
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

Accessing Sun™ Mainframe
Transaction Processing Software

Through Secure Sockets

Part No. 816-7255-10
June 2002, Revision A

Please
Recycle

Copyright 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, and Solaris are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

Netscape is a trademark or registered trademark of Netscape Communications Corporation in the United States and other countries.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the Sun Microsystems, Inc. license agreements and as
provided in DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct. 1998), FAR 12.212(a) (1995), FAR 52.227-19, or
FAR 52.227-14 (ALT III), as applicable.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés
à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans
les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, et Solaris sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

Netscape est une marque de Netscape Communications Corporation aux Etats-Unis et dans d’autres pays.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développment du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une license non exclusive do Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciées de Sun qui mettent en place l’interface d ’utilisation graphique OPEN LOOK et qui en outre se conforment
aux licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

iii

Contents

Secure Sockets Layer (SSL) 1

What is SSL? 1

Prerequisite Software 2

Configuring a Region 2

▼ To Configure a Region to Accept SSL Requests 2

Setting Up the Certificate Databases 3

Setting Up the Communications Manager for unikixssl 3

▼ To Configure unikixCommMgr to Start unikixssl 3

▼ To Start the Region and the SSL Server 7

Customizing the SSL User Exit 7

▼ To Customize the SSL User Exit 8

unikixssl Server Process 9

Sending a Message 10

Receiving Messages 11

Server Certificate Common Name Issues 13

API Support 14

iv Accessing Sun Mainframe Transaction Processing Software Through Secure Sockets • June 2002

1

Secure Sockets Layer (SSL)

This document describes how to configure and customize your region to work with

SSL clients.

What is SSL?

The secure sockets layer (SSL) allows applications to use sockets for authenticated,

tamper-proof, and encrypted communications. It was designed for exchanging

secure information over an insecure network such as the internet. It allows an SSL-

enabled server to authenticate itself to an SSL-enabled client, the client to

authenticate itself to the server, and both sides to establish an encrypted connection.

SSL server authentication allows a client to confirm a server's identity. SSL-enabled

client software can use standard techniques of public-key cryptography to check that

a server's certificate is valid and has been issued by a Certificate Authority (CA)

listed in the client's list of trusted CAs. This confirmation might be important if the

user, for example, is sending a credit card number over the network and wants to

check the receiving server's identity.

SSL client authentication allows a server to confirm a client’s identity. Using the same

techniques as those used for server authentication, SSL-enabled server software can

check that a client’s certificate is valid and has been issued by a Certificate Authority

(CA) listed in the server’s list of trusted CAs. This confirmation might be important

if the server, for example, is a bank sending confidential financial information to a

customer and wants to check the recipient’s identity.

An encrypted SSL connection requires all information sent between a client and a

server to be encrypted by the sending software and decrypted by the receiving

software, thus providing a high degree of confidentiality. Confidentiality is

2 Accessing Sun Mainframe Transaction Processing Software Through Secure Sockets • June 2002

important for both parties in any private transaction. In addition, all data sent over

an encrypted SSL connection is protected with a mechanism for detecting tampering

– that is, for automatically determining whether the data has been altered in transit.

Prerequisite Software

To use the SSL interface with the Sun™ Mainframe Transaction Processing software

(Sun MTP), you must install Network Security Services (NSS) software. Download

the software from The Mozilla Organization at www.mozilla.org .

■ NSS binaries:

ftp.mozilla.org/pub/security/nss/releases/NSS_3_4_1_RTM/
SunOS5.6_OPT.OBJ/

■ Netscape™ Portable Runtime (NSPR) binaries, which are required by the NSS

software:

ftp.mozilla.org/pub/nspr/releases/v4.1.2/SunOS5.6_OPT.OBJ/

Configuring a Region

Client applications can communicate with Sun MTP regions using SSL. The listening

server process, unikixssl , listens on a pre-defined port for incoming requests. The

unikixssl process routes requests through the unikixsock socket listener

process, which must be running in your region.

▼ To Configure a Region to Accept SSL Requests

1. Determine the listening port for the TCP/IP socket listener process, unikixsock .

You will need to use the -p port_number option to unikixmain when starting the

region to start the unikixsock listener process.

2. Determine the listening port for the SSL listener process, unikixssl .

3. Install the NSS and NSPR software.

4. Set up the certificate databases.

5. Create or update the unikixrc.cfg file with the SSL entries.

3

6. Ensure that the location of the NSS and NSPR libraries are specified in the
LD_LIBRARY_PATHenvironment variable in your region’s setup file.

7. Add the $UNIKIX/lib directory to the LD_LIBRARY_PATHenvironment variable
so that unikixssl can find the SSL user exit library (libkxsslxit.so).

Setting Up the Certificate Databases

When you set up your region, you must specify the certificate database directory

where the SSL server certificate and the list of trusted certificate authorities are

stored. For information on setting up the database directory, refer to the NSS SSL
Reference document, specifically the “Setting up the Certificate and Key Databases”

section in Chapter 2, Getting Started with SSL. You should also refer to the sample

setup script $UNIKIX/src/socket/sslsetup , which shows how to set up the

certificate database used in the SSL example.

Setting Up the Communications Manager for

unikixssl

Communications Manager (unikixCommMgr) is automatically started by

unikixmain . It reads a configuration file on startup called

$KIXSYS/unikixrc.cfg . The unikixrc.cfg file contains information about the

SSL server, unikixssl , which is started by unikixCommMgr . Each region that

supports an SSL server must have its own unikixrc.cfg file.

▼ To Configure unikixCommMgr to Start

unikixssl

1. Copy the unikixrc file from the $UNIKIX/lib directory to the $KIXSYS
directory of the region you are configuring.

2. Edit the SslServer* entries. and save the file as unikixrc.cfg . TABLE 1

describes each entry.

When modifying the unikixrc.cfg file, the following syntax rules apply:

■ The exclamation point (!) denotes a comment; any text appearing on a line after

the ! is ignored.

■ Keywords and non-quoted values can contain any combination of uppercase and

lowercase letters.

■ Values in quotes, such as path and file names, are case-sensitive.

4 Accessing Sun Mainframe Transaction Processing Software Through Secure Sockets • June 2002

Note – All the cipher suites default to False (disabled). You must enable at least one

cipher suite (set to True), or all client requests are rejected.

TABLE 1 unikixrc.cfg File –- SSL Server Entries (1 of 3)

SslServer*Active If True , activate the unikixssl Server.

If False (default), the unikixssl Server is not

started and all subsequent SslServer
keywords are ignored.

SslServer*Debug Save unikixssl trace information to a file. The

values are True or False (default). Set this

value to False unless you are working with a

technical support representative and you are

asked to enable this feature.

SslServer*Host The host to listen for client connections on. You

can specify a host name, an IP address, any (all

IP addresses - INADDR_ANY) or loopback (local

host - INADDR_LOOPBACK). If you specify an IP

address, it must be enclosed in quotes; for

example, "123.45.67.89".

If you do not include this entry, the default is

any . This is appropriate in most cases.

SslServer*Port The SSL port to listen for client connections on.

SslServer*Sockhost The unikixsock host. This is the host you

specified on the unikixmain command with

the -h option. You can specify a host name, an

IP address, any (all IP addresses - INADDR_ANY)
or loopback (local host - INADDR_LOOPBACK).
If you specify an IP address, it must be enclosed

in quotes; for example, "123.45.67.89".

If you do not include this entry, the default is

any . This is appropriate in most cases.

SslServer*Sockport The unikixsock listen port. This must match

the port number specified on the -p option on

the unikixmain command line.

SslServer*Certdir The pathname of the certificate database

containing the unikixssl server certificate.

SslServer*Nickname The nickname of the unikixssl server

certificate.

SslServer*Password The unikixssl server certificate database

password.

5

SslServer*Clientcertrequested If True , the unikixssl server requests

certificates from clients. Default.

If False , clients are not asked to provide

certificates.

SslServer*Clientcertrequired Has meaning if

SslServer*Clientcertrequested entry is set

to True .

If True , clients must provide a valid certificate

to establish a connection.

If False , clients can optionally provide a

certificate. If the client provides a valid

certificate or no certificate, a connection will be

established.

SslServer*SSL_EN_RC4_128_WITH_MD5 Cipher suite.

If True , the cipher suite is enabled.

If False , the cipher suite is disabled.

SslServer*SSL_EN_RC4_128_EXPORT40_WITH_MD5 Cipher suite.

If True , the cipher suite is enabled.

If False , the cipher suite is disabled.

SslServer*SSL_EN_RC2_128_CBC_WITH_MD5 Cipher suite.

If True , the cipher suite is enabled.

If False , the cipher suite is disabled.

SslServer*SSL_EN_RC2_128_CBC_EXPORT40_WITH_MD5 Cipher suite.

If True , the cipher suite is enabled.

If False , the cipher suite is disabled.

SslServer*SSL_EN_DES_64_CBC_WITH_MD5 Cipher suite.

If True , the cipher suite is enabled.

If False , the cipher suite is disabled.

SslServer*SSL_EN_DES_192_EDE3_CBC_WITH_MD5 Cipher suite.

If True , the cipher suite is enabled.

If False , the cipher suite is disabled.

SslServer*SSL_RSA_WITH_NULL_MD5 Cipher suite.

If True , the cipher suite is enabled.

If False , the cipher suite is disabled.

SslServer*SSL_RSA_EXPORT_WITH_RC4_40_MD5 Cipher suite.

If True , the cipher suite is enabled.

If False , the cipher suite is disabled.

TABLE 1 unikixrc.cfg File –- SSL Server Entries (2 of 3)

6 Accessing Sun Mainframe Transaction Processing Software Through Secure Sockets • June 2002

SslServer*SSL_RSA_WITH_RC4_128_MD5 Cipher suite.

If True , the cipher suite is enabled.

If False , the cipher suite is disabled.

SslServer*SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 Cipher suite.

If True , the cipher suite is enabled.

If False , the cipher suite is disabled.

SslServer*SSL_RSA_WITH_DES_CBC_SHA Cipher suite.

If True , the cipher suite is enabled.

If False , the cipher suite is disabled.

SslServer*SSL_RSA_WITH_3DES_EDE_CBC_SHA Cipher suite.

If True , the cipher suite is enabled.

If False , the cipher suite is disabled.

SslServer*SSL_FORTEZZA_DMS_WITH_NULL_SHA Cipher suite.

If True , the cipher suite is enabled.

If False , the cipher suite is disabled.

SslServer*SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA Cipher suite.

If True , the cipher suite is enabled.

If False , the cipher suite is disabled.

SslServer*SSL_FORTEZZA_DMS_WITH_RC4_128_SHA Cipher suite.

If True , the cipher suite is enabled.

If False , the cipher suite is disabled.

SslServer*SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA Cipher suite.

If True , the cipher suite is enabled.

If False , the cipher suite is disabled.

SslServer*SSL_RSA_FIPS_WITH_DES_CBC_SHA Cipher suite.

If True , the cipher suite is enabled.

If False , the cipher suite is disabled.

SslServer*TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA Cipher suite.

If True , the cipher suite is enabled.

If False , the cipher suite is disabled.

SslServer*TLS_RSA_EXPORT1024_WITH_RC4_56_SHA Cipher suite.

If True , the cipher suite is enabled.

If False , the cipher suite is disabled.

TABLE 1 unikixrc.cfg File –- SSL Server Entries (3 of 3)

7

▼ To Start the Region and the SSL Server

1. Make sure you have the appropriate values in the unikixrc.cfg file.

2. Source your region environment.

Make sure that the LD_LIBRARY_PATHenvironment variable contains the location of

the NSS and NSPR libraries and $UNIKIX/lib .

3. Start the region.

■ You must specify the -p option on the unikixmain (kixstart) command to

start the socket listener. The port number must match the SslServer*Sockport
value in the unikixrc.cfg file.

■ You can optionally specify the -h option (to specify a host to which the socket

listener is bound). If you use the -h option, its value must match the

SslServer*Sockhost value in the unikixrc.cfg file.

Refer to the Sun Mainframe Transaction Processing Software Reference Manual for

information about the -h option.

Customizing the SSL User Exit

The SSL client certificate verification user exit resides in the shared library

$UNIKIX/lib/libkxsslxit.so . This user exit allows you to write code that

accepts or rejects a client certificate based, for example, on your own certificate

revocation check.

The source code for the user exit and a makefile to build the shared library are

located in the $UNIKIX/src/socket directory. The source file is kxsslxit.c and

the makefile is makefile.xit . You can modify the source file to customize the user

exit for your environment and use the makefile to build a new shared library.

The function in the shared library that performs the client certificate verification is

Exit_VerifyCertificate() . During the SSL handshake, unikixssl calls this

function passing in a pointer (CERTCertificate *cert) to the client certificate.

The function returns SECSuccess if the client certificate is accepted, or

SECFailure if the client certificate is rejected.

8 Accessing Sun Mainframe Transaction Processing Software Through Secure Sockets • June 2002

▼ To Customize the SSL User Exit

1. Back up the existing $UNIKIX/lib/libkxsslxit.so shared library; for
example:

2. Change directory to the location of the SSL user exit source file:

3. Open the source file kxsslxit.c and make your changes to the
Exit_VerifyCertificate() function.

4. Save the file.

5. Build the shared library:

This creates libkxsslxit.so in the $UNIKIX/src/socket directory.

6. Copy the new shared library to the $UNIKIX/lib directory:

7. If you wish, you can perform a check to determine where unikixssl is finding
the shared library.

The output shows the list of shared libraries unikixssl uses and their locations.

Make sure that libkxsslxit.so is listed in $UNIKIX/lib .

$ mv $UNIKIX/lib/libkxsslxit.so $UNIKIX/lib/libkxsslxit.so.bak

$ cd $UNIKIX/src/socket

$ make -f makefile.xit

$ cp libkxsslxit.so $UNIKIX/lib

$ cd $UNIKIX/bin
$ ldd unikixssl

9

unikixssl Server Process

When client applications communicate with a remote Sun MTP region using SSL, the

SSL server process, unikixssl , listens on a pre-defined port for incoming requests.

Before a request is forwarded to the transaction server to be serviced, an SSL

handshake occurs. The handshake allows the client and server to validate each other

and negotiate an encryption technique. If the handshake is successful the request is

forwarded to the transaction server. All data that flows between the client and server

is encrypted using the encryption technique negotiated during the handshake.

The unikixssl server process works as follows:

1. When a well-defined port number is specified on the unikixmain command line

with the -p option, unikixmain starts the unikixsock server process, which

binds to the specified port number and issues a listen call for that port. For

information on unikixmain , refer to the Sun Mainframe Transaction Processing
Software Reference Manual. unikixssl uses unikixsock to establish a connection

to a transaction server.

2. unikixssl is controlled by entries in the unikixrc.cfg file.

SslServer*Active should be set to True to start the unikixssl process.

SslServer*Port specifies the port on which unikixssl listens for client

connections. SslServer*Sockport specifies the unikixsock listen port.

3. When an SSL client program connects to unikixssl , an SSL handshake occurs.

The client program authenticates unikixssl' s certificate, unikixssl
authenticates the client certificate and an encryption technique is negotiated. If

the handshake is successful, unikixssl passes the client socket to a transaction

server for processing.

4. The transaction server calls the socket user exit, which reads the socket message

from the client. If the message conforms to the standard IBM format, the

unmodified user exit parses it successfully. If the message is in a non-standard

format, the user exit must be customized to parse the message. See “Customizing

the SSL User Exit” on page 7.

5. After the message is received and parsed, the transaction server starts the

requested transaction and passes to it in the COMMAREA, the client socket file

descriptor and any user data received.

Note – The remote address passed in the COMMAREAfor SSL clients is the address of

unikixssl and not that of the client.

10 Accessing Sun Mainframe Transaction Processing Software Through Secure Sockets • June 2002

At this point, the SSL client program should wait for data from the transaction

program, which ensures that the transaction has started successfully. From this point

on, the transaction program and the SSL client program can exchange data using the

socket connection. The transaction program uses the standard UNIX socket library

calls. Because these are C language calls, the transaction program must use COBOL

CALL statements. See the SSLSOCK0.cl2 program in the $UNIKIX/src/socket
directory for examples. For a complete description of this example refer to the

$UNIKIX/src/socket/README.ssl file.

Sending a Message

unikixssl requires that the client program send the first message in a prescribed

format. After the first transmission, the client program should wait for a response

before sending any subsequent transmissions.

The input format for the first transmission is as follows:

TRANID[, User-Data][, XX [, HHMMSS]]

where:

CODE EXAMPLE 1 shows the code in $UNIKIX/src/socket/sslsock00.c that

builds the initial message. For this code to execute without error, you must configure

the SSL0 transaction in the Sun MTP region. Refer to the

$UNIKIX/src/socket/README.ssl file for instructions on configuring the SSL0
transaction.

TRANID Transaction identifier, 1 to 4 characters, which must exist in the

Sun MTP PCT.

User-Data Optional text; up to 35 characters.

Because commas are interpreted as field separators, the data cannot

include a comma in either character or binary format. Decimal 44

[hex 2C] are interpreted as commas.

XX Optional startup type:

IC or ic : Interval Control

TD or td : Transient Data

Note that if this field is left blank, startup is immediate.

HHMMSS Optional field used for hours, minutes and seconds for the interval

time when the transaction is started using Interval Control.

11

CODE EXAMPLE 1 Building the Initial Message

Receiving Messages

The output area must be defined in the transaction program as illustrated in the

following example. This code is from the sample program

$UNIKIX/src/socket/SSLSOCK0.cl2 .

CODE EXAMPLE 2 Defining the Output Area

char ibuffer[4+1+35]; /* transid 4 bytes
',' 1 byte
data 35

bytes */

/* build initial socket message */
memset(ibuffer, 0, sizeof(ibuffer));
memcpy(ibuffer, trans, 4);
memcpy(ibuffer+4, ",", 1);
memcpy(ibuffer+5, data, 35);

/* Initial send to invoke transaction */
if (PR_Write(sock, ibuffer, sizeof(ibuffer)) <= 0) {

exitErr("PR_Write");
}

 01 DFHCOMMAREA.
 05 GIVE-TAKE-SOCKET PIC 9(8) COMP.
 05 LSTN-NAME PIC X(8).
 05 LSTN-SUBNAME PIC X(8).
 05 CLIENT-IN-DATA PIC X(36).
 05 SOCKADDR-IN-PARM.
 15 SIN-FAMILY PIC 9(4) COMP.
 15 SIN-PORT PIC 9(4) COMP.
 15 SIN-ADDRESS PIC 9(8) COMP.
 15 SIN-ZERO PIC X(8).

12 Accessing Sun Mainframe Transaction Processing Software Through Secure Sockets • June 2002

The initial client data is passed in CLIENT-IN-DATA . The sample program also

includes code for receiving a message, displaying data, and sending a message. The

following example shows the code in SSLSOCK0.cl2 for receiving a message.

CODE EXAMPLE 3 Receiving a Message – SSL (1 of 2)

working-storage section.
*
* program buffers
*
77 ws-recv-msg-size pic s9(8) comp value 4096.
77 ws-recv-buf pic x(4096).
77 ws-recv-total pic s9(8) comp value 0.
77 ws-recv-left pic s9(8) comp value 0.
77 ws-flags pic s9(8) comp value 0.

...

*
* set up the receive buffer
*

move low-values to ws-recv-buf.
set ws-recv-total to zero.
compute ws-recv-left = ws-recv-msg-size.

*
* receive data
*
recv-1.

call "recv" using by value GIVE-TAKE-SOCKET,
by reference ws-recv-buf(1+ws-recv-total:ws-recv-left),
by value ws-recv-left,
by value ws-flags.

*
* test what was received and decide what we should do
*

if return-code < zero
display 'SSLSOCK0:recv error ',
go to socket-error.

if return-code = zero
display 'SSLSOCK0:client disconnected',
go to socket-error.

*

13

Client certificate information can be obtained using the EXEC CICS EXTRACT
CERTIFICATE API call. See “API Support” on page 14.

Server Certificate Common Name Issues

During the handshake, SSL clients check to make sure that the common name (CN)

of the server certificate matches the host name that the client is using to connect to

the server. This must be a textual match. If there is not a match, the client will reject

the server certificate with the following error:

-12276 SSL_ERROR_BAD_CERT_DOMAIN

For example, a unikixssl server is running on a host named saturn, whose IP

address is 123.45.67.89. The server certificate's common name could be saturn or

saturn’s IP address. When a client connects to the unikixssl server, it should use

the host name or the IP address, whichever matches the server certificate's common

name. If a client uses saturn’s IP address when the certificate's common name is

saturn, a connection will be made but the handshake will fail, because the IP address

is not a textual match with the server certificate's common name.

* have we received all the data yet?
*

compute ws-recv-total = ws-recv-total + return-code.
compute ws-recv-left = ws-recv-msg-size - ws-recv-total.

*
* not yet
*

if ws-recv-left > 0 go to recv-1.
*
* received all the data
*

display 'SSLSOCK0:receive buffer =', ws-recv-buf(1:50).

CODE EXAMPLE 3 Receiving a Message – SSL (2 of 2)

14 Accessing Sun Mainframe Transaction Processing Software Through Secure Sockets • June 2002

API Support

Sun MTP supports the EXTRACT CERTIFICATEcommand for use with SSL clients.

EXTRACT CERTIFICATE(ptr-ref)
[LENGTH(data-area)]
OWNER | ISSUER
[COMMONNAME(ptr-ref)]
[COMMONNAMELEN(data-area)]
[COUNTRY(ptr-ref)]
[COUNTRYLEN(data-area)]
[STATE(ptr-ref)]
[STATELEN(data-area)]
[LOCALITY(ptr-ref)]
[LOCALITYLEN(data-area)]
[ORGANIZATION(ptr-ref)]
[ORGANIZATLEN(data-area)]
[ORGUNIT(ptr-ref)]
[ORGUNITLEN(data-area)]

EXTRACT CERTIFICATEallows the application to obtain information from the

X.509 certificate that was received from an SSL client during an SSL handshake with

the SSL server (unikixssl). The certificate contains the fields that identify the

owner (or subject) of the certificate, and fields that identify the Certificate Authority

that issued the certificate. You can select the fields that you require by specifying the

OWNERor ISSUER option. You cannot retrieve both OWNERand ISSUER fields with

one command.

CERTIFICATE Specifies a pointer reference to be set to the address of the full

certificate (distinguished name) received from the client.

The string no certificate is returned if the client did not provide a

certificate. If no certificate is returned, the other options return

zero length.

LENGTH Specifies a fullword binary data area to be set to the length of the full

certificate (distinguished name).

OWNER Indicates that the values returned by this command refer to the owner

of the certificate.

ISSUER Indicates that the values returned by this command refer to the

certificate of the Certificate Authority that issued this certificate.

COMMONNAME Specifies a pointer reference to be set to the common name from the

client certificate.

15

The following options are not supported:

SERIALNUM SERIALNUMLEN USERID

If a transaction that uses the EXTRACT CERTIFICATEAPI was not started by an SSL

client (through unikixssl), an INVREQ RESPvalue is returned.

COMMONNAMLEN Specifies a fullword binary data area to be set to the length of the

common name from the client certificate.

COUNTRY Specifies a pointer reference to be set to the address of the country

from the client certificate.

COUNTRYLEN Specifies a halfword binary data area to be set to the length of the

country from the client certificate.

STATE Specifies a pointer reference to be set to the address of the state or

province from the client certificate.

STATELEN Specifies a halfword binary data area to be set to the length of the state

or province from the client certificate.

LOCALITY Specifies a pointer reference to be set to the address of the locality from

the client certificate.

LOCALITYLEN Specifies a halfword binary data area to be set to the length of the

locality from the client certificate.

ORGANIZATION Specifies a pointer reference to be set to the address of the organization

from the client certificate.

ORGANIZATLEN Specifies a halfword binary data area to be set to the length of the

organization from the client certificate.

ORGUNIT Specifies a pointer reference to be set to the address of the organization

unit from the client certificate.

ORGUNITLEN Specifies a halfword binary data area to be set to the length of the

organization unit from the client certificate.

16 Accessing Sun Mainframe Transaction Processing Software Through Secure Sockets • June 2002

	Contents
	Secure Sockets Layer (SSL)
	What is SSL?
	Prerequisite Software
	Configuring a Region
	To Configure a Region to Accept SSL Requests
	Setting Up the Certificate Databases
	Setting Up the Communications Manager for unikixssl
	To Configure unikixCommMgr to Start unikixssl
	To Start the Region and the SSL Server

	Customizing the SSL User Exit
	To Customize the SSL User Exit

	unikixssl Server Process
	Sending a Message
	Receiving Messages
	Server Certificate Common Name Issues

	API Support

