zxweather

Installation Reference

Document Number: DAZW-1GO01

July 2012

This manual provides installation and configuration guidelines for zxweather.

Revision/Update Information: This is a new manual
Operating System: Linux; Microsoft Windows NT 5.0+

Software Version: zxweather 0.1



(© Copyright David Goodwin, 2012.

Use, reproduction and modification of this document is permitted subject to the terms of the GNU Free
Documentation License, Version 1.3 or any later vesion published by the Free Software Foundation. See
http://www.gnu.org/copyleft/£fdl.html for full license text.

This document was prepared using IATEX 2¢


http://www.gnu.org/copyleft/fdl.html

Introduction

1.1  Related Documentation . . . . . ... ... .........

1.2 System Structure . . . . .. ..o

1.3 Supported Hardware . . .. .. ... ... .........

1.4 SystemRequirements . . . . . . . ... ... ... ... ..
1.4.1 Software Environment . . . ... ... ..... ..

1.5 DistributionContents . . . . . . . ... ... ........

Database

21 nstallation . . . . . ... ... ... . .. ...
211 CreateDatabase . .. ... .............
2.1.2 Create Database Structure . . . . . ... ... ...

22 Permissions . . . . . . .. . ... e

Data Logger

3.1 Compiling . . . .. .. ..
3.1.1 Requirements . . . . . .. ... .. L oL
3.1.2 Compiling the WH1080 Tools . . . . . .. .. .. ..
3.2 LoadingData . .. ........ ... ... ... ..
3.2.1 WhentoperformaFullUpdate . . . . ... ... ..
3.22 PerformingaFullUpdate . . . .. .. ... ... ..
3.3 wh1080d Configuration . . . . .. ... .. ... ......
331 Linux ... ...
332 Windows . .. .. .. ... .. .. ...
Web Interface
41 WSGI Application . . . . .. ... .o
411 Installation . . .. .. ... ... ... ...
41.2 Configuration . . . ... ... ... ... .. ...,
413 AboutPage .. .. .. ... .. ... ... .....
42 ChartPlotting . . . . . ... ... ...
421 Usage . .. .. . . . .
422 PlottingAllCharts . . . . ... ... .........
423 RunningasaScheduledTask . .. ... ......
4.2.4 Plotting Continuously . . . . . ... .........
Database Replication
514 Overview . . . . . ...
5141 Security . . . ...
5.2 Remote Server Installation . . . . . ... ... ... ...
583 db_pushSetup . ... ... . .. ...
5.3.1 Software Requirements . . . . . ... ... ... ..
5.3.2 Creating SigningKeys . . . .. ... ... ... ..
5.3.3 Runningdb_push . . ... ... ... ... ....
54 WeblinterfaceSetup . . . . . . .. ..o
541 InstalingKeys. . . .. ... ... .. ... ... ..
5.4.2 Web Interface Configuration . . . .. ... ... ..
Troubleshooting
6.1 Datalogger . . . .. ... .. .. ...

Contents

AWWN = 2=

[e2Ne>N& & )]

©WOWWOWOoOoo~NNNN



6.2 Web Interface

6.3 Database Replication . . . . . . . . . . . L
6.3.1 ErrorResponses . . . . . . . ...

CONTENTS



Introduction

zxweather a collection of tools to store and display data collected by automatic weather stations compatible
with the Fine Offset WH1080. It is licensed under the GNU GPL making it free software.

Its main features are:

e A modern HTML5 web interface
e Basic HTML fallback for older browsers
e Full weather history
This manual provides installation and maintenance instructions for the entire core system. You should read

this manual in its entirety to avoid problems. You may skip chapter 5 if you do not plan to use the feature it
describes.

1.1 Related Documentation

Other available documentation for the zxweather system includes:

DAZW-WG01l WH1080 Utilities Users Guide, version 0.1
DAZW-DB0O1 zxweather Database Structure, version 0.1

1.2 System Structure

zxweather consists of three major components:

e Database (run on PostgreSQL)

e Data Logger (wh1080d) and other WH1080 utilities

o Web Interface
The database sits at the center of the zxweather system. The Data Logger feeds data into the database
where the web interface and other clients can access it.

Because of this architecture all systems must be on the same network as the database server (using either
SSH tunnels or VPNs). This can make running the Web Interface on a remote system (such as a VPS)
difficult.



2 CHAPTER 1. INTRODUCTION

Now

Current Conditions Todays Records 2 Refresh
Sensor Value Sensor Min Max
Relative Humidity - §6% Temperature 11.8°C at 22:23:15 16.5°C at 13:56:15
Temperature - 11.8°C Wind Chill 11.8°C at 22:23:15 16.5°C at 13:58:15
Apparent Temperature - 11.7°C Apparent Temperature ~ 11.2°C at 22:23:15 17.9°C at 13:58:15
Wind Chill - 11.8°C Dew Paoint 9.5°C at 22:23:15 15.1°C at 13:53:15
Dew Point - 9.5°C Absolute Pressure 997.7 hPa at 18:53:15  1009.9 hPa at 00:03:15
Absolute Pressure == 1002.0 hPa Relative Humidity 83% at 15:28:15 95% at 09:23:15
Gust Wind Speed 0.7 mis Gust Wind Speed 54 m/s at 15:08:15
Average Wind Speed 0.0 m/s Average Wind Speed 2.7 m/s at 19:28:15
\ind Direction hw Total Rainfall: 14.7mm

Time: 22:30:51

Today = Refresh

Temperature and Dew Point (*C}) Apparent Temperature and Wind Chill (*C)

Jul 16, 2012 6:23:156 PM
Temperature: 13.4 °C 16

\..xﬁ

400 AWM B00AM 12:00PM 400PW  3:00FPM 400 AWM B00AM 12:00PM 400PW  3:00FPM
M Temperature [l Dewpoint M ~pparent Temperature [l Wind Chil
Humidity (%) Absolute Pressure (hPa)
100 | 1010 l.\—\\

Figure 1.1: Station Overview Page

To support this sort of configuration the Web Interface has a very basic database replication facility built into
it. This allows it to have its own database with weather data being pushed out to it at regular intervals.

This sort of configuration is described in more detail in Chapter 5.

1.3 Supported Hardware

This version of zxweather only supports weather stations 100% compatible with the FineOffset WH1080.
These weather stations are resold by many companies under various names.

The weather stations sample interval should be set to five minutes. If you have previously used software
such as wview you may find your stations sample interval is set to one minute - this is not supported and
will not work. Resetting your device should fix this.

Intervals larger than five minutes should work but there may be minor issues in the web interface.



1.4. SYSTEM REQUIREMENTS 3

1.4 System Requirements
Linux is the recommended operating system for running the core components of zxweather. Where this is
not practical it is possible to run under Microsoft Windows with some limitations.

The only supported database engine is PostgreSQL. Any version from 9.0 and up should be suitable. Older
versions may work but this is not tested. Other RDBMS (such as MySQL) are not supported in any way.

The WH1080 tools are only supported on little-endian CPU architectures at this time. This includes Intel
IA32 (x86) and most ARM processors. Bad things will happen if your processor is big-endian.

1.4.1 Software Environment

This section covers the software environment required to run the Data Logger and Web Interface. For
PostgreSQL system requirements consult its documentation.

Data Logger

If you are running these tools under Microsoft Windows a binary distribution is available that contains all of
the required libraries, etc. If you are using this then you do not need to read this section.

The Data Logger and other WH1080 utilities require the following libraries to be installed on your system:

e libusb-1.0 (on linux only)
e libecpg (A part of ECPG)

e libpg (PostgreSQL client library)
Additionally, to compile these you will need:

e GNU C Compiler and GNU Make
e ECPG tool (a part of PostgreSQL)

e Development packages for libusb-1.0 and libecpg

This software and libraries should be available from your operating systems package manager. On Debian
6.0 the packages would be build-essential libusb-1.0-0-dev libecpg-dev.

Web Interface
The web interface requires the following to be installed on your system:

e Python 2.6 or 2.7
e The following python libraries:

— Psycopg2
— web.py



4 CHAPTER 1. INTRODUCTION

- Jinja2
— python-gnupg
— requests (if database replication is used)

e Gnuplot
e GnuPG (if database replication is used)

e Apache2 with mod_wsgi (or another web server with WSGI support)

1.5 Distribution Contents

The standard zxweather distribution should be extracted to somewhere on your disk such as
/opt/zxweather

$ pwd

/opt/zxweather

$ 1s

database db_push desktop doc plot whl080 zxw_web

The subdirectories are:

e database - Scripts to create the database (chapter 2)

e db_push - Database replication tools (chapter 5)

e desktop - Desktop interface

e doc - Documentation

e plot - Tools for plotting static charts (chapter 4)

e wh1080 - The Data Logger and other WH1080 utilities (chapter 3)

e zxw_web - The web interface (chapter 4)

The wh1080 and desktop directories contain C/C++ source code. If you are running Microsoft Windows
pre-compiled versions of these programs are available. See http://ftp2.zx.net.nz/pub/DGS/
zxweather/readme.html for download links.

The doc directory contains IATEX source code for producing the zxweather documentation as well as the
compiled versions in Adobe PDF format. This documentation is available in other formats from the URL
above.


http://ftp2.zx.net.nz/pub/DGS/zxweather/readme.html
http://ftp2.zx.net.nz/pub/DGS/zxweather/readme.html

2

Database

This chapter describes the database setup required by zxweather. The database is required by the core
system and is not optional. It must be setup on a system that all other components have network access to.

Alternatively, if it is impractical for all systems to have direct access to the database it is possible to setup
a second replica database on the system running the Web Interface. Chapter 5 covers this setup in more
detail.

2.1 Installation

The zxweather database has only been tested with PostgreSQL version 9.0 and above. This documentation
assumes you already have a suitable version of the server and client tools installed on your system.

This section documents creating the zxweather using the command-line PostgreSQL tools. If you are more
comfortable with the pgAdmin Il GUI tool you may use that instead.

2.1.1 Create Database

To create the weather database, execute a command such as the following:

$ createdb -h dbserver -U username weather "Weather database"

Where:

e dbserver is the hostname (or IP Address) of the machine running PostgreSQL.

e username is the username to login to the server with. This will often be something like "postgres". The
account being used must have the CREATEDB permission. You will be prompted for the password if
required.

e weather is the name of the new database.

e "Weather Database" is a description of the database. This is optional.

More information on the createdb program can be found at http://www.postgresqgl.org/docs/
9.1/static/app—-createdb.html.


http://www.postgresql.org/docs/9.1/static/app-createdb.html
http://www.postgresql.org/docs/9.1/static/app-createdb.html

6 CHAPTER 2. DATABASE
2.1.2 Create Database Structure

The database structure needed by zxweather to store data is created using the database.sqgl SQL
Script located in the database subdirectory of the zxweather distribution. Running this SQL script will create
the full database structure in one step.

You can run this script with a command such as the following inside the zxweather distribution directory:
$ psgl -h dbserver -U username -d weather -f database/database.sql
The supplied parameters are:

e dbserver - The hostname (or IP Address) of the machine running PostgreSQL

e username - The user account to login to the server with. Using a superuser account (often called
"postgres") will be easiest. You will be prompted for a password if required.

e weather - The name of the database you created in the previous section.

2.2 Permissions

Four programs will be accessing the database. They require user accounts with the following permissions
on the weather database:

Program Permissions
wh1080d CONNECT, SELECT, INSERT, UPDATE
wh1080 CONNECT, SELECT, INSERT

weatherplot CONNECT, SELECT
web interface  CONNECT, SELECT

You can create individual accounts for each program or have them all sharing the same account.

If the database replication feature in the Web Interface is being used then its user account will need the
INSERT and UPDATE permissions in addition to those described in the table above. This is covered in more
detail in chapter 5.



3

Data Logger

The Data Logger is a daemon which continuously downloads weather data (both live and historical samples)
from the weather station and loads it into the database. It is called wh1080d and is one of the WH1080
Utilities. Its full documentation is contained in the WH1080 Utilities Users Guide, version 0.1 (DAZW-WGO01).

This chapter covers how to compile and install this tool. Additionally, section 3.2 includes some important
maintenance information that must always be taken into consideration before you start wh1080d.

3.1 Compiling

This section only covers compiling the tools under Linux. If you are using Microsoft Windows it is recom-
mended that you use the pre-compiled executables and skip to the next section.

3.1.1 Requirements
To compile the tools under Linux the following software must be installed:

e GNU Make
e GNU C Compiler
e ECPG (a PostgreSQL utility)

The following development libraries are also required:

e libpg (PostgreSQL client library)
e libecpg (library for ECPG)
e libusb-1.0

These libraries and software packages should be available from your operating systems package manager.
On Debian 6.0 the packages would be build-essential libusb-1.0-0-dev libecpg-dev.

3.1.2 Compiling the WH1080 Tools

To compile the WH1080 tools, cd into the wh1080 subdirectory of the zxweather distribution and run make.
This should kick off the build process and leave you with a handful of programs inside the wh1080 directory.



8 CHAPTER 3. DATA LOGGER

3.2 Loading Data

Before you can start the data logger on a non-empty database it is important to note that you may have to
run a full update using the wh1080 tool first. This prevents existing data stored in your weather stations
memory from being lost.

Performing a full update when it is not necessary will result in duplicate data being loaded into your database.
It is important that a full update is performed only when necessary.

3.2.1 When to perform a Full Update
There are only three occasions when it is acceptable to perform a full update:

e You have just erased the weather stations memory
e You have reset the weather station

e The database is more than 4080 samples out of date

The first two deal with the case where the sample the database says needs to be downloaded next no longer
exists on the weather station. The data logger will detect this condition and will refuse to start printing out
the message below:

Checking for station reset condition...

Fatal Error: whl080d cannot be restarted after a device reset. Consult
installation reference manual for maintenance procedure to clear error
condition.

Performing a full update will fix this and allow the data logger to start.

The third occasion when it is acceptable to perform a full update is when your database is very out of
date such that no sample on the weather station exists in your database. This condition is not detected
automatically.

In this case it is not strictly necessary to perform a full update as failure to do so will not cause any damage.
Not performing a full update in this case will just result in some new data on your weather station being
missed.

In order for a full update to be necessary your weather station must be more than 4080 samples out of date.
If it is configured to take one sample every five minutes then the database must be more than 340 hours out
of date (a little over 14 days).

If in any doubt perform a full update on a test database and compare what it download with what is already
in your weather database to see if there is any overlap at all.

3.2.2 Performing a Full Update

To perform a full update you must use the the wh1080 tool as the data logger (wh1080d) can not perform
this operation. wh1080 is one of the WH1080 Utilities and is a basic tool for inspecting the contents of the
weather station and downloading samples into a database.

The —1 command-line option causes the wh1080 tool to perform a Full Update instead of a regular one:



3.3. WH1080D CONFIGURATION 9

wh1080 -1 -d databasename@hostname -u username -p password

This is covered in more detail in Section 2.2.4 of WH1080 Utilities Users Guide (DAZW-WGO01).

3.3 wh1080d Configuration

3.3.1 Linux

wh1080d (the Data Logger) takes the following arguments:

Argument Parameter Description

-d database Database connection string
-u username  Database username

P password Database password

-f filename Log file to write messages to

Under linux the Update Service runs as a daemon. To start it just run something like the following from your
system startup scripts:

wh1080d -d database -u username -p password -f logfile

The log file is truncated when the daemon starts.

3.3.2 Windows

Currently wh1080d is not capable of running as a service on windows. Instead you must run the wh1080dtest
program which provides the same functionality but stays open in a console window. It takes the following
arguments:

Argument Parameter Description

-d database Database connection string
-u username  Database username
-p password Database password

This will change in a future release.



10

CHAPTER 3. DATA LOGGER



4

Web Interface

The Web Interface is the primary way for viewing data in the zxweather database. It consists of two compo-
nents - the WSGI web application and the chart plotting program.

Both components are required for correct operation. This chapter describes how to install and configure
them.

4.1 WSGI Application

The web interface is written as a Python WSGI application. This section only covers installing the appli-
cation under Apache httpd. If you are not using Apache then consult your web servers documentation for
instructions on installing wsgi applications.

4.1.1 Installation

At this time zxweather cannot be run in a subdirectory - it must live in the root directory of the website. This
generally means giving it its own virtual host.

The system you are installing the web interface on must have the following installed on it:

e Apache httpd
e mod_wsgi
e Python 2.6 or 2.7 with the following packages:

— psycopg2

— web.py

— python-gnupg
Installation and configuration of these packages is outside the scope of this document. If you are setting up
on a Linux system the packages are likely all available from your distributions package repositories.

Where examples are provided in this section they are for Debian-based Linux distributions. Installation and
configuration on Windows systems is similar but requires more effort.

11



12 CHAPTER 4. WEB INTERFACE
WSGI Setup

As the zxweather web interface is a Python WSGI application you must have the mod_wsgi installed and
enabled. On Debain-based systems the package is called 1ibapache2-mod-wsgi and can be enabled
using the a2enmod tool:

$ a2enmod wsgi

Virtual-host Configuration

All that is required to make zxweather work from the Apache end is adding the following to your vhost
configuration file:

WSGIScriptAlias / /opt/zxweather/zxw_web/zxweather.py
An example virtual host configuration might look like this:

<VirtualHost *:80>
ServerAdmin admin@example.com
ServerName weather.example.com

DocumentRoot /var/www

ErrorLog S${APACHE_LOG_DIR}/weather—error.log

LogLevel warn

CustomLog ${APACHE_LOG_DIR}/weather—access.log combined

WSGIScriptAlias / /opt/zxweather/zxw_web/zxweather.py
</VirtualHost>

4.1.2 Configuration

The Web Interface attempts to load configuration files in the following order. Only the first one it finds is
loaded.

e config.cfg (inthe current directory)
e zxw_web/config.cfg

e /etc/zxweather.cfg

It is recommended that you install your configuration file in /et c. To do this, copy the
zxweather.cfg.sample file included in the zxweather distributions zxw_web subdirectory:

$ cp /opt/zxweather/zxw_web/zxweather.cfg.sample /etc/zxweather.cfg

This configuration files format is similar to the INI format commonly used on Microsoft Windows. The '#
character marks a comment, group names are inside square brackets. Key-value pairs are written in the
following way:

key: value



4.1. WSGIAPPLICATION 13

Database

The first group is for database configuration. It looks like the following:

[database]
host: localhost
port: 5432

database: weather
user: weatheruser
password: password

Where the settings are:

e host - the hostname or IP address of your database server
e port - The port your database listens on. This is commonly 5432 for PostgreSQL
e database - Name of your database

e user - The user to login to the server as

password - The users password

Data

The Data group stores details about the data available in your database:

[data]
live_data_available: True
sample_interval: 300
plot_interval: 1800

The settings are:

e live_data_available - If Live Data is available from the database. If you are using wh1080d to populate
your database then this should be left as True.

e sample_interval - How often new samples appear in the database (in seconds). Only a 5 minute
sample interval is supported at the moment so this should be left as 300.

e plot_interval - How often the weatherplot program runs (see section 4.2) in seconds.

Site

The Site group stores basic web interface configuration:

[site]

default_ui: s

site_name: zxweather

# UNCOMMENT THESE AND SET THEM! The defaults will NOT work.
#site_root: http://weather.example.com/

#static_data_dir: /opt/zxweather/zxw_web/weather/static/
#station_name: abc



14 CHAPTER 4. WEB INTERFACE
Where the settings are:
e default_ui - The default Ul to use. ’s’ is the Standard Ul, ’b’ is the Basic (HTML-only) Ul. Unless your

only browser is from 2001 you will want to leave this on’s’.

e site_name - The name of your site. This appears on the left of the navigation bar and in the title of
every page.

e site_root - The URL for the root of your website. For example, http://weather.example.com/.
e static_data_dir - Where on your hard disk the static data directory is. If zxweather was extrated to

/opt/zxweather then this should be setto /opt /zxweather/zxw_web/static/.

The final setting in this group is station_name. This is a very short (a few characters) name for your weather
station. It should be kept very short as it will appear in the URL of every page in your site. For example, if you
set this value to "foo" your station overview page willbe http://weather.example.com/s/foo/.

You must also create a directory of the same name inside the static data directory:
$ mkdir /opt/zxweather/zxw_web/static/foo

The purpose of this setting is to allow multiple weather datasets to be handled by a single Web Interface
instance in a future version of zxweather. Uses for this functionality will be:

e Multiple weather stations

e Separating datasets if you move the weather station to a different location

Once you have chosen a value for this setting you should never change it as it will change every URL in
your site.

database_replication

This group configures the database replication feature. If you do not plan on using this feature then the
default values (which turn the feature off) are acceptable.

If you are going to use this feature then these settings are described in Chapter 5.

4.1.3 About Page

On the navigation bar of the standard Web Interface is an "About" link which will take you to a generic about
page which you will want to customise.

To do this, navigate into the static data directory ( / zxw_web/static/) and copy the about . html file
into your weather stations subdirectory. If, for example, your station is called "foo" and zxweather is installed
in /opt/zxweather you would copy /opt/zxweather/zxw_web/static/about.html to

/opt/zxweather/zxw_web/static/foo/about.html. You canthen customise this copy of the
file. You should avoid modifying the original copy as it may be overwritten without warning by future versions.

When editing your copy of about . html you will find two comments near the bottom of the page;
<!—— BEGIN_USER_CONTENT -->and <!-- END_USER_CONTENT -->. You can put anything
you want between these comments.



4.2. CHART PLOTTING 15

It is best to avoid making any changes outside of these comments as future versions may make changes to
the file outside these comments as part of the upgrade process.

4.2 Chart Plotting

The weatherplot program is responsible for generating static charts primarily used by the basic HTML web
interface. It must be setup as a scheduled task to be run at regular intervals.

The machine it runs on must have gnuplot installed and must have access to the database server and
directory the zxweather web interface runs from.

4.2.1 Usage

The weatherplot program is written in the Python language and lives in the plot subdirectory of the
zxweather distribution. It is executed on the command-line with python as:
$ python plot/weatherplot.py [arguments].

The charts it generates must be put in the web interfaces static data directory in a subdirectory with the
same name as your station. For example, if your station is named "foo" and the zxweather distribution was
extracted to /opt /zxweather then you would generate charts into
/opt/zxweather/zxw_web/static/foo/.

By default an executable called gnuplot is expected to be in the path which it can use to generate the
charts. If your install of gnuplot is not in the path or goes by another name use the ——gnuplot-binary
parameter to specify its name.

Command-line Arguments

The weatherplot program accepts the following command-line arguments:

Argument Parameter Description

-t dbname Name of the database to use. Required.

—-—database

-n hostname  Database server hostname. Required.

—--host

-u username  Username for database server. Required.

——user

-p password Password for database server. Required.

——password

-d directory Output directory. Required.

——directory

-a filename Only plots charts for dates on or after that stored in the
——plot-new specified file.

-r seconds Number of seconds to wait before replotting.
—-—replot—-pause

-g filename Name of the gnuplot executable to use if it is something
-—-gnuplot-binary other than "gnuplot".

The database, host, user, password and directory parameters are always required.



16 CHAPTER 4. WEB INTERFACE

4.2.2 Plotting All Charts

To regenerate charts for your entire database run the weatherplot program with only the minimum command-
line arguments:

$ python plot/weatherplot.py —--database weather —--host localhost \
—-—user postgres —--password password \
——directory zxw_web/static/station_name/

This will create charts for all days and months in your database and store them in the specified directory.
Depending on the size of your database this may take some time.

Some software upgrades may require you to do this when new chart types have been added or the style of
the charts has been adjusted.

4.2.3 Running as a Scheduled Task

The recommended way to setup the weatherplot program is to run it as a scheduled task from cron or the
windows task scheduler. When run in this way it is important that it be set to only plot charts containing new
data.

The ——plot-new command-line argument implements this. The argument takes a single parameter which
is the name of a file to store the date of the last plotted day in.

Each time the weatherplot program is executed with this parameter it will replot all charts for all days and
months on or after the date in that file and then update the file with todays date. That way only charts that
need to be regenerated are regenerated.

Example

When run as below weatherplot will only replot charts that have changed since it was last run:

$ python plot/weatherplot.py —--database weather —--host localhost
—--user postgres —--password password —-directory static/station_name/
——-plot-new plot_status_file

To make this run every 30 minutes you would add a line such as the following to /etc/crontab:
0,30  * % =* root cd /var/zxweather && \
python plot/weatherplot.py -t weather -n localhost -u postgres \
-p password —-d zxw_web/static/station_name -a plot_status_file
If the static charts are not important to you, you may wish to only regenerate them every few hours or once

a day.

4.2.4 Plotting Continuously

The weatherplot program is capable of running interactively in continuous mode. When run like this it will
automatically replot charts at a specific interval until you terminate it with Ctrl+C. This is primarily intended
for testing purposes.



4.2. CHART PLOTTING 17

It can be run in this mode by supplying the ——replot-pause parameter with a suitable interval in sec-
onds.

Example

When run as below the behaviour is the same as setting it up to be run by cron every 30 minutes except it
runs continuously attached to the terminal.

$ python plot/weatherplot.py —--database weather —--host localhost \
—-user postgres —--password password —--directory zxw_web/static/rua \
—-plot-new plot_status_file —--replot-pause 1800

Weather data plotting application v1.0
(C) Copyright David Goodwin, 2012

Connecting to database...

Server version: PostgreSQL 9.1.2, compiled by Visual C++ build 1500
Generating temperature plots in zxw_web/static/rua

Plotting from 2012-05-10

Plotting graphs for 2012...

Plotting graphs for 2012 may...

Plot zxw_web/static/rua/2012/may/temperature_tdp_large.png

Plot zxw_web/static/rua/2012/may/temperature_awc_large.png

Plot zxw_web/static/rua/2012/may/humidity_large.png

Plot zxw_web/static/rua/2012/may/indoor_humidity_large.png

Plot zxw_web/static/rua/2012/may/pressure_large.png

Plot zxw_web/static/rua/2012/may/indoor_temperature_large.png

Plot zxw_web/static/rua/2012/may/temperature_tdp.png

Plot zxw_web/static/rua/2012/may/temperature_awc.png

Plot zxw_web/static/rua/2012/may/humidity.png

Plot zxw_web/static/rua/2012/may/indoor_humidity.png

Plot zxw_web/static/rua/2012/may/pressure.png

Plot zxw_web/static/rua/2012/may/indoor_temperature.png

Plotting graphs for 2012 may 9...Skip

Plotting graphs for 2012 may 10...

Plot zxw_web/static/rua/2012/may/10/temperature_tdp_large.png

Plot zxw_web/static/rua/2012/may/10/temperature_awc_large.png

Plot zxw_web/static/rua/2012/may/10/humidity_large.png

Plot zxw_web/static/rua/2012/may/10/indoor_humidity_large.png

Plot zxw_web/static/rua/2012/may/10/pressure_large.png

Plot zxw_web/static/rua/2012/may/10/indoor_temperature_large.png
Plot zxw_web/static/rua/2012/may/10/temperature_tdp.png

Plot zxw_web/static/rua/2012/may/10/temperature_awc.png

Plot zxw_web/static/rua/2012/may/10/humidity.png

Plot zxw_web/static/rua/2012/may/10/indoor_humidity.png

Plot zxw_web/static/rua/2012/may/10/pressure.png

Plot zxw_web/static/rua/2012/may/10/indoor_temperature.png

Plot zxw_web/static/rua/2012/may/10/7-day_temperature_tdp_large.png
Plot zxw_web/static/rua/2012/may/10/7-day_temperature_awc_large.png
Plot zxw_web/static/rua/2012/may/10/7-day_humidity_large.png

Plot zxw_web/static/rua/2012/may/10/7-day_indoor_humidity_large.png



18

Plot
Plot
Plot
Plot
Plot
Plot
Plot
Plot
Plot

CHAPTER 4. WEB INTERFACE

zxw_web/static/rua/2012/may/10/7-day_pressure_large.png
zxw_web/static/rua/2012/may/10/7-day_indoor_temperature_large.png
zxw_web/static/rua/2012/may/10/7-day_temperature_tdp.png
zxw_web/static/rua/2012/may/10/7-day_temperature_awc.png
zxw_web/static/rua/2012/may/10/7-day_humidity.png
zxw_web/static/rua/2012/may/10/7-day_indoor_humidity.png
zXw_web/static/rua/2012/may/10/7-day_pressure.png
zxw_web/static/rua/2012/may/10/7-day_indoor_temperature.png
completed at 2012-05-10 22:31:46.953000

Waiting for 1800 seconds to plot again. Press Ctrl+C to terminate.



3]

Database Replication

zxweather includes a very basic database replication feature allowing data to be pushed to a remote server
running the web interface with its own copy of the database.

This is intended for situations where the web interface needs to run on a remote network that doesn’t have
access to your weather database (such as on a VPS).

Before using this feature you should investigate whether SSH tunnels, VPNs or any of the standard Post-
greSQL database replication solutions are practical.

If you decide to use this feature you should have a fully working local setup installed first.

5.1 Overview

The built-in replication feature consists of the db_push program (in the db_push subdirectory of the
zxweather distribution) running locally pushing digitally signed data updates out to the remote web inter-
face which then uses the data to update its own private database.

The db_push program runs continuously and sends an HTTP POST to the web interface every time live
data is updated or new samples are inserted into the main weather database.

When run in this configuration you will have two database servers with identical database structures:

e Your main weather database running on your local server (the local database)

e The replica database running on the remote server (the remote database)
You will also need to have the full web interface running on the remote server (in addition to it running on
your local server if desired). It is recommended that you have the web interface setup somewhere locally

too for testing purposes and to familiarise yourself with the setup procedure before trying to get it running
on a remote system.

5.1.1 Security

The web interface will only accept data posted to it with a valid PGP signature. If a key fingerprint is specified
in the web interface configuration file then it will only accept data signed with that particular key.

The data posted to the web interface is not encrypted in any way as it contains no sensitive information.
The data posted to the web interface consists of nothing more than a subset of what is displayed by the web
interface.

19



20 CHAPTER 5. DATABASE REPLICATION

Usernames and passwords are unnecessary as the web interface will reject anything that doesn’t have a
valid signature created using your private key if setup correctly.

5.2 Remote Server Installation

The remote server requires the following components installed on it:

e Database
e Web Interface

Setting up the remote database is exactly the same as setting up your local database. Follow the instructions
in chapter 2 except on your remote server rather than the local one.

The procedure for setting up the web interface is much the same as for local except for a few details:
e The database configuration must be for the remote database (which, for added confusion, is local to
the web interface).
e Database Replication must be enabled in the configuration file.
e GnuPG must also be installed on the remote server the web interface is running on in addition to all

the standard requirements.

To install the web interface follow the instructions in chapter 4.

5.3 db_push Setup

The db_push program runs on your local server. It is responsible for sending data updates to the remote
web interface.

This section covers generating signing keys and the configuration necessary for your local server to run this
program.

You must also complete the setup covered by section 5.4.1 before you will be able to execute this program
and begin pushing data updates to the web interface.

This program is not currently capable of being run as a daemon - it must be run interactively or detached
from the terminal. It can be run under both windows and linux and requires a direct connection to the
database server.

5.3.1 Software Requirements

The db_push program requires the following software to be installed and configured on your local server:

e Python 2.6 or 2.7
e The following python packages:

— requests
— python-gnupg



5.3. DB_PUSH SETUP 21
5.3.2 Creating Signing Keys

It is recommended that GnuPG uses a home directory specific to zxweather so that only the keys used for
sending data to the remote database are present. All you need to do is create a blank directory and GnuPG
will do the rest:

$ mkdir /opt/zxweather/gnupg_home

You can then create new signing keys using either GnuPG or the generate_key tool included in the
db_push subdirectory of the zxweather distribution:

$ python db_push/generate_key.py -d /opt/zxweather/gnupg_home \
—-f public_key.asc

The —-d argument specifies the GnuPG home directory to store the new key in. This should be your
zxweather-specific GnuPG home directory. The —f argument specifies the name of the file to export the
newly generated public key to. This public key file must be later uploaded to your web server.

When run the program will produce output like the following:

This tool generates signing keys for zxweather database replication.
GnuPG Home: /opt/zxweather/gnupg_home

Public Key Filename: public_key.asc

Creating a new signing key. This may take a while.

Key Fingerprint: C7ECOD7AA1BD69BCO0671CCA401787FE106493116

Public key (for web server) written to public_key.asc

The full list of arguments accepted by the generate_key program is:

Argument Parameter Description

-d directory GnuPG Home Directory
—-—gpg—home-directory

-b gpg binary  The GnuPG binary to use
—-—gpg-binary

-f filename File to export the new public key to.

——pubkey-filename

5.3.3 Running db_push
The db_push program can either be run continuously (pushing database changes as they appear) or it can
be run for a single update. It can not be run as a daemon at this time.

Continuous mode is enabled using the —c argument. This is the mode you should always run in except
perhaps when testing or bulk loading data into the remote database.

Only one instance of db_push should be run at a time to prevent possible corruption of the remote database.

In order for the program to successfully load data into the remote database it must be enabled in the remote
web interfaces configuration file. This is covered in section 5.4.1.



22 CHAPTER 5. DATABASE REPLICATION

Example

$ python db_push/db_push.py -c -t weather -n localhost \

-u weather_user -p password -s http://weather.example.com/ \
-d /opt/zxweather/gnupg_home \

-k C7ECOD7AA1BD69BC0671CCA401787FE106493116

The arguments used here are:

e —c to enter continuous mode

e -t weather to specify the name of the weather database

e —n localhost to setthe database server hostname

e —u weather_user to set the database username

e —p password to set the database password

e —s http://weather.example.com/ isthe URL for the web interface we are pushing data to
e —d /opt/zxweather/gnupg_home is the GnuPG home directory for zxweather

e —k ... specifies the signing key to use. If your GnuPG home directory only contains one key (as it
should if its specific to zxweather) then you can leave this off.

When run you will see something like the following:

zxweather database replicator v1.0
(C) Copyright David Goodwin, 2012

Connecting to database...

Server version: PostgreSQL 9.1.2, 64-bit
Performing update...

Updating from: 2012-07-15 16:33:15+12
Performing chunked sample load...
Chunk 0/2

Sending data...

Response: OK

Live Data Updated: False

Samples Inserted: 50

Chunk 1/2

Sending data...

Response: OK

Live Data Updated: False

Samples Inserted: 50

Chunk 2/2

Sending data...

Response: OK

Live Data Updated: False

Samples Inserted: 50

Sending data...

Response: OK



5.3. DB_PUSH SETUP 23

Live Data Updated: True
Samples Inserted: 0O
Continuous mode. Waiting for new data...

Only updating live data
Sending data...
Response: OK

Live Data Updated: True
Samples Inserted: 0

Updating from: 2012-07-16 7:21:15+12
Sending data...

Response: OK

Live Data Updated: True

Samples Inserted: 1

Here the program first sends data out 50 records at a time until the entire local database has been copied
to the remote server. In this case the local database only contains 150 records (sent in three chunks).

It then enters continuous mode where it wakes up when ever something changes in the database. The first
time it wakes up was caused by something updating the live data so it sends live data only to the remote
server. The second time a new sample has been inserted as well as the live data being updated so both of
these are sent.

Command-line Arguments

The full list of arguments accepted by db_push is:

Argument Parameter Description

-t dbname Name of the database to use. Required.
—-—database

-n hostname  Database server hostname. Required.
—-—host

-u username  Username for database server. Required.
——user

-p password Password for database server. Required.
——password

-s url Base URL for the web interface.

-—-site

-c Keep running after sending the initial update.
——continuous

-d directory GnuPG Home Directory
—-—gpg-home-directory

-b gpg binary  The GnuPG binary to use
——gpg-binary

-k key id The key to sign data with

-—key-id




24 CHAPTER 5. DATABASE REPLICATION

5.4 Web Interface Setup

When database replication is used the web interface is responsible for inserting data into the database.
Because of this its database user account must have UPDATE permissions on the 1ive_data table and
INSERT permissions on the sample table.

When run in this configuration the web interface requires GnuPG to be installed on the system in addition to
all the software required normally.

5.4.1 Installing Keys

As described in section 5.1.1 the zxweather database replication feature uses digital signatures to prevent
unauthorised people from pushing data into the remote database.

In section 5.3.2 you will have created new keys for signing. A public key will have been generated as part of
this process and written to a file (public_key.asc in the examples). You must now upload that public
key to your web server and load it into the web interfaces GnuPG home directory.

This procedure is similar to what you went through for setting up db_push. First you need to create a new
GnuPG home directory on the web server:

$ mkdir /opt/zxweather/gnupg_home

This directory must be owned by the user the web interface runs as. On debian this is the www—-data user.

You can then use the install_key utility in the dlb_push subdirectory of the zxweather distribution to install
your public key:

$ python db_push/install_key.py -d /opt/zxweather/gnupg_home \
-f public_key.asc

This program will print out a message such as the one below:

Key Fingerprint: C7ECOD7AA1BD69BC0671CCA401787FE106493116
Add the fingerprint above to the web interface configuration file

Make a note of the key fingerprint as this will be required when you configure the web interface.

5.4.2 Web Interface Configuration

In order to use the database replication feature you must enable it in the Web Interfaces configuration file.
This is done in the database_replication group towards the end of the file which will look something like the
following:

[database_replication]
enable: False
#gnupg_home :
#gpg_binary:
#key_fingerprint:



5.4. WEB INTERFACE SETUP 25

The settings here are:

e enable - If the feature is enabled or not. Set this to "True".

e gnupg_home - The location where GnuPG stores keys, etc. Uncomment this and et it to the path of
the gnupg home directory you created (eg, /opt/zxweather/gnupg_home)

e gpg_binary - If GnuPG is installed in an unusual location on your system, specify it here.

e key_fingerprint - The signing keys fingerprint. If specified then only data signed with that key will be
accepted. If not specified then any data with a valid signature is accepted. You should uncomment
this setting and insert the key fingerprint given to you when you installed the public key.

Once this is done the section will look something like:

[database_replication]

enable: True

gnupg_home: /opt/zxweather/gnupg_home

#9gpg_binary:

key_fingerprint: C7ECOD7AA1BD69BCO0671CCA401787FE106493116

You should now be able to restart Apache and run the db_push tool to start pushing data into the web
interfaces database.



26

CHAPTER 5. DATABASE REPLICATION



6

6.1 Data Logger

Troubleshooting

Problem

Cause

Solution

The data logger has crashed
trying to read from the weather
station.

The data logger exits with a
database error written to the log
file

The weather station has
crashed (the history function on
the weather station console
does not work)

The connection to the database
was lost

Database parameters are
incorrect

The database was not created
correctly.

Kill the data logger process,
hard-reset the weather station
(remove and reinstall batteries
and USB cable) and then
restart the data logger after
performing a full update.

Check database connectivity
and restart the data logger.

Check database parameters
and restart the data logger.

Recreate the database and
restart the data logger.

6.2 Web Interface

This section covers errors you may encounter when viewing pages in the web interface.

Problem

Cause

Solution

The station overview page gives

a "404 Not Found" error

The database is empty

Wait for data to appear in the
database

6.3 Database Replication

This section covers issues you may encounter with database replication.

covered by chapter 5.

6.3.1 Error Responses

Database replication itself is

When the remote web interface reports an error it appears in the output from db_push like in the example

below:

27



28

Sending data...

Response: ERROR: error message
Live Data Updated: False
Samples Inserted: 0

CHAPTER 6. TROUBLESHOOTING

Message Cause

Solution

Key not installed

Verification failed - bad or miss- GnuPG Home Directory
ing signature. Status: no public  Ownership Incorrect
key

Configured GnuPG home
directory does not exist

Install public key (Section 5.4.1)

Change owner of web interfaces
GnuPG Home directory to the
user the web interface runs as

Section 5.4.1 covers creating it.
Section 5.4.1 covers configuring
the web interface.




DAZW-IGO1



	Introduction
	Related Documentation
	System Structure
	Supported Hardware
	System Requirements
	Software Environment

	Distribution Contents

	Database
	Installation
	Create Database
	Create Database Structure

	Permissions

	Data Logger
	Compiling
	Requirements
	Compiling the WH1080 Tools

	Loading Data
	When to perform a Full Update
	Performing a Full Update

	wh1080d Configuration
	Linux
	Windows


	Web Interface
	WSGI Application
	Installation
	Configuration
	About Page

	Chart Plotting
	Usage
	Plotting All Charts
	Running as a Scheduled Task
	Plotting Continuously


	Database Replication
	Overview
	Security

	Remote Server Installation
	db_push Setup
	Software Requirements
	Creating Signing Keys
	Running db_push

	Web Interface Setup
	Installing Keys
	Web Interface Configuration


	Troubleshooting
	Data Logger
	Web Interface
	Database Replication
	Error Responses



