
901 San Antonio Road
Palo Alto, CA 94303-4900 USA
650 960-1300 Fax 650 969-9131

Sun™ Management Center 3.0

Developer Environment

Reference Manual

Part No. 806-5945-10
November 2000, Revision A

Sun Microsystems, Inc.

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 USA. Some preexisting portions Copyright 2000 Netscape
Communications Corp. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of
this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party
software, including font technology, is copyrighted and licensed from Sun suppliers, including Halcyon Inc., Oracle Corporation, and Raima Corporation.
This product includes software developed by the Apache Software Foundation.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and
other countries, exclusively licensed through X/Open Company, Ltd. For Netscape Communicator™, the following notice applies: Copyright 1995
Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, iPlanet, AnswerBook2, docs.sun.com, NFS, Sun Enterprise, Sun Enterprise Network Array, Sun StorEdge A5000,
Sun Enterprise 10000, Starfire, Solstice Enterprise Agents, Sun Enterprise SyMON, Java, SunVTS, Solstice SyMON, Solstice Enterprise Agent, and Solaris
are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under
license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc. Netscape and the Netscape N logo are registered trademarks of Netscape
Communications Corporation in the U.S. and other countries. Other Netscape logos, product names, and service names are also trademarks of Netscape
Communications Corporation, which may be registered in other countries.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-
exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and
otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software-Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 Etats-Unis. Pour certaines parties préexistantes Copyright 2000
Netscape Communications Corp. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation
préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de
caractères, est protégé par un copyright et licencié par des fournisseurs de Sun, dont Halcyon Inc., Oracle Corporation et Raima Corporation. Ce produit
comprend tous les logiciels développés par Apache Software Foundation.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable à Netscape Communicator™
: Copyright 1995 Netscape Communications Corporation. Tous droits réservés.

Sun, Sun Microsystems, le logo Sun, iPlanet, AnswerBook2, docs.sun.com, NFS, Sun Enterprise, Sun Enterprise Network Array, Sun StorEdge A5000, Sun
Enterprise 10000, Starfire, Solstice Enterprise Agents, Sun Enterprise SyMON, Java, SunVTS, Solstice SyMON, Solstice Enterprise Agent et Solaris sont
des marques de commerce ou des marques déposées, ou des marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes
les marques SPARC sont utilisées sous licence et sont des marques de commerce ou des marques déposées de SPARC International, Inc. aux Etats-Unis
et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc. Netscape et le logo
N de Netscape sont des marques déposées de Netscape Communications Corporation aux Etats-Unis et dans d’autres pays. Les autres logos, noms de
produit et noms de service Netscape sont aussi des marques de commerce de Netscape Communications Corporation, qui peuvent être déposées dans
d’autres pays.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelles ou graphiques pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place des interfaces d’utilisation graphiques OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

Achats fédéraux : logiciel commercial - Les utilisateurs gouvernementaux doivent respecter les conditions du contrat de licence standard

LA DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU
TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A L’ABSENCE DE
CONTREFAÇON.

Contents

Preface li

Audience li

Contents in this Manual li

Access to Up-to-date Information on the Developer Environment lii

Using UNIX Commands lii

Shell Prompts liii

Typographic Conventions liii

Sun Documentation on the Web liv

Related Documentation liv

Sun Welcomes Your Comments liv

Part I. Introduction to Developer Environment

1. Sun Management Center and the Developer Environment 3

Sun Management Center Framework 3

Sun Management Center Console 5

Sun Management Center Server 5

Sun Management Center Agent 5

Sun Management Center Developer Environment 6
Contents iii

2. Sun Management Center Developer Environment Installation 7

Uninstalling Previous Versions of Sun Management Center Software 8

Sun Management Center Developer Environment Licensing 8

Installing the Sun Management Center Developer Environment From CD 9

Code Examples and Client API 9

3. Introduction to the Reference Manual 11

The Different Parts of this Manual 11

Accessing Information in this Manual 12

Building Modules 13

▼ Name Module Definition Files 14

▼ Specify Module Parameters 14

▼ Create a Data Model 14

▼ Realize the Data Model 15

▼ Add Alarm Checks 15

▼ Install Module Files 16

▼ Load a Module 16

▼ Log Data and To Activate Debug Mode 17

▼ Write a Module from an existing SNMP MIB 19

▼ Publish an SNMP Interface 19

Building Consoles 20

▼ Build Your Own Console 20

▼ To Access Troubleshooting Information 20

Using Client API 21

▼ Use the Client API 21

Using the Platform Agent 21

▼ To Start the Platform Agent 21

▼ How to See Changes that have been made to the Agent’s module-d.x File

23
iv Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Conforming to Internationalization and GUI Guidelines 23

▼ Work With a Java Application 23

▼ Internationalize a Module 24

Integrating Applications 25

4. Introduction to Modules 27

Modules Definition 27

How to Load Modules 28

Basic Module Building Concepts 28

Types of Modules 28

Module Naming 29

Module Names and Subspecs 29

SNMP & Modules 30

5. Building a Simple Module 31

Required Components 31

File Naming Conventions 32

Standard Extensions 32

Parameters Specification 33

▼ Creating a Parameter File 33

Mandatory Parameters 34

Example Parameter File 36

Internationalizing Modules 37

Mandatory Parameters for Internationalization in the Parameters File 37

Properties File 38

Example Properties File 39

Referencing Internationalized Text 40

Data Model Specifications 40

▼ Creating a Data Model 40
Contents v

Identifying Components and Properties of Managed Entity 41

Solaris Example—Components and Properties 41

Defining the Data Model Structure 43

Node Definition and Trees 43

Structural Primitives 43

Example Data Model File 46

Adding Data Types 51

Available Data Types 52

Adding Node Descriptions 53

Node Type Based on Operational Behavior 53

Simple Data Model Realization 54

Steps Involved in Data Model Realization 54

Mandatory Contents of Every Data Model Realization File 55

Implementing Data Acquisition Mechanisms 55

UNIX Programs and Shell Scripts 56

Integrating Data Acquisition 56

Loading the DAQ Services 56

Bourne Shell Services 57

Node Type Based on Operational Behavior 57

Active Nodes 58

Mandatory RefreshQualifiers for Active Nodes 58

refreshService 58

refreshCommand 59

refreshInterval 60

Example of a Simple Module 61

6. Advanced Data Model Realization Techniques 65

What are Filters 65
vi Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Standard Extensions for File Name 66

Examples of Filters 66

CPU Data Filter 66

User Data Filter 67

Load Data Filter 67

File System Data Filter 68

Adding Filters to Data Model Realization 69

Example Data Model File 69

Example Data Model Realization File Using Tcl Filters 74

Loading the DAQ Services 77

Tcl Filters 77

RefreshQualifier for Filters 77

refreshFilter 77

Solaris Example—Loading the Filter File 77

Advanced Data Acquisition Mechanisms 78

Tcl/TOE Code 78

C Code Libraries and Tcl/TOE Command Extensions 78

Other Node Types based on their Operational Behavior 79

Passive Nodes 79

Derived Nodes 79

refreshQualifiers & Other Qualifiers 80

timeoutInterval 80

refreshTrigger 81

Specifying Node Name 81

Specifying RefreshTriggers from a Node in Another Module 82

refreshParams 82

refreshMode 83

async 83
Contents vii

sync 83

initInterval 83

initHoldoff 84

Check Qualifiers 85

updateFilter 86

refreshService 86

SNMP Service 86

Internal Service 87

Superior Service 87

MIB Node Service 87

Data Model Realization Specifications with Tcl procedures as DAQ 88

Example Data Model File 88

Standard Extension for File Name 93

Loading the DAQ Services 93

Tcl Procedures 93

Node Type Based on Operational Behavior 93

Refresh Qualifiers 93

Data Model Realization Specifications with C libraries and Tcl/TOE Command
Extensions as DAQ 94

Solaris Example Data Model Realization File 94

Solaris Example - Tcl Command Extension 98

Writing a C Library 98

Writing a Tcl Extension 99

Package Naming 99

Init Function 100

Package Registration 100

Command Registration 100

Returning Data into Tcl 101
viii Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Loading the DAQ Services 101

Tcl Command Extension Packages 101

Node Type Based on Operational Behavior 101

Refresh Qualifiers 102

Another DAQ Service 102

Tcl Shell Service 102

Solaris Example—Tcl Shell 103

Performance Considerations 103

7. Alarm Management 105

What are Alarms 105

Modules and Alarms 105

Built-In rCompare Rule 106

Writing Custom Rules 106

Alarm Management using rCompare Rule 106

Example Alarm File (solaris-example-d.def) 106

▼ Managing Alarms using rCompare 109

Using the rCompare Rule in the Models File 109

Example—Intermediate Data Model 109

How to specify Alarms in the Data Model File 111

Alarm Types 111

Data and Alarm Type Primitive Examples 112

Required Content in the Model Realization File 112

Creating the Alarm File 113

File Name 113

Contents 113

Specifying the Alarm Criteria 114

Specifying Alarm Checks 114
Contents ix

Alarm Checks 115

Specifying Alarm Limits 116

Alarm Severities 118

Alarm Window 120

Specifying Status Actions 121

Solaris Example—CPU Status Action 123

8. Rules 125

Rules Agent Infrastructure 126

Rules and Derived Objects 126

Rule Naming 126

Rule Assignment 126

Rule Files 127

Module-Specific Rules 127

General Rules or Base Rules 128

Rules Created By Clients 129

Rule Placement in Hierarchy 129

A Node Can Require More Than One Rule 130

Rule Can Have No Natural Node to be Attached to 130

Node Can Have a Rule but No Data 130

Rules Attributes 130

Rule Data Storage 130

Rule State Transitions 133

Rule Invocation Procedure (ruleFire) 134

Rule Event Status 136

Rule Functions 137

Third Party Rule Engine Interface Functions 139

Rule Loading 139
x Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Rule Assignment 139

Key TOE Functions 141

How to Write A Tcl Rule 142

Tcl Rule Example 143

Tcl Rules File Format 145

Tcl Rule Template 145

Attaching a Rule to the Module Configuration Files 151

Assigning Initial Values to Rule Parameters 153

Specifying Rule Text Messages 153

More Examples Of Rules 156

Config Reader Rule 157

Log Rule 157

9. Additional Specifications for a Module 159

Additional Parameter Specifications 159

Example: Solaris m.x File 160

Additional Parameters 161

Predefined Additional Qualifiers 163

▼ To Specify a Managed Property as Writable 166

Creating Multiple Instances of a Module 166

Instance Specification 166

Organizing Module Parameters 168

Making a Module Not Loadable 169

Alternate Way of Specifying a Module Location 170

Enterprise Module Parameter 170

Referencing Parameters 171

Improving Performance using Server Override Properties File 171

Server Override Properties File 171
Contents xi

Example Server Override Properties File 172

Additional Data Model Specifications 172

Specifying Hidden Managed Properties 172

Data Logging Support 173

Automatic Data Logging 173

Logging To Internal Cache 174

Logging To File 174

▼ To Log Data to a Typical Flat File 174

▼ To Log Data to a Circular Log File 175

Logging Data of a Scalar Node to an Internal Cache 175

Logging Two Rows of a Table Managed Property 175

Specifying Module Availability 176

Specifying the Availability Property in the Agent File 176

Persistence 177

Specifying Adhoc Commands 178

Command Specification 178

Row-Specific Commands 179

Probe Commands 179

▼ To Specify a Probe Command 179

Row Dependent Probe Queries 180

Find Files Example 181

Probe Command Security 182

▼ To Limit Top Probe Command 182

Enabling Modules for Metadata 182

Error Reporting 184

10. Modules and SNMP 185

Adding Support for SNMP Table Management 185
xii Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

ROWSTATUS Primitive 186

Instance Node 186

Required Values 186

Data Formats 187

Example—Filesize 187

Adding Support for Global Table or Row Actions 188

Adding Node Icons 189

Adding SNMP Table Management 190

User-defined Actions 190

Activate Actions 191

SNMP Set Actions 192

Prevalidate Actions 193

postrow Actions 193

Postvalidate Actions 194

setrow Actions 195

Set Actions 196

Rollback Actions 197

Global Actions 198

Adding SNMP Security 198

Logical Users, Groups, and Community Names 199

Security Levels 200

Default ACLs 201

Examples—Specifying ACLs 201

Using SNMP Table Management Commands 202

▼ To Add a Row 203

▼ To Remove a Row 203

▼ To Edit a Row 203
Contents xiii

▼ To Disable a Row 204

▼ To Enable a Row 204

▼ To Load a Module Instance 204

Example: Adhoc SNMP Table Management 205

Example: Additional Objects to the Solaris Example File 207

Sending Traps from the Agent 208

Example: Agent File 209

Using the mib2x Tool 210

mib2x Syntax 210

Examples of mib2x 212

11. Agent Interactive Mode 213

Working in the Agent Interactive Mode 213

▼ To Work Within the Agent Interactive Mode 214

▼ To Exit the Environment 214

Tcl/TOE Commands 214

Object Creation 214

Object Relationship 215

Object Interaction 216

Dictionary Operations 217

Object/Dictionary I/O 220

Interactive Object Tree Navigation 220

Class Definition 221

Class/Package Loading 222

Agent Interactive Mode Usage Examples 223

▼ To Define a Module 224

▼ To Find the Attribute Value of a Certain Object 225

▼ To View the Result of an Operation on a Certain Object 227
xiv Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

▼ To Import and Export a Set of Object Attributes 229

▼ To Generate SNMP MIB From a Module 231

12. Developer Environment Tools 233

snmpset 233

Name 233

Synopsis 234

Description 234

Options 234

Exit Status 235

Examples of snmpset 236

snmpget 237

Name 237

Synopsis 237

Description 237

Options 237

Exit Status 238

Examples of snmpget 239

snmpnext 240

Name 240

Synopsis 240

Description 240

Options 241

Exit Status 241

Examples of snmpnext 242

snmptrap 243

 Name 243

Synopsis 243
Contents xv

Options 243

Exit Status 245

Trap Type Information 245

Examples of snmptrap 245

snmpwalk 246

Name 246

Synopsis 246

Description 246

Options 246

Exit Status 247

Examples of snmpwalk 247

snmpwalktable 248

Name 248

Synopsis 248

Description 248

Exit Status 249

Examples of snmpwalktable 250

13. Composite Objects 251

Implementing a Composite Object 251

▼ To Add a Composite Object 251

▼ To Remove a Composite Object 253

Discovery Object Table Definition 255

dot_composite_type 257

2 - composite_group 257

1 - composite_modeled_agent 257

3 - composite_agent 257

5 - composite_module 258
xvi Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Special Behavior 258

2 - composite_group 258

1 - composite_modeled_agent 258

3 - composite_agent 258

5 - composite_module 259

Filtering 259

2 - composite_group 259

1 - composite_modeled_agent 259

3 - composite_agent 259

5 - composite_module 259

Adding a Reference to the Discovery Object Table 260

Object Identification (OID) 261

Troubleshooting 262

Finding the Composite Object when Running a Discovery Request 262

▼ When the es-dt script is executed or if the Discovery Object Table is

Modified 262

▼ Running the Discovery Interface 262

Examples 262

Discovery Object Table Module Data Realization File 263

Discovery Object Table MIB 264

14. Device Modeling 269

Sun Management Center Framework 270

Devices Within SunMC 270

Modeling a Device 270

Editing the Configuration File 271

Configuring the Topology 271

Server Layer Interface 271

Modeling Your Devices at the Server Level 272
Contents xvii

The es-device Script 272

Synopsis 272

The Configuration File (devcfgfile) 273

Object Types 274

Key Descriptions 275

i18n_key 280

Example Configuration File 281

Example Data Node - Host 282

Example Data for Node - SNMP 282

Example Data for Node - Module 283

Example Data for Group - IPBASED 283

Example Data for Segment - Bus 283

Agent Layer Interface 284

Modeling Your Devices at the Agent Level 284

The deviceinfo Script 284

Agent Configuration File 285

Key Value Pairs 285

Example deviceinfo.conf File 286

15. Module Builder 287

The Module Builder Interface 288

The -m.x , -d.x , and -models-d.x Files 288

▼ To Build a Module Using the Module Builder 288

▼ To Launch the Module Builder 290

Module Builder Menu Choices 292

File Specific Commands 295

Load Production Module 296

Load Development Module 296
xviii Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Save Development Module 297

Publish Module 298

Export MIB 299

Import MIB 299

Building Module Parameter Contents (-m.x) 301

▼ To Access the Module Parameters Folder 301

▼ To Update the Module Parameters Tables 302

Boolean 306

Instance 306

List 307

Password 308

Building Data Model Contents
(-d.x) 309

Commands Used When Building Data Model Contents 309

Copy Nodes/Copy Table 310

Paste Nodes 310

Add Node 310

Clear Module 310

Delete Node/Delete Table 311

Using the Module Root to Define Hierarchy and DAQ 311

Data Types 311

Adding Nodes 312

▼ To Create the Hierarchy of the Module 312

▼ To Change the Data Model 316

Defining Data Acquisition
(models-d.x) 318

Commands Used When Enabling DAQ 319

Run Module Confirmation Box 319

Stop Module Confirmation Box 320
Contents xix

Activate Node/Activate Table Confirmation Box 320

Deactivate Node/Deactivate Table Confirmation Box 320

Clear Confirmation 321

▼ To Enable Data Acquisition on a Module, Table, or Object 321

Part II. Programmer’s Reference to Console Integration and Client API

16. Console Integration 327

Extending the Console 327

Integration Levels 328

Configuration Files 329

es-tool: Syntax for console-tools.cfg Entries 329

es-apps: Syntax for console-host-apps.cfg Entries 331

Update Utilities 332

 Integrating Sun Management Center Software With Other Management Tools
333

▼ To Invoke the HostDetailsBean 333

Field Summary 335

Constructor Summary 335

Method Summary 335

Field Detail 337

Constructor Detail 338

Method Detail 339

Compilation and makefile Guidelines 342

17. Advanced Console Customization 343

General Guidelines 343

Exiting Applications Launched from Static and Dynamic Menus 343

Launching a Java Program from Multiple Places in Modules 344

General Integration Guidelines 344
xx Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Static Menus 345

Customizing Static Popup Menus 345

▼ To Add Additional Popup Menu Options at the Module or Managed

Object Level 346

▼ To Add Menu Choices At the Table Level 346

Integration Guidelines and Notes for Static Menus 347

SMHelpBrowser 347

▼ To Invoke a Help Class 347

▼ To Integrate the Online Help Mapping Key 348

Troubleshooting for Static Menus 349

Console Message Exceptions 349

Strange Behavior of Integrated Program if Invoked Multiple Times

349

New Menu Choices are Not Visible for Static Menus 349

Example: staticmenu-version01-d.x 350

Example: SMHello.java 352

Example: SMContextExample.java 353

Dynamic Menus 358

Customizing Dynamic Popup Menus 358

▼ To Specify New Dynamic Menu choice(s) Over a Table Cell 358

▼ To Specify New Dynamic Menu Choice(s) Over a Table Column

Header 359

▼ To Test Popup Menus and See the Changes 359

Rules for Java Implementation for Dynamic Popup Menus 359

Internationalization for Dynamic Popup Menus 360

Troubleshooting (Dynamic Popup Menus) 360

Console Message Exceptions 360

Strange Behavior of Integrated Program when Invoked Multiple

Times 360
Contents xxi

New Menu Choices Are Not Visible for Dynamic Popup Menus 361

Example: Dynamic Menu 362

Dynamic Menu Java Code 366

Cell Editors 372

▼ To Specify that a Cell is Editable 373

▼ To Use the Boolean Editor 374

▼ To Use the Combo Box Editor 374

▼ To Implement a Customized Cell Editor 374

▼ To Specify a Custom Cell Editor 375

Rules for Java Implementation of the Cell Editor 375

Internationalization of the Cell Editor 375

▼ To Internationalize Cell Editors 376

▼ To Test Custom Cell Editors 376

Example: Cell Editor 377

Cell Editor Java Code 379

Configurable Details Window Interface 380

es-details 380

Syntax 380

Adding Tabs Provided by Sun Management Center 381

Adding User-Defined Tabs 382

Specifying an Open Default Tab when Launching Details Window

383

Example inputfile 383

Example: TabHello.java 384

Removing Sun Management Center Default Tabs 386

Re-Running es-details and Undo 386

Integration Guidelines and Notes 386

18. Client API 387
xxii Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Introduction to Client API Classes 387

API Usage for System Management 388

Sun Management Center Architecture 388

Sun Management Center Three-Tier Architecture 388

Client API Class Usage 391

Client API Definition 391

Java Language Object Class Examples 392

▼ To Run the Client API Examples: 393

Login API 394

Example: SMLoginTest 394

Request Status API 396

Example: SMRequestStatus 396

Raw Data API 396

Example: SMRawDataRequest 396

Example: getURLValue Method 397

Example: setURLValue Method 398

Example: createURL Method 398

Example: getUserId Method 399

Example: SMProbeTest 400

Example: SMRawDataTest 404

Example: SMRawDataAsyncTest 406

Alarm API 409

Example: SMAlarmObjectRequest Class 409

Example: SMAlarmAsyncTest 410

Example: SMAlarmSyncTest 413

Managed Entity API 418

Example: SMManagedEntityTest 418

Module API 423
Contents xxiii

Example: SMModuleTest 423

Log Viewer API 429

Example: SMLogViewerTest 429

Resource Access API 432

Example: SMResourceAccessTest 432

Topology Agent API 435

Example: SMTopologyTest 435

Exception Classes API 438

How to Run Examples 439

Running SMAlarmAsyncTest 439

Running SMAlarmSyncTest 439

Running SMLogViewerTest 439

Running SMLoginTest 440

Running SMManagedEntityTest 440

Running SMModuleTest 440

Running SMProbeTest 441

Running SMRawDataTest 441

Running SMRawDataAsyncTest 441

Running SMResourceAccessTest 442

Running SMTopologyTest 442

Part III. Additional Material

19. Internationalization Guidelines 445

Internationalization 445

Terminology 445

Constraints 446

Assumptions and Dependencies 446

Software Guidelines 446
xxiv Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Properties Files 446

ResourceBundle Class Instances 447

Obtaining Resource Bundles/Properties Files 447

Independent Client/Bean Usage 448

UcInternationalizer Class 448

Direct ResourceBundle Management 449

Formatted Messages 450

Handling Non-ASCII Input 452

Data Only Stored in Agents 452

Data Stored in and Manipulated By Agents 453

Agent Internationalization 453

Objects/Classes/Properties 453

Modules 454

Attribute Editing 457

Dynamic Tables (RFC1903) 459

Rules 459

Installation/Setup Script Internationalization 460

20. Graphical User Interface Guidelines 463

Consistency 464

Information Sources 465

Main Console 466

Server Object Representation and Object Management 467

Guidelines for Modifying Topology Views 469

Layout View 471

Object Layouts 472

Status line 473

Status Messages 473
Contents xxv

User Input 475

Mouse Actions 475

Selection Highlighting 476

Selecting Objects 476

De-selecting Objects 476

Keyboard Navigation Shortcuts 477

Table Appearance and Behavior 478

Table Contents 479

Color 480

Table Position 481

Cell, Row, and Column Selection 481

Colors 481

Fonts 482

Graphing 482

Property Setting Dialog 484

Optional Buttons 486

Time Setting 486

Alarms 487

Alarm System 487

Details Window 489

21. Sun Management Center Developer Environment Packaging 491

Packaging Helloworld_01 491

Makefile 492

Prototype Entries 492

Sun Management Center Software Packaging Practices 493

Package Naming 493

Package Versioning 493
xxvi Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Component Naming 494

Package Dependencies 494

Prototype File 494

Sun Management Center Module Name Practices 494

22. Integrating Addon Products with Sun Management Center 495

Sun Management Center Directory Organization 496

Layout of Addon Products 497

Example Layout 498

Packaging of Addon 499

Using the installation.info File 499

Format of the installation.info File 500

The installation.properties File 503

Packaging Sun Management Center 2.x Addon Products 504

ES_ADDON_PLATFORM 505

ES_ADDON_FAMILY 505

Locale Information 506

Addon Setup Interface 506

es-inst -R Option 507

Packaging for Windows 508

23. Troubleshooting 509

Module 509

Console Messages 510

Agent Log File Messages 510

Interactive Agent Mode Messages 511

Console 511

A. Modules Appendix 513

Module Building Environment 513
Contents xxvii

Agent Development 513

Tcl Environment 514

TOE Environment 514

TOE Objects 515

Object Relationships 515

Combining Ancestral and Structural Relationships 516

Object Property Dictionaries 517

Dictionary Keys 517

Importing and Exporting Dictionaries (Module Configuration Files)

518

Dictionary Entry (Property) Representation 519

Multi-object Dictionary Representation 519

Action Specifications 520

TOE Object Classes 521

Agent Framework 522

Shell Service 522

Shell Service Result Handling 523

Shell Protocol 524

Ping Service 524

Master Event Loop (MEL) Service 524

Default I/O Service 525

Data Logging Registry Service 525

File Scanning Service 526

Subscribing for Patterns 526

Unsubscribing Patterns 526

Module Management 527

MIB Subtrees 527

Default SNMP Context 527

Non-default SNMP Contexts 528
xxviii Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Private Enterprises 529

Module Subtrees 530

Module Loading 531

Module Parameters 532

base-modules-d.dat 533

Loading & Unloading a Module in the Platform Agent 534

▼ To Stop the Platform Agent 535

▼ To Load a Module in the Platform Agent 535

▼ To Unload a Module in the Platform Agent 535

MIB Manager 536

URL/OID Finder 537

▼ To Convert an OID URL to an Actual OID 537

▼ To Access the fulldes Shadow Attribute of the Same MIB Property 538

▼ To Convert the Shadow OID URL to a Valid OID 538

▼ To Access a Table Property in a Module 539

▼ To Convert the OID URL to an OID 539

Module Loader 540

Module Checker 540

Browser Root 541

Module Registry 541

Module Tables 541

Additional Base MIB Branches 542

System and Agent Information 542

System Information 542

Agent Information 543

Module Information 543

Trap Information 543

Trap Forward 544
Contents xxix

Control Functions 544

Action Object 545

Cache Object 545

Useful Tcl Commands and Filters 545

valueOf <node name> 545

getValue <index> 545

getValues 546

getRowData [<rowname>] 546

getTableDepth 546

getFilter 546

setValue <index> <value> 546

locate <node name> 546

toe_send <toeid> <command> 547

transposeFilter 547

rateFilter<node name> 547

rateFilter64 <node name> 547

tableRateFilter<node name> 547

tableRateFilter64 <node name> 547

pctFilter<node1><node2> 547

linearFit<value> 548

digitalFilter<value> 548

Alarm Status Strings 548

Solaris Example of Status Strings—CPU Managed Object 549

Module Testing Tips 551

File Naming Conventions 551

Standard Extensions 552

Solaris Example Module Filenames 553

Mandatory and Optional Module Files 553
xxx Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Location of Module Files 554

Data Management 555

Information Model 556

General Concepts 556

Managed Entity Modeling 557

Management Model Primitives 557

Alarm Representation 559

Operational Model 561

Operation Sequence 561

Data Acquisition Scenarios 562

Cascade Scenarios 562

Active Scalar 563

Active Vector 563

Compound Scalar 564

Compound Vector 565

Complex Vector 565

Nested Heterogeneous 566

Derived Nodes 567

Alarm Rule Checks 567

Alarm Actions 568

Management Information Base (MIB) 572

Modules 572

Shadow MIB 573

Ad-hoc SNMP Operations 573

Ad-hoc Probe Operations 574

Probe Server 574

Data Logging 576

Registry of Current Data Logging Requests 576
Contents xxxi

Internal History Buffer 576

Logging Data to a File 577

Configuration 577

Data Log Format in Sun Management Center 2.1.x 577

Format Differences Between 2.1.1 and 3.0 Versions 578

Data Log Format in Sun Management Center 3.0 578

Data Logging Destinations 579

Logged Data Retrieval 580

Data Logging Registry 580

B. Time Expression Specifications 581

Notation 581

Time Expression Specification 582

Absolute Time Expression Specification 582

Cyclic Time Specification 583

Comparison Time Specification 584

Cron Time Specification 587

Variable Substitution Specification 588

C. Module Building Tutorial 589

Module Example 589

Steps to Create a Module 589

filesize Module Version 1—Simple Prototype 590

Naming the Module 590

Creating a Data Model 591

Realizing the Model 592

Specifying Alarm Management Information 593

filesize Module Version 2—Improving DAQ Mechanism 594
xxxii Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

filesize Module Version 3—Adding Parameters to File Name Specification

595

filesize Module Version 4—Adding SNMP Table Management Capabilities

597

Module Name 598

Modifying the Model 598

Realize the Modified Model 600

Alarm Management 603

D. SNMP Proxy Monitoring Modules 605

Proxy Monitoring 605

Module Parameter File 605

Module Models File 608

Legacy MIB OIDs Mapping File 610

Module Realization File 611

Loading the Legacy MIB OIDs Mapping File 611

Data Acquisition 612

SNMP Sets 616

SNMP Set Example 617

Module Trap Action Definition File 617

Naming Conventions 618

Sample Specification 618

Valid Parameters 619

Example: Trap Action File for HP JetDirect 621

Example: Qualifiers for Loading the HP JetDirect Module Trap Actions

File 622

Example: Qualifiers for Loading Both the OIDs and Trap Actions Files

for the HP JetDirect Module 622

E. URL Specifications 623
Contents xxxiii

Uniform Resource Locator (URL) 623

SNMP URLs 624

SNMP URL Format 624

SNMP URL Types 625

Numeric 625

Symbolic 625

Module 626

Shadow Operations 627

SNMP URL Examples 627

Managed Property Value (scalar) 627

Managed Property Value (vector) 628

Managed Property Qualifier (Scalar Property, Scalar Qualifier) 629

Managed Property Qualifier (Vector Property, Scalar Qualifier) 630

Managed Property Qualifier (Vector Property, Vector Qualifier) 631

Managed Object Qualifier (Scalar Qualifier) 632

Managed Object Qualifier (Vector Qualifier) 633

F. Status Propagation 635

Example Topology Hierarchy 635

Event 1: Node in Module E on Host C Goes into Error (Red) 636

Event 2: Node in Module G on Host D Goes into Warning (Amber) 637

Event 3: Node in Module F on Host C Goes into Warning (Amber) 638

Event 4: Another Node in Module E on Host C Goes into Warning (Amber)

638

Missed SNMP Traps 638

G. SNMP Trap Subscription 639

Sun Management Center Agent Components and Trap Subscription 639

Subscribing for Traps 640
xxxiv Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Trap Subscription Examples 642

SNMP SET Command 643

Adding Jobs 644

Removing Jobs 644

Sun Management Center Enterprise Specific Traps 645

SNMP Trap Subscription Support 647

Glossary 651

Index 659
Contents xxxv

xxxvi Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Figures

FIGURE 1-1 Sun Management Center Components 4

FIGURE 5-1 Simple Managed Object 49

FIGURE 5-2 Performance Managed Object 50

FIGURE 5-3 Managed Object with Tabular Properties 51

FIGURE 15-1 Module Loader Window 291

FIGURE 15-2 Menu Options from Module Root 293

FIGURE 15-3 Menu Options Over Managed Object Folder 293

FIGURE 15-4 Menu Options Over Managed Property 294

FIGURE 15-5 Menu over Table 294

FIGURE 15-6 Load Production Module 296

FIGURE 15-7 Load Development Module 297

FIGURE 15-8 Save Confirmation 298

FIGURE 15-9 Publish Confirmation 298

FIGURE 15-10 The Difference between Import and Load operations 301

FIGURE 15-11 Module Parameters Folder Accessed from the Browser tab of Details 302

FIGURE 15-12 Required Module Parameters Popup Menu 304

FIGURE 15-13 Optional Module Parameters Popup Menu 305

FIGURE 15-14 Optional Parameter Popup - Add Boolean Entry 306

FIGURE 15-15 Optional Parameter Popup - Add Instance Entry 307
xxxvii

FIGURE 15-16 Optional Parameter Table Popup - Add List Entry 308

FIGURE 15-17 Optional Parameter Table Popup - Add Password Entry 309

FIGURE 15-18 Delete Node 311

FIGURE 15-19 Add Managed Object 312

FIGURE 15-20 Add Managed Property 313

FIGURE 15-21 Add Managed Table 314

FIGURE 15-22 Table Add PopUp 315

FIGURE 15-23 Model Tab 317

FIGURE 15-24 Run Module Confirmation 319

FIGURE 15-25 Stop Module Confirmation 320

FIGURE 15-26 Activate Node/Activate Table Confirmation 320

FIGURE 15-27 Deactivate Note/Deactivate Table Confirmation 321

FIGURE 15-28 Clear Confirmation 321

FIGURE 15-29 Realization Tab 323

FIGURE 18-1 Client API Request Classes in Relationship With the Console and Server 389

FIGURE 18-2 The Client API and the Sun Management Center Architecture 390

FIGURE 20-1 Main Console 466

FIGURE 20-2 Main Console Window with Hierarchy and Topology Views 468

FIGURE 20-3 Domain Manager 470

FIGURE 20-4 Main Console Window with Hierarchy and Topology Views 471

FIGURE 20-5 Topology View 472

FIGURE 20-6 Status Message Location 474

FIGURE 20-7 Table Details Window 479

FIGURE 20-8 Graphing Window 482

FIGURE 20-9 Graph Header Title Editing Dialog 483

FIGURE 20-10 History Tab of Attribute Editor on a Data Variable 485

FIGURE 20-11 Browser Details Window 489

FIGURE A-1 TOE Object 515
xxxviii Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

FIGURE A-2 Simple Parent/Child Object Relationship 516

FIGURE A-3 Multiparent/Child Object Relationships 516

FIGURE A-4 Superior and Inferior Object Relationship 516

FIGURE A-5 Object Relationships of Filesystem Example 517

FIGURE A-6 .x file Syntax for Filesystem Example 521

FIGURE A-7 TOE Object Tree Structure of Agent 522

FIGURE A-8 Shell Service Data Flow 523

FIGURE A-9 Default Context—ISO subtree 528

FIGURE A-10 Nondefault SNMP Contexts—Contexts Subtree 529

FIGURE A-11 Private Enterprise Subtree 530

FIGURE A-12 Modules Subtree 531

FIGURE A-13 MIB Manager Branch 536

FIGURE A-14 .iso*base Subtree 542

FIGURE A-15 info Branch 542

FIGURE A-16 Management Model Primitive Classes 559

FIGURE A-17 Active Scalar Cascade 563

FIGURE A-18 Active Vector Cascade 564

FIGURE A-19 Compound Scalar Cascade 564

FIGURE A-20 Compound Vector Cascade 565

FIGURE A-21 Complex Cascade 565

FIGURE A-22 Nested Heterogeneous Cascade 566

FIGURE A-23 Derived Heterogeneous Cascade 567

FIGURE A-24 Objects in MIB Tree 569

FIGURE F-1 Example Topology Hierarchy 636
Figures xxxix

xl Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Tables

TABLE P-1 Shell Prompts liii

TABLE P-2 Typographic Conventions liii

TABLE 2-1 Related Installation Documents 9

TABLE 7-1 Alarm Severities 119

TABLE 8-1 Rule Variables 132

TABLE 8-2 Rule Message Key 132

TABLE 8-3 Rule Designer Access to Internal Data 133

TABLE 8-4 Rule State Transitions and Events 134

TABLE 8-5 Rule Event Status 136

TABLE 8-6 Rule Functions 137

TABLE 8-7 Key TOE Functions 141

TABLE 8-8 Datatypes Allowed 147

TABLE 9-1 Predefined Additional Qualifiers 163

TABLE 10-1 Allowable rowstatus States 194

TABLE 10-2 mib2x Syntax and Options 211

TABLE 12-1 Trap Type and What it Signifies 245

TABLE 13-1 Discovery Object Table Descriptions 256

TABLE 14-1 es-device Command Description 273

TABLE 14-2 Valid Types for Monitor_Via 276
xli

TABLE 14-3 Node Object Types 277

TABLE 14-4 Applicable Servers in SunManagementCenter 278

TABLE 14-5 Example of deviceinfo.conf File 286

TABLE 15-1 Module Loader Fields 291

TABLE 15-2 File System Commands 295

TABLE 15-3 Required Module Paramet 304

TABLE 15-4 Model Tab Field Descriptions 317

TABLE 15-5 Relevant Commands that assist in Data Acquisition 319

TABLE 15-6 Refresh Commands 324

TABLE 17-1 Classes Provided with the Core Application 373

TABLE 18-1 Category of Classes and Examples 392

TABLE 18-2 getURLValue Method 397

TABLE 23-1 Example Error Messages that Display on the Console 510

TABLE 23-2 Example Error Messages That Are Found in the Agent Log File 510

TABLE 23-3 Example Error Messages Provided by the Interactive Agent 511

TABLE A-1 Dictionary Example 517

TABLE A-2 Alarm Level 550

TABLE A-3 Mandatory Module Files 553

TABLE A-4 Optional Module Files 553

TABLE A-5 Binary Extension Files 554

TABLE A-6 Managed Model Primitives 558

TABLE A-7 Special Command Line Arguments 571
xlii Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Procedures and Examples

▼ Name Module Definition Files 14

▼ Specify Module Parameters 14

▼ Create a Data Model 14

▼ Realize the Data Model 15

▼ Add Alarm Checks 15

▼ Install Module Files 16

▼ Load a Module 16

▼ Log Data and To Activate Debug Mode 17

▼ Write a Module from an existing SNMP MIB 19

▼ Publish an SNMP Interface 19

▼ Build Your Own Console 20

▼ To Access Troubleshooting Information 20

▼ Use the Client API 21

▼ To Start the Platform Agent 21

▼ How to See Changes that have been made to the Agent’s module-d.x File

23

▼ Work With a Java Application 23

▼ Internationalize a Module 24

▼ Creating a Parameter File 33
Procedures and Examples xliii

▼ Creating a Data Model 40

Code: Solaris Example—Model File 46

Code: Module Configuration File Format 49

Code: Performance Data Model Structure 50

Code: File System Data Model Structure Code 51

Code: Solaris Example Model Realization File 61

Code: The solaris-example-console-user-d.sh File 63

Code: The solaris-example-models-d.x File 69

Code: The solaris-example.properties File 73

Code: Solaris Example Model Realization File 74

Code: The solaris-example-primary-user-d.sh File 76

Code: Loading the Filter File 78

Code: Solaris Example Model File 88

Code: Solaris Example Model Realization File 89

Code: The solaris-example-system.prc File 92

Code: The solaris-example-average-d.flt File 92

Code: Agent File Modifications 94

Code: Code Fragments From ssi Package File 95

Code: DAQ C code 97

Code: Code Fragment Used to Retrieve System Load Average 98

Code: Alarm File 107

▼ Managing Alarms using rCompare 109

Code: Solaris Example—Intermediate Data Model 110

Code: Tcl Rule Example 143

Code: Tcl rules File Format 145

Code: Template 149

Code: Module Model File 151
xliv Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Code: Module Agent File 152

Code: Simple Rule 156

Code: Log Rule 157

▼ To Specify a Managed Property as Writable 166

▼ To Log Data to a Typical Flat File 174

▼ To Log Data to a Circular Log File 175

Code: Specifying Availability Property 176

▼ To Specify a Probe Command 179

Code: Find Files 181

Code: Entry in the Solaris Example Properties File 181

▼ To Limit Top Probe Command 182

Code: Model file For the Filesize Module 187

Code: Set Actions 197

Code: Default Memberships to Logical Users, Groups and Communities 200

Code: Default ACL settings for All Nodes 201

Code: Specifying Authenticated/Encrypted SNMP get and set Requests 202

Code: Specifying Requests without SNMP set operations for UNIX User 202

Code: Permitting admin/operator to Perform SNMP get and set 202

▼ To Add a Row 203

▼ To Remove a Row 203

▼ To Edit a Row 203

▼ To Disable a Row 204

▼ To Enable a Row 204

▼ To Load a Module Instance 204

Code: Adhoc SNMP Table Management Commands 205

Code: Additional Objects to the Solaris Example Model d.x File 207

Code: Example of the Agent File 209
Procedures and Examples xlv

▼ To Work Within the Agent Interactive Mode 214

▼ To Exit the Environment 214

▼ To Define a Module 224

▼ To Find the Attribute Value of a Certain Object 225

▼ To View the Result of an Operation on a Certain Object 227

▼ To Import and Export a Set of Object Attributes 229

▼ To Generate SNMP MIB From a Module 231

▼ To Add a Composite Object 251

▼ To Remove a Composite Object 253

Code: Discovery Object Table 255

Code: Adding a Reference to Discovery Object Table 260

▼ When the es-dt script is executed or if the Discovery Object Table is

Modified 262

▼ Running the Discovery Interface 262

Code: Discovery Object Table Model Data Realization Example Code 263

Code: Sun Management Center MIB2 Definitions 264

Code: Group Type Object Configuration File 274

Code: Node Type Object Configuration File 274

Code: Segment Type Object Configuration File 275

Code: Composite Type Object Configuration File 275

Code: Solaris Managed Object and Property Models 277

Code: Example Data for Host Node 282

Code: Example Data for SNMP Node 282

Code: Example Data for Module Node 283

Code: Example Data for IPBased Group 283

Code: Example Data for Bus Segment 283

▼ To Build a Module Using the Module Builder 288
xlvi Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

▼ To Launch the Module Builder 290

▼ To Access the Module Parameters Folder 301

▼ To Update the Module Parameters Tables 302

▼ To Create the Hierarchy of the Module 312

▼ To Change the Data Model 316

▼ To Enable Data Acquisition on a Module, Table, or Object 321

▼ To Invoke the HostDetailsBean 333

▼ To Add Additional Popup Menu Options at the Module or Managed Object

Level 346

▼ To Add Menu Choices At the Table Level 346

▼ To Invoke a Help Class 347

▼ To Integrate the Online Help Mapping Key 348

Code: staticmenu-version01-d.x 350

Code: SMHello.java 352

Code: SMContextExample.java 353

▼ To Specify New Dynamic Menu choice(s) Over a Table Cell 358

▼ To Specify New Dynamic Menu Choice(s) Over a Table Column Header 359

▼ To Test Popup Menus and See the Changes 359

Code: dynamicmenu-version01-d.x 362

Code: SMDynamicMenu.java 366

▼ To Specify that a Cell is Editable 373

▼ To Use the Boolean Editor 374

▼ To Use the Combo Box Editor 374

▼ To Implement a Customized Cell Editor 374

▼ To Specify a Custom Cell Editor 375

▼ To Internationalize Cell Editors 376

▼ To Test Custom Cell Editors 376
Procedures and Examples xlvii

Code: Cell Editor Example Code 377

Code: SMCustomCellEdit.java 379

Code: SMTabHello.java 384

▼ To Run the Client API Examples: 393

Code: SMLoginTest 394

Code: setURLValue Method 398

Code: createURL Method 399

Code: getUserId Method 399

Code: SMProbeTest 400

Code: SMRawDataTest 404

Code: SMRawDataAsyncTest 406

Code: SMAlarmAsyncTest 410

Code: SMAlarmSyncTest 413

Code: SMManagedEntityTest 418

Code: SMModuleTest 424

Code: SMLogViewerTest 429

Code: SMResrouceAccessTest 432

Code: SMTopologyTest 435

Code: base-modules-d.dat 534

▼ To Stop the Platform Agent 535

▼ To Load a Module in the Platform Agent 535

▼ To Unload a Module in the Platform Agent 535

▼ To Convert an OID URL to an Actual OID 537

▼ To Access the fulldes Shadow Attribute of the Same MIB Property 538

▼ To Convert the Shadow OID URL to a Valid OID 538

▼ To Access a Table Property in a Module 539

▼ To Convert the OID URL to an OID 539
xlviii Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Code: Absolute Time Expression Specification 582

Code: Syntax for Cyclic Specification 583

Code: Syntax for Comparison Specification 584

Code: Example Parameter File (filesize-m.x) 590

Code: Example Model File (filesize-models-d.x) 591

Code: Example Properties File (filesize.properties) 592

Code: Example Agent File (filesize-d.x) 592

Code: Example Alarm File (filesize-d.def) 593

Code: Example Parameter File (filesize-m.x) 594

Code: Example Agent File (filesize-d.x) 595

Code: Example Parameter File (filesize-m.x) 595

Code: Example Agent File (filesize-d.x) 596

Code: Example Properties File (filesize.properties) 597

Code: Example Parameter File (filesize-table-m.x) 598

Code: Example Model File (filesize-table-models-d.x) 599

Code: Example Agent File (filesize-table-d.x) 600

Code: Example: Procedure File (filesize-table-d.prc) 602

Code: Properties File (filesize-table.properties) 603

Code: Example Alarm File (filesize-table-d.def) 603

Code: Example: mib2-proxy-v2-m.x 606

Code: Example: mib2-proxy-models-d.x 608

Code: Example: mib2-proxy-d.x 612

Code: Module Realization: MIB2 Proxy Module 614

Code: Example: hp-jetdirect-trapspd.x 621

Code: Sun Management Center Enterprise Specific Traps 645
Procedures and Examples xlix

l Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Preface

The Sun Management Center Developer Environment Reference Manual provides

instructions on how to use the Sun Management Center™ development

environment. These instructions are designed for programmers with knowledge of

object-oriented programming languages.

Audience

The audience of this document are programmers who already have a knowledge of

object-oriented language and Java. This document does not explain object-oriented

fundamentals. Moreover, this document does not explain some concepts in great

detail since the assumption is that the document is for programmers already familiar

with them.

The audience is one who is exposed to the Sun Management Center product. Hence,

many terms and concepts applicable to the product are not explained here. For more

information on those, refer to the Sun Management Center User’s Guide. Third-party

clients, such as application programmers and system administrators, should note

that the code examples in this document are mainly presented here for reference.

Contents in this Manual

Refer to Chapter 3, which provides a quick preview of the contents and information

contained in this document.
li

Access to Up-to-date Information on the

Developer Environment

Once the product image is installed, for more information, refer to:

Note – If you installed the Sun Management Center product in a directory other

than /opt , substitute /opt with your installed location.

The above location contains the most up-to-date information on the following:

■ Developer Environment code examples

■ Client API classes in the Javadocs

You may also access a list of frequently-asked questions at:

Using UNIX Commands

This document does not contain information on basic UNIX® commands and

procedures, such as shutting down the system, booting the system, and configuring

devices. See one or more of the following for this information:

■ Solaris Handbook for Sun Peripherals

■ AnswerBook™ online documentation for the Solaris™ software environment

■ Other software documentation that you received with your system

/opt/SUNWsymon/sdk/docs/index.html file

http://www.sun.com/software/sunmanagementcenter/developers/faqs/
lii Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Shell Prompts

Typographic Conventions

TABLE P-1 Shell Prompts

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

TABLE P-2 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when

contrasted with on-screen

computer output

% su
Password:

<abc> or
<abc>

These are both acceptable

formats that define variables.

They are only pertinent to this

document and do not denote

Sun’s standard usage.

<abc>
<abc>

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Command-line variable; replace

with a real name or value

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

To delete a file, type rm filename.
liii

Sun Documentation on the Web
The docs.sun.com sm web site enables you to access Sun technical documentation

on the web. You can browse the docs.sun.com archive or search for a specific book

title or subject at:

Related Documentation

For a list of related documents, see the Sun Management Center 3.0 Software Release

Notes on the Sun Management Center website:

Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments

and suggestions. You can email your comments to us at:

docfeedback@sun.com

Please include the part number of your document in the subject line of your email.

http://docs.sun.com

 http://www.sun.com/sunmanagementcenter
liv Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

PART I Introduction to Developer Environment

This volume includes the following sections:

■ “Sun Management Center and the Developer Environment” on page 3

■ “Sun Management Center Developer Environment Installation” on page 7

■ “Introduction to the Reference Manual” on page 11

■ “Introduction to Modules” on page 27

■ “Building a Simple Module” on page 31

■ “Advanced Data Model Realization Techniques” on page 65

■ “Alarm Management” on page 105

■ “Rules” on page 125

■ “Additional Specifications for a Module” on page 159

■ “Modules and SNMP” on page 185

■ “Agent Interactive Mode” on page 213

■ “Developer Environment Tools” on page 233

■ “Composite Objects” on page 251

■ “Advanced Console Customization” on page 343

■ “Device Modeling” on page 269

■ “Module Builder” on page 287

CHAPTER 1

Sun Management Center and the
Developer Environment

This chapter covers the following topics:

■ Sun Management Center Framework—page 3

■ Sun Management Center Developer Environment—page 6

Note – This document also contains a lot of examples. The examples provided in

this document are purely for reference. After you install the product, you can find

key examples in the following directory:

/opt/SUNWsymon/sdk/examples/doc_samples

Sun Management Center Framework

Sun Management Center is an open, extensible, and standards-based server

management solution that facilitates enterprise-wide management of Sun server

products and their subsystems or components.

The Sun Management Center framework is comprised of the console layer, the

server layer, and the agent layer. The major functionality of each layer is described in

the following sections:

■ Sun Management Center Console

■ Sun Management Center Server

■ Sun Management Center Agent
3

The components that comprise the Sun Management Center product are shown in

the following illustration:

FIGURE 1-1 Sun Management Center Components

The above figure and its components are described in the following sections.

Center
server

SNMP

Database
event

system

SNMP

RMI RMI

Center
Probe

Center
Agent

SNMP

Center
Clients

Center
topology

agent

Center
configuration

agent

Center
ClientsCenter

clients

Center
ClientsCenter

clients
Center
clients

layer

layer
Center server

Center agent
layer

Trap
Handler

Center
Agent

Sun Management Sun Management Sun Management

Sun Management

Sun Management

SunManagement

Sun Management

Sun Management

Sun Management

Sun ManagementSun ManagementSun Management

TCP

TCP

management

Center console
4 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Sun Management Center Console

The console and its associated Graphical User Interface (GUI) clients are the

principle means for the user to interact with the Sun Management Center software

product and to accomplish management tasks. The console interacts with the Sun

Management Center server to get the data, configuration and image files necessary

to present the views of the managed system(s).

Sun Management Center Server

The Sun Management Center Java server acts as a request broker between the agent

and the console. The Sun Management Center server layer consists of a Java server

and Sun Management Center server helper agents that handle specialized tasks like

topology management, event management, configuration management, and trap

handling. For more information on the Sun Management Center server, refer to the

Sun Management Center Software User’s Guide.

Sun Management Center Agent

The Sun Management Center agent consists of a set of building blocks for system

management that are called modules. Sun Management Center agents are

dynamically configurable, intelligent, and autonomous. Sun Management Center

agents in the Sun Management Center agent layer run on managed nodes to monitor

and manage entities, such as hardware and operating systems, applications, other

Sun Management Center agents, and legacy SNMP agents. Sun Management Center

agents also support ad-hoc probe requests from other Sun Management Center

components.

Sun Management Center agents can dynamically load and unload modules. They

can also disable the monitoring functions of a loaded module when not required.

You can perform these functions using the Sun Management Center console. Each

module is capable of modeling and managing a specific set of data items.

When the Sun Management Center agent is installed, it loads a default set of

modules (for example, MIB-II, standard host system monitoring, and such). You can

load additional modules from the Sun Management Center console once the agent is

running. Modules are automatically reloaded whenever the agent is restarted. You

can also unload and disable modules from the console.
Chapter 1 Sun Management Center and the Developer Environment 5

Sun Management Center Developer
Environment

Sun Management Center Developer Environment is the software development kit

that provides Application Programming Interfaces (APIs) and tools to help users

and third party developers, such as ISVs, plan, design, develop, and integrate third-

party applications, tools, and customized solutions based on the framework

provided by the Sun Management Center product.

Using the information in this document, you can perform the following functions:

■ Install the Sun Management Center Sun Management Center Developer

Environment.

■ Build modules.

■ Build consoles.

■ Write rules.

■ Use the Client API.

■ Conform to internationalization and GUI guidelines.

■ Package your product.

Note – To access commands, procedures and information on the above tasks, refer

to the section, “Introduction to the Reference Manual” on page 11.
6 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

CHAPTER 2

Sun Management Center Developer
Environment Installation

This chapter covers the following topics:

■ Uninstalling Previous Versions of Sun Management Center Software—page 8

■ Sun Management Center Developer Environment Licensing—page 8

■ Installing the Sun Management Center Developer Environment From CD—page 9

■ Code Examples and Client API—page 9

Note – It is recommended that you run the Sun Management Center 3.0 Sun

Management Center Developer Environment Manual and Sun Management Center

3.0 Production Environment on separate servers.
7

Uninstalling Previous Versions of Sun
Management Center Software

If you have Sun Enterprise SyMON™ 2.x component layers already installed on

your system, the install script allows you to uninstall the previously installed

packages. You can either:

■ Uninstall immediately and proceed with a fresh installation, or

■ Quit the current session and uninstall the necessary packages automatically by

using the es-uninst command, and then proceed with the installation.

If you have Sun Management Center 2.x component layers already installed on your

system, the install script prompts you to manually uninstall the previously installed

packages.

Refer to the Sun Management Center Software Installation Guide for more details.

Caution – Be aware that when you answer y to the uninstall prompt, your current

Sun Enterprise SyMON 2.x or Sun Management Center 2.x packages will be

uninstalled. However, the administrative domain information, custom alarm

settings, and so on are retained in the /var/opt/SUNWsymon directory and may be

used by the new installation.

Sun Management Center Developer
Environment Licensing

You must already have a valid license for the Sun Management Center Developer

Environment prior to installation. For information on licensing requirements and

purchasing a license, contact your Sun service representative or authorized Sun

service provider.
8 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

Installing the Sun Management Center
Developer Environment From CD

For complete instructions on how to install the Sun Management Center Developer

Environment from CD-ROM, refer to the Sun Management Center Software Installation
Guide. You should also review the documents listed in TABLE 2-1 before you begin the

installation process.

The Sun Management Center Developer Environment can be installed in any

location on your system where the minimum required disk space is available. The

default location for package installation is /opt .

Code Examples and Client API

Once the product image is installed, the most up-to-date information on the

following files will be detailed in /opt/SUNWsymon/sdk/docs/index.html :

■ Developer Environment code examples

■ Client API in the javadocs

TABLE 2-1 Related Installation Documents

Document Description

INSTALL.README An overview of both the developer

environment and production

environment installation steps.

Sun Management Center Developer Environment
Release Notes

Installation issues related to the Sun

Management Center developer

environment.

Sun Management Center Software Release Notes Installation issues related to the Sun

Management Center production

environment.

http://www.sun.com/sunmanagementcenter Any late-breaking news about Sun

Management Center developer

environment installation.
Chapter 2 Sun Management Center Developer Environment Installation 9

10 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

CHAPTER 3

Introduction to the Reference Manual

This chapter covers the following topics:

■ The Different Parts of this Manual—page 11

■ Accessing Information in this Manual—page 12

■ Building Modules—page 13

■ Building Consoles—page 20

■ Using Client API—page 21

■ Using the Platform Agent—page 21

■ Conforming to Internationalization and GUI Guidelines—page 23

■ Integrating Applications—page 25

The Different Parts of this Manual

The Sun Management Center Developer Environment documentation provides

information on the following general topics, divided into three parts:

■ Introduction to Developer Environment—page 1

This part provides information on module development for the Sun Management

Center agents.

■ Programmer’s Reference to Console Integration and Client API—page 325

This part presents information on console bean integration with the Sun

Management Center console. It also provides the Client API reference material.

■ Additional Material—page 443

This part presents tools and utilities for module developers, bean developers, and

others. It also includes troubleshooting and a set of appendices with related

information.
11

A Glossary and an Index are included.

This document also contains a lot of examples. The examples provided in this

document are provided purely for reference. The client API examples will be placed

in a directory from which you can copy and run them for your purposes. The

location of the examples directory will be provided in the following file:

The procedures described in the following sections allow you to work within the

broad areas covered in this document. They also introduce scenarios to help you

understand the usage of the Sun Management Center Developer Environment

Manual from a functional perspective.

Two main types of information are included:

■ Scenarios that include tasks that are commonly attempted by most users.

■ Procedures that help step through some of the major functionality of the product.

Accessing Information in this Manual

To access the information you need, you can refer to the “Contents” on page iii or

the “Index” on page 659. However, you can also review the major topics identified

below and proceed to specific sections and chapters. This section includes pointers

for the following major functionality:

1. Installing Sun Management Center Developer Environment

See the following chapter:

■ Chapter 2

2. Building Modules

See the following chapters:

■ Chapter 4

■ Chapter 6

■ Chapter 7

■ Chapter 8

■ Chapter 9

3. Writing Rules

See the following chapter:

■ Chapter 8

opt/SUNWsymon/sdk/docs/index.html
12 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

4. Building Consoles

See the following chapter:

■ Chapter 16

5. Using Client API

See the following chapter:

■ Chapter 18

6. Conforming to Internationalization & GUI Guidelines

See the following chapters:

■ Chapter 19

■ Chapter 20

7. Packaging Your Product

See the following chapter:

■ Chapter 21

8. Working within the Agent Interactive Mode

See the following chapter:

■ Chapter 11

Note – This document also includes a troubleshooting section and several

appendices.

Building Modules

This section describes the steps to build a simple module:

1. Name Module Definition Files.

2. Specify Module Parameters.

3. Create a Data Model.

4. Realize the Data Model.

5. Add Alarm Checks.

6. Install Module Files.

7. Load a Module.

8. Log Data and To Activate Debug Mode.
Chapter 3 Introduction to the Reference Manual 13

9. Write a Module from an existing SNMP MIB.

10. Publish an SNMP Interface.

▼ Name Module Definition Files

● Select a unique name for the module that must be used in naming module
definition files.

▼ Specify Module Parameters

1. Decide on the module requirements.

2. Specify the standard or mandatory set of parameters.

3. Specify any optional parameters that are required for the module.

4. Specify any parameters for internationalization.

When done, all the parameters go into the following file:

▼ Create a Data Model

1. Identify the components and properties that must belong to the module.

2. Define the data model structure.

Create the hierarchical structure of the managed object classes and properties. For

each of the nodes in the MIB tree for the module:

i. Add the structural primitive.

ii. Assign data and alarm and rule type primitives to properties.

iii. Add the node description and units.

iv. Add the qualifiers for internationalization.

When done, place the contents into the following file:

<module ><-subspec>-m.x

<module >-models-d.x
14 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

▼ Realize the Data Model

1. Determine the data acquisition method to use:

■ UNIX programs and shell scripts:

■ Tcl/TOE Code:

■ C-code libraries and Tcl/TOE command extensions:

■ Binary extensions and packages.

2. Incorporate the data model into the module framework.

3. Add data acquisition services.

4. Add operational types to the node.

5. Add refresh parameters.

When done, all the parameters go into the following file:

▼ Add Alarm Checks

1. If a property has a threshold type alarm check, define thresholds in the file:
<module>-d.def . Do the following:

a. Specify the alarm criteria.

b. Specify alarm severity.

c. Specify alarm actions.

2. If the property has rules:

<module >-d.flt, < module >-d.sh

<module >-d.prc

pkg< module >.so, lib< module >.so

<module >-d.x
Chapter 3 Introduction to the Reference Manual 15

a. Determine if the rules need to have any editable threshold parameters.

b. Define all the rule initialization parameters in the file:
<module >-ruleinit-d.x .

The error messages required for the rules must be defined in the file:

<module >-ruletext-d.x.

c. Create the rules. The <module >-d.rul file contains the rule logic.

d. Assign the appropriate rule to the property in the <module >-d.x file using the
alarmRule qualifier.

▼ Install Module Files

● Make sure that each of the following directories contains the respective module
files listed under its directory listing:

1. /opt/SUNWsymon/modules/cfg

■ <module>-m.x
■ <module >-models-d.x
■ <module >-d.x
■ <module >-d.def
■ <module >-d.flt
■ <module >-d.prc
■ <module >-d.rul
■ <module >-ruleinit-d.x
■ <module >-ruletext-d.x
■ <module >-j.x

2. /opt/SUNWsymon/modules/sbin

■ <module >.sh

3. /opt/SUNWsymon/base/lib/sparc-sun-solaris2.(x)

■ lib< module >.so
■ pkg< module >.so

▼ Load a Module

1. Start all Sun Management Center components.

Preferably start the agent interactively. This also enables you to debug the module.

For more information on starting the agent interactively, see the Chapter 11.
16 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

2. In the Sun Management Center console, highlight the host you want to monitor
with your new module loaded.

3. Bring up the Load Module Window. Select the module you want to load.

Refer to the Sun Management Center Software User’s Guide for more information on

module loading.

▼ Log Data and To Activate Debug Mode
Currently, all debug information is logged in circular log files in:

For more troubleshooting information, such as this, refer to the Chapter 23.

● To see the contents of these files, use the following commands:

This is similar to the cat command in UNIX.

This is similar to the tail command in UNIX.

● To enable a specific level of debug message to be logged:

a. Go to the following directory:

/var/opt/SUNWsymon/log directory

/opt/SUNWsymon/util/bin/sparc-sun-solaris<2.x>/ccat

/opt/SUNWsymon/util/bin/sparc-sun-solaris<2.x>/ctail

cd /var/opt/SUNWsymon/cfg
Chapter 3 Introduction to the Reference Manual 17

▼ Write a Module from an existing SNMP MIB

If you want to write a module for an SNMP MIB, do the following:

1. Use MIB2x to generate the module configuration files.

2. Update the module configuration files to implement data acquisition.

3. Write the data acquisition code, with one or more of the following:

■ Tcl procedures

■ Shell scripts

■ Shared object libraries

4. Write the rules on the data properties, if required.

Note – This procedure is optional and, for example, is used if you want to define

alarm limits on these properties.

5. Install the module configuration files and other libraries/scripts/procedure files.

6. Load the module into the agent.

▼ Publish an SNMP Interface

If you have some data to be modeled and monitored using Sun Management Center

and want to publish an SNMP interface for this data:

1. Prepare the data model with the following information:

■ Data items

■ Types of each of these data items

■ Groupings and the hierarchy of these data files

2. Write a models file for the data model.

3. Write the data acquisition code.

4. Write the rules on the data properties if required.

Note – This procedure is optional and, for example, is used if you want to want to

define alarm limits on these properties.

5. Install the module configuration files and other libraries/scripts/
procedure files.
Chapter 3 Introduction to the Reference Manual 19

6. Start the agent in interactive mode.

7. Load the module into the agent.

8. Use mibExport to export the SNMP MIB for the module.

Building Consoles

▼ Build Your Own Console

To build your own console to use in place of or in addition to the Sun Management

Center console, do the following:

1. Design the graphical user interface (GUI) using the Java programming language.

Refer to the Chapter 20 for information on how to design your GUI to be consistent

with the Sun Management Center.

2. Obtain information from Sun MC programmatically through the Client API.

Refer to Chapter 18 and the online Javadoc files for information on the client API.

3. Invoke the Host Details bean to incorporate all the functionality provided in the
console Host Details window.

Refer to the description of the Host Details bean in the section, “To Invoke the

HostDetailsBean” in the Chapter 16.

Note – For detailed information on building consoles, refer to the Chapter 16.

▼ To Access Troubleshooting Information

1. Go to the main Sun Management Center screen.

2. Select File .

3. Click on "Sun Management Center-Console Messages..." .

Sun Management Center displays error messages as applicable.
20 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Chapter 3 Introduction to the Reference Manual 21

Using Client API

t Use the Client API
1. Log in to the session.

2. Get the SMRawDataRequest handle from the SMClientRMIImpl Class.

3. Use it in the constructor of other API class categories.

4. Start using the classes documented in the Client API section.

The section incudes categories of classes and each category has examples that you
use for reference purposes only. You may work with the examples that are part of
the code directory.

Note Ð For more information on building consoles, refer to Chapter 18.

Using the Platform Agent
To hide your implementation of the Discovery Object Table, start the platform agent on the
Sun Management Center agent machine, the6

Main Console

FIGURE 20-1 shows the Main Console Window.

FIGURE 20-1 Main Console

The main console is divided into seven sections: pull down menus, navigation

buttons, Sun Management Center Administrative Domains pulldown menu, alarm

buttons, two panels and a status line.

■ Menus: The pull down menus going across the top of the console window are

labeled File, Edit, View, Go, and Tools.

■ File menu: The items under the File are Domain Manager, Remote Domain

Manager, Set Home Domain, Sun Management Center-Console. These items

operate on domains. If you plan to add Domain management functionality, it

should be launched from this menu.
466 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

■ Edit menu: The items under Edit are Create an Object, Create a Connection,

Delete Object/Connection, Rename, Modify, Cut, Copy, Paste, Paste Into and

Select All. The Edit menu items are used to modify objects, not domains.

■ View menu: The items under View are Topology Layouts and Set Topology

Background. If you add any view-like functionality to Sun Management

Center, put it in this menu.

■ Go menu: The items under Go are Back, Forward, Home, Up, History and

Search. These act the same as web browser buttons and contain the same

functionality as the navigation buttons located directly below the menu bar.

■ Tools menu: The items under Tools are Details, Attribute Editor, Graph,

Discover, and Load Module. Most add-on applications that enhance Sun

Management Center software should be listed here.

■ Navigation buttons: The navigation buttons act the same as web browser buttons.

■ Back takes you to your most recent topology hierarchy location.

■ Forward moves forward in the navigation history.

■ Home takes you to your home domain.

■ Up arrow on folder traverses the object hierarchy upward.

■ Search magnifier icon opens the Go To window.

■ Help “?” icon opens the Sun Management Center online Help.

■ About box: An About Box can be brought up by clicking on the Sun

Management Center icon to the far right of the navigation buttons. The About

Box includes information such as the product name, version number, build

number, and copyright information.

■ Sun Management Center Administrative domain pulldown menu: Lists all of the

domains that the console can administer.

■ Alarms buttons: The Alarms buttons are in a horizontal array under the Sun

Management Center logo. Clicking on the alarm button opens a window with a

summary of the objects that are reporting problems to the level of the alarm. The

icons appear on both the alarm buttons and as badges on the hardware icons. If

you add new alarm levels (and hence additional buttons) make sure that buttons

are arranged in descending order of alarm severity.

Server Object Representation and Object

Management

Sun Management Center software provides a host-centric user interface. That is,

management is done from the perspective of the managed objects (servers and

workstations). The entire main console is devoted to creating, displaying and editing
Chapter 20 Graphical User Interface Guidelines 467

managed objects. In a large or complex enterprise server installation, the number of

managed objects can be large, and monitoring for errors or anomalies requires the

ability to find malfunctioning objects quickly.

FIGURE 20-2 Main Console Window with Hierarchy and Topology Views

The server objects are represented in both a tree view list in the left panel and a

layout view in the right panel (FIGURE 20-4). Object icons can be any size, but most of

the existing icons are 42 x 42 pixels in the right-hand topology view and 16 x 16

pixels in the left hierarchy view. If you add new object icons, their sizes should be

approximately the same as the existing icons.

The layout view, presented in FIGURE 20-4, is potentially very powerful, as it can be

used to indicate the location of a managed object in real physical space, such as a

server room. This enables monitoring or service personnel to pinpoint the exact

location of a trouble source. Background images for this purpose can be added by

selecting Set Topology Background from the View menu.
468 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Typical Sun Management Center software customers have hundreds, and in some

cases thousands, of host objects to manage and for this reason the main console, and

all of the sub-consoles, must scale to large numbers. The main console has several

features designed specifically for scalability:

■ Main console uses both main panels for showing objects. The left panel is a

hierarchical list; the righthand panel enables user-specified layout views (network

view, list view, bus view, and so forth) and the ability to superimpose managed

object icons on a graphical background.

■ Grouping: Users can create group containers and place managed objects in them,

in any way that makes sense for that user’s management requirements. Groups

can be moved around with their contents unchanged just like objects.

■ The highest level of grouping in the Sun Management Center software console is

the administrative domain. Domains can be created and deleted, populated with

objects automatically or manually, and have user permissions (security) set

specifically for them.

■ The Sun Management Center console provides a Go To function (similar to

search) that enables the user to find an object by name. This permits quick access

to a particular object (including groups) within a large number of managed

objects and groups.

■ Actions specific to particular managed objects are quickly accessible through the

right-mouse-button. These actions vary according to the object.

■ Sorting and filtering permits the user to reduce the amount of information in a

particular view by showing only the most relevant information. Sun Management

Center software currently supports sorting and filtering at the data-table level,

but does not support these functions at the topology object level.

Guidelines for Modifying Topology Views

Do not enhance or change the presentation of the Sun Management Center software

agent in such a way as to interfere with the features described previously.

■ Add new group and object types: Study the Create Topology Object dialog

carefully (including the contents of all menus) before adding any new object

types. The type you need may already exist. If not, make sure any new object

types are represented in all the right places (Create Topology Object dialog,

Discovery filters dialog), and that each has a full set of icons (large, small, tagged,

untagged).

■ Use good object management dialogs: FIGURE 20-3 is an example of the Sun

Management Center Domain Manager dialog. Its central feature is a list of the

objects. Along the right side, arranged vertically, are buttons that provide the

main actions that can be done on the objects. Selecting an object enables all

buttons whose actions can be applied to the selected object.
Chapter 20 Graphical User Interface Guidelines 469

FIGURE 20-3 Domain Manager

■ Add and subtract right mouse menu items freely: Ensure that they consist only of

items that apply to a particular object.

■ Sorting/filtering: If you are developing an enhancement or addition to Sun

Management Center software that can provide sorting and/or filtering, make sure

that the results of sorting/filtering are consistent with the presentation of objects

by Sun Management Center software.

■ Make sure filter/sort actions are presented near the site of their action, for

example, just over the list of objects.

■ Make sure the action applies equally to both console panels (layout view and

list view).

■ Provide an explicit show all and/or unsort option.
470 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Layout View

The topology view (FIGURE 20-4) displays the object selected in the hierarchy view,

along with any peers that share its container.

FIGURE 20-4 Main Console Window with Hierarchy and Topology Views
Chapter 20 Graphical User Interface Guidelines 471

FIGURE 20-5 shows an example of how the user can load a background gif file and

place the items in a physical location, in this case a server room.

FIGURE 20-5 Topology View

Object Layouts

Only users with permission to create objects and groups are permitted to change

layouts.

The choices are accessed through the Views menu:

■ Network (unconstrained)

■ Grid (object positions constrained to lie in a rectangular grid)

■ List (objects listed vertically)

■ Bus (objects linked with lines in a bus pattern)

■ Star (objects linked with lines in a star pattern)

■ Spoked ring (objects linked around a ring)

Layout affects only the group within which it was chosen, but it is visible by any

user console in which that group can be seen.
472 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Status line

A Status line is located at the bottom of the console window. Be sure to give the user

feedback about what is going on. The Sun Management Center status line gives

messages such as “Downloading physical view images, please wait.” “Paste was

successful”, “Object was created.” This is a good place to put error messages, such as

“Object not found.”

Status Messages

Status messages must be shown left-justified at the bottom of every window

(FIGURE 20-6). Messages from a previous action must last only until the next

command is requested. When a new action is initiated, the status field must clear

first and then show a message indicating the ongoing status of the new action, as

that becomes available. Fonts and colors for status fields should be as defined in the

Fonts section.
Chapter 20 Graphical User Interface Guidelines 473

FIGURE 20-6 Status Message Location

Status
message
location
474 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

User Input

Mouse Actions

The mouse actions are consistent across the Main Console, Details windows, and

dialogs. This is an especially important consistency feature, because mouse actions

are used quickly and automatically by most users. They do not want to have to stop

and think about how to use the mouse. Mouse actions are defined as follows:

■ Left button click:

■ Objects—If the cursor is on an object in the topology or hierarchy view, left

button click highlights and selects the object.

■ Widgets—If the cursor is on a widget (for instance a checkbox or pulldown

menu), a single left button click operates the widget.

■ Text fields—On entering a dialog containing text fields, the user is not required

to click the mouse inside the first field. Rather, the contents of the first field are

highlighted with the cursor positioned at the far right of the contents.

■ Left button double-click:

This action opens a topology object. In Sun Management Center software, open is

defined as follows:

■ In the topology view:

If the object is a host, then double-click opens the Host Details window and the

object in the topology and hierarchy views maintains the selection

highlighting.

If the object is a container, then double-click opens the container to show the

contents.

■ In the hierarchy view:

If the object is a closed container, then double-click opens the container in both

views (drops open the contents list in hierarchy view, navigates to and shows

contents of container in layout view and the name of the container in the

location field above layout view).

If the object is an open container, then double-click closes the container in

hierarchy views (snaps up contents list) and also navigates to and shows

contents of container in topo view and the name of container in location field

above layout view).
Chapter 20 Graphical User Interface Guidelines 475

If the object is a node, then double-click opens the Details window and the

object in the hierarchy view maintains the selection highlighting.

■ Right button click:

In all views, this action opens a popup menu to provide commands that can be

executed on the selected object. The popup menu is context sensitive; the exact

commands appearing there vary according to the selected object.

■ Left button Click-and-Drag:

This action enables you to drag objects to change their positions inside the

righthand layout view of the Main Console. Dragging objects over other

objects and dropping them has no effect. Drag-and-drop are not supported in

Sun Management Center 2.x software.

Selection Highlighting

Selecting Objects

■ In the hierarchy view, highlighting must be done with a solid medium-blue

rectangle enclosing the label (with label text inverted to white).

■ In the topology view, highlighting must be done with a medium-blue open

rectangle enclosing the icon, and a solid medium-blue rectangle enclosing the

label (with label text inverted to white).

When a selected object is put into the cut mode (by selecting the Cut item from the

edit menu), the selection rectangle must go to the dashed-line form. The dashed-line

rectangle must encircle the entire icon plus the text area (for example, remove text

highlighting).

Multiple selection of topology objects is supported. Multiple selection cam be done

two ways:

■ Drag-select

■ Shift+select for second and additional objects

De-selecting Objects

■ Any selected object must be deselected when another object in the hierarchy or

the topology is selected.

■ Any selected object or group must be de-selected with a mouse click elsewhere in

the window.

■ Clicking again on a selected object must not de-select it. The cursor must be

elsewhere to de-select. The exception is:
476 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

■ When a selected object has been put into cut mode (by selecting the Cut item

from the Edit menu), then removing the cut mode from the object must be

done by explicitly clicking the object again. The dashed-line rectangle is then

removed and the regular selection highlighting is replaced on the object.

■ When multiple objects have been put into the cut mode, then clicking any

object again will remove the cut mode from all the objects.

Keyboard Navigation Shortcuts

Like mouse actions, consistent keyboard action are important because users rely on

keyboard navigation to be quick and automatic, requiring little thought.

Sun Management Center software follows the Microsoft guidelines for keyboard

navigation (The Windows Interface Guidelines for Software Design, Microsoft Corp.,

1995).

Note – Keyboard methods are not well supported in Java 1.x software, on which

Sun Management Center software is built. Only minimal keyboard navigation is

provided.

The appropriate exit buttons for a dialog depend on what the dialog is intended to

do:

■ Use OK and Cancel for confirmation dialogs and for dialogs that consist of a

single discrete action that the user wants to complete quickly.

Example (confirmation): Do you want to save this?; Launch discovery now?, Are

you sure you want to delete that object?

■ Use OK, Apply, and Close for dialogs in which objects are created, or properties

edited, using multiple fields. The OK and APPLY buttons are only sensitized if

fresh data has been entered into the window since the last click of APPLY. Close

will close the window without taking any action on data currently entered in the

dialog.

■ Use a Close button only if the changes made in a dialog or window take effect

immediately and are not accumulated over multiple input fields before being

committed.

■ Use Action Names (for example, Load, Save, Create) as the default action (instead

of OK) in cases where the appropriate word is obvious, and short enough to fit on

a button.

■ When buttons are arrayed horizontally at the bottom of a dialog, then the order is:

■ Leftmost—the default action, for example: OK, Save, Create
Chapter 20 Graphical User Interface Guidelines 477

■ Middle—additional options, for example: Apply, Reset, Clear

■ Rightmost—the cancellation or closing action, for example: Cancel, Close,

Done

Note – Java 1.x does not provide an easy way to specify a default button activated

by keypress. If you develop on a version of Java that supports this, use the Java

Look and Feel guidelines.

Table Appearance and Behavior

The appearance and behavior of tables throughout Sun Management Center

software must be consistent with respect to:

■ Table contents

■ Color

■ Fonts

■ Table position

■ Rows

■ Columns

■ Growth under window resizing

■ Cell, row, and column selection

■ Sorting and filtering

Refer to the following illustration.
478 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

FIGURE 20-7 Table Details Window

Table Contents
■ Types of contents—Tables are used to show the values of properties, for listing

domains and users, and for listing alarms information. Tables can contain strings

(the names of variables), numerical values on a variety of unit scales (percent,

Mbytes, and so forth), and graphical icons.

■ Labels—Row and column labels are optional at the discretion of the designer.

When they exist, the first letter of each main word must be capitalized. The name

must include, in parentheses, the unit in which the values are shown. For

example, CPU Usage (%).
Chapter 20 Graphical User Interface Guidelines 479

■ Contents with rules—When a variable or any table row has a viewable and/or

editable rule associated with it, the name (and unit) must have three dots

(ellipsis), For example, Disk Usage (%)... appended to it.

■ Table titles—If a table is the only or primary element of a window or panel, the

panel label serves as a table label (for example, Processes tab labels the processes

table). If a table is not the only element of a window or panel, or is a secondary

element of a window or panel, the table must have a label top-left justified and

outside of the table border.

■ Justification of contents:

■ Row labels must be left-justified, with a 3-pixel margin between the far left

edge of the cell and the first pixel of contents.

■ Column headings must be centered.

■ Text phrases and messages of varying length must be left-justified always (and

preferably placed in nth column), with a 3-pixel margin between the far left

edge of the cell and the first pixel of the contents.

■ Numeric values must be right-justified always (with a 3-pixel margin between

the far right edge of the cell and the last pixel of the contents).

■ Alphanumeric strings that are not phrases in a human language can be right- or

left-justified depending on table layout needs (at the designer’s discretion).

■ Column widths are variable according to the typical length of information

provided in the given column, with fixed minimum and maximum widths. Do

not make column labels significantly longer than the longest value provided in

the column, as it is wasteful of space.

Color
■ Text color: Table information must be in black text on a white background.

Column headers must be black text on Java-table-widget grey.

■ Alarm color: When a cell in a data table has an alarm state associated with it, cell

background color must change to reflect the type of state. Coloring inside the cell

should not go all the way to the cell borders, but rather stop 1 pixel short on all

sides. This is to allow space for a selection color to be shown for the cell as well.

See below.

Note – In the Alarms Console window, Alarms are signaled with the appropriate

alarm icon rather than a background color.

■ Cell Selection color: When the user selects a cell or row, the selection must be

indicated by a medium-blue open highlight rectangle, enclosing the cell. In the

case of property tables that can have an alarms color in the cell, the selection

rectangle goes outside of the alarms color area, and inside the cell border.
480 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Table Position
■ Tables that are the sole occupants of a window pane are center-justified inside the

pane and remain centered irrespective of changes in the window width. Tables

that appear in the same pane with other tables are left-justified with the left

margin set to a value that centers the largest (widest) of the tables at the standard

(default) window width.

Cell, Row, and Column Selection
■ A table can be defined to be row-selectable only (for example, the Alarms

Window), in which case clicking in any column selects the entire row.

■ A table defined as cell-selectable must allow selection of any and all cells by

clicking inside the cell. In such a table, however, clicking on the row label must

select an entire row.

■ Column selection is not currently used. However, for column-specific sorting this

setting may be necessary.

■ Cell Selection color—When the user selects a cell or row, the selection must be

indicated by a medium-blue open highlight rectangle, enclosing the cell. In the

case of property tables, which can have an alarms color in the cell, the selection

rectangle must go outside of the alarms color area.

Colors

Sun Management Center software follows the Java software look for the colors of

windows and dialog with the following extensions and exceptions.

■ Status fields must be bold black on the grey background of the window.

■ User-editable text fields must be black text inside an enclosing box with white

background and black border. At the designer’s discretion, the box can be inset.

■ Non-user-editable text fields must be black text on the grey background (no

enclosing box).

■ List views, icon views, tables, charts and graphs must have white backgrounds.

■ Menus must have a grey background when dropped open.

■ Field/Widget labels must be Java Blue.
Chapter 20 Graphical User Interface Guidelines 481

Fonts

Sun Management Center software follows the Java software font guidelines. Consult

http://java.sun.com/products/jlf/dg/index.htm for details.

Graphing

FIGURE 20-8 Graphing Window

Sun Management Center software allows graphing of any numerical data variable

with respect to time. Up to five variables can be plotted on the same graph. The

white background is essential for making plotted points and their corresponding

axis values highly visible.

■ Graphing specifications are made at the data level, from within the table showing

the data.

■ Graphing specifications can be saved and reinvoked (by specification, not by

data) from the main console Tools menu.
482 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

■ All graph labels (titles, legends, axis ticks, and so forth) are fully user-

customizable both in terms of contents, position, and whether they are shown or

hidden in a particular graph. Graphing features are edited in dialogs that are

opened by menu items.

FIGURE 20-9 Graph Header Title Editing Dialog

In this example, text can be entered, styled, and positioned. The Apply button is

useful here in enabling the user to see the results of the changes before exiting the

dialog.

If you intend to enhance the existing graphing system or add new graphing

functionality, follow these guidelines closely.

Caution – Changing the axis scale and tick setting can potentially destabilize the

actual or perceived behavior of the graphing function. Make such changes carefully.

■ Keep the white background, as visual detail is important in a graph.

■ Use the Sun Management Center 2.x dialog structure for implementing the same

or similar settings.

■ Always provide an Apply button and apply the changes directly to graph so the

user can see the results before exiting the dialog.
Chapter 20 Graphical User Interface Guidelines 483

■ If you wish to provide an easier or more direct method of invoking dialogs than

those in Sun Management Center 2.x software (which invokes them from menus),

the following two methods are equally good:

■ Double-click mouse on the intended element (or in intended area for a title) to

open the appropriate dialog.

■ Right-mouse click on the intended element (or in intended area for a title) to

open a menu of appropriate actions.

Property Setting Dialog

Sun Management Center software enables property settings for the following, at a

minimum:

■ Managed servers—properties such as label, description, and type

■ Module parameters (at the point they are loaded)—instance name and description

■ Module run-time scheduling (at any time)—cyclical, one-time only, and so forth

■ Data variable alarm thresholds—value at which alarm of given severity is

generated

■ Alarm actions—script to run or command to execute on generation of the specific

alarm

■ History—where and how to log data value

■ Security—access permissions to objects

Most of these settings are done in the Sun Management Center Attribute Editor

(AE). The AE has a tabbed structure (folder tabs at top) that gives it extensibility.

Here are some guidelines for modifying or enhancing the Attribute Editor and/or

for adding new property-setting dialogs.

■ If you add a new object, enable setting of the same properties that the Sun

Management Center program already supports. You can also enable additional

properties to be set.

■ If you add properties, add them to existing dialog panels instead of creating

additional property dialogs for the same object.

■ If you cannot fit them into existing panels, then add a tab to the existing Attribute

Editor. Make sure that the functionality is apportioned between them in a

distinctive way, and that the names given reflect those differences very clearly.

■ When laying out property-setting dialogs, be consistent with the Sun

Management Center Attribute Editor (where most property settings are made).

In the following example, the History setting tab for a data value inside a particular

managed object (host machine) is shown (FIGURE 20-10).
484 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

FIGURE 20-10 History Tab of Attribute Editor on a Data Variable

The information shown in the preceding figure is typical, in that all instances of the

Attribute Editor follow a similar pattern. This pattern is:

■ At the top, above the tabs, there is general identifying information about where

the information comes from: object label and object location.

■ Below this are the tabs that provide extensibility to the window.

■ Typically, more detailed identifying information about the data value whose

attributes are being shown goes below the tabs: folder and variable. A delineating

line appears at this point, above the actual settings.

■ Bold-text headings in black separate areas of slightly different functionality (Disk

File versus Memory Cache, in this example).

■ Every setting has a label in Java-blue text. Note that the settings are in vertical

stacks, colon-justified.
Chapter 20 Graphical User Interface Guidelines 485

■ Read-only settings (history.log in this example) are shown without a box around

them, against the grey background of the panel.

■ Dialog buttons are discussed in detail elsewhere, but, in the case of the Attribute

Editor, should always include:

■ Apply, which changes the setting so user can see the result in situ (inside the

table where the item lives) before exiting the dialog.

■ OK, which applies and closes the window automatically.

■ Cancel, which closes window without applying any actions.

■ Help

Optional Buttons

Reset is especially useful in the case of large panels with a lot of settings. Users

occasionally make enough mistakes that is it better to start over. Reset reverts to

original (current when dialog opened) values, not to a blank state. Use a button

labelled Clear for users who want to set all widgets.

Things to avoid:

■ Do not make text fields longer than needed. This is a stylistic issue but more

importantly, the length of a field gives the user a cue as to valid data that can go

into the field. For example, if the field holds two-digit numbers but is 72

characters long, the user can be misled.

■ Do not provide text fields for complex expressions. Instead give the user explicit

widgets for setting complex expressions.

■ Do not use a label (for example., yes/no) to the right of a checkbox.

Time Setting

Time setting is a commonly-used function in management applications. The

following guidelines stress optimal design:

■ Use the same design and the same time database everywhere.

■ Get as much as possible onto one dialog. Time-setting is inherently complicated

and the more the user can see all in one view without relying on memory, the

better.

■ Put only the simplest and most frequently used functions in the main dialog. Ask

the user/customer what they need, what they use most, and then place those

functions frontmost. Place less used and expert features in a separate dialog
486 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

behind a button. Use sufficient labels. In time-setting more than any other

functionality, it is easy for users to become confused. Generous labelling can help.

For example:

■ Time of day to begin recording (hh:mm):

■ Date to begin recording (mm/dd/yy):

■ Group similar items together under headings, rather than repeating long phrases

over again. An improvement to the previous example is shown here:

■ Begin recording:

Time of day (hh:mm):

Date (mm/dd/yy):

■ Make the time/date format explicit, either in text as shown above, or by artful use

of time-setting widgets. For example, clicking arrows to change time values of the

selected element (day, in the date setting).

■ If possible, provide both widget and typing options.

■ Compute as much as possible for the user, including the effects of daylight

savings time (user simply checks/unchecks a box), leap years, holidays, time

zones, and so forth.

■ If a 24-hour clock is used, be sure to specify legal value(s) for midnight (24 or 0).

■ For internationalization, give users a choice of date/time formats.

Alarms

Sun Management Center software has an event signalling system that spans every

aspect of the product, from the main console to the individual data table cells.

If you plan to modify or augment this alarm functionality, it is important to maintain

consistency with this system.

Alarm System
■ Domain Status Summary buttons: Buttons at the top of the main console give

summary counts and open windows with filtered views of the alarmed objects in

the domain. The summary count only counts the object’s highest severity event.

Example: If a server has both a yellow alarm and a red alarm condition, the

alarm will be counted in the red total, not in the yellow total.
Chapter 20 Graphical User Interface Guidelines 487

■ Alarm badges: These are shown in a variety of places, on buttons, affixed to

hardware icons, and inside tables. When affixed to hardware icons, only one can

be affixed at a time and, like the Domain Status Summary buttons, the severity

corresponds to the worst alarm currently existing on the server. In the Alarms

console of the Details window, all alarm severities are shown by default.

■ Alarm badges are affixed to hardware icons by centering the alarm badge at

the bottom righthand corner of the HW icon. Alarm badges in the layout view

(large hardware icons) are 16 x 16 pixels. Alarm badges in the hierarchy view

(small hardware icons) are 12 x 12 pixels.

■ Alarm badges must be distinguishable and look good in all of the various

locations that they are used.

■ Alarm colors inside data table: When a data variable enters an alarm state, the

corresponding data table entries become shaded in that color. These colors

correspond to the colors of the alarm badges.

■ Sun Management Center Alarms Console: Inside the tabbed Details window (see

Details window section), this tab contains information on all alarms related to the

object whose Details window you are looking at.

As mentioned in the main console section, when modifying Domain Status

Summary buttons make sure any new/modified buttons and icons are consistent

with existing ones:

■ If you add new alarm severities, the corresponding badges must conform to the

basic pattern of existing Sun Management Center badges, that is, identical

background shape, distinctive color, and distinctive internal design.

■ When adding/modifying alarm severities, remember to use the correct

corresponding color inside the data table cells.

■ Modifications to the alarms table in the Alarms Console must follow the Table

guidelines (see Table section). Modifications to show/sort dialogs should follow

Dialog guidelines (see Dialog section).
488 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Details Window

FIGURE 20-11 Browser Details Window

The Sun Management Center Details window provides a wide variety of data for a

managed object.

This window has the following tabs in Sun Management Center software; Info,

Browser, Alarms, Processes, Log View, and Configuration. The tabs are an

extensibility mechanism that product developers can use to enhance the capabilities

of the software.
Chapter 20 Graphical User Interface Guidelines 489

■ The tabs are the top level of navigation in the Details window. Menus, buttons

and other navigation tools are not to be added above the tabs, but can be added

below the tabs.

■ When adding buttons, panel-specific buttons go at the top above the data area,

and the general dialog buttons (shared by every tabbed panel) go at the bottom.

■ If you plan to add functionality to the Details window, you need to decide if it

belongs in one of the tabbed categories, or its own new one. It is always best to

add new functionality to existing panels. If you cannot do this, then try launching

a dialog (child window) from the existing panel.

Example: You want to add the ability to annotate the Alarms window to include

notes from the system administrator. Add a button on the Alarms Console that

spawns a dialog box.

The Browser and Configuration panels each have a two-part structure similar to that

of the main console, but the hierarchy at left contains subobjects of the host object,

and the right panel contains subobjects and detailed tables. If you are adding a tab,

consider creating a hierarchy of subobjects, where applicable.

The Details window has a status area at the bottom, like the main console. Use this

area to give users status feedback. The Details window can be iconified and will

continue to update data tables, update the logs, and register alarms.

Any subwindows spawned from this window will close when this window is closed,

with the exception of the Graphing window.
490 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

CHAPTER 21

Sun Management Center Developer
Environment Packaging

This chapter covers the following topics:

■ Packaging Helloworld_01—page 491

■ Sun Management Center Software Packaging Practices—page 493

The information provided in this chapter will be based on the packaging of the

example modules provided as part of the Developer Environment.

The following documents are suggested reading for more detailed explanation of

Solaris software packaging:

■ Pkginfo (4)
■ Pkgmk (1)
■ Prototype (4)
■ Pkgmap (4)
■ Depend (4)
■ docs.sun.com (Application Packaging Developer’s Guide)

■ docs.sun.com (Search for “Packaging”)

This chapter provides examples and a list of suggested Sun Management Center

software packaging practices with more details on the configuration of the

packaging files.

Packaging Helloworld_01
The following section describes the packaging of the Helloworld_01 module

(src/examples/modules/helloworld_01/package).
491

Makefile

The makefile is set up to look for the components to be packaged in the parent

directory of the package directory (src/examples/modules/helloworld_01).

This is accomplished by supplying the pkgmk utility with the

’-r [path_to_components] ’ option, which in this example is ’..’:

The contents of the package are defined in:

src/examples/modules/helloworld_01/package/prototype .

Prototype Entries

Here are the entries in the prototype file and a description of their functions:

■ i pkginfo: pkginfo(4) is an ASCII file that describes the characteristics of

the package along with information that helps control the flow of installation. It is

created by the software package developer. In this example, the pkginfo is

expected to reside in the same directory as the prototype file.

■ i copyright=install/copyright is the copyright that is displayed when the

package is being installed. In this example, the copyright is expected to reside in

the install subdirectory. Note in the examples that the format for the prototype

entries is <component destination >=<component source>. Component source being

the location where the source can be found and component destination being the

name and location of where the file will reside. Note that the names of the

component source and destination may be different.

■ i depend=install/depend: depend(4) is an ASCII file used to specify

information concerning software dependencies for a particular package. The file

is created by a software developer. The helloworld_01 package depends on the

SUNWesagt Sun Management Center agent package at runtime.

■ !default 0755 root sys is a packaging directive to assign the components

following this statement to the file attributes of read/write/execute-read/

execute-read/execute, ownership equals root, and group equals sys.

■ d none SUNWsymon ? ? ? specifies the directories that need to be created

during package installation to contain the components. The first field, the file type

field, of the entry ’d’, specifies that this component is a directory. The second

field, the class field, ’none’ specifies that this entry belongs to the package class

’none ’. The third field is the pathname of the component, in this case

COMPONENT_ROOT = ..
DEMOeshw1:
$(PKGMK) -o -r $(COMPONENT_ROOT) -d .
492 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

‘SUNWsymon’. The fields ’? ? ? ’ are used when you know that this component

has been installed be a another package and that you want this component to

have the same attributes assigned to it.

■ !default 0444 root sys is a packaging directive to assign the components

following this statement to the file attributes of read-only-read-only-read-only,

ownership equals root, and group equals sys.

■ f none SUNWsymon/modules/cfg/helloworld-version01-
d.x=helloworld-version01-d.x has ’f ’ as the first field, which denotes that

the component is a ’file ’. The second field denotes that this component belong

to the class ’none ’. The third fields denotes that destination for this component

will be SUNWsymon/modules/cfg/helloworld-version01-d.x and that the

source to this component can be found at helloworld-version01-d.x .

Remember at the beginning of this section, that the ’-r $(COMPONENT_ROOT)’
option to pkgmk, allows the pkgmk utility to begin finding the source component

helloworld-version01-d.x in the directory ’.. ’.

Sun Management Center Software
Packaging Practices

Package Naming

The Sun Management Center team uses SUNWes to denote that this package is a

Sun Microsystems (SUNW) package and belongs to the Enterprise software group of

packages. The next three characters are used to identify the individual packages of

Sun Management Center software.

Package Versioning

The Sun Management Center team uses the VERSION, REVISION macros with the

following form for Solaris software dependent packages (OS equals Solaris Release,

note that 2.5.1 would be 2.5:, that is, Major.Minor, not Major.Minor.Micro):

VERSION=[product release version], REV=[OS Major.Minor].[YYYY.MM.DD]

For packages that are not Solaris Release specific (meaning the package is supported

on all Solaris Sun Management Center supported releases, the [OS Major.Minor]

string must be out of the REV string.
Chapter 21 Sun Management Center Developer Environment Packaging 493

Component Naming

All components must have a unique name to avoid component collision at install

time.

Package Dependencies

When installing modules, SUNWesagt is the suggested package dependency. When

installing a console bean, SUNWessrv is the suggested package dependency.

Prototype File

The Sun Management Center team uses explicit entries in their packaging to

facilitate clarity for developers when maintaining the prototype files.

Sun Management Center Module Name Practices

Sun Management Center modules are installed in a specific directory. So that there

are no conflicts with the modules developed by other users, you need to ensure the

uniqueness of your module filenames. It is suggested that you use the registry that is

setup by Sun Management Center. Please visit the following website for more

information:

Note – The above discussion is applicable for the console help files also.

http://www.sun.com/sunmanagementcenter/
494 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

CHAPTER 22

Integrating Addon Products with
Sun Management Center

This chapter covers the following topics:

■ Sun Management Center Directory Organization—page 496

■ Packaging of Addon—page 499

■ Locale Information—page 506

■ Addon Setup Interface—page 506

■ es-inst -R Option—page 507

■ Packaging for Windows—page 508

This document describes the procedures to be followed for proper Addon

integration with Sun Management Center.

Below are definitions of some key terms used in this document:

■ A package is a software package that contains images for installation.

■ A component is defined as a “logical” group of packages and forms a basic unit of

installation. For example, the set of packages can be divided to belong to one of ro

the following: the Agent component, the Console component, or the Server

component.

■ A pack is a group of components.

■ A product is a group of packs. For example, there are two main products, the

Production Environment (PE) product and the Developer Environment (DE)

product. This term is also used to define a group of packs that belong to a third

party vendor.

■ An Addon product is a product with one or more packs possibly from a third

party. These products may not necessarily be bundled with the Sun Management

Center; therefore, the corresponding packs may not reside in the same location as

the Sun Management Center packs.

By organizing Addons as described in this document, Sun Management Center

installation and setup procedures can detect the Addon product and continue to

install and setup Addon.
495

Sun Management Center Directory
Organization

This section deals with the layout of Addon packages with respect to overall Sun

Management Center Directory Organization.

Sun Management Center image is organized into three main levels:

■ the product level

■ the pack level

■ the package level

The two main Sun Management Center products, the Production Environment (PE)

and the Developer Environment (DE), reside in the product level. Addon products

reside in the Addons sub-directory at the product level.

■ Each product level has an OS-independent sub-directory, called Common, for

common code as well as OS-dependent sub-directories as required.

■ Each of these sub-directories in turn have pack-level sub-directories.

■ Each pack level sub-directory has package-level sub-directories.

■ In addition to pack directories, each OS directory contains the `locale' sub-

directory and the following files: installation.info and

installation.properties .

■ installation.info is the configuration file that drives the installation of

Addon product

■ installation.properties is the corresponding internationalization file.

For backward compatibility, Sun Management Center 2.x Addon products can also

be installed using Sun Management Center installation program.

All Sun Management Center 2.x Addon products should reside under the following

directory:

The installation of Sun Management Center 2.x Addon products is driven by

pkginfo file instead of the installation.info file.

Addons/ SUNMC2.X/<OS>
496 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Layout of Addon Products

Therefore, the layout of Addon products with respect to the overall Sun

Management Center directory hierarchy can be represented as below:

+PE

+DE

-Addons

(Product Level)

-ADDON_PRODUCT1

+Common

-Solaris_2.6

+locale

-installation.info

-installation.properties

 (Pack Level)

-PACK1

 (Package Level)

-PACKAGE1

-pkginfo

-pkgmap

+reloc

+PACKAGE2

+PACK2

+Solaris_7

+Solaris_8

+ADDON_PRODUCT2

-SUNMC2.X

-Solaris_7

+locale

+Desktop

+PACKAGE1

-pkginfo

-pkgmap

-reloc

+PACKAGE2
 +WorkgroupServer

+PACKAGE1

+PACKAGE2

+Solaris_8

+Docs

+Patches
Chapter 22 Integrating Addon Products with Sun Management Center 497

Example Layout

An Addon product, for example, can be structured in the following manner:

1. When the Product Name is AdvancedMonitoring :

2. When the OS specific package is Solaris 7:

Note that installation files are specific to each OS directory:

3. When the Advanced Monitoring product consists of a Basic pack:

4. When the Basic pack consists of SUNWesamnpackage:

5. Each package contains pkginfo and pkgmap files:

<image>/Addons/AdvancedMonitoring/

<image>/Addons/AdvancedMonitoring/Solaris_7/

<image>/Addons/AdvancedMonitoring/Solaris_7/installation.info

<image>/Addons/AdvancedMonitoring/Solaris_7/installation.properties

<image>/Addons/AdvancedMonitoring/Solaris_7/Basic

<image>/Addons/AdvancedMonitoring/Solaris_7/Basic/SUNWesamn

<image>/Addons/AdvancedMonitoring/Solaris_7/Basic/SUNWesamn/pkginfo

<image>/Addons/AdvancedMonitoring/Solaris_7/Basic/SUNWesamn/pkgmap
498 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Packaging of Addon

This section deals with steps on how to package Addon products so that they are

installed properly. There are two ways by which Addon products can interface with

the installation program so that the installation program can detect them:

1. Using the installation.info File

2. Packaging Sun Management Center 2.x Addon Products

Using the installation.info File

Supply a file which captures the installation information of Addon. This is the

installation.info file. The installation.properties file is the

corresponding internationalization file. For proper detection of an Addon product,

these files have to be placed in their specific directory, as decribed in the previous

section.

The format of these files is discussed below. The following table describes the

variables that are part of tge pkginfo file for each package:

Variable Description

CATEGORY If the term “SyMON” is not present in the variable,

the package will not be presented for selection.

ES_ADDON_COMPONENT Specifies which component the package belongs to:

agent, server, or console. The terms, agent, server,

and console, should be specified in lower case.
Chapter 22 Integrating Addon Products with Sun Management Center 499

s. (Currently,

gical group

t of packages

ent or server

information

rmation

ticular pack.

Advanced
Format of the installation.info File

This file contains all the necessary information for installation. It refers to

installation.properties for internationalized messages. All italicized words

should be replaced with actual values. There should not be any whitespace before or

after the equal sign (`=') . The file format and a brief description of each format

follow:

<PRODUCT>

 PRODUCT_KEY= product key
 <PACK>

 PACK_KEY= pack key
 PACK_LICENSE= <key>:<question>

PACK_SUBDIR=relative sub-directory that contains the pack
 PACK_CD= a CD number
 <COMPONENT>

 COMPONENT_KEY= Component Key
 ESSENTIAL= true | false
 LAYER= a comma-delimited list of layer keys
 DEPENDENCIES= a comma-delimited list of keys
 COMPONENT_SCRIPT= Script to be run before

installing this component .

 PACKAGES= a list of comma-delimited sub-directories
 </COMPONENT>

 <COMPONENT>

 </COMPONENT>

 </PACK>

</PRODUCT>

Product Consists of group of Pack's and Pack consists of group of Component

a product may have only one Pack). A `Component' is defined as a lo

of packages and forms a basic unit of installation. For example, the se

can be divided to belong to either agent component, console compon

component.

PRODUCT_KEY,
PACK_KEY, and
COMPONENT_KEY

Used by the Sun Management Center installation program to display

on the Addon package being installed. They are purely used for info

display purposes.

PACK_LICENCE Used to generate a question to obtain licensing information for a par

The question is displayed. The key is specific to a pack. For example,

Services pack will have have advanced_services as key.
500 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

ith a positive

K_CD value

esponding

another CD

be kept on

g the

ent to be

mponent

ependencies

lue.

der in which

ram will

re pack and

ing packages

e script.

t should not

indicate that

in

n, use the

de should be

d as
All OS-independent components should be included explicitly even though they

reside in the Commondirectory. If the installation program cannot find a specified

component in the specified subdirectory, it will try to find in the Commondirectory.

PACK_SUBDIR Specifies the relative sub-directory that contains the pack relative to

installation.info file.

PACK_CD If a pack resides on another CD, indicate the setting PACK_CD key w

number.

• For Addons being shipped with Sun Management Center, the PAC

must be 2.

• Third-party Addons should use value of 1.

The installation program will prompt for the directory when the corr

CD is mounted. Since ordering is important, all packs that reside on

should be placed on the bottom of the list. All essential packs should

the first CD as much as possible.

ESSENTIAL Used to specify whether the user should be prompted before installin

component (TRUE/FALSE).

LAYER Specifies the layer that needs to be already installed, for this compon

installed. The valid values are LAYER.AGENT, LAYER.SERVER, and

LAYER.CONSOLE.

DEPENDENCIES Specify the COMPONENT_KEY of the Component on which this Co

depends. Components should be designed in a way that no circular d

are possible. If a component has no dependencies, leave an empty va

All dependent components must be specified in the same file. The or

each pack or component is set out is important. The installation prog

follow that order in the installation sequence. Hence, the essential co

component (that has no dependencies) should be put on the top.

COMPONENT_SCRIPT If a Component requires a script to be executed before the correspond

are installed, the script (unix shell script) should be provided in the

COMPONENT_SCRIPTfield. The script should have a function named

runComponentScript() that is the starting point of execution of th

runComponentScript() should return 0 to indicate that the produc

be installed, 1 to indicate a successful execution of the script, and 2 to

this component should not be installed. This script should be placed

corresponding `Pack' sub-directory.

PACKAGES Specifies the packages that belong to this component.

If a package name in the PACKAGES list requires internationalizatio

"${LOCALE_CODE}" string to indicate where the internationalized co

placed. For example, SUNW${LOCALE_CODE}eshwould be interprete

SUNWzheshif the locale code is “zh. ”
Chapter 22 Integrating Addon Products with Sun Management Center 501

For windows installation, all the information should be filled in as well. The

PACKAGESfield will contain a list of directories under the pack directory that should

be copied over to the target directory of a Windows machine. (The target directory is

prompted for by the installation script). Everything in the specified directories will

be copied over to target destination. Following is an example installation.info
file used for the AdvancedMonitoring Addon product. The corresponding

installation.properties file is supplied later on this section:

<PRODUCT>

 PRODUCT_KEY=PRODUCT.ADVANCEDMONITORING

 <PACK>

 PACK_KEY=PACK.BASIC

 PACK_LICENSE=advanced_monitoring:LICENSE.QUESTION

 PACK_SUBDIR=Basic

 PACK_CD=2

 <COMPONENT>

 COMPONENT_KEY=COMPONENT.SERVER

 ESSENTIAL=true

 LAYER=LAYER.SERVER

 DEPENDENCIES=

 COMPONENT_SCRIPT=

 PACKAGES=SUNWessmn

 </COMPONENT>

 <COMPONENT>

 COMPONENT_KEY=COMPONENT.AGENT

 ESSENTIAL=true

 LAYER=LAYER.AGENT,LAYER.SERVER

 DEPENDENCIES=

 COMPONENT_SCRIPT=

 PACKAGES=SUNWesamn

 </COMPONENT>

 <COMPONENT>

 COMPONENT_KEY=COMPONENT.CONSOLE

 ESSENTIAL=true

 LAYER=LAYER.CONSOLE

 DEPENDENCIES=

 COMPONENT_SCRIPT=

 PACKAGES=SUNWescam

 </COMPONENT>

 </PACK>

</PRODUCT>
502 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

The installation.properties File

This file follows the naming conventions of internationalization for Java. The format

is: "installation_<LOCALE>.properties ", where <LOCALE> is a specific locale

(for example, zh , en_US, and such). The absence of _<LOCALE>, means that the

installation.properties file is in English.

The file contains all the keys that map to their respective internationalized values

and is used by the installation program in conjunction with the

installation.info file. It contains only the key/value pairs for layers, packs,

and components. There should not be any whitespace in the keys, neither before nor

after the equal sign (=). Comments start with the pound character (#).

Following is the installation.properties file for installation.info file

presented above:

PRODUCT.ADVANCEDMONITORING=Advanced System Monitoring

#

#Layers

#

LAYER.SERVER=Server Layer

LAYER.AGENT=Agent Layer

LAYER.CONSOLE=Console Layer

#

#Packs

#

PACK.BASIC=Advanced Monitoring Pack

#

#Components

#

COMPONENT.SERVER=Advanced Monitoring Server Component

COMPONENT.AGENT=Advanced Monitoring Agent Component

COMPONENT.CONSOLE=Advanced Monitoring Console Component

#

#License question

#

LICENSE.QUESTION=Please enter Advanced System Monitoring Product
license or press return.
Chapter 22 Integrating Addon Products with Sun Management Center 503

Packaging Sun Management Center 2.x Addon

Products

For backward compatibility, Addons which provide installation information through

pkginfo variables (instead of installation.info) file will also be detected and

processed. This method is appropriate for Sun Management Center 2.x Addon

products.

These packages must be placed in special directory, SUNMC2.X(described in the

previous section). For these packages, the following variables in the pkginfo file

will be used to filter Addons as described in the table:

Variable Semantics

CATEGORY If the term “SyMON” is not present in the variable, the package

will not be presented for selection.

ES_ADDON_COMPONENT Specifies which component the package belongs to: agent ,

server, or console. These should be specified in lower case.

ES_ADDON_PLATFORM If the value of this variable is blank, then continues with
further checking on whether or not to install the package.
For more information, see “ES_ADDON_PLATFORM” on

page 505.

ES_ADDON_PACKAGE_DEPENDENCY A list of packages separated by a space between each package. If

any of the required packages are not present on the system, this

Addon will not be presented for selection.

ES_ADDON_FILE_DEPENDENCY A list of files, separated by spaces, which must exist on the host

for this package to be installed.

The ES_ADDON_DIRECTORY_DEPENDENCY variable is

provided for directories in which files are searched.

ES_ADDON_DIRECTORY_DEPENDENCYA list of directories, separated by spaces, in which the files

mentioned in ES_ADDON_FILE_DEPENDENCYare searched.

ES_ADDON_VERSION Version required in x.x.x format. Forward compatibility is

assumed here, that is, a pack for 2.1.1 is assumed to work for 3.0,

3.5, 4.0, and other versions.

ES_ADDON_CONFIRM TRUE to check the ES_ADDON_ FAMILY variable. For other

values, there is no effect on installation.

ES_ADDON_FAMILY This variable is used only if ES_ADDON_CONFIRM=true.
For more information, see “ES_ADDON_FAMILY” on

page 505.
504 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

ES_ADDON_PLATFORM

If the value of this variable is blank, then check further to determine whether to

install the package or not. If the value is not blank, it should be same as the current

platform in order to proceed to further checking for installing this package.

Sun Management Center installation program uses the following procedure to

obtain the string representing current platform:

1. To obtain the value of DirName, enter the following command:

DirName is the string obtained from the above command, for example, if the result

is: SunOS machne 5.7 Generic_106541-04 sun4u sparc SUNW,Ultra-60 ,

then DirName would be SUNW,Ultra-60 .

2. Execute the following command:

A typical result of the above command would be:

System Configuration: Sun Microsystems sun4u Sun Ultra 60
UPA/PCI (2 X UltraSPARC-II 360MHz)

In this case, the string representing the current platform is Sun Ultra 60

(not Sun Ultra 6).

3. From the above result, enter the string representing the current platform as a
value for ES_ADDON_PLATFORM.

If there are more than one relevant platforms, seperate the entries by a colon.

ES_ADDON_FAMILY

This variable is used only if ES_ADDON_CONFIRM=true.

The value of this variable is compared with the entry in <VAROPTDIR>/platform/
platform.prop file and the component is installed if they are same. If the file entry

is different then the component is not installed. If the file does not exist, the

installation program prompts the user to confirm the installation. Also if the file

does not exist, the installation program prompts you to enter the string representing

the family. Your entry is stored in platform.prop file and it is used in future

comparisons with ES_ADDON_FAMILY.

uname -a

/usr/platform/< DirName >/sbin/prtdiag | head -1
Chapter 22 Integrating Addon Products with Sun Management Center 505

Locale Information

For the location of the locale directory, refer to “Sun Management Center Directory

Organization” on page 496.

The locale directory contains locale information for script-based installation of this

pack. Error messages and other messages are contained in the respective .mo files.

For more information on .mo files and structure of locale directory, refer to man

pages for msgfmt , gettext , textdomain and Chapter 19.

Addon Setup Interface

If an addon product requires setup after installation, it should have its own setup

script with the name es-setup.sh in the sbin directory under its own top level

directory.

where,

<BASEDIR> is the base location of the installed image. For example, the name of

Addon is:

For example, if /opt/SUNWsymon is the base directory, then the es-setup script for

Advanced Monitoring product should reside at:

<BASEDIR>/addons/<Addon_product>/sbin/es-setup.sh

/opt/SUNWsymon/<Addon_product>

/opt/SUNWsymon/addons/AdvancedMonitoring/sbin/es-setup.sh
506 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

es-inst -R Option

es-inst -R option is used for installing Sun Management Center when the root

filesystem of the target machine is mounted on the current machine. In this situation,

the platform and the OS of the target machine may differ from their counterparts on

the current machine. For Addon products to behave correctly in this situation, the

addon scripts (such as, the component script) should make use of the target

machine’s attributes (platform and OS).

The following variables may be used in addon scripts to obtain this information.

For the target machine's platform:

For the target machine's OS:

Note that the PKG_INSTALL_ROOTvariable maintained by the pkgadd program can

be used to obtain the location at which the root filesystem has been mounted.

For example, the following could be a code fragment from the component script

demonstrating the use of RELOC_PLATFORMto obtain the target platform

information:

RELOC_PLATFORM

OSVERS

runComponentScript() {

 if [-z "$RELOC_PLATFORM"]; then

RELOC_PLATFORM=`/usr/bin/uname -i`

 fi

/usr/bin/echo "$RELOC_PLATFORM" | /usr/bin/grep "Ultra-Enterprise-10000" > /dev/null 2>&1

 if [$? -eq 0]; then

return 1 # platform correct, install component

 else

return 2 # platform incorrect, do not install component

 fi

}

Chapter 22 Integrating Addon Products with Sun Management Center 507

Packaging for Windows

The Addon packages that need to be installed on Windows platform should be laid

out in the following manner:

■ The installation.info and installation.properties files should be

placed in:

For example:

Note – The PACK_CD key in the installation.info file should be set to 2.

■ The actual packages and directories should be placed in:

For example, for Addon product, WinAddon1 , consisting of pack Pack1 , and Pack1
consisting of directories Dir1 and Dir2 , would have a directory organization as

follows:

<image>/Windows/Addons/<Addon-Product>/

<image>

<Windows>

<Addons>

<WinAddon1>

 installation.info

 installation.properties

<image>/Addons/Windows/<Addon-Product>/<Pack>/

<Addons>

<Windows>

<WinAddon1>

<Pack1>

<Dir1>

<Dir2>
508 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

CHAPTER 23

Troubleshooting

This section includes information on troubleshooting. Items covered include

information on:

■ Module—page 509

■ Console—page 511

Module

During the Sun Management Center module development process, when you

encounter problems with module loading and its additional functionalities, refer to

one of the three areas where Sun Management Center software provides you with

trouble shooting information.

■ On the console—While loading a module from console, Sun Management Center

software provides information about the status of the loading operation.

■ In the agent log file—The agent log file provides information regarding module

loading and module operation. The agent log file is a circular log file and can be

viewed by entering the following command:

■ When in the Interactive Agent mode—Starting the agent in the interactive mode

allows you to troubleshoot module loading. To run the agent in interactive mode,

enter the following command:

The following sections provide some examples for each one of the above categories.

/opt/SUNWsymon/sbin/es-run ctail -f /var/opt/SUNWsymon/log/agent.log

/opt/SUNWsymon/es-start -ai
509

Console Messages

Agent Log File Messages

TABLE 23-1 Example Error Messages that Display on the Console

Problem Troubleshooting Information

Loading at the wrong

place.

Check the ‘ param:moduleType = ' value in <module>-m.x

file.

Error Message:

Module load failed.

Check to see if the following conditions exist:

• If the agent file is under /opt/SUNWsymon/modules/cfg
• If the models file is under /opt/SUNWsymon/modules/cfg
• For any syntax error in module files

• For valid syntax and datatypes in the models file

• If the library files exist

TABLE 23-2 Example Error Messages That Are Found in the Agent Log File

Error Messages Troubleshooting Information

Import interface failed Check to see if the agent file is under

/opt/SUNWsymon/modules/cfg .

Shutting down subagents parsing error in file: /
/localhost/<module>-d.x flags=ro(1) :

failed to open file. aborting execution

Check to see if the models file is under

/opt/SUNWsymon/modules/cfg .

Syntax error in file:

//localhost/<module-file >

flags=ro(42) at token '}' aborting execution

Check for syntax error in <module-file>

around line# 42.

Parsing error in file:
//localhost/<module>-models-d.x
flags=ro(17)inheri t: could not inherit

ASDF. aborting execution

Check the datatype ASDF in models file.

Shutting down subagents, general parsing error,

file:

//localhost/helloworld-version02-d.x
flags=ro 10 couldn't load file
pkgdemohw2.so":ld.so.1:esd:fatal:lib
demohw2.so.1:open failed: No such file or

directory"], aborting execution

Check to see if the of library files exist.
510 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

Interactive Agent Mode Messages

Console

The Sun Management Center console is based on a configuration file infrastructure.

This infrastructure provides a scripting language that is interpreted at run time to

create Java consoles. Because of this late binding, most of the errors are shown at run

time.

Errors are displayed in two places:

■ Inside the terminal window in which the Sun Management Center console is

started: If you have made any syntax errors in your configuration file definition

for your application, those errors will show up in this terminal window.

■ Inside the Sun Management Center Console Messages dialog which is invoked

from the file pulldownmenu in the main console: The error messages that are

shown here are run time errors. For example, as given in the Task List, if you

mention a wrong path for your awx:component bean, you will get an error that

indicates this class was not found. It is advisable to keep the Sun Management

Center Console Messages dialog up while you are doing development. You can

TABLE 23-3 Example Error Messages Provided by the Interactive Agent

Error Messages Troubleshooting Information

Parsing error in file: //localhost/<module>-
d.x flags=ro(1) : failed to open file

aborting execution

Check to see if the models file is under

/opt/SUNWsymon/modules/cfg .

Syntax error in file: //localhost/<module-
file> flags=ro(42) at token '} '

aborting execution

Check for syntax error in <module-file>

around line# 42.

Parsing error in file: //localhost/<module>-
models-d.x flags=ro(17) :

inherit: could not inherit ASDF

aborting execution

Check the datatype ASDF in models

file.

General parsing error

file://localhost/helloworld-version02-
d.x
flags=ro 10

couldn't load file pkgdemohw2.so":

.so.1: esd: fatal: libdemohw2.so.1: open failed: No

such file or directory"]

aborting execution

Check to see if the library file exists.
Chapter 23 Troubleshooting 511

also look at the Sun Management Center server log to see if the communication

between the Sun Management Center console and Sun Management Center server

is going through.

Note – All configuration files (those with extension .x) are installed on the Sun

Management Center server, hence any action on these files will go through that

server.

For example, if you are using a [load myConsole-j.x] construct in your

application, then in the Sun Management Center server log you should see this file

being read by the console.

The Sun Management Center server log is a circular text file. To look at it in a ’tail’

mode run following command:

No console log is created by the Sun Management Center console. All console debug

messages are displayed in the Sun Management Center Console Messages dialog.

When the Sun Management Center console comes up, it redirects all stdout
messages to this dialog. Thus, if your Java code has System.out.println
statements, the output of those will be displayed in this dialog.

/opt/SUNWsymon/sbin/es-run ctail -f /var/opt/SUNWsymon/log/server.log
512 Sun Management Center 3.0 Developer Environment Reference Manual • November 2000

APPENDIX A

Modules Appendix

This chapter covers the following topics:

■ Module Building Environment—page 513

■ Agent Framework—page 522

■ Useful Tcl Commands and Filters—page 545

■ Alarm Status Strings—page 548

■ Module Testing Tips—page 551

■ File Naming Conventions—page 551

■ Location of Module Files—page 554

■ Data Management—page 555

Module Building Environment
This section covers the following topics:

■ Agent Development—page 513

■ Agent Framework—page 522

Agent Development

The Sun Management Center agent is based on Tcl and TOE technologies. This

section provides background information about the development environment of the

Sun Management Center agent.
513

Tcl Environment

Tcl (Tool Command Language) is an interpreted command-oriented language that

can be used to connect building blocks built in system programming languages like

C. Commands can be added to the interpreter using a clean C interface, and these

commands co-exist with built-in Tcl commands.

Tcl has both simple variables and associative arrays, and all values (including

procedure bodies) are represented as strings.

For more information about the Tcl language, refer to Tcl and Tk Toolkit.

TOE Environment

The Tcl Object Extension (TOE) is a simple modification to the Tcl language that

provides an object-oriented environment that supports a rich set of object-oriented

(OO) features, and that is backward compatible with conventional Tcl code.

The premise behind the TOE modifications is simple. It was observed that all Tcl

hash table access is channelled through two C macros, one to create hash entries and

one to locate them.

Using this knowledge, these macros were overridden to call a set of recursive hash

table operators that are capable of locating commands or data in a more

sophisticated manner. This twisting of the hash table operators can be done with a

one-line modification to the Tcl source code and is completely transparent to all

users of these functions.

Using the modified hash table behavior, an object system was built that capitalizes

on this new hash table scoping algorithm. A simple data structure, known as a TOE

object, was created that is simply a pair of hash tables (one for commands, one for

data) and a set of pointers to other TOE objects. The hash tables store procedures

and data (properties) local to that object, while the pointers reference parent objects.

Parent objects can be recursed to locate commands or data not found in the local

hash tables.

To complete the system, a pointer to the current TOE object is placed in the global

command hash table of the interpreter. When a command is executed, the Tcl system

uses the low level Tcl hash operators to find the body of the command. These

modified operators detect an active TOE context, and delegate the hash lookup to

the hash tables of the current TOE object. Failure to locate the target key in that

object triggers recursion into each of the parent pointers until the key is hit or all

ancestors have been searched.
514 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

This transparent recursion makes all hash entries in all parents of an object appear to

be local to that object. This behavior corresponds to inheritance in an object oriented

environment. Other key object oriented features, such as polymorphism and

dynamic binding, also fall out of the design, as the function performed by a

procedure depends entirely on the object in which it was invoked.

TOE Objects

A TOE object is a data structure consisting of a command hash table, a dictionary

hash table (for object property storage), parent object pointers (for ancestral

relationships) and a superior object pointer (for structural relationships).

FIGURE A-1 TOE Object

Because a TOE object contains its own command and dictionary hash tables, objects

can support their own command vocabulary and properties. The command names

are local to the object, so commands bearing the same name can coexist in different

objects. The dictionary properties are independent of the Tcl variable system, so

variable use need not alter or conflict with object properties.

Object Relationships

The TOE system supports ancestral and structural object relationships.

Ancestral Relationships

These relationships define the parent/child relationships of objects. This defines the

object-oriented inheritance characteristics of an object, with the child object

inheriting commands and data from the parent object.

Parents
Superior

Command Dictionary
Appendix A Modules Appendix 515

FIGURE A-2 Simple Parent/Child Object Relationship

In this relationship, child objects can see all of the commands and dictionary data in

the parent object, that is implemented by referencing the parent objects on every

hash table lookup. This parental referencing becomes a parent tree traversal if the

parents themselves have parents.

FIGURE A-3 Multiparent/Child Object Relationships

Structural Relationships

These relationships define the superior/inferior relationships of objects in a tree

structure. Objects can be organized into tree structures where each object has a

superior (the object up the tree) and zero or more inferiors (the objects down the

tree).

FIGURE A-4 Superior and Inferior Object Relationship

Combining Ancestral and Structural Relationships

By independently supporting these two types of relationships, trees of objects can be

constructed where the structural aspects of the tree (defined by the overall purpose

of the objects) is independent of the inheritance of the nodes in the tree (defined by

the functions performed by the individual objects).

parent child

parent childparent

parent

branch

leaf1 leaf2 leaf3 leaf4

su
pe

ri
or

in
fe

ri
or
516 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

FIGURE A-5 Object Relationships of Filesystem Example

In this example, the structure of the tree is related to the overall purpose of the

objects (in this case, a model of a file system), while the ancestry of each object

determines what the objects do and how it behaves (in this case, the primitive data

types the object represents).

Object Property Dictionaries

Every TOE object contains a set of properties. In the TOE environment, object

properties are stored in a dictionary. Each object contains a dictionary that stores

properties relevant to that object instance. In the implementation of TOE, a

dictionary is a hash table that stores information using logical keys.

Dictionary Keys

The TOE object dictionaries use a two-key paradigm, where two logical names are

used to reference any one data entity. This allows dictionaries to be partitioned into

separate sections, with the division being based on the purpose, source, or volatility

of the data being stored. These dictionary partitions are referred to as slices in the

TOE system, and the pieces of data within each slice are named using what is

referred to as the dictionary key. Dictionary slices can be thought of as property

classes when used to configure object instances.

TABLE A-1 Dictionary Example

Slice Key Value

value refreshCommand "df -kF ufs"

value refreshInterval "60"

alarmlimit warning "10000"

alarmlimit error "5000"

data 1 "95000"

primitives filesystem

sizestring mount freefloat
Appendix A Modules Appendix 517

)

The object’s dictionary has three partitions or slices:

■ Value

■ Alarmlimit

■ Data

Value

The value slice contains configuration information. In this case it is the refresh

command and interval of the file system entity.

Alarmlimit

The alarmlimit slice contains the error and warning level alarm limits.

Data

The data slice contains the dynamic data of the object, in this case the current

floating point value of the managed property, free.

This is a typical example of data partitioning using slices, where the slices are based

on the purposes and sources of the dictionary entries and are directly related to the

classes of properties used by an object instance.

The dictionaries define certain operations that can be performed on entire slices.

These operations include the ability to list all the currently defined keys in a slice

and to undefine an entire slice. Hence maintenance of dictionary keys is simplified if

the slices are properly configured, and a certain amount of accountability can be

achieved if the dictionaries are partitioned along functional boundaries.

Importing and Exporting Dictionaries (Module Configuration Files

The TOE object dictionaries have the inherent ability to import and export

themselves as formatted text. The format of this representation is referred to as the .x

file format. In this format, the slices and keys of a dictionary are represented using a

well-defined, unambiguous syntax.
518 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Dictionary Entry (Property) Representation

Dictionary entries can be described using the following syntax:

Using this syntax, the dictionary entries in the preceding example table can be

represented as:

In this example, both of the slices of the object’s dictionary were exported together,

and all keys are prefixed by their slice name. In actuality, slices can be exported and

imported individually, and if there is only one slice present, the slice prefix is

optional. This can be thought of as slice relative, since the keys are placed in

whatever slice is specified at the time of import. For example, the data slice of the

dictionary can be exported slice relative as follows:

Multi-object Dictionary Representation

The dictionaries of many objects can be exported or imported in a single operation.

In such operations, the tree structure of the objects is maintained in the .x file output.

The .x file syntax for an object is as follows:

In this notation, the opening of the curly brace indicates that the key-value pairs to

follow belong to the object named object1. Such a representation is generated if an

export is performed from the superior object of the object1 object. This hierarchical

[slice:]key = value

value:refreshCommand = "df -kFufs"
value:refreshInterval = "60"
alarmlimit:warning = "10000"
alarmlimit:error = "5000"
data:1 = 95000

warning = "10000"
error = "5000"

object1 = {
key1 = "value 1"
key2 = "value 2"
}

Appendix A Modules Appendix 519

representation can be nested as deep as the object tree, supporting arbitrarily nested

.x file representations. The following is an example of an .x file representation that is

two levels deep:

Action Specifications

The .x file format supports the specification of actions, or logical operations, to be

performed during initialization on objects described in the object tree. The general

form of an action is:

This syntax is simply a set of square braces enclosing the action command line, and

optional arguments can be specified. The actual actions supported by the .x file

parser depends on the application using the object tree, but several actions are

always valid, such as:

■ Inherit

■ Load

■ Source

Inherit—Adds the named object(s) to the object’s parent list, thus altering the

ancestral relationships of the current object. This action is the primary way of

creating parent and child relationships within trees that are specified using module

configuration files.

object1 = {
key1 = "value 1"
key2 = "value 2"
object2 = {
key3 = "value 3"
key4 = "value 4"
}
}

[action args ...]

mount = { [inherit primitives.string] ... }
520 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Load—Loads the named .x file into the current object. This is the primary

mechanism for combining multiple module configuration files into a single object

tree. In the following example, the .x file named primitives.x is loaded into the

primitives object.

Source—Loads and executes a Tcl/TOE source file into the current object. This is the

primary means of extending and overriding an object’s command set from an .x file.

In the example, a Tcl/TOE file named primitives.prc is loaded and executed

into the proc object.

By using the nested nature of module configuration files and the inherit action, both

the ancestral and structural aspects of an object tree can be represented.

The following .x file can be used to describe the file system subtree in FIGURE A-5:

FIGURE A-6 .x file Syntax for Filesystem Example

TOE Object Classes

TOE object classes are the primary mechanism employed to extend the command

vocabulary of TOE objects. TOE object classes encapsulate a set of commands that

provide a well defined function. TOE objects can then inherit these classes to gain

the desired functionality of the command set.

primitives = { [load primitives.x] }

proc = { [source primitives.prc] }

filesystem = {
mount = {
[inherit primitives.string]
}
size = {
[inherit primitives.float]
}
free = {
[inherit primitives.float]
}
}

Appendix A Modules Appendix 521

Examples of TOE object classes used by the Sun Management Center agent include

the MIB node class and the SNMP class. The MIB node class enables TOE objects to

gather and store data periodically and perform alarm checks on the data. The SNMP

class encapsulates SNMP communication capabilities.

Agent Framework
The agent framework consists of a single tree structure within the agent that

contains global services, configuration data, classes and templates that can be used

by any object within the agent.

The following is a general structure of an agent’s TOE object tree:

FIGURE A-7 TOE Object Tree Structure of Agent

The agent framework provides the core agent services and functions that include

SNMP communications, command execution, and module management.

This framework exists to support the realization of managed objects, properties and

other modeling elements that perform the actual monitoring and management

functions of the agent. The managed objects, properties, and other modeling

elements are encapsulated in management modules and are also loaded in this tree.

Shell Service

The shell service object (.services.io.sh) provides a mechanism for the Sun

Management Center agent to execute commands (scripts and programs) and obtain

the results of the command. This service is commonly used by module MIB nodes

for data acquisition and for executing alarm actions.

The shell service supports the queuing of commands to be executed. It also supports

the spawning of multiple shells to allow commands to be executed in parallel.

This service involves the agent opening pipes to one or more captive Bourne shell

processes. The maximum number of shells to run is configurable.

classes config services isotemplates config

(root)
522 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

FIGURE A-8 Shell Service Data Flow

Shell Service Result Handling

When interfacing with the shell services, the caller specifies the shell command and

the callback to process the command results.

The shell command to be executed can be specified with or without a full path. If the

command is not specified with a full path, the command is searched for in the

directories specified by the PATH environment variable of the agent.

The callback specification is comprised of a TOE object identifier and a callback

method. The TOE ID specifies the TOE object context in which the callback method

should be executed. The callback method must be specified with the %result
argument (for example, callbackMethod %result) that is substituted with a result

specification every time the callback is invoked.

The result specification returned to the callback is in the form of a three element list

comprised of a return code, a transaction identifier, and corresponding data. The

possible results are as follows:

■ wait <tid> "" indicates that the command is being executed asynchronously and

that the final result is pending.

Shell service

Management Information Base (MIB)

Sun Management Center agent

Bourne Bourne

Incoming results

Outgoing commands

shell shell
Appendix A Modules Appendix 523

■ data <tid> <command result> indicates successful execution of the command and

the command results are included as the third element in the list.

■ error <tid> <error message> indicates that the execution of the command resulted

in an error (that is, program does not exist or the program wrote to STDERR

instead of STDOUT). The error message is included as the third element in the

list.

Shell Protocol

A very simple shell protocol defines the interaction between the agent and the shell.

For each command to be executed, the agent sends the command to be executed to

the shell, followed by echo EOT, where EOT is the terminating character. The shell

executes the commands so that the command result is returned followed by EOT.

The reception of the terminating character indicates the end of the transaction,

implying that the next command can be sent to the shell.

Ping Service

The icmp object (.services.io.icmp) enables the Sun Management Center agent

to ping hosts to determine whether they are up or down. Ping uses the ICMP

protocol ECHO_REQUESTdatagram to elicit an ICMP ECHO_RESPONSEfrom the

specified host. A host is assumed to be up if it responds. By default, a host is

assumed to be down if it does not respond after three retries, each with a timeout of

10 seconds. The number of retries and the timeout can be overridden by specifying

the maxRetries and retryInterval parameters, respectively, in the

.services.io.icmp object.

The ping service is used by the SNMP interface to determine the status of a host

whose agent does not respond to an SNMP request. This service is also used by the

Topology module in the Topology agent when monitoring entities as IP-based

devices.

Master Event Loop (MEL) Service

The mel object (.services.mel) provides timer services to other objects. It allows

other nodes to register and cancel time based events.
524 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Default I/O Service

The default service (.services.io.default) is a default shell service provided

for general use by any object. However, in general, modules that require a shell

service should specify their own shell service to guarantee the availability of its

access to a shell service.

Data Logging Registry Service

This service (.services.history) maintains a table of all current data logging

requests. This table is automatically updated whenever the data logging

specifications of a managed property changes.

This table is queried by the data logging registry module using the listRegistry
method. This module allows console users to view information about all managed

properties whose values are currently being logged.

The logging information includes the following fields:

■ state—state of destination log file

■ module name—name of module in which the property whose data is being logged

resides

■ instance name—module instance name of module in which the property whose

data is being logged resides

■ property name—name of property whose value is being logged

■ log interval—logging interval

■ file status—flag indicating whether data logging to file is currently enabled (for

example, on|off)

■ logURL—interface specification of the destination log file

■ cache status—flag indicating whether data is currently being updated in the

internal history buffer

■ cache size—current size of the internal history buffer

Note – The data logging registry service does not perform the actual addition or

removal data logging requests; it maintains a table that reflects the current data

logging requests.

The configuration of data logging is supported through shadow SNMP requests to

the appropriate MIB node.
Appendix A Modules Appendix 525

File Scanning Service

This service (.services.fscan) allows MIB objects to subscribe for file scanning

services. Conceptually, MIB objects subscribe by specifying a filename, regular

expression pattern, and a callback. The service incrementally scans the file for

regular expression pattern and when the pattern is detected, the callback is called

with the match results. When the MIB object is no longer interested in the scanning

of the pattern, it can then perform an unsubscription request.

This service is used by MIB objects whose alarm check involves log rules.

Subscribing for Patterns

To subscribe for the detection of a pattern in a file, the fsSubscribe method is used:

where:

■ filename is the name of the file to be scanned.

■ pattern is the regular expression pattern to scan for.

■ callback spec is a callback specification that is dependent on the node template. For

the default node template (fscan-node-d), the callback spec is comprised of a three

element list consisting of a TOE object id, a row name, and a rule identifier.

■ node template is an optional specification that defines the type of object that must

be instantiated to service the subscription request. The default node template is

fscan-node-d, which assumes that the caller is a rule (that is, logSubscribe) and

expects the callback specification to contain a TOE object id, a row name, and a

rule identifier. Currently, no other node templates are defined.

If the subscription is successful, the TOE object ID of the file scanning node is

returned. If the subscription fails, –1 is returned.

Unsubscribing Patterns

To remove an existing subscription, the fsUnsubscribe method can be used:

fsSubscribe < filename > <pattern > <callback spec > ?<node template >?

fsUnsubscribe < filename > <pattern > <callback >
526 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Module Management

Module management is a fundamental function provided by the Sun Management

Center agent framework. It enables the agent to load and unload the management

modules that define the monitoring and management functions performed by the

agent.

Modules comprise of a set of managed objects and properties that focus on a

particular aspect of system or application condition and performance.

The discussion of module management in the Sun Management Center agent is

divided into the following topics:

■ MIB Subtrees: This section describes the structure of the trees in which

management modules are loaded.

■ Module Loading: This section describes the mechanisms used for loading and

unloading modules.

■ MIB Manager: This section describes additional functions provided by the agent

to manage modules.

MIB Subtrees

The Sun Management Center agent supports SNMP contexts to identify MIB

modules that can have multiple instances. Each SNMP context is represented by a

separate MIB subtree.

Default SNMP Context

The .iso subtree represents the default SNMP context (all modules that can only be

instantiated once they are loaded into this subtree). The standard MIB objects that

are not part of modules are also loaded into this subtree.
Appendix A Modules Appendix 527

FIGURE A-9 Default Context—ISO subtree

In general, the .iso subtree for the default SNMP context contains two main branches,

the standard management branch (mgmt) and the private enterprises branch.

The standard SNMP management MIB objects are loaded in the mgmt subtree. An

example of a standard SNMP MIB is the MIB for Network Management of TCP/IP-

based internets (MIB-II).

The enterprises branch contains enterprise specific subtrees.

For instance, the Sun Management Center agent always instantiates a core module

loader in the .iso*enterprises.sun.prod.sunsymon.agent.base.mibman
object in the default SNMP context. Sun Management Center modules that can only

have a single instance are also loaded in under the enterprises branch in the default

SNMP context.

Non-default SNMP Contexts

Each instance of a module that can be multi-instantiated is assigned an SNMP

context. The name of the module instance corresponds to the SNMP context name.

Each nondefault SNMP context is represented by a separate <context name>.iso.*
subtree under the .contexts object.

org

dod

internet

mgmt private

mib-2

system

enterprises

halcyoninterfaces sun

iso
528 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

For example, loading a Topology module whose instance name is view-1 creates the

.contexts.view-1.iso.* subtree that represents the view-1 SNMP context.

FIGURE A-10 Nondefault SNMP Contexts—Contexts Subtree

Private Enterprises

By convention, the Sun Management Center agent modules developed by Sun are

loaded within the sun branch in the appropriate SNMP context. Similarly, Sun

Management Center agent modules developed by Halcyon are loaded in a subtree

under the appropriate SNMP context.

org

iso

...view-1 view-2

contexts

view-N

iso iso iso
Appendix A Modules Appendix 529

FIGURE A-11 Private Enterprise Subtree

The preferred location of Sun Management Center modules can be specified in an .x

file (base-oids-<enterprise>-d.dat) that maps the logical object names to

object identifiers. The Sun Management Center agent loads this file on start up. It

can also be specified in the parameter file of the module.

The location where modules are loaded is important for hierarchical summarization

and for general module management. Hierarchical summarization groups the alarm

statuses of all managed child objects to generate an overall status of the managed

objects for that portion of the MIB tree. Organizing modules into groups allows

modules to be managed as a group.

Module Subtrees

Sun Management Center specific modules loaded by the agent are classified into the

following module types:

operatingSystem—monitor operating system related entities associated with the local

host system (for example, CPU usage, swap, processes, file systems, and so forth.)

private

enterprises

sun

prod

sunsymon

agent

base modules

trapForward hardware operatingSystem ...

halcyon

infomibman trapInfo
530 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

■ hardware—modules that monitor hardware related entities associated with the

local host system (for example, disks, CPUs, power supplies, and so forth)

■ localApplication—modules that monitor software applications that run on the local

host (for example, custom software applications)

■ remoteSystem—modules that monitor entities running on other host systems (for

example, legacy SNMP agents on remote hosts)

■ serverSupport—modules that perform server agent functions and are not intended

to be accessed using the standard MIB browsing mechanisms (for example,

domain-control, topology, cfgserver, and so forth)

Each Sun Management Center agent module is loaded into its corresponding

module type branch under the appropriate modules subtree and SNMP context. The

following diagram shows a module subtree.

FIGURE A-12 Modules Subtree

Classifying modules by these categories is important for hierarchical summarization.

This classification of modules separates the various alarm summary lists, enabling

the alarm summary of managed objects in the MIB to reflect the status of the

respective category.

Module Loading

When a Sun Management Center agent starts up, the agent loads the set of modules

specified in its module configuration file (base-modules-d.da t). Once the agent is

running, a Sun Management Center console user can load additional modules or

unload loaded modules. The loaded modules are saved to the module configuration

file (that is, /var/opt/SUNWsymon/cfg/base-modules-d.dat) so that the same

set of modules is automatically reloaded if the agent is restarted.

The module configuration file contains entries for each module to be loaded. For

each module to be loaded, its location in the MIB tree hierarchy, name, and

parameters must be specified. Each entry in the file has the following format:

operating hardware

modules

solariscpu fscan sybase

remoteSystemlocal serverSupport

topology ...

System Application
Appendix A Modules Appendix 531

where:

module spec specifies the module name and module instance name (if one exists)

concatenated with a + sign (for example, fscan+syslog, mib2-system).

MIB location specifies the full TOE object path to the root node of the module. For

example, the mib2 system module location is:

enterprise specifies the name of the enterprise MIB that the module resides in. For

example, a module developed by Sun should reside in the sun enterprise. A

module that is not enterprise specific (for example, mib2-system) should specify a

blank enterprise.

module name specifies the actual name of the module without the module instance

specification (for example, mib2-system , fscan).

module parameters specifies the module parameters in the form of a list containing

key-value pairs terminated by semi-colons (that is, ‘;’). All string values with

white-spaces should be enclosed with backslashed double quotes (that is, ”

"\aaa bbb\"). For example, to specify module parameters a and b whose values

are 123 and "1 2 3", respectively; use the following specification: {a = 123; b = \"1
2 3\";}.

Module Parameters

The module parameters that can be specified correspond to those parameters

specified in the module’s parameter file (that is, <module>-m.x).

Common module parameters include:

■ module specifies the module name.

■ moduleName specifies the module name for display purposes.

■ version specifies the module version.

■ location specifies the MIB location of module.

<module spec> = "< MIB location> < enterprise> < module name> < module parameters>"

.iso.org.dod.internet.mgmt.mib-2.system.
532 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

■ enterprise defines enterprise MIB in which the module resides.

■ moduleType specifies module classification. Possible values are hardware,

operatingSystem, localApplication, remoteSystem, or serverSupport.

■ desc specifies a module description

For modules that can be instantiated multiple times, the instance and instanceName
parameters should also be defined. In addition, modules can specify additional

parameters that are specific for the module.

base-modules-d.dat

This file contains three module entries: mib2-system , agent-stats , and

fscan+syslog . The mib2-system entry demonstrates the loading of a non-

enterprise specific module. The agent-stats entry shows how to load a simple

Sun Enterprise module. The fscan+syslog entry shows how to load a Sun

Enterprise module that can be instantiated multiple times. This module also contains

module specific parameters.

Note – Each entry must be specified on one line only. To improve readability, each

entry has been divided into multiple lines in the following example.
Appendix A Modules Appendix 533

en
In the following table, note that each row is a continious string of syntax.

Loading & Unloading a Module in the Platform

Agent

Before loading or unloading a module on the platform agent, stop the platform agent. Th
load or unload a module.

Note – To load and unload a module on a platform agent, you need to edit the/var/opt/
SUNWsymon/cfg/platform-modules-d.dat file. You must create this file if
does not already exist.

CODE EXAMPLE A-1 base-modules-d.dat

#

File: base-modules-d.dat

#

mib2-system =
".iso.org.dod.internet.mgmt.mib-2.system {} mib2-system
{module = \"mib2-system\"; moduleName = \"MIB2 System\"; version = \"1.0\";
console = \"mib2-system\"; location = \".iso.org.dod.internet.mgmt.mib-
2.system\"; enterprise = \"\"; moduleType = \"localApplication\"; instance =
\"\"; desc = \"The MIB2 System module monitors MIB2 system information.\"; }"

agent-stats =
".iso.org.dod.internet.private.enterprises.sun.prod.sunsymon.agent.modules.age
ntStats sun agent-stats {module = \"agent-stats\"; moduleName = \"Agent
Statistics\"; version = \"2.0\"; console = \"agent-stats\"; location =
\".iso.org.dod.internet.private.enterprises.sun.prod.sunsymon.agent.modules.ag
entStats\"; enterprise = \"sun\"; moduleType = \"localApplication\"; instance =
\"\"; desc = \"The Agent Statistics module monitors the health of the agent
installed on the local host.\"; }"

fscan+syslog =
".contexts.syslog.iso.org.dod.internet.private.enterprises.sun.prod.sunsymon.a
gent.modules.fscan sun fscan {module = \"fscan\"; moduleName = \"File
Scanning\"; version = \"2.0\"; console = \"fscan\"; location =
\".iso.org.dod.internet.private.enterprises.sun.prod.sunsymon.agent.modules.fs
can\"; enterprise = \"sun\"; moduleType = \"localApplication\"; instance =
\"syslog\"; instanceName = \"System Log\"; filename = \"/var/adm/messages\";
scanmode = \"tail\"; desc = \"The File Scanning module monitors files for regular
expressions.\"; }
534 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

▼ To Stop the Platform Agent

● Enter one of the following commands:

or

▼ To Load a Module in the Platform Agent

1. Copy theplatform-modules-d.dat file to /var/opt/SUNWsymon/cfg :

2. Start the platform agent with the following commands:

a. Stop the agent:

b. Enter one of the following commands to start the agent:

or

▼ To Unload a Module in the Platform Agent

1. Remove applicable entries from the following file:

2. Restart the platform agent with the following commands:

es-stop -a

es-stop -l

cp /opt/SUNWsymon/base/cfg/platform-modules-d.dat /var/opt/SUNWsymon/cfg

es-stop -a

es-start -a

es-start -l

/var/opt/SUNWsymon/cfg/base-modules-d.dat
Appendix A Modules Appendix 535

a. Stop the agent:

b. Enter one of the following commands to start the agent:

or

MIB Manager

The MIB manager provides general MIB related services to external entities through

SNMP. Sun Management Center agents instantiate the MIB manager in the

.iso*enterprise.sun.prod.sunsymon.agent.base.mibman object.

FIGURE A-13 MIB Manager Branch

The MIB manager is comprised of MIB objects that provide the following services:

■ URL/OID finder

■ Module loader

■ Module checker

■ Browser root

■ Module registry

■ Module tables

A procedures (that is, _procedures) TOE object also exists as a peer object of the

MIB objects listed above. This object is not a MIB node object and only serves as a

repository for MIB manager related procedures that can be inherited by the MIB

nodes that need to execute the procedures.

es-stop -a

es-start -a

es-start -l

finder loader checker ...

mibman
536 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

URL/OID Finder

The finder object is used to resolve the SNMP URL of a currently loaded MIB

object to its object identifier (OID).

When an SNMP URL is set into the finder object, the finder object locates the MIB

object identified by the URL and returns its OID in the form of an OID URL.

The OID URL has the following general format;

Subsequently, the OID can be determined from the OID URL and used to access

directly the MIB object identified by the SNMP URL.

▼ To Convert an OID URL to an Actual OID

1. Parse off the OID portion of the URL.

2. Extract the context if one is specified.

3. If the OID includes a shadow specification, extract it.

4. If the instance spec is a non-integer, it can be comprised of one or more comma
separated instance data types (int , ip , str , +str , oid , or +oid).

These data types define how to convert the textual instance to a numeric instance.

The ‘+’ indicates that the actual length of the instance must be prepended to the

instance since its length is not implied. The values of int , ip , and oid instance

types are integers and so these values map directly to the subid values. The str
instance types indicate that the instance values are alphanumeric and must be

converted to their corresponding decimal ASCII value and concatenated with a

period (.) (for example, abc --> 97.98.99).

5. If it is a shadow OID, append the instance length and append the shadow
specification.

snmp://< host >:< port >/ oid /[< context >]/< oids >[/< subid >][?< shadow spec >]#< instance spec >
Appendix A Modules Appendix 537

6. Replace all (/), (#), and (?) characters with a period (.).

For example, the SNMP URL for the system description property in the mib-2

system module is:

When this value is set to the finder node, the resulting response is the OID URL:

The actual OID can be extracted from the OID URL as follows:

a. Parse off the portion after the /oid/ substring (that is, 1.3.6.1.2.1.1/1#0).

b. Substitute all ‘/’ and ‘#’characters with ‘.’ (that is, 1.3.6.1.2.1.1.1.0).

This OID can then be used to access the data via SNMP.

▼ To Access the fulldes Shadow Attribute of the Same MIB
Property

● Set the following URL to the finder:

The resulting OID URL is:

▼ To Convert the Shadow OID URL to a Valid OID

The OID URL for a shadow OID contains a ‘?’ that signifies the start of the shadow

attribute index specification. The ‘#’ signifies the start of the instance specification.

To convert the shadow OID URL to a valid OID, do the following:

1. Parse off the portion after /oid/ (for example, 2.3.6.1.2.1.1/1?7.1#0).

2. From the parsed string, extract the shadow index specification that is enclosed by
‘?’ and ‘#’ and replace the ‘/’ and ‘?’ with a ‘.’ (that is, shadow index specification is
7.1 and OID is 2.3.6.1.2.1.1.1#0).

snmp://<host>:<port>/mod/mib2-system/sysDescr#0

snmp://<host>:<port>/oid/1.3.6.1.2.1.1/1#0

snmp://<host>:<port>/mod/mib2-system/sysDescr?fulldesc#0

snmp://<host>:<port>/oid/2.3.6.1.2.1.1/1?7.1#0
538 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

3. Since the instance is an integer, simply append the length of the instance
specification to the OID and replace the # with ‘.’ since instance is ‘0’, length is 1 -
- 2.3.6.1.2.1.1.1.0.1.

4. Append the shadow index specification to the OID (2.3.6.1.2.1.1.1.0.1.7.1).

This OID can then be used to get the full description shadow attribute for the mib-2

system description property.

▼ To Access a Table Property in a Module

An example to get the scan pattern for a specific row (unix_error row instance) in

the file scanning module (syslog module instance):

● Send the following SNMP URL to the finder:

The resulting OID URL is:

▼ To Convert the OID URL to an OID

1. Parse off the OID portion (that is, syslog/1.3.6.1.4.1.42.2.12.2.2.24/1/3/1/4#+str).

2. Extract the context (that is, syslog).

3. Since the instance specification is +str, the textual instance name must be
converted to a numeric instance with the length prepended (unix_error -->
10.117.110.105.120.95.101.114.114.111.114).

4. Append the instance to the OID and replace the ‘/’ and ‘#’ with ‘.’
(1.3.6.1.4.1.42.2.12.2.2.24.1.3.1.4.10.117.110.105.120.95.101.114.114.111.114).

This OID can then be used to request the data via SNMP. If using SNMPv2c or

SNMPv2u, specify the context in the contextName field of the SNMP PDU. If using

SNMPv1, specify the context name in the community field as <community>:<context>
(for example, if the community name is public and the context is syslog , use

public:syslog as the community field).

snmp://< host>:< port>/mod/fscan+syslog/fscanstats/scanTable/
scanEntry/pattern#unix_error

snmp://< host>:< port>/oid/syslog/1.3.6.1.4.1.42.2.12.2.2.24/1/3/1/
4#+str
Appendix A Modules Appendix 539

Module Loader

The loader MIB object is a leaf node that permits modules to be loaded by SNMP.

Only users with sufficient security privileges are permitted to load modules (refer to

the Sun Management Center Security SDS for more details about SNMP security).

The module loader input specifies the module parameters as key-value pairs

separated by ‘;’. These parameters are based on the same information specified in the

module configuration file described earlier.

For example, to load the mib-2 system module, the following string can be set to the

loader node.

Module Checker

The checker MIB object is a leaf node that provides an SNMP interface for checking

the status of a module. Given a module name and an optional module instance, it

determines whether the module is currently loaded, not loaded, or not installed on

the agent machine.

The following responses can be returned by the checker node:

■ notInstalled string is returned if the set value corresponds to a nonexistent module

name (for example, bogus where there is no module named ‘bogus’)

■ installed string is returned under the following conditions: if the set value

corresponds to an existing module name and that module is not currently loaded;

if the set value is only the module name of a module that can be instantiated

multiple times (for example, fscan without the instance specification); or if the set

value is a module name + instance (for example, fscan+bogus where the bogus

instance of the fscan module is not loaded) and the specified module instance is

not loaded

■ loaded string is returned under the following conditions: if the set value

corresponds to a module name that is currently loaded and that module can only

be instantiated once; or if the set value of a module name and (+) instance name

corresponds to a loaded module with the specified instance (for example,

fscan+syslog where the syslog instance of the fscan module is loaded)

module = mib2-system; moduleName = “MIB2 System”; version = 1.0;
console = mib2-system; location = .iso.org.dod.internet.mgmt.mib-
2.system; enterprise = ““; moduleType = localApplication; instance
= ““; desc = “The MIB2 System module monitors MIB2 system
information.”;
540 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Browser Root

The browser root MIB object is a leaf node whose value can be retrieved via SNMP.

The value of the node is an SNMP URL that represents the root object of the MIB

hierarchy tree. This value is used by the Sun Management Center console to

determine the root of the MIB hierarchy of an agent’s MIB for browsing purposes.

The default browser root URL is:

Module Registry

This MIB object is a leaf node that supports the retrieval of information about

modules that are currently loaded by the agent via SNMP.

Specifically, by setting a module name to this MIB node, it returns the module name,

module version, and number of loaded instances of the specified module. For

example, setting the value fscan must return fscan 2.0 1 where fscan is the

module name, 2.0 is the version, and 1 is the number of loaded instances.

Alternatively, by setting a blank value to the MIB node, the module name, module

version, and number of loaded instances for all the modules currently loaded are

returned as a list of sublists ({fscan 2.0 1 } {mib2-system 2.0 1 }).

Module Tables

The modules object is branch MIB object that contains five module tables

corresponding to the five module types: hardware, operatingSystem,

localApplication, remoteSystem, and serverSupport. Each table contains the

currently loaded modules, classified by their module type.

Each table contains the following columns:

■ module spec specifies the module name + optional instance name.

■ name specifies a description of the module.

■ i18nName specifies a key used to lookup the internationalized description of the

module.

■ version specifies the module version.

■ URL specifies an SNMP URL to get the overall status of the module.

■ status specifies the current status of the module.

■ id specifies the TOE ID of the module root (for internal use).

snmp://<host>:<port>/sym/base/mibman/modules
Appendix A Modules Appendix 541

Additional Base MIB Branches

In addition to the mibman branch in the .iso*base subtree, every Sun Management

Center agent component MIB contains the info, trapInfo, trapForward, and control
branches. This section describes these MIB branches.

FIGURE A-14 .iso*base Subtree

System and Agent Information

The .iso*base.info branch contains nodes that provide general information

about the host system, the agent, and modules installed on the system.

FIGURE A-15 info Branch

System Information

The system branch contains leaf nodes that provide the following information:

■ Hostname

■ System architecture

■ Operating system version

■ Hardware description

mibman info trapInfo trapForward

base

control

system agent modules

info

name ... general moduleTable

osversion
Tclversion

moduleEntry...

...module
542 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

■ IP address

■ Trap destination

■ Event destination

Agent Information

The agent branch contains leaf nodes that provide the following information:

■ Software version

■ Tcl version

■ Tcl Patch Level

Module Information

The modules branch contains a table listing all the modules that can be loaded by

the agent. The table contains the following columns:

■ Module name

■ Module description

■ Internationalized module description

■ Version

■ Module count

The module count can be –1, 0, or some positive integer. A value of –1 implies that the

module is currently loaded and cannot be instantiated multiple times. A value of 0

implies that the module is not currently loaded. A positive integer reflects the

current number of loaded instances of the module and implies that the module can

be loaded multiple times.

Trap Information

The .iso*base.trapInfo branch contains MIB objects whose values are included

in the variable bindings of various enterprise specific traps that can be generated by

the agent. The branch contains the following nodes:

■ statusOID — included in variable binding of the statusChange trap. The value of

the statusOID is set to the object identifier of the MIB node whose alarm status

has changed.

■ refreshOID — included in the variable binding of the valueRefresh trap. The value

of the object is set to the object identifier of the node whose value has been

manually refresh.
Appendix A Modules Appendix 543

■ eventInfo — included in the variable binding of event traps. The value of the object

is set to a string containing the event version format, hostname, last line in the

event circular log file, and the file creation time (for example, Tv0 manila 27

920442422).

■ userConfig — included in the variable binding of userConfig traps. The value of the

object is set to a string containing the agent’s SNMP engine ID and

usmUserSpinLock value.

■ moduleInfo — included in the variable binding of the moduleLoad and moduleUnload
traps. The value of the object is set to the module specification and module

version (for example, fscan+syslog 2.0).

The setTrapInfo method is the primary interface for sending the statusChange and

valueRefresh traps whose variable bindings include the statusOID and refreshOID
objects, respectively. This method takes the trap type (statusOID or refreshOID) as

an argument to specify the type of trap to send. The method must be called from the

context of the MIB object whose OID must be included in the trap message variable

binding.

The other traps have more specific functions and are intended to be used only by

their respective users (eventInfo is used by event infrastructure, userConfig is used

by usmUser MIB, and moduleInfo is used by the module load and unload methods).

Trap Forward

The .iso*base.trapForward branch contains nodes that support trap

subscription. Specifically, this branch contains the following nodes:

■ clientRegistrar supports trap subscription

■ jobAdder supports incremental additions to an existing trap subscription

■ jobRemover supports incremental deletions to an existing trap subscription

The subscription specifications supported by these nodes are described in

Appendix G.

Control Functions

The .iso*base.control branch object contains the action and cache leaf nodes.

The set security access of these nodes are restricted to users with administrative

security privileges.
544 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Action Object

The action node supports the ability to shutdown the agent. To shutdown the agent,

set the value to 2. The ability to restart the agent using this node is not supported in

Sun Management Center 2.1.

Cache Object

The cache node is included in Sun Management Center 2.1 software. This node

supports the ability to retrieve and manage the agent’s current SNMP finder cache

via SNMP. The current contents of the finder cache can be retrieved through a get

request to the cache node.

Setting the cache node value to * clears all the entries in the finder cache. Setting the

node value to a host name clears all the cache entries associated with the specified

host. Setting the node value to a host name and port (host:port) clears all the

cache entries associated with the specified host and port.

Useful Tcl Commands and Filters
The Tcl/TOE commands and procedures tha follow are available in all nodes for use

as refresh commands or filters.

valueOf <node name>

This function takes the name of a managed property as its only argument and

returns the value of the managed property. This function must be executed in the

node that is the superior of <node name>.

getValue <index>

This function must be executed in a leaf node and returns the value stored for the

specified <index>. If the leaf node is a scalar, <index> is always 0. If the leaf node is a

vector (within a table), <index> can be any value from 1 to the number of rows

stored in the table.
Appendix A Modules Appendix 545

getValues

This function can be used to return all data stored in a leaf node. Like getValue ,

this function must be executed in a leaf node.

getRowData [<rowname>]

This function can be used to return data from a table. This function must be executed

from a node that inherits from the MANAGED-OBJECT-TABLE-ENTRYprimitive. If no

<rowname> is specified, the function returns all the data. If <rowname> is specified,

the data for the row reference by that name is returned.

getTableDepth

This function returns the number of rows stored in a table. This function must be

called from a node that inherits from the MANAGED-OBJECT-TABLE-ENTRYprimitive.

getFilter

The getFilter qualifier specifies a Tcl command or procedure that is used to convert

the data from how it is stored (in the data slice) to how it is returned after a ’get’

operation. To function properly, the type of the object needs to match the type of the

output of the getFilter.

setValue <index> <value>

This function can be used to set the value of a managed property. <index> is 0 for all

scalar leaf nodes, and 1 or higher for a table property indicating which element in

the vector is to be set. <value> is the value to be set.

locate <node name>

Typically, this function is used together with toe_send to enable the evaluation of a

command in the context of another object. This function recursively searches up the

MIB tree for <node name> and returns the unique TOE ID of that object if it is found.

<node name> can be a absolute path to the node (starting from .iso) or a relative

path to the node <node1>.<node2>...
546 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

toe_send <toeid> <command>

This function is used to evaluat the allows command in the context of another

object. The <toeid> is the TOE ID of the object in which the command is to be

evaluated. The TOE ID of an object is typically determined using the locate
command. <command> can be any Tcl/TOE command that is valid in the context of

the node. For example, toe_send [locate node1] getValue 0 , retrieves the

data value stored in node1 .

transposeFilter

A useful data filter is the transposeFilter , which can be used to transpose a table

of data.

rateFilter<node name>

This function accepts the name of a managed property and returns the rate of

change per second for the managed property since the previous sample.

rateFilter64 <node name>

Same as rateFilter except for 64-bit integer values.

tableRateFilter<node name>

This function is similar to rateFilter function, except that is operates on a list of

data instead of a scalar.

tableRateFilter64 <node name>

Same as tableRateFilter except for 64-bit integer values.

pctFilter<node1><node2>

This function computes the value of a named managed property as a percentage of

another managed property.
Appendix A Modules Appendix 547

This function accepts the name of two managed property peers, each of which

contains the same number of values. The list of values associated with the first

property is computed as a percentage of the list of values associated with the second

property. The function returns a list of percentages.

linearFit<value>

This function is used to compute the slope of the line that best fits through a set of

data values. This function accepts a single numerical argument. This value is stored

along with previous values passed into this function. The number of data points

stored internally is specified by the refreshParams qualifier

digitalFilter<value>

This function provides a multiply and accumulate function to provide digital

filtering capabilities. This function accepts a single numerical argument that is stored

along with other values passed into the function.

The refreshParams qualifier specifies the coefficients of the filter. The sum of the

coefficients must be one so that the result does not have to be normalized. The

number of coefficients indicates the number of data points to store internally.

Alarm Status Strings
A status string can be retrieved for any node via SNMP through the shadowmap.

The status string is a sequence of tab-separated fields. It is constructed out of the

state and name of the node, and other relevant information.The exact format of this

status string may change as Sun Management Center software development

progresses.

This section contains examples of status strings as they currently exist. The purpose

of these examples is to show how the node state contributes to the status string, and

how the status of underlying child objects is represented in the status of a parent

branch object.
548 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Solaris Example of Status Strings—CPU Managed
Object

Consider a managed object, CPU, with managed properties of idle time and busy

average. If there is no alarm condition on either of the managed properties, the

shadowmap status strings are displayed as:

Now suppose that the idle time is in alarm because the system is less than 10% idle,

and the busy average is in alarm because the system is more than 90% busy. Now

the shadowmap status strings are displayed as:

Note – The overall CPU status is a list of the alarm statuses of the underlying

properties.

Idle Time Status:
{INF-0 fly Solaris Example CPU Idle Time OK
 snmp://204.225.247.154:161/mod/solaris/cpu/idle 0 882368193 }

Busy Average Status:
{INF-0 fly Solaris Example Average CPU Usage OK

snmp://204.225.247.154:161/mod/solaris/cpu/average 0 882368193}

CPU Status:
{INF-0 fly Solaris Example CPU Usage OK
 snmp://204.225.247.154:161/mod/solaris/cpu 0 882368193 }

Idle Time Status:
{ERR-5 fly Solaris Example CPU Idle Time < 10%
 snmp://204.225.247.154:161/mod/solaris/cpu/idle 25 882368193 }

Busy Average Status:
{ERR-5 fly Solaris Example Average CPU Usage > 50%
 snmp://204.225.247.154:161/mod/solaris/cpu/average 25 882368193}

CPU Status:
{ERR-5 fly Solaris Example CPU Idle Time < 10%

snmp://204.225.247.154:161/mod/solaris/cpu/idle 25 882368193
}
{ERR-5 fly Solaris Example Average CPU Usage > 50%

snmp://204.225.247.154:161/mod/solaris/cpu/average 25 882368193}
Appendix A Modules Appendix 549

In general the contents of a status string is given by a tab-separated string:

where:

<alarm state> is the alarm state value in nickname form (see TABLE A-2). This value

drives the icon that is displayed in the console.

<alarm severity> is a value from 0 to 9 that is used to rank alarms within each

state.

<host> is the name of the host that is generating this alarm.

<module name> is the name of the module that is generating this alarm.

<medium description> is the mediumDesc value of the node that is generating the

alarm.

For nodes using the rCompare rule, <alarm message> is <alarm check> <alarm limit>
[<unit>]. In the preceding examples, <alarm check> is > or <, <alarm limit> is 10 or

50, and <unit> is %. Other alarm rules can set the this message text explicitly.

<snmp url> is the SNMP URL that corresponds to the node that is generating the

alarm.

<alarm level> is the numeric representation of <alarm state>-<alarm severity>. The

conversion is <alarm state value> *10 + <alarm severity>. Fore example ERR-5 has

an <alarm level> of 25. TABLE A-2 lists the default values for <alarm state value> and

<alarm severity>.

<timestamp> is the epoch time when the alarm limit was last evaluated.

<alarm state> - <alarm severity> \t <host> \t <module name> \t <medium
description> \t <alarm message> \t <snmp url> \t <alarm level> \t <timestamp>

TABLE A-2 Alarm Level

Alarm State State Value
Default
Severity

OK 0 0

OFF 0 1

DIS 0 1

INF 0 5

WRN 1 5
550 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Module Testing Tips
When a module is loaded into the agent and viewed through the Sun Management

Center console, information is cached and also saved to files. This is done for

performance and to allow the information to be persistent across restarts of the

agent. As a result, there are issues to consider when testing changes to a module:

■ Before reloading a modified module, restart the agent to ensure that cached files

are not used when the module is reloaded.

■ If the MIB structure of the module is changed and the module was previously

loaded into the agent, then the Sun Management Center Java Server must also be

restarted. In addition, delete the file

/var/opt/SUNWsymon/cfg/user-oids-d.dat before restarting the agent.

■ If the module parameters are modified, unload the module from the agent before

restarting the agent.

File Naming Conventions
Module definition files adhere to the following naming conventions:

<module><-subspec> - <descriptor> . <extension>

where

<module> is the module name.

<subspec> is an optional qualifier for the module name.

<descriptor> is one of a set of standard descriptors indicating the purpose of the

file.

<extension> is one of a set of standard file extensions indicating the file type.

ERR 2 5

IRR 2 7

DWN 2 9

TABLE A-2 Alarm Level

Alarm State State Value
Default
Severity
Appendix A Modules Appendix 551

By convention, the <module> and <subspec> portions of the filename are common for

all files associated with a specific module. This allows related module files to be

easily grouped together while eliminating the chances of filename contention with

the definition files of other modules. The following are standard descriptors for

module definition files:

Additional standard descriptors are:

Standard Extensions

The following are standard extensions for module definition files:

-d Daemon file

-ruletext-d Rule message text file

-models-d Model file

-m Parameter file

-ruletext-d Rule initialization file

-j Java console file

-s Java server file

.x File in module configuration file

format

.def .Default file

.flt Tcl/TOE Filter file

.prc Tcl/TOE Procedure file

.tcl Tcl commands and procedures

.sh Executable shell scripts

.dat Data file

.rul Tcl/TOE rule file

.properties Internationalization text file
552 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Solaris Example Module Filenames

Some of module definition files for the Solaris Example module must be named as

follows:

The following are solaris example module file names:

Mandatory and Optional Module Files

The following lists the required definition files.

The following optional files can be defined for each module, depending on the

module implementation requirements:

solaris-example-m.x Solaris Example Parameter file

solaris-example-d.x Solaris Example Agent file

solaris-example-d.def Solaris Example Alarm file

solaris-example-d.flt Solaris Filter file

TABLE A-3 Mandatory Module Files

<module><-subspec> -m x Parameter file

<module><-subspec> -models-d.x
<object*>-models -d.x

Model files (may be multiple files)

<module><-subspec> -d.x Agent file

TABLE A-4 Optional Module Files

<module><-subspec> -d.flt Filter file

<module><-subspec> -d.prc Procedure file

<module><-subspec> -*.sh Executable Shell Scripts

(can be multiple files)

<module><-subspec> -d.rul Rule file

<module><-subspec>-ruleinit-d.x Rule Initialization file

<module><subspec>-ruletext-d.x Rule Message Text file

<module ><- subspec >.properties Properties file

ServerOverrideBundle.properties Server Override Properties file
Appendix A Modules Appendix 553

If binary extensions or packages are used by a module to facilitate or optimize data

acquisition and alarm processing, one or more of the following files can exist also:

Each of the files listed above is discussed in detail in the following sections.

Location of Module Files
All module files except the following must be installed in the

/opt/SUNWsymon/modules/cfg directory of the agent host. The exceptions to this

rule are:

■ Shell scripts must be installed in the /opt/SUNWsymon/modules/sbin directory

of the agent host.

■ Properties files must be installed in the /opt/SUNWsymon/classes/com/sun/
symon/base/modules directory of the host running the Sun Management Center

server layer.

■ Shared object files and packages must be installed in the

/opt/SUNWsymon/base/lib/< arch > directory of the agent host.

■ The serveroverride properties file is a special file that must be located in

/opt/SUNWsymon/classes on the server host.

■ Standard icon files must be installed in

/opt/SUNWsymon/classes/base/console/cfg/stdimages directory of the

host running the Sun Management Center server layer.

<module ><- subspec >-oids-d.dat Module OIDs file

<module ><- subspec >-traps-d.x Traps file

<name>16x16-j.gif Standard Icon file

<name>32x32-j.gif Topology Icon file

<module><-subspec> -d.def Alarm file

TABLE A-5 Binary Extension Files

<module><-subspec> -shell.tcl Package load commands

pkg <module><-subspec> .so Standard Tcl package shared object

lib <module><-subspec> .so Standard UNIX shared object

TABLE A-4 Optional Module Files
554 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

■ Topology icon files must be installed in the

/opt/SUNWsymon/classes/base/console/cfg/topoimages directory of the

host running the Sun Management Center server layer.

■ The parameter file must be installed on the agent host.

The list of modules available in the Load Module console window is determined

only when the agent is first started. When a new module has been added, this list

can be updated by forcing the agent to redetermine the list of available modules.

This can be done by right-clicking in the Load Module window and selecting the

Refresh menu option. The update of the list may take a while depending on the

number of modules available. The list can be also be updated by restarting the agent.

Data Management
This section covers the following topics:

■ Information Model—page 556

■ Operational Model—page 561

■ Management Information Base (MIB)—page 572

■ Data Logging—page 576

The chapter describes the concepts and techniques used in Sun Management Center

software to construct models of the entities to be managed. It also describes

mechanisms employed by the Sun Management Center agent to enable these models

to gather data, determine status, and perform actions on the managed entities.

■ Information Model defines the concepts used in Sun Management Center

software when modeling entities to be managed. It also describes how these

entities can be modeled using TOE objects and primitive classes.

■ Operational Model describes how the Sun Management Center agent realizes the

management model to manage entities. Sun Management Center agents

autonomously collect data and utilize simple alarm checks and/or rules based

technology to determine the status of the managed objects. The agent can then

generate alarms or perform actions based on the detected conditions, thereby

providing predictive failure capabilities and auto-management.

■ Management Information Base (MIB) is the repository of the managed entity data

and management parameters. Management modules that are loaded into the MIB

are also discussed.

For more information about management modules, refer to the Chapter 5.
Appendix A Modules Appendix 555

Information Model

This section describes how the entities to be managed by the Sun Management

Center agent are modeled using TOE objects and primitive classes. It also describes

how alarm conditions associated with the managed entities are represented.

General Concepts

Sun Management Center software is based on the object oriented paradigm, in

which objects are used to model the various aspects of a system for the purpose of

managing that system. The physical and logical components of a system that are

being managed are referred to as managed entities. Managed entities can be disks,

boards, hosts, clusters and networks. Managed entities that are host platforms are

referred to as managed nodes.

The various types of managed entities are modeled using managed object classes, and

these classes are combined to form a meta model for a particular system, the structure

of which accurately models the structure of the managed entities it represents. To

perform management functions, models must be realized in a process running on a

managed node, at which time each managed object class in the model is instantiated

into a managed object.

Because of the hierarchical nature of the components of a system, managed entities

can be the aggregation of other managed entities. Similarly, managed objects that are

instantiated during the realization of a model are considered to be the aggregation of

all the subordinate managed objects in that model.

An example of this would be a host that is composed of a power supply, boards, a

chassis and other components. The host and all subcomponents are considered

managed entities, even though the host entity collectively includes the others. In the

model of such a system, the managed object class representing the host is an

aggregation of the classes representing the other entities. In a realization of this

model, the host managed object is an aggregation of managed objects representing

the power supply, boards, a chassis and other components.

In Sun Management Center software, models of managed entities usually take the

form of a management module, and the tree structure of the managed objects and

properties within a module is often referred to as a Management Information Base, or

MIB.
556 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Managed Entity Modeling

Managed entities are modeled using managed objects, which are instances of

managed object classes. The managed properties of the managed entities directly

correspond to the properties of the managed object classes used to build the model.

In a realization of a model, it is these managed properties that contain the

information pertinent to the monitoring and management of the managed entity.

When realizing a model, a tree of TOE objects is created that implements the

structure and functions of the model. In this realization, a MIB node object is created

for every managed object and every managed property in the model.

These objects are derived from a set of primitives, that in turn are derived from the

TOE MIB node class, which implements much of the required management

functionality, including timed data acquisition, alarm status checking, rule

execution, and alarm creation. The object instances are therefore quite adept at

general management functions, and the model that describes them is responsible for

configuring them for their specific management purpose.

Using this approach, one inconsistency must be understood. The use of a TOE object

to represent a managed object would be very straightforward if it were not for the

fact that the properties of the managed object cannot be modeled directly by the

properties of the TOE object. If this were the case, then the set of properties available

to be managed by a TOE object would be limited to the set of properties not used by

the TOE object internally to perform its management function. In other words, there

could be contention between the object properties and those of the managed object

in the model.

It is for this reason, as well as for the simplification of the TOE object

implementation, that the properties of managed objects are represented using

separate TOE objects. This is a natural function for these objects, which exist

primarily to acquire data and take management actions. This means that objects in

the realization can correspond to properties of the managed entity, and the

properties of the TOE object can, in fact, correspond to qualifiers of the managed

entity. This remapping in the realization is necessary given the realization

mechanism used.

For example, a file system can be modeled as a managed object represented by a

TOE object in the Sun Management Center agent. Conversely, the file system size

would be modeled as a managed property but would be represented by another

TOE object; instead of a property of the TOE object that represents the file system.

Management Model Primitives

The construction of management models involves the use of management

primitives, which are object classes that exhibit specific management behavior. These

primitives correspond to the following model elements:
Appendix A Modules Appendix 557

■ Managed objects

■ Managed object tables

■ Managed properties

■ Managed property classes

Managed properties are divided into specific primitives based on the data type of

the property and the types of alarm checks to be performed on that object (such as

integer type with high limits or string type with regular expression checks).

Primitives are composed of several property classes. This means that the type,

function, and behavior of the primitive is defined by several broad categories of

properties. TABLE A-6 lists the five property classes used to define primitives.

FIGURE A-16 shows the composition of object primitives using these five property

classes.

TABLE A-6 Managed Model Primitives

Type of Property Class Description

Structural Object tree structure properties

Technique specific Properties pertaining to security and communication protocols

Realization Properties defining the data acquisition operations of the object

Management Properties specifying operational ranges and alarm actions

Management Rules Inference-based rule specification properties
558 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

FIGURE A-16 Management Model Primitive Classes

A set of object primitives is available when constructing models that cover all the

major object types and alarm check scenarios. These primitives intrinsically define

all properties pertinent to SNMP access and ASN.1 description, including the ASN.1

type and the access communities.

Using primitives when constructing models will therefore define most of the

properties in the structural and technique-specific property classes. Properties of the

other classes, such as refresh information (for data acquisition) and alarm limits (for

status determination) can then be added to the model.

All of the properties associated with a MIB object are effectively defined in the TOE

object that represents the MIB object. Most of these properties are accessible through

SNMP and the shadow MIB.

Alarm Representation

One of the primary purposes of management models is to detect system events.

There are two types of events that can be detected, hard events, which are specific

occurrences within the system (such as a disk crash or a process termination), and

soft events, which correspond to a managed property going into or out of an arbitrary

range. Hard events can be detected in a very objective way, usually through the

presence of a message in a log file or a specific indication in a data acquisition

Realization

refreshService
refreshCommand
refreshInterval
refreshFilter

properties
Structural

name
type
dimension
description
identifier

properties
Technique-specific

communities
asn1type
...

Management

alarmChecks
alarmLimits
alarmActions

properties
Management

dependencies
triggers
rule specifications

rules

Primitive classMIB node class

properties
Appendix A Modules Appendix 559

operation. Soft events, on the other hand, are very subjective, and their occurrence is

purely a function of the operational limits associated with the related property or

properties.

The nodes of a MIB tree attempt to ascertain the condition of the managed system

entities with which they correspond. All changes in an entity’s condition correspond

to a system event, and the detection of a system event typically leads to a change in

the status of a managed object or managed property. Changes in status lead to the

creation of an alarm event, which is passed through the system as an indication that

the event occurred. It is the creation of these alarms that is of primary importance in

the monitoring process.

Alarms contain all of the information useful to clients interested in a particular

event. This information includes the identity of the managed node on which the

event was detected, a readable portion describing the nature of the event or of the

current condition of the entity, a severity number, the time of detection of the event,

and the URL of the managed object or property which detected the event. Alarms

are intended to be globally valid, and thus all fields, including the readable portions

and the URL, are sufficiently qualified to make them completely unambiguous in a

global context.

Alarm objects can contain the following fields:

■ Ack/Alarm Label—the current alarm state of the object and an optional

acknowledgment flag. The alarm state is represented by a three letter code (for

example, INF for informational, WRN for warning, ERR for error, and so forth)

and the ack flag is denoted by a preceding asterisk (*).

■ Target Host—the host on which the object in alarm exists

■ Module Instance—the instance name of the module (if applicable)

■ Module Name—the name of the module

■ Sub-Module Specification—this field is not supported in the Sun Management

Center product; it is always blank

■ Table Row Name—the row instance name of the object (if the object is an entry in a

table)

■ Object Description—the medium description of the object

■ Problem Info—the alarm message describing the current status

■ Source URL—the URL of the object in alarm

■ Alarm Severity—an integer representing the alarm severity of the object—the

higher the number, the more severe the alarm.

■ Timestamp—the time at which the alarm condition was detected—the time in

seconds elapsed since midnight January 1, 1970 (GMT).

The fields in the alarm object are separated by tabs.
560 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Operational Model

Sun Management Center agents manage objects by autonomously collecting and

monitoring data. The agents use simple alarm checks and/or rules based technology

to determine the status of the managed objects. The agent can then automatically

generate alarms or perform actions based on the detected conditions, thereby

providing predictive failure capabilities and automanagement. The agents make data

and status of the managed objects available to the Sun Management Center server

and Sun Management Center console layers.

Operation Sequence

A fully realized model will perform monitoring and management operation at

regular intervals or on demand. The objects within the model perform certain

operations to achieve this, and the results of these operations are well defined.

In a typical management scenario, the following sequence of events occurs for a

managed object or property:

1. Data acquisition request is made.

2. Results of request are forwarded to managed object/property.

3. Data is disseminated into appropriate objects/properties (the data cascade).

4. Alarm rule checks are performed (where applicable) to determine object/property

state.

5. Changes in state trigger alarm actions:

a. Alarm propagates up object tree.

b. Traps are sent.

c. Status is logged.

d. User-defined actions are taken.

Essentially, the nodes in the tree autonomously gather data, place it in the

appropriate objects or properties, check limits, fire rules, and take action on state

changes. In a normal scenario, no interaction is required between the manager and

the agent in order to perform management operations, and the only communication

required is the trapping of alarms on state changes.
Appendix A Modules Appendix 561

Data Acquisition Scenarios

To refresh the information in the MIB tree, data acquisition operations must be

performed. In Sun Management Center agents, this is generally referred to as the

refresh operation. Typical refresh operations manifest themselves as the invocation of

a refresh command in the context of a refresh service. A refresh service is an object

within the agent that can be used for data acquisition. A refresh command is a

service-dependent command that defines the specific operation to perform.

Conceptually, the refresh command is sent to the refresh service each time a refresh

is triggered.

Refresh services can be any object supporting the service interface. Typically, refresh

services can include such things as:

■ Objects in the MIB tree (from which you can acquire data)

■ Objects maintaining pipes to subshells (such as a Bourne shell, Perl process, or

another Tcl shell that can load Tcl extensions)

■ SNMP stack (for performing data acquisition from other agents)

■ Internal service, which allows access to built-in or dynamically loaded extensions

to the agent process.

Services are discussed in detail in the Agent Framework chapter in this document.

Note – Since the agent is single-threaded, it is blocked when running Tcl commands

in the internal service. If it is expected that a Tcl command can take a significant

amount of time to return its result, a Tcl subshell service should be employed to

execute these commands. The Tcl subshell process can load the required Tcl

extension(s) so that it can execute Tcl commands and return the results to the agent

asynchronously.

Cascade Scenarios

The data cascade is disseminating a buffer of data into a tree of managed objects or

properties. By strictly defining the rules governing data updates, a wide variety of

data acquisition scenarios are available. Data can be acquired one piece at a time and

placed into managed properties, or larger amounts of information can be acquired in

a single data acquisition operation and cascaded into several managed properties or

even several managed objects.

In general, all data acquisition operations are initiated by an active node. An active

node is a managed object or property that has refresh information associated with it.

Active nodes can be managed objects, managed property classes, or managed

properties, depending on the desired cascade scenario. Also, properties can be of

either a scalar or a vector dimension, and this affects the data update operation.
562 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Conceptually, the data cascade consists of a tree node acquiring information and

either placing the information in itself (in the case of managed properties) or passing

it down to inferiors in the tree, who in turn either consume it or pass it on. Data left

over from one inferior node tree is passed on to the next inferior tree until all the

data is consumed. Failure to consume all the information, or there not being enough

information to fill the tree, constitute an overflow or underflow condition.

Overflow conditions are not detected by the agent since extra data is discarded.

Underflow conditions are not directly detected by the affected nodes. However,

other nodes or external clients that query the node for its value detect the absence of

data and flag the condition.

Because the structure of the object tree can vary infinitely, so too can the various

manifestations of the data cascade. In practice, however, there are only a few

common cascade scenarios that lend themselves to several broad categories of tree

structure. These cascade scenarios are described in the following sections.

Active Scalar

In this scenario, a property node (which is always a leaf of the tree) is the active

node. It initiates a data acquisition (DAQ) operation, receives the results, and places

the information in itself. In this scenario, the property is scalar in dimension,

meaning it represents one datum, and hence the DAQ operation must return one

and only one piece of data. This can be illustrated as follows:

FIGURE A-17 Active Scalar Cascade

An example of an active scalar node is the system uptime managed property. The

refresh command of this node computes the system uptime and the uptime value is

stored in the node.

Active Vector

As in the active scalar case, active vector cascades result from a single property

being the active node. In this case, however, the property is a vector, meaning it

represents zero or more pieces of information. The DAQ operation must return zero

or more pieces of data, all of which are placed, in order, into the managed property.

A

Active Scalar
Appendix A Modules Appendix 563

FIGURE A-18 Active Vector Cascade

An example of an active vector node is a managed property that stores the list of

files in a directory. The refresh command runs the UNIX ls command and the list of

files in the current directory are stored in the node.

Compound Scalar

In this scenario, a branch of the node tree is the active object. This branch can be a

managed object, managed object table, or a managed property class, but it is never a

managed property (which are always leaves). Under this branch are several scalar

leaves (managed properties), each requiring one datum per refresh. The DAQ

operation in the branch returns several pieces of data, with the data being passed

first to the first leaf node, which consumes one piece, and then on to the subsequent

leaf nodes, each of which consuming another piece. The amount of data returned by

the refresh operation must match the number of leaves under the active node, or an

over/underflow condition occurs.

FIGURE A-19 Compound Scalar Cascade

An example of a compound scalar would be a set of nodes modeling the one, five,

and fifteen minute load averages of a system. A load managed object is the active

branch. Under this branch are the one, five, and fifteen minute load average

managed properties. The refresh command of the active branch would return the

three load average values and these values are cascaded into the three children

nodes.

A

Active Vector

AAAA

P P

A

Compound Scalar
564 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Compound Vector

This scenario, also known as a table cascade, arises when a branch of the node tree

contains several property leaves, all of which are vector in dimension. In this case,

data cascading down the tree is placed into the vector leaves in equal amounts, with

the data order interpreted as row-major and the property leaves treated as columns

of a table. If there are N leaves in the tree, then the DAQ operation must return

exactly M*N pieces of data, where M is the resulting table depth.

FIGURE A-20 Compound Vector Cascade

An example of a compound vector would be a set of nodes modeling a file system

table that contains information for each file system partition. Possible columns in

this table would be the partition mount point and size. The refresh command of the

branch would then return the mount point name and corresponding size of each file

system partition.

Complex Vector

The complex case represents a mixture of the preceding scenarios. In the complex

case, the information is passed down through the tree using the general mechanism

described above. Scalar leaves consume one piece of data, tables will consume M*N

pieces of information and simple vectors consume all they are given.

FIGURE A-21 Complex Cascade

Compound Vector

P P

A

Complex

P P

P PPPP
PPP

A

Appendix A Modules Appendix 565

An example of a complex cascade scenario involves augmenting the file system table

example described earlier with an additional managed property that stores the

number of file system partitions. In this case, the active object’s refresh command

returns the number of partitions, followed by the mount points and sizes of each file

system partition.

Nested Heterogeneous

This is where active nodes are placed under other active nodes in the node tree. As a

rule, active nodes do not accept information from higher-level cascades. Hence, in

this case, the higher-level cascade bypasses the nested active node, and the nested

object is responsible for refreshing itself and/or the tree of nodes below it.

FIGURE A-22 Nested Heterogeneous Cascade

An example of a nested heterogeneous cascade is a set of nodes modeling the

process usage of a system. The managed properties consist two passive nodes

(number of active processes and number of sleeping processes) and an active node

(maximum number of available process slots). The active branch object’s refresh

command returns the number of active and sleeping processes. The active leaf

node’s refresh command returns the maximum number of available process slots.

Derived Heterogeneous

Similar to the nested heterogeneous case, this scenario involves a derived node

placed under an active node (or another derived node) in the node tree. Like active

nodes, derived nodes do not accept information from above. In this case, however,

the DAQ operation of the derived node may depend on, and hence be triggered by,

the update of the objects around it. The firing of the refresh operation of the derived

node therefore is intrinsically linked to the data cascade from the superior object.

Nested Heterogeneous

P P

A

A

566 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

FIGURE A-23 Derived Heterogeneous Cascade

An example of a derived heterogeneous cascade is a set of nodes modeling the swap

usage of a system. The managed properties consist of two passive nodes (current

swap usage and the total swap) and a derived node (percentage swap used). The

active object’s refresh command returns the current and total swap. The percentage

swap used is then computed from the two returned values.

Derived Nodes

A derived node is a member of the MIB tree that uses other MIB nodes as the

service(s) for its refresh. In other words, its value is a function of the values or

qualifiers of one or more other managed properties. Through the use of derived

variables, it is possible to create nodes whose value represents averages, rates of

change, specific digital filters (for example, high pass, low pass, or band pass) or

other useful calculated information.

Derived nodes establish dependency relationships with the nodes on which they rely

through the use of the refresh triggers specification. Nodes can be triggered off the

change in value or status of one or more nodes, and refreshes automatically when

any of the specified events occur. Derived nodes can also update at an interval,

although this is usually unnecessary if the triggers are specified properly.

Alarm Rule Checks

After completion of the full refresh operation (the refresh request and the

subsequent data cascade), a set of refresh actions occur. For nodes in a MIB tree, these

actions include the alarm rule checks, which involve checking the data values of the

managed properties against a set of alarm criteria.

These alarm checks determine the current status of the managed entities being

monitored, as described in the information model. The alarm checks can be classified

into simple comparison checks or more complex rule evaluation.

Derived Heterogeneous

A

D PP
Appendix A Modules Appendix 567

Simple Comparison Checks

Simple comparison checks apply only to single data entries of managed properties

and are usually dyadic relational operations involving numeric limits, regular

expressions, or comparison strings. The output of these checks is a status code, with

the status produced corresponding to the state associated with the most severe alarm

check that tests positive. If none of the checks are satisfied, the node is considered to

be in the ok state, and nodes with no alarm checks are always considered ok.

Rule Evaluation

Rules provide a mechanism to specify customized alarm checks in place of standard

alarm checks that perform simple comparisons. Rules are potentially complex

expressions involving the values or status of one or more MIB nodes, and generate

values or status that corresponds to the outcome of their computations. As opposed

to simple comparison alarm checks, rules can embody complex comparisons,

computations and relationships, and the status they produce may represent a very

informed decision.

Each rule in the agent has a corresponding MIB node, and this node triggers the

evaluation of the rule, maintains any rule-specific qualifiers, and acts as a repository

for the resulting data or status.

Having a one-to-one correspondence between rules and MIB nodes facilitates both

the triggering of the rule and the generation of alarm objects, as the identity of the

MIB node generating the alarm must be placed in the alarm. The URL in the alarm

can then point back to a node that represents the rule. Acknowledgment of the

alarms generated by a rule and the editing of rule-specific qualifiers can be done

through the use of the rule’s URL.

Using this approach, the technology to evaluate rules is independent of the

triggering mechanism and the alarm generation. Because the rule is fired by the

standard triggering mechanisms, and because the values or status of all nodes on

which the rule depends can be passed to the rule at the time of triggering, the rule

needs to implement the relevant computation or comparison and return the ensuing

data or status. Making use of this, a simple Tcl-based rule mechanism are available

for implementing the body of a rule, and support for rules based on commercial,

third party inference engines can be added easily in the future.

Alarm Actions

If a change in alarm status is detected, an alarm object (as described earlier in the

information model) is generated and the following alarm actions are triggered:

■ Event information is written to the event circular log file.

■ Status is propagated up the MIB tree to all superior nodes.
568 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

■ StatusChange and event traps are generated to inform the management layers.

■ User-defined alarm actions are executed.

Status Propagation

Detection of system events causes a change in the status of the corresponding

managed property in the MIB tree. This change in status must be reported to

superiors in the MIB tree, as these superiors correspond to the managed objects or

managed property classes to which the managed property exhibiting the status

change belongs. By propagating status at the time of a status change, all managed

objects and properties at any level of the MIB tree are in sync with the current state

of their inferiors.

This upward passing of status information is typically referred to as hierarchical
summarization, and is very important to the operation of both the agents and the

management layer. By permitting managed objects at all levels to describe their own

status, the determination of status at the server and console levels is greatly

simplified.

The placement of status lists in objects at each level of the MIB tree can be

diagrammed as follows:

FIGURE A-24 Objects in MIB Tree

Each object in the tree can be queried for its status using shadow SNMP operations.

Leaf objects such as idle and busy only contains their own statuses generated from

the alarm rule checks.

Branch objects reflect the status of all its children by containing a list of all

exceptional (not ok) status conditions. For example, the status of the usage object

contains any alarm status conditions of the idle and busy properties. Similarly, the

cpu object status are based on the count, load, usage, and threads objects. Finally, the

resources object status contains the statuses of all the objects shown in the tree above.

process swap cpu disk network

count load usage threads

idle busy

memory

resources
Appendix A Modules Appendix 569

The ability to query the status of any managed object in the MIB tree allows agents

to logically combine the status of many disjointed, structurally unrelated managed

objects into a single logical element group. Logical element groups can then be used to

extend the managed object hierarchy beyond a single agent.

Alarm Status Change and Event Traps

Alarm objects are passed to the management layers through the transmission of

SNMP traps. Specifically, two SNMP traps are generated when the status of a

managed object changes:

■ statusChange trap is sent to the Trap Handler. The trap varbind contains the

statusOID MIB object, whose value is the OID of the managed property whose

alarm status changed.

■ event trap is sent to the Event Manager. The trap varbind contains the eventInfo
MIB object whose value contain the event version format code, hostname, last line

in the event log file, and the event log file creation time. This trap informs the

Event Manager of a new event, causing the Event Manager to retrieve the event

information from the agent.

These traps are used by the management layers to facilitate centralized event

management and alarm correlation.

Event Propagation

When the alarm status of an object is detected, event information is written to a

circular log file on the local host and an event trap is sent to the event manager.

The default event log destination is specified through agent’s status channel output

specification (that is statusOutput in the file base-config.x). For example, the

default event log destination for the Sun Management Center agent is specified as

follows:

The event trap sent to the Event Manager causes the Event Manager to request all

the event information that it has not previously retrieved from the agent. This is

accomplished by tracking the last known line number in the event file and file

creation time.

The Event Manager then stores the retrieved events in the event database where it

can be accessed from the Sun Management Center console.

statusOutput = “clog://localhost/../log/
agentStatus.log;lines=250; width=200;flags=rw+;mode=644”
570 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

If an event trap is lost, the Event Manager does not immediately request the event

information corresponding to the trap. However, upon reception of the next event

trap, it will retrieve all events not previously retrieved.

Alarm Logging

All statusChange traps received by the Trap Handler are logged to the trap output

channel. By default, the log destination is defined in the file base-config.x to be a

circular log file.

User-Defined Alarm Actions

If any user-defined alarm actions were specified for the managed property and the

detected alarm condition, the actions are performed. The execution of the alarm

action is logged in the agent’s circular log file; however, the user has to explicitly

redirect output from the script to a file if this information is required.

User-defined alarm actions are entered through the Actions tab in the Attribute

Editor, and are only applicable at present for leaf nodes. An alarm action can be

specified for each of the possible alarm levels, namely critical, alert, caution,

indeterminate, close, as well as for the case of any change in alarm state.

The alarm action entered is the name (without a path specified) of a user-defined

Bourne shell script placed in the bin subdirectory of the directory named by

environment variable ESDIR. The script must be owned by root and executable.

Command line arguments can also be specified following the name of the script. The

necessity of root ownership on the script provides an added measure of security, so

that only privileged users can create scripts that run automatically.

Special command line arguments the have the following significance can be

specified.

trapOutput = "clog://localhost/../log/alarms.log;lines=1000;
width=200;flags=r w+;mode=644"

TABLE A-7 Special Command Line Arguments

Argument Significance

%rowname row name

%state current alarm state
Appendix A Modules Appendix 571

There is also a special script for sending email to specified users. The script name to

use is simply email followed by one or more space-separated UNIX user names.

This script causes an email message to be sent to the specified user names with text:

Management Information Base (MIB)

The Management Information Base (MIB) is the realization of the managed objects

and properties that comprise the management modules currently loaded by the Sun

Management Center agent. The MIB is embodied by the ISO subtree described

previously.

The MIB makes all the managed objects and properties accessible to other Sun

Management Center components through SNMP. The MIB also contains

infrastructure for loading management modules and arbitrating user interactions

with managed objects and properties.

Modules

Modules are the lowest level of granularity of management models. They embody a

set of managed objects and their corresponding properties, and are designed to

fulfill a particular management requirement. The scope of a module is typically such

that a loaded module incorporates a set of management functions broad enough to

completely satisfy a particular management requirement.

Modules are defined using the module configuration file format, described

previously. This specification represents a model that, when loaded, created a tree of

TOE objects configured to perform the functions defined by that module. The act of

loading an X file into a running agent corresponds directly to the realization of the

object model, since the relationship between the information model and the

underlying object technology is very close.

%prevstate previous alarm state

%value current value

%statusstringfmt formatted status string

(similar to the message in the console tooltip)

SyMON alarm action notification ... statusstring: Critical yangtze
Solaris /var Space Used > 90%

TABLE A-7 Special Command Line Arguments

Argument Significance
572 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The management functions of modules can be enabled and disabled through an

SNMP request or through the specification of the module’s active time window.

Disabling a module simply deactivates the autonomous data acquisition normally

performed by the module’s nodes.

Shadow MIB

The concept of a shadow MIB that supports SNMP access to attributes associated

with the managed objects and properties in the agent MIB. These attributes can also

be referred to as qualifiers.

The default shadow attributes for all managed objects and properties are specified in

the file base-shadowmap-d.x . These shadow attribute specifications can be

overridden for specific managed objects and properties by specifying the relevant

parameters in the appropriate object’s configuration file.

Some of the default attributes that are accessible through shadow operations

include:

■ Refresh attributes—refresh service, command, parameters, and interval

■ Timestamp—time at which object/property was last updated

■ Alarm criteria—info, warning, error level alarm limits

■ Alarm actions—actions can be specified for detected events

■ Data logging properties—interval, destination

■ Access control configuration—users, groups, and communities

■ Object and property descriptions—short, medium, full descriptions

Ad-hoc SNMP Operations

The Sun Management Center agent MIB supports the specification of MIB objects

that gather data or execute actions only on demand. These MIB objects are accessible

through SNMP, and their execution would normally be triggered by ad-hoc SNMP

requests originating from a Sun Management Center GUI client.

Note – Note that these ad-hoc MIB objects do not gather data autonomously, and

hence, are not intended for monitoring entities and determining their statuses.

These commands executed by these MIB objects must be synchronous so that the

command result can be returned in the SNMP response. Examples of synchronous

commands can include such things as Tcl command extensions and Tcl procedures.
Appendix A Modules Appendix 573

Shell commands are not permitted since they are asynchronous. Note that the agent

process is blocked while the synchronous command is executed; this blocking is a

very important consideration when designing these synchronous commands.

Examples of ad-hoc SNMP requests include:

■ Getting the current time on the agent host (for example, use Tcl clock command)

■ Performing a system call to read the contents of a file (for example, use Tcl file
command)

For example, the managed property related to file statistics can be associated with

the ad-hoc operation to retrieve the file contents.

Other MIB objects can be associated with one or more ad-hoc operations by

specifying the appropriate ad-hoc MIB objects in its ad-hoc command shadow

attribute. This list of ad-hoc commands specifications are accessible through shadow

SNMP operations. For example, the managed property related to process statistics

can be associated with the ad-hoc operation to get the process table.

Ad-hoc Probe Operations

The Sun Management Center agent MIB also supports the specification of MIB

objects that facilitate the establishment of a stream based connection between a

probe client and an agent spawned probe server. These connection based operations

are referred to as probe operations and are typically initiated on an ad-hoc basis by

the probe client (for example, a Sun Management Center GUI client connected to the

Sun Management Center server). The involvement of the Sun Management Center

agent permits the use of a consistent security model (namely SNMP usec security)

when executing probe requests.

Ad-hoc probe operations are used to support:

■ Log file viewing

■ File transfers

For example, the managed property related to scanning a logfile can be associated

with the ad-hoc operation to view the logfile.

Probe operations are facilitated by the probe server that the Sun Management Center

agent runs when servicing probe requests.

Probe Server

The probe server is a generic process that does the following:

1. On startup, accepts command line arguments specifying a command and a

connection timeout specification.
574 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

2. Opens a listen server socket and writes the port number and a password (a string

containing a framed randomly generated number) to standard output. The

password string is stored internally.

3. Sets a timer for length of the connection timeout specification.

4. Waits for a connection request; if the timer expires, the process exits.

5. If a connect request is received by the listen socket, the connection is accepted, the

listen socket is closed, and the timer is also cancelled.

6. Reads the password from socket and compares it with the stored password. If the

passwords do not match, the process exits.

7. If the passwords match, the process redirects stdin and stdout to the socket

connection and executes the command specification.

Establishing a Probe Connection

To establish the stream connection between a probe client and agent spawned probe

server, the following mechanism is employed:

1. A probe client sends an SNMP set request to the MIB object in the Sun

Management Center agent that supports the desired probe operation. The set

request specifies any required parameters for the probe operation.

2. Sun Management Center agent receives SNMP set request and spawns a probe

server process, passing in the command and timeout specification. The command

specification includes arguments specified in the SNMP set request. These

parameters are used to execute the actual probe process once the connection to

the probe client is established and authenticated.

3. The probe server process opens a listen socket and returns the number of the

opened port and a randomly generated password back to the agent. The pipe

connection between the agent and the listen server process is then closed.

4. The agent forwards the port number and password back to the probe client as the

SNMP set response.

5. The probe client connects to the port on the probe server process on the agent

host. When the connection is accepted, the probe server process closes the listen

socket so that no additional connect requests are accepted.

6. The probe client transmits the password to provide authentication. If the

password is invalid, the probe server process closes the connection and exits.

7. If the passwords match, the probe server process executes the actual probe

application over itself, using the command specification the agent has passed to it

on startup.
Appendix A Modules Appendix 575

8. At this point, a stream connection is established between the probe client and a

process on the agent host. The communication across this connection depends on

the nature of the probe request. Once the request is complete, the connection is

closed.

Data Logging
The data logging interface allows module developers to specify certain values to be

logged at regular intervals. These logs can be used at later time for processing line

statistical analysis, diagnosis, and similar functions.

The Data Logging Interface for the Sun Management Center 3.0 Developer

Environment offers a more enhanced way of retrieving data log information than its

previous version. This section details the configuration needed for data logging.

You can configure the SunMC agent to log data in the conventional format as

described in version 2.1.1, however, this conventional interface will be deprecated

and will be unavailable in the future release of SunMC. Until such time, you can

make a one line change in the configuration file to allow you to view data logs in

either the 2.1.1 format or the 3.0 format. The 3.0 format eliminates unnecessary

categories of information and also provides a clear delineators.

Registry of Current Data Logging Requests

The Sun Management Center agent is configurable to periodically log any managed

property in the agent MIB to an internal data buffer and/or to an interface URL for

persistent storage.

Each agent maintains a persistent registry of the current data logging requests to

ensure that data logging continues when the agent is restarted. The agent can also

load a data logging module that allows a console user to view the contents of the

data logging registry.

Internal History Buffer

The logging of the value of any managed property to an internal history buffer can

be enabled/disabled through shadow SNMP operations. The length and logging

interval of the internal history buffer is configurable through shadow SNMP

operations.

The buffered data is accessible through shadow SNMP operations. This data is not

persistent and is used for things as graphing.
576 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Logging Data to a File

The logging of the value of any managed property to a circular or regular log file can

be enabled/disabled through shadow SNMP operations. The logging destination

and logging interval is also configurable through shadow SNMP operations.

Configuration

To access a specific version of the format, define the configuration parameter in the

agent file for the module. This specification will be applicable for the data that is

logged to the files.

A new configuration parameter can be defined to force the logging in the new

format.

This parameter is optional for data log, and defaults to 1, or the previous version, if

not defined. If the value is 1, then the data will be logged in the format that is

defined.

Data Log Format in Sun Management Center 2.1.x

By default, the data is logged in the following format:

where:

<channel> is the name diagnostic channel this message was logged under.

<date> is the timestamp in a date format (for example, Dec. 25 18:00:00.)

<component> is the daemon component that printed this message (for example,

agent).

<alarm label> is the alarm code that specifies the current alarm condition of the

managed property (for example, INF-0).

<host> is the name of the host

<module instance> specifies the module instance, for modules that can be

instantiated multiple times.

historyVersion = 1|2

<channel> <date> <component> <alarm code> <host> <module instance><module name>
<managed property> =<value><units> <URL> <alarm severity> <timestamp>
Appendix A Modules Appendix 577

<module name> specifies the module name.

<managed property> is the full name of the managed property being logged (for

example, for the system uptime in the MIB-II module,

.iso.org.dod...mib2.system.sysUptime).

<value> is the value of the managed property.

<units> specifies the units of the property value.

<URL> is the URL of the property (for example, snmp://<host>:<port>/
mod/<modspec>/<property>#<instance>.

<alarm severity> is an integer reflecting the severity of the alarm condition; the

higher the number, the more severe the alarm condition.

<timestamp> is the time in seconds that have elapsed since midnight January 1,

1970 (GMT).

Format Differences Between 2.1.1 and 3.0 Versions

The data log format will be different in the following cases:

■ The delimiter is more clearly defined as opposed to suggesting that it is defined

by a white space character only. There are some fields that themselves contain

white spaces, and tabs and spaces are used as a delimiter in different parts of the

line, all of which are clearly delineated in the 3.0 version.

■ Fields that may be optionally present in the log is not clearly noted in the 2.0

version of the documentation.

■ For the managed property, the Descriptor, mediumDesc , is logged instead of the

full name.

The following is a sample line that is logged by the agent for 2.1.1:

Data Log Format in Sun Management Center 3.0

The new format for data log is as follows:

historylog1 Mar 22 08:37:51 agent INF-0 tushara MIB-II Instrumentation number\
of interfaces = 2 snmp://129.146.53.61:1161/mod/mib2-instr/interfaces/ifNumber\
0 953690072

<version>{<channel>} {<timestamp>} {<module name>[+<instance>]}
{<managed property>} {<value>} {[<units>]}
578 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

where

The fields, except for the version, are surrounded by {} and are separated by zero

or more white space characters.

<version> is an integer that defines the version of the log format. The rest of the

fields are fixed for a given version. For this format, the version is always 2

<channel> is the name diagnostic channel this message was logged under.

<timestamp> is the time in seconds that have elapsed since midnight January 1,

1970 (GMT).

<module name> specifies the module name.

<instance> specifies the module instance, for modules that can be instantiated

multiple times. This is an optional field

<managed property> is the full name of the managed property being logged. For

example, for the system uptime in the MIB-II module, it would be:

<value> is the value of the managed property.

<units> specifies the units of the property value. This is an optional field.

Note – The above format is applicable for the data that is logged to files only. The

data that is logged to cache will not have any change in the interface.

Data Logging Destinations

Each managed property can be logged to a standard log file or to a circular log file to

conserve disk space.

Logging to files can be considered as short term storage. Conversely, logging to a

database can be considered as long term storage. Data logged to files can be

transferred to a database in a batch fashion. This functionality is not within the

scope of standard agent data logging.

If more than one managed property is logged to the same destination, the logged

data is interleaved. This should not pose a problem since each logged data entry is

tagged with its name and timestamp.

.iso.org.dod...mib2.system.sysUptime
Appendix A Modules Appendix 579

Logged Data Retrieval

The current design of the Sun Management Center agent does not include facilities

to retrieve the data logged to a URL through shadow SNMP operations.

Data Logging Registry

This data logging registry maintains a table containing information about data

currently being logged. This functionality are implemented in the form of a service

and will make data logging requests persistent.

The registry contains a table to store the following information for each data element

to be logged:

■ state indicates the current status of the log destination (ok|error).

■ module name specifies the name of the module in which the logged property

resides.

■ module instance identifies the module instance, if applicable.

■ property name specifies the managed property being logged.

■ log interval specifies when to log the data. This interval can be specified as a

simple interval or as a complex time specification.

■ file logging status indicates the current status of logging to a file (on|off).

■ log URL specifies the logging destination of the data value.

■ internal buffer status indicates the current status of logging to the internal cache

(on|off).

■ buffer length specifies the maximum length of the internal history buffer

■ log status indicates whether the data is being logged successfully

This table is accessible by a data logging registry module to allow Sun Management

Center console users to view the data currently being logged by a single agent. The

module can be extended to allow console users to do such things as add, edit, and

delete data logging request entries. These additional functions are not supported in

Sun Management Center software.
580 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

APPENDIX B

Time Expression Specifications

This appendix describes time format with which complex time intervals can be

specified in the agent.

It covers the following topics:

■ Notation—page 581

■ Time Expression Specification—page 582

Notation

When specifying values for the time specification, white space is not usually

important. However, an exception to this rule is that spaces are not allowed in

numbers (that is, 4.5 not 4. 5) or in time (10:03 not 10: 03). In addition, upper or

lower case is not important.

The exact specification for the time format is described in the next section. Below are

some general comments about the notation used.

■ Any string enclosed by “” represents a literal string that must be used.

■ DIGIT represent any single numeric value from 0 to 9.

■ The notation ‘N*’ before any value can be interpreted as N or more items of that

value, where N is 1 or more. For example 2*DIGIT specifies 2 or more DIGIT

values.

■ To specify 0 or more values, precede the item with ‘*’. For example *DIGIT

represents 0 or more DIGIT values.

■ To specify an exact number of items, precede the item with the number of values

required. For example 1DIGIT represents exactly one DIGIT value.

■ The ‘|’ denotes a logical “or” condition. For example 1DIGIT | 2DIGIT represents

a value that can have one or two DIGIT values.
581

■ Any item enclosed in [] is optional. For example [time] indicates that the time
value may or may not be specified.

Time Expression Specification

When specifying an interval using the time specification, the following syntax is

used (the refreshInterval command is used as an example):

The time specification can be set to an empty_string (““) or can be composed of 1

or more simple_exp items connected together using logical “and” and “or”

operators. Using the empty_string specification is equivalent to specifying second
= * (see below). The logical operators “and” and “or” are represented by the C &&
and || operators, respectively. The precedence of the logical operators is the same as

in C. In addition, bracketing is also allowed.

The different types of simple_exp are describe in the following sections:

Absolute Time Expression Specification

The absolute format allows the specification of a single instance in time. The

syntax is:

"refreshInterval" = timex_spec
timex_spec = empty_string
 | simple_exp *(("&&" | "||") simple_exp)

empty_string = ""
simple_exp = absolute
 | cyclic
 | comparison
 | cron
 | variable_subsitution

CODE EXAMPLE B-1 Absolute Time Expression Specification

absolute = “epoch(“ 1*DIGIT “)”

 | month_of_year “/” day_of_month “/” (yr | year) [time]

 | month day_of_month [“,”] year [time]

month_of_year = <1*DIGIT value from 1 to 12>
582 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The first form specifies the number of seconds from Jan 1, 1970 12:00am GMT. This is

provided for UNIX programmers. The second and third forms, allow an optional

time specification. If this is not specified, then the time used will be midnight of

date specified. Examples of the absolute specification are:

Cyclic Time Specification

The cyclic specification allows the specifications of periodic events. The period can

be seconds, minutes, hours, days, or weeks in length. The syntax is:

day_of_month = <1*DIGIT value from 1 to 31>

month = “jan” | “feb” | “mar” | “apr” | “may” | “jun” | “jul” | “aug” |

 “sep” | “oct” | “nov” | “dec” | “january” | “february” | “march”

 | “april” | “june” | “july” | “august” | “september” | “october”

 | “november” | “december”

yr = 2DIGIT

year = <4DIGIT value from 1970 to 2038>

time = (hour12 “:” minute [“:” second] time_suffix)

 | (hour24 “:” minute [“:” second])

hour12 = <1*DIGIT value from 1 to 12>

hour24 = <1*DIGIT value from 0 to 23>

minute = <2DIGIT value from 00 to 59>

second = <2DIGIT value from 00 to 59>

time_suffix = “am” | “pm”

refreshInterval = Jan 3, 1996 10:03:23 pm
refreshInterval = Jan 3 1996 10:03:23 pm
refreshInterval = 01/03/96 10pm
refreshInterval = epoch(234324324)

CODE EXAMPLE B-2 Syntax for Cyclic Specification

cyclic = “cycle(“ rel_time “)”

rel_time = FLOAT [rel_units]

rel_units = unit_week | unit_day | unit_hour | unit_min | unit_sec

CODE EXAMPLE B-1 Absolute Time Expression Specification(Continued)
Appendix B Time Expression Specifications 583

If the rel_uints are not supplied, then seconds are assumed. If the entire time

specification is a in cyclic format, the cycle() can be dropped. For example, both

of the following examples are valid:

Comparison Time Specification

The comparison specification can be used to specific conditions on variables that

must be true. The syntax is:

unit_week = “w” | “wk” | “wks” | “week” | “weeks”

unit_day = “d” | “day” | “days”

unit_hour = “h” | “hr” | “hrs” | “hour” | “hours”

unit_min = “m” | “min” | “minute” | “minutes”

unit_sec = “s” | “sec” | “secs” | “second” | “seconds”

FLOAT = (1*DIGIT “.” *DIGIT)

 | (*DIGIT “.” 1*DIGIT)

 | *DIGIT

refreshInterval = cycle(5 h)
refreshInterval = 5 h

CODE EXAMPLE B-3 Syntax for Comparison Specification

comparison = [“!”] variable op value

variable = “day_of_week”

 | “week_of_year”

 | “day_of_year”

 | “second”

 | “minute”

 | “hour”

 | “day_of_month”

 | “week_of_month”

 | “month”

 | “year”

 | “date”

 | “time”

op = “<“

 | “<=”

CODE EXAMPLE B-2 Syntax for Cyclic Specification
584 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The optional (!) in front of the variable can be interpreted as a “not” logical operator.

When (*) is specified for value any value is valid for that variable and that all

values will be considered when finding the next beat. For example minute=* says

that the object will be true all the time and will beat once at the start of every

minute.

Only certain types of value_basic can be used in with certain variables (see the

example below). In addition only certain types of value_basic can be specified in a

range in value_item. The value_basic types that cannot be specified in a range

are: hour , hour24 , minute , second , and time. In addition, ranges can only be used

when the “=” op is used. For example, day_of_month < 2-15,25 is invalid and

day_of_month = 2-15,25 is valid.

The ranges for value_basic types written maximum to minimum will get

translated to minimum to maximum. For example, day_of_month=25-5 , will be

treated the same as day_of_month = 25-31,1-5.

Internally, a precision is kept for each value so that seconds will be not lost when

specifying ranges. For example, time<8:05am && time>=8:05am will cover the

entire day. Without the precision, there would be a 59-second period that would not

be covered (8:04:01am-8:04:59am).

 | “=”

 | “==”

 | “>”

 | “>=”

 | “!=”

value = “*”

 | value_item *[“,” value_item]

value_item = value_basic

 | value-basic “-” value_basic

value_basic = *DIGIT

 | day_of_week

 | day

 | week_of_year

 | day_of_year

 | second

 | minute

 | hour

 | day_of_month

 | year

 | absolute

 | time

CODE EXAMPLE B-3 Syntax for Comparison Specification
Appendix B Time Expression Specifications 585

Each of the variable and associated value items is described below.

■ Monday corresponds to a numeric value of 1.

■ Sunday can have a numeric value of 0 or 7.

■ Saturday has a numeric value of 6.

■ The words sun or sunday correspond to the numeric value 0, not 7.

Do not use <, <=, >=, or > with day_of_week , since Sunday can be 0 or 7. For

example, day_of_week <= 7 means the entire week (0-7) whereas

day_of_week<=0 or day_of_week<=Sun means Sunday only.

Use two end points. For example, use day_of_week=wed-sun or

day_of_week>=wed && day_of_week<=Sun so that the start and end days are

clear.

■ A value of 1 is the first week in the year where there are four days of the week in

that year (monday is considered the beginning of a week).

■ A value of 0 is defined to be the 1, 2 or 3 days that may lie in that year but come

before week 1.

“day_of_week”
value = day_of_week | day
day_of_week = <1DIGIT value from 0 to 7>
day = “mon” | “tue” | “wed” | “thu” | “fri” | “sat” | “sun”
 | “monday” | “tuesday” | “wednesday” | “thursday” | “friday”
 | “saturday” “sunday”

“week_of_year”
value = week_of_year
week_of_year = <1*DIGIT value from 1 to 53>
586 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

■ A value of 53 may occur under certain conditions. For example, if the first day of

the year falls on a thursday and the year is a leap year.

■ week_of_month represents the number of times that day of the week has

occurred in the month.

■ Used to represent things like the first sunday in July week_of_month==1 &&
day_of_week==sun && month==july

Cron Time Specification

The cron specification allows UNIX cron style inputs. The syntax is:

“day_of_year”
value = day_of_year
day_of_year = <1*DIGIT value from 1 to 366>
“second”
value = second
“minute”
value = minute
“hour”
value = hour
hour = (hour12 time_suffix) | hour24
midnight is 0 or 12am
noon is 12 or 12pm
“day_of_month”
value = day_of_month
day_of_month = <1*DIGIT value from 1 to 31>
“week_of_month”
value = week_of_month
week_of_month = <1DIGIT value from 1 to 5>

“month”
value = month_of_year | month
“year”
value = year
“date”
value = absolute
“time”
value = time

cron = “cron(“ minute hour day_of_month month day_of_week “)”
Appendix B Time Expression Specifications 587

The five entries correspond to the usual minute, hour, day of month, month, day of

week values respectively. These values can include ranges as in the comparison

specification. If the entire time specification is a cron specification, then the “cron()”

can be dropped. For example both of the following specifications are valid:

Variable Substitution Specification

The time specification also allows variable substitution. All variables will be de-

referenced from the base-timex-d.x file. The notation for referencing variables is:

For example, the variable xmas can be specified in the base-timex-d.x file:

This variable can then be used in specifying an interval:

This example indicates that on Christmas, specify a cycle interval with a period of

one hour. Otherwise, cycle with a period of 5 seconds.

refreshInterval = cron(5 * * * *)
refreshInterval = 5 * * * *

variable_subsitution = “$” <character string>

xmas = “day_of_month = 25 && month = dec”

refreshInterval = “!($xmas) && cycle(5s) || ($xmas) && cycle(1hr)”
588 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

APPENDIX C

Module Building Tutorial

This appendix provides a tutorial describing how to build a module.

It covers the following topics:

■ Module Example—page 589

■ Steps to Create a Module—page 589

Module Example

An example module that monitors the size of a file is described here to illustrate the

module construction process. The functionality of the module is simplified to

demonstrate the creation of a simple module prototype. Enhanced versions of the

module example are then described. The process of the module example is:

1. Monitor the size of the /var/adm/wtmp file using UNIX ls command.

2. Monitor file size using Tcl file command.

3. Parameterize filename so that any file can be monitored.

4. Add SNMP table management capabilities to monitor more than one file.

Steps to Create a Module

Creating a module consists of creating the definition files that describe the module

and writing whatever code is required to perform the data acquisition and alarm

checking.
589

This process comprises:

■ Naming the Module

■ Creating a Data Model

■ Realizing the Model

■ Specifying Alarm Management Information

filesize Module Version 1—Simple
Prototype

To simplify the implementation of the module, it is assumed that the module will

always monitor the size of the system file /var/adm/wtmp .

Naming the Module

The first step is to name the module and create the parameter file for the module. By

convention, the names of the definition files are based on the module name.

The example module to monitor the size of the file /var/adm/wtmp can be called

filesize. The associated parameter file then must be named filesize-m.x and

contain the following entries:

CODE EXAMPLE C-1 Example Parameter File (filesize-m.x)

[load default-m.x]

consoleHint:moduleParams(param) = module i18nModuleName \
i18nModuleDesc version enterprise i18nModuleType

param:module = filesize

param:moduleName = File Size Monitoring

param:version = 1.0

param:console = filesize

param:moduleType = localApplication

param:enterprise = halcyon

param:location = .iso.org.dod.internet.private.enterprises \

.halcyon.primealert.modules.filesize

param:oid = 1.3.6.1.4.1.1242.1.2.91

param:desc = An example module that monitors the size \
of /var/adm/wtmp.
590 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

Creating a Data Model

Creating the data model is the most important step in the module construction

process. This step involves identifying the components and properties of the

managed entity that are to be included in the data model. These components and

properties then must be organized in a tree hierarchy. The data model is specified in

a model file.

Note – The data model does not need to contain every component and property of

the managed entity. It only needs to contain the information that is pertinent to the

determination of the status of the entity. Additional information about the entity can

be included at the discretion of the module developer.

In the data model of the wtmp file, the managed object is simply the file. Managed

properties of the file can include such items as its name, inode, size, last

modification date, contents, and so forth. To simplify this example, the data model

includes the file size as its only managed property. The size is represented by an

INTHI primitive data type, which implies that its value is an integer and is capable

of performing alarm checks against high limits.

The relationship between the managed object and property is specified in the model

file:

param:i18nModuleName = base.modules.filesize:moduleName

param:i18nModuleType = base.modules.filesize:moduleType

param:i18nModuleDesc = base.modules.filesize:moduleDesc

?param:i18nModuleName?i18n = yes

?param:i18nModuleType?i18n = yes

?param:i18nModuleDesc?i18n = yes

CODE EXAMPLE C-2 Example Model File (filesize-models-d.x)

type = reference

file = { [use MANAGED-OBJECT]

 mediumDesc = File

 consoleHint:mediumDesc = base.modules.filesize:file

 size = { [use MANAGED-PROPERTY INTHI]

 shortDesc = size

CODE EXAMPLE C-1 Example Parameter File (filesize-m.x) (Continued)
Appendix C Module Building Tutorial 591

The contents of the corresponding Properties File is shown below:

Realizing the Model

After the data model has been defined, it is realized by instantiating it in the context

of a module and adding data acquisition mechanisms.

For the example, the size of the wtmp file is computed by running the UNIX

commands ls -l /var/adm/wtmp | awk ’{print $5}’ in a shell context. The

execution of these commands is facilitated by the shell service (_services.sh),

which provides a mechanism to run commands in a shell context.

The commands refreshService, refresh Command, and refreshInterval,
are specified in the wtmp object to define the means and the frequency at which the

datais acquired. The file object is set to an active node type to enable it, periodically,

to acquire data.

 mediumDesc = file size

 fullDesc = Size of file

 units = bytes

consoleHint:mediumDesc = base.modules.filesize:file.size

consoleHint:i18nunits = base.modules.filesize:units.bytes

 }

}

CODE EXAMPLE C-3 Example Properties File (filesize.properties)

moduleName=filesize
moduleType=localApplication
moduleDesc=An example module that monitors the size of \
/var/adm/wtmp.

file=File
file.size=file size

units.bytes=bytes

CODE EXAMPLE C-4 Example Agent File (filesize-d.x)

[use MANAGED-MODULE]
[load filesize-m.x]
[requires template filesize-models-d]
_services = { [use SERVICE]

CODE EXAMPLE C-2 Example Model File (filesize-models-d.x) (Continued)
592 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

Specifying Alarm Management Information

This step involves the specification of default alarm criteria and actions for managed

properties. Alarm checks are performed every time the property value is computed.

The alarm criteria that can be specified is dependent on the primitive data types

used to represent the property.

In the filesize example, the size property is an INTHI data type; consequently,

high alarm limits can be specified.

 #
 # Standard Bourne Shell
 #
 sh = {
 command = “pipe://localhost//bin/sh;transport=shell ”
 max = 2
 }
}
initInterval = 0
file = { [use templates.filesize-models-d.file]
 type = active
 refreshService = _services.sh
 refreshCommand = ls -l /var/adm/wtmp | awk ’{print $5}’
 refreshInterval = 60
}
[load filesize-d.def]

CODE EXAMPLE C-5 Example Alarm File (filesize-d.def)

file = {
 size = {
 alarmlimit:error-gt = 2000000
 alarmlimit:warning-gt = 1500000
 }
}

CODE EXAMPLE C-4 Example Agent File (filesize-d.x) (Continued)
Appendix C Module Building Tutorial 593

filesize Module Version 2—
Improving DAQ Mechanism

Alternatively, the size can be computed more efficiently in C and integrated with the

agent in the form of a Tcl package. The migration of functionality from scripts to C is

described in the chapter of this document entitled “Binary Extensions and Packages”.

For the filesize module example, a Tcl command extension for obtaining file

statistics already exists. The Tcl file command can be used to get the size of a file in

bytes. The agent file is modified to use the Tcl file command in place of the UNIX

ls command.

Note – The refreshService must also be set to _internal to facilitate the

execution of the Tcl file command.

Since the module MIB is modified in new version of the module, it is safe to release

the new version of the module with the same module name and MIB location.

CODE EXAMPLE C-6 Example Parameter File (filesize-m.x)

[load default-m.x]

consoleHint:moduleParams(param) = module i18nModuleName \
i18nModuleDesc version enterprise i18nModuleType

param:module = filesize
param:moduleName = File Size Monitoring
param:version = 2.0
param:console = filesize
param:moduleType = localApplication
param:enterprise = halcyon
param:location = .iso.org.dod.internet.private.enterprises
\ .halcyon.primealert.modules.filesize
param:oid = 1.3.6.1.4.1.1242.1.2.91
param:desc = An example module that monitors the size \
of /var/adm/wtmp.

param:i18nModuleName = base.modules.filesize:moduleName
param:i18nModuleType = base.modules.filesize:moduleType
param:i18nModuleDesc = base.modules.filesize:moduleDesc
594 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

filesize Module Version 3—Adding
Parameters to File Name Specification

This example illustrates how to allow any file to be monitored by the module. This

enhancement will allow the module to have multiple instances in order to monitor

multiple files.

As in version 2 of the module, the new version does not modify module MIB, so the

new version can be released with the same module name and location.

Instance parameters must be added to parameter file to support the multiple

instantiation of the module. In addition, entries for the file name parameter must be

added so that the Sun Management Center console user is queried for this

information when the module is loaded.

?param:i18nModuleName?i18n = yes
?param:i18nModuleType?i18n = yes
?param:i18nModuleDesc?i18n = yes

CODE EXAMPLE C-7 Example Agent File (filesize-d.x)

[use MANAGED-MODULE]
[load filesize-m.x]
[requires template filesize-models-d]
initInterval = 0
file = { [use templates.filesize-models-d.file]
 type = active
 refreshService = _internal
 refreshCommand = file size /var/adm/wtmp
 refreshInterval = 60
}

[load filesize-d.def]

CODE EXAMPLE C-8 Example Parameter File (filesize-m.x)

[load default-m.x]

consoleHint:moduleParams(param) = module i18nModuleName
i18nModuleDesc version enterprise i18nModuleType instance
instanceName i18nFilename

CODE EXAMPLE C-6 Example Parameter File (filesize-m.x) (Continued)
Appendix C Module Building Tutorial 595

The refresh command must be modified to reference the filename parameter instead

of simply monitoring /var/adm/wtmp .

param:module = filesize

param:moduleName = File Size Monitoring

param:version = 3.0

param:console = filesize

param:moduleType = localApplication

param:enterprise = halcyon

param:location =
.iso.org.dod.internet.private.enterprises.halcyon.primealert.mod
ules.filesize

param:oid = 1.3.6.1.4.1.1242.1.2.91

param:desc = An example module that monitors filesize

param:i18nModuleName = base.modules.filesize:moduleName

param:i18nModuleType = base.modules.filesize:moduleType

param:i18nModuleDesc = base.modules.filesize:moduleDesc

?param:i18nModuleName?i18n = yes

?param:i18nModuleType?i18n = yes

?param:i18nModuleDesc?i18n = yes

param:i18nFilename =

?param:i18nFilename?description = base.modules.filesize:filename

?param:i18nFilename?access = rw

param:instance =

param:instanceName =

?param:instance?description = base.modules.default:instance

?param:instance?reqd = yes

?param:instance?format = instance

?param:instanceName?description =
base.modules.default:description

?param:instanceName?reqd = yes

CODE EXAMPLE C-9 Example Agent File (filesize-d.x)

[use MANAGED-MODULE]

[load filesize-m.x]

[requires template filesize-models-d]

consoleHint:mediumDesc = base.modules.filesize:moduleDetail

CODE EXAMPLE C-8 Example Parameter File (filesize-m.x) (Continued)
596 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

The instance values must be internationalized.

The corresponding changes to the properties file are:

filesize Module Version 4—Adding
SNMP Table Management Capabilities

The previous versions of this module were limited monitoring the size of a single

file. To monitor the size of more than one file, the module needed to be loaded

multiple times. Version four of the module can monitor one or more files in a single

module instance. To do this, SNMP table management capabilities are added.

In this version of the module, the module MIB must be changed. The most

significant change is the introduction of a SNMP table to support the monitoring of

multiple files. As a result, the new version of this module must be released with a

new module name and MIB location.

initInterval = 0

file = { [use templates.filesize-models-d.file]

 type = active

 refreshService = _internal

 refreshCommand = file size %i18nFilename

 refreshInterval = 60

}

[load filesize-d.def]

CODE EXAMPLE C-10 Example Properties File (filesize.properties)

moduleName=filesize

moduleType=localApplication

moduleDesc=An example module that monitors filesize

filename=File Name

moduleDetail=filesize [{0}]

file=File

file.size=file size

units.bytes=bytes

CODE EXAMPLE C-9 Example Agent File (filesize-d.x)
Appendix C Module Building Tutorial 597

Module Name

To distinguish this version of the module from previous versions, the module name

has been modified. The subspec table is added to indicate that multiple files can be

monitored, and the module name becomes filesize-table. This version of the module

does not support multiple instantiation. However, this feature can be added in a

similar manner as before. The associated parameter file is shown below. Differences

between this version and previous versions are in bold.

Modifying the Model

To support the monitoring of multiple files, the single managed property size must

be made part of a SNMP table with other managed properties. The additional

managed properties are:

■ rowstatus - this node is required for SNMP management of tables

■ instance - this node is used as the index for each row of the table

■ name - the node is used to store the names of the files being monitored

CODE EXAMPLE C-11 Example Parameter File (filesize-table-m.x)

[load default-m.x]

consoleHint:moduleParams(param) = module i18nModuleName \
i18nModuleDesc version enterprise i18nModuleType

param:module = filesize-table
param:moduleName = File Size Monitoring (Table)
param:version = 1.0
param:console = filesize-table
param:moduleType = localApplication
param:enterprise = halcyon
param:location = .iso.org.dod.internet.private.enterprises\
.halcyon.primealert.modules.filesizetable
param:oid = 1.3.6.1.4.1.1242.1.2.92
param:desc = An example module that monitors the size \
of multiple files.

param:i18nModuleName = base.modules.filesize-table:moduleName
param:i18nModuleType = base.modules.filesize-table:moduleType
param:i18nModuleDesc = base.modules.filesize-table:moduleDesc

?param:i18nModuleName?i18n = yes
?param:i18nModuleType?i18n = yes
?param:i18nModuleDesc?i18n = yes
598 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

The complete model file is shown below.

CODE EXAMPLE C-12 Example Model File (filesize-table-models-d.x)

type = reference

initInterval = 0

file = { [use MANAGED-OBJECT]

 mediumDesc = File

 consoleHint:mediumDesc = base.modules.filesize-table:file

 fileTable = { [use MANAGED-OBJECT-TABLE]

 mediumDesc = File Table

 consoleHint:mediumDesc = base.modules.filesize-table:file.fileTable

 fileEntry = { [use MANAGED-OBJECT-TABLE-ENTRY]

 mediumDesc = File Entry

 consoleHint:mediumDesc = base.modules.filesize-
table.file.fileTable.fileEntry

 index = instance

 rowstatus = { [use ROWSTATUS MANAGED-PROPERTY]

 mediumDesc = Row Status

 consoleHint:mediumDesc = base.modules.filesize\
-table:file.fileTable.fileEntry.rowstatus

 consoleHint:hidden = true

 }

 instance = { [use STRING MANAGED-PROPERTY]

 mediumDesc = File Instance

 consoleHint:mediumDesc = base.modules.filesize\
-table:file.fileTable.fileEntry.instance

name = { [use STRING MANAGED-PROPERTY]

 mediumDesc = File Name

 consoleHint:mediumDesc = base.modules.filesize\
-table:file.fileTable.fileEntry.name

 required = true

 }

 size = { [use INTHI MANAGED-PROPERTY]

 shortDesc = size

 mediumDesc = file size

 fullDesc = Size of file

 units = bytes

consoleHint:mediumDesc = base.modules.filesize-\
table:file.fileTable.fileEntry.size
Appendix C Module Building Tutorial 599

Realize the Modified Model

The agent file for this version of the module contains a number of differences from

the previous versions. These changes are:

■ Adhoc commands are added to support the addition and removal of rows using

the Sun Management Center console.

■ A Procedure File which defines the refresh command as well as other procedures.

■ setrowActions are defined for createAndGo , createAndWait , and destroy
states. Both the createAndGo and createAndWait actions simply call a Tcl

procedure that triggers a refresh and issues a SNMP trap when it is done. This

trap allows the Sun Management Center console to refresh the data immediately.

The destroy action calls a Tcl procedure removeEntry which is defined in the

Procedure File.

■ The instance node is given the operational type of derived. This is done so that

data is not cascaded into it from the refresh command.

 consoleHint:i18nunits = base.modules.filesize-\
table:units.bytes

}

}

}

}

CODE EXAMPLE C-13 Example Agent File (filesize-table-d.x)

[use MANAGED-MODULE]
[load filesize-table-m.x]
[requires template filesize-table-models-d]

_procedures = { [use PROC]
 [source filesize-table-d.prc]
}
initInterval = 0
file = { [use templates.filesize-table-models-d.file _procedures
]
 type = active
 refreshService = _internal
 refreshCommand = getFileSizes
 refreshInterval = 300

 fileTable = {

CODE EXAMPLE C-12 Example Model File (filesize-table-models-d.x)
600 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

 fileEntry = {

consoleHint:tableHeaderCommands = addrow
 consoleHint:tableCommands = addrow unload

 consoleHint:commandLabel(addrow) = \
base.console.ConsoleGeneric:tableRow.addPopup

consoleHint:commandSpec(addrow) = launchUniqueDialog
%windowID .templates.tools.rowadder objectUrl=snmp://
%targetHost:%targetPort/mod/filesize-table/file/fileTable/
fileEntry#%targetFragment

 consoleHint:commandLabel(unload) =
base.console.ConsoleGeneric:tableRow.deletePopup
 consoleHint:commandSpec(unload) =
requestTableRowOperation %windowID snmp://
%targetHost:%targetPort/mod/filesize-table/file/fileTable/
fileEntry/rowstatus#%targetFragment unload

 rowstatus = {
 setrowActions(createAndGo) = refresh
 setrowActions(createAndWait) = refresh
 setrowActions(destroy) = remove
 setrowService() = file

 setrowCommand(refresh) = refreshValueAndTrap
 setrowCommand(remove) = removeEntry %rowname

}
 instance = {
 type = derived
 }

name = {
 access = rw
 }

 size = {
 defaultvalue = 0
 }
 }
 }
}
[load filesize-table-d.def]

CODE EXAMPLE C-13 Example Agent File (filesize-table-d.x) (Continued)
Appendix C Module Building Tutorial 601

CODE EXAMPLE C-14 Example: Procedure File (filesize-table-d.prc)

#

Tcl proc for refreshCommand

#

This procedure gets the list of filenames in the table and
determines the size of each file (in bytes) using the Tcl file
command. A list of filename and file size is returned.

#

proc getFileSizes {} {

 #

 # initialize result

 #

 set result ""

 #

 # get list of all filenames

 #

 set files [toe_send [locate fileTable*name] getValues]

 #

 # loop through each file and determine file size

 # append filename and filesize to result

 #

 foreach file $files {

 set filesize [file size $file]

 set result "$result $file $filesize"

 }

 return $result

}

#

Tcl proc for removing a row

#

proc removeEntry { name } {

 #

 # clear any alarm status and editable parameters (limits,

 # status command, and acks) associated with this row

 #

 set tableObject [locate fileTable.fileEntry]

 if { $tableObject != "" } {

toe_send $tableObject cleanupRow $name CLEAR_PARMS

 }
602 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

Alarm Management

The alarm file is modified to take into account the new model that is used.

 refreshValueAndTrap

 return [list "$name Entry Removed"]

}

CODE EXAMPLE C-15 Properties File (filesize-table.properties)

moduleName=File Size Monitoring (Table)

moduleType=localApplication

moduleDesc=An example module that monitors the size multiple
files.

file=File

file.fileTable=File Table

file.fileTable.fileEntry=File Entry

file.fileTable.fileEntry.rowstatus=Row Status

file.fileTable.fileEntry.instance=File Instance

file.fileTable.fileEntry.name=File Name

file.fileTable.fileEntry.size=File Size

units.bytes=bytes

CODE EXAMPLE C-16 Example Alarm File (filesize-table-d.def)

file = {
 fileTable = {
 fileEntry = {
 size = {
 alarmlimit:error-gt() = 2000000
 alarmlimit:warning-gt() = 1500000
 }
 }
 }
}

CODE EXAMPLE C-14 Example: Procedure File (filesize-table-d.prc) (Continued)
Appendix C Module Building Tutorial 603

604 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

APPENDIX D

SNMP Proxy Monitoring Modules

This appendix covers the following topics:

■ Proxy Monitoring—page 605

■ SNMP Sets—page 616

Proxy Monitoring

This appendix describes how to build modules that enable Sun Management Center

agents to proxy monitor other legacy SNMP agents running on the same host or

other hosts or devices on the network.

These modules allow Sun Management Center agents to manage and determine the

status of objects being monitored by legacy agents in the same manner as objects

being monitored by typical Sun Management Center modules. This is accomplished

by having the Sun Management Center agent query the legacy agent and storing any

retrieved data locally. This data can then be processed by the Sun Management

Center agent for typical module actions such as alarm limit checking. In addition,

traps issued from the legacy agent can be correlated with jobs in the Sun

Management Center agent and used to trigger refresh actions that can reacquire data

from legacy agents to determine the status in a timely manner.

The following sections describe the differences in the various module definition files

for SNMP proxy monitoring modules. Two new module definition files are also

described.

Module Parameter File

In addition to the standard module parameters required, SNMP proxy monitoring

modules require additional information to be specified in the module parameter file.
605

These parameters are:

■ targetHost —the name of the remote host on which the legacy agent is running.

■ targetPort —the SNMP port of legacy agent.

■ targetEnterprise —the symbolic OID corresponding to the branch of interest in

the MIB of the legacy agent. This is typically the enterprise specific branch. A

symbolic OID is an OID that specifies the node names instead of the numerical

values. For example, iso.org.dod is a symbolic OID.

■ context —the MIB context of the object if any.

■ snmpVersion —the version of the SNMP protocol used by the legacy agent. This

can have one of the following values: SNMPv1, SNMPv2c, or SNMPv2u.

■ securityLevel —this defines the level of security used in the SNMP

communication. The valid values are: priv , auth , or noauth. priv indicates that

the SNMP communication will be encrypted (this is not currently implemented).

auth indicates that the SNMP communication will be authenticated. This is only

valid for SNMPv2u. Finally, noauth indicates that no authentication will be done.

This is required for SNMPv2c and SNMPv1 protocols.

■ securityName —this is the security name (or community for SNMPv1 and

SNMPv2c) used to perform SNMP gets from the legacy agent.

These additional parameters are used to automatically construct the

refreshCommand for nodes that inherit from the TARGET-SNMPprimitive (see

below). As such, only SNMP gets from legacy agents are permitted using these

module parameters. Additional parameters may be specified for SNMP sets (see

below).

These parameters are specified in the module parameter file in the same manner as

other parameters and can have optional parameters, such as description, associated

with them.

The following example shows the module parameter file for the MIB2 Proxy

Module. This example includes the standard module parameters as well as the four

additional parameters and associated optional parameters (description , reqd and

access) required for SNMP proxy monitoring modules.

CODE EXAMPLE D-1 Example: mib2-proxy-v2-m.x

[load default-m.x]

Tabulation and ordering specifications

consoleHint:moduleParams(param) = module i18nModuleName i18nModuleDesc version
console enterprise i18nModuleType instance instanceName targetHost targetPort
targetEnterprise snmpVersion securityLevel securityName context

param:module = mib2-proxy

param:moduleName = MIB-II Proxy Monitoring

param:version = 2.0

param:console = mib2-proxy
606 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

param:moduleType = remoteSystem

param:i18nModuleName = base.modules.mib2Proxy:moduleName

param:i18nModuleType = base.modules.mib2Proxy:moduleType

param:i18nModuleDesc = base.modules.mib2Proxy:moduleDesc

?param:i18nModuleName?i18n = yes

?param:i18nModuleType?i18n = yes

?param:i18nModuleDesc?i18n = yes

param:enterprise = sun

param:targetEnterprise = iso.org.dod.internet.mgmt.mib-2

param:snmpVersion = SNMPv1

param:instance =

param:instanceName =

param:targetHost =

param:targetPort =

param:context =

param:securityName = public

param:securityLevel = noauth
param:location = .iso.org.dod.internet.private.enterprises.sun.prod.sunsymon.agent.modules.mib2Proxy

?param:targetHost?description = base.modules.default:targetHost

?param:targetHost?reqd = yes

?param:targetPort?description = base.modules.default:targetPort

?param:targetPort?reqd = yes

?param:targetEnterprise?description = base.modules.default:targetMibEnt

?param:targetEnterprise?reqd = yes

?param:securityName?description = base.modules.default:securityName

?param:securityName?reqd = yes

?param:snmpVersion?description = base.modules.default:snmpVersion

?param:snmpVersion?reqd = yes

?param:securityLevel?description = base.modules.default:securityLevel

?param:securityLevel?reqd = yes

?param:context?description = base.modules.default:context

?param:instance?description = base.modules.default:instanceId

?param:instance?reqd = yes

?param:instance?format = instance

?param:instanceName?description = base.modules.default:instanceName

?param:instanceName?reqd = yes

CODE EXAMPLE D-1 Example: mib2-proxy-v2-m.x (Continued)
Appendix D SNMP Proxy Monitoring Modules 607

Module Models File

For SNMP proxy monitoring modules, the module Model file must be used to map

out the portion of the MIB in the legacy agent (under the branch specified by the

targetEnterprise) that is of interest to the module.

For example, a fragment of the MIB2 proxy module model file for the system and

udp branches of the MIB2 tree is shown in the next section.

CODE EXAMPLE D-2 Example: mib2-proxy-models-d.x

type = reference

consoleHint:mediumDesc = base.modules.mib2Proxy:moduleDetail

#

system Managed Object

implements MIB-II system Group

#

system = { [use MANAGED-OBJECT]

 mediumDesc = MIB-II System Group

 consoleHint:mediumDesc = base.modules.mib2Proxy:system

 sysDescr = { [use STRING MANAGED-PROPERTY]

 shortDesc = sysDescr

 mediumDesc = System Descr

 fullDesc = MIB-II System Description

consoleHint:mediumDesc = base.modules.mib2Proxy:system.sysDescr

 }

 sysObjectID = { [use OID MANAGED-PROPERTY]

 shortDesc = sysOID

 mediumDesc = System OID

 fullDesc = Object Identifier of the software system

consoleHint:mediumDesc = base.modules.mib2Proxy:system.sysObjectID

 }

 sysUpTime = { [use STRING MANAGED-PROPERTY]

 shortDesc = Time since up

 mediumDesc = Time since System is up

fullDesc = The time in microseconds since the system is up

consoleHint:mediumDesc = base.modules.mib2Proxy:system.sysUpTime

 }

 sysContact = { [use STRING MANAGED-PROPERTY]

 shortDesc = Contact

 mediumDesc = System Contact

 fullDesc = Contact name for this system

consoleHint:mediumDesc = base.modules.mib2Proxy:system.sysContact

 }
608 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

 sysName = { [use STRING MANAGED-PROPERTY]

 mediumDesc = system name

 consoleHint:mediumDesc = base.modules.mib2Proxy:system.sysName

 }

 sysLocation = { [use STRING MANAGED-PROPERTY]

 shortDesc = Time since up

 mediumDesc = system location

consoleHint:mediumDesc = base.modules.mib2Proxy:system.sysLocation

 }

 sysServices = { [use INT MANAGED-PROPERTY]

 mediumDesc = system services

consoleHint:mediumDesc = base.modules.mib2Proxy:system.sysServices

 }

}

...

...

...

udp = { [use MANAGED-OBJECT]

 mediumDesc = MIB-II UDP Group

 consoleHint:mediumDesc = base.modules.mib2Proxy:udp

 udpInDatagrams = { [use COUNTER MANAGED-PROPERTY]

 mediumDesc = udpInDatagrams

consoleHint:mediumDesc = base.modules.mib2Proxy:udp.udpInDatagrams

 }

 udpNoPorts = { [use COUNTER MANAGED-PROPERTY]

 mediumDesc = udpNoPorts

 consoleHint:mediumDesc = base.modules.mib2Proxy:udp.udpNoPorts

 }

 udpInErrors = { [use COUNTER MANAGED-PROPERTY]

 mediumDesc = udpInErrors

consoleHint:mediumDesc = base.modules.mib2Proxy:udp.udpInErrors

 }

 udpOutDatagrams = { [use COUNTER MANAGED-PROPERTY]

 mediumDesc = udpOutDatagrams

consoleHint:mediumDesc = base.modules.mib2Proxy:udp.udpOutDatagrams

 }

 udpTable = { [use MANAGED-OBJECT-TABLE]

 shortDesc = UDP Table

 mediumDesc = UDP Table

 fullDesc = UDP Table in MIB-II

 consoleHint:mediumDesc = base.modules.mib2Proxy:udp.udpTable

 udpEntry = {[use MANAGED-OBJECT-TABLE-ENTRY]

 shortDesc = UDP Entry

CODE EXAMPLE D-2 Example: mib2-proxy-models-d.x(Continued)
Appendix D SNMP Proxy Monitoring Modules 609

Legacy MIB OIDs Mapping File

To allow the Sun Management Center agent to reference the legacy agent using

URLs, an additional module definition file must be created and loaded into the agent

(see the next section). This file is used to map symbolic object identification names to

their numeric OID values. The naming convention for this file is <module><-
subspec>-oids-d.dat and can be generated using the script mib2x. This script is

located in /opt/SUNWsymon/util/bin/<arch> . The general usage for this script is:

This script reads an ASN.1 MIB text file and generates, on standard output, text with

the following format:

 mediumDesc = UDP Entry

 fullDesc = UDP Entry in MIB-II

consoleHint:mediumDesc = base.modules.mib2Proxy:udp.udpTable.udpEntry

 index = udpLocalAddress udpLocalPort

 udpLocalAddress = { [use STRING MANAGED-PROPERTY]

 mediumDesc= udpLocalAddress

 consoleHint:mediumDesc = \
base.modules.mib2Proxy:udp.udpTable.udpEntry.udpLocalAddress

 }

 udpLocalPort = { [use INT MANAGED-PROPERTY]

 mediumDesc = udpLocalPort

 consoleHint:mediumDesc = \
base.modules.mib2Proxy:udp.udpTable.udpEntry.udpLocalPort

 }

 }

 }

}

mib2x -f <ASN.1 MIB text file> > <module><-subspec> -oids-d.dat

<sym1> = <oid1> [<instance>]
<sym1>/ <sym2> = <oid1> . <oid2> [<instance>]
<sym1>/ <sym2>/ <sym3> = <oid1> . <oid2> .<oid3> [<instance>]
...

CODE EXAMPLE D-2 Example: mib2-proxy-models-d.x(Continued)
610 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

This file maps symbolic names of nodes in the legacy MIB to OIDs. The text created

by the mib2x script may need to be edited manually. The first few lines from the

MIB2 Proxy module legacy MIB OIDs file (mib2-proxy-oids-d.dat) are:

Module Realization File

To enable the Sun Management Center agent to reference the legacy agent using

URLs, OIDs file of the legacy agent must be loaded into the agent. The loading of

this file and the qualifiers required to collect data from the legacy agent are

described in the following section.

Loading the Legacy MIB OIDs Mapping File

The legacy agent’s OIDs file must be loaded into the Sun Management Center agent

SNMP OID cache. This is done by specifying the following qualifiers in the module

realization file:

Where <key> can be any unique identifier and the <module><-subspec>-oids
corresponds to legacy MIB OIDs file. The activateActions(post) qualifier is a

space separated list of keys that corresponds to actions that will be performed after

the current MIB tree has been instantiated. Each <key> must have a

activateService and activateCommand that specifies the command as well as the

context in which the command is to be executed.

iso = 1
iso/org = 1.3
iso/org/dod = 1.3.6
iso/org/dod/internet = 1.3.6.1
iso/org/dod/internet/directory = 1.3.6.1.1
iso/org/dod/internet/mgmt = 1.3.6.1.2
iso/org/dod/internet/mgmt/mib-2 = 1.3.6.1.2.1
iso/org/dod/internet/mgmt/mib-2/system = 1.3.6.1.2.1.1
iso/org/dod/internet/mgmt/mib-2/system/sysDescr = 1.3.6.1.2.1.1.1
...

activateActions(post) = <key>
activateService(<key>) = .services.snmp
activateCommand(<key>) = cache load <module><-subspec> -oids
Appendix D SNMP Proxy Monitoring Modules 611

In this case, there is only one key and it corresponds to the action of loading the

legacy MIB OIDs file into the context of the SNMP service object. For example, for

the MIB2 Proxy module the qualifiers used to load the OIDs file are:

Data Acquisition

For SNMP proxy monitoring modules, data acquisition is accomplished through

proxy SNMP operations such as SNMP get, instead of typical module data

acquisition mechanisms such as shell scripts or TCL/TOE code. To facilitate data

acquisition for proxy SNMP operations, one of the following primitives should be

used:

■ TARGET-SNMP—to do an snmp get for typical data

■ TARGET-SNMP-BINARY—to do an snmp get for binary data

These primitives automatically set the node type to active and constructs the

refreshCommand . Nodes that inherit from this primitive are typically the nodes that

realize the objects from the models file. For example, shown below are the two

objects from the MIB2 Proxy module realization file that instantiate the objects from

the models file. These objects also inherit from the TARGET-SNMPprimitive.

activateActions(post) = loadcache
activateService(loadcache) = .services.snmp
activateCommand(loadcache) = cache load pmib2-oids

CODE EXAMPLE D-3 Example: mib2-proxy-d.x

[requires templates mib2-proxy-models-d]

...

system = { [use templates.mib2-proxy-models-d.system TARGET-SNMP
]

...

}

...

udp = { [use templates.mib2-proxy-models-d.udp TARGET-SNMP]

udpTabl e = { [use templates.mib2-proxy-models-d.udp.udpTable
TARGET-SNMP]

 }

}

612 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Nodes that inherit from the TARGET-SNMPprimitive must also specify two

additional qualifiers. These two qualifiers are used to automatically construct the

refreshCommand .

They are:

■ refreshOidPrefix

■ refreshOids

The refreshOidPrefix specifies the symbolic OID in the legacy agent from the

enterprise branch (as specified by the targetEnterprise parameter) to the node

containing the managed properties of interest. The refreshOids qualifier is a

comma separated list of managed properties. Together, the targetEnterprise ,

refreshOidPrefix , and refreshOids specify the full symbolic OIDs used to

access the MIB of the legacy agent. For example, suppose data from the symbolic

OID shown below is required.

iso.org.dod.internet.mgmt.mib-2.system.sysDescr

The targetEnterprise is set to iso.org.dod.internet.mgmt.mib-2 , the

refreshOidPrefix is set to system , and the refreshOids is set to sysDescr #0.

The #0 is added to indicate a scalar value. If the managed property was a vector

value, then no #0 is required.

Note – The number of items in the refreshOids list is the number of data values

that will be acquired from the legacy agent and cascaded into passive managed

properties below the active node. As a result, the number of items in the

refreshOids list must match the number of passive managed properties below the

active node.

Nodes that inherit from the TARGET-SNMP-BINARYprimitive must specify a

refreshHint qualifier in addition to the refreshOidPrefix and refreshOids
qualifiers. refreshHint must specify the conversion from binary to ascii. See

Mapping of the DISPLAY-HINT clause in RFC 1903 for more information on the valid

contents of refreshHint (Note: octal and binary conversions are not supported for

INT nodes and octal conversions are not supported for STRING nodes). The

refreshHint specification is typically 1x: , indicating that the value returned from

the snmp get is a : delimited string, where each delimited value is a hexadecimal

representing a single byte
Appendix D SNMP Proxy Monitoring Modules 613

Shown below is a section from the MIB2 proxy module realization file illustrating

the specification of the refreshOidPrefix and refreshOids qualifiers.

In the iftableget node, refreshOp is set to walk and the items in the

refreshOids list do not have #0 appended to them, as the data values to be

retrieved are vectors.

By default, the TARGET-SNMPprimitive sets refreshOp = get to perform a single

SNMP get operation for scalar values. However, by setting the refreshOp to walk ,

the TARGET-SNMPprimitive will traverse the MIB tree from the point specified and

return all values. As a result, all values from the vector are returned.

Shown below is the complete module realization file for the MIB2 proxy module.

system = { [use templates.mib2-proxy-models-d.sysget TARGET-SNMP
]
 type = active
 refreshInterval = 3600
 refreshOidPrefix = system
 refreshOids =
sysDescr#0,sysObjectID#0,sysUpTime#0,sysContact#0,
 sysName#0,sysLocation#0,sysServices#0
}
udp = { [use templates.mib2-proxy-models-d.udp TARGET-SNMP]
 type = active
 refreshInterval = 3600
 refreshOidPrefix = udp
 refreshOids = udpInDatagrams#0,udpNoPorts#0,udpInErrors#0,
udpOutDatagrams#0

udpTable = { [use templates.mib2-proxy-models-d.udp.udpTable
TARGET-SNMP]
 type = active
 refreshOp = walk
 refreshInterval = 0
 refreshOidPrefix = udp.udpTable.udpEntry
 refreshOids = udpLocalAddress,udpLocalPort
 }
}

CODE EXAMPLE D-4 Module Realization: MIB2 Proxy Module

[use MANAGED-MODULE]

[load mib2-proxy-m.x]

[requires template mib2-proxy-models-d]
614 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

consoleHint:mediumDesc = base.modules.mib2Proxy:moduleDetail

refreshService = .services.snmp

activateActions(post) = loadcache

activateService(loadcache) = .services.snmp

activateCommand(loadcache) = cache load mib2-proxy-oids

system = { [USE TEmplates.mib2-proxy-models-d.system TARGET-SNMP
]

 type = active

 initInterval = 1

 refreshInterval = 3600

 refreshOidPrefix = system

 refreshOids = \

sysDescr#0,sysObjectID#0,sysUpTime#0,sysContact#0,sysName#0,\

sysLocation#0,sysServices#0

}

...

...

...

udp = { [use templates.mib2-proxy-models-d.udp TARGET-SNMP]

 type = active

 initInterval = 1

 refreshInterval = 3600

 refreshOidPrefix = udp

 refreshOids =
udpInDatagrams#0,udpNoPorts#0,udpInErrors#0,udpOutDatagrams#0

udpTabl e = { [use templates.mib2-proxy-models-d.udp.udpTable
TARGET-SNMP]

 type = active

 initInterval = 1

 refreshOp = walk

 refreshInterval = 0

 refreshOidPrefix = udp.udpTable.udpEntry

 refreshOids = udpLocalAddress,udpLocalPort

 }

}

CODE EXAMPLE D-4 Module Realization: MIB2 Proxy Module
Appendix D SNMP Proxy Monitoring Modules 615

SNMP Sets

SNMP sets to legacy agents can be made as part of the setActions infrastructure

(see Chapter 6). The setService must be set to .services.snmp and the

setCommand must be set to:

where:

<ip address> is the IP address of the host where the legacy agent is running. If this is

the same as the targetHost module parameter, then %targetAddress can be used

for this value.

<port> is the port used by the legacy agent. If this value is the same as the

targetPort module parameter, then %targetPort can be used for this value.

<varbind> consists of <url> <asn1 type> <value> [<display hint>].

<url> can be either one of sym/ <symbolic oid> , oid/ <numeric oid> , or mod/
<module oid> .

<asn1 type> specifies the type of data being set. This can be OCTET STRING,
Integer32 , NULL, OBJECT IDENTIFIER , IpAddress , Counter32 , Unsigned32 ,

TimeTicks , Counter64 , INTEGER, or Gauge32 .

<value> is the value to be set.

<display hint> is optional and used to convert <value> to the appropriate format

for setting. See Mapping of the DISPLAY-HINT clause in RFC 1903 for more

information (Note that octal and binary conversions are not supported for

INTEGERtypes and octal conversions are not supported for OCTET STRINGtypes.

The <display hint> specification is typically used to set binary data in the legacy

agents. In such a case, <display hint> is typically 1x: , indicating that the <value> is

a : delimited string, where each delimited value is a hexadecimal representing a

single byte.

<snmpVersion> is optional (default is SNMPv2u) and specifies snmp version used by

the legacy agent. If this is the same as the snmpVersion module parameter,

%snmpVersion can be used for this value.

set <ip address> <port> -1 {{ <varbind> } [{ <varbind> } ...]} \
[-version <snmpVersion>] [-securityLevel <securityLevel>] \
[-securityName <securityName>] [-context <context>] [-timeout <timeout>] \
[-retries <retries>]
616 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

<securityLevel> is optional (default is auth) and specifies the SNMP security level

supported by the legacy agent. If this value is the same as the securityLevel
module parameter, %securityLevel can be used.

<securityName> is optional (default is espublic) and specifies the name (or

community) with which to perform the SNMP set. If this value is the same as the

securityName module parameter, %securityName can be used.

<context> is optional (default is no context) and specifies the MIB context for the

object to be set. If this value is the same as the context module parameter, then

%context can be used.

<timeout> is optional (default is 30 seconds) and specifies the time out for the SNMP

request in seconds.

<retries> is optional (default is 3 times) and specified the number of times the SNMP

set is retried.

SNMP Set Example

In the code fragment below, setnode is a node that has setActions defined.

Whenever an SNMP set is made to this node, it will execute an SNMP set to a legacy

agent. The set command specifies <ip address>, <port>, <snmpVersion>,

<securityLevel>, and <securityName> to be the same as the module parameters. Note,

this would indicate that the read and write security names (or communities) are the

same. The SNMP set is setting some fixed binary data to the OID

1.3.6.1.4.1.9999.1.1.0.

Module Trap Action Definition File

In certain cases, the legacy agent may issue traps that the SNMP proxy monitoring

module may be interested in. In such a case, the legacy agent must first be

configured to send the traps to the Sun Management Center Trap handler.

setnode = { ...
 setActions = doset
 setService(doset) = services.snmp
 setCommand(doset) = set %targetAddress %targetPort -1 {{oid/
1.3.6.1.4.1.9999.1.1.0 {OCTET STRING}
0:0:4:da:40:cc:e1:f7:99:1f:e1:0 1x:}} -version %snmpVersion -
securityLevel %securityLevel -securityName %securityName
}

Appendix D SNMP Proxy Monitoring Modules 617

Once traps are being sent to the Sun Management Center Trap handler, they will be

forwarded to the Sun Management Center agent. The SNMP proxy monitoring

module must then add to the agent the actions to be performed for the traps that it

is interested in. This is done by loading a new module definition file in to the Sun

Management Center agent.

Naming Conventions

The naming convention for this file is <module>-<subspec>-traps-d.x and the format

is as follows:

Sample Specification

Specifying the following:

criteria = enterprise

enterprise = <oid corresponding to targetEnterprise>

[requires class trapaction]
[inherit classes.trapaction]

<object1> = {
 [inherit classes.trapaction]

 criteria = enterprise
 enterprise = <oid corresponding to targetEnterprise>

<object2> = {
 [inherit classes.trapaction]

 criteria = <criteria1> [<criteria2> <criteria3> ...]
<criteria1> = <value1>

 ...

 trapActions = <key1> [<key2> ...]
 trapService(<key1>) = <service>
 trapMethod(<key1>) = <command>
 }

[<other objects>]
}

<object1> should be a unique identifier indicating the module

name.
618 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

allows traps from the specified enterprise (the OID corresponding to the value set in

the targetEnterprise module parameter) to be passed down to <object2> (and

other objects if specified) for further processing. This allows <object2> to be selective

in which traps are processed. Again <object2> is another unique identifier.

Specifying the following:

allows further trap filtering capabilities. The criteria qualifier is a space separated

list of parameters whose values are checked for comparison.

Valid Parameters

The list of valid parameters are:

■ .agentAddr —address of the agent originating the trap (for example,

192.83.121.224)

■ enterprise —the OID up to the enterprise branch from where the trap was

issued (e.g. 1.3.6.1.4.1.1242)

■ genericTrap —the generic type of the trap (for example, 1)

■ specificTrap —the specific type of the trap (for example, 0)

■ trapOid —the OID where the trap was issued (not including the enterprise) (for

example, 1.1.1.1.1)

■ timeStamp —time stamp of the trap (for example, 472d 3:17:27.72)

■ receiveTime —time trap was received (for example, Wed Oct 18 12:12:20 EDT

1995)

■ version —SNMP version (for example, SNMPv1)

■ community —SNMP community (for example, public)

■ forwarder —trap forwarder (for example, 192.83.121.224:30001)

Use trapOid in place of the genericTrap and specificTrap specifications. The

trapOid specification will support both SNMPv1 and SNMPv2 traps, whereas

genericTrap and specificTrap specifications only support SNMPv1 traps.

For every parameter specified in the criteria list, there must be a qualifier that

corresponds to the parameter and the value to be checked against.

criteria = <criteria1> [<criteria2> <criteria3> ...] \
<criteria1> = <value1>
Appendix D SNMP Proxy Monitoring Modules 619

The following example will check the agentAddr parameter for equivalence to

192.83.121.224. :

If the test fails, no further processing of the trap is done. The ‘equal to’ test can be

changed to ‘not equal to’, by specifying not before the value.

The following exa,mple will test the agentAddr parameter and fail if it equals

1982.83.121.224.

If no criteria list is specified, all traps passed into <object2> will activate all trap

actions. The specification of actions to be performed on traps is made by the

following set of qualifiers:

The trapActions qualifier is a space separated list of actions to be performed. For

each action in the list, there must be a trapService and trapMethod specified.

Typically the action required on a trap is to refresh the data values.

This is done by specifying:

In this case, the trapMethod qualifier specifies a command to fire all jobs associated

with the specific agent and enterprise.

criteria = agentAddr
agentAddr = 192.83.121.224

criteria = agentAddr
agentAddr = not 192.83.121.224

trapActions = <key1> [<key2> ...]
trapService(<key1>) = <service>
trapMethod(<key1>) = <command>

trapActions = <key>
trapService(<key>) = .services.snmp
trapMethod(<key>) = jobFireByTag %agentAddr:%enterprise
620 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Example: Trap Action File for HP JetDirect

Shown below is the trap action file for the HP JetDirect module:

To load the trap actions file into the agent, an additional key is required in the

activateActions(post) list (see Chapter 6).

Shown below are the qualifiers required:

activateActions(post) = <key1> <key2>

activateService(<key2>) = .services.trap

activateCommand(<key2>) = loadActions <module><-subspec> -traps

In this case the activateCommand qualifier will load the file <module>-
<subspec>-traps-d.x file into the context of the .services.trap object in the Sun

Management Center agent.

CODE EXAMPLE D-5 Example: hp-jetdirect-trapspd.x

[requires class trapaction]

[inherit classes.trapaction]

hpjetdirect = {

 [inherit classes.trapaction]

 criteria = enterprise

 enterprise = 1.3.6.1.4.1.11.2.3.9.1

 notauth = {

 [inherit classes.trapaction]

 #

 # match traps that are not authentication failures

 #

 criteria = trapOIDRegexp

trapOIDRegexp = not ^1\\.3\\.6\\.1\\.6\\.3\\.1\\.1\\.5\\.5$

 #

 # perform trap correlation in job module using trap enterprise

 #

 trapActions = jobfire

 trapService(jobfire) = .services.snmp

trapMethod(jobfire) = jobFireByTag %agentAddr:/%enterprise

 }

}

Appendix D SNMP Proxy Monitoring Modules 621

Example: Qualifiers for Loading the HP JetDirect Module
Trap Actions File

Shown below are the qualifiers for loading the HP JetDirect module trap actions file.

Example: Qualifiers for Loading Both the OIDs and Trap
Actions Files for the HP JetDirect Module

Shown below are the qualifiers for loading both the OIDs and trap actions files for

the HP JetDirect module:

activateActions(post) = loadtraps
activateService(loadtraps) = .services.trap
activateCommand(loadtraps) = loadActions hp-jetdirect-traps

activateActions(post) = loadcache loadtraps

activateService(loadcache) = .services.snmp
activateCommand(loadcache) = cache load hp-jetdirect-oids

activateService(loadtraps) = .services.trap
activateCommand(loadtraps) = loadActions hp-jetdirect-traps
622 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

APPENDIX E

URL Specifications

This appendix covers the following topics:

■ Uniform Resource Locator (URL)—page 623

■ SNMP URLs—page 624

■ Shadow Operations—page 627

Uniform Resource Locator (URL)

The Uniform Resource Locators (URLs) schemes employed in Sun Management

Center software comply with the general URL format defined in the RFCs pertaining

to URLs.

URLs are used by Sun Management Center components to access and interface with

various resources. URLs are used to do the following:

■ Access values and attributes of managed objects and properties in the Sun

Management Center agent MIB via SNMP

■ Interface with standard I/O file descriptors

■ Interface with regular and circular log files

■ Interface with other processes using pipes, UNIX, TCP and UDP sockets

■ Interface with the UNIX system logging service (for example, syslog).

The discussion of URLs is divided into SNMP URLs and interface URLs.

<scheme>://< net_loc>/< path>;< params>?<query>#<fragment>
623

Note – Refer to the Client API chapter for information on Raw Data API and Create

URL method on procedures of how to use these methods to build correct URLs

within Client API programs. Refer to the Modules Appendix to get more

information on converting OID URL to a valid OID.

SNMP URLs

The Sun Management Center components employ URLs to uniquely identify values

and qualifiers of managed objects and properties in Sun Management Center agent

MIBs. SNMP URLs permit a more readable representation of SNMP object identifiers

(OIDs). These URLs can be resolved to the actual OID by querying the finder object

residing in all Sun Management Center agents.

For example, SNMP URLs can be used to access the value of a managed property

stored in a Sun Management Center agent MIB such as the MIB-II system

description.

SNMP URLs can also access qualifiers associated with managed properties and

managed objects. These qualifiers are also referred to as shadow attributes and the

act of accessing these qualifiers are known as shadow operations. For example, the

refresh attributes of a managed property like refreshcommand or

refreshinterval can be accessed through shadow operations.

SNMP URL Format

The general format of the SNMP URL is shown below:

where

snmp specifies the SNMP scheme

<host> specifies the host on which the SNMP agent resides

<port> specifies the port the SNMP agent is listening on

<type> specifies the SNMP URL type which can be one of oid, sym, or mod

<spec> will vary according to the type and specifies the data element being identified

snmp://<host>[:<port>]/<type>/<spec>[?<query>][#<instance>]
624 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

<query> specifies the shadow attribute being accessed

<instance> specifies the managed property instance being accessed

SNMP URL Types

The following SNMP URL types are supported in Sun Management Center:

■ Numeric type (oid) uses object identifiers (OIDs) to identify the MIB object

■ Symbolic type (sym) uses the logical names to identify the MIB object

■ Module type (mod) uses module, instance, and logical names to identify the MIB

object

Numeric

Numeric SNMP URLs are specified using the oid type and are comprised of the

subidentifiers (subIDs) of the MIB object they represent. Numeric SNMP URLs are

easily converted to a SNMP request packet since they contain the object identifier

(OID) specifications required to construct SNMP PDUs.

These URLs have the following form:

Note – The separators between subIDs can be either slashes “/” or dots “.”.

For example, the value of the system description managed property in the MIB-II

module can be accessed using the following numeric SNMP URL:

Symbolic

Symbolic SNMP URLs are specified using the sym type and are comprised of the

hierarchical name of MIB object they represent. The objects named in the hierarchy

can be from the root of the MIB tree (.iso) or relative to the base of the enterprises

MIB object (.iso.org...private.enterprises).

snmp://<host>[:<port>]/oid/<subid1>[.../<subidN>] [?<query>][#<instance>]

snmp://manila/oid/1/3/6/1/2/1/1/1#0
snmp://manila/oid/1.3.6.1.2.1.1.1#0
Appendix E URL Specifications 625

They have the following form:

Note – The separators between names can be either slashes (/) or dots (.). Also, a

single slash (/) or a double slash (//) can follow the SNMP URL type, for example:

snmp://<host>[:<port>]/sym//<name1>[.../<nameN>][?<query>][#<instance>]

is the same as:

snmp://<host>[:<port>]/sym/<name1>[.../<nameN>][?<query>][#<instance>]

The value of the system description managed property in the MIB-II module can be

accessed using the following symbolic SNMP URL:

The logical names must be resolved before an SNMP request packet is constructed.

The names can be resolved to OIDs by performing a lookup in an URL/OID cache or

by sending a finder request to the target agent. Once the symbolic SNMP URL is

mapped to a numeric SNMP URL, the SNMP request packet can be built and sent.

Module

Module SNMP URLs are specified using the mod type and are comprised of the

module specification and the hierarchical name of MIB object relative to the root of

the module. The module specification consists of the module name and an optional

instance specification, separated by a ‘+’ sign.

They have the following form:

Note – The separators between names can be either slashes “/” or dots “.”.

For example, the value of the system description managed property in the MIB-II

module can be accessed using the following module SNMP URL:

snmp://< host>[:< port>]/sym/< name1>[.../< nameN>][?< query>][#< instance>]

snmp://manila/sym/iso/org/dod/internet/mgmt/mib-2/system/sysDescr#0
snmp://manila/sym/iso.org.dod.internet.mgmt.mib-2.system.sysDescr#0

snmp://< host>[:< port>]/mod/< module>[+< inst>]/< name1>[.../< nameN>] [?< query>][#< instance>]

snmp://manila:161/mod/mib2-instr/system/sysDescr#0
626 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

The module names, instances names, and logical names must be resolved to OIDs

before an SNMP request packet can be constructed. The names can be resolved to

OIDs by performing a lookup in an URL/OID cache or by sending a finder request

to the target agent. Once the module SNMP URL is mapped to a numeric SNMP

URL, the SNMP request packet can be built and sent.

Shadow Operations

In addition to getting and setting the value of managed properties, SNMP URLs can

also be used to access additional attributes of managed properties and managed

objects, known as qualifiers.

The set of qualifiers accessible through SNMP includes such things as alarm limits,

refresh attributes, descriptions, and so forth. The complete list of available qualifiers

for each managed object or property is listed in the file base-shadowmap-d.x .

The shadow map is specified in a URL in the ?<query> specification.

Some shadow map attributes support the specification of an index to access a

specific instance of the shadow map attribute. For example, the status list shadow

map allows the list of statuses associated with a managed object or property to be

accessed. Specifying ?statuslist alone as the query accesses the entire list. To

access specific elements in the status list, ?statuslist. N can be specified to access

the Nth status. If the specified status instance does not exist, nothing is returned.

SNMP URL Examples

Examples of SNMP URLs for values of managed property and qualifiers of managed

objects and properties are provided in this section. Each example is represented

using numeric, symbolic (absolute and relative), and module type SNMP URLs.

Managed Property Value (scalar)

Managed properties represent the entities being monitored by the Sun Management

Center agent. Managed properties that are scalars are specified by an instance

specification of “#0”.

For example, the value of the Load Average Over The Last 1 Minute property in the

Kernel Reader module can be accessed using the following URLs:
Appendix E URL Specifications 627

Numeric SNMP URL

Symbolic SNMP URL (absolute)

Symbolic SNMP URL (relative)

Module SNMP URL

Managed Property Value (vector)

The Sun Management Center agent MIB can also model tabular entities. SNMP

URLs support access to specific row entries in such tables through the use of

instance specifications (for example, #<instance>).

For example, the UFS Filesystem Usage statistics are represented by a table in the

Kernel Reader module. Each file system partition constitutes a row in this table and

partition’s mount point name is used as the index. Thus, to access the value of the

size (KB) managed property of /cache filesystem, the following URLs can be used:

snmp://manila:161/oid/1.3.6.1.4.1.42.2.12.2.2.12.3.1#0

snmp://manila:161/sym/\
iso.org.dod.internet.private.enterprises.sun.prod.sunsymon.agent.modules.kernel
\Reader.load.avg_1min#0

snmp://manila:161/sym/ sun.prod.sunsymon.agent.modules.kernel-\
Reader.load.avg_1min#0

snmp://manila:161/mod/ kernel-reader/load/avg_1min#0
628 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

Numeric SNMP URL

Symbolic SNMP URL

Module SNMP URL

Managed Property Qualifier (Scalar Property, Scalar
Qualifier)

Qualifiers associated with managed properties are also accessible using SNMP

URLs. Managed property qualifiers are specified using the query specification (that

is, ?<query>).

For example, the refresh interval qualifier of the Load Average Over The Last 1

Minute property in the Kernel Reader module can be accessed using the following

URLs:

snmp://manila:161/oid/1.3.6.1.4.1.42.2.12.2.2.12.6.1.1.1.4#/cache

snmp://manila:161/sym/\
sun.prod.sunsymon.agent.modules.kernelReader.filesystem.ufsFilesystem.fileTable
\.fileEntry.ksize#/cache

snmp://manila:161/mod/ kernel-reader/filesystem/ufsFilesystem/fileTable/\
fileEntry/ksize#/cache
Appendix E URL Specifications 629

Numeric SNMP URL

Symbolic SNMP URL

Module SNMP URL

Managed Property Qualifier (Vector Property, Scalar
Qualifier)

Similarly, qualifiers associated with managed properties which are vectors are also

accessible using SNMP URLs. These qualifiers are specified using the query

(?<query>) and instance specifications (#<instance>).

For example, the refresh interval qualifier of the size (KB) managed property for the

/cache UFS partition in the Kernel Reader module can be accessed using the

following URLs:

snmp://manila:161/oid/\
1.3.6.1.4.1.42.2.12.2.2.12.3.1?refreshinterval#0

snmp://manila:161/sym/\
iso.org.dod.internet.private.enterprises.sun.prod.sunsymon.\
agent.modules.kernelReader.load.avg_imin?refreshinterval#0

snmp://manila:161/mod/kernel-reader/load/\
avg_1min?refreshinterval#0
630 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

Numeric SNMP URL

Symbolic SNMP URL

Module SNMP URL

Managed Property Qualifier (Vector Property, Vector
Qualifier)

Qualifiers associated with managed properties can themselves be vectors. Specific

elements of the qualifier’s vector list are specified using ?<query>.N to access the

Nth element.

For example, the alarm limit qualifier of managed properties is a vector since

multiple alarm limits can be specified (for instance. info, warning, error). To access

the first alarm limit of the UFS file system Percent Used managed property for the /
cache partition in the Kernel Reader module, the following URLs can be used:

snmp://manila:161/oid/\
1.3.6.1.4.1.42.2.12.2.2.12.6.1.1.1.4?refreshinterval#/cache

snmp://manila:161/sym/\
sun.prod.sunsymon.agent.modules.kernelReader.filesystem.ufsFile\
System.fileTable.fileEntry.ksize?refreshinterval#/cache

snmp://manila:161/mod/kernel-reader/filesystem/ufsFileSystem/\
fileTable/fileEntry/ksize?refreshinterval#/cache
Appendix E URL Specifications 631

Numeric SNMP URL

Symbolic SNMP URL

Module SNMP URL

Managed Object Qualifier (Scalar Qualifier)

Qualifiers associated with managed object are also accessible using SNMP URLs.

Managed object qualifiers are also specified using the query specification (that is,

?<query>).

For example, the refresh interval of the System Load Statistics managed object in the

Kernel Reader modules can be accessed using the following URLs:

Numeric SNMP URL

snmp://manila:161/\
1.3.6.1.4.1.42.2.12.2.2.12.6.1.1.1.7?alarmlimits.0#/cache

snmp://manila:161/sym/\
iso.org.dod.internet.private.enterprises.sun.prod.sunsymon.\
agent.modules.kernelReader.filesystem.ufsFileSystem.fileTable.\
fileEntry.kpctUsed?alarmlimits.0#/cache

snmp://manila:161/mod/kernel-reader/filesystem/ufsFileSystem/\
fileTable/fileEntry/kpctUsed?alarmlimits.0#/cache

snmp://manila:161/oid/\
1.3.6.1.4.1.42.2.12.2.2.12.3?refreshinterval
632 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

Symbolic SNMP URL

Module SNMP URL

Managed Object Qualifier (Vector Qualifier)

Qualifiers associated with managed objects can themselves be vectors. Specific

elements of the qualifier’s vector list are specified using ?<query>.N to access the

Nth element.

For example, the status list qualifier of managed objects is a vector since multiple

status messages can be generated by the managed properties associated with the

managed object.

For example, to access the first status message of the Filesystem Usage managed

object in the Kernel reader module, the following URLs can be used:

snmp://manila:161/sym/\
iso.org.dod.internet.private.enterprises.sun.prod.sunsymon.\
agent.modules.kernelReader.load?refreshinterval

snmp://manila:161/mod/kernel-reader/load?refreshinterval
Appendix E URL Specifications 633

Numeric SNMP URL

Symbolic SNMP URL

Module SNMP URL

snmp://manila:161/oid/1.3.6.1.4.1.42.2.12.2.2.12.6?statuslist.0

snmp://manila:161/sym/\
sun.prod.sunsymon.agent.modules.kernelReader.filesystem?\
statuslist.0

snmp://manila:161/mod/kernel-reader/filesystem?statuslist.0
634 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

APPENDIX F

Status Propagation

This appendix covers the following topics:

■ Example Topology Hierarchy—page 635

■ Missed SNMP Traps—page 638

This appendix provides an example topology hierarchy configuration to

demonstrate how status changes are propagated from the Sun Management Center

agent to the Topology agent and Sun Management Center console.

Note – The Domain Alarms at the top of the Sun Management Center console

should show the count of host entities in alarm throughout the topology hierarchy.

The count does not include the cumulative alarms within each host.

Example Topology Hierarchy

The following figure illustrates an example topology consisting of the following

domains, groups, and entities:

■ Domain A

■ Child Group B

■ Host entities C and D

■ Modules E and F residing in Host C and modules G and H in Host D.

In addition, there is a console viewing Domain A and there are no current alarms.

Thus, the total alarm counts are zero in the console.
635

FIGURE F-1 Example Topology Hierarchy

The following sections present example events or scenarios:

■ Event 1: Node in Module E on Host C Goes into Error (Red)

■ Event 2: Node in Module G on Host D Goes into Warning (Amber)

■ Event 3: Node in Module F on Host C Goes into Warning (Amber)

■ Event 4: Another Node in Module E on Host C Goes into Warning (Amber)

Event 1: Node in Module E on Host C Goes into

Error (Red)
■ A status trap indicating a ‘status change for module E on host C’ is generated.

■ Since the error in module E is the most severe alarm on host C, the overall status

of host C changes, causing another status trap indicating a status change for

host C.

■ Group B repolls host C, since the status trap for host C correlates with an existing

SNMP job of group B.

■ Since the host C in error is the most serious in group B, the overall status of group

B is now in error as well. This generates a status trap indicating a status change

for group B.

■ A console viewing Topology group B would display the error immediately since

this last status trap from group B would trigger a repoll of the group B and a

subsequent screen update. Also, the host C icon gets a red circle at this point. The

total count at the top of the screen still shows 0.

■ A status trap for group B also triggers a repoll of domain A since it correlates

with an existing SNMP job. Domain A immediately repolls group B for its current

Status and child host alarm counts.

Host C Host D

Domain A

Group B

Module E Module F Module G Module H
636 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

■ The group B error alarm is the most severe alarm condition in domain A. This

causes domain A to generate a status trap indicating a status change for domain

A.

■ If the console was viewing the top level of domain A, this status trap triggers a

repoll of the domain A status, and thereby causes a red circle to appear on the

group B icon in the display.

■ The domain counts on the Console screen are triggered by the domain A status

trap, to repoll domain A for the current alarm counts. The screen updates,

showing the error count as 1.

All of the above happens within a few seconds, since it is all trap based.

Event 2: Node in Module G on Host D Goes into

Warning (Amber)

Assume this second event takes place after the first. This alarm is not as severe as the

initial alarm currently in effect on host C.

■ Status trap is generated indicating a status change for module G on host D.

■ Since this is the most severe alarm condition on host D, the overall status of host

D is warning. Another status trap indicating a status change for host D is

generated.

■ Group B detects a status change on host D and immediately repolls host D for its

current status.

■ The warning on host D is less severe than the error on host C, so the overall status

of group B does not change (still is equal to the host C error). Nonetheless, group

B generates a status trap indicating a “status change for group B”. This trap is

issued to inform higher topology layers about the change in child host D in group

B.

■ A console viewing group B would display the host D icon to be amber (warning)

since this last status trap from group B would trigger a repoll and screen update.

The total warning count at top of screen still shows 1 error (from host C), but 0

warnings (host D warning count not propagated up yet).

■ Domain A detects the status trap for the group B and repolls group B for its

current status and counts.

■ Although the status of domain A's children have changed (group B was error

before, and is still in error), domain A recognizes that the total child host count

has changed: before there was one error, now there is one error and one warning.

Accordingly, domain A generates a status trap indicating a status change in

domain A. This trap will trigger a repoll and update of the Domain Counts on the

Console Screen.
Appendix F Status Propagation 637

Event 3: Node in Module F on Host C Goes into

Warning (Amber)

Assume this third event takes place after the others. This is a second event on host

C. This alarm is only a warning and is less severe than the previous alarm on host C,

which was an error. This new alarm is in a “different” module from the previous

host C alarm.

■ Status trap indicating a status change for module F on host C is generated.

■ This is not the most serious condition on host C, but host C generates a status trap

anyway, to indicate to upper layers that the status of module F changed (because

this new alarm is in a different module, and module F was not in alarm before).

■ Group B detects the status trap from host C and repolls host C for its current

status.

■ Group B notes that the overall status of host C has not changed, so group B does

not need to generate any new traps (no change in child counts or status for group

B).

Event 4: Another Node in Module E on Host C

Goes into Warning (Amber)

Assume this fourth event takes place after the others. This one is a warning in

another node in module E (there is already an error on this module from one of the

previous events).

■ Status trap issued indicating status change for a node in module E on host C.

■ This is not the most severe alarm condition on module E on host C (an earlier

error alarm condition was detected on another node). The overall status of host C

Is unchanged and no new status trap is issued.

■ No counts or status need to be updated anywhere in the topology.

Missed SNMP Traps

The delivery of SNMP traps is not guaranteed. If a status change trap is missed, then

status and counts will not be updated immediately. However, this will correct itself

on the next poll (generally less than five minutes).
638 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

APPENDIX G

SNMP Trap Subscription

This appendix covers the following topics:

■ Sun Management Center Agent Components and Trap Subscription—page 639

■ Subscribing for Traps—page 640

■ Sun Management Center Enterprise Specific Traps—page 645

■ SNMP Trap Subscription Support—page 647

Sun Management Center Agent
Components and Trap Subscription

Sun Management Center agent components (including the Trap Handler) support

SNMP trap subscription. Trap subscription allows interested parties to request that

selected SNMP traps be forwarded to them. Sun Management Center agent

components can also subscribe for traps.

Every Sun Management Center agent component supports a MIB that contains the

.iso*base.trapForward branch, which contains the following nodes:

■ clientRegistrar —supports trap subscription for specific traps through the

specification of the trap criteria.

■ jobAdder —for existing trap subscriptions with the tag criteria set to be true. This

node supports incremental additions to the list hosts of interest.

■ jobRemover —for existing trap subscriptions with the tag criteria set to be true,

this node supports incremental deletions from the list of hosts of interest.

The jobAdder and jobRemover nodes are designed to be used with the Sun

Management Center agent SNMP job caches, which are used to support periodic

SNMP jobs.
639

Subscribing for Traps

The clientRegistrar node is used to subscribe for traps and is located at:

iso.org.dod.internet.private.enterprises...base.trapForward.\
clientRegistrar

For the SUN enterprise MIB, the corresponding url for this node is:

To subscribe for SNMP traps from a Sun Management Center agent component,

perform an SNMP set of a trap subscription specification into the

clientRegistrar node. If a trap client has an existing trap subscription, a

subsequent subscription replaces the previous subscription. The trap subscription

specification has the following format:

where:

ipAddress is the IP Address of the trap subscriber.

snmpPort is the SNMP port of the trap subscriber.

specN is the trap filter criteria, filter criteria expressions, or subscription expiry

specification.

Trap filter criteria are specified using the following format:

where:

criteria is the trap filter criteria. These criteria are mapped to the contents of the trap

PDU.

regexp is the regular expression for the corresponding criteria

Possible criteria values are:

■ trapAddress —IP address of trap originator

■ trapOID —Trap object identifier

snmp://<host>:<port>/sym//iso/org/dod/internet/private/
enterprises/sun/prod/sunsymon/agent/base/trapForward/
clientRegistrar#0

{< ipAddress>:< snmpPort> {{{< spec1} {< spec2>} ...}}}

{< criteria> < regexp>}
640 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

■ oid N - Nth OID in trap varbind

■ value N - Nth value in the trap varbind

■ tag - flag indicating whether to use the taglist criteria which contains a list of host

IP addresses when determining a match (that is, if true, use taglist; if false, ignore

taglist)

■ taglist - list of host IP address to match against the IP address of trap

originator. The entries cannot be regular expressions, they must be actual IP

address.

The tag and taglist criteria is designed to be used by agent SNMP job cache, which

subscribes for traps from a specific a list of IP addresses hosts. This explicit list of IP

addresses is used in place of a regular expression to support the dynamic

modification of the list via the jobAdder and jobRemover nodes.

By default, if multiple trap filter criteria are specified, they are OR'd together. To

modify this behaviour, filter criteria expressions can be used.

Filter criteria expressions are specified as follows:

where:

criteria N is one of the filter criteria specified above

logical operator can be a logical AND '&&' or logical OR '||'

Subscription expiry is specified as follows:

where:

seconds is the number of seconds before subscription is cancelled. For a

subscription that does not expire, 0 can be specified. If the expiry is not specified, it

defaults to ~46 days.

{filter-exp {%<criteria1> <logical operator> %<criteria2> ...}}

{expiry <seconds>}
Appendix G SNMP Trap Subscription 641

Trap Subscription Examples

For example, if your process is on host:port 204.225.247.123:162 and you wish to

subscribe for linkDown (whose trap OID is 1.3.6.1.6.3.1.1.5.3) traps from any agent,

set the following trap subscription specification:

Similarly, to subscribe for all linkDown (1.3.6.1.6.3.1.1.5.3) and linkUp

(1.3.6.1.6.3.1.1.5.4) traps, set the following trap subscription specification:

Note – The regular expression includes double backslashes '\\' for the dots '.' since

one set is removed when the expression is processed by the Tcl procedure that

processes the trap subscription request.

To subscribe for all linkDown traps originating from a specific agent on host:port

204.225.247.100:161, set the following trap subscription specification:

For example, if your process is on host 129.146.53.216 port 2000, and you wish to

subscribe for statusChange (whose OID is 1.3.6.1.4.1.42.2.12.2.0.1) traps from any

agent, set the following trap subscription specification:

Similarly, to subscribe for statusChange, valueRefresh, moduleLoaded,

moduleUnloaded (respective OIDs are 1.3.6.1.4.1.42.2.12.2.0.1 1.3.6.1.4.1.42.2.12.2.0.2

1.3.6.1.4.1.42.2.12.2.0.4 1.3.6.1.4.1.42.2.12.2.0.5) traps from any agent, set the

following trap subscription specification:

{204.225.247.123:162 {{{trapOID 1.3.6.1.6.3.1.1.5.3}}}}

{204.225.247.123:162 {{{trapOID
^1\\.3\\.6\\.1\\.6\\.3\\.1\\.1\\.5\\.[34]}}}}

{204.225.247.123:162 {{{trapAddress 204.225.247.100} {trapOID
1.3.6.1.6.3.1.1.5.3} {filter-exp {trapAddress && trapOID}}}}}

{129.146.53.216:2000 {{{trapOID 1.3.6.1.4.1.42.2.12.2.0.1}}}}

{129.146.53.216:2000 {{{trapOID 1.3.6.1.4.1.42.2.12.2.0.[1245]}}}}
642 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

Similarly, to subscribe for statusChange, valueRefresh traps from an agent running

on 129.146.53.216, set the following subscription specification:

SNMP SET Command

The following are the SNMP set commands for above examples:

Trap subscription in Sun Management Center Trap Handler (running on

129.146.53.216:162) for statusChange trap:

Trap subscription in Sun Management Center Trap Handler (running on

129.146.53.216:162) for statusChange, valueRefresh, moduleLoaded,

moduleUnloaded traps.

Trap subscription in Sun Management Center Trap Handler (running on

129.146.53.216:162) for statusChange and valueRefresh traps from agent running on

129.146.53.216.

{129.146.53.216:2000 {{{trapAddress 129.146.53.216 } {trapOID
1.3.6.1.4.1.42.2.12.2.0.[12]}
{filter-exp {trapAddress && trapOID}}}}}

snmpset -h 129.146.53.216 -p 162 -c community \
1.3.6.1.4.1.42.2.12.2.1.4.1.0 "OctetString" \
"{129.146.53.216:2000 \
{{{trapOID 1.3.6.1.4.1.42.2.12.2.0.1}}}}"

snmpset -h 129.146.53.216 -p 162 -c community \
1.3.6.1.4.1.42.2.12.2.1.4.1.0 OctetString "{129.146.53.216:2000 \
{{{trapOID 1.3.6.1.4.1.42.2.12.2.0.[1245]}}}}"

snmpset -h 129.146.53.216 -p 162 -c community \
1.3.6.1.4.1.42.2.12.2.1.4.1.0 "OctetString" \
"{129.146.53.216:2000 \
{{{trapAddress 129.146.53.216 } {trapOID \
1.3.6.1.4.1.42.2.12.2.0.[12]} \
{filter-exp {trapAddress && trapOID}}}}}"
Appendix G SNMP Trap Subscription 643

Note – All of the preceding snmpset commands will work if the Trap Handler is

configured for no authentication. Otherwise, these sets have to be valid

SNMPV2USEC SETCommands.

Adding Jobs

The jobAdder node is used to incrementally add IP addresses to the taglist
criteria of an existing trap subscription. This node is located at:

For the SUN enterprise MIB, the corresponding url for this node is:

To add jobs to an existing subscription for traps from a Sun Management Center

agent component, perform an SNMP set of a trap subscription specification into this

node. The job adder specification has the following format:

where:

subscriber address is the IP address:port of the subscriber

list of IP address is one or more IP addresses to be added to the taglist.

Removing Jobs

The jobRemover node is used to remove IP address entries from the taglist criteria

of an existing trap subscription. This node is located at:

iso.org.dod.internet.private.enterprises...base.trapForward.jobAdder

snmp://< host>:< port>/sym//iso/org/dod/internet/private/enterprises/
sun/prod/sunsymon/agent/base/trapForward/jobAdder#0

<subscriber address > < list of IP addresses >

iso.org.dod.internet.private.enterprises...base.trapForward.jobRemover
644 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

For the SUN enterprise MIB, the corresponding URL for this node is:

To remove jobs from an existing subscription for SNMP traps from a Sun

Management Center agent component, perform an SNMP set of a trap subscription

specification into this node. The job remover specification has the following format:

where:

subscriber address is the IP address:port of the subscriber

list of IP address is one or more IP addresses to be removed from the taglist.

Sun Management Center Enterprise
Specific Traps

This section provides the MIB for enterprise specific traps generated by Sun

Management Center agent.

snmp://< host>:< port>/sym//iso/org/dod/internet/private/enterprises/
sun/prod/sunsymon/agent/base/trapForward/jobRemover#0

<subscriber address> < list of IP addresses>

CODE EXAMPLE G-1 Sun Management Center Enterprise Specific Traps

sun OBJECT IDENTIFIER ::= { enterprises 42 }
prod OBJECT IDENTIFIER ::= { sun 2 }
sunsymon OBJECT IDENTIFIER ::= { prod 12 }
agent OBJECT IDENTIFIER ::= { sunsymon 2 }
base OBJECT IDENTIFIER ::= { agent 1 }

traps OBJECT IDENTIFIER ::= { base 0 }

trapInfo OBJECT IDENTIFIER ::= { base 3 }

statusChange NOTIFICATION-TYPE

OBJECTS { statusOID }

STATUS current

DESCRIPTION

"A statusChange trap signifies that the status of an object has
changed."

::= { traps 1 }
Appendix G SNMP Trap Subscription 645

valueRefresh NOTIFICATION-TYPE

OBJECTS { refreshOID }

STATUS current

DESCRIPTION

"A valueRefresh trap signifies that the value of an object has been
manually refreshed."

::= { traps 2 }

event NOTIFICATION-TYPE

OBJECTS { eventInfo }

STATUS current

DESCRIPTION

"An event trap signifies that an event has been detected and logged
by the monitoring software."

::= { traps 3 }

moduleLoaded NOTIFICATION-TYPE

OBJECTS { version }

STATUS current

DESCRIPTION

"A moduleLoaded trap signifies that a module has been loaded."

::= { traps 4 }

moduleUnloaded NOTIFICATION-TYPE

OBJECTS { version }

STATUS current

DESCRIPTION

"A moduleUnloaded trap signifies that a module has been unloaded."

::= { traps 5 }

statusOID OBJECT-TYPE

SYNTAX OBJECT IDENTIFIER

MAX-ACCESS accessible-for-notify

STATUS current

DESCRIPTION

"The identification of the object for which the status changed.
This occurs as the first trap-specific varbind in a
statusChangeTrap."

::= { trapInfo 1 }

refreshOID OBJECT-TYPE

SYNTAX OBJECT IDENTIFIER

MAX-ACCESS accessible-for-notify

STATUS current

CODE EXAMPLE G-1 Sun Management Center Enterprise Specific Traps
646 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

SNMP Trap Subscription Support

Sun Management Center agent components (including the Trap Handler) support

SNMP trap subscription. Trap subscription allows interested parties to request

selected SNMP traps be forwarded to them. Sun Management Center agent

components can also subscribe for traps.

Every Sun Management Center agent component supports a MIB that contains the

clientRegistrar node. The clientRegistrar node is located at:

For the SUN enterprise MIB, the corresponding url for this node is:

snmp://<host>:<port>/sym//iso/org/dod/internet/private/enterprises\
/sun/prod/sunsymon/agent/base/trapForward/clientRegistrar#0

To subscribe for SNMP traps from a Sun Management Center agent component, one

performs an SNMP set of a trap subscription specification into the clientRegistrar

node. The trap subscription specification has the following format:

where:

DESCRIPTION

"The identification of the object for which the value was refreshed
changed. This occurs as the first

trap-specific varbind in a valueRefreshTrap."

::= { trapInfo 2 }

eventInfo OBJECT-TYPE

SYNTAX OCTET STRING

MAX-ACCESS accessible-for-notify

STATUS current

DESCRIPTION

"The event message of the object for which an event was detected.
This occurs as the first trap-specific

varbind in an eventTrap."

::= { trapInfo 3 }

iso.org.dod.internet.private.enterprises...base.trapForward.clientRegistra

{<ipAddress>:<snmpPort> {{{<spec1} {<spec2>} ...}}}

CODE EXAMPLE G-1 Sun Management Center Enterprise Specific Traps
Appendix G SNMP Trap Subscription 647

ipAddress is the IP Address of the trap subscriber

snmpPort is the SNMP port of the trap subscriber

specN is the trap filter criteria, filter criteria expressions, or subscription expiry

specification

Trap filter criteria are specified using the following format:

where:

criteria is the trap filter criteria. These criteria are mapped to the contents of the trap

PDU.

regexp is the regular expression for the corresponding criteria

Possible criteria values are:

trapAddress - IP address of trap originator

trapOID - trap object identifier

oidN - Nth OID in trap varbind

valueN - Nth value in the trap varbind

By default, if multiple trap filter criteria are specified, they are OR'd together. To

modify this behavior, filter criteria expressions can be used.

Filter criteria expressions are specified as follows:

where:

criteriaN is one of the filter criteria specified above

logical operator can be a logical AND '&&' or logical OR '||'

Subscription expiry is specified as follows:

where:

{< criteria> < regexp>}

{filter-exp {%<criteria1> <logical operator> %<criteria2> ...}}

{expiry <seconds>}
648 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

seconds is the number of seconds before subscription is cancelled. For a subscription

that does not expire, 0 can be specified. If the expiry is not specified, it defaults to

~46 days.

For example, if your process is on host:port 204.225.247.123:162 and you wish to

subscribe for linkDown (whose trap OID is 1.3.6.1.6.3.1.1.5.3) traps from any agent,

set the following trap subscription spec:

Similarly, to subscribe for all linkDown (1.3.6.1.6.3.1.1.5.3) and linkUp

(1.3.6.1.6.3.1.1.5.4) traps, set the following trap subscription spec:

Note – The regular expression includes double backslashes '\\' for the dots '.' since

one set is removed when the expression is processed by the Tcl procedure that

processes the trap subscription request.

To subscribe for all linkDown traps originating from a specific agent on host:port

204.225.247.100:161, set the following trap subscription spec:

{204.225.247.123:162 {{{trapOID 1.3.6.1.6.3.1.1.5.3}}}}

{204.225.247.123:162 {{{trapOID ^1\\.3\\.6\\.1\\.6\\.3\\.1\\.1\\.5\\.[34]}}}}

{204.225.247.123:162 {{{trapAddress 204.225.247.100} {trapOID\
1.3.6.1.6.3.1.1.5.3} {filter-exp {trapAddress && trapOID}}}}}
Appendix G SNMP Trap Subscription 649

650 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

Glossary

3-tier architecture The Sun Management Center server stands between the Sun Management

Center console on one end and the Sun Management Center agents on the

other.

Sun Management Center agents provide the data required for manageability.

Sun Management Center console components provide the system monitoring,

control, and configuration user interfaces.

The Sun Management Center server acts as a request broker between the agent

and the console.

ACE Authentication, Compression, Encryption. The ACE layer provides
authentication, compression, and encryption functions for communication
across the interface.

ACLs Access Control Lists. The Sun Management Center agent MIB supports the
specification of multiple levels of SNMP read or write access controls.
These access control (ACL) specifications define the minimum security
level required of users and/or groups to perform SNMP read or write
operations on objects in the MIB.

active nodes An active node is a managed object or managed property that has refresh

information associated with.

agent A software process, usually specific to a particular local managed host, that

carries out manager requests and makes local system and application

information available to remote users.

agent MIB The MIB that corresponds to a specific agent.

alarm An abnormal event, which may be indicative of current or impending

problems, is detected by a Sun Management Center agent. The agent passes

information about the abnormal event to the Sun Management Center server.

The server passes this information on to the user as an alarm when the

abnormal event matches a predefined alarm threshold.
Glossary 651

alarm
acknowledgment Sun Management Center users can acknowledge alarms indicating that the

alarm does not represent a serious problem or that the problem is being

resolved. Acknowledged alarms take a lower priority than unacknowledged

alarms.

alarm file The Alarm File defines information used by alarm checks performed on

managed properties. This file is loaded by the Agent File.

API Application Programming Interface. Examples are alarm API, authenticate

API, data API, and so forth.

Attribute Editor A window that provides information about the selected object. In addition, the

Attribute Editor in the Sun Management Center software enables you to

customize various monitoring criteria for that object. The monitoring criteria

are dependent on the type of object. There are Attribute Editors for domains,

hosts, modules, and data properties.

Base-modules.dat file This file contains three module entries: mib2-system , agent-stats , and
fscan+syslog .

Bourne shell service Essentially an object maintaining a pipe to one or more shell processes to

which commands can be directed and the results returned asynchronously.

check operations Provides a mechanism for triggering refresh operations based on some criteria

tested by the check operation.

community A string similar to a password that is used to authenticate access to an agent’s

monitored data.

complex alarm A complex alarm is based on a set of conditions becoming true. Unlike simple

alarms, you cannot set thresholds for complex alarms. See also simple alarm.

console window A graphical user interface component of Sun Management Center software

based on Java technology that is used to view monitored hosts (and managed

objects) information and status and to interact with Sun Management Center

agents.

DAQ Data aquisition.

data cascade The dissemination of a buffer of data into a tree of managed objects and

managed properties is known as the data cascade.

derived nodes Derived nodes establish dependency relationships with the nodes on which

they rely through the use of the refresh triggers specification.

digitalFilter This function provides a multiply and accumulate function to provide digital

filtering capabilities.
652 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

discovery A Sun Management Center tool available from the main console window that

is used to find hosts, routers, networks, and Simple Network Management

Protocol (SNMP) devices that can be reached from the Sun Management Center

server.

domain An arbitrary collection of hosts and networks that are monitored by the

software as a single hierarchal entity. Users may choose to divide their

enterprise into several domains, each to be managed by different users.

dynamic loadable
modules A Sun Management Center agent module that can be loaded or unloaded at

runtime, enabling monitored properties to be displayed on the main console

window without having to restart the console or agent.

event An occurrence that triggers a change in the state of a managed object.

enterprise module
parameter The enterprise module parameter is used to specify the OIDs file in which

the location of the module is defined.

getFilter The getFilter qualifier specifies a Tcl command or procedure that is used to

convert the data from how it is stored (in the data slice) to how it is returned

after a ’get’ operation. To function properly, the type of the object needs to

match the type of the output of the getFilter.

file scanning The act of scanning a file (usually a log file) for certain patterns (regular

expressions) that may be indicative of problems or significant information. Sun

Management Center agents use file scanning to assist in the monitoring of

systems and applications when these components do not provide direct access

to status information.

filter file These filters are used to extract the pertinent information from the raw results

of data acquisition commands.

fileFilter The filter file defines data filters implemented with Tcl/TOE procedures.

These filters are used to extract the pertinent information from the raw

results of data acquisition commands.

hardware modules These modules mamage hardware for the host on which the agent is running.

For example boards, SIMMs, and so on.

hierarchy view A window view that defines objects in a hierarchy or tree relationship to one

another. Objects are grouped depending on the rank of the object in the

hierarchy.

initHoldoff This qualifier specifies the time, in time specification, to wait before running

the refresh command for the first time.

initInterval This qualifier specifies, in time specification, the time window within which

the node should run the refresh command for the first time after the module

initializes.
Glossary 653

instance A single word or alpha-character string that is used internally within the Sun

Management Center agent to identify uniquely a particular module or a row

within a module.

internal service The internal service should be specified when the refresh command is a Tcl/

TOE command or procedure to be executed in the current node’s context.

localization/
internationalization Sun Management Center consoles and associated GUI clients operate in a

global environment. To do this, a mechanism is required to isolate the
language dependent code/information from the language independent
code and provide a straightforward method for graphical developers to
reference the language dependent information.

managed entities The physical and logical components of a system that are being managed. For

example disks, boards, hosts and networks.

managed object table
primitive This branch primitive is used in conjunction with the MANAGED-OBJECT-TABLE-

ENTRYprimitive when constructing a managed object with a table of managed

properties

manage In Sun Management Center software, manage is defined as being able to

monitor, as well as manipulate an object. For example, management privileges

include acknowledging and closing alarms, loading and unloading modules,

changing alarm thresholds, and so on. Management privileges are similar to

read, write, and execute access.

managed object
classes Building blocks used to model managed entities.

mandatory
parameters All modules must specify the standard set of parameters.

managed object
primitive A primitive used by managed object nodes that are branch nodes in the object

tree.

managed property
classes These classes are used to group together related managed properties of one

managed object .

managed property
class This primitive is used to group related managed properties of a managed

object together.

MEL pg 396

MIB Management Information Base. A MIB is a hierarchical database schema

describing the data available from an agent. The MIB is used by Sun

Management Center agents to store monitored data that can be accessed

remotely.
654 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

MIB node service This type of service should be used when the refresh command is to be

executed in the context of another MIB node.

model file Defines the building blocks used to monitor an entity to be managed.

module A software component that can be loaded dynamically to monitor data

resources of systems, applications and network devices.

monitor In Sun Management Center software, monitor is defined as being able to

observe an object, view alarms and properties. Monitoring privileges are

similar to read-only access.

nested managed
object This managed object contains other managed objects.

node A node is a workstation or server.

object A particular resource (computer host, network interface, software process, and

so on), which is subject to monitoring or management by Sun Management

Center software. A managed object is one that you can manipulate. For

example, you can acknowledge and turn off an alarm condition for an object

that you can manage. A monitored object is one that you can observe but not

acknowledge or otherwise manage.

object manager
primitive This primitive is used to identify the start of a subtree in the hierarchy where

the contents of the subtree may change and must be discovered dynamically.

operating system
modules These modules manage operating system entities for the host on which the

agent is running. For example swap, cpu usage, and so on.

optional parameters These additional parameters are specified in the module’s Parameter File to

facilitate user input for the requisite information when the module is loaded.

pctFilter This function computes the value of a named managed property as a

percentage of another managed property.

passive nodes Nodes that do not actively collect data but instead have data cascaded into

them.

Parameter File Specifies the parameters which the module requires when it is loaded by the

agent.

Prevalidate Actions The purpose of prevalidate actions is to ensure that the value can be set
into the node

postrowActions These actions are triggered to execute after the set but before the
postvalidate actions.

Postvalidate Actions Post-validate actions can be specified to validate the set value.
Glossary 655

procedure file Objects in the MIB tree may need to perform special data acquisition functions

or alarm status actions.This provides a simple mechanism to override or

extend the functionality of the core MIB object primitives.

rCompareRule This rule performs numeric comparisons, regular expression checks, or string

comparisons.

rateFilter This function accepts the name of a managed property and returns the rate of

change per second for the managed property since the previous sample.

reference node Reference nodes are objects that are loaded for use as a template in the
model file.

refreshFilter The refreshFilter qualifier specifies a Tcl command or procedure that is used to

process the data acquired by the refresh command.

refreshMode
Qualifier The refreshMode qualifier specifies the execution mode of the refresh

command.

refresh operation The refresh operation consists of performing DAQ and disseminating the

acquired data into the appropriate managed property nodes.

refreshParams The refreshParams qualifier can be used to specify arguments to be passed to

the refresh command.

refresh service A refresh service is an object within the agent that can be used for the purposes

of data acquisition.

refreshTrigger Derived nodes establish dependency relationships with one or more nodes on

which they rely on through the use of the refresh triggers specification.

remote modules Capable of managing entities on remote hosts. For example Oracle, Sybase, and

so on.

remote server context A remote server context refers to a collection of Sun Management Center

agents and a particular server layer with which the remote agents are

associated.

request caching The Sun Management Center server consolidates duplicate outstanding

requests originating from multiple consoles and eliminates the execution of

redundant requests.

rollbackActions The purpose of rollback actions is to restore the state of the object after the
failed set.

RMI Remote Method Invocation.

rule A rule is an alarm check mechanism that allows for complex or special purpose

logic in determining the status of a monitored host or node.
656 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

seed The password for the Sun Management Center user group called esmaster .

The seed is an alpha-numeric string of up to 8 characters. (This is not

necessarily a UNIX password.) You can select your own seed, or accept the

default seed (maplesyr) provided by the Sun Management Center software. If

you select your own seed, be sure to record it for later reference.

shadow MIB supports SNMP access to attributes associated with the managed objects
and properties in the agent MIB

superior service The superior service should be specified when the refresh command is a Tcl/

TOE command or procedure to be executed in the context of the current node’s

superior in the tree hierarchy.

server The collection of programs and processes (SNMP-based trap, event, topology,

configuration, and Java server) that work on behalf of a Sun Management

Center user to help manage a particular set of networks, hosts and devices.

Usually sends requests to Sun Management Center agents, accepts collected

data from them, and passes the data to the main console window for display.

server context See “remote server context.”

setActions The setActions specification defines one or more actions to execute when the

value of the object is set via SNMP.

simple alarm Simple alarms are based on one condition becoming true. You may set alarm

thresholds for simple alarms.

SNMP Simple Network Management Protocol. A complex protocol designed to allow

networked entities (hosts, routers, and so on) to exchange monitoring

information.

SNMP Service The SNMP service should be specified when the refresh command is an SNMP

get request for acquiring data from another SNMP agent.

SNMPv2 usec SNMP version 2, user-based security model security standards.

Sun Management
Center superuser Sun Management Center superuser is a valid user on a server host. The

superuser decides what the agents are in the context of the server. By default,

the superuser password is used as a seed for security key generation.

Sun Management
Center user Sun Management Center users are the members of the symon group in the

/etc/group file.

tableRateFilter This function is similar to rateFilter function, except that it operates on a list of

data instead of a scalar.

Tcl Tool Command Language.
Glossary 657

testcallback This is a reserved word. This is encountered in the context of the TCL

triggerCommandorMethod command.

Time A time specification format that permits the entry of complex time

specifications, including time windows, specific points in time, and time

intervals.

timeoutInterval If the refresh command does not complete within the specified time out

interval, then the command will be aborted.

transposeFilter A useful data filter is the transposeFilter , which can be used to
transpose a table of data

TOE Tcl Object Extension.

tooltip Proxy monitoring.

topology view The topology view displays the members of the object selected in the hierarchy

view.

transposeFilter TransposeFilter can be used to transpose a table of data.

updateFilter The update filter specifies a Tcl command or procedure that is used to process

the data being cascaded into the passive node.

URL Uniform Resource Locator. A URL is a textual specification describing a

resource which is network-accessible.

userFilter Loops through each line to determine the console user and count the
number of unique users and sessions.

.x file A Sun Management Center file used to represent TOE objects.
658 Sun Management Center 3.0 Developer Environment Reference Manual • December 1999

Index
NUMERICS
3-tier architecture, 388

A
absolute time expressions, 582

ACL specifications, 198, 651

ACLs

default settings, 201

specifying, 201

activateActions command, 191

activateCommand command, 192

activateService command, 192

active node, 58, 562

ad hoc commands, 178

implementing using families, 204

probe commands, 179

specifying, 179

row-specific, 179

specifying for a managed object, 178

agent

data logging registry service, 525

default I/O service, 525

file scanning service, 526

log file, 509

manage finder cache, 545

master event loop (MEL) service, 524

ping service, 524

shell protocol, 524

shutdown, 545

TOE object tree, 522

agent file, 592, 594, 596, 600

agent interactive mode, 213

exiting the agent, 214

finding attribute value of an object, 225

generating SNMP MIB from a module, 231

importing/exporting a set of object

attributes, 229

starting the agent, 214

viewing the result of an operation on an

object, 227

alarm

.x file format in alarm file, 113

criteria, 105

event

values, 122

hard events, 559

limits, 116

for scalars, 116

for vectors, 117

managing, 593, 603

passed up topology, 635

propagation, 635

rules, 105

assigment of, 106

customized, 106

log rules, 106

severity, 118

soft events, 559

state, 105

state value and severity, 550

status string

format, 550

alarm actions, 568
Index 659

change in status, 569

alarm API, 409

alarm checks, 105, 567

adding, 15

alarm logging, 571

default for alarm types, 115

event propagation, 570

event traps, 570

overview of rules for, 125

rule evaluation, 568

simple comparison, 568

status change, 570

user-defined actions, 571

alarm functionality

GUI guidelines, 487

alarm primitives, 52, 111

alarm types, 111

alarmChecks qualifier, 114

alarmlimit slice, 518

alarms buttons, 467

alarmSeverity qualifier, 118

alarmWindow qualifier, 120

ancestral object relationships, 515

APIs

alarm, 409

authenticate, 394

exception classes, 438

log viewer, 429

managed entity, 418

module, 423

raw data, 396

request status, 396

resource access, 432

architecture

3-tier, 388

async, 83

attribute editor

rules and internationalization, 459

attributes

internationlization of, 457

internationlization of attribute groups, 457

internationlization of scalar attributes, 458

internationlization of vector attributes, 459

authenticate API, 394

availability property, 176

specifying in the agent file, 176

B
base-modules-d.dat file, 533

Bourne shell service

used for data acquisition, 57

used for refresh service, 59

browser root, 541

building a module, 589

C
capitalization in time expressions, 581

cascade scenarios

active scalar, 563

active vector, 563

complex vector, 565

compound scalar, 564

compound vector, 565

derived heterogeneous, 566

nested heterogeneous, 566

table cascade, 565

check operation, 85

checkCommand qualifier, 85

checkInterval qualifier, 85

checkService qualifier, 85

classes

and Client API, 391

Java language object, 392

management model primitive, 559

structural property, 559

technique-specific property, 559

TOE object, 521

classpath (Java)

setting, 342

Client API

definition, 391

external interface requirements, 388

types of classes, 391

used for system management, 388

using, 21

clientRegistrar, 640

clientRegistrar, location, 647

cmdSsinfo function, 100

code examples, See examples

color

GUI guidelines, 480, 481
660 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

comparison time specification, 584

console integration, 327

method summary, 335

consoleHint qualifier, 178

contexts subtree, 529

converters

i18n

UcInternationalizer class, 448

i18N-specific

UcInternationalizer class, 448

CPU, 66

cpuFilter command, 66

cron time specification, 587

cyclic time specification, 583

D
DAQ mechanism, 594

data acquisition

implementation issues

performance, 103

implementing, 55

using a Tcl extension, 99

using C-code libraries and Tcl/TOE command

extensions, 78

using generic C-code libraries, 98

using Tcl and TOE code, 78

using UNIX and shell scripts, 56

integrating with agent file, 56

loading DAQ services, 56

executing with Bourne shell, 57

executing with Tcl shell, 102

specifying node types, 57

active node, 58

derived node, 79

passive node, 79

using cpuFilter, 66

using fileFilter, 68

using loadFilter, 67

using userFilter, 67

data cascade, 56, 562

data logging, 17, 576

automatic, 173

destinations, 579

format, 577

history buffer, 576

of a scalar node to an internal cache, 175

registry, 580

retrieval of data, 580

to a file, 174

circular log file, 175

typical flat file, 174

to internal cache, 174

two rows of a table managed property, 175

data logging registry service, 525

data model

creating, 14

realizing, 15, 54

using procedure file, 93

data model realization, 54

data model specification, 40

data model structure, 43

data model, creating, 591

data modeling

adding alarm types, 51

adding data types, 51

defining the structure, 43

data realization techniques, 65

data slice, 518

data type primitives, 52

data types

available, 52

day of week in time expressions, 585

debug mode

activating, 17

default I/O service, 525

definitions

(ACL) access control specifications, 198, 651

active node, 58, 562

check operation, 85

data cascade, 56

data model structure, 43

derived node, 79, 567

hard event, 559

hardware modules, 28

hierarchical summarization, 569

internationalization, 445

local application modules, 28

localization, 446

log rules, 106

managed entities, 556

managed nodes, 556

MIB (Management Information Base), 556, 572
Index 661

modules, 27

nodes, 43

operating system modules, 28

packages, 99

parameter file (for modules), 33

probe server, 574

reference node, 53, 656

refresh command, 58, 324

refresh operation, 56, 562

refresh service, 562

remote modules, 28

rules (for alarm checking), 125

scoped lookup, 219

soft event, 559

status actions, 105

status string (for alarms), 548

Sun Management Center, 3

Tcl (Tool Command Language), 514

TOE (Tcl Object Extension), 514

unit qualifier, 53

X File format, 518

derived node, 79, 567

refresh parameters, 80

de-selecting objects, 476

Details window

GUI guidelines, 489

Developer Environment

Client API, 391

dictionary operations

defining with TOE commands, 217

exporting agent’s data, 220

importing agent’s data, 220

key, 218

slice, 218

digitalFilter command, 548

documentation

overview, 12

domain menu, 467

dynamic tables

and internationlization of modules, 459

E
enterprise module parameter, 170

es-apps, 328, 329, 331, 332

es-chelp, 332, 348

es-details, 380, 382, 383, 386

es-device, 252, 380

es-dt, 262

es-run, 509, 512

es-start, 509

es-tool, 328, 329

event state transition, 134

event trap, 570

examples

absolute time, 582

agent file, 592, 594, 596, 600

agent interactive mode

defining a module, 224

alarm file, 106, 593, 603

alarm type primitives, 112

comparison time, 584

ConfigReader module agent file, 152

ConfigReader module model file, 151

ConfigReader rule (for alarm checking), 157

CPU alarm severity, 119

CPU alarm window, 121

CPU data model structure, 49

CPU status action, 123

createURL method, 398

cyclic time, 583

data primitives, 112

file system data model structure, 50

filesize module, 187

find files, 181

getURLValue method, 397

getUserId method, 399

intermediate data model, 109

log rule (for alarm checking), 157

managed object (scalar), 632

managed object (vector), 633

managed property (scalar), 627

managed property (scalar, vector), 629

managed property (vector), 628

managed property (vector, scalar), 630

managed property (vector, vector), 631

mib2-proxy-d.x, 612

mib2-proxy-m.x, 606

mib2-proxy-models-d.x, 608

mib2x usage, 212

model file, 591, 599

Module realization, MIB2 proxy module, 614

parameter file, 590, 594, 595, 598

performance data model structure, 49
662 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

probe test, 404

procedure file, 602

properties file, 592, 597

refresh services, 59

setURLValue method, 398

simple rules (for alarm checking), 157

SMAlarmObjectRequest class, 409

SMLogViewerTest, 429

SMModuleData class, 423

SMRawDataRequest class, 396

SNMP set, 617

SNMP table management set actions, 197

snmpget, 239

snmpnext, 242

snmpset, 236

snmptrap, 245

snmpwalk, 247

snmpwalktable, 250

Solaris agent file, 94

Solaris m.x file, 160

Solaris model file, 46

Solaris parameter file, 36

Solaris scalar alarm limits, 117

Solaris status strings, 549

Solaris vector alarm limits, 117

specifying ACLs, 201

Sun Management Center Server Login

Connection, 394

Tcl rules, 143

trap action for HP JetDirect, 621

trap subscription, 642

exception classes API, 438

F
famil, 204

family files, 204

file name specification, 595

file naming conventions

for module definition files, 32, 551

file scanning

subscribing to detect patterns, 526

unsubscribing pattern detection, 526

file scanning service, 526

fileFilter command, 68

FLOATHI primitive, 117

fonts

GUI guidelines, 482

for dictionary keys, 518

formatted messages

internationalization of, 450

fulldesc Shadow Attribute, 538

G
getRowData command, 546

getTableDepth command, 546

getValue command, 545

getValues command, 546

globActions command, 198

globCommand command, 198

GLOBROWNODE primitive, 189

globService command, 198

GLOBTABLENODE primitive, 189

graphical user interface guidelines, 463

alarm functionality, 487

cell, row, and column selection (in tables), 481

color, 480, 481

consistency, 464

de-selecting objects, 476

Details window, 489

fonts, 482

graphing, 482

information sources, 465

keyboard navigation, 477

main console, 466

alarms buttons, 467

domain menu, 467

layout view, 468

menus, 466

navigation buttons, 467

object icons, 468

scalability issues, 469

server objects, 468

status line, 472

modifying object layouts, 472

modifying topology views, 469

mouse actions, 475

property setting dialog, 484

selecting objects, 476

status messages, 473

table appearance and behavior, 478

table contents, 479
Index 663

table position (in a window), 481

time-setting, 486

graphing

GUI guidelines, 482

H
HelloWorld module

location of, 231

Helloworld_01 packaging, 491

helloworld-version03-mib.txt file

location of, 231

hierarchical summarization, 569

hierarchy

commands to establish, 215

history buffer, 576

historyLength qualifier, 174

Hostdetails window

launching, 336

I
icons

adding node icons, 189

console, 189

topology view, 189

index qualifier, 180

info Branch subtree, 542

agent information, 543

control information, 544

module information, 543

system information, 542

trap information, 543

trapForward information, 544

information model, 556

managed entity modeling, 557

management model primitives, 557

primitive classes, 559

initHoldoff specification, 84

installation script

internationalization of, 460

instance node, 186

instance specification, 166

integration of applications, 25

internal service

used for refresh service, 87

internationalization

and properties files, 38, 446

and ResourceBundle classes, 447

defined, 445

formatted messages, 450

guidelines for, 445

information defined by agents

classes, 453

objects, 453

properties, 453

of a module, 24

of attribute groups, 457

of attributes, 457

of data stored in agents, 452

of data stored in and manipulated by agents, 453

of module instances, 454

of non-ASCII input, 452

of scalar attributes, 458

of the console, 445

of the installation script, 460

of the setup script, 460

of vector attributes, 459

referencing internationalized text, 40

using Java, 23

ISO subtree, 528

iso*base subtree, 542

J
Java beans

HostdetailsBean, 333

invoking, 333

Java classpath, 342

Java languages object classes, 392

jobAdder, 644

jobRemover, 644

K
keyboard navigation, 477

L
legacy agents, monitoring, 605
664 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

linearFit command, 548

loadFilter command, 67

localization

defined, 446

locate command, 546

log rules, 106

log viewer API, 429

M
makefile guidelines, 342

makefile packaging, 492

managed entities, 556

managed entity

components and properties, 41

CPU component, 42

file system component, 42

system component, 42

managed entity API, 418

managed nodes, 556

managed object, 556

scalar, 632

vector, 633

MANAGED- OBJECT structural primitives, 44

managed properties

hiding from the console, 172

managed property

availability, 176

scalar, 627

scalar dimension, 562

scalar, vector, 629

vector, 628

vector dimension, 562

vector, scalar, 630

vector, vector, 631

MANAGED-MODULE primitive, 55

MANAGED-OBJECT-TABLE structural

primitives, 44

MANAGED-OBJECT-TABLE-ENTRY

primitive, 198, 203

MANAGED-OBJECT-TABLE-ENTRY structural

primitives, 45

MANAGED-PROPERTY structural primitives, 44

MANAGED-PROPERTY-CLASS structural

primitives, 44

Management Information Base (MIB), 556, 572

ad-hoc probe operations, 574

ad-hoc SNMP operations, 573

shadow, 573

management model primitives, 557

primitive classes, 559

managing alarms, 593, 603

MEL (master event loop) service, 524

menus, 466

MIB manager

browser root, 541

module checker, 540

module loader, 540

module tables, 541

URL/OID finder, 537

MIB node service

used for refresh service, 87

MIB OIDs mapping file

legacy, 610

loading, 611

mib2x syntax and options, 211

mib2x tool, 210

MIB-specific traps, 645

mod type in SNMP URLs, 626

model

data, 591

example file, 591, 599

modifying, 598

realizing, 592

module API, 423

module availability, 202

module checker, 540

module loader, 540

module models file, 608

module parameter files, 605

module realization file, 611

module tables, 541

module trap action definition, 617

moduleAvailability function, 177

modules, 14, 572

accessing table property, 539

building, 13, 589

building process, 551

module naming, 29

specifying parameters, 33

testing changes to a module, 551
Index 665

creating a data model, 14

defined, 27

definition files

binary extensions, 554

location of, 554

mandatory, 553

optional, 553

standard descriptors, 32, 552

standard extensions, 552

definition files for

x.file format, 28

determining availability of, 555

file naming conventions for, 32, 551

hardware, 28

installing module files, 16

internationalization of, 24, 454

module instance naming, 454

module parameters, 455

use of dynamic tables, 459

loaded by agent, 530

loading, 16

local application, 28

managing via agent framework, 527

MIB manager, 536

MIB subtrees, 527

module loading, 531

naming, 590, 598

naming definition files, 14

not loadable, 169

operating system, 28

realizing a data model, 15

remote, 28

required components, 31

specifying parameters, 14

subtrees, 530

writing for SNMP MIB, 19

monitoring legacy agents, 605

monitoring multiple files, 597

mouse actions, 475

multiple files, monitoring, 597

N
naming a module, 590, 598

naming conventions, SNMP trap file, 618

navigation buttons, 467

nodes, 43

action, 545

adding descriptions for, 53

adding icons for, 189

association with rules (for alarm checking), 129

cache, 545

description qualifiers, 53

instance node, 186

multiple rule requirement, 130

structural primitives, 43

MANAGED-OBJECT, 44

MANAGED-OBJECT-TABLE, 44

MANAGED-OBJECT-TABLE-ENTRY, 45

MANAGED-PROPERTY, 44

MANAGED-PROPERTY-CLASS, 44

non-ASCII input

internationalization of, 452

nternationalization

information defined by agents, 453

O
object

shell service, 522

TOE objects, 515

object icons, 468

object layout

modifying, 472

object property dictionary, 517

X File format, 518

object property dictionary keys, 517

object property dictionary slices, 518

object relationships

ancestral, 515

ancestral and structural, 516

structural, 516

oid type in SNMP URLs, 625

operational model, 561

cascade scenarios, 562

data acquisition scenarios, 562

operation sequence, 561

P
packages

command registration, 100

issues when creating, 99
666 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

package naming, 99

returning data into Tcl, 101

writing initialization procedure, 100

package registration, 100

packaging

component naming, 494

Helloworld_01, 491

makefile, 492

package dependencies, 494

prototype file, 494

SUNWesagt, 494

SUNWessrv, 494

package naming, 493

package versioning, 493

prototype file entries, 492

assign file attributes, 492

copyright, 492

depend, 492

directory creation, 492

pkginfo, 492

parameter file, 33

example, 590, 594, 595, 598

instance specification, 166

mandatory lines, 34, 37

used for internationalization, 38

parameters

displaying parameter groups, 168

enterprise module, 170

instance, 166

instanceName, 166

module, 532

referencing, 171

patterns

subscribing for detection during file

scanning, 526

unsubscribing for detection during file

scanning, 526

pctFilter command, 547

PERCENTHI primitive, 110

PERCENTLO primitive, 110

persistence, 177

persistentSlices qualifier, 177

ping service, 524

port 161, 249

postrowActions command, 193

postrowCommande command, 194

postrowService command, 194

primitives

FLOATHI, 117

GLOBROWNODE, 189

GLOBTABLENODE, 189

MANAGED-MODULE, 55

MANAGED-OBJECT-TABLE-ENTRY, 198, 203

PERCENTHI, 110

PERCENTLO, 110

ROWSTATUS, 166, 203

RULE, 130

private enterprise subtree, 530

probe command security, 182

limiting top probe command, 182

probe connection

establishing, 575

probe queries, 180

probe server, 574

probe test example, 404

procedure file, 602

properties file, 592, 597

server override, 171

properties files

used for internationalization, 446

using the correct class loader for

internationalization, 447

property setting dialog, 484

prototype file entries, 492

proxy monitoring

additional information, 606

data acquisition, 612

legacy MIB OID mapping, 610

module models file, 608

module parameter file, 605

module realization file, 611

Q
qualifiers

alarm ruler, 126

alarmChecks, 114

alarmRules, 126

alarmSeverity, 118

alarmWindow, 120

checkCommand, 85

checkInterval, 85

checkService, 85
Index 667

consoleHint, 178

for active nodes, 58

for node descriptions, 53

historyLength, 174

index, 180

initHoldoff, 84

persistentSlices, 177

predefined optional, 163

refresh, 58

refreshCommand, 59

refreshFilter, 77

refreshInterval, 60

refreshMode, 83

refreshParams, 82

refreshService, 58

refreshTrigger, 81

timeoutInterval, 80

unit qualifier, 53

updateFilter, 86

qualifiers, accessing with SNMP URLs, 627

R
rateFilter command, 547

rateFilter64 command, 547

raw data API, 396

realizing the model, 592

reference node, 53, 656

referencing parameters, 171

refresh command, 58, 324

refresh operation, 56, 562

refresh parameters, 80

refresh qualifiers, 93, 102

initHoldoff, 84

refreshCommand, 59

refreshFilter, 77

refreshInterval, 60

refreshMode, 83

refreshParams, 82

refreshService, 58

Bourne shell, 59

internal service, 87

SNMP service, 86

superior service, 87

refreshServiceMID node service, 87

refreshTrigger, 81

specifying node name, 81

timeoutInterval, 80

updateFilter, 86

refresh service, 562

refresh triggers, 79

refresh variables

determining rule to invoke for object, 139

refreshCommand specification, 59

refreshFilter specification, 77

refreshInterval specification, 60

refreshMode specification, 83

refreshParams specification, 82

refreshTrigger events, 81

refreshTrigger specification, 81

request status API, 396

resource access API, 432

ResourceBundle

management of, 449

ResourceBundle classes

used for internationalization, 447

using the correct class loader for

internationalization, 447

return strings, 136

REVISION macro, 493

RFC1903, 185, 459

rollbackActions command, 197

rollbackCommand command, 197

rollbackService command, 197

ROWSTATUS primitive, 166, 186, 203

RULE primitive, 130

ruleFire procedure, 134

rules

in the attribute editor

and internationalization, 459

rules (for alarm checking), 125

assigning values to rule parameters, 153

assignment via refresh variables, 139

attaching to module configuration files, 151

event states and transitions, 134

event status, 136

valid return strings, 136

implementation via Tcl, 139, 142

major steps to create, 145

methods callable by rules, 137

multiple rule requirement, 130
668 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

naming convention, 126

not attached to node, 130

relationship to derived objects, 126

rule designer access to data, 133

rule files, 127

base rules, 128

custom rules, 129

module specific, 127

rule invocation, 134

rule placement in hierarchy, 129

rule priority, 127

rule template, 145

specifying text messages, 153

English status message, 154

internationalized status message, 155

Tcl file format, 145

variables, 131

dynamic, 131

editable, 131

static, 131

temporary, 131

runadhoccommand shadow MIB attribute, 182

S
scalar alarm limits, 116

scoped lookup, 219

selecting objects, 476

server override properties file, 171

setActions command, 196

setCommand command, 196

setrowActions command, 195

setrowCommand command, 195

setrowService command, 195

setService command, 196

setup script

internationalization of, 460

setValue command, 546

shadow MIB, 573

default attributes, 573

shadow operations, 627

shell protocol

between agent and shell, 524

shell service object, 522

SNMP agent

monitoring legacy agents

data acquisition, 612

MIB OIDs mapping file, 610

MIB OIDs mapping file, loading, 611

module models files, 608

module parameter file, 605

use of port 161, 249

SNMP commands

snmpget, 237

snmpnext, 240

snmpset, 233, 643

snmptrap, 243

trap type inforrmation, 245

snmpwalk, 246

snmpwalktable, 248

SNMP interface

publishing, 19

SNMP jobs, periodic, 639

SNMP MIB

writing modules for, 19

SNMP security, 198

levels of logical users, 199

admin, 199

general, 199

operator, 199

logical users, groups, and community

names, 199

security levels, 200

auth, 200

default ACLs, 201

noauth, 200

none, 200

priv, 200

SNMP service

used for refresh service, 86

SNMP set

example, 617

module trap action definition, 617

naming conventions, 618

valid parameters, 619

SNMP sets

SNMP table management, 185, 190, 597

data formats for managed properties, 187

global table or row actions, 188

instance node, 186

required values for managed properties, 186

ROWSTATUS primitive, 186

user-defined action

postrow actions, 193
Index 669

user-defined actions, 190

activating, 191

global actions, 198

postvalidate actions, 194, 655

prevalidate actions, 193, 655

rollback actions, 197

set actions, 196

setrow actions, 195

set-value process, 192

SNMP table management commands, 202

adding a row, 203

disabling a row, 204

editing a row, 203

enabling a row, 204

loading a module instance, 204

removing a row, 203

SNMP trap

alarm, 638

clientRegistrar, 640

jobAdder, 644

jobRemover, 644

MIB-specific, 645

subscription, 639

subscription example, 642

SNMP URLs

advantages over URLs, 624

examples

managed object (scalar), 632

managed object (vector), 633

managed property (scalar), 627

managed property (scalar, vector), 629

managed property (vector), 628

managed property (vector, scalar), 630

managed property (vector, vector), 631

format, 624

mod type, 626

oid type, 625

shadow operations, 627

sym type, 625

types

module, 626

numeric, 625

symbolic, 625

ssinfo command arguments, 100

status, 635

status actions, 105

status changes, 635

status line, 472

status messages, 473

statusChange trap, 570

structural object relationships, 516

structural primitives, 43

subscribing, SNMP traps, 639

subtrees

context, 529

info Branch, 542

ISO, 528

iso*base, 542

modules, 530

private enterprise, 530

Sun Management Center

defined, 3

Sun Management Center 3-tier architecture, 388

SUNWesagt package dependency, 494

SUNWessrv package dependency, 494

superior service

used for refresh service, 87

sym type in SNMP URLs, 625

sync, 83

T
table appearance and behavior, 478

table contents

GUI guidelines, 479

table property

accessing in a module, 539

tableRateFilter command, 547

tableRateFilter64 command, 547

Tcl (Tool Command Language)

used to develop agents, 514

Tcl clock command, 574

Tcl command extension package

used for data acquisition, 101

Tcl commands

ssinfo, 94

Tcl_AppendElement, 101

Tcl_AppendResult, 101

used as refresh commands or filters, 545

digitalFilter, 548

getRowData, 546

getTableDepth, 546

getValue, 545
670 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

getValues, 546

linearFit, 548

locate, 546

pctFilter, 547

rateFilter, 547

rateFilter64, 547

setValue, 546

tableRateFilter, 547

tableRateFilter64, 547

toe_send, 547

transposeFilter, 547

valueOf, 545

Tcl file command, 574

Tcl filters

used for data acquisition, 77

Solaris example, 77

Tcl procedures

used for data acquisition, 93

Tcl shell service

used for data acquisition, 102

Solaris example, 103

Tcl_CreateCommand function, 100

time expressions

absolute, 582

capitalization in, 581

comparison, 584

cron, 587

cyclic, 583

day of week, 585

notation, 581

variable substitution, 588

white space, 581

timeoutInterval specification, 80

time-setting

GUI guidelines, 486

TOE (Tcl Object Extension)

used to develop agents, 514

TOE commands

creating new TOE object, 214

define dictionary operations, 217

defining class, 221

destroying TOE object, 214

establish relationship among objects, 215

establishing hierarchy, 215

load classes or binary packages to an agent, 222

navigating object tree, 220

set object context, 216

TOE functions

how rules access agent object data, 141

TOE object tree, 522

toe_send command, 547

topology agent API, 435

topology views

modifying, 469

transposeFilter command, 547

Trap Handler, 647

troubleshooting

console, 511

error messages, 511

module loading, 509

agent log file error messages, 510

console error messages, 510

interactive agent error messages, 511

tutorial, model building, 589

U
unit qualifier, 53

updateFilter specification, 86

URL/OID finder, 537

converting OID URL, 537, 538

URLs

purpose, 623

See also condensed URL

See also SNMP URLs

userFilter command, 67

V
valid parameters for SNMP trap files, 619

validateActions command, 193

validateActions(post) command, 194, 655

validateCommand command, 193

validateService command, 193

value slice, 518

valueOf command, 545

variable substitution specification, 588

vector, 628

vector alarm limits, 117

VERSION macro, 493
Index 671

W
white space in time expressions, 581

X
X File format, 518

x file format in alarm file, 113
672 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

	Contents
	1. Sun Management Center and the Developer Environment� 3
	2. Sun Management Center Developer Environment Installation� 7
	3. Introduction to the Reference Manual� 11
	4. Introduction to Modules� 27
	5. Building a Simple Module� 31
	6. Advanced Data Model Realization Techniques� 65
	7. Alarm Management� 105
	8. Rules� 125
	9. Additional Specifications for a Module� 159
	10. Modules and SNMP� 185
	11. Agent Interactive Mode � 213
	12. Developer Environment Tools� 233
	13. Composite Objects� 251
	14. Device Modeling� 269
	15. Module Builder� 287
	16. Console Integration� 327
	17. Advanced Console Customization� 343
	18. Client API� 387
	19. Internationalization Guidelines� 445
	20. Graphical User Interface Guidelines � 463
	21. Sun Management Center Developer Environment Packaging� 491
	22. Integrating Addon Products with Sun Management Center� 495
	23. Troubleshooting� 509
	A. Modules Appendix� 513
	B. Time Expression Specifications� 581
	C. Module Building Tutorial� 589
	D. SNMP Proxy Monitoring Modules� 605
	E. URL Specifications� 623
	F. Status Propagation� 635
	G. SNMP Trap Subscription� 639

	Figures
	Tables
	Procedures and Examples
	Preface
	Audience
	Contents in this Manual
	Access to Up-to-date Information on the Developer Environment
	Using UNIX Commands
	Shell Prompts
	Typographic Conventions
	Sun Documentation on the Web
	Related Documentation
	Sun Welcomes Your Comments

	I Introduction to Developer Environment
	Sun Management Center and the Developer Environment
	Sun Management Center Framework
	Sun Management Center Console
	Sun Management Center Server
	Sun Management Center Agent

	Sun Management Center Developer Environment

	Sun Management Center Developer Environment Installation
	Uninstalling Previous Versions of Sun Management Center Software
	Sun Management Center Developer Environment Licensing
	Installing the Sun Management Center Developer Environment From CD
	Code Examples and Client API

	Introduction to the Reference Manual
	The Different Parts of this Manual
	Accessing Information in this Manual
	Building Modules
	Name Module Definition Files
	Specify Module Parameters
	Create a Data Model
	Realize the Data Model
	Add Alarm Checks
	Install Module Files
	Load a Module
	Log Data and To Activate Debug Mode
	Write a Module from an existing SNMP MIB
	Publish an SNMP Interface

	Building Consoles
	Build Your Own Console
	To Access Troubleshooting Information

	Using Client API
	Use the Client API

	Using the Platform Agent
	To Start the Platform Agent
	How to See Changes that have been made to the Agent’s module-d.x File

	Conforming to Internationalization and GUI Guidelines
	Work With a Java Application
	Internationalize a Module

	Integrating Applications

	Introduction to Modules
	Modules Definition
	How to Load Modules
	Basic Module Building Concepts
	Types of Modules
	Module Naming
	Module Names and Subspecs
	SNMP & Modules

	Building a Simple Module
	Required Components
	File Naming Conventions
	Standard Extensions

	Parameters Specification
	Creating a Parameter File
	Mandatory Parameters
	Example Parameter File

	Internationalizing Modules
	Mandatory Parameters for Internationalization in the Parameters File
	Properties File
	Example Properties File

	Referencing Internationalized Text

	Data Model Specifications
	Creating a Data Model
	Identifying Components and Properties of Managed Entity
	Solaris Example—Components and Properties
	CPU
	System
	File System

	Defining the Data Model Structure
	Node Definition and Trees
	Structural Primitives
	MANAGED-OBJECT
	MANAGED-PROPERTY
	MANAGED-PROPERTY-CLASS
	MANAGED-OBJECT-TABLE
	MANAGED-OBJECT-TABLE-ENTRY

	Example Data Model File
	Solaris Example—Model File
	Solaris Example—CPU Data Model Structure
	Solaris Example—Performance Data Model Structure
	Solaris Example—filesystems Data Model Structure

	Adding Data Types
	Available Data Types

	Adding Node Descriptions
	Node Type Based on Operational Behavior

	Simple Data Model Realization
	Steps Involved in Data Model Realization
	Mandatory Contents of Every Data Model Realization File
	Implementing Data Acquisition Mechanisms
	UNIX Programs and Shell Scripts

	Integrating Data Acquisition
	Loading the DAQ Services
	Bourne Shell Services

	Node Type Based on Operational Behavior
	Active Nodes

	Mandatory RefreshQualifiers for Active Nodes
	refreshService
	Bourne Shell Service

	refreshCommand
	refreshInterval

	Example of a Simple Module
	Example Data Model Realization File
	The solaris-example-console-user-d.sh File

	Advanced Data Model Realization Techniques
	What are Filters
	Standard Extensions for File Name
	Examples of Filters
	CPU Data Filter
	User Data Filter
	Load Data Filter
	File System Data Filter

	Adding Filters to Data Model Realization
	Example Data Model File
	Example Data Model Realization File Using Tcl Filters
	Loading the DAQ Services
	Tcl Filters

	RefreshQualifier for Filters
	refreshFilter
	Solaris Example—Loading the Filter File

	Advanced Data Acquisition Mechanisms
	Tcl/TOE Code
	C Code Libraries and Tcl/TOE Command Extensions

	Other Node Types based on their Operational Behavior
	Passive Nodes
	Derived Nodes

	refreshQualifiers & Other Qualifiers
	timeoutInterval
	refreshTrigger
	Specifying Node Name
	Specifying RefreshTriggers from a Node in Another Module

	refreshParams
	refreshMode
	async
	sync

	initInterval
	initHoldoff
	Check Qualifiers
	checkCommand, checkService and checkInterval

	updateFilter
	refreshService
	SNMP Service
	Internal Service
	Superior Service
	MIB Node Service

	Data Model Realization Specifications with Tcl procedures as DAQ
	Example Data Model File
	Standard Extension for File Name
	Loading the DAQ Services
	Tcl Procedures

	Node Type Based on Operational Behavior
	Refresh Qualifiers

	Data Model Realization Specifications with C libraries and Tcl/TOE Command Extensions as DAQ
	Solaris Example Data Model Realization File
	Solaris Example - Tcl Command Extension
	Writing a C Library
	Writing a Tcl Extension
	Package Naming
	Init Function
	Package Registration
	Command Registration
	Returning Data into Tcl

	Loading the DAQ Services
	Tcl Command Extension Packages

	Node Type Based on Operational Behavior
	Refresh Qualifiers

	Another DAQ Service
	Tcl Shell Service
	Solaris Example—Tcl Shell

	Performance Considerations

	Alarm Management
	What are Alarms
	Modules and Alarms
	Built-In rCompare Rule
	Writing Custom Rules

	Alarm Management using rCompare Rule
	Example Alarm File (solaris-example-d.def)
	Managing Alarms using rCompare
	Using the rCompare Rule in the Models File
	Example—Intermediate Data Model
	How to specify Alarms in the Data Model File
	Alarm Types
	Data and Alarm Type Primitive Examples

	Required Content in the Model Realization File
	Creating the Alarm File
	File Name
	Contents

	Specifying the Alarm Criteria
	Specifying Alarm Checks
	Alarm Checks
	Specifying Alarm Limits
	Scalars
	Solaris Example—Scalar Alarm Limit
	Vectors
	Solaris Example—Vector Alarm Limit

	Alarm Severities
	Solaris Example—CPU Alarm Severity

	Alarm Window
	Scalars
	Vectors
	Solaris Example—CPU Alarm Window

	Specifying Status Actions
	Solaris Example—CPU Status Action

	Rules
	Rules Agent Infrastructure
	Rules and Derived Objects
	Rule Naming
	Rule Assignment

	Rule Files
	Module-Specific Rules
	General Rules or Base Rules
	Rules Created By Clients

	Rule Placement in Hierarchy
	A Node Can Require More Than One Rule
	Rule Can Have No Natural Node to be Attached to
	Node Can Have a Rule but No Data

	Rules Attributes
	Rule Data Storage
	Rule State Transitions
	Rule Invocation Procedure (ruleFire)
	Rule Event Status

	Rule Functions
	Third Party Rule Engine Interface Functions
	Rule Loading
	Rule Assignment
	Key TOE Functions

	How to Write A Tcl Rule
	Tcl Rule Example
	Tcl Rules File Format
	Tcl Rule Template
	Guidelines

	Attaching a Rule to the Module Configuration Files
	The Module Agent File

	Assigning Initial Values to Rule Parameters
	Specifying Rule Text Messages
	English Status Message
	Internationalized Status Message

	More Examples Of Rules
	Config Reader Rule
	Log Rule

	Additional Specifications for a Module
	Additional Parameter Specifications
	Example: Solaris m.x File
	Additional Parameters
	Predefined Additional Qualifiers

	To Specify a Managed Property as Writable

	Creating Multiple Instances of a Module
	Instance Specification

	Organizing Module Parameters
	Making a Module Not Loadable
	Alternate Way of Specifying a Module Location
	Enterprise Module Parameter
	Referencing Parameters

	Improving Performance using Server Override Properties File
	Server Override Properties File
	Example Server Override Properties File

	Additional Data Model Specifications
	Specifying Hidden Managed Properties
	Data Logging Support
	Automatic Data Logging
	Logging To Internal Cache
	Logging To File
	To Log Data to a Typical Flat File
	To Log Data to a Circular Log File
	Logging Data of a Scalar Node to an Internal Cache
	Logging Two Rows of a Table Managed Property

	Specifying Module Availability
	Specifying the Availability Property in the Agent File

	Persistence

	Specifying Adhoc Commands
	Command Specification
	Row-Specific Commands
	Probe Commands
	To Specify a Probe Command
	Row Dependent Probe Queries
	Find Files Example

	Probe Command Security
	To Limit Top Probe Command

	Enabling Modules for Metadata
	Error Reporting

	Modules and SNMP
	Adding Support for SNMP Table Management
	ROWSTATUS Primitive
	Instance Node
	Required Values
	Data Formats
	Example—Filesize

	Adding Support for Global Table or Row Actions
	Adding Node Icons
	Adding SNMP Table Management
	User-defined Actions
	Activate Actions
	SNMP Set Actions
	Prevalidate Actions
	postrow Actions
	Postvalidate Actions
	setrow Actions
	Set Actions
	Rollback Actions
	Global Actions

	Adding SNMP Security
	Logical Users, Groups, and Community Names
	Security Levels
	Default ACLs
	Examples—Specifying ACLs

	Using SNMP Table Management Commands
	To Add a Row
	To Remove a Row
	To Edit a Row
	To Disable a Row
	To Enable a Row
	To Load a Module Instance
	Example: Adhoc SNMP Table Management
	Example: Additional Objects to the Solaris Example File

	Sending Traps from the Agent
	Example: Agent File

	Using the mib2x Tool
	mib2x Syntax
	Examples of mib2x

	Agent Interactive Mode
	Working in the Agent Interactive Mode
	To Work Within the Agent Interactive Mode
	To Exit the Environment

	Tcl/TOE Commands
	Object Creation
	Object Relationship
	Object Interaction
	Dictionary Operations
	Object/Dictionary I/O
	Interactive Object Tree Navigation
	Class Definition
	Class/Package Loading

	Agent Interactive Mode Usage Examples
	To Define a Module
	To Find the Attribute Value of a Certain Object
	To View the Result of an Operation on a Certain Object
	To Import and Export a Set of Object Attributes
	To Generate SNMP MIB From a Module

	Developer Environment Tools
	snmpset
	Name
	Synopsis
	Description
	Options
	Exit Status
	Examples of snmpset

	snmpget
	Name
	Synopsis
	Description
	Options
	Exit Status
	Examples of snmpget

	snmpnext
	Name
	Synopsis
	Description
	Options
	Exit Status
	Examples of snmpnext

	snmptrap
	Name
	Synopsis
	Options
	Exit Status
	Trap Type Information
	Examples of snmptrap

	snmpwalk
	Name
	Synopsis
	Description
	Options
	Exit Status
	Examples of snmpwalk

	snmpwalktable
	Name
	Synopsis
	Description
	Exit Status
	Examples of snmpwalktable

	Composite Objects
	Implementing a Composite Object
	To Add a Composite Object
	To Remove a Composite Object

	Discovery Object Table Definition
	dot_composite_type
	2 - composite_group
	1 - composite_modeled_agent
	3 - composite_agent
	5 - composite_module

	Special Behavior
	2 - composite_group
	1 - composite_modeled_agent
	3 - composite_agent
	5 - composite_module

	Filtering
	2 - composite_group
	1 - composite_modeled_agent
	3 - composite_agent
	5 - composite_module

	Adding a Reference to the Discovery Object Table
	Object Identification (OID)

	Troubleshooting
	Finding the Composite Object when Running a Discovery Request
	When the es-dt script is executed or if the Discovery Object Table is Modified
	Running the Discovery Interface

	Examples
	Discovery Object Table Module Data Realization File
	Discovery Object Table MIB

	Device Modeling
	Sun Management Center Framework
	Devices Within SunMC
	Modeling a Device
	Editing the Configuration File
	Configuring the Topology
	Server Layer Interface
	Modeling Your Devices at the Server Level
	The es-device Script
	Synopsis

	The Configuration File (devcfgfile)
	Object Types
	Group Type Object
	Node Type Object
	Segment Type Object
	Composite Type Object

	Key Descriptions
	User_Name
	Group_Type
	Group_Object_Type
	Monitor_Via
	Node_Type
	Node_Object_Type
	Segment_Type
	Segment_Object_Type
	Composite_Object_Type

	i18n_key
	Properties_File
	Search_Parameter
	Large_Icon
	Small_Icon
	Device_Id

	Example Configuration File
	Example Data Node - Host
	Example Data for Node - SNMP
	Example Data for Node - Module
	Example Data for Group - IPBASED
	Example Data for Segment - Bus

	Agent Layer Interface
	Modeling Your Devices at the Agent Level
	The deviceinfo Script
	Agent Configuration File
	Key Value Pairs
	DID (Device ID)
	OID
	Node_Object_Type

	Example deviceinfo.conf File

	Module Builder
	The Module Builder Interface
	The -m.x, -d.x, and -models-d.x Files
	To Build a Module Using the Module Builder
	To Launch the Module Builder
	Module Builder Menu Choices
	File Specific Commands
	Load Production Module
	Load Development Module
	Save Development Module
	Publish Module
	Export MIB
	Import MIB

	Building Module Parameter Contents (�m.x)
	To Access the Module Parameters Folder
	To Update the Module Parameters Tables
	Boolean
	Instance
	List
	Password

	Building Data Model Contents (-d.x)
	Commands Used When Building Data Model Contents
	Copy Nodes/Copy Table
	Paste Nodes
	Add Node
	Clear Module
	Delete Node/Delete Table

	Using the Module Root to Define Hierarchy and DAQ
	Data Types
	Adding Nodes

	To Create the Hierarchy of the Module
	To Change the Data Model

	Defining Data Acquisition (models-d.x)
	Commands Used When Enabling DAQ
	Run Module Confirmation Box
	Stop Module Confirmation Box
	Activate Node/Activate Table Confirmation Box
	Deactivate Node/Deactivate Table Confirmation Box
	Clear Confirmation

	To Enable Data Acquisition on a Module, Table, or Object

	II Programmer’s Reference to Console Integration and Client API
	Console Integration
	Extending the Console
	Integration Levels
	Configuration Files
	es-tool: Syntax for console-tools.cfg Entries
	es-apps: Syntax for console-host-apps.cfg Entries
	Help Key Usage

	Update Utilities

	Integrating Sun Management Center Software With Other Management Tools
	To Invoke the HostDetailsBean
	Field Summary
	Constructor Summary
	Method Summary
	Field Detail
	Constructor Detail
	Method Detail

	Compilation and makefile Guidelines

	Advanced Console Customization
	General Guidelines
	Exiting Applications Launched from Static and Dynamic Menus
	Launching a Java Program from Multiple Places in Modules
	General Integration Guidelines

	Static Menus
	Customizing Static Popup Menus
	To Add Additional Popup Menu Options at the Module or Managed Object Level
	To Add Menu Choices At the Table Level

	Integration Guidelines and Notes for Static Menus
	SMHelpBrowser
	To Invoke a Help Class
	To Integrate the Online Help Mapping Key

	Troubleshooting for Static Menus
	Console Message Exceptions
	Strange Behavior of Integrated Program if Invoked Multiple Times
	New Menu Choices are Not Visible for Static Menus

	Example: staticmenu-version01-d.x
	Example: SMHello.java
	Example: SMContextExample.java

	Dynamic Menus
	Customizing Dynamic Popup Menus
	To Specify New Dynamic Menu choice(s) Over a Table Cell
	To Specify New Dynamic Menu Choice(s) Over a Table Column Header
	To Test Popup Menus and See the Changes
	Rules for Java Implementation for Dynamic Popup Menus

	Internationalization for Dynamic Popup Menus
	Troubleshooting (Dynamic Popup Menus)
	Console Message Exceptions
	Strange Behavior of Integrated Program when Invoked Multiple Times
	New Menu Choices Are Not Visible for Dynamic Popup Menus

	Example: Dynamic Menu
	Dynamic Menu Java Code

	Cell Editors
	To Specify that a Cell is Editable
	To Use the Boolean Editor
	To Use the Combo Box Editor
	To Implement a Customized Cell Editor
	To Specify a Custom Cell Editor
	Rules for Java Implementation of the Cell Editor
	Internationalization of the Cell Editor
	To Internationalize Cell Editors
	To Test Custom Cell Editors
	Example: Cell Editor
	Cell Editor Java Code

	Configurable Details Window Interface
	es-details
	Syntax
	Adding Tabs Provided by Sun Management Center
	Adding User-Defined Tabs
	Specifying an Open Default Tab when Launching Details Window
	Example inputfile
	Example: TabHello.java
	Removing Sun Management Center Default Tabs
	Re-Running es-details and Undo

	Integration Guidelines and Notes

	Client API
	Introduction to Client API Classes
	API Usage for System Management
	External Interface Requirements

	Sun Management Center Architecture
	Sun Management Center Three-Tier Architecture
	Client API Class Usage
	Client API Definition
	Java Language Object Class Examples
	To Run the Client API Examples:

	Login API
	Example: SMLoginTest

	Request Status API
	Example: SMRequestStatus

	Raw Data API
	Example: SMRawDataRequest
	Example: getURLValue Method
	Example: setURLValue Method
	Example: createURL Method
	Example: getUserId Method

	Example: SMProbeTest
	Example: SMRawDataTest
	Example: SMRawDataAsyncTest

	Alarm API
	Example: SMAlarmObjectRequest Class
	Example: SMAlarmAsyncTest
	Example: SMAlarmSyncTest

	Managed Entity API
	Example: SMManagedEntityTest

	Module API
	Example: SMModuleTest

	Log Viewer API
	Example: SMLogViewerTest

	Resource Access API
	Example: SMResourceAccessTest

	Topology Agent API
	Example: SMTopologyTest

	Exception Classes API
	How to Run Examples
	Running SMAlarmAsyncTest
	Running SMAlarmSyncTest
	Running SMLogViewerTest
	Running SMLoginTest
	Running SMManagedEntityTest
	Running SMModuleTest
	Running SMProbeTest
	Running SMRawDataTest
	Running SMRawDataAsyncTest
	Running SMResourceAccessTest
	Running SMTopologyTest

	III Additional Material
	Internationalization Guidelines
	Internationalization
	Terminology
	Constraints
	Assumptions and Dependencies

	Software Guidelines
	Properties Files
	ResourceBundle Class Instances
	Obtaining Resource Bundles/Properties Files
	Independent Client/Bean Usage
	UcInternationalizer Class
	Direct ResourceBundle Management
	Formatted Messages
	Handling Non-ASCII Input
	Data Only Stored in Agents
	Data Stored in and Manipulated By Agents

	Agent Internationalization
	Objects/Classes/Properties
	Modules
	Module Instance Naming
	Module Parameters

	Attribute Editing
	Attribute Groups
	Scalar Attributes
	Vector Attributes

	Dynamic Tables (RFC1903)
	Rules

	Installation/Setup Script Internationalization

	Graphical User Interface Guidelines
	Consistency
	Information Sources
	Main Console
	Server Object Representation and Object Management
	Guidelines for Modifying Topology Views
	Layout View
	Object Layouts
	Status line

	Status Messages
	User Input
	Mouse Actions
	Selection Highlighting
	Selecting Objects
	De-selecting Objects

	Keyboard Navigation Shortcuts
	Table Appearance and Behavior
	Table Contents
	Color
	Table Position
	Cell, Row, and Column Selection

	Colors
	Fonts
	Graphing
	Property Setting Dialog
	Optional Buttons
	Time Setting

	Alarms
	Alarm System

	Details Window

	Sun Management Center Developer Environment Packaging
	Packaging Helloworld_01
	Makefile
	Prototype Entries

	Sun Management Center Software Packaging Practices
	Package Naming
	Package Versioning
	Component Naming
	Package Dependencies
	Prototype File
	Sun Management Center Module Name Practices

	Integrating Addon Products with Sun Management Center
	Sun Management Center Directory Organization
	Layout of Addon Products
	Example Layout

	Packaging of Addon
	Using the installation.info File
	Format of the installation.info File

	The installation.properties File
	Packaging Sun Management Center 2.x Addon Products
	ES_ADDON_PLATFORM
	ES_ADDON_FAMILY

	Locale Information
	Addon Setup Interface
	es-inst -R Option
	Packaging for Windows

	Troubleshooting
	Module
	Console Messages
	Agent Log File Messages
	Interactive Agent Mode Messages

	Console

	Modules Appendix
	Module Building Environment
	Agent Development
	Tcl Environment
	TOE Environment

	TOE Objects
	Object Relationships
	Ancestral Relationships
	Structural Relationships

	Combining Ancestral and Structural Relationships
	Object Property Dictionaries
	Dictionary Keys
	Value
	Alarmlimit
	Data

	Importing and Exporting Dictionaries (Module Configuration Files)
	Dictionary Entry (Property) Representation
	Multi-object Dictionary Representation
	Action Specifications
	TOE Object Classes

	Agent Framework
	Shell Service
	Shell Service Result Handling
	Shell Protocol
	Ping Service
	Master Event Loop (MEL) Service
	Default I/O Service
	Data Logging Registry Service
	File Scanning Service
	Subscribing for Patterns
	Unsubscribing Patterns

	Module Management
	MIB Subtrees
	Default SNMP Context
	Non-default SNMP Contexts
	Private Enterprises
	Module Subtrees

	Module Loading
	Module Parameters
	base-modules-d.dat

	Loading & Unloading a Module in the Platform Agent
	To Stop the Platform Agent
	To Load a Module in the Platform Agent
	To Unload a Module in the Platform Agent

	MIB Manager
	URL/OID Finder
	To Convert an OID URL to an Actual OID
	To Access the fulldes Shadow Attribute of the Same MIB Property
	To Convert the Shadow OID URL to a Valid OID
	To Access a Table Property in a Module
	To Convert the OID URL to an OID
	Module Loader
	Module Checker
	Browser Root
	Module Registry
	Module Tables

	Additional Base MIB Branches
	System and Agent Information
	System Information
	Agent Information
	Module Information
	Trap Information
	Trap Forward
	Control Functions
	Action Object
	Cache Object

	Useful Tcl Commands and Filters
	valueOf <node name>
	getValue <index>
	getValues
	getRowData [<rowname>]
	getTableDepth
	getFilter
	setValue <index> <value>
	locate <node name>
	toe_send <toeid> <command>
	transposeFilter
	rateFilter<node name>
	rateFilter64 <node name>
	tableRateFilter<node name>
	tableRateFilter64 <node name>
	pctFilter<node1><node2>
	linearFit<value>
	digitalFilter<value>

	Alarm Status Strings
	Solaris Example of Status Strings—CPU Managed Object

	Module Testing Tips
	File Naming Conventions
	Standard Extensions
	Solaris Example Module Filenames
	Mandatory and Optional Module Files

	Location of Module Files
	Data Management
	Information Model
	General Concepts
	Managed Entity Modeling
	Management Model Primitives
	Alarm Representation

	Operational Model
	Operation Sequence
	Data Acquisition Scenarios
	Cascade Scenarios
	Active Scalar
	Active Vector
	Compound Scalar
	Compound Vector
	Complex Vector
	Nested Heterogeneous
	Derived Heterogeneous

	Derived Nodes
	Alarm Rule Checks
	Simple Comparison Checks
	Rule Evaluation

	Alarm Actions
	Status Propagation
	Alarm Status Change and Event Traps
	Event Propagation
	Alarm Logging
	User-Defined Alarm Actions

	Management Information Base (MIB)
	Modules
	Shadow MIB
	Ad-hoc SNMP Operations
	Ad-hoc Probe Operations
	Probe Server
	Establishing a Probe Connection

	Data Logging
	Registry of Current Data Logging Requests
	Internal History Buffer
	Logging Data to a File
	Configuration
	Data Log Format in Sun Management Center 2.1.x
	Format Differences Between 2.1.1 and 3.0 Versions
	Data Log Format in Sun Management Center 3.0
	Data Logging Destinations
	Logged Data Retrieval
	Data Logging Registry

	Time Expression Specifications
	Notation
	Time Expression Specification
	Absolute Time Expression Specification
	Cyclic Time Specification
	Comparison Time Specification
	Cron Time Specification
	Variable Substitution Specification

	Module Building Tutorial
	Module Example
	Steps to Create a Module
	filesize Module Version 1—Simple Prototype
	Naming the Module
	Creating a Data Model
	Realizing the Model
	Specifying Alarm Management Information

	filesize Module Version 2— Improving DAQ Mechanism
	filesize Module Version 3—Adding Parameters to File Name Specification
	filesize Module Version 4—Adding SNMP Table Management Capabilities
	Module Name
	Modifying the Model

	Realize the Modified Model
	Alarm Management

	SNMP Proxy Monitoring Modules
	Proxy Monitoring
	Module Parameter File
	Module Models File
	Legacy MIB OIDs Mapping File
	Module Realization File
	Loading the Legacy MIB OIDs Mapping File
	Data Acquisition

	SNMP Sets
	SNMP Set Example
	Module Trap Action Definition File
	Naming Conventions
	Sample Specification
	Valid Parameters

	Example: Trap Action File for HP JetDirect
	Example: Qualifiers for Loading the HP JetDirect Module Trap Actions File
	Example: Qualifiers for Loading Both the OIDs and Trap Actions Files for the HP JetDirect Module

	URL Specifications
	Uniform Resource Locator (URL)
	SNMP URLs
	SNMP URL Format
	SNMP URL Types
	Numeric
	Symbolic
	Module

	Shadow Operations
	SNMP URL Examples
	Managed Property Value (scalar)
	Numeric SNMP URL
	Symbolic SNMP URL (absolute)
	Symbolic SNMP URL (relative)
	Module SNMP URL

	Managed Property Value (vector)
	Numeric SNMP URL
	Symbolic SNMP URL
	Module SNMP URL

	Managed Property Qualifier (Scalar Property, Scalar Qualifier)
	Numeric SNMP URL
	Symbolic SNMP URL
	Module SNMP URL

	Managed Property Qualifier (Vector Property, Scalar Qualifier)
	Numeric SNMP URL
	Symbolic SNMP URL
	Module SNMP URL

	Managed Property Qualifier (Vector Property, Vector Qualifier)
	Numeric SNMP URL
	Symbolic SNMP URL
	Module SNMP URL

	Managed Object Qualifier (Scalar Qualifier)
	Numeric SNMP URL
	Symbolic SNMP URL
	Module SNMP URL

	Managed Object Qualifier (Vector Qualifier)
	Numeric SNMP URL
	Symbolic SNMP URL
	Module SNMP URL

	Status Propagation
	Example Topology Hierarchy
	Event 1: Node in Module E on Host C Goes into Error (Red)
	Event 2: Node in Module G on Host D Goes into Warning (Amber)
	Event 3: Node in Module F on Host C Goes into Warning (Amber)
	Event 4: Another Node in Module E on Host C Goes into Warning (Amber)

	Missed SNMP Traps

	SNMP Trap Subscription
	Sun Management Center Agent Components and Trap Subscription
	Subscribing for Traps
	Trap Subscription Examples
	SNMP SET Command
	Adding Jobs
	Removing Jobs

	Sun Management Center Enterprise Specific Traps
	SNMP Trap Subscription Support

	Glossary
	Index

