GNAT User’s Guide

for Cross Platforms
GNAT, The GNU Ada 95 Compiler
GNAT Version for GCC 3.3.2

Ada Core Technologies, Inc.

Copyright (©) 1995-2002, Free Software Foundation

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with the Invariant Sections being “GNU Free Documentation
License”, with the Front-Cover Texts being “GNAT User’s Guide for Cross Platforms”,

and with no Back-Cover Texts. A copy of the license is included in the section entitled
“GNU Free Documentation License”.

About This Guide 1

About This Guide

This guide describes the use of GNAT, a compiler and software development toolset for the
full Ada 95 programming language. It describes the features of the compiler and tools, and
details how to use them to build Ada 95 applications.

What This Guide Contains

This guide contains the following chapters:

Chapter 1 [Preliminary Note for Cross Platform Users], page 5, describes the basic
differences between the cross and native versions of GNAT.

Chapter 2 [Getting Started with GNAT], page 7, describes how to get started compiling
and running Ada programs with the GNAT Ada programming environment.

Chapter 3 [The GNAT Compilation Model], page 17, describes the compilation model
used by GNAT.

Chapter 4 [Compiling Using gccl, page 35, describes how to compile Ada programs
with gcc, the Ada compiler.

Chapter 5 [Binding Using gnatbind], page 65, describes how to perform binding of Ada
programs with gnatbind, the GNAT binding utility.

Chapter 6 [Linking Using gnatlink], page 93, describes gnatlink, a program that pro-
vides for linking using the GNAT run-time library to construct a program. gnatlink
can also incorporate foreign language object units into the executable.

Chapter 7 [The GNAT Make Program gnatmake], page 97, describes gnatmake, a utility
that automatically determines the set of sources needed by an Ada compilation unit,
and executes the necessary compilations binding and link.

Chapter 8 [Renaming Files Using gnatchop|, page 105, describes gnatchop, a utility
that allows you to preprocess a file that contains Ada source code, and split it into one
or more new files, one for each compilation unit.

Chapter 9 [Configuration Pragmas|, page 109, describes the configuration pragmas
handled by GNAT.

Chapter 10 [Handling Arbitrary File Naming Conventions Using gnatname], page 111,
shows how to override the default GNAT file naming conventions, either for an indi-
vidual unit or globally.

Chapter 11 [GNAT Project Manager|, page 115, describes how to use project files to
organize large projects.

Chapter 12 [Elaboration Order Handling in GNAT], page 147, describes how GNAT
helps you deal with elaboration order issues.

Chapter 13 [The Cross-Referencing Tools gnatxref and gnatfind], page 173, discusses
gnatxref and gnatfind, two tools that provide an easy way to navigate through
sources.

Chapter 14 [File Name Krunching Using gnatkr|, page 183, describes the gnatkr file

name krunching utility, used to handle shortened file names on operating systems with
a limit on the length of names.

2 GNAT User’s Guide for Cross Platforms

e Chapter 15 [Preprocessing Using gnatprep|, page 187, describes gnatprep, a prepro-
cessor utility that allows a single source file to be used to generate multiple or param-
eterized source files, by means of macro substitution.

e Chapter 16 [The GNAT Library Browser gnatls|, page 191, describes gnatls, a utility
that displays information about compiled units, including dependences on the corre-
sponding sources files, and consistency of compilations.

e Chapter 17 [GNAT and Libraries], page 195, describes the process of creating and using
Libraries with GNAT. It also describes how to recompile the GNAT run-time library.

e Chapter 18 [Using the GNU make Utility], page 201, describes some techniques for
using the GNAT toolset in Makefiles.

e Chapter 19 [Finding Memory Problems with GNAT Debug Pool], page 207, describes
how to use the GNAT-specific Debug Pool in order to detect as early as possible the
use of incorrect memory references.

e Chapter 20 [Creating Sample Bodies Using gnatstub|, page 209, discusses gnatstub, a
utility that generates empty but compilable bodies for library units.

e Chapter 21 [Reducing the Size of Ada Executables with gnatelim|, page 211, describes
gnatelim, a tool which detects unused subprograms and helps the compiler to create
a smaller executable for the program.

e Chapter 22 [Other Utility Programs|, page 215, discusses several other GNAT utilities,
including gnatpsta.

e Chapter 23 [Running and Debugging Ada Programs|, page 219, describes how to run
and debug Ada programs.

e Chapter 24 [Inline Assembler|, page 235, shows how to use the inline assembly facility
in an Ada program.

e Chapter 25 [VxWorks Topics], page 259, presents information relevant to the VxWorks
target for cross-compilation configurations.

e Chapter 26 [LynxOS Topics|, page 277, presents information relevant to the LynxOS
target for cross-compilation configurations.

e Chapter 27 [Performance Considerations|, page 281, reviews the trade offs between
using defaults or options in program development.

What You Should Know before Reading This Guide

This user’s guide assumes that you are familiar with Ada 95 language, as described in the
International Standard ANSI/ISO/IEC-8652:1995, Jan 1995.

Related Information

For further information about related tools, refer to the following documents:

e GNAT Reference Manual, which contains all reference material for the GNAT imple-
mentation of Ada 95.

e Ada 95 Language Reference Manual, which contains all reference material for the Ada
95 programming language.

About This Guide

e Debugging with GDB contains all details on the use of the GNU source-level debugger.

e GNU Emacs Manual contains full information on the extensible editor and program-

ming environment Emacs.

Conventions

Following are examples of the typographical and graphic conventions used in this guide:

Functions, utility program names, standard names, and classes.
‘Option flags’

‘File Names’, ‘button names’, and ‘field names’.

Variables.

Emphasis.

[optional information or parameters|

e Examples are described by text

and then shown this way.

Commands that are entered by the user are preceded in this manual by the characters "$ "
(dollar sign followed by space). If your system uses this sequence as a prompt, then the
commands will appear exactly as you see them in the manual. If your system uses some
other prompt, then the command will appear with the $ replaced by whatever prompt
character you are using.

GNAT User’s Guide for Cross Platforms

Chapter 1: Preliminary Note for Cross Platform Users 5

1 Preliminary Note for Cross Platform Users

The use of GNAT in a cross environment is very similar to its use in a native environment. Most
of the tools described in this manual have similar functions and options in both modes. The
major difference is that the name of the cross tools includes the target for which the cross
compiler is configured. For instance, the cross gnatmake tool is called target-gnatmake
where target stands for the name of the cross target. Thus, in an environment configured
for the target powerpc-wrs-vxworks, the gnatmake command is powerpc-wrs-vxworks-
gnatmake. This convention allows the installation of a native and one or several cross
development environments at the same location.

The tools that are most relevant in a cross environment are: target-gcc, target-
gnatmake, target-gnatbind, target-gnatlink to build cross applications and target-
gnatls for cross library browsing. target-gdb is also usually available for cross debugging
in text mode. The graphical debugger interface gvd is always a native tool but it can be con-
figured to drive the above mentioned cross debugger, thus allowing graphical cross debugging
sessions. Some other tools such as target-gnatchop, target-gnatkr, target-gnatprep,
target-gnatpsta, target-gnatxref, target-gnatfind and target-gnatname are also
provided for completeness even though they do not differ greatly from their native counter-
part.

In the rest of this manual, the tools are sometimes designated with their full cross name,
and sometimes with their simplified native name.

GNAT User’s Guide for Cross Platforms

Chapter 2: Getting Started with GNAT 7

2 Getting Started with GNAT

This introduction is a starting point for using GNAT to develop and execute Ada 95 programs
in a cross environment. It provides some specifics about the GNAT toolchain targeted to
the Wind River Sytems’ VxWorks/Tornado platform; for other targets please refer to the
corresponding chapter later in this manual.

Basic familiarity with use of GNAT in a native environment is presumed. For the
VxWorks specific part, a knowledge of how to start Tornado’s windsh tool is also presumed.

2.1 Running GNAT

Three steps are needed to create an executable file from an Ada source file:
1. The source file(s) must be compiled.
2. The file(s) must be bound using the GNAT binder.
3. All appropriate object files must be linked to produce a loadable module.
All three steps are most commonly handled by using the gnatmake utility program that,

given the name of the main program, automatically performs the necessary compilation,
binding and linking steps.

2.2 Building a Simple Ada Program

Any text editor may be used to prepare an Ada program. If Glide is used, the optional Ada
mode may be helpful in laying out the program. The program text is a normal text file. We
will suppose in our initial example that you have used your editor to prepare the following
standard format text file:

with Ada.Text_I0; use Ada.Text_IO;
procedure Hello is
begin
Put_Line ("Hello WORLD!");
end Hello;

This file should be named ‘hello.adb’. With the normal default file naming conventions,
GNAT requires that each file contain a single compilation unit whose file name is the unit
name, with periods replaced by hyphens; the extension is ‘ads’ for a spec and ‘adb’ for a
body. You can override this default file naming convention by use of the special pragma
Source_File_Name (see Section 3.4 [Using Other File Names]|, page 21). Alternatively, if
you want to rename your files according to this default convention, which is probably more
convenient if you will be using GNAT for all your compilations, then the gnatchop utility
can be used to generate correctly-named source files (see Chapter 8 [Renaming Files Using
gnatchop], page 105).

You can compile the program using the following command ($ is used as the command
prompt in the examples in this document):

8 GNAT User’s Guide for Cross Platforms

$ target-gcc -c hello.adb

gcc is the command used to run the compiler. This compiler is capable of compiling
programs in several languages, including Ada 95 and C. It assumes that you have given
it an Ada program if the file extension is either ‘.ads’ or ‘.adb’, and it will then call the
GNAT compiler to compile the specified file.

The ‘~c’ switch is required. It tells gcc to only do a compilation. (For C programs, gcc
can also do linking, but this capability is not used directly for Ada programs, so the ‘-c’
switch must always be present.)

This compile command generates a file ‘hello.o’, which is the object file corresponding
to your Ada program. It also generates an "Ada Library Information" file ‘hello.ali’,
which contains additional information used to check that an Ada program is consistent.
To build a downloadable module, use gnatbind to bind the program and gnatlink to link
it. The argument to both gnatbind and gnatlink is the name of the ‘ali’ file, but the
default extension of ‘.ali’ can be omitted. This means that in the most common case, the
argument is simply the name of the main program:

$ target-gnatbind hello

$ target-gnatlink hello
A simpler method of carrying out these steps is to use gnatmake, a master program that
invokes all the required compilation, binding and linking tools in the correct order. In
particular, gnatmake automatically recompiles any sources that have been modified since
they were last compiled, or sources that depend on such modified sources, so that "version
skew" is avoided.

$ target-gnatmake hello.adb

The result is a relocatable object called ‘hello’.

Technical note: the result of the linking stage is a relocatable partially-linked object
containing all the relevant GNAT run-time units, in contrast with the executable-format
object file found in native environments.

2.3 Executing a Program on VxWorks

Getting a program to execute involves loading it onto the target, running it, and then (if
re-execution is needed) unloading it.

2.3.1 Loading and Running the Program

An Ada program is loaded and run in the same way as a C program. Details may be found in
the Tornado User’s Guide.

In order to load and run our simple "Hello World" example, we assume that the target
has access to the disk of the host containing this object and that its working directory has
been set to the directory containing this object. The commands are typed in Tornado’s
Windshell. The windsh prompt is the -> sequence.

-> vfO=open("/vio/0",2,0)
new symbol "vf0" added to symbol table.

vf0 = 0x2cab48: value = 12 = 0Oxc
-> ioGlobalStdSet (1,vf0)

Chapter 2: Getting Started with GNAT 9

value = 1 = 0x1
-> 1d < hello
value = 665408 = 0xa2740

-> hello

Hello World

value = 0 = 0x0

->
The first two commands redirect output to the shell window. They are only needed if the
target server was started without the -C option. The third command loads the module,
which is the file ‘hello’ created previously by the target-gnatmake command. Note that
for Tornado AE, the m1 command replaces 1d4."

The "Hello World" program comprises a procedure named hello, and this is the name
entered for the procedure in the target server’s symbol table when the module is loaded.
To execute the procedure, type the symbol name hello into windsh as shown in the last
command above.

Note that by default the entry point of an Ada program is the name of the main Ada
subprogram in a VxWorks environment. It is possible to use an alternative name; see the
description of gnatbind options for details.

2.3.2 Unloading the Program

It is important to remember that you must unload a program once you have run it. You cannot
load it once and run it several times. If you don’t follow this rule, your program’s behavior
can be unpredictable, and will most probably crash.

This effect is due to the implementation of Ada 95’s elaboration semantics. The unit
elaboration phase comprises a static elaboration and a dynamic elaboration. On a native
platform they both take place when the program is run. Thus rerunning the program will
repeat the complete elaboration phase, and the program will run correctly.

On VxWorks, the process is a bit different. The static elaboration phase is handled by the
loader (typically when you type 1d < program_name in windsh). The dynamic phase takes
place when the program is run. If the program is run twice and has not been unloaded and
then reloaded, the second time it is run, the static elaboration phase is skipped. Variables
initialized during the static elaboration phase may have been modified during the first
execution of the program. Thus the second execution isn’t performed on a completely
initialized environment.

Note that in C programs, elaboration isn’t systematic. Multiple runs without reload
might work, but, even with C programs, if there is an elaboration phase, you will have to
unload your program before re-running it.

2.4 Running a Program with Multiple Units

Consider a slightly more complicated example that has three files: a main program, and the
spec and body of a package:

10 GNAT User’s Guide for Cross Platforms

(7

package Greetings is
procedure Hello;
procedure Goodbye;
end Greetings;

with Ada.Text_I0; use Ada.Text_IO0;
package body Greetings is
procedure Hello is
begin
Put_Line ("Hello WORLD!");
end Hello;

procedure Goodbye is
begin
Put_Line ("Goodbye WORLD!");
end Goodbye;
end Greetings;

with Greetings;
procedure Gmain is
begin
Greetings.Hello;
Greetings.Goodbye;
end Gmain;

=)

Following the one-unit-per-file rule, place this program in the following three separate files:

‘greetings.ads’
spec of package Greetings

‘greetings.adb’
body of package Greetings

‘gmain.adb’
body of main program

To build an executable version of this program, we could use four separate steps to compile,
bind, and link the program, as follows:

$ target-gcc -c gmain.adb

$ target-gcc -c greetings.adb

$ target-gnatbind gmain

$ target-gnatlink gmain
Note that there is no required order of compilation when using GNAT. In particular it
is perfectly fine to compile the main program first. Also, it is not necessary to compile
package specs in the case where there is an accompanying body; you only need to compile
the body. If you want to submit these files to the compiler for semantic checking and not
code generation, then use the ‘-~gnatc’ switch:

$ target-gcc -c greetings.ads -gnatc
Although the compilation can be done in separate steps as in the above example, in practice
it is almost always more convenient to use the gnatmake tool. All you need to know in this

case is the name of the main program’s source file. The effect of the above four commands
can be achieved with a single one:

$ target-gnatmake gmain.adb

In the next section we discuss the advantages of using gnatmake in more detail.

Chapter 2: Getting Started with GNAT 11

2.5 Using the gnatmake Utility

If you work on a program by compiling single components at a time using gcc, you typically
keep track of the units you modify. In order to build a consistent system, you compile not
only these units, but also any units that depend on the units you have modified. For exam-
ple, in the preceding case, if you edit ‘gmain.adb’, you only need to recompile that file. But
if you edit ‘greetings.ads’, you must recompile both ‘greetings.adb’ and ‘gmain.adb’,
because both files contain units that depend on ‘greetings.ads’.

gnatbind will warn you if you forget one of these compilation steps, so that it is im-
possible to generate an inconsistent program as a result of forgetting to do a compilation.
Nevertheless it is tedious and error-prone to keep track of dependencies among units. One
approach to handle the dependency-bookkeeping is to use a makefile. However, makefiles
present maintenance problems of their own: if the dependencies change as you change the
program, you must make sure that the makefile is kept up-to-date manually, which is also
an error-prone process.

The gnatmake utility takes care of these details automatically. Invoke it using either one

of the following forms:

$ target-gnatmake gmain.adb

$ target-gnatmake gmain
The argument is the name of the file containing the main program; you may omit the ex-
tension. gnatmake examines the environment, automatically recompiles any files that need
recompiling, and binds and links the resulting set of object files, generating the executable
file, ‘gmain’. In a large program, it can be extremely helpful to use gnatmake, because
working out by hand what needs to be recompiled can be difficult.

Note that gnatmake takes into account all the Ada 95 rules that establish dependencies
among units. These include dependencies that result from inlining subprogram bodies, and
from generic instantiation. Unlike some other Ada make tools, gnatmake does not rely on
the dependencies that were found by the compiler on a previous compilation, which may
possibly be wrong when sources change. gnatmake determines the exact set of dependencies
from scratch each time it is run.

2.6 Introduction to Glide and GVD

Although it is possible to develop programs using only the command line interface (gnatmake,
etc.) a graphical Interactive Development Environment can make it easier for you to com-
pose, navigate, and debug programs. This section describes the main features of Glide, the
GNAT graphical IDE, and also shows how to use the basic commands in GVD, the GNU
Visual Debugger. Additional information may be found in the on-line help for these tools.

2.6.1 Building a New Program with Glide

The simplest way to invoke Glide is to enter glide at the command prompt. It will generally
be useful to issue this as a background command, thus allowing you to continue using your
command window for other purposes while Glide is running;:

12 GNAT User’s Guide for Cross Platforms

$ glide&

Glide will start up with an initial screen displaying the top-level menu items as well as some
other information. The menu selections are as follows

e Buffers
e Files

e Tools

e Edit

e Search
e Mule

e Glide

e Help

For this introductory example, you will need to create a new Ada source file. First, select
the Files menu. This will pop open a menu with around a dozen or so items. To create
a file, select the Open file. .. choice. Depending on the platform, you may see a pop-up
window where you can browse to an appropriate directory and then enter the file name, or
else simply see a line at the bottom of the Glide window where you can likewise enter the
file name. Note that in Glide, when you attempt to open a non-existent file, the effect is to
create a file with that name. For this example enter ‘hello.adb’ as the name of the file.

A new buffer will now appear, occupying the entire Glide window, with the file name at
the top. The menu selections are slightly different from the ones you saw on the opening
screen; there is an Entities item, and in place of Glide there is now an Ada item. Glide
uses the file extension to identify the source language, so ‘adb’ indicates an Ada source file.

You will enter some of the source program lines explicitly, and use the syntax-oriented
template mechanism to enter other lines. First, type the following text:

with Ada.Text_IO; use Ada.Text_IO;

procedure Hello is

begin
Observe that Glide uses different colors to distinguish reserved words from identifiers. Also,
after the procedure Hello is line, the cursor is automatically indented in anticipation of
declarations. When you enter begin, Glide recognizes that there are no declarations and
thus places begin flush left. But after the begin line the cursor is again indented, where
the statement(s) will be placed.

The main part of the program will be a for loop. Instead of entering the text explicitly,
however, use a statement template. Select the Ada item on the top menu bar, move the
mouse to the Statements item, and you will see a large selection of alternatives. Choose
for loop. You will be prompted (at the bottom of the buffer) for a loop name; simply
press the key since a loop name is not needed. You should see the beginning of a for
loop appear in the source program window. You will now be prompted for the name of the
loop variable; enter a line with the identifier ind (lower case). Note that, by default, Glide
capitalizes the name (you can override such behavior if you wish, although this is outside
the scope of this introduction). Next, Glide prompts you for the loop range; enter a line
containing 1. .5 and you will see this also appear in the source program, together with the
remaining elements of the for loop syntax.

Next enter the statement (with an intentional error, a missing semicolon) that will form
the body of the loop:

Chapter 2: Getting Started with GNAT 13

Put_Line("Hello, World" & Integer’Image(I))

Finally, type end Hello; as the last line in the program. Now save the file: choose the File
menu item, and then the Save buffer selection. You will see a message at the bottom of
the buffer confirming that the file has been saved.

You are now ready to attempt to build the program. Select the Ada item from the top
menu bar. Although we could choose simply to compile the file, we will instead attempt to
do a build (which invokes gnatmake) since, if the compile is successful, we want to build
an executable. Thus select Ada build. This will fail because of the compilation error, and
you will notice that the Glide window has been split: the top window contains the source
file, and the bottom window contains the output from the GNAT tools. Glide allows you
to navigate from a compilation error to the source file position corresponding to the error:
click the middle mouse button (or simultaneously press the left and right buttons, on a
two-button mouse) on the diagnostic line in the tool window. The focus will shift to the
source window, and the cursor will be positioned on the character at which the error was
detected.

Correct the error: type in a semicolon to terminate the statement. Although you can
again save the file explicitly, you can also simply invoke Ada = Build and you will be
prompted to save the file. This time the build will succeed; the tool output window shows
you the options that are supplied by default. The GNAT tools’ output (e.g., object and
ALI files, executable) will go in the directory from which Glide was launched.

To execute the program, choose Ada and then Run. You should see the program’s output
displayed in the bottom window:

Hello, world 1
Hello, world 2
Hello, world 3
Hello, world 4
Hello, world 5

2.6.2 Simple Debugging with GVD

This section describes how to set breakpoints, examine/modify variables, and step through
execution.

In order to enable debugging, you need to pass the ‘-g’ switch to both the compiler and
to gnatlink. If you are using the command line, passing ‘-g’ to gnatmake will have this
effect. You can then launch GVD, e.g. on the hello program, by issuing the command:

$ gvd hello

If you are using Glide, then ‘-g’ is passed to the relevant tools by default when you do a

build. Start the debugger by selecting the Ada menu item, and then Debug.

GVD comes up in a multi-part window. One pane shows the names of files comprising
your executable; another pane shows the source code of the current unit (initially your
main subprogram), another pane shows the debugger output and user interactions, and the
fourth pane (the data canvas at the top of the window) displays data objects that you have
selected.

To the left of the source file pane, you will notice green dots adjacent to some lines. These
are lines for which object code exists and where breakpoints can thus be set. You set/reset
a breakpoint by clicking the green dot. When a breakpoint is set, the dot is replaced by an

14 GNAT User’s Guide for Cross Platforms

X in a red circle. Clicking the circle toggles the breakpoint off, and the red circle is replaced
by the green dot.

For this example, set a breakpoint at the statement where Put_Line is invoked.

Start program execution by selecting the Run button on the top menu bar. (The Start
button will also start your program, but it will cause program execution to break at the entry
to your main subprogram.) Evidence of reaching the breakpoint will appear: the source file
line will be highlighted, and the debugger interactions pane will display a relevant message.

You can examine the values of variables in several ways. Move the mouse over an occur-
rence of Ind in the for loop, and you will see the value (now 1) displayed. Alternatively,
right-click on Ind and select Display Ind; a box showing the variable’s name and value will
appear in the data canvas.

Although a loop index is a constant with respect to Ada semantics, you can change its
value in the debugger. Right-click in the box for Ind, and select the Set Value of Ind item.
Enter 2 as the new value, and press 0K. The box for Ind shows the update.

Press the Step button on the top menu bar; this will step through one line of program
text (the invocation of Put_Line), and you can observe the effect of having modified Ind
since the value displayed is 2.

Remove the breakpoint, and resume execution by selecting the Cont button. You will
see the remaining output lines displayed in the debugger interaction window, along with a
message confirming normal program termination.

2.6.3 Other Glide Features

You may have observed that some of the menu selections contain abbreviations; e.g., (C-x C-
f) for Open file... in the Files menu. These are shortcut keys that you can use instead
of selecting menu items. The (C) stands for (Ctl); thus (C-x C-f) means followed by
(Culh, and this sequence can be used instead of selecting Files and then Open file....

To abort a Glide command, type (Ctrlg).

If you want Glide to start with an existing source file, you can either launch Glide as
above and then open the file via Files = Open file..., or else simply pass the name of
the source file on the command line:

$ glide hello.adb&

While you are using Glide, a number of buffers exist. You create some explicitly; e.g., when
you open/create a file. Others arise as an effect of the commands that you issue; e.g., the
buffer containing the output of the tools invoked during a build. If a buffer is hidden, you
can bring it into a visible window by first opening the Buffers menu and then selecting
the desired entry.

If a buffer occupies only part of the Glide screen and you want to expand it to fill the
entire screen, then click in the buffer and then select Files = One Window.

If a window is occupied by one buffer and you want to split the window to bring up a
second buffer, perform the following steps:

e Select Files = Split Window; this will produce two windows each of which holds
the original buffer (these are not copies, but rather different views of the same buffer
contents)

Chapter 2: Getting Started with GNAT 15

e With the focus in one of the windows, select the desired buffer from the Buffers menu

To exit from Glide, choose Files = Exit.

16

GNAT User’s Guide for Cross Platforms

Chapter 3: The GNAT Compilation Model 17

3 The GNAT Compilation Model

This chapter describes the compilation model used by GNAT. Although similar to that used
by other languages, such as C and C++, this model is substantially different from the
traditional Ada compilation models, which are based on a library. The model is initially
described without reference to the library-based model. If you have not previously used an
Ada compiler, you need only read the first part of this chapter. The last section describes
and discusses the differences between the GNAT model and the traditional Ada compiler
models. If you have used other Ada compilers, this section will help you to understand
those differences, and the advantages of the GNAT model.

3.1 Source Representation

Ada source programs are represented in standard text files, using Latin-1 coding. Latin-1 is
an 8-bit code that includes the familiar 7-bit ASCII set, plus additional characters used for
representing foreign languages (see Section 3.2 [Foreign Language Representation], page 17
for support of non-USA character sets). The format effector characters are represented
using their standard ASCII encodings, as follows:

VT Vertical tab, 16#0B#

HT Horizontal tab, 16#09#
CR Carriage return, 16#0D#
LF Line feed, 16#0A#

FF Form feed, 16#0C#

Source files are in standard text file format. In addition, GNAT will recognize a wide
variety of stream formats, in which the end of physical physical lines is marked by any of
the following sequences: LF, CR, CR-LF, or LF-CR. This is useful in accommodating files
that are imported from other operating systems.

The end of a source file is normally represented by the physical end of file. However, the
control character 16#1A# (SUB) is also recognized as signalling the end of the source file.
Again, this is provided for compatibility with other operating systems where this code is
used to represent the end of file.

Each file contains a single Ada compilation unit, including any pragmas associated with
the unit. For example, this means you must place a package declaration (a package spec)
and the corresponding body in separate files. An Ada compilation (which is a sequence of
compilation units) is represented using a sequence of files. Similarly, you will place each
subunit or child unit in a separate file.

3.2 Foreign Language Representation

GNAT supports the standard character sets defined in Ada 95 as well as several other non-
standard character sets for use in localized versions of the compiler (see Section 4.2.11
[Character Set Control], page 56).

18 GNAT User’s Guide for Cross Platforms

3.2.1 Latin-1

The basic character set is Latin-1. This character set is defined by ISO standard 8859, part 1.
The lower half (character codes 16#00# ... 16#7F#) is identical to standard ASCII coding,
but the upper half is used to represent additional characters. These include extended
letters used by European languages, such as French accents, the vowels with umlauts used
in German, and the extra letter A-ring used in Swedish.

For a complete list of Latin-1 codes and their encodings, see the source file of library
unit Ada.Characters.Latin_1 in file ‘a-chlatl.ads’. You may use any of these extended
characters freely in character or string literals. In addition, the extended characters that
represent letters can be used in identifiers.

3.2.2 Other 8-Bit Codes

GNAT also supports several other 8-bit coding schemes:

Latin-2 Latin-2 letters allowed in identifiers, with uppercase and lowercase equivalence.

Latin-3 Latin-3 letters allowed in identifiers, with uppercase and lowercase equivalence.

Latin-4 Latin-4 letters allowed in identifiers, with uppercase and lowercase equivalence.

Latin-5 Latin-4 letters (Cyrillic) allowed in identifiers, with uppercase and lowercase
equivalence.

IBM PC (code page 437)
This code page is the normal default for PCs in the U.S. It corresponds to the
original IBM PC character set. This set has some, but not all, of the extended
Latin-1 letters, but these letters do not have the same encoding as Latin-1. In
this mode, these letters are allowed in identifiers with uppercase and lowercase
equivalence.

IBM PC (code page 850)
This code page is a modification of 437 extended to include all the Latin-1
letters, but still not with the usual Latin-1 encoding. In this mode, all these
letters are allowed in identifiers with uppercase and lowercase equivalence.

Full Upper 8-bit
Any character in the range 80-FF allowed in identifiers, and all are considered
distinct. In other words, there are no uppercase and lowercase equivalences in
this range. This is useful in conjunction with certain encoding schemes used
for some foreign character sets (e.g. the typical method of representing Chinese
characters on the PC).

No Upper-Half
No upper-half characters in the range 80-FF are allowed in identifiers. This
gives Ada 83 compatibility for identifier names.

For precise data on the encodings permitted, and the uppercase and lowercase equivalences
that are recognized, see the file ‘csets.adb’ in the GNAT compiler sources. You will need
to obtain a full source release of GNAT to obtain this file.

Chapter 3: The GNAT Compilation Model 19

3.2.3 Wide Character Encodings

GNAT allows wide character codes to appear in character and string literals, and also optionally
in identifiers, by means of the following possible encoding schemes:

Hex Coding
In this encoding, a wide character is represented by the following five character
sequence:
ESCabcd

Where a, b, ¢, d are the four hexadecimal characters (using uppercase letters)
of the wide character code. For example, ESC A345 is used to represent the
wide character with code 16#A345#. This scheme is compatible with use of the
full Wide_Character set.

Upper-Half Coding
The wide character with encoding 16#abcd# where the upper bit is on (in other
words, "a" is in the range 8-F) is represented as two bytes, 16#ab# and 16#cd#.
The second byte cannot be a format control character, but is not required to
be in the upper half. This method can be also used for shift-JIS or EUC, where
the internal coding matches the external coding.

Shift JIS Coding
A wide character is represented by a two-character sequence, 16#ab# and
16#cd#, with the restrictions described for upper-half encoding as described
above. The internal character code is the corresponding JIS character
according to the standard algorithm for Shift-JIS conversion. Only characters
defined in the JIS code set table can be used with this encoding method.

EUC Coding
A wide character is represented by a two-character sequence 16#ab# and
16#cd#, with both characters being in the upper half. The internal character
code is the corresponding JIS character according to the EUC encoding
algorithm. Only characters defined in the JIS code set table can be used with
this encoding method.

UTF-8 Coding
A wide character is represented using UCS Transformation Format 8 (UTF-8)
as defined in Annex R of ISO 10646-1/Am.2. Depending on the character value,
the representation is a one, two, or three byte sequence:

16#0000#-16#007f#: 2#0xxxXXXX#
16#0080#-16#07ff#: 2#110xxxxx# 2#10XXXXXXH#
16#0800#—-16#ffff#: 2#1110xxxx# 2#10xxxxXX# 2#H10XXXXXXH#

where the xxx bits correspond to the left-padded bits of the 16-bit character
value. Note that all lower half ASCII characters are represented as ASCII
bytes and all upper half characters and other wide characters are represented
as sequences of upper-half (The full UTF-8 scheme allows for encoding 31-bit
characters as 6-byte sequences, but in this implementation, all UTF-8 sequences
of four or more bytes length will be treated as illegal).

20 GNAT User’s Guide for Cross Platforms

Brackets Coding
In this encoding, a wide character is represented by the following eight character
sequence:
["abcada"]

Where a, b, c, d are the four hexadecimal characters (using uppercase letters)
of the wide character code. For example, ["A345"] is used to represent the wide
character with code 16#A345#. It is also possible (though not required) to use
the Brackets coding for upper half characters. For example, the code 16#A3#
can be represented as ["A3"].

This scheme is compatible with use of the full Wide_Character set, and is also
the method used for wide character encoding in the standard ACVC (Ada
Compiler Validation Capability) test suite distributions.

Note: Some of these coding schemes do not permit the full use of the Ada 95 character set.
For example, neither Shift JIS, nor EUC allow the use of the upper half of the Latin-1 set.

3.3 File Naming Rules

The default file name is determined by the name of the unit that the file contains. The name
is formed by taking the full expanded name of the unit and replacing the separating dots
with hyphens and using lowercase for all letters.

An exception arises if the file name generated by the above rules starts with one of the
characters a,g,i, or s, and the second character is a minus. In this case, the character tilde
is used in place of the minus. The reason for this special rule is to avoid clashes with the
standard names for child units of the packages System, Ada, Interfaces, and GNAT, which
use the prefixes s- a- i- and g- respectively.

¢

The file extension is ‘.ads’ for a spec and ‘.adb’ for a body. The following list shows
some examples of these rules.

‘main.ads’
Main (spec)
‘main.adb’

Main (body)

‘arith_functions.ads’
Arith_Functions (package spec)

‘arith_functions.adb’
Arith_Functions (package body)

‘func-spec.ads’
Func.Spec (child package spec)

‘func-spec.adb’
Func.Spec (child package body)

‘main-sub.adb’
Sub (subunit of Main)

Chapter 3: The GNAT Compilation Model 21

‘a”bad.adb’
A.Bad (child package body)

Following these rules can result in excessively long file names if corresponding unit names
are long (for example, if child units or subunits are heavily nested). An option is available
to shorten such long file names (called file name "krunching"). This may be particularly
useful when programs being developed with GNAT are to be used on operating systems
with limited file name lengths. See Section 14.2 [Using gnatkr|, page 183.

Of course, no file shortening algorithm can guarantee uniqueness over all possible unit
names; if file name krunching is used, it is your responsibility to ensure no name clashes
occur. Alternatively you can specify the exact file names that you want used, as described
in the next section. Finally, if your Ada programs are migrating from a compiler with a
different naming convention, you can use the gnatchop utility to produce source files that
follow the GNAT naming conventions. (For details see Chapter 8 [Renaming Files Using
gnatchop]|, page 105.)

3.4 Using Other File Names

In the previous section, we have described the default rules used by GNAT to determine the
file name in which a given unit resides. It is often convenient to follow these default rules,
and if you follow them, the compiler knows without being explicitly told where to find all
the files it needs.

However, in some cases, particularly when a program is imported from another Ada
compiler environment, it may be more convenient for the programmer to specify which file
names contain which units. GNAT allows arbitrary file names to be used by means of the
Source_File_Name pragma. The form of this pragma is as shown in the following examples:

pragma Source_File_Name (My_Utilities.Stacks,
Spec_File_Name => "myutilst_a.ada");

pragma Source_File_name (My_Utilities.Stacks,
Body_File_Name => "myutilst.ada");

As shown in this example, the first argument for the pragma is the unit name (in this
example a child unit). The second argument has the form of a named association. The
identifier indicates whether the file name is for a spec or a body; the file name itself is given
by a string literal.

The source file name pragma is a configuration pragma, which means that normally it
will be placed in the ‘gnat.adc’ file used to hold configuration pragmas that apply to a
complete compilation environment. For more details on how the ‘gnat.adc’ file is created
and used see Section 9.1 [Handling of Configuration Pragmas], page 109

GNAT allows completely arbitrary file names to be specified using the source file name
pragma. However, if the file name specified has an extension other than ‘.ads’ or ‘.adb’ it
is necessary to use a special syntax when compiling the file. The name in this case must

22 GNAT User’s Guide for Cross Platforms

be preceded by the special sequence -x followed by a space and the name of the language,
here ada, as in:

$ gcc -¢ -x ada peculiar_file_name.sim

gnatmake handles non-standard file names in the usual manner (the non-standard file name
for the main program is simply used as the argument to gnatmake). Note that if the
extension is also non-standard, then it must be included in the gnatmake command, it may
not be omitted.

3.5 Alternative File Naming Schemes

In the previous section, we described the use of the Source_File_Name pragma to allow
arbitrary names to be assigned to individual source files. However, this approach requires
one pragma for each file, and especially in large systems can result in very long ‘gnat.adc’
files, and also create a maintenance problem.

GNAT also provides a facility for specifying systematic file naming schemes other than
the standard default naming scheme previously described. An alternative scheme for naming
is specified by the use of Source_File_Name pragmas having the following format:

pragma Source_File_Name (
Spec_File_Name => FILE_NAME_PATTERN
[,Casing => CASING_SPEC]
[,Dot_Replacement => STRING_LITERAL]);

pragma Source_File_Name (
Body_File_Name => FILE_NAME_PATTERN
[,Casing => CASING_SPEC]
[,Dot_Replacement => STRING_LITERAL]);

pragma Source_File_Name (
Subunit_File_Name => FILE_NAME_PATTERN

[,Casing => CASING_SPEC]
[,Dot_Replacement => STRING_LITERAL]);
FILE_NAME_PATTERN ::= STRING_LITERAL
CASING_SPEC ::= Lowercase | Uppercase | Mixedcase

The FILE_NAME_PATTERN string shows how the file name is constructed. It contains a single
asterisk character, and the unit name is substituted systematically for this asterisk. The
optional parameter Casing indicates whether the unit name is to be all upper-case letters,
all lower-case letters, or mixed-case. If no Casing parameter is used, then the default is all
lower-case.

The optional Dot _Replacement string is used to replace any periods that occur in subunit
or child unit names. If no Dot_Replacement argument is used then separating dots appear
unchanged in the resulting file name. Although the above syntax indicates that the Casing
argument must appear before the Dot_Replacement argument, but it is also permissible to
write these arguments in the opposite order.

As indicated, it is possible to specify different naming schemes for bodies, specs, and
subunits. Quite often the rule for subunits is the same as the rule for bodies, in which
case, there is no need to give a separate Subunit_File_Name rule, and in this case the
Body_File_name rule is used for subunits as well.

Chapter 3: The GNAT Compilation Model 23

The separate rule for subunits can also be used to implement the rather unusual case of
a compilation environment (e.g. a single directory) which contains a subunit and a child
unit with the same unit name. Although both units cannot appear in the same partition,
the Ada Reference Manual allows (but does not require) the possibility of the two units
coexisting in the same environment.

The file name translation works in the following steps:

o If there is a specific Source_File_Name pragma for the given unit, then this is always
used, and any general pattern rules are ignored.

e If there is a pattern type Source_File_Name pragma that applies to the unit, then the
resulting file name will be used if the file exists. If more than one pattern matches, the
latest one will be tried first, and the first attempt resulting in a reference to a file that
exists will be used.

e If no pattern type Source_File_Name pragma that applies to the unit for which the
corresponding file exists, then the standard GNAT default naming rules are used.

As an example of the use of this mechanism, consider a commonly used scheme in which
file names are all lower case, with separating periods copied unchanged to the resulting file
name, and specs end with ".1.ada", and bodies end with ".2.ada". GNAT will follow this
scheme if the following two pragmas appear:

pragma Source_File_Name
(Spec_File_Name => "x.1.ada");

pragma Source_File_Name
(Body_File_Name => "x.2.ada");

The default GNAT scheme is actually implemented by providing the following default prag-
mas internally:

pragma Source_File_Name

(Spec_File_Name => "*.ads", Dot_Replacement => "-");
pragma Source_File_Name

(Body_File_Name => "*.adb", Dot_Replacement => "-");

Our final example implements a scheme typically used with one of the Ada 83 compilers,
where the separator character for subunits was "__" (two underscores), specs were identified
by adding ‘_.ADA’, bodies by adding ‘.ADA’, and subunits by adding ‘.SEP’. All file names
were upper case. Child units were not present of course since this was an Ada 83 compiler,
but it seems reasonable to extend this scheme to use the same double underscore separator
for child units.

pragma Source_File_Name
(Spec_File_Name => "*x_.ADA",
Dot_Replacement => "__",
Casing = Uppercase);

pragma Source_File_Name
(Body_File_Name => "x.ADA",
Dot_Replacement => "__",
Casing = Uppercase) ;

pragma Source_File_Name
(Subunit_File_Name => "*.SEP",
Dot_Replacement => "__",
Casing = Uppercase);

24 GNAT User’s Guide for Cross Platforms

3.6 Generating Object Files

An Ada program consists of a set of source files, and the first step in compiling the program
is to generate the corresponding object files. These are generated by compiling a subset of
these source files. The files you need to compile are the following:

e If a package spec has no body, compile the package spec to produce the object file for
the package.

e If a package has both a spec and a body, compile the body to produce the object file
for the package. The source file for the package spec need not be compiled in this case
because there is only one object file, which contains the code for both the spec and
body of the package.

e For a subprogram, compile the subprogram body to produce the object file for the
subprogram. The spec, if one is present, is as usual in a separate file, and need not be
compiled.

e In the case of subunits, only compile the parent unit. A single object file is generated
for the entire subunit tree, which includes all the subunits.

e Compile child units independently of their parent units (though, of course, the spec of
all the ancestor unit must be present in order to compile a child unit).

e Compile generic units in the same manner as any other units. The object files in
this case are small dummy files that contain at most the flag used for elaboration
checking. This is because GNAT always handles generic instantiation by means of
macro expansion. However, it is still necessary to compile generic units, for dependency
checking and elaboration purposes.

The preceding rules describe the set of files that must be compiled to generate the object
files for a program. Each object file has the same name as the corresponding source file,
except that the extension is ‘.o’ as usual.

You may wish to compile other files for the purpose of checking their syntactic and
semantic correctness. For example, in the case where a package has a separate spec and
body, you would not normally compile the spec. However, it is convenient in practice to
compile the spec to make sure it is error-free before compiling clients of this spec, because
such compilations will fail if there is an error in the spec.

GNAT provides an option for compiling such files purely for the purposes of checking
correctness; such compilations are not required as part of the process of building a program.
To compile a file in this checking mode, use the ‘~gnatc’ switch.

3.7 Source Dependencies

A given object file clearly depends on the source file which is compiled to produce it. Here
we are using depends in the sense of a typical make utility; in other words, an object file
depends on a source file if changes to the source file require the object file to be recompiled.
In addition to this basic dependency, a given object may depend on additional source files
as follows:

e If a file being compiled with’s a unit X, the object file depends on the file containing
the spec of unit X. This includes files that are with’ed implicitly either because they

Chapter 3: The GNAT Compilation Model 25

are parents of with’ed child units or they are run-time units required by the language
constructs used in a particular unit.

e If a file being compiled instantiates a library level generic unit, the object file depends
on both the spec and body files for this generic unit.

e If a file being compiled instantiates a generic unit defined within a package, the object
file depends on the body file for the package as well as the spec file.

e If a file being compiled contains a call to a subprogram for which pragma Inline applies
and inlining is activated with the ‘~gnatn’ switch, the object file depends on the file
containing the body of this subprogram as well as on the file containing the spec. Note
that for inlining to actually occur as a result of the use of this switch, it is necessary
to compile in optimizing mode.

The use of ‘-~gnatN’ activates a more extensive inlining optimization that is performed
by the front end of the compiler. This inlining does not require that the code generation
be optimized. Like ‘~gnatn’, the use of this switch generates additional dependencies.

e If an object file O depends on the proper body of a subunit through inlining or instan-
tiation, it depends on the parent unit of the subunit. This means that any modification
of the parent unit or one of its subunits affects the compilation of O.

e The object file for a parent unit depends on all its subunit body files.

e The previous two rules meant that for purposes of computing dependencies and recom-
pilation, a body and all its subunits are treated as an indivisible whole.

These rules are applied transitively: if unit A with’s unit B, whose elaboration calls an
inlined procedure in package C, the object file for unit A will depend on the body of C,
in file ‘c.adb’.

The set of dependent files described by these rules includes all the files on which the
unit is semantically dependent, as described in the Ada 95 Language Reference Manual.
However, it is a superset of what the ARM describes, because it includes generic, inline,
and subunit dependencies.

An object file must be recreated by recompiling the corresponding source file if any
of the source files on which it depends are modified. For example, if the make utility
is used to control compilation, the rule for an Ada object file must mention all the
source files on which the object file depends, according to the above definition. The
determination of the necessary recompilations is done automatically when one uses
gnatmake.

3.8 The Ada Library Information Files

Each compilation actually generates two output files. The first of these is the normal object file
that has a ‘.0’ extension. The second is a text file containing full dependency information.
It has the same name as the source file, but an ‘.ali’ extension. This file is known as the
Ada Library Information (‘ali’) file. The following information is contained in the ‘ali’
file.

e Version information (indicates which version of GNAT was used to compile the unit(s)
in question)

26 GNAT User’s Guide for Cross Platforms

e Main program information (including priority and time slice settings, as well as the
wide character encoding used during compilation).

e List of arguments used in the gcc command for the compilation

e Attributes of the unit, including configuration pragmas used, an indication of whether
the compilation was successful, exception model used etc.

e A list of relevant restrictions applying to the unit (used for consistency) checking.
e Categorization information (e.g. use of pragma Pure).

e Information on all with’ed units, including presence of Elaborate or Elaborate_All
pragmas.

e Information from any Linker_Options pragmas used in the unit
e Information on the use of Body_Version or Version attributes in the unit.

e Dependency information. This is a list of files, together with time stamp and checksum
information. These are files on which the unit depends in the sense that recompilation
is required if any of these units are modified.

o Cross-reference data. Contains information on all entities referenced in the unit. Used
by tools like gnatxref and gnatfind to provide cross-reference information.

For a full detailed description of the format of the ‘ali’ file, see the source of the body of
unit Lib.Writ, contained in file ‘1ib-writ.adb’ in the GNAT compiler sources.

3.9 Binding an Ada Program

When using languages such as C and C++, once the source files have been compiled the only
remaining step in building an executable program is linking the object modules together.
This means that it is possible to link an inconsistent version of a program, in which two
units have included different versions of the same header.

The rules of Ada do not permit such an inconsistent program to be built. For example,
if two clients have different versions of the same package, it is illegal to build a program
containing these two clients. These rules are enforced by the GNAT binder, which also
determines an elaboration order consistent with the Ada rules.

The GNAT binder is run after all the object files for a program have been created. It
is given the name of the main program unit, and from this it determines the set of units
required by the program, by reading the corresponding ALI files. It generates error messages
if the program is inconsistent or if no valid order of elaboration exists.

If no errors are detected, the binder produces a main program, in Ada by default, that
contains calls to the elaboration procedures of those compilation unit that require them,
followed by a call to the main program. This Ada program is compiled to generate the object
file for the main program. The name of the Ada file is ‘b~ xxx.adb’ (with the corresponding
spec ‘b~ xxx.ads’) where xxx is the name of the main program unit.

Finally, the linker is used to build the resulting executable program, using the object
from the main program from the bind step as well as the object files for the Ada units of
the program.

Chapter 3: The GNAT Compilation Model 27

3.10 Mixed Language Programming

3.10.1 Interfacing to C

There are two ways to build a program that contains some Ada files and some other language
files depending on whether the main program is in Ada or not. If the main program is in
Ada, you should proceed as follows:

1. Compile the other language files to generate object files. For instance:

gcc —c filel.c
gcc —c file2.c

2. Compile the Ada units to produce a set of object files and ALI files. For instance:
gnatmake -c my_main.adb

3. Run the Ada binder on the Ada main program. For instance:
gnatbind my_main.ali

4. Link the Ada main program, the Ada objects and the other language objects. For
instance:

gnatlink my_main.ali filel.o file2.o0

The three last steps can be grouped in a single command:
gnatmake my_main.adb -largs filel.o file2.o

If the main program is in some language other than Ada, Then you may have more than one
entry point in the Ada subsystem. You must use a special option of the binder to generate
callable routines to initialize and finalize the Ada units (see Section 5.7 [Binding with Non-
Ada Main Programs], page 87). Calls to the initialization and finalization routines must
be inserted in the main program, or some other appropriate point in the code. The call to
initialize the Ada units must occur before the first Ada subprogram is called, and the call
to finalize the Ada units must occur after the last Ada subprogram returns. You use the
same procedure for building the program as described previously. In this case, however,
the binder only places the initialization and finalization subprograms into file ‘b~ xxx.adb’
instead of the main program. So, if the main program is not in Ada, you should proceed as
follows:
1. Compile the other language files to generate object files. For instance:

gcc -c filel.c
gcc -c file2.c

2. Compile the Ada units to produce a set of object files and ALI files. For instance:

gnatmake -c entry_pointl.adb
gnatmake -c entry_point2.adb

3. Run the Ada binder on the Ada main program. For instance:
gnatbind -n entry_pointl.ali entry_point2.ali

4. Link the Ada main program, the Ada objects and the other language objects. You
only need to give the last entry point here. For instance:

gnatlink entry_point2.ali filel.o file2.o

3.10.2 Calling Conventions

GNAT follows standard calling sequence conventions and will thus interface to any other
language that also follows these conventions. The following Convention identifiers are rec-
ognized by GNAT:

28

GNAT User’s Guide for Cross Platforms

e Ada. This indicates that the standard Ada calling sequence will be used and all Ada

data items may be passed without any limitations in the case where GNAT is used to
generate both the caller and callee. It is also possible to mix GNAT generated code
and code generated by another Ada compiler. In this case, the data types should be
restricted to simple cases, including primitive types. Whether complex data types can
be passed depends on the situation. Probably it is safe to pass simple arrays, such
as arrays of integers or floats. Records may or may not work, depending on whether
both compilers lay them out identically. Complex structures involving variant records,
access parameters, tasks, or protected types, are unlikely to be able to be passed.
Note that in the case of GNAT running on a platform that supports DEC Ada 83, a
higher degree of compatibility can be guaranteed, and in particular records are layed
out in an identical manner in the two compilers. Note also that if output from two
different compilers is mixed, the program is responsible for dealing with elaboration
issues. Probably the safest approach is to write the main program in the version of
Ada other than GNAT, so that it takes care of its own elaboration requirements, and
then call the GNAT-generated adainit procedure to ensure elaboration of the GNAT
components. Consult the documentation of the other Ada compiler for further details
on elaboration.

However, it is not possible to mix the tasking run time of GNAT and DEC Ada 83, All
the tasking operations must either be entirely within GNAT compiled sections of the
program, or entirely within DEC Ada 83 compiled sections of the program.
Assembler. Specifies assembler as the convention. In practice this has the same effect
as convention Ada (but is not equivalent in the sense of being considered the same
convention).

Asm. Equivalent to Assembler.

Asm. Equivalent to Assembly.

COBOL. Data will be passed according to the conventions described in section B.4 of
the Ada 95 Reference Manual.

C. Data will be passed according to the conventions described in section B.3 of the Ada
95 Reference Manual.

Default. Equivalent to C.
External. Equivalent to C.

CPP. This stands for C++. For most purposes this is identical to C. See the separate
description of the specialized GNAT pragmas relating to C++ interfacing for further
details.

Fortran. Data will be passed according to the conventions described in section B.5 of
the Ada 95 Reference Manual.

Intrinsic. This applies to an intrinsic operation, as defined in the Ada 95 Reference
Manual. If a a pragma Import (Intrinsic) applies to a subprogram, this means that
the body of the subprogram is provided by the compiler itself, usually by means of an
efficient code sequence, and that the user does not supply an explicit body for it. In
an application program, the pragma can only be applied to the following two sets of
names, which the GNAT compiler recognizes.
e Rotate_Left, Rotate_Right, Shift_Left, Shift_Right, Shift_Right_- Arithmetic. The
corresponding subprogram declaration must have two formal parameters. The first

Chapter 3: The GNAT Compilation Model 29

one must be a signed integer type or a modular type with a binary modulus, and
the second parameter must be of type Natural. The return type must be the same
as the type of the first argument. The size of this type can only be 8, 16, 32, or
64.

e binary arithmetic operators: "+", "-" wkn n /v The corresponding operator dec-
laration must have parameters and result type that have the same root numeric
type (for example, all three are long_float types). This simplifies the definition of
operations that use type checking to perform dimensional checks:

type Distance is new Long_Float;

type Time is new Long_Float;

type Velocity is new Long_Float;

function "/" (D : Distance; T : Time)

return Velocity;

pragma Import (Intrinsic, "/");
This common idiom is often programmed with a generic definition and an explicit
body. The pragma makes it simpler to introduce such declarations. It incurs no
overhead in compilation time or code size, because it is implemented as a single
machine instruction.

e Stdcall. This is relevant only to NT/Win95 implementations of GNAT, and specifies
that the Stdcall calling sequence will be used, as defined by the NT API.

e DLL. This is equivalent to Stdcall.
e Win32. This is equivalent to Stdcall.

e Stubbed. This is a special convention that indicates that the compiler should provide
a stub body that raises Program_Error.

GNAT additionally provides a useful pragma Convention_Identifier that can be used to
parametrize conventions and allow additional synonyms to be specified. For example if you
have legacy code in which the convention identifier Fortran77 was used for Fortran, you can
use the configuration pragma:

pragma Convention_Identifier (Fortran77, Fortran);
And from now on the identifier Fortran77 may be used as a convention identifier (for example
in an Import pragma) with the same meaning as Fortran.

3.11 Building Mixed Ada & C++ Programs

Building a mixed application containing both Ada and C++ code may be a challenge for the
unaware programmer. As a matter of fact, this interfacing has not been standardized in
the Ada 95 reference manual due to the immaturity and lack of standard of C++ at the
time. This section gives a few hints that should make this task easier. In particular the
first section addresses the differences with interfacing with C. The second section looks into
the delicate problem of linking the complete application from its Ada and C++ parts. The
last section give some hints on how the GNAT run time can be adapted in order to allow
inter-language dispatching with a new C++ compiler.

3.11.1 Interfacing to C++

GNAT supports interfacing with C++ compilers generating code that is compatible with the
standard Application Binary Interface of the given platform.

30 GNAT User’s Guide for Cross Platforms

Interfacing can be done at 3 levels: simple data, subprograms and classes. In the first
2 cases, GNAT offer a specific Convention CPP that behaves exactly like Convention C.
Usually C++ mangle names of subprograms and currently GNAT does not provide any help
to solve the demangling problem. This problem can be addressed in 2 ways:

e by modifying the C++ code in order to force a C convention using the extern "C"
syntax.

e by figuring out the mangled name and use it as the Link_Name argument of the pragma
import.

Interfacing at the class level can be achieved by using the GNAT specific pragmas such as
CPP_Class and CPP_Virtual. See the GNAT Reference Manual for additional information.

3.11.2 Linking a Mixed C++ & Ada Program

Usually the linker of the C++ development system must be used to link mixed applications
because most C++ systems will resolve elaboration issues (such as calling constructors on
global class instances) transparently during the link phase. GNAT has been adapted to
ease the use of a foreign linker for the last phase. Three cases can be considered:

1. Using GNAT and G++ (GNU C++ compiler) from the same GCC installation. The
c++ linker can simply be called by using the c++ specific driver called c++. Note that
this setup is not very common because it may request recompiling the whole GCC tree
from sources and it does not allow to upgrade easily to a new version of one compiler
for one of the two languages without taking the risk of destabilizing the other.

$ c++ -c filel.C

$ c++ -c file2.C
$ gnatmake ada_unit -largs filel.o file2.o0 —--LINK=c++
2. Using GNAT and G++ from 2 different GCC installations. If both compilers are on the

PATH, the same method can be used. It is important to be aware that environment
variables such as C_INCLUDE_PATH, GCC_EXEC_PREFIX, BINUTILS_ROOT or
GCC_ROOQOT will affect both compilers at the same time and thus may make one of the
2 compilers operate improperly if they are set for the other. In particular it is important
that the link command has access to the proper gcc library ‘libgcc.a’, that is to say
the one that is part of the C++ compiler installation. The implicit link command as
suggested in the gnatmake command from the former example can be replaced by an
explicit link command with full verbosity in order to verify which library is used:

$ gnatbind ada_unit

$ gnatlink -v -v ada_unit filel.o file2.o0 --LINK=c++

If there is a problem due to interfering environment variables, it can be workaround
