PointBase
v

Developer’s Guide

Version 4.2

Version 4.2

Proprietary and Trademark
| nfor mation

Copyright © 1999-2002, PointBase Inc.
All Rights Reserved
Version 4.2

This product and related documentation are protected by copyright and distributed under
license agreement restricting its use, copying, reproduction, distribution, performance, and
decompilation. No part of this product, or any other product of PointBase, Inc. or related
documentation may be stored, transmitted, reproduced or used in any other manner in any form
by any means without prior written authorization from PointBase, Inc.

PointBase™ and UniSync™ are trademarks of PointBase, Inc.

Microsoft, Windows, Windows 95, Windows 98, Windows 2000, and Windows NT are
registered trademarks of Microsoft Corporation. Adobe and Acrobat are registered trademarks
of Adobe Systems, Inc. Java™ isaregistered trademark of Sun Microsystems, Inc. Other
brands and products are trademarks of their respective holders.

PointBase Devel oper 2

Version 4.2

Table of Contents

Preface
Purpose
Audience
Release Notes
Document Feedback
Document Conventions Used in This Guide

Developer’s Overview
JDBC and PointBase
SQL and PointBase
Y our Application and PointBase
What's New With PointBase RDBM S?

PointBase JDBC Basic Tutorial
Refreshing the Sample Database
Making a Connection to PointBase
Creating and Executing Static JDBC Statement
Retrieving Row Values From Non-Scrollable Result Sets
Closing and Committing Objects

PointBase JDBC Advanced Tutorial
Creating and Executing a Dynamic JDBC Statement
Using Scrollable Result Sets
Flushing the Database L og
Performing Batch Operations
Retrieving Data From BLOB Columns
Retrieving Data From CLOB Columns
Creating Functions
Creating Stored Procedures

0o~~~

= O O

11
13

16
16
17
18
19
20

21
21
23
29
30
31
31
32
33

PointBase Devel oper

3

PointBase

Basic SQL Data Objects 37
Data Objects Within the PointBase RDBM S 37
Database 38
User 39
Schema 40
Table 41
View 41
Column 42

SQL Data Types 44
Data Types 44
Data Conversions and Assignments 53

SQL Scalar and Aggregate Functions 56
SQL Scalar Numeric Functions 56
SQL Scaar Character String Functions 57
SQL Scaar Date/Time Functions 59
SQL Scalar CAST Function 61
SQL Scaar Routine Invocation 62
SQL Aggregate Functions 62
SQL Special Registers 64

Indexes and Constraints 65
Indexes 65
Keys 66
Congtraints 67

Sear ch Conditions and Predicates 68
Search Conditions 68
Predicates 70

Transactions and L ocks 76
Transactions 76
Row Level Locking 77
Transaction Isolation Levels 77

Distributed Transactions 79
PointBase’' s Role in a DTP Environment 79
Java Transaction APl (JTA) 81
JDBC 2.0 Optional Package API 81
Implementing javax.sql.X ADataSource 82
Using PointBase in a DTP Environment 84
Mixing Global and Loca Transactions 88
Unsupported in PointBase 89

SQL Security and Privileges 90
Predefined Users 91
Granting and Revoking Privilegesto Users 92
Predefined Roles 95
Granting and Revoking Privilegesto Roles 95

Version 4.2 PointBase Developer 4

PointBase

Optimizer Usage in PointBase 100
Execution Plan 101
Commands for PointBase Commander 101

Application Programming | nterface Tools 103
Load and Unload API's 103

Appendix A: SQL Reference 106

Conventions 106
Page Format Conventions 106
Syntax Conventions 107

Data Definition L anguage 107
CREATE SCHEMA 108
CREATE TABLE 109
CREATE VIEW 119
CREATE USER 121
CREATE ROLE 121
CREATE INDEX 122
CREATE FUNCTION 123
CREATE PROCEDURE 126
CREATE TRIGGER 128
ALTERTABLE 133
ALTER USER 134

Dropping SQL Objects 136
DROP INDEX 136
DROP FUNCTION or DROP PROCEDURE 137
DROP SCHEMA 138
DROP TABLE 138
DROPVIEW 139
DROP TRIGGER 140
DROP USER 141
DROP ROLE 141

Data Manipulation Language and Data Query L anguage 142
SELECT 143
INSERT 156
UPDATE 159
DELETE 161

Data Control Language 162
CALL 162
RETURN 163
SET assignment 164
SET PATH 165
SIGNAL 166
VALUES 167

Transaction Control 168
SAVEPOINT 168
COMMIT 169
RELEASE SAVEPOINT 170
ROLLBACK 171
SET DATALOG 172
START TRANSACTION ISOLATION LEVEL 173

Version 4.2 PointBase Developer 5

Version 4.2

PointBase

PointBase-Specific SQL 175
SHUTDOWN 175
BACKUP 175

Appendix B: Unsupported JDBC 2.0 Methodsin PointBase 179

Appendix C: Reserved Words 181

Appendix D: SQL Data Type Code 188

PointBase Developer 6

Purpose

Audience

Release Notes

Version 4.2

Preface

Thank you for your interest in Version 4.2 of the PointBase product line.

This guide describes how to develop applications using PointBase RDBMS. Thefollowingisa
list of some things you can expect from this guide.

* PointBase JDBC Tutorials

» Supported SQL Standards and Syntax
» PointBase Database Concepts and Techniques

Thisguide is geared towards the Java devel opment community. Because PointBase is the
100% Pure Java Application Database, this guide assumes that you know the following
concepts:

» Have basic knowledge of the Standard Query Language (SQL).

» Have basic knowledge of the Java programming language.

» Have bhasic knowledge of Java Database Connectivity (JDBC).

» Understand basic database concepts.

» Have knowledge of your operating system and server and client concepts.

The following link displays the most up-to-date information on PointBase products.
WWW.poi ntbase.com/support/rel easenctes.html

PointBase Devel oper 7

http://www.pointbase.com/support/releasenotes.html

PointBase

Document Feedback

Please send comments or suggestions for all PointBase documentation to the following email

address.

docfeedback @pointbase.com

Document Conventions Used in This Guide

Convention | Identifies Examples
ALL e Environment variables « PATH
UPPERCASE |« Database table names e S LST OF VAL
LETTERS + SQL Keywords + CREATETABLE
Couri er e Directory, file, folder, and path * c:\pointbase\ing. bnp
NeW f ont names] Set Poi nt Base =
. . Type Your Company
Code Nanme Here
» Datayou need to type
Initial PointBase names, objects, properties, | PointBase Embedded,
Uppercase windows, screens, dialog boxes, Business Component object,
Letters menus, buttons, tabs, applets, fields, List Editor window, Main
and icons menu, and Cancel button
Italics e Book titles * User'sGuide
» Crossreferencesin an index or seealsoorsee
glossary
« Variables s APPSRVR 4X_ROOT
» Argumentsto statements of » variable, rate, prompt$
functions
* First appearance of anew wordor |¢ newword or phrase
phrase
* Emphasis » Do not do this before you
do that.
[Optiona italicized arguments or [caption$]
characters inside angle brackets
{1} Choice from listed arguments; use OR | { Goto label | Resume Next |
operator () to separate Goto 0}

Version 4.2

PointBase Developer 8

mailto:docfeedback@pointbase.com

Developer’s Overview

This chapter outlines the PointBase Relational Database Management System (RDBMYS). It
describes the JDBC driver, the IDBC API, and the SQL standards supported by PointBase.
This chapter also describes new features and changes with PointBase RDBMS Version 4.2.

JDBC and PointBase

Version 4.2

The core IDBC Application Program Interface (API) consists of a set of call level interfaces
found in the java.sgl package. The JIDBC AP is used by Java applications to access and
manipulate the data stored in a database by invoking SQL commands. For more details on the
JDBC API refer to the Sun Microsystems Inc.’s website: http://java.sun.conV or the Sun
Microsystems JDBC manual.

PointBase fully supports JDBC 1.x, a subset of JDBC 2.0 API, and a subset of JDBC 2.0
Extension Interfaces, which Table 1 describes. PointBase also supports additional JDBC 2.0
Extension Interfaces for “ distributed transactions.” (See "JDBC 2.0 Optional Package API" on
page 81.) Additionally, PointBase supports a subset of JDBC 3.0 API, which Table 2
describes.You can also view any unsupported methods at, "Appendix B: Unsupported JDBC
2.0 Methodsin PointBase" on page 179.

PointBase Devel oper 9

PointBase

Table 1: JDBC 2.0 API Supported by PointBase

API

Description

java.sgl.BatchUpdateException

Providesinformation about errors that occurred during batch operations

javasgl.Blob

Provides access to and manipulation of Binary Large Object data

java.sgl.Call ableStatement

Provides access to and manipulation of Stored Procedures

java.sgl.Clob

Provides access to and manipulation of Character Large Object data

java.sgl.Connection

Constructs and manages the connection to the database

java.sgl.DatabaseM etaData

Provides metadata information about the database

javasql.Driver

Provides information about and manages the JDBC driver

java.sgl.PreparedStatement

Manages dynamic SQL statements

java.sgl.ResultSet

Provides metadata information about the result set

java.sgl.ResultSetM etaData

Manages result set metadata information

java.sgl.Statement

Manages static SQL statements

javax.sql.DataSource

Provides access to JDBC drivers and manages data sources. [See "Additional
PointBase Methods" on page 84.]

Please note that VM 1.3 does not support the following JDBC 3.0 methods. Use WM 1.4.

Table 2: JDBC 3.0 API Supported by PointBase

API

Supported Methods

java.sgl.Connection

PreparedStatement prepareStatemnt (String SQL Stmt,
Statement. RETURN_GENERATED_KEY S)

java.sgl.DatabaseM etaData

boolean supportsGetGeneratedK eys()

java.sgl.ResultSetM etaData

boolean isA utol ncrement(int column)

java.sgl.Statement

int executeUpdate(String SQL Stmt, Statement. RETURN_GENERATED_KEYS)
int execute(String SQLStmt, Statement. RETURN_GENERATED_KEYS)
ResultSet getGeneratedK eys()

The PointBase JDBC Driver

The PointBase JDBC driver provides access to the PointBase RDBMS. The driver interprets
the database Universal Resource Locator (URL) to connect to the appropriate database.
PointBase implements a“Type 4" JDBC driver, directly accessing the PointBase RDBM S
using JDBC calls.

Version 4.2

PointBase Developer 10

PointBase

To use the PointBase JDBC driver in your application, you must first load and register the
driver with the JDBC DriverManager, and then provide the URL of the database to which you
want to connect. The database URL specifies the connection protocol, database location,
“listener” port, and the database name. Please refer to the basic tutorial chapter in thisguidefor
amore detailed explanation.

SQL and PointBase

PointBase RDBM S adheres to SQL-92 Entry and Transition levels, as defined by ANSI and
I SO standards. PointBase also implements some features defined in the SQL-99 (SQL3)
standard.

For more specific information about using SQL with PointBase, please refer to “ Appendix A:
SQL Reference,” of this guide and the“ SQL Data Types’ Chapter, which definesthe datatype
mappings from SQL to JDBC and Java

Your Application and PointBase

This section shows how the PointBase RDBM S interacts with Java applications to provide
database functionality.

Figure 1.2 shows PointBase Embedded, which is designed to be deployed asan integral part of
your application. Both the Java Application and PointBase Embedded run within the same
JVM. Applications can make multiple database connections to the PointBase database.

Java Application

JDBC Driver

PointBase Embedded : :
«— > Database
TCP/IP

Java Virtual Machine

Figure 1.3 Using PointBase Embedded

Version 4.2 PointBase Developer 11

PointBase

Figure 1.3 shows PointBase Server, which is deployed using the traditional client-server
model. A thin client is deployed as an integral part of the client application that both residein a
single VM. This connects over the network to PointBase Server that runsin a second JVM.

Java Application

JDBC Driver

PointBase Client

Java Virtual Machine

Figure 1.4 Using PointBase Server

Version 4.2

4 —>
TCP/IP

PointBase Server

Java Virtual Machine

<>

Database

PointBase Developer 12

PointBase

What’s New With PointBase RDBM S?

Version 4.2

This section describes all of the new features and changes to PointBase RDBMS.

PointBase Embedded/Ser ver RDBM S Enhancements

Autoincrement (I dentity Columns)

Many applications require away to generate a unique number for each row inserted into a
table. The Autoincrement functionality provides ameans to generate unigue values, which can
be used as Primary Keys. This functionality isalso referred to as “Identity Columns.” Two
callback methods specified by JDBC 3.0 are provided to retrieve the numbers.

Updateable Cursors

Release 4.2 supports Updateable cursors and all the related metadata calls as specified in the
JDBC 2.0 specification. Updateable result sets are cursors that can be updated
programmatically. Updateable cursor provides the ability to update rowsin aresult set using
methods in the java programming language rather than having to update with an SQL
statement. By creating an updateable result set, you will have the ability to insert a new row,
update or delete arow to the result set and persist the information to the database. This feature
will be helpful to write GUI applications that allow users modify any displayed row.

Role Based Security

Security in a SQL database system is extremely important. Unfortunately, the only security
that the SQL 2 specification defines is grant/revoke of privileges on database objects to users.
SQL 3 extends this to allow grant/revoke of privileges on database objects to “Roles’, which
are declared groups of users. The functionality affectsthe SQL based authorization aspect only
and not the authentication of a user. Roles can be granted to usersor to other roles. By granting
aprivilegeto arole, that privilege isimplicitly granted to all users or roles that have been
granted that role. By using roles, a system administrator can go through the laborious process
of granting all the necessary privilegesto atypical user for a given group only once, by
granting those privilegesto arole. Then, the administrator can simply grant the role to each
typical user. Without roles, the administrator would have to grant the privileges to each user
individually. If all usersin the entire system are entitled to a privilege, than this can aso be
easily done by granting the privilege to PUBLIC, a pseudonym for every user in the system.
But roles are extremely helpful if some privileges need to go to alarge number of users, but not
everyone.

On-Line Database Backup

Online backup functionality facilitates taking backup of the database while the database
applications are running. This facility can be used by the applications, which do not want to
bring down the database while taking a backup. The functionality will also be useful for
applications that want to take backup when some critical event isrecorded in the database and
want to take backup of the database immediately.

Ability to Update User Password

The userswill be able to update their passwords. This was alimitation in the past and has now
been removed.

PointBase Developer 13

Version 4.2

PointBase

Union Distinct

Release 4.2 adds support for Union Distinct. UNION DISTINCT isaclassic set union. Only
unigque rows are returned; any duplicates are discarded. The overall Union functionality has
al so been made more robust. UNION is now alowed in al supported DML statements.

API to Load and Unload Database

The load/unload database functionality is now available asan API. An application can now
load/unload the database, in a bulk fashion, into a JDBC file (.java) or a SQL file or both.

Enhanced Database Creation

A new flag named “ Create” has been added to the URL. Thisflag can be used to alter the
behavior when an attempt is made to create a new database. The user will be able to either
create anew database if it does not already exist, or let the RDBM S generate an exception if
the database already exists or overwrite an existing database if so desired.

Support for Bigint Data Type
The “BigInt” datatype is now supported.
Shutdown Command

A new SQL command “ Shutdown” has been added to shutdown a database. This command is
needed especially for the distributed transaction (XA) environment where closing all
connections to the database does not imply closing the database.

In the case of PointBase Server in anon-XA environment, this command does a remote
shutdown of the server.

Quality I mprovements

1. PointBase Database Console and PointBase Commander now have the same default
autocommit behavior.

2. When auser triesto drop a self-reference table, then the RDBM S automatically drops the
constraint of self-reference key.

3. Itisnolonger possible to create multiple schemas with the same name. A bug has been
fixed where under certain situation one could create multiple schemas with the same
name.

4. “ALTER Table DROP Column” had a bug, which has now been fixed.

Suspended transactions in a JTA environment can now be rolled back from the same
session or a different session.

6. Inadistributed transaction (XA) environment, users can now connect to a database with
ausername and password that are different without getting an authentication exception.
In the last release the username and password were required to be identical in the
getX AConnection() statement.

7. Sub Queries have been made more robust. Null values are now returned for empty set sub
queries.

8. DatabaseMetaData.getTables() has been made more robust.

PointBase Developer 14

PointBase

10.

11.

Previously a RDBM S failure caused the application to exit in certain cases. This bug has
now been fixed.

In certain rare situations, two applications could connect to the same database using
PointBase Embedded and would result in corrupting the database. This bug has now been
fixed.

The number of temporary files being used when sorting result sets containing blob/clob
columns has now been reduced.

Important Changesin Release 4.2

Please make note of the following changes:

To conform to the ANSI/ISO SQL standard, the default user PUBLIC with default
password PUBL IC has been changed to username PBPUBLIC with default password
PBPUBLIC. The default role for this user is NONE.

The default schema name has been changed from PUBLIC to PBPUBLIC.

The RDBM S will accept PUBLIC as a synonym user name, password, and schema name
for PBPUBLIC. Thiswill occur everywhere except in GRANT and REV OKE statements,
where PUBLIC will aways mean the pseudo-user PUBLIC.

Upon upgrading PointBase from a version earlier than 4.2, PointBase will check if there
are users called PBPUBLIC, PBSY SADMIN, PBDBA, or READALL. If any of these
users aready exist before upgrading to 4.2, an error is raised. Y ou must drop the
offending user(s) before re-attempting the upgrade.

The JDBC URL had been simplified in Release 4.0 to uniquely identify the different
PointBase databases. URL s using the older format continue to be supported. The new
format for the URLsis:

*PointBase Server:

j dbc: poi nt base: server:// <machi ne_name>: <port _nunber >/ <db_name>

*PointBase Embedded:

j dbc: poi nt base: enbedded: <db_name>

*Pointbase Micro:

j dbc: poi nt base: m cro: <db_name>

Version 4.2

Best Practices

PointBase requires that you use the same version of the client and server jar files. When
connecting to the PointBase Server, the PointBase Client jar file version must match the
PointBase Server jar file version. For example: use pbserver42GA .jar and
phclient42GA jar.

PointBase Developer 15

PointBase JDBC Basic Tutorial

Thistutorial isintended as a quick reference to the JDBC API. PointBase recommends that
you consult a JDBC reference manual or http://java.sun.com for more comprehensive and the
most up to date information.

The basic tutorial describes fundamental JDBC operations to access and manipulate data using
the IDBC API with the PointBase RDBMS. The code snippets in this tutorial are taken from
the sampl e application included in the
“<install_folder>\pointbase\samples\server_embedded\” directory of your PointBase
installation. The examplesin this tutorial include: connecting to the database, creating
executable statements and closing the connection to the PointBase database.

Each example provides:. a brief description of the code snippet illustrated, a code snippet from
the sampl e application code, and any additional information to explain the code snippet in
more detail.

Refreshing the Sample Database

If you have deleted or overwritten the sample database provided with your PointBase
installation, you must refresh the sample database by using the following steps:

Step 1. Launch the “embedded_commander .exe” filein the“ <install
directory>\pointbase\tools\embedded” directory.

Step 2. Follow the promptsto create a new database called “ sample.”

Step 3. Typerun sanpl e. sqgl . You must typethe complete path to the
“samplesqgl” file for example,
run c:/poi ntbase/ sanpl es/ server_enbedded/ sanpl e. sql ;

Version 4.2 PointBase Devel oper 16

PointBase

Making a Connection to PointBase

The following section describes the process of connecting to a PointBase database, using the
JDBC APIL.

L oading the PointBase JDBC Driver

This code snippet instantiates the PointBase JDBC driver:

/1 The Poi nt Base Uni versal JDBC Driver
String | _driver = "com poi nt base. jdbc.jdbcUniversal Driver";

/1 Load the PointBase JDBC Driver
Class.forName(l _driver).new nstance();

Connecting to the PointBase database

This code snippet establishes a connection with the PointBase database by passing the database
URL, ausername and password. By connecting with the database you create a connection
object (m_conn in the sample application). The User name and Password both default to
PBPUBLIC if they are not specified explicitly.

/1 The URL for the sanpl e PointBase database
String | _URL = "jdbc: poi ntbase://" + p_product + "/sanple";

/| Dat abase User| D
String | _U D = "pbpublic";

/| Dat abase Password
String | _PWD = "pbpublic";

/1 Establish connection with the database and return a Connection object
m conn = DriverManager. get Connection(l _URL, | _U D, | _PWD);

The form of the PointBase URL, depends on which PointBase database you are using. The
following gives examples for the PointBase Embedded and Server databases:

* PointBase Embedded
"j dbc: poi nt base: enbedded: sanpl e"

* PointBase Server
"jdbc: poi nt base: server://<server ip address>/sanple"

or

"jdbc: poi nt base: server://<server name>/sanple"

To create a new database, you must use one of the specified PointBase flags. The following
example uses the new flag.

"jdbc: poi nt base: server://<server name>/sanpl e, new'

Make sure you refer to the PointBase System Guide before using any flag in the URL. Each
flag adheres to different rules when applied. (See the chapter, “ Advanced Tips for Starting
PointBase,” of the PointBase System Guide, and then browse the section, “Variable
Descriptions.”)

Version 4.2 PointBase Developer 17

PointBase

Using DataSource

Instead of using the DriverManger facility to connect to the PointBase database, you may usea
JDBC DataSource by initializing a DataSource object. The following example describes how
to connect to a PointBase database using a DataSource object.

/1 The URL for the sanpl e PointBase database
String | _URL = "jdbc: poi ntbase://" + p_product + "/sanple";

/| Dat abase User| D
String | _U D = "pbpublic";

/| Dat abase Password
String | _PWD = "pbpublic";

/1 Create DataSource object
j dbcDat aSource ds = new j dbcDat aSour ce() ;
ds. set Dat abaseNane(| _URL);
ds. setUser (I _UD);
ds. set Password(| _PWD);
ds. set Cr eat eDat abase(true);

/'l Establish connection with the database and return a Connection obj ect
m conn = ds. get Connection();

Creating and Executing Static JDBC Statement

The following code snippet gives an example of how to create and execute static JDBC
statements. First, it defines the SQL statement that the statement will execute, a statement is
then created and executed to return aread-only, non-scrollable Result Set object. Updateable
and scrollable result sets are discussed further in the advanced JDBC tutorial.
/'l Create the SQL Query
String SQL_SELECT = "SELECT custoner_tbl.name, custoner_tbhl.city,"

+ " manufacture_tbl.name, manufacture_tbl.city"
+ " FROM custoner_tbl, manufacture_tbl WHERE"

+ " UPPER(custoner_tbl.city) = UPPER(manufacture_tbl.city)";

/'l Create a static JDBC statenent
mstnt = mconn. createStatenment();

/'l Execute the SQ statenent and return a Non-Scroll able Result Set
mrs = mstnt.execut eQuery(SQ._SELECT);

Version 4.2 PointBase Developer 18

PointBase

Retrieving Row Values From Non-Scrollable Result Sets

A non-scrollable result set only allows you to retrieve the values stored in the result set in
sequentia order. The following example describes how to retrieve values from a non-
scrollable result set.

When aresult set isreturned, the cursor is positioned before the first row of the result set. To
access the first value of the result set you must advance the cursor to the first row using the
resul t Set . next () method. This method is used to move the cursor from row to row in
the result set, and returns a Boolean TRUE value if there is data in the row to which the cursor
is pointing.

/1 Scroll through the result set (top to bottom

whil e(p_rs. next())

{

/1 Loop through the colums

for (int i = 1; i <= rsColums; i++)
/] Get the data fromthe result set
/'l Place nethods to retrieve data here

The following code snippets illustrate how to retrieve specific data types from the result set.
These methods would be placed inside the “for” loop of the snippet above.

/'l Retrieve JDBC Char and Varchar data types
String rsString = p_rs.getString(i);

/'l Retrieve JDBC |Integer data types
Integer rsint = new Integer(p_rs.getlint(i));

/'l Retrieve JDBC Snullint data types
Short rsShort = new Short(p_rs.getShort(i));

/'l Retrieve JDBC Bool ean data types
Bool ean rsBool = new Bool ean(p_rs. getBool ean(i));

/'l Retrieve Float, Double, Nuneric and Decinal JDBC data types
Doubl e rsDoubl e = new Doubl e(p_rs. get Doubl e(i));

NOTE: PointBase recommendsthat you usethe Resul t Set . get Bi gDeci mal () method
to retrieve Numeric and Decima JDBC data types. This method is omitted in this
example for JDK 1.1.8 and JView compuatibility.

/'l Retrieve JDBC Real data types
Fl oat rsFloat = new Float(p_rs.getFloat(i));

/'l Retrieve JDBC Date data types
java.sql .Date rsDate = p_rs.getDate(i);

/'l Retrieve JDBC Tine data types
java.sql . Time rsTine = p_rs.getTinme(i);

/1 Retrieve JDBC Tine Stanp data types
java.sql . Tinmestanp rsTinmestanp = p_rs.getTimestanp(i);

Version 4.2 PointBase Developer 19

PointBase

Closing and Committing Objects

The following examples describe how to close result sets, static JDBC statements and finally
database connections. However, before closing a connection to the database or when you have
completed atransaction, you must either commit or rollback any changes made.

Rolling Back or Committing the Transaction

The following code snippet describes how the sample application rolls back all changes made
to the database up to this point. It usesther ol | back() method.
/'l Rol | back any changes nade to the database

/1 Use mconn.commt() if you don't wish to roll back the transaction
m_conn. rol | back();

NOTE: If you fail to commit atransaction prior to disconnecting from the database, and you
do not have “auto commit” switched on, the transaction will be rolled back by default
and any changes made will be lost.

Closing the Result Set

When you close aresult set, you invalidate the result set. That is, it cannot be used for any
subsequent operations. The following code snippet describes how the sample application
closes the result set object.

/Il Cose the Result Set
mrs.close();

Closing the JDBC Statement
The following code snippet describes how the sample application closes the IDBC statement

object.

/1 C ose the JDBC st at enent
mstnt.close();

Closing the Connection to the Database

The following code snippet describes how the sample application closes the connection object.
This closes the connection to the database.

/1 C ose the connection
m conn. cl ose();

Version 4.2 PointBase Developer 20

PointBase JDBC Advanced Tutorial
e

Thistutorial isintended as a quick reference to the JDBC API. PointBase recommends that
you consult a JDBC reference manual or http://java.sun.com for more comprehensive and the
most up to date information.

The advanced tutorial describes how to perform more complex operations using the JDBC API
with the PointBase RDBM S. The code snippets in this tutorial are taken from the sample
application included in the “<install_folder>\pointbase\sampl es\server_embedded\src”
directory of your PointBase installation. The examples in this tutorial include returning
scrollable result sets and performing batch updates.

Each example provides:. a brief description of the code snippet illustrated, a code snippet from
the sampl e application code, any additional information to explain the code snippet in more
detail. The examples assume you have already connected to the PointBase sample database.
(Refer to the Basic Tutorial for information about connecting to a PointBase database.)

Creating and Executing a Dynamic JDBC Satement

The following example describes how to create and execute a dynamic JDBC statement. A
dynamic JDBC statement can improve performance of applications relative to static JDBC
statements. Unlike a static JDBC statement, dynamic or prepared statements are only compiled
once, regardless of the number of times that they are used. For example, use adynamic JDBC
statement is when you need multiple executions of a particular SQL statement that has
changing values associated with it.

Version 4.2 PointBase Devel oper 21

PointBase

Creating a Prepared Statement

The following code snippet shows an example of an SQL string for use within a prepared
statement. The pr epar edSt at enent () method uses this string as its argument. The
prepared statement executes the INSERT statement as many times as required. The question
marks indicate dynamic parametersthat will be bound to the prepared statement. The prepared
statement object is created using the Connect i on. pr epar eSt at enent () method.

/1 Initialize SQL for the prepared statenent

String SQL_PREP_I NSERT = "I NSERT | NTO order _tbl (order_num custonmer_num"
+ " rep_num product_num sales_tax_st_cd, quantity,"

+ " shipping_cost, sales_date, shipping_date,"

+ " delivery_datetime, freight_conpany) VALUES'

+U(?,07,07,72,2, 2, 2,2, ?2, 2, 7)),

/1l Create a prepared statenent
m prepStnt = m .conn. prepareSt at ement (SQL_PREP_| NSERT) ;

Binding the Dynamic Variablesto the Prepared Satement

The following code snippet provides an example of binding dynamic variables to the prepared
statement and executing the prepared statement. Bind the variables by using the

pr epar edSt at enent . set <Dat aType> method, for example
preparedStatement.setint(). The first input argument for this method is the bind parameter
index (i.e. which question mark it represents), the second input argument isthe desired value to
be bound. The prepared statement is executed using the

pr epar edSt at ement . Execut e() method.

/1 Bind the paraneters to the prepared statenent
m prepStnt.setlnt(1l, varl[i]);

m prepStnt.setlnt(2, var2[i
m prepStnt.setlnt(3, var3[i
m prepStnt.setlnt(4, vard[i
m prepStnt.setString(5, va
m prepStnt.setlnt(6, var 6[

i
i
i
i
r5[i]
i

m prepSt nt. set Doubl e(7, var
[i
[i

)
1)
m _prepSt nt . set Dat e(8, var 8
m prepStnt. setDate(9, var9
m prepSt nt . set Ti nest anp(10,
m prepStnt.setString(1l1l, var

]
]
]
5
]
7
[
[

)
)
)
[i
)
[i
]
]
v i1);
1

i
)
)
ar10[
1[il);
/'l Execute the SQ prepared statenment and return a result set
m _prepSt nt . execute();

Version 4.2 PointBase Developer 22

PointBase

Using Scrollable Result Sets

The following examples describe how to create a statement object for returning and
manipulating ascrollable result set. By returning this type of result set, you have the capability
to retrieve result set row values in any order. Conversely, using a non-scrollable result set, you
can only retrieve result set row values as you scroll forward. With scrollable result sets,
however, you can scroll either forward or backward. Additionally, you can also scroll by
specifying a position in the result set. To begin returning scrollable result sets, you must first
specify the result set type when you create the SQL statement.

Result Set Typesand Concurrency

To create a scrollable result set you must specify its result set type. It defines whether or not the
result set is scrollable. In PointBase, you can specify TYPE_SCROLL_INSENSITIVE or
TYPE_FORWARD_ONLY. If you do not specify aresult set type, the default is
TYPE_FORWARD_ONLY (anon-scrollable result set). So, to make the result set scrollable,
you must specify TYPE_SCROLL_INSENSITIVE.

In addition to the result set type, you must also specify the result set concurrency. It defines
whether or not the result set isread-only or updateable. In PointBase, you can specify
CONCUR_READ_ONLY or CONCUR_UPDATEABLE. Using CONCUR_UPDATEABLE,
you have the ability to update rowsin aresult set using methods in the Java programming
language rather than having to update them with an SQL statement. For example, you can
insert, update, or delete aresult set row, and make your changes permanent to the database.
Using CONCUR_READ_ONLY, you may read the rows in the result set only; you cannot
change them in any way.

Creating a Read-Only Scrollable Result Set Statement Object

The following code snippet illustrates how to create a statement object that can return aread-
only scrollable result set. Note that you can a so use a prepared statement to return one.
/'l Create a statement and set the Result Set parameters to nake it scrollable

m stmt = m conn. createSt at enent (Resul t Set. TYPE_SCROLL_| NSENSI Tl VE,
Resul t Set . CONCUR_READ _ONLY) ;

Moving the Cursor

After returning a scrollable result set using a statement object, you can move the result set
cursor. The following examples describe how the sample application moves the cursor in a
scrollable result set. Similar to non-scrollable result sets, you access sequential rows of the
result set by usingther esul t Set . next () method. You can aso move the cursor
anywhere in a scrollable result set using the following methods.

First()

The following code snippet describesthef i r st () method. It moves the cursor to the first
row in the result set.

/1 Move the cursor to the first entry in the result set - this is the data we just
/'l inserted
mrs.first();

Version 4.2 PointBase Developer 23

PointBase

Last()

The following code snippet demonstratesthe | ast () method. It moves the cursor to the last
valuein theresult set m_rs

/'l Move the cursor to the last entry in the result set
mrs.last();

Previous()

The following code snippet demonstratesthe pr evi ous() method. It moves the cursor to
the previous position in the result set m_rs.

/'l Moving back to the previous entry in the result set
mrs. previous();

Absolute()

The following code snippet demonstratesthe absol ut e() method. It moves the cursor to a
specific position in the result set. For example, this code snippet describes how to move the
cursor to the first row in the result set.

/1 Moving to the first entry in the result set using its absolute row reference
mrs. absolute(l);

BeforeFirst()

The following code snippet demonstratesthe bef or eFi r st () method. It moves the cursor
before the first value in the result set.

/'l Moving before the first row
mrs. beforeFirst();

AfterLast()

The following code snippet demonstratesthe af t er Last () method. It moves the cursor
after the last value in the result set.

/'l NMove after the last row
mrs.afterLast();

Relative()

Ther el ati ve() method moves the cursor to the specified position relative to the current
position of the cursor. This code snippet demonstrates how to move the cursor two rows
forward from the current position of the cursor.

/1 NMove cursor relative to current position
mrs.relative(2);

Next()

The following code snippet demonstrates the next () method. It moves the cursor to the next
row intheresult set m_rs.

/1 Move the cursor to the next entry in the result set
mrs.next();

Version 4.2 PointBase Developer 24

PointBase

Setting the Direction of the Cursor in Scrollable Result Sets

When you change the direction of the cursor, it effectively reversesall of the previous
methods. To set the direction of the cursor you must usetheset . Fet chDi recti on()
method. The fetch direction is set to FETCH_FORWARD by default, and the cursor movesin
the forward direction. PointBase supports the two following fetch directions:

FETCH_REVERSE

The following code snippet demonstrates how to reverse the direction of the cursor in the
scrollable result set.

/1 Set the cursor to scroll backwards through the Result Set

mrs. set Fet chDi recti on(Resul t Set . FETCH_REVERSE) ;

Asan example of cursor behavior with the fetch direction set to FETCH_REVERSE, if you
call thebef or eFi r st () method, the cursor is moved after the last row of the result set.

FETCH_FORWARD

The following code snippet demonstrates how to set the fetch direction of the scrollable result
set to FETCH_FORWARD.

/1 Set the cursor to scroll forwards through the result set
mrs. set Fet chDi recti on(Resul t Set . FETCH_FORWARD) ;

Retrieving I nfor mation About a Result Set

The following examples describe how to retrieve information about aresult set. This example
refersto only afew of the methods available for retrieving information about the result set.
Refer to JDBC API documentation at http://java.sun.com or your JDBC reference for a
comprehensive list of the available methods, and “ Appendix B: Unsupported JDBC 2.0
Methods in PointBase,” for the list of methods that PointBase does not support.

ResultSet.getType()

Ther esul t Set. get Type() method can return TYPE_SCROLL_INSENSITIVE or
TYPE_FORWARD_ONLY. The following code snippet describes how to get the type of the
result set m_rs.

// Check if result set is scroll insensitive
mrs. get Type()
ResultSet.getConcurrency()

Theget Concurr ency() method can return CONCUR_READ_ONLY or
CONCUR_UPDATEABLE. The following code snippet describes how to get the concurrency
of theresult set m_rs.

/'l Check the concurrency of the result set
m rs. get Concurrency()

Version 4.2 PointBase Developer 25

PointBase

ResultSet.getM etaData()

The get Met aDat a() method obtains information about the result set, for example, the
column names and column data types. The following code snippet describes how to get the
meta data of the result set m _rs.

/'l Retrieve Result Set Meta Data to obtain result set properties
mrsnmd = mrs. get Met aDat a() ;

Setting the Number of Returned Rowsin Scrollable Result Sets

The following code snippets demonstrate how to set the fetch size or number of returned rows
in ascrollable result set using two different methods. Thisis applicable to PointBase Server
only. Also note that in most cases the default fetch size is optimal.

ResultSet.setFetchSize(int p_Rows)

The result set can change its default fetch size using this method. It will only affect the
specified result set.

mrs. set Fet chSi ze(2);:

To set the default fetch size for al result sets created by a statement object, you can use the set
fetch size using the Statment object. This method affects all result sets generated by this
statement. For example:

Statenment . set FetchSi ze(int p_Rows)

Creating an Updateable Scrollable Result Set Statement Obj ect

The following code snippet illustrates how to create a statement object that can return an
updateabl e scrollable result set. Note that you can also use a prepared statement to return one.
/'l Create a statement and set the Result Set parameters to nake it scrollable

m stmt = m conn. createSt at enent (Resul t Set. TYPE_SCROLL_| NSENSI Tl VE,
Resul t Set . CONCUR_UPDATABLE) ;

NOTE: You may also return non-scrollable, updateabl e result sets, if you specify
TYPE_FORWARD_ONLY and CONCUR_UPDATEABLE.

Locks

While updating, inserting, or deleting arow in an updateable scrollable result set, PointBase
will change the lock on the row to an exclusive lock. If PointBase cannot acquire the lock, it
will throw an exception.

Autocommit

While using updateabl e scrollable result sets, PointBase encourages you to set autocommit to
false. If you set it to true, PointBase commits the result sets, which invalidates them.

Version 4.2 PointBase Developer 26

PointBase

Verification

Before inserting any new rows or updating any row values, PointBase will perform any
necessary checking, including constraints and reference integrities. If anew row or row value
failsto satisfy any of them, PointBase will throw an exception. Also, while inserting a new
row, make sure to define all column values, because PointBase automatically sets undefined
column values to the database default.

Restrictions

PointBase enforces the following restrictions for updateable scrollable result sets:

* A query that returns aresult set can select from only a single table, and cannot contain
any join operation.

* A query that returns aresult set must select table columns only. It cannot select derived
columns or aggregates.

* A query that returns aresult set cannot have ORDER BY, GROUP BY, or HAVING
clause.

Behavior

The PointBase JDBC driver will automatically determine the most feasible scrollable result set
concurrency, if it observes the following behavior:

» ThePointBase JDBC Driver will change the concurrency of aresult set to read-only, if
you attempt any of the previously mentioned restrictions.

» ThePointBase JDBC Driver will change aresult set type to
TYPE_SCROLL_INSENSITIVE, if you specify the type TYPE_SCROLL_SENSITIVE.

Updating Row Valuesin Scrollable Result Sets

To update arow value in aresult set, PointBase provides you with four different methods.
Among their uses, you can set the row value of the result set that you want to update and most
importantly, perform the actual update to the underlying database. PointBase a so providestwo
additional methods that you can use to perform the following: cancel al updatesto arow or
verify arow value you just updated.

updateXXX()

To update arow value in aresult set, you must first set the value using the method,
updat exXxX() . It hastwo different forms:

. updat e<dat at ype>(i nt col umNane, val ue)
. updat e<dat at ype>(String col umNane, val ue)

This method supports all PointBase data types. The following example sets the quantity
column value in the current row to 150 using the Int data type:

/1 mrs.updatelnt() nmethod updates the field in question with supplied integer val ue
mrs.updatelnt("quantity", 150);

Version 4.2 PointBase Developer 27

PointBase

updateRow()

To update the row value of the actual underlying database on the next transaction commit, you
use the method, updat eRow() . After updating a row value, you will be able to view your
updated row value in the current result set. The following is an example of how to use this
method:

/1 mrs.updateRow() nethod updates the row in the database.
m rs. updat eRow() ;

rowUpdated()

To verify that you updated the row value in the underlying database, you may use the method,
rowUpdat ed() . The following is an example of how to use this method:

m rs. rowUpdat ed()

cancel RowUpdates()

To cancel the updated row value in the result set, you may use the method,

cancel RowUpdat es() . You cannot cancel the update if you have aready made the change to
the underlying database; that is, you cannot cancel the update after calling the updat eRow()
method. The following is an example of how to use this method:

/1 mrs.cancel RowUpdates() cancels in case a wong update has been nade.
m rs. cancel RowUpdat es() ;

Inserting Rows Into Scrollable Result Sets

To insert anew row into aresult set, PointBase provides you with four methods. Using them,
you perform the following things: place the cursor to the insertion row in caseit is not
currently on the row, to which you want to insert; set the new values of the row, similar to
updating a row value; and, insert a new row making it permanent to the underlying database.
After inserting a new row, you must use another method to move the cursor from the insertion
row to the current row, a non-insertion row.

moveTol nsertRow()

To move the result set cursor to the row into which you want to insert, you must use the
method, moveTol nsert Row() . The following is an example of how to use this method:

m rs. noveTol nsert Row() ;

updateXXX()

You must use the method, updat exxx() to set therow valuesfor the new row, asyou similarly
used this method to update a row value. See previous section on updating row values.

insertRow()

To permanently insert the new row into the underlying database on the next transaction
commit, you use the method, i nsert Row() . Thefollowing isan example of how to use this
method:

mrs.insert Row);

Version 4.2 PointBase Developer 28

PointBase

moveToCurrentRow()

To move the cursor to a non-insertion row, if you do not want to insert another row, you must
use the method, noveToCur r ent Row() . The following is an example of how to use this
method.

m rs. noveToCurrent Row() ;

Deleting Rows From Scrollable Result Sets

To delete rows from result sets, PointBase provides you with two methods. For example, one
method del etes the row permanently from the underlying database on the next transaction
commit. The second method verifiesif the row has been deleted from the database. Please note
that if you try to retrieve a deleted row value from the current result set, PointBase will return
only NULL values.

deleteRow()

To permanently delete arow from the underlying database, use the method, del et eRow() . The
following is an example of how to use this method:

/1 Deleting currentrow.
mrs. del et eRow() ;

rowDeleted()

To verify whether or not arow still exists in the current result set, use the method,
rowDel et ed() . The following is an example of how to use this method:

nrs. rowDel et ed()

Flushing the Database L og

The following examples describe how to switch to a fresh database log file. The old log fileis
deleted as soon as it is no longer required by the DBMS. The database log file isflushed in
different ways for embedded and server. The code snippets below illustrate log file switching
fro both products:

/1 Switch log file for PointBase Enbedded
((com poi nt base. j dbc. j dbcConnecti on) m conn). swi t chLogFi | e();

/1 Switch log file for PointBase Server
((com poi nt base. net. net JDBCConnecti on) m conn) . swi tchLogFil e();

Version 4.2 PointBase Developer 29

PointBase

Performing Batch Operations

The following examples demonstrates how to perform batch operations. Batch updates can
improve performance for large numbers of SQL operations. You can use them for any SQL
operation that returns an integer update count, but not a result set for example, INSERT,
UPDATE, or DELETE. You can aso use batch operations for any SQL DDL statement, for
example, CREATE TABLE, DROP TABLE, or ALTER TABLE.

NOTE: Batch updates offer the most significant performance improvement when used with
PointBase Server, due to reduced network access.

The following code snippet demonstrates the creation of a prepared statement, binding of
variables, and adding the prepared statement to a batch using the
pr epar edSt at enent . addBat ch() method. The batch is executed, using the
pr epar edSt at enent . execut eBat ch() method, once al the required prepared
statements have been added.

/'l Create a SQL statenent for the batch update

String SQ._BATCH UPDATE = "UPDATE sal es_tax_code_thl SET effect_date = ?, rate = ? where
state_code = ?";

/'l Prepare a statenent
m prepStnmt = m _conn. prepareSt at ement (SQL_BATCH _UPDATE) ;

for (int i=0; i<=9; i++)

/1 Binding variables to the prepared statenent

m prepStnt.setDate(1l, java.sql.Date.val ueO (BATCH DATA[1][i]));

m prepStnt.setFl oat (2, (float)Fl oat. val ueO (BATCH DATA[2][i]).fl oatValue());
m prepStnt.setString(3, BATCH DATA[O][i]);

/1 Addi ng the prepared statenent to the batch
m prepSt nt. addBat ch() ;

/| Execute the batch
int[] updat eCounts = m prepStnt.executeBatch();

NOTE: If Auto commit is set ON, the transaction will be committed when the
pr epar edSt at enent . execut eBat ch() method iscalled.

Version 4.2 PointBase Developer 30

PointBase

Retrieving Data From BL OB Columns

The following code snippet shows how the sample application retrieves BLOB valuesfrom the
result set using theget BLOB() method to retrieve the column value. The final two operations
create abinary stream from the BLOB object to read it into a byte array. This byte array can
then be used as required by your application.

/'l Retrieve the BLOB containing the sales rep inmage fromthe second col um of

/1l the result set and find out its length
Bl ob i mage = mrs. getBlob(2);
int lob_length = (int)inmge.length();

/'l Create a Buffered input streamfromthe BLOB data and read it into a byte
/'l array

Buf f er edl nput St r eam buf f eredl nSt ream = new Buf f er edl nput Strean{ i nmage. get Bi narySt reamn()

)

byte[] byteBuffer = new byte[lob_length];

buf f eredl nStream read(byteBuffer, 0, lob_length);
buf f er edl nStream cl ose() ;

Retrieving Data From CLOB Columns

The following code snippet shows how the sample application retrieves CLOB valuesfrom the
result set using the get CLOB() method to retrieve the row value. The final two operations
create a character stream from the CLOB object to read it into a character array. This character
array can then be used as required by your application.

/!l Retrieve the CLOB containing the sales rep resunme fromthe result set and determ ne
its length

Clob resume = mrs.getC ob(3);

lob_length = (int)resune.length();

/1 Create a buffered reader to read the character streaminto a character array
Buf f eredReader bufferedReader = new BufferedReader(resune.getCharacterStrean());
char[] charBuffer = new char[lob_length];

buf f eredReader . read(charBuffer, 0, lob_length);

buf f er edReader . cl ose();

Version 4.2 PointBase Developer 31

PointBase

Creating Functions

This section describes functionsin PointBase. Using afunction, you can transparently
convert data to be stored in a PointBase database. Functions may only return asingle
value of the type specified in the CREATE FUNCTION SQL statement. To create a
function (stored function), you must use the CREATE FUNCTION statement and
specify an external Java method for the stored function to invoke. This section
explains how to create and use stored functions in PointBase.

External Java M ethods and Functions

In PointBase, functions may be implemented using external Java methods. These
user-defined methods manipulate SQL datawhen the function is called by the
database.

Creating an External Function

Suppose you want to INSERT aeuropean formatted date into a table making sure that
the date format is'Y 2K compatible. The following external Javamethod, dateConvert,
is called from the stored function in the database. This external Java method converts
adate from dd-mm-yyyy to yyyy-mm-dd, and then converts it to a java.sgl.Date type.

public static java.sql.Date dateConvert(String p_val ue)

String | _day = new String(p_val ue.substring(0,2));
String | _nonth = new String(p_val ue. substring(2,6));
String | _year = new String(p_val ue. substring(6, 10));

return(java. sql . Date. val ueOr (I _year + | _nonth + | _day));

Specifying the External Function in a Sored Function

To invoke the dateConvert externa Javamethod from a stored function, you must use
the CREATE FUNCTION statement. The dateConvert external Java method is called
from the class, SampleExternalM ethods.

In order for the database to access this external Java method, the class
SampleExterna M ethods must be included in the database CLASSPATH. For
PointBase Server, it must be in the Server CLASSPATH, but not in the Client
CLASSPATH.

/1 SQL statenment to Create a function
String SQL_CREATE _FUNC = "CREATE FUNCTI ON dateConvert(I N P1 VARCHAR(20))"
+ " RETURNS Dat e"
+ " LANGUAGE Java"
+ " NO sQ."
+ " EXTERNAL NAME \" Sanpl eExt er nal Met hods: : dat eConvert\""
+ " PARAMETER STYLE SQL";

/'l Create a statement and execute the SQL
mstm = m.conn. createStatenent();
m st mt . execut eUpdat e(SQ._CREATE_FUNC) ;

/'l Cl ose the statenent
mstnt.close();

Version 4.2 PointBase Developer 32

PointBase

NOTE: The stored function converts the data before inserting it into the database, and after selecting
data from the database.

Using the Function

The following code snippet describes how the dateConvert function isused in a SELECT statement by
the Sample Database A pplication.
/1 SQL SELECT using the external function to convert the date in the WHERE cl ause

String SQL_USE FUNC = "SELECT city FROM of fi ce_tbl VWHERE open_date ="
+ " dateConvert('01-02-1993")";

/| Create the statenent
mstm = m.conn. createStatenent();

/'l Execute the statnent
mrs = mstnt.execut eQuery(SQ_USE FUNC) ;

Creating Stored Procedures

You can create and use PointBase stored proceduresin asimilar way to functions. Stored Procedures may
also use external Java methods to perform the procedure action. In addition, stored procedures may take
any number of input parameters and return any number of output parameters, unlike functions which may
only return one parameter. Stored procedures are invoked explicitly using JDBC callable statements or
may be invoked using the CALL command in atrigger action. However, they cannot be invoked within
SQL statements like a function.

Using INOUT and OUT Parameters

When using a stored procedure with java external methods, special care must be taken to properly handle
parameters passed to the procedure. Parameters may be of type IN, OUT, or INOUT. Java passes
arguments by value, not by reference; therefore, it is generally impossible to use stored procedures with
argument values that need to be returned through the parameters. PointBase has added special JDBC
Wrapper classes to remedy thisissue. This section explains how you can use this wrapper with INOUT
and OUT parameters.

Version 4.2 PointBase Developer 33

PointBase

Using JDBC Wrapper Classes

The jdbclnOut Wrappers are used by the database to enable the database to return values from
Java methods using Callable Statements. They are only required for OUT or INOUT
parameters. Each wrapper class has two constructors, a get and set method, and a toString
method. The wrapper classes are contained in the package "com.pointbase.jdbc" included in
your PointBase jar file.

The wrapper name corresponds to the JAVA data type represented by the wrapper. All
mappings between SQL and JAVA data types are compliant with the JDBC specification. For
the JDBC Binary and BL OB data types, a wrapper is not required,and ajava byte array is
passed as the input argument to your Java method.

e jdbcInOutDateWrapper—>Date Data Type

e jdbcInOutTimeWrapperTime—>Time Data Type

e jdbcInOutTimeStampWrapper—>TimeStamp Data Type

e jdbclnOutBool eanWrapper—>Boolean Data Type

e jdbcInOutLongWrapper—>Bigint Data Type

* jdbcInOutDoubleWrapper—>Double and Float Data Types

e jdbcInOutFloatWrapper—>Real Data Type

e jdbcInOutintWrapper—>Integer Data Type

» jdbcInOutStringWrapper—>Char, Varchar, Clob Data Types

e jdbcInOutShortWrapper—>Smallint Data Types

e jdbcInOutBigDecima Wrapper—>Decimal and Numeric Data Types

Creating an External Procedure Using JDBC Wrapper Classes

The code snippet below defines the getCost external procedure found in the class
SampleExterna M ethods. Initially, you must first use a constructor to obtain a connection to
the database.

*/

inmport java.sqgl.*;
i mport com poi nt base. j dbc. j dbcl nCut Doubl eW apper ;

public class Sanpl eExt er nal Met hods
{

/'l A connection object to allow database cal |l back
private Connecti on m conn;

/1 Constructor accepts a java.sql.Connection object to allow database call back
publ i ¢ Sanpl eExt er nal Met hods(Connection p_conn)
{

m.conn = p_conn;

}

Version 4.2 PointBase Developer 34

public

PointBase

The following Java method is called as a stored procedure by the database. Procedure uses the
net order cost (INOUT) and state code (IN) to return the net order cost (INOUT). This
particular procedure also makes a callback into the database

NOTE: A jdbclnOutDoubleWrapper is passed into this method as an argument rather than the
FLOAT JDBC data type that was bound to the callable statement.

static void getCost(String p_productlinfo, String p_state, jdbclnCQutDoubl eWa

pper p_price)
{

/'l Query the database for the sales tax rate

Statenment | _stmt =1 _conn.createStatenent();
ResultSet | rs = | _stnt.executeQuery("SELECT rate FROM public.sales_tax_cod
+ " WHERE state_code ='" + p_state + "'"

/1l Calculate the totoal cost of the itemusing the sales tax rate
/1 obtained fromthe dat abase.
| _rs.next();

float total _cost = (float)p_price.get() * (1 + (Il _rs.getFloat(1)/100));

// Bind the total cost to the INOUT variable to return
p_price.set(total _cost);

/'l Close the result set
| _rs.close();

/1l Close the statenent
| _stnt.close();

Executing a Sored Procedure

To allow a stored procedure to call out from the database system to an externa procedure,
follow these two mandatory steps:

Create a stored procedure in the database.

The code snippet below shows how to create stored procedure, getCost in PointBase, where
EXTERNAL NAME refersto the class and the getCost external procedure.

In the following example, getCost is a method contained within the class
SampleExternal M ethods.

/1 SQL statenment to create a stored procedure

2 FLOAT)"

Version 4.2

String SQL_CREATE _PROC = "CREATE PROCEDURE get Cost (I N P1 VARCHAR(2), |NOUT P

LANGUAGE JAVA"

" SPECI FI C get Cost "

' DETERM NI STI C'

NO sSQ"

EXTERNAL NAME \" Sanpl eExt er nal Met hods: : get Cost\""
PARAMVETER STYLE SQL";

+ 4+ + o+

/'l Create a SQL statenent
mstnt = mconn. createStatenment();

PointBase Developer 35

PointBase

/'l Execute the SQ
m st nt . execut eUpdat e(SQL_CREATE_PROC) ;

/1l Cl ose the statenent
mstnt.close();

Create a JDBC CallableStatement that executes the stored procedure.
The code snippet below is an example of how to create a CallableStatement that invokes the
stored procedure.

You must set the appropriate inbound arguments with values. After the execution of the
CallableStatement, you may obtain the values for each applicable outbound argument.

/1 Create SQ. to invoke a stored procedure
String SQL_USE PROC = "{ call getCost(?,?) }";

/'l Create a callable statenment with two binding paraneters
mcall Stmt = m.conn. prepareCal | (SQL_USE_PROC) ;
nmt

mcall Stnt.setString(1, "CA");
mcal |l Stnt.setFl oat (2, 449.00F);

m cal | St nt. executeQuery();

/1l Close the call abl e statenment
mcall Stnt.close();

For further details on OUT and INOUT parameters, see ‘JDBC API Tutorial and Reference’,
Second Edition, Sun Microsystems, by White, Fisher, Cattell, Hamilton and Harper.

Version 4.2 PointBase Developer 36

Basic SQL Data Objects

This section describes basic data objects relative to the PointBase RDBMS. It describes each
data object individually and explains how PointBase data objects interact with one another.
Read this chapter before creating a database to fully understand the behavior of each data
object within the PointBase RDBMS.

Data Objects Within the PointBase RDBM S

The following diagram illustrates the relationship between basic data objects in the PointBase
RDBMS. The database itself is a data object that encompasses all other data objects. A
database contains Schema objects, which in turn contain Table objects. Tables whose values
are derived from other tables are called Derived Tables or Views. Finally, a Column islocated
within a Table. Columns are the smallest data object within PointBase RDBMS.

Schema

Table

|
|
|
|
|
|
|
|
Column |
|
|
|
|
|
|
|

View

Figure 1.1 PointBase RDBM S Data Objects

Version 4.2 PointBase Devel oper 37

Database

Version 4.2

PointBase

The PointBase RDBM S can contain one or more database(s). A databaseis at the highest level
of abstraction and is simply an operating system file. PointBase stores all data in dbn filesand
al log information in wal files. For example, the sample database fileis“sanpl e. dbn” and
the samplelog fileis“sample.wal.” You can locate these files in the directory, “ <install
directory>\pointbase\databases.”

PointBase automatically creates other . dbn or . wal fileslikesanpl e$$1. dbn or
sanpl e$$1. wal whena. dbn or. wal filereachesits maximum size. All automatically
created . dbn and . wal files have the same page size asthe original . dbn or . wal file.

Database Size Limit

For the default page size of 4 K, the database sizeislimited to 0.5 terabytes. If the default page
sizeis 1K, the database sizeis limited to 128 GB, and for the default page size of 32 K, the
database is limited to 4 terabytes.

Because PointBase supports multiple page sizes for a database, the previous limits are true
assuming that the database does not use additional page sizes. If the database has more than
one page size, the database size limit increases. For example, if the database has two different
page sizes, one page size of 4K (0.5 terabytes), plus another page size of 32K (4 terabytes), the
total database size limit is 4.5 terabytes.

Concurrent Databases

PointBase supports multiple databases, but only one database concurrently. If multiple
connections are made to the PointBase RDBMS, then each connection needs to access the
same database. When the set of connectionsto a particular database is completed, then the next
set of connections can be initiated to another database.

Typically, multiple databases separate data for different applications. Schemas can be used to
accomplish the same effect. Refer to “ Schemas” in this chapter for more information

Read-Only Support

Using PointBase, you may query a database on a CD. In this section we use the term “read-
only database,” when the database files are on a CD or, when the database files are set to the
operating system property “read-only.” PointBase supports only SELECT statements for read-
only databases. Using any other statements, such as INSERT, CREATE TABLE,... etc. witha
read-only database causes PointBase to throw an exception. The error message states “Invalid
statement.”

To have adatabase on a CD, you must first create the database on a writable drive. After
creating the database, connect to it using the PointBase Commander or any java program [see
PointBase System Guide], and then close the connection without performing any other
operations during the connection.

PointBase Developer 38

User

Version 4.2

PointBase

By performing this step, you ensure that al the data is completely recovered from the log
(.wal) before loading the . dbn and . wal filesonaCD. You cannot recover datafrom a
database on a CD. If the database on a CD needs recovery, the application terminates with the
following message on the screen (standard system output): “ Database needs recovery from log.
This version does not support recovery.”

To connect to the database on CD or any other location use the poi nt base. i ni file's
"dat abase. hone" parameter or the java command line -D option to specify the location of
the database. See the PointBase System Guide for more information about starting PointBase.

Restrictions

Operations that involve writing to the database (dbn) or log (wal) files are not allowed.
Additionally, PointBase does not allow the following statements, because they use temporary
tables and writes into the database.

» Non-correlated subqueries that are part of IN predicate
* Read-only views
» Scrollable Cursors

Databases contain collections of users. Users are a means of providing security at the schema
level. Each schema has explicit user(s) associated with it, one of which must own the schema
The schema owner has full access to the schema and determines the access privileges of the
other users. To manage users, use the CREATE USER and DROP USER SQL statements.

When you create a PointBase database using PointBase Commander, PointBase Console, or
the JIDBC API, the system creates a default user PBPUBLIC with the password PBPUBLIC
who owns the default schema PBPUBLIC. Only the PBSY SADMIN, the database owner, or
users with the PBDBA role may create new users. (See " SQL Security and Privileges' on page
90.)

You cannot connect to a database as a user who does not exist in the SY SUSERS table, which
is one of the system tables in the POINTBASE schema. For alist of predefined system tables
and their attributes within the POINTBASE schema, please refer to “Appendix A: System
Tables’ of the PointBase System Guide.

PointBase Developer 39

Schema

Version 4.2

PointBase

Databases contain collections of independent schemas. A schemais alogical grouping of
tables, indexes, triggers, routines, and other data objects under one qualifying name.
Internationalization characteristics and user-level security can also be defined for schema
objects.

When adatabase is created using PointBase Commander, PointBase Console, or the JDBC
API, the PointBase RDBMSS creates two schemas:

* Aninternal schema called POINTBASE, in which the system keeps all of the system
catalogs and tables
» A default schemacalled PBPUBLIC

You cannot create any user-defined data objects within the POINTBASE schema. For alist of
predefined system tables and their attributes within the POINTBA SE schema, please refer to
“Appendix A: System Tables’ in the PointBase System Guide.

Previous Schema PUBLIC

Inversions 4.1 and earlier, PointBase used the default schema, PUBLIC. By default, it also has
the password and user, PUBLIC. These nameswill till remain effective in versions 4.2 and
later; however, PointBase will now use PUBLIC for superficial purposes only. That is, you
may still connect to the database using PUBLIC. But internally, PointBase converts the user
and the password, PUBLIC, to PBPUBLIC every time you connect, and PointBase recognizes
the schema, PUBLIC asif it were the schema, PBPUBLIC. Additionally, you cannot drop the
superficial schema name, PUBLIC. However, you may create and later drop a new schema
called PUBLIC, and PointBase will not affiliate it with the schema, PBPUBLIC.

Schema Owners

The PointBase predefined user, PBPUBLIC, with the password, PBPUBLIC, is the owner of
the PBPUBLIC schema and has full accessto all objects within this schema. The predefined
user, PBSY SADMIN, has accessto all objectsin the database. (See "Predefined Users" on

page 91.)

Unlessyou specify adifferent user explicitly, you automatically become the owner of aschema
if you created it. The schema owner has full access privileges and must grant access privileges
to other users for them to access that schema. PointBase recommends that you create new
schemas with the same name as your user name (if you are the schema owner) or with the same
names as the user who owns the schema. When you access the database, PointBase will
automatically search for the schema with the same name as the current user, making this the
current schema

Schema Referencing

Data objects are mapped to the current schema by default, without the need for an explicit
reference. The CURRENT_SCHEMA special register contains the name of the current
schema. Please refer to the“ SQL Scalar and Aggregate Functions® chapter in this guide for
more information about the CURRENT_SCHEMA special register.

PointBase Developer 40

Enpl oyee_I nfo

Table

View

Version 4.2

PointBase

In databases with multiple schemas, data objects must explicitly reference the schemafor
which they are intended. If no explicit reference is made, PointBase automatically triesto
associ ate the data object with the current schema. If the data object cannot be logically
associated with the current schema, it references the default (PBPUBLIC) schema.

In databases with multiple schemas, when referencing a data object that is not in the current
schema, you must append the schema name to the data object name, separated by a period. For
example, if you have a schema named Employee_Info, which contains a table named
Employees. Then, you must refer to that table in the following way:

Enpl oyees

Managing Schemas

To manage schemas, use the CREATE SCHEMA and DROP SCHEMA SQL statements.
CREATE SCHEMA initially creates a schema and conversely, DROP SCHEMA drops a
schema. The user that creates the schema owns the schema unless the optional
AUTHORIZATION quadlifier is used to specify another user. The schema owner can grant
applicable privileges to the appropriate users.

A table comprises of anumber of column objects and contains rows of data. A row isa
nonempty sequence of vaues that correspond to the column objects in the table. Every row of
the same tabl e has the same number of columns and contains a value for every column of that
table.

The following are two types of tables used in the PointBase RDBMS:

» BaseTable - atable whose datais actually stored in the database.
» Derived Table —atable obtained from other tables directly or indirectly through the
evaluation of a query expression.

NOTE: Dueto known limitations, it is highly recommended that you always use uppercase
letters when specifying table names or column names wherever applicable.

Derived Tables or “Virtual Tables” are also known as Views. They provide an alternative way
to look at the data of one or more tables. This virtual table or view derivesits values from the
evaluation of a query expression in a CREATE VIEW statement. The query expression can
reference base tables, other views, aliases, etc. Essentiadly, aview is a stored SELECT
statement, of which you can retrieve the results at alater time by querying the view as though
it were atable. See also "CREATE VIEW" on page 119. A view can be read-only or
updateable. Currently, PointBase supports Read-Only Views.

PointBase Developer 41

Column

Version 4.2

PointBase

The definition of each view is stored in PointBase's system catalog SY SVIEWS. If no errors
are encountered, PointBase adds the view name to the SY SVIEWS catal og table. Additionally,
all referenced columns of all referenced tables will be added to the SY SVIEWTABLES
catalog table.

Security for Views

Because aview isatype of table, you can grant privileges on it, and the privileges can be
different than the privileges on any base table from which the view was derived. Unlike base
tables, however, an owner of aview does not automatically have the authority to grant
privileges on the view to others.

To grant privileges on the view to others, you must have grant privileges on every referenced
column and table in the view's query expression. If you have privileges revoked on any of the
referenced columns or tables, you also have the same privileges revoked on the view.

Revoking privileges on aview using the RESTRICT option will raise an error, if any users of
that view had the grant option privilege and they granted that privilege to other users. If you
revoke privileges on aview using the CASCADE option, you will revoke all the users
privileges on that view. Likewise, you must verify if the view has any dependent views, and
verify the privileges on those as well.

NOTE: Revoking privileges on aview does not affect base table privileges.

Each PointBase table can have amaximum limit of 32,000 columns and aminimum of one. All
values contained within a specific column are of the same data type and every column has an
associated default value. The system uses the default value when data is entered into atable
without specifying a vaue for the column. The default value for a column is NULL unless the
column specifiesthe NOT NULL constraint or a different default value. If a column specifies
the NOT NULL constraint and has no default value defined, then you must specify a value for
this column whenever datais inserted or updated in the table.

NOTE: Dueto known limitations, it is highly recommended that you always use uppercase
letters when specifying table names or column names wherever applicable.

IDENTITY Property for Autoincrement

PointBase has autoincremental capability using the IDENTITY property. By defining it for a
column (making it an IDENTITY column), PointBase or you can generate vaues for every
row in atable. You can defineit for only a column that has either of the data types:

* INTEGER
* SMALLINT
* NUMERIC
» DECIMAL

PointBase Developer 42

Version 4.2

PointBase

You can create a table with an IDENTITY column or you can add an IDENTITY column at a
later time using the ALTER TABLE statement. Please note, however, each table may haveonly
one IDENTITY column, and once you have created a table with an IDENTITY column or
added it at alater time, you cannot update any valuesin the IDENTITY column.

PointBase Generated Values

If you create, alter, or insert into atable without specifying avalue for the IDENTITY column,
PointBase automatically assigns incremental values to every row in atable. If you allow
PointBase to generate the values, the default value for the first row is 1 (one). By defaullt,
PointBase will also assign increments of 1 to the rows that follow. For example, PointBase
automatically assigns the default value of 1 to the first row of the table and continues to give
the value 2 for the second row, 3 to the third row, and so on. (See “identity property” on page
111.) If you insert arow value into an IDENTITY column without specifying a value for the
IDENTITY column, PointBase will continue to generate incremental values based on the
highest value assigned for the column—even if the highest value was deleted. (See
“insert_column_list” on page 156.)

User-defined Values

You can also opt to specify the values yourself. If you are creating or adding the IDENTITY
column and specifying its values, you must specify the value of the first row, and you must
specify the incremental value, which affects the rest of the rowsin the table. (See
“identity_property” on page 111.) If you areinserting arow valueinto an IDENTITY column,
you must specify only the column value. PointBase will continue to generate incremental
values based on the highest value assigned for the column—even if the highest value was
deleted. (See“insert_column_list” on page 156.) Please note that PointBase recommends that
you allow PointBase to generate the IDENTITY column values when inserting new rows.

Deleting Rows

Additionaly, PointBase supports deleting rows from an IDENTITY column. However, once
you delete arow value from an IDENTITY column, PointBase will not generate that value
again; PointBase generates only unique values. PointBase will gener ate incremental values
based on the highest row value assigned for the column—even if the highest value was
deleted.

PointBase Developer 43

Data Types

Version 4.2

SQL Data Types

This chapter describes all of the SQL data types that PointBase supports. Data types define
what type of data a column can contain. The following sections describe each PointBase data
typein detail and discuss converting data types. Tables are provided at the end of the chapter to
show the mappings between PointBase data types and industry standard and other common
non-standard data types.

PointBase supports the following data types for its column and parameter declarations.

* CHARACTER [(length)] or CHAR [(Iength)]
* VARCHAR (length)

* BOOLEAN

* SMALLINT

* INTEGERoOr INT

+ DECIMAL [(p[.s])] or DEC [(p[.9])]

* NUMERIC [(p[,s])]

- REAL
- FLOAT(p)

- DOUBLE PRECISION
- DATE

. TIME

* TIMESTAMP

* CLOB [(length)] or CHARACTER LARGE OBJECT [(length)] or CHAR LARGE
OBJECT [(length)]

* BLOB [(length)] or BINARY LARGE OBJECT [(length)]

PointBase Devel oper a4

Version 4.2

PointBase

CHARACTER [(length)] or CHAR [(length)]

The CHARACTER data type accepts character strings, including Unicode, of afixed length.
The length of the character string should be specified in the data type declaration; for example,
CHARACTER(n) where n represents the desired length of the character string. If no length is
specified during the declaration, the default length is 1.

The minimum length of the CHARACTER datatypeis 1 and it can have a maximum length up
to the table page size. Character strings that are larger than the page size of the table can be
stored as a Character Large Object (CLOB).

NOTE: CHARACTER(O0) is not allowed and raises an exception.

If you assign avalue to a CHARACTER column containing fewer characters than the defined
length, the remaining space isfilled with blanks characters. Any comparisons made to a
CHARACTER column must take these trailing spaces into account.

Attempting to assign a val ue containing more characters than the defined length results in the
truncation of the character string to the defined length. If any of the truncated characters are
not blank, an error is raised.

Character String Examples:
CHAR(10) or CHARACTER(10)

* Vdid

" Race car’

" RACECAR

' 24865’

' 1998- 10- 25

’1998-10- 25 " (Bl ank characters are truncated)

* Invalid

24865
1998-10- 25
"Date: 1998-10-25

VARCHAR (length)

The VARCHAR data type accepts character strings, including Unicode, of avariable lengthis
up to the maximum length specified in the data type declaration.

A VARCHAR declaration must include a positive integer in parentheses to define the
maximum allowabl e character string length. For example, VARCHAR(n) can accept any
length of character string up to n charactersin length. Thelength parameter may take any value
from 1, to the current table page size minus 42 bytes. For example, the maximum length
parameter for a page size of 4k (4096) would be 4096 minus 42 bytes, equaling 4054 bytes.
Attempting to assign a val ue containing more characters than the defined maximum length
results in the truncation of the character string to the defined length. If any of the truncated
characters are not blank, an error is raised.

NOTE: VARCHAR(0) is not allowed and rai ses an exception.

PointBase Developer 45

PointBase

If you need to store character strings that are longer than the current table page size, the
Character Large Object (CLOB) data type should be used.

Examples
VARCHAR(10)

* Vdid

"Race car’

" RACECAR

' 24865’
11998-10- 25
11998-10- 25

* Invalid

24865
1998-10- 25
"Date: 1998-10-25

BOOLEAN

The BOOLEAN data type accepts a single value that can be TRUE or FALSE. No parameters
are required when declaring aBOOLEAN data type.

Use the case insensitive keywords TRUE or FAL SE to assign avalue to aBOOLEAN data
type. Comparisons using the BOOL EAN data type should also use these keywords. If you
attempt to assign any other value to aBOOLEAN datatype, an error israised.

Examples

BOOLEAN

« Vdid

TRUE

true
True
Fal se

e Invalid
1
0
Yes
No

Version 4.2 PointBase Developer 46

Version 4.2

PointBase

SMALLINT

The SMALLINT datatype accepts a 16 hit signed integer value with an implied scale of zero.
It stores any integer value between the range 2* -15 and 2715 -1. Attempting to assign values
outside this range causes an error.

If you assign a numeric value with a precision and scale to a SMALLINT data type, the scale
portion truncates, without rounding.

NOTE: To store values beyond the range (2"-15) to (2°15)-1, use the INTEGER data type.

Examples
SMALLINT
 Vdid
-32768
0
-30.3 (digits to the right of the decimal point are trun-
cat ed)
32767
* Invalid
- 33, 000, 567
-32769
32768

1,897, 536, 000

INTEGER or INT

The INTEGER datatype accepts a 64-bit signed integer value with an implied scale of zero. It
stores any integer value between the range 2 -31 and 2/31 -1. Attempting to assign values
outside this range causes an error.

If you assign a numeric value with a precision and scale to an INTEGER data type, the scale
portion truncates, without rounding.

NOTE: To store integer values beyond the range (2-31) to (2/31)-1, use the DECIMAL data
type with a scale of zero.

Examples
INTEGER or INT

- valid
-2147483648
-1025
0
1025.98 (digits to the right of the decinal point are
truncat ed)
2147483647

PointBase Developer a7

Version 4.2

PointBase

* Invalid
-1, 025, 234, 000, 367
-2147483649
2147483648
1, 025, 234, 000, 367
BIGINT

The BIGINT data type can accept numeric values up to 8 bytes. It can be used in place of the
LONG datatype. It stores any integer value between the range of 9223372036854775807 and
-9223372036857447808. Attempting to assign values outside this range causes an error.

Examples

BIGINT

e Vdid
-3372036857447808
- 857447808
0
23372036854775807

* Invalid
-1, 025, 234, 000, 367
- 2147483649
2147483648

1, 025, 234, 000, 367

DECIMAL [(p[,5])] or DEC [(p[,9])]

The DECIMAL data type accepts fixed-precision decimal values, for which you may define a
precision and a scale in the data type declaration. The precision is a positive integer that
indicates the number of digits that the number will contain. The scale is a positive integer that
indicates the number of these digitsthat will represent decimal places to the right of the
decimal point. The scale for aDECIMAL cannot be larger than the precision.

DECIMAL datatypes can be declared in one of three different ways. The declaration of it
controls how the number is presented to an SQL query, but not how it is stored.

» DECIMAL — Precision defaults to 38, Scale defaultsto O

* DECIMAL(p) — Scale defaultsto O
* DECIMAL(p, s) — Precision and Scale are defined by the user

In the above examples, p is an integer representing the precision and sis an integer
representing the scale.

NOTE: If you exceed the number of digits expected to the left of the decimal point, an error is
thrown. If you exceed the number of expected digits to the right of the decimal point,
the extra digits are truncated.

PointBase Developer 48

Version 4.2

PointBase

Examples
DECIMAL(10,3)

* Vdid

1234567

1234567. 123

1234567. 1234 (Final digit is truncated)
- 1234567

-1234567. 123

-1234567.1234 (Final digit is truncated)

* Invalid

12345678
12345678. 12
12345678. 123
-12345678
-12345678. 12
-12345678. 123

NUMERIC [(p[,9])]

PointBase treats the NUMERIC datatype in exactly the same way asthe DECIMAL data type.

REAL

The REAL datatype accepts single-precision floating point number values, up to a precision of
64. No parameters are required when declaring a REAL datatype. If you attempt to assign a
value with a precision greater than 64 an error is raised.

Examples
REAL

* Vdid

- 2345

0

1E-3

1.245
123456789012345678901234567890

* Invalid
123, 456, 789, 012, 345, 678, 901, 234, 567, 890, 123

FLOAT(p)

The FLOAT data type accepts a single or double precision floating point number value, for
which you may define a precision up to a maximum of 64. If no precision is specified during
the declaration, the default precision is 64. Attempting to assign avalue lager than the declared
precision will cause an error to be rai sed.

PointBase Developer 49

Version 4.2

PointBase

Examples
FLOAT(8)

* Vdid

12345678
1.2

123. 45678
-12345678
-1.2

-123. 45678

* Invalid

123456789

123. 456789
-123456789
-123. 456789

DOUBLE PRECISION

The REAL data type accepts a double precision floating point value, up to a precision of 64.
No parameters are required when declaring aDOUBL E PRECISION datatype. If you attempt
to assign a value with a precision greater than 64 an error is raised.

Examples
DOUBLE PRECISION

+ Vdid
123456789012345678901234567890123456789012345678901234567890

-123456789012345678901234567890123456789012345678901234567890

* Invalid
123, 456, 789, 012, 345, 678, 901, 234, 567, 890, 123, 123, 456, 7809,

012, 345, 678, 901, 234, 567, 890
-123, 456, 789, 012, 345, 678, 901, 234, 567, 890, 123, 123, 456, 789

012, 345, 678, 901, 234, 567, 890

DATE

The DATE data type accepts date val ues, consisting of year, month, and day. No parametersare
required when declaring a DATE data type. Date values should be specified in the form:
YYYY-MM-DD. However, PointBase will also accept single digits entries for month and day
values.

Month values must be between 1 and 12, day values should be between 1 and 31 depending on
the month and year values should be between 0 and 9999.

Values assigned to the DATE data type should be enclosed in single quotes, preceded by the
case insensitive keyword DATE; for example, DATE '1999-04-04'.

PointBase Developer 50

Version 4.2

PointBase

Examples
DATE

* Vdid

DATE ' 1999- 01-01’
DATE ' 2000- 2- 2’
date '0-1-1’

* Invalid

DATE ' 1999-13-1’
dat e ' 2000- 2- 30’
' 2000- 2-27

dat e 2000- 2-27

TIME

The TIME data type accepts time values, consisting of hours, minutes, and seconds. No
parameters are required when declaring a TIME data type. Date values should be specified in
the form: HH:MM:SS. An optional fractional value can be used to represent nanoseconds.

The minutes and seconds val ues must be two digits. Hour values should be between zero 0 and
23, minute values should be between 00 and 59 and second val ues should be between 00 and
61.999999.

Values assigned to the TIM E data type should be enclosed in single quotes, preceded by the
case insensitive keyword TIME; for example, TIME '07:30:00'.

Examples
TIME

* Vdid

TI ME " 00: 00: 00’
TIME ' 1: 00: 00’
TIME ' 23:59: 59
time '23:59:59. 99’

* Invalid

TI ME ' 00: 62: 00’
TI ME ' 00: 3: 00’
TI ME ' 23: 01’

' 24: 01: 00’

TIMESTAMP

The TIMESTAMP data type accepts timestamp values, which are a combination of a DATE
value and a TIME value. No parameters are required when declaring a TIMESTAMP data
type. Timestamp val ues should be specified in the form: YYYY-MM-DD HH:MM:SS. There
is a space separator between the date and time portions of the timestamp.

All specifications and restrictions noted for the DATE and TIME data types a so apply to the
TIMESTAMP data type.

PointBase Developer 51

Version 4.2

PointBase

Values assigned to the TIM ESTAMP data type should be enclosed in single quotes, preceded
by the case insensitive keyword TIMESTAMP, for example, TIMESTAMP '1999-04-04
07:30:00'.

Examples
TIMESTAMP

* Vdid

TI MESTAMP * 1999-12- 31 23:59: 59. 99’
TI MESTAMP * 0-01-01 00: 00: 00’

* Invalid

1999-00-00 00: 00: 00
TI MESTAWP * 1999-01- 01 00: 64: 00’

CLOB [(length)] or CHARACTER LARGE OBJECT [(length)] or CHAR
LARGE OBJECT [(length)]

The Character Large Object (CLOB) datatype accepts character strings longer than those that
are allowed in the CHARACTER [(length)] or VARCHAR (length) data types. The CLOB
declaration uses the following syntax to specify the length of the CLOB in bytes:

n[K| M| ¢

In the above syntax, n is an unsigned integer that represents the length. K, M, and G
correspond to Kilobytes, Megabytes or Gigabytes, respectively. If K, M, or G is specified in
addition to n, then the actua length of nisthe following:

e« K=n*1024

e M=n* 1,048,576

e G=n*1,073741,824

The maximum size allowed for CLOB data typesis 2 gigabytes. If alength is not specified,
then a default length of one byteisused. CLOB vaues can vary in length from one byte up to
the specified length.

NOTE: The CLOB data type supports Unicode data.

BLOB [(length)] or BINARY LARGE OBJECT [(length)]

The Binary Large Object (BLOB) datatype accepts binary values. The BLOB declaration uses
the following syntax to specify the length in bytes:

n[K| M| ¢

PointBase Developer 52

PointBase

In the above syntax, n is an unsigned integer that represents the length. K, M, and G
correspond to Kilobytes, Megabytes or Gigabytes, respectively. If K, M, or G is specified in
addition to n, then the actual length of nisthe following:

e« K=n*1024

e M=n*1048,576

e G=n*1,073,741,824

The maximum size allowed for BLOB data typesis 2 gigabytes. If alength is not specified,
then a default length of one byteis used. BLOB vaues can vary in length from one byte up to
the specified length.

NOTE: BLOB data types cannot be used with SQL scalar functions.

Data Conversions and Assignments

The PointBase database allows two types of data conversions - implicit and explicit. An
implicit data conversion is automatically performed between data types that are in the same
datatype family. Table 1 describes the datatype families supported by PointBase. Implicit data
conversions are performed as needed and are transparent to the user.

PointBase handles explicit data conversion using the SQL Scalar CAST function. This
function converts a value from one PointBase data type to another in the same data type family.

Table 1: Data Type Families and Data Types

Data Type Family Data Types

Character String CHARACTER, VARCHAR, CLOB

Boolean BOOLEAN

Binary String BLOB

Date Time DATE, TIME, TIMESTAMP

Number SMALLINT, INTEGER, DECIMAL, NUMERIC, REAL, FLOAT, DOUBLE

Table 2: Mapping Standard Data Types to PointBase SQL Data Types

JDBC Data Types |Java Data Types PointBase SQL Data Types
BIT boolean boolean

TINYINT byte smallint

SMALLINT short smallint

INTEGER int integer

PointBase Developer 53

Version 4.2

PointBase

Table 2: Mapping Standard Data Types to PointBase SQL Data Types

JDBC Data Types

Java Data Types

PointBase SQL Data Types

BIGINT

long

numeric/decimal

NUMERIC

FLOAT double float
REAL float real
DOUBLE double double

javamath.BigDecimal

numeric

DECIMAL

javamath.BigDecimal

decimal

CHAR String char
VARCHAR String varchar
LONGVARCHAR String clob

DATE javasgl.Date date
TIME javasgl.Time time
TIMESTAMP java.sgl.Timestamp timestamp

BLOB

BINARY byte[] blob
VARBINARY byte(] blob
LONGVARBINARY | byte[] blob

Blob

blob

CLOB

Clob

clob

PointBase Developer

54

PointBase

PointBase also supports other non-SQL standard data types. Table 3 describes the mapping of
non-SQL standard data types from other database vendors to PointBase data types.

Table 3: Mapping Non-standard Data Types to PointBase SQL Data Types

Oracle Sybase and Microsoft | DB2 PointBase
Data Types Data Types Data Types Data Types
NUMBER DECI MAL
SMALLI NT
VARCHAR2 VARCHAR
LONGVARCHAR CLOB
LONG CLOB
CLOB
BLOB
BLOB
Bl NARY BLOB
VARBI NARY BLOB
| MAGE BLOB
CHAR f or BLOB
BI T DATA
VAR CHAR BLOB
for BIT
DATA

Version 4.2 PointBase Developer 55

SQL Scalar and Aggregate
Functions

This chapter describes the SQL Scalar Functions supported in PointBase. PointBase provides
these ready to use functions to perform in-statement operations when querying or inserting
data into the database. For example, you can use the CAST function to convert data types to
other data types or use a numeric function to perform calculations. The following sections
describe the behavior of these functions and examples of how to use them.

NOTE: Unless specified otherwise, when applying any of the following functions to a column
containing NULLS, the NULL rows are not counted or used and the following warning
isgiven:

java.sql.SQLWarning: War ning--null value eliminated in set function

To eliminate this warning and ignore the NUL Ls in aggregate functions, you can use the
DISTINCT keyword in front of the column reference, for example:

sel ect (count (DI STI NCT product_code)) from product _t bl

SQL Scalar Numeric Functions

Version 4.2

The Scalar Numeric Function operates on numeric values (i.e. INTEGER, SMALLINT,
DECIMAL, FLOAT, DOUBLE and NUMERIC data types). The PointBase database supports
the following standard Numeric Functions:

e Multiplication

» Division
» Addition
e Subtraction

The numeric functions are evaluated in the following order. Numeric Functions within
parentheses are evaluated from the innermost set of parentheses, following the same rules of
precedence:

1. Multiplication (*) and division (/) from left to right
2. Addition (+) and subtraction (-) from left to right

PointBase Devel oper 56

PointBase

Numeric Functions are calculated as floating point numbers with aprecision of 17 significant
digits (and arounding error). However, if you use these functions when inserting or updating
data the accuracy is dependent up on the datatype of the column for which the datais intended.

Examples

2+3* 4/ 2 =8
2 +(3*4) /] 2=38

2 +3/ 2=3.5

100/3 =+ 3/ 2 = 33.333333333333333

SQL Scalar Character Sring Functions

Scalar Character String Functions operate on character strings. These functionsall return either
character strings or numeric values. PointBase currently supports the following functions.

CONCATENATION

The concatenation operator (][) joins the values of two or more character stringsinto asingle
string. You may use the concatenated string expression anywhere you would use a character
string and there is no limit to the number of string expressions you can concatenate. The
following isthe CONCATENATION Function syntax:

string_value || string_value [{]|| string_value}...]

Examples:

1$1 ||)) || 11501 ____>1$1501
SELECT order_num sal es_tax_st_cd, 'Shipping Cost', '$ || shipping_cost FROM order_tbl
VWHERE shi ppi ng_cost > 300 AND UPPER(sal es_tax_st_cd) NOT LIKE '%-L" ORDER BY order_num
ASC;

SUBSTRING

The SUBSTRING Function extracts a specified portion of the character string on which itis
operating. The following is the SUBSTRING Function syntax:

SUBSTRI NG (string_value FROM start [FOR | ength])

Version 4.2 PointBase Developer 57

PointBase

In the previous syntax, the start variable is an integer that represents the starting position for
the sub string. The first character in astring is considered to be position 1. The length variable
isoptiona and indicates the length of the sub string; if it ismissing, the SUBSTRING Function
returns the characters from the start position to the end of the character string.

Examples
SUBSTRI N& ' Ceorge Valentie’ FROM 3) ----> 'orge Val entine’
SUBSTRI N& ' GCeorge Valentie’ FROM 3 FOR 2) ----> "or’

CHARACTER_LENGTH

The CHARACTER_LENGTH function returns the length of a character string as the numeric
data type. There are two syntax variations for the CHARACTER_LENGTH function:

1. CHARACTER_LENGTH (string_value)
2. CHAR_LENGTH (string_value).

Examples

CHAR _LENGTH(' George Valentine') ----> 16
CHARACTER _LENGTH(' $150") ----> 4

POSITION

The POSITION function searches for a specified string pattern in another string. If the pattern
is found, a value is returned that indicates the beginning position of the location of the pattern.
If the pattern is not found, then avalue of zero is returned. If the pattern isastring length of
zero (0, aNULL string), then avalue of oneisreturned. All returned values are of the numeric
data type. The following illustrates the syntax for the POSITION Function:

PCSI TION (string_pattern IN string_val ue)

Examples
PCSI TION(* Val entine’ IN ‘CGeorge Valentine') ----> 8
PCSITION(*" IN ‘ George Valentine') ---->1

TRIM

The TRIM function alows you to strip trailing and/or leading characters from a character
string. The following illustrates the syntax for the TRIM Function:

TRIM (LEADING | TRAILING | BOTH 'character' FROM string_val ue)

Version 4.2 PointBase Developer 58

PointBase

Although it iscommon only to strip ablank characters (' ') from the start and ends of character
strings, using the TRIM function you can strip any character. The character variable, enclosed
in single quotes, represents the character that is to be stripped from the character string. The
keywords LEADING, TRAILING, and BOTH indicate whether you strip the character variable
from the front of the character string, at the end of the character string, or both.

Examples

TRI M (LEADI NG * FROM ‘' George Valentine ‘)
---> "'"Ceorge Valentine '

TRIM (TRAILING * * FROM *‘ George Val entine ‘)
--> "' Ceorge Valentine ‘

TRIM(BOTH ‘" FROM ‘ George Val entine ‘)
--> ‘Ceorge Val entine’

TRIM (LEADI NG *$ FROM ‘ $150")
--->"150

UPPER and LOWER

The UPPER function returns the value specified in the character string entirely in upper case
letters, regardless of the initial capitalization of the character string. The LOWER Function
returns the value specified in the character string entirely in lower case | etters, regardless of the
initia capitalization of the character string variable. The following syntax is used for the Case
Functions:

UPPER(string_val ue)
LONER(string_val ue)

Examples
LONER(’ George Valentine') ----> 'george val entine’
UPPER(’ George Valentine') ---->'GEORGE VALENTI NE

SQL Scalar Date/Time Functions

The SQL Scalar Date Time Functions operate on date/time values and return of date/time
values. PointBase supports the following Date/Time Functions.

CURRENT_DATE

The CURRENT _DATE Function returns the current system date from the machine that is
hosting the PointBase database as a DATE data type. You may usethe CURRENT_DATE
Function anywhere you specify a DATE value.

Version 4.2 PointBase Developer 59

PointBase

Example

UPDATE order _tbl SET shi ppi ng_date = CURRENT_DATE

If the current date is April 4, 1998, the CURRENT_DATE Function returns; 1998-04-04.

CURRENT _TIME
The CURRENT _TIME Function returns the current system time from the machine that is

hosting the PointBase database as a TIME data type. You may use the CURRENT_TIME
Function anywhere you specify atime value.

Example

if the current time is exactly 9:00 AM, the CURRENT_TIME Function returns: 09:00:00.

CURRENT_TIMESTAMP

The CURRENT_TIMESTAMP Function returns the current system date and time from the
machine that is hosting the PointBase database as a TIMESTAMP data type. You may use the
CURRENT_TIMESTAMP Function anywhere you specify atimestamp value.

Example

UPDATE order_tbl SET delivery_dateti me = CURRENT_DATE

If the current date and time is 9:00 AM on April 4, 1998, the CURRENT_TIMESTAMP
Function returns: 1998-04-04 09:00:00.

EXTRACT

The EXTRACT Function returns a portion of aDATE, TIME, or TIMESTAMP value. It
extracts the year, month, or day from a DATE value; an hour, minute, or second fromaTIME
value; or any of theseintervals from a TIMESTAMP value. The EXTRACT Function always
returns a numeric datatype. The following syntax is for the EXTRACT Function.

EXTRACT (extract _field FROM dateti me_val ue)

Use one of the keywords YEAR, MONTH, DAY, HOUR, MINUTE, or SECOND in place of
the extract_field. Format the datetime_value inside the single quotes appropriately, according
to the value the extract_field seeks.

Version 4.2 PointBase Developer 60

EXTRACT(YEAR FROM 1998- 04-01) --
EXTRACT(MONTH FROM 1998- 04- 01)
EXTRACT(DAY FROM 1998-04-01 09: 00: 00) --
EXTRACT(HOUR FROM 1998- 04-01 09: 00: 00)
EXTRACT(M NUTE FROM 09: 00: 00) --
EXTRACT(SECOND FROM 09: 00: 00) --

PointBase

Examples

--> 1998
—e--> 04
--> 01
----> 09
--> 00
--> 00

SQL Scalar CAST Function

The SQL Scalar CAST Function explicitly converts a value from one PointBase data type to
another. To perform an explicit data conversion, use the following syntax for the SQL Scalar
CAST Function.

CAST (val ue AS datatype)

Table 1 lists the data types that can be CAST into other datatypes. If thereisa inthe
intersection of two data types, the CAST Function can perform an explicit conversion from the
datatypein the vertical axis to the data type on the horizontal axis.

Table 1: Converting Data Types With the CAST Function

cC (vC|B |I Sl DEC | N R F DB | D T | TS | BB | CB
CHARACTER (C) Y |Y Y |Y Y Y Y Y Y Y Y Y |Y N Y
VARCHAR (VC) Y Y Y |Y Y Y Y Y Y Y Y Y |Y N Y
BOOLEAN (B) Y Y Y | N N N N N N N N N | N N N
INTEGER (1) Y Y N |Y Y Y Y Y Y Y N N | N N N
SMALLINT (SI) Y Y N Y Y |Y Y Y Y Y N N | N N N
DECIMAL (DEC) Y Y N |Y Y Y Y Y Y Y N N | N N N
NUMERIC (N) Y Y N |Y Y Y Y |Y Y Y N N | N N N
REAL (R) Y Y N |Y Y Y Y Y |Y Y N N | N N N
FLOAT (F) Y Y N |Y Y Y Y Y Y Y N N | N N N
DOUBLE (DB) Y Y N |Y Y Y Y Y Y Y N N | N N N
DATE (D) Y Y N [N N N N N N N Y [N |Y N N
TIME (T) Y Y N [N N N N N N N N Y |Y N N
TIMESTAMP (TS) Y Y N [N N N N N N N Y Y |Y N N
BLOB (BB) N N N [N N N N N N N N N | N Y N
CLOB (CB) Y Y N [N N N N N N N N N | N N Y
Version 4.2 PointBase Developer 61

PointBase

NOTE: A VARCHAR(10) cast to CHAR(5) will be truncated at the 5th character. The system
will display awarning if the truncated characters are nonwhite spaces.

The CAST function throws an exception if the datais not convertible, for example:
CAST('d ASINT) -------- > Exception

SQL Scalar Routine I nvocation

routine_nane(

Using SQL Scalar Routine Invocation, you can call a pre-defined SQL Routine that returns a
scalar value. The Routine Invocation can be used anywhere you use a scalar expression. The

following syntax isfor the Routine Invocation Function. For more information about creating
SQL routines (functions and procedures) refer to “ Appendix A: SQL Reference.”

[SQ._argunent _list])

Routine_name is the name of the routine (SQL Function or Procedure). SQL _argument_list
consists of expressions separated by commas. Each expression will result in a SQL data type
dependent on the routine called.

NOTE: If you use a Routine Invocation Function as a scalar expression, it must only return a
single value, otherwise an error israised.

Routine Determination

Routine determination isthe process that determines the routine to invoke, based on the routine
name, SQL argument list, and the current path of schemas. The routine name and SQL
arguments make up the signature of the routine. It is possible that more than one routine could
have the same signature. If more than one possible routine has the same signature, then
PointBase uses a precedence list to match each argument of each routine, to determine which
oneis the best match.

Examples

Dat eConvert (' 01-02-1993")

SQL Aggregate Functions

Version 4.2

SQL Aggregate Functions operate on complete sets of data and return a single result.
PointBase supports five Aggregate Functions: AVG, COUNT, MAX, MIN, and SUM.

PointBase Developer 62

PointBase

AVG

The AV G Function returns the average value for the column when applied to a column
containing numeric data. The following is the syntax for the AV G Function.

AVG (col um_nane)

Example

SELECT AVQE conmi ssion_rate) FROM sal es_rep_tbl

COUNT

The COUNT Function returns the number of rows in a specified result set. The following
syntax is one form of the COUNT Function:

COUNT(*)

Example

SELECT COUNT(*) FROM sal es_rep_t bl

The second form of the COUNT Function returns the number of rows in aresult set where the
specified column has a distinct, non-NULL value. The following syntax is the second form of
the COUNT Function.

COUNT(DI STI NCT col umm_nane)

MAX

The MAX Function returnsthe dataitem with the highest value for a column when applied to a
column containing numeric data. If you apply the MAX Function to a CHARACTER value, it
returnsthe last value in the sorted valuesfor that column. Thefollowing syntax isfor the MAX
Function.

MAX(col umm_nane)

Example

SELECT MAX(conmi ssion_rate) FROM sal es_rep_tbl

MIN

The MIN Function returns the data item with the lowest value for a column when applied to a
column containing numeric data. If you apply the MIN Function to a CHARACTER value, it
returns the first value in the sorted values for that column. The following syntax isfor the MIN
Function.

M N(col umm_nane)

Version 4.2 PointBase Developer 63

PointBase

Example

SELECT M N(conmi ssion_rate) FROM sal es_rep_tbl

SUM

The SUM Function returns the sum of all valuesin the specified column. The result of the
SUM Function has the same precision as the column on which it is operating. The following
syntax isfor the SUM Function.

SUM col umm_nane)

Example

SELECT SUM ytd_sal es) FROM sal es_rep_t bl

SQL Special Registers

The PointBase RDBM S supports the following list as special registers. These can be used
anywhere a scalar/value expression is allowed.

* CURRENT_USER: isthe current user on the system and is an SQL varchar data type of
maximal length 128.

» CURRENT_SCHEMA: isthe name of the current schemain use and isan SQL varchar
data type of maximal length 128.

« CURRENT_DATABASE: isthe name of the database in use and is an SQL varchar data
type of maxima length 128.

* CURRENT_SESSION: givesthe current session ID.

» CURRENT_PATH: isthelist of schemasin the path of the current user. The return data
typeisan SQL varchar of undetermined length. The length depends upon the number of
schema names in the path.

Version 4.2 PointBase Developer 64

|ndexes

Version 4.2

| ndexes and Constraints

This chapter gives abrief outline of indexes and constraintsin the PointBase RDBMS. | ndexes
and constraints are used to reinforce data integrity and increase database performance. Using
indexes and constraints, you can access information from the database quicker and guarantee
the referential integrity of information. The following sections describe indexes, keys, and
constraints.

Anindex isaset of ordered referencesto rows of atable. It can contain datafrom one or more
columns of atable. An index improves the performance of dataretrieval by reducing the
number of physical pages that the database must access in order to read arow in the database.
Because indexes store data in order, they aso eliminate the need to create temporary storage
for the ORDER BY clause if the relevant columnisincluded in an index. Every index has a
header, which contains the following information:

» the depth of the index
* number of leaf pages
» theselectivity factor

The PointBase RDBM S builds and maintains indexes without user intervention and provides
current information to the query optimizer.

NOTE: Whenever you specify a unique constraint, PointBase creates a unique index
automatically.

You can also create and drop an index using the CREATE INDEX and DROP INDEX
statements. For information on the query optimizer refer to “ Optimizer Usagein PointBase,” in
this guide. For CREATE INDEX and DROP INDEX syntax refer to “SQL Reference” of this
guide.

PointBase Devel oper 65

Keys

Version 4.2

PointBase

Although index management can improve performance, it may add overhead to INSERT and
UPDATE operations. PointBase recommends calculating the correct balance so that the
overhead does not exceed the benefits. (Consequently, you should create indexes on columns--
only when they use the indexes in predicates--where the majority of results return a small
number of rows.) Use the following formulato calcul ate the cost/benefit ratio:

of rows selected / # of rows in table=cost-benefit

If theresult islessthan .10, then PointBase recommends you to create indexes. If the result is
greater, then you should not create an index, as the overhead will cost more than its benefits.

In adatabase, akey consists of one or more columns of atable that have been granted specific
properties. When defining atable or index, you specify the key (primary or foreign). PointBase
supports the following types of keys:

Primary Key

The primary key is used as a master reference for columns defined asforeign keysin other
tables. Foreign keys can only contain values defined in the Primary key to which they refer. A
table can only have one primary key, and the key must contain only unique values without any
NULL values. The table containing the primary key is referred to as the parent table.

Foreign Key

A foreign key associates val ues contained in one or more columns of atable to primary keys of
other tables. The table containing the foreign key isreferred to as the child table.

The child table references a parent table, which must contain aprimary key. A column defined
asaforeign key cannot contain NULL values. The valuesin aforeign key column must match
either all the values, or a subset of the valuesin the referenced Primary Key. A foreign key
cannot contain values that are not in the primary key to which it refers.

PointBase Developer 66

Constraints

Version 4.2

PointBase

Constraints are rules that the database enforces to improve data integrity. You can specify all of
the following constraints at either the column level or at the table level in the PointBase
RDBMS

Unique Constraint

A unigue constraint forces a column to contain only unique values. PointBase allows NULL
values in unique columns, unless you specify NOT NULL when creating or altering atable.
When creating or altering a table, you must define unique constraints. However, you can also
create a unique constraint automatically when you create a primary key. Although atable can
contain any number of unique columns, only one can be the primary key.

NOTE: Whenever you specify a unique constraint, PointBase creates a unique index
automatically.

Referential Constraint

You can use areferential constraint to link foreign key columns with primary key columns.
You can define referential constraints as you create or ater atable.

Check Constraint

The body of acheck constraint is a search condition. You can use a check constraint to make
sure that a value going into a column meets the criteria of the search condition. Similar to the
other constraints, you can define a check constraint when creating or altering atable. However,
you can also use this constraint when updating a column(s) of atable. The value being inserted
or modified (through an UPDATE) must cause the search condition to evaluate to TRUE, in
order for the data to be inserted or updated.

PointBase Developer 67

Search Conditions and Predicates

|

This chapter describes search conditions and predicates in PointBase. Search conditions and
predicates help return specific values from the database. To use a search condition, you must
use it with an SQL statement. To use a predicate, you must use it with a search condition. You
can specify certain criteriain a search condition and predicate for an SQL statement to perform
to the database. The following sections describe search conditions and predicates and their
behaviors in PointBase.

Search Conditions

A search condition specifies a condition of “TRUE”, “FALSE”, or “UNKNOWN" about a
specific row. It is comprised of predicates associated with the logical operators: AND, OR, and
NOT. The syntax for a search condition is as follows:

[NOT] {predicate | (search_condition)}
[{AND | OR} [NOT] {predicate | (search_condition)}...]

Search conditions contained within parentheses first reads the values from left to right. The
precedence order for the logical operatorsare: NOT, AND, and then OR. If more than one
operator of the same precedence is used in a search condition, the optimizer will determine
which one to execute before the other. If a search condition does not comprise any logical
operators, then the result isthe result of the predicate specified.

Simple search conditions

A search condition—in its simplest form—is alogical test that can be applied to each row. It
takes the format of two value expressions and an operator and tests the relationship between
the two values, for example:

value 1 > value 2
X > 2

Version 4.2 PointBase Devel oper 68

Version 4.2

PointBase

Values

Any one of the values in a search condition may be one of the following:

* aconstant

» thevaluein acolumn name that is used in the place of one of the value expressions

» avaluederived from either one of these two vaues, using standard operators and non-
aggregate functions, such as BALANCE + 10.

Operators

PointBase SQL supports al standard relational operators:

« equas(s)

e greater than (>)

* lessthan (<)

e not equal to (<>)

» lessthan or equal to (<=)

e greater than or equal to (>=)

Noticein acombined relation, for example, less than or equal to or greater than or equal to, the
equa sign must be the last sign in the relation.

Complex sear ch conditions

A complex search condition can contain multiple bool ean expressions, linked by the keywords
AND or OR. A boolean expression uses al the same syntax and operators as a boolean
condition.

The AND keyword returns TRUE if the search conditions on both sides of the AND keyword
return TRUE. If either one of the conditions return FAL SE, the joined condition returns
FALSE.

The OR keyword returns TRUE if the expressions on either side of the OR keyword return
TRUE. If both conditions return FAL SE, the joined condition returns FALSE.

The search conditions that make up a complex search condition return according to four rules
of precedence:

1. Conditions within parentheses

2. Conditionsjoined by an AND keyword
3. Conditionsjoined by an OR keyword

4. Conditions prefixed by aNOT keyword

PointBase Developer 69

Predicates

Version 4.2

PointBase

Order of Evaluation

Any set of expressions within parentheses return first. If there are more than one set of
conditions within parentheses in a boolean expression, the sets evaluate from right to left. If
sets of conditions within parentheses contain other sets of conditions within parentheses, the
innermost sets evaluate first. Although it isnot required that complex search conditions, which
contain multiple sets of search conditions, use parentheses to separate the conditions, it is
highly recommended to improve the readability of the conditions.

The AND, OR, and NOT keywords are reflexive, which means that the ordering of the
expressions in a boolean expression does not matter. Regardless of the order, you receive the
sameresult. A code optimizing program may execute the AND, OR, and NOT keywords
differently than they appear in a boolean expression, but the bool ean expression returns the
same result.

Examples

In the first exampl e bel ow, the statement executes from I eft to right, because AND has a higher
precedence than OR. In the second example, the search condition in parenthesis executes first.

1. emp_id>201 AND d_name= ‘engineering’ OR d_name = ‘research’
2. emp_id> 201 AND (d_name = ‘engineering’ OR d_name = ‘research’)

A predicate isan SQL expression that evaluates a search condition that is either TRUE,
FALSE or UNKNOWN. TRUE means the expression is correct. FALSE means the expression
isincorrect. UNKNOWN means the expression is neither TRUE nor FALSE. All SQL values
used in a predicate must be of acompatible data type (family) for comparison.

PointBase supports the following types of predicates:
e comparison (=, <>, <, >, <=, >=, I=)

- BETWEEN
. LIKE

« EXITS|NOT EXISTS
« IN|NOTIN

« NULL

NOTE: PointBase does not support multi-valued predicates.

PointBase Developer 70

PointBase

COMPARISON

The COMPARISON predicates compare two values. If either valueis NULL, then the result of
the predicateis UNKNOWN.

NOTE: When comparing two string val ues, PointBase ignores any spaces that trail after the
string. PointBase ignores trailing spaces in queries and in the table. This behavior
supportsthe ANSI standard, however, it may vary with other database vendors.

Table 1: Comparison Predicate Symbols

Symbol Result

Comparison Symbol | Description Description

= equal to This symbol resultsto TRUE if both
values are the same.

<>orl!l= not equal to This symbol resultsto TRUE if the first
value isequal to the second value.

< less than This symbol resultsto TRUE if the first
valueislessthan the second value.

> greater than This symbol resultsto TRUE if the first
valueis greater than the second value.

<= less than or equal to This symbol resultsto TRUE if the first
valueislessthan or equal to the second
value.

>= greater than or equal to | This symbol resultsto TRUE if the first
value isgreater than or equal to the
second value.

Examples

The following are examples of using the comparison predicates. The results (TRUE, FALSE,
or UNKNOWN) of the predicates are based on the values of the column.

« enp.id =200 --->TRUEif enp_id is 200

 enp_nmanhager <> ‘Jones’ ----> TRUE if the nanager is not
JONES

e salary > 50000 ----> TRUE if salary is greater than $50, 000

BETWEEN

The BETWEEN predicate determines if avalue is between arange of values. The BETWEEN
predicate is ashort hand notation. It is equivalent to saying the value is greater than or equal to
the beginning range and less than or equal to the ending range. For example, valuel
BETWEEN value2 AND value3 is equivalent to the following search_condition:

val uel >= val ue2 AND val uel <= val ue3

Version 4.2 PointBase Developer 71

PointBase

The following is the syntax for a between predicate:

expression [NOT] BETWEEN literal AND literal

Examples

In the first example below, the system returns TRUE if the emp_deptid is between 200 and
1000. In the second example, the system returns TRUE if emp_managerid is less than 100 or
greater than 400.

1. enp_deptid BETVWEEN 200 AND 1000
2. enmp_nmanagerid NOT BETWEEN 100 AND 400

LIKE

The LIKE predicate searches a string to determine if the string has a particular pattern. The
pattern is a string with a combination of the following special characters: underscore character,
_and percent sign, %. If the value of any of the argumentsis NULL, then the result is
UNKNOWN. The following is the syntax for the LIKE predicate:

mat ch_expression [NOT] LIKE pattern

Version 4.2

match_expression

The match_expression is a string that will be searched to determine if the pattern specified can
be found.

NOTE: The LIKE predicate is case-sensitive.

Examples

In the first example, the LIKE predicatelooksfor any row where the column contains a pattern
of “engineer” as eight characters contained within the column. The percent sign represents any
string of zero or more characters. In the second example, the LIKE predicate looks for all rows
that do not contain a pattern of some character followed by ‘bc’ value for a column. The
underscore character represents a single character. All other characters in both examples
represent themselves.

1. enp_description LIKE ‘' %ngi neer %
2. dept _description NOT LIKE ‘_bc’

EXISTS|NOT EXISTS

These quantified operators verifies the existence of rows. The boolean result of an EXISTS or
NOT EXISTS predicate is determined by the number of rows returned by the subquery. For
EXISTS, the boolean result is TRUE if the subquery returns at least onerow and FAL SE if the
subquery does not return any rows. For NOT EXISTS, the boolean result is TRUE if the
subquery does not return any rows and FALSE if the subquery returns at least one row.

PointBase Developer 72

SELECT a.city

PointBase

Notes

» PointBase supports any level of nested subqueries.

» PointBase allows a subquery to return multiple values only using EXITS, NOT EXISTS,
IN, or NOT IN.

* Currently, PointBase does not support any form of the quantified operators, ANY or
ALL, for example: =ZANY, <=ANY, >=ALL, <>ALL,... etc.

Example
This example retrieves al cities, in which at least one sales representative works.

FROM of fice_tbhl a

VWHERE EXI STS
(SELECT *

FROM sal es_rep_tbhl b
VWHERE a. of fice_num = b.office_nunj;

Version 4.2

Results:

CITY

Miami
Atlanta

San Mateo
San Francisco
San Diego
Oakland
Detroit

New York

PointBase Developer 73

PointBase

SELECT| UPDATE]|
WHERE expr

enp_deptid IN

SELECT a.first
FROM sal es_rep
VWHERE a. of fice
(SELECT b. of f
FROM of fice_tb
VWHERE b. r egi on

Version 4.2

IN | NOT IN

You can use these predicate keywords to return avalue list or a subquery.
Value List

TheIN predicate determinesif avalueis TRUE for alist of values. The following is the syntax
for an IN predicate. The NOT IN predicate aso follows the same format as the IN predicate.

DELETE FROM t abl e
ession [NOT] IN (list_of_val ues)

Thelist_of values can be represented only by literalswith the IN predicate. The NOT IN
predicate returns a TRUE value only when it does not find the list_of values specified.

Example

In the following example, the IN predicate returns TRUE if the “emp_deptid” is any of the
values 10, 100, or 1000.

(10, 100, 1000)

Subquery

IN or NOT IN can compare asingle value of each row of atable to a value from potentially
multiple result rows from asubguery. IN returns TRUE, if at least one of the resultant subquery
row valuesisequal to the expression; it returns FAL SE otherwise. NOT IN returns TRUE if all
of the resultant subguery row values are not equal to the expression.

Example
This example retrieves the names of al sales reps working in the western region.

_nanme, a.last_nane
_thl a
~num I[N
ice_num
I b
= "Western');

Results:

FIRST_NAME LAST_NAME

Heather Smith
George Valentine
Raymond Brown
Jack Smith

PointBase Developer 74

PointBase

NULL

The NULL predicate determinesif acolumn in aselected row contains the SQL value: NULL.
If the column value isNULL, then PointBase returns TRUE. The following is the syntax for

the NULL predicate:

col um_nane IS [NOT] NULL

Version 4.2

Examples

In the first example, the NULL predicate |ooks for any row where the column contains a
NULL value. In the second example, the NULL predicate looksfor al rowsthat do not contain

aNULL vauefor acolumn.
1. enp_dept I'S NULL
2. enp_manager 1S NOT NULL

PointBase Developer 75

Transactions

Version 4.2

Transactions and Locks

This chapter describes the behavior and usage of transactions and locks in the PointBase
RDBMS. By understanding how transactions and locks work in PointBase, you can maximize
concurrent database utilization while maintaining appropriate data integrity for your
application. The following sections describe transactions, locking concepts, and the different
isolation levelsthat PointBase supports.

A transaction is the primary mechanism used by PointBase to protect the integrity of data that
can be accessed from the database. All of the changes (INSERT, UPDATE, DELETE) made to
a database during a transaction are added to the database when the transaction commits.

A transaction implicitly startsif any Data Manipulation Language (DML) statement is
executed, such as SELECT, INSERT, UPDATE, and DELETE, or if any Data Definition
Language (DDL) statement is executed, such as CREATE TABLE, CREATE INDEX, etc. A
transaction can be explicitly started by executing a START TRANSACTI ON | SOLATI ON
LEVEL statement.

A transaction commits, when you issue a COMMIT statement. An application can also cancel
all the changes made within a transaction by rolling back the transaction. A transaction rolls
back when you issue a ROLLBACK statement or when an exception occurs.

If you set AUTOCOMMIT to on, atransaction will automatically commit after each statement
(INSERT, UPDATE, DELETE) is completed. For example, a statement is completed when all
result sets and/or update counts have been retrieved. To bound transactions explicitly,
AUTOCOMMIT must be set to off.

A transaction is associated with a connection to the database. If multiple statements or threads
use the same connection, they are part of the same transaction. If you decide to allow multiple
threads to share one connection, you must synchronize al threads in order to commit the
transaction.

For example, if one thread in a transaction issues commit, all the threads within the same
transaction will be committed, invalidating threads that have not finished executing. PointBase
recommends that you use one connection per thread.

PointBase Devel oper 76

PointBase

Row Level Locking

When multiple connections or threads access the database concurrently, PointBase ensures the
integrity of the data using row level locking. PointBase locks only the rows affected by an SQL
statement rather than pages or tables, to ensure maximum concurrent activity. For example,
when transaction T1 isupdating row 10 in page 100, transaction T2 is able to update row 20 in
the same page (100) or to read other rows in page 100.

Locksand Memory

PointBase stores all locksin memory. For efficient use of memory, you can limit the number of
locks asingle transaction can hold. The default limit is 2000, but you can change this using the
locks.maxCount property in the poi nt base. i ni file. (Refer to the PointBase System Guide
for more information about the pointbase.ini file, which you can use to configure the system
properties.)

When atransaction reaches the specified limit of locks, PointBase automatically convertsall of
the row-level locks, to atable-level lock, reducing concurrency as aconsequence. If the system
cannot convert the row level locks to the table level lock within areasonable time, the

transaction is aborted. This may happen, if other transactions hold row-level locks on the same
table.

Transaction I solation Levels

Version 4.2

The following section describes the transaction-isolation levels that PointBase supports. The
transaction-isolation level definesthe rules for releasing locks, allowing other users accessto
the row or table. By understanding PointBase isolation levels, you can understand how the
system locking mechanism behaves.

NOTE: For all isolation levels, PointBase holds locks on rows that are modified until the end
of the transaction.

READ_COMMITTED

When the transaction-isolation level is set to READ_COMMITTED, PointBase releases the
lock on arow as soon it returns the row data to the user. For example, if a query returns 100
rows, the system locksthe first row, reads the data and returnsit to the user. Before locking and
reading from the second row, PointBase releases the lock on the first row to minimize resource
usage and maximize concurrency. After all the reads are complete, no locks are held.

PointBase Developer 77

Version 4.2

PointBase

SERIALIZABLE and REPEATABLE_READ

When the isolation level is set to SERIALIZABLE or REPEATABLE_READ, PointBase does
not release locks on rows read until the end of the transaction. For example, if a query returns
100 rows, the system applies the lock on each row as it reads them. The system releases the
locks only when it returns the data from all 100 rows to the user and the transaction is
complete.

Recommended Isolation L evel
The READ_COMMITTED isolation level gives maximum concurrency and minimum

resource usage while providing the required data integrity for most applications. The default
isolation level isREAD_COMMITTED.

PointBase Developer 78

Distributed Transactions

This chapter summarizes distributed transaction processing (DTP) environments and how to
use PointBase Embedded or Server inaDTP environment. Following the section, “PointBase's
RoleinaDTP Environment,” this chapter briefly describes Sun’s Java Transaction APl (JTA),
the Javamapping for X/Open's XA Specification, and also the JDBC API Extensions for
distributed transactions. Finally, this chapter describes how to use PointBase Embedded or
Server in aDTP environment by providing code snippets, explaining important restrictions,
and supplying specific java classes that PointBase Embedded and Server implements for
distributed transactions.

Although this chapter summarizes DTP concepts, it is only a summary, and it pertains

specifically to PointBase Embedded and Server. For more information about the topics
discussed in this chapter, PointBase recommends reading the following books or documents:

* X/Open's Distributed Transaction Processing: The XA Specification
* Sun Microsystem’s JIDBC APl 2.0
e Sun Microsystem’s Java Transaction API (JTA) 1.0.1

I mportant Note

To successfully run your XA application with PointBase, you must obtain the following two
JAR files from the Sun Microsystem’s website, “jtajar” and “jdbc2_O-stdext.jar” and, include
them in your classpath with the PointBase JAR’s.

» Download the “jtajar “at http://java.sun.com/products/jta/index.html
» Download the “jdbc2_0-stdext.jar” at http://java.sun.com/products/jdbc/
download.html#corespec21.

PointBase’'s Rolein a DTP Environment

Version 4.2

According to the X/Open'’s Distributed Transaction Processing (DTP) Model, aDTP
environment specifies that application programs can use Resource Managersand a
Transaction Manager to access multiple data sources through one global transaction.
PointBase RDBM S acts as a resour ce manager (RM) in a DTP environment.

PointBase Devel oper 79

http://java.sun.com/j2se/1.3/docs/guide/jdbc/index.html
http://java.sun.com/products/jta/

PointBase

You can use PointBase in a DTP environment to write Enterprise JavaBeans that are
transactional across multiple PointBase Servers. Workgroup environments, such as J2EE and
J2SE where the data extends across multiple databases can benefit using PointBase, because
the PointBase JDBC driver supports the 2-phase commit protocol used by the Java
Transactional API (JTA).

Transaction Managers, Resource Manager s, and Global Transactions

A transaction manager (TM) manages global transactions by ultimately deciding to commit, to
rollback, or to recover global transactions. A global transaction is known asaunit of work. For
example, an application can group multiple updates to several different data sources into one
unit of work—a global transaction. A TM also associates resource managers with global
transactions.

Each resource manager (RM) involved in aglobal transaction is unaware of any other RMs
involved besides itself. For this reason, each RM requests and receives “permission” from the
TM beforeit performs any work requested by an application. The RM also communicates all
work it completes for aglobal transaction to the TM—whether it successfully completes or
fails. With this information, the TM decides how to handle the global transaction.

NOTE: If any RM fails to successfully complete its part of aglobal transaction, all RMs
involved in that global transaction must rollback the work for that particular global
transaction.

Interaction Among DTP Components

The following illustration shows PointBase interacting with the application program and the
transaction manager. Notice that the application program also interacts with the transaction
manager. I n thisinteraction, the application program defines the transaction boundaries or
rules with the transaction manager. This guide, however, does not discuss this interaction. For
more information about this topic, please refer to the relevant application program
documentation. The following list describes the interaction flow among the application
program (AP), the resource manager (RM), and the transaction manager (TM).

Application Program (AP)

Transaction Manager (TM)

U

Resource Manager (RM)
PointBase Server
or Embedded

Uy

Version 4.2 PointBase Developer 80

PointBase

Java Transaction API (JTA)

The Java Transaction APl (JTA) is part of the Sun J2EE standard which deals with distributed
transactions. JTA defines a high-level transaction management interface intended for resource
managers and transactional applicationsin DTP environments. PointBase implements the
XAResource and Xid Interface of JTA, which maps the industry standard, X/Open XA
Interface, to Java. Theinterface, X/Open XA Interface allows atransaction manager to manage
operations performed by multiple resource managers, using the two-phase commit X/Open XA
protocol.

JDBC 2.0 Optional Package API

Sun Microsystems created the JDBC API 2.0 Extensions, j ava. sqgl . XAConnect i on and
j avax. sql . XADat aSour ce, so that JDBC drivers can support distributed transactions
using the Java Transaction API's XAResource Interface. Refer to the JDBC 2.0 Standard
Extension Specification for more details on JIDBC API 2.0 Extensions (http://java.sun.com/
products/ jdbc).

The PointBase JDBC driver supports distributed transactions by implementing the following
interfaces. For unsupported methods, you can view both, “Appendix B: Unsupported JDBC
2.0 Methods in PointBase” and the section, “Unsupported in PointBase” at the end of this
chapter.

API Description

javax.transaction.xa X AResource | Thisinterface maps the industry standard X/Open XA
Interfaceto Java. It defines APIs between the transaction
manager and the resource manager. PointBase implements
the IDBC standard for thisinterface. For more information
about thisinterface, refer to http://java.sun.com/products/
jta/javadocs-1.0.1/javax/transaction/xa/ X A Resource.html.

javax.transaction.xa.Xid This interface defines the global transaction identification
structure of the X/Open XA Interface. PointBase
implementsthe JDBC standard for thisinterface. For more
information about this interface, refer to http:/
java.sun.com/products/jta/javadocs-1.0.1/javax/
transaction/xa/Xid.html.

Version 4.2 PointBase Developer 81

http://java.sun.com/products/ jdbc
http://java.sun.com/products/ jdbc
http://java.sun.com/products/jta/javadocs-1.0.1/javax/transaction/xa/XAResource.html
http://java.sun.com/products/jta/javadocs-1.0.1/javax/transaction/xa/XAResource.html
http://java.sun.com/products/jta/javadocs-1.0.1/javax/transaction/xa/Xid.html
http://java.sun.com/products/jta/javadocs-1.0.1/javax/transaction/xa/Xid.html
http://java.sun.com/products/jta/javadocs-1.0.1/javax/transaction/xa/Xid.html

PointBase

API Description

javax.sql.X ADataSource Thisisthe JDBC Extension DataSource Interface for
JTA’'s XAResource Interface. PointBase implements the
class,com poi nt base. xa. xaDat aSour ce for this
interface. In addition to the JDBC standard methods,
PointBase implements some of its own methods.

For more information about PointBase's implementation
of thisinterface, see the section, "Implementing
javax.sgl.X ADataSource" on page 82.

For more information about the standard JDBC interface,
j avax. sql . XADat aSour ce, refer to http:/
java.sun.com/products/jdbc/jdbc20.stdext.javadoc/.

javax.sql.X AConnection Thisinterface isthe JDBC Extension Connection Interface
for JTA’s XAResource Interface. PointBase uses the JIDBC
standard for thisinterface. For more information about this
interface, refer to_http://java.sun.com/products/jdbc/
jdbc20.stdext.javadoc/.

| mplementing javax.sql.XADataSour ce

Theclass, com poi nt base. xa. xaDat aSour ce is the PointBase implementation of the
JDBC Extension Interface, j avax. sql . XADat aSour ce. It is normally used with the Java
Naming and Directory Interface (JNDI) for defining data sourcesin a DTP environment.

Because database vendors may support different data source properties, this section describes
what PointBase supports. And, in addition to the standard JDBC Extension methods of

j avax. sql . XADat aSour ce, PointBase has created its own methods, which this section
also describes.

XADataSource and JNDI

Usingcom poi nt base. xa. xaDat aSour ce to initialize an XADataSource object, isthe
first step to distributed transactions with PointBase. To initialize an X ADataSource object, for
example, you provide the database URL information, password, user name, etc., to get a
connection with a database. However, you can also use INDI.

Using JNDI, an application can find and access remote services, such as a database service
across a network. After registering an X ADataSource object with a INDI naming service, an
application can access that object to connect to the data source it represents.

Version 4.2 PointBase Developer 82

http://java.sun.com/products/jdbc/jdbc20.stdext.javadoc/
http://java.sun.com/products/jdbc/jdbc20.stdext.javadoc/
http://java.sun.com/products/jdbc/jdbc20.stdext.javadoc/
http://java.sun.com/products/jdbc/jdbc20.stdext.javadoc/

PointBase

With PointBase, you can use a INDI naming service to manage data sources and connections.
JNDI adds portability to the application code, for example, you do not have to include data
source propertiesin the application code, such as the database name or the password. Also, you
do not have to change the application code if you want to change a data source property. For
example, instead of changing the application code to reflect a new user name, you can change
the user name with the INDI naming service.

Support for XADataSource Properties
Database vendors may vary when it comes to supporting X ADataSource properties. For every

supported X ADataSource property, the database vendor must provide set and get methods.
PointBase supports the following X ADataSource methods for their respective XADataSource

properties:

XADataSource Method

Description

set Dat abaseNane(String url)

Sets the databaseName property, defining the name of a
particular database on a server. In PointBase, this defines the
URL.

String get Dat abaseNane()

Returns the URL of a particular database on a server

set Description(String description)

Sets the description property, defining adescription of thisdata
source

String getDescription()

Returns a description of this data source

set Password(String password)

Sets the password property, defining the user’s database
password

String getPassword()

Returns the user’s database password

setUser(String user)

Sets the user property, defining the user name

String getUser()

Returns the user name

Version 4.2

PointBase Developer 83

PointBase

Additional PointBase M ethods

In addition to the standard methods of the javax.sql. X ADataSource interface and
javax.sgl.DataSource for that matter, PointBase provides the following methods.

XADataSource Method

Description

set Cr eat eDat abase(

bool ean p_Create) Sets TRUE or FALSE. If set to TRUE, it creates a new database.
Default is FALSE.

Bool ean get Creat eDat abase() Returns TRUE if database exists and FAL SE if it does not exist.

Using PointBase in a DTP Environment

xaDat aSour ce x

This section describes how to use PointBase in a DTP environment. PointBase acts as the
resource manager (RM) in a DTP environment, which reads or writes the data requested by an
application in aglobal transaction. The following sections describe step-by-step how to use
PointBase in a DTP environment.

Getting the XAResour ce Obj ect

First, the transaction manager (TM) must get an XAResource object to start and end the
associ ation between an X AConnection object and a global transaction. To get an X AResource
object, you must do the following:

Initialize XADataSour ce

Create a DataSource object to produce an X AConnection object. An XAConnection object is
similar to atypica Connection object; however, an XAConnection object can obtain an
XAResource object, which you need to perform a global transaction.

ads = new com poi nt base. xa. xaDat aSource() ;

xads. set Dat abaseName(url);

xaDat aSour ce x

XAConnection ¢

Version 4.2

NOTE: Initializing a INDI XA DataSource compared to a JDBC XADataSource is similar.
The following example initializes a INDI X ADataSource—assuming the
XADataSource object has been stored with a INDI naming service previously.

ads = (xaDat aSource)ct x. | ookup(“ poi nt base/ dat asourcel”);

Get XAConnection Object

Get an XAConnection to “ datasourcel,” using the getX AConnection method. You need an
XAConnection object to obtain an X AResource object.

onxa = xads. get XAConnection();

PointBase Developer 84

http://java.sun.com/products/jdbc/jdbc20.stdext.javadoc/
http://java.sun.com/products/jdbc/jdbc20.stdext.javadoc/

PointBase

Get Connection Object

Get a connection to the data source that “ datsourcel” represents, using the getConnection
method. The application involved with the global transaction uses this connection to perform
necessary work with the data source.

Connection con = conxa. get Connection();

Get XAResource Object

Get an X AResource object from the XA Connection object, using the getX A Resource method.
The TM uses the X A Resource object to manage aglobal transaction and its association with an
XAConnection object.

xaResource xrs = conxa. get XAResource();

NOTE: Only one XAResource object may exist for each X AConnection object. For example,
if you call a second getX AResource method on the same X AConnection object, you
obtain the same X AResource object.

Using the XAResour ce Obj ect

Obtaining an X AResource object prepares you for starting and ending the association between
agloba transaction and an XA Connection object. The foll owing examples describe the syntax
that starts and ends the association between an X AConnection and a global transaction; “ xrs”
isthe XAResour ce object:

o Start
xrs.start(Xid, Flag);
e End

xrs.end(Xid, Flag);
Xid
The TM assigns Xids to identify a global transaction. Xid consists of two parts, GTRID

(transaction ID) and BQUAL (branch ID); both can be a maximum of 64 bytes. PointBase uses
a constructor that requires the following parameters:

Parameter Name Parameter Type

formatld int
trid byte]]
brid byte]]

The following example describes the syntax that aTM can use to define an Xid using the
PointBase class, com poi nt base. xa. xaXi d:

Xid xidl = new com poi nt base. xa.xaXid (formatld, trld , brid);

Version 4.2 PointBase Developer 85

PointBase

Flags

The following “Flags’ help start and end the association between a global transaction and an
XAConnection object.

« TMNOFLAGS: indicates the start of a new global transaction. If you try to start a global
transaction with an Xid that is currently in use, you receive the error, XAER_DUPID.
xrs.start(xidl, TMNOFLAGS);

TMJOIN: indicates the joining of another existing global transaction branch. If you try to
start aglobal transaction with an Xid that is currently in use, you receive the error,
XAER_PROTO.

xrs.start(xidl, TMJON);

TMRESUME: indicates resuming a suspended global transaction, which must have been
previously suspended using the TM SUSPEND flag. Y ou can use the TMRESUME flag
in adifferent thread than the thread that suspended the global transaction, but it must use
the same X AConnection.

xrs.start(xidl, TMRESUME);

» TMSUCCESS: indicates that a global transaction has completed successfully.
xrs.end(xidl, TMSUCCESS);

* TMFAIL: indicates that aglobal transaction failed. Y ou must rollback this global
transaction.
xrs.end(xidl, TMFAIL);

TMSUSPEND: indicates suspending a global transaction. Y ou must continue this global
transaction with the flag, TMRESUME, within the same X AConnection.
xrs.end(xidl, TMSUSPEND);

Committing Global Transactions

Starting and ending a global transaction is similar to committing one, because you must
commit a global transaction, using the XA Resource object. After calling the

XAResour ce. end(Xi d, TMSUCCESS) method, you may commit the global transaction.
The beginning of this chapter mentioned that TMs ultimately decide to commit a global
transaction. TMs have the choice to use a “Two Phase Commit” or a“One Phase Commit”
protocol. PointBase (the RM) supports both protocols.

One Phase Commit

A TM can use the one phase commit protocoal, if it knowsthat only one RM inthe DTP
environment made changes to the shared data sources.

The following example describes the syntax for committing a global transaction using the one
phase commit protocol; “xrs’ isthe XAResour ce object:

xrs.commt(xidl, true);

Version 4.2 PointBase Developer 86

PointBase

Two Phase Commit

A TM uses the two phase commit protocol, if multiple RMs made changes to shared data
sources. In the first phase, (absent in the one phase commit protocol), the TM must confirm
that all RMsinvolved in the global transaction have completed the necessary work
successfully. If one RM does not complete its work successfully, the TM must rollback the
globa transaction. If the TM received a successful response from all RMs, however, the TM
proceeds to phase two, committing the global transaction.

The following example describes the syntax for committing aglobal transaction using the two
phase commit protocol; “xrs’ isthe XAResour ce object:

e Phase One

Xrs.prepare(xidl);

e Phase Two

xrs.commt(xidl, false);

Rolling Back Global Transactions

The TM must rollback a global transaction if any RM does not compl ete its work successfully
or if the application requests that the TM rollback the global transaction. The following
example describes the syntax for rolling back a global transaction; “xrs’ isthe X AResource
object:

xrs.rol | back(xidl);

Recovering Global Transactions

A DTP environment or system may need to recover after a storage, connection path, or
program failure. PointBase (the RM) providesthe TM alist of Xids that it has prepared for
commitment by the two phase commit protocol. The TM must recover the Xids by either
committing them or rolling them back. The following example describes the syntax for
recovering aglobal transaction; “xrs’ isthe X AResour ce object:

Xid[] xids = xrs.recover(Flags);

Version 4.2

Flags

» TMSTARTSCAN: indicates the start of a new recovery process.
Xid[] xids = xrs.recover(TMSTARTSCAN);

« TMENDSCAN: indicates the end of arecovery process.
Xid[] xids = xrs.recover(TMENDSCAN);

« TMNOFLAGS: indicates that no other flags are specified. Use thisflag only after you
started the recovery scan.

Xid[] xids = xrs.recover(TMNOFLAGS);

e TMSTARTSCAN | TMENDSCAN: indicates the retrieva of al pending Xids.
Xid[] xids = xrs.recover(TMSTARTSCAN TMENDSCAN) ;

PointBase Developer 87

PointBase

Example

The following example describes a global transaction using a single thread and asingle
resource manager.

/1 initialize DataSource

com poi nt base. xa. xaDat asource xads = new com poi nt base. xa. xaDat aSour ce()

xads. set Dat abaseName(“j dbc: poi nt base: enbedded: xyz”);
xads. set Cr eat eDat abase(true);

/'l get a connection object from DataSource
XAConnection conxa = xads. get XAConnection ();
Connection con = conxa. get Connection();

/'l get a resource object from Connection
XAResour ce xrs = conxa. get XAResource ();

/] define an Xid
Xid xid = new com poi nt base. xa.xaXid (“tr001” , “br001”);

/] start a new transaction
xrs.start (xid, XAResource. TMNOFLAG);

/1 do sonething

Statement stnt = con.createStatenent ();
stmt.execute (“ create table xxx (¢l int)*);
stmt.execute (“ insert into xxx values (1) “);

/'l end an Xid
xrs.end (xid, XAResource. TMSUCCESS);

// commit the transaction
Xrs.prepare (xid);
xrs.conmmt (xid, false);

//close the connection
con. close();
conxa. cl ose();

Mixing Global and L ocal Transactions

Using PointBase, you can mix global and local transactions in the same X AConnection. If you
execute an SQL statement and have not started a globa transaction, (for example, getting an
XAResource object) PointBase starts aloca transaction automatically.

If you execute alocal transaction, you must commit or rollback the transaction before you can
start aglobal transaction.

NOTE: If autocommit is ON, local transactions commit automatically.

Version 4.2 PointBase Developer 88

PointBase

Unsupported in PointBase

PointBase does not support the following for distributed transactions:

* setTransactionTimeout: this method sets the transaction time-out value for this
XAResource instance.

e getTransactionTimeout: this method gets the transaction time-out value set for this
XAResource instance.

Version 4.2 PointBase Developer 89

Version 4.2

SQL Security and Privileges

This chapter describes PointBase security and privileges. Schemas are an integral part of

security in PointBase. When creating a PointBase user, they do not have any access privileges
to schemas or other data objects within the database. The PointBase RDBM S only permits the

schema or database owner, PBSY SADMIN, or the PBDBA role to grant privileges to the

schema and data objects within the schema. These users can grant privilegesto the following

data objects in the schema:

e Tables
e Columns
* Roles

* SQL Procedures and Functions

Table 1 describesthe privileges that the previously mentioned users can grant to other usersfor

tables and columns:

Table 1: User Privileges for Tables and Columns

Privilege Statements

Privilege
Description

DELETE Allows a user to delete rows from tables within the schema

INSERT Allows auser to insert rows of data into tables within the
schema

REFERENCES Allows auser to set up referencesto primary keys within
the schema

SELECT Allows a user to select rows from tables within the schema

TRIGGER Allows a user to create triggers on tables within the schema

UPDATE Allows a user to update rows in tables within the schema

EXECUTE Allows users to execute functions or stored procedures

within the schema

PointBase Devel oper

90

PointBase

Predefined Users

PointBase provides you with two predefined users. They each have their own purposes for the
database. For example, anyone connected to the database using the predefined user,
PBPUBLIC, has the capability to perform the following:

e connect to the database
» access the PBPUBLIC schema
» dlter any objectswithin the default schema

In addition, PointBase provides one more type of predefined user. It has complete authority
and privileges over all databasesin the system. However, it does not have the privilege to
modify or drop the system catalog tables.

Internal_System_Administrator (1SA)

Thistype of predefined user is for PointBase internal use only.

PBSY SADMIN

Thistype of predefined user has complete authority and privileges over all objectsin the
database, for example, it can create new usersin the database. However, it does not have the
privilege to modify or drop the system catalog tables. You may not grant additional
privileges to the predefined user, PBSY SADMIN. To connect using PBSY SADMIN, you will
initialy have to use the password, “PBSY SADMIN.” After using it to connect, PointBase
encourages you to change the password immediately.

PBPUBLIC

Another PointBase predefined user is PBPUBLIC. To connect using thistype of user, you must
use the default password, PBPUBLIC. With this type of user, you may access objects in the
default schema, PBPUBLIC.

Previous User PUBLIC

Inversions4.1 and earlier, PointBase used the default user, PUBLIC. By default, it also hasthe
password and schema, PUBLIC. These nameswill still remain effective in versions 4.2 and
later; however, PointBase will now use PUBLIC for superficial purposes only. That is, you
may still connect to the database using PUBLIC. But internally, PointBase converts the user
and the password, PUBLIC, to PBPUBLIC every time you connect, and PointBase recognizes
the schema, PUBLIC asif it were the schema, PBPUBLIC. Please note that the passwords,
PBPUBLIC and PUBLIC act as the same password, so if you alter either password, it affects
the other.

Version 4.2 PointBase Developer 91

PointBase

Granting and Revoking Privilegesto Users

When you initially create a PointBase database, it automatically creates the user, PBPUBLIC
with a password of PBPUBLIC. The PBPUBLIC user owns the default PBPUBLIC schema
For security reasons, PointBase does not recommend using this schemato store sensitive data
Like any PointBase user, PBPUBLIC must be granted the appropriate privileges to access data
objects in schemas owned by other users.

PBPUBLIC userswill own any new schemathat they create unless otherwise specified while
creating the schema. New users are then able to create their own new schema and grant
appropriate privileges on objects in the schema that they own. All new users must be granted
privileges to access the objects in the PBPUBLIC schemaif thisisrequired.

To grant the ability for a user to pass a privilege on to other users, you must specify the
optional WITH GRANT OPTION qualifier when granting the privilege.

GRANT Syntax

GRANT <privilege-list>

ON <obj ect >

TO <user> [WTH GRANT OPTION] | PUBLIC]
[GRANTED BY <grant or >]

Use the GRANT statement to grant privileges on a data object. The following describes the
GRANT statement syntax.
GRANT <Privilege-list> Syntax

privilege [, privilege [, privilege].] | ALL PRI VILEGES

<Privilege> Syntax

SELECT [(colum-nane [, columm-nane].)]
DELETE
| INSERT [(columm-nanme [, columm-nane].)]
| UPDATE [(columm-nanme [, columm-nane |.)]
| REFERENCES [(colum-nane [, colum-nane].)]
| TRGGER [(colum-nanme [, colum-nane]..)
| EXECUTE
Usage Notes

» If you do not include one or more of these privilegesin the GRANT statement, an error
will be raised.

» If the optional “column-names’ are not specified for the SELECT, INSERT, UPDATE,
REFERENCES and TRIGGER privileges, the GRANT is atable-level grant that allows
access to all present and future columns of the table.

» If you executea GRANT statement that contains privileges that you don’'t have or for
which you do not have the right to grant, then PointBase raises an error.

Version 4.2 PointBase Developer 92

PointBase

ON <Object> Syntax

[TABLE] table-nane

| SPECI FI C routine_type specific_routine-nane

| routine_type routine_nane (paraneter_types_list)
[TRIGGER] trigger-name

Usage Notes

* You may only grant the EXECUTE privilege on an SQL Function or Procedure. The user
cannot access tables that the SQL Function or Procedure uses.

TO <user/role-list> | [WITH GRANT OPTION] | PUBLIC Syntax

user [, user]... [WTH GRANT OPTION] | PUBLIC

Usage Notes

» If you do not specify WITH GRANT OPTION, the user cannot pass the same privilege
on to other users. However, if you do specify WITH GRANT OPTION, you have given
the user permission to pass on the privilege to other users.

e Granting aprivilege to PUBLIC grantsthe privilege to all present and future users.
PUBLIC isakeyword, representing all usersin the database.

» If you grant aprivilege twice, and one of the times—either first or second—you granted
the optional WITH GRANT OPTION and the other time you granted it without the grant
option, the user will retain the grant option.

[GRANTED BY <grantor>] Syntax

[GRANTED BY CURRENT_USER | user_nane]

Usage Notes

» Usethis option to indicate whether you want the grant to be from the CURRENT_USER
or the CURRENT_ROLE, or whether you want to revoke authorization records that were
granted from the CURRENT_USER or from the CURRENT_ROLE.

» If GRANTED BY <grantor> is not specified, then the grantor isthe CURRENT_USER.

 |If GRANTED BY CURRENT_ROLE is specified, then the CURRENT_ROLE must not
be NULL.

» A <grantor> of user_nameisnot ANSI standard. Only the users, PBSY SADMIN,
database owner, or someone with the PBDBA role can specify a<grantor> of
user_name.

Examples

» Thefollowing statement grants the SELECT privilege on the CUSTOMER_TBL table to
the user MARKETING_MGR.

GRANT SELECT
ON cust omer _t bl
TO marketing_ngr;

Version 4.2 PointBase Developer 93

PointBase

* Thefollowing GRANT statement allows the user FINANCIAL_MGR to delete, insert
and update rows from the DISCOUNT_CODE_TBL table; it also allows this user to
grant the same privileges to others.

GRANT DELETE, | NSERT, UPDATE
ON di scount _code_t bl

TO financial _ngr

W TH GRANT OPTI ON;

» Thefollowing GRANT statement allowsthe user HR_MGR to have ALL PRIVILEGES
onthetable SALES REP_DATA_TBL. However, the user HR_MGR will only be
granted privileges that the user granting the privileges has the right to grant. For example,
if the user granting the privileges does not have the right to grant DELETE privileges, the
HR_MGR will not have the delete privilege.

GRANT ALL PRI VI LEGES
ON sal es_rep_data_tbl
TO hr _ngr

REVOKE Syntax

REVOKE [GRANT OPTION FOR] <privilege_ list>
ON <obj ect >

FROM <user_nane> [RESTRI CT | CASCADE]

[GRANTED BY <grant or >]

To revoke arole from a user, use the SQL command, REVOKE. This command revokes only
the privilegesthat the specified <grantor> granted to the <user_name>. If another <grantor>
granted the same privileges to the <user_name>, then the <user_name> will still have those

privileges.

Please note that the syntax rules for the REVOKE syntax is similar to the GRANT statement.

The major difference is the additional RESTRICT or CASCADE keyword and the GRANT

OPTION FOR clause. The following describes the optional clauses GRANT OPTION FOR
and RESTRICT or CASCADE.

NOTE: You may only revoke privileges, which you have granted.
GRANT OPTION FOR

If the optional GRANT OPTION FOR clauseis used, the WITH GRANT OPTION right is
revoked, but the actual privilegeitself isnot revoked. CASCADE and RESTRICT may be used
in the same way as anormal REVOKE statement.

RESTRICT | CASCADE

If you specify the RESTRICT keyword, only the privilege granted by you, will be revoked
from the specified user. If the specified user had the grant option and granted the same
privilege to other users, then PointBase will raise an error.

If you specify CASCADE, only the privilege granted by you, will be revoked from the
specified user and any other privileges dependent on your grant.

If the optional RESTRICT or CASCADE keywords are not used, PointBase uses CASCADE
by default.

Version 4.2 PointBase Developer 9

PointBase

Predefined Roles

This section describes predefined roles in PointBase. Predefined roles and roles in general can
save you time granting commonly-used privilegesto a user, a group of users, or another role.
Predefined roles can provide you some type of authority over databases. Predefined roles and
rolesin general are multiple privileges bundled into one object. You can typicaly use a
predefined role to apply commonly-used privileges to one user or a group of users or another
role. For example, one predefined role gives specified users dl the privileges that a database
owner has. The other predefined role gives specified users read authority on all objectsin the
database. You may not grant additional privilegesto predefined roles. PointBase provides
the following predefined roles:

PBDBA Role

You have complete authority, including all privileges over the database using the PBDBA role.
Please note that it cannot be granted to other roles.

READALL Role

You can grant other userstheread or SEL ECT authority on all objects in the database using the
READALL role. With it, any user can unload the entire database—regardless of who ownsthe
objects or what privileges have been granted on them.

Granting and Revoking Privilegesto Roles

With PointBase, you have the capability to grant or revoke roles. They may contain multiple
privileges, which you can apply towards multiple users, without having to apply each privilege
one user at atime. Any user can grant roles to other users or to other roles if they have the
authority. Any user with the authority may grant additional privilegesto roles.

To enable your current role, you must use the SQL command, SET ROLE. PointBase allows
you to enable or set your current role if your current user has been granted that role. A user
may only have one enabled role—one current role, at any given time—though a user may have
been granted several different roles. Please note that at any given time, users' tota privileges
are the sum of al privilegesdirectly granted to them and any privileges or roles granted to their
current role.

The following diagram briefly characterizes roles by illustrating User | granting Role A to
User Il and Role B. It also displays User Il granting Role C to Role A and how User Il and
Role B are affected by this change.

Version 4.2 PointBase Developer 95

PointBase

Sepl
User |
RoleA —— GRANT ROLEA to User I
Privilege A ;
Privilege B Role B
Result of Sep 1
User | User Il Role B
Role A Role A Role A
Privilege A Privilege A Privilege A
Privilege B Privilege B Privilege B
Sep 2
User Il Role A Role A
RoleC —GRANT ROLE Cto—|PrivilegeA | — | Privilege A
Privilege C Privilege B Privilege B
Privilege D Role C
Privilege C
Privilege D
Result of Step 2
User | User Il Role B
Role A Role A Role A
Privilege A Privilege A Privilege A
Privilege B Privilege B Privilege B
Role C Role C Role C
Privilege C Privilege C Privilege C
Privilege D Privilege D Privilege D

CREATE ROLE Syntax
CREATE ROLE <rol e_nane> [WTH ADM N <gr ant or >]

To create arole that can have privileges granted to it, use the SQL command CREATE ROLE.
The following explains the CREATE ROLE syntax.

<rol e_name>

It is the name of the role you are creating. For <role_name>, you may use any valid user
name, except PUBLIC, NONE, or the same name as an existing user.

<grantor> = CURRENT_USER | CURRENT_ROLE | user_nane

Version 4.2 PointBase Developer 96

PointBase

If WITH ADMIN <grantor> is not specified, then the grantor isthe CURRENT_USER.
IFWITH ADMIN CURRENT_ROLE is specified, then the CURRENT_ROLE must not
be NULL.

A <grantor> of user_nameis not ANSI standard. Only the PBSY SADMIN, database
owner, or someone in the PBDBA role can specify a<grantor> of user_name.

Examples

<need exanpl es>

GRANT ROLE Syntax

GRANT <role_nanme> [{ , <role_name> } .]

TO <grantee> [{ ,

<grant ee>} ...]

[WTH ADM N OPTI ON|
[GRANTED BY <grant or >]

To grant users arole, use the SQL command, GRANT ROLE. The following explainsits
syntax.

<rol e_name>

It is the name of the role you are granting. You may grant more than one role.

<grantee> = PUBLIC | <rol e_name>

A role can be granted to users or other roles.

Y ou cannot grant aroleto itself.

You cannot grant one role to a second role, and then attempt to grant the second role back
to the first. For example, you can grant Role (A) to Role (B) or Role (B) to Role (A), but
not both. Such a series of grants would result in arole grant cycle, which is not allowed.
Granting to PUBLIC grants the role to all present and future roles.

[WTH ADM N OPTI ON|

If WITH ADMIN OPTION is specified, then the <grantee> can grant the role to other users or
roles. It also gives the <grantee> the right to drop the role.

<grantor> = CURRENT_USER | CURRENT_ROLE | user_nane

Version 4.2

If you do not specify GRANTED BY <grantor>, then the grantor isthe
CURRENT_USER.

If you specify GRANTED BY CURRENT_ROLE, then the current role must not be
NULL.

To successfully execute this command, current users must either be the PBSY SADMIN
or the database owner. Or, current users must either have the PBDBA role, or the
<grantor>s must have admin option for every role that they grant.

A <grantor> of user_nameis not ANSI standard. Only the PBSY SADMIN, database
owner, or someone in the PBDBA role can specify a<grantor> of user name.

PointBase Developer 97

PointBase

REVOKE Syntax

REVOKE [ADM N OPTION FOR] <role _name> [{ , <role_nanme> } .]
FROM <grantee> [{ , <grantee>} ...]

[GRANTED BY <grant or >]

<dr op_behavi or >

To revoke arole from a user or another role, use the SQL command, REVOKE. This command
revokes only the roles that the specified < grantor> granted to the <grantee>. If another
<grantor> granted the same role the <grantee>, then the <grantee> will still have privileges
to that role.

Please note that the syntax rules for the REVOKE syntax issimilar to GRANT ROLE, except
for the following.

NOTE: You may only revoke roles, which you have granted.

[ADM N OPTI ON FOR]

If ADMIN OPTION FOR is specified, then only the admin option for the role is revoked.

<dr op_behavi or> = CASCADE | RESTRI CT

» If you specify the RESTRICT keyword, only the role granted by you, will be revoked
from the specified <grantee>. If the specified <grantee> had the ADMIN OPTION and
granted the same privilege to other users, they will retain the privilege.

» If you specify CASCADE, only therole granted by you, will be revoked from the
specified <grantee> and any other roles dependent on your grant.

» If the optional RESTRICT or CASCADE keywords are not used, PointBase uses
CASCADE by default.

DROP ROLE Syntax

DROP ROLE <rol e_nanme> [<drop_behavi or >]

To successfully execute this command, the current user must be the PBSY SADMIN or the
database owner, or the current role must be PBDBA. If your current user or role has been
granted admin option on the role being dropped, you may also use this command.

<dr op_behavi or> = CASCADE | RESTRI CT

» If the drop behavior is CASCADE, then al schemas owned by thisrolewill be dropped.
Also, all privilege entriesin the catal og tables where thisrole is the <grantor>, the
<grantee>, or the object being granted will be dropped.

» If thedrop behavior isRESTRICT, then an error will beraised if there are any schemas
owned by thisrole or if there are any privilege entries, where this role is the <grantor>,
the <grantee>, or the object being granted.

» If drop behavior is not specified, then CASCADE is the default.

* You cannot drop the predefined roles: PBDBA and READALL.

Version 4.2 PointBase Developer 98

PointBase

SET ROLE Syntax

SET ROLE <rol e_nanme> | NONE

Version 4.2

Usage Notes

To successfully execute this command, the current user must be the PBSY SADMIN, the
database owner, or auser granted to use thisrole. Or, the current role must be PBDBA.
This statement will set the current role for the current user to either the role specified or
to the null value if NONE is specified.

If this statement is executed and an SQL transaction is currently active, then an error will
be raised: dbexcpl TSActiveSQLX : "Invalid transaction state - active SQL -transaction”.

PointBase Developer 99

Version 4.2

Optimizer Usage in PointBase

Query optimization consists of analyzing an SQL query expression used within SELECT,
DELETE, (where clause), INSERT (query expression), or UPDATE (where clause) statements
to determine the best way to execute the query expression. The description of which resources
to use and how to use them is known as a query plan.

Some of the major influences on the optimizers choice of a query plan are the following:

» The SQL table(s) in the database to be accessed.

» Theindexes on the specified SQL table or tables and how they relate to the query
expression.

» Thesize of each SQL table (number of rows, columns) which impacts the number of
reads from physical storage.

e Thesize of the cache that can contain the rows of the SQL table or tables.

Indexes are very crucia to the optimizer. If acolumn or columns of the index are used in the
where clause or as ajoining column, then the optimizer can consider using the index in the
costing of a given query plan. The optimizer measures the cost of using any index that exists.
Indexes allow the database system to only access those rows that meet the criteria of the query
expression. For an index, the optimizer determines the number of leaf pages (bottom tier), the
depth of the index and the selectivity factor. The selectivity factor is aratio of finding agiven
index key value within the index.

Additionally, the optimizer determines the cost of scanning each row of the table.

The optimizer in the PointBase RDM Sis a cost-based optimizer. This means that it will look at
the numerous possible query plans and determines which one is most optimal and least
expensive for a given query expression.

One of the difficulties that an optimizer encountersis that the index information can become
quickly outdated. This occurs through deletions, insertions, and modificationsto the actual key
values of theindex. The number of leaf pages, the depth and the selectivity factor al become
invalid with just one or more deletions, insertions, or modifications. To solve this problem,
most database systems require a database administrator to run a statisticstool to update the
information on an index so that the optimizer always has current information.

The optimizer in the PointBase RDM S does not require any such tool or the intervention of a
database administrator. The PointBase system automatically keeps the number of leaf pages,
index depth, and selectivity factor for each index consistently current. By keeping pertinent
information current, the optimizer will always have correct information to determine what
query plan should be employed to execute the query expression.

PointBase Devel oper 100

Execution Plan

PointBase

Whenever a query is compiled, the optimizer figures out various ways the query can be
executed and picks the one with the lowest cost. The cost is determined in terms of the number
of 1/0s needed to perform the query in addition to the CPU cost associated with evaluating the
portion of the query under consideration. The important elements of an execution plan are:

» The access methods: if there are any indexes, are they used? If there are multiple indexes,
which ones are used? If an index is used, does the base table need to be accessed, or is all
the information needed available in the index? If only the index is accessed and not the
base table, thisis known as an index-only access and can improve performance
dramatically.

* Thejoin order: this determines the order in which tables are accessed. At each step, the
execution plan estimates costs and the number of rows produced.

* Thejoin type: thiselement could beaNESTED LOOP or an OUTER JOIN NESTED
LOOP.

» The predicates: where in the execution plan are the predicates put to use? The objectiveis
to push the computation as close to the data and filter it out as quickly as possible.

The PointBase PLAN facility provides you with all of these elements. Thisinformation is kept
intwo SQL tables: PLAN_QUERIES and PLAN_TABLE. These SQL tables can be accessed
and modified with common SQL commands. These tables have the following characteristics:

* The system automatically creates these tables.

* Theowner of each tableisthe current user.

* Asthe user, you must truncate the tables to remove data that it no longer needs. To
remove data from these tables, use a DELETE statement.

NOTE: For adetailed description of these tables, please refer to the Database Log Flushing
section of your PointBase™ System Guide.

Commands for PointBase Commander

Version 4.2

To generate the execution plan, you can do the following:

* From PointBase Commander, usethe SET PLANONLY ON command to retrieve the
plan.

* Compile and execute the SET PLANONLY ON command. Next, compile the query of
interest. Finaly, you should set PLANONLY to OFF. Once this is done, you can view
the PLAN_TABLE and PLAN_QUERIES tables with a SELECT statement.

SET TIMING ON | OFF

This statement returns the time for the compile step in addition to the total time taken for any
command.

PointBase Developer 101

PointBase

SET PLANONLY ON | OFF

Once PLANONLY isturned on, planswill be generated for all SQL queriesuntil PLANONLY

is turned off

SET SHOWPLAN ON | OFF

This statement displays the plans generated by all SQL queries. For example, plans for the
following queries are shown below for these statements:
select * fromtl1l,t2 where tl.cl =t2.¢cl and t1.c1>5 and t2.c1<100;

select * fromtl LEFT OQUTER JON t2 on tl.cl=t2.cl;
sel ect max(tl.cl) fromtl,t2 group by t2.cl1, t1l.cl;

The PLAN_QUERIES table would be:

Query

Value

select * fromtl,t2 where tl.cl = t2.cl1l and

1 t1.c1>5 and t2.c1<100

5 select * fromtl LEFT QUTER JON t2 on
tl.cl=t2.cl

3 select max(tl.cl) fromtl,t2 group by t2.cl,

tl.cl

The PLAN_TABLE table would return:

Query | Block | Sep Join Access Tableld | Indexid Cost OutputRows | Expression

1 1 1 none table scan 190 Null 1 0 <(T2.C1,constant)

1 1 2 nestedloop | tablescan | 189 Null 0 0 =(T1.C1,T2.C1),
join >(T1.C1,constant)

2 1 1 none table scan 189 Null 1 20 Null

2 1 2 outer tablescan | 190 Null 20 16 =(T1.C1L,T2.C))
nestedloop
join

3 1 1 group by Null Null Null Null Null (T2.C1L,T1.C1)

3 1 2 none tablescan | 189 Null 1 4 Null

3 1 3 nestedloop | table scan 190 Null 4 80 Null
join

Version 4.2 PointBase Developer 102

Application Programming
|nterface Tools

This chapter describes what application programming interface (API) tools PointBase offers
and how to use them. Unlike other PointBase tools, for example, Commander and Console,
you can integrate the API tools explained in this chapter with a Java application. This chapter
will divide each API tool or combination of tools into sections, beginning with the main
purpose for using the tool(s), followed by a description of the Java classes and other
components, accompanied with a brief summary of how the different parts can work together
(if needed), and finally, ending with examples of how to implement the tool(s). After reading
or browsing this chapter, you may find a useful tool(s) that an application can integrate.

Load and Unload API's

Version 4.2

PointBase provides tools that you can use to either load or unload a database, or unload atable
using the load and unload API’s. Using it, you can write your application once and call
methods to unload or load a database without having to write anything on a command line.
However, you can a so create a stand-alone tool or acommand-line tool using the load and
unload API’s. Either way you choose, PointBase gives you the needed toolsto load or unload a
database, or unload a table.

Unload API

To unload a database or table using the unload API, you must use the PointBase class,
“com.pointbase.tools.toolsUnload.” It contains two static methods,
“unloadDatabase(Connection p_conn, String p_filename, boolean p_preserve)” and
“unloadTable(Connection p_conn, String p_filename, String p_tableName).”

unloadDatabase(Connection p_con, String p_filename, boolean p_preserve)

To unload a complete database into directory as a specific .sql file, you must use the static
method, “unloadDatabase(Connection p_conn, String p_filename, boolean p_preserve).” You
need to create the connection and then pass the connection reference to the API. You a so need
to provide the file name with the complete path; if you do not provide it, the API will unload
the database into a .sql file located in the directory, where you launched the application.

PointBase Developer 103

i mport

PointBase

The third parameter preserves ownership when unloading. TRUE preserves the ownership of
schemas, grantors in GRANT statements, and create ROL E owners. But, it does not preserve
the DATABASE OWNER. Whoever creates the new database becomes the database owner.
See the example after the unload table method.

unloadTable(Connection p_conn, Sring p_filename, Sring p_tableName)

To unload an entire table into a specific .sgl file and directory, you must use the static method,
“unloadTable(Connection p_conn, String p_filename, String p_tableName).” You need to
create the connection and then pass the connection reference to the API. You also need to
provide the file name with the complete path; if you do not provide it, the API will unload the
table into a.sql file located in the directory where you launched the application. If you unload
atable, you must provide the complete-qualified name of the table; that is,
“<schema_name>.<tableName>"; if you do not provide it, the APl will search for the table
name in the current schema path. For mixed-case-table names, the example describes the
supported syntax.

com poi nt base. t ool s. t ool sUnl oad
public
{

class test

Connection mcon;
public test() throws SQLException

Cl ass. f or Nane(“ com poi nt base. j dbc. j dbcUni ver sal Driver”);
Driver Manager. get Connecti on(“j dbc: poi nt base: enbedded: sanpl e”, “pbpublic”, “p

public void unl oadDatabase()

t ool sUnl oad. dat abase(m.con, “e:\\pointbase\\database.sql”, true);

tool sUnl oad.tabl e(mcon, “e:\\pointbase\\table.sql” “public.tl1");
//table names are case-sensitive, see the follow ng:

tool sUnl oad.tabl e(mcon, “e:\\pointbase\\tablel.sql” *“public.ajay”);

public static void nmain(String[] args)

try

test t = new test();
test. | oadDat abase() ;

%:at ch(SQ.Exception ex){}
}

}

Version 4.2

Sand-Alone or Command Line Tool

To use the unload tool on the command line, you can use the following example, which
unloads a complete database into the file, “ database.sql” in the directory, “e\.” It aso
preserves the ownership of schemas, grantorsin GRANT statements, and create ROLE
owners. But, it does not preserve the DATABASE OWNER. Whoever creates the new
database becomes the database owner. You must provide the file name with the complete path;
if you do not provide it, the API will unload the table into a .sql file located in the directory
where you launched the application. If you unload atable, you must provide the complete-
qualified name of the table; that is, “ <schema_name>.<tableName>"; if you do not provide it,
the API will search for the table namein the current schema path. For mixed-case-table names,
the example describes the supported syntax. It uses the following default options:

e -driver com.pointbase.jdbc.jdbcUniversalDriver
» -url jdbc:pointbase:embedded:sample
e -user PBPUBLIC

PointBase Developer 104

PointBase

» -password PBPUBLIC

java com poi ntbase. tool s.tool sUnl oad
—driver com poi ntbase.jdbc.jdbcUniversal Driver —url jdbc: pointbase: enbedded: sanpl e —
file e:\database.sql -preserve true —user pbpublic —password pbpublic -table null

To unload atable, you can refer to the following example:

java com poi ntbase. tool s.tool sUnl oad
—driver com poi ntbase.jdbc.jdbcUniversal Driver —url jdbc: pointbase: enbedded: sanpl e —
file e:\table.sql —user pbpublic —password pbpublic -table pbpublic.tablel

Load API

To load a database using the load API, you must use the PointBase class,
“com.pointbase.tools.toolsLoad.” It contains one static method, “load(Connection p_conn,
String p_filename).”

load(Connection p_conn, Sring p_filename)

Using this method, you must first create the connection and then pass the connection reference
to the API. You must also provide the file name with the complete path; if you do not provide
it, the API will try to load the file from the current location of the application. The following
example describes the connection, “m_con” and the complete path and file name,
“e:\pointbase\database.sql.”

import com poi ntbase.tools.tool sLoad ;
public class test

Connection mcon;
public test() throws SQLException

Cl ass. f or Name(“ com poi nt base. j dbc. j dbcUni ver sal Driver”);

mcon = DriverManager. get Connection(“j dbc: poi nt base: enbedded: sanpl e”, “pbpublic”, “p
bpublic™);
}
public void | oadDatabase()
tool sLoad. |l oad(mcon, “e:\pointbase\database.sql”);
public static void nmain(String[] args)
{
try
{
test t = new test();

test. | oadDat abase() ;

%:at ch(SQ.Exception ex){}
}

Sand-Alone or Command Line Tool

To use the load tool on the command line, you can use the following example, which loads a
complete database into the file, “ database.sql” in the directory, “e:\.” You must provide the
file name with the complete path; if you do not provideit, the API will try to load the file from
the current location of the application. It uses the following default options:

e -driver com.pointbase.jdbc.jdbcUniversalDriver
» -url jdbc:pointbase:embedded:sample

e -user PBPUBLIC

e -password PBPUBLIC

java com poi nt base.t ool s.tool sLoad —driver com poi nt base.jdbc.jdbcUniversal Driver —
url jdbc: poi ntbase: enbedded: sanple —file e:\database.sql —-user pbpublic -
password pbpublic -l og true

Version 4.2 PointBase Developer 105

Appendix A: SOL Reference

Conventions

This section describes documentation conventions. There are two basic conventions:

1. Page format conventions provide a structure for the organization of individual pages
in the documentation.

2. Syntax conventions convey specific information about keywords and clauses in the
SQL statements described in this document.

Page Format Conventions

Each SQL statement in the data manipulation language, data definition language, and
transaction control sections of the PointBase SQL documentation uses a specific page format.

Version 4.2

Each statement page starts with the primary keyword of the statement, which displays at
the heading of the page; for example, SELECT.

The statement keyword(s) is followed by the syntax of the statement. The statement
syntax follows the conventions described in “ Syntax Conventions,” below.

Immediately following the statement syntax is a brief description of the overall statement.

Detailed explanations are then described for each keyword and clause in the statement.
Some clauses may include a more detailed explanation of their own syntax or linksto
other documents that describe clauses that are common to more than one SQL statement.

PointBase Devel oper 106

PointBase

Syntax Conventions

Each SQL statement uses certain types of capitalization, formatting, and punctuation that
describe the attributes of different portions of the statement.

If aportion of an SQL statement displaysin UPPERCASE, the capitalized words are
keywords, which are generally required in the SQL statement or clause. Keywords are not
case sensitive, and they must be spelled exactly asthey display in this document.

Portions of SQL statementsthat display in lowercase italic are SQL values. SQL values
used in PointBase SQL can be constants, column names, values formed from
combinations of column vaues and constants, or the result of any function that returnsa
single value. The vaues for variablesin conditional expressions are case sensitive.

The clauses in an SQL statement that display between [brackets] are optional. If an
optional clause has several components or keywords, they display within the brackets.

Curly braces {} in SQL statements indicate that one or more clauses are used together.

Ellipses are sets of periods (such as“..."”). Ellipsesin an SQL statement have the same
meaning as “etc.”; they denote that the series of keywords, clauses, or variables that
precede the ellipses go on indefinitely.

Data Definition Language

Version 4.2

The following section describes the syntax for creating and managing logical data objects. The
Data Definition Language (DDL) is essential to creating a database. Use the following DDL
statements and operations to begin building your PointBase database.

"CREATE SCHEMA" on page 108
"CREATE TABLE" on page 109
"CREATE VIEW" on page 119
"CREATE USER" on page 121
"CREATE ROLE" on page 121
"CREATE INDEX" on page 122
"CREATE FUNCTION" on page 123
"CREATE PROCEDURE" on page 126
"CREATE TRIGGER" on page 128
"ALTER USER" on page 134
"ALTER TABLE" on page 133

PointBase Developer 107

PointBase

CREATE SCHEMA

CREATE SCHEMA schena_nane
[AUTHORI ZATI ON user _nane]
[COUNTRY country_code [LANGUAGE | anguage_code]]

Version 4.2

The CREATE SCHEMA statement creates a schema in a PointBase database.

Syntax

CREATE SCHEMA

The CREATE SCHEMA keyword is required as the first words
in a CREATE SCHEMA statement.

schema_name®

The name of the schema.

user_name

The schema owner name or the role name. If you specify arole
name, any user who enables the specified role can have full
schema ownership privileges. The schema owner name or the
role name must exist in the database or an error israised. If
user_nameis not specified the current user_nameisthe owner of
the schema.

country_codeb

Specifies the country code. The default country codeisUS
English. When thisoption isused, char datais stored as Unicode.
If this option is NOT used, char, varchar, and CLOB columns use
USASCII values.

language code

Specifies the language code. The default language codeis US
English. When thisoption isused, char datais stored as Unicode.
If this option is NOT used, char, varchar, and CLOB columns use
USASCII values.

a. PointBase recommends to use the same name for both the schema_name and the
user_name. Onceyou log in, PointBase creates new objects in the schemathat has the
same name as your user_name. If no schema has the same name as your user_name,
PointBase creates the new objects in the PBPUBLIC schema.

b. Please refer to Country and Language Codes of the PointBase System Guide for a
list of valid country codes and languages.

PointBase Developer 108

CREATE SCHENA
AUTHORI ZATI ON
COUNTRY

LANGUAGE

PointBase

FR
FR;

Examples

ORDERS
O ders_Myr

CREATE TABLE

CREATE TABLE tabl e _name (colum_definition |
[{, columm_definition |

PAGESI ZE si ze]

tabl e_constraint_definition}...])

tabl e _constraint_definition

[TABLE PAGESI ZE si ze, LOB

[COUNTRY country_code [LANGUAGE | anguage_code]]

Version 4.2

The CREATE TABLE statement creates the table structures for the PointBase database. The
CREATE TABLE statement allows you to define the table by name, to define the columns,
default values, keys, and constraints on the table.

Syntax

CREATE TABLE

The CREATE TABLE keywords are required as the first words
in a CREATE TABLE statement.

t abl e_nanme

The table_name isthe name of the table structure. The table
name cannot be the same as a PointBase keyword. Table names
in the PointBase database are not case sensitive and can be up to
128 characters long.

column_definition

The column_definition contains all the information needed to
define the columnsthat are a part of atable. See the following
pages for the section on column_definition syntax.

table_constraint_definition

Thetable _constraint_definition allowsyou to define a constraint
that is applicable to the table. Usually thistype of constraint is
used when you specify multiple columns for any type of
constraint. See the following pages for the section on

table _constraint_definitions.

TABLE PAGESI ZE si ze

Use the TABLE PAGESIZE keywords after all the column
definitions and table constraint definitions to define the page size
of thetable. If this specification is omitted, the table uses the
default pagesize as set in the database propertiesfile

(poi nt base. i ni). Thetable pagesize identifies the number
of digits, KB, or MB reserved for the index. Size can be one of
the following:

* anumber, such as 1024
» KiloBytes, such as 1K
* MegaBytes, such as 1M

PointBase Developer 109

PointBase

LOB PAGESI ZE si ze

Use the LOB PAGESIZE keywords after al the column
definitions and table constraint definitionsto define the page size
of theBLOB and CL OB columns. If this specification is omitted,
the LOB uses the default pagesize. If both table and LOB

pagesi zes are specified, either the table or the LOB pagesize can
be defined before the other. The LOB PAGESIZE identifies the
number of digits, KB, or MB reserved for the CLOB or BLOB
index. Size can be:

* anumber, such as 1024
* KiloBytes, such as 1K
* MegaBytes, such as 1M

Itisrequired only if one or more columns in the table contain

L OB characters. You should specify this only once, even if the
table has multiple LOB columns. All LOBswill use pages of this
size for storing LOBs, unless the LOB fits into the data page.

If this specification is omitted, the LOB pages use the default
page size.

COUNTRY country_code

Specifies the country code. The default country codeisUS

English? When this option is used, char datais stored as
Unicode. If this option is NOT used, char, varchar, and CLOB
columns use US ASCI| values.

LANGUAGE
language_code

Specifies the language code. The default language codeisUS
English. When this option isused, char datais stored as Unicode.
If thisoptionisNOT used, char, varchar, and CLOB columns use
US ASCII values.

a. Pleaserefer to Country and Language Codes of the PointBase™ System Guide for alist
of valid country codes and languages

A table has agiven locale property if the following items are fulfilled:

» thecountry code or language code is explicitly specified in the CREATE TABLE

statement.

» thecountry code or language code is explicitly specified in the CREATE SCHEMA

statement.

» language and country settings are specified inthe poi nt base. i ni file.

Version 4.2

PointBase Developer 110

PointBase

Column_Definition Syntax

col um_nane data_type [identity property | default_clause] [columm_constraint]

column_name The column_name is the name of the column structure within the
table created with the CREATE TABLE statement. The column
name must be composed of aphanumeric characters or the
equivalent in another language, for example, aword in Japanese
characters and cannot be the same as a PointBase keyword. The
column name must be unique within the table that containsit.
Column names in the PointBase database are not case sensitive
and can be up to 128 charactersin length.

data_type The data type describes the type of data that can be stored in the
column.
identity property IDENTITY [(start_value, increment_value)]

IDENTITY keyword is used to recognize the definition of
IDENTITY property.

start_value is the value of the first row in the table. The value
must be a value greater than zero. If you do not specify this
value, the default is 1 (one).

increment_value isan incremental value based on the
start_value. The value must be a value greater than zero. If you
do not specify this value, the default is 1.

The maximum value for either start_value or increment_valueis
equal to the maximum value possible for the data type. For
example, The maximum value possible for NUMERIC (4,0) is
9999. You can have IDENTITY columns with exact numeric
datatypes and a0 (zero) scale only. The exact numeric datatypes
include INTEGER, SMALLINT, NUMERIC, or DECIMAL.
You cannot update IDENTITY columns nor can you specify
NULL for them. Also, you can only have one IDENTITY
columninatable. (See"IDENTITY Property for
Autoincrement” on page 42.)

Version 4.2 PointBase Developer m

PointBase

default_clause The default_clause allows one to specify default valuesfor a
given column. Possible default values and an example are:

e character string literal: ‘abc’

e numeric literal: 123

* daetimelitera: time ‘22:45:21

* binary string literal: X’ 104dc2’

* boolean literal: TRUE

 NULL value

e datetimevalue functions: CURRENT_DATE,
CURRENT_TIME, CURRENT_TIMESTAMP

» special registers

* SQL routine

The default value can be used with SQL Insert and Update

statements. Specify either DEFAULT or DEFAULT VALUES or

specify nothing at all and the default value isinserted.

column_constraint The column_constraint is one or more keywords that restrictsthe
data that can be written to a particular column. The PointBase
database currently supports the following column constraints. All
column constraints are optional .

« NOT NULL
« PRIMARY KEY
« UNIQUE

« FOREIGN KEY
« CHECK

Version 4.2 PointBase Developer 112

Version 4.2

PointBase

Column_Congtraints

NOT NULL

The optional NOT NULL keyword indicates that a particular
column must have anon-NULL value associated with it. If one
performs any action to atable that resultsin aNOT NULL
column having aNULL value, the PointBase database returns a
runtime error. The syntax for the NOT NULL column constraint
is:

NOT NULL

PRIMARY KEY

The optional PRIMARY KEY keyword creates an index for a
column. The syntax for the PRIMARY KEY column constraint
is:

PRI MARY KEY

The PRIMARY KEY column constraint can specify only one
column. To specify a PRIMARY KEY constraint with multiple
columns, use atable constraint.

UNIQUE

The optional UNIQUE constraint defines a unique key on the
column. All values for this column must be unique.

The syntax for the UNIQUE column constraint is:
UNI QUE

The UNIQUE column constraint can specify only one column.
To specify a UNIQUE constraint with multiple columns, use a
table _constraint.

FOREIGN KEY

The optional FOREIGN KEY keyword indicates that a
relationship exists between the column value of thistable
(known asthe child table) and the primary key of the parent table
referenced in the REFERENCES clause. The syntax for the
FOREIGN KEY congtraint is:

FOREI GN KEY

REFERENCES t abl e_name (col um_nane)

[ON DELETE {NO ACTI ON | RESTRICT | CASCADE | SET

DEFAULT | SET NULL}]

[ON UPDATE {NO ACTi ON | RESTRI CT | CASCADE | SET
DEFAULT | SET NULL}]

The ON DELETE clause defines the rules for deleting specific
columns on the specified table. To do this, specify either:

NO ACTION, CASCADE, RESTRICT, SET DEFAULT or SET
NULL.

You must specify at least one identifier. NO ACTION omits the
ON DELETE clause. RESTRICT looks to see what objects are
dependent on the object being dropped and if there are dependent
objects, then the dropping of the object does not occur.
CASCADE hasthe effect of dropping all SQL objects that are
dependent on that object. SET DEFAULT assigns default values
to all components of the target column. SET NULL assigns null
values to all components of the target column.

PointBase Developer 113

PointBase

The ON UPDATE clause defines the rules for updating specific
columns on the specified table. To do this, specify either:

NO ACTION, RESTRICT, CASCADE, SET DEFAULT or SET
NULL.

If the ON DELETE or ON UPDATE clauses are omitted, the
defaultisNO ACTION.

FOREIGN KEY REFERENCES are required keywords,
table_name is the name of atable that already existsin the
PointBase database, and the column_names are the names of the
columnsthat define the primary key of the referenced table.

This column and the column in the referenced table must have
exactly the same data type. The referenced table must have a
unigque or primary index on the specified column.

A foreign key relationship meansthat any values written to a
column with an INSERT or UPDATE statement must already
exist as avaluein the primary key of the referenced table and
columns.

CHECK

The optional CHECK keyword indicates that the value of a
column to be inserted or updated must meet the criteria of the
check constraint. The syntax for the CHECK constraint is:

CHECK (search_condition)

wherethe search_condition followstherules of search conditions.

Table_Constraint_Definition

Thetable_constraint_definition allows you to define aconstraint that is applicable to the table.
Usually thistype of constraint is used when you specify multiple columns for any type of
constraint. There can only be a single column_constraint per column. The
table_constraint_definition uses the syntax of:

[CONSTRAI NT constrai nt _name]

{uni que_constraint | referential _constraint | check_constraint}

constraint_name

The name that one supplied to identify a constraint. Each
constraint_name must be unique for atable. The
constraint_name is optional but if two constraints have the same
definition, then they will each need a name for uniqueness.

unique_constraint

The unigue_constraint defines an explicitly named primary key
or unique constraint of one or more columns.
The syntax for the unique_constraint is:

{UNIQUE | PRI MARY KEY} (colum_nane [{,
col um_nane}...])

Version 4.2

PointBase Developer 114

Version 4.2

PointBase

referential_constraint

The referential_constraint defines an explicitly named foreign
key constraint of one or more columns.

The syntax for the referential_constraint is:

FOREI GN KEY (col um_name [{, colum_name}...])
REFERENCES t abl e_nane [{col um_nane,
col um_narne, ...}

[ON DELETE { NO ACTI ON | CASCADE | RESTRICT | SET
DEFAULT | SET NULL}]

[ON UPDATE { NO ACTI ON | CASCADE | RESTRICT | SET
DEFAULT | SET NULL}]

[I NDEX PAGESI ZE <si ze>]

A given foreign key and its matching candidate key must contain
the same number of columns, N, such as: the Ith column of the
foreign key corresponds to the Ith column of the matching key (I
= 1to N), and corresponding columns must have exactly the
same data type.

The referenced table must have a unique or primary index on the
specified columns. Not allowed on a view. PointBase raises an
error if you attempt this on aview.

If the column_name for the referenced table is omitted, it
defaults to the columns in the primary key of the referenced
table.

PointBase Developer 115

PointBase

ON DELETE The ON DELETE clause defines the rules of behavior when an
attempt is made to delete arow in the parent table that has a
corresponding row in the referencing table that is dependent on
the row in the parent table. The dependency is based on the
columns of the FOREIGN KEY in the parent table and
corresponding columns in the referencing table. The purpose of
this clause is to avoid dangling references.

If the behavior rule is CASCADE, then all dependent or
matching rows in the referencing table are deleted when the row
in the parent table is del eted.

If the behavior ruleisNO ACTION, then if an attempt is made to
delete arow in the parent table that has a dependent row in the
referencing table, the row in the parent table will not be deleted.

If the behavior rule is RESTRICT, then if an attempt is made to
delete arow in the parent table that has a dependent row in the
referencing table, the row in the parent table will not be deleted.
The database checks before attempting to delete the row in the
parent table.

If the behavior ruleis SET DEFAULT, then the columns of the
rows in the referencing table are set to default values for their
respective columns when the row in the parent table is del eted.
Each column of the referencing table that correspondsto the
FOREIGN KEY in the parent table must have a default value or
an exception will be raised.

If the behavior ruleis SET NULL, then the columns of the rows
in the referencing table are set to the SQL NULL value for their
respective columns when the row in the parent table is del eted.
Each column of the referencing table that correspondsto the
Foreign Key in the parent table must allow SQL NULL valuesor
an exception will be raised.

Version 4.2 PointBase Developer 116

Version 4.2

PointBase

ON UPDATE

The ON UPDATE clauses defines the rules of behavior when an
attempt is made to update the FOREIGN KEY columnsin the
parent table that has a corresponding row(s) in the referencing
table that is dependent on the values of the FOREIGN KEY
columnsin the parent table.

If the behavior rule is CASCADE, then all dependent or
matching columns of rowsin the referencing table are updated
with the new valuesin the FOREIGN KEY columns of the
parent table row.

If the behavior ruleisNO ACTION, then if an attempt is made to
update columns of the FOREIGN KEY in the parent table and
there are columns of rows in the referencing table that are
dependent on the pre-updated values, then the update of the
FOREIGN KEY columnsin the parent table do not occur.

If the behavior rule is RESTRICT, then if an attempt is made to
update columns of the FOREIGN KEY in the parent table and
there are columns of rows in the referencing table that are
dependent on the pre-updated values, then the update of the
FOREIGN KEY columns in the parent table does not occur. The
database checks before attempting to update the row in the parent
table.

If the behavior rule is SET DEFAULT, then al dependent or
matching columns of rowsin the referencing table are updated
with the default val ues of the referencing table. Each column of

the referencing table that corresponds to the FOREIGN KEY in
the parent table must have a default value or an exception will be
raised.

If the behavior ruleis SET NULL, then the columns of the rows
in the referencing table are set to the SQL NULL value for their
respective columns when the row in the parent table is updated.
Each column of the referencing table that correspondsto the
Foreign Key in the parent table must allow SQL NULL valuesor
an exception will be raised.

check constraint

The check_constraint defines an explicitly named check
constraint of one or more columns.

The syntax for the check_constraint is:

CHECK (col um_nane search_condition)

NOTE: Creating atable with the CREATE TABLE statement creates the table structures, but
does not add any datato the table. An INSERT statement for atable, or aLOAD viaan
IMPORT statement in PointBase Console, or aRUN in PointBase Commander, must
follow the creation of the table.

PointBase Developer 117

PointBase

Example 1l
CREATE TABLE ORDER_TBL

(ORDER_NUM I NT,
CUSTOVER_NUM I NT,
REP_NUM I NT,
PRODUCT _NUM I NT,
SALES TAX_ST_CD CHAR (2),
QUANTI TY SMALLI NT,
SHI PPI NG_COST DECI MAL(12, 2),
SALES_DATE DATE,
DELI VERY_DATETI ME TI MESTAMP,
FREI GHT _COVPANY VARCHAR (30))
COUNTRY FR
LANGUAGE FR;

Example 2

This creates a table with a 5k page size:
CREATE TABLE TMB (C1 INT PRI MARY KEY) TABLE PAGESI ZE 5K;

This creates a table with a default page size, but the primary key constraint specifies a page
size of 2K for the index:

CREATE TABLE TM (C1 INT NOT NULL, C2 CHAR (10),
CONSTRAI NT PKCONSTRAI NT PRI MARY KEY (Cl1)
I NDEX PAGESI ZE 2K);

In this example, each index has a different pagesize:

CREATE TABLE TMF (Cl1 INT, C2 CHAR (10), C3 I NT NOT NULL,
CONSTRAI NT PK_TMF PRI MARY KEY (C3) | NDEX PAGESI ZE 5K
CONSTRAI NT FK_TMF FOREI GN KEY (Cl) REFERENCES TM (Cl) | NDEX PAGESI ZE 3K);

In thisexample, all LOBsin the table have pagesize and the LOBs automaticaly create 5K
pagesize file for the LOB index:

CREATE TABLE TMBLOB (CL INT NOT NULL, C2 BLOB (10K), C3 BLOB (5K))
LOB PAGESI ZE 5K;
CREATE | NDEX TM X ON TMBLOB (Cl) | NDEX PAGESI ZE 6K;

Example 3
This creates a table with a column having the IDENTITY property. This column will have the

ability to autoincrement the values for each row.
CREATE TABLE TAB1(ID INT | DENTITY, NAVE VARCHAR(30));

Version 4.2 PointBase Developer 118

PointBase

CREATE VIEW

CREATE VI EW <vi ew nane> [(view_colum_list)]

AS query_expression
[WTH [levels_clause]

CHECK OPTI ON]

The CREATE VIEW statement creates a view or derived table in the PointBase database.

Notes

* Tocreate aview, you must own the schema, in which you are creating the view.
* You must have SELECT permission on al referenced columns of al referenced tablesin

the query expression.

* You can have “nested views,” which are views that reference other views.
e Togrant privileges on aview, you must have SELECT grant privileges on any referenced

table or column in that view.

Syntax

CREATE VIEW

The CREATE VIEW keywords are required asthe
first wordsin a CREATE VIEW statement

view_name

The name of the view. The name is not case sensitive
and can be up to 128 characters long.

view_column_list

Specify aview column list if the query expression
includes two columns with the same name. The view
column list and the query expression must specify the
same amount of column names. If no view column
list is specified, then the view column names are
derived from the query expression (select column
list).

query_expression

Thisisa SELECT statement. If the query expression
does not include acolumn, it must have an AS clause
correlation name defined. If it includes a column, the
view column name is the column name without any
table correlation name. The query expression is not
allowed to contain any parameters and is limited to
3958 characters.

Version 4.2

PointBase Developer 119

PointBase

WITH CHECK OPTION This option uses the WHERE clause in the view’s
query_expression like atable constraint: al resultant
rows from an INSERT or UPDATE on the view must
satisfy the WHERE clause. If no levels_clauseis
specified, CASCADED isimplicit.

However, PointBase currently does not support
Updateable Views. That is, PointBase supports the
syntax for WITH CHECK OPTION, but currently
not the semantics.

levels clause CASCADED indicatesthat all resultant rowsfrom an
INSERT or UPDATE on the view must satisfy theits
own WHERE clause and the WHERE clause of any
views that are referenced.

LOCAL indicatesthat all resultant rows from an
INSERT or UPDATE on the view must only satisfy
its own WHERE clause.

If nolevels clauseis specified, CASCADED is
implicit.

Examples

CREATE VI EW cust orer _or der

AS sel ect order_num order _tbl.custoner_num custoner_thbl. nane
FROM or der _t bl , cust orer _t bl

WHERE product _num = 10;

CREATE VI EW cust oner _order 1

AS sel ect order_num order _tbl.custoner_num

FROM or der _t bl , cust oner _t bl

WHERE order _tbl.custoner_num = custoner_tbl.custonmer_num

CREATE VI EW cust oner _or der 2

AS sel ect order_num order _tbl.custoner_num

FROM or der _t bl , cust oner _t bl

WHERE order _tbl.custoner_num = custoner_tbl.customer_num and product _num=10;

CREATE VI EW naner eps

AS sel ect first_nane, | ast_nane

FROM sal es_rep_t bl

WHERE | ast _yr_sales in (4000, 6000, 10000);

CREATE VI EW orde_by_rep (who, how_many, total, | ow, hi gh, aver age)
AS sel ect rep_numcount (*), sun{quantity), m n(quantity), max(quantity),avg(quantity)
FROM or der _tbl group by rep_num

CREATE VI EW cust oner _or der 3
AS sel ect order_numfirst_nane
FROM cust orrer _or der, naner eps;

CREATE VI EW exceed_quot as

AS sel ect office_num sun{quota) as sum quota, sum(ytd_sales) as sumytd
FROM sal es_rep_t bl

GROUP BY of fice_num

HAVI NG sum(ytd_sal es) > sun{quota);

Version 4.2 PointBase Developer 120

PointBase

CREATE USER

CREATE USER user _name PASSWORD passwor d

[DEFAULT ROLE rol e_specification]

The CREATE USER statement creates a user in a given PointBase database and can assign a
default role to that user. To successfully execute this command, the current user must be the

PBSY SADMIN or the database owner. [See "Predefined Users' on page 89.] Or, the current

role must be PBDBA. [See "Predefined Roles' on page 93]

Syntax

CREATE USER

The CREATE USER keyword are required asthe first wordsin a
CREATE USER statement.

user_name

The name of the new user. You cannot use keyword PUBLIC
or an existing role namefor the user name.

password

The password associated with the user.

role_specification

The default role_specification is NONE.

Example

CREATE USER ENG NEERI NG_MGR PASSWORD ABCD;

CREATE ROLE

PointBase supports this statement. Please refer to the section, "CREATE ROLE Syntax" on

page 96.

Version 4.2

PointBase Developer 121

PointBase

CREATE INDEX

CREATE [UNI QUE] | NDEX i ndex_nane

ON t abl e_nane

col um_nane [sort_order] {, colum_nane [sort_order]...})
[I NDEX PAGESI ZE si ze]

The CREATE INDEX statement creates the index structures.

Syntax

CREATE INDEX The CREATE INDEX keywordsare required asthefirst wordsin
aCREATE INDEX statement.

[UNIQUE] If the UNIQUE keyword is specified, then the index will be
defined as a unique index where duplicate values of the keys are
not allowed.

index_name Theindex_name is the name of the index. Compose the index
name of alphanumeric characters or the equivalent in another
language, for example, aword in Japanese characters, which are
not the same as a PointBase keyword, unlessthe nameisa
delimited identifier. The index name must be unique for itstable.
Index names in the PointBase database are not case sensitive and
can be up to 128 charactersin length.

ON Use the ON keyword between the index_name and the
table_name.

t abl e_nanme Thetable name refersto atable in the PointBase database. The
table_name must refer to atable that has aready been created at
the time the CREATE INDEX statement executes.

Not allowed on a view. PointBase raises an error if you attempt
to use aview.

column_name The column_name identifies a column in the table named in the
table_name of the CREATE TABLE statement. There can be any
number of columns. Total maximum length of all columnsin an
index must not exceed the pagesize.

[sort-order] Thisoptional clause specifies the sorting order of the column or
columnsin the index. The acceptable values for the ordering
keyword are ASC or ASCENDING for columnsthat sort from
the lowest valueto the highest value in the column, and DESC or
DESCENDING for columns that sort from the highest value to
thelowest valuein the column. Each column-name can only have
one ordering keyword. If you do not include an ordering
keyword, the sort order is ASCENDING.

Version 4.2 PointBase Developer 122

CREATE

PointBase

| NDEX PAGESI ZE Use the INDEX PAGESIZE keywords between the sort_order
and the size.

size The index size identifies the number of digits, KB, or MB
reserved for the index. Size can be:
* anumber, such as 1024
* KiloBytes, such as 1K
The index page size should be less than or equal to 32KB and the
minimum is 1 KB. The default pagesize is 4K B unless a specific
size has been set inthe poi nt base. i ni file.

Examplel

This creates an index:
| NDEX ORDER | ND

ON ORDER TBL (ORDER NUM DESC, CUSTOMER NUM ASC) ;

CREATE

Example2

This creates an index with a pagesi ze of 2K:

UNI QUE | NDEX | NDEX1

ON SALES_TBL
(CUSTOMER_NUM SALES_DATE, PRODUCT_NUM

I NDEX

PAGESI ZE 2K;

CREATE FUNCTION

CREATE FUNCTI ON function_name([parameter _definition [{, parameter_definition}...]])

Version 4.2

RETURNS return_cl ause
LANGUAGE JAVA

SPECI FI C speci fic_nane
sql _dat a_access

EXTERNAL NAME external _function

PARAMETER STYLE SQL

Using a stored function, you can automatically convert data to be stored in a PointBase
database, without ever seeing the underlying conversion.

Syntax

PointBase Developer 123

PointBase

Function_name Function_name defines a stored function in a schema. The

following are usage rules.

* Including a schema nameis optional. The following syntax
is for function_name:

[schema_nane.] functi on_nane

* It must be composed of alphanumeric characters or the
equivalent in another language, for example, Japanese
characters.

* Ithasamaximum limit of 128 characterslong.

* Itisnot case sensitive.

e It cannot have the same name as a PointBase keyword.

* It must be unigue in the schema specified.

Parameter_definition The parameter _definition specifies the parameter_mode,
parameter_name, and parameter_data_type. (The
parameter_name is optional.) The parameter_mode must be the
value, IN. The parameter_data_type must be one of the
PointBase data types. Separate multiple parameter_definitions
with acomma. The following syntax isfor
parameter_definitions.

I N [paranet er _nane] Poi nt Base_data_type

RETURNS This clause specifies the return data type in a stored function.
return_clause The data_type must be one of the PointBase data types.

The return_clause alows the following values: <PointBase data
types> or TABLE (pointbase_data_type
[{,pointbase_data_type}...])

NOTE: RETURNS return_clause is used with stored functions
only. Stored procedures do not use it.

LANGUAGE JAVA The clause specifies the language that the stored function uses to
call the externa function. It can take the following value: JAVA.

SPECIFIC The SPECIFIC specific_name clause specifies a name that you

specific_name can use instead of the function_name when invoking a stored

function. The specific_name must be unique within its schema. If
a specific_nameis specified, then routine determination is not
used. Routine determination isthe process that determines which
function to invoke based on the function_name, SQL argument
list, and the current path of schemas. Refer to the “ Search
Conditions and Predicates’ chapter for more information on
routine determination.

Sgl_data_access This clause indicates the usage of SQL statements within the
external function of a stored function. Table 1 describesthe
values that the sql_data_access clause allows.

Version 4.2 PointBase Developer 124

PointBase

EXTERNAL NAME The EXTERNAL NAME specifies an external function.
external function

PARAMETER STYLE This clause represents the parameters being passed according to
L SQL rules rather than a host language.

Table 1: Sql_data_access Values

Value Description

NO SQL It signifies that the external function cannot contain any SQL
statements.

CONTAINS SQL It specifies that the external function can contain SQL statements

but none that read or modify data.

READS SQL DATA It specifiesthat the external function can contain any SQL statement
that does not modify SQL data.

MODIFIES SQL DATA It specifiesthat the external function can contain any SQL statement
that isnot aDDL or Transaction Control statement

Example

CREATE FUNCTI ON dat eConvert(I N P1 VARCHAR(20))
RETURNS Dat e

LANGUAGE Java

NO SQL

EXTERNAL NAME \" Sanpl eExt er nal Met hods: : dat eConvert\"
PARAMETER STYLE SQ.;

NOTE: Seethe“PointBase JDBC Advanced Tutoria” chapter in this guide for more
information about functionsin PointBase.

Version 4.2 PointBase Developer 125

PointBase

CREATE PROCEDURE

CREATE PROCEDURE procedure_name([paraneter_definition [{,paraneter_definition}...]])
LANGUAGE JAVA
SPECI FI C speci fic_nane
sql _dat a_access
EXTERNAL NAME external _procedure
PARAMVETER STYLE SQL

Using a stored procedure you can return data from a database to a user interface. When the
database system returns the data, it is automatically converted from the original value into a
user-defined data type value.

Syntax

Procedure_name Procedure_name defines a stored procedure in a schema. The

following are usage rules.

* Including a schema nameis optional. The following syntax
is for procedure_name:

[schenma_nane.] procedur e_name

* It must be composed of alphanumeric characters or the
equivalent in another language, for example, Japanese
characters.

* Ithasamaximum limit of 128 characterslong.

* Itisnot case sensitive.

* It cannot have the same name as a PointBase keyword.

* It must be unigue in the schema specified.

Parameter_definition The parameter _definition specifies the parameter_mode,
parameter_name, and parameter_data_type. (The
parameter_name is optional.) The parameter_mode must be the
value, IN. The parameter_data_type must be one of the
PointBase data types. Separate multiple parameter_definitions
with acomma. The following syntax isfor
parameter_definitions.

I N [paranet er _nane] Poi nt Base_data_type

LANGUAGE JAVA The clause specifies the language that the stored procedure uses
to call the external procedure. It can take the following value:
JAVA.

Version 4.2 PointBase Developer 126

PointBase

SPECIFIC The SPECIFIC specific_name clause specifies a hame that you
specific_name can use instead of the procedure_name when invoking a stored
procedure. The specific_name must be unique within its schema.
If a specific_name is specified, then routine determination is not
used. Routine determination isthe process that determines which
procedure to invoke based on the procedure_name, SQL
argument list, and the current path of schemas. Refer to the
“Search Conditions and Predicates” chapter for moreinformation
on routine determination.

Sgl_data_access This clause indicates the usage of SQL statements within the
external procedure of a stored procedure. Table 2 describes the
values that the sql_data_access clause allows.

EXTERNAL NAME The EXTERNAL NAME specifies an external procedure.
external procedure

PARAMETER STYLE This clause represents the parameters being passed according to
L SQL rules rather than a host language.

Table 2: Sql_data_access Values

Value Description

NO SQL It signifies that the external procedure cannot contain any SQL
statements.

CONTAINS SQL It specifies that the externa procedure can contain SQL statements

but none that read or modify data.

READS SQL DATA It specifies that the external procedure can contain any SQL
statement that does not modify SQL data.

MODIFIES SQL DATA It specifies that the externa procedure can contain any SQL
statement that is not a DDL or Transaction Control statement

Example

CREATE PROCEDURE get Cost (I N P1 VARCHAR(20), I N P2 VARCHAR(2), |NOUT P3 FLOAT)
LANGUAGE JAVA

SPECI FI C get Cost

DETERM NI STI C

NO SQL

EXTERNAL NAME \" Sanpl eExt er nal Met hods: : get Cost\"

PARAMVETER STYLE SQ;

NOTE: Seethe“PointBase JDBC Advanced Tutoria” chapter in this guide for more
information about stored procedures in PointBase.

Version 4.2 PointBase Developer 127

PointBase

CREATE TRIGGER

CREATE TRI GCER trigger_nane

trigger_action_tine triggering_event

ON t abl e_nane

[REFERENCI NG ref erencing_cl ause [{referencing_cl ause }...]]

FOR EACH granul arity
[WHEN (search_condition)]
tri gger _body

A trigger can specify additional constraints and business rules within the database to manage
the various executions of an application. A trigger operates automatically by executing or
firing a DELETE, INSERT, or UPDATE SQL statement on a table with which the trigger is
associated. Thetrigger definitions are saved in the SY STRIGGERS and

SY STRIGGERCOLUMNS system catalogs.

Syntax

CREATE TRIGGER
Trigger_Name

The CREATE TRIGGER keywords are required when creating a
trigger. Trigger_name defines a unique trigger in a schema. To
drop atrigger from atable, you must use the trigger_name.

Usage Rules for Trigger_Names
* Including a schema name is optional. The following syntax
isfor trigger_name:

[schenma_nane.]trigger_name

* It must be composed of aphanumeric characters or the
equivalent in another language, for example, Japanese
characters.

* Ithasamaximum limit of 128 characterslong.

* Itisnot case sensitive.

* It cannot have the same name as a PointBase keyword.
* It must be unigue in the schema specified.

Trigger_Action_Time

Trigger_action_time signifies when the trigger can be fired or
executed relative to the triggering_event. It takes one of the
following values: BEFORE or AFTER.

If you specify BEFORE as the trigger_action_time, the SQL
statements in the trigger_body cannot directly or indirectly
modify SQL data by invoking a stored function or procedure.

PointBase does not support cascading BEFORE triggers.

Triggering_Event

Triggering_event specifies what type of SQL statement fires or
executes the trigger. It can take one of the following SQL
statements: DELETE, INSERT, or UPDATE.

Version 4.2

PointBase Developer 128

Version 4.2

PointBase

Table Name

Table_name specifies the name of the table to which the trigger
belongs. A table is alowed to have multiple triggers. If more
than one trigger is associated with atable, the triggers are
executed in ascending order of their creation timestamps.

Not allowed on a view. PointBase raises an error if you attempt
thison aview.

REFERENCING
Referencing_clause

This clause defines correlation or alias names for old and new
values of arow. You can use the correlation or alias namesin the
WHEN (search_condition) clause or in SQL statements of the
trigger_body. The following isthe referencing_clause syntax for
old values of arow.

OLD AS correl ation_name

Thefollowing isthe referencing_clause syntax for new values of
arow.

NEW AS correl ation_nane

NOTE: Refer toTable 3.

FOR EACH Granularity

This clause defines the granularity of atrigger. The granularity
determines the number of times that atrigger will be fired for
each triggering_event. Granularity can take the value of either
ROW or STATEMENT.

 STATEMENT specifiesthetrigger body to execute only
once regardless of the number of rows being modified
(deleted, inserted, or updated) by the triggering_event
statement.

» ROW specifiesthe trigger_body to execute once for each
row that is being modified by the triggering_event
statement.

If you do not specify the granularity, the default granularity is
STATEMENT.

PointBase Developer 129

PointBase

WHEN WHEN (search_condition) specifies the conditions to execute

(search_condition) thetrigger_body or not. All supported SQL search conditions are
allowed in this clause. New row values can be referred to in this
section.

Trigger_body Trigger_body specifies an SQL statement that the trigger

executes. You can only use one SQL statement in the
trigger_body. If the granularity of the trigger is ROW or
STATEMENT, the trigger_body can only take the values of the
following SQL statements.

* VALUES

e CALL (only constants can be used. See note.)

* SET assignment (for BEFORE Triggers only. See note.)
*+ SIGNAL

However, if you use the BEGIN ATOMIC...END keywords, the
trigger_body can use any applicable SQL statement. Only one
statement can be used within the BEGIN ATOMIC...END
keywords and must be terminated by a semi colon.

NOTE: Old and new row values are not supported in the
trigger_body, except when using the SET assignment
statement. Refer to the “ Data Control Language” section
of this appendix for more information about these
statements.

Version 4.2 PointBase Developer 130

PointBase

Thefollowing table describes the supported combinations of row values, trigger_action_times,
triggering_events, and granularity, when using REFERENCING referencing_clause.

Table 3
Trigger_action_time .
Row Values : . Granularity
and Triggering_event
OLD BEFORE DELETE ROW
BEFORE UPDATE
AFTER DELETE
AFTER UPDATE
NEW BEFORE INSERT ROW
BEFORE UPDATE
AFTER INSERT
AFTER UPDATE
Examples

To use all of the following trigger examples, you must complete the following:

* Include the SampleExternalMethods.class file in your CLASSPATH when you connect
to PointBase.

» Follow the promptsto create a new database called “sample.”

 Type run sanpl e. sql ; You must type the complete path to the “sample.sql” file
located in the directory “<install directory>\pointbase\samples\server_embedded,” for
example,
run c:/poi ntbase/ sanpl es/ server_enbedded/ sanpl e. sql ;

Example 1

CREATE TRI GCER trigger?2
BEFORE UPDATE ON product _tbl
REFERENCI NG NEW AS NEVWROW
FOR EACH ROW

VWHEN (NEWROW gqty_on_hand < 0)
SET NEWROW qty_on_hand = O;

CREATE TRI GCGER trigger3

BEFORE UPDATE ON product _tbl

REFERENCI NG NEW AS NEVWROW

FOR EACH ROW

VWHEN (NEWROW pur chase_cost < 0)

SIGNAL ' Products prices cannot be negati ve'

CREATE TRI GCER trigger4

AFTER UPDATE ON product _t bl

REFERENCI NG NEW AS NEWROW

FOR EACH ROW

VWHEN (NEWROW gt y_on_hand > 100)

VALUES(showQuantity(' You have increased the quantity above', 100));

Version 4.2 PointBase Developer 131

PointBase

Example 2

Step 1.

CREATE PROCEDURE showTi me (I N pl VARCHAR(30), IN P2 TI MESTAWP)
LANGUAGE JAVA

NO SQL

EXTERNAL NAME " Sanpl eExt er nal Met hods: : showTi nme";

Step 2.

CREATE TRI GCER triggerl

AFTER | NSERT ON di scount _code_t bl

FOR EACH ROW

CALL showTi me(' New di scount code inserted' , CURRENT_TI MESTAMP);

Version 4.2 PointBase Developer 132

PointBase

ALTER TABLE

ALTER TABLE tabl e nane alter_table_ action [{,alter_table_action},...]

The ALTER TABLE statement modifies the structure of atable in the PointBase database.
With this statement, constraints or columns may be added or dropped.

Syntax

ALTER TABLE

The ALTER TABLE keywords are required as the first wordsin
an ALTER TABLE statement.

table name

The table_name variable must be the name of an existing table in
a PointBase database. The ALTER TABLE statement generates
an error if the value of the table_name does not exist.

alter_table action

The action allows adding or dropping a constraint or column. See
the following section for the alter_table action syntax.

Alter_Table Action Syntax

ADD tabl e _constraint_definition
| DROP CONSTRAI NT constraint_name [CASCADE | RESTRI CT]
| ADD [COLUMN] col um_definition
| DROP [COLUWN] col um_nane [CASCADE | RESTRI CT]

Version 4.2

ADD
table_constraint_definition

Adds atable constraint definition to the table. Not allowed on a
view. PointBase raises an error if you attempt this on aview. If
the constraint is areferential constraint that references aview, an
error will be raised.

DROP CONSTRAINT
constraint_name

Drops an existing named constraint from the table. The system
automatically provides a name for the constraint if nonewas
specified when it was added. The constraint name can be found
in the table SysTableConstraint.

ADD [COLUMN]
column_definition

Adds a column to the end of the column_definition for the table.
(See column_definition on page 111.) The default valueisNULL,
unlessdeclared NOT NULL with an assigned default value. This
will only affect columnsthat you create after the default valueis
assigned.

Not allowed on a view. PointBase raises an error if you attempt
thison aview.

PointBase Developer 133

PointBase

DROP [COLUMN]
column_name

Drops one or multiple existing named column(s) from the table.
Not allowed on a view. PointBase raises an error if you attempt
thison aview. If thetable_name + column_nameisin the system
catalog, SysViewTables, then either an error will be raised (if
RESTRICT) or al dependent views will be dropped (if
CASCADE).

[CASCADE/RESTRICT]

The optional RESTRICT qualifier to a DROP statement alows a
drop only if no objects are dependent on the column or constraint.

The optional CASCADE qualifier to a DROP statement drops all
related objects to the column or constraint.

Examples

ALTER TABLE T2 ADD UNI QUE (Cl1);
ALTER TABLE T2 ADD ORDER_NUM | NT;
ALTER TABLE T2 ADD CONSTRAI NT constraint_0O FOREI GN KEY (Cl) REFERENCES T1 (C1);
ALTER TABLE T2 ADD CONSTRAI NT constraint_1 PRI MARY KEY (Cl1, C2);

ALTER TABLE T2 DROP ORDER_NUM CASCADE;

ALTER USER

ALTER USER user _nanme {PASSWORD password | DEFAULT ROLE rol e_nane}

Version 4.2

To change the password or default role of adatabase user, you must use the non-standard SQL
command, ALTER USER. It can only be used by the following types of users:

« DBA

* Any user having the PBDBA role

* Owner of database

You may also use ALTER USER to change your own password or default role.

Syntax
ALTER USER The user_name specifies the name of the user, for whom you will
user_name change the password or default role.

PASSWORD password

The password defines the new password for the specified user.

DEFAULT ROLE
role_name

Therole_name defines the new default rolefor the specified user.

PointBase Developer 134

PointBase

Examples

ALTER USER Scott PASSWORD i on;
ALTER USER Scott DEFAULT ROLE CEQ,

Version 4.2 PointBase Developer 135

PointBase

Dropping SQL Objects

DROP INDEX

The following sections describes how to drop SQL objectsin PointBase:

» “DROPINDEX”

* “DROPFUNCTION or DROP PROCEDURE"
* “DROP SCHEMA”

* “DROPTABLFE”

« “DROPVIEW”

» “DROP TRIGGER”

» “DROPUSER”

Drop Behavior (Optional)

Side effects can occur when an SQL object isdropped. For example, if atable is dropped, what
becomes of an index that is based on that table? SQL allows you to specify the drop behavior.
To do this, specify either: CASCADE or RESTRICT. The syntax for drop_behavior isas
follows:

CASCADE | RESTRICT

You may specify one or the other. CASCADE has the effect of dropping all SQL objects that
are dependent on that object. RESTRICT isthe default for the drop behavior. RESTRICT
looks to see what objects are dependent on the object being dropped. If there are dependent
objects, then the dropping of the object does not occur.

DROP | NDEX table_name.index_name

Version 4.2

The DROP INDEX statement deletes an index structure of atable from the PointBase
database.

Syntax

DROP INDEX The DROP INDEX keyword is reguired at the beginning of a
DROP INDEX statement.

table_name.index_name | The index_name must be the name of an existing index in a
PointBase database. The index_name must be qualified with the
name of the table that theindex ison, asin

table name.index_name. The DROP INDEX statement raises an

error if the value of the index_name does not exist.

PointBase Developer 136

PointBase

Examples

DROP | NDEX ORDER_TBL. ORDER,

DROP FUNCTION or DROP PROCEDURE

DROP { SPECI FI C routine_type specific_routine_nane}
| {routine_type routine_nanme [paraneter_data_type list])}

[drop_behavi or]

The DROP ROUTINE statement destroys a routine in a schema of a PointBase database.

Syntax

The DROP keyword is required as the first word in a DROP
ROUTINE statement. The SPECIFIC clause refers to a specific
function that shares the same name with other functions.
specific_routine_name must be unique in the database.

specific_routine_name

The specific_routine_name that was specified when the function
or procedure was defined.

routine_type

FUNCTI ON | PROCEDURE | ROUTI NE

routine_name

The name of the SQL function or procedure.

parameter_data type list

The optional parameter_list clause specifies selection criteriafor
a DROP statement. Only SQL data types are specified. No
parameter mode or nameis allowed.

drop_behavior

If RESTRICT is specified, then if there are any other SQL
routines, or constraints, then the routine is not dropped and
neither are the other SQL routines, triggers, nor constraints.

With CASCADE, all SQL objects (other SQL routines, and
constraints) that use the SQL routine are dropped as well as the
SQL routine. RESTRICT is the default.

Examples

DROP FUNCTI ON ORDERS_TOTAL (char (10),

Version 4.2

i nt) CASCADE;

PointBase Developer 137

PointBase

DROP SCHEMA

DROP SCHEMA schena_nane [drop_behavi or]

The DROP schema statement destroys a schemain the PointBase database.

Syntax
DROP SCHEMA The DROP SCHEMA keywords are required asthefirst wordsin
aDROP SCHEMA statement.
schema_name The name of the schema. If the schema contains any views, than
either PointBase raises an error (if RESTRICT) or drops all
views (if CASCADE).
drop_behavior If RESTRICT is specified, then if there are any tables or SQL
routinesin schema_name, then the schemais not dropped and
neither are the tables, nor the SQL routines.
With CASCADE, all tables, indexes, columns, constraints,
triggers, and SQL routines that are associated with schema_name
are dropped as well asthe schema. RESTRICT is the default.
Examples

DROP SCHENMA CRDERS CASCADE,

DROP TABLE

DROP TABLE tabl e_nane [drop_behavi or]

The DROP TABLE statement destroys a table in the PointBase database.

Version 4.2 PointBase Developer 138

PointBase

Syntax

DROP TABLE The DROP TABLE keywords are required as thefirst wordsin a
DROP TABLE statement.

table name Thetable_name variable must be the name of an existing tablein
aPointBase database. The DROP TABLE statement generates an
error if the value of the table_name does not exist.

If thetable isin the system catalog, SysViewTables, then either
PointBase raises an error (if RESTRICT) or drops all dependent
views (if CASCADE).

drop_behavior If RESTRICT is specified, then if there are any table constraints,
or SQL routines that use table_name, then the table is not
dropped and neither are the table constraints nor the SQL
routines.

With CASCADE, al indexes, columns, constraints, triggers, and
SQL routines that are associated with table_name are dropped as
well asthe table. RESTRICT isthe defaullt.

Examples

DROP TABLE ORDER_TBL CASCADE;

DROP VIEW

DROP VI EW <vi ew nane> [RESTRI CT | CASCADE]

This statement removes a specified view or viewed table from the PointBase database.

Notes

* Theonly objects that can be dependent on a view are other views.

Version 4.2 PointBase Developer 139

PointBase

Syntax
DROP VI EW The DROP VIEW keywords are required as the first wordsin a
DROP VIEW statement.
view name The view name variable must be the name of an existing view in
the PointBase database.
RESTRICT | RESTRICT verifiesif there are any dependent views. If other
CASCADE views depend on this view, an error is raised and this view is not
dropped.
CASCADE does not verify if there are any dependent views.
Thisview is dropped as well as all dependent views.
Examples

DROP VI EW cust onmer _order cascade;
DROP VI EW cust onmer _order restrict;

DROP TRIGGER

DROP TRI GGER tri gger _name

The DROP TRIGGER statement deletes atrigger structure from the PointBase database.

Syntax
DROP TRIGGER The DROP TRIGGER keywords are required as the first words
in aDROP TRIGGER statement.
trigger_nane Thetrigger_nameisatwo-part name which includes the name of

the schema. The trigger name must be composed of
alphanumeric characters or the equivalent in another language,
for example, aword in Japanese characters and cannot be the
same as a PointBase keyword. Trigger names in the PointBase
database are not case sensitive and can be up to 128 characters
long. They must be unique in their schema

Version 4.2 PointBase Developer 140

PointBase

Examples

DROP TRI GGER TRGL;

DROP USER

DROP USER user_name [drop_behavior]

The DROP USER statement del etes a user object from the PointBase database. To successfully
execute this command, the current user must be the PBSY SADMIN or the database owner.
[See "Predefined Users' on page 91.] Or, the current role must be PBDBA . [See "Predefined
Roles" on page 95.] You cannot drop the predefined users: PBPUBLIC or PBSY SADMIN.
Additionally, you cannot create nor drop the user PUBLIC.

Syntax
DROPUSER The DROP USER keyword is required at the beginning of a
DROP USER statement.
user_name The user_name must be the name of an existing user in
PointBase database. The DROP USER statement raises an error
if the value of the user _name does not exist.
drop_behavior If RESTRICT is specified and if any schemas have user_name
specified, the system does not drop the user and the schema.
With CASCADE, the system drops all schemas that have
user_name as the owner, in addition to dropping the user_name.
RESTRICT isthe defaullt.
Examples

DROP USER ENG NEERI NG_MANAGER CASCADE;

DROP ROLE

PointBase supports this statement. Please refer to the section, "DROP ROLE Syntax" on page
98.

Version 4.2 PointBase Developer 141

PointBase

Data Manipulation Language and
Data Query Language

To retrieve, INSERT, DELETE and modify data in the PointBase RDBMS, use the Data
Manipulation Language (DML) and Data Query Language (DQL). DML and DQL allowsan
application to do the following:

e SELECT: Retrieve rows of data.

* INSERT: Place new rows of datain the database.

* UPDATE: Replace existing values in the database with new values.

» DELETE: Delete rows of datain the database.

Version 4.2 PointBase Developer 142

PointBase

SELECT

SELECT [DI STINCT] colum_list [AS correlation_name]
FROM t abl e_expressi on

[WHERE search conditi ons]

[GROUP BY col um_list]

[HAVI NG search_condition]

[ORDER BY {col um_name | value} [sort_order]]

The SELECT statement retrieves data from the PointBase database.

Syntax

SELECT The SELECT keyword isrequired asthefirst word in a SELECT
statement.

select_expression The select_expression contains al the information needed to
specify the columns and/or SQL scalar expressions that return
from a SELECT statement.

The column_list can be a string of comma-separated column
names or the wild card character (*) or expressions. If acolumn
name exists in more than one of the tablesin the SELECT
statement, a table name or correlation name must be used to
qualify the column name. You can use a function that returns a
single value for each row in the column listing of a SELECT
statement.

The DISTINCT keyword is optiona. When specified, the
distinct function eliminates duplicate occurrences of the same
row (not columns) and returns only distinct values. The
DISTINCT keyword can only be associated with column names
in the column_list and can only be used once in a query.

FROM The FROM keyword isrequiredinaSELECT statement between
the select-expression and the table-expression.

Version 4.2 PointBase Developer 143

PointBase

table_expression

The table_expression contains all the information needed to
specify the tablesin a SELECT statement and the relationship
between multiple tables in the statement. The table_expression
takes the syntax of :

tabl e_expression:: =

tabl e_nane_exp

| table_nanme joined_table_exp

[join_table_exp...]
where:

tabl e_nanme_exp: : = table_name [AS

correl ati on_nane]

joined_table_exp::= join_type table_name_exp

[ON _cl ause | USI NG cl ause]
and the ON_clause or USING_clause are known as thejoin
specification:

ON_cl ause: : = ON search_condition

USI NG cl ause: : = USI NG (col um_nane_Iist)

The table_expression can contain any humber of table names. It
does not require you to give any specific ordering of the
table_names. The optimizer will determine the appropriate
ordering of execution. For more on the optimizer, see “ Optimizer
Usage in PointBase.”

table name

The names represented by table name are the names of the
tables that contain the columnslisted in columns. If you join
more than one table in the SELECT statement, separate the table
names with commas.

NOTE: If morethan onetableisspecified in thetablelist, thenit
is known as ajoin. PointBase supports CROSS, INNER,
and LEFT and RIGHT OUTER joins.

AS correlation_name

A correlation name is a means of giving a different nameto a
table that qualifies the names of columns in the SELECT
statement. A correlation name is sometimes used to document
the source of columns even when there are not duplicate column
names. It is not required to provide a correlation name for every
tablein a SELECT statement.

ON_clause With the ON__clause, you can specify a search_condition when
joining two tables. The effect of the ON_clause is the Cartesian
product of the two tables that meet the search_condition criteria.

USING The USING_clause can only be used if each joining table has the

same column names as the other joining table. For example, if
we have:

USI NG (C1, C2)

the effect of the USING_clauseisan ON_clause of the following
(if we arejoining tables T1 and T2):

ON T1. C1=T2.Cl AND T1.C2=T2.C2

Version 4.2

PointBase Developer 144

Version 4.2

PointBase

WHERE search
conditions

The WHERE clause is an optional clause that specifies selection
criteriafor aquery. The search condition(s) that follow the
WHERE keyword eval uates each row that could be included in
the result set. ['You may use a subquery as part of the search
condition. See “Subqueries’ in this section for more
information.]

If the search conditions returns false for arow, the row is not
included in the result set; if the search conditions returnstrue, the
row isincluded in the result set. If aWHERE clause is not
specified, then all rows of the table(s) are included in the result
Set.

For more information on search conditions, see the chapter,
“Search Conditions and Predicates.”

GROUPBY
column_list

The format of the Group-By clause is:

GROUP BY grouping colum [, grouping-colum
1...
Grouping-column is acolumn-reference optionally followed by a
collate clause (but only if the column - reference identifies a
column whose data type is character string). The collate-clause
identifies the collation used for comparing the columns.

The result of agroup-by-clauseisavirtual table, but that result is
called a grouped table. The input table is partitioned into one or
more groups; the number of groups isthe minimum such that, for
each grouping -column, no two rows of any group have different
valuesfor that grouping — column. For any group in the resulting
grouped table, every row in the group has the same value for the
grouping - column. Otherwise, the group- by - clause produces
an output table that is identical to the input table.

PointBase Developer 145

Version 4.2

PointBase

HAVING
search_condition

The having-clause is afilter. The filtering operation is applied to
the grouped table resulting from the preceding clause. If thereis
agroup-by-clause, the grouped table resulting from it isthe input
to the having-clause. If there is no group-by-clause, the entire
table resulting from the where-clause is treated as a grouped
table with exactly one group. In this case, there is no grouping-
column. The format of the having-clauseis:

HAVI NG sear ch-condi tion
The search-condition is applied to each group of the grouped
table. That's because the only columns of the input table that the

having-clause can reference are the grouping columns, unlessthe
columns are used in a set function.

ORDER BY

ORDER BY {colum_nane | val ue} [sort_order]

[{, colum_nane | value} [sort_order]...}]

The optional ORDER BY clause specifies the ordering of the
rows returned from a SELECT statement. An ORDER BY clause
can contain one or more column values, separated with commas;
functions are not allowed. If acolumn_name is specified in the
ORDER BY clause, then that column_name must also be
specified in the column_list.

Each column or value in the ORDER BY clause can include an
optional sort_order qualifier. Acceptable sort order quaifiersare
ASC, for ascending sort order, and DESC, for descending sort
order. If no sort order is specified, the default is ascending. If the
ORDER BY clause contains multiple columns, the order of the
columns designates the order of the grouping.

If a query contains any UNION operators, the ORDER BY clause
must be specified last after all the unions are specified.

NOTE: The SELECT statement returns the qualified result set to the calling application. For
more information on how PointBase optimizes SELECT statements and the joins they
contain, see the chapter, “Optimizer Usage in PointBase.”

PointBase Developer 146

PointBase

Examples

All of the following examples were created using the sample database that comes with every
database product.

Example 1

When querying a column that is not unique, the keyword DISTINCT will alow you eliminate
duplicate rows. The ORDER BY clause will sort one or more columns based on ascending or
descending sequences. By default the sort order is set to ascending sequence.

SELECT DI STI NCT nane FROM nanuf acture_tbl ORDER BY name DESC;

Version 4.2

Results:

NAME

Zetsoft

World Savings

Wells Fargo

Toshiba

Sony

SoftClip

Sams Publishing

Rico Enterprises

MicroSoft

Matrox

PointBase Developer 147

PointBase

Example 2

It is possible to use an SQL constant that will help produce results that are easier to interpret.
The example below illustrates two variations of SQL constants. The first example 'Shipping
Cost' demonstrates a fixed column type and the second example ‘$' is concatenated to a select
list. Also notice the comparison test that finds the all records that were charged over $300 in
shipping costs and not shipped to Florida.

SELECT order_num sales_tax_st_cd, 'Shipping Cost', '$ || shipping_cost FROM order_tbl
VWHERE shi ppi ng_cost > 300 AND UPPER(sal es_tax_st_cd) NOT LIKE '%-L" ORDER BY order_num
ASC;
Results:
ORDER_NUM SALES TAX | Shipping Cost | '$' || shipping
10398002 TX Shipping Cost | $359.99
10398009 CA Shipping Cost | $700
20598101 Ml Shipping Cost | $2500
30198001 NY Shipping Cost | $2000.99
30298004 NY Shipping Cost | $700
Joins
Relational join operations are implemented through the basic SELECT...WHERE statement.
See SELECT for additional information. PointBase supports the following join operations:
« CROSS JOIN
 INNER JOIN
« OUTERJOIN
CROSSJOIN
The cross join operation performs a cross product on the joining tables.
SELECT *

FROMt1l CROSS JON t2

The crossjoin isthe sametype of join found in earlier versions of SQL. Those versions of SQL
that did not use the JOIN keyword, used a comma instead.

INNER JOIN

In inner joins, columns with the same names have compatible data types and the rows will be
selected only when every matching column has the same value as its data type.
SELECT *

FROMt1 INNER JO N t2
ONtl.cl =1t2.¢c3;

Version 4.2 PointBase Developer 148

PointBase

INNER JOIN Example:

Thisexampleisjoining common values from the sales _rep table and sales tax code tabl e based
on acommon type ‘decimal rate’. Asyou can see, it isreturning all rows that have a common
rate and commission values. Also notice that the data is being filtered base on atax code rate

that is over 7.0.

SELECT | ast_nane, comm ssion_rate, sales_tax_code_thl.rate fromsales rep_tbhl INNER JON
sal es_tax_code_thl ON (sales_rep_thl.commission_rate = sales_tax_code_thl.rate) AND
(sales_tax_code_thl.rate > 7.0);

Version 4.2

The SELECT statement returns the following:

LAST_NAME | COVM SSI ON| RATE
Longer 8 8

Hillerger |9 9

Smth 7.75 7.75
Smth 7.75 7.75
Smth 7.75 7.75
Smth 7.75 7.75
Donohue 7.75 7.75
Donohue 7.75 7.75
Donohue 7.75 7.75
Donohue 7.75 7.75

OUTER JOIN

Outer join operations preserve unmatched rows from one or both tables, depending on the
keyword used. PointBase supports the following:

» LEFT OUTERJOIN
* RIGHT OUTER JOIN

PointBase Developer 149

PointBase

LEFT OUTER JOIN

The LEFT OUTER JOIN preserves unmatched rows from the left table, the one that precedes
the keyword JOIN
SELECT *

FROMt1 LEFT QUTER JO N t2
ONtl.cl=t2.c3;

LEFT OUTER JOIN Example:

The example below is performing a Left Outer Join based on where the sales representative
commission rate and the salestax code tabl€' srate are equal. Notice that all of the valuesin the
left table (sales rep_tbl) are preserved.

SELECT | ast_nane, ytd_sales, conmm ssion_rate, sales_tax _code_thl.rate FROM sal es_rep_tbl

LEFT

OQUTER JON sales_tax_code_tbl ON (sales_rep_tbl.commission_rate =

sal es_tax_code_thl . rate) AND (sales_tax_code _thl.rate > 6.0) AND
(sales_rep_tbl.comm ssion_rate >= 8);

The SELECT statement returns the following:

LAST_NAME YTD_SALES | COMMISSION | RATE
Longer 80000 8 8
Hillerger 675000 9.5 9.5
Valentine 857000 9 NULL
Smith 950000 8.75 NULL

RIGHT OUTER JOIN

The RIGHT OUTER JOIN operates similarly to aLEFT OUTER JOIN except the RIGHT or
second named table of unmatched rows are preserved.

SELECT *
FROMt1 RI GHT QUTER JO N t2
ONtl.cl=t2.c3;

Right Outer Join Example:

Thisexampleisusing aright outer join to display al distinct unmatched records from the sales
tax code table based the sales_rep table.

SELECT DI STINCT sales_tax_code_thl.rate fromsales rep_tbhl RI GHT QUTER JO N
sal es_tax_code_thl ON (sales_rep_tbhl.conmission rate = sales_tax_code_tbl.rate) AND
(sales_tax_code_thl.rate > 8.0);

Version 4.2 PointBase Developer 150

PointBase

The SELECT statement returns the following:

RATE

8.25
8.5

9.5
9.75
10.25

115
13

UNION operator

One of the core SQL operators in conjunction with the SELECT statement isthe UNION
operator. It isarelational operator that combinesthe output of two SELECT statements; that is,
they combine two or more tables whose respective column data types are of the same family
datatype. For example, aUNION on aCHARACTER and VARCHAR will work because they
are part of the String data type family. A SMALLINT and an INTEGER UNION will also
work, because they are part of the exact NUMERIC data type family.

The UNION operator has two forms: the first, UNION DISTINCT, returns only unique rows
from a query and discards any duplicate rows; the second, UNION ALL, does not discard
duplicate rows; it returns all rows from the first SELECT statement followed by all rows from
the second SEL ECT statement. You may not mix UNION ALL and UNION DISTINCT inthe
same query scope. However, you may have UNION ALL in the main query and UNION
DISTINCT in asubquery, for example. If aquery has more than one UNION operator, they
must be the same form of UNION operators. You will receive an error if you mix two different
forms of the UNION operator in a query.

The output column names resulting from a UNION will have the same column names that the
expressionsin thevery first SELECT statement had. If the UNION query usesthe ORDER BY
clause, PointBase will order the final results after evaluating all UNIONs. The ORDER BY
clause must be last in the query—after specifying al of the UNIONs. Any column namesin
the ORDER BY clause must refer to the column names in the very first SELECT statement in
the query, asthe ORDER BY clause sorts the final results by the output column names.

Union Examples:

Thisexample is combining two character columns from the office table and product table. The
results will include all of the rows of data from each table.

SELECT type_code FROM of fice_tbhl UN ON ALL SELECT prod_code FROM product code_tbl;

Version 4.2 PointBase Developer 151

PointBase

The SELECT statement returns the following:
type_code

= VI v I s B v v S v v I 4

252287%

This example uses the columns as in the previous example; however, it uses UNION
DISTINCT and orders the results by “type code.” The result will not return any duplicate
rows.

SELECT type_code FROM of fice_tbl UN ON DI STI NCT SELECT prod_code FROM product _code_t bl
order by type_code;

type_code

Version 4.2 PointBase Developer 152

PointBase

Subqueries

Subgueries can be either a SELECT statement or an expression that you can use in any DML
statement, for example, SELECT, INSERT, DELETE, UPDATE. The following describes
different types of subqueries that PointBase supports.

Subquery Type

Description

Scalar Subquery

A subquery that returns at most one row and one column.

Table Subquery
(with one column)

A subquery that may return any number of rows within
one column. A table subquery may only appear on the

Version 4.2

right hand side of a quantified comparison predicate. This
type of predicate compares a single row value of atable to
potentialy multiple result row values from a subquery.

PointBase supports table subqueries only in a quantified
comparison predicate that uses the quantified operators,
IN, NOT IN, EXISTS, or NOT EXISTS. Also see
"Predicates’ on page 70 for more information about these
quantified operators.

A subquery that does not use a correlated (outer)
reference. It references a column, which an enclosing
(outer) query block does not define.

Non-correlated Subquery

Correlated Subquery A subquery that uses a correlated reference, sometimes
referred to as an “ outer reference’. It references a column,

which an enclosing (outer) query block defines.

Nested Subqueries A subquery located within another subquery. PointBase

supports any level of nested subqueries.

Notes on PointBase Subqueries

» PointBase allows a subquery to return multiple values using the quantified operators,
EXITS, NOT EXISTS, IN, or NOT IN only. See "Predicates” on page 70 for more
information about IN, NOT IN, EXISTS, or NOT EXISTS.

» Currently, PointBase does not support row subqueries.

Scalar Subquery (Non-correlated) Example

This example retrieves the names of all sales people in the Miami office.

SELECT a.first_nane, a.last_nane
FROM sal es_rep_tbhl a

VWHERE a. of fice_num =

(SELECT b. office_num

FROM of fice_tbhl b

VWHERE city = "Mam');

PointBase Developer 153

PointBase

Results:
FIRST_NAME LAST_NAME
John Longer

Scalar Subquery (Correlated) Example

This example retrieves the cities of all the offices whose target sales exceed all the sales
representative’s quotas working in them.

SELECT a.city

FROM of fice_thl a

VWHERE a.target_sales >

(SELECT sum(b. quot a)

FROM sal es_rep_thl b

VWHERE b. of fice_num = a.office_nun);

Results:

CITY

Miami
Atlanta

San Mateo
San Francisco
San Diego
Oakland
Detroit

New York

Table Subquery (Non-correlated) Example

This example retrieves the names of al sales reps working in the western region.

SELECT a.first_nane, a.last_nane
FROM sal es_rep_tbhl a

VWHERE a. of fice_num I N

(SELECT b. office_num

FROM of fice_tbhl b

VWHERE b.region = 'Wstern');

Version 4.2

Results:
FIRST_NAME LAST_NAME
Heather Smith
George Valentine
Raymond Brown
Jack Smith

PointBase Developer 154

PointBase

Table Subquery (Correlated) Example

This example retrieves al cities, in which at least one sales representative works.

SELECT a.city

FROM of fice_thl a

WHERE EXI STS

(SELECT *

FROM sal es_rep_tbl b

VWHERE a. of fice_num = b.office_nunj;

Results:

CITY

Miami
Atlanta

San Mateo
San Francisco
San Diego
Oakland
Detroit

New York

Version 4.2 PointBase Developer 155

PointBase

INSERT

I NSERT | NTO tabl e _nanme [(insert_colum_list)]
query_expression

The INSERT statement adds new rows to a table in a PointBase database.

NOTE: To insert, you must have privileges on the entire table. Partial privilege on some
columnswill not work because you have to insert some data (null) into other columns.

Syntax
INSERT INTO The INSERT INTO keywords are required as the first wordsin
an INSERT statement.
t abl e_nanme table_name identifies the table that will receive the new data
specified in the INSERT statement.
(insert_column_list) The optional list of columns that receive valuesin an INSERT

statement are indicated between parentheses and separated by
commas. The order of the list of columnsisimportant, since the
first value following the VALUES clause inserts into the first
columninthelist of columns. Each subsequent column matches
with its counterpart in the query_expression. The
insert_column_list isoptiond. If itis not specified, then an
implicit column list is assumed.

Please note: when inserting a specific valueinto an IDENTITY
column, every row value that followsin that column will
continue to have an incremental value based on the highest value
assigned for that column—even if the highest value was deleted
or rolled back. (See"IDENTITY Property for Autoincrement” on

page 42.)]

query_expressi on | Thequery expression indicates the values that insert into the
tablein the INSERT statement.

Query Expression

The query_expression can take one of the following forms:

NOTE: PointBase effectively ignores any spaces that trail after a string when using the
INSERT statement. This behavior supports the ANSI standard; however, it may vary
with other database vendors.

Version 4.2 PointBase Developer 156

PointBase

Form 1: Table values constructor

Thetable values constructor can be lists of values to be inserted into the columns in the
insert_column_list. The keyword VALUES, asin VALUES(valuel, value2, value3), precede
the list of table constructor values.

Another variation of the table_values constructor allows more than one row at atime with a
single INSERT statement. Each row of data must contain avalue for each column in thelist of
columns that matches the data type of the column. Enclose each row of datain its own set of
parentheses.

Examples

The following INSERT statement inserts arow of data with discrete values:

I NSERT | NTO OFFI CE_TYPE_CCDE_TBL (TYPE_CODE, DESCRI PTION, M SC)

VALUES (' C,

CREATE

"Caller', NULL);

This example inserts into a table where one of the columns has the IDENTITY property. This
column will have the ability to autoincrement the values for each row. Note that you can insert
values explicitly for the IDENTITY column or alow values to be automatically generated by
not explicitly inserting them. Remember that, PointBase will continue to generate incremental
values based on the highest value assigned for the column—even if the highest value was
deleted or rolled back.

TABLE TABL(ID I NT I DENTITY, NAME VARCHAR(30));

I NSERT | NTO TABL(| D, NAME) VALUES(100, 'Palo Alto');

I NSERT | NTO TABL(| D, NAME) VALUES(101, 'Menlo Park');

I NSERT | NTO TABL(NAME) VALUES(' Cupertino');
Unicode data values use the “\u” delimiter for each character with PointBase Commander. For
example, unicode representation of the French al phabet is the following:
\ u05d0 t hrough \uO5ea
such as:

I NSERT | NTO OFFI CE_TYPE_CODE_TBL VALUES ('F', 'French', 'gar_on');
From a JAVA program, unicode characters are treated like others and may be expressed
through their escape literal representation, such as the following:

I NSERT | NTO OFFI CE_TYPE_CODE_TBL VALUES (' X', 'French', '\u00f4');
Inserting Multiple Rows
A single INSERT statement can use discrete values to insert more than one row of data by
nesting the values for rows enclosed in parentheses, such as the following:

I NSERT | NTO OFFI CE_TYPE_CODE_TBL VALUES (' B, ' ‘Buyer’, ’Decision Maker'), ('S,

"Seller’, Sales Rep’), ("T', 'Talker’, ' Not a Programmer’);

Version 4.2 PointBase Developer 157

PointBase

In the PointBase Commander or Console, this example uses dynamic SQL wherethevalueis
supplied at runtime.

I NSERT | NTO ORDER TBL(ORDER NUM CUSTOMER NUM REP_NUM PRODUCT NUM SALES TAX ST _CD,
QUANTI TY, SHI PPI NG COST, SALES DATE, SHI PPI NG DATE, DELI VERY_ DATETI ME,
FREI GHT_COVPANY) VALUES(?, 2, 2, 2, 2, 2, 2, 2, 2, 2, ?);

{

010398552, 1, 5001, 980001, 'FL', 000010, 449.00, '1998-01-02', '1998-01-02', '1998-01-15
15: 00: 00', ' Sout hern Freight'

010398967, 1, 5001, 980001, 'CA', 000010, 449.00, '1998-01-02', '1998-01-02', '1998-01-15
15: 00: 00", '"California Freight'

}

Form 2: DEFAULT VALUES

Default values can be the list of valuesthat are created to be inserted into the table. It will
contain the default values as specified in the CREATE TABLE statement. If the default value
of acolumn isthe NULL value and null values are not allowed (NOT NULL), then an error is
raised.

DEFAULT and NULL can be used to represent valuesto be inserted into the table. If
DEFAULT is specified, then the default value specified (explicitly or implicitly) isinserted
into the column. If NULL is specified, then the NULL value is inserted into the column. Note:
If an attempt to insert aNULL valuein acolumn and nulls are not allowed (NOT NULL), then
an error israised.

Examples

I NSERT | NTO T2 VALUES (DEFAULT) ;
or
I NSERT | NTO T2 VALUES (DEFAULT VALUES);

Form 3: Query Specification

Query specification isthelist of valuesthat you create from an SQL SELECT query. Theresult
set returned from the query must have the same number of column values, with the same data
types, asthe list of columnsin the INSERT statement.

If you duplicate column names between the source table and the target table in a query
specification, each table name must have a correlation name and you must qualify the column
names with the correlation name.

Example

I NSERT | NTO LOCAL_SALES_TAX_CODE_TBL SELECT * FROM SALES TAX CODE_TBL WHERE STATE_CODE =
CFL

Version 4.2 PointBase Developer 158

UPDATE

PointBase

UPDATE t abl e_name
SET set_clause_li st
[WHERE search_condi ti on]

The UPDATE statement changes the values of data in the table(s) contained in the PointBase
database.

Syntax
UPDATE The UPDATE key word is required as the first word in an
UPDATE statement.
table name Table name identifies the table that contains the columnsto
update.
SET The SET clause is required in an UPDATE statement between
the table_nameidentifier and thelist of columnsto be updated.

The set_clause _list has two possible forms:

col um_nane = value [{, colum_nanme = value}...]

or

(colum_nane [{, colum_nane}...]) = VALUES(value [{,value}...])

Version 4.2

Thelist of value expressions sets the value of the columnsin the target table. Each value
expression includes the name of acolumn in the table, the equal sign (=), and the new valuefor
the column. The new vaue for the column can be a constant, acolumn in the table, DEFAULT
keyword, NULL keyword, or a value computed with either one of these value types using an
SQL Scalar function.

A single UPDATE statement can update one or more columns in the designated table. If you
update more than one column, separate the val ue expressions with commas.

If DEFAULT is specified, then the default value of the column on the CREATE TABLE is
inserted into the column. If NULL is specified, then the NULL valueisinserted into the
column. If an attempt to insert null value into a column and the column does not allow this
(NOT NULL) then an error israised.

An aternative syntax for the set_clause listis SET (column list) = VALUES (value list).

WHERE The WHERE clause specifies selection criteriafor an UPDATE
search_condition statement. The search_condition that follows the WHERE
keyword evaluates for each row in the indicated table. If the
search_condition returns true for arow, the columnsin the row
update with the new values indicated in the UPDATE statement;
if the search_condition returns false or unknown, the row is
ignored by the UPDATE statement.

PointBase Developer 159

PointBase

NOTE: If an UPDATE statement does not contain a WHERE clause, al rows in the target
table update with the new values. The UPDATE statement writes new valuesto rowsin
a PointBase database, but the changes become permanent only when a COMMIT
statement executes following an UPDATE statement, which finalizes changes to the
database.

If the UPDATE of arow causes the row to expand past the limits of the page or pages
that contained it originally, the PointBase RDBM S will automatically alow the row to

span pages. The JDBC callsthat execute the UPDATE statement return the number of
rows updated.

Examples

UPDATE ORDER TBL SET FREI GHT_COMPANY=' Shi ppi ng Express', cust oner _nun=25 WHERE
order _num=10398001;

Version 4.2 PointBase Developer 160

PointBase

DELETE

DELETE FROM t abl e_nane
[WHERE search_condi tion]

The DELETE statement deletes arow in atable in a PointBase database.

Syntax
DELETE FROM The DELETE FROM keyword isrequired inaDELETE
statement.
table_name The table_name isthe name of the table from which the selected
rows are to be deleted.
VWHERE The optional WHERE clause specifies selection criteriafor a

sear ch_condi ti on | DELETE statement. The conditional expression that follows the
WHERE keyword is evaluated for each row in the identified
table. If the search_condition returnstrue for arow, therow is
deleted; if the search_condition returns false, the row is not
deleted. If no WHERE clause is specified, all rows are deleted
from the table. See “ Search Conditions and Predicates,” for more
information.

The DELETE statement marks rows in the database for deletion. The rows are actually
removed when acommit occurs after the statement executes, which completes any changes to
the database. For more information on COMMIT, see “ Transaction Control.”

The JDBC calls that execute the DEL ETE statement return the number of rows to be deleted.

Examples

DELETE FROM CORDER_TBL

VWHERE SHI PPI NG_COST <= 275. 00;
DELETE FROM CORDER_TBL

VWHERE SHI PPI NG_COST =?

Version 4.2 PointBase Developer 161

PointBase

Data Control Language

To manipulate data, use the Data Control Language (DCL). With DCL, you can perform the
following:
CALL: Execute an SQL procedure.

RETURN: Return avalue from an SQL function.

SET assignment: Assign avalue to an SQL variable.

SET PATH: Set or change the current path being used to locate the SQL objectsin

various schemas.

SIGNAL: Raise an SQL State exception.
VALUES: Invoke an SQL routine.

The CALL statement executes an SQL routine that is a procedure.

The CALL keyword isrequired in a CALL statement.

The procedure_nameis the name of the procedure whichiis
executed. No results are returned.

The optional argument_list clause specifies values for the CALL
statement.

NOTE: Only constants can be used. You cannot use new or old
row values.

CALL
CALL procedure_nane([argunment _|ist])
Syntax
CALL
procedure_name
argument_list
Examples
CALL PROCL();

CALL PROC2(‘ abc

Version 4.2

")

PointBase Developer 162

PointBase

RETURN

RETURN SQL_expression

The Return statement returns a scalar value from an SQL expression. It can only be used
within an SQL function.

Syntax

RETURN The RETURN keyword isrequired as the first word in a
RETURN statement.

SQL_expression The SQL_expression can be a constant, an SQL routine
invocation, one of the SQL Scalar functions, an SQL Cast
functions, or an SQL Special Register.

Examples
RETURN ‘ abc’ ;
RETURN gestl astcount ();
RETURN ‘ Happy New Year’ | | ‘ ‘ CAST (CURRENT_TI MESTAMP TO VARCHAR(30));
RETURN NULL;
RETURN;

Version 4.2 PointBase Developer 163

PointBase

SET assignment

SET assi gnnent _target = assi gnment_source

You may use SET assignment statements for BEFORE triggers only. The SET assignment
statement assigns avalue to an SQL Trigger row correlation variable. The SET assignment
statement is much like the set_clause of an SQL UPDATE statement.

Syntax

SET The SET keyword is required as the first word in a SET
assignment statement.

assignment_target The assignment_target consists of both, an SQL correlation
variable of an SQL Trigger and a column_name. The
column_name refers the column of the SQL correlation variable.
You may use new or old row values.

assignment_source The assignment_source is one or more SQL expressions that can
be a constant, an SQL routine invocation, one of the SQL Scalar
functions, an SQL Cast functions, or an SQL Special Register.

You may not use an SQL correlation variable, however, you can
reference new or old row values in the WHEN search_condition.

Assighment_source va ues are assigned to the assignment_target.

Examples

SET newrow. i nventory = getnewal ue ();
SET newr ow. sel | dat e = CURRENT_DATE;
SET ny_newal i as. fruitname = ‘apples’;

Version 4.2 PointBase Developer 164

PointBase

SET PATH

SET PATH schema_nane [{, schena_nane}...]

With the SET PATH statement, you can use it to set or change the current path that you are
using to locate the SQL objects in various schemas. This resultsin the setting of the
CURRENT_PATH of a SQL session. To find the correct system tables, the schema
POINTBASE must be included in the path.

Syntax
SET PATH The SET PATH keywords are required asthefirst wordsina SET
PATH statement.
schema_name Required keywords to begin the statement.
Examples

SET PATH Enpl oyees, Engi neering, Sales, PointBase;

This setsthe CURRENT _PATH to the following schemasin the order specified: Employees,
Engineering, Sales, and PointBase. If you wish to append the Marketing schemato the
CURRENT_PATH so that the order becomes Employees, Engineering, Sales, PointBase, and
Marketing, enter:

SET PATH CURRENT_PATH, Marketi ng;

If you never execute a SET PATH statement, then the CURRENT_PATH consists of the
schema POINTBA SE, followed by your existing schema. When a SET PATH statement is
issued, it completely replacesthe existing CURRENT_PATH, unless CURRENT_PATH ispart
of the schemas being set in the path.

The order of the schemasin the path is generally crucial. When the database system is looking
for SQL objects, it looks for them in each schema (unless explicitly referenced otherwise),
starting with the first schemain the path, then the next, etc...., until an SQL object isfound that
meets the criteria. One way to override the CURRENT_PATH isto explicitly reference the
SQL object. For example, to reference atable, you can specify schema name.table name. In
the above examples, the SQL object of table_name would be searched in the schema of name
schema_name.

Version 4.2 PointBase Developer 165

PointBase

SIGNAL

SI GNAL ‘sql state_nessage

With the SIGNAL statement, you can use it to raise an SQL STATE exception. This statement
can only be used within atrigger_body or within the body of an SQL routine, whose language
type is SQL. This statement will cause an SQL STATE exception to be thrown and propagated
back to your program. You provide the text of the message.

NOTE: The SIGNAL statement rolls back the specific event that activated its trigger and all
the changes caused by the trigger, as well asthe original SQL statement of the user,
which includes all the triggers and cascading actions that it invoked.

Syntax

SI GNAL

The SIGNAL keyword isrequired asthefirst word ina SIGNAL
statement.

sglstate_message

The sglstate_message is an SQL string literal value. You can
specify any text they would like. The actual SQL STATE code
will be ZG014 and the SQL error codeis 25014.

Examples

SI GNAL' The oranges inventory is enpty’
SIGNAL ‘ The salary of an enployee woul d have been hi gher than the salary of his/her Mn-

ager’ ;

Version 4.2

PointBase Developer 166

VALUES

PointBase

VALUES (SQL_expression [{ , SQL_expression } ...])

VALUES (addnewfruit(‘app
VALUES (i ncreaseorders(20

The VALUES statement is an SQL stand alone SQL statement. It should not be confused with
the values_clause of an INSERT statement or with the from_clause of an SQL Select
statement.

Typically, the VALUES statement is used to invoke SQL routines. The VALUES statement
discards all SQL expression values returned by either a constant, an SQL routine invocation,
one of the SQL Scalar functions, one of the SQL Cast functions, or an SQL Specia Register.

Syntax

VALUES The VALUES keyword is required as the first word in a
VALUES statement.

SQL_expression The SQL_expression can be a constant, an SQL routine
invocation, one of the SQL Scalar functions, an SQL Cast
functions, or an SQL Special Register.

Examples

le));
0)).

VALUES (CURENT DATE);

Version 4.2

PointBase Developer 167

PointBase

Transaction Control

SAVEPOINT

In this section you can find the following transaction control statements:

*» “SAVEPOINT”

e “COMMIT”

* “RELEASE SAVEPOINT”

* “ROLLBACK”

* “SET DATALOG”

* “START TRANSACTION ISOLATION LEVEL”

SAVEPO NT savepoi nt _nane

The PointBase transaction model supports savepoints. Savepoints allow transactionsto be
partially rolled back by establishing a point within a transaction. Savepoints are destroyed
automatically when atransaction commits.

NOTE: Make sure that auto commit is turned off when using savepoint.

Syntax
SAVEPOINT The savepoint_name can either be an SQL identifier or anumeric
savepoint_name value with a scale of zero.

Examples

SAVEPO NT SVP1,

SAVEPO NT 2;

Version 4.2

PointBase Developer 168

COMMIT

COWM T [WORK]

COW T WORK;

Version 4.2

PointBase

The COMMIT statement successfully terminates a PointBase transaction.

Syntax

COW T [WORK] The COMMIT statement takes no qualifiers. The keyword

WORK is optional.

Issuing aCOMMIT statement ends the current PointBase transaction. The COMMIT causes
three basic actions in the PointBase database:

1. Writesany and all changes that have occurred to the data during the current
transaction to the database.

Releases any locks that have been placed on data in the PointBase database.
3. Destroys any result sets that have been returned from a query.

Examples

PointBase Developer 169

PointBase

RELEASE SAVEPOINT

RELEASE SAVEPO NT savepoi nt _name

The RELEASE SAVEPOINT statement destroys a savepoint within atransaction and all the
savepoints created after the specified savepoint. The savepoint isautomatically released when
aCOMMIT or ROLLBACK occurs.

The savepoint name specified in this command should have been created earlier by a savepoint
command in the current transaction. If the savepoint name is not found, an exception is raised
for the invalid savepoint name.

NOTE: Make sure that autocommit is turned off when using savepoint.

Syntax
RELEASE The savepoint_name can either be an a phanumeric SQL
SAVEPOINT identifier or an integer number.
savepoint_name

Example 1

RELEASE SAVEPO NT SVP1;
RELEASE SAVEPO NT 2;

Example 2

CREATE TABLE T1 (cl int);
Savepoi nt spl;

I NSERT | NTO T1 val ues (1);
Savepoi nt sp2;

I NSERT | NTO T1 val ues (2);
Savepoi nt sp3;

I NSERT | NTO T3 val ues (3);
RELEASE savepoi nt sp2;

NOTE: Inthelast statement of Example 2, the savepoint sp2 is destroyed.

Version 4.2 PointBase Developer 170

ROLLBACK

PointBase

ROLLBACK [WORK] [TO SAVEPO NT savepoi nt _nane]

ROLLBACK WORK;

The ROLLBACK statement rolls back any changes that have taken place in a PointBase
transaction to the beginning of the transaction or to a savepoint.

A ROLLBACK TO SAVEPOINT statement allows you to undo all changes to the database
back to the savepoint. This action does not terminate a transaction. If aROLLBACK
statement references a savepoint, then the transaction rolls back to where the savepoint was
specified.

NOTE: Make sure that auto commit is turned off when using savepoint.

Syntax
ROLLBACK TO The savepoint_name can either be an SQL identifier or anumeric
SAVEPOINT valuewith a scale of zero.

savepoint_name

Examples

ROLLBACK WORK TO SAVEPO NT SVP1;

Version 4.2

Issuing aROLLBACK statement restores the data changed in a transaction to the values that
existed before the PointBase transaction began. If you specify a savepoint_name, then all
changes made to datain the transaction, after the SAVEPOINT savepoint_name statement was
executed, rolls back. The specified savepoint and all savepointsissued subsequent to this
savepoint are destroyed. The transaction resumes after the savepoint statement.

A ROLLBACK statement without any qualifier ends the current transaction, which causes
two actions in the PointBase database:

1. Releases any locks that have been placed on datain the PointBase database.
2. Destroysany result sets that have been returned from a query.

PointBase Developer 171

PointBase

SET DATALOG

SET DATALOG OFF | ON FOR TABLE t abl e_nane

The SET DATALOG command allows administrators to turn OFF or ON data logging for a
specific table. By default, datalogging is set to ON for al tables. When set to OFF, deletions or
updates are not allowed on the specified tables. You should turn DATAL OG to OFF for
insertions only. If the specified table has one or more indexes, during insertionsits indexes
will automatically be updated and the index will be logged.

No transaction should be active while executing a SET DATALOG command. PointBase
recommends that you execute this command just after aROLLBACK or aCOMMIT statement
and before a START TRANSACTION ISOLATION LEVEL statement (or any statement that
starts atransaction.) Any transaction that starts after the SET DATALOG statement will turn
OFF logging for the specified table. At the end of the transaction, logging is automatically
turned back ON. Optionally, before the end of the transaction, you can turn logging ON by
setting the ON option in the SET DATALOG statement.

The main purpose of the SET DATALOG statement is to increase performance by turning off
datalogging while inserting alot of data (via bulk loading) into atable. Thetableislocked
exclusively by the first insert into the specified table in this transaction. This exclusivelock is
then released at the end of the transaction.

Example 1l

In the following example, after the COMMIT statement, the datalogging isturned OFF for the
table T1. The INSERT statement starts a transaction, turns off the datalogging for table T1 and
inserts all the datafrom thefile ‘data.tab’ into table T1. The final COMMIT commits all the
inserted data and turns data logging ON for table T1.

conmt work;

set datalog off for table T1;

SET BULK ON;

insert into Tl values (?,?,?) use c:\data.tab delinmter tab;
commt worKk;

Example 2

In this example, data logging is turned OFF and one row is inserted into table T2. Although
thisis allowed, there is no advantage to turning OFF datalogging for only a few row inserts.

comm t worKk;

set datalog off for table T2;
SET BULK ON;

insert into T2 values (10, 20, 30);
comm t worKk;

Version 4.2 PointBase Developer 172

PointBase

START TRANSACTION ISOLATION LEVEL

START TRANSACTI ON | SOLATI ON LEVEL
isolation_level [access_npde], [D AGNOSTICS SI ZE di agnosti cs_si ze]

The START TRANSACTION ISOLATION LEVEL statement is an explicit way to start a

transaction.
Syntax
isolation_level PointBase supports the following transaction isolation levels:
* READ UNCOMMITTED
* READ COMMITTED
* REPEATABLE READ
» SERIALIZABLE
access_mode PointBase supports READ ONLY and READ WRITE access

modes. The default mode is READ WRITE. It can only be
specified once. If the access_ mode is not specified, thenitis
implicitly READ WRITE. In the READ ONLY mode, no
modification to date can be made.

DIAGNOSTICS SIZE | Thediagnostics size represents the maximum

number_of conditions | number_of conditions or SQL exceptionsthat are saved for each
statement that executes. This number lists the number of
conditions that can be held at any given time in the diagnostic
area. The value must be greater than 0. A default value is defined
at implementation time. The number_of conditions can specified
only once.

READ UNCOMMITTED

This mode permits Read and Write. It is also known asa‘dirty read.” In thismode, al rows,
including uncommitted rows are retrieved. For example, if transaction T1 performs one row
insert, transaction T2 retrieves that row before T1 ends.

READ COMMITTED

This mode retrieves committed rows only. However, if the same SELECT statement is
executed again, the results may differ due to update from other transaction. For example, a
transaction T1 retrieves a row, another transaction T2 then updates that row and commits, and
T1 then retrieves the same row again. Transaction T1 has retrieved the same row twice, but
produced two different values.

Read and Write are permitted with more concurrency. For most users, this mode may satisfy
their needs. If atransaction isolation level is not specified in the poi nt base. i ni file, the
default is the transaction isolation level, READ_COMMITTED.

Version 4.2 PointBase Developer 173

PointBase

REPEATABLE READ

In this mode, only committed rows are retrieved (asin the READ_COMMITTED) but without
the problem seen in the READ_COMMITTED isolation level: if the same row is retrieved
again in the same transaction, the exact same value is retrieved. However, if anew row is
added by another transaction and commits the insert (also delete or update), a second time
retrieval for the same select statement may include the newly inserted (al so deleted or updated)
row. This phenomenon is know as a phantom read.

SERIALIZABLE

Thismodeisthe highest level possible, superior in functionality to aREPEATABLE_READ as
no phantom occurs. If a SELECT statement retrieves a collection of rowsto satisfy acondition,
and the same SELECT statement is executed again in the same transaction, then it is
guaranteed to retrieve the same set of rows with the same values.

Inthismode, concurrency isreduced compared to other modes. If the number of rows retrieved
or affected by the transaction exceeds the number of locks specified in the poi nt base.i ni
file, therow level locks are converted to table level locks, further reducing the concurrency.
The default number of locks is2000.

Example

START TRANSACTI ON | SCLATI ON LEVEL SERI ALI ZABLE, READ WRI TE;

Version 4.2

PointBase Developer 174

PointBase

PointBase-Specific SQL

SHUTDOWN

This section describes non-standard SQL statements that PointBase supports. PointBase has
provided these statements to supply additional functionality for your application. Each section
representsits own SQL statement. For each of them, the section will summarize the purpose,
describe the syntax, explain the usage, and give examples of the statement. You may browse
the PointBase-specific SQL statements to discover useful commands.

SHUTDOWN [FORCE]

SHUTDOWN,
SHUTDOW FORCE

BACKUP

BACKUP [<user

Version 4.2

To shut down your PointBase Server or Embedded databases, you can use the SHUTDOWN
statement. It can shut down either PointBase Server or PointBase Embedded. However, you
must be the database owner or the PBSY SADMIN user, or you must have the PBDBA role for
your current role to perform the shut down.

Syntax

FORCE | It shuts down the database regardless of open client connections.

Examples

cl ass name >] [<user paranp]

This SQL statement initiates online backup. Online backup functionality facilitates database
backup while the database application is running. To use this statement, the application must
first implement the PointBase interface, “ com.pointbase.tools.toolsBackup.” The examplein
this section describes the PointBase default implementation of thisinterface.

Online backup has many uses. You can use online backup, when you do not want to bring
down the database while taking a backup or when some critical event is recorded in the
database, and you want to backup the database immediately. Additionaly, having the online
backup facility, an application has the flexibility to copy the database to any type of storage it
wants, for example, Flash memory.

PointBase Developer 175

PointBase

I mportant Notes

* You may initiate this statement using PointBase Embedded or Server

» Only the database owner, PBSY SADMIN user, or users with READALL or PBDBA
roles are allowed to backup the database

» During online backup, all transactions, including the one that requests write operations,
are active— but the write operation will wait for the return from copyDatabaseFiles()—
which the application must implement; whereas, the read operations continue without any
interruption if they can proceed.

* Whileonline backup isin progress the SQL statementswill not get lock time-out even if
they exceed the regular lock time-out time.

» If CREATE INDEX isin progress then online backup will wait for it to complete.

Syntax

<user class hame> the name of the class which implements the interface,
“com.pointbase.tools.toolsBackup.” If thisisnot given in the
statement then the default implementation will be used. (See
Example.)

<user param> the user parameter. This can be quoted identifier in which case it
can have comma separated values. If thisis not given in the
statement then NULL will be passed to the
“copyDatabaseFiles()” method.

Example

To accomplish the online backup functionality, you must first implement the interface
“com.pointbase.tools.toolsBackup.” Once the interface isimplemented, it must be in the
classpath with the server database JAR when you launch the application. After launching the
application, you can initiate online backup my executing the BACKUP SQL statement.

TIP: Use online backup when the load the database is light, for example, during night times.
I mplement toolsBackup Interface

The application needs to implement the toolsBackup interface and the code for copying the
database files. The class that implements this interface needs to have a default constructor, for
example:

interface tool sBackup

public void

copyDat abaseFi |l es(String databaseFiles[], String userParan

Version 4.2

t hrows Exception;

» databaseFileq[] isthe absolute filenames of all the files for this database.

» userParamisa String which application can specify in the online backup SQL statement
that will be passed to this method. This can contain such information, like destination
directory.

PointBase Developer 176

PointBase

Default | mplementation

The class, “toolsBackupDefault,” is the PointBase default implementation for the interface,
“com.pointbase.tools.toolsBackup.” In this default implementation, you must write the code
that copiesthe data files to some destination directory. Thisimplementation does not overwrite
any files. If the destination directory contains files with the same name of the backup database
file then an Exception is raised. If the userParamis NULL, then the destination directory is
“<database directory>/backup.” <database directory> isthe directory of the original database
file. If you specify the userParam, then it should be avalid existing directory. The file copy is
donein blocks of data and the block size is 4096.

The following code describes the PointBase default implementation, “toolsBackupDefault.”

package com poi ntbase. tools;

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.

. Buf f er edl nput Stream

. Buf f er edQut put St r eam
File;

.Filelnput Stream

. Fil eQut put Stream

. I nput Stream

.| OExcepti on;

. Qut put St ream

Oo0ooooooo

public class tool sBackupDefault inplements tool sBackup

static int COPY_BLOCK_ SI ZE = 4*1024;

public tool sBackupDefaul t ()
{

}

public void copyDatabaseFiles(String[] p_databaseFil eNames,
String p_user Parans)
t hrows Exception

{
File | _databaseFiles[] = new Fil e[p_dat abaseFi | eNanes. | ength];
for (int i=0; i < p_databaseFileNames.|ength; i++)
| _databaseFiles[i] = new Fil e(p_dat abaseFi | eNanes[i]);
String destinationDir;
if (p_userParams == null)
destinationDir = | _databaseFil es[0]. getParent()+ "/backup";
el se
destinationDir = p_userParans;
File fDirectory = new File(destinationDir);
if (p_userParams == null)
if (!fDirectory.exists())
fDirectory.nmkdir();
}
if (!fDirectory.exists())
t hrow new Exception("The destination directory "+ destinationDir + "
does not exist");
if (!fDirectory.isDirectory())
t hrow new Exception("The destination is not a directory");
/1 Check if any of the files with the given database fil e names exi st
/1 in the destination
for(int i=0; i<l _databaseFiles.length; i++)
File | _destination = new Fil e(destinationbDir,
| _databaseFiles[i].getNanme());
if (I _destination.exists())
Version 4.2 PointBase Developer 177

PointBase

t hrow new Exception("The destination directory already contains

file " | destination);

+
}
/'l Copy the database files

for(int i=0; i<l _databaseFiles.length; i++)

File | _destination = new Fil e(destinationDir,
| _dat abaseFiles[i].getName());

| _destination.createNewFile();

copyFile(| _databaseFiles[i], | _destination);

private void
copyFile(File fSource, File fDest)
throws | OExcepti on

Input Stream fis = new Bufferedl nputStrean(new Fi | el nput St rean(f Source));
Qut put St ream fos = new Buf f er edQut put St r ean{ new
Fi | eCut put Strean(fDest));

int iLen = (int) fSource.length();

/'l read the input byte array...

byt e[] buf = new byte[COPY_BLOCK Sl ZE];
int toG = ilLen;

int dataRead;

while(toGo > 0)

toGo -= (dataRead = fis.read(buf));
fos.wite(buf, 0, dataRead);

fos.close();
fis.close();

Include Implementation in Classpath

Whatever the user implementation of the toolsBackup interface is, the class must be in the
classpath with the PointBase Embedded or Server JAR files, when launching the application,
for example:

java -classpath c:\pbserver42.jar;c:\pbtool s42.jar;c:\<userinpl enmentation.cl ass>;
The PointBase default implementation is located in the “ pbtools” JAR.
Execute BACKUP Statement

The following example executes the BACKUP statement using the PointBase default
implementation of the “toolsBackup” interface and specifies the destination directory, “c:/
backup/databases.”

BACKUP t ool sBackupDefaul t c:/backup/ dat abases;

The next example does not specify a destination directory, so the PointBase default
implementation copies the backup database file to, “ <database directory>/backup.” <database
directory> isthe directory of the original databasefile.

BACKUP t ool sBackupDef aul t;

The following example does not specify an implementation class of “toolsBackup” nor does it
specify adestination directory. If thisis the case, the PointBase default implementation,
“toolsBackupDefault” is used, and the destination directory is “<database directory>/backup.”

BACKUP;

Version 4.2 PointBase Developer 178

Appendix B: Unsupported JDBC 2.0
Methods in PointBase

|

Table 1 describes the unsupported JDBC 2.0 methods from the java.sgl package.

Table 1: Unsupported JDBC 2.0 Methods From Java.sql Package

Java.sql Class Unsupported Methods

CallableStatement getArray(int p_parameterindex)

getObject(int p_parameterlndex,java.util.Map p_map)

getRef(int p_parameterl ndex)

setArray(int p_parameterindex,Array p_value)

setRef(int p_parameterlndex,Ref p_value)

Connection getTypeMap()

setTypeMap(java.util.Map p_map)

DatabaseM etaData getUDTs(String p_catalog,String p_schemaPattern,String p_typeNamePattern,int[]
p_types)

PreparedStatement setArray(int p_parameterindex,Array p_value)

setRef(int p_parameterlndex,Ref p_value)

ResultSet getArray(int p_Columnindex)

getArray(String p_ColumnName)

getObject(int p_Columnindex,java.util.Map p_Map)

getObject(String p_ColumnName,java.util.Map p_Map)

getRef(int p_Columnindex)

Version 4.2 PointBase Devel oper 179

PointBase

Table 1: Unsupported JDBC 2.0 Methods From Java.sql Package

Java.sql Class Unsupported Methods

getRef(String p_ColumnName)

Version 4.2 PointBase Developer 180

Version 4.2

Appendix C: Reserved Words

PointBase reserves certain words as keywords. Reserved words cannot be used, by themselves,
as an identifier for atable, column, or index, or as a correlation name defined in a SELECT
statement, unless you delimit them. A delimited identifier is an identifier in double quotes.
Any word, including keywords, can be adelimited identifier. A reserved word can be part of an
identifier, such asDEFAULT_TABLE, aslong asit is not exactly the same as the keyword by
itself.

Although CREATE TABLE (VARCHAR VARCHAR(10)) is not alegal PointBase syntax
because of the illegal use of the reserved words, “TABLE” and “VARCHAR.” The same
identifiers, however, can be legally used if they are delimited, asin CREATE TABLE
"TABLE" ("VARCHAR" VARCHAR(10)).

NOTE: The words listed here are SQL reserved words and should not be used. Some of these
keywords may not be supported in this release, but are reserved for future releases of
PointBase.

Reserved wordsin the PointBase database are:

ACTI ON
ADD
AFTER
ALL
ALTER

AND

AS

ASC
ASCENDI NG
AT

ATOM C
AUTHORI ZATI ON
AVG

BEFORE

BEGA N

BETWEEN

Bl NARY

PointBase Devel oper 181

PointBase

BIT
BLOB

BOCLEAN
BOTH

BY
CALL

CASCADE
CASE

CAST
CHAR

CHARACTER

CHAR LENGTH
CHARACTER_LENGTH
CHECK

CLOB
COLUWN

COWM T
COW TTED

CONSTRAI NT
CONTAI NS
COUNT
COUNTRY

CREATE
CRGSS

CURRENT
CURRENT_DATABASE

CURRENT _DATE
CURRENT_LSN

CURRENT_PATH
CURRENT _SCHENMA
CURRENT _SESS| ON

CURRENT_TI ME
CURRENT_TI MESTAMP
CURRENT_USER

DATA
DATABASE
DATALOG

DATE
DAY

DEC

DECI MAL
DEFAULT
DEFERRABLE

Version 4.2 PointBase Developer 182

Version 4.2

PointBase

DELETE

DESC

DESCENDI NG
DETERM NI STI C

DI AGNOSTI CS
DI SCONNECT
DI STI NCT

DOUBLE
DROP
EACH

END
EXCEPT
EXECUTE
EXTERNAL

EXTRACT
FALSE
FI LTER_COLUWN

FI LTER_ROW

FLOAT
FOR

FOREI GN
FROM
FULL

FUNCTI ON

G
GETLASTLSN
GRANT
GROUP

K

HAVI NG
HOUR

I MAGE

| MVEDI ATE

I'N
I NDEX
| NDEXONLY

I NI TI ALLY
I NNER
I NOUT

| NSERT
I NT

| NTEGER

PointBase Developer

183

Version 4.2

PointBase

I NTO
IS
| SOLATI ON

JAVA

JO N
KEY

LANGUAGE
LARCGE
LEADI NG
LEFT
LENGTH
LEVEL

LI KE

LOB

LONG

LONGRAW
LONER

LSN_CURRENT | D
LSN_CURRENT _OFFSET

LSN_SKIP_I D

LSN_SKI P_OFFSET

LSN_START_I D

LSN_START_OFFSET

M
MATCH
MAX
METHCOD
M N

M NUTE
MODI FI ES
MONTH
NAME
NATURAL
NEW

NO

NOT
NUMBER

NUMERI C
NULL

OBJECT
OCTET_LENGTH
OF

PointBase Developer 184

Version 4.2

PointBase

QUTER
PAGESI ZE
PARAMETER
PASSWORD
PATH
PLANONLY
PCSI TI ON

PRECI SI ON
PRI MARY

PRI VI LEGES
PROCEDURE
PUBLI CATI ON
RAW

READ

READS

REAL
REFERENCES
REFERENCI NG

RELEASE
REPEATABLE
RESTRI CT
RETURN
RETURNS
REVOKE

Rl GHT

ROLLBACK
ROUTI NE

ROW
SAVEPO NT
SCALAR
SCHEMA
SECOND

SELECT
SERI ALI ZABLE

PointBase Developer 185

Version 4.2

PointBase

SESSI ON_USER

SET
SI GNAL

SI ZE
SMALLI NT
SNAPSHOT

SPECI FI C
SQLSTATE
STARTSTATEMENT
STYLE

SUBSCRI PTI ON

SUBSTRI NG
SUM

SW TCHLOGFI LE
SYSDATE

SYSTI ME

SYSTI MESTAMP

TABLE
TEXT

TI ME
TI MESTAMP
TI NYI NT

TO

TRAI LI NG
TRANSACTI ON
TRI GGER
TRIM

TRUE
UNCOWM TTED

UNI ON
UNI QUE
UNI SYNC
UNKNOWN

UPDATE
UPPER
USER

USI NG

VALUES
VARBI NARY

VARCHAR
VARCHAR2

WHEN

PointBase Developer

186

PointBase

VWHERE
W TH

WRI TE
WORK
YEAR

Version 4.2 PointBase Developer 187

Appendix D: SQL Data Type Code
|

This section contains a mapping of SQL data types and their corresponding type code. These
code values are based on the ANSI and ISO SQL standard.

SQL Data Type Type Code
BLOB 30
BOOLEAN 16
CHARACTER 1
CHARACTER VARYING 12
CLOB 40
DATE 91
TIME 92
TIMESTAMP 93
DECIMAL 3
DOUBLE PRECISION 8
FLOAT 6
INTEGER 4
NUMERIC 2
REAL 7
SMALLINT 5

Version 4.2 PointBase Devel oper 188

	Proprietary and Trademark Information
	Table of Contents
	Preface
	Purpose
	Audience
	Release Notes
	Document Feedback
	Document Conventions Used in This Guide

	Developer’s Overview
	JDBC and PointBase
	The PointBase JDBC Driver

	SQL and PointBase
	Your Application and PointBase
	What’s New With PointBase RDBMS?
	PointBase Embedded/Server RDBMS Enhancements
	Quality Improvements
	Important Changes in Release 4.2
	Best Practices

	PointBase JDBC Basic Tutorial
	Refreshing the Sample Database
	Making a Connection to PointBase
	Loading the PointBase JDBC Driver
	Connecting to the PointBase database

	Creating and Executing Static JDBC Statement
	Retrieving Row Values From Non-Scrollable Result Sets
	Closing and Committing Objects
	Rolling Back or Committing the Transaction
	Closing the Result Set
	Closing the JDBC Statement
	Closing the Connection to the Database

	PointBase JDBC Advanced Tutorial
	Creating and Executing a Dynamic JDBC Statement
	Creating a Prepared Statement
	Binding the Dynamic Variables to the Prepared Statement

	Using Scrollable Result Sets
	Result Set Types and Concurrency
	Creating a Read-Only Scrollable Result Set Statement Object
	Moving the Cursor
	Setting the Direction of the Cursor in Scrollable Result Sets
	Retrieving Information About a Result Set
	Setting the Number of Returned Rows in Scrollable Result Sets
	Creating an Updateable Scrollable Result Set Statement Object
	Updating Row Values in Scrollable Result Sets
	Inserting Rows Into Scrollable Result Sets
	Deleting Rows From Scrollable Result Sets

	Flushing the Database Log
	Performing Batch Operations
	Retrieving Data From BLOB Columns
	Retrieving Data From CLOB Columns
	Creating Functions
	External Java Methods and Functions
	Creating an External Function
	Specifying the External Function in a Stored Function
	Using the Function

	Creating Stored Procedures
	Using INOUT and OUT Parameters
	Using JDBC Wrapper Classes
	Creating an External Procedure Using JDBC Wrapper Classes
	Executing a Stored Procedure

	Basic SQL Data Objects
	Data Objects Within the PointBase RDBMS
	Database
	Database Size Limit
	Concurrent Databases
	Read-Only Support

	User
	Schema
	Previous Schema PUBLIC
	Schema Owners
	Schema Referencing
	Managing Schemas

	Table
	View
	Security for Views

	Column
	IDENTITY Property for Autoincrement

	SQL Data Types
	Data Types
	CHARACTER [(length)] or CHAR [(length)]
	VARCHAR (length)
	BOOLEAN
	SMALLINT
	INTEGER or INT
	BIGINT
	DECIMAL [(p[,s])] or DEC [(p[,s])]
	NUMERIC [(p[,s])]
	REAL
	FLOAT(p)
	DOUBLE PRECISION
	DATE
	TIME
	TIMESTAMP
	CLOB [(length)] or CHARACTER LARGE OBJECT [(length)] or CHAR LARGE OBJECT [(length)]
	BLOB [(length)] or BINARY LARGE OBJECT [(length)]

	Data Conversions and Assignments

	SQL Scalar and Aggregate Functions
	SQL Scalar Numeric Functions
	Examples

	SQL Scalar Character String Functions
	CONCATENATION
	Examples:
	SUBSTRING
	Examples
	CHARACTER_LENGTH
	Examples
	POSITION
	Examples
	TRIM
	Examples
	UPPER and LOWER
	Examples

	SQL Scalar Date/Time Functions
	CURRENT_DATE
	Example
	CURRENT_TIME
	Example
	CURRENT_TIMESTAMP
	Example
	EXTRACT
	Examples

	SQL Scalar CAST Function
	SQL Scalar Routine Invocation
	Routine Determination
	Examples

	SQL Aggregate Functions
	AVG
	Example
	COUNT
	Example
	MAX
	Example
	MIN
	Example
	SUM
	Example

	SQL Special Registers

	Indexes and Constraints
	Indexes
	Keys
	Primary Key
	Foreign Key

	Constraints
	Unique Constraint
	Referential Constraint
	Check Constraint

	Search Conditions and Predicates
	Search Conditions
	Simple search conditions
	Values
	Operators
	Complex search conditions

	Predicates
	COMPARISON
	BETWEEN
	LIKE
	EXISTS | NOT EXISTS
	IN | NOT IN
	NULL

	Transactions and Locks
	Transactions
	Row Level Locking
	Locks and Memory

	Transaction Isolation Levels
	READ_COMMITTED
	SERIALIZABLE and REPEATABLE_READ
	Recommended Isolation Level

	Distributed Transactions
	PointBase’s Role in a DTP Environment
	Transaction Managers, Resource Managers, and Global Transactions
	Interaction Among DTP Components

	Java Transaction API (JTA)
	JDBC 2.0 Optional Package API
	Implementing javax.sql.XADataSource
	XADataSource and JNDI
	Support for XADataSource Properties
	Additional PointBase Methods

	Using PointBase in a DTP Environment
	Getting the XAResource Object
	Using the XAResource Object
	Committing Global Transactions
	Rolling Back Global Transactions
	Recovering Global Transactions
	Example

	Mixing Global and Local Transactions
	Unsupported in PointBase

	SQL Security and Privileges
	Predefined Users
	Internal_System_Administrator (ISA)
	PBSYSADMIN
	PBPUBLIC

	Granting and Revoking Privileges to Users
	GRANT Syntax
	Examples
	REVOKE Syntax

	Predefined Roles
	PBDBA Role
	READALL Role

	Granting and Revoking Privileges to Roles
	CREATE ROLE Syntax
	Examples
	GRANT ROLE Syntax
	REVOKE Syntax
	DROP ROLE Syntax
	SET ROLE Syntax

	Optimizer Usage in PointBase
	Execution Plan
	Commands for PointBase Commander
	SET TIMING ON | OFF
	SET PLANONLY ON | OFF
	SET SHOWPLAN ON | OFF

	Application Programming Interface Tools
	Load and Unload API’s
	Unload API
	Load API

	Appendix A: SQL Reference
	Conventions
	Page Format Conventions
	Syntax Conventions

	Data Definition Language
	CREATE SCHEMA
	Syntax
	Examples

	CREATE TABLE
	Syntax
	Column_Definition Syntax
	Column_Constraints
	Table_Constraint_Definition
	Example 1
	Example 2
	Example 3

	CREATE VIEW
	Notes
	Syntax
	Examples

	CREATE USER
	Syntax
	Example

	CREATE ROLE
	CREATE INDEX
	Syntax
	Example1
	Example2

	CREATE FUNCTION
	Syntax
	Example

	CREATE PROCEDURE
	Syntax
	Example

	CREATE TRIGGER
	Syntax
	Examples

	ALTER TABLE
	Syntax
	Alter_Table_Action Syntax
	Examples

	ALTER USER
	Syntax
	Examples

	Dropping SQL Objects
	DROP INDEX
	Syntax
	Examples

	DROP FUNCTION or DROP PROCEDURE
	Syntax
	Examples

	DROP SCHEMA
	Syntax
	Examples

	DROP TABLE
	Syntax
	Examples

	DROP VIEW
	Notes
	Syntax
	Examples

	DROP TRIGGER
	Syntax
	Examples

	DROP USER
	Examples

	DROP ROLE

	Data Manipulation Language and Data Query Language
	SELECT
	Syntax
	Examples
	Joins
	CROSS JOIN
	INNER JOIN
	OUTER JOIN
	LEFT OUTER JOIN
	RIGHT OUTER JOIN
	UNION operator
	Subqueries

	INSERT
	Syntax
	Query_Expression
	Form 1: Table_values_constructor
	Examples
	Form 2: DEFAULT VALUES
	Examples
	Form 3: Query Specification
	Example

	UPDATE
	Syntax
	Examples

	DELETE
	Syntax
	Examples

	Data Control Language
	CALL
	Syntax
	Examples

	RETURN
	Syntax
	Examples

	SET assignment
	Syntax
	Examples

	SET PATH
	Syntax
	Examples

	SIGNAL
	Syntax
	Examples

	VALUES
	Syntax
	Examples

	Transaction Control
	SAVEPOINT
	Syntax
	Examples

	COMMIT
	Syntax
	Examples

	RELEASE SAVEPOINT
	Syntax
	Example 1
	Example 2

	ROLLBACK
	Syntax
	Examples

	SET DATALOG
	Example 1
	Example 2

	START TRANSACTION ISOLATION LEVEL
	Syntax
	READ UNCOMMITTED
	READ COMMITTED
	REPEATABLE READ
	SERIALIZABLE
	Example

	PointBase-Specific SQL
	SHUTDOWN
	Syntax
	Examples

	BACKUP
	Important Notes
	Syntax
	Example

	Appendix B: Unsupported JDBC 2.0 Methods in PointBase
	Appendix C: Reserved Words
	Appendix D: SQL Data Type Code

