
Test Document
Version 1.8, 18 October 2008

 Document Number: 07-A072E-07.08

Class LTSNode
This class represents a single node in an LTS. Currently it is only a wrapper around a string with
get/set methods. It is mainly for future use.
Test Name Description
setGetName Tests both the setName and getName methods as both are required

to work to test just one of them. This test just sets the name to
“Name” and checks that “Name” is returned by getName.

ToString This method converts the node to its string representation. Currently it
does the same as getName and so works in the same way as
setGetName

Equals This checks that the equals function returns true for equal nodes and
false for unequal nodes.

Class LTSTransition
This class represents a transition in an LTS. It holds two LTSNodes and a string for the label
Test Name Description
SetGetName This test is functionally identical to SetGetName for LTSNode
SetGetNode1 This tests that getNode1 returns what ever was set by setNode1
SetGetNode2 This is functionally identical to SetGetNode1
Equals This tests the custom equals function used to compare

LTSTransitions. It creates two transitions with the same content
(same labels, node names, etc) and checks they are equal. It then
changes one of the transitions and ensures the equals function is
correct in identifying them as unequal.

ToString Constructs a transition and checks to see if the result of the toString
method is valid for that transition. As some transitions may have a null
value for their second node the test sets the seocnd node name to
null and checks that the result is still correct.
The LTSTransition class may have null as its second node when it is
really representing an isolated node with no transitions.

1

Class LTS
This class, being the largest and most complex class, has quite a few tests. Because many of the
tests require a great deal of data to operate the test loads their data from a file allowing the load
function to do all the hard work. Creating the internal data structures manually would take a great
deal of time.
Because of this dependence on the load function, if the load function fails its tests many other
functions will also fail their tests because the data used in the test cant be loaded. If the load
function fails it should be the first one to be fixed – any other failures may be a result of it.

The data files are created in the tests setUp function and are removed in the tearDown function.
Should the tearDown function fail to execute these data files may be left over in the current
working directory.
Test Name Description
Load This test loads a plain-text file representing an LTS and checks that

the load function created the appropriate data structures.
It also checks that the LTS class correctly fails to load invalid LTS
files. These contain unquoted symbols “ “ (space), “-”, “=” and “|”.

Save This test attempts to
● Load an LTS, change it and save it with a specified filename.

● Open the saved file for input to check that the save was successful

● Modify the LTS by adding an isolated node transition (one with no
label and a second node of null)

● Overwrite the saved file with the new LTS

● Load the LTS and ensure that the isolated node was saved
correctly.

Composition There are four composition tests which ensure parallel composition
functions correctly. Each one of these tests implements one of the
example LTS on the second page of the assignment 1 sheet. The last
test includes a synchronization set. When one of these tests fail the
contents of the calculated LTS and the correct LTS are dumped to the
system console for debugging purposes.

The first three tests which do not involve synchronization also test
that Parallel Reach is able to do unsynchronized composition fine.

For a visual guide of the composition tests see the last section.
testReach This test checks that Parallel Reach works properly for

synchronization (unsynchronized tests are done at the same time as
the compose tests). This test is the same as the 4th composition test
but with the isolated transitions removed.

Equals This test constructs two equal LTS and checks that the equals()
function claims they are equal. One of them is then modified so they
are no longer equal. Their equality is then checked again to ensure

2

that the equals() function can properly identify LTS that aren't equal.

getFileName This test checks that the filename is always correctly returned after a
file load and a save with a different file name.

SetGetStartNode This tests the setStartNode getStartNode functions. When operating
correctly the getStartNode method should always return what ever
was passed into the setStartNode function

GetNodes This test creates a few transitions containing 6 nodes of which only 2 are
unique. The getNodes function should only return the 2 unique nodes, not 3
of each. A null node is then added and the node count is checked to ensure
the null node is not returned.

If the start node is not a member of a transition it will not be returned
by getNodes(). To get the start node in this list even if it isn't a
member of a transition, getNodes(true) should be used. Tests for this
functionality are implemented.

TransitionOps This checks the various functions that operate on transitions. This includes:

● void addTransition(LTSTransition)

● boolean transitionExists(LTSTransition)

● Collectin<LTSTransition> getTransitions()

● void removeTransition(LTSTransition)

● void killTransitions()

These are all implemented in one test because they mostly rely on each
other to be tested. It does the following

1. Adds 2 transitions

2. Checks that one of the transitions added is present

3. gets a list of all transitions

4. checks that there are 2 transitions present in the list

5. checks that one of the added transitions is actually in the list

6. removes a transition

7. checks that transitionExists no longer claims the transition is present

8. Adds another transition

9. Updates the transition list

10. Attempts to remove all transitions (killTransitions function)

11. gets a list of transitions and checks that it is empty

12.checks that the list of transitions fetched in step 9 is not empty
(if the getTransitions() function doesn't clone the list clearing
the original list would end up clearing all lists returned by
getTransitions())

3

4

CompositionPass1 test

CompositionPass2 test

5

LTS A

LTS B

Expected Result

LTS A LTS B

Expected Result

CompositionPass3 test

6

LTS A LTS B

Expected Result

CompositionPass4 test

Reach test

7

LTS A
LTS B

Expected Result

LTS A

LTS B

Expected result

Coloring 1 test
From assignment 3, figure 3

All nodes should have the same color.

Coloring 2 test
From assignment 3, figure 2

Only nodes n4 and m4 should have the same color.

Bisimulation test 1

As both LTS are identical the Bisimulation Equality function should consider them equivalent.

8

LTS A Expected Result

LTS A

Expected Result

LTS A & B

Bisimulation test 2

The Bisimulation equality function should not consider these two LTS to be equal or equivalent.

Bisimulation test 3
From assignment 3, figure 1

9

LTS B

LTS A

The bisimulation equality function should consider these LTS to be equivalent.

10

LTS A

LTS B

BisimCompose test
This test attempts to check that the LTS produced by Parallel Compose and Parallel Reach are
equivalent. This is achieved by comparing the result of both LTS.

The results from parallel compose and parallel reach should be equivalent.

11

Input LTS A Input LTS B

Parallel Compose result

Parallel Reach result

	Test Document
	CompositionPass1 test
	CompositionPass2 test
	CompositionPass3 test
	CompositionPass4 test
	Reach test
	Coloring 1 test
	Coloring 2 test
	Bisimulation test 1
	Bisimulation test 2
	Bisimulation test 3
	BisimCompose test

