
Finding Files
Edition 4.2.33, for GNU find version 4.2.33

20 June 2015

by David MacKenzie and James Youngman

This file documents the GNU utilities for finding files that match certain criteria and
performing various operations on them.

Copyright (C) 1994, 1996, 1998, 2000, 2001, 2003, 2004, 2005, 2006, 2007 Free Software
Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License.”

i

Table of Contents

1 Introduction . 1
1.1 Scope . 1
1.2 Overview . 2
1.3 find Expressions . 3

2 Finding Files . 4
2.1 Name . 4

2.1.1 Base Name Patterns . 4
2.1.2 Full Name Patterns . 4
2.1.3 Fast Full Name Search . 5
2.1.4 Shell Pattern Matching . 6

2.2 Links . 7
2.2.1 Symbolic Links . 7
2.2.2 Hard Links . 8

2.3 Time . 9
2.3.1 Age Ranges . 10
2.3.2 Comparing Timestamps . 10

2.4 Size . 11
2.5 Type . 11
2.6 Owner . 12
2.7 Permissions . 13
2.8 Contents . 14
2.9 Directories . 14
2.10 Filesystems . 16
2.11 Combining Primaries With Operators . 17

3 Actions . 18
3.1 Print File Name . 18
3.2 Print File Information . 18

3.2.1 Escapes . 19
3.2.2 Format Directives . 20

3.2.2.1 Name Directives . 20
3.2.2.2 Ownership Directives . 20
3.2.2.3 Size Directives . 21
3.2.2.4 Location Directives . 21
3.2.2.5 Time Directives . 22

3.2.3 Time Formats . 22
3.2.3.1 Time Components . 22
3.2.3.2 Date Components . 22
3.2.3.3 Combined Time Formats . 23
3.2.3.4 Formatting Flags . 23

3.3 Run Commands . 23

ii

3.3.1 Single File . 23
3.3.2 Multiple Files . 24

3.3.2.1 Unsafe File Name Handling . 26
3.3.2.2 Safe File Name Handling . 27
3.3.2.3 Unusual Characters in File Names 27
3.3.2.4 Limiting Command Size . 28
3.3.2.5 Interspersing File Names . 30

3.3.3 Querying . 30
3.4 Delete Files . 31
3.5 Adding Tests . 31

4 File Name Databases . 33
4.1 Database Locations . 33
4.2 Database Formats . 33

4.2.1 New Database Format . 33
4.2.2 Sample Database . 34
4.2.3 Old Database Format . 34

4.3 Newline Handling . 35

5 File Permissions . 36
5.1 Structure of File Permissions . 36
5.2 Symbolic Modes . 37

5.2.1 Setting Permissions . 37
5.2.2 Copying Existing Permissions . 38
5.2.3 Changing Special Permissions . 38
5.2.4 Conditional Executability . 39
5.2.5 Making Multiple Changes . 39
5.2.6 The Umask and Protection . 40

5.3 Numeric Modes . 40

6 Reference . 42
6.1 Invoking find . 42

6.1.1 Warning Messages . 42
6.2 Invoking locate . 43
6.3 Invoking updatedb . 45
6.4 Invoking xargs . 47
6.5 Regular Expressions . 49

6.5.1 ‘findutils-default’ regular expression syntax 49
6.5.2 ‘awk’ regular expression syntax . 50
6.5.3 ‘egrep’ regular expression syntax . 51
6.5.4 ‘emacs’ regular expression syntax . 52
6.5.5 ‘gnu-awk’ regular expression syntax . 53
6.5.6 ‘grep’ regular expression syntax . 54
6.5.7 ‘posix-awk’ regular expression syntax . 55
6.5.8 ‘posix-basic’ regular expression syntax 56
6.5.9 ‘posix-egrep’ regular expression syntax 57
6.5.10 ‘posix-extended’ regular expression syntax 58

6.6 Environment Variables . 59

iii

7 Common Tasks . 60
7.1 Viewing And Editing . 60
7.2 Archiving . 60
7.3 Cleaning Up . 61
7.4 Strange File Names . 61
7.5 Fixing Permissions . 62
7.6 Classifying Files . 62

8 Worked Examples . 63
8.1 Deleting Files . 63

8.1.1 The Traditional Way . 63
8.1.2 Making Use of xargs . 64
8.1.3 Unusual characters in filenames . 64
8.1.4 Going back to -exec . 64
8.1.5 A more secure version of -exec . 65
8.1.6 Using the -delete action . 66
8.1.7 Improving things still further . 66
8.1.8 Conclusion . 67

8.2 Updating A Timestamp File . 67
8.2.1 Updating the Timestamp The Wrong Way 67
8.2.2 Using the test utility to compare timestamps 67
8.2.3 A combined approach . 68
8.2.4 Using -printf and sort to compare timestamps 68
8.2.5 Coping with sub-second timestamp resolution 68
8.2.6 Coping with odd filenames too . 69

9 Security Considerations . 70
9.1 Levels of Risk . 70
9.2 Security Considerations for find . 71

9.2.1 Problems with -exec and filenames . 71
9.2.2 Changing the Current Working Directory 72

9.2.2.1 O NOFOLLOW . 72
9.2.2.2 Systems without O NOFOLLOW . 73

9.2.3 Race Conditions with -exec . 73
9.2.4 Race Conditions with -print and -print0 74

9.3 Security Considerations for xargs . 74
9.4 Security Considerations for locate . 75

9.4.1 Race Conditions . 75
9.4.2 Long File Name Bugs with Old-Format Databases 75

9.5 Summary . 75

10 Error Messages . 77
10.1 Error Messages From find . 77
10.2 Error Messages From xargs . 78
10.3 Error Messages From locate . 79
10.4 Error Messages From updatedb . 79

iv

Appendix A GNU Free Documentation License
. 80

find Primary Index . 87

Chapter 1: Introduction 1

1 Introduction

This manual shows how to find files that meet criteria you specify, and how to perform var-
ious actions on the files that you find. The principal programs that you use to perform these
tasks are find, locate, and xargs. Some of the examples in this manual use capabilities
specific to the GNU versions of those programs.

GNU find was originally written by Eric Decker, with enhancements by David
MacKenzie, Jay Plett, and Tim Wood. GNU xargs was originally written by Mike Rendell,
with enhancements by David MacKenzie. GNU locate and its associated utilities were
originally written by James Woods, with enhancements by David MacKenzie. The idea for
‘find -print0’ and ‘xargs -0’ came from Dan Bernstein. The current maintainer of GNU
findutils (and this manual) is James Youngman. Many other people have contributed bug
fixes, small improvements, and helpful suggestions. Thanks!

To report a bug in GNU findutils, please use the form on the Savannah web site
at http://savannah.gnu.org/bugs/?group=findutils. Reporting bugs this way means
that you will then be able to track progress in fixing the problem.

If you don’t have web access, you can also just send mail to the mailing list. The mailing
list bug-findutils@gnu.org carries discussion of bugs in findutils, questions and answers
about the software and discussion of the development of the programs. To join the list,
send email to bug-findutils-request@gnu.org.

Please read any relevant sections of this manual before asking for help on the mailing
list. You may also find it helpful to read the NON-BUGS section of the find manual page.

If you ask for help on the mailing list, people will be able to help you much more
effectively if you include the following things:

• The version of the software you are running. You can find this out by running ‘locate
--version’.

• What you were trying to do

• The exact command line you used

• The exact output you got (if this is very long, try to find a smaller example which
exhibits the same problem)

• The output you expected to get

1.1 Scope

For brevity, the word file in this manual means a regular file, a directory, a symbolic link,
or any other kind of node that has a directory entry. A directory entry is also called a file
name. A file name may contain some, all, or none of the directories in a path that leads to
the file. These are all examples of what this manual calls “file names”:

parser.c

README

./budget/may-94.sc

fred/.cshrc

/usr/local/include/termcap.h

A directory tree is a directory and the files it contains, all of its subdirectories and the
files they contain, etc. It can also be a single non-directory file.

mailto:bug-findutils@gnu.org
mailto:bug-findutils-request@gnu.org

Chapter 1: Introduction 2

These programs enable you to find the files in one or more directory trees that:

• have names that contain certain text or match a certain pattern;

• are links to certain files;

• were last used during a certain period of time;

• are within a certain size range;

• are of a certain type (regular file, directory, symbolic link, etc.);

• are owned by a certain user or group;

• have certain access permissions;

• contain text that matches a certain pattern;

• are within a certain depth in the directory tree;

• or some combination of the above.

Once you have found the files you’re looking for (or files that are potentially the ones
you’re looking for), you can do more to them than simply list their names. You can get any
combination of the files’ attributes, or process the files in many ways, either individually or
in groups of various sizes. Actions that you might want to perform on the files you have
found include, but are not limited to:

• view or edit

• store in an archive

• remove or rename

• change access permissions

• classify into groups

This manual describes how to perform each of those tasks, and more.

1.2 Overview

The principal programs used for making lists of files that match given criteria and running
commands on them are find, locate, and xargs. An additional command, updatedb, is
used by system administrators to create databases for locate to use.

find searches for files in a directory hierarchy and prints information about the files it
found. It is run like this:

find [file...] [expression]

Here is a typical use of find. This example prints the names of all files in the directory tree
rooted in /usr/src whose name ends with ‘.c’ and that are larger than 100 Kilobytes.

find /usr/src -name ’*.c’ -size +100k -print

Notice that the wildcard must be enclosed in quotes in order to protect it from expansion
by the shell.

locate searches special file name databases for file names that match patterns. The
system administrator runs the updatedb program to create the databases. locate is run
like this:

locate [option...] pattern...

This example prints the names of all files in the default file name database whose name
ends with ‘Makefile’ or ‘makefile’. Which file names are stored in the database depends
on how the system administrator ran updatedb.

Chapter 1: Introduction 3

locate ’*[Mm]akefile’

The name xargs, pronounced EX-args, means “combine arguments.” xargs builds and
executes command lines by gathering together arguments it reads on the standard input.
Most often, these arguments are lists of file names generated by find. xargs is run like
this:

xargs [option...] [command [initial-arguments]]

The following command searches the files listed in the file file-list and prints all of the
lines in them that contain the word ‘typedef’.

xargs grep typedef < file-list

1.3 find Expressions

The expression that find uses to select files consists of one or more primaries, each of which
is a separate command line argument to find. find evaluates the expression each time it
processes a file. An expression can contain any of the following types of primaries:

options affect overall operation rather than the processing of a specific file;

tests return a true or false value, depending on the file’s attributes;

actions have side effects and return a true or false value; and

operators connect the other arguments and affect when and whether they are evaluated.

You can omit the operator between two primaries; it defaults to ‘-and’. See Section 2.11
[Combining Primaries With Operators], page 17, for ways to connect primaries into more
complex expressions. If the expression contains no actions other than ‘-prune’, ‘-print’
is performed on all files for which the entire expression is true (see Section 3.1 [Print File
Name], page 18).

Options take effect immediately, rather than being evaluated for each file when their
place in the expression is reached. Therefore, for clarity, it is best to place them at the
beginning of the expression.

Many of the primaries take arguments, which immediately follow them in the next
command line argument to find. Some arguments are file names, patterns, or other strings;
others are numbers. Numeric arguments can be specified as

+n for greater than n,

-n for less than n,

n for exactly n.

Chapter 2: Finding Files 4

2 Finding Files

By default, find prints to the standard output the names of the files that match the given
criteria. See Chapter 3 [Actions], page 18, for how to get more information about the
matching files.

2.1 Name

Here are ways to search for files whose name matches a certain pattern. See Section 2.1.4
[Shell Pattern Matching], page 6, for a description of the pattern arguments to these tests.

Each of these tests has a case-sensitive version and a case-insensitive version, whose
name begins with ‘i’. In a case-insensitive comparison, the patterns ‘fo*’ and ‘F??’ match
the file names Foo, ‘FOO’, ‘foo’, ‘fOo’, etc.

2.1.1 Base Name Patterns

[Test]-name pattern
[Test]-iname pattern

True if the base of the file name (the path with the leading directories removed)
matches shell pattern pattern. For ‘-iname’, the match is case-insensitive.1 To ignore
a whole directory tree, use ‘-prune’ (see Section 2.9 [Directories], page 14). As an
example, to find Texinfo source files in /usr/local/doc:

find /usr/local/doc -name ’*.texi’

Notice that the wildcard must be enclosed in quotes in order to protect it from
expansion by the shell.

As of findutils version 4.2.2, patterns for ‘-name’ and ‘-iname’ will match a file name
with a leading ‘.’. For example the command ‘find /tmp -name *bar’ will match
the file /tmp/.foobar. Braces within the pattern (‘{}’) are not considered to be
special (that is, find . -name ’foo{1,2}’ matches a file named foo{1,2}, not the
files foo1 and foo2.

2.1.2 Full Name Patterns

[Test]-wholename pattern
[Test]-iwholename pattern

True if the entire file name, starting with the command line argument under which
the file was found, matches shell pattern pattern. For ‘-iwholename’, the match is
case-insensitive. To ignore a whole directory tree, use ‘-prune’ rather than checking
every file in the tree (see Section 2.9 [Directories], page 14). The “entire file name”
as used by find starts with the starting-point specified on the command line, and is
not converted to an absolute pathname, so for example cd /; find tmp -wholename

/tmp will never match anything.

1 Because we need to perform case-insensitive matching, the GNU fnmatch implementation is always used;
if the C library includes the GNU implementation, we use that and otherwise we use the one from gnulib

Chapter 2: Finding Files 5

[Test]-path pattern
[Test]-ipath pattern

These tests are deprecated, but work as for ‘-wholename’ and ‘-iwholename’, respect-
ively. The ‘-ipath’ test is a GNU extension, but ‘-path’ is also provided by HP-UX
find.

[Test]-regex expr
[Test]-iregex expr

True if the entire file name matches regular expression expr. This is a match on
the whole path, not a search. For example, to match a file named ./fubar3, you
can use the regular expression ‘.*bar.’ or ‘.*b.*3’, but not ‘f.*r3’. See Section
“Syntax of Regular Expressions” in The GNU Emacs Manual, for a description of the
syntax of regular expressions. For ‘-iregex’, the match is case-insensitive. There are
several varieties of regular expressions; by default this test uses POSIX basic regular
expressions, but this can be changed with the option ‘-regextype’.

[Option]-regextype name
This option controls the variety of regular expression syntax understood by the
‘-regex’ and ‘-iregex’ tests. This option is positional; that is, it only affects regular
expressions which occur later in the command line. If this option is not given, GNU
Emacs regular expressions are assumed. Currently-implemented types are

‘emacs’ Regular expressions compatible with GNU Emacs; this is also the default
behaviour if this option is not used.

‘posix-awk’
Regular expressions compatible with the POSIX awk command (not GNU
awk)

‘posix-basic’
POSIX Basic Regular Expressions.

‘posix-egrep’
Regular expressions compatible with the POSIX egrep command

‘posix-extended’
POSIX Extended Regular Expressions

Section 6.5 [Regular Expressions], page 49 for more information on the regular express-
ion dialects understood by GNU findutils.

2.1.3 Fast Full Name Search

To search for files by name without having to actually scan the directories on the disk (which
can be slow), you can use the locate program. For each shell pattern you give it, locate
searches one or more databases of file names and displays the file names that contain the
pattern. See Section 2.1.4 [Shell Pattern Matching], page 6, for details about shell patterns.

If a pattern is a plain string—it contains no metacharacters—locate displays all file
names in the database that contain that string. If a pattern contains metacharacters,
locate only displays file names that match the pattern exactly. As a result, patterns that
contain metacharacters should usually begin with a ‘*’, and will most often end with one

Chapter 2: Finding Files 6

as well. The exceptions are patterns that are intended to explicitly match the beginning or
end of a file name.

If you only want locate to match against the last component of the file names (the
“base name” of the files) you can use the ‘--basename’ option. The opposite behaviour is
the default, but can be selected explicitly by using the option ‘--wholename’.

The command

locate pattern

is almost equivalent to

find directories -name pattern

where directories are the directories for which the file name databases contain inform-
ation. The differences are that the locate information might be out of date, and that
locate handles wildcards in the pattern slightly differently than find (see Section 2.1.4
[Shell Pattern Matching], page 6).

The file name databases contain lists of files that were on the system when the databases
were last updated. The system administrator can choose the file name of the default data-
base, the frequency with which the databases are updated, and the directories for which
they contain entries.

Here is how to select which file name databases locate searches. The default is system-
dependent.

--database=path

-d path Instead of searching the default file name database, search the file name data-
bases in path, which is a colon-separated list of database file names. (A
semicolon is used on MS-DOS systems.) You can also use the environment
variable LOCATE_PATH to set the list of database files to search. The option
overrides the environment variable if both are used.

2.1.4 Shell Pattern Matching

find and locate can compare file names, or parts of file names, to shell patterns. A shell
pattern is a string that may contain the following special characters, which are known as
wildcards or metacharacters.

You must quote patterns that contain metacharacters to prevent the shell from expanding
them itself. Double and single quotes both work; so does escaping with a backslash. (Don’t
use backslashes on MS-DOS, except for escaping quote characters, because backslashes in
other places are treated as directory separators.)

* Matches any zero or more characters.

? Matches any one character.

[string] Matches exactly one character that is a member of the string string. This is
called a character class. As a shorthand, string may contain ranges, which
consist of two characters with a dash between them. For example, the class
‘[a-z0-9_]’ matches a lowercase letter, a number, or an underscore. You can
negate a class by placing a ‘!’ or ‘^’ immediately after the opening bracket.
Thus, ‘[^A-Z@]’ matches any character except an uppercase letter or an at
sign.

Chapter 2: Finding Files 7

\ Removes the special meaning of the character that follows it. This works even
in character classes. (On MS-DOS, only the quote characters ! are protected
by the backslash.)

In the find tests that do shell pattern matching (‘-name’, ‘-wholename’, etc.), wildcards
in the pattern will match a ‘.’ at the beginning of a file name. This is also the case
for locate. Thus, ‘find -name ’*macs’’ will match a file named .emacs, as will ‘locate
’*macs’’.

Slash characters have no special significance in the shell pattern matching that find and
locate do, unlike in the shell, in which wildcards do not match them. Therefore, a pattern
‘foo*bar’ can match a file name ‘foo3/bar’, and a pattern ‘./sr*sc’ can match a file name
‘./src/misc’.

If you want to locate some files with the ‘locate’ command but don’t need to see the full
list you can use the ‘--limit’ option to see just a small number of results, or the ‘--count’
option to display only the total number of matches.

2.2 Links

There are two ways that files can be linked together. Symbolic links are a special type of file
whose contents are a portion of the name of another file. Hard links are multiple directory
entries for one file; the file names all have the same index node (inode) number on the disk.

2.2.1 Symbolic Links

Symbolic links are names that reference other files. GNU find will handle symbolic links
in one of two ways; firstly, it can dereference the links for you - this means that if it comes
across a symbolic link, it examines the file that the link points to, in order to see if it
matches the criteria you have specified. Secondly, it can check the link itself in case you
might be looking for the actual link. If the file that the symbolic link points to is also within
the directory hierarchy you are searching with the find command, you may not see a great
deal of difference between these two alternatives.

By default, find examines symbolic links themselves when it finds them (and, if it later
comes across the linked-to file, it will examine that, too). If you would prefer find to
dereference the links and examine the file that each link points to, specify the ‘-L’ option
to find. You can explicitly specify the default behaviour by using the ‘-P’ option. The
‘-H’ option is a half-way-between option which ensures that any symbolic links listed on the
command line are dereferenced, but other symbolic links are not.

Symbolic links are different to “hard links” in the sense that you need permissions upon
the linked-to file in order to be able to dereference the link. This can mean that even if you
specify the ‘-L’ option, find may not be able to determine the properties of the file that
the link points to (because you don’t have sufficient permissions). In this situation, find
uses the properties of the link itself. This also occurs if a symbolic link exists but points to
a file that is missing.

The options controlling the behaviour of find with respect to links are as follows :-

‘-P’ find does not dereference symbolic links at all. This is the default behaviour.
This option must be specified before any of the file names on the command line.

Chapter 2: Finding Files 8

‘-H’ find does not dereference symbolic links (except in the case of file names on
the command line, which are dereferenced). If a symbolic link cannot be der-
eferenced, the information for the symbolic link itself is used. This option must
be specified before any of the file names on the command line.

‘-L’ find dereferences symbolic links where possible, and where this is not possible
it uses the properties of the symbolic link itself. This option must be specified
before any of the file names on the command line. Use of this option also implies
the same behaviour as the ‘-noleaf’ option. If you later use the ‘-H’ or ‘-P’
options, this does not turn off ‘-noleaf’.

‘-follow’ This option forms part of the “expression” and must be specified after the file
names, but it is otherwise equivalent to ‘-L’. The ‘-follow’ option affects
only those tests which appear after it on the command line. This option is
deprecated. Where possible, you should use ‘-L’ instead.

The following differences in behavior occur when the ‘-L’ option is used:

• find follows symbolic links to directories when searching directory trees.

• ‘-lname’ and ‘-ilname’ always return false (unless they happen to match broken sym-
bolic links).

• ‘-type’ reports the types of the files that symbolic links point to. This means that in
combination with ‘-L’, ‘-type l’ will be true only for broken symbolic links. To check
for symbolic links when ‘-L’ has been specified, use ‘-xtype l’.

• Implies ‘-noleaf’ (see Section 2.9 [Directories], page 14).

If the ‘-L’ option or the ‘-H’ option is used, the file names used as arguments to ‘-newer’,
‘-anewer’, and ‘-cnewer’ are dereferenced and the timestamp from the pointed-to file is
used instead (if possible – otherwise the timestamp from the symbolic link is used).

[Test]-lname pattern
[Test]-ilname pattern

True if the file is a symbolic link whose contents match shell pattern pattern. For
‘-ilname’, the match is case-insensitive. See Section 2.1.4 [Shell Pattern Matching],
page 6, for details about the pattern argument. If the ‘-L’ option is in effect, this
test will always return false for symbolic links unless they are broken. So, to list any
symbolic links to sysdep.c in the current directory and its subdirectories, you can
do:

find . -lname ’*sysdep.c’

2.2.2 Hard Links

Hard links allow more than one name to refer to the same file. To find all the names
which refer to the same file as NAME, use ‘-samefile NAME’. If you are not using the
‘-L’ option, you can confine your search to one filesystem using the ‘-xdev’ option. This is
useful because hard links cannot point outside a single filesystem, so this can cut down on
needless searching.

If the ‘-L’ option is in effect, and NAME is in fact a symbolic link, the symbolic link
will be dereferenced. Hence you are searching for other links (hard or symbolic) to the

Chapter 2: Finding Files 9

file pointed to by NAME. If ‘-L’ is in effect but NAME is not itself a symbolic link, other
symbolic links to the file NAME will be matched.

You can also search for files by inode number. This can occasionally be useful in diag-
nosing problems with filesystems for example, because fsck tends to print inode numbers.
Inode numbers also occasionally turn up in log messages for some types of software, and
are used to support the ftok() library function.

You can learn a file’s inode number and the number of links to it by running ‘ls -li’ or
‘find -ls’.

You can search for hard links to inode number NUM by using ‘-inum NUM’. If there
are any filesystem mount points below the directory where you are starting the search,
use the ‘-xdev’ option unless you are also using the ‘-L’ option. Using ‘-xdev’ this saves
needless searching, since hard links to a file must be on the same filesystem. See Section 2.10
[Filesystems], page 16.

[Test]-samefile NAME
File is a hard link to the same inode as NAME. If the ‘-L’ option is in effect, symbolic
links to the same file as NAME points to are also matched.

[Test]-inum n
File has inode number n. The ‘+’ and ‘-’ qualifiers also work, though these are rarely
useful. Much of the time it is easier to use ‘-samefile’ rather than this option.

You can also search for files that have a certain number of links, with ‘-links’. Di-
rectories normally have at least two hard links; their . entry is the second one. If they have
subdirectories, each of those also has a hard link called .. to its parent directory. The .

and .. directory entries are not normally searched unless they are mentioned on the find

command line.

[Test]-links n
File has n hard links.

[Test]-links +n
File has more than n hard links.

[Test]-links -n
File has fewer than n hard links.

2.3 Time

Each file has three time stamps, which record the last time that certain operations were
performed on the file:

1. access (read the file’s contents)

2. change the status (modify the file or its attributes)

3. modify (change the file’s contents)

There is no timestamp that indicates when a file was created.

You can search for files whose time stamps are within a certain age range, or compare
them to other time stamps.

Chapter 2: Finding Files 10

2.3.1 Age Ranges

These tests are mainly useful with ranges (‘+n’ and ‘-n’).

[Test]-atime n
[Test]-ctime n
[Test]-mtime n

True if the file was last accessed (or its status changed, or it was modified) n*24 hours
ago. The number of 24-hour periods since the file’s timestamp is always rounded down;
therefore 0 means “less than 24 hours ago”, 1 means “between 24 and 48 hours ago”,
and so forth.

[Test]-amin n
[Test]-cmin n
[Test]-mmin n

True if the file was last accessed (or its status changed, or it was modified) n minutes
ago. These tests provide finer granularity of measurement than ‘-atime’ et al., but
rounding is done in a similar way. For example, to list files in /u/bill that were last
read from 2 to 6 minutes ago:

find /u/bill -amin +2 -amin -6

[Option]-daystart
Measure times from the beginning of today rather than from 24 hours ago. So, to list
the regular files in your home directory that were modified yesterday, do

find ~ -daystart -type f -mtime 1

The ‘-daystart’ option is unlike most other options in that it has an effect on the
way that other tests are performed. The affected tests are ‘-amin’, ‘-cmin’, ‘-mmin’,
‘-atime’, ‘-ctime’ and ‘-mtime’. The ‘-daystart’ option only affects the behaviour
of any tests which appear after it on the command line.

2.3.2 Comparing Timestamps

As an alternative to comparing timestamps to the current time, you can compare them to
another file’s timestamp. That file’s timestamp could be updated by another program when
some event occurs. Or you could set it to a particular fixed date using the touch command.
For example, to list files in /usr modified after February 1 of the current year:

touch -t 02010000 /tmp/stamp$$

find /usr -newer /tmp/stamp$$

rm -f /tmp/stamp$$

[Test]-anewer file
[Test]-cnewer file
[Test]-newer file

True if the file was last accessed (or its status changed, or it was modified) more
recently than file was modified. These tests are affected by ‘-follow’ only if ‘-follow’
comes before them on the command line. See Section 2.2.1 [Symbolic Links], page 7,
for more information on ‘-follow’. As an example, to list any files modified since
/bin/sh was last modified:

find . -newer /bin/sh

Chapter 2: Finding Files 11

[Test]-used n
True if the file was last accessed n days after its status was last changed. Useful for
finding files that are not being used, and could perhaps be archived or removed to
save disk space.

2.4 Size

[Test]-size n[bckwMG]
True if the file uses n units of space, rounding up. The units are 512-byte blocks by
default, but they can be changed by adding a one-character suffix to n:

b 512-byte blocks (never 1024)

c bytes

k kilobytes (1024 bytes)

w 2-byte words

M Megabytes (units of 1048576 bytes)

G Gigabytes (units of 1073741824 bytes)

The ‘b’ suffix always considers blocks to be 512 bytes. This is not affected by the
setting (or non-setting) of the POSIXLY CORRECT environment variable. This
behaviour is different to the behaviour of the ‘-ls’ action). If you want to use 1024-
byte units, use the ‘k’ suffix instead.

The number can be prefixed with a ‘+’ or a ‘-’. A plus sign indicates that the test
should succeed if the file uses at least n units of storage (a common use of this test)
and a minus sign indicates that the test should succeed if the file uses less than n
units of storage. There is no ‘=’ prefix, because that’s the default anyway.

The size does not count indirect blocks, but it does count blocks in sparse files that
are not actually allocated. In other words, it’s consistent with the result you get for
‘ls -l’ or ‘wc -c’. This handling of sparse files differs from the output of the ‘%k’ and
‘%b’ format specifiers for the ‘-printf’ predicate.

[Test]-empty
True if the file is empty and is either a regular file or a directory. This might
help determine good candidates for deletion. This test is useful with ‘-depth’ (see
Section 2.9 [Directories], page 14) and ‘-delete’ (see Section 3.3.1 [Single File],
page 23).

2.5 Type

[Test]-type c
True if the file is of type c:

b block (buffered) special

c character (unbuffered) special

d directory

Chapter 2: Finding Files 12

p named pipe (FIFO)

f regular file

l symbolic link; if ‘-L’ is in effect, this is true only for broken symbolic
links. If you want to search for symbolic links when ‘-L’ is in effect, use
‘-xtype’ instead of ‘-type’.

s socket

D door (Solaris)

[Test]-xtype c
This test behaves the same as ‘-type’ unless the file is a symbolic link. If the file is
a symbolic link, the result is as follows (in the table below, ‘X’ should be understood
to represent any letter except ‘l’):

‘‘-P -xtype l’’
True if the symbolic link is broken

‘‘-P -xtype X’’
True if the (ultimate) target file is of type ‘X’.

‘‘-L -xtype l’’
Always true

‘‘-L -xtype X’’
False unless the symbolic link is broken

In other words, for symbolic links, ‘-xtype’ checks the type of the file that ‘-type’
does not check.

The ‘-H’ option also affects the behaviour of ‘-xtype’. When ‘-H’ is in effect, ‘-xtype’
behaves as if ‘-L’ had been specified when examining files listed on the command
line, and as if ‘-P’ had been specified otherwise. If neither ‘-H’ nor ‘-L’ was specified,
‘-xtype’ behaves as if ‘-P’ had been specified.

See Section 2.2.1 [Symbolic Links], page 7, for more information on ‘-follow’ and
‘-L’.

2.6 Owner

[Test]-user uname
[Test]-group gname

True if the file is owned by user uname (belongs to group gname). A numeric ID is
allowed.

[Test]-uid n
[Test]-gid n

True if the file’s numeric user ID (group ID) is n. These tests support ranges (‘+n’
and ‘-n’), unlike ‘-user’ and ‘-group’.

[Test]-nouser
[Test]-nogroup

True if no user corresponds to the file’s numeric user ID (no group corresponds to
the numeric group ID). These cases usually mean that the files belonged to users who

Chapter 2: Finding Files 13

have since been removed from the system. You probably should change the ownership
of such files to an existing user or group, using the chown or chgrp program.

2.7 Permissions

See Chapter 5 [File Permissions], page 36, for information on how file permissions are
structured and how to specify them.

[Test]-perm mode
True if the file’s permissions are exactly mode, which can be numeric or symbolic.

If mode starts with ‘-’, true if all of the permissions set in mode are set for the file;
permissions not set in mode are ignored.

If mode starts with ‘/’, true if any of the permissions set in mode are set for the file;
permissions not set in mode are ignored. This is a GNU extension.

If you don’t use the ‘/’ or ‘-’ form with a symbolic mode string, you may have to
specify a rather complex mode string. For example ‘-perm g=w’ will only match files
which have mode 0020 (that is, ones for which group write permission is the only
permission set). It is more likely that you will want to use the ‘/’ or ‘-’ forms, for
example ‘-perm -g=w’, which matches any file with group write permission.

‘-perm 664’
Match files which have read and write permission for their owner, and
group, but which the rest of the world can read but not write to. Files
which meet these criteria but have other permissions bits set (for example
if someone can execute the file) will not be matched.

‘-perm -664’
Match files which have read and write permission for their owner, and
group, but which the rest of the world can read but not write to, without
regard to the presence of any extra permission bits (for example the
executable bit). This will match a file which has mode 0777, for example.

‘-perm /222’
Match files which are writable by somebody (their owner, or their group,
or anybody else).

‘-perm /022’
Match files which are writable by either their owner or their group. The
files don’t have to be writable by both the owner and group to be matched;
either will do.

‘-perm /g+w,o+w’
As above.

‘-perm /g=w,o=w’
As above

‘-perm -022’
Search for files which are writable by both their owner and their group.

Chapter 2: Finding Files 14

‘-perm -444 -perm /222 ! -perm /111’
Search for files which are readable for everybody, have at least one write
bit set (i.e. somebody can write to them), but which cannot be executed
by anybody. Note that in some shells the ‘!’ must be escaped;.

‘-perm -a+r -perm /a+w ! -perm /a+x’
As above.

‘-perm -g+w,o+w’
As above.

Warning: If you specify ‘-perm /000’ or ‘-perm /mode’ where the sym-
bolic mode ‘mode’ has no bits set, the test currently matches no files.
This differs from the behaviour of ‘-perm -000’, which matches all files.
The behaviour of ‘-perm /000’ will be changed to be consistent with the
behaviour of ‘-perm -000’. The change will probably be made in early
2006.

2.8 Contents

To search for files based on their contents, you can use the grep program. For example, to
find out which C source files in the current directory contain the string ‘thing’, you can do:

grep -l thing *.[ch]

If you also want to search for the string in files in subdirectories, you can combine grep
with find and xargs, like this:

find . -name ’*.[ch]’ | xargs grep -l thing

The ‘-l’ option causes grep to print only the names of files that contain the string,
rather than the lines that contain it. The string argument (‘thing’) is actually a regular
expression, so it can contain metacharacters. This method can be refined a little by using
the ‘-r’ option to make xargs not run grep if find produces no output, and using the
find action ‘-print0’ and the xargs option ‘-0’ to avoid misinterpreting files whose names
contain spaces:

find . -name ’*.[ch]’ -print0 | xargs -r -0 grep -l thing

For a fuller treatment of finding files whose contents match a pattern, see the manual
page for grep.

2.9 Directories

Here is how to control which directories find searches, and how it searches them. These
two options allow you to process a horizontal slice of a directory tree.

[Option]-maxdepth levels
Descend at most levels (a non-negative integer) levels of directories below the com-
mand line arguments. ‘-maxdepth 0’ means only apply the tests and actions to the
command line arguments.

[Option]-mindepth levels
Do not apply any tests or actions at levels less than levels (a non-negative integer).
‘-mindepth 1’ means process all files except the command line arguments.

Chapter 2: Finding Files 15

[Option]-depth
Process each directory’s contents before the directory itself. Doing this is a good idea
when producing lists of files to archive with cpio or tar. If a directory does not have
write permission for its owner, its contents can still be restored from the archive since
the directory’s permissions are restored after its contents.

[Option]-d
This is a deprecated synonym for ‘-depth’, for compatibility with Mac OS X, FreeBSD
and OpenBSD. The ‘-depth’ option is a POSIX feature, so it is better to use that.

[Action]-prune
If the file is a directory, do not descend into it. The result is true. For example,
to skip the directory src/emacs and all files and directories under it, and print the
names of the other files found:

find . -wholename ’./src/emacs’ -prune -o -print

The above command will not print ./src/emacs among its list of results. This
however is not due to the effect of the ‘-prune’ action (which only prevents further
descent, it doesn’t make sure we ignore that item). Instead, this effect is due to the use
of ‘-o’. Since the left hand side of the “or” condition has succeeded for ./src/emacs,
it is not necessary to evaluate the right-hand-side (‘-print’) at all for this particular
file. If you wanted to print that directory name you could use either an extra ‘-print’
action:

find . -wholename ’./src/emacs’ -prune -print -o -print

or use the comma operator:

find . -wholename ’./src/emacs’ -prune , -print

If the ‘-depth’ option is in effect, the subdirectories will have already been visited in
any case. Hence ‘-prune’ has no effect and returns false.

[Action]-quit
Exit immediately (with return value zero if no errors have occurred). This is different
to ‘-prune’ because ‘-prune’ only applies to the contents of pruned directories, whilt
‘-quit’ simply makes find stop immediately. No child processes will be left running,
but no more files specified on the command line will be processed. For example, find
/tmp/foo /tmp/bar -print -quit will print only ‘/tmp/foo’. Any command lines
which have been built by ‘-exec ... \+’ or ‘-execdir ... \+’ are invoked before the
program is exited.

[Option]-noleaf
Do not optimize by assuming that directories contain 2 fewer subdirectories than their
hard link count. This option might be needed when searching filesystems that do not
follow the Unix directory-link convention, such as CD-ROM or MS-DOS filesystems
or AFS volume mount points. Each directory on a normal Unix filesystem has at least
2 hard links: its name and its . entry. Additionally, its subdirectories (if any) each
have a .. entry linked to that directory. When find is examining a directory, after it
has statted 2 fewer subdirectories than the directory’s link count, it knows that the
rest of the entries in the directory are non-directories (leaf files in the directory tree).
If only the files’ names need to be examined, there is no need to stat them; this gives

Chapter 2: Finding Files 16

a significant increase in search speed. Usually, you won’t need this option even on
MS-DOS systems, so unless you see that some subdirectories aren’t listed, don’t use
it: it makes find run 2 to 4 times slower.

[Option]-ignore_readdir_race
If a file disappears after its name has been read from a directory but before find

gets around to examining the file with stat, don’t issue an error message. If you
don’t specify this option, an error message will be issued. This option can be useful
in system scripts (cron scripts, for example) that examine areas of the filesystem that
change frequently (mail queues, temporary directories, and so forth), because this
scenario is common for those sorts of directories. Completely silencing error messages
from find is undesirable, so this option neatly solves the problem. There is no way to
search one part of the filesystem with this option on and part of it with this option off,
though. When this option is turned on and find discovers that one of the start-point
files specified on the command line does not exist, no error message will be issued.

[Option]-noignore_readdir_race
This option reverses the effect of the ‘-ignore_readdir_race’ option.

2.10 Filesystems

A filesystem is a section of a disk, either on the local host or mounted from a remote host
over a network. Searching network filesystems can be slow, so it is common to make find

avoid them.

There are two ways to avoid searching certain filesystems. One way is to tell find to
only search one filesystem:

[Option]-xdev
[Option]-mount

Don’t descend directories on other filesystems. These options are synonyms.

The other way is to check the type of filesystem each file is on, and not descend directories
that are on undesirable filesystem types:

[Test]-fstype type
True if the file is on a filesystem of type type. The valid filesystem types vary among
different versions of Unix; an incomplete list of filesystem types that are accepted on
some version of Unix or another is:

ext2 ext3 proc sysfs ufs 4.2 4.3 nfs tmp mfs S51K S52K

The DJGPP port of find recognizes the following filesystem types:

hd a hard (aka fixed) disk

fd a floppy disk

cdrom a CD-ROM disk

ram a RAM-disk

net a networked drive

dblsp a disk compressed with the DblSpace method

Chapter 2: Finding Files 17

stac a disk compressed with the Stacker method

subst a SUBSTed disk

join a JOINed disk

You can use ‘-printf’ with the ‘%F’ directive to see the types of your filesystems.
The ‘%D’ directive shows the device number. See Section 3.2 [Print File Information],
page 18. ‘-fstype’ is usually used with ‘-prune’ to avoid searching remote filesystems
or removable media (see Section 2.9 [Directories], page 14).

2.11 Combining Primaries With Operators

Operators build a complex expression from tests and actions. The operators are, in order
of decreasing precedence:

(expr) Force precedence. True if expr is true.

! expr

-not expr True if expr is false. In some shells, it is necessary to protect the ‘!’ from shell
interpretation by quoting it.

expr1 expr2

expr1 -a expr2

expr1 -and expr2

And; expr2 is not evaluated if expr1 is false.

expr1 -o expr2

expr1 -or expr2

Or; expr2 is not evaluated if expr1 is true.

expr1 , expr2

List; both expr1 and expr2 are always evaluated. True if expr2 is true. The
value of expr1 is discarded. This operator lets you do multiple independent
operations on one traversal, without depending on whether other operations
succeeded. The two operations expr1 and expr2 are not always fully independ-
ent, since expr1 might have side effects like touching or deleting files, or it might
use ‘-prune’ which would also affect expr2.

find searches the directory tree rooted at each file name by evaluating the expression
from left to right, according to the rules of precedence, until the outcome is known (the left
hand side is false for ‘-and’, true for ‘-or’), at which point find moves on to the next file
name.

There are two other tests that can be useful in complex expressions:

[Test]-true
Always true.

[Test]-false
Always false.

Chapter 3: Actions 18

3 Actions

There are several ways you can print information about the files that match the criteria you
gave in the find expression. You can print the information either to the standard output
or to a file that you name. You can also execute commands that have the file names as
arguments. You can use those commands as further filters to select files.

3.1 Print File Name

[Action]-print
True; print the entire file name on the standard output, followed by a newline. If
there is the faintest possibility that one of the files for which you are searching might
contain a newline, you should use ‘-print0’ instead.

[Action]-fprint file
True; print the entire file name into file file, followed by a newline. If file does not
exist when find is run, it is created; if it does exist, it is truncated to 0 bytes. The
named output file is always created, even if no output is sent to it. The file names
/dev/stdout and /dev/stderr are handled specially; they refer to the standard
output and standard error output, respectively.

If there is the faintest possibility that one of the files for which you are searching
might contain a newline, you should use ‘-fprint0’ instead.

3.2 Print File Information

[Action]-ls
True; list the current file in ‘ls -dils’ format on the standard output. The output
looks like this:

204744 17 -rw-r--r-- 1 djm staff 17337 Nov 2 1992 ./lwall-quotes

The fields are:

1. The inode number of the file. See Section 2.2.2 [Hard Links], page 8, for how to
find files based on their inode number.

2. the number of blocks in the file. The block counts are of 1K blocks, unless the
environment variable POSIXLY_CORRECT is set, in which case 512-byte blocks are
used. See Section 2.4 [Size], page 11, for how to find files based on their size.

3. The file’s type and permissions. The type is shown as a dash for a regular file; for
other file types, a letter like for ‘-type’ is used (see Section 2.5 [Type], page 11).
The permissions are read, write, and execute for the file’s owner, its group,
and other users, respectively; a dash means the permission is not granted. See
Chapter 5 [File Permissions], page 36, for more details about file permissions. See
Section 2.7 [Permissions], page 13, for how to find files based on their permissions.

4. The number of hard links to the file.

5. The user who owns the file.

6. The file’s group.

7. The file’s size in bytes.

Chapter 3: Actions 19

8. The date the file was last modified.

9. The file’s name. ‘-ls’ quotes non-printable characters in the file names using
C-like backslash escapes. This may change soon, as the treatment of unprintable
characters is harmonised for ‘-ls’, ‘-fls’, ‘-print’, ‘-fprint’, ‘-printf’ and
‘-fprintf’.

[Action]-fls file
True; like ‘-ls’ but write to file like ‘-fprint’ (see Section 3.1 [Print File Name],
page 18). The named output file is always created, even if no output is sent to it.

[Action]-printf format
True; print format on the standard output, interpreting ‘\’ escapes and ‘%’ directives.
Field widths and precisions can be specified as with the printf C function. Format
flags (like ‘#’ for example) may not work as you expect because many of the fields,
even numeric ones, are printed with %s. Numeric flags which are affected in this
way include G, U, b, D, k and n. This difference in behaviour means though that
the format flag ‘-’ will work; it forces left-alignment of the field. Unlike ‘-print’,
‘-printf’ does not add a newline at the end of the string. If you want a newline at
the end of the string, add a ‘\n’.

[Action]-fprintf file format
True; like ‘-printf’ but write to file like ‘-fprint’ (see Section 3.1 [Print File Name],
page 18). The output file is always created, even if no output is ever sent to it.

When you work under COMMAND.COM or any of its work-alikes, you have to double every
‘%’ character, because they are special to those shells.

3.2.1 Escapes

The escapes that ‘-printf’ and ‘-fprintf’ recognise are:

\a Alarm bell.

\b Backspace.

\c Stop printing from this format immediately and flush the output.

\f Form feed.

\n Newline.

\r Carriage return.

\t Horizontal tab.

\v Vertical tab.

\\ A literal backslash (‘\’).

\0 ASCII NUL.

\NNN The character whose ASCII code is NNN (octal).

A ‘\’ character followed by any other character is treated as an ordinary character,
so they both are printed, and a warning message is printed to the standard error output
(because it was probably a typo).

Chapter 3: Actions 20

3.2.2 Format Directives

‘-printf’ and ‘-fprintf’ support the following format directives to print information ab-
out the file being processed. The C printf function, field width and precision specifiers
are supported, as applied to string (%s) types. That is, you can specify "minimum field
width"."maximum field width" for each directive. Format flags (like ‘#’ for example) may
not work as you expect because many of the fields, even numeric ones, are printed with %s.
The format flag ‘-’ does work; it forces left-alignment of the field.

On MS-DOS, you will have to type 2 ‘%’ characters for each one you want to pass to
find. That’s because one of them is removed by the standard shell COMMAND.COM which
uses ‘%’ for environment variable substitution. Thus, you will have to write ‘%%f’ for the
filename and ‘%%%%’ for the literal ‘%’.

‘%%’ is a literal percent sign. A ‘%’ character followed by an unrecognised character
(i.e., not a known directive or printf field width and precision specifier), is discarded (but
the unrecognised character is printed), and a warning message is printed to the standard
error output (because it was probably a typo). Don’t rely on this behaviour, because other
directives may be added in the future.

A ‘%’ at the end of the format argument causes undefined behaviour since there is no
following character. In some locales, it may hide your door keys, while in others it may
remove the final page from the novel you are reading.

3.2.2.1 Name Directives

%p File’s name (not the absolute path name, but the name of the file as it was
encountered by find - that is, as a relative path from one of the starting points).

%f File’s name with any leading directories removed (only the last element).

%h Leading directories of file’s name (all but the last element and the slash before
it). If the file’s name contains no slashes (for example because it was named on
the command line and is in the current working directory), then “%h” expands
to “.”. This prevents “%h/%f” expanding to “/foo”, which would be surprising
and probably not desirable.

%P File’s name with the name of the command line argument under which it was
found removed from the beginning.

%H Command line argument under which file was found.

3.2.2.2 Ownership Directives

%g File’s group name, or numeric group ID if the group has no name.

%G File’s numeric group ID.

%u File’s user name, or numeric user ID if the user has no name.

%U File’s numeric user ID.

%m File’s permissions (in octal). If you always want to have a leading zero on the
number, use the ’#’ format flag, for example ’%#m’.

The permission numbers used are the traditional Unix permission numbers,
which will be as expected on most systems, but if your system’s permission

Chapter 3: Actions 21

bit layout differs from the traditional Unix semantics, you will see a difference
between the mode as printed by ‘%m’ and the mode as it appears in struct

stat.

%M File’s permissions (in symbolic form, as for ls). This directive is supported in
findutils 4.2.5 and later.

3.2.2.3 Size Directives

%k The amount of disk space used for this file in 1K blocks. Since disk space is
allocated in multiples of the filesystem block size this is usually greater than
%s/1024, but it can also be smaller if the file is a sparse file (that is, it has
“holes”).

%b The amount of disk space used for this file in 512-byte blocks. Since disk space
is allocated in multiples of the filesystem block size this is usually greater than
%s/512, but it can also be smaller if the file is a sparse file (that is, it has
“holes”).

%s File’s size in bytes.

3.2.2.4 Location Directives

%d File’s depth in the directory tree (depth below a file named on the command
line, not depth below the root directory). Files named on the command line
have a depth of 0. Subdirectories immediately below them have a depth of 1,
and so on.

%D The device number on which the file exists (the st_dev field of struct stat),
in decimal.

%F Type of the filesystem the file is on; this value can be used for ‘-fstype’ (see
Section 2.9 [Directories], page 14).

%l Object of symbolic link (empty string if file is not a symbolic link).

%i File’s inode number (in decimal).

%n Number of hard links to file.

%y Type of the file as used with ‘-type’. If the file is a symbolic link, ‘l’ will be
printed.

%Y Type of the file as used with ‘-type’. If the file is a symbolic link, it is der-
eferenced. If the file is a broken symbolic link, ‘N’ is printed.

3.2.2.5 Time Directives

Some of these directives use the C ctime function. Its output depends on the current locale,
but it typically looks like

Wed Nov 2 00:42:36 1994

%a File’s last access time in the format returned by the C ctime function.

%Ak File’s last access time in the format specified by k (see Section 3.2.3 [Time
Formats], page 22).

Chapter 3: Actions 22

%c File’s last status change time in the format returned by the C ctime function.

%Ck File’s last status change time in the format specified by k (see Section 3.2.3
[Time Formats], page 22).

%t File’s last modification time in the format returned by the C ctime function.

%Tk File’s last modification time in the format specified by k (see Section 3.2.3 [Time
Formats], page 22).

3.2.3 Time Formats

Below are the formats for the directives ‘%A’, ‘%C’, and ‘%T’, which print the file’s timestamps.
Some of these formats might not be available on all systems, due to differences in the C
strftime function between systems.

3.2.3.1 Time Components

The following format directives print single components of the time.

H hour (00..23)

I hour (01..12)

k hour (0..23)

l hour (1..12)

p locale’s AM or PM

Z time zone (e.g., EDT), or nothing if no time zone is determinable

M minute (00..59)

S second (00..61)

@ seconds since Jan. 1, 1970, 00:00 GMT.

3.2.3.2 Date Components

The following format directives print single components of the date.

a locale’s abbreviated weekday name (Sun..Sat)

A locale’s full weekday name, variable length (Sunday..Saturday)

b

h locale’s abbreviated month name (Jan..Dec)

B locale’s full month name, variable length (January..December)

m month (01..12)

d day of month (01..31)

w day of week (0..6)

j day of year (001..366)

U week number of year with Sunday as first day of week (00..53)

W week number of year with Monday as first day of week (00..53)

Y year (1970. . .)

y last two digits of year (00..99)

Chapter 3: Actions 23

3.2.3.3 Combined Time Formats

The following format directives print combinations of time and date components.

r time, 12-hour (hh:mm:ss [AP]M)

T time, 24-hour (hh:mm:ss)

X locale’s time representation (H:M:S)

c locale’s date and time (Sat Nov 04 12:02:33 EST 1989)

D date (mm/dd/yy)

x locale’s date representation (mm/dd/yy)

+ Date and time, separated by ’+’, for example ‘2004-04-28+22:22:05’. The time
is given in the current timezone (which may be affected by setting the TZ
environment variable). This is a GNU extension.

3.2.3.4 Formatting Flags

The ‘%m’ and ‘%d’ directives support the ‘#’, ‘0’ and ‘+’ flags, but the other directives do
not, even if they print numbers. Numeric directives that do not support these flags include

‘G’, ‘U’, ‘b’, ‘D’, ‘k’ and ‘n’.

All fields support the format flag ‘-’, which makes fields left-aligned. That is, if the field
width is greater than the actual contents of the field, the requisite number of spaces are
printed after the field content instead of before it.

3.3 Run Commands

You can use the list of file names created by find or locate as arguments to other comm-
ands. In this way you can perform arbitrary actions on the files.

3.3.1 Single File

Here is how to run a command on one file at a time.

[Action]-execdir command ;
Execute command; true if zero status is returned. find takes all arguments after
‘-exec’ to be part of the command until an argument consisting of ‘;’ is reached. It
replaces the string ‘{}’ by the current file name being processed everywhere it occurs
in the command. Both of these constructions need to be escaped (with a ‘\’) or
quoted to protect them from expansion by the shell. The command is executed in
the directory in which find was run.

For example, to compare each C header file in or below the current directory with
the file /tmp/master:

find . -name ’*.h’ -execdir diff -u ’{}’ /tmp/master ’;’

If you use‘‘-execdir’, you must ensure that the current directory is not on $PATH,
because otherwise an attacker could make ‘find’ run commands of their choice simply by
leaving a suitably-named file in the right directory. GNU find will refuse to run if you use
‘-execdir’ and the current directory is in $PATH.

Another similar option, ‘-exec’ is supported, but is less secure. See Chapter 9 [Security
Considerations], page 70, for a discussion of the security problems surrounding ‘-exec’.

Chapter 3: Actions 24

[Action]-exec command ;
This insecure variant of the ‘-execdir’ action is specified by POSIX. The main differ-
ence is that the command is executed in the directory from which find was invoked,
meaning that ‘{}’ is expanded to a relative path starting with the name of one of the
starting directories, rather than just the basename of the matched file.

While some implementations of find replace the ‘{}’ only where it appears on its
own in an argument, GNU find replaces ‘{}’ wherever it appears.

[Action]-dosexec command ;
Like ‘-exec’, but submits the filename to command in MS-DOS format by converting
all Unix-style forward slashes to DOS-style backslashes. This is useful for invoking
native DOS programs and commands internal to COMMAND.COM that don’t understand
Unix-style forward slashes. Note that the above conversion is done unconditionally
and you cannot avoid it by using any quotes; in particular, find couldn’t care less if
the arguments aren’t filenames at all. Also note that the way this action is implem-
ented, it affects all the ‘-exec’ and ‘-ok’ (see Section 3.3.3 [Querying], page 30) actions
for this invocation of find; so mixing ‘-exec’, ‘-ok’ and ‘-dosexec’ might be unwise
unless the programs involved understand both kinds of slashes.

For example, here is a command that will rename each file with a .cpp extension to
have a .cc extension, in the current directory and all of its subdirectories:

find . -name ’*.cpp’ -dosexec command /c ren {} ’*.cc’ ;

(Note that on MS-DOS you don’t have to quote the ‘{}’ construct and the semicolon.)

3.3.2 Multiple Files

Sometimes you need to process files one at a time. But usually this is not necessary, and,
it is faster to run a command on as many files as possible at a time, rather than once per
file. Doing this saves on the time it takes to start up the command each time.

The ‘-execdir’ and ‘-exec’ actions have variants that build command lines containing
as many matched files as possible.

[Action]-execdir command {} +
This works as for ‘-execdir command ;’, except that the ‘{}’ at the end of the com-
mand is expanded to a list of names of matching files. This expansion is done in
such a way as to avoid exceeding the maximum command line length available on the
system. Only one ‘{}’ is allowed within the command, and it must appear at the end,
immediately before the ‘+’. A ‘+’ appearing in any position other than immediately
after ‘{}’ is not considered to be special (that is, it does not terminate the command).

[Action]-exec command {} +
This insecure variant of the ‘-execdir’ action is specified by POSIX. The main differ-
ence is that the command is executed in the directory from which find was invoked,
meaning that ‘{}’ is expanded to a relative path starting with the name of one of the
starting directories, rather than just the basename of the matched file.

Before find exits, any partially-built command lines are executed. This happens even if
the exit was caused by the ‘-quit’ action. However, some types of error (for example not
being able to invoke stat() on the current directory) can cause an immediate fatal exit. In

Chapter 3: Actions 25

this situation, any partially-built command lines will not be invoked (this prevents possible
infinite loops).

At first sight, it looks like the list of filenames to be processed can only be at the end
of the command line, and that this might be a problem for some comamnds (cp and rsync

for example).

However, there is a slightly obscure but powerful workarouund for this problem which
takes advantage of the behaviour of sh -c:-

find startpoint -tests ... -exec sh -c ’scp "$@" remote:/dest’ sh {} +

In the example above, the filenames we want to work on need to occur on the scp

command line before the name of the destination. We use the shell to invoke the command
scp "$@" remote:/dest and the shell expands "$@" to the list of filenames we want to
process.

Another, but less secure, way to run a command on more than one file at once, is to use
the xargs command, which is invoked like this:

xargs [option...] [command [initial-arguments]]

xargs normally reads arguments from the standard input. These arguments are delim-
ited by blanks (which can be protected with double or single quotes or a backslash) or
newlines. It executes the command (default is echo on MS-DOS systems and /bin/echo

elsewhere) one or more times with any initial-arguments followed by arguments read from
standard input. Blank lines on the standard input are ignored.

Instead of blank-delimited names, it is safer to use ‘find -print0’ or ‘find -fprint0’
and process the output by giving the ‘-0’ or ‘--null’ option to GNU xargs, GNU tar,
GNU cpio, or perl. The locate command also has a ‘-0’ or ‘--null’ option which does
the same thing.

Except with MS-DOS native shells (that don’t support command substitution), you can
use shell command substitution (backquotes) to process a list of arguments, like this:

grep -l sprintf ‘find $HOME -name ’*.c’ -print‘

However, that method produces an error if the length of the ‘.c’ file names exceeds the
operating system’s command line length limit. xargs avoids that problem by running the
command as many times as necessary without exceeding the limit:

find $HOME -name ’*.c’ -print | xargs grep -l sprintf

However, if the command needs to have its standard input be a terminal (less, for
example), you have to use the shell command substitution method or use the ‘--arg-file’
option of xargs.

The xargs command will process all its input, building command lines and executing
them, unless one of the commands exits with a status of 255 (this will cause xargs to issue
an error message and stop) or it reads a line contains the end of file string specified with
the ‘--eof’ option.

3.3.2.1 Unsafe File Name Handling

Because file names can contain quotes, backslashes, blank characters, and even newlines, it
is not safe to process them using xargs in its default mode of operation. But since most
files’ names do not contain blanks, this problem occurs only infrequently. If you are only

Chapter 3: Actions 26

searching through files that you know have safe names, then you need not be concerned
about it.

In many applications, if xargs botches processing a file because its name contains special
characters, some data might be lost. The importance of this problem depends on the
importance of the data and whether anyone notices the loss soon enough to correct it.
However, here is an extreme example of the problems that using blank-delimited names can
cause. If the following command is run daily from cron, then any user can remove any file
on the system:

find / -name ’#*’ -atime +7 -print | xargs rm

For example, you could do something like this:

eg$ echo > ’#

vmunix’

and then cron would delete /vmunix, if it ran xargs with / as its current directory.

To delete other files, for example /u/joeuser/.plan, you could do this:

eg$ mkdir ’#

’

eg$ cd ’#

’

eg$ mkdir u u/joeuser u/joeuser/.plan’

’

eg$ echo > u/joeuser/.plan’

/#foo’

eg$ cd ..

eg$ find . -name ’#*’ -print | xargs echo

./# ./# /u/joeuser/.plan /#foo

3.3.2.2 Safe File Name Handling

Here is how to make find output file names so that they can be used by other programs
without being mangled or misinterpreted. You can process file names generated this way
by giving the ‘-0’ or ‘--null’ option to GNU xargs, GNU tar, GNU cpio, or perl.

[Action]-print0
True; print the entire file name on the standard output, followed by a null character.

[Action]-fprint0 file
True; like ‘-print0’ but write to file like ‘-fprint’ (see Section 3.1 [Print File Name],
page 18). The output file is always created.

As of findutils version 4.2.4, the locate program also has a ‘--null’ option which does
the same thing. For similarity with xargs, the short form of the option ‘-0’ can also be
used.

If you want to be able to handle file names safely but need to run commands which want
to be connected to a terminal on their input, you can use the ‘--arg-file’ option to xargs

like this:

find / -name xyzzy -print0 > list

xargs --null --arg-file=list munge

Chapter 3: Actions 27

The example above runs the munge program on all the files named xyzzy that we can
find, but munge’s input will still be the terminal (or whatever the shell was using as standard
input). If your shell has the “process substitution” feature ‘<(...)’, you can do this in just
one step:

xargs --null --arg-file=<(find / -name xyzzy -print0) munge

3.3.2.3 Unusual Characters in File Names

As discussed above, you often need to be careful about how the names of files are handled
by find and other programs. If the output of find is not going to another program but
instead is being shown on a terminal, this can still be a problem. For example, some
character sequences can reprogram the function keys on some terminals. See Chapter 9
[Security Considerations], page 70, for a discussion of other security problems relating to
find.

Unusual characters are handled differently by various actions, as described below.

‘-print0’
‘-fprint0’

Always print the exact file name, unchanged, even if the output is going to a
terminal.

‘-ok’
‘-okdir’ Always print the exact file name, unchanged. This will probably change in a

future release.

‘-ls’
‘-fls’ Unusual characters are always escaped. White space, backslash, and double

quote characters are printed using C-style escaping (for example ‘\f’, ‘\"’).
Other unusual characters are printed using an octal escape. Other printable
characters (for ‘-ls’ and ‘-fls’ these are the characters between octal 041 and
0176) are printed as-is.

‘-printf’
‘-fprintf’

If the output is not going to a terminal, it is printed as-is. Otherwise, the result
depends on which directive is in use:

%D, %F, %H, %Y, %y
These expand to values which are not under control of files’ owners,
and so are printed as-is.

%a, %b, %c, %d, %g, %G, %i, %k, %m, %M, %n, %s, %t, %u, %U
These have values which are under the control of files’ owners but
which cannot be used to send arbitrary data to the terminal, and
so these are printed as-is.

%f, %h, %l, %p, %P
The output of these directives is quoted if the output is going to a
terminal.

This quoting is performed in the same way as for GNU ls. This
is not the same quoting mechanism as the one used for ‘-ls’ and

Chapter 3: Actions 28

‘fls’. If you are able to decide what format to use for the output
of find then it is normally better to use ‘\0’ as a terminator than
to use newline, as file names can contain white space and newline
characters.

‘-print’
‘-fprint’ Quoting is handled in the same way as for the ‘%p’ directive of ‘-printf’ and

‘-fprintf’. If you are using find in a script or in a situation where the matched
files might have arbitrary names, you should consider using ‘-print0’ instead
of ‘-print’.

The locate program quotes and escapes unusual characters in file names in the same
way as find’s ‘-print’ action.

The behaviours described above may change soon, as the treatment of unprintable
characters is harmonised for ‘-ls’, ‘-fls’, ‘-print’, ‘-fprint’, ‘-printf’ and ‘-fprintf’.

3.3.2.4 Limiting Command Size

xargs gives you control over how many arguments it passes to the command each time it
executes it. By default, it uses up to ARG_MAX - 2k, or 128k, whichever is smaller, characters
per command. It uses as many lines and arguments as fit within that limit. The following
options modify those values.

--no-run-if-empty

-r If the standard input does not contain any nonblanks, do not run the command.
By default, the command is run once even if there is no input. This option is
a GNU extension.

--max-lines[=max-lines]
-L max-lines

-l[max-lines]
Use at most max-lines nonblank input lines per command line; max-lines def-
aults to 1 if omitted; omitting the argument is not allowed in the case of the
‘-L’ option. Trailing blanks cause an input line to be logically continued on
the next input line, for the purpose of counting the lines. Implies ‘-x’. The
preferred name for this option is ‘-L’ as this is specified by POSIX.

--max-args=max-args

-n max-args

Use at most max-args arguments per command line. Fewer than max-args
arguments will be used if the size (see the ‘-s’ option) is exceeded, unless the
‘-x’ option is given, in which case xargs will exit.

--dos-format

-D Convert the filenames to DOS format by replacing forward slashes with backs-
lashes before submitting the filenames to the command. Implies a limit on the
command-line length that is 127 characters plus the length of the command
name.

Chapter 3: Actions 29

--max-chars=max-chars

-s max-chars

Use at most max-chars characters per command line, including the command
initial arguments and the terminating nulls at the ends of the argument strings.
If you specify a value for this option which is too large or small, a warning
message is printed and the appropriate upper or lower limit is used instead.
You can use ‘--show-limits’ option to understand the command-line limits
applying to xargs and how this is affected by any other options.

--max-procs=max-procs

-P max-procs

Run up to max-procs processes at a time; the default is 1. If max-procs is 0,
xargs will run as many processes as possible at a time. Use the ‘-n’, ‘-s’, or
‘-L’ option with ‘-P’; otherwise chances are that the command will be run only
once.

On MS-DOS, you cannot run more than 1 process at a time.

When you run xargs on MS-DOS, the maxumum length of the arguments is further
limited by the inherent restriction in the operating system call that invokes child programs.
When the child program starts, it gets the command-line tail which cannot be longer than
126 characters. When DJGPP programs are invoked by xargs, they don’t suffer from this
limitation, so xargs does not automatically limit the maximum command-line length so that
it won’t get into the way of benefits from using DJGPP programs. It is your responsibility
to know which programs can and which cannot get long command lines, and use the -s 126

option with those which cannot. If any of the commands are invoked with -dosexec action
(see Section 3.3.1 [Single File], page 23), xargs automatically impose the 126-character
restriction. (Actually, only the tail of the command, without the command name itself, is
limited to 126 characters, so xargs limits the command line to 126 + 1 blank + the length
of the command name.)

3.3.2.5 Interspersing File Names

xargs can insert the name of the file it is processing between arguments you give for the
command. Unless you also give options to limit the command size (see Section 3.3.2.4
[Limiting Command Size], page 28), this mode of operation is equivalent to ‘find -exec’
(see Section 3.3.1 [Single File], page 23).

--replace[=replace-str]
-I replace-str

-i replace-str

Replace occurrences of replace-str in the initial arguments with names read
from the input. Also, unquoted blanks do not terminate arguments; instead,
the input is split at newlines only. For the ‘-i’ option, if replace-str is omitted
for ‘--replace’ or ‘-i’, it defaults to ‘{}’ (like for ‘find -exec’). Implies ‘-x’
and ‘-l 1’. ‘-i’ is deprecated in favour of ‘-I’. As an example, to sort each
file in the bills directory, leaving the output in that file name with .sorted

appended, you could do:

find bills -type f | xargs -I XX sort -o XX.sorted XX

The equivalent command using ‘find -execdir’ is:

Chapter 3: Actions 30

find bills -type f -execdir sort -o ’{}.sorted’ ’{}’ ’;’

When you use the ‘-I’ option, each line read from the input is buffered internally. This
means that there is an upper limit on the length of input line that xargs will accept when
used with the ‘-I’ option. To work around this limitation, you can use the ‘-s’ option to
increase the amount of buffer space that xargs uses, and you can also use an extra invocation
of xargs to ensure that very long lines do not occur. For example:

somecommand | xargs -s 50000 echo | xargs -I ’{}’ -s 100000 rm ’{}’

Here, the first invocation of xargs has no input line length limit because it doesn’t use
the ‘-I’ option. The second invocation of xargs does have such a limit, but we have ensured
that the it never encounters a line which is longer than it can handle.

This is not an ideal solution. Instead, the ‘-I’ option should not impose a line length
limit (apart from any limit imposed by the operating system) and so one might consider
this limitation to be a bug. A better solution would be to allow xargs -I to automatically
move to a larger value for the ‘-s’ option when this is needed.

This sort of problem doesn’t occur with the output of find because it emits just one
filename per line.

3.3.3 Querying

To ask the user whether to execute a command on a single file, you can use the find primary
‘-okdir’ instead of ‘-execdir’, and the find primary ‘-ok’ instead of ‘-exec’:

[Action]-okdir command ;
Like ‘-execdir’ (see Section 3.3.1 [Single File], page 23), but ask the user first (on
the standard input); if the response does not start with ‘y’ or ‘Y’, do not run the
command, and return false. If the command is run, its standard input is redirected
from /dev/null.

[Action]-ok command ;
This insecure variant of the ‘-okdir’ action is specified by POSIX. The main difference
is that the command is executed in the directory from which find was invoked,
meaning that ‘{}’ is expanded to a relative path starting with the name of one of
the starting directories, rather than just the basename of the matched file. If the
command is run, its standard input is redirected from /dev/null.

[Action]-dosok command ;
Like ‘-dosexec’ (see Section 3.3.1 [Single File], page 23), but ask the user first (on
the standard input); if the response does not start with ‘y’ or ‘Y’, do not run the
command, and return false. Like ‘-dosexec’, this action also affects all the other
‘-ok’ and ‘-exec’ (see Section 3.3.1 [Single File], page 23) actions for this invocation
of find; so mixing ‘-exec’, ‘-ok’ and ‘-dosok’ might be unwise unless the programs
involved understand both kinds of slashes.

When processing multiple files with a single command, to query the user you give xargs
the following option. When using this option, you might find it useful to control the number
of files processed per invocation of the command (see Section 3.3.2.4 [Limiting Command
Size], page 28).

Chapter 3: Actions 31

--interactive

-p Prompt the user about whether to run each command line and read a line from
the terminal. Only run the command line if the response starts with ‘y’ or ‘Y’.
Implies ‘-t’.

3.4 Delete Files

[Action]-delete
Delete files or directories; true if removal succeeded. If the removal failed, an error
message is issued.

The use of the ‘-delete’ action on the command line automatically turns on the
‘-depth’ option (see Section 1.3 [find Expressions], page 3).

3.5 Adding Tests

You can test for file attributes that none of the find builtin tests check. To do this, use
xargs to run a program that filters a list of files printed by find. If possible, use find

builtin tests to pare down the list, so the program run by xargs has less work to do. The
tests builtin to find will likely run faster than tests that other programs perform.

For reasons of efficiency it is often useful to limit the number of times an external program
has to be run. For this reason, it is often a good idea to implement “extended” tests by
using xargs.

For example, here is a way to print the names of all of the unstripped binaries in the
/usr/local directory tree. Builtin tests avoid running file on files that are not regular
files or are not executable.

find /usr/local -type f -perm /a=x | xargs file |

grep ’not stripped’ | cut -d: -f1

The cut program removes everything after the file name from the output of file.

However, using xargs can present important security problems (see Chapter 9 [Security
Considerations], page 70). These can be avoided by using ‘-execdir’. The ‘-execdir’
action is also a useful way of putting your own test in the middle of a set of other tests or
actions for find (for example, you might want to use ‘-prune’).

To place a special test somewhere in the middle of a find expression, you can use
‘-execdir’ (or, less securely, ‘-exec’) to run a program that performs the test. Because
‘-execdir’ evaluates to the exit status of the executed program, you can use a program
(which can be a shell script) that tests for a special attribute and make it exit with a
true (zero) or false (non-zero) status. It is a good idea to place such a special test after
the builtin tests, because it starts a new process which could be avoided if a builtin test
evaluates to false.

Here is a shell script called unstripped that checks whether its argument is an unstripped
binary file:

#! /bin/sh

file "$1" | grep -q "not stripped"

This script relies on the shell exiting with the status of the last command in the pipeline,
in this case grep. The grep command exits with a true status if it found any matches, false

Chapter 3: Actions 32

if not. Here is an example of using the script (assuming it is in your search path). It lists
the stripped executables (and shell scripts) in the file sbins and the unstripped ones in
ubins.

find /usr/local -type f -perm /a=x \

\(-execdir unstripped ’{}’ \; -fprint ubins -o -fprint sbins \)

Note that due to limitations of native MS-DOS shells, this technique is unavailable on
MS-DOS (COMMAND.COM doesn’t return the exit code of the last program it executed).

Chapter 4: File Name Databases 33

4 File Name Databases

The file name databases used by locate contain lists of files that were in particular directory
trees when the databases were last updated. The file name of the default database is
determined when locate and updatedb are configured and installed. The frequency with
which the databases are updated and the directories for which they contain entries depend
on how often updatedb is run, and with which arguments.

You can obtain some statistics about the databases by using ‘locate --statistics’.

4.1 Database Locations

There can be multiple file name databases. Users can select which databases locate

searches using the LOCATE_PATH environment variable or a command line option. The
system administrator can choose the file name of the default database, the frequency with
which the databases are updated, and the directories for which they contain entries. File
name databases are updated by running the updatedb program, typically nightly.

In networked environments, it often makes sense to build a database at the root of
each filesystem, containing the entries for that filesystem. updatedb is then run for each
filesystem on the fileserver where that filesystem is on a local disk, to prevent thrashing the
network.

See Section 6.3 [Invoking updatedb], page 45, for the description of the options to
updatedb, which specify which directories would each database contain entries for.

4.2 Database Formats

The file name databases contain lists of files that were in particular directory trees when the
databases were last updated. The file name database format changed starting with GNU
locate version 4.0 to allow machines with different byte orderings to share the databases.
The new GNU locate can read both the old and new database formats. However, old
versions of locate and find produce incorrect results if given a new-format database.

Support for the old database format will eventually be discontinued, first in updatedb

and later in xargs.

If you run ‘locate --statistics’, the resulting summary indicates the type of each
locate database.

4.2.1 New Database Format

updatedb runs a program called frcode to front-compress the list of file names, which
reduces the database size by a factor of 4 to 5. Front-compression (also known as incremental
encoding) works as follows.

The database entries are a sorted list (case-insensitively, for users’ convenience). Since
the list is sorted, each entry is likely to share a prefix (initial string) with the previous entry.
Each database entry begins with an offset-differential count byte, which is the additional
number of characters of prefix of the preceding entry to use beyond the number that the
preceding entry is using of its predecessor. (The counts can be negative.) Following the
count is a null-terminated ASCII remainder—the part of the name that follows the shared
prefix.

Chapter 4: File Name Databases 34

If the offset-differential count is larger than can be stored in a byte (+/-127), the byte
has the value 0x80 and the count follows in a 2-byte word, with the high byte first (network
byte order).

Every database begins with a dummy entry for a file called LOCATE02, which locate

checks for to ensure that the database file has the correct format; it ignores the entry in
doing the search.

Databases cannot be concatenated together, even if the first (dummy) entry is trimmed
from all but the first database. This is because the offset-differential count in the first entry
of the second and following databases will be wrong.

In the output of ‘locate --statistics’, the new database format is referred to as
‘LOCATE02’.

4.2.2 Sample Database

Sample input to frcode:

/usr/src

/usr/src/cmd/aardvark.c

/usr/src/cmd/armadillo.c

/usr/tmp/zoo

Length of the longest prefix of the preceding entry to share:

0 /usr/src

8 /cmd/aardvark.c

14 rmadillo.c

5 tmp/zoo

Output from frcode, with trailing nulls changed to newlines and count bytes made
printable:

0 LOCATE02

0 /usr/src

8 /cmd/aardvark.c

6 rmadillo.c

-9 tmp/zoo

(6 = 14 - 8, and -9 = 5 - 14)

4.2.3 Old Database Format

The old database format is used by Unix locate and find programs and earlier releases of
the GNU ones. updatedb produces this format if given the ‘--old-format’ option (supp-
orted by the MS-DOS updatedb.bat batch file).

Old versions of GNU locate fail to correctly handle very long file names, possibly
leading to security problems relating to a heap buffer overrun. See Section 9.4 [Security
Considerations for locate], page 75, for a detailed explanation.

updatedb runs programs called bigram and code to produce old-format databases. The
old format differs from the new one in the following ways. Instead of each entry starting
with an offset-differential count byte and ending with a null, byte values from 0 through
28 indicate offset-differential counts from -14 through 14. The byte value indicating that a
long offset-differential count follows is 0x1e (30), not 0x80. The long counts are stored in

Chapter 4: File Name Databases 35

host byte order, which is not necessarily network byte order, and host integer word size,
which is usually 4 bytes. They also represent a count 14 less than their value. The database
lines have no termination byte; the start of the next line is indicated by its first byte having
a value <= 30.

In addition, instead of starting with a dummy entry, the old database format starts with
a 256 byte table containing the 128 most common bigrams in the file list. A bigram is a
pair of adjacent bytes. Bytes in the database that have the high bit set are indexes (with
the high bit cleared) into the bigram table. The bigram and offset-differential count coding
makes these databases 20-25% smaller than the new format, but makes them not 8-bit
clean. Any byte in a file name that is in the ranges used for the special codes is replaced in
the database by a question mark, which not coincidentally is the shell wildcard to match a
single character.

The old format therefore cannot faithfully store entries with non-ASCII characters. It
therefore should not be used in internationalised environments.

The output of ‘locate --statistics’ will give an incorrect count of the number of file
names containing newlines or high-bit characters for old-format databases.

4.3 Newline Handling

Within the database, file names are terminated with a null character. This is the case for
both the old and the new format.

When the new database format is being used, the compression technique used to generate
the database though relies on the ability to sort the list of files before they are presented to
frcode.

If the system’s sort command allows its input list of files to be separated with null
characters via the ‘-z’ option, this option is used and therefore updatedb and locate will
both correctly handle file names containing newlines. If the sort command lacks support
for this, the list of files is delimited with the newline character, meaning that parts of file
names containing newlines will be incorrectly sorted. This can result in both incorrect
matches and incorrect failures to match.

On the other hand, if you are using the old database format, file names with embedded
newlines are not correctly handled. There is no technical limitation which enforces this, it’s
just that the bigram program has not been updated to support lists of file names separated
by nulls.

So, if you are using the new database format (this is the default) and your system uses
GNU sort, newlines will be correctly handled at all times. Otherwise, newlines may not
be correctly handled.

Chapter 5: File Permissions 36

5 File Permissions

Each file has a set of permissions that control the kinds of access that users have to that
file. The permissions for a file are also called its access mode. They can be represented
either in symbolic form or as an octal number.

5.1 Structure of File Permissions

There are three kinds of permissions that a user can have for a file:

1. permission to read the file. For directories, this means permission to list the contents
of the directory.

2. permission to write to (change) the file. For directories, this means permission to create
and remove files in the directory.

3. permission to execute the file (run it as a program). For directories, this means perm-
ission to access files in the directory.

There are three categories of users who may have different permissions to perform any
of the above operations on a file:

1. the file’s owner;

2. other users who are in the file’s group;

3. everyone else.

Files are given an owner and group when they are created. Usually the owner is the
current user and the group is the group of the directory the file is in, but this varies with
the operating system, the file system the file is created on, and the way the file is created.
You can change the owner and group of a file by using the chown and chgrp commands.

In addition to the three sets of three permissions listed above, a file’s permissions have
three special components, which affect only executable files (programs) and, on some syst-
ems, directories:

1. Set the process’s effective user ID to that of the file upon execution (called the setuid
bit). No effect on directories.

2. Set the process’s effective group ID to that of the file upon execution (called the setgid
bit). For directories on some systems, put files created in the directory into the same
group as the directory, no matter what group the user who creates them is in.

3. prevent users from removing or renaming a file in a directory unless they own the file
or the directory; this is called the restricted deletion flag for the directory. For regular
files on some systems, save the program’s text image on the swap device so it will load
more quickly when run; this is called the sticky bit.

In addition to the permissions listed above, there may be file attributes specific to the
file system, e.g: access control lists (ACLs), whether a file is compressed, whether a file
can be modified (immutability), whether a file can be dumped. These are usually set using
programs specific to the file system. For example:

ext2 On GNU and GNU/Linux the file permissions (“attributes”) specific to the ext2
file system are set using chattr.

Chapter 5: File Permissions 37

FFS On FreeBSD the file permissions (“flags”) specific to the FFS file system are
set using chrflags.

Although a file’s permission “bits” allow an operation on that file, that operation may
still fail, because:

• the file-system-specific permissions do not permit it;

• the file system is mounted as read-only.

For example, if the immutable attribute is set on a file, it cannot be modified, regardless
of the fact that you may have just run chmod a+w FILE.

5.2 Symbolic Modes

Symbolic modes represent changes to files’ permissions as operations on single-character
symbols. They allow you to modify either all or selected parts of files’ permissions, optionally
based on their previous values, and perhaps on the current umask as well (see Section 5.2.6
[Umask and Protection], page 40).

The format of symbolic modes is:

[ugoa...][+-=]perms...[,...]

where perms is either zero or more letters from the set ‘rwxXst’, or a single letter from the
set ‘ugo’.

The following sections describe the operators and other details of symbolic modes.

5.2.1 Setting Permissions

The basic symbolic operations on a file’s permissions are adding, removing, and setting the
permission that certain users have to read, write, and execute the file. These operations
have the following format:

users operation permissions

The spaces between the three parts above are shown for readability only; symbolic modes
cannot contain spaces.

The users part tells which users’ access to the file is changed. It consists of one or more of
the following letters (or it can be empty; see Section 5.2.6 [Umask and Protection], page 40,
for a description of what happens then). When more than one of these letters is given, the
order that they are in does not matter.

u the user who owns the file;

g other users who are in the file’s group;

o all other users;

a all users; the same as ‘ugo’.

The operation part tells how to change the affected users’ access to the file, and is one
of the following symbols:

+ to add the permissions to whatever permissions the users already have for the
file;

- to remove the permissions from whatever permissions the users already have
for the file;

Chapter 5: File Permissions 38

= to make the permissions the only permissions that the users have for the file.

The permissions part tells what kind of access to the file should be changed; it is normally
zero or more of the following letters. As with the users part, the order does not matter
when more than one letter is given. Omitting the permissions part is useful only with the
‘=’ operation, where it gives the specified users no access at all to the file.

r the permission the users have to read the file;

w the permission the users have to write to the file;

x the permission the users have to execute the file.

For example, to give everyone permission to read and write a file, but not to execute it,
use:

a=rw

To remove write permission for all users other than the file’s owner, use:

go-w

The above command does not affect the access that the owner of the file has to it, nor does
it affect whether other users can read or execute the file.

To give everyone except a file’s owner no permission to do anything with that file, use
the mode below. Other users could still remove the file, if they have write permission on
the directory it is in.

go=

Another way to specify the same thing is:

og-rwx

5.2.2 Copying Existing Permissions

You can base a file’s permissions on its existing permissions. To do this, instead of using
a series of ‘r’, ‘w’, or ‘x’ letters after the operator, you use the letter ‘u’, ‘g’, or ‘o’. For
example, the mode

o+g

adds the permissions for users who are in a file’s group to the permissions that other
users have for the file. Thus, if the file started out as mode 664 (‘rw-rw-r--’), the above
mode would change it to mode 666 (‘rw-rw-rw-’). If the file had started out as mode 741
(‘rwxr----x’), the above mode would change it to mode 745 (‘rwxr--r-x’). The ‘-’ and
‘=’ operations work analogously.

5.2.3 Changing Special Permissions

In addition to changing a file’s read, write, and execute permissions, you can change its
special permissions. See Section 5.1 [Mode Structure], page 36, for a summary of these
permissions.

To change a file’s permission to set the user ID on execution, use ‘u’ in the users part of
the symbolic mode and ‘s’ in the permissions part.

To change a file’s permission to set the group ID on execution, use ‘g’ in the users part
of the symbolic mode and ‘s’ in the permissions part.

Chapter 5: File Permissions 39

To change a file’s permission to set the restricted deletion flag or sticky bit, omit the
users part of the symbolic mode (or use ‘a’) and put ‘t’ in the permissions part.

For example, to add set-user-ID permission to a program, you can use the mode:

u+s

To remove both set-user-ID and set-group-ID permission from it, you can use the mode:

ug-s

To set the restricted deletion flag or sticky bit, you can use the mode:

+t

The combination ‘o+s’ has no effect. On GNU systems the combinations ‘u+t’ and ‘g+t’
have no effect, and ‘o+t’ acts like plain ‘+t’.

The ‘=’ operator is not very useful with special permissions; for example, the mode:

o=t

does set the restricted deletion flag or sticky bit, but it also removes all read, write, and
execute permissions that users not in the file’s group might have had for it.

5.2.4 Conditional Executability

There is one more special type of symbolic permission: if you use ‘X’ instead of ‘x’, execute
permission is affected only if the file is a directory or already had execute permission.

For example, this mode:

a+X

gives all users permission to search directories, or to execute files if anyone could execute
them before.

5.2.5 Making Multiple Changes

The format of symbolic modes is actually more complex than described above (see
Section 5.2.1 [Setting Permissions], page 37). It provides two ways to make multiple
changes to files’ permissions.

The first way is to specify multiple operation and permissions parts after a users part
in the symbolic mode.

For example, the mode:

og+rX-w

gives users other than the owner of the file read permission and, if it is a directory or if
someone already had execute permission to it, gives them execute permission; and it also
denies them write permission to the file. It does not affect the permission that the owner
of the file has for it. The above mode is equivalent to the two modes:

og+rX

og-w

The second way to make multiple changes is to specify more than one simple symbolic
mode, separated by commas. For example, the mode:

a+r,go-w

gives everyone permission to read the file and removes write permission on it for all users
except its owner. Another example:

Chapter 5: File Permissions 40

u=rwx,g=rx,o=

sets all of the non-special permissions for the file explicitly. (It gives users who are not in
the file’s group no permission at all for it.)

The two methods can be combined. The mode:

a+r,g+x-w

gives all users permission to read the file, and gives users who are in the file’s group perm-
ission to execute it, as well, but not permission to write to it. The above mode could be
written in several different ways; another is:

u+r,g+rx,o+r,g-w

5.2.6 The Umask and Protection

If the users part of a symbolic mode is omitted, it defaults to ‘a’ (affect all users), except
that any permissions that are set in the system variable umask are not affected. The value
of umask can be set using the umask command. Its default value varies from system to
system.

Omitting the users part of a symbolic mode is generally not useful with operations other
than ‘+’. It is useful with ‘+’ because it allows you to use umask as an easily customizable
protection against giving away more permission to files than you intended to.

As an example, if umask has the value 2, which removes write permission for users who
are not in the file’s group, then the mode:

+w

adds permission to write to the file to its owner and to other users who are in the file’s
group, but not to other users. In contrast, the mode:

a+w

ignores umask, and does give write permission for the file to all users.

5.3 Numeric Modes

As an alternative to giving a symbolic mode, you can give an octal (base 8) number that
represents the new mode. This number is always interpreted in octal; you do not have to
add a leading 0, as you do in C. Mode 0055 is the same as mode 55.

A numeric mode is usually shorter than the corresponding symbolic mode, but it is
limited in that it cannot take into account a file’s previous permissions; it can only set them
absolutely.

The permissions granted to the user, to other users in the file’s group, and to other users
not in the file’s group each require three bits, which are represented as one octal digit. The
three special permissions also require one bit each, and they are as a group represented as
another octal digit. Here is how the bits are arranged, starting with the lowest valued bit:

Value in Corresponding

Mode Permission

Other users not in the file’s group:

1 Execute

2 Write

Chapter 5: File Permissions 41

4 Read

Other users in the file’s group:

10 Execute

20 Write

40 Read

The file’s owner:

100 Execute

200 Write

400 Read

Special permissions:

1000 Restricted deletion flag or sticky bit

2000 Set group ID on execution

4000 Set user ID on execution

For example, numeric mode 4755 corresponds to symbolic mode ‘u=rwxs,go=rx’, and
numeric mode 664 corresponds to symbolic mode ‘ug=rw,o=r’. Numeric mode 0 corresponds
to symbolic mode ‘a=’.

Chapter 6: Reference 42

6 Reference

Below are summaries of the command line syntax for the programs discussed in this manual.

6.1 Invoking find

find [-H] [-L] [-P] [file...] [expression]

find searches the directory tree rooted at each file name file by evaluating the expression
on each file it finds in the tree.

The options ‘-H’, ‘-L’ or ‘-P’ may be specified at the start of the command line (if none
of these is specified, ‘-P’ is assumed). If you specify more than one of these options, the last
one specified takes effect (but note that the ‘-follow’ option is equivalent to ‘-L’). The
arguments after these are a list of files or directories that should be searched.

This list of files to search is followed by a list of expressions describing the files we wish
to search for. The first part of the expression is recognised by the fact that it begins with
‘-’, ‘(’, ‘)’, ‘,’, or ‘!’. Any arguments after it are the rest of the expression. If no files are
given, the current directory is used. If no expression is given, the expression ‘-print’ is
used.

find exits with status zero if all files matched are processed successfully, greater than 0
if errors occur.

Three options can precede the list of files. They determine the way that symbolic links
are handled.

-P Never follow symbolic links (this is the default), except in the case of the
‘-xtype’ predicate.

-L Always follow symbolic links, except in the case of the ‘-xtype’ predicate.

-H Follow symbolic links specified in the list of files to search, or which are otherwise
specified on the command line.

If find would follow a symbolic link, but cannot for any reason (for example, because it
has insufficient permissions or the link is broken), it falls back on using the properties of the
symbolic link itself. Section 2.2.1 [Symbolic Links], page 7 for a more complete description
of how symbolic links are handled.

See [Primary Index], page 87, for a summary of all of the tests, actions, and options that
the expression can contain. If the expression is missing, ‘-print’ is assumed.

find also recognises two options for administrative use:

--help Print a summary of the command line usage and exit.

--version

-version Print the version number of find and exit.

6.1.1 Warning Messages

If there is an error on the find command line, an error message is normally issued. However,
there are some usages that are inadvisable but which find should still accept. Under these
circumstances, find may issue a warning message. By default, warnings are enabled only
if find is being run interactively (specifically, if the standard input is a terminal). Warning
messages can be controlled explicitly by the use of options on the command line:

Chapter 6: Reference 43

-warn Issue warning messages where appropriate.

-nowarn Do not issue warning messages.

These options take effect at the point on the command line where they are specified.
Therefore it’s not useful to specify ‘-nowarn’ at the end of the command line. The warning
messages affected by the above options are triggered by:

− Use of the ‘-d’ option which is deprecated; please use ‘-depth’ instead, since the latter
is POSIX-compliant.

− Use of the ‘-ipath’ option which is deprecated; please use ‘-iwholename’ instead.

− Specifying an option (for example ‘-mindepth’) after a non-option (for example ‘-type’
or ‘-print’) on the command line.

− Use of the ‘-name’ or ‘-iname’ option with a slash character in the pattern. Since the
name predicates only compare against the basename of the visited files, the only file
that can match a slash is the root directory itself.

The default behaviour above is designed to work in that way so that existing shell scripts
don’t generate spurious errors, but people will be made aware of the problem.

Some warning messages are issued for less common or more serious problems, and
consequently cannot be turned off:

− Use of an unrecognised backslash escape sequence with ‘-fprintf’

− Use of an unrecognised formatting directive with ‘-fprintf’

6.2 Invoking locate

locate [option...] pattern...

For each pattern given locate searches one or more file name databases returning each
match of pattern.

For each pattern given locate searches one or more file name databases returning each
match of pattern.

--all

-A Print only names which match all non-option arguments, not those matching
one or more non-option arguments.

--basename

-b The specified pattern is matched against just the last component of the name
of a file in the locate database. This last component is also called the “base
name”. For example, the base name of /tmp/mystuff/foo.old.c is foo.old.c.
If the pattern contains metacharacters, it must match the base name exactly.
If not, it must match part of the base name.

--count

-c Instead of printing the matched file names, just print the total number of mat-
ches found, unless ‘--print’ (‘-p’) is also present.

--database=path

-d path Instead of searching the default locate database, locate search the file name
databases in path, which is a colon-separated list of database file names. You

Chapter 6: Reference 44

can also use the environment variable LOCATE_PATH to set the list of database
files to search. The option overrides the environment variable if both are used.
Empty elements in path (that is, a leading or trailing colon, or two colons in a
row) are taken to stand for the default database. A database can be supplied
on stdin, using ‘-’ as an element of ‘path’. If more than one element of ‘path’
is ‘-’, later instances are ignored (but a warning message is printed).

--existing

-e Only print out such names which currently exist (instead of such names which
existed when the database was created). Note that this may slow down the
program a lot, if there are many matches in the database. The way in which
broken symbolic links are treated is affected by the ‘-L’, ‘-P’ and ‘-H’ options.
Please note that it is possible for the file to be deleted after locate has checked
that it exists, but before you use it.

--non-existing

-E Only print out such names which currently do not exist (instead of such names
which existed when the database was created). Note that this may slow down
the program a lot, if there are many matches in the database. The way in which
broken symbolic links are treated is affected by the ‘-L’, ‘-P’ and ‘-H’ options.
Please note that locate checks that the file does not exist, but a file of the
same name might be created after locate’s check but before you read locate’s
output.

--follow

-L If testing for the existence of files (with the ‘-e’ or ‘-E’ options), consider broken
symbolic links to be non-existing. This is the default behaviour.

--nofollow

-P

-H If testing for the existence of files (with the ‘-e’ or ‘-E’ options), treat broken
symbolic links as if they were existing files. The ‘-H’ form of this option is
provided purely for similarity with find; the use of ‘-P’ is recommended over
‘-H’.

--ignore-case

-i Ignore case distinctions in both the pattern and the file names.

--limit=N

-l N Limit the number of results printed to N. When used with the ‘--count’ option,
the value printed will never be larger than this limit.

--mmap

-m Accepted but does nothing. The option is supported only to provide compatibil-
ity with BSD’s locate.

--null

-0 Results are separated with the ASCII NUL character rather than the newline
character. To get the full benefit of the use of this option, use the new locate

database format (that is the default anyway).

Chapter 6: Reference 45

--print

-p Print search results when they normally would not, because of the presence of
‘--statistics’ (‘-S’) or ‘--count’ (‘-c’).

--wholename

-w The specified pattern is matched against the whole name of the file in the locate
database. If the pattern contains metacharacters, it must match exactly. If not,
it must match part of the whole file name. This is the default behaviour.

--regex

-r Instead of using substring or shell glob matching, the pattern specified on the
command line is understood to be a regular expression. GNU Emacs-style
regular expressions are assumed unless the ‘--regextype’ option is also given.
File names from the locate database are matched using the specified regular
expression. If the ‘-i’ flag is also given, matching is case-insensitive. Matches
are performed against the whole path name, and so by default a pathname
will be matched if any part of it matches the specified regular expression. The
regular expression may use ‘^’ or ‘$’ to anchor a match at the beginning or end
of a pathname.

--regextype

This option changes the regular expression syntax and behaviour used by the
‘--regex’ option. Section 6.5 [Regular Expressions], page 49 for more inform-
ation on the regular expression dialects understood by GNU findutils.

--stdio

-s Accepted but does nothing. The option is supported only to provide compatibil-
ity with BSD’s locate.

--statistics

-S Print some summary information for each locate database. No search is
performed unless non-option arguments are given. Although the BSD version
of locate also has this option, the format of the output is different.

--help Print a summary of the command line usage for locate and exit.

--version

Print the version number of locate and exit.

6.3 Invoking updatedb

updatedb [option...]

updatedb creates and updates the database of file names used by locate. updatedb

generates a list of files similar to the output of find and then uses utilities for optimizing the
database for performance. updatedb is often run periodically as a cron job and configured
with environment variables or command options. Typically, operating systems have a shell
script that “exports” configurations for variable definitions and uses another shell script
that “sources” the configuration file into the environment and then executes updatedb in
the environment.

updatedb creates and updates the database of file names used by locate. updatedb

generates a list of files similar to the output of find and then uses utilities for optimizing the

Chapter 6: Reference 46

database for performance. updatedb is often run periodically as a cron job and configured
with environment variables or command options. Typically, operating systems have a shell
script that “exports” configurations for variable definitions and uses another shell script
that “sources” the configuration file into the environment and then executes updatedb in
the environment.

--findoptions=’OPTION...’

Global options to pass on to find. The environment variable FINDOPTIONS also
sets this value. Default is none.

--localpaths=’path...’

Non-network directories to put in the database. Default is /.

--netpaths=’path...’

Network (NFS, AFS, RFS, etc.) directories to put in the database. The envir-
onment variable NETPATHS also sets this value. Default is none.

--prunepaths=’path...’

Directories to omit from the database, which would otherwise be included.
The environment variable PRUNEPATHS also sets this value. Default is /tmp

/usr/tmp /var/tmp /afs. The paths are used as regular expressions (with
find ... -regex, so you need to specify these paths in the same way that
find will encounter them. This means for example that the paths must not
include trailing slashes.

--prunefs=’path...’

Filesystems to omit from the database, which would otherwise be included.
Note that files are pruned when a filesystem is reached; Any filesystem
mounted under an undesired filesystem will be ignored. The environment
variable PRUNEFS also sets this value. Default is nfs NFS proc.

--output=dbfile

The database file to build. Default is system-dependent, but typically
/usr/local/var/locatedb.

--localuser=user

The user to search the non-network directories as, using su. Default is to
search the non-network directories as the current user. You can also use the
environment variable LOCALUSER to set this user.

--netuser=user

The user to search network directories as, using su. Default user is daemon.
You can also use the environment variable NETUSER to set this user.

Note that the simplified updatedb.bat batch file used on MS-DOS doesn’t
support these options.

--old-format

Generate a locate database in the old format, for compatibility with versions
of locate other than GNU locate. Using this option means that locate will
not be able to properly handle non-ASCII characters in file names (that is, file
names containing characters which have the eighth bit set, such as many of
the characters from the ISO-8859-1 character set). Versions of locate prior to

Chapter 6: Reference 47

4.2.31 fail to correctly handle long filenames in old-format databases. Versions
4.3.0 to 4.3.6 were also affected.

--help Print a summary of the command line usage and exit.

--version

Print the version number of updatedb and exit.

6.4 Invoking xargs

xargs [option...] [command [initial-arguments]]

xargs exits with the following status:

0 if it succeeds

123 if any invocation of the command exited with status 1-125

124 if the command exited with status 255

125 if the command is killed by a signal

126 if the command cannot be run

127 if the command is not found

1 if some other error occurred.

Exit codes greater than 128 are used by the shell to indicate that a program died due to
a fatal signal.

--arg-file=inputfile
-a oinputfile

Read names from the file inputfile instead of standard input. If you use this
option, the standard input stream remains unchanged when commands are run.
Otherwise, stdin is redirected from /dev/null.

--null

-0 Input file names are terminated by a null character instead of by whitespace, and
any quotes and backslash characters are not considered special (every character
is taken literally). Disables the end of file string, which is treated like any other
argument.

--delimiter delim

-d delim

Input file names are terminated by the specified character delim instead of by
whitespace, and any quotes and backslash characters are not considered special
(every character is taken literally). Disables the end of file string, which is
treated like any other argument.

The specified delimiter may be a single character, a C-style character escape
such as ‘\n’, or an octal or hexadecimal escape code. Octal and hexadecimal
escape codes are understood as for the printf command. Multibyte characters
are not supported.

Chapter 6: Reference 48

-E eof-str

--eof[=eof-str]
-e[eof-str]

Set the end of file string to eof-str. If the end of file string occurs as a line
of input, the rest of the input is ignored. If eof-str is omitted (‘-e’) or blank
(either ‘-e’ or ‘-E’), there is no end of file string. The ‘-e’ form of this option is
deprecated in favour of the POSIX-compliant ‘-E’ option, which you should use
instead. As of GNU xargs version 4.2.9, the default behaviour of xargs is not
to have a logical end-of-file marker. The POSIX standard (IEEE Std 1003.1,
2004 Edition) allows this.

--help Print a summary of the options to xargs and exit.

-I replace-str

--replace[=replace-str]
-i[replace-str]

Replace occurrences of replace-str in the initial arguments with names read from
standard input. Also, unquoted blanks do not terminate arguments; instead,
the input is split at newlines only. If replace-str is omitted (omitting it is
allowed only for ‘-i’), it defaults to ‘{}’ (like for ‘find -exec’). Implies ‘-x’
and ‘-l 1’. The ‘-i’ option is deprecated in favour of the ‘-I’ option.

-L max-lines

--max-lines[=max-lines]
-l[max-lines]

Use at most max-lines non-blank input lines per command line. For ‘-l’, max-
lines defaults to 1 if omitted. For ‘-L’, the argument is mandatory. Trailing
blanks cause an input line to be logically continued on the next input line, for
the purpose of counting the lines. Implies ‘-x’. The ‘-l’ form of this option is
deprecated in favour of the POSIX-compliant ‘-L’ option.

--max-args=max-args

-n max-args

Use at most max-args arguments per command line. Fewer than max-args
arguments will be used if the size (see the ‘-s’ option) is exceeded, unless the
‘-x’ option is given, in which case xargs will exit.

--interactive

-p Prompt the user about whether to run each command line and read a line from
the terminal. Only run the command line if the response starts with ‘y’ or ‘Y’.
Implies ‘-t’.

--no-run-if-empty

-r If the standard input is completely empty, do not run the command. By default,
the command is run once even if there is no input.

--max-chars=max-chars

-s max-chars

Use at most max-chars characters per command line, including the command,
initial arguments and any terminating nulls at the ends of the argument strings.

Chapter 6: Reference 49

--show-limits

Display the limits on the command-line length which are imposed by the op-
erating system, xargs’ choice of buffer size and the ‘-s’ option. Pipe the input
from /dev/null (and perhaps specify ‘--no-run-if-empty’) if you don’t want
xargs to do anything.

--verbose

-t Print the command line on the standard error output before executing it.

--version

Print the version number of xargs and exit.

--exit

-x Exit if the size (see the ‘-s’ option) is exceeded.

--max-procs=max-procs

-P max-procs

Run simultaneously up to max-procs processes at once; the default is 1. If
max-procs is 0, xargs will run as many processes as possible simultaneously.

6.5 Regular Expressions

The ‘-regex’ and ‘-iregex’ tests of find allow matching by regular expression, as does
the ‘--regex’ option of locate. There are many different types of Regular Expression, but
the type used by find and locate is the same as is used in GNU Emacs. Both programs
provide an option which allows you to select an alternative regular expression syntax; for
find this is the ‘-regextype’ option, and for locate this is the ‘--regextype’ option.

These options take a single argument, which indicates the specific regular expression
syntax and behaviour that should be used. This should be one of the following:

6.5.1 ‘findutils-default’ regular expression syntax

The character ‘.’ matches any single character.

‘+’ indicates that the regular expression should match one or more occurrences of
the previous atom or regexp.

‘?’ indicates that the regular expression should match zero or one occurrence of
the previous atom or regexp.

‘\+’ matches a ‘+’

‘\?’ matches a ‘?’.

Bracket expressions are used to match ranges of characters. Bracket expressions where
the range is backward, for example ‘[z-a]’, are ignored. Within square brackets, ‘\’ is
taken literally. Character classes are not supported, so for example you would need to use
‘[0-9]’ instead of ‘[[:digit:]]’.

GNU extensions are supported:

1. ‘\w’ matches a character within a word

2. ‘\W’ matches a character which is not within a word

3. ‘\<’ matches the beginning of a word

Chapter 6: Reference 50

4. ‘\>’ matches the end of a word

5. ‘\b’ matches a word boundary

6. ‘\B’ matches characters which are not a word boundary

7. ‘\‘’ matches the beginning of the whole input

8. ‘\’’ matches the end of the whole input

Grouping is performed with backslashes followed by parentheses ‘\(’, ‘\)’. A backslash
followed by a digit acts as a back-reference and matches the same thing as the previous
grouped expression indicated by that number. For example ‘\2’ matches the second group
expression. The order of group expressions is determined by the position of their opening
parenthesis ‘\(’.

The alternation operator is ‘\|’.

The character ‘^’ only represents the beginning of a string when it appears:

1. At the beginning of a regular expression

2. After an open-group, signified by ‘\(’

3. After the alternation operator ‘\|’

The character ‘$’ only represents the end of a string when it appears:

1. At the end of a regular expression

2. Before a close-group, signified by ‘\)’

3. Before the alternation operator ‘\|’

‘*’, ‘+’ and ‘?’ are special at any point in a regular expression except:

1. At the beginning of a regular expression

2. After an open-group, signified by ‘\(’

3. After the alternation operator ‘\|’

The longest possible match is returned; this applies to the regular expression as a whole
and (subject to this constraint) to subexpressions within groups.

6.5.2 ‘awk’ regular expression syntax

The character ‘.’ matches any single character except the null character.

‘+’ indicates that the regular expression should match one or more occurrences of
the previous atom or regexp.

‘?’ indicates that the regular expression should match zero or one occurrence of
the previous atom or regexp.

‘\+’ matches a ‘+’

‘\?’ matches a ‘?’.

Bracket expressions are used to match ranges of characters. Bracket expressions where
the range is backward, for example ‘[z-a]’, are invalid. Within square brackets, ‘\’ can be
used to quote the following character. Character classes are not supported, so for example
you would need to use ‘[0-9]’ instead of ‘[[:digit:]]’.

GNU extensions are not supported and so ‘\w’, ‘\W’, ‘\<’, ‘\>’, ‘\b’, ‘\B’, ‘\‘’, and ‘\’’
match ‘w’, ‘W’, ‘<’, ‘>’, ‘b’, ‘B’, ‘‘’, and ‘’’ respectively.

Chapter 6: Reference 51

Grouping is performed with parentheses ‘()’. An unmatched ‘)’ matches just itself. A
backslash followed by a digit matches that digit.

The alternation operator is ‘|’.

The characters ‘^’ and ‘$’ always represent the beginning and end of a string respectively,
except within square brackets. Within brackets, ‘^’ can be used to invert the membership
of the character class being specified.

‘*’, ‘+’ and ‘?’ are special at any point in a regular expression except:

1. At the beginning of a regular expression

2. After an open-group, signified by ‘(’

3. After the alternation operator ‘|’

The longest possible match is returned; this applies to the regular expression as a whole
and (subject to this constraint) to subexpressions within groups.

6.5.3 ‘egrep’ regular expression syntax

The character ‘.’ matches any single character except newline.

‘+’ indicates that the regular expression should match one or more occurrences of
the previous atom or regexp.

‘?’ indicates that the regular expression should match zero or one occurrence of
the previous atom or regexp.

‘\+’ matches a ‘+’

‘\?’ matches a ‘?’.

Bracket expressions are used to match ranges of characters. Bracket expressions where
the range is backward, for example ‘[z-a]’, are ignored. Within square brackets, ‘\’ is
taken literally. Character classes are supported; for example ‘[[:digit:]]’ will match a
single decimal digit. Non-matching lists ‘[^...]’ do not ever match newline.

GNU extensions are supported:

1. ‘\w’ matches a character within a word

2. ‘\W’ matches a character which is not within a word

3. ‘\<’ matches the beginning of a word

4. ‘\>’ matches the end of a word

5. ‘\b’ matches a word boundary

6. ‘\B’ matches characters which are not a word boundary

7. ‘\‘’ matches the beginning of the whole input

8. ‘\’’ matches the end of the whole input

Grouping is performed with parentheses ‘()’. A backslash followed by a digit acts as a
back-reference and matches the same thing as the previous grouped expression indicated by
that number. For example ‘\2’ matches the second group expression. The order of group
expressions is determined by the position of their opening parenthesis ‘(’.

The alternation operator is ‘|’.

Chapter 6: Reference 52

The characters ‘^’ and ‘$’ always represent the beginning and end of a string respectively,
except within square brackets. Within brackets, ‘^’ can be used to invert the membership
of the character class being specified.

The characters ‘*’, ‘+’ and ‘?’ are special anywhere in a regular expression.

The longest possible match is returned; this applies to the regular expression as a whole
and (subject to this constraint) to subexpressions within groups.

6.5.4 ‘emacs’ regular expression syntax

The character ‘.’ matches any single character except newline.

‘+’ indicates that the regular expression should match one or more occurrences of
the previous atom or regexp.

‘?’ indicates that the regular expression should match zero or one occurrence of
the previous atom or regexp.

‘\+’ matches a ‘+’

‘\?’ matches a ‘?’.

Bracket expressions are used to match ranges of characters. Bracket expressions where
the range is backward, for example ‘[z-a]’, are ignored. Within square brackets, ‘\’ is
taken literally. Character classes are not supported, so for example you would need to use
‘[0-9]’ instead of ‘[[:digit:]]’.

GNU extensions are supported:

1. ‘\w’ matches a character within a word

2. ‘\W’ matches a character which is not within a word

3. ‘\<’ matches the beginning of a word

4. ‘\>’ matches the end of a word

5. ‘\b’ matches a word boundary

6. ‘\B’ matches characters which are not a word boundary

7. ‘\‘’ matches the beginning of the whole input

8. ‘\’’ matches the end of the whole input

Grouping is performed with backslashes followed by parentheses ‘\(’, ‘\)’. A backslash
followed by a digit acts as a back-reference and matches the same thing as the previous
grouped expression indicated by that number. For example ‘\2’ matches the second group
expression. The order of group expressions is determined by the position of their opening
parenthesis ‘\(’.

The alternation operator is ‘\|’.

The character ‘^’ only represents the beginning of a string when it appears:

1. At the beginning of a regular expression

2. After an open-group, signified by ‘\(’

3. After the alternation operator ‘\|’

The character ‘$’ only represents the end of a string when it appears:

1. At the end of a regular expression

Chapter 6: Reference 53

2. Before a close-group, signified by ‘\)’

3. Before the alternation operator ‘\|’

‘*’, ‘+’ and ‘?’ are special at any point in a regular expression except:

1. At the beginning of a regular expression

2. After an open-group, signified by ‘\(’

3. After the alternation operator ‘\|’

The longest possible match is returned; this applies to the regular expression as a whole
and (subject to this constraint) to subexpressions within groups.

6.5.5 ‘gnu-awk’ regular expression syntax

The character ‘.’ matches any single character.

‘+’ indicates that the regular expression should match one or more occurrences of
the previous atom or regexp.

‘?’ indicates that the regular expression should match zero or one occurrence of
the previous atom or regexp.

‘\+’ matches a ‘+’

‘\?’ matches a ‘?’.

Bracket expressions are used to match ranges of characters. Bracket expressions where
the range is backward, for example ‘[z-a]’, are invalid. Within square brackets, ‘\’ can
be used to quote the following character. Character classes are supported; for example
‘[[:digit:]]’ will match a single decimal digit.

GNU extensions are supported:

1. ‘\w’ matches a character within a word

2. ‘\W’ matches a character which is not within a word

3. ‘\<’ matches the beginning of a word

4. ‘\>’ matches the end of a word

5. ‘\b’ matches a word boundary

6. ‘\B’ matches characters which are not a word boundary

7. ‘\‘’ matches the beginning of the whole input

8. ‘\’’ matches the end of the whole input

Grouping is performed with parentheses ‘()’. An unmatched ‘)’ matches just itself.
A backslash followed by a digit acts as a back-reference and matches the same thing as
the previous grouped expression indicated by that number. For example ‘\2’ matches the
second group expression. The order of group expressions is determined by the position of
their opening parenthesis ‘(’.

The alternation operator is ‘|’.

The characters ‘^’ and ‘$’ always represent the beginning and end of a string respectively,
except within square brackets. Within brackets, ‘^’ can be used to invert the membership
of the character class being specified.

‘*’, ‘+’ and ‘?’ are special at any point in a regular expression except:

Chapter 6: Reference 54

1. At the beginning of a regular expression

2. After an open-group, signified by ‘(’

3. After the alternation operator ‘|’

The longest possible match is returned; this applies to the regular expression as a whole
and (subject to this constraint) to subexpressions within groups.

6.5.6 ‘grep’ regular expression syntax

The character ‘.’ matches any single character except newline.

‘\+’ indicates that the regular expression should match one or more occurrences of
the previous atom or regexp.

‘\?’ indicates that the regular expression should match zero or one occurrence of
the previous atom or regexp.

‘+ and ?’ match themselves.

Bracket expressions are used to match ranges of characters. Bracket expressions where
the range is backward, for example ‘[z-a]’, are ignored. Within square brackets, ‘\’ is
taken literally. Character classes are supported; for example ‘[[:digit:]]’ will match a
single decimal digit. Non-matching lists ‘[^...]’ do not ever match newline.

GNU extensions are supported:

1. ‘\w’ matches a character within a word

2. ‘\W’ matches a character which is not within a word

3. ‘\<’ matches the beginning of a word

4. ‘\>’ matches the end of a word

5. ‘\b’ matches a word boundary

6. ‘\B’ matches characters which are not a word boundary

7. ‘\‘’ matches the beginning of the whole input

8. ‘\’’ matches the end of the whole input

Grouping is performed with backslashes followed by parentheses ‘\(’, ‘\)’. A backslash
followed by a digit acts as a back-reference and matches the same thing as the previous
grouped expression indicated by that number. For example ‘\2’ matches the second group
expression. The order of group expressions is determined by the position of their opening
parenthesis ‘\(’.

The alternation operator is ‘\|’.

The character ‘^’ only represents the beginning of a string when it appears:

1. At the beginning of a regular expression

2. After an open-group, signified by ‘\(’

3. After a newline

4. After the alternation operator ‘\|’

The character ‘$’ only represents the end of a string when it appears:

1. At the end of a regular expression

Chapter 6: Reference 55

2. Before a close-group, signified by ‘\)’

3. Before a newline

4. Before the alternation operator ‘\|’

‘*’, ‘\+’ and ‘\?’ are special at any point in a regular expression except:

1. At the beginning of a regular expression

2. After an open-group, signified by ‘\(’

3. After a newline

4. After the alternation operator ‘\|’

Intervals are specified by ‘\{’ and ‘\}’. Invalid intervals such as ‘a\{1z’ are not accepted.

The longest possible match is returned; this applies to the regular expression as a whole
and (subject to this constraint) to subexpressions within groups.

6.5.7 ‘posix-awk’ regular expression syntax

The character ‘.’ matches any single character except the null character.

‘+’ indicates that the regular expression should match one or more occurrences of
the previous atom or regexp.

‘?’ indicates that the regular expression should match zero or one occurrence of
the previous atom or regexp.

‘\+’ matches a ‘+’

‘\?’ matches a ‘?’.

Bracket expressions are used to match ranges of characters. Bracket expressions where
the range is backward, for example ‘[z-a]’, are invalid. Within square brackets, ‘\’ can
be used to quote the following character. Character classes are supported; for example
‘[[:digit:]]’ will match a single decimal digit.

GNU extensions are not supported and so ‘\w’, ‘\W’, ‘\<’, ‘\>’, ‘\b’, ‘\B’, ‘\‘’, and ‘\’’
match ‘w’, ‘W’, ‘<’, ‘>’, ‘b’, ‘B’, ‘‘’, and ‘’’ respectively.

Grouping is performed with parentheses ‘()’. An unmatched ‘)’ matches just itself.
A backslash followed by a digit acts as a back-reference and matches the same thing as
the previous grouped expression indicated by that number. For example ‘\2’ matches the
second group expression. The order of group expressions is determined by the position of
their opening parenthesis ‘(’.

The alternation operator is ‘|’.

The characters ‘^’ and ‘$’ always represent the beginning and end of a string respectively,
except within square brackets. Within brackets, ‘^’ can be used to invert the membership
of the character class being specified.

‘*’, ‘+’ and ‘?’ are special at any point in a regular expression except the following places,
where they are not allowed:

1. At the beginning of a regular expression

2. After an open-group, signified by ‘(’

3. After the alternation operator ‘|’

Chapter 6: Reference 56

Intervals are specified by ‘{’ and ‘}’. Invalid intervals such as ‘a{1z’ are not accepted.

The longest possible match is returned; this applies to the regular expression as a whole
and (subject to this constraint) to subexpressions within groups.

6.5.8 ‘posix-basic’ regular expression syntax

The character ‘.’ matches any single character except the null character.

‘\+’ indicates that the regular expression should match one or more occurrences of
the previous atom or regexp.

‘\?’ indicates that the regular expression should match zero or one occurrence of
the previous atom or regexp.

‘+ and ?’ match themselves.

Bracket expressions are used to match ranges of characters. Bracket expressions where
the range is backward, for example ‘[z-a]’, are invalid. Within square brackets, ‘\’ is taken
literally. Character classes are supported; for example ‘[[:digit:]]’ will match a single
decimal digit.

GNU extensions are supported:

1. ‘\w’ matches a character within a word

2. ‘\W’ matches a character which is not within a word

3. ‘\<’ matches the beginning of a word

4. ‘\>’ matches the end of a word

5. ‘\b’ matches a word boundary

6. ‘\B’ matches characters which are not a word boundary

7. ‘\‘’ matches the beginning of the whole input

8. ‘\’’ matches the end of the whole input

Grouping is performed with backslashes followed by parentheses ‘\(’, ‘\)’. A backslash
followed by a digit acts as a back-reference and matches the same thing as the previous
grouped expression indicated by that number. For example ‘\2’ matches the second group
expression. The order of group expressions is determined by the position of their opening
parenthesis ‘\(’.

The alternation operator is ‘\|’.

The character ‘^’ only represents the beginning of a string when it appears:

1. At the beginning of a regular expression

2. After an open-group, signified by ‘\(’

3. After the alternation operator ‘\|’

The character ‘$’ only represents the end of a string when it appears:

1. At the end of a regular expression

2. Before a close-group, signified by ‘\)’

3. Before the alternation operator ‘\|’

‘*’, ‘\+’ and ‘\?’ are special at any point in a regular expression except:

Chapter 6: Reference 57

1. At the beginning of a regular expression

2. After an open-group, signified by ‘\(’

3. After the alternation operator ‘\|’

Intervals are specified by ‘\{’ and ‘\}’. Invalid intervals such as ‘a\{1z’ are not accepted.

The longest possible match is returned; this applies to the regular expression as a whole
and (subject to this constraint) to subexpressions within groups.

6.5.9 ‘posix-egrep’ regular expression syntax

The character ‘.’ matches any single character except newline.

‘+’ indicates that the regular expression should match one or more occurrences of
the previous atom or regexp.

‘?’ indicates that the regular expression should match zero or one occurrence of
the previous atom or regexp.

‘\+’ matches a ‘+’

‘\?’ matches a ‘?’.

Bracket expressions are used to match ranges of characters. Bracket expressions where
the range is backward, for example ‘[z-a]’, are ignored. Within square brackets, ‘\’ is
taken literally. Character classes are supported; for example ‘[[:digit:]]’ will match a
single decimal digit. Non-matching lists ‘[^...]’ do not ever match newline.

GNU extensions are supported:

1. ‘\w’ matches a character within a word

2. ‘\W’ matches a character which is not within a word

3. ‘\<’ matches the beginning of a word

4. ‘\>’ matches the end of a word

5. ‘\b’ matches a word boundary

6. ‘\B’ matches characters which are not a word boundary

7. ‘\‘’ matches the beginning of the whole input

8. ‘\’’ matches the end of the whole input

Grouping is performed with parentheses ‘()’. A backslash followed by a digit acts as a
back-reference and matches the same thing as the previous grouped expression indicated by
that number. For example ‘\2’ matches the second group expression. The order of group
expressions is determined by the position of their opening parenthesis ‘(’.

The alternation operator is ‘|’.

The characters ‘^’ and ‘$’ always represent the beginning and end of a string respectively,
except within square brackets. Within brackets, ‘^’ can be used to invert the membership
of the character class being specified.

The characters ‘*’, ‘+’ and ‘?’ are special anywhere in a regular expression.

Intervals are specified by ‘{’ and ‘}’. Invalid intervals are treated as literals, for example
‘a{1’ is treated as ‘a\{1’

The longest possible match is returned; this applies to the regular expression as a whole
and (subject to this constraint) to subexpressions within groups.

Chapter 6: Reference 58

6.5.10 ‘posix-extended’ regular expression syntax

The character ‘.’ matches any single character except the null character.

‘+’ indicates that the regular expression should match one or more occurrences of
the previous atom or regexp.

‘?’ indicates that the regular expression should match zero or one occurrence of
the previous atom or regexp.

‘\+’ matches a ‘+’

‘\?’ matches a ‘?’.

Bracket expressions are used to match ranges of characters. Bracket expressions where
the range is backward, for example ‘[z-a]’, are invalid. Within square brackets, ‘\’ is taken
literally. Character classes are supported; for example ‘[[:digit:]]’ will match a single
decimal digit.

GNU extensions are supported:

1. ‘\w’ matches a character within a word

2. ‘\W’ matches a character which is not within a word

3. ‘\<’ matches the beginning of a word

4. ‘\>’ matches the end of a word

5. ‘\b’ matches a word boundary

6. ‘\B’ matches characters which are not a word boundary

7. ‘\‘’ matches the beginning of the whole input

8. ‘\’’ matches the end of the whole input

Grouping is performed with parentheses ‘()’. An unmatched ‘)’ matches just itself.
A backslash followed by a digit acts as a back-reference and matches the same thing as
the previous grouped expression indicated by that number. For example ‘\2’ matches the
second group expression. The order of group expressions is determined by the position of
their opening parenthesis ‘(’.

The alternation operator is ‘|’.

The characters ‘^’ and ‘$’ always represent the beginning and end of a string respectively,
except within square brackets. Within brackets, ‘^’ can be used to invert the membership
of the character class being specified.

‘*’, ‘+’ and ‘?’ are special at any point in a regular expression except the following places,
where they are not allowed:

1. At the beginning of a regular expression

2. After an open-group, signified by ‘(’

3. After the alternation operator ‘|’

Intervals are specified by ‘{’ and ‘}’. Invalid intervals such as ‘a{1z’ are not accepted.

The longest possible match is returned; this applies to the regular expression as a whole
and (subject to this constraint) to subexpressions within groups.

Chapter 6: Reference 59

6.6 Environment Variables

LANG Provides a default value for the internationalisation variables that are unset or
null.

LC ALL If set to a non-empty string value, override the values of all the other internat-
ionalisation variables.

LC COLLATE
The POSIX standard specifies that this variable affects the pattern matching
to be used for the ‘\-name’ option. GNU find uses the GNU version of the
fnmatch library function.

POSIX also specifies that the ‘LC COLLATE’ environment variable affects the
interpretation of the user’s response to the query issued by ‘\-ok’, but this is
not the case for GNU find.

LC CTYPE
This variable affects the treatment of character classes used with the ‘-name’
test, if the system’s fnmatch library function supports this. It has no effect on
the behaviour of the ‘-ok’ expression.

LC MESSAGES
Determines the locale to be used for internationalised messages.

NLSPATH
Determines the location of the internationalisation message catalogues.

PATH Affects the directories which are searched to find the executables invoked by
‘-exec’, ‘-execdir’ ‘-ok’ and ‘-okdir’. If the PATH environment variable
includes the current directory (by explicitly including ‘.’ or by having an empty
element), and the find command line includes ‘-execdir’ or ‘-okdir’, find will
refuse to run. See Chapter 9 [Security Considerations], page 70, for a more
detailed discussion of security matters.

POSIXLY CORRECT
Determines the block size used by ‘-ls’ and ‘-fls’. If POSIXLY CORRECT
is set, blocks are units of 512 bytes. Otherwise they are units of 1024 bytes.

TZ Affects the time zone used for some of the time-related format directives of
‘-printf’ and ‘-fprintf’.

Chapter 7: Common Tasks 60

7 Common Tasks

The sections that follow contain some extended examples that both give a good idea of the
power of these programs, and show you how to solve common real-world problems.

7.1 Viewing And Editing

To view a list of files that meet certain criteria, simply run your file viewing program with
the file names as arguments. Shells substitute a command enclosed in backquotes with its
output, so the whole command looks like this:

less ‘find /usr/include -name ’*.h’ | xargs grep -l mode_t‘

You can edit those files by giving an editor name instead of a file viewing program:

emacs ‘find /usr/include -name ’*.h’ | xargs grep -l mode_t‘

Because there is a limit to the length of any individual command line, there is a limit to
the number of files that can be handled in this way. We can get around this difficulty by
using xargs like this:

find /usr/include -name ’*.h’ | xargs grep -l mode_t > todo

xargs --arg-file=todo emacs

Here, xargs will run emacs as many times as necessary to visit all of the files listed in
the file todo.

7.2 Archiving

You can pass a list of files produced by find to a file archiving program. GNU tar and
cpio can both read lists of file names from the standard input—either delimited by nulls
(the safe way) or by blanks (the lazy, risky default way). To use null-delimited names, give
them the ‘--null’ option. You can store a file archive in a file, write it on a tape, or send
it over a network to extract on another machine.

One common use of find to archive files is to send a list of the files in a directory tree
to cpio. Use ‘-depth’ so if a directory does not have write permission for its owner, its
contents can still be restored from the archive since the directory’s permissions are restored
after its contents. Here is an example of doing this using cpio; you could use a more
complex find expression to archive only certain files.

find . -depth -print0 |

cpio --create --null --format=crc --file=/dev/nrst0

You could restore that archive using this command:

cpio --extract --null --make-dir --unconditional \

--preserve --file=/dev/nrst0

Here are the commands to do the same things using tar:

find . -depth -print0 |

tar --create --null --files-from=- --file=/dev/nrst0

tar --extract --null --preserve-perm --same-owner \

--file=/dev/nrst0

Here is an example of copying a directory from one machine to another:

Chapter 7: Common Tasks 61

find . -depth -print0 | cpio -0o -Hnewc |

rsh other-machine "cd ‘pwd‘ && cpio -i0dum"

7.3 Cleaning Up

This section gives examples of removing unwanted files in various situations. Here is a
command to remove the CVS backup files created when an update requires a merge:

find . -name ’.#*’ -print0 | xargs -0r rm -f

The command above works, but the following is safer:

find . -name ’.#*’ -depth -delete

You can run this command to clean out your clutter in /tmp. You might place it in the
file your shell runs when you log out (.bash_logout, .logout, or .zlogout, depending on
which shell you use).

find /tmp -depth -user "$LOGNAME" -type f -delete

If your find command removes directories, you may find that you get a spurious error
message when find tries to recurse into a directory that has now been removed. Using the
‘-depth’ option will normally resolve this problem.

To remove old Emacs backup and auto-save files, you can use a command like the
following. It is especially important in this case to use null-terminated file names because
Emacs packages like the VM mailer often create temporary file names with spaces in them,
like #reply to David J. MacKenzie<1>#.

find ~ \(-name ’*~’ -o -name ’#*#’ \) -print0 |

xargs --no-run-if-empty --null rm -vf

Removing old files from /tmp is commonly done from cron:

find /tmp /var/tmp -not -type d -mtime +3 -delete

find /tmp /var/tmp -depth -mindepth 1 -type d -empty -delete

The second find command above uses ‘-depth’ so it cleans out empty directories depth-
first, hoping that the parents become empty and can be removed too. It uses ‘-mindepth’
to avoid removing /tmp itself if it becomes totally empty.

7.4 Strange File Names

find can help you remove or rename a file with strange characters in its name. People are
sometimes stymied by files whose names contain characters such as spaces, tabs, control
characters, or characters with the high bit set. The simplest way to remove such files is:

rm -i some*pattern*that*matches*the*problem*file

rm asks you whether to remove each file matching the given pattern. If you are using an
old shell, this approach might not work if the file name contains a character with the high
bit set; the shell may strip it off. A more reliable way is:

find . -maxdepth 1 tests -okdir rm ’{}’ \;

where tests uniquely identify the file. The ‘-maxdepth 1’ option prevents find from wasting
time searching for the file in any subdirectories; if there are no subdirectories, you may omit
it. A good way to uniquely identify the problem file is to figure out its inode number; use

Chapter 7: Common Tasks 62

ls -i

Suppose you have a file whose name contains control characters, and you have found
that its inode number is 12345. This command prompts you for whether to remove it:

find . -maxdepth 1 -inum 12345 -okdir rm -f ’{}’ \;

If you don’t want to be asked, perhaps because the file name may contain a strange
character sequence that will mess up your screen when printed, then use ‘-execdir’ instead
of ‘-okdir’.

If you want to rename the file instead, you can use mv instead of rm:

find . -maxdepth 1 -inum 12345 -okdir mv ’{}’ new-file-name \;

7.5 Fixing Permissions

Suppose you want to make sure that everyone can write to the directories in a certain
directory tree. Here is a way to find directories lacking either user or group write permission
(or both), and fix their permissions:

find . -type d -not -perm -ug=w | xargs chmod ug+w

You could also reverse the operations, if you want to make sure that directories do not have
world write permission.

7.6 Classifying Files

If you want to classify a set of files into several groups based on different criteria, you can
use the comma operator to perform multiple independent tests on the files. Here is an
example:

find / -type d \(-perm -o=w -fprint allwrite , \

-perm -o=x -fprint allexec \)

echo "Directories that can be written to by everyone:"

cat allwrite

echo ""

echo "Directories with search permissions for everyone:"

cat allexec

find has only to make one scan through the directory tree (which is one of the most
time consuming parts of its work).

Chapter 8: Worked Examples 63

8 Worked Examples

The tools in the findutils package, and in particular find, have a large number of options.
This means that quite often, there is more than one way to do things. Some of the options
and facilities only exist for compatibility with other tools, and findutils provides improved
ways of doing things.

This chapter describes a number of useful tasks that are commonly performed, and
compares the different ways of achieving them.

8.1 Deleting Files

One of the most common tasks that find is used for is locating files that can be deleted.
This might include:

• Files last modified more than 3 years ago which haven’t been accessed for at least 2
years

• Files belonging to a certain user

• Temporary files which are no longer required

This example concentrates on the actual deletion task rather than on sophisticated ways
of locating the files that need to be deleted. We’ll assume that the files we want to delete
are old files underneath /var/tmp/stuff.

8.1.1 The Traditional Way

The traditional way to delete files in var/tmp/stuff that have not been modified in over
90 days would have been:

find /var/tmp/stuff -mtime +90 -exec /bin/rm {} \;

The above command uses ‘-exec’ to run the /bin/rm command to remove each file.
This approach works and in fact would have worked in Version 7 Unix in 1979. However,
there are a number of problems with this approach.

The most obvious problem with the approach above is that it causes find to fork every
time it finds a file that needs to delete, and the child process then has to use the exec

system call to launch /bin/rm. All this is quite inefficient. If we are going to use /bin/rm

to do this job, it is better to make it delete more than one file at a time.

The most obvious way of doing this is to use the shell’s command expansion feature:

/bin/rm ‘find /var/tmp/stuff -mtime +90 -print‘

or you could use the more modern form

/bin/rm $(find /var/tmp/stuff -mtime +90 -print)

The commands above are much more efficient than the first attempt. However, there
is a problem with them. The shell has a maximum command length which is imposed by
the operating system (the actual limit varies between systems). This means that while the
command expansion technique will usually work, it will suddenly fail when there are lots of
files to delete. Since the task is to delete unwanted files, this is precisely the time we don’t
want things to go wrong.

Chapter 8: Worked Examples 64

8.1.2 Making Use of xargs

So, is there a way to be more efficient in the use of fork() and exec() without running up
against this limit? Yes, we can be almost optimally efficient by making use of the xargs

command. The xargs command reads arguments from its standard input and builds them
into command lines. We can use it like this:

find /var/tmp/stuff -mtime +90 -print | xargs /bin/rm

For example if the files found by find are /var/tmp/stuff/A, /var/tmp/stuff/B and
/var/tmp/stuff/C then xargs might issue the commands

/bin/rm /var/tmp/stuff/A /var/tmp/stuff/B

/bin/rm /var/tmp/stuff/C

The above assumes that xargs has a very small maximum command line length. The
real limit is much larger but the idea is that xargs will run /bin/rm as many times as
necessary to get the job done, given the limits on command line length.

This usage of xargs is pretty efficient, and the xargs command is widely implemented
(all modern versions of Unix offer it). So far then, the news is all good. However, there is
bad news too.

8.1.3 Unusual characters in filenames

Unix-like systems allow any characters to appear in file names with the exception of the
ASCII NUL character and the backslash. Backslashes can occur in path names (as the
directory separator) but not in the names of actual directory entries. This means that the
list of files that xargs reads could in fact contain white space characters — spaces, tabs and
newline characters. Since by default, xargs assumes that the list of files it is reading uses
white space as an argument separator, it cannot correctly handle the case where a filename
actually includes white space. This makes the default behaviour of xargs almost useless
for handling arbitrary data.

To solve this problem, GNU findutils introduced the ‘-print0’ action for find. This
uses the ASCII NUL character to separate the entries in the file list that it produces. This is
the ideal choice of separator since it is the only character that cannot appear within a path
name. The ‘-0’ option to xargs makes it assume that arguments are separated with ASCII
NUL instead of white space. It also turns off another misfeature in the default behaviour
of xargs, which is that it pays attention to quote characters in its input. Some versions of
xargs also terminate when they see a lone ‘_’ in the input, but GNU find no longer does
that (since it has become an optional behaviour in the Unix standard).

So, putting find -print0 together with xargs -0 we get this command:
find /var/tmp/stuff -mtime +90 -print0 | xargs -0 /bin/rm

The result is an efficient way of proceeding that correctly handles all the possible charac-
ters that could appear in the list of files to delete. This is good news. However, there is, as
I’m sure you’re expecting, also more bad news. The problem is that this is not a portable
construct; although other versions of Unix (notable BSD-derived ones) support ‘-print0’,
it’s not universal. So, is there a more universal mechanism?

8.1.4 Going back to -exec

There is indeed a more universal mechanism, which is a slight modification to the ‘-exec’
action. The normal ‘-exec’ action assumes that the command to run is terminated with a

Chapter 8: Worked Examples 65

semicolon (the semicolon normally has to be quoted in order to protect it from interpretation
as the shell command separator). The SVR4 edition of Unix introduced a slight variation,
which involves terminating the command with ‘+’ instead:

find /var/tmp/stuff -mtime +90 -exec /bin/rm {} \+

The above use of ‘-exec’ causes find to build up a long command line and then issue it.
This can be less efficient than some uses of xargs; for example xargs allows new command
lines to be built up while the previous command is still executing, and allows you to specify
a number of commands to run in parallel. However, the find ... -exec ... + construct
has the advantage of wide portability. GNU findutils did not support ‘-exec ... +’ until
version 4.2.12; one of the reasons for this is that it already had the ‘-print0’ action in any
case.

8.1.5 A more secure version of -exec

The command above seems to be efficient and portable. However, within it lurks a security
problem. The problem is shared with all the commands we’ve tried in this worked example
so far, too. The security problem is a race condition; that is, if it is possible for somebody
to manipulate the filesystem that you are searching while you are searching it, it is possible
for them to persuade your find command to cause the deletion of a file that you can delete
but they normally cannot.

The problem occurs because the ‘-exec’ action is defined by the POSIX standard to
invoke its command with the same working directory as find had when it was started.
This means that the arguments which replace the {} include a relative path from find’s
starting point down the file that needs to be deleted. For example,

find /var/tmp/stuff -mtime +90 -exec /bin/rm {} \+

might actually issue the command:
/bin/rm /var/tmp/stuff/A /var/tmp/stuff/B /var/tmp/stuff/passwd

Notice the file /var/tmp/stuff/passwd. Likewise, the command:
cd /var/tmp && find stuff -mtime +90 -exec /bin/rm {} \+

might actually issue the command:
/bin/rm stuff/A stuff/B stuff/passwd

If an attacker can rename stuff to something else (making use of their write permissions
in /var/tmp) they can replace it with a symbolic link to /etc. That means that the /bin/rm
command will be invoked on /etc/passwd. If you are running your find command as root,
the attacker has just managed to delete a vital file. All they needed to do to achieve this
was replace a subdirectory with a symbolic link at the vital moment.

There is however, a simple solution to the problem. This is an action which works a
lot like -exec but doesn’t need to traverse a chain of directories to reach the file that it
needs to work on. This is the ‘-execdir’ action, which was introduced by the BSD family
of operating systems. The command,

find /var/tmp/stuff -mtime +90 -execdir /bin/rm {} \+

might delete a set of files by performing these actions:

1. Change directory to /var/tmp/stuff/foo

2. Invoke /bin/rm ./file1 ./file2 ./file3

3. Change directory to /var/tmp/stuff/bar

Chapter 8: Worked Examples 66

4. Invoke /bin/rm ./file99 ./file100 ./file101

This is a much more secure method. We are no longer exposed to a race condition. For
many typical uses of find, this is the best strategy. It’s reasonably efficient, but the length
of the command line is limited not just by the operating system limits, but also by how
many files we actually need to delete from each directory.

Is it possible to do any better? In the case of general file processing, no. However, in
the specific case of deleting files it is indeed possible to do better.

8.1.6 Using the -delete action

The most efficient and secure method of solving this problem is to use the ‘-delete’ action:
find /var/tmp/stuff -mtime +90 -delete

This alternative is more efficient than any of the ‘-exec’ or ‘-execdir’ actions, since it
entirely avoids the overhead of forking a new process and using exec to run /bin/rm. It is
also normally more efficient than xargs for the same reason. The file deletion is performed
from the directory containing the entry to be deleted, so the ‘-delete’ action has the same
security advantages as the ‘-execdir’ action has.

The ‘-delete’ action was introduced by the BSD family of operating systems.

8.1.7 Improving things still further

Is it possible to improve things still further? Not without either modifying the system
library to the operating system or having more specific knowledge of the layout of the
filesystem and disk I/O subsystem, or both.

The find command traverses the filesystem, reading directories. It then issues a separate
system call for each file to be deleted. If we could modify the operating system, there are
potential gains that could be made:

• We could have a system call to which we pass more than one filename for deletion

• Alternatively, we could pass in a list of inode numbers (on GNU/Linux systems,
readdir() also returns the inode number of each directory entry) to be deleted.

The above possibilities sound interesting, but from the kernel’s point of view it is difficult
to enforce standard Unix access controls for such processing by inode number. Such a facility
would probably need to be restricted to the superuser.

Another way of improving performance would be to increase the parallelism of the proc-
ess. For example if the directory hierarchy we are searching is actually spread across a
number of disks, we might somehow be able to arrange for find to process each disk in
parallel. In practice GNU find doesn’t have such an intimate understanding of the system’s
filesystem layout and disk I/O subsystem.

However, since the system administrator can have such an understanding they can take
advantage of it like so:

find /var/tmp/stuff1 -mtime +90 -delete &

find /var/tmp/stuff2 -mtime +90 -delete &

find /var/tmp/stuff3 -mtime +90 -delete &

find /var/tmp/stuff4 -mtime +90 -delete &

wait

In the example above, four separate instances of find are used to search four subdi-
rectories in parallel. The wait command simply waits for all of these to complete. Whether

Chapter 8: Worked Examples 67

this approach is more or less efficient than a single instance of find depends on a number
of things:

• Are the directories being searched in parallel actually on separate disks? If not, this
parallel search might just result in a lot of disk head movement and so the speed might
even be slower.

• Other activity - are other programs also doing things on those disks?

8.1.8 Conclusion

The fastest and most secure way to delete files with the help of find is to use ‘-delete’.
Using xargs -0 -P N can also make effective use of the disk, but it is not as secure.

In the case where we’re doing things other than deleting files, the most secure alternative
is ‘-execdir ... +’, but this is not as portable as the insecure action ‘-exec ... +’.

The ‘-delete’ action is not completely portable, but the only other possibility which
is as secure (‘-execdir’) is no more portable. The most efficient portable alternative is
‘-exec ...+’, but this is insecure and isn’t supported by versions of GNU findutils prior to
4.2.12.

8.2 Updating A Timestamp File

Suppose we have a directory full of files which is maintained with a set of automated tools;
perhaps one set of tools updates them and another set of tools uses the result. In this
situation, it might be useful for the second set of tools to know if the files have recently
been changed. It might be useful, for example, to have a ’timestamp’ file which gives the
timestamp on the newest file in the collection.

We can use find to achieve this, but there are several different ways to do it.

8.2.1 Updating the Timestamp The Wrong Way

The obvious but wrong answer is just to use ‘-newer’:-

find subdir -newer timestamp -exec touch -r {} timestamp \;

This does the right sort of thing but has a bug. Suppose that two files in the subdirectory
have been updated, and that these are called file1 and file2. The command above will
update timestamp with the modification time of file1 or that of file2, but we don’t know
which one. Since the timestamps on file1 and file2 will in general be different, this could
well be the wrong value.

One solution to this problem is to modify find to recheck the modification time
of timestamp every time a file is to be compared against it, but that will reduce the
performance of find.

8.2.2 Using the test utility to compare timestamps

The test command can be used to compare timestamps:

find subdir -exec test {} -nt timestamp \; -exec touch -r {} timestamp \;

This will ensure that any changes made to the modification time of timestamp that
take place during the execution of find are taken into account. This resolves our earlier
problem, but unfortunately this runs much more slowly.

Chapter 8: Worked Examples 68

8.2.3 A combined approach

We can of course still use ‘-newer’ to cut down on the number of calls to test:
find subdir -newer timestamp -a \

-exec test {} -nt timestamp \; -a \

-exec touch -r {} timestamp \;

Here, the ‘-newer’ test excludes all the files which are definitely older than the time-
stamp, but all the files which are newer than the old value of the timestamp are compared
against the current updated timestamp.

This is indeed faster in general, but the speed difference will depend on how many
updated files there are.

8.2.4 Using -printf and sort to compare timestamps

It is possible to use the ‘-printf’ action to abandon the use of test entirely:
newest=$(find subdir -newer timestamp -printf "%A%p\n" |

sort -n |

tail -1 |

cut -d: -f2-)

touch -r "${newest:-timestamp}" timestamp

The command above works by generating a list of the timestamps and names of all the
files which are newer than the timestamp. The sort, tail and cut commands simply pull
out the name of the file with the largest timestamp value (that is, the latest file). The
touch command is then used to update the timestamp,

The "${newest:-timestamp}" expression simply expands to the value of $newest if
that variable is set, but to timestamp otherwise. This ensures that an argument is always
given to the ‘-r’ option of the touch command.

This approach seems quite efficient, but unfortunately it has a bug. Many operating
systems now keep file modification time information at a granularity which is finer than
one second. Unfortunately the ‘%A@’ format for ‘-printf’ only prints a whole-number value
currently; that is, these values are at a one-second granularity. This means that in our
example above, ‘$newest’ will be the name of a file which is no more than one second older
than the newest file, but may indeed be older.

It would be possible to solve this problem with some kind of loop:
while true; do

newest=$(find subdir -newer timestamp -printf "%A@:%p\n" |

sort -n |

tail -1 |

cut -d: -f2-)

if test -z "$newest" ; then

break

else

touch -r "$newest" timestamp

fi

done

A better fix for this problem would be to allow the ‘%A@’ format to produce a result
having a fractional part, too. While this is planned for GNU find, it hasn’t been done yet.

8.2.5 Coping with sub-second timestamp resolution

Another tool which often works with timestamps is make. We can use find to generate a
Makefile file on the fly and then use make to update the timestamps:

Chapter 8: Worked Examples 69

makefile=$(mktemp)

find subdir \

\(\! -xtype l \) \

-newer timestamp \

-printf "timestamp:: %p\n\ttouch -r %p timestamp\n\n" > "$makefile"

make -f "$makefile"

rm -f "$makefile"

Unfortunately although the solution above is quite elegant, it fails to cope with white
space within file names, and adjusting it to do so would require a rather complex shell
script.

8.2.6 Coping with odd filenames too

We can fix both of these problems (looping and problems with white space), and do things
more efficiently too. The following command works with newlines and doesn’t need to sort
the list of filenames.

find subdir -newer timestamp -printf "%A@:%p\0" |

perl -0 newest.pl |

xargs --no-run-if-empty --null -i \

find {} -maxdepth 0 -newer timestamp -exec touch -r {} timestamp \;

The first find command generates a list of files which are newer than the original time-
stamp file, and prints a list of them with their timestamps. The newest.pl script simply
filters out all the filenames which have timestamps which are older than whatever the newest
file is:-

#! /usr/bin/perl -0

my @newest = ();

my $latest_stamp = undef;

while (<>) {

my ($stamp, $name) = split(/:/);

if (!defined($latest_stamp) || ($tstamp > $latest_stamp)) {

$latest_stamp = $stamp;

@newest = ();

}

if ($tstamp >= $latest_stamp) {

push @newest, $name;

}

}

print join("\0", @newest);

This prints a list of zero or more files, all of which are newer than the original time-
stamp file, and which have the same timestamp as each other, to the nearest second. The
second find command takes each resulting file one at a time, and if that is newer than the
timestamp file, the timestamp is updated.

Chapter 9: Security Considerations 70

9 Security Considerations

Security considerations are important if you are using find or xargs to search for or process
files that don’t belong to you or which other people have control. Security considerations
relating to locate may also apply if you have files which you do not want others to see.

The most severe forms of security problems affecting find and related programs are
when third parties bring about a situation allowing them to do something they would
normally not be able to accomplish. This is called privilege elevation. This might include
deleting files they would not normally be able to delete. It is common for the operating
system to periodically invoke find for self-maintenance purposes. These invocations of
find are particularly problematic from a security point of view as these are often invoked
by the superuser and search the entire filesystem hierarchy. Generally, the severity of any
associated problem depends on what the system is going to do with the files found by find.

9.1 Levels of Risk

There are some security risks inherent in the use of find, xargs and (to a lesser extent)
locate. The severity of these risks depends on what sort of system you are using:

High risk Multi-user systems where you do not control (or trust) the other users, and on
which you execute find, including areas where those other users can manipulate
the filesystem (for example beneath /home or /tmp).

Medium Risk
Systems where the actions of other users can create file names chosen by them,
but to which they don’t have access while find is being run. This access might
include leaving programs running (shell background jobs, at or cron tasks, for
example). On these sorts of systems, carefully written commands (avoiding use
of ‘-print’ for example) should not expose you to a high degree of risk. Most
systems fall into this category.

Low Risk Systems to which untrusted parties do not have access, cannot create file names
of their own choice (even remotely) and which contain no security flaws which
might enable an untrusted third party to gain access. Most systems do not fall
into this category because there are many ways in which external parties can
affect the names of files that are created on your system. The system on which
I am writing this for example automatically downloads software updates from
the Internet; the names of the files in which these updates exist are chosen by
third parties1.

In the discussion above, “risk” denotes the likelihood that someone can cause find,
xargs, locate or some other program which is controlled by them to do something you did
not intend. The levels of risk suggested do not take any account of the consequences of this
sort of event. That is, if you operate a “low risk” type system, but the consequences of a
security problem are disastrous, then you should still give serious thought to all the possible
security problems, many of which of course will not be discussed here – this section of the
manual is intended to be informative but not comprehensive or exhaustive.

1 Of course, I trust these parties to a large extent anyway, because I install software provided by them; I
choose to trust them in this way, and that’s a deliberate choice

Chapter 9: Security Considerations 71

If you are responsible for the operation of a system where the consequences of a security
problem could be very important, you should do two things:-

1. Define a security policy which defines who is allowed to do what on your system.

2. Seek competent advice on how to enforce your policy, detect breaches of that policy,
and take account of any potential problems that might fall outside the scope of your
policy.

9.2 Security Considerations for find

Some of the actions find might take have a direct effect; these include -exec and -delete.
However, it is also common to use -print explicitly or implicitly, and so if find produces
the wrong list of file names, that can also be a security problem; consider the case for
example where find is producing a list of files to be deleted.

We normally assume that the find command line expresses the file selection criteria and
actions that the user had in mind – that is, the command line is “trusted” data.

From a security analysis point of view, the output of find should be correct; that is, the
output should contain only the names of those files which meet the user’s criteria specified
on the command line. This applies for the -exec and -delete actions; one can consider
these to be part of the output.

On the other hand, the contents of the filesystem can be manipulated by other people,
and hence we regard this as “untrusted” data. This implies that the find command line is
a filter which converts the untrusted contents of the filesystem into a correct list of output
files.

The filesystem will in general change while find is searching it; in fact, most of the
potential security problems with find relate to this issue in some way.

Race conditions are a general class of security problem where the relative ordering of
actions taken by find (for example) and something else are critically important in getting
the correct and expected result2 .

For find, an attacker might move or rename files or directories in the hope that an action
might be taken against a file which was not normally intended to be affected. Alternatively,
this sort of attack might be intended to persuade find to search part of the filesystem which
would not normally be included in the search (defeating the -prune action for example).

9.2.1 Problems with -exec and filenames

It is safe in many cases to use the ‘-execdir’ action with any file name. Because ‘-execdir’
prefixes the arguments it passes to programs with ‘./’, you will not accidentally pass an
argument which is interpreted as an option. For example the file -f would be passed to rm

as ./-f, which is harmless.

However, your degree of safety does depend on the nature of the program you are running.
For example constructs such as these two commands

find -exec sh -c "something {}" \;

find -execdir sh -c "something {}" \;

2 This is more or less the definition of the term “race condition”

Chapter 9: Security Considerations 72

are very dangerous. The reason for this is that the ‘{}’ is expanded to a filename
which might contain a semicolon or other characters special to the shell. If for example
someone creates the file /tmp/foo; rm -rf $HOME then the two commands above could
delete someone’s home directory.

So for this reason do not run any command which will pass untrusted data (such as
the names of files) to commands which interpret arguments as commands to be further
interpreted (for example ‘sh’).

9.2.2 Changing the Current Working Directory

As find searches the filesystem, it finds subdirectories and then searches within them by
changing its working directory. First, find reaches and recognises a subdirectory. It then
decides if that subdirectory meets the criteria for being searched; that is, any ‘-xdev’ or
‘-prune’ expressions are taken into account. The find program will then change working
directory and proceed to search the directory.

A race condition attack might take the form that once the checks relevant to ‘-xdev’ and
‘-prune’ have been done, an attacker might rename the directory that was being considered,
and put in its place a symbolic link that actually points somewhere else.

The idea behind this attack is to fool find into going into the wrong directory. This
would leave find with a working directory chosen by an attacker, bypassing any protection
apparently provided by ‘-xdev’ and ‘-prune’, and any protection provided by being able to
not list particular directories on the find command line. This form of attack is particularly
problematic if the attacker can predict when the find command will be run, as is the case
with cron tasks for example.

GNU find has specific safeguards to prevent this general class of problem. The exact
form of these safeguards depends on the properties of your system.

9.2.2.1 O NOFOLLOW

If your system supports the O NOFOLLOW flag3 to the open(2) system call, find uses it
when safely changing directory. The target directory is first opened and then find changes
working directory with the fchdir() system call. This ensures that symbolic links are not
followed, preventing the sort of race condition attack in which use is made of symbolic links.

If for any reason this approach does not work, find will fall back on the method which
is normally used if O NOFOLLOW is not supported.

You can tell if your system supports O NOFOLLOW by running

find --version

This will tell you the version number and which features are enabled. For example, if I
run this on my system now, this gives:

GNU find version 4.2.18-CVS

Features enabled: D_TYPE O_NOFOLLOW(enabled)

Here, you can see that I am running a version of find which was built from the
development (CVS) code prior to the release of findutils-4.2.18, and that the D TYPE
and O NOFOLLOW features are present. O NOFOLLOW is qualified with “enabled”.

3 GNU/Linux (kernel version 2.1.126 and later) and FreeBSD (3.0-CURRENT and later) support this

Chapter 9: Security Considerations 73

This simply means that the current system seems to support O NOFOLLOW. This check
is needed because it is possible to build find on a system that defines O NOFOLLOW and
then run it on a system that ignores the O NOFOLLOW flag. We try to detect such cases
at startup by checking the operating system and version number; when this happens you
will see “O NOFOLLOW(disabled)” instead.

9.2.2.2 Systems without O NOFOLLOW

The strategy for preventing this type of problem on systems that lack support for the
O NOFOLLOW flag is more complex. Each time find changes directory, it examines the
directory it is about to move to, issues the chdir() system call, and then checks that it
has ended up in the subdirectory it expected. If all is as expected, processing continues as
normal. However, there are two main reasons why the directory might change: the use of an
automounter and the someone removing the old directory and replacing it with something
else while find is trying to descend into it.

Where a filesystem “automounter” is in use it can be the case that the use of the chdir()
system call can itself cause a new filesystem to be mounted at that point. On systems that
do not support O NOFOLLOW, this will cause find’s security check to fail.

However, this does not normally represent a security problem, since the automounter
configuration is normally set up by the system administrator. Therefore, if the chdir()

sanity check fails, find will make one more attempt. If that succeeds, execution carries on
as normal. This is the usual case for automounters.

Where an attacker is trying to exploit a race condition, the problem may not have gone
away on the second attempt. If this is the case, find will issue a warning message and
then ignore that subdirectory. When this happens, actions such as ‘-exec’ or ‘-print’ may
already have taken place for the problematic subdirectory. This is because find applies tests
and actions to directories before searching within them (unless ‘-depth’ was specified).

Because of the nature of the directory-change operation and security check, in the worst
case the only things that find would have done with the directory are to move into it and
back out to the original parent. No operations would have been performed within that
directory.

9.2.3 Race Conditions with -exec

The ‘-exec’ action causes another program to be run. It passes to the program the name
of the file which is being considered at the time. The invoked program will typically then
perform some action on that file. Once again, there is a race condition which can be
exploited here. We shall take as a specific example the command

find /tmp -path /tmp/umsp/passwd -exec /bin/rm

In this simple example, we are identifying just one file to be deleted and invoking /bin/rm
to delete it. A problem exists because there is a time gap between the point where find

decides that it needs to process the ‘-exec’ action and the point where the /bin/rm comm-
and actually issues the unlink() system call to delete the file from the filesystem. Within
this time period, an attacker can rename the /tmp/umsp directory, replacing it with a sym-
bolic link to /etc. There is no way for /bin/rm to determine that it is working on the same
file that find had in mind. Once the symbolic link is in place, the attacker has persuaded
find to cause the deletion of the /etc/passwd file, which is not the effect intended by the
command which was actually invoked.

Chapter 9: Security Considerations 74

One possible defence against this type of attack is to modify the behaviour of ‘-exec’
so that the /bin/rm command is run with the argument ./passwd and a suitable choice of
working directory. This would allow the normal sanity check that find performs to protect
against this form of attack too. Unfortunately, this strategy cannot be used as the POSIX
standard specifies that the current working directory for commands invoked with ‘-exec’
must be the same as the current working directory from which find was invoked. This
means that the ‘-exec’ action is inherently insecure and can’t be fixed.

GNU find implements a more secure variant of the ‘-exec’ action, ‘-execdir’. The
‘-execdir’ action ensures that it is not necessary to dereference subdirectories to process
target files. The current directory used to invoke programs is the same as the directory in
which the file to be processed exists (/tmp/umsp in our example, and only the basename of
the file to be processed is passed to the invoked command, with a ‘./’ prepended (giving
./passwd in our example).

The ‘-execdir’ action refuses to do anything if the current directory is included in the
$PATH environment variable. This is necessary because ‘-execdir’ runs programs in the
same directory in which it finds files – in general, such a directory might be writable by
untrusted users. For similar reasons, ‘-execdir’ does not allow ‘{}’ to appear in the name
of the command to be run.

9.2.4 Race Conditions with -print and -print0

The ‘-print’ and ‘-print0’ actions can be used to produce a list of files matching some
criteria, which can then be used with some other command, perhaps with xargs. Unfortu-
nately, this means that there is an unavoidable time gap between find deciding that one
or more files meet its criteria and the relevant command being executed. For this reason,
the ‘-print’ and ‘-print0’ actions are just as insecure as ‘-exec’.

In fact, since the construction

find ... -print | xargs ...

does not cope correctly with newlines or other “white space” in file names, and copes po-
orly with file names containing quotes, the ‘-print’ action is less secure even than ‘-print0’.

9.3 Security Considerations for xargs

The description of the race conditions affecting the ‘-print’ action of find shows that
xargs cannot be secure if it is possible for an attacker to modify a filesystem after find has
started but before xargs has completed all its actions.

However, there are other security issues that exist even if it is not possible for an attacker
to have access to the filesystem in real time. Firstly, if it is possible for an attacker to create
files with names of their choice on the filesystem, then xargs is insecure unless the ‘-0’
option is used. If a file with the name /home/someuser/foo/bar\n/etc/passwd exists
(assume that ‘\n’ stands for a newline character), then find ... -print can be persuaded
to print three separate lines:

/home/someuser/foo/bar

/etc/passwd

If it finds a blank line in the input, xargs will ignore it. Therefore, if some action is
to be taken on the basis of this list of files, the /etc/passwd file would be included even

Chapter 9: Security Considerations 75

if this was not the intent of the person running find. There are circumstances in which
an attacker can use this to their advantage. The same consideration applies to file names
containing ordinary spaces rather than newlines, except that of course the list of file names
will no longer contain an “extra” newline.

This problem is an unavoidable consequence of the default behaviour of the xargs com-
mand, which is specified by the POSIX standard. The only ways to avoid this problem are
either to avoid all use of xargs in favour for example of ‘find -exec’ or (where available)
‘find -execdir’, or to use the ‘-0’ option, which ensures that xargs considers file names
to be separated by ASCII NUL characters rather than whitespace. However, useful as this
option is, the POSIX standard does not make it mandatory.

9.4 Security Considerations for locate

9.4.1 Race Conditions

It is fairly unusual for the output of locate to be fed into another command. However, if
this were to be done, this would raise the same set of security issues as the use of ‘find
... -print’. Although the problems relating to whitespace in file names can be resolved
by the ‘-0’ option of locate, this still leaves the race condition problems associated with
‘find ... -print0’. There is no way to avoid these problems in the case of locate.

9.4.2 Long File Name Bugs with Old-Format Databases

All versions of locate prior to 4.2.31, and also versions 4.3.0 to 4.3.6, have a bug in the
way that old-format databases are read. They read file names into a fixed-length 1026 byte
buffer, allocated on the heap. This buffer is not extended if file names are too long to fit
into the buffer. No range checking on the length of the filename is performed. This could
in theory lead to a privilege escalation attack.

On systems using the old database format and affected versions of locate, carefully-
chosen long file names could in theory allow malicious users to run code of their choice as
any user invoking locate.

If remote users can choose the names of files stored on your system, and these files are
indexed by updatedb, this may be a remote security vulnerability. Findutils version 4.2.31
fixes this problem. The updatedb, bigram and code programs do no appear to be affected.

If you are also using GNU coreutils, you can use the following command to determine
the length of the longest file name on a given system:

find / -print0 | tr -c ’\0’ ’x’ | tr ’\0’ ’\n’ | wc -L

Although this problem is significant, the old database format is not the default, and use
of the old database format is not common. Most installations and most users will not be
affected by this problem.

9.5 Summary

Where untrusted parties can create files on the system, or affect the names of files that
are created, all uses for find, locate and xargs have known security problems except the
following:

Chapter 9: Security Considerations 76

Informational use only
Uses where the programs are used to prepare lists of file names upon which no
further action will ever be taken.

‘-delete’ Use of the ‘-delete’ action with find to delete files which meet specified criteria

‘-execdir’
Use of the ‘-execdir’ action with find where the PATH environment variable
contains directories which contain only trusted programs.

Chapter 10: Error Messages 77

10 Error Messages

This section describes some of the error messages sometimes made by find, xargs, or
locate, explains them and in some cases provides advice as to what you should do about
this.

This manual is written in English. The GNU findutils software features translations of
error messages for many languages. For this reason the error messages produced by the
programs are made to be as self-explanatory as possible. This approach avoids leaving
people to figure out which test an English-language error message corresponds to. Error
messages which are self-explanatory will not normally be mentioned in this document.
For those messages mentioned in this document, only the English-language version of the
message will be listed.

10.1 Error Messages From find

‘invalid predicate ‘-foo’’
This means that the find command line included something that started with
a dash or other special character. The find program tried to interpret this as
a test, action or option, but didn’t recognise it. If it was intended to be a test,
check what was specified against the documentation. If, on the other hand,
the string is the name of a file which has been expanded from a wildcard (for
example because you have a ‘*’ on the command line), consider using ‘./*’ or
just ‘.’ instead.

‘unexpected extra predicate’
This usually happens if you have an extra bracket on the command line (for
example ‘find . -print \)’).

‘Warning: filesystem /path/foo has recently been mounted’
‘Warning: filesystem /path/foo has recently been unmounted’

These messages might appear when find moves into a directory and finds that
the device number and inode are different to what it expected them to be. If
the directory find has moved into is on an network filesystem (NFS), it will
not issue this message, because automount frequently mounts new filesystems
on directories as you move into them (that is how it knows you want to use the
filesystem). So, if you do see this message, be wary — automount may not have
been responsible. Consider the possibility that someone else is manipulating
the filesystem while find is running. Some people might do this in order to
mislead find or persuade it to look at one set of files when it thought it was
looking at another set.

‘/path/foo changed during execution of find (old device number 12345, new

device number 6789, filesystem type is <whatever>) [ref XXX]’
This message is issued when findmoves into a directory and ends up somewhere
it didn’t expect to be. This happens in one of two circumstances. Firstly, this
happens when automount intervenes on a system where find doesn’t know how
to determine what the current set of mounted filesystems is.

Secondly, this can happen when the device number of a directory appears
to change during a change of current directory, but find is moving up the

Chapter 10: Error Messages 78

filesystem hierarchy rather than down into it. In order to prevent find wander-
ing off into some unexpected part of the filesystem, we stop it at this point.

‘Don’t know how to use getmntent() to read ‘/etc/mtab’. This is a bug.’
This message is issued when a problem similar to the above occurs on a system
where find doesn’t know how to figure out the current list of mount points.
Ask for help on bug-findutils@gnu.org.

‘/path/foo/bar changed during execution of find (old inode number 12345, new

inode number 67893, filesystem type is <whatever>) [ref XXX]"),’
This message is issued when find moves into a directory and discovers that
the inode number of that directory is different from the inode number that it
obtained when it examined the directory previously. This usually means that
while find was deep in a directory hierarchy doing a time consuming operation,
somebody has moved one of the parent directories to another location in the
same filesystem. This may or may not have been done maliciously. In any case,
find stops at this point to avoid traversing parts of the filesystem that it wasn’t
intended. You can use ls -li or find /path -inum 12345 -o -inum 67893 to
find out more about what has happened.

‘sanity check of the fnmatch() library function failed.’
Please submit a bug report. You may well be asked questions about your
system, and if you compiled the findutils code yourself, you should keep your
copy of the build tree around. The likely explanation is that your system has a
buggy implementation of fnmatch that looks enough like the GNU version to
fool configure, but which doesn’t work properly.

‘cannot fork’
This normally happens if you use the -exec action or something similar (-ok
and so forth) but the system has run out of free process slots. This is either
because the system is very busy and the system has reached its maximum
process limit, or because you have a resource limit in place and you’ve reached
it. Check the system for runaway processes (with ps, if possible). Some process
slots are normally reserved for use by ‘root’.

‘some-program terminated by signal 99’
Some program which was launched with -exec or similar was killed with a fatal
signal. This is just an advisory message.

10.2 Error Messages From xargs

‘environment is too large for exec’
This message means that you have so many environment variables set (or such
large values for them) that there is no room within the system-imposed limits
on program command line argument length to invoke any program. This is an
unlikely situation and is more likely result of an attempt to test the limits of
xargs, or break it. Please try unsetting some environment variables, or exiting
the current shell. You can also use ‘xargs --show-limits’ to understand the
relevant sizes.

mailto:bug-findutils@gnu.org

Chapter 10: Error Messages 79

‘can not fit single argument within argument list size limit’
You are using the ‘-I’ option and xargs doesn’t have enough space to build a
command line because it has read a really large item and it doesn’t fit. You
can probably work around this problem with the ‘-s’ option, but the default
size is pretty large. This is a rare situation and is more likely an attempt to
test the limits of xargs, or break it. Otherwise, you will need to try to shorten
the problematic argument or not use xargs.

‘cannot fork’
See the description of the similar message for find.

‘<program>: exited with status 255; aborting’
When a command run by xargs exits with status 255, xargs is supposed to
stop. If this is not what you intended, wrap the program you are trying to
invoke in a shell script which doesn’t return status 255.

‘<program>: terminated by signal 99’
See the description of the similar message for find.

10.3 Error Messages From locate

‘warning: database ‘/usr/local/var/locatedb’ is more than 8 days old’
The locate program relies on a database which is periodically built by the
updatedb program. That hasn’t happened in a long time. To fix this problem,
run updatedb manually. This can often happen on systems that are generally
not left on, so the periodic “cron” task which normally does this doesn’t get a
chance to run.

‘locate database ‘/usr/local/var/locatedb’ is corrupt or invalid’
This should not happen. Re-run updatedb. If that works, but locate still
produces this error, run locate --version and updatedb --version. These
should produce the same output. If not, you are using a mixed toolset;
check your ‘$PATH’ environment variable and your shell aliases (if you have
any). If both programs claim to be GNU versions, this is a bug; all versions
of these programs should interoperate without problem. Ask for help on
bug-findutils@gnu.org.

10.4 Error Messages From updatedb

The updatedb program (and the programs it invokes) do issue error messages, but none
seem to be candidates for guidance. If you are having a problem understanding one of these,
ask for help on bug-findutils@gnu.org.

mailto:bug-findutils@gnu.org
mailto:bug-findutils@gnu.org

Appendix A: GNU Free Documentation License 80

Appendix A GNU Free Documentation License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or nonc-
ommercially. Secondarily, this License preserves for the author and publisher a way to
get credit for their work, while not being considered responsible for modifications made
by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

Appendix A: GNU Free Documentation License 81

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable
for revising the document straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not Transpar-
ent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix A: GNU Free Documentation License 82

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

Appendix A: GNU Free Documentation License 83

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Do-
cument, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix A: GNU Free Documentation License 84

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sect-
ions Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must
delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted do-
cument, and follow this License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

Appendix A: GNU Free Documentation License 85

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 86

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

find Primary Index 87

find Primary Index

This is a list of all of the primaries (tests, actions, and options) that make up find express-
ions for selecting files. See Section 1.3 [find Expressions], page 3, for more information on
expressions.

(Index is nonexistent)

	Introduction
	Scope
	Overview
	find Expressions

	Finding Files
	Name
	Base Name Patterns
	Full Name Patterns
	Fast Full Name Search
	Shell Pattern Matching

	Links
	Symbolic Links
	Hard Links

	Time
	Age Ranges
	Comparing Timestamps

	Size
	Type
	Owner
	Permissions
	Contents
	Directories
	Filesystems
	Combining Primaries With Operators

	Actions
	Print File Name
	Print File Information
	Escapes
	Format Directives
	Name Directives
	Ownership Directives
	Size Directives
	Location Directives
	Time Directives

	Time Formats
	Time Components
	Date Components
	Combined Time Formats
	Formatting Flags

	Run Commands
	Single File
	Multiple Files
	Unsafe File Name Handling
	Safe File Name Handling
	Unusual Characters in File Names
	Limiting Command Size
	Interspersing File Names

	Querying

	Delete Files
	Adding Tests

	File Name Databases
	Database Locations
	Database Formats
	New Database Format
	Sample Database
	Old Database Format

	Newline Handling

	File Permissions
	Structure of File Permissions
	Symbolic Modes
	Setting Permissions
	Copying Existing Permissions
	Changing Special Permissions
	Conditional Executability
	Making Multiple Changes
	The Umask and Protection

	Numeric Modes

	Reference
	Invoking find
	Warning Messages

	Invoking locate
	Invoking updatedb
	Invoking xargs
	Regular Expressions
	findutils-default regular expression syntax
	awk regular expression syntax
	egrep regular expression syntax
	emacs regular expression syntax
	gnu-awk regular expression syntax
	grep regular expression syntax
	posix-awk regular expression syntax
	posix-basic regular expression syntax
	posix-egrep regular expression syntax
	posix-extended regular expression syntax

	Environment Variables

	Common Tasks
	Viewing And Editing
	Archiving
	Cleaning Up
	Strange File Names
	Fixing Permissions
	Classifying Files

	Worked Examples
	Deleting Files
	The Traditional Way
	Making Use of xargs
	Unusual characters in filenames
	Going back to -exec
	A more secure version of -exec
	Using the -delete action
	Improving things still further
	Conclusion

	Updating A Timestamp File
	Updating the Timestamp The Wrong Way
	Using the test utility to compare timestamps
	A combined approach
	Using -printf and sort to compare timestamps
	Coping with sub-second timestamp resolution
	Coping with odd filenames too

	Security Considerations
	Levels of Risk
	Security Considerations for find
	Problems with -exec and filenames
	Changing the Current Working Directory
	O_NOFOLLOW
	Systems without O_NOFOLLOW

	Race Conditions with -exec
	Race Conditions with -print and -print0

	Security Considerations for xargs
	Security Considerations for locate
	Race Conditions
	Long File Name Bugs with Old-Format Databases

	Summary

	Error Messages
	Error Messages From find
	Error Messages From xargs
	Error Messages From locate
	Error Messages From updatedb

	GNU Free Documentation License
	find Primary Index

