . 381, 446
Procedure Call, Statements, Source Structure 57
procedure, Subroutine Declaration, Source Structure

. 50
procedures, predefined . 90

GPC Index 525

Professional Support . 450
program . 381, 446
programming in GPC . 45
Programs, source structure . 45
property . 381, 446
protected . 99, 382, 447
protected, parameter . 81
PtrCard . 382
PtrDiffType . 383
PtrInt . 384
PtrWord . 384
public . 385, 447
published . 385, 447
Put . 90, 386

Q
qualified . 386, 447
Questions, Frequently Asked . 13

R
Random . 387
Randomize . 387
Re . 95, 387
Read . 388
ReadLn . 388
ReadStr . 389
Real . 65, 389
record . 390, 447
Record Types, Data Types . 69
record, variant . 70
Redistribution . 481, 487, 495
RegEx . 205
Release . 391
Rename . 392
repeat . 392, 447
repeat, Statements, Source Structure 57
Reporting Bugs . 451
Reset . 393
resident . 394, 447
Resources . 507
restricted . 394, 447
Result . 395
Return . 395
ReturnAddress . 396
Rewrite . 396
RHIDE . 17, 507
RmDir . 397
Round . 398
routines, predefined . 90
Run Time Library . 90, 100
Run Time System . 90, 100
RunError . 399
rx . 16, 205

S
schemata . 70
Seek . 399
SeekEOF . 400
SeekEOLn . 400
SeekRead . 90, 400
SeekUpdate . 90, 401
SeekWrite . 90, 401
segment . 402, 447
Self . 402
set . 402, 447
Set Types, Data Types . 74
SetFileTime . 403
SetLength . 404
sets, operations . 96
SetType . 404
shl . 95, 406, 447
ShortBool . 407
ShortCard . 408
ShortInt . 408
ShortReal . 65, 409
ShortWord . 409
shr . 95, 410, 447
Sin . 95, 411
Single . 65, 411
SizeOf . 412
SizeType . 413
Slice access . 81
SmallInt . 413
source distributions, installing 28
source structures . 45
Sqr . 95, 414
SqRt . 95, 415
Standard Pascal . 508
standard units . 146
StandardError . 415
StandardInput . 416
StandardOutput . 416
Standards . 508
Statements, Source Structures 54
StdErr . 416
Str . 417
String . 418
String, Intrinsic, Data Types . 66
string, slice access . 81
String2CString . 418
Strings . 210
strings, operations. 92
StringUtils . 212
subrange types . 68
subranges, internals . 471
Subroutine Declaration, Source Structures 50
SubStr . 418
Succ . 95, 419
support . 449

526 The GNU Pascal Manual

Support, professional . 450

svgalib . 508

System . 217

SysUtils . 508

T
team . 503

Test Suite, Running . 453

Test Suite, writing tests . 451

Text . 67, 420

Text editor . 507

TFDD . 224, 237

then . 421, 447

Time . 97, 421

TimeStamp . 422

to . 423, 447

to begin do . 424

to end do . 424

Trap . 225

tree nodes, internals . 473

Trim . 425

True . 425

Trunc . 426

Truncate . 426

Turbo3 . 227

type . 427, 447

type casts . 83

Type Declaration, Source Structures 48

Type Definition Possibilities . 68

type of . 429

TypeOf . 429

types, functional . 75

types, initializers . 77

types, Integer . 62

types, pointer . 74

types, procedural . 75

types, real . 65

types, restricted . 77

types, schema . 70

types, schemata . 70

types, subrange . 68

types, variant records . 70

U
Unbind . 90, 430
unit . 430, 447
units, contributed . 17
units, included with GPC . 146
units, internals . 476
Units, source structure . 61
Unpack. 431
until . 431, 447
untyped files . 67
UpCase . 432
Update . 90, 432
uses . 432, 447
uses, internals . 469

V
Val . 433
value . 434, 447
var . 434, 447
var, Statements, Source Structure 57
Variable Declaration, Source Structures 49
view . 436, 447
virtual . 436, 448
VMT . 100
Void . 437

W
web site . 25
while . 437, 448
while, Statements, Source Structure 56
WinDos . 228
Windows 95/98/NT, MS . 27, 31
with . 438, 448
with, Statements, Source Structure 57
Word . 439
WordBool . 439
Write . 440
WriteLn . 440
WriteStr . 441
WWW . 25

X
xemacs . 17
xor . 95, 441, 448
xwpe . 17

	GNU Pascal
	Welcome to GNU Pascal ...{}
	Some of GPC's most interesting features.
	New Features of GNU Pascal.
	The GNU Pascal Frequently Asked Questions List.
	GNU Pascal
	What and why?
	What is the current version?
	Is it compatible with Turbo Pascal (R)?
	Which platforms are supported by GNU Pascal?

	Installing GPC
	What to read next
	Which components do I need to compile Pascal code?
	How do I debug my Pascal programs?
	What additional libraries should I have?
	Contributed units
	Can you recommend an IDE?

	GNU Pascal on the DJGPP (MS-DOS) platform
	What is DJGPP?
	If you need more information
	What do I download?
	How do I install the compiler?
	I cannot read the Info documentation!
	GPC says: no DPMI
	I have troubles with assembly code
	Tell me how to do DPMI, BIOS and other DOS related things.
	I got an exception when accessing an array [1 .. 4000000] of Byte.

	Strings
	What's this confusion about strings?
	Overlaying strings in variant records
	Why does s[0] not contain the length?
	Watch out when using strings as parameters
	Support for BP compatible short strings
	What about C strings?

	Getting Help
	Miscellaneous
	I want to contribute; where do I start?
	Where is the GNU Pascal web site?
	About this FAQ

	How to download, compile and install GNU Pascal.
	Where and what to download
	Installation instructions for a GPC binary distribution
	Compiling GPC
	Compilation notes for specific platforms
	MS-DOS with DJGPP
	MS-DOS or OS/2 with EMX
	MS Windows 95/98/NT

	Building and Installing a cross-compiler
	Crossbuilding a compiler

	Command Line Options supported by GNU Pascal.
	GPC options besides those of GCC.
	The most commonly used options to GPC

	The Programmer's Guide to GPC
	Source Structures
	The Source Structure of Programs
	Label Declaration
	Constant Declaration
	Type Declaration
	Variable Declaration
	Subroutine Declaration
	The Procedure
	The Function
	The Operator
	Subroutine Parameter List Declaration

	Statements
	Assignment
	begin end Compound Statement
	if Statement
	case Statement
	for Statement
	while Statement
	repeat Statement
	asm Inline
	with Statement
	goto Statement
	Procedure Call
	The Declaring Statement
	Loop Control Statements

	Import Part and Module/Unit Concept
	The Source Structure of ISO 10206 Extended Pascal Modules
	The Source Structure of UCSD/Borland Pascal Units

	Data Types
	Type Definition
	Ordinal Types
	Integer Types
	The CPU's Natural Integer Types
	The Main Branch of Integer Types
	Integer Types with Specified Size
	Integer Types and Compatibility
	Summary of Integer Types

	Built-in Real (Floating Point) Types
	Strings Types
	Character Types
	Enumerated Types
	File Types
	Boolean (Intrinsic)
	Pointer (Intrinsic)
	Type Definition Possibilities
	Subrange Types
	Array Types
	Record Types
	Variant Records
	EP's Schema Types including String
	Set Types
	Pointer Types
	Procedural and Functional Types
	Object Types
	Initial values to type denoters
	Restricted Types

	Machine-dependencies in Types
	Endianness
	Alignment

	Operators
	Built-in Operators
	User-defined Operators

	Procedure And Function Parameters
	Parameters declared as protected or const
	The Standard way to pass arrays of variable size
	BP's alternative to Conformant Arrays

	Accessing parts of strings (and other arrays)
	Pointer Arithmetics
	Type Casts
	Object-Oriented Programming
	Compiler Directives And The Preprocessor
	Routines Built-in or in the Run Time System
	File Routines
	String Operations
	Accessing Command Line Arguments
	Memory Management Routines
	Operations for Integer and Ordinal Types
	Complex Number Operations
	Set Operations
	Date And Time Routines

	Interfacing with Other Languages
	Importing Libraries from Other Languages
	Exporting GPC Libraries to Other Languages

	Notes for Debugging
	Pascal declarations for GPC's Run Time System
	Units included with GPC
	BP compatibility: CRT & WinCRT, portable, with many extensions
	BP compatibility: Dos
	Overcome some differences between Dos and Unix
	Higher level file and directory handling
	Arithmetic with unlimited size and precision
	Turbo Power compatibility, etc.
	Primitive heap checking
	Internationalization
	MD5 Message Digests
	BP compatibility: Overlay
	Start a child process, connected with pipes, also on Dos
	BP compatibility (partly): Port, PortW arrays
	BP compatibility: Printer, portable
	Regular Expression matching and substituting
	BP compatibility: Strings
	Higher level string handling
	BP compatibility: System
	Some text file tricks
	Trap runtime errors
	BP compatibility: Turbo3
	BP compatibility: WinDos

	How to use I18N in own programs

	A QuickStart Guide from Borland Pascal to GNU Pascal.
	BP Compatibility
	BP Incompatibilities
	String type
	Qualified identifiers
	Assembler
	Move; FillChar
	Real type
	Graph unit
	OOP units
	Keep; GetIntVec; SetIntVec
	TFDDs
	Mem; Port; Ptr; Seg; Ofs; PrefixSeg; etc.
	Endianness assumptions
	- -borland-pascal - disable GPC extensions
	-w - disable all warnings
	- -uses=System - Swap; HeapError; etc.
	-D@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}BP@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}TYPE@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}SIZES@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex} - small integer types etc.
	- -pack-struct - disable structure alignment
	-D@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}BP@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}RANDOM@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex} - BP compatible pseudo random number generator
	-D@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}BP@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}UNPORTABLE@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}ROUTINES@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex} - Intr; DosVersion; etc.
	-D@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}BP@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}PARAMSTR@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}0@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex} - BP compatible ParamStr (0) behaviour

	IDE versus command line
	Comments
	BP Compatible Compiler Directives
	Units, GPI files and Automake
	Optimization
	Debugging
	Objects
	Strings in BP and GPC
	Typed Constants
	Bit, Byte and Memory Manipulation
	User-defined Operators in GPC
	Data Types in BP and GPC
	BP Procedural Types
	Files
	Built-in Constants
	Built-in Operators in BP and GPC
	Built-in Procedures and Functions
	Special Parameters
	Miscellaneous
	BP and Extended Pascal
	Portability hints

	The Alphabetical GPC Language Reference
	Abs
	absolute
	abstract
	Addr
	AlignOf
	all
	and
	and then
	and@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}then
	AnsiChar
	AnyFile
	Append
	ArcTan
	Arg
	array
	as
	asm
	asmname
	Assert
	Assign
	Assigned
	attribute
	begin
	Bind
	bindable
	Binding
	BindingType
	BitSizeOf
	BlockRead
	BlockWrite
	Boolean
	Break
	Byte
	ByteBool
	ByteCard
	ByteInt
	c
	Card
	Cardinal
	case
	CBoolean
	Char
	ChDir
	Chr
	c@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}language
	class
	Close
	Cmplx
	Comp
	Complex
	Concat
	Conjugate
	const
	constructor
	Continue
	Copy
	Cos
	CString
	CString2String
	CStringCopyString
	CurrentRoutineName
	Date
	Dec
	DefineSize
	Delete
	destructor
	Dispose
	div
	do
	Double
	downto
	else
	Empty
	end
	EOF
	EOLn
	EpsReal
	EQ
	EQPad
	Erase
	Exclude
	Exit
	Exp
	export
	exports
	Extend
	Extended
	external
	Fail
	False
	far
	file
	FilePos
	FileSize
	FillChar
	finalization
	Finalize
	Flush
	for
	FormatString
	forward
	Frac
	FrameAddress
	FreeMem
	function
	GE
	GEPad
	Get
	GetMem
	GetTimeStamp
	goto
	GT
	GTPad
	Halt
	High
	if
	Im
	implementation
	import
	in
	Inc
	Include
	Index
	inherited
	initialization
	Initialize
	InOutRes
	Input
	Insert
	Int
	Integer
	interface
	interrupt
	IOResult
	is
	label
	LastPosition
	LE
	Length
	LEPad
	library
	Ln
	LoCase
	LongBool
	LongCard
	LongestBool
	LongestCard
	LongestInt
	LongestReal
	LongestWord
	LongInt
	LongReal
	LongWord
	Low
	LT
	LTPad
	Mark
	Max
	MaxChar
	MaxInt
	MaxReal
	MedBool
	MedCard
	MedInt
	MedReal
	MedWord
	Min
	MinReal
	MkDir
	mod
	module
	Move
	MoveLeft
	MoveRight
	name
	NE
	near
	NEPad
	New
	NewCString
	nil
	not
	Null
	object
	Odd
	of
	only
	operator
	or
	Ord
	or else
	or@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}else
	otherwise
	Output
	Pack
	packed
	Page
	PAnsiChar
	ParamCount
	ParamStr
	PChar
	Pi
	PObjectType
	Pointer
	Polar
	Pos
	Position
	pow
	Pred
	private
	procedure
	program
	property
	protected
	PtrCard
	PtrDiffType
	PtrInt
	PtrWord
	public
	published
	Put
	qualified
	Random
	Randomize
	Re
	Read
	ReadLn
	ReadStr
	Real
	record
	Release
	Rename
	repeat
	Reset
	resident
	restricted
	Result
	Return
	ReturnAddress
	Rewrite
	RmDir
	Round
	RunError
	Seek
	SeekEOF
	SeekEOLn
	SeekRead
	SeekUpdate
	SeekWrite
	segment
	Self
	set
	SetFileTime
	SetLength
	SetType
	shl
	ShortBool
	ShortCard
	ShortInt
	ShortReal
	ShortWord
	shr
	Sin
	Single
	SizeOf
	SizeType
	SmallInt
	Sqr
	SqRt
	StandardError
	StandardInput
	StandardOutput
	StdErr
	Str
	String
	String2CString
	SubStr
	Succ
	Text
	then
	Time
	TimeStamp
	to
	to begin do
	to end do
	Trim
	True
	Trunc
	Truncate
	type
	type of
	TypeOf
	Unbind
	unit
	Unpack
	until
	UpCase
	Update
	uses
	Val
	value
	var
	view
	virtual
	Void
	while
	with
	Word
	WordBool
	Write
	WriteLn
	WriteStr
	xor
	Pascal keywords and operators supported by GNU Pascal.
	Where to get support for GNU Pascal; how to report bugs.
	The GPC Mailing List
	The GPC Mailing List Archives
	Newsgroups relevant to GPC
	Where to get individual support for GPC
	If the compiler crashes ...{}
	How to report GPC bugs
	Running the GPC Test Suite

	The GNU Pascal To-Do List.
	Known bugs in GPC
	Features planned for GPC
	Planned features: Strings
	Planned features: Records/arrays
	Planned features: Files
	Planned features: Other types
	Planned features: OOP
	Planned features: Misc
	Planned features: Utilities

	Problems that have been solved

	The GPC Source Reference
	The Pascal preprocessor
	GPC's Lexical Analyzer
	Interrelations between the lexer and parser
	Language Definition: GPC's Parser
	So many keywords, so many problems ...{}
	attribute as a weak keyword
	external as a weak keyword
	forward, near and far as weak keywords
	implementation, constructor, destructor, operator, uses, import and initialization as weak keywords

	Expressions as lower bounds of subranges
	Tree Nodes
	Parameter Passing
	GPI files -- GNU Pascal Interfaces
	GPC's Automake Mechanism -- How it Works
	Files that make up GPC; Integrating GNU Pascal in GCC

	GNU GENERAL PUBLIC LICENSE
	GPL Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs
	GNU LESSER GENERAL PUBLIC LICENSE
	LGPL Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Libraries
	GNU FREE DOCUMENTATION LICENSE
	ADDENDUM: How to use this License for your documents
	DEMO COPYING
	Contributors to GNU Pascal.
	Resources For Use With GPC.
	The GNU Project.
	The GNU Manifesto
	What's GNU? Gnu's Not Unix!
	Why I Must Write GNU
	Why GNU Will Be Compatible with Unix
	How GNU Will Be Available
	Why Many Other Programmers Want to Help
	How You Can Contribute
	Why All Computer Users Will Benefit
	Some Easily Rebutted Objections to GNU's Goals

	Funding Free Software
	GPC Index

