
Tru64 UNIX
Security

Part Number: AA-RH95C-TE

August 2000

Product Version: Tru64 UNIX Version 5.1 or higher

This manual describes how to use, administer, and write programs for
the Compaq Tru64™ UNIX operating system with the optional enhanced
security subsets installed. The Security Integration Architecture (SIA),
DOP privileges, and access control lists (ACLs) are also documented in
this manual.

Compaq Computer Corporation
Houston, Texas

© 2000 Compaq Computer Corporation

COMPAQ, the Compaq logo, AlphaServer, and TruCluster Registered in the U.S. Patent and Trademark
Office. Tru64 is a trademark of Compaq Information Technologies Group, L.P.

UNIX and The Open Group are trademarks of The Open Group.

All other product names mentioned herein may be trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The information
in this document is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY
KIND. THE ENTIRE RISK ARISING OUT OF THE USE OF THIS INFORMATION REMAINS WITH
RECIPIENT. IN NO EVENT SHALL COMPAQ BE LIABLE FOR ANY DIRECT, CONSEQUENTIAL,
INCIDENTAL, SPECIAL, PUNITIVE, OR OTHER DAMAGES WHATSOEVER (INCLUDING WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION OR LOSS
OF BUSINESS INFORMATION), EVEN IF COMPAQ HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES AND WHETHER IN AN ACTION OF CONTRACT OR TORT, INCLUDING
NEGLIGENCE.

The limited warranties for Compaq products are exclusively set forth in the documentation accompanying
such products. Nothing herein should be construed as constituting a further or additional warranty.

Contents

About This Manual

Part 1 User’s Guide to Security

1 Introduction for Users
1.1 Security Features 1–1
1.1.1 Login Control Enhancements 1–1
1.1.2 Password Enhancements 1–2
1.1.3 Audit Subsystem 1–2
1.1.4 ACLs 1–3
1.2 User Accountability 1–3
1.3 User Responsibilities 1–3

2 Getting Started
2.1 Logging In 2–1
2.1.1 Authentication Profile 2–2
2.1.2 Other Login Restrictions 2–2
2.2 Setting Your Password 2–3
2.2.1 Choosing Your Own Password 2–3
2.2.2 Choosing a System-Generated Password 2–4
2.2.3 Understanding Password Aging 2–5
2.3 Using the su Command 2–5
2.4 Password Security Tips 2–6
2.5 Login and Logout Security Tips 2–7
2.6 Problem Solving 2–7
2.6.1 Passwords 2–8
2.6.2 Background Jobs 2–8
2.6.3 Sticky Directories 2–9
2.6.4 SUID/SGID Clearing 2–10
2.6.5 Access Control Lists 2–10
2.6.6 If You Cannot Log In 2–11

Contents iii

3 Connecting to Other Systems
3.1 The TCP/IP Commands 3–1
3.1.1 The rlogin, rcp, and rsh Commands 3–1
3.1.2 The hosts.equiv File 3–2
3.1.3 The .rhosts File 3–2
3.1.4 The ftp Command 3–4
3.1.5 The tftp Command 3–4
3.1.6 Remote Connection Security Tips 3–4
3.2 LAT Commands 3–5
3.3 The UUCP Utility 3–5
3.3.1 The uucp Command 3–6
3.3.2 The tip and cu Commands 3–6
3.3.3 The uux Command 3–7
3.4 The dlogin, dls, and dcp Commands 3–7

4 Common Desktop Environment
4.1 External Access to Your Display 4–1
4.2 Controlling Network Access to Your Workstation 4–1
4.2.1 Host Access Control List 4–2
4.2.2 Authorization Data 4–2
4.2.3 Using the X Authority File Utility 4–3
4.3 Protecting Screen Information 4–3
4.4 Blocking Keyboard and Mouse Information 4–4
4.5 Pausing Your Workstation 4–4
4.6 Workstation Physical Security 4–5

5 Using ACLs on Files and Directories
5.1 Traditional UNIX File Permissions 5–1
5.2 Why Use ACLs? 5–3
5.3 ACL Status on Your System 5–3
5.4 Setting and Viewing ACLs 5–4
5.4.1 Using the dxsetacl Interface 5–5
5.4.2 Using the setacl Command 5–5
5.4.3 Using the getacl Command 5–5
5.4.4 ACLs and the ls Command 5–5
5.5 ACL Structure 5–5
5.6 Access Decision Process 5–7
5.7 ACL Inheritance 5–8
5.7.1 Inheritance Matrix 5–8

iv Contents

5.7.2 ACL Inheritance Examples 5–10
5.8 Interaction of ACLs with Commands, Utilities, and

Applications 5–12

Part 2 Administrator’s Guide to Security

6 Introduction for Administrators
6.1 Frequently Asked Questions About Trusted Systems 6–1
6.2 Defining a Trusted System 6–2
6.3 Enhanced Security Features 6–3
6.3.1 Audit Features 6–3
6.3.2 Identification and Authentication (I and A) Features 6–4
6.3.3 Access Control Lists (ACLs) 6–5
6.3.4 Integrity Features 6–5
6.3.5 Security db Utilities 6–6
6.4 Graphical Administration Utilities 6–7
6.4.1 Installing and Configuring Enhanced Security 6–8
6.5 Administrating the Trusted Operating System 6–8
6.5.1 Traditional Administrative Roles 6–9
6.5.1.1 Responsibilities of the Information Systems Security

Officer 6–10
6.5.1.2 Responsibilities of the System Administrator 6–10
6.5.1.3 Responsibilities of the Operator 6–11
6.5.2 Protected Subsystems 6–12
6.5.2.1 Enhanced (Protected) Password Database 6–12
6.5.2.2 System Defaults Database 6–13
6.5.2.3 Terminal Control Database 6–13
6.5.2.4 File Control Database 6–14
6.5.2.5 Device Assignment Database 6–14
6.6 Enhanced Security in a Cluster Environment 6–15
6.6.1 Installation Time Configuration 6–15
6.6.2 Postinstallation Configuration 6–16

7 Setting Up the Trusted System
7.1 Installation Notes 7–1
7.1.1 Full Installation 7–1
7.1.2 Update Installation 7–1
7.2 Segment Sharing 7–2
7.3 Installation Time Setup for Security 7–2
7.4 The secconfig Utility 7–3

Contents v

7.4.1 Setup Questions 7–3
7.4.2 Invoking secconfig 7–3
7.5 Configuring Security Features 7–3
7.5.1 Configuring Audit 7–3
7.5.2 Configuring ACLs 7–4
7.5.3 Configuring Enhanced Authentication with NIS 7–4
7.5.4 Authentication Features Configuration 7–4
7.5.4.1 Aging 7–5
7.5.4.2 Minimum Change Time 7–5
7.5.4.3 Changing Controls 7–5
7.5.4.4 Maximum Login Attempts 7–6
7.5.4.5 Time Between Login Attempts 7–6
7.5.4.6 Time Between Logins 7–6
7.5.4.7 Per-Terminal Login Records 7–6
7.5.4.8 Successful Login Logging 7–6
7.5.4.9 Failed Login Logging 7–7
7.5.4.10 Automatic Enhanced Profile Creation 7–7
7.5.4.11 Vouching 7–7
7.5.4.12 Encryption 7–7
7.6 System Administrator Tasks 7–7
7.7 ISSO Tasks 7–8
7.7.1 Check System Defaults 7–8
7.7.2 Modifying a User Account 7–8
7.7.3 Assigning Terminal Devices 7–8
7.7.4 Setting Up Auditing 7–8
7.8 Backing the System Up 7–9

8 Creating and Modifying Secure Devices
8.1 Defining Security Characteristics 8–1
8.1.1 Modifying, Adding, and Removing Devices with the

dxdevices Program 8–2
8.1.2 Setting Default Values with the dxdevices Program 8–2
8.2 Updating Security Databases 8–2

9 Creating and Maintaining Accounts
9.1 Authentication Subsystem 9–1
9.1.1 Local User Account Databases 9–1
9.1.1.1 Local Database: Base Security 9–2
9.1.1.2 Local Database: Enhanced Security 9–2
9.1.1.3 Templates For User Accounts 9–3
9.1.2 Distributing User Account Databases with NIS 9–3

vi Contents

9.1.2.1 Distributed Databases: NIS and Base Security 9–3
9.1.2.2 Distributed Databases: NIS and Enhanced Security . . 9–4
9.1.2.3 Templates for NIS Accounts 9–6
9.2 Using dxaccounts for User Account Administration 9–7
9.2.1 Creating Local or NIS Groups 9–7
9.2.2 Creating Local or NIS User Accounts 9–7
9.2.3 Retiring Local or NIS Accounts (Enhanced Security Only) 9–8
9.2.4 Deleting Local or NIS Accounts (Base Security Only) 9–8
9.2.5 Modifying the Local or NIS Account Template 9–8
9.2.6 Modifying Local or NIS User Accounts 9–8
9.3 Using Commands for User Account Administration 9–8
9.3.1 Creating Local or NIS Groups 9–9
9.3.2 Creating Local or NIS User Accounts 9–9
9.3.3 Retiring Local or NIS Accounts (Enhanced Security Only) 9–9
9.3.4 Deleting Local or NIS Accounts (Base Security Only) 9–10
9.3.5 Modifying Local or NIS User Accounts 9–10
9.4 Other Commands Associated with User Account

Administration 9–10
9.5 NIS and Enhanced Security 9–11
9.5.1 Setting Up a NIS Master with Enhanced Security 9–11
9.5.1.1 Manual Procedure: Maps for Small User Account

Databases 9–12
9.5.1.2 Automated Procedure: Maps for Large User Account

Databases 9–12
9.5.2 Setting Up a NIS Slave Server with Enhanced Security . . 9–12
9.5.3 Setting Up a NIS Client with Enhanced Security 9–13
9.5.4 Moving Local Accounts to NIS 9–14
9.5.5 Removing NIS Support 9–14
9.5.6 Implementation Notes 9–14
9.5.7 Troubleshooting NIS 9–16

10 Administering the Audit Subsystem
10.1 Overview of Auditing 10–1
10.1.1 Audit Files 10–3
10.1.2 Audit Tools 10–4
10.1.2.1 Command-Line Interface 10–5
10.1.2.2 Graphical Interface 10–5
10.2 Basic Audit Configuration 10–6
10.3 Advanced Configuration of Audit 10–8
10.4 Audit Commands 10–11
10.4.1 Configuring the Audit Subsystem: the auditd Command 10–12

Contents vii

10.4.2 Selecting Events to Audit: The auditmask Command 10–12
10.4.3 Producing Audit Reports: The audit_tool Command .. . 10–13
10.5 What to Audit 10–15
10.5.1 Trusted Events 10–16
10.5.2 Site-Defined Audit Events 10–18
10.5.3 Dependencies Among Audit Events 10–19
10.6 Managing the Volume of Audit Data 10–20
10.6.1 Before the Audit Data Is Collected 10–20
10.6.1.1 Audit Masks and Control Flags 10–21
10.6.1.2 Event Aliases 10–23
10.6.1.3 Object Selection and Deselection 10–23
10.6.1.4 Audit Profiles and Categories 10–26
10.6.1.5 Audit Subsystem Startup Defaults 10–27
10.6.2 After the Data Has Been Collected 10–28
10.6.2.1 Audit Log Trim Procedures 10–28
10.7 Stopping Audit 10–29
10.8 Auditing Across a Network 10–29
10.9 Contents of Audit Records 10–30
10.9.1 Additional Entries in Audit Records 10–32
10.9.2 Example Audit Record 10–34
10.9.3 Abbreviated Audit Records 10–35
10.10 More About Generating Audit Reports 10–36
10.10.1 Filtering Out Specific Audit Records 10–36
10.10.2 Targeting Active Processes 10–37
10.11 Audit Data Recovery 10–38
10.12 Implementation Notes 10–39
10.13 Responding to Audit Reports 10–40
10.14 Using Audit to Trace System Calls 10–41
10.14.1 Tracing a Process 10–42
10.14.2 Reading the Trace Data 10–43
10.14.3 Modifying the Kernel to Get More Data for a System Call 10–43
10.15 Traditional UNIX Logging Tools 10–44

11 Administering ACLs
11.1 ACL Subsystem Overview 11–1
11.2 Administration Tasks 11–1
11.3 Installing ACLs 11–3
11.3.1 Enabling and Disabling ACLs 11–3
11.3.2 Enabling ACLs On NFS 11–4
11.4 Recovery 11–4
11.5 Standalone System Support 11–4

viii Contents

11.6 Archival Tool Interaction with ACLs 11–5
11.6.1 pax and tar 11–5
11.6.2 dump and restore 11–5
11.7 ACL Size Limitations 11–5

12 Ensuring Authentication Database Integrity
12.1 Composition of the Authentication Database 12–1
12.2 Running the authck Program 12–1
12.3 Adding Applications to the File Control Database 12–2
12.4 Recovery of /etc/passwd Information 12–3

13 Security Integration Architecture
13.1 SIA Overview 13–1
13.2 Supported Security Configurations 13–2
13.3 matrix.conf Files 13–2
13.4 Installing a Layered Security Product 13–3
13.5 Installing Multiple Layered Security Products 13–3
13.6 Removing Layered Security Products 13–4
13.7 SIA Logging 13–5

14 Trusted System Troubleshooting
14.1 Lock Files 14–1
14.2 Required Files and File Contents 14–1
14.2.1 The /tcb/files/auth.db Database 14–2
14.2.2 The /etc/auth/system/ttys.db File 14–3
14.2.3 The /etc/auth/system/default File 14–3
14.2.4 The /etc/auth/system/devassign File 14–4
14.2.5 The /etc/passwd File 14–4
14.2.6 The /etc/group File 14–4
14.2.7 The /sbin/rc[023] Files 14–4
14.2.8 The /dev/console File 14–4
14.2.9 The /dev/pts/* and /dev/tty* Files 14–4
14.2.10 The /sbin/sulogin File 14–4
14.2.11 The /sbin/sh File 14–4
14.2.12 The /vmunix File 14–5
14.3 Problems Logging In or Changing Passwords 14–5

Part 3 Programmer’s Guide to Security

Contents ix

15 Introduction for Programmers
15.1 Libraries and Header Files 15–1
15.2 Standard Trusted System Directories 15–2
15.3 Security Relevent System Calls and Library Routines 15–3
15.3.1 System Calls 15–3
15.3.2 Library Routines 15–3
15.4 Defining the Trusted Computing Base 15–4
15.5 Protecting TCB Files 15–5

16 Trusted Programming Techniques
16.1 Writing SUID and SGID Programs 16–1
16.2 Handling Errors 16–2
16.3 Protecting Permanent and Temporary Files 16–3
16.4 Specifying a Secure Search Path 16–3
16.5 Responding to Signals 16–4
16.6 Using Open File Descriptors with Child Processes 16–5
16.7 Security Concerns in X Environment 16–5
16.7.1 Protect Keyboard Input 16–6
16.7.2 Block Keyboard and Mouse Events 16–6
16.7.3 Protect Device-Related Events 16–7
16.8 Protecting Shell Scripts 16–8

17 Authentication Database
17.1 Accessing the Databases 17–1
17.2 Database Components 17–2
17.2.1 Database Form 17–2
17.2.2 Reading and Writing a Database 17–4
17.2.2.1 Buffer Management 17–4
17.2.2.2 Reading an Entry by Name or ID 17–5
17.2.2.3 Reading Entries Sequentially 17–5
17.2.2.4 Using System Defaults 17–6
17.2.2.5 Writing an Entry 17–7
17.3 Device Assignment Database (devassign) 17–7
17.4 File Control Database (file) 17–8
17.5 System Default Database (default) 17–9
17.6 Enhanced (Protected) Password Database (prpasswd or auth) 17–9
17.7 Terminal Control Database (ttys) 17–10

x Contents

18 Identification and Authentication
18.1 The Audit ID 18–1
18.2 Identity Support Libraries 18–2
18.3 Using Daemons 18–2
18.4 Using the Enhanced (Protected) Password Database 18–2
18.5 Example: Password Expiration Program 18–4
18.6 Password Handling 18–6

19 Audit Record Generation
19.1 Introduction 19–1
19.2 Audit Events 19–2
19.3 Audit Records and Tokens 19–2
19.3.1 Public Tokens 19–2
19.3.2 Private Tokens 19–4
19.4 Audit Flag and Masks 19–4
19.5 Disabling System-Call Auditing for the Current Process 19–5
19.6 Modifying System-Call Auditing for the Current Process 19–6
19.7 Application-Specific Audit Records 19–6
19.8 Site-Defined Events 19–7
19.8.1 Sample site_events File 19–8
19.8.2 Example – Generating an Audit Record for a Site-Defined

Audit Event 19–8
19.9 Creating Your Own Audit Logs 19–9
19.10 Parsing an Audit Log 19–9
19.10.1 Overview of Audit Log Format and List of Common

Tuples 19–10
19.10.2 Token/Tuple Byte Descriptions 19–10
19.10.3 Parsing Tuples 19–14

20 Using the SIA Interface
20.1 Overview 20–1
20.2 SIA Layering 20–4
20.3 System Initialization 20–5
20.4 Libraries 20–6
20.5 Header Files 20–6
20.6 SIAENTITY Structure 20–6
20.7 Parameter Collection 20–7
20.8 Maintaining State 20–8
20.9 Return Values 20–9

Contents xi

20.10 Debugging and Logging 20–9
20.11 Integrating Security Mechanisms 20–10
20.12 Session Processing 20–11
20.12.1 Session Initialization 20–16
20.12.2 Session Authentication 20–16
20.12.3 Session Establishment 20–17
20.12.4 Session Launch 20–17
20.12.5 Session Release 20–18
20.12.6 Specific Session Processing 20–18
20.12.6.1 The login Process 20–18
20.12.6.2 The rshd Process 20–18
20.12.6.3 The rlogind Process 20–18
20.13 Changing Secure Information 20–18
20.13.1 Changing a User’s Password 20–19
20.13.2 Changing a User’s Finger Information 20–19
20.13.3 Changing a User’s Shell 20–19
20.14 Accessing Security Information 20–19
20.14.1 Accessing /etc/passwd Information 20–20
20.14.2 Accessing /etc/group Information 20–20
20.15 Session Parameter Collection 20–21
20.16 Packaging Products for the SIA 20–21
20.17 Security Mechanism-Dependent Interface 20–22
20.18 Single-User Mode 20–23

21 Programming with ACLs
21.1 Introduction to ACLs 21–1
21.2 ACL Data Representations 21–2
21.2.1 Internal Data Representation 21–2
21.2.1.1 typedef struct acl *acl_t; 21–2
21.2.1.2 typedef struct acl_entry *acl_entry_t; 21–3
21.2.1.3 typedef uint_t acl_type_t; 21–3
21.2.1.4 typedef uint acl_tag_t; 21–3
21.2.1.5 typedef uint_t acl_perm_t; 21–4
21.2.1.6 typedef acl_perm_t *acl_permset_t; 21–4
21.2.1.7 Contiguous Internal Representation ACL 21–4
21.2.2 External Representation 21–4
21.3 ACL Library Routines 21–5
21.4 ACL Rules 21–8
21.4.1 Object Creation 21–8
21.4.2 ACL Replication 21–8
21.4.3 ACL Validity 21–8

xii Contents

21.5 ACL Creation Example 21–9
21.6 ACL Inheritance Example 21–11

A TCB File Summary

B Auditable Events and Aliases
B.1 Default Auditable Events File B–1
B.2 Sample Event Aliases File B–5

C Interoperating with and Migrating from ULTRIX Systems
C.1 Migration Issues C–1
C.1.1 Difference in the audgen System Call C–1
C.1.2 Differences in the audcntl Routine C–2
C.1.3 Changes to the authaudit Routines C–2
C.1.4 Difference in the Authentication Interfaces C–2
C.1.5 Differences in Password Encryption C–2
C.1.6 Trusted Path Unavailable on Tru64 UNIX C–3
C.1.7 Secure Attention Key (SAK) Unavailable on Tru64 UNIX C–3
C.2 Moving ULTRIX Authentication Files to Tru64 UNIX C–3
C.2.1 Converting Shared Authentication Files C–3
C.2.2 Converting Local Authentication Files C–4
C.2.3 After Converting the Authentication Files C–4
C.3 Audit Data Compatibility C–5

D Coding Examples
D.1 Source Code for a Reauthentication Program (sia-reauth.c) .. . D–1
D.2 Source Code for a Superuser Authentication Program

(sia-suauth.c) D–2

E Symbol Preemption for SIA Routines
E.1 Overview of the Symbol Preemption Problem E–1
E.2 The Tru64 UNIX Solution E–1
E.3 Replacing the Single-User Environment E–2

F C2 Level Security Configuration
F.1 Evaluation Status F–1
F.2 Establishing a Security Policy F–2
F.3 Minimum C2 Configuration F–5

Contents xiii

F.4 Initial Configuration F–6
F.4.1 General Configuration F–6
F.4.2 Enhanced Passwords and Authentication Using secconfig F–6
F.4.3 Libraries F–7
F.4.4 Account Prototypes and Templates F–7
F.4.5 Configuring the Audit Subsystem F–8
F.4.6 Configuring ACLs F–8
F.4.7 Verifying That Your Installation Is Secure F–9
F.4.8 Configuring Network Security F–9
F.4.9 Postinstallation Security Configuration F–10
F.4.9.1 umask for Remote Access F–10
F.4.9.2 Devices F–10
F.4.9.3 Accounts F–10
F.4.9.4 Root Access F–11
F.4.10 Network Configuration F–12
F.5 Physical Security F–12
F.6 Applications F–13
F.7 Periodic Security Administration Procedures F–13
F.8 Documents F–17
F.9 Tools F–18

G Enhanced Security in a Cluster
G.1 Overview of Security in a Cluster G–1
G.2 Enabling Security Features in a Cluster G–1
G.2.1 Access Control Lists G–1
G.2.2 Audit G–1
G.2.3 Authentication G–2
G.2.4 Distributed Logins and NIS G–2
G.2.5 Configuring a NIS Master in a Cluster with Enhanced

Security G–2
G.3 Authentication in a Cluster G–3
G.4 Auditing in a Cluster G–3
G.4.1 Cluster Command Examples G–5
G.5 Restrictions G–7
G.5.1 Upgrades G–7
G.5.2 Terminal Logging G–7

H Division of Privileges
H.1 Assigning System Administration Privilegess H–1
H.1.1 Invoking dop H–2
H.1.2 Using the dop Command Line H–3

xiv Contents

H.1.2.1 Launching Privileged Actions (Tasks) H–3
H.1.2.2 Administering the DOP Database H–3
H.1.3 Defining and Managing New Actions H–5
H.1.4 Viewing or Modifying Privileges Using SysMan H–6

Glossary

Index

Examples
10–1 Sample Active Auditing Session 10–37
13–1 Default /etc/sia/matrix.conf File 13–3
13–2 Changing a Layered Security Product 13–4
18–1 Password Expiration Program 18–4
20–1 The SIAENTITY Structure 20–6
20–2 The sia.h Interface Definition for Parameter Collection 20–7
20–3 Typical /var/adm/sialog File 20–10
20–4 Session Processing Code for the login Command 20–13
D–1 Reauthentication Program D–1
D–2 Superuser Authentication Program D–2
E–1 Preempting Symbols in Single-User Mode E–2

Figures
5–1 File and Directory Permission Fields 5–2
10–1 The Audit Subsystem 10–2
10–2 Audit Report Formats 10–14
10–3 System and Process Audit Mask Interaction 10–22
13–1 Security Integration Architecture 13–2
20–1 SIA Layering 20–2
20–2 SIA Session Processing 20–12
G–1 Audit Data Flow in a Cluster G–4

Tables
5–1 Differences Between File and Directory Permissions 5–2
5–2 Example ACL Entries 5–7
6–1 Potential System Threats 6–3
6–2 Traditional Administrative Roles 6–9
6–3 Protected Subsystems 6–12
9–1 Controlling NIS With Local /etc/passwd Overrides 9–4

Contents xv

9–2 NIS Troubleshooting 9–16
10–1 Files Used for Auditing 10–3
10–2 auditd Examples 10–12
10–3 State-Dependent Information 10–20
10–4 System Calls Not Always Audited 10–39
10–5 Traditional UNIX Log Files in /var/adm 10–44
15–1 Standard Trusted System Directories 15–2
15–2 Security-Relevant System Calls 15–3
15–3 Security-Relevant Library Routines 15–4
19–1 Default Tuples Common to Most Audit Records 19–10
19–2 Token/Tuple Byte Descriptions 19–11
20–1 Security Sensitive Operating System Commands 20–1
20–2 SIA Mechanism-Independent Routines 20–2
20–3 SIA Mechanism-Dependent Routines 20–3
21–1 ACL Entry External Representation 21–5
A–1 Trusted Computing Base Files A–1
A–2 Files Not in Trusted Computing Base A–6

xvi Contents

About This Manual

This manual describes how to use, administer, and write programs for
the Compaq Tru64™ UNIX operating system with the optional enhanced
security subsets installed. It also provides information about traditional
UNIX security and other optional security features.

Audience

Part 1 is directed toward general users. It is not intended for users of secure
programs, because such programs typically hide the secure interface after
the login has been completed.

Part 2 is directed toward experienced system administrators and is not
appropriate for novice administrators. System administrators should be
familiar with security concepts and procedures.

Part 3 is intended for programmers who are modifying or creating
security-relevant programs (trusted programs) and anyone who modifies
or adds to the trusted computing base. You should be familiar with
programming in C on UNIX systems.

New and Changed Features

The Audit Generation chapter in Part 3 was updated to provide more
information.

Organization
The manual is divided into three parts as follows:

Part 1: User’s Guide to Security

This part describes the enhanced security features of the system that relate
to the general user. It also includes general information about connecting to
other systems and using a windows environment.

Part 2: Administrator’s Guide to Security

This part explains concepts that are fundamental to administering a trusted
operating system and describes tools and procedures for administrative
tasks. It is both task-oriented and conceptual.

Part 3: Programmer’s Guide to Security

About This Manual xvii

This part describes the security features to those who modify or add
security-relevant programs (trusted programs). It presents guidelines and
practices for writing these programs and describes specific Tru64 UNIX
interfaces. This part also describes the use of the security facilities: system
calls, libraries, and databases.

This manual is organized as follows:

Chapter 1 Introduces the enhanced security features of the
system from a user’s point of view and defines
the areas in which a trusted system expands the
traditional UNIX system for security.

Chapter 2 Describes how to log in to the system and change
passwords. It also discusses some common problems
associated with passwords and logging in and how to
avoid them.

Chapter 3 Discusses the security risks and security procedures
for logging into remote systems. Protecting files
from remote copies is also discussed.

Chapter 4 Discusses the Common Desktop Environment (CDE)
features that enhance the security of a workstation.
This chapter does not explain how to use CDE.

Chapter 5 Describes the ACL (access control list) features of the
system and how users can most effectively use them.

Chapter 6 Defines a trusted system and security concepts
fundamental to system security. It also summarizes
the trusted administrative roles, protected
subsystems, and security databases.

Chapter 7 Describes how to set up the security databases
and parameters for system operation and how to
customize the system for your own site.

Chapter 8 Describes how to create and modify secure terminals.

Chapter 9 Describes how to use the Account Manager (
dxaccounts) programs to create and maintain
accounts. It also describes the authentication
subsystem and centralized account management.

xviii About This Manual

Chapter 10 Describes the audit subsystem and how it is
configured and maintained. Summarizes audit
record formats and presents guidelines for effective
and high-performance audit administration. This
chapter also summarizes the formats of the records
written to the audit trail by the audit subsystem.

Chapter 11 Describes the installation and administration of the
ACLs (access control lists) feature.

Chapter 12 Describes the operations that check for system and
database integrity.

Chapter 13 Describes the Security Integration Architecture
(SIA) and the associated matrix.conf files. The
installation and deletion of layered security products
is also discussed.

Chapter 14 Lists problems that can occur during system
operation and suggests resolutions.

Chapter 15 Describes the approach to examples used throughout
this part and provides information about the trusted
computing base.

Chapter 16 Provides specific techniques for designing trusted
programs, such as whether the program is to be a
directly executed command or a daemon.

Chapter 17 Describes the structure of the authentication
database and the techniques for querying it.

Chapter 18 Presents the various user and group identities
of the operating system and how you should use
them, particularly the audit ID that is not a part
of traditional UNIX systems. It also describes the
contents of the enhanced (protected) password
database.

Chapter 19 Presents guidelines for when trusted programs
should make entries in the audit logs and the
mechanisms for doing so.

About This Manual xix

Chapter 20 Documents the Security Integration Architecture
(SIA) programming interface.

Chapter 21 Provides the programmer with the information
needed to use ACLs (access control lists) in
applications that run on Tru64 UNIX.

Appendix A Lists the files provided in the system’s trusted
computing base (TCB).

Appendix B Contains the default auditable events
(/etc/sec/audit_events) and the default
audit-event aliases (/etc/sec/event_aliases)
files.

Appendix C Explains the issues encountered when moving
applications and accounts from ULTRIX systems to
Tru64 UNIX systems.

Appendix D Provides the programmer with extended coding
examples for trusted Tru64 UNIX systems.

Appendix E Explains the naming convention used to keep Tru64
UNIX compliant with ANSI C.

Appendix F Provides administrators with detailed security
configuration procedures.

Appendix G Provides security configuration procedures for
systems in a cluster. Audit and NIS setup
information is included.

Appendix H Provides administrators with DOP privileges
information.

Related Documentation

The following Compaq documents provide additional information about
security issues in the Tru64 UNIX system:

Command and Shell User’s Guide

Common Desktop Environment documentation

xx About This Manual

Installation Guide

System Administration

Programmer’s Guide

Reference Pages

The following are documents available from O’Reilly and Associates, Inc.
that will help you understand security concepts and procedures:

Computer Security Basics

Practical UNIX Security

UNIX: Its Use, Control, and Audit — Contact the Institute of Internal
Auditors Research Foundation at 249 Maitland Avenue, Altamonte Springs,
Florida 32701-4201.

The following are reference documents available from the United States
Department of Defense that you may find useful:

Site Security Handbook (RFC 1244) — This handbook is the product of the
Site Security Policy Handbook Working Group, a combined effort of the
Security Area and User Services Area of the Internet Engineering Task Force.
This RFC provides information for the Internet community and is available
at http://www.net.ohio-state.edu/hypertext/rfc1244/toc.html.

Trusted Computer System Evaluation Criteria — U.S. Department
of Defense, National Computer Security Center, DoD 5200.28-STD,
December, 1985. This document, known as the Orange Book, is the U.S.
Government’s definitive guide to the development and evaluation of trusted
computer systems. An online copy of the Orange Book is available at
http://nsi.org/Library/Compsec/orangebo.txt

Password Management Guideline — U.S. Department of Defense,
(CSC-STD-002-85), April 12, 1985. This document, known as the Green
Book, supports the Orange Book by presenting a set of recommended
practices for the design, implementation, and use of password-based user
authentication mechanisms. An online copy of the Green Book is available
at http://www.radium.ncsc.mil/tpep/library/rainbow/CSC-STD-
002-85.html

A Guide to Understanding Audit in Trusted Systems — U.S. Department of
Defense

The following document may be of interest to users outside the U.S.

Information Technology Security Evaluation Criteria (ITSEC).

About This Manual xxi

Icons on Tru64 UNIX Printed Books

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the books to help specific audiences quickly find the books that
meet their needs. (You can order the printed documentation from Compaq.)
The following list describes this convention:

G Books for general users

S Books for system and network administrators

P Books for programmers

D Books for device driver writers

R Books for reference page users

Some books in the documentation help meet the needs of several audiences.
For example, the information in some system books is also used by
programmers. Keep this in mind when searching for information on specific
topics.

The Documentation Overview provides information on all of the books in
the Tru64 UNIX documentation set.

Reader’s Comments

Compaq welcomes any comments and suggestions you have on this and
other Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

• Mail:

Compaq Computer Corporation
UBPG Publications Manager
ZKO3-3/Y32
110 Spit Brook Road
Nashua, NH 03062-2698

A Reader’s Comment form is located in the back of each printed manual.
The form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

xxii About This Manual

• The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems
or technical support inquiries. Please address technical questions to your
local system vendor or to the appropriate Compaq technical support office.
Information provided with the software media explains how to send problem
reports to Compaq.

Conventions

This document uses the following typographic conventions:

%

$ A percent sign represents the C shell system prompt.
A dollar sign represents the system prompt for the
Bourne, Korn, and POSIX shells.

A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[|]

{ | } In syntax definitions, brackets indicate items that
are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

. . .
In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

cat(1) A cross-reference to a reference page includes
the appropriate section number in parentheses.

About This Manual xxiii

For example, cat(1) indicates that you can find
information on the cat command in Section 1 of
the reference pages.

Return In an example, a key name enclosed in a box
indicates that you press that key.

Ctrl/x This symbol indicates that you hold down the
first named key while pressing the key or mouse
button that follows the slash. In examples, this
key combination is enclosed in a box (for example,
Ctrl/C).

Alt x Multiple key or mouse button names separated by
spaces indicate that you press and release each in
sequence. In examples, each key in the sequence is
enclosed in a box (for example, Alt Q).

xxiv About This Manual

Part 1
User’s Guide to Security

1
Introduction for Users

The Tru64 UNIX operating system is delivered with an enhanced security
optional subset and other optional security features. When the enhanced
security subset subset is installed and configured, the system is referred to
as a trusted system. The enhanced security features result in a system that
can be configured to meet the C2 class of trust, as defined by the Trusted
Computer System Evaluation Criteria (TCSEC, also called the Orange
Book). The system also meets the F-C2 functional class as defined in the
Information Technology Security Evaluation Criteria (ITSEC).

Although many of the requirements for maintaining the security of
the trusted Tru64 UNIX system are the responsibility of your site’s
administrative staff, you have a responsibility, as a user of the system, to
help enforce the security provided by the system. This chapter explains
system capabilities and user responsibilities.

1.1 Security Features
The Tru64 UNIX system without the enhanced security subset installed
provides traditional UNIX security, as described in the Tru64 UNIX
manuals. Traditional UNIX security at the user level consists of basic login
identification, authentication (password checking) and file permissions
(discretionary access controls (DAC)). The following sections describe how
enhanced security and the other optional security features extend traditional
security.

The presence of the protected password daemon (/usr/bin/prpasswdd)
indicates that enhanced security is enabled. To determine which of the
security features are running on your system, see your system administrator.

1.1.1 Login Control Enhancements

Enhanced security features for login control may include the following:

• Recording of the last terminal used for a successful login

• Recording of the time of the last successful login

• Recording of the time of the last unsuccessful login attempt

• Recording of the number of consecutive unsuccessful login attempts

• Recording of the terminal used for the last unsuccessful login attempt

Introduction for Users 1–1

• Automatic account lockout after a specified number of consecutive bad
access attempts

• A per-terminal setting for the delay between consecutive login attempts,
and the maximum amount of time each attempt is allowed to complete
the login before being declared a failed attempt

• A per-terminal setting for the maximum consecutive failed login
attempts before locking any new accesses from that terminal

• Display information about last successful and last unsuccessful login
attempts at login time.

1.1.2 Password Enhancements

Enhanced security provides the following features for password control:

• Configurable maximum password length, up to 80 characters

• Configurable password lifetimes

• Variable minimum password length

• System-generated passwords that take the form of a pronounceable
password made up of meaningless syllables, an unpronounceable
password made up of random characters from the character set, or an
unpronounceable password made up of random letters from the alphabet
(all letters are from ASCII)

• Per-user password generation flags, which include the ability to require
a user to have a system-generated password

• Record of who (besides the user) last changed the user’s password

• Password usage history

1.1.3 Audit Subsystem

One of the most useful security features of a Tru64 UNIX system is the
audit subsystem, which an administrator can use to hold users accountable
for their actions. The audit subsytem can record every relevant security
event that happens on the system (for example, each file open, file creation,
login, and print job submitted).

Each action is also stamped with an immutable audit ID (AUID) of the
user who logged on, which allows all actions to be traced directly to a user.
Users, by request to the system administrator, can use the audit trail to help
re-create past events that affect the security of their accounts and data.

Users have no direct interaction with with the audit subsystem. The audit
feature is discussed in detail in Chapter 10.

1–2 Introduction for Users

Audit is a kernel option and is available without the enhanced security
subsets installed.

1.1.4 ACLs

Users on a Tru64 UNIX system can provide access granularity on files and
directories down to a single user by using the optional Access Control List
(ACL). An ACL can be associated with any file or directory on systems with
file systems that support property lists. An ACL allows users to specify
exactly how they want their files protected. See Chapter 5 for information
on using ACLs.

1.2 User Accountability
A trusted system holds all users accountable for the actions that they
perform on the system. When you log in, the system associates an audit
ID (AUID) with your processes; the AUID remains stamped on processes
regardless of the program being run. Even if you change your real or
effective user ID (for example, by using su to become root or another user),
the system still knows which authenticated user caused a specific action
based on the identity recorded in the indelible AUID.

The system maintains an extensive authentication profile describing the
characteristics and capabilities of each user − for example, the particular
login restrictions on the user.

It is extremely difficult for an unauthorized user to break into a trusted
system because of the extra security features added to the login procedure.
In addition, in a trusted system you can more easily detect a penetration
or attempted penetration into your account. Note, however, that these
additional assurances are useless if you do not protect your password.

1.3 User Responsibilities
As a user of a trusted system, you must help protect the information that is
stored and processed on the system. Specifically, you must do the following:

• Guard your password to protect against unaccountable access to your
account.

• Apply strict discretionary access controls, including the use of access
control lists, to protect your data from disclosure or destruction.

• Report all suspect activity to the system administrator, so that past
events can be analyzed through the audit trail.

A trusted Tru64 UNIX system provides tools and mechanisms that help the
system maintain the level of trust for which the system was designed. These
are described in subsequent chapters.

Introduction for Users 1–3

2
Getting Started

This chapter explains how to log in to the system and use password facilities.
Identification and Authentication (I and A) is the security term for all system
procedures affecting logging in, changing passwords, and logging out. These
procedures have been modified extensively in the trusted system, but these
changes do not dramatically affect the way in which users perform their
work on the system.

You should become familiar with the security functions and features of
trusted Tru64 UNIX so you can learn to recognize any attempted (or
successful) unauthorized use of your individual account or to the system in
general.

2.1 Logging In

The login procedure on a system running under trusted Tru64 UNIX is
similar to the procedure for nontrusted systems. This section describes the
general process. See the login(1) reference page for details.

On a trusted system, you are occasionally required to change your password
by using the passwd program (see Section 2.2.3 for a description of the
circumstances). If you try to log in when your password needs to be changed,
the login program calls the passwd program as part of the login procedure.
You can also call passwd directly while you are logged in, as you can on a
nontrusted system. Section 2.2 and the passwd(1) reference page describe
the process.

The following example is a typical login on a trusted system:

login: juanita
Password: <nonechoed password>

The system then displays the date and time of the last successful and
unsuccessful login:

Last successful login for juanita: date and time on tty03
Last unsuccessful login for juanita: date and time on tty03

Always check the successful and unsuccessful login information against your
activity on the system. Any discrepancy means that someone has attempted
to log in to your account (or did log in to your account). Report this activity

Getting Started 2–1

immediately to your system administrator or information system security
officer (ISSO).

If your password is about to expire, the system displays a warning:

Your password will expire on date and time

The system administrator sets the warning interval on your system.

2.1.1 Authentication Profile

After a successful login, the system assigns the following attributes to your
login shell:

• Login user ID (AUID, sometimes call the audit ID)

• Effective and real user IDs (EUID, RUID)

• Effective and real group IDs (EGID, RGID)

• Supplementary groups

• User audit control and disposition masks

As you log in, the system stamps your login process with an AUID. The
AUID identifies you in the system auditing records so that you can be held
accountable for your actions, as described in Section 1.1.3. The audit masks
are used to calculate user-specific audit record collection, as set in your
authentication profile. The other process identities serve the same purpose
as in nontrusted systems.

2.1.2 Other Login Restrictions

An authorized user list can be created for a particular terminal. If such a list
exists, your user name must appear in the list or you cannot log in at that
terminal. In this case, the system displays the following message:

Not authorized for terminal access--see System Administrator

After a specified number of failed login attempts, the terminal can be
disabled. This security precaution protects the system against break-in
attempts by limiting the number of times someone can try to log in from a
given terminal.

A terminal can also be explicitly locked by the system administrator. If the
terminal is disabled or locked, the system displays the following message:

Terminal is disabled -- see Account Administrator

Your account can be disabled after a specified number of failed login
attempts. Like disabling a terminal, this security precaution protects the
system by limiting the number of times someone can try to guess your

2–2 Getting Started

password. Your account is also disabled automatically if your password
exceeds its lifetime.

Your account can also be explicitly locked by the system administrator. If
your account is disabled, the system displays the following message:

Account is disabled -- see Account Administrator

If any of these messages appear when you try to log in, report the occurrence
to your administrative staff. If the terminal or your account has been
disabled, the system administrator has to enable it again before you can
log in.

2.2 Setting Your Password
A trusted Tru64 UNIX system differs from a nontrusted system in the way
in which it generates and controls passwords. A number of options can be
selected to determine how passwords are created, issued, changed, and
revoked. These options control the following items and are discussed in
detail in later sections:

• Whether you can change your password under any circumstances.

• Whether you have previously used a specific password.

• Whether you can choose your own password. (Section 2.2.1.)

• What type of password the system generates for you if you cannot choose
your own. (Section 2.2.2.)

• When you are allowed to change your password and when you must
change your password. (Section 2.2.3.)

In the trusted system, as in the untrusted system, the passwd command
changes passwords. The prompts this command displays and your
interaction with it, however, are different in the trusted system.

If you are not allowed to change your password and you try to run passwd,
the system displays the following message:

Password request denied.
Reason: you do not have any password changing options.

In this case, you must contact your system administrator and arrange to
have your password changed.

2.2.1 Choosing Your Own Password

If you are allowed to change your password, your account can be set up to
allow you to select your password or to have the system generate one. These
options determine the dialog the system starts when you invoke passwd.
First, the system prompts you for your current password:

Getting Started 2–3

Old password:

Type in your old password. If you type it correctly, the system displays
password change times:

Last successful password change for user: date and time

Last unsuccessful password change for user: date and time

Always check these dates and times. Although you might not remember
exactly when you last changed your password, you should at least be able to
decide if the times are reasonable.

The system administrator can allow you to choose one or more of the
following password types for your account:

• System-generated random pronounceable syllables

• System-generated random characters, including punctuation marks
and digits

• System-generated random letters

• Your own choice

The following example shows the prompt when all possible options are
allowed:

Do you want (choose one option only):
1 pronounceable passwords generated for you
2 a string of characters generated for you
3 a string of letters generated for you
4 to pick your password

Select ONE item by number:

If you choose to pick your own password, the system prompts for the new
password twice to avoid mistypings.

2.2.2 Choosing a System-Generated Password

The following example shows the dialog for a system-generated
pronounceable password:

Generating random pronounceable password for user.

The password, along with the hyphenated version, is shown.

Hit <RETURN> or <ENTER> until you like the choice.

When you have chosen the password you want, type it in.

Note: Type your interupt character or "quit" to abort at any time.

2–4 Getting Started

Password: saglemot Hyphenation: sag-le-mot

Enter password:

The hyphenated version is shown to help you pronounce the password so you
can remember it more easily. You do not enter the hyphens. If you do not
like the first password, press Return to see another one. When the system
generates one that you want, enter it.

If you decide not to change your password, you can enter quit or use your
interrupt character (typically Ctrl/C). The system displays the following
message:

Password cannot be changed. Reason: user stopped program.

The system also updates your last unsuccessful password change time.

The dialogue when you select one of the other system-generated password
types is similar.

2.2.3 Understanding Password Aging

The system enforces a minimum change time, expiration time, and lifetime
for each password. Passwords cannot be changed until the minimum change
time has passed. This prevents you from changing your password and
then immediately changing it back so that you do not have to learn a new
password. If you try to change your password too soon, the system responds
with the following message:

Password cannot be changed.
Reason: minimum time between changes has not elapsed.

A password is valid until its expiration time is reached. Once a password
has expired, you must change that password before the system allows you to
log in again. You will usually see a message at login time if your password
is about to expire. You should change it when you see the message. If you
are logged out when your password expires, you can change it as part of the
login process when you next log in.

If the lifetime passes, the account is disabled. If you try to log in to a
disabled account, the system displays an appropriate message. In this case,
you must ask your system administrator to reenable your account, and you
must change your password when you next log in.

2.3 Using the su Command
The su command allows you to work on the system temporarily under the
user ID of another person. The su command starts a new shell process with

Getting Started 2–5

the effective and real user and group IDs of the other user. In the trusted
Tru64 UNIX system, the AUID is not changed through an su transition. This
means that all actions are accountable to the user who originally logged in to
the system, regardless of the number of su transitions, even through root.

See the su(1) reference page for details.

2.4 Password Security Tips

The identification and authentication procedure described in the preceding
sections is one of the most important security tools the system uses to guard
against unauthorized access. Knowing a password and having physical
access to a terminal or remote access through the network are all that an
unauthorized user needs to gain access to a system.

Once such a user has logged on, he or she can steal data and corrupt the
system in subtle ways. The amount of damage a penetrator can do increases
as the account accessed has greater power on the system.

Remember, a penetrator’s actions can be traced only to your account, and
you will be held accountable. It is your responsibility to ensure that your
account is not compromised.

Protect your password by following these guidelines:

• Never share your password. When you tell someone your password
and let them log in to your account, the system loses its ability to hold
individual users accountable for their own actions.

• Do not write down your password. Many system penetrations occur
simply because a user wrote his or her password on a terminal. If a
password must be recorded, keep it under lock and key.

• Never use an old password again. This increases the probability that
someone can guess the password.

• Never type a password while someone is watching. It is possible to steal
a password simply by watching someone type it. Be especially careful if
you are using a workstation in a public area.

• If you are allowed to choose your own password, choose your password
wisely:

– Select passwords that are hard to guess.

– Never use an ordinary word or a proper name, your spouse’s, child’s,
or pet’s name, your birthday, your address, or a machine name, even
if these words are specified backward, permuted in some other way,
or have a number added to the front or back.

2–6 Getting Started

– Always choose a password that contains some numbers or special
characters. Always select different passwords for different machines,
but never use the name of the machine, even permuted.

Your system administrator can set defaults for your site that perform
automatic checks on passwords you specify.

Although these procedures add a small amount of effort to your login, they
help to avoid system compromise.

2.5 Login and Logout Security Tips

In addition to following the password security tips, follow these login and
logout guidelines:

• Check the system login and logout messages. When you log in, carefully
check the reported last login and logout times to make sure they match
what you remember as the last time you logged in and out. Make special
note of login attempts during the time that you normally do not log in
to the system. Report any discrepancies immediately to your system
administrator so he or she can analyze the audit trail for the attempted
penetration.

• Never leave your terminal unattended. Remember, someone who can run
a program under your identity can cause great damage. It is much easier
for a malicious user to take advantage of an unattended terminal than to
coerce you into running a trojan horse program.

• Analyze unsuccessful login attempts. Note any login attempts where
you thought you entered the correct password but the system reported
it as incorrect, especially if you then log in successfully. If the time
reported for the last unsuccessful login is not close to the current time,
you might have typed your password into a login spoofing program, and
someone may now know your password. Either change it immediately
(if you are allowed to do so), or arrange with the system administrator
to have it changed.

2.6 Problem Solving

The trusted Tru64 UNIX’s mechanisms may be somewhat unfamiliar if you
are accustomed to a nontrusted Tru64 UNIX system. If you are a new user,
the extra complexity added to satisfy security requirements may create
additional confusion.

The following sections provide a guide to common situations that cause
users problems. Each description of a potential problem and its suggested
solution should give you greater understanding of the security features that
are exhibiting unexpected behavior.

Getting Started 2–7

2.6.1 Passwords

The trusted Tru64 UNIX system enforces two modes of password expiration:

• A password expires if its expiration time is reached. If your password
expires, you must change it or arrange to have it changed (if the system
administrator has not given you password change authorization) before
logging into the system again. The system will not allow you to log in
until your password is successfully changed.

• Your password dies if its lifetime is exceeded. In this case, your account
is disabled; only the system administrator can reenable your account.
You must change your password before using the system again after the
system administrator reenables it.

Recall that the system warns you at login time that your password is about
to expire. In this case, you should use the passwd command to change it
before you log out. If your password expires while you are logged out, the
login command calls passwd during the login process. See the login(1)
and passwd(1) reference pages and Chapter 2.

The system also warns you if your password was changed by another user
since you last logged in successfully. This message is to be expected if
you cannot change your own password and the system administrator has
changed it for you. If this message appears when you do not expect it, see
your system administrator.

2.6.2 Background Jobs

If you are accessing the system from a character-mode terminal, the getty
command opens the stdin, stdout, and stderr file pointers to reference
the terminal character device file. A program that manages to survive the
user’s logout can try to access the terminal because its file descriptors are
retained. This is an open opportunity for login spoofing programs, because
a background program can read the terminal file descriptor and be given
some of the characters that are also requested by the getty and login
programs for the new user session.

The Tru64 UNIX system invalidates all terminal file descriptors after logout.
If a program tries to access the login terminal after logout, the access fails.
One impact of this feature occurs when you are using write to communicate
with another user, and that user logs out or the terminal is disconnected.
The next message that you try to send causes write to exit with an error
message, because it no longer has access to the other terminal.

Background jobs can be left running after you have logged out. If these
jobs attempt to write to a terminal using the write() system call after
logout, they receive a hangup signal, and the write fails. The behavior of the
program depends on how it handles that error condition.

2–8 Getting Started

2.6.3 Sticky Directories

One of the UNIX permission bits is called the “sticky bit.” In older UNIX
systems, the sticky bit was set on executable files so that the system retained
the program text in the swap area even after there were no active references
to the program. This behavior was useful for some earlier computer
architectures. On these early systems, the sticky bit for directories had
no meaning.

Nontrusted Tru64 UNIX systems, trusted Tru64 UNIX systems, and some
other recent UNIX variants use the sticky bit on directories to control a
possible security hole.

Many commands use standard directories such as /tmp and /var/tmp
to store temporary files. These directories are readable and writable by
everyone so that all users can create and remove their own files in the
temporary directories. Because the directories are writable, however, users
can also remove other users’ temporary files, regardless of the protection
on the file itself.

Setting the sticky bit changes the semantics for writable directories. When
the sticky bit is set, only the superuser or the owner of a process with the
appropriate privilege can remove a file. Other users cannot remove files
from such directories.

If you cannot remove a file from a directory to which you have discretionary
write access, check the file’s owner and the directory’s sticky bit. The sticky
bit is on if ls reports a t in the execute bit for others in a long listing. For
example:

$ ls −ld /sticky

drwxrwxrwt 11 bin bin 1904 Jan 24 21:56 /sticky

The administrator typically places the sticky bit on all public directories
because these directories can be written by any user. These include the
following directories:

• /tmp

• /var/tmp

• /var/preserve

Most systems combine the sticky directory approach with a policy of
specifying restrictive umask values (for example, 077) for user accounts. In
this case, temporary files are created as private files, which prevents users
from altering or replacing files in shared directories. The user can determine
only the file’s name and attributes.

Getting Started 2–9

The trusted Tru64 UNIX system default umask is 077. If unauthorized users
try to access such a file, they will be able to link the file from the temporary
directory into a private directory, but will not be able to read the file even if a
private copy can be saved.

Many systems create temporary directories as private file systems that do
not allow links to user directory hierarchies.

2.6.4 SUID/SGID Clearing

Trusted Tru64 UNIX clears the following permission bits whenever it writes
a file:

• Set user ID on execution (SUID)

• Set group ID on execution (SGID)

Be sure to restore these attributes when replacing a program.

2.6.5 Access Control Lists

An access control list is a mechanism that can be used to protect files.
Although a file’s owner/group/other permissions as shown by ls specify
that a process has access to a file, the file’s ACL may not allow the process
access. This can be true even if the process has the same effective group as
the group of the file.

In the following example, group proj1 has write access to the file according
to the ls display, but user mario in group proj1 does not have write access
according to the ACL. A process must pass all mandatory and discretionary
checks before access to any object is allowed.

$ ls -l file-rw-rw-rw- 1 john proj1 846
Jan 19 14:13 file

$ getacl file

file:file
owner:john
group:proj1
user::rw-
group::rw-
user:mario:r--
group:dev:r--
other::rw-

$ date >file

file: Permission denied

2–10 Getting Started

Although the ls listing shows that the owning group has read and write
access, the ACL shows that mario has only read access.

2.6.6 If You Cannot Log In

There are a number of reasons why a login attempt can fail on a trusted
Tru64 UNIX system. The login program usually prints an informative
message.

Mistyping the information required to log in is the most common reason for
not being able to log in. When you do this, the system displays the following
message and prompts you to enter your user name and your password:

Login incorrect

Try to log in again. The system limits the number of times you can enter
an incorrect user name and password combination (see Section 2.1.2). If
you exceed this limit, the system disables your account. If you forget your
password, see your system administrator.

Most of the other reasons that you might not be able to log in are described
in Section 2.1.2. The following list summarizes the reasons and explains
what you should do:

• The terminal is disabled. See your system administrator, who must
unlock the terminal before anyone can log in from it. If the terminal
you normally log in from has been disabled, someone might have tried
to break into the system from that terminal.

• Your name is not on the list of authorized users for the terminal. See
your system administrator.

• Your account is disabled. See your system administrator to have your
account reenabled. Your account might be disabled because you (or
someone attempting to break in) have made too many unsuccessful login
attempts. The account might also be locked by the system administrator.

• Your password has expired. See your system administrator to have your
account reenabled. You can change your password during the next log in.

In general, you should see your administrator immediately if your account
has been disabled or if anything unexpected happens when you try to log in.

Getting Started 2–11

3
Connecting to Other Systems

By connecting systems to each other, users have greater access to
information; however, such connections also increase the security risks for
each system. Responsible network security allows users some freedom, while
protecting valuable files from unauthorized users.

Although the system administrator is responsible for most network security
issues, individual users must be alert to security risks that affect their
accounts and files.

The following networking protocols enable Tru64 UNIX users to
communicate with other users on remote systems:

• Internet protocols (TCP/IP)

• Local Area Transport (LAT)

• The UUCP utility

• DECnet

Each protocol has its own scheme for handling communication between
systems on a network. This chapter describes the security risks in using
commands that connect to other systems using each of these protocols, and
offers suggestions for minimizing those risks.

3.1 The TCP/IP Commands

The TCP/IP protocols are the most commonly used networking protocols
running under Tru64 UNIX software. With TCP/IP, much of the network
access to the computer is in the hands of users. The TCP/IP remote
commands are described in the following sections.

3.1.1 The rlogin, rcp, and rsh Commands

The following commands enable you to communicate with remote systems:

rlogin Lets you log in to a remote system. This command
connects your terminal on the local host system to
another login session either on a remote system or
on the local host system. For more information, see
the rlogin(1) reference page.

Connecting to Other Systems 3–1

rcp Lets you copy files to and from remote systems. For
more information, see the rcp(1) reference page.

rsh Lets you connect to a specified host and execute a
command on the remote host. This command is a
conduit to the remote command, passing it your
input for processing and returning to you its output
and any error messages that it generated. For more
information, see the rsh(1) reference page.

A security risk in using the rlogin, rcp, and rsh commands lies in the
network files /etc/hosts.equiv and .rhosts, which these commands
check before connecting to a remote system.

3.1.2 The hosts.equiv File

The /etc/hosts.equiv file contains a list of host systems that are
equivalent to your local host system. Users on equivalent hosts can log in to
their accounts on the local host without typing a password. The user name
on the remote and local host must be identical.

Equivalent hosts can be remote hosts or the local host. If the local host
is listed in the /etc/hosts.equiv file, users logged in to the local host
can remotely log in to their own accounts on the local host, without typing
a password.

For security reasons, the /etc/hosts.equiv file does not allow a superuser
logged in on a remote system to log in to the local host without typing a
password.

Because the /etc/hosts.equiv file is a remote system’s access key to your
system, security-conscious system administrators leave this file empty or
carefully restrict access to systems.

If the /etc/hosts.equiv file is empty, the only way a user on a remote
host can log in to your account on the local host without typing a password is
if the user’s name is listed in your .rhosts file.

For more information, see the hosts.equiv(4) reference page.

3.1.3 The .rhosts File

The most common use of the $HOME/.rhosts file is to simplify remote
logins between multiple accounts owned by the same user. If you have active
accounts on more than one system, you may need to copy files from one
account to the other or remotely log in to one account from the other. The
.rhosts file is ideally suited to this type of use.

3–2 Connecting to Other Systems

The $HOME/.rhosts file is a list of equivalent hosts that users can
create in their home directories. This file is the user counterpart of
the /etc/hosts.equiv file, although it has a narrower focus than its
systemwide counterpart. The /etc/hosts.equiv file can affect the
accounts of many users on a system. The .rhosts file affects only the
individual user’s account.

Your .rhosts file also enables users with your user name on equivalent
hosts to log in to your account on the local host, without typing a password.
Users must have a .rhosts file in their home directory.

______________________ Note _______________________

Equivalent hosts can be remote hosts or the local host. If the local
host is listed in your .rhosts file, users with your user name,
logged in to the local host, can remotely log in to your account on
the local host, without typing a password. Including the local
host in your .rhosts file enables you to remotely log in to your
account and start a new session on the local host.

If you list another user’s name next to the host name in your .rhosts
file, that user can log in to your account on the local host; the remote user
does not need an account on the local host or a .rhosts file in his or her
home directory on the remote host. For example, the following entry in
Peter’s .rhosts file allows Paul to log in from rook as Peter without typing
a password:

rook paul

Your .rhosts file can expand the access that the /etc/hosts.equiv file
grants to your account, but it cannot restrict that access. When a user
executes the rlogin, rcp, or rsh command, that user’s .rhosts file is
appended to the /etc/hosts.equiv file for permission checking. The
entries in the combined files are checked in sequence, one entry at a time.
When the system finds an entry that grants access to the user, it stops
looking. The entries in the /etc/hosts.equiv file are checked before the
entries in the .rhosts file are checked. However, when the user is root,
only the .rhosts file is checked.

If your security administrator excludes a host from the /etc/hosts.equiv
file, then all users on that host are excluded. If you include that host in your
.rhosts file, then users on that host are considered trusted and can log in
to your account without entering a password. The converse is not true. If
your system administrator includes a host in the /etc/hosts.equiv file,
you cannot exclude users on that host from accessing your account. If you
put a remote host and a user in the /etc/hosts.equiv file, that user on
the remote host has access to all nonroot accounts on your host.

Connecting to Other Systems 3–3

3.1.4 The ftp Command

The ftp command enables you to transfer files to and from a remote host,
using the Internet standard File Transfer Protocol. In autologin mode, ftp
checks the .netrc file in your home directory for an entry describing an
account on the remote host. If no entry exists, ftp uses your login name
on the local host as your user name on the remote host, and prompts for a
password and, optionally, an account for login. Because your ftp login to
a remote system is in essence a remote login to that system, you have the
same access to files as if you, rather than ftp, had actually logged in. For
more information, see the ftp(1) reference page.

A security risk in using ftp is the practice of creating the anonymous
account, a generic account that the ftp command recognizes. The
anonymous account usually has a commonly known password or no
password, and it allows users to log in and transfer files to or from your
system from a remote system with no audit trail. System administrators
concerned with network security often avoid creating such anonymous
accounts or carefully restrict which files can be copied or written.

You should know and follow the security policy on using ftp for file transfers
to remote systems. Talk to your system administrator about the security
controls at your system.

3.1.5 The tftp Command

The tftp command provides an interface to the Internet standard Trivial
File Transfer Protocol. Like the ftp command, this command enables you
to transfer files to and from a remote network site. However, the tftp
command does not request a password when you attempt to transfer files.
Therefore, any user who can log in to a system on the network can access
remote files with read and write permission for other. Because the tftp
protocol does not validate user login information, setting proper permissions
on your files is the only real protection from unauthorized access.

The tftp command is shipped on the system but is turned off by default. To
protect your system, avoid using tftp, if possible, or limit the directories
that tftp can access.

3.1.6 Remote Connection Security Tips

Follow these guidelines to protect your files against attack through the
rlogin, rcp, and rsh commands:

• Check your file permissions. Your home directory should deny all access
to other, and write access to group. The permissions on the command
and configuration files, such as .profile, .login, .logout, .cshrc,
and .forward, should deny all access to group and other. For example,

3–4 Connecting to Other Systems

use the chmod command to change the protections on those files from
your home directory, as follows:
$ chmod 750 $HOME
$ chmod 600 .profile .login .logout .cshrc .forward

If you do a long listing of your home directory, your file protections
should look like these:

$ ls -al

drwxr-x--- 9 fields 512 Jun 13 11:46 .
-rw------- 1 fields 419 Jun 2 08:28 .login

Use the chmod command to set the permissions on your .rhosts file to
600. The Command and Shell User’s Guide discusses protecting your
files and directories.

• Include in the .rhosts file only the current remote hosts from which
you would like to issue remote commands. It is wise to list only hosts on
which you have accounts. If you are unsure about which hosts to include
in this file, check with your system administrator.

• You should be the owner of your .rhosts file, and it must not be a
symbolic link to another file.

3.2 LAT Commands
Your system administrator can increase the security of the LAT (Local Area
Transport) protocol service by configuring LAT groups of hosts that can
communicate only with each other or through specified terminals. A host can
be set up to listen for connections from certain groups of terminal servers,
while ignoring connections to all other LAT servers. For more information
on using the LAT protocol, see the latcp(8) reference page.

3.3 The UUCP Utility
The UUCP utility is a group of programs that enable you to connect to
remote systems using a modem and telephone lines. The UUCP utility,
which is available on most UNIX systems, enables you to transfer files
between remote systems and the Tru64 UNIX operating system. In addition,
your system can use UUCP to send and receive mail across telephone lines.

Several UUCP commands can present security concerns:

• uucp

• tip

• cu

• uux

Connecting to Other Systems 3–5

3.3.1 The uucp Command

The uucp command is the main interface to the UUCP utility.

The UUCP utility enables users on remote systems to access those files and
directories for which the system administrator has granted permission. The
uucp command allows any user to execute any command and copy any file
that is readable or writable by a UUCP login user. Individual sites should be
aware of this potential security risk and apply any necessary protections.

Your system administrator exercises certain security measures when
installing and setting up the UUCP utility. However, it is important for you
to take the following actions to protect against unauthorized use of this
powerful utility through the uucp command:

• Create a directory in your account for UUCP. Use only this directory
for all UUCP transactions.

• Use the chmod command to set the sticky bit on the UUCP directory.
When the sticky bit is set on a directory, only root or the owner of a
file can remove files from the directory. While you are operating under
UUCP, you will not be able to remove those files while the sticky bit is
set, and you may have a disk space problem. If this happens, remove the
sticky bit from your directory and remove the excess files. The following
example sets the sticky bit on the documents directory:

$ chmod 1777 documents

• Until you set up a separate UUCP directory, always copy files to or from
the /usr/spool/uucppublic directory.

For more information on setting the sticky bit, see the chmod(1) reference
page. For more information on the UUCP utility, see the uucp(1) reference
page.

3.3.2 The tip and cu Commands

The tip and cu commands enable you to call another system, log in, and
execute commands while you are still logged in to your original system. The
tip and cu commands are two different interfaces to the same program.
The cu program allows you to be logged in on both systems at the same time,
executing commands on either one without dropping the communications
link. The tip command connects you to a remote system and allows you to
work on the remote system as if logged in directly. You need only tell tip or
cu what telephone number to call.

The following example shows a session using the cu command:

$ cu 4783939

3–6 Connecting to Other Systems

connected
login:

A security concern about using the tip and cu commands is that everything
you type is read by the command and passed to the remote system. This can
be dangerous if the remote system is not a trusted system. A trojan horse
version of cu, for example, could store your login name and password on a
remote system. Follow these general security guidelines for using commands
that start remote sessions:

• Be sure that the program you are using is the authentic program. Do
not use a terminal that seems already to be running tip or cu; reinvoke
the command using the full path.

• Do not use an automatic login procedure, such as sending your remote
password from a file on the local computer.

• If you are capturing the session transcript into a local file, begin the
capture only after completing remote login. Capture only the data you
need; avoid capturing the dialogue you used to obtain the data.

• Avoid leaving your terminal or using your terminal for other things while
a remote session is in progress. If your connection with the remote
system is broken, immediately reestablish contact. Using the ps −e
command, check to see if your first session left any processes suspended
and kill those processes with the kill −9 command.

For more information, see the tip(1) and cu(1) reference pages.

3.3.3 The uux Command

The uux command runs a specified command on a specified system while
enabling you to continue working on the local system. The command gathers
various files from the designated systems, if necessary. It then runs a
specified command on a designated system. Users can direct the output
from the command to a specified file on the designated system. For security
reasons, many installations permit uux to run only the rmail command.

See the uux(1) reference page for more information.

3.4 The dlogin, dls, and dcp Commands

If DECnet is installed on your system, you can use the following DECnet
commands to communicate with remote systems running the DECnet
protocol:

• dlogin

• dls

Connecting to Other Systems 3–7

• dcp

Your system administrator can increase DECnet security on your system
by not creating a generic guest account for remote DECnet connections.
Without this default user account, remote users must specify a valid user
name and password either on the command line or interactively. For
example, to copy a file from one system to a remote UNIX system without a
default user account, you would have to type the following command:

$ dcp localfile rem_node/rem_user::/rem_path/file

Password for rem_node/rem_user:: ?:

If you are connecting to a remote system that has no default user account,
you should not include the password information in the command. If you
do not specify a password, you will be prompted for one. This provides
more security because some shells (for example, the C shell) can maintain a
history file. If you keep a history file and enter your password in clear text
on a command line, the password is stored in the history file.

3–8 Connecting to Other Systems

4
Common Desktop Environment

This chapter discusses CDE (Common Desktop Environment) features that
improve the security of a workstation.

4.1 External Access to Your Display

When you log in to a workstation and create a session, the CDE login
program sets the initial controls on access to the workstation. Any client
that has access to the workstation display has full access to all events and
resources of the X server, including the following:

• The ability to capture events such as keyboard and mouse events that
include passwords or confidential information, even if it is not echoed
when typed.

• The ability to send simulated events, including keystrokes, to windows
on the display. For instance, a malicious user could send synthetic
keystrokes to a terminal emulator window forming commands that
would be executed under the UID of the logged in user.

• The ability to capture a snapshot of any part of the screen by setting the
background pixmap of a window to None.

• The ability to display windows on the screen that masquerade as known
programs (trojan horses).

4.2 Controlling Network Access to Your Workstation

Controlling access to your workstation display is the key to creating a secure
workstation environment. Access is controlled by the following mechanisms:

Host Access

Any client on a host in the host access control list is allowed access to
the X server. This is most useful in an environment where everyone
trusts everyone, or where each host has only one user. The list of
authorized hosts is controlled by the xhost command. The CDE login
program by default starts the session with an empty host access list
and uses the more secure access mechanisms. You can add hosts
to the host access control list by putting xhost commands in your
.dtprofile. See the xhost(1X) reference page for more information.

Common Desktop Environment 4–1

MIT-MAGIC-COOKIE-1

The CDE login program creates a 128-bit cookie when it starts the X
server. A client is only allowed to connect if it presents the same cookie
with the connection setup request. The cookie is chosen so that it is
hard to guess, but it is transmitted on the network without encryption,
so that it is susceptible to snooping. This is most useful where multiple
users use the same machine, but network snooping is not an issue.

XDM-AUTHORIZATION-1

This is similar to MIT-MAGIC-COOKIE-1, except that the cookie data
is encrypted using DES along with a time stamp to prevent snooping.
This may not be available in all countries.

See the XSecurity(1X) reference page for more information about access
control mechanisms.

Remember that hosts that are authorized to access your workstation display
can read from it, write to it, and copy from it at any time. Restricting access
is the only way to prevent users from taking a snapshot of the contents
of your workstation display.

4.2.1 Host Access Control List

The X server maintains a host access control list to decide whether to allow
connections from clients on a particular host. When a session is started, the
host access control list is initialized from the file called /etc/Xn.hosts,
where n is the display number. The host access control list is reinitialized for
each session even if the server is not restarted. For example, X0.hosts is
the initial list of hosts that are authorized to connect to display 0, which is
usually the default display.

Each line of the /etc/Xn.hosts file is the name of a host, optionally
preceded by the name of its address family. Adding a host to the host access
control list enables any client running on that host to access the server.

The xhost utility can be used to add or remove hosts from the host access
control list. See the xhost(1X) reference page for more details.

Allowing remote systems to access your account on a workstation is a
security concern. Check with your security administrator before authorizing
additional hosts to use your workstation display.

4.2.2 Authorization Data

For the MIT-MAGIC-COOKIE-1 and XDM-AUTHORIZATION-1
mechanisms, the data needed by the server to generate the authorization

4–2 Common Desktop Environment

information is the same as the data needed by the clients. The login program
stores the authorization data in a file. The default is $HOME/.Xauthority.

This is particularly useful in an environment where the users’ home
directories are exported by NFS. Once you log in on a workstation, your
authorization data is available to authorize connections from any host that
has his home directory is mounted.

4.2.3 Using the X Authority File Utility

The xauth program allows you to run client applications on other hosts
that do not share the home directory. You use the xauth program to edit
and display the authorization information used to connect to the X server.
You usually use this program to extract authorization records from one
machine and merge them in on another (as is the case when using remote
logins or granting access to other users). Note that this program does not
contact the X server.

Using the X authority file utility is the recommended method of securing
your workstation. For more information, see the xauth(1X) reference page
and the X Window System Environment manual.

4.3 Protecting Screen Information

Any client given access to the display can access all the resources of the
display, including all windows. If you display sensitive information on the
screen, be careful about what hosts, if any, are enabled in the host access
list. If a host is enabled, any user who can log in to that host has full access
to the display resources.

By default, the $HOME/.Xauthority file is protected so that it is owned
by the login user and is readable only by the login user. If you use an
authorization mechanism that stores data in the $HOME/.Xauthority file
and your home directory is exported with NFS, the workstation security is
only as good as the NFS file security.

Normally when a window is created with a background pixmap resource set
to the special value of None, the initial contents of the window are set to
whatever is on the screen within the bounds of the window when it is first
mapped. To prevent other clients from capturing snapshots of the screen
using this feature, there is an optional command line parameter to the X
server that disables it. To set the parameter, add the +sec_objectreuse
option to the X server command line in the /var/dt/Xservers file.

Common Desktop Environment 4–3

4.4 Blocking Keyboard and Mouse Information

By default, dtterm and xterm windows ignore synthetic keyboard
and mouse events sent by other clients. This security feature prevents
unauthorized users from sending potentially destructive commands to your
workstation when it is idle.

The ability of a dtterm window to block information sent from another host
is set by a resource called allowSendEvents. If it is necessary to allow
all dtterm or xterm windows to accept synthetic events, the resource can
be set in a $HOME/.Xdefaults file.

The following example shows a line in the .Xdefaults file that sets the
allowSendEvents resource to true, allowing other clients to send keyboard
or mouse information to any window that you create:

dtterm*allowSendEvents: true

If it is only necessary to enable synthetic events for specific terminal
windows for some specific purpose, it is better to set the allowSendEvents
resource with the -xrm command line option. For example:

% xterm -xrm "*allowSendEvents: true"

Alternatively, the special terminal emulator can be started with a different
resource name and the $HOME/.Xdefaults can set the resource only
for terminal emulators run with the special name. For example, if the
$HOME/.Xdefaults file contains this line:

foo*allowSendEvents: true

The synthetic events are allowed only by terminal emulators that are run as
follows:

% /usr/dt/bin/dtterm -name foo

Other applications may or may not accept synthetic keyboard and mouse
events.

4.5 Pausing Your Workstation

In a CDE environment, you can pause your current session. This locks your
workstation without ending your session. Your screen is cleared, and the
system displays the screen saver. You can resume your session any time
without re-creating your screen environment.

To put your current session on hold, click on the Padlock on the dashboard.
Your screen is cleared and the Continue Session box is displayed. To
continue your session, type your password then and press Return. Once your
password is verified, your session resumes.

4–4 Common Desktop Environment

CDE provides a Screen Lock feature that automatically pauses your session
after a period of inactivity. The Screen Lock feature is disabled by default
and works with or without enhanced security enabled. The Screen Lock
Start Lock (inactivity) time period can be set from 1 to 120 minutes with
the default being 30 minutes.

Compaq recommends that you enable the Screen Lock feature and set the
Start Lock time at a maximum of 10 minutes.

4.6 Workstation Physical Security

Workstations present security problems because they are typically found in
ordinary offices, rather than the more easily protected environment of the
computer room.

It is possible for someone who gains access to a workstation, to get superuser
status on that system, and consequently on other systems. One method is to
boot the system into single user mode.

If your office has a locking door, lock the door when you are away from your
system.

You must also protect your removable media, such as tape cartridges and
floppy disks by locking up all floppy disks and tape cartridges when they
are not in use.

Some workstations allow a console password to be set. When a console
password is in use, only a default boot can be done without a password.
Check your hardware and firmware documentation for more information
about console passwords.

Common Desktop Environment 4–5

5
Using ACLs on Files and Directories

This chapter describes the access control list (ACL) features for files and
directories and explains how to use them effectively. It also describes the
structure of ACLs and the methods used to create and maintain them.

The Tru64 UNIX ACLs are based on the POSIX P1003.6 Draft 13 standard
with some Draft 15 extensions.

5.1 Traditional UNIX File Permissions

The traditional UNIX file permissions are displayed using the ls command
with the −l flag. The permissions indicate what kind of access (that is, the
ability to read, write, and execute) is granted to the owner and groups on
your system. Traditional UNIX file protections allow some control over who
can access your files and directories, but they do not allow you to define
access for individual users and groups beyond the owning user and the
owning group. The following is a brief review of UNIX file permissions.

Each file and each directory has nine permissions associated with it. Files
and directories have the following three types of permissions:

• r (read)

• w (write)

• x (execute)

These three permissions occur for each of the following three classes of users:

• u (user/owner)

• g (group)

• o (all others; also known as world)

The r permission allows users to view or print the file. The w permission
allows users to write to (modify) the file. The x permission allows users to
execute (run) the file or to search directories.

Figure 5–1 illustrates the traditional permissions fields.

Using ACLs on Files and Directories 5–1

Figure 5–1: File and Directory Permission Fields

ZK−0536U−R

type group othersowner

rwx rwx rwx

permission

d (directory)
l (symbolic link)

c (character special file)
p (named pipe special file)
s (local socket special file)

b (block special file)

− (file)
r read
w write
x execute

The user/owner of a file or directory is generally the person who created
it. If you are the owner of a file, you can change the file permissions with
the chmod command.

The group specifies the group to which the file belongs. If you are the owner
of a file, you can change the group ID of the file with the chgrp command.

______________________ Note _______________________

If you do not own a file, you cannot change its permissions or
group ID unless you have superuser authority.

The meanings of the three types of permissions differ slightly between
ordinary files and directories. See Table 5–1 for more information.

Table 5–1: Differences Between File and Directory Permissions
Permission For a File For a Directory

r (read) Contents can be viewed
or printed.

Contents can be read, but
not searched. Normally r
and x are used together.

w (write) Contents can be changed
or deleted.

Entries can be added
or removed.

x (execute) File can be used as a program. Directory can be searched.

5–2 Using ACLs on Files and Directories

See the Command and Shell User’s Guide for a complete description of
traditional UNIX file permission bits.

5.2 Why Use ACLs?

To allow you to specify access for individuals and groups, Tru64 UNIX files
and directories can be configured with an optional attribute called the Access
Control List (ACL). An ACL can be associated with any file or directory on
systems with ACLs enabled and with file systems that support property
lists. Contact your system administrator to find out if ACLs are enabled on
your system and the file systems that you are using. See the acl(4) and
proplist(4) reference pages for more detailed information.

Files only have a single ACL associated with them. A directory can have
three ACLs associated with it. The access ACL is used similarly to the ACL
on a file. But the default ACLs, if they exists, determine the ACLs created
for descendents of the directory.

To allow maximum protection of files, an ACL extends the traditional
protection scheme in three ways:

• With separate access control specifications for individual users and
groups. Each entry in an ACL identifies an individual user or group and
associates permissions with the user or group identified.

• By limiting the permissions that can be granted to individually specified
users and groups.

• By allowing user and group permissions to be automatically specified
on file creation by the use of default ACLs on directories. If directory
hierarchies are maintained on a per-project basis, it can be useful to
establish different access controls at the directory level. You can define
default ACLs for a directory that are inherited by files and subdirectories
in that directory when they are created.

5.3 ACL Status on Your System

The system administrator can enable and disable ACLs on your machine.
When ACLs are enabled, the full functionality of ACLs is available and ACL
access checking is enforced (where appropriate).

If ACLs are disabled, you can still set and retrieve ACLs on files and
directories. However, ACLs are not validated or checked to determine access.
The ACLs commands (dxsetacl, setacl, and getacl) display a warning
message if ACLs are not enabled on your system.

Using ACLs on Files and Directories 5–3

_____________________ Caution _____________________

Disabling ACLs on the system may allow processes access to files
and directories to which ACLs disallow access. It is especially
important that systems that share files using NFS, have a
common security domain.

See your system administrator to determine if ACLs are enabled on your
system.

5.4 Setting and Viewing ACLs

The following commands display and modify ACLs:

dxsetacl A graphical interface that lists ands changes the
ACLs on files and directories.

setacl Changes the ACLs on files and directories.

getacl Lists the ACLs on files and directories.

An ACL is viewed by using the dxsetacl GUI or the getacl command. The
dxsetacl interface is found in the CDE Desktop Applications under the
Applications Manager or you can open it from the command line as follows:

% /usr/bin/X11/dxsetacl &

An ACL is created and initialized when an object is created. You can change
the ACLs on objects that you own by using the setacl command for files
and directories. These commands take as an argument ACL entries that
modify the ACL on the object.

If there is no access ACL associated with the file or directory, the standard
UNIX permission bits are shown in the ACL format. If you are attempting
to display a default ACL and there is no default ACL, an informational
message is displayed.

These commands are used in examples later in this chapter. Refer to the
dxsetacl(1),setacl(1), and getacl(1) reference pages for more detailed
information. The acl(4) reference page also contains useful information
about ACLs.

5–4 Using ACLs on Files and Directories

5.4.1 Using the dxsetacl Interface

The dxsetacl command is used to view and change ACL using a graphical
format. The dxsetacl interface is found in the CDE Desktop Applications
under the Applications Manager or you can open it from the command line
as follows:

% /usr/bin/X11/dxsetacl &

See the dxsetacl(1) reference page and the online help for dxsetacl for
more information.

5.4.2 Using the setacl Command

The setacl command is used to modify, add, and remove entries from
existing ACLs. You can set the ACL of a file only if you own the file or you
are superuser. See the setacl(1) reference page for more information.

5.4.3 Using the getacl Command

The getacl command lists the ACL on a file in a manner similar to the ls
command. See the getacl(1) reference page for more information.

5.4.4 ACLs and the ls Command

The ls -l command displays the access allowed for the owning-user, the
owning-group, and others on the file or directory. The ls -l command does
not display the access allowed or denied by the access ACL (if any). To see
the access allowed or denied by the access ACL, use the getacl command.

5.5 ACL Structure
An access control list consists of a number of ACL entries, each of which
contains three fields, as follows:

• A keyword identifying the entry type

• A qualifier field that may contain a group or user ID or name

• A permission specification

The external (printable) representation of an ACL consists of comma (,) or
newline-separated entries. The fields in the ACL entries are separated by
colons (:). The following example shows typical ACL entries:

user::rwx
user:juanita:r-w
user:sam:r-x
group::rwx
other::---

Using ACLs on Files and Directories 5–5

The ACL entry keywords and qualifiers are defined as follows:

user:: A user entry with a NULL qualifier field defines the
permissions of the user who owns the file. This entry
(called an owning-user entry) is always identical to
the user permission bits. An ACL must contain
exactly one user:: entry.

user: A user entry with a non-NULL qualifier field
defines the permissions of the user specified by the
qualifier field. The qualifier field must contain
either a username or a UID. An ACL may contain
zero or more user: entries.

group:: A group entry with a NULL qualifier field defines
the permissions of members of the group that owns
the file. This entry (called an owning-group entry) is
always identical to the group permission bits. An
ACL must contain exactly one group:: entry.

group: A group entry with a non-NULL qualifier field
defines the permissions of members of the group
specified in the qualifier field. The qualifier field
must contain either a groupname or a GID. An ACL
may contain zero or more group: entries.

other:: The other entry is only valid with a NULL qualifier.
This entry defines the permission of all users
that did not match any of the other entries in the
ACL. This entry is always identical to the other
permission bits. An ACL must contain exactly one
other:: entry.

The characters in the permissions field are the same as the characters the
ls command displays for the traditional permission bits and are in the same
order: r for read access, w for write access, and x for execute or search
access. When a hyphen (−) character is used in place of one of the other
characters, it indicates denial of that access.

Table 5–2 illustrates and explains typical ACL entries.

5–6 Using ACLs on Files and Directories

Table 5–2: Example ACL Entries
Entry Matching Criteria

group:acct:r-- Matches all users in group acct and grants
read permission.

user:joe:rw- Matches user joe and grants read and write permission.

user::rwx Matches owner of object, even if owner changes
after the file is created, and grants read, write,
and execute permission.

group::r-- Matches owning group of object, even if owning
group changes after the file is created, and
grants read permission.

other::r-- Matches all users and all groups except the owning
user and group and any other users and groups listed
in ACL entries. Grants read permission.

5.6 Access Decision Process

When a process requests access to a file or directory, the following checks are
made in the following order:

1. If the process has the superuser privilege, access to the file or directory
is granted. The access ACL and the permission bits are not checked.

2. If ACLs are not enabled, or they are enabled and there is no access ACL
associated with the file or directory, the traditional UNIX permission
bit checks are used.

3. The access ACL for the file or directory is checked as follows:

a. If the process is the owner of the object, the permissions in the
owning user:: entry are granted. Any other ACL entries are not
checked. This is identical to using the user permission bits.

b. If the UID of the process matches a UID listed in a user: entry or
resolves to a username listed in a user: entry, the permissions in
the entry are granted. Any remaining ACL entries are not checked.

c. If the GID of the process matches the GID of the file, or if one of
the supplementary groups of the process matches the GID of the
file, the process is granted the union of the permissions of the
group: entry and any matching group: entries as described in
the next list item.

d. If the GID of the process matches the GID of any group: entries, or
resolves to a groupname listed in any group: entries or if the GID
or groupname of any of the supplementary groups of the process
match any group: entries of the ACL, the process is granted the

Using ACLs on Files and Directories 5–7

union of the protections of all matching group entries. For example,
for a user belonging to group sales and group eng, if the access
ACL on a file grants read access to group sales and write access to
group eng, the user is granted read and write access to the file.

e. The permissions in the other: entry are granted. This is identical
to using the other permission bits.

The default ACLs on a directory are used for file and directory creation.
They are not used for access decisions.

______________________ Note _______________________

A file or directory with traditional UNIX permission bits and a file
or directory with an access ACL containing only the three required
entries (user::, group::, and other::) are indistinguishable.

5.7 ACL Inheritance

When a file or directory is created, it may inherit ACLs from its parent
directory. A file only has one ACL associated with it, an access ACL. The
access ACL determines access to the file as discussed in Section 5.6. A
directory can have three ACLs associated with it: an access ACL, a default
access ACL, and a default directory ACL.

5.7.1 Inheritance Matrix

The default ACLs determine what ACLs are inherited by files and
subdirectories created in a parent directory, as follows:

• If a parent directory has no default ACLs:

– A new file created in that directory is given:

ACL Type Status

Access ACL None

– A new subdirectory created in that directory is given:

ACL Type Status

Access ACL None

Default access ACL None

Default directory
ACL

None

The permission bits are set as with traditional UNIX.

5–8 Using ACLs on Files and Directories

• If a parent directory has a default access ACL, but no default directory
ACL:

– A new file created in that directory is given:

ACL Type Status

Access ACL Parent’s default access ACL

– A new subdirectory created in that directory is given:

ACL Type Status

Access ACL Parent’s default access ACL

Default access ACL Parent’s default access ACL

Default directory
ACL

None

• If a parent directory has no default access ACL, but does have a default
directory ACL:

– A new file created in that directory is given:

ACL Type Status

Access ACL None

– A new subdirectory created in that directory is given:

ACL Type Status

Access ACL Parent’s default directory ACL

Default access ACL None

Default directory
ACL

Parent’s default directory ACL

• If a parent directory has both a default access ACL and a default
directory ACL:

– A new file created in that directory is given:

ACL Type Status

Access ACL Parent’s default access ACL

– A new subdirectory created in that directory is given:

ACL Type Status

Access ACL Parent’s default directory ACL

Default access ACL Parent’s default access ACL

Default directory
ACL

Parent’s default directory ACL

Using ACLs on Files and Directories 5–9

Setting the default ACLs on a directory does not modify the ACLs on files
and subdirectories that already exist in the directory.

5.7.2 ACL Inheritance Examples

Some examples of ACL inheritance follow:

• Assume that the directory foo contains no default ACLs, and the
following command is issued to give foo a default access ACL:

% setacl −d −u user::rw-,group::r--,other::r--,user:jdoe:rw−\
foo

Any file or directory that is created within the directory foo now inherits
the following ACL as the access ACL:

#
file: foo
owner: smith
group: system
#
user::rw-
user:jdoe:rw-
group::r--
other::r--

• Assume that the directory foo contains no default ACLs, and the
following command is issued to give foo a default directory ACL:

% setacl −D −u user::rw-,group::r--,other::r--,\
user:jdoe:rwx foo

Any directory that is created within the directory foo now inherits the
following ACL as the access ACL, as well as its default directory ACL:

#
file: foo
owner: smith
group: system
#
user::rwx
user:jdoe:rwx
group::r--
other::r--

• Assume that the directory foo contains no default ACLs, and the
following commands are issued to give foo a default access ACL and a
default directory ACL:

% setacl −D −u user::rw-,group::r--,other::r--,\
user:jdoe:rw− foo

5–10 Using ACLs on Files and Directories

% setacl −d −u user::rw-,group::r--,other::r--,\
user:wilson:rwx foo

Any directory that is created within the directory foo now inherits the
following ACL as the access ACL as well as the default directory ACL:

#
file: foo
owner: smith
group: system
#
user::rw-
user:jdoe:rw-
group::r--
other::r--

The following ACL would be inherited as the default access ACL:

#
file: foo
owner: smith
group: system
#
user::rw-
user:wilson:rwx
group::r--
other::r--

Any file created in directory foo now inherits the following ACL as the
access ACL:

#
file: foo
owner: smith
group: system
#
user::rw-
user:wilson:rwx
group::r--
other::r--

At a minimum, each ACL contains three entries:

• One for the owning-user

• One for the owning-group

• One for the other entry

These entries correspond to the traditional permission bits for the file or
directory. If ACLs are enabled and you use the chmod command to change
the traditional permission bits of a file or a directory, chmod also makes
the appropriate changes to the access ACL for the owning user, the owning
group, and the other entry.

Using ACLs on Files and Directories 5–11

To change the group, use the chgrp command. If you do not own the file or if
you do not belong to the new group, you must become superuser to change
the group name or group ID. To change the owner, use the chown command.
To change the ownership of a file, you must be superuser.

When a file or directory is created, the owner and group are set in the same
manner as without ACLs. The owner is set to the owner of the process
creating the file. The group is set to the group of the parent directory if the
mount option grpid is set on the file system. If the directory is set setgid,
then the directory’s gid is always used. If the directory is not setgid and
the nogrpid option is set, then the egid of the process is used.

5.8 Interaction of ACLs with Commands, Utilities, and
Applications

ACLs are a POSIX and System V compatible extension to UNIX based
on POSIX P1003.6 Draft 13. Not all existing commands, utilities, and
applications properly use or propagate ACLs, especially applications that
are not from Compaq or applications that are not POSIX compliant. If you
use any command, utility, or application to access or manipulate a filesystem
object (file or directory) that has an ACL, you must check the ACL after
completion to make sure that the ACL has not been removed or changed.

Many programs that modify files use the following process:

• Create the new version of the file with a temporary name

• Delete the existing version of the file

• Rename the new version from the temporary name to the real name.

When the file being modified has an ACL and the program does not replicate
the ACL when creating the temporary version of the file, the above procedure
will delete the file’s ACL, or replace it with the default access ACL of the
parent directory (if it has one). If you use such a program on a file with an
ACL, you have to restore the ACL afterwards. This procedure also causes
any hard links to be removed from the file. Some common commands that
use this method of modifying files are:

• gzip

• compress

• emacs

A workaround is to copy the original file to a temporary file, do any
processing on the temorary file, an then use cp without the -p option to copy
back. This procedure retains the original ACL.

5–12 Using ACLs on Files and Directories

Any time that you copy a file with an ACL, you should use the cp -p
command. This will properly copy the ACL and any other extended attribute
(property list).

For more information on writing or modifying programs to work properly
with ACLs, see the acl(4) reference page and Chapter 21. For information
on how ACLs interact with the archiving tools (tar, pax, and cpio), see
Section 11.6. Until UNIX variants conform to a standard representation
for ACLs, and the base utilities are converted to preserve ACLs, it is the
user’s responsibility to keep files protected. The permission bits on all
newly created objects can be set by using umask or default ACLs. As with
traditional UNIX discretionary file attributes, the burden of protecting files
is on the user.

______________________ Note _______________________

Compaq recommends that you use restrictive traditional
permissions, such as other::--- and group::---, and then
grant access to individual users with user entries. If an ACL is
lost, unintended access is not allowed .

Using ACLs on Files and Directories 5–13

Part 2
Administrator’s Guide to Security

6
Introduction for Administrators

The Tru64 UNIX operating system with the optional enhanced security
subsets installedcan be configured to meet the C2 security requirements
as defined in the Orange Book. When the enhanced security subsets are
installed and configured to meet C2 security requirements, the system is
referred to as a trusted system. This chapter defines a trusted system and
the requirements that the system was designed to satisfy. It introduces the
terms and security concepts that are fundamental to system security, and
it summarizes the major features of the system security policy enforced by
the trusted system. This chapter also summarizes the major characteristics
of the system, including its primary databases, subsystems, resource
configuration files, and outlines the administrative roles and functions
necessary to maintain a trusted system.

6.1 Frequently Asked Questions About Trusted Systems

When considering the use of a trusted system, some important questions
are frequently asked:

• What is the performance impact of running a trusted system? Users are
often concerned that enhancing a system’s security features will hinder
its usability by slowing down processing.

• Will a trusted system unnecessarily restrict an ordinary user’s ability
to accomplish their work?

• Can any UNIX system, including Tru64 UNIX, be secure? Users are
sometimes skeptical that a system that has a reputation for being easy
to penetrate can be used as the basis for a trusted system.

Although the trusted system has extended the Tru64 UNIX operating system
to enforce additional security checks, the basic mechanisms of the system
remain the same. Compatibility at the binary program interface and at the
user interface have been design criteria for the trusted system. The trust
enhancements have been made to incur as small a reduction in performance
and as little unexpected system behavior as possible.

Although users will see few differences, the additional security requirements
do add overhead for the administrative staff. Not only must this staff be
familiar with the tasks involved in administering a trusted system, they

Introduction for Administrators 6–1

must also be familiar with the trusted system mechanisms so they can
understand the implications of their actions.

A knowledgeable administrative staff contributes to the security of any site.
In fact, training both the administrative staff and the users is one of the best
ways you can protect the system against penetration.

6.2 Defining a Trusted System
A trusted system is one that employs sufficient hardware and software
integrity measures to allow its use for simultaneously processing a range
of sensitive or confidential information. A trusted system can be trusted to
perform correctly in two important ways:

• The system’s operational features − in particular, its application interface
− operate correctly and satisfy the computing needs of the system’s users.

• The system’s security features enforce the site’s security policy and offer
adequate protection from threats.

A security policy is a statement of the rules and practices that regulate how
an organization manages, protects, and distributes sensitive information.
The system’s security mechanisms maintain full compatibility with existing
Tru64 UNIX security mechanisms while expanding the protection of user
and system information.

An organization carries out its security policy by running the system
as described in this manual and by adhering to the administrative and
procedural guidelines defined for the system.

Understanding the concept of a trusted computing base (TCB) is important
to understanding a trusted system. The TCB is the set of protection
mechanisms that enforces the system’s security policy. It includes all of the
code that runs with hardware privilege (that is, the kernel) and all code
running in processes that cooperate with the operating system to enforce the
security policy. The system’s TCB consists of the following parts:

• A modified Tru64 UNIX kernel. The kernel runs in the privileged
execution mode of the system’s CPU. The trusted system’s kernel
is isolated from the rest of the system because it runs in a separate
execution domain − the processor’s protected supervisor state.

• Trusted commands and utilities. The system corrects, modifies, and
adds to the Tru64 UNIX software.

A TCB is typically defined in terms of subjects and objects. The TCB
oversees and monitors interactions between subjects (active entities such
as processes) and objects (passive entities such as files, devices, and
inter-process communication mechanisms). See Appendix A for the software
part of the system’s TCB.

6–2 Introduction for Administrators

The trusted system protects a Tru64 UNIX system and its users against a
variety of threats and system compromises. The most important of these
threats are summarized in Table 6–1.

Table 6–1: Potential System Threats
Threat Effect

Data disclosure The threat of disclosure occurs when a user gains access
to information for which that user does not have a
need-to-know. Need-to-know restrictions are enforced
by the system’s discretionary access control features,
which enable users, at their own discretion, to allow
their information to be accessed by other users.

Loss of data integrity The threat of integrity loss occurs when user or system
information is overwritten − either intentionally
or inadvertently. Loss of data integrity can occur
from hardware failures (for example, disk failures)
or software failures. When a loss of data integrity
occurs, an opportunity is created for an unauthorized
user to change information that affects the ability
of the system to function properly.

Loss of TCB integrity The TCB enforces the system’s security policy. Any loss
of integrity of TCB programs and files, including the
executable copies of those programs in memory, constitutes
a compromise of the integrity of the TCB itself and can
lead to incorrect enforcement of the security policy.

Denial of service To function usefully, the system must respond to requests
for service. One way to compromise the usefulness of a
system is to cause it to fail in its ability to process work.
When denial of service occurs, users lose the ability to
access their information. Depending upon the method
of attack, the threat of denial of service can accompany
any of the other previously mentioned threats.

6.3 Enhanced Security Features

The Tru64 UNIX operating system, with the optional enhanced security
subset installed and in use, is designed to meet or exceed the requirements of
the C2 evaluation class of Department of Defense 5200.28-STD as described
in the Orange Book. The audit and ACL features can be enabled without
the optional enhanced security subsets installed. The enhanced password
features require the enhanced security subset to be installed.

6.3.1 Audit Features

Tru64 UNIX provides the following audit features:

Introduction for Administrators 6–3

• The ability to send audit logs to a remote host

• The following types of event auditing:

– Site-defined support

– System call support

– Habitat support

– Application support

• Fine-grained preselection of system events, application events, and
site-definable events

• Extensive postreduction of system events, application events, and
site-definable events

• Link-time configurability of the audit subsystem

• A per user audit characteristics profile (with enhanced I and A)

• OSF/Motif based interfaces

The audit system is set up using the audit configuration utility and
maintained from the command line or with the dxaudit GUI.

6.3.2 Identification and Authentication (I and A) Features

Enhanced security provides the following I and A features:

• Password control

– Configurable password length, up to 80 characters maximum.

– Configurable password lifetimes. This includes an optional minimum
interval between password changes.

– A dynamic minimum password length, based directly on the
Department of Defense Password Management Guideline (Green
Book) guidelines and the password lifetime or a minimum length
set by the system administrator.

– Per-user password generation flags, which include the ability to
require a user to have a generated password.

– Recording of who (besides the user) last changed the user’s password.

– Configurable password usage history (0-9 previously used passwords).

• Login control

– Optional recording of last terminal and time of the last successful
login, and of the last unsuccessful login attempt.

6–4 Introduction for Administrators

– Automatic account lockout after a specified number of consecutive
bad access attempts. In cases of system database corruption, root can
still log into the console (/dev/console).

– A per-terminal setting for delay between consecutive login attempts,
and the maximum amount of time each attempt is allowed before
being declared a failed attempt.

– A per-terminal setting for maximum consecutive failed login
attempts before locking any new accesses from that terminal.

• Ownership for pseudoaccounts. This allows a way to differentiate
auditable users when two /etc/passwd entries share a UID, such as
uucp and uucpa.

• A notion of whether the account is “retired” or “locked.” These are
fundamentally the same as far as granting access is concerned,
but are different administratively. There is also a provision for the
auto-retirement of accounts by recording an expiration on the account
itself.

• System default values for the various I and A fields. Most default values
can be overridden on a per user basis. However, some values such as
the password expiration warning time are system-wide and cannot be
changed on a per user basis.

6.3.3 Access Control Lists (ACLs)

Traditionally, UNIX systems control a user’s access to files and directories
(file system objects) using a method of discretionary access control (DAC)
normally referred to as the permission bits. By default, Tru64 UNIX systems
are run using this untrusted method of DAC for file system objects.

ACLs provide greater granularity of file system object protection than the
default DAC protection. The level of file system object protection provided by
ACLs is required by trusted systems, but ACLs can be enabled separately
from the other security options. This allows you to tailor your system to use
only the security options that you need, instead of having to setup a fully
trusted system.

6.3.4 Integrity Features

The enhanced security option provides the capability to validate the correct
operation of hardware, firmware, and software components of the TCB. The
firmware includes power-on diagnostics and more extensive diagnostics that
can optionally be enabled. The firmware itself resides in EEPROM memory
and can be physically write-protected. It can be compared with, or reloaded
from, an off-line master copy. Compaq’s service engineers can run additional
hardware diagnostics as well.

Introduction for Administrators 6–5

The firmware can require authorization to load any operating software other
than the default, or to execute privileged console monitor commands that
examine or modify memory.

Once the operating system has been loaded, you can run system diagnostics
that validate the correct operation of the hardware and software. In
addition, test suites are available to ensure the correct operation of the
operating system software.

You can use the following tools to detect inconsistencies in the TCB software
and databases:

fverify The fverify program reads subset inventory
records from standard input and verifies that the
attributes for the files on the system match the
attributes listed in the corresponding records.
Missing files and inconsistencies in file size,
checksum, user ID, group ID, permissions, and file
type are reported.

authck The authck program checks both the overall
structure and internal field consistency of all
components of the authentication database. It
reports all problems it finds.

6.3.5 Security db Utilities

A customized version of the Berkeley Database (Berkeley DB) is embedded
in Tru64 UNIX to provide high-performance database support for critical
security files. The DB includes full transactional support and database
recovery, using write-ahead logging and checkpointing to record changes.
In the event of catastrophic failure, the security database can be restored
to its last transaction-consistent state by restoring the database files and
rolling the log forward.

The following database management utilities are included with Enhanced
Security:

db_archive Displays the enhanced security database log files no
longer involved in active transactions that can safely
be backed up and deleted to regain space on /var.

db_checkpoint Flushes memory, writes a checkpoint record to the
log and flushes the log to disk.

db_load Reads from a file or standard input and loads into a
database.

6–6 Introduction for Administrators

db_unload Unloads the database into a file.

db_stat Displays the security database statistics.

db_recover Restores the database to a consistent state after
an unexpected failure.

In general, the security database is loaded or unloaded only by installation
utilities. While the database has been designed to minimize database
administration tasks, the addition of security database log files does
present the possibility of log files expanding to fill /var. Thus, the security
configuration utility includes an option that creates a cron job to periodically
delete log files no longer involved in active transactions.

6.4 Graphical Administration Utilities

The following graphical utilities help you deal with the day-to-day security
administration on your local machine:

dxaccounts The Account Manager in the Common Desktop
Environment (CDE) or the dxaccounts program
from the command line allows you to create and
modify all user accounts, and to modify the system
defaults. You can find the Account Manager under
the Application Manager → System_Admin →
System_Management_Utilities → Daily_Admin →
Account Manager.

dxaudit Use the dxaudit GUI to manage the audit system
mask of events to audit. It can also be used to
generate audit reports. The dxaccounts GUI can
set a per user audit mask. Administrators have the
flexibility to configure the audit subsystem without
the requirement of installing additional security
features.

You can find the Audit Manager GUI under the
CDE Application Manager → System_Admin →
System_Management_Utilities → Daily_Admin
→ Audit Manager. The Audit Manager can
also be started from the command line with the
/usr/tcb/bin/dxaudit command.

Introduction for Administrators 6–7

dxdevices Use the dxdevices program to configure devices.
The Devices GUI is started from the command line
with the /usr/tcb/bin/dxdevices command.

dxsetacl Use the dxsetacl program to view and set
ACLs on files and subdirectories. The Devices
GUI is started from the command line with the
/usr/tcb/bin/dxsetacl command.

For more details about starting the GUIs from the command line, see the
dxaccounts(8), dxaudit(8), and dxdevices(8) reference pages.

6.4.1 Installing and Configuring Enhanced Security

Before security can be configured, the enhanced security subsets
(OSFC2SEC510 and OSFXC2SEC510) must be installed on your system.
See the Installation Guide for more information.

System administrators can select the optional C2 security features that are
required for their system. You do not have to configure all the features. The
default security level consists of object reuse protection, traditional UNIX
passwords, and discretionary access control; by running the secconfig
command, you can select the security features appropriate for your system.
The secconfig utility is found in CDE under Application Manager →
System_Admin → System_Managent_Utilities → Configuration → Security.
The secconfig utitlity can also be run from the command line.

The audit subsystem is configurable at kernel link time, regardless of the
security level of the system. Auditing is initially configured using the
sysman auditconfig utility. The identification and authorization (I and
A) features are configured at boot time, so that the system administrator can
configure the security level of the system. ACLs are enabled and disabled
using the secconfig utility or the sysconfig command.

6.5 Administrating the Trusted Operating System

An administrator of a trusted system is responsible for overseeing many
additional security functions such as the following:

• Setting up security databases

• Monitoring the security and integrity of the system

• Auditing security-related events and maintaining the system’s audit
functions

• Performing miscellaneous administrative tasks associated with protected
subsystems

6–8 Introduction for Administrators

6.5.1 Traditional Administrative Roles

An important difference between a nontrusted and a trusted Tru64 UNIX
system is in the area of system administration. An effective administrator
must understand the system’s security policy, how it is controlled by the
information entered into the system’s security databases, and how any
changes made in these databases affect user and administrator actions.

______________________ Note _______________________

On a trusted systemTru64 UNIX, the traditional security
administrative roles may be performed by the same person.
Trusted Tru64 UNIX does not support sysadmin and isso
accounts. An administrator logged in as root can use the
dxaccounts, dxaudit , and dxdevices interfaces to set up,
modify, and maintain accounts and administer the security
aspects of the system.

Administrators must be aware of the sensitivity of the information being
protected at a site − the degree to which users are aware of, willing, and able
to cooperate with the system’s security policy, and the threat of penetration
or misuse from insiders and outsiders. Only vigilance and proper use of the
system can keep the system secure.

Table 6–2 summarizes these major roles and their associated responsibilities
in the system. The sections that follow describe these responsibilities in
greater detail.

Table 6–2: Traditional Administrative Roles
Role Major Responsibilities

Information Systems
Security Officer

Sets system defaults for users, maintains
security-related authentication profile parameters,
modifies user accounts, administers the audit
subsystem, assigns devices, and ensures
system integrity.

System administrator Creates user accounts, creates and maintains file
systems, and recovers from system failures.

Operator Administers line printers, mounts and unmounts file
systems, and starts up and shuts down the system.

Role association, coupled with sophisticated auditing features, enables a site
to maintain accountability for administrative actions. This helps to prevent
security problems and makes other problems easier to identify and solve.

Introduction for Administrators 6–9

6.5.1.1 Responsibilities of the Information Systems Security Officer

______________________ Note _______________________

On a trusted Tru64 UNIX system, responsibility for all of these
traditional roles can be assumed by one person. An administrator
with root privilege can perform any of the duties usually assigned
to an ISSO.

The information systems security officer (ISSO) is primarily responsible
for managing security-related mechanisms. The ISSO controls the way
that users log in and identify themselves to the system. The ISSO must
cooperate with the system administrator when performing security-related
tasks; the system’s checks and balances often require that each perform a
separate part of a total task (for example, account creation). The following
list describes specific ISSO responsibilities:

• Performs device assignment. Assigns devices (terminals, printers, and
removable devices, such as floppy disk and magnetic tape). Specifies the
appropriate operational parameters for these devices. (See Chapter 8.)

• Modifies user accounts. After accounts have been established by the
system administrator, sets up authentication profiles reflecting the level
of trust placed in those users. (See Chapter 9.)

• Audits system activity. Selects the security-relevant events that are to
be audited by the system. Enables and disables auditing, sets audit
parameters, produces reports, and regularly reviews audit data. (See
Chapter 10.)

• Ensures system integrity. Ensures the integrity of the system by
periodically running the authck program to check the integrity of
the security databases and files critical to the correct operation of the
system. (See the authck(8) reference page and Chapter 12.)

All of the ISSO functions, except integrity checking, can be performed using
the Account Manager (dxaccounts interface). To perform ISSO functions,
you must have root privileges and be logged on as root.

6.5.1.2 Responsibilities of the System Administrator

The system administrator is primarily responsible for account creation and
disabling, and for ensuring the internal integrity of the system software
and file systems. The system administrator also shares with the ISSO the
responsibility for day-to-day user account maintenance.

The following list describes specific system administrator responsibilities:

6–10 Introduction for Administrators

• Creates user accounts. All accounts created by the system administrator
have the default characteristics established by the ISSO for the system.
Once an account has been created, the ISSO can modify that account,
changing individual users’ authentication profiles as appropriate. (See
Chapter 9.)

• Creates groups. Creates new groups as part of user account creation.
These groups are used by the system’s discretionary access control
mechanism. (See Chapter 9.)

• Modifies ISSO accounts. As an additional system security feature,
the ISSOs are not authorized to modify their own authentication
profiles .Instead, the system administrator performs this function. (See
Chapter 9.)

• Creates file systems. Creates and maintains file systems by running
programs such as newfs and fsck. See the System Administration
manual and the newfs(8) and fsck(8) reference pages for details.

• Creates and maintains ACLs on the file systems. (See Chapter 11.)

• Restores the system files and users’ files in the event of accidental
deletion.

The system administrator creates user accounts and creates groups with the
Account Manager (dxaccounts) interface.

To perform system administration functions, you must have root privileges
and be logged on as root.

6.5.1.3 Responsibilities of the Operator

The operator is primarily responsible for ensuring that day-to-day hardware
and software operations are performed in a trusted fashion.

The following list describes some specific operator responsibilities:

• Administers line printers. Enables and disables printers and performs
other printer maintenance operations.

• Starts and shuts down the system. Boots the system, changes system
run levels, and halts the system, when necessary.

• Mounts and unmounts file systems.

• Performs backups and file restorations.

To perform the operator functions, you must have root privileges and be
logged on as root.

Introduction for Administrators 6–11

6.5.2 Protected Subsystems

Protected subsystems are collections of programs and resources that are
grouped together by function and are important pieces of the TCB. They
may or may not need privileges to accomplish their function. The system
provides mechanisms for unified auditing within a protected subsystem.
Administration of the includes performing subsystem administration tasks,
and assuring proper installation and continued operation of the subsystem.

The components of a protected subsystem are protected with the group ID of
the group allowed access rights to the programs and data in the subsystem.
The only way for a user to access the subsystem information is by running
programs in the subsystem.

The subsystem programs are set-group-ID (SGID) on execution to the
subsystem’s group. This method is also used in untrusted Tru64 UNIX
systems. All of the subsystems have been modified to meet security and
accountability requirements.

The system provides common mechanisms for implementing all of the
protected subsystems, including the following:

• Ensuring that the subsystem databases are not corrupted

• Enforcing isolation between users

• Producing audit records

Table 6–3 summarizes the protected subsystems.

Table 6–3: Protected Subsystems
Database Location Contents

Protected
password

/tcb/files/auth.db
/var/tcb/files/auth.db

User authentication database

System
defaults

/etc/auth/system/default Default values for database
fields

Terminal
control

/etc/auth/system/ttys.db Security information about
each terminal

File control /etc/auth/system/files Protection attributes of each
system file

Device
assignment

/etc/auth/system/devassign Device-specific controls

6.5.2.1 Enhanced (Protected) Password Database

The protected password database stores the enhanced authentication profile
for each user who has an account on the system. Each profile contains
information such as the following:

6–12 Introduction for Administrators

• User name and ID

• Encrypted password

• User’s audit characteristics

• Password generation parameters

• Successful and unsuccessful login times and terminals

The enhanced (protected) password database is located in the file
/tcb/files/auth.db.

See the prpasswd(4) reference page for more information on the contents of
the enhanced password database.

6.5.2.2 System Defaults Database

The system defaults database stores default values for database fields.
These defaults are used when the administrator does not set explicit values
in the enhanced (protected) password database, terminal control database,
or device assignment database.

The system defaults database contains information such as the following:

• Default password generation parameters

• Default number of unsuccessful login attempts allowed per user

• Default number of unsuccessful login attempts allowed per directly
connected terminal

• Default device assignment parameters

More information on the contents of the system defaults database located
in /etc/auth/system/default can be found in the default(4) reference
page.

6.5.2.3 Terminal Control Database

The terminal control database contains information that the administrator
uses to control login activity at each terminal attached to the system. The
system uses this database as an aid in controlling access to the system
through terminals. The administrator can set different policies for logins at
different terminals, depending upon the site’s physical and administrative
needs.

Each entry in the terminal control database contains information such as
the following:

• Terminal device name

• User ID and time stamp of the last successful login attempt from this
terminal

Introduction for Administrators 6–13

• User ID and time stamp of the last unsuccessful login attempt from
this terminal

• Delay imposed between login attempts from this terminal

• Number of unsuccessful attempts that can be made before locking this
terminal

When the system is installed, the terminal control database contains an
entry for the system console. The ISSO modifies these initial values during
system setup. A corresponding entry, also initially installed, is required in
the device assignment database before logins are allowed.

For more information about the contents of the terminal control database
located in /etc/auth/system/ttys.db, see the ttys(4) reference page.
Procedures for adding terminals are described in Chapter 8.

6.5.2.4 File Control Database

The file control database contains information about the protection
attributes of system files (that is, files important to the TCB’s operation).
This database helps maintain the integrity of the TCB. It contains one entry
for each system file.

Each entry in the file control database contains the following information:

• Full pathname of the file

• File owner and group

• File mode and type

• Potential and granted privilege sets

• Access control list

When the system is installed, the file control database contains entries for
all security relevant system files. The ISSO does not need to modify this
database during system setup and rarely needs to update it during system
operation. Chapter 12 describes how to check the integrity of the database
and modify it if necessary.

For more information about the contents of the file control database located
in /etc/auth/system/files, see the files(4) reference page.

6.5.2.5 Device Assignment Database

The device assignment database contains information about devices that are
used to exchange data with users. Each login terminal must have an entry
in the device assignment database. The system uses this database as an aid
in restricting the security attributes of data that can be sent or received
through the system’s devices.

6–14 Introduction for Administrators

Each entry in the device assignment database contains information that
describes a device and that relates the device pathname to the appropriate
physical device. This is necessary because a number of distinct pathnames
can refer to the same physical device. For example, two pathnames can
refer to the same serial port − one with modem control enabled and the
other with modem control disabled.

Each entry in the device assignment database contains information such
as the following:

• Device pathname

• Other pathnames referencing the same physical device

• Device type

Entries referring to login terminals must have corresponding entries in the
terminal control database.

The device assignment database is located in /etc/auth/system/devas-
sign. See the devassign(4) reference page and Chapter 8for details

6.6 Enhanced Security in a Cluster Environment

All the features of Tru64 UNIX enhanced security are available in a cluster
environment. In some cases the setup and configuration is different than
a noncluster environment. The security configuration procedure is also
different depending whether enhanced security is being enabled on an
already running cluster or whether the cluster is being installed. In all
cases, enhanced security runs across all machines in the cluster and is
seen as a single enhanced security environment also known as a common
security domain. See Appendix G for more information on enhanced security
in a cluster.

6.6.1 Installation Time Configuration

If you are installing the operating system on the first member of cluster, you
need to completely set up your security environment before installing the
TruCluster Server software. The security configuration, as well as other
configuration data, will be propogated to other members as they come up.
Chapter 7 explains how to set up enhanced security on a system not in a
cluster.

If you are installing the operating system on member of cluster other than
the first system, the enhanced security environment will be inherited
from the existing systems in the cluster when the TruCluster software is
installed. Chapter 7 explains how to set up enhanced security on a system
not in a cluster.

Introduction for Administrators 6–15

6.6.2 Postinstallation Configuration

If you are enabling enhanced security on systems already running in a
cluster environment, you need to setup enhanced security from a single
machine and then reboot every machine in the cluster.

6–16 Introduction for Administrators

7
Setting Up the Trusted System

This chapter lists the security-related tasks that must be completed after
installation and before the trusted system is ready for general use, and refers
to other chapters and to reference pages that explain how to accomplish
the tasks.

7.1 Installation Notes
Before the enhanced authentication mechanism and other enhanced security
features can be set up, the Tru64 UNIX installation or update must be
completed and the optional enhanced security subsets (OSFC2SEC510 and
OSFXC2SEC510) must be installed. If you plan to enable the password
triviality checks, you also need to ensure that the OSFDCMTEXTxxx subset
is installed.

The installation procedures for the optional security subsets are found in
the Installation Guide.

After the security subsets are installed, you will see a message like the
following:

Configuring "C2-Security " (OSFC2SEC510)

Configuring "C2-Security GUI " (OSFXC2SEC510)

The message refers to the installation process, not the security configuration
and setup. The secconfig utility is used to configure or set up the
enhanced authentication mechanism and ACLs. The audit subsystem is a
kernel option and is set up with auditconfig.

7.1.1 Full Installation

A full installation of Tru64 UNIX (either advanced or basic) brings up the
system with only a root accounts. Run the secconfig script before adding
accounts.

7.1.2 Update Installation

If you are updating your system from previous version ofTru64 UNIX, all
user accounts and databases are preserved, and running the secconfig
program converts them to the enhanced security format.

Setting Up the Trusted System 7–1

7.2 Segment Sharing

Because of the page table sharing mechanism used for shared libraries,
the normal file system permissions are not adequate to protect against
unauthorized reading. For example, user joe has the following shared
library:

-rw------- 2 joe staff 100000 Sep 18 1997 /usr/shlib/foo.so

When this shared library is used in a program, the text part of foo.so may
be visible to other running processes even though they are not running as
user joe. Only the text part of the library, not the data segment, is shared
in this way.

To disable all segmentation and avoid any unauthorized sharing, answer
“yes” when secconfig asks if you want to disable segment sharing. The
secconfig script reports when segment sharing is already disabled.

______________________ Note _______________________

Disabling segment sharing can cause excessive memory use.

7.3 Installation Time Setup for Security

Enhanced security is included on CDE’s Installation Checklist and can be
configured at installation time. When you select Security, the secconfig
utility is run to configure the enhanced authentication mechanism (enhanced
security) and the ACL subsystem. The audit subsystem is configured as a
kernel option. (Use the auditconfig utility to complete the setup of audit.)

If you are installing Tru64 UNIX from a console, you will find the audit
subsystem listed as kernel configuration option. It can be selected and
built into the kernel during the initial system configuration. (Use the
auditconfig utility to complete the setup of audit.) Run the secconfig
utility to configure the enhanced authentication mechanism and ACLs.

Use the following procedure to set up enhanced security on a new system.

1. Verify that the enhanced security subsets (OSFC2SECxxx and
OSFXC2SECxxx) are installed. If the subsets are not installed, install
them, using the Installation Guide if you need more information.

2. Log in as root.

3. Run the interactive secconfig command and select ENHANCED
security when prompted for a security level.

4. Bring down your system to single user and reboot (your shutdown
message should inform users of the impending password changes).

7–2 Setting Up the Trusted System

The auditconfig(8) reference page describes how to set up audit. The
acl(4) reference page describes the ACL implementation and Section 11.3
describes the Tru64 UNIX ACL setup.

7.4 The secconfig Utility

The secconfig utility is an interactive program that allows you to toggle
the security level on your system between BASE and ENHANCED. You can
run the program while the system is in multiuser mode. However, depending
on the security features chosen, when secconfig is complete, you may need
to change the security features, you must reboot your system.

Before you can run secconfig, you must load the enhanced security subsets
onto your system.

7.4.1 Setup Questions

Before configuring security, you need to be prepared to answer the following
questions:

• Do you want to disable segment sharing?

• Do you want to enable ACLs?

• Do you want to run auditconfig?

7.4.2 Invoking secconfig

Verify the security subset installation and invoke secconfig as follows:

/usr/sbin/setld −i | grep SEC
OSFC2SEC510 installed C2-Security (System Administration)
OSFXC2SEC510 installed C2-Security GUI (System Administration)

sysman secconfig

shutdown −r now

7.5 Configuring Security Features

You can configure security features individually or you can enable all the
security features.

7.5.1 Configuring Audit

You can run the audit subsystem without installing the security
subsets. Configure the Audit Subsystem kernel option and then run the
auditconfig utility to configure audit. The auditconfig utility includes
the kernel build procedures. See the auditconfig(8) and doconfig(8)
reference pages for more information.

Setting Up the Trusted System 7–3

7.5.2 Configuring ACLs

You can run the ACL subsystem without installing the optional enhanced
security subsets. ACL processing is now dynamically enabled and disabled
using the sysconfig command or the secconfig utility. See the
sysconfig(8) reference page and Section 11.3 for more information.

7.5.3 Configuring Enhanced Authentication with NIS

Running the secconfig command creates an enhanced user profile for each
user on the system. If the user accounts are local, the passwords are expired
and the users must enter a new password the next time they log in.

If the machine has a password database served by NIS (Network
Information Service), secconfig asks if you want to create a local enhanced
authentication profile for each user in the NIS server password database.
If you do, see Chapter 9 for a description of how to distribute the enhanced
authentication database with NIS. Subsequent changes in NIS passwords
are not propagated to the database. The enhanced passwords now on the
local machine are expired and users must enter a new password the next
time they log in.

If you change the security level back to BASE security, the enhanced
authentication profile files are left in place. When you return to ENHANCED
security, as long as there is an enhanced authentication profile file and it
contains a password, the enhanced password is updated.

You can use the edauth utility to view specified databases.

7.5.4 Authentication Features Configuration

Enhanced security provides the ability to specify system default values
that apply to users, terminals, and devices. Thus, an administrator
is not required to replicate values when they are all the same. The
following sections briefly describe some common defaults and how you can
configure them. The system defaults are stored in the default database
at /etc/auth/system/default.

This database can contain four types of fields:

• System wide fields that exist only in the default database. These fields
are prefixed with a d_.

• User default fields, whose values can be overridden by the corresponding
fields in a user’s profile. These fields are prefixed with a u_.

• Terminal control fields, whose values can be overridden by the
corresponding fields in the terminal control database. These fields are
prefixed with a t_.

7–4 Setting Up the Trusted System

• Device assignment fields, whose values can be overridden by the
corresponding fields in the device assignment database file. These fields
are prefixed with v_.

The dxaccounts GUI can modify the default fields for users by going to
Local Templates→Default. The dxdevices GUI can modify the default
fields for devices. The edauth utility provides a lower-level interface to all
of the default fields.

See the authcap(4) reference page for a description of the file format and
field values, the edauth(8) reference page for use of edauth, and the
default(4), prpasswd(4), ttys(4), and devassign(4) reference pages for
complete descriptions of the various fields and an interpretation of values.

7.5.4.1 Aging

If you do not want password aging on your system, in the default database
set u_exp and u_life to 0, and then (because of the way the default
methods of determining length restrictions on passwords work based on the
password lifetime) also set u_minchosen and u_maxchosen to appropriate
values for the site.

An example entry could be as follows:

:u_exp#0:u_life#0:u_minchosen#5:u_maxchosen#32:\

7.5.4.2 Minimum Change Time

You can remove the minimum change time interval by setting the u_minchg
field to 0 as follows:

:u_minchg#0:\

This allows users to immediately change their password after a previous
password change.

7.5.4.3 Changing Controls

The password-changing controls can be configured to your site’s needs. By
putting the following fields in the default database, you allow users to
select how their passwords are chosen:

:u_pickpw:u_genpwd:u_genchars:u_genletters:u_restrict:\
:u_policy:u_nullpw:u_pwdepth#0:\

(Of those, u_pwdepth is numeric and the rest are Boolean. A Boolean field
is true if it is specified and false if it is followed by an @.)

Setting Up the Trusted System 7–5

7.5.4.4 Maximum Login Attempts

In breakin detection, consective login failures are counted and compared to a
maximum for a user (u_maxtries) or for a terminal (t_maxtries). If the
maximum is exceded, then logins to the user account or the terminal are
disabled for a time period specified by u_unlock or t_unlock. To disable
breakin evasion for user accounts, set u_maxtries to 0. To disable for
terminals, set t_maxtries to 0. The default database entry for users
would be as follows:

:u_maxtries#0:\

7.5.4.5 Time Between Login Attempts

If the default evasion time (86400 seconds or 24 hours) is not appropriate
for your site, change the u_unlock field to an appropriate value for your
site (number of seconds before a success is recognized after the last failure,
once the u_maxtries limit is reached). Setting the u_unlock field to 0
(:u_unlock#0:) sets the time between log in attempts to infinity (no
automatic reenabling occurs). The equivalent behavior for terminals is
controlled by t_maxtries.

7.5.4.6 Time Between Logins

You can set system wide maximum allowable time between log ins in the
u_max_login_intvl field of the default database.

The system default log in timeout for terminals can be changed in the
t_login_timeout field of the default database. It can also be set in the *
entry of the ttys database. This field should be 0 (infinite) for X displays.

7.5.4.7 Per-Terminal Login Records

If you do not want to record per-terminal log in successes and failures, set the
d_skip_ttys_updates Boolean field in the default database as follows:

:d_skip_ttys_updates:\

This has the sideeffect of disabling any further per-terminal breakin evasion.

7.5.4.8 Successful Login Logging

Strict C2 security requires the logging of successful logins. To disable this
logging, set the d_skip_success_login_log Boolean field as follows:

:d_skip_success_login_log:\

7–6 Setting Up the Trusted System

7.5.4.9 Failed Login Logging

Failed login attempts to user accounts are normally recorded. To disable this
logging, which also disables breakin detection and evasion system wide, set
the d_skip_fail_login_log Boolean field as follows:

:d_skip_fail_login_log:\

7.5.4.10 Automatic Enhanced Profile Creation

Setting the d_auto_migrate_users Boolean field allows the creation
of enhanced profiles at login time if they are missing, so that traditional
methods of adding user profiles can be used without change.

7.5.4.11 Vouching

You can set the d_accept_alternate_vouching field to allow enhanced
security and DCE to work together.

7.5.4.12 Encryption

If you want the user passwords to stay in the /etc/passwd file to support
programs that use crypt() to do password validation, but still want to use
other features of enhanced profiles, put the following entry in the default
database before running secconfig:

:u_newcrypt#3:\

This corresponds to the AUTH_CRYPT_C1CRYPT value from the <prot.h>
file.

7.6 System Administrator Tasks

On a Tru64 UNIX system the root account is used to perform both system
administration and ISSO tasks. The system administrator traditionally
performs the following tasks using the Account Manager (dxaccounts)
program:

• Creates groups.

• Creates accounts for users.

• Verifies that the file systems containing users’ home directory are
mounted. You do not need to create the directories themselves.

See Chapter 9 and the dxaccounts(8) reference page for more information.

Setting Up the Trusted System 7–7

7.7 ISSO Tasks

On a Tru64 UNIX system the root account is used to perform both system
administration and ISSO tasks. The ISSO traditionally performs the tasks
described in the following sections using the Account Manager (dxaccount
program).

7.7.1 Check System Defaults

The ISSO checks that the following general defaults and account defaults
conform to the site’s security policy:

• The user password policy (whether users can pick their own passwords,
what type of passwords the system generates, and so on)

• The login controls for accounts, such as the maximum number of
unsuccessful attempts

7.7.2 Modifying a User Account

The ISSO modifies the accounts of any users who have fewer restrictions or
more restrictions than the defaults.

If users’ accounts are locked by default when they are created, you need to
unlock the accounts before users can login. Depending on the procedures
established at your site, you may want to unlock all accounts when created
or unlock them when the users are ready to login for the first time.

See Chapter 9 for more information.

7.7.3 Assigning Terminal Devices

Use the dxdevices program to perform the following device-assignment
tasks:

• Sets the device defaults.

If terminal devices are locked by default, you need to unlock them before
users can login.

See Chapter 8 and the dxdevices(8) reference page for more information.

7.7.4 Setting Up Auditing

The ISSO performs the following tasks to set up the audit system:

• Specifies whether auditing is enabled or disabled when the system boots.

• Specifies which events should be audited.
See Chapter 10 for more information.

7–8 Setting Up the Trusted System

7.8 Backing the System Up

Make a backup copy of the root file system as a precaution. All the files that
have been modified during system setup will be copied.

The backup can be made by using one of the following commands (dump only
works on UFS file systems):

dump −0uf /dev/rmt0h /

or

vdump −0Nuf /dev/rmt0h /

Substitute the appropriate tape device for your system.

Setting Up the Trusted System 7–9

8
Creating and Modifying Secure Devices

The Information System Security Officer (ISSO) is traditionally responsible
for assigning the devices that are included in the system’s trusted computing
base (TCB) and for defining the security characteristics of those devices. On
a Tru64 UNIX system root access is required to assign devices. The trusted
Tru64 UNIX system supports terminals as part of the TCB. This chapter
describes how to define those devices in a secure system.

8.1 Defining Security Characteristics

The ISSO traditionally defines the security characteristics of all the
terminals that are part of the system using the dxdevices program. To do
this, the ISSO performs the following tasks:

• Creates and maintains device-specific information. The ISSO can
override system defaults for an individual device, where appropriate, to
grant additional rights or to impose additional restrictions. The ISSO
can also lock a terminal to prevent use.

• Sets default control parameters for the devices that are included in the
system’s secure configuration. The system defaults for terminals are
as follows:

– Maximum number of unsuccessful login attempts is 10.

– Login timeout as shipped is unset, which implicitly defaults to 0
which is treated as infinite.

– Delay between unsuccessful login attempts is 2 seconds.

The ISSO is usually responsible for ensuring that all device assignments,
whether they are set explicitly or by default, conform to a site’s security
requirements.

Before you create or modify a secure device, all of the typical device
installation procedures required during ordinary system hardware and
software installation must be completed. The special files for devices must
exist in the /dev directory and have the appropriate permissions. The
special files for terminals must be owned by root, have the group set to
tty, and have the mode set to 0620.

Creating and Modifying Secure Devices 8–1

You can verify that the installation has been completed with the ls
command. The following example is typical:

ls −lg /dev/tty*

crw---------- 1 root tty 0, 2 Aug 15 09:29 /dev/tty00

crw---------- 1 root tty 0, 3 Aug 15 09:29 /dev/tty01

8.1.1 Modifying, Adding, and Removing Devices with the dxdevices
Program

Using the Devices dialog box, select the Modify/Create dialog box then the
Select devices dialog box. To add or remove a device, first select or enter the
device, then click on File to make the required changes. To modify a device,
first select the device, then click on Modify to make the required changes.
See the online help for dxdevices for more information.

8.1.2 Setting Default Values with the dxdevices Program

Using the Devices dialog box, select the Defaults dialog box. Set the system
defaults for all of your terminals as required. A terminal uses these defaults
unless specifically overridden by settings in the Modify Terminal dialog box.
See the online help for dxdevices for more information.

8.2 Updating Security Databases

When you assign device defaults or device-specific parameters, the system
updates the following security databases:

• The system defaults database, /etc/auth/system/default, contains
the default values (for example, default control parameters) for all
system devices.

• The device assignment database, /etc/auth/system/devassign,
contains device-specific values for system devices.

• The terminal control database, /etc/auth/system/ttys.db, contains
device-specific values for authentication (for example, the number of
failed login attempts).

Each device to be used in your secure configuration must have an entry
in the device assignment database. This database centralizes information
about the security characteristics of all system devices. It includes
the device pathname and type. By default a wildcard entry exists for
terminals (but not X displays) in the /etc/auth/system/ttys.db and
/etc/auth/system/devassign databases.

8–2 Creating and Modifying Secure Devices

The X display entries shipped on the system have :t_login_timeout#0:
entries in them, in case a site changes its system default login timeout. If
wildcard X display entries are needed, they can be created as follows:

echo \
\’*\:*:t_devname=*\:*:t_login_timeout#0:t_xdisplay:chkent:\’ \

| /tcb/bin/edauth -s -dt

echo \’*\:*:v_type=xdisplay:chkent:\’ | /tcb/bin/edauth -s -dv

Creating and Modifying Secure Devices 8–3

9
Creating and Maintaining Accounts

Accounts are created and maintained on a system using the Account
Manager (dxaccounts) GUI or the useradd, usrmod, userdel
command-line utilities. This chapter describes how to create and maintain
local accounts under enhanced security. It also describes how to configure
the Network Information Service (NIS) and how to use NIS to create and
maintain distributed accounts under enhanced security.

9.1 Authentication Subsystem

The authentication subsystem verifies that users who log in to the system
have the required password. It is the framework in which processes,
protected subsystems, and the kernel work together to ensure that only
authorized users and their processes gain access to the system.

The system administrator is responsible for ensuring that all user
authorizations, whether they are set explicitly or by default, conform to a
site’s security requirements.

The authentication subsystem uses and maintains the following security
databases. These databases contain parameters and statistics for the
system, for users, and for terminals. For a summary of the contents of these
databases, see Chapter 17 and the appropriate reference pages:

• Password file (passwd(4))

• Protected Password database (prpasswd(4))

• System Defaults database (default(4))

• Terminal Control database (ttys(4))

• File Control database (files(4))

• Device Assignment database (devassign(4))

9.1.1 Local User Account Databases

The following sections describe the local (not associated with NIS)
authentication databases.

Creating and Maintaining Accounts 9–1

9.1.1.1 Local Database: Base Security

Base (BSD) security is the traditional level of security that is available on
UNIX systems. Tru64 UNIX is configured in base security by default. The
local base user account files are /etc/passwd and /etc/group. The data
in these files is used to allow or deny a user access to the system and to
files on the system.

Each line of /etc/passwd contains information about one user account.
An entry contains the user name, UID, password, shell, and user identity
information (traditionally referred to as GECOS data).

The passwd command changes a user’s base password. The useradd,
userdel, and usermod commands are used by the system manager to add
and change user account information. The vipw command, which performs
some consistency checks, can be used to directly edit the /etc/passwd file.

The /etc/group file contains group information. The groupadd,
groupdel, groupmod, and groups commands are used to manipulate local
base group information.

9.1.1.2 Local Database: Enhanced Security

Enhanced security is a Tru64 UNIX option that provides many additional
security features for user accounts. It is configured using the secconfig
utility after installing the optional enhanced security subsets. A system
running enhanced security has a local user account database in addition
to /etc/passwd. This database, sometimes called the enhanced
(protected) password database, is composed of /tcb/files/auth.db and
/var/tcb/files/auth.db. The /tcb/files/auth.db database contains
accounts such as root that must be accessible in single-user mode, while
/var/tcb/files/auth.db contains the majority of accounts.

The database has an entry for each user account defined in /etc/passwd.
Under enhanced security, /etc/passwd remains unchanged except for the
encrypted password, which moves from /etc/passwd into auth.db. The
other fields in the /etc/passwd file (shell, GECOS information, and so
forth) remain in /etc/passwd and are used in a normal fashion.

The enhanced security user account database uniquely identifies a user by
username and UID, which must match the user’s /etc/passwd entry. In
addition to the encrypted password, an entry contains a set of fields and
values used only by enhanced security. The prpasswd(4) reference page
describes these fields, and the authcap(4) reference page describes the file
format.

A user account can be associated with a template account, which can be used
to specify default values for a group of users. An account is always finally

9–2 Creating and Maintaining Accounts

associated with the system default template values that are contained in the
/etc/auth/system/default file.

The passwd command changes a user’s password under enhanced security.
The dxaccounts program or the useradd, usermod, and userdel
commands are used by the system manager to add, change, and delete user
account information.

9.1.1.3 Templates For User Accounts

A user’s entry in the enhanced security user account database is called his
profile. Security-aware programs interpret the fields and values in a profile.
A user profile need not contain every possible field. If a field is not specified
in a user’s profile, the system looks in the template account associated with
the user, and finally in the system default template, until it finds a value
for the field.

Values are obtained as follows:

• If the user profile contains a user-specific value, that value is used.

• If the user profile contains a reference to a template account, and no
user-specific value is defined, the value in the template account is used.

• If neither the user profile nor the template account defines a value for a
field and the system default template defines a value for that field, the
system default template value is used.

• If the value is defined nowhere else, a static system default value is
used for the field.

The system default template values are located in the /etc/auth/sys-
tem/default file and can be modified using the dxaccounts View Local
Template option, or with the edauth utility. Other template accounts are
stored in auth.db. Note that template accounts have no corresponding
/etc/passwd entry.

9.1.2 Distributing User Account Databases with NIS

The following sections review the account databases and their relationships
under NIS.

9.1.2.1 Distributed Databases: NIS and Base Security

NIS can be used to distribute all or part of the base user account database
to systems across the network. With NIS and base security you have two
user account databases:

• The local base user account database in /etc/passwd and /etc/group.

Creating and Maintaining Accounts 9–3

• The NIS-distributed, base user account database is generated from the
/var/yp/src/passwd and /var/yp/src/group files located on the
NIS master server. These files, called NIS maps, are distributed in ndbm
or btree format.

The entries in the NIS-distributed base user account database have the
same fields as the /etc/passwd file entries.

A user’s account information may be partially distributed. If the user’s
entry in the /etc/passwd file has a leading plus sign (+), both databases
are read, but the information from the /etc/passwd file (except for the
UID and GID fields) overlays the information from the NIS distributed user
account database.

The /etc/passwd file on each client system must contain a +: as the last
entry in the file to allow users from the NIS distributed base user account
database to log in.

Table 9–1: Controlling NIS With Local /etc/passwd Overrides
Symbol Description

+: If a user is not found in the local file, authenticate
using the NIS file.

+username Local file field overrides NIS. Used for
partial distribution.

-username User is excluded from all matches by local control.

+@netgr: List of users to authenticate using the local file.
See the netgroup(4) reference page.

-@netgr: List of users to refuse using the NIS file. See
the netgroup(4) reference page.

+:*: Sends all password requests to the NIS map.

The passwd command changes the password in the local base user account
database only. The NIS-distributed password is changed with the yppasswd
command.

NIS user accounts can be modified using the dxaccounts View NIS User
option, or by specifying the -x distributed=1 local=0 options to
the useradd, usermod and userdel utilities. In addition, the system
administrator can modify the NIS map source files in /var/yp/src and
manually rebuild the maps using the makefile in /var/yp.

9.1.2.2 Distributed Databases: NIS and Enhanced Security

NIS can be used to distribute part or all of the enhanced security user
account database, as well as part or all of the BSD user account database.

9–4 Creating and Maintaining Accounts

When you are running NIS over enhanced security you have four user
account databases:

• The local base user account database in /etc/password and
/etc/group.

• The NIS-distributed base user account database generated from the
/var/yp/src/passwd and /var/yp/src/group files on the master
server and distributed as ndbm or btree maps.

• The local enhanced security user account database.

• The NIS-distributed enhanced security user account database generated
from the /var/yp/src/prpasswd file on the master server and
distributed as btree maps.

ZK−1087U−AI

NIS Server

Network

NIS Client Running
Enhanced Security

/var/yp/src/prpasswd

/etc/svc.conf

prpasswd

/tcb/files/auth.db

/var/tcb/files/auth.db

/etc/passwd

/etc/group

/var/yp/src/passwd

/var/yp/src/group

The auth= entry in the /etc/svc.conf file indicates the order in which
the local and NIS enhanced security user account databases are searched
for user entries, either local first or NIS (yp) first.

The plus sign (+) override feature for /etc/passwd entries works as usual.

Creating and Maintaining Accounts 9–5

______________________ Note _______________________

When upgrading from a base security system with NIS to an
enhanced security system, the secconfig utility only creates
auth.db entries for NIS users (the +username entries in the
/etc/passwd file) if you answer yes to the Create Entries for
NIS Users question.

There is no override feature for the enhanced security user account
database. A user’s profile is contained completely in either the local
database or in the NIS distributed data base. Although templates can be
defined for NIS accounts and distributed as part of the NIS enhanced
security maps, NIS does not distribute the system default template
(/etc/auth/system/default). This template provides the final default
values for fields not specified in a user’s profile. Therefore, under enhanced
security, a NIS client uses its own /etc/auth/system/default file to
obtain final default values for both local and NIS user profiles. If the client
system default file contains different values than that of the NIS master,
unintended behavior can occur.

The passwd command changes the password in a user’s local or NIS
enhanced security entry. The yppasswd command changes the fields in the
NIS-distributed base user account database as usual.

NIS user accounts can be modified using the dxaccounts View NIS User
option, or by specifying the -x distributed=1 local=0 options to the
useradd, usermod, and userdel utilities.

9.1.2.3 Templates for NIS Accounts

The /var/yp/src/prpasswd file is the source for enhanced security user
accounts distributed by NIS. It can contain template profiles as well as
normal user profiles. As with a local user profile, a NIS user profile need not
contain every possible field. If a field is not specified in a NIS user’s profile,
the system looks in the NIS template account associated with the user, and
finally in the local system default template, until it finds a value for the field.

Values are obtained as follows:

• If the user profile contains a user-specific value, that value is used.

• If the user profile contains a reference to a template account, and no
user-specific value is defined, the value in the template account is used.

• If neither the user profile nor the template account defines a value for a
field and the system default template defines a value for that field, the
system default template value is used.

9–6 Creating and Maintaining Accounts

• If the value is defined nowhere else, a static system default is used for
the field.

NIS template accounts are modified using the dxaccounts View NIS
Template option, or with the edauth utility.

The system default template values are located in the /etc/auth/sys-
tem/default file on the NIS client. Note that NIS does not distribute
the system default template. A NIS client uses its own /etc/auth/sys-
tem/default file to obtain final default values for both local and NIS user
profiles. If the client system default file contains different values than that
of the NIS master, unpredicted behavior can occur.

9.2 Using dxaccounts for User Account Administration

The traditional role for the system administrator, as it relates to accounts, is
to create and retire all user accounts, to create groups, and to modify the
account templates. On a trusted Tru64 UNIX system, the dxaccounts
program is used to create and maintain NIS and local user account
databases.

9.2.1 Creating Local or NIS Groups

To create a group, use the dxaccounts program and proceed as follows:

1. Click on the View menu.

2. Select either Local Groups or NIS Groups from the popup menu.

3. Click on the Add icon on the toolbar and add the new group.

9.2.2 Creating Local or NIS User Accounts

Use the dxaccounts program to create user accounts. Click on the View
menu item on the menu bar, select either Local Users or NIS Users from
the popup menu, click on the Add icon on the toolbar. To create many
accounts in a single session, fill in the information for a new user and
provide a password, then click on Apply to create the account. Then fill in
the information and provide a password for next user and once again click on
Apply to create the account.

By default, new accounts are created in a locked state. If the account is not
unlocked, the new user will receive an Account Disabled message when he
or she tries to log in and the login attempt fails. To avoid this, the account
can be explicitly unlocked when it is created. Optionally, it can be unlocked
at a later time using dxaccounts.

Creating and Maintaining Accounts 9–7

9.2.3 Retiring Local or NIS Accounts (Enhanced Security Only)

To retire a user account, use the dxaccounts program. Click on the View
menu, select either Local Users or NIS Users from the popup menu, select a
user account from the Current View menu, and click on the Retire icon on
the toolbar to retire the user account.

User names and UIDs associated with retired accounts cannot be reused.
To delete, rather than retire, an account under enhanced security, manual
intervention is necessary. Use vipw to remove the /etc/passwd entry for
the account, then use the edauth utility to delete the auth.db entry.

9.2.4 Deleting Local or NIS Accounts (Base Security Only)

Run dxaccounts and click on the View menu item on the menu. Select
either Local Users or NIS Users from the popup menu. Select a user account
from the Current View menu and click the Delete icon on the toolbar. This
permanently removes the account from the user account database.

9.2.5 Modifying the Local or NIS Account Template

An account template is used to establish default values for unspecified
account parameters. There are three types of account templates: NIS
templates, local templates, and the default template (which dxaccounts
groups with the local templates). When an account is created, it is assigned
the default template.

To modify an account template, use the dxaccounts program. Click on
the View item from the menu bar and select either Local Templates or NIS
Templates from the popup menu. Then double click on the desired template
in the Current View.

9.2.6 Modifying Local or NIS User Accounts

To modify an account, use the dxaccounts program. Click on the View item
from the menu bar and select either Local Users or NIS Users from the popup
menu. Then double click on the desired user account in the Current View.

9.3 Using Commands for User Account Administration

The useradd, userdel, and usermod commands can perform most required
user account administrative functions from the command line or a script.
The groupadd, groupmod, and groupdel commands provide the same
functions for groups. All of these commands share a set of defaults which
the user may modify. Two of the defaults control whether the commands
act on local or NIS user accounts. The -D option to useradd, usermod, or

9–8 Creating and Maintaining Accounts

groupadd is used to permanently change the default behavior of all the
listed commands.

The -x option can be used with useradd, userdel, usermod, groupadd,
groupmod, and groupdel commands to override the default local versus
NIS behavior. The -x distributed=1 option causes the command to make
changes on the NIS account, while the -x local=1 causes changes only
on the local account.

The reference pages for these utilities describe the available options. The
following sections primarily provide examples of common operations.

9.3.1 Creating Local or NIS Groups

To create a local group, enter the following:

groupadd -g gid new_group_name

To create a NIS group, enter the following:

groupadd -g gid -x distributed=1 new_group_name

9.3.2 Creating Local or NIS User Accounts

To create a local account with a specific UID (rather than a system-assigned
UID), create a home directory, and after you are prompted for a password,
enter the following:

useradd -u uid -m -p new_user_name
New password:
Retype new password:

To create and unlock a local account, enter the following:

useradd -x administrative_lock_applied=0 new_user_name

To create a NIS account with the next available UID, enter the following:

useradd -x distributed=1 new_user_name

By default, new accounts are created in a locked state. If the account is not
unlocked, the new user receives an Account Disabled message when they
try to log in and the log in attempt fails. To avoid this, an account can be
explicitly unlocked when it is created as shown in the previous example.

9.3.3 Retiring Local or NIS Accounts (Enhanced Security Only)

With enhanced security, accounts are retired rather than deleted. The user
names and UIDs associated with retired accounts may not be reused. The
same actions are performed whether or not the retire (-R) option is specified.

To retire a local account, enter the following:

Creating and Maintaining Accounts 9–9

userdel -R user_name

To retire a NIS account, enter the following:

userdel -R -x distributed=1 user_name

To truly delete, rather than retire, an account under enhanced security,
use vipw to remove the /etc/passwd entry for the account, then use the
edauth utility to delete the auth.db entry.

9.3.4 Deleting Local or NIS Accounts (Base Security Only)

The user names and UIDs associated with a deleted account are removed
from the /etc/passwd file.

To delete a local account, enter the following:

userdel user_name

To delete a NIS account, enter the following:

userdel -x distributed=1 user_name

9.3.5 Modifying Local or NIS User Accounts

To change the shell of a local account, enter the following:

usermod -s /bin/csh existing_user_name

To change the password of a local account, enter the following:

usermod -p existing_user_name
New password:
Retype new password:

To change the shell of a NIS account, enter the following:

usermod -x distributed=1 -s /bin/csh existing_NIS_user_name

9.4 Other Commands Associated with User Account
Administration

You can use the edauth and convuser commands to view and modify
various security databases. These commands are not intended for routine
maintenance. See the appropriate reference pages for detailed information.

edauth The /usr/tcb/bin/edauth utility can display and
modify the various enhanced security databases,
including the system default database and the user
account database. Note that it does not affect the
/etc/passwd file.

9–10 Creating and Maintaining Accounts

convuser The /usr/tcb/bin/convuser utility is not
intended for general use. It performs mass
conversions of user profiles from base to enhanced
form. While the convuser utility can also be
used to attempt to revert the user profiles from
enhanced form to base form, passwords are not
necessarily compatible and may require changing.
This command is typically used only by an update
installation and by the secconfig utility.

9.5 NIS and Enhanced Security

You can use the Network Information Service (NIS) to centralize the
management of the normal password group information and the enhanced
user profiles maintained by enhanced security in the enhanced (protected)
password database. A NIS master server can serve a mix of NIS clients,
including ULTRIX and Tru64 UNIX systems (with and without enhanced
profiles), and other manufacturer’s systems with ordinary UNIX passwords
and groups. NIS is documented in the Network Administration manual.

The following sections describe the NIS configuration that specifically affects
enhanced security.

9.5.1 Setting Up a NIS Master with Enhanced Security

If NIS is running on the master server, you must stop NIS using the
/sbin/init.d/nis stop command, then take the following steps.

1. Ensure that Tru64 UNIX Version 5.1 or higher is installed.

2. Install the security subsets and set up security. See Chapter 7 for
details.

3. Modify the system default template using the following command:

edauth -dd default

Set the following fields:

d_skip_success_login_log:
d_skip_ttys_update:

4. Create /var/yp/src/hosts, /var/yp/src/passwd,
/var/yp/src/group, and /var/yp/src/prpasswd. The files can be
empty, but should exist before you run sysman nis.

Creating and Maintaining Accounts 9–11

5. Run the sysman nis program.

a. When the sysman nis program first prompts for security (−s
option to ypbind), choose y to run ypbind −s, which specifies a
secure socket.

b. When the sysman nis program again prompts for security (−S
option to ypbind), choose y and specify a domain name and up to
four authorized slave servers.

6. Make sure that the /etc/svc.conf file has the following entry:
auth=local,yp.

7. Start NIS using the /sbin/init.d/nis start command.

9.5.1.1 Manual Procedure: Maps for Small User Account Databases

For a NIS master server supporting clients using enhanced security, a
manual procedure is best. Set up the account maps using the dxaccounts
program or alternatively the adduser, addgroup, useradd, userdel,
and usermod commands. See Section 9.5.4 for another method of setting
up accounts.

9.5.1.2 Automated Procedure: Maps for Large User Account Databases

If you have a large existing NIS distributed base user accounts database,
you can automate the creation of the NIS distributed enhanced (protected)
password database by entering the following command:

convuser -Mc

Alternatively, you can create the map by creating a /var/yp/src/prpasswd
file and then executing the following commands:

/usr/tcb/bin/edauth -Lg > /var/yp/src/prpasswd
cd /var/yp; make prpasswd

9.5.2 Setting Up a NIS Slave Server with Enhanced Security

If NIS is running on the slave server, you must stop NIS using the
/sbin/init.d/nis stop command. The following setup information is
specific to a NIS slave server supporting clients using enhanced security:

1. Ensure that Tru64 UNIX Version 5.1 or higher is installed.

2. Install the security subsets and set up enhanced security. See Chapter 7
for details.

3. Modify the system default template using the following command:

edauth -dd default

9–12 Creating and Maintaining Accounts

Set the following fields:

d_skip_success_login_log:
d_skip_ttys_update:

4. Run the sysman nis program.

a. When the sysman nis program first prompts for security (−s
option to ypbind), choose y to run ypbind −s, which specifies a
secure socket.

b. When the sysman nis program again prompts for security (−S
option to ypbind), choose y and specify a domain name and up to
four authorized slave servers.

5. Edit the /etc/svc.conf file to include a yp entry for auth. The entry
should be as follows: auth=local,yp.

6. Edit the /var/yp/ypxfr_1perday, /var/yp/ypxfr_1perhour,
/var/yp/ypxfr_2perday files to add the following lines to each:
ypxfr -a "$method" prpasswd
ypxfr -a "$method" prpasswd_nonsecure

7. Start NIS using the /sbin/init.d/nis start command.

9.5.3 Setting Up a NIS Client with Enhanced Security

If NIS is running on the slave server, you must stop NIS using the
/sbin/init.d/nis stop command. The following setup information is
specific to a NIS client using enhanced password security:

1. Ensure that Tru64 UNIX Version 5.1 or higher is installed.

2. Install the security subsets and set up enhanced security. See Chapter 7
for details.

3. Modify the system default template using the following command:

edauth -dd default

Set the following fields:

d_skip_success_login_log:
d_skip_ttys_update:

4. Run the sysman nis program.

a. When the sysman nis program first prompts for security (−s
option to ypbind), choose y to run ypbind −s, which specifies a
secure socket.

b. When the sysman nis program again prompts for security (−S
option to ypbind), choose y and specify a domain name and up to
four authorized slave servers.

Creating and Maintaining Accounts 9–13

5. Edit the /etc/svc.conf file to include a yp entry for auth. The entry
should be as follows: auth=local,yp.

6. Start NIS using the /sbin/init.d/nis start command.

9.5.4 Moving Local Accounts to NIS

To move existing local accounts to NIS, use the following command:

edauth -Lg | edauth -NsC

9.5.5 Removing NIS Support

If you need to remove the NIS support from a trusted client system, copy
the NIS accounts to the local database and then remove NIS using the
following commands on the client:

edauth -gN | edauth -sLC
sysman nis
<select the Remove option from the menu>

The enhanced (protected) password database on the client machine is
updated with any accounts from the NIS database that are not present in
the local database.

9.5.6 Implementation Notes

The following information is specific to enhanced security and NIS:

• To change your password when running NIS with enhanced security, use
the passwd command for both local and distributed enhanced (protected)
password database entries. The passwd command uses the search list in
the svc.conf file (auth=local,yp entry) and updates the password in
the first enhanced (protected) password database entry it finds for the
specified user, even if that entry is in the NIS-distributed enhanced
password database.

• It is very important that each enhanced password database entry exists
in only one database, either the local enhanced password database or the
NIS-distributed enhanced password database. The routines that check
and manipulate the enhanced password database information work on
the first copy found (as defined in the svc.conf file). NIS yp routines
work on the NIS-distributed enhanced password database only. This can
cause confusing results if you have the same entry in both places. If this
happens, delete one of the copies.

• It is strongly recommended that you do not distribute root account
information. Maintaining a local root account on a client system allows

9–14 Creating and Maintaining Accounts

you to still log in on the client systems using the root account if your
NIS server is down.

• Strict C2 security rules require an update to a user’s enhanced profile
each time that the user logs in, to maintain the last successful login
information. On a NIS master, this requires rebuilding the map and
shipping it to the slaves. Tru64 UNIX Version 5.1 makes these updates
optional. The d_skip_success_login_log system default field
controls this behavior, and Compaq recommends setting it to true.

• Although the user account database can only be modified on the NIS
master server, disabling successful login logging means that the NIS
master server does not always have to be available for logins to be
successful if there is a properly configured NIS slave server.

• Scalability improvements include:

– An update to a single entry does not always cause a rebuild of
the entire prpasswd map. The map entries are updated directly
if possible.

– If successful login logging is enabled, a successful login does not wait
for the NIS map to be distributed before completing. It only waits to
make sure that the NIS master has been updated. If unsuccessful
login logging is enabled, unsuccessful login attempts still wait for the
map to be distributed to the slave servers before completing. This is
required for security and timing issues.

• The database format for NIS maps is configurable. You can choose btree
or hash in addition to ndbm. When using ndbm for NIS map storage,
there is a limit to the number of account records that can be stored,
which depends on the mix of account names and UIDs. A typical limit
is about 30,000 entries, but some mixes of account names and UIDs
can result in a limitation of fewer than 10,000 entries. Because of this
constraint in ndbm, Compaq recommends that you use btree as your
database format, especially when using enhanced security.

• NIS servers work best with a common database format. If a slave server
has defined a different format than the master (ndbm instead of btree,
for example), the time it takes to push any maps to that slave server is
drastically increased because the slave server must rebuild its database
one element at a time, instead of receiving the database from the master
as a single entity.

• NIS slaves that are not listed in the ypservers NIS map on the NIS
master can cause performance problems for NIS clients bound to those
slaves. To solve this, define all NIS slaves in the ypservers NIS map
on the NIS master. Then, on the slave server, execute the following
commands to pull the user account databases from the NIS master:

/var/yp/ypxfr -d ‘domainname‘ -h NISMASTER -c prpasswd

Creating and Maintaining Accounts 9–15

/var/yp/ypxfr -d ‘domainname‘ -h NISMASTER -c prpasswd_nonsecure

In the example, substitute the name of the local NIS master server for
NISMASTER. This will transfer initial copies of those maps for those slave
servers.

• A login process that encounters a login failure has to check the prpasswd
map for the latest unsuccessful login information. This requires
an up-to-date prpasswd map. Thus, the yppush operation for the
prpasswd map must occur for each failed login; that map (at least) must
be pushed during the normal operation of the rpc.yppasswdd daemon.
Setting the /var/yp/Makefile variable NOPUSH is not recommended
for such configurations.

• Sites that cannot use NIS to share prpasswd information may
want to use NFS to share the /tcb/files and /var/tcb/files
directories. This requires exporting the directories with root access to
the participating nodes with -root=client1:client2:client3 or
-root=0, as appropriate. See the exports(4) reference page. It also
requires that NFS locking be enabled so that database corruption does
not occur.

9.5.7 Troubleshooting NIS

Table 9–2 discusses some common NIS problems and possible reasons for
those problems.

Table 9–2: NIS Troubleshooting
Problem Possible Reason

Successful login to a local account,
but cannot log in to any of the
NIS accounts. The dxaccounts
utility displays that the account
exists and is not locked.

1. Check the /etc/svc.conf
file and see if it contains the line
auth=local,yp.
2. Check the /etc/passwd file and
see if there is a "+:" as the last line
of the file.

Slave NIS server does not get the
updated prpasswd maps on boot.

Check the /var/yp/ypxfr_1per-
day, /var/yp/ypxfr_1perhour,
and /var/yp/ypxfr_2perday files
and verify that each contains the
lines:
ypxfr -a "$method" prpasswd
ypxfr -a "$method"
prpasswd_nonsecure

9–16 Creating and Maintaining Accounts

Table 9–2: NIS Troubleshooting (cont.)

The dxaccounts program View
popup menu does not show any NIS
User Account Database options (for
example, NIS Users, NIS Groups,
and NIS Templates).

NIS is not running or has not
been configured.

When you issue the make command
from /var/yp, you get the message
Map ’ypslaves ’ is empty for
domain ’domainname’

This is an informational message.
No action is required.

When you issue the make command
from /var/yp, you get the message
Map ’hosts.byname’ is empty
for domain ’domainname’
cant bind to master for
domainname hosts.byname no
such map in server’s domain
will use slave copy!

The hosts map does not exist.
Perform the following commands:
touch /var/yp/src/hosts
cd /var/yp
make

Creating and Maintaining Accounts 9–17

10
Administering the Audit Subsystem

This chapter describes the purpose of system auditing, how auditing is
performed, what activities should be audited, and how to read and respond
to audit reports. Responsibilities, managing events, tools, and generating
reports are also described.

10.1 Overview of Auditing

In its simplest form, auditing consists of the following:

1. An activity on the system results in the generation of an audit record.
This audit record contains information about the activity, such as what
the activity was, when it occurred, and the ID of the user who caused it.

As security manager, you decide which activities will result in the
generation of audit records. This choosing of what to audit is sometimes
called preselection.

2. The audit record is stored along with other audit records in a file, the
audit log.

3. You use a utility to select information from the audit log file and to
generate reports from that information. This process is sometimes
called post-reduction.

Figure 10–1 provides an overview of the audit subsystem.

Administering the Audit Subsystem 10–1

Figure 10–1: The Audit Subsystem

ProcessProcessProcessProcess

ZK-1582U-AI

Process

Kernel

auditd

Processes make system calls

The audit mask and object
(de)selection control the
events to be recorded into
kernel memory.

Periodic kernel buffer flushes.

Audit daemon controls
binary log file creation.

Binary format audit log files.

Auditing provides you with a powerful tool for monitoring activity on the
system. Through auditing, you can accomplish the following:

• Discourage users from attempting to violate security. A user who
knows that system activities are monitored and that security violations
can be tracked to the responsible individual might be dissuaded from
attempting to violate security.

• Detect attempts at violations or activities indicative of probing a system
for weak points. If an audit reveals failed attempts to violate system
security, you can take counter measures to lessen the likelihood of later
attempts succeeding.

• Assess damage and restore the system if a break-in should occur. Careful
analysis of an audit trail after a break-in can help you determine what
occurred during the security violation and what steps are needed to
return the system to its original state. It also allows you to take steps to
prevent similar break-ins in the future.

• Evaluating and debugging application software. The capability of audit
to monitor the completion status and arguments of system calls for a
designated process provides the ability to assess what is going on inside
an application. You can also determine which files the application is

10–2 Administering the Audit Subsystem

attempting to access even if you do not have the source code. Refer to
Section 10.14 for more information.

It is important that you inform users of the purpose and, in general terms,
the nature of the auditing performed on the system. Present auditing in
a positive light, as a tool to help protect the users’ files and their access
to system resources. This helps minimize any resentment; users who are
openly told that their system is regularly audited are less likely to feel as
though they are being spied upon. For those users who might be tempted to
violate security, knowledge that activities are monitored can be a powerful
deterrent.

To manage the audit subsystem, you perform the following tasks:

• Configure the audit system

• Select activities to be audited

• Produce audit reports

• Manage disk space used by the audit subsystem.

• Archive audit files

10.1.1 Audit Files

Table 10–1 describes the files used by the audit subsystem.

Table 10–1: Files Used for Auditing
File Name Security-Relevant Information

/var/audit/auditlog.hostname.nnn Default log file.
hostname is the name of the system that
generated the audit log.
nnn is a generation number between 000
and 999.

/var/adm/syslog.dated\
/current/daemon.log

Default log file for status messages
from the audit subsystem.

/etc/sec/audit_events A file listing all the system activities that
can have security relevance.
This file can be used as input to the
auditmask command, which controls
which events are audited on the system.

/etc/sec/site_events A file defining site-specific audit events.
It supports integrating application
auditing into the audit subsystem.

/etc/sec/event_aliases A file containing a list of aliases
that represent sets of events that
can be audited.

Administering the Audit Subsystem 10–3

Table 10–1: Files Used for Auditing (cont.)

File Name Security-Relevant Information

/etc/sec/auditmask_style A file defining audit style flags
for profiles.

/etc/sec/file_objects/* Directory containing lists of filenames
to monitor for profiles.

/etc/sec/rc_audit_events A file containing the list of audit events
to monitor. The list is loaded at system
startup, and the file is pointed to by AU-
DITMASK_FLAG in /etc/rc.config
or /etc/rc.config.common.

/etc/sec/fs_objects A list of files that are subject to audit
selection or deselection.

/etc/sec/auditd_loc A list of alternate paths and hosts where
audit logs can be stored if the current
location becomes unavailable or full.

/etc/sec/auditd_clients A list of the remote hosts that can
send their audit data to be stored
on the local system.

/cluster/members/{memb}/dev/\
audit

A CDSL required for audit on
clustered systems.

/cluster/members/{memb}/dev\
.audit/audS

A CDSL required for audit on
clustered systems.

The Tru64 UNIX audit subsystem records activities in any file at any
location chosen by the system administrator; the default log file is
/var/audit/auditlog.hostname.nnn.

10.1.2 Audit Tools

The tools for auditing on Tru64 UNIX systems can be divided into two
categories:

• The audit subsystem, which has powerful features unique to the trusted
Tru64 UNIX operating system. This is the trusted method for performing
security-relevant auditing.

• Traditional UNIX operating system logging features, such as the system
accounting files and the last command.

The audit subsystem provides a choice of the events to be logged, flexible
data reduction of the audit log, and ease of maintenance. These features can
be accessed through either a powerful command-line interface or through
an easy-to-use graphic interface that provides point-and-click operation
and on-line help.

10–4 Administering the Audit Subsystem

10.1.2.1 Command-Line Interface

The following commands are used with the audit subsystem:

sysman auditconfig Establishes the audit environment on
your system.

auditmask Selects events for inclusion in the audit
log or displays a list of events currently
being recorded in the audit log.

audgen Provides the ability, from the command
line, to generate a log record containing
a message of your choice.

auditd Activates the auditing daemon (turns on
auditing), administers audit data storage,
and configures the audit subsystem.

audit_tool Selectively extracts information from the
audit log and presents it in a readable
form.

audit_tool.ultrix Selectively extracts information from an
audit log created on an ULTRIX system
and presents it in a readable form.

Use of these commands is limited to those with superuser status.

10.1.2.2 Graphical Interface

The graphical interface to the audit subsystem is accessed using the CDE
Dashboard as follows:

System Applications→Daily Administration→Audit Manager

Configuration of the audit subsystem is done with the sysman
auditconfig command. All other activities can be handled with the
graphical interface. If you intend to use the graphical interface rather than
the command-line interface, you will want to read Section 10.4.1 for an
overview of the auditd command, but you can skip the other command-line
information in Section 10.4.

Use of the graphic interface is limited to those with superuser status.

Administering the Audit Subsystem 10–5

10.2 Basic Audit Configuration

Use the procedures in this section if you want a simple, default audit
configuration.

The audit subsystem configuration is done in two parts. The first part
configures the kernel for auditing and establishes audit log management
parameters. You select the location for the audit logs, the action that audit
takes if file space is exhausted, and for how long the audit logs are held
(forever if specified) on your system before being deleted to free disk space.
In the second part, you select the events you want to audit.

______________________ Note _______________________

Auditing must be built into your kernel. In addition to
system wide auditing, you may specify auditing of events on
a user-by-user basis by including enhanced security subset
OSFC2SEC510. The dxaudit graphical interface for audit
requires the software subset OSFXC2SEC510.

You can check to see if these subsets have been installed as
follows:

setld -i | grep "C2SEC5.."
OSFC2SEC510 installed Enhanced Security (System Administration)
OSFXC2SEC510 installed Enhanced Security GUI (System
Administration)

If the subsets do not show as installed, refer the setld(8)
reference page for information on how to install these subsets.

The following steps show you how to quickly get the audit subsystem up
and running in a simple, default configuration. The screen names that are
referenced are found in the title bar of each screen:

1. Begin by executing the sysman auditconfig command to start
configuring audit. Note that if the audit subsystem is not configured
into your system’s kernel, sysman auditconfig guides you through a
kernel rebuild.

a. Click Yes on the Welcome screen to begin configuring audit.

b. Click OK on the Information screen.

c. Accept the default for the audit log location (/var/audit/audit-
log.hostname.nnn) by clicking Next on the Log Pathname screen.

d. Accept the default for the action if log space is exhausted (Suspend
auditing until space becomes available) by clicking Next on the
Action On Log File Space Exhaustion screen.

10–6 Administering the Audit Subsystem

e. Accept the default for the audit log lifespan in months (forever),
and the hour of deletion (3) on the Log File Lifespan screen.

f. Accept the default for audit console message destination (syslog —
/var/adm/syslog.dated/current/daemon.log) by clicking
Finish Part One on the Advanced Audit Options screen.

g. Proceed to part two by clicking Yes to the question Do you wish to
proceed to part two? on the Audit Event Information screen.

2. In part two of configuring audit, you choose your auditing profile or
category. Profiles and categories are capitalized in the menu list; there
are currently six to choose from:

Profile/Category Description

Desktop Suggested minimal auditing for
a single user system.

NIS_server Suggested auditing for a system
used as a NIS server.

Networked_system Suggested auditing for a system
on a network.

Server Suggested auditing for a system that
is used as a server for networked
based applications.

Timesharing Suggested minimal auditing for
a system that is used to support
multiple interactive users.

Timesharing_extended_audit Extended auditing for a system
that is used to support multiple
interactive users.

a. Select the profile or category closest to the configuration of your
system and click Next on the Audit Event Category Selection
screen.

Note that use of the CTRL key allows the selection of more than
one category, for example Desktop and Networked_system for
a desktop system on a network. While multiple selections are
possible, use the minimum profile that meets your needs.

Accept the default list of events to be audited by clicking Next on
the Advanced User Audit Event Modification/Deletion screen.

b. Some profiles and categories include this step, otherwise skip to the
next step. Accept the default list of files to be audited by clicking
Next on the UNIX File System Objects screen. Note that this menu
item does not appear for all profiles and categories.

Administering the Audit Subsystem 10–7

c. Accept the options for audit events that have been set as a result
of the profile or category that were selected by clicking Finish on
the Advanced Options screen.

3. Complete the audit set up by clicking OK on the Audit Configuration
Complete screen.

4. Check the configuration of the audit subsystem by entering the auditd
-w command. If you took the system default, your configuration looks
like the following:

auditd -w

Audit data and msgs:
-l) audit data destination = /var/audit/auditlog.hostname.001 1
-c) audit console messages = syslog 2

Network:
-s) network audit server status (toggle) = off 3
-t) connection timeout value (sec) = 4

Overflow control:
-f) % free space before overflow condition = 10 4
-o) action to take on overflow = suspend audit 5

1 The name of the audit log.

2 The location of audit subsystem messages. Changes in the status
of the audit subsystem are recorded here.

3 Auditing across the network is not enabled (remote clients may
not log to this system).

4 Percent of remaining free space in the file system that will trigger
an audit overflow condition. In this case, 10 percent.

If the file system containing the audit log becomes 90 percentfull,
the audit subsystem takes an overflow action.

5 The overflow action is to suspend auditing until storage space is
available.

In place of alternate file systems, any directory names
specified in /etc/sec/auditd_loc are displayed.

10.3 Advanced Configuration of Audit

This section provides audit procedures to establish a customized audit
configuration. Advanced users will find pointers to more detailed information
about the configuration questions. The responses supplied in this section are
suggestions; once you become familiar with the audit configuration process,
you may want to select different responses.

10–8 Administering the Audit Subsystem

______________________ Note _______________________

The auditmask features that allow you to specify auditing of
events on a user-by-user basis require the enhanced security
subset OSFC2SEC510. The dxaudit graphical interface for
audit, requires the software subset OSFXC2SEC510.

You can check to see if these subsets have been installed as
follows:
setld -i | grep "C2SEC5.."
OSFC2SEC510 installed Enhanced Security (System Administration)
OSFXC2SEC510 installed Enhanced Security GUI (System
Administration)

If the subsets do not show as installed, refer the setld(8)
reference page for information on how to install these subsets.

The audit subsystem configuration is done in two parts. The first part
configures the audit logs your system creates. You select the location for
the audit logs, the action that audit takes if file space is exhausted, and
how long the audit logs are held (forever if specified) on your system before
being deleted to free disk space. In the second part, you select the events
you want to audit.

The following steps show you how to get the audit subsystem up and runing
in a custom configuration for your site. The screen names that are referenced
are found in the title bar of each screen:

1. In part one of the configuring audit, you execute the sysman
auditconfig command to start configuring audit.

a. Click on Yes on the Welcome screen to begin configuring audit.

b. Click on OK on the Information screen.

c. Select the audit log location (/var/audit/auditlog.host-
name.nnn) by selecting Next on the Log Pathname screen.

d. Accept the default for the action if log space is exhausted (Suspend
auditing until space becomes available) by selecting Next on the
Action On Log File Space Exhaustion screen. Refer to -o option in
the auditd(8) reference page for more information.

e. Select the audit log lifespan in months (forever), and the
hour of deletion (3) on the Log File Lifespan screen. Refer to
Section 10.6.2.1.

f. Select the audit console message destination (syslog —
/var/adm/syslog.dated/current/daemon.log) by selecting
Finish Part One on the Advanced Audit Options screen. Refer to
Section 10.8.

Administering the Audit Subsystem 10–9

g. Proceed to part two by selecting Yes to the question Do you wish to
proceed to part two? on the Audit Event Information screen.

2. In part two of configuring audit, you need to pick from a list of six profiles
or categories. The profiles set up audit style (/etc/rc.config.common
AUDITMASK_FLAG), audit events (/etc/sec/rc_audit_ events),
and files to be audited (/etc/sec/fs_objects), which are used to set
up the audit subsystem at system startup. The first letter of the profiles
are capitalized in the menu list; there are currently six to choose from:

Profile/Category Description

Desktop Suggested minimal auditing for
a single user system.

NIS_server Suggested auditing for a system
used as a NIS server.

Networked_system Suggested auditing for a system
on a network.

Server Suggested auditing for a system
that is used as a server for network
based applications.

Timesharing Suggested minimal auditing for
a system that is used to support
multiple interactive users.

Timesharing_extended_audit Extended auditing for a system
that is used to support multiple
interactive users.

a. Select the profile or category closest to the configuration of your
system and click Next on the Audit Event Category Selection
screen. Refer to Section 10.6.1.4.

Select the default list of events to be audited by clicking on Next
on the Advanced User Audit Event Modification/Deletion screen.
Refer to Section 10.6.1.

b. Select the default list of files for auditing by clicking on Next on the
UNIX File System Objects screen. Note that this menu item does
not appear for all profiles and categories. Refer to Section 10.6.1.3.

c. Select the options for audit events that have been set as a result of
the profile or category that was selected by clicking Finish on the
Advanced Options screen. Refer to Section 10.6.1 and the -s option
in the auditmask(8) reference page.

3. Complete the auditing setup by clicking OK on the Audit Configuration
Complete screen. Audit is now running.

10–10 Administering the Audit Subsystem

4. Check the configuration of the audit subsystem by entering the auditd
-w command. If you took the system default, your configuration looks
like the following:
auditd -w

Audit data and msgs:
-l) audit data destination = /var/audit/auditlog.hostname.001 1
-c) audit console messages = syslog 2

Network:
-s) network audit server status (toggle) = off 3
-t) connection timeout value (sec) = 4

Overflow control:
-f) % free space before overflow condition = 10 4
-o) action to take on overflow = suspend audit 5

1 The name of the audit log.

2 The location of audit subsystem messages. Changes in the status
of the audit subsystem are recorded here.

3 Auditing across the network is not enabled (remote clients may
not log to this system).

4 Percent of remaining free space in the file system that will trigger
an audit overflow condition. In this case, 10%.

If the file system containing the audit log becomes 90% full, the
audit subsystem takes an overflow action.

5 The overflow action is to suspend auditing until storage space is
available.

10.4 Audit Commands
The auditd, auditmask and audit_tool commands are described in
this section. The auditd and auditmask commands control the audit
subsystem. The audit_tool command generates reports from the output of
the audit subsystem.

Changes made to the audit subsystem with auditd and auditmask
commands are temporary and are reset on a system reboot.

The current system defaults for the audit subsystem are stored in the
/etc/rc.config.common file.

AUDITMASK_FLAG is used to pass command line arguments to
auditmask at system startup. AUDITMASK_FLAG sets the audit style
flags and sets auditmask to read events selected for auditing from
/etc/sec/rc_audit_events. The /etc/sec/fs_objects file contains
a list of files that have modified property lists (modified during audit
subsystem configuration) that allow the files to be monitored on object

Administering the Audit Subsystem 10–11

selection/deselection. Refer to the auditmask(8) reference page for more
information on object selection/deselection.

10.4.1 Configuring the Audit Subsystem: the auditd Command

The auditd command turns on and off the audit daemon and is used to
configure the audit daemon. Table 10–2 gives examples of uses of the auditd
command. For a complete description, see the reference page for auditd(8).

Table 10–2: auditd Examples
Configuration Task Command

Turn auditing on auditd

Turn auditing off auditd -k

Designate location of audit log auditd -l pathname

Flush the kernel audit buffer auditd -d

Configure the audit subsystem so that if a
situation should arise where the current log
cannot be written to, a new log will be started
in a different location (first, you will need
to put a list of alternate pathnames in the
file /etc/sec/auditd_loc)

auditd -o changeloc

Suspend auditing if the audit log cannot
be written to

auditd -o suspend

Halt the system if the audit log cannot
be written to

auditd -o halt

Enable the local system to accept audit data from
foreign hosts (first you must put a list of permitted
hosts in /etc/sec/auditd_clients)

auditd -s

(This command toggles network
auditing. If network auditing is
on, auditd -s turns it off. If it’s
off, auditd -s turns it on.)

10.4.2 Selecting Events to Audit: The auditmask Command

The auditmask command sets the system and process audit masks, which
determine what gets audited on the system. The following table gives
examples of uses of the auditmask command. For a complete description,
see the reference page for auditmask(8).

Selection Task Command

Display list of currently audited events
and style flag settings

auditmask

10–12 Administering the Audit Subsystem

Selection Task Command

Audit all events. This option causes
a significant degradation in system
performance.

auditmask -f

Do not audit any events. auditmask -n

Audit successes and failures of an event. auditmask eventname or
auditmask eventname:1:1

Audit only successes of an event. auditmask eventname:1:0

Audit only failures of an event. auditmask eventname:0:1

Turn off auditing of an event.
Once an event is designated for auditing,
auditing of the event continues until
explicitly turned off.

auditmask eventname:0:0

Audit events as specified in a file.
See /etc/sec/audit_events for an
example of such a file.

auditmask < filename or
auditmask < /etc/sec/rc_au-

dit_events

Audit all processes generated by
a specific user.

auditmask -a AUID-of-user

Audit file activity only for certain
files (Object Selection).

auditmask -x filename[:1|:0] or
auditmask -X /etc/sec/fs_ob-
jects[:1|:0]

See Section 10.6.1.3 for details.

Do not audit file activity for certain
files (Object Deselection).

auditmask -y filename or
auditmask -Y filelist

See Section 10.6.1.3 for details.

10.4.3 Producing Audit Reports: The audit_tool Command

Figure 10–2 illustrates how audit_tool converts binary data to an
ASCII report. The table that follows gives examples of how to use the
audit_tool command. For a complete description, see the reference page
for audit_tool(8).

Administering the Audit Subsystem 10–13

Figure 10–2: Audit Report Formats

ZK-1581U-AI

Binary format
audit logs

audit_tool

ASCII
format

Contains all records generated by the
combination of the audit mask and, if enabled,
file object (de)selection.
Flush the kernel buffer if needed using the
audit -d command.

The audit_tool utility selects requested records
from the binary log files and generates ASCII
output. Events, dates, audit ID, PID and so on
can be used as selection criteria.

Generating Audit Reports
Report Task Command

Generate a report for all
activities that occurred
during a certain time
period.

audit_tool -t start -T end auditlog

The start and end times are in the format
yymmdd[hh[mm[ss]]]. Hours (hh), minutes (mm), and
seconds (ss) are optional.

Generate a report for all
failed attempts by a specific
user to open files.

audit_tool -U username -e open:0:1 auditlog

If login is not preselected for auditing, then no user
names appear in the audit log. In this case, you can
still select for UIDs (audit_tool -u UID) or AUIDs
(audit_tool -a AUID).

Generate a report for each
audit ID (AUID) in the
audit log. The reports will
be named report.AUID.

audit_tool -R auditlog

Generate a report of all
audit records containing the
text string in a parameter
field or associated with
a descriptor.

audit_tool -s string

10–14 Administering the Audit Subsystem

Report Task Command

Generate a report of all
audit records associated
with a specific process ID.

audit_tool -p PID

Generate a report of all
audit records associated
with a specific process ID
and all the descendants
of that process.

audit_tool -p -PID

10.5 What to Audit

There are three categories of auditable events on a Tru64 UNIX system:

• System calls (including Mach events)

• Trusted events

• Site-defined events

All system calls and trusted events of possible security relevance are listed
in the file /etc/sec/audit_events .

To generate a list of all possible auditable events, including site-defined
events, and save it in the file all_auditable_events, enter the following
commands:

auditmask > original_audit_mask 1
auditmask -f 2
auditmask > all_auditable_events 3
auditmask -n 4
auditmask < original_audit_mask 5

______________________ Note _______________________

The auditmask -f command may slow down your system.

1 Save the current audit mask to the file original_audit_mask.

2 Set the audit mask to all events.

3 Save the audit mask to the file all_auditable_events.

4 Set the audit mask to no events.

5 Restore the audit mask to the original events.

Administering the Audit Subsystem 10–15

10.5.1 Trusted Events

A trusted event is an event that is associated with a security protection
mechanism; it does not always correspond directly to a system call. A list of
the trusted events follows:

audit_daemon_exit Indicates that the audit daemon exited
abnormally. This occurs only when there
is insufficient memory available during
initialization of the audit daemon. The
exit is recorded in the new audit log, and
a message is displayed on the designated
audit console.

audit_log_change Indicates that the audit daemon closed
the current audit log and began writing
a new log (for example, in response to
the auditd −x command). The change
in logs is recorded in the current audit
log, and a message is displayed on the
designated audit console.

audit_log_create Indicates that a new audit log was created
in response to the removal of the current
log file. The new file has the generation
number of the lost log file incremented by
1. The creation of the new log is recorded
at the beginning of the new audit log, and
a message is displayed on the designated
audit console.

audit_log_overwrite Indicates that the audit daemon began
overwriting the current audit log as you
specified with the −o overwrite option
to auditd. The overwrite is recorded at
the beginning of the newly overwritten
audit log, and a message is displayed on
the designated audit console.

audit_reboot Indicates that the audit daemon initiated
a system reboot (as a result of an overflow
of the log) as you specified with the
−o halt option to auditd. The reboot
is recorded at the end of the current
audit log, and a message is displayed on

10–16 Administering the Audit Subsystem

the designated audit console before the
reboot occurs.

auditconfig Indicates that the −o changeloc option
to the auditd command was used to
change the specified overflow action. The
change in the audit setup is recorded in
the current audit log.

audit_start Indicates that the audit daemon has
been started.

audit_stop Indicates that the audit daemon was
killed normally (typically, with the −k
option to auditd). The shutdown is
recorded at the end of the current audit
log, and a message is displayed on the
designated audit console when the
shutdown occurs.

audit_suspend Indicates that the audit daemon
suspended auditing (as a result of an
overflow of the log) as you specified with
the −o suspend option to auditd. The
suspension is recorded in the current
audit log, and a message is displayed on
the designated audit console.

audit_xmit_fail Indicates that the audit daemon was
sending audit records across a network
and the transmission failed. The failure
is recorded in the local log specified as the
next path in /etc/sec/auditd_loc
(with auditd −r) or the default local
path (/var/adm).

audgen8 The audgen command (a command-line
interface to the audgen() routine) was
used to generate an audit record.

auth_event An event associated with
user-authentication and the management
of user accounts occurred. Trusted

Administering the Audit Subsystem 10–17

auth_events include passwd, su, rsh,
and login. The event is recorded in the
current audit log.

login A user attempted to log-in to the system.

logout A user logged out of the system.

10.5.2 Site-Defined Audit Events

A site can define its own audit events (referred to as site-defined events).
This is useful if you want applications to generate records specific to their
activities.

Trusted application software can generate data for the site-defined events
and subevents. The data can be included in the audit logs with the system’s
audit data or stored in application-specific logs.

Both preselection and postreduction capabilities are supported for site
events. That is, you can use the auditmask and audit_tool commands on
site-defined events exactly as you do for other audit events. Postreduction
capabilities are also supported for subevents.

The system administrator must create an /etc/sec/site_events file,
which contains the event names and event numbers for the system’s site
events. The site_events file has one entry for each site-event. Each
site-event entry may contain any number of subevents.

The lowest allowed site event number is MIN_SITE_EVENT, which is
defined in <sys/audit.h>. Typically, the number is 2048. By default, up to
64 site-events can be defined. However, this upper limit can be increased
up to a maximum 1,048,576.

To change the upper-limit for the allowed number of site events, add an
entry in the /etc/sysconfigtab file. For example, to allow up to 5000
site-defined events, use the sysconfigdb command to add the following
lines to /etc/sysconfigtab:

sec:
audit-site-events=5000

Then reboot the system.

Once /etc/sec/site_events has been set up, applications can use the
audgenl() library routine to generate application-specific audit data.

Programming information about providing application-specific auditing is
found in the reference page for audgenl(3).

10–18 Administering the Audit Subsystem

10.5.3 Dependencies Among Audit Events

Some information in the audit log is based on previously audited events.
For example, the LOGIN event associates a login name with a real UID
(RUID). Subsequent occurrences of that RUID (for a given process) can
then be associated with a login name. Such data is called state-dependent
information. The following three audit records illustrate state-dependent
information. The first record shows a successful open() of /etc/passwd,
returning a value of 3:

audit_id: 1621 ruid/euid: 0/0 (username: root)
pid: 23213 ppid: 23203 cttydev: (6,1)
procname: state_data_test
event: open
char param: /etc/passwd
flags: 2 : rdwr
vnode id: 2323 vnode dev: (8,1024) [regular file]
object mode: 0644
result: 3 (0x3)
ip address: 16.153.127.241 (alpha1.sales.dec.com)
timestamp: Wed Nov 10 17:49:59.93 1993

The following record shows the result of an ftruncate() system call for the
/etc/passwd file with state-dependent information. The state-dependent
data currently associates the file name /etc/passwd with descriptor 3
for this process:

audit_id: 1621 ruid/euid: 0/0 (username: root)
pid: 23213 ppid: 23203 cttydev: (6,1)
procname: state_data_test
event: ftruncate
vnode id: 2323 vnode dev: (8,1024) [regular file]
object mode: 0644
descriptor: /etc/passwd (3)
result: 0
ip address: 16.153.127.241 (alpha1.sales.dec.com)
timestamp: Wed Nov 10 17:49:59.96 1993

If state-dependent data is not being maintained, you would see only that
the ftruncate() system call was against descriptor 3 (vnode ID = 2323,
dev = 8,1024):

audit_id: 1621 ruid/euid: 0/0 (username: root)
pid: 23213 ppid: 23203 cttydev: (6,1)
event: ftruncate
vnode id: 2323 vnode dev: (8,1024) [regular file]
object mode: 0644
descriptor: 3
result: 0
ip address: 16.153.127.241 (alpha1.sales.dec.com)
timestamp: Wed Nov 10 17:49:59.96 1993

Administering the Audit Subsystem 10–19

Table 10–3 lists state-dependent information and the audit events required
to maintain it.

Table 10–3: State-Dependent Information
To get this state-dependent
Information...

...audit these events

login user name login

process name execv, execve, exec_with_loader

file name open, socket, bind, dup,
dup2, fcntl

current directory chdir, chroot

The exit() system call informs audit_tool that it no longer needs
the state-dependent information for the exiting process. This allows
audit_tool to run faster.

If you are not interested in state-dependent data, you do not need to audit
exit(), and use the −F option to the audit_tool program for fast mode.

See the audit_tool(8) reference page for more information.

10.6 Managing the Volume of Audit Data

The audit subsystem is capable of generating and collecting large amounts
of data. Therefore, it is important for the system administrator to place
reasonable limits on the data being generated by the audit subsystem, and to
monitor the growth of the audit log data stored on system. This monitoring
is needed to make sure that audit logs stored online do not grow to fill the
file system and cause a denial of service situation.

10.6.1 Before the Audit Data Is Collected

The audit subsystem provides the following features that allow the system
administrator to preselect events for auditing and to easily change those
preselections:

• Audit masks and control flags

• Event aliases

• Object selection and object deselection

10–20 Administering the Audit Subsystem

10.6.1.1 Audit Masks and Control Flags

Audit masks determine which events are audited. There are two kinds of
audit masks:

system audit mask Applies to all processes on the system.

process audit mask Applies to a specific process.

A special case of the process mask is the login process
mask. The login process mask for a user is stored in
the password database (/tcb/files/auth.db) in
the u_auditmask field.

When the auditmask is set for a user login process,
at user login, that audit mask is applied to the
login process, and all offspring processes inherit
that auditmask.

The per-user auditmask feature, which allows you to
specify auditing of events on a user-by-user basis,
requires that enhanced security be configured and
active.

Audit Control Flag

The audit control flag mediates the interaction between the system audit
mask and the process audit mask. Figure 10–3 illustrates how the system
and process masks interact.

Administering the Audit Subsystem 10–21

Figure 10–3: System and Process Audit Mask Interaction

ZK-1583U-AI

Audit
or

Enhanced security adds the capability of per user audit masks
which can be used in conjunction with the system audit mask.
Logical operations are used to derive the result of the masks.
The default is audit_or. User audit masks are stored in the trusted
password database and are most easily added by dxaudit.

Stat() event
system mask

0
succeed

0
fail

Stat() event
user mask

0
succeed

1
fail

Stat() event
resultant mask

0
succeed

1
fail

The audit control flag regulating system mask and process mask interaction
can be set from the dxaudit program found on the CDE Dashboard, as
follows:

Application Manager→Daily Administration→Audit Manager→ Collection→
Modify Active Process Mask

From the command line, set the system mask and process mask interaction
using the auditmask -c command as follows:

Interaction between system audit
mask and process mask

Control flag value for auditmask -c

Generate audit record for an event
if either the system mask or process
mask specifies the event

auditmask -c or

Generate audit record for an event only
if both the system mask and process
mask designate the event.

auditmask -c and

No auditing for this process auditmask -c off

Generate audit records based only
on the process audit mask

auditmask -c usr

User Process Control Flag

In the case of a user’s login-process mask, the u_auditcntl field in the
user’s entry in the enhanced (protected) password database stores the value
for the control flag.

10–22 Administering the Audit Subsystem

The control flag for a user’s login process is set with the dxaccounts program
found on the CDE Dashboard, as follows:

Application Manager→Daily Administration→Account Manager→Security
Attributes→Login Process Mask

10.6.1.2 Event Aliases

An event alias groups multiple audit events events under a single name. You
define an event alias in the file named /etc/sec/event_aliases. The file
consists of a series of alias definitions. Each definition has the following
format:

[alias: event[:success:failure] [event[:success:failure] ...]]

An event can be a system call, trusted event, site event, or another alias.
The success and fail notation is the same one used for auditmask and
audit_tool. Continuation lines are allowed.

A few carefully defined event aliases can provide a wide range of auditing
coverage, allowing you to easily change auditing preselection.

Event aliases are selected for auditing just as any other event — with the
auditmask command or the Audit Manager graphical interface.

See /etc/sec/event_aliases for an example of an alias file. The
Tru64 UNIXTru64 UNIX event aliases and profiles are defined in this file.
Compaq reccommends that you add your own aliases to the end of the
/etc/sec/event_aliases file.

10.6.1.3 Object Selection and Deselection

The object selection and deselection modes provide another preselection
mechanism designed to help administrators audit specifically those
operations of interest to them. The file object selection and deselection
mechanism provides a further level of granularity for events which operate
on files.

Events such as mount and reboot affect system state. Data access events,
such as open and stat, act on files. Although reboot attempts might
always be security relevant, not all file open events are (depending on the
site security model).

Object selection and deselection let you chose which files do (selection) or
do not (deselection) result in audit records when those files are objects of
data access operations.

The data access operations that can be selected or deselected are:

read open close
link lseek access

Administering the Audit Subsystem 10–23

stat lstat dup
open revoke readlink
fstat pre_F64_stat pre_F64_lstat
dup2 pre_F64_fstat readv
pread getdirentries stat
lstat fstat _F64_readv

Object selection and deselection work as follows:

Selection The object selection mode provides the ability to specify a set of
files for which selected events are audited, while those same
events on other files are not audited. In the selection mode,
audit records are generated only when an event is selected and
either that event is acting on a selected file or not acting on
any file.

For example, you can flag the /etc/passwd and /.rhosts
files, enable object selection, and audit the open system call.
This causes an open on /etc/passwd and /.rhosts to be
audited while an open on /tmp/xxxx files is not audited.

Deselec-
tion

The file deselection mode provides the ability to specify a set of
files for which specific selected events are not audited, while
those same events on other files are audited. The events
that may be deselected are data access operations (no data
modifications). File open’s for write or truncate access are
examples of file modification.

In the deselection mode, audit records are generated for
selected events, unless all files operated on by the system call
are deselected and the operation is a data access. So, if you are
auditing stat and unlink, and the file foo is deselected, then
a stat of foo would not be audited, but an unlink of foo
would be audited (the unlink is not a data access operation).
The result is that it is now possible, for example, to not audit
accesses to the /usr/shlib/libc.so library, but still audit
open’s of the /etc/passwd file.

Audit selection and deselection do not reduce the auditing of processes for
which auditmask -c usr was specified (the value of the audit control
flag is AUDIT_USR).

Using object selection and deselection requires the following three steps:

1. Decide which file or files you want to apply object selection or deselection
to. If you want to apply selection or deselection to more than one file,
you can create a file that is a list of file names (complete path names),
one file name per line.

10–24 Administering the Audit Subsystem

2. Set the audit style either to Object Selection or Object Deselection as
appropriate:

From Audit Manager: Collection→Audit Style

From the command line: auditmask -s obj_sel or auditmask -s
obj_desel

3. Activate object selection and deselection as follows:

Object selection for one file:

auditmask -x filename

Object selection for a series of files listed in a file named filelist:

auditmask -X filelist

Object deselection for one file:

auditmask -y filename

Object deselection for a series of files listed in a file named filelist:

auditmask -Y filelist

The following are examples of how to enable the selection of a file for audit:

auditmask −s obj_sel
auditmask −q /etc/passwd
selection: off deselection: off -- /etc/passwd
auditmask −x /etc/passwd
selection: off => on -- /etc/passwd
auditmask −q /etc/passwd
selection: on deselection: off -- /etc/passwd

The following example shows how to disable the selection of a file for audit:

auditmask -x /etc/passwd:0

The following example shows how to deselect a list of files:

auditmask −s obj_desel
cat desel_file
/etc/motd
/etc/fstab
/etc/passwd
auditmask −Q desel_file
selection: off deselection: off -- /etc/motd
selection: off deselection: off -- /etc/fstab
selection: off deselection: off -- /etc/passwd
auditmask −Y desel_file
deselection: off => on -- /etc/motd

Administering the Audit Subsystem 10–25

deselection: off => on -- /etc/fstab
deselection: off => on -- /etc/passwd

The status of the object selection and deselection flags for a file list can be
displayed from the CDE dashboard as follows:

1. Select Application Manager→Daily Administration→Audit
Manager→Modify System Mask→Current→Edit →Object
Selection/Deselection.

2. Under File, select /etc/sec/fs_objects.

3. Under File, select List of Files.

4. Settings are not applicable.

5. Click on Query.

Although the system object selection and object deselection audit styles are
mutually exclusive, it is possible for any one object to be subject to both
models simultaneously on different systems (across NFS). The proplistd
daemon needs to be running to transfer attributes across NFS.

10.6.1.4 Audit Profiles and Categories

Audit profile and categories provide a method to consolidate the parameters
that define what is monitored by the audit subsystem and group that
information under a profile. For this section the terms profile and categories
are considered synonymous. Profiles are made up of of three parts:

Audit style
information

Located in /etc/sec/auditmask_style under
the Profile: label. Refer to the reference page
auditmask(8) under the -c option for a descriptions
of the valid audit style characteristics.

Audit events to be
monitored

Located in /etc/sec/event_aliases under the
Profile: label.

Files to be monitored The list of files is in the /etc/sec/file_ob-
jects/Profile file. Monitoring is performed
by setting the appropriate object selection and
deselection flags. Information in /etc/sec/audit-
mask_style determines which flags are set. This
file is optional and does not need to exist if the audit
style defined in /etc/sec/auditmask_style does
not include obj_sel or obj_desel.

The following profiles are defined:

10–26 Administering the Audit Subsystem

Profile Description

Desktop Suggested minimal auditing for a single user system.

NIS_server Suggested auditing for a system used
as a NIS server.

Networked_system Suggested auditing for a system on a network.

Server Suggested auditing for a system that is used as
a server for network based applications.

Timesharing Suggested minimal auditing for a system that is
used to support multiple interactive users.

Timesharing_extended_audit Extended auditing for a system that is used to
support multiple interactive users.

______________________ Note _______________________

You should audit the logout() event. This makes the
audit_tool program run faster when reducing audit data.

During phase two of the audit configuration, the auditconfig utility takes
the information from the user-specified Profile, modifications to the audit
style information, and the events to be audited list (the files to monitor list
cannot be changed by the auditconfig). When you have completed the
selections, the auditconfig does the following:

• Modifies AUDITMASK_FLAG in /etc/rc.config.common

• Writes the /etc/sec/rc_audit_events file

• Writes the /etc/sec/fs_objects file

10.6.1.5 Audit Subsystem Startup Defaults

The system startup defaults for the audit subsystem are stored in
AUDITMASK_FLAG in the /etc/rc.config.common file. This field is
used to pass command line arguments to auditmask at system startup.
AUDITMASK_FLAG sets the audit style flags and sets auditmask to read
the events selected for auditing from the /etc/sec/rc_audit_events
file. The /etc/sec/fs_objects file contains a list of the files that have
property lists that were modified during the audit subsystem configuration
to allow the file to be monitored with object selection and deselection. Refer
to the auditmask() reference page for more information on object selection
and deselection.
/etc/rc.config.common AUDITMASK_FLAG

Can be modified with rcmgr, sysman auditconfig or with the Audit
Manager through the CDE Dashboard.

Administering the Audit Subsystem 10–27

/etc/sec/rc_audit_events

Can be modified using a text editor, sysman auditconfig, or with
the Audit Manager through the CDE Dashboard.

/etc/sec/fs_objects

Modification of /etc/sec/fs_objects requires care. This file
contains the only easily available list of files that have the object
selection and deselection flags set in the file’s property list. Any
files that the system administrator needs to set the object selection
and deselection flag on, should be included in this file. The
/etc/sec/fs_objects file can be modified by using system
auditconfig.

The procedure for manually modifying this file is as follows:

___________________ Caution ___________________

While this procedure is being performed, your system may
be vulnerable.

1. Execute the following commands to reset the object selection and
deselection flags in the property list:

auditmask -X /etc/sec/fs_objects:0
auditmask -Y /etc/sec/fs_objects:0

2. Modify the /etc/sec/fs_objects file using a text editor.

3. If obj_sel is in AUDITMASK_FLAG, use:

auditmask -X /etc/sec/fs_objects:1

If obj_desel is in AUDITMASK_FLAG, use:

auditmask -Y /etc/sec/fs_objects:1

10.6.2 After the Data Has Been Collected

After the audit log data has been collected, it is important to have a
structured archival procedure for the audit log files. Many of the applications
that use the audit log data need to locate and analyze data that can be
several months old.

10.6.2.1 Audit Log Trim Procedures

The sysman auditconfig utility provides a method for periodically
deleting the binary audit logs using a root cron job. This feature is disabled
by default. If enabled, the system administrator should provide for periodic
audit log file backup before each cron job run.

10–28 Administering the Audit Subsystem

The “Audit log lifespan in months” dialog box reflects both the monthly cycle
on which the deletion will execute and the criteria for the deletion. The
deletion always occurs on the first of the month; the hour is adjustable, but
the minute is hardwired to zero. A binary audit log is deleted when all the
audit events it contains are older than the deletion execution date minus
the “Audit log life span in months”.

For example, to create a cron job that runs on the second, fourth, and sixth
months on the first day of the month at 3:00AM, enter the following:

"Audit log lifespan in months" = "every second month"
"Hour of deletion(0-23)" = "3"

Binary log files that contain entries that are all at least two months old are
deleted at cron execution.

10.7 Stopping Audit
The audit daemon can be terminated using either of the following commands:

rcmgr -c delete AIDITMASK_FLAG
rcmgr -c delete AIDITD_FLAG

or

auditmask [-cluster] -n
auditd [-cluster] -dk

10.8 Auditing Across a Network

If you have computers linked in a TCP/IP network, you can run the audit
daemon on multiple systems and feed the information logged to a single
system (the audit hub) for storage and analysis, as follows:

1. On the host that is to be the central collecting point for audit information
(the audit hub), create the file /etc/sec/auditd_clients. Each line
in this file must have the name of a remote host that will be feeding
audit data to the local audit daemon.

2. On the audit hub, enter the following command to enable the audit hub
to receive audit data from audit daemons on remote hosts specified in
the /etc/sec/auditd_clients file:

/usr/sbin/auditd −s

3. On each remote host, direct the audit data to the system that is the
audit hub with the following command:

/usr/sbin/auditd −l audit_hub_name:

If communication is broken with the audit hub and it can no longer
receive data, the local daemon stores the audit data locally, as specified
with the −o and −r flags to auditd.

Administering the Audit Subsystem 10–29

4. On the audit hub, you can set options for remote audit daemons as
follows:

auditd [-p ID_of_daemon_serving_remote_host
options_for_remote_daemon]

For example, to set the audit log location to /var/audit/NYC_Sys1 for
the remote host served by the audit daemon with ID 6:

/usr/sbin/auditd −p 6 −l /var/audit/NYC_Sys1

The ID’s of audit daemons serving remote hosts are integers. To learn
the ID’s, use the command:

/usr/sbin/auditd −w

When feeding audit data from remote hosts to an audit hub, direct the audit
data from each remote host into its own, dedicated audit log file on the hub
system. This is necessary to prevent corruption of audit data, and is done by
default.

When you use the audit tool to retrieve data from these logs of audit data
from remote systems, the first and last audit log entries may be fragments
rather than complete entries. This can happen if the communications
channel is not cleanly terminated or if the auditd remotely receiving the
data is forced to switch log files. This is because remote audit information is
fed in a continuous stream to the audit hub, rather than as discrete audit
entries.

The audit tool notifies you when it encounters a fragmented entry. This does
not affect the retrieval of other records from the audit log.

10.9 Contents of Audit Records

All audit records, whether originating from system calls, trusted events,
site-defined events, or the audgen command include, at a minimum, the
following elements. The only exception is that if a login is not completed,
audit_id: does not appear.

audit_id: ruid/euid:
pid: ppid: cttydev:
event:
result:
ip address:
timestamp:

audit_id: The Audit ID (AUID). The AUID is associated
with a user at login and should remain unchanged
throughout the login session. Processes started by

10–30 Administering the Audit Subsystem

the user will have the AUID associated with them.
The AUID is not affected by use of the su command
to change user IDs.

AUID and LUID (login UID) are synonyms.

Note that a malicious process that gains root access
can use setluid() to change its audit ID. To monitor
such a privileged process, enable monitoring of the
security system calls. A setluid() call is identified
in the audit record for the security() by the first
argument being 0x3. Both the original and new
audit IDs are available from the audit record. The
original audit ID is saved as the result code (return
value) and the new audit ID is the argument.

ruid/euid: The real user ID (RUID) and the effective user ID
(EUID).

pid: The process ID.

ppid: The parent process ID (PPID). Useful for tracing
back through a list of processes to the originating
event and its associated RUID and AUID.

cttydev: The device on which the event occurred. The record
reports the major and minor numbers.

event: The name of the event (typically, either the name of
a system call or the name of a trusted event).

result: orerror: If the event succeeds, the result. Often the result is
0. But some system calls return a different value.
For example write() returns the number of bytes
written.

In the case of an error, the audit record for a system
call returns the error message and number. For
example,

error: Not owner (1)

Audit records for trusted events can have additional
error messages.

ip address: The IP address of the system on which event
occurred.

Administering the Audit Subsystem 10–31

timestamp: The date and time of the event.

10.9.1 Additional Entries in Audit Records

Most entries in an audit record for a system call are arguments to that
system call. The following list presents many of the labels for entries that
can go into an audit record, and brief explanations of what those labels can
mean. But the labels are context-sensitive. That is, their meaning can
depend on the type of audit record in which they appear.

For example, in the audit record for mmap(), flag: indicates an attribute
of the mapped region. But in an audit record for audcntl(), flag: is a
number passed with a HABITAT request.

Commands entered on the command line by users appear as arguments
to char param: in audit reports. For example, if a user copies the file
august_report to a file named sept_report, the audit record includes
the following:

event: execve
char param: /usr/bin/cp
char param: cp august_report sept_report

In the context of a given audit record, interpreting the entries is a
straightforward matter. If questions do arise, the reference page for the
system call being audited will help clarify the report.

The following is a list of the audit record fields and the associated
explanations of the fields:

address: Memory address, typically an argument to mmap().

char param: A character string. The string can be the argument
to an event or some other information relevant to
the event. For example:
event: open
char param: /etc/zoneinfo/localtime

cntl flag: A control flag. For example, one of the flags to an
audcntl() request.

descriptor: A file descriptor. If state-dependent information is
available, the actual file name and the descriptor.

devname: A device name.

directory: The name of the current directory.

10–32 Administering the Audit Subsystem

flag: A flag argument to a system call. For example, in
the context of mmap(), it specifies the attributes of
the mapped region. In the context of audcntl(), it is
the number of a system call, and it is passed with
one of the HABITAT requests.

flags: Arguments passed to system calls as flags. For
example, in open(), the value passed as the oflag
argument.

gid: The group ID.

home dir: The home directory.

hostname: A host name.

inode id: An inode number. Along with inode dev, part of
the descriptor information recorded for audit records
involving activities with files.

inode dev: The major and minor inode device numbers.

int param: An integer value. For example, in setpgid(), the
process_id argument.

len: An argument to mmap(). The length of a region of
memory.

login name: The login user name.

long param: A value of type long.

mask: A mask argument. For example, in audcntl(), the
value passed with a SET_SYS_AMASK request.

object mode: The protection mode of an object. For example, in
open(), the mode of the file being opened.

operation: A request to audcntl(), such as SET_SITEMASK.

pgrp: A process group ID. For example, the
process_group_id argument to setpgrp().

Administering the Audit Subsystem 10–33

procname: The process name associated with a PID.

prot: An argument to mmap(). The protections on a region
of memory.

req mode: The request mode. For example, in an open()
O_CREAT, the protection mode for the new file.

request: The security action requested in a call to
security().

shell: The user’s shell program. Typically this record
element appears in login event records.

username; The user name associated with the event.

If the audit_tool -w option or the Audit Manager
Translate UID/GIDs to Local Names selection was
used to generate the audit report, then the user
name might appear in parentheses. Parentheses
indicate that the audit reduction tool had to use
the getpw() routine to look up the user name in
/etc/passwd. This happens in cases where the
user name was not associated with the RUID at
login time (for example, logins were not included
among the audited events). See Section 10.5.3 for a
description of dependencies among audit events.

10.9.2 Example Audit Record

The following is an example of an audit record:

audit_id: 1621 ruid/euid: 0/0 username: jdoe
pid: 5742 ppid: 1 cttydev: (39,0)
event: login
login name: jdoe
home dir: /usr/users/jdoe
shell: /bin/csh
devname: tty02
char param: Login succeeded
char param: ZK33C5
directory: /usr/users/jdoe
result: 0
ip address: 16.153.127.240 (alpha1)
timestamp: Wed Jul 28 19:17:52.63 1996 EDT

10–34 Administering the Audit Subsystem

10.9.3 Abbreviated Audit Records

The audit_tool -B command generates an audit report with an
abbreviated record format.

An example of an abbreviated report:

AUID:RUID:EUID PID RES/(ERR) EVENT
-------------- --- --------- -------------------------------------
-1:0:0 2056 0x0 execve (/usr/sbin/rlogind rlogind)
-1:0:0 2057 0x0 execve (/usr/bin/login login -p -h

alpha1.sales.dec.com guest)
1234:0:0 2057 0x0 login (guest)
1234:1234:1234 2057 0x0 execve (/bin/sh -sh)
1234:1234:1234 2058 0x0 execve (/usr/bin/stty stty dec)

Column headings for abbreviated reports:

AUID:RUID:EUID The audit ID, real UID, and effective UID
associated with the event.

PID The process ID number.

RES/(ERR) RES is the result number. Refer to the
reference page for the specific system call
for information about the result number.

(ERR) is the error code, if an error
occurred. For a list of error codes and
their meanings, see the reference pages
for errno(2).

EVENT The event and arguments appear in the
last column.

The following information does not appear in the abbreviated report:

• User name (If you want the username instead of the AUID:RUID:EUID,
use the audit_tool -wB command.)

• PPID

• Device ID

• Current directory

• Inode information

• Symbolic name referenced by descriptors

• IP address

• Time stamp

Administering the Audit Subsystem 10–35

See the description of the -O option in the audit_tool(8) reference page to
generate a customized brief report.

10.10 More About Generating Audit Reports

Audit reduction lets you process and filter data stored in the audit log and
display the audit information in a format you can read.

From the CDE Dashboard, select the following:

Sysman Applications→Daily Administration→Audit Man-
ager→Reports→Generate Reports

When generating reports with the Audit Manager graphical interface, you
create a selection file that specifies such things as the events, times of day,
AUIDs and other attributes of the audit records that you want included in
the audit report.

From the command line, enter the following commands:

audit_tool [-options] audit file name

For audit logs generated on an ULTRIX system, enter:

audit_tool.ultrix

10.10.1 Filtering Out Specific Audit Records

Just as object selection and object deselection help you manage the size of
audit logs by means of preselection, the audit reduction deselection feature
can help you manage the size of audit reports. It supports the use of a
deselection file to filter out audit records that you do not want to see.

A deselection file consists of one or more lines. Each line specifies a
deselection rule in the following format:

[hostname audit_ID RUID event pathname flag]

An asterisk (*) in a field is a wildcard, which always gives a match. A
string ending with a plus sign (+) matches any string that starts with the
designated string. The flag specifies read (r) or write (w) mode for open
events.

For example, to filter out all open operations for read access on objects whose
pathname starts with /usr/lib/, specify the following line in the file:

* * * open /usr/lib/+ r

The lines that you specify in the deselection file take precedence over other
selection options. You can create multiple deselection files, but you can
specify only one deselection file each time you perform audit reduction.

10–36 Administering the Audit Subsystem

Deselection files can be used with the CDE Audit Manager and with the
following command:

audit_tool −d deselection_file

10.10.2 Targeting Active Processes

This section shows how the auditmask and audit_tool commands can be
used to get real-time audit data about a running process.

You can audit a process in real time by using the −p option to auditmask.
Example 10–1 shows how you might investigate a process started by a user
logged in as guest.

Example 10–1: Sample Active Auditing Session

ps -uguest -o user,pid,uid,comm 1
USER PID UID COMMAND
guest 23561 1123 csh
guest 23563 1123 ed

auditmask -p 23563 open exec -c or 2
auditmask -p 23563 3
! Audited system calls:
execv succeed fail
exec_with_loader succeed fail
open succeed fail
execve succeed fail

! Audited trusted events:

! Audcntl flag: or

auditd -d 5s -w 4
Audit data and msgs:
-l) audit data destination = /var/audit/auditlog.hostname.001
-c) audit console messages = /var/audit/auditd_cons
-d) audit data dump frequency = 5s

Network:
-s) network audit server status (toggle) = off
-t) connection timeout value (sec) = 4

Overflow control:
-f) % free space before overflow condition = 10
-o) action to take on overflow = overwrite current auditlog

audit_tool /var/audit/auditlog.hostname.001 -Bfw 5
USERNAME PID RES/(ERR) EVENT

Administering the Audit Subsystem 10–37

Example 10–1: Sample Active Auditing Session (cont.)

-------- --- --------- -----
jdoe 23563 0x4 open (/etc/motd 0x0)
jdoe 23563 0x4 open (/etc/passwd 0x0)
jdoe 23563 0x4 open (/etc/ftpusers 0x0)
jdoe 23563 0x4 open (/etc/hosts 0x0)
jdoe 23583 0x0 execve (/usr/bin/sh sh -c ps)
jdoe 23583 0x5 open (/usr/shlib/libc.so 0x0)
jdoe * 23592 0x0 execve (/sbin/ps ps gax) 6
jdoe 23599 0x0 execve (/usr/bin/sh sh -c w)
jdoe 23599 0x5 open (/usr/shlib/libc.so 0x0)
jdoe * 24253 0x0 execve (/usr/ucb/w w)
jdoe 23563 0x4 open (savethis 0x602 0640)

^C 7
--interrupt: exit (y/[n])? y
#

1 Find out what process user guest is running and also get the process
ID and audit ID.

2 For PID 23563, set the auditmask to open and exec, and perform an
OR operation with the system mask. Note that exec is an alias for
execv, exec_with_loader, and execve.

3 Get the auditmask for the 23563 process.

4 Dump to the audit log every 5 seconds and also show the auditd
configuration.

5 Display a continuous (-f) abbreviated (-B) audit report. Resolve AUIDs
to corresponding usernames (-w).

Note that the name of the audit log was gotten from the results of the
auditd −w command.

6 The asterisk (*) indicates an operation involving setuid.

7 Exit the audit_tool program with a Ctrl/C (auditing continues).

See the auditmask(8) reference page for more information.

10.11 Audit Data Recovery

In the event your system encounters a panic situation, the crashdc utility
extracts any audit data left in the system at the time of the panic. The audit
data is placed in the crash directory, in the audit-data.n file

10–38 Administering the Audit Subsystem

The n is the crash number. If no audit data was present, the file is not
created. The audit-data.n file can be processed with audit_tool.

It is possible for some audit records to appear in both the auditlog
file and audit-data.n. It is also possible that the first audit record in
audit-data.n may not be complete. The audit_tool utility marks this as
a corrupted record. In this case, the audit record has already been written to
the regular auditlog.

10.12 Implementation Notes
The following is information about the Tru64 UNIX auditing that you should
be aware of:

• Some records show “NOTE: uid changed.” This typically occurs in
SETUID events, but may be seen anywhere when one thread changes
the UID for all threads in a process (task).

• Audit records contain inode information and the file type of the object
of the operation. So, for example, if a chmod command is specified for a
symbolic link, the actual object referenced by the link is described.

• By design, some system calls can fail and not generate an audit record
for the failure if the failure is not security-relevant. See Table 10–4
for a list of the calls.

• Only TIOCSTI operations are audited for the ioctl system call.

• Only F_DUPFD, F_SETTIMES, and F_CNVT are audited for the fcntl
system call.

If the process audit control flag is set to USR, all ioctl and fcntl system
calls are audited.

All security-relevant system calls can generate audit data, but when there
is no security relevance, some system calls do not generate audit data. The
conditions under which a particular system call does not generate an audit
data are described in Table 10–4.

Table 10–4: System Calls Not Always Audited
System Call Cause for No Audit Record

close The system call failed because it was passed
an invalid file descriptor.

dup2 The system call failed because it was passed
an invalid file descriptor.

execv, execve, namei lookups failed

exec_with_loader A thread failed to terminate thread, or a
handler callout aborted.

Administering the Audit Subsystem 10–39

Table 10–4: System Calls Not Always Audited (cont.)

System Call Cause for No Audit Record

fcntl(*) The system call failed because it was passed
an invalid file descriptor.

ioctl(*) The system call failed because it was passed
an invalid file descriptor.

priocntlset() An invalid process was specified (ESRCH), or the
call did not modify another process.

reboot() Successful reboots are not audited. The reboot() call
does not return from a successful reboot.

security() No audit record for the getluid option. This option
has no security relevance, and if it were audited, many
audit records of no use would result.

swapctl() Only SC_ADD forms of the call are audited. Other
forms have no security relevance.

uadmin() Only a failed A_REBOOT or A_SHUTDOWN is
audited. In other cases, the system is rebooted and
the system call does not return.

The system calls marked with an asterisk (*) typically generate audit
data only for security-relevant options. When executing processes from
auditmask with the −e or −E flag, however, all options generate audit data.

10.13 Responding to Audit Reports

Whenever you suspect an effort is being made to violate security, you should
consider increasing the frequency of auditing. Additionally, you might want
to tailor the list of events being audited to gather more specific information
about the attempted violations. For example, if the attacks are against the
file system, you might want to log all failed and successful file opens and
closes, links, unlinks, chdirs, chmods, chowns, and other file-related
activities.

When the audit trail implicates a specific authorized user in attempts to
violate security, you can take the following steps:

• Talk with the user, reminding him or her of the importance of
maintaining security and the need for all users to contribute to that
effort.

• Restrict the user’s access to the system by placing the user in a group
of one.

• In extreme cases, deny the user system access by removing the user’s
account. This can be on a temporary or permanent basis.

10–40 Administering the Audit Subsystem

• Audit the offending user’s activities for indications that the user’s
behavior has changed. When you extract audit information, pay close
attention to activities associated with the user’s audit ID, UID, RUID,
and user name.

User-specific audits can be done from the screen: Audit Manager →
Reports → Generate Reports, or with the audit_tool options −a AUID,
-u UID, and −U username.

If the audit trail indicates attempts to violate security but points to no
specific user, it is possible that you are faced with intrusion by an outsider.
Your responses must then be directed to the system and the larger user
community. In this case you can take the following steps:

• Have users change their passwords and inform them about the selection
of safe passwords.

• Hold meetings with users to discuss the importance of system security.

• Increase physical security to make sure that only authorized users can
gain physical access to the system.

• Perform backups of the file system more frequently, to minimize the
damage if a break-in should occur and data on the system is lost or
altered.

• If attacks seem to be coming in over a network, increase the auditing of
network-related activities.

10.14 Using Audit to Trace System Calls

The audit mechanism can be used to troubleshoot system problems by
collecting system call trace data.

Some differences exist between audit system call tracing and conventional
system call tracing packages such as truss and trace. One difference is
that audit system call tracing provides only the security-relevant arguments
for each system call. See Section 10.14.3 to learn how to modify the kernel
to get more data for a system call. Conventional trace packages attempt to
capture all system call arguments.

Another difference is that audit system call tracing provides information
unavailable from conventional tracing packages. Such information includes
the following:

• Inode ID

• Thread ID

• File mode

• File descriptor to pathname translation

Administering the Audit Subsystem 10–41

Also, audit works without requiring control of the target process.

10.14.1 Tracing a Process

To use the audit subsystem to trace a process, do the following:

1. Insure that the audit subsystem is configured and running.

2. Initially, set the auditmask to audit no events:

auditmask -n

3. Use the auditmask -c option to set the process audcntl flag as
appropriate.

4. If tracing a currently running process, use the auditmask −c usr
option to trace all options for these system calls.

The following examples demonstrate the use of the auditmask utility
(these examples modify the process auditmask; unless specified, the process
audcntl flag remains at its default setting of or).

In the following example, audit records are created for everything done by
the newly executed command program with its associated arguments:

auditmask −E command argument

In the following example, audit records are created for failed open system
calls and successful ipc events (defined in /etc/sec/event_aliases) for
the newly executed command program:

auditmask open:0:1 ipc:1:0 −e command arguments

In the following example, for PID 999, audit all (−f) events except
gettimeofday:

auditmask −p 999 −f gettimeofday:0:0

In the following example, get the set of events being audited for PID 999:

auditmask −p 999

In the following example, set the audcntl flag of PID 999 to usr:

auditmask −p 999 −c usr

In the following example, for all processes owned by the user with AUID
1123, audit all ipc events (the AUID is the same as the user’s initial RUID):

auditmask −a 1123 ipc

The auditmask -h command displays help for the command. See also
the auditmask(8) reference page.

10–42 Administering the Audit Subsystem

10.14.2 Reading the Trace Data

Use the following procedure to read the trace data collected by the audit
mechanism:

1. Use auditd to flush any buffered audit data as follows:

auditd −dq

The −q option gets the name of the data file

2. Examine the data file with the audit_tool utility as follows:

audit_tool ‘auditd −dq‘ −B

See the audit_tool(8) reference page for further information.

10.14.3 Modifying the Kernel to Get More Data for a System Call

The audit subsystem normally collects the following data:

• System call name

• Result

• Error

• Timestamp

• ID information

• Various arguments passed to the system call

Only the arguments that are of interest from a security perspective are
recorded. If additional arguments are required, you can use dbx to change
which arguments get recorded for any system call. For example, flock is
system call #131, and takes as arguments a file descriptor and an option. To
audit these arguments, enter the following dbx commands:

(dbx) a sysent[131].aud_param[0]=’c’
99
(dbx) a sysent[131].aud_param[1]=’a’
97

The first entry in the aud_parm array corresponds to the first system call
argument, the second entry corresponds to the second system call argument,
and so on. The c encoding indicates a file descriptor is recorded. The a
encoding indicates an integer argument is recorded. The set of encodings is
described in the <sys/audit.h> file.

Administering the Audit Subsystem 10–43

10.15 Traditional UNIX Logging Tools

For security-relevant auditing, use the audit subsystem. Traditional UNIX
operating system logging tools are available and do provide some auditing
capabilities for the following categories of events:

• Local login and logouts

• File Transfer Protocol (FTP) logins

• External logins and logouts for TCP/IP (rlogin and telnet)

• External logins and logouts for DECnet (dlogin and set host)

• Failed logins

• Failed attempts to become superuser (the su command)

• Reboots and crashes

• rsh and rcp file transfer requests

• DECnet file transfer requests

Auditing for each of these categories involves a data file, that stores the
pertinent information, and a method for viewing the stored data. In some
cases this method is a specific command, such as last or lastcomm. In
other cases the contents of the file are viewed directly, for example, with
the more command.

The accounting data is stored in a number of different files. Table 10–5 lists
those files in the /var/adm directory. The presence of specific log files on
your system depends on which logging and accounting features you have
enabled.

Table 10–5: Traditional UNIX Log Files in /var/adm
File Name Security-Relevant Information

wtmp Records all logins, logouts,
and shutdowns. Use the last
command to view this log.

syslog.dated/date/daemon.log Messages generated by system
daemons.

syslog.dated/date/kern.log Messages generated by the kernel
(for example, for system crashes).

syslog.dated/date/lpr.log Messages generated by the line
printer spooling system.

syslog.dated/date/mail.log Messages generated by the
mail system.

syslog.dated/date/user.log Messages generated by user
processes.

10–44 Administering the Audit Subsystem

Table 10–5: Traditional UNIX Log Files in /var/adm (cont.)

File Name Security-Relevant Information

syslog.dated/date/syslog.log Requests for DECnet file
transfers.

acct Raw system accounting data,
including user commands .

Protect the contents of these files. The files and directories should be owned
by the root account, and they should not be writeable by group or other.

For a discussion of traditional UNIX accounting software, see the System
Administration manual.

Administering the Audit Subsystem 10–45

11
Administering ACLs

This chapter describes the installation and administration of the ACLs on a
Tru64 UNIX system.

The Tru64 UNIX ACLs are based on the POSIX P1003.6 Draft 13 standard
with some Draft 15 extensions.

For a technical description of ACLs, see Chapter 5 and the acl(4) reference
page.

11.1 ACL Subsystem Overview

The ACL subsystem is shipped as part of the base system, but base system
components do not require ACLs for current operations and no files are
shipped with ACLs on them.

If layered products need ACL support, then ACLs must be enabled. If this is
not done, then access granted to an object may not be the correct access.

Because ACLs are stored on a file system’s property list (extended
attributes), Tru64 UNIX currently supports ACLs on file systems that
provide property lists. The currently supported files systems are as follows:

• Network file system (NFS) where both client and server are Tru64 UNIX
systems. The property list daemon (proplistd) must be enabled on the
server and the -o proplist option to the mount command must be
used on the client.

• UNIX file system (UFS)

• Advanced file system (AdvFS)

ACLs on DFS, CDFS and Internet IPC sockets are not currently supported.

See the proplist(4) and proplistd(8) reference pages for more information
about property lists.

11.2 Administration Tasks

The primary tasks of the administrator relative to ACLs are:

• Enabling and disabling ACLs on the system.

Administering ACLs 11–1

• Creating new file control database entries for new applications that use
ACLs when they are added to the system. See Section 6.5.2.4 for more
information about this database.

• As superuser, modifying ACLs on behalf of users who are not authorized
to access the associated files.

• Assigning ACLs when an imported file contains an ACL that cannot be
converted to one that is recognized on the system.

• Creating and maintaining an ACL inheritance strategy for all files on
your system needing ACL protection.

• Some system commands, applications, and user programs may check
file permissions, create files, or modify files using old methods that
do not process ACLs and other extended attributes stored in property
lists. It is the responsibility of the system administrator to educate
the programmers and users on the system about the use of ACLs in
general and the specific ACLs in use on the system. For information
on the impact to system users see Section 5.8. For more information
on writing or modifying programs to work properly with ACLs, see the
acl(4) reference page and Chapter 21.

To administer the ACLs on your Tru64 UNIX system, you need to be familiar
with the commands documented on the following reference pages:

dxsetacl(1) Graphical interface to display and change
discretionary access control information.

getacl(1) Displays discretionary access control
information.

setacl(1) Changes the access control list on a file
or directory.

acl(4) Provides information about the Tru64
UNIX ACL implementation

secconfig(8), sysconfig(8) Used to enable and disable the ACL
subsystem.

nfssetup(8), proplistd(8),
proplist(8)

Enable and disable the property lists on
NFS filesystems.

11–2 Administering ACLs

11.3 Installing ACLs
The optional ACLs are shipped as part of the base system and can be
configured and used independently of the enhanced security subset or other
security features. The enhanced security subsets (OSFC2SECxxx and
OSFXC2SECxxx) do not need to be installed on your system.

Before you configure ACLs, you need to answer the following questions:

• Which objects on your system need to be protected with ACLs?

• What level of access are you going to permit on your ACL-protected
objects?

You must set an ACL for each object that you want to protect. See the
dxsetacl(1), setacl(1), and getacl(1) reference pages for instructions on
setting and retrieving ACLs. Directories also have two default ACLs that
can be set. These default ACLs define what ACLs are inherited by new files
and subdirectories created under them. See Section 5.7 for a description of
the ACL inheritance rules.

11.3.1 Enabling and Disabling ACLs

ACL processing is now enabled and disabled dynamically using the
sysconfig utility or the secconfig menu. To enable ACL processing
dynamically using the sysconfig command, enter the following:

sysconfig -r sec acl_mode=enable

To disable ACL processing dynamically using the sysconfig command,
enter the following:

sysconfig -r sec acl_mode=disable

To view the current ACL processing mode using the sysconfig command,
enter the following:

sysconfig -q sec

To have ACLs enabled automatically as part of system startup, create a
stanza file containing the ACL mode enable entry, for example:

sec:
acl_mode = enable

Then use sysconfigdb to add it to the /etc/sysconfigtab file:

sysconfigdb -m -f acl_mode.stanza sec

On subsequent reboots, ACL processing is enabled automatically.

______________________ Note _______________________

ACLs can be set on files even if ACL processing is not enabled
on the system. However, when ACL processing is not enabled on

Administering ACLs 11–3

the system, ACLs will not be used in access checks. Also, if ACL
processing is not enabled on the system, Default ACLs are not
used and ACL inheritance is not done.

11.3.2 Enabling ACLs On NFS

For an NFS client to make direct use of ACLs or extended attributes
(property lists) over NFS, the proplistd daemon must be enabled on an
NFS server. The proplist mount option must be used when mounting on
the client. Access checks are enforced by the server in any case, although
NFSv2 client caching could sometimes cause inappropriate read access to be
granted. Correctly implemented NFSv3 clients make the necessary access
checks.

Start the proplistd daemon by selecting the number of proplist daemons
to run when you use the setup GUI or the nfssetup utility. You can also
start the daemons manually with the proplistd command. For example:

/usr/sbin/proplistd 4

On the client, the file system must be mounted with the proplist option
by either of the following methods:

• Add proplist to the options field in the /etc/fstab file:

sware1:/advfs /nfs_advfs nfs rw,proplist 0 0

• Alternatively, add the option to the mount command as follows:

mount -o proplist sware1:/advfs /nfs_advfs

11.4 Recovery

The fsck and fsdb commands are used to recover property lists and ACLs,
respectively, in the event of a system crash. If ACLs are enabled when fsck
is run on a file system, fsck verifies all property lists on the file system
unless instructed otherwise. If a property list is found that is not correct,
fsck attempts to correct it. In most cases, restoring the property list also
restores the ACL. The ACLs are validated by kernel read for access decisions.

The fsdb command examines the ACL in either the internal or external
format. A privileged user can change the ACL using fsdb.

11.5 Standalone System Support

Because the standalone system (SAS) is strictly intended for installing a
system and repairing the root file system, the ACL code is not enabled. The

11–4 Administering ACLs

fsck and fsdb commands have the ability to extract and manipulate ACLs
from the property list obtained from the raw partition.

11.6 Archival Tool Interaction with ACLs
The interaction of ACLs with the archiving tools is described in the following
sections.

11.6.1 pax and tar

Both pax and tar archive any ACLs and other extended attributes on
archived files and directories by default when you create an archive.
However, when you use the pax or tar utilites to extract files and directories
from an archive, any ACLs on the archived files and directories are not
extracted from the archive by default. If the destination directory has
default ACL(s) defined, the files and directories extracted from the archive
inherit the default ACL(s) as described in Section 5.7.

To restore the ACLs and property list information from the archive, use the
-p option for tar and the -p p or -p e options to pax when extracting files
and directories from the archive. The pax and tar utilities store the user
and group information for ACLs as UIDs and GIDs. This means that if you
use the tar -p, pax -p p or pax -p e commands to restore an archive on
a system that does not share user and group information with the source
system you may be granting unintended access to files.

There currently are no formal industry standards for ACLs and extended
attributes (property lists). Thus, the extensions to pax and tar to support
property lists and ACLs are specific to Tru64 UNIX. Other vendor’s pax
and tar implementations should simply ignore the Tru64 UNIX specific
extensions. However, to ensure interoperability with other vendor’s systems,
when archiving for multivendor distribution use the -V option to prevent
ACLs and any other extended attributes from being archived.

11.6.2 dump and restore

The archive tools dump, rdump, restore, rrestore, vdump, rvdump,
vrestore, and rvrestore always save and restore all extended attributes
(property lists) including ACLs. Attempting to extract files to a directory
that has a default ACL or a default access ACL may cause unintended ACLs
to be created on the extracted files. If ACLs are enabled on the system, make
sure to check all ACLs after the extraction is complete.

11.7 ACL Size Limitations
On AdvFS file systems there is a hard limit of 1560 bytes for a property
list entry. Because ACLs are stored in property list entries, this equates to

Administering ACLs 11–5

62 ACL entries in addition to the three required ACL entries. The error
EINVAL is returned if you exceed this limit.

To facilitate interoperation of the UFS and AdvFS ACLs, a configurable limit
is imposed on UFS ACLs. The default value of the UFS ACL limit is 1548
bytes (the AdvFS limit includes the header), equivalent to the 62+3 required
entry limit on AdvFS.

The UFS configurable limit on ACLs is in the sec subsystem and has been
given the attribute name ufs-sec-proplist-max-entry. The attribute
can be dynamically configured using the sysconfig utility or by using
sysconfigdb to set the attribute in the file sysconfigtab. A configurable
property list element size for UFS has also been added to the sec subsystem
and has been given the attribute name ufs-proplist-max-entry.

The value of ufs-proplist-max-entry must be larger than
ufs-sec-proplist-max-entry by at least enough space to hold a
property list element header. The sysconfig utility automatically
adjusts ufs-proplist-max-entry to achieve this. The default value of
ufs-proplist-max-entry is 8192 bytes. See the cfgmgf(8), seconfig(8),
seconfigdb(8), and sysconfigtab(4) reference pages for more information.

11–6 Administering ACLs

12
Ensuring Authentication Database

Integrity

The information systems security officer (ISSO) is responsible for ensuring
the integrity of the system. To do this, the ISSO runs the authck program,
which checks the internal consistency of the files that make up the
authentication database. (This function cannot be performed with the GUIs.)

This chapter describes the authck program, suggests reasons for running it,
and explains what to do if it finds discrepancies.

12.1 Composition of the Authentication Database

The enhanced security authentication database, consists of the following
subsidiary databases:

• Protected password database (/tcb/files/auth.db and
/var/tcb/files/auth.db)

• System defaults database (/etc/auth/system/default)

• Terminal control database (/etc/auth/system/ttys.db)

• File control database (/etc/auth/system/files)

• Device assignment database (/etc/auth/system/devassign)

For detailed information about the format and contents of the databases,
see the default(4), devassign(4), files(4), prpasswd(4), and ttys(4)
reference pages.

The system management GUI interface is the preferred method for
modifying these databases. But, for disaster recovery or for times when the
GUI interface is not available, the edauth program can be used to modify
the databases. In single user mode, the /usr and /var file systems must
be mounted before the edauth program is used.

12.2 Running the authck Program

The authck program checks the overall structure and the internal
consistency of the authentication database. The authck program checks for
the correctness of entries within each database and also checks related fields

Ensuring Authentication Database Integrity 12–1

in other databases. For example, it checks the protected password database
entry for a user against the /etc/passwd file.

You can specify the following arguments on the authck command line:

−p Checks the protected password database and the /etc/passwd
file to ensure that they are complete and that they agree with
each other. It also checks the protected password database
for reasonable values.

−t Checks the fields in the terminal control database for
reasonable values.

−f Checks the file control database for syntax and value
specification errors. Without this flag, entries with unknown
authorizations, user names, and so on, are ignored. Typically
these errors are typographical, such as “rooot” instead of “root,”
and the program attempts to guess the right value.

−v Verbose mode.

−a Performs the functions of −f, −p, −t, and −v. Provides program
activity status during operation.

The authck program produces a report listing any discrepancies between
the databases. Compare the output of the program with the actual database
entries and rectify any differences immediately. Problems typically occur
because someone has manually updated one of the databases without
making the corresponding change to the related databases.

12.3 Adding Applications to the File Control Database

When you add applications to the system by a means other than the
setld program, you should also add file control database entries for the
application’s control and database files and programs. It is best to consult
with the application supplier to get a file and program list, and suggested
protection attributes for all files.

If you add the application’s files to the file control database, you gain the
benefit of periodic integrity checking of that application’s resources.

See the fverify(8) reference page for more information on checking file
integrity.

12–2 Ensuring Authentication Database Integrity

12.4 Recovery of /etc/passwd Information

If the /etc/passwd file is lost, but the enhanced profiles are still available,
then a command sequence like the following can be used to recover some
of the missing data:

bcheckrc
/tcb/bin/convuser -dn | /usr/bin/xargs /tcb/bin/edauth -g | \

sed ’/:u_id#/!d;s/.*:u_name=//;s/:u_id#/:*:/;s/:u_.*$/:/’ \
> psw.missing

This creates a psw.missing file containing entries like the following:

root:*:0:
jdoe:*:0:

Primary group information, finger information, home directory, and login
shell are not recorded in the enhanced profile. The data for those fields
must be recovered by other means.

Ensuring Authentication Database Integrity 12–3

13
Security Integration Architecture

This chapter describes the Tru64 UNIX security framework called the
Security Integration Architecture (SIA). The chapter discusses the following
topics:

• Overview of the SIA

• Supported security configurations

• SIA’s matrix.conf file

• Installation and deletion of layered security products

13.1 SIA Overview

All security authentication mechanisms that run on the Tru64 UNIX
operating system run under the Security Integration Architecture (SIA)
layer. The SIA allows you to layer various local and distributed security
authentication mechanisms onto Tru64 UNIX with no modification to the
security-sensitive Tru64 UNIX commands, such as login, su, and passwd.
The SIA isolates the security-sensitive commands from the specific security
mechanisms, thus eliminating the need to modify them for each new security
mechanism.

Any time a security mechanism is installed or deleted, the SIA is involved.
You do not need to be concerned about the SIA layer if you do not install
security products. Each time that a security-sensitive command is invoked,
the SIA layer serves as an interface to code that depends upon security
mechanisms.

Security Integration Architecture 13–1

Figure 13–1: Security Integration Architecture

Security−sensitive Commands and Utilities

SIA Layer

DCE

(login, passwd, su, chfn, chsh, ftpd, xdm,
lock, dxsession, telnetd, rtools, dtools)

(sia_*interface for commands)
(siad_*callouts to security mechanism dependent code)

ZK−0685U−R

Other

/etc/sia/matrix.conf

security

security

BSD security
mechanisms

SIA Setup

13.2 Supported Security Configurations

The Tru64 UNIX operating system currently provides standard Berkeley
security (BASE), which is limited to /etc/passwd local security with
NIS extensions, and the optional enhanced security (ENHANCED), which
includes enhanced password features (audit capability and ACLs can be
enabled separately from enhanced security).

13.3 matrix.conf Files

The security configuration file that selects the appropriate installed security
mechanism is the matrix.conf file. The system is provided with a default
base (BSD) security matrix.conf file (/etc/sia/matrix.conf). The
siacfg utility is used to automatically update matrix.conf for additional
security mecahanisms. Example 13–1 shows the default BSD matrix.conf
(/etc/sia/matrix.conf) file:

13–2 Security Integration Architecture

Example 13–1: Default /etc/sia/matrix.conf File

siad_init=(BSD,libc.so)
siad_chk_invoker=(OSFC2,libsecurity.so)
siad_ses_init=(OSFC2,libsecurity.so)
siad_ses_authent=(OSFC2,libsecurity.so)
siad_ses_estab=(OSFC2,libsecurity.so)
siad_ses_launch=(OSFC2,libsecurity.so)
siad_ses_suauthent=(OSFC2,libsecurity.so)
siad_ses_reauthent=(OSFC2,libsecurity.so)
siad_chg_finger=(OSFC2,libsecurity.so)
siad_chg_password=(OSFC2,libsecurity.so)
siad_chg_shell=(OSFC2,libsecurity.so)
siad_getpwent=(BSD,libc.so)
siad_getpwuid=(BSD,libc.so)
siad_getpwnam=(BSD,libc.so)
siad_setpwent=(BSD,libc.so)
siad_endpwent=(BSD,libc.so)
siad_getgrent=(BSD,libc.so)
siad_getgrgid=(BSD,libc.so)
siad_getgrnam=(BSD,libc.so)
siad_setgrent=(BSD,libc.so)
siad_endgrent=(BSD,libc.so)
siad_ses_release=(OSFC2,libsecurity.so)
siad_chk_user=(OSFC2,libsecurity.so)

See the matrix.conf(4) and siacfg(8)reference pages for more information.

13.4 Installing a Layered Security Product

Detailed instructions for installing layered security products are provided
by the layered product. In general, you install a layered security product as
follows:

1. Install the layered security product as described in the product’s
installation procedure.

2. Change directory to /etc/sia.

3. Run the siacfg utility.

4. Reboot your system.

13.5 Installing Multiple Layered Security Products

The Tru64 UNIX operating system supports the installation of multiple
security products.

Security Integration Architecture 13–3

Detailed instructions for installing multiple layered security products is
provided by the layered products. In general, you install multiple layered
security products as follows:

1. Bring the system down to single-user mode using the
/usr/sbin/shutdown now command.

2. Install the first layered security product as described in the product’s
installation procedure.

3. Install the subsequent layered security product, as described in the
product’s installation procedure.

4. Change directory to /etc/sia.

5. Run the siacfg utility for each layered security product.

6. Reboot your system.

13.6 Removing Layered Security Products

To remove a layered security product from your system, perform the
following steps:

1. Verify that the installed layered security product has not changed the
BSD security mechanism or associated files. This information is usually
described in the documentation that came with the product.

____________________ Note _____________________

If the BSD security mechanism cannot be restored (for
example, the /etc/passwd file has been deleted), then the
operating system must be reinstalled and reconfigured.

2. Bring the system down to single-user mode using the
/usr/sbin/shutdown now command.

3. Remove the link to the layered security product’s matrix.conf file
using the siacfg -r command.

4. Reboot your system.

Example 13–2 shows how to delete a DCE layered security product and
return to BASE security.

Example 13–2: Changing a Layered Security Product

/usr/sbin/shutdown now
/sbin/siacfg -r DCE
/sbin/siacfg -l BSD libc.so

13–4 Security Integration Architecture

Example 13–2: Changing a Layered Security Product (cont.)

/usr/sbin/reboot

13.7 SIA Logging

SIA will optionally record the success and failure of security-related
commands in the /var/adm/sialog file. If the file exists, log entries are
made by SIA. This procedure is recommended for debugging only.

Security Integration Architecture 13–5

14
Trusted System Troubleshooting

This chapter describes problems that can occur on your system and gives
guidance on how to avoid or correct from them. It provides you with insight
on what is involved in the system startup, so you can examine critical files
and programs required for correct system operation. Once the system is in
single-user mode, there is no substitute for careful backup procedures. This
is the only precaution that will avert serious data loss in your system.

The problems discussed in the following sections will prevent the system
from booting. Chapter 12 demonstrates authentication database verification.

14.1 Lock Files

The system security databases are critical to correct system operation.
These databases use a lock file to synchronize rewrites to security-relevant
databases. Before a process rewrites a database entry, it automatically
creates the lock file. If the lock file already exists, the program assumes that
another process is currently using the database and waits for the lock file to
be removed. If the lock file persists and is not modified within a reasonable
time period (currently 50 seconds), the program waiting for the lock file
removes it and creates a new one, assuming that there has been a system
crash or software error.

The system names lock files by appending a :t extension to the normal
file name.

The system’s startup scripts include lines that remove all lock files at system
startup. The following files have associated lock files that can prevent
correct operation of the system:

• /dev/console

• /etc/auth/system/default

• /etc/auth/system/devassign

14.2 Required Files and File Contents

The following files are required to run the system:

• /tcb/files/auth.db

Trusted System Troubleshooting 14–1

• /etc/auth/system/ttys.db

• /etc/auth/system/default

• /etc/auth/system/devassign

• /etc/passwd

• /etc/group

• /sbin/rc[023]s

• /dev/console

• /dev/tty*

• /dev/pty*

• /dev/ptm*

• /dev/pts/*

• /sbin/sh

• /vmunix

14.2.1 The /tcb/files/auth.db Database

When the system begins operation, it consults the security databases for
various parameters. If any of the databases are corrupt, the system will
not boot successfully. If possible, the startup programs report that there is
a problem in the databases and to start a single-user shell at the system
console to allow you to repair the system. In some cases, however, the system
will not boot and you must repair the system from standalone procedures
described in the manual System Administration.

The enhanced (protected) password database entry for root is held in the
/tcb/files/auth.db database. If the entry for root is inconsistent, the
system enters single-user mode, but assumes default characteristics for all
security parameters of the shell it starts.

When the system is in single-user mode, you can create a enhanced
(protected) password database entry for root by entering the following
command:

edauth root

The following example shows a typical enhanced (protected) password
database entry for root:

root:u_name=root:u_id#0:\
:u_pwd=encrypted_password:\

:u_minchg#0:u_pickpw:u_nullpw:u_restrict@:\

14–2 Trusted System Troubleshooting

:u_maxtries#100:u_lock@:chkent:

For a complete explanation of all the fields, see prpasswd(4). The following
fields are required for the system to be able to boot:

• name Must contain root.

• u_name Must also be root.

• u_uid Must have a value of 0.

• u_pwd The encrypted version of the password. At authentication, the
system checks the entered password against the encrypted version of
the password. You can leave this field blank if you are creating the
database entry.

• chkent As with all databases, the entry must end with the single word
chkent.

The other fields in this entry are informational or are used to guard against
unwanted account locking. The system overrides all conditions that can
cause the root account to lock when changing to single-user mode.

14.2.2 The /etc/auth/system/ttys.db File

The terminal control database must have a valid entry for the system
console. The entry for the system console must begin with the word console
followed by a colon. It must end with the single word chkent. The only
required field is t_devname, which must be set to a value of console. For
example:

console:t_devname=console:chkent:

14.2.3 The /etc/auth/system/default File

The system default database must have an initial field default and must
end with chkent. There must not be a :t lock file associated with this
database.

The following example is typical:

default:\
:d_name=default:\
:d_boot_authenticate@:\
:d_audit_enable@:\
:d_pw_expire_warning#3456000:\
:u_pwd=*:\
:u_minchg#0:u_maxlen#20:u_exp#15724800:u_life#31449600:\
:u_pickpw:u_genpwd:u_restrict@:u_nullpw@:\
:u_genchars:u_genletters:u_maxtries#5:u_lock@:\
:t_logdelay#1:t_maxtries#5:t_lock@:t_login_timeout#60:\
:chkent:

Trusted System Troubleshooting 14–3

14.2.4 The /etc/auth/system/devassign File

If the entry for the console is inconsistent, no application can be started. The
field must start with the word console and end with the word chkent. The
v_type field must be set to terminal .

The following example is typical:

console:v_devs=/dev/console:v_type=terminal:\
:chkent:

14.2.5 The /etc/passwd File

The /etc/passwd file is the password database. This file must be present
and its format must be correct (no encrypted passwords are updated in this
file).

14.2.6 The /etc/group File

The /etc/group file is the group database. This file must be present and
its format must be correct.

14.2.7 The /sbin/rc[023] Files

The /sbin/rc[023] files are used by init to change between run levels.
Save copies of these files after installation.

14.2.8 The /dev/console File

The /dev/console file designates the character device associated with the
system console. This file must be present for the system to boot.

14.2.9 The /dev/pts/* and /dev/tty* Files

The /dev/pts/* and /dev/tty* files are pseudo terminal devices used for
interprocess communication.

14.2.10 The /sbin/sulogin File

The /sbin/sulogin executable file allows restricting access in single user
mode to those users with the root password.

14.2.11 The /sbin/sh File

The /sbin/sh executable file must be present for the system to start a
shell to transition to single-user mode.

14–4 Trusted System Troubleshooting

14.2.12 The /vmunix File

The /vmunix file is the executable image of the operating system. The boot
loading software loads the operating system into memory and transfers
control to it at boot time.

14.3 Problems Logging In or Changing Passwords

If users experience problems logging in to the system or changing their
passwords, examine the file attributes for the files in the security subset
using the fverify command. For example, to verify the file attributes for
the files in the OSFC2SEC510 subset, enter the following commands:

cd /
/usr/lbin/fverify < /usr/.smdb./OSFC2SEC510.inv

The file attributes of the local user profile files are examined using the ls
−l and authck −pf commands.

If a user complains of login troubles involving the inability to update the
protected profile or to obtain a lock and you are running centralized account
management, see Section 9.5.

The utilities such as dxaccounts and usermod share a lock file called
/etc/.AM_is_running. If the file is present, the utilities warn you.

Trusted System Troubleshooting 14–5

Part 3
Programmer’s Guide to Security

15
Introduction for Programmers

This chapter describes the implication of running trusted applications on a
trusted Tru64 UNIX system. Libraries, header files, the standard trusted
system directories and the trusted computing base (TCB) are discussed.
This chapter and the ones that follow use partial and complete C programs
to illustrate basic ideas. Although some of these can be used without
modification, they are not a collection of routines from which you can
assemble trusted programs.

15.1 Libraries and Header Files
Your system documentation contains reference pages for all new security
system calls (section 2) and routines (section 3).

The libsecurity.so, libaud.a, libaud.so, libpacl.a, and the
libpacl.so libraries hold all new enhanced security interface binaries.
Use the −l compilation option to link these into your program, for example:

$ cc ... −lsecurity −ldb −lm −laud ...

Your programs need to include several header files that hold definitions
(constants, macros, structures, library interfaces, and so forth) necessary
to use the Tru64 UNIX security interfaces. Following traditional UNIX
practice, all Tru64 UNIX system call and library reference pages denote the
header files that you need to use their routines. You are likely to use the
following individual header files, in the order listed:

<sys/secdefines.h> Defines compilation constants that
determine the security configuration of
your system. You always need to include
this file first.

<sys/security.h> Holds general definitions. You almost
always need to include this file.

<sys/acl.h> For access control lists. You need this if
you manipulate access control lists.

<prot.h> Defines the authentication databases and
Tru64 UNIX protected subsystems. You

Introduction for Programmers 15–1

need these if your program accesses any
of the authentication databases.

<sys/audit.h> Defines the audit subsystem constants for
security audit interfaces. You need this if
you generate or process audit records.

<protcmd.h> Provides a few miscellaneous definitions
for trusted commands that are delivered
with Tru64 UNIX. You seldom need these.

<sia.h> SIA constants, structures, and macro definitions

<siad.h> SIA constants, structures, and macro definitions
internally used by the interfaces and security
mechanisms

15.2 Standard Trusted System Directories

Tru64 UNIX defines several directories to hold its security information. You
can review the reference pages for a description of these files and directories,
primarily the section 4 reference pages.

You may need to create new files and directories in the standard trusted
system directories. Generally, you should create new directories for the files
you place in these trees. Do not simply insert new files in existing directories
unless that directory was explicitly created for such files. Table 15–1 lists
the directories you might use:

Table 15–1: Standard Trusted System Directories
Directory Contents

/tcb/bin, /usr/tcb/bin Contains directly executed trusted com-
mands and daemons.

/tcb/lib Contains programs that are run by other
trusted programs but are never invoked
from the command line.

/tcb/files Contains control files, databases, and scripts used
by the trusted computing base (TCB). You can
define a subdirectory of this directory for your
protected subsystem, if necessary.

/var/tcb Alternative to the /tcb directory.

15–2 Introduction for Programmers

15.3 Security Relevent System Calls and Library Routines

The tables in the following sections list many of the Tru64 UNIX system
calls and library routines that have security implications for programmers.

Note that some system calls and library routines not covered in these
sections might also have implicit security concerns.

The misuse of a system call or library routine that does not seem to have
any security concerns could threaten the security of a computer system. For
example, all system calls bypass file access permissions when called by a
privileged process. Ultimately, programmers are responsible for the security
implications of their programs.

15.3.1 System Calls

Table 15–2 lists the system calls that have security relevance for
programmers.

Table 15–2: Security-Relevant System Calls
Category System Calls

File control creat, open, fcntl, read, mknod*, write

Process control fork, sigpause, execve, sigsetmask,
setpgrp*, sigvec, sigblock

File attributes access, chroot*, chmod*, stat,
chown*, umask

User and group ID getegid, getuid, getgid, setgroups*,
geteuid, setreuid*

Auditing audcntl*, audgen*

General syscall

Table note:

* These system calls can be called only by a privileged process
or they may behave differently when called by a nonprivileged
process. See the associated reference pages for more
information.

15.3.2 Library Routines

Library routines are system services that programs can call. Many library
routines use system calls. Table 15–3 lists Tru64 UNIX library routines that
have security implications.

Introduction for Programmers 15–3

Table 15–3: Security-Relevant Library Routines
Category Library Routines

File control fopen, popen

Password handling getpass, putpwent, getpwnam, setpwent,
getpwent, endpwent, getpwuid, passlen,
pw_mapping, randomword, time_lock

Process control signal

15.4 Defining the Trusted Computing Base

You must protect the trusted computing base (TCB) from unintended
modification. To do this, you first define which of your programs and data
files are a part of the TCB. The following list describes the components of
the TCB:

• Trusted Programs: Any program that could subvert a security rule
must be considered a trusted program. This includes programs that
make direct security decisions, and those that do not, but could subvert
security if they contained errors or malicious code. Consider a program
trusted if the program file has its user ID set to root (SUID).

• Indirect Programs:A program is trusted if another trusted program
invokes it or otherwise interacts with it and depends upon its actions for
security decisions. A program is also trusted if it modifies a data file or
other object upon which another trusted program depends.

• Program Files: Executable files that contain a trusted program are
considered a part of the TCB.

• Object Code and Libraries: All object (binary) code modules and their
files, whether statically or dynamically linked, that are included in a
trusted program are part of the TCB. This includes the standard C library
routines and interfaces, which are frequently used by trusted programs.

• Data Files:The TCB includes any file that contains data used by a trusted
program to make a security decision, for example, the ttys database.

• Shell Scripts:A shell script is a data file that a shell program interprets,
performing the shell commands in the file. A shell script is considered
part of the TCB if it performs a function on behalf of a trusted program
or if it is needed for correct operation of the system. You can determine
if a shell script is security relevant if removing or replacing the script
would cause the system to perform improperly (for example, removing
some of the rc startup scripts) or provide an opportunity for a security
breach (installing a different cron startup file). Shell script files should
be protected as carefully as object code program files. Note that a shell
script must be readable to be executed.

15–4 Introduction for Programmers

• Antecedent Directories:Consider all parent directories of TCB files a part
of the TCB and protect them accordingly. If malicious users can remove
and redefine links in these directories, then they can create new, phony
files that might cause a trusted program to make an incorrect security
decision.

15.5 Protecting TCB Files

Each of the following mechanisms presents a way to protect the files and
directories of the TCB:

• Discretionary Access Control (DAC): Discretionary access control (the
owner, group, mode bits, and ACLs) is the most important protection for
TCB files. It must prevent untrusted users and groups from modifying
these files, although they might be allowed to read the files. It is common
to create pseudo users and pseudo groups for this purpose.

Existing programs may copy only the mode bits when replicating a file
and therefore accidentally delete the ACL. This removes the protection
offered by the ACL. Compaq recommends that you use restrictive
traditional permissions, such as other::--- and group::---, and
then grant access to individual users with user entries. Using this
approach, if an ACL is lost, unintended access is not allowed. See
Chapter 21 for information on programming with ACLs.

• Read-Only File Systems: You can place all files that only need to be read
on a separate file system and mount that file system as read-only. This
ensures that no program, no matter how privileged, can alter those
files (at least short of remounting the file system). You can, of course,
remount the file system as read/write if you need to alter the files. This
is somewhat drastic but offers good protection against corruption of
security data. You can also physically set a read-only locking tab on
many kinds of removable media.

• Sticky Bit: Tru64 UNIX includes the sticky bit on directories. The sticky
bit restricts the removal of directory entries (links) to those owned by the
requesting user or the owner of the directory. Without this protection,
programs only need write access to the directory. Use the sticky bit
where appropriate, for example when a program needs to store files
owned by different users in a single directory.

Introduction for Programmers 15–5

16
Trusted Programming Techniques

This chapter presents specific techniques for designing trusted programs.

16.1 Writing SUID and SGID Programs

SUID (set user ID) and SGID (set group ID) programs change the effective
UID or GID of a process to the UID or GID of the program. They are a
solution to the problem of providing controlled access to system-level files and
directories, because they give a process the access rights of the files’ owner.

The potential for security abuse is higher for programs in which the user ID
is set to root or the group ID is set to any group that provides write access
to system-level files. Do not write a program that sets the user ID to root
unless there is no other way to accomplish the task.

The chown system call automatically removes any SUID or SGID bits on a
file, unless the RUID of the executing process is set to zero. This prevents
the accidental creation of SUID or SGID programs owned by the root
account. For more information, see chown(2).

The following list provides suggestions for creating more secure SUID and
SGID programs:

• Verify all user-provided pathnames with the access system call.

• Trap all relevant signals to prevent core dumps.

• Test for all error conditions, such as system call return values and buffer
overflow.

When possible, create SGID programs rather than SUID programs. One
reason is that file access is generally more restrictive for a group than for
a user. If your SGID program is compromised, the restrictive file access
reduces the range of actions available to the attacker.

Another reason is that it is easier to access files owned by the user executing
the SGID program. When a user executes an SUID program, the original
effective UID is no longer available for use for file access. However, when a
user executes an SGID program, the user’s primary GID is still available
as part of the group access list. Therefore, the SGID process still has group
access to the files that the user could access.

Trusted Programming Techniques 16–1

The stack of all SUID programs is not executable by default. User
applications that rely on the stack being executable will fail. If absolutely
necessary, you can change the default setting. This allows the stack of SUID
programs to be executable. To change from default of zero (not executable) to
executable, use the following command:

sysconfig -r proc executable_stack=1

To ensure that the change persists across reboots, use the sysconfigdb
command to add the entry to the /etc/sysconfigtab file.

16.2 Handling Errors

Most system calls and library routines return an integer return code, which
indicates the success or failure of the call. Always check the return code to
make sure that a routine succeeded. If the call fails, test the global variable
errno to find out why it failed.

The errno variable is set when an error occurs in a system call. You can use
this value to obtain a more detailed description of the error condition. This
information can help the program decide how to respond, or produce a more
helpful diagnostic message. This error code corresponds to an error name in
<errno.h>. For more information, see errno(2).

The following errno values indicate a possible security breach:

EPERM Indicates an attempt by someone other than the
owner to modify a file in a way reserved to the file
owner or superuser. It can also mean that a user
attempted to do something that is reserved for a
superuser.

EACCES Indicates an attempt to access a file for which the
user does not have permission.

EROFS Indicates an attempt to access a file on a mounted
file system when that permission has been revoked.

If your program makes a privileged system call but the resulting executable
program does not have superuser privilege, it will fail when it tries to
execute the privileged system call. If the security administrator has set up
the audit system to log failed attempts to execute privileged system calls,
the failure will be audited.

If your program detects a possible security breach, do not have it display a
diagnostic message that could help an attacker defeat the program. For
instance, do not display a message that indicates the program is about

16–2 Trusted Programming Techniques

to exit because the attacker’s real user ID (UID) did not match a UID in
an access file, or even worse, provide the name of the access file. Restrict
this information by using the audgen() routine for SUID root programs
and using syslog for other programs. In addition, you could program a
small delay before issuing a message to prevent programmed attempts to
penetrate your program by systematically trying various inputs.

16.3 Protecting Permanent and Temporary Files

If your program uses any permanent files (for example, a database), make
sure these files have restrictive permissions and that your program provides
controlled access. These precautions also apply to shared memory segments,
semaphores, and interprocess communication mechanisms; set restrictive
permissions on all of these objects.

Programs sometimes create temporary files to store data while the program
is running. Follow these precautions when you use temporary files:

• Be sure your program deletes temporary files before it exits.

• Avoid storing sensitive information in temporary files, unless the
information has been encrypted.

• Give only the owner of the temporary file read and write permission. Set
the file creation mask to 077 by using the umask() system call at the
beginning of the program.

• Create temporary files in private directories that are writable only by
the owner or in /tmp. The /tmp, directory has the sticky bit set (mode
1777), so that files in it can be deleted only by the file owner, the owner
of the directory, or the superuser.

A common practice is to create a temporary file, then unlink the file while it
is still open. This limits access to any processes that had the file open before
the unlink; when the processes exit, the inode is released.

Note that this use of unlink on an NFS-mounted file system takes a slightly
different action. The client kernel renames the file and the unlink is sent to
NFS only when the process exits. You cannot guarantee that the file will be
inaccessible to someone else, but you can be reasonably sure that the file will
be inaccessible when the process exits. In any case, always explicitly ensure
that no temporary files remain after the process exits.

16.4 Specifying a Secure Search Path

If you use the popen, system, or exec*p routines, which execute /bin/sh
or /sbin/sh, be careful when specifying a pathname or defining the shell
PATH variable. The PATH variable is a security-sensitive variable because

Trusted Programming Techniques 16–3

it specifies the search path for executing commands and scripts on your
system. For more information, see environ(7), popen(3), and system(3).

The following list describes how to create a secure search path:

• Specify absolute pathnames for the PATH variable.

• Do not include public or temporary directories, other users’ directories,
or the current working directory in your search path. Including these
directories increases the possibility of inadvertently executing the wrong
program or of being trapped by a malicious program.

• Be sure that system directories appear before user directories in the list.
This prevents you from mistakenly executing a program that might have
the same name as a system program.

• Analyze your path-list syntax, especially your use of nulls, decimal
points, and colons. A null entry or decimal point entry in a path list
specifies the current working directory and a colon is used to separate
entries in the path list. For this reason, the first entry following an equal
sign should never begin with a colon.

• If a path list ends with a colon, certain shells and exec*p routines
search the current working directory last. To avoid having various shells
interpret this trailing colon in different ways, use the decimal point
rather than a null entry to reference the current working directory.

You might want to use the execve system call rather than any of the
exec*p routines because execve requires that you specify the pathname.
For more information, see execve(2).

16.5 Responding to Signals

The Tru64 UNIX operating system generates signals in response to certain
events. The event could be initiated by a user at a terminal (such as quit,
interrupt, or stop), by a program error (such as a bus error), or by another
program (such as kill).

By default, most signals terminate the receiving process; however, some
signals only stop the receiving process. Many signals, such as SIGQUIT or
SIGTRAP, write the core image to a file for debugging purposes. A core
image file might contain sensitive information, such as passwords.

To protect sensitive information in core image files and protect programs
from being interrupted by input from the keyboard, write programs that
capture signals such as SIGQUIT, SIGTRAP, or SIGTSTP.

Use the signal routine to cause your process to change its response to a
signal. This routine enables a process to ignore a signal or call a subroutine
when the signal is delivered. (The SIGKILL and SIGSTOP signals cannot

16–4 Trusted Programming Techniques

be caught, ignored, or blocked. They are always passed to the receiving
process.) For more information, see signal(3) and sigvec(2).

Also, be aware that child processes inherit the signal mask that the parent
process sets before calling fork. The execve system call resets all caught
signals to the default action; ignored signals remain ignored. Therefore, be
sure that processes handle signals appropriately before you call fork or
execve. For more information, see the fork(2) and execve(2) reference
pages.

16.6 Using Open File Descriptors with Child Processes

A child process can inherit all the open file descriptors of its parent process
and therefore can have the same type of access to files. This relationship
creates a security concern.

For example, suppose you write a set user ID (SUID) program that does
the following:

• Allows users to write data to a sensitive, privileged file

• Creates a child process that runs in a nonprivileged state

Because the parent SUID process opens a file for writing, the child (or any
user running the child process) can write to that sensitive file.

To protect sensitive, privileged files from users of a child process, close all
file descriptors that are not needed by the child process before the child is
created. An efficient way to close file descriptors before creating a child
process is to use the fcntl system call. You can use this call to set the
close-on-exec flag on the file after you open it. File descriptors that have
this flag set are automatically closed when the process starts a new program
with the exec system call.

For more information, see the fcntl(2) reference page.

16.7 Security Concerns in X Environment

The following sections discuss several ways to increase security in the X
programming environment:

• Restrict access control

• Protect keyboard input

• Block keyboard and mouse events

• Protect device-related events

Trusted Programming Techniques 16–5

16.7.1 Protect Keyboard Input

Users logged into hosts listed in the access control list can call the
XGrabKeyboard function to take control of the keyboard. When a client
has called this function, the X server directs all keyboard events only to
that client. Using this call, an attacker could grab the input stream from
a window and direct it to another window. The attacker could return
simulated keystrokes to the window to fool the user running the window.
Thus, the user might not realize that anything was wrong.

The ability of an attacker to capture a user’s keystrokes threatens the
confidentiality of the data stored on the workstation.

X windows provide a secure keyboard mode that directs everything a user
types at the workstation keyboard to a single, secure window. Users can
set this mode by selecting the Secure Keyboard item from the Commands
menu in a X window.

Include a secure keyboard mode in programs that deal with sensitive data.
This precaution is especially important if your program prompts a user for
a password.

Some guidelines for implementing secure keyboard mode follow:

• Use the XGrabKeyboard call to the Xlib library.

• Use a visual cue to let the user know that secure keyboard mode has
been set, for example, reverse video on the screen.

• Use the XUngrabKeyboard function to release the keyboard grab when
the user reduces the window to an icon. Releasing the keyboard frees the
user to direct keystrokes to another window.

16.7.2 Block Keyboard and Mouse Events

Hosts listed in the access control list can send events to any window if they
know its ID. The XSendEvent call enables the calling application to send
keyboard or mouse events to the specified window. An attacker could use
this call to send potentially destructive data to a window. For example, this
data could execute the rm -rf * command or use a text editor to change
the contents of a sensitive file. If the terminal was idle, a user might not
notice these commands being executed.

The ability of an attacker to send potentially destructive data to a
workstation window threatens the integrity of the data stored on the
workstation.

X windows block keyboard and mouse events sent from another client if the
allowSendEvents resource is set to False in the .Xdefaults file.

16–6 Trusted Programming Techniques

You can write programs that block events sent from other clients. The
XSendEvent call sends an event to the specified window and sets the
send_event flag in the event structure to True. Test this flag for each
keyboard and mouse event that your program accepts. If the flag is set to
False, the event was initiated by the keyboard and is safe to accept.

16.7.3 Protect Device-Related Events

Device-related events, such as keyboard and mouse events, propagate
upward from the source window to ancestor windows until one of the
following conditions is met:

• An X client selects the event for a window by setting its event mask

• An X client rejects the event by including that event in the
do-not-propagate mask

You can use the XReparentWindow function to change the parent of a
window. This call changes a window’s parent to another window on the same
screen. All you need to know to change a window’s parent is the window
ID. With the window ID of the child, you can discover the window ID of its
parent.

The misuse of the XReparentWindow call can threaten security in a
windowing system. The new parent window can select any event that the
child window does not select.

Take these precautions to protect against this type of abuse:

• Have the child window select the device events that it needs. This
precaution prevents the new parent from intercepting events that
propagated upward from the child. Parent windows that centralize event
handling for child windows are at greater security risk. An attacker can
change the parent and intercept the events intended for the children.
Therefore, it is safer for each child window to handle its own device
events. Events that the child explicitly selects never propagate.

• Have the child window specify that device events will not propagate
further in the window hierarchy by setting the do-not-propagate
mask. This precaution prevents any device event from propagating to
the parent window, regardless of whether the child requested the event.

• Have the child window ask to be notified when its parent window is
changed by setting the StructureNotify or SubstructureNotify
bit in the child window’s event mask. For information on setting these
event masks, see the X Window System: The Complete Reference to Xlib,
X Protocol, ICCCM, XLFD.

Trusted Programming Techniques 16–7

16.8 Protecting Shell Scripts

When you write a shell script that handles sensitive data, set and export
the PATH variable before writing the body of the script. Do not make shell
scripts SUID or SGID.

16–8 Trusted Programming Techniques

17
Authentication Database

The authentication database is a set of databases that store all Tru64 UNIX
security information when enhanced security is enabled. The following
databases comprise the authentication database:

• Device assignment

• File control

• System default

• Protected password

• Terminal control

This chapter introduces each database and discusses its logical organization.

The trusted programs (that is, any program that could subvert a security
rule) you create specifically for systems with enhanced security enabled need
to use the information in these databases. Except for a few specialized cases,
system administrators maintain these databases using the Tru64 UNIX
administrative interfaces. Therefore your programs usually only read them.
This chapter describes the databases only to the extent that they are used
by your programs. See the system management chapters of this book for
information on managing these databases. The authcap(4) reference pagew
contains general information on the file format.

17.1 Accessing the Databases

Tru64 UNIX includes a set of library routines to access each database. The
following reference pages describe the form and use of these databases; you
should read them in conjunction with this chapter.

Subject Database Reference Page

Device Assignment devassign getesdvent(3)

File Control file getesfient(3)

System Default default getesdfent(3)

Protected Password auth.db/prpasswd
(NIS)

getespwent(3)

Terminal Control ttys.db getestcent(3)

Authentication Database 17–1

The library routines defined on these reference pages hide the actual file
format of the databases. Trusted programs do not need to know the format −
they simply use these library routines.

17.2 Database Components

Each database consists of a set of named entries. Programs primarily use
the name of the entry to request a specific entry from a database, although a
program can also sequentially search through the entries in a database.

Each entry contains a set of fields. Each field has an identifier, used to
access the field and a value. Each database has an allowed set of fields in
one of its entries. Individual fields are optional and can be omitted from an
entry. There are several types of fields including string, integer, and boolean.

The general format for an entry is as follows:

entry_name:string_field=value:integer_field#value:\
:boolean_field_true:boolean_field_false@:chkent:

In general, library routines read or write an entry as a whole. A C structure
holds all possible fields for a given entry of the database. This structure is
always accompanied by a flags structure which holds a mask designating
which fields are to be read or written.

Your programs should take appropriate action when a field is undefined. In
many cases, the undefined fields should be fetched from the system defaults
database, as described in the following section. Structures for each database
include system default fields and flags for that database. Thus, it is easy to
retrieve the system default values associated with a particular field because
the system default values are available from the same structure that stores
values for the individual entry.

17.2.1 Database Form

In general, you will not have to deal with the physical format of the
authentication databases. All databases have the same logical form and
similar access libraries. For example, the terminal control database consists
of an entry for each controlled terminal. The following ttys file sample
physical format entry for tty01and the associated table illustrate the
database file format.

tty01:t_devname=tty01:t_uid#44:t_logtime#772479074:\
:t_login_timeout#20:t_failures#3:t_lock@:\
:chkent:

Meaning Field Value Description

Name t_devname tty01 Terminal 1

17–2 Authentication Database

User of last
login

t_uid 44 UID of 44

Time of last
login

t_logtime 772479074 Fri Jun 24 13:31:13
EDT 1994

Login timeout t_login_timeout#20 20 Login timeout in
seconds

Attempts since
last login

t_failures#3 3 Failed login attempts
since last successful
login

Account status t_lock @ Unlocked (false)

Check entry :chkent:<EOL> chkent End of entry

The following C structure is used for fetching an entry from the ttys
database (see the include file <prot.h>):

struct es_term {
struct estc_field *ufld; /* fields for this entry */
struct estc_flag *uflg; /* flags for this entry */
struct estc_field *sfld; /* system default fields */
struct estc_flag *sflg; /* system default flags */

};

se

The estc_field holds the data for the fields of the entry and estc_flag
holds the flags that designate which fields in estc_field are present or are
set. The following is the estc_field structure:

struct estc_field {
char *fd_devname; /* terminal name */
uid_t fd_uid; /* uid of last successful login */
time_t fd_slogin; /* time of last successful login*/
ushort fd_nlogins; /* consecutive failed attempts */
char fd_lock; /* terminal lock status */
ushort fd_login_timeout; /* login timeout value */

};

struct estc_flag {
unsigned short

fg_devname :1, /* name present? */
fg_uid :1, /* uid present? */
fg_slogin :1, /* time present? */
fg_nlogins :1, /* failed attempts present? */
fg_lock :1, /* lock status present? */
fg_login_timeout :1 /* login timeout present? */

};

Authentication Database 17–3

The getestcent(3) reference page defines the library routines that you can
use to access the terminal control database. The access routines return or
set the fields for a specific entry ufld and uflg and for the system defaults
(sfld and sflg). For each database whose fields have system defaults, the
system defaults are returned in addition to the fields for that entry.

17.2.2 Reading and Writing a Database

Each database is owned by a user/group, to which your program must have
discretionary access. Your program can be installed in two ways:

• SGID to the appropriate group as a standard program of the subsystem

• SUID 0 as a standard program of the subsystem

The library routines automatically enforce one database writer at a time.
However, the database is locked only for the duration of the time the
database is being rewritten. There is no way to lock an entry against access
across a retrieval and write operation. You should complete your writes
as quickly as possible.

17.2.2.1 Buffer Management

You must understand how the system allocates and returns buffers for
database entries to properly code programs that retrieve, replace, and add
database entries. All database routines are patterned after the getpwent()
routines in that they return pointers to static storage that is reused on each
call. You must save the buffer contents if you are going to retrieve another
entry and need to refer again to the previous entry, or if you need to rewrite
an existing entry or add a new entry. You cannot read a database entry,
change one or more field and flag values, and submit the same buffer to the
routine that modifies the database.

The logical form for some database entry fields is self-contained. Other fields
contain pointers to variable length data.

The devassign database logical form contains some fields that are pointers
to variable length data. The getesdvent(3) reference page describes
the copyesdvent() routine that allocates a structure to hold a device
assignment database entry and copies the contents of a buffer returned from
getesdvent() or getesdvnam() into it.

You can save an entry for a self-contained database by simple structure
assignment, as follows:

struct es_passwd *pr; /* returned value */
struct es_passwd *pwcopy; /* buffer for saved values */

/* Retrieve john’s protected password database entry */

17–4 Authentication Database

pr = getesnam("john");

/* store values of john’s entry to a local buffer */

pwcopy = copyespwent(pr);
if (!pwcopy) abort();

/* Change the password minimum change time to two weeks */

pwcopy->uflg->fg_min = 1;
pwcopy->ufld->fd_min = 14 * 24 * 60 * 60;

/* Rewrite john’s protected password database entry */

if (!putespwnam("john", pwcopy))
errmsg("Could not write protected password entry\n");

free(pwcopy);

17.2.2.2 Reading an Entry by Name or ID

You can read database entries by specifying their name or, in some
databases, some other identifying value. For example, you can fetch entries
from the enhanced (protected) password database by the entry name (the
user’s name) or the user ID. The following code reads the entry associated
with the name tty44 from the terminal control database:

...
struct es_term *entry;
...
if ((entry = getestcnam("tty44")) == NULL)

errmsg ("Entry not found");

Note that getestcnam() allocates the data structure for the returned entry.
Hence, entry is only a pointer to a es_term structure that is reused the
next time any of the prtc() or estc() routines is called.

17.2.2.3 Reading Entries Sequentially

You can also read database entries sequentially as illustrated in the
following code:

...
struct es_term *entry;
...
setprtcent(); /* rewind the database*/
while ((entry = getestcent()) != NULL){ /* read next entry */

... /* process the entry */
}
endprtcent (); /* close */

Authentication Database 17–5

Note that getestcent() also allocates the data structure for the entry. You
can restart the search from the beginning using setprtcent().

17.2.2.4 Using System Defaults

A system default is a field that is used when the corresponding field in an
entry is not defined. The system default database contains defaults for the
other databases. The following databases contain information for which
there are system defaults:

• Protected password

• Terminal control

• Device assignment

Note that only certain fields in these databases are allowed to have defaults.

When your program reads a logical entry, the library routine returns both
the fields for that entry (ufld and uflg) and for the system default (sfld
and sflg). If the entry does not contain the field you need, use the system
default. In some cases if the system default is also undefined, your program
should generate audit data to report the error and execute a failure path. In
other cases, you can safely define a default value.

For example, if you need to determine the timeout value for the terminal
tty14, your code might look like this:

struct es_term *entry; /* the entry for the terminal */
ushort time_out; /* final timeout value */
...

/*--- fetch the entry by name ---*/

if ((entry = getestcnam ("tty14")) == NULL)
errmsg ("Entry not found");

/*--- if defined for the terminal, use it ---*/

if (entry->uflg->fg_login_timeout)
time_out = entry->ufld->fd_login_timeout;

/*--- else if system default is defined, use it ---*/

else if (entry->sflg->fg_login_timeout)
time_out = entry->sfld->fd_login_timeout;

/*--- otherwise, assume a value of 0 ---*/

else time_out = 0;

17–6 Authentication Database

17.2.2.5 Writing an Entry

Your program should seldom have to modify a database, and even more
rarely a system default. However, if this is necessary, place the new fields in
ufld and set the corresponding flags in uflg, and then call the appropriate
library routine. For example, to set a new timeout value for the terminal
tty14 to 20 your code might look like this:

struct es_term *entry, *ecopy;
...
/*--- fetch the entry by name ---*/

if ((entry = getestcnam("tty14")) == NULL)
errmsg ("Entry not found");

/*--- change the desired field(s) ---*/

ecopy = copyestcent(entry); if (! ecopy) abort():
ecopy->ufld->fd_login_timeout = 20; /* set timeout value */
ecopy->uflg->fg_login_timeout = 1; /* set flag to show the

field has been set */
/*--- update the database ---*/

if (!putestcnam("tty14", ecopy))
errmsg ("Could not update database");

free(ecopy);

______________________ Note _______________________

You must call the appropriate copyes*() routine to save the
data for later use.

The copyes*() routines return pointers to a malloc() storage
area that the caller must clear.

You can only set system defaults using the putesdfnam() interface for
the system default database. You cannot, for example, set the sfld and
sflg fields in a es_term entry and then call putestcnam() to set system
defaults.

17.3 Device Assignment Database (devassign)

The device assignment database contains device attributes for devices on the
system. Currently there are two kinds of devices included in the devassign
database:

• Terminals

• X displays

Authentication Database 17–7

The name of a device entry is used in the device-related commands. This
name is independent of the names of the device files that represent the
device.

System administrators maintain the device assignment database; your
programs should not modify its contents.

The logical entries for this database have dynamic sizes (are not
self-contained). For this reason, you must use the copyesdvent() routine
to make a working copy of a structure that contains one of its entries. See
the getesdvent(3) reference page for details.

The text file /etc/auth/system/devassign holds the entire device
assignment database.

17.4 File Control Database (file)

The file control database helps to assure that your security-sensitive files
have the correct protection attributes (owner, mode bits, and so forth). It
contains the absolute pathname and the correct attributes for each file (or
directory). These attributes include any combination of the following:

• File type (regular, block special, character special, directory, fifo, socket)

• Owner

• Group

• Permission mode bits

• Access control list (if the system is configured for access control lists)

Your programs should not read from or write to the file control database
other than to use its entries for newly created files through the
create_file_securely() interface. However, you should add all new
security-sensitive files and directories to the database. Include all of the
attributes that do not change. This ensures that these attributes are
regularly checked and corrected.

You can use the create_file_securely() routine to create files with
the attributes specified in the file control database. This routine can only
be used to create a new file. You should create new versions of files in a
different file (the Tru64 UNIX convention is to append a :t to a pathname
for the file’s new contents) and then rename (using the rename() system
call) the new file to the existing file.

The file control database is a text file: /etc/auth/system/files. See the
files(4) reference page for a definition of the format of this file. The system
administrator can use the edauth −df command to add or remove entries
from this database. See the edauth(8) reference page for more information.

17–8 Authentication Database

17.5 System Default Database (default)
The system default database, /etc/auth/system/default, is a text file
that contains fields that are to be used when the corresponding fields are left
undefined in other databases. Specifically, this database contains default
information for the enhanced (protected) password, device assignment, and
terminal control databases. (Note that all fields in each of the authentication
databases may be left undefined, but all fields do not have system default
values.)

The system default database also contains fields for miscellaneous system
parameters. Your programs should not need this miscellaneous information.

System administrators maintain this database and your programs should
never have to modify it. The access routines for other databases also return
the system default values. See Section 17.7, for an example of how to access
and use the information in the system default database.

The entire system default database has only one entry, the default entry.

17.6 Enhanced (Protected) Password Database (prpasswd
or auth)
The enhanced password database (/tcb/files/auth.db and
/var/tcb/files/auth.db) are dbm files that hold a set of user
authentication profiles. User authentication profiles can also be distributed
between Tru64 UNIX systems using the NIS prpasswd map. Each
authentication profile entry is named with a user name (a name that a user
supplies during login). The authentication profile has many fields that
govern the user’s login session. Chapter 18 describes these fields in detail.

An authentication profile is associated with the account whose presence is
indicated by a line in the traditional /etc/passwd file or NIS passwd map.
The encrypted password has been moved from the /etc/passwd file to
the authentication profile.

The system assigns the traditional meanings for the other fields in the
/etc/passwd database. Each entry in /etc/passwd corresponds to exactly
one authentication profile in the protected password database with the same
user ID and name (both must be present for an account to be considered
valid). The /etc/passwd entry contains a dummy encrypted password field
− the authentication profile holds the real one.

The traditional UNIX interfaces for querying /etc/passwd file is
getpwent(). The interfaces’ functions are unchanged and always fetch their
information from the /etc/passwd file or NIS map. Note however, that the
encrypted password that is returned is a dummy value (the routine is not
modified to retrieve the encrypted password from the authentication profile).

Authentication Database 17–9

Your programs should not modify the enhanced (protected) password
database. However, many trusted programs need to read the information
from the user authentication profiles.

17.7 Terminal Control Database (ttys)

The terminal control database, /etc/auth/system/ttys.db, is a dbm
file that contains fields used primarily during login that apply to the login
terminal, as opposed to the user who is logging in. This database consists
of an entry for each terminal upon which users may log in including X
terminals.

Each entry in the database has a name of the terminal that matches a name
in the file used to specify login ports (/etc/inittab). The entries in the
device assignment database correspond to each entry in the terminal control
database. Most trusted programs (for example, login) do not provide their
services if there is no corresponding entry in the device assignment database.

Each terminal control database entry contains the following fields:

• The name of the terminal.

• The user ID and time of the last unsuccessful login attempt. Because
the user ID is stored in the database, an unsuccessful login attempt that
specifies a user name that does not map to a user ID, does not produce a
valid user ID in this database. If the user name maps to a valid ID, that
ID is placed in the appropriate field.

• The user ID and time of the last successful login.

• The number of unsuccessful login attempts since the last successful login.

• Whether the terminal is locked.

• The number of unsuccessful attempts that the system allows before
locking the terminal.

• The enforced time delay after a failed login attempt (enforced by the
login program).

• The number of seconds after which the login, once started, times out if
there is no keyboard input. Upon timeout, the login program terminates
the login attempt.

System administrators maintain the entries in this database, although the
Tru64 UNIX login programs modify many fields. Your programs do not
usually modify this database. Although it is unlikely, trusted programs may
need to read this database.

The file /etc/auth/system/ttys.db holds the entire terminal control
database.

17–10 Authentication Database

18
Identification and Authentication

This chapter discusses the following topics:

• The audit ID and some guidelines for using it

• The support libraries

• Using daemons

• The user authentication profile in the enhanced (protected) password
database for enhanced security

• Some brief cautions for handling passwords

18.1 The Audit ID

Tru64 UNIX preserves all traditional UNIX process user and group
identities. Additionally, it provides the per-process audit ID (AUID), which
is unique to Tru64 UNIX. The AUID is similar in principle to the real user
ID, except that it remains unchanged even in cases where the real user
ID changes.

The audit ID is associated with all audit records and establishes the user
identity even in those cases where the real and effective user IDs have been
changed from their values at login.

The audit ID can be set only once in a line of process descendants, regardless
of any process privileges. The audit ID is set at login to the authenticated
user (the same as the real and effective user IDs) and is inherited from
parent to child when a process forks using the fork() system call.

Programs that are created from startup scripts or that are created as a result
of respawn entries in the inittab file are created with an unset audit
ID. Such programs are normally authentication programs (getty/login
sequences, window managers, trusted path managers) that set the AUID
based on the user that authenticates through that interface.

Programs started through startup scripts typically receive requests for
service on behalf of users and spawn a process to service that request. Such
programs typically set the audit ID in the child service process based on
the requesting process’s effective identity. If you are writing this type of
program, you should use the SIA routines. The SIA routines properly set

Identification and Authentication 18–1

up the user’s environment in the child process regardless of the security
mechanisms in use on the system (BASE, enhanced, DCE, and so forth).

The getluid() and setluid() system calls read and set the audit ID. See
their reference pages for details.

18.2 Identity Support Libraries
The Tru64 UNIX operating system provides several library
routines for managing user and group identities. For example, the
set_auth_parameters() routine is required by some routines used by
enhanced security. It stores the initial user and group IDs that can later be
queried or tested by the other routines. If you are writing a program or
routine that will be used with the enhanced security option, you must call
set_auth_parameters() at the beginning of your program’s main() routine.

Several of the enhanced security routines for querying the
authentication database require the program to have previously called
set_auth_parameters() before changing any of the user or group IDs, or
the command arguments argc and argv.

See the identity(3) reference page for more information.

To keep your code portable between security mechanisms, use the SIA
session routines.

18.3 Using Daemons
Whenever a daemon performs an operation at the request of a user program
(the client), it acts in one of two ways:

• It can run under its own identities, authorizations, and privileges,
making its own decisions about what actions the requesting program
may or may not perform. In this case, it does not need to change any
of its own user identities.

• It can have the underlying operating system enforce operations as if the
daemon had the client’s security attributes (user IDs, authorizations,
and so forth).

In the latter case, the daemon needs to establish a set of security attributes.
The preferred technique is to fork a process, set the identities and privileges
using SIA, and then either perform the actions directly or execute a program
to perform them.

18.4 Using the Enhanced (Protected) Password Database
Although the enhanced (protected) password database is intended mainly
for Tru64 UNIX programs, your programs may need to use the fields

18–2 Identification and Authentication

described in the following list. (These fields are also described in the
getespwent(3) and prpasswd(4) reference pages, the prot.h include file,
and the administrative part of this document.)

• User name (u_name) and ID (u_id) — These fields correspond to the
user name and ID in /etc/passwd.

• Encrypted password (u_pwd) — This field is the real encrypted password.

• Retired status (u_retired) — This field indicates whether the
authentication profile is valid. If not valid, login sessions are not allowed.
Once retired, an account should never again be reused.

• Login session priority (u_priority) — The process priority assigned to
programs of the user login session using setpriority().

• User audit mask (u_auditmask) and control flags (u_audcntl) — This
mask and its control flags, with the system audit mask, designate the
events audited during the login session. The login program assigns a
mask to the user’s login shell. Audit masks and the control flags are
inherited across exec() and fork() calls. See Chapter 19 and the
auditmask(8) reference page for more information.

• Password parameters — The following parameters describe the login
password and its generation:

– Maximum length in characters for passwords chosen by the user
(u_maxchosen)

– Password expiration interval (u_exp)

– Minimum password lifetime (u_minchg)

– Password lifetime (u_life)

– Time and date of last successful password change (u_succhg)

– Time and date of last unsuccessful password change attempt
(u_unsucchg)

– User who last changed the password (u_pwchanger)

– Password generation parameters (u_genpwd)

– User generated password generation parameters (u_pickpw)

• Login password requirements (u_nullpw) — This is sometimes called
the “null password option” and controls attempts to set a null password.
Most administrators do not allow this option.

• Times during which a user may login (u_tod) — This field is formated
like the UUCP systems file. (The systems file describes when a remote
system can be contacted for file transfer.) It determines the valid times
for a user to log in.

Identification and Authentication 18–3

• Time and date of last login (u_suclog) — Expressed as a canonical
UNIX time (in seconds since 1970).

• Terminal used during last login (u_suctty) — The terminal name is a
cross-reference to the device assignment and terminal control databases.

• Number of unsuccessful login attempts since last login (u_numunsuclog)
— This value is used to compute whether the terminal is disabled due to
too many unsuccessful attempts.

• Number of unsuccessful login attempts allowed before disabling
(u_maxtries) — This value is the user-specific limit for the number of
unsuccessful attempts allowed until the account is disabled.

• Lock status (u_lock) — Whether or not the administrator has locked
the account. A locked profile cannot be used for login or other services.
Only an explicit request from the system administrator should unlock
an authentication profile, and only programs that handle such requests
should reset the locked field. A common programming error is to assume
that the lock indicates all lock conditions. This indicator shows only the
status of the administrative lock. An account may appear to be locked
due to being disabled by password lifetime expiration or exceeding the
number of unsuccessful attempts allowed for the account.

Your program can assume that with enhanced security enabled, the user
name and ID in the enhanced (protected) password database is maintained
by the system to have a corresponding entry in the /etc/passwd file.

18.5 Example: Password Expiration Program
The program named myexpire in Example 18–1 is a program for use with
enhanced security that prints the user’s password expiration time as defined
in the enhanced (protected) password database. This program is part of the
authentication protected subsystem and runs in the set group ID (SGID)
mode, setting the GID to auth.

Example 18–1: Password Expiration Program

#include <sys/types.h>
#include <stdio.h>
#include <sys/security.h>
#include <prot.h>

main (argc, argv)
int argc;
char *argv[];
{

struct es_passwd *acct;
time_t expire_time;
time_t expire_date;

18–4 Identification and Authentication

Example 18–1: Password Expiration Program (cont.)

/*--- Standard initialization ---*/

set_auth_parameters(argc, argv);
initprivs();

/*--- fetch account information using audit ID ---*/

if ((acct = getespwuid(getluid())) == NULL)
errmsg("Internal error");

/*-- test if personal or system default applies and print --*/

if (acct->uflg->fg_expire)
expire_time = acct->ufld->fd_expire;

else if (acct->sflg->fg_expire)
expire_time = acct->sfld->fd_expire;

else {
audit_db_error(acct); /* audit (externally defined) */
errmsg("No user-specific or system default \

expiration time.");
}

if (!acct->ufld->fg_schange) {
audit_db_error(acct); /* audit (externally defined) */
errmsg("Account does not have successful change time");

}

expire_date = acct->ufld->fd_schange + expire_time;

if (acct->uflg->fg_psw_chg_reqd && \
acct->ufld->fd_psw_chg_reqd) \

expire_date = time((time_t *) NULL);

audit_action(acct->ufld->fd_name, expire_date);
exit(0);

}

______________________ Note _______________________

The enhanced (protected) password database files are accessible
only to processes in the auth group. Programs that need to
read the enhanced password database files must set the group
ID to auth. See the setgid(2) reference page. To write this

Identification and Authentication 18–5

information you must set the UID to 0 or to a user ID and have a
group ID of auth.

18.6 Password Handling

Tru64 UNIX has been designed so that trusted programs can authenticate
their users without specifically asking for passwords. Tru64 UNIX explicitly
uses the audit ID for this purpose. Additional password handling is usually
not necessary and difficult to handle securely. Appendix D provides an
example of a program for password checking.

18–6 Identification and Authentication

19
Audit Record Generation

This chapter provides information on the mechanics of writing and reading
audit records. The following topics are covered:

• Audit events.

• Audit records and tokens.

• Audit flag and masks.

• Disabling auditing for the current process. (See Chapter 10 for
information on managing the audit subsystem.)

• Modifying auditing for the current process.

• Generating application-specific audit records.

• Creating site-specific audit events.

• Creating your own audit logs.

• Parsing audit logs. (This section provides the low-level detail needed to
develop additional utilities for audit data analysis.)

19.1 Introduction

Trusted programs can use the audgen() system call, the audgenl() library
routine, or the audgen command to generate audit records; audgenl() is a
front-end to audgen(). For arguments, the program supplies an audit event
followed by audit data consisting of audit tokens and values.

The following code fragment shows how a program that checks boot
authentication can call audgenl() to audit authentication failure:

Audit Record Generation 19–1

if(audgenl(AUTH_EVENT, 1
AUD_T_LOGIN, pr->ufld.fd_name, 2
AUD_T_UID, pr->ufld.fd_uid,
AUD_T_CHARP, "boot authentication failed"),0)== -1)

perror("audgenl");

Notes:

1 AUTH_EVENT is the record event name.

2 AUD_T_LOGIN, AUD_T_UID, and AUD_T_CHARP are tokens, each with a
corresponding value.

These identifiers are defined in <sys/audit.h>. See Section 19.2 and
Section 19.3 for descriptions of events and tokens.

19.2 Audit Events

Each audit record has an audit event associated with it. The system
automatically adds the event when generating system call audit records.
Self-auditing application programs pass the event as an argument to
audgen() or audgenl() when generating audit records. There are two
types of audit events available to application programs:

• Trusted events, which are defined in <sys/audit.h> with values
between MIN_TRUSTED_EVENT and (MIN_TRUSTED_EVENT +
N_TRUSTED_EVENTS -1). For example, the LOGIN event.

• Site-defined events, which are defined in /etc/sec/audit_events
with values between MIN_SITE_EVENT and 1048576. The default range
for site-defined events is 64. For information on defining site events,
see Section 19.8.

19.3 Audit Records and Tokens
The audit subsystem has no fixed record type. Instead, an audit record is
a series of tuples (data objects containing two or more components). Each
tuple consists of an audit token and its corresponding value; depending on
the token type, the tuple might contain a length field.

The following sections describe the two types of tokens: public tokens and
private tokens. Application programs use public tokens.

19.3.1 Public Tokens

Public tokens are available to application programs that generate audit
records using audgen() and audgenl(). Public tokens are defined in
<sys/audit.h> and begin with AUD_T_; for example, AUD_T_CHARP.

19–2 Audit Record Generation

There are three basic types of public tokens:

pointer Used to represent data strings or structures
as pointers. AUD_T_CHARP (character string)
and AUD_T_HOMEDIR (home directory) are two
pointer-type tokens.

iovec Used to represent data as iovec-formatted data.
AUD_T_OPAQUE, and AUD_T_INTARRAY are two
iovec-type tokens. (Look for the iovec comments in
<sys/audit.h>. The iovec structure is defined in
<sys/uio.h>. For information about iovec see the
readv(2) and writev(2) reference pages.)

fixed length Used to represent data as a 32- or 64-bit quantity.
(AUD_T_RESULT and AUD_TP_LONG are 64–bit;
others are 32-bit.) Most tokens use fixed-length
data. AUD_T_AUID (audit ID), AUD_T_UID (user
ID), and AUD_T_PID (process ID) are examples of
fixed-length tokens.

The following example generates an audit record using iovec-formatted
data:

#define AUD_COMPAT
#include <sys/audit.h>
#include <sys/uio.h>

main()
{

char buf[100];
int i;
struct iovec iov;

for (i = 0; i < sizeof(buf); i++)
buf[i] = i;

iov.iov_len = sizeof(buf);
iov.iov_base = buf;

if (audgenl (AUDGEN8,
AUD_T_CHARP, "opaque data test",
AUD_T_OPAQUE, &iov,
0) == -1)

perror ("audgenl");
}

Audit Record Generation 19–3

19.3.2 Private Tokens

Private tokens are used by the kernel; they are not available to application
programs. The audgen() system call rejects any attempts by application
programs to write records that contain private tokens. Private tokens
are defined in <sys/audit.h> and begin with AUD_TP_; for example
AUD_TP_AUID.

The kernel uses the private tokens when creating audit records. For
example, the kernel encapsulates each audit record with AUD_TP_LENGTH
tuples whose value is the length of the audit record. Another example is the
audgen() or audgenl() event argument, from which the kernel creates a
AUD_TP_EVENT tuple.

19.4 Audit Flag and Masks
Whether an audit event actually results in the generation of an audit record
depends on the following flag and mask settings:

• Process audit control flag

• Process audit mask

• System audit mask
The process audit control flag has four exclusive states:

AUDIT_OR An audit record is generated if either the system
audit mask or the process audit mask indicates such
an event should be audited.

AUDIT_AND An audit record is generated if both the system audit
mask and the process audit mask indicate such an
event should be audited.

AUDIT_OFF No audit records are generated for the current
process.

AUDIT_USR An audit record is generated if the process audit
mask indicates such an event should be audited.

The process audit control flag also has two nonexclusive states:

AUDIT_SYSCALL_OFF Turns off system call record generation
for the process.

AUDIT_HABITAT_USR Turns on the habitat system calls in
the user mask for the process even
if system calls are turned off for the

19–4 Audit Record Generation

system mask. The habitat system
calls are: System V – unlink()
and open(); real time – memlk(),
memunlk(), psx4_time_drift(), and
rt_setprio(). These habitat system
calls are turned on or off as a group. See
Appendix B for the habitat events.

The system administrator can establish a default audit level for users,
while retaining the ability to audit any individual user at whatever level
the administrator deems appropriate. (See Chapter 10 for information on
configuring and administering the audit subsystem.)

From a programmer’s perspective, a privileged process can set its audit
level (specify what gets audited), either as an absolute mask or in relation
to the system audit mask. See Section 19.6 for an example showing how to
set a process’s audit mask. See audcntl(2) and auditmask(8) for more
information.

19.5 Disabling System-Call Auditing for the Current
Process

Controlling which events are audited is an important step in fine-tuning the
amount of audit data collected. System calls can generate large amounts of
audit data, but this data is not necessarily useful information. In general,
actively auditing the modification of fields in a security-relevant database or
auditing a specific security-relevant action provides more usable information
than trying to derive this information from a multitude of system-call audit
records. For example, the login process executes thousands of system calls,
but a single informative audit record written by the login process uses less
system resources and is easier to understand.

Application programs can disable system-call auditing but still allow
trusted-event auditing. The following code fragment shows how to use the
audcntl() system call to set AUDIT_SYSCALL_OFF:

/* OR the AUDIT_SYSCALL_OFF bit into the audcntl flag */
if ((cntlflag = audcntl(GET_PROC_ACNTL,

NULL, 0, 0, 0, 0)) == -1)
perror("audcntl");

else
audcntl(SET_PROC_ACNTL, NULL, 0,

cntlflag|AUDIT_SYSCALL_OFF, 0, 0);

Audit Record Generation 19–5

19.6 Modifying System-Call Auditing for the Current
Process

A process can control what is audited for itself or another process by
modifying the target process’s auditmask and audcntl flags. You can
modify the current process’s audit mask as follows:

/* ex. set the process’s auditmask to audit only LOGIN
events and successful setgroups calls

*/
#include <sys/audit.h>
#include <sys/syscall.h>
char buf[AUDIT_MASK_LEN];
...
bzero (buf, sizeof(buf));
A_PROCMASK_SET (buf, LOGIN, 1, 1);
A_PROCMASK_SET (buf, SYS_setgroups, 1, 0);
if (audcntl (SET_PROC_AMASK, buf,

AUDIT_MASK_LEN, 0, 0, 0) == -1)
perror ("audcntl");

The A_PROCMASK_SET macro, defined in <sys/audit.h>, takes the
following arguments:

buf The buffer containing the mask.

event name The <sys/audit.h> header file contains trusted
event names. The <sys/*syscall.h> header files
contain system call names.

succeed Indicates whether to audit success; a 1 means audit
event success.

fail Indicates whether to audit failure; a 1 means audit
event failure.

See audcntl(2) for more information.

19.7 Application-Specific Audit Records

An application program provides application-specific audit data as
arguments to audgen() or audgenl().

The following code fragment sends an audit record to the kernel when
the specified event occurs. The event is either a trusted event from
<sys/audit.h> or a site-defined event from /etc/sec/site_events.

19–6 Audit Record Generation

(Whether the kernel actually writes an audit record to the audit log depends
on the events audited for this process.)

/* If bad_thing occurs, generate an event of type event_num,
* with string "bad thing happened", and a result of 66.
*/

#include <sys/audit.h>

if (bad_thing) {
if (audgenl (event_num,

AUD_T_CHARP, "bad thing happened",
AUD_T_RESULT, 66, 0) == -1)

perror ("audgenl");
}

In general, an application-generated audit record does not have to include
data for the tokens listed in Table 19–1. The kernel automatically adds this
information to each audit record. However, the audit subsystem does not
prevent you from putting any of the public token tuples in an audit record;
for example, you can add an AUD_T_AUID tuple to an audit record even
though the system will later add an AUD_TP_AUID to the record. Both tuples
are written to the audit log.

19.8 Site-Defined Events

A site can define its own set of audit events, called site-defined events, in
the locally created and maintained file /etc/sec/site_events. The file
contains one entry for each site event.

The potential range for site event numbers is MIN_SITE_EVENT (defined in
<sys/audit.h>) to 1048576. The default range is 64. To change this value,
set audit-site-events in /etc/sysconfigtab and reboot. For example,
to allow for up to 128 site-defined events:

sec:
audit-site-events=128

Each site-event entry can contain up to INT_MAX subevents. There is no
default range defined for subevents.

The maximum length for an event or subevent name is AUD_MAXEVENT_LEN,
defined in <sys/audit.h>.

Application programs can generate records containing both
site-defined events and the trusted events defined in <sys/audit.h>
(MIN_TRUSTED_EVENT to MAX_TRUSTED_EVENT).

Audit Record Generation 19–7

The auditmask utility supports preselection for site-defined events, and
the audit_tool utility supposts postselection for site-defined events and
subevents.

19.8.1 Sample site_events File

The syntax for a site-defined audit event entry is:

[event_name event_number [, subevent_name subevent_number ...] ;]

The following entries in a sample /etc/sec/site_events file demonstrate
how to create site-defined events and subevents:

essence 2048, 1
ess_read 0, 2
ess_write 1; 3

rdb 2049,
rdb_open 0,
rdb_close 1,
rdb_read 2,
rdb_write 3;

decinspect 2050;

Notes:

1 essence is the event; 2048 is the event number. Note that 2048 is
MIN_SITE_EVENT, the lowest number available for site-defined events.

2 ess_read is the first subevent; 0 is the first subevent number.

3 ess_write is the second subevent; 1 is the second subevent number.

See aud_sitevent(3) for more information on site-defined events.

19.8.2 Example – Generating an Audit Record for a Site-Defined
Audit Event

The following code fragment uses audgenl() to generate audit data for
an rdb_close event:

int event_num, subevent_num;

/* translate event name(s) into event numbers */
if (aud_sitevent_num ("rdb", "rdb_close",

&event_num, &subevent_num))
printf ("aud_sitevent_num failed");

/* generate audit data */
else if (audgenl (event_num,

AUD_T_SUBEVENT, subevent_num,
AUD_T_CHARP, "Trusted RDB V1.0 Close",
0) == -1)

19–8 Audit Record Generation

perror ("audgenl");

Compaq recommends that you include an AUD_T_CHARP, event name
argument pair with audgenl() when generating a record for a site-defined
event. Doing so simplifies the task of analyzing audit data on a system that
does not have a copy of the local site_events file.

See aud_sitevent(3) and audgenl(3) for more information.

19.9 Creating Your Own Audit Logs

You can use the audgen() system call to create your own audit log. If the
size argument to audgen() is a nonzero value, audit data is copied to the
userbuff specified in audgen() rather than written to the system audit
logs. A trusted application can then write the data in userbuff to a unique
log file. See audgen(2) for more information.

You can use the audit_tool utility to read the new audit log. More detailed
information can be read from the log using the information in Section 19.10.

19.10 Parsing an Audit Log

Most people use audit_tool or dxaudit to read audit logs. The
audit_tool utility is a sophisticated program that converts audit data
into useful information, formats output, and handles audit records that
span audit log files. When audit_tool first reads an audit log, it creates
a corresponding .hdr file to maintain state information. This state
information reduces the time needed for subsequent reads of the audit logs.
Also, if an audit record spans audit logs, audit_tool opens both log files
and creates a complete record in the header file.

The following sections describe the format and construction of audit logs;
they provide:

• A description of an audit log plus a list of the token types generally found
in all audit records.

• The binary record format with examples showing an octal dump of a
record and its formatted output.

• A table of token/tuple byte descriptions, which lists the data types and
format for each public and private token.

• Sample macros for parsing tuples.

These sections do not provide the design information needed to create a
program similar to audit_tool; they do provide the basic information
required to parse an audit log into records and tuples.

Audit Record Generation 19–9

19.10.1 Overview of Audit Log Format and List of Common Tuples

Audit logs are regular UNIX data files that contain audit records.
An audit record consists of a series of tuples whose format is either
token:value or token:length:value. Each record starts and ends with
an AUD_TP_LENGTH tuple. (The audit_tool utility uses AUD_TP_LENGTH
to determine whether an audit record is valid. If the actual length of the
record does not match the AUD_TP_LENGTH value, audit_tool discards
the record and provides a warning.) Table 19–1 shows the default tuples
generally used for audit records.

Table 19–1: Default Tuples Common to Most Audit Records
Tuple Comment Tuple Comment

AUD_TP_LENGTH AUD_TP_VERSION

AUD_TP_AUID AUD_TP_RUID

AUD_TP_HOSTADDR AUD_TP_EVENTP if habitat

AUD_TP_HABITAT if habitat AUD_TP_EVENT

AUD_TP_UID AUD_TP_PID

AUD_TP_PPID AUD_TP_DEV if device is
associated with
a process

AUD_TP_NCPU AUD_TP_TV_USEC

AUD_TP_SET_UIDS if uid change AUD_TP_TID if AUDIT_USR
flag is set

19.10.2 Token/Tuple Byte Descriptions

Table 19–2 lists public and private tokens with their octal values. For each
tuple, the third column lists the sequence in which tuple data is written to
an audit log by the kernel. Token is a 1–byte quantity; length is a 4–byte
quantity. Sample Parse Macro refers to the macro that audit_tool uses to
parse the tuple. These macros are provided, for reference purposes only, in
Section 19.10.3.

19–10 Audit Record Generation

Table 19–2: Token/Tuple Byte Descriptions
Token Octal

Value
Tuple Format and Sample Parse Macro

AUD_T_CHARP 001 token:length:null-terminated ASCII
string. PARSE_DEF3

AUD_T_SOCK 003 token:length:struct sockaddr (4.3 style
(u_short); if family is > UCHAR_MAX,
assume 4.4 style sockaddr of length (byte)
then family (byte)). PARSE_DEF3

AUD_T_LOGIN 004 token:length:null-terminated ASCII
string. PARSE_DEF3

AUD_T_HOMEDIR 005 token:length:null-terminated ASCII
string. PARSE_DEF3

AUD_T_SHELL 006 token:length:null-terminated ASCII
string. PARSE_DEF3

AUD_T_DEVNAME 007 token:length:null-terminated ASCII
string. PARSE_DEF3

AUD_T_SERVICE 010 token:length:null-terminated ASCII string.
(reserved for future use)

AUD_T_HOSTNAME 011 token:length:null-terminated ASCII
string. PARSE_DEF3

AUD_T_INTP 012 token:length:int (First element is
number of elements in array; note that
AUD_T_INTARRAY is the preferred tuple when
generating an audit record.) PARSE_DEF3

AUD_T_LSOCK 016

AUD_T_RSOCK 017

AUD_T_LHOSTNAME 020

AUD_T_OPAQUE 030 token:length:value. (proplist or truly opaque;
check for proplist name/value pairs else
dump as hex._ PARSE_DEF6

AUD_T_INTARRAY 031 token:length:int. PARSE_DEF3

AUD_T_GIDSET 032 token:length:int1, int2, ... (unaligned).
PARSE_DEF3

AUD_T_XDATA 033 token:struct aud_xdata (See <sys/audit.h>.)
PARSE_DEF8

AUD_T_AUID 040 token:int. PARSE_DEF2

AUD_T_RUID 041 token:int. PARSE_DEF2

AUD_T_UID 042 token:int. PARSE_DEF2

AUD_T_PID 043 token:int. PARSE_DEF2

Audit Record Generation 19–11

Table 19–2: Token/Tuple Byte Descriptions (cont.)

Token Octal
Value

Tuple Format and Sample Parse Macro

AUD_T_PPID 044 token:int. PARSE_DEF2

AUD_T_GID 045 token:unsigned int. PARSE_DEF2

AUD_T_EVENT 046 token:int. PARSE_DEF2

AUD_T_SUBEVENT 047 token:int. PARSE_DEF2

AUD_T_DEV 050 token:int (Parse using the major()/minor()
macros from <sys/types.h>.) PARSE_DEF2

AUD_T_ERRNO 051 token:int. PARSE_DEF1

AUD_T_RESULT 052 token:long. PARSE_DEF4

AUD_T_MODE 053 token:unsigned int. PARSE_DEF2

AUD_T_HOSTADDR 054 token:unsigned int. PARSE_DEF2

AUD_T_INT 055 token:int. PARSE_DEF2

AUD_T_DESCRIP 056 token:int (file descriptor). PARSE_DEF2

AUD_T_HOSTID 057 token:int. PARSE_DEF1

AUD_T_X_ATOM 060 token:unsigned int. PARSE_DEF2

AUD_T_X_CLIENT 061 token:int. PARSE_DEF2

AUD_T_X_PROPERTY 062 token:int. PARSE_DEF2

AUD_T_X_RES_CLASS 063 token:unsigned int. PARSE_DEF2

AUD_T_X_RES_TYPE 064 token:unsigned int. PARSE_DEF2

AUD_T_X_RES_ID 065 token:unsigned int. PARSE_DEF2

AUD_T_LHOSTNAME 066

AUD_T_SECEVENT 177 token:int. PARSE_DEF2

AUD_TP_ACCRGHT 201 token:length:cmsg_data (fd1, fd2, ... − See
<sys/socket.h>.) PARSE_DEF3

AUD_TP_MSGHDR 202 token:length:msghdr->msg_name (See
<sys/socket.h>.) PARSE_DEF3

AUD_TP_EVENTP 203 token:length: string. PARSE_DEF3

AUD_TP_HABITAT 204 token:length:string. PARSE_DEF3

AUD_TP_ADDRVEC 205 token:length:struct sockaddr (See socket.h.)
PARSE_DEF3

AUD_TP_INTP 206 token:length:int. PARSE_DEF3

AUD_TP_AUID 241 token:int. PARSE_DEF1

19–12 Audit Record Generation

Table 19–2: Token/Tuple Byte Descriptions (cont.)

Token Octal
Value

Tuple Format and Sample Parse Macro

AUD_TP_RUID 0242 token:int. PARSE_DEF1

AUD_TP_UID 0243 token:int. PARSE_DEF1

AUD_TP_PID 0244 token:int. PARSE_DEF1

AUD_TP_PPID 0245 token:int. PARSE_DEF1

AUD_TP_HOSTADDR 246 token:unsigned int. PARSE_DEF1

AUD_TP_EVENT 247 token:int. PARSE_DEF1

AUD_TP_SUBEVENT 250 token:int (Reserved for future use.)
PARSE_DEF1

AUD_TP_NCPU 251 token:int. PARSE_DEF1

AUD_TP_DEV 252 token:int (Parse using the major()/minor()
macros from sys/types.h.) PARSE_DEF1

AUD_TP_LENGTH 253 token:int. PARSE_DEF1

AUD_TP_IPC_GID 254 token:unsigned int (ipc|msg|shm_perm.gid).
PARSE_DEF2

AUD_TP_IPC_MODE 255 token:unsigned int (ipc|msg|shm_perm.mode).
PARSE_DEF2

AUD_TP_IPC_UID 256 token:int (ipc|msg|shm_perm.uid).
PARSE_DEF2

AUD_TP_TV_SEC 257 token:timeval.tv_sec (See <sys/time.h>.)
PARSE_DEF1

AUD_TP_TV_USEC 260 token:timeval.tv_usec (See <sys/time.h>.)
PARSE_DEF1

AUD_TP_SHORT 261 token:short. PARSE_DEF2

AUD_TP_LONG 262 token:long. PARSE_DEF5

AUD_TP_VNODE_DEV 263 token:int. PARSE_DEF2

AUD_TP_VNODE_ID 264 token:unsigned int. PARSE_DEF2

AUD_TP_VN-
ODE_MODE

265 token:unsigned int. PARSE_DEF2

AUD_TP_VERSION 266 token:unsigned int (see <sys/audit.h>)
(AUD_VERSION | AUD_VERS_LONG).
PARSE_DEF1

AUD_TP_SET_UIDS 267 token:int. PARSE_DEF2

AUD_TP_CONT 270 token:unsigned int (A unique int for each
component of a record.) PARSE_DEF1

Audit Record Generation 19–13

Table 19–2: Token/Tuple Byte Descriptions (cont.)

Token Octal
Value

Tuple Format and Sample Parse Macro

AUD_TP_TID 271 token:long. PARSE_DEF4

AUD_TP_PRIV 272 token:unsigned short. PARSE_DEF1

19.10.3 Parsing Tuples

The algorithm for reading a stream of audit records is as follows:

1. Open the audit log.

2. Find the first audit record (starts and ends with AUD_TP_LENGTH
tuples).

3. Check that the record length matches the value in the AUD_TP_LENGTH
tuple. (If the length does not match, discard the record.)

4. Retrieve the first tuple following the AUD_TP_LENGTH tuple.

5. If the tuple length is variable, determine the size of the data.

6. Extract the data.

7. Retrieve the next tuple, check the length if necessary, and extract the
data.

8. Repeat until no more records.

9. Close the audit log.

The following macros illustrate how audit_tool parses tuples. The macros
are provided for reference purposes only; they illustrate one approach. Note
that indx values are maintained and used by audit_tool; they are not
part of the audit record tuple.
/* fixed length scalar value */
#define PARSE_DEF1(tokentype,field) \
bcopy (&rec_ptr[i+sizeof token], &field, sizeof(field)); \
i += (sizeof token + sizeof(field)); \
break;

/* fixed length field in array */
#define PARSE_DEF2(tokentype,field,indx) \
if (indx < AUD_NPARAM) \

bcopy (&rec_ptr[i+sizeof token], &field[indx++], sizeof(field[0])); \
i += (sizeof token + sizeof(field[0])); \
break;

/* array of strings */
#define PARSE_DEF3(tokentype,len,field,indx) \
bcopy (&rec_ptr[i+sizeof token], &j, sizeof(int)); \
if (j >= rec_len) j = 0; \
if (indx < AUD_NPARAM) { \

len[indx] = j; \
field[indx++] = (char *)&rec_ptr[i+(sizeof token)+(sizeof *intp)]; \

19–14 Audit Record Generation

} \
i += (sizeof token + sizeof *intp + j); \
break;

/* fixed length scalar value whose size is h/w dependent (32 or 64-bit) */
#define PARSE_DEF4(tokentype,field) \
bzero (field.val, sizeof(field.val)); \
j = af->version & AUD_VERS_LONG ? sizeof(int)*2 : sizeof(int); \
bcopy (&rec_ptr[i+sizeof token], field.val, j); \
i += (sizeof token + j); \
break;

/* fixed length field in array whose size is h/w dependent (32 or 64-bit) */
#define PARSE_DEF5(tokentype,field,indx) \
bzero (field[indx].val, sizeof(field[indx].val)); \
j = af->version & AUD_VERS_LONG ? sizeof(int)*2 : sizeof(int); \
if (indx < AUD_NPARAM) \

bcopy (&rec_ptr[i+sizeof token], field[indx++].val, j); \
i += (sizeof token + j); \
break;

/* array of opaque data streams */
#define PARSE_DEF6 PARSE_DEF3

/* iovec element in array */
#define PARSE_DEF7(tokentype,field,indx) \
j = sizeof(field[0]); \
if (indx < AUD_NPARAM) { \

bcopy (&rec_ptr[i+sizeof token], &j, sizeof(int)); \
if (j > rec_len) j = 0; \
bcopy (&rec_ptr[i+sizeof token+sizeof(int)], &field[indx++], j); \

} \
i += (sizeof token + sizeof(int) + j); \
break;

/* array of iovec elements with variable length components */
#define PARSE_DEF8(tokentype,field,ptr,indx) \
j = sizeof(field[0]); \
if (indx < AUD_NPARAM) { \

bcopy (&rec_ptr[i+sizeof token], &j, sizeof(int)); \
if (j > rec_len) j = 0; \
bcopy (&rec_ptr[i+sizeof token+sizeof(int)], &field[indx], j); \
ptr[indx++] = ((struct aud_xdata *) \

&rec_ptr[i+sizeof token+sizeof(int)])->xdata; \
} \
i += (sizeof token + sizeof(int) + j); \
break;

Audit Record Generation 19–15

20
Using the SIA Interface

This chapter documents the Security Integration Architecture (SIA)
interfaces.

20.1 Overview

The Security Integration Architecture (SIA) allows the layering of local
and distributed security authentication mechanisms onto the Tru64
UNIX operating system. The SIA configuration framework isolates
security-sensitive commands from the specific security mechanisms. The
Tru64 UNIX security-sensitive commands have been modified to call a set
of mechanism-dependent routines. By providing a library with a unique
set of routines, developers can change the behavior of security-sensitive
commands, without changing the commands themselves. The SIA defines
the security mechanism-dependent interfaces (siad_*() routines) required
for SIA configurability. Figure 20–1 illustrates the relationship of the
components that make up the SIA.

The security sensitive commands are listed in Table 20–1.

Table 20–1: Security Sensitive Operating System Commands
Command Description

chfn Changes finger information

chsh Changes login shell information

dnascd Spans DECnet

ftpd Serves the Internet File Transfer Protocol

login Authenticates users

passwd Creates or changes user passwords

rshd Serves remote execution

su Substitutes a user ID

Using the SIA Interface 20–1

Figure 20–1: SIA Layering

ZK−1086U−AI

Independent
Layer

Mechanism
dependent
Layer

Configuration
File

Application

Security sensitive command

Ind Ind

Matrix.conf

DCE Enhanced Base
Application
 Library

SIA
Entity

Table 20–2 and Table 20–3 list the SIA porting routines.

Table 20–2: SIA Mechanism-Independent Routines
SIA Routine Description

sia_init() Initializes the SIA configuration

sia_chk_invoker() Checks the calling application for privileges

sia_collect_trm() Collects parameters

sia_chg_finger() Changes finger information

sia_chg_password() Changes the user’s password

sia_chg_shell() Changes the login shell

sia_ses_init() Initializes SIA session processing

sia_ses_authent() Authenticates an entity

sia_ses_reauthent() Revalidates a user’s password

sia_ses_suauthent() Processes the su command

sia_ses_estab() Establishes the context for a session

sia_ses_launch() Logs session startup and any TTY conditioning

sia_ses_release() Releases resources associated with session

sia_make_entity_pwd() Provides the password structure for SIAENTITY

sia_audit() Generates the audit records

sia_chdir() Changes the current directory safely (NFS-safe)

sia_timed_action() Calls with a time limit and signal protection

20–2 Using the SIA Interface

Table 20–2: SIA Mechanism-Independent Routines (cont.)

sia_become_user() su routine

sia_validate_user() Validate a user’s password

sia_get_groups() Gets groups

Table 20–3: SIA Mechanism-Dependent Routines
SIA Routine Description

siad_init() Initializes processing once per reboot

siad_chk_invoker() Verifies the calling program privileges

siad_ses_init() Initializes the session

siad_ses_authent() Authenticates the session

siad_ses_estab() Checks resources and licensing

siad_ses_launch() Logs the session startup

siad_ses_suauthent() Processes the su command

siad_ses_reauthent() Revalidates a user’s password

siad_ses_release() Releases session resources

siad_chg_finger() Processes the chfn command

siad_chg_password() Invokes a function to change passwords

siad_chg_shell() Processes the chsh command

siad_getpwent() Processes getpwent() and getpwent_r()

siad_getpwuid() Processes getpwuid() and getpwuid_r()

siad_getpwnam() Processes getpwnam() and getpwnam_r()

siad_setpwent() Initializes a series of getpwent() calls

siad_endpwent() Releases resources after a series of getpwent() calls

siad_getgrent() Processes getgrent() and getgrent_r()

siad_getgrgid() Processes getgrgid() and getgrgid_r()

siad_getgrnam() Processes getgrnam() and getgrnam_r()

siad_setgrent() Initializes a series of getgrent() calls

siad_endgrent() Closes series of getgrent() calls

siad_chk_user() Determines if a mechanism can change the
requested information

siad_get_groups() Fills in the array of a user’s supplementary groups

Using the SIA Interface 20–3

The SIA establishes a layer between the security-sensitive commands and
the security mechanisms that deliver the security mechanism-dependent
functions. Each of the security-dependent SIA routines can be configured to
use up to four security mechanisms, called in varying orders.

The selection and order of the calls to the different security mechanisms is
established by a switch table file, /etc/sia/matrix.conf (see Chapter 13),
similar to the way /etc/svc.conf is used to control libc get* functions.
However, the calling mechanism is distinctly different.

The SIA calling mechanism looks up the addresses of routines in the shared
libraries and calls them to access the specific security mechanism routine.
SIA provides alternative control and configuration for the getpw* and
getgr* functions in Tru64 UNIX.

SIA layering establishes internationalized message catalog support and
thread-safe porting interfaces for new security mechanisms and new
security-sensitive commands that need transparency. The thread safety is
provided by a set of locks pertaining to types of SIA interfaces. However,
because SIA is a layer between utilities and security mechanisms, it is the
responsibility of the layered security mechanisms to provide reentrancy in
their implementations.

The primary focus for SIA is to provide transparent interfaces for
security-sensitive commands like login, su, and passwd that are
sufficiently flexible and extensible to suit future security requirements.
Any layered product on Tru64 UNIX that is either creating a new
security mechanism or includes security-sensitive commands requires SIA
integration to preserve these transparent interfaces.

The SIA components consist of only user-level modules. The components
resolve the configuration issues with respect to the security-sensitive
command’s utilization of multiple security mechanisms. The SIA
components do not resolve any kernel issues pertaining to the configuration
and utilization of multiple security mechanisms.

20.2 SIA Layering

The layering introduced by SIA in Tru64 UNIX consists of the following two
groups of interface routines:

sia_*() The security mechanism-independent interface used
by security-sensitive commands.

siad_*() The security mechanism-dependent interface
supplied by each specific security mechanism.

20–4 Using the SIA Interface

Each security mechanism delivers a shared library containing the siad_*()
routines and provides a unique security mechanism name to satisfy the
configuration. The one word security mechanism name and the library name
are used as keys in the matrix.conf file to specify which mechanisms to
call and in what order.

The Tru64 UNIX security-sensitive commands have been modified to use
the mechanism-independent sia_*() routines. These routines are used
by the commands and utilities to access security functions yet remain
isolated from the specific security technologies. Each sia_*() routine calls
the associated mechanism-dependent siad_*() routines, depending on the
selected configuration specified in the matrix.conf file. See Chapter 13 for
a more detailed discussion of the file.

The mechanism-dependent siad_*() interface routines are defined by SIA
as callouts to security mechanism-dependent functions provided by the
security mechanisms. The matrix.conf file is used to determine which
security mechanisms are called and in what order they are called for each
SIA function.

The process of calling a particular module within a specified
security mechanism and passing the required state is done by the
mechanism-independent layer. The calling process uses shared library
functions to access and look up specific module addresses within specified
shared libraries provided by the security mechanisms.

The naming of the security mechanism-dependent modules, siad_*()
routines, is fixed to alleviate name conflicts and to simplify the calling
sequence. Tru64 UNIX uses the dlopen() and dlsym() shared library
interfaces to open the specified security-mechanism shared library and look
up the siad_*() function addresses. If you need to preempt the siad_*()
routines, your names must be of the form _ _siad_* in your library and the
library must be linked ahead of libc. See Appendix E for more information
on the naming and preempting requirements.

20.3 System Initialization

The SIA provides a callout to each security mechanism on each reboot
of the system. This callout is performed by the /usr/sbin/siainit
program, which calls each of the configured security mechanisms at their
siad_init() entry point. This allows the security mechanisms to perform
a reboot initialization. A SIADFAIL response from the siad_init() call
causes the system to not reboot and an SIA INITIALIZATION FAILURE
message to be sent to the console. Consequently, only problems that would
cause a security risk or would not allow root to log in should warrant a
SIADFAIL response from the siad_init() call.

Using the SIA Interface 20–5

20.4 Libraries

SIA security mechanisms are configured as separate shared libraries with
entry points that are SIA defined names. Each mechanism is required
to have a unique mechanism identifier. The actual entry points in the
shared library provided by the security mechanism are the same for each
mechanism, siad_*() form entry points.

The default security configuration is the BASE security mechanism
contained in libc. The default BASE security mechanism uses the
/etc/passwd file, or a hashed database version, as the user database and
the /etc/group file as the group’s database. The default BASE mechanism
also uses the Network Information Service (NIS) if it is configured. In
single-user mode or during installation, the BASE security mechanism is
in effect.

20.5 Header Files

The SIA interfaces and structures are defined in the /usr/include/sia.h
and /usr/include/siad.h files. The sia*.h files are part of the program
development subsets.

20.6 SIAENTITY Structure

The SIAENTITY structure contains session processing parameters and
is used to transfer session state between the session processing stages.
Example 20–1 shows the SIAENTITY structure.

Example 20–1: The SIAENTITY Structure

typedef struct siaentity {
char *name; /* collected name */
char *password; /* entered or collected password */
char *acctname; /* verified account name */
char **argv; /* calling command argument list */
int argc; /* number of arguments */
uid_t suid; /* starting ruid */
char *hostname; /* requesting host NULL=>local */
char *tty; /* pathname of local tty */
int can_collect_input; /* 1 => yes, 0 => no input */
int error; /* error message value */
int authcount; /* Number of consecutive */

/* failed authent attempts */
int authtype; /* Type of last authent */
struct passwd *pwd; /* pointer to passwd struct */
char *gssapi; /* for gss_api prototyping */
char *sia_pp; /* for passport prototyping */
int *mech[SIASWMAX]; /* pointers to mech-specific data */

20–6 Using the SIA Interface

Example 20–1: The SIAENTITY Structure (cont.)

/* allocated by mechanisms indexed */
/* by the mechind argument */

} SIAENTITY;

20.7 Parameter Collection
The SIA provides parameter collection callback capability so that
any graphical user interface (GUI) can provide a callback. The
sia_collect_trm() routine is used for terminal parameter collection.
Commands calling the sia_*() routines pass as an argument to the
appropriate collection routine pointer, thus allowing the security mechanism
to prompt the user for specific input. If the collection routine argument is
NULL, the security mechanism assumes that no collection is allowed and
that the other arguments must be used to satisfy the request. The NULL
case is used for noninteractive commands. For reliability, use a collection
routine whenever possible.

The can_collect_input argument is included in the session processing
and disables the collection facility for input while allowing the output of
warnings or error messages. Collection routines support simple form and
menu data collection. Some field verification is supported to check parameter
lengths and content (alphanumeric, numeric only, letters only, and invisible).
The collection routine supplied by the security-sensitive command or utility
is responsible for providing the appropriate display characteristics.

The parameter collection capability provided by SIA uses the following
interface which is defined in sia.h.

Example 20–2: The sia.h Interface Definition for Parameter Collection

int sia_collect_trm(timeout, rendition, title,
num_prompts, prompts);

int timeout /* number of seconds to wait */
/* 0 => wait forever */

int rendition
SIAMENUONE 1 /* select one of the choices given */
SIAMENUANY 2 /* select any of the choices given */
SIAFORM 3 /* fill out the form */
SIAONELINER 4 /* One question with one answer */
SIAINFO 5 /* Information only */
SIAWARNING 6 /* ERROR or WARNING message */

Using the SIA Interface 20–7

unsigned char *title /* pointer to a title string. */
/* NULL => no title */

int num_prompts /* Number of prompts in collection */
prompt_t *prompts /* pointer to prompts */

typedef struct prompt_t
{
unsigned char *prompt;
unsigned char *result;
int max_result_length; /* in chars */
int min_result_length; /* in chars */
int control_flags;
} prompt_t;

control_flags
SIARESINVIS 0x2 result is invisible
SIARESANY 0x10 result can contain any ASCII chars
SIAPRINTABLE 0x20 result can contain only printable chars
SIAALPHA 0x40 result can contain only letters
SIANUMBER 0x80 result can contain only numbers
SIAALPHANUM 0x100 result can contain only letters and numbers

See the sia_collect_trm(3) reference page for more information on
parameter collection.

20.8 Maintaining State
Some commands require making multiple calls to sia_*() routines and
maintaining state across those calls. The state is always associated with a
particular user (also called an entity). SIA uses the term entity to mean a
user, program, or system which can be authenticated. The entity identifier is
the user ID (UID). All security mechanisms which are ported to Tru64 UNIX
must be administered such that a particular UID maps equivalently across
each mechanism. This constraint allows for the interaction and coexistence
of multiple security mechanisms. If a security mechanism has an alternative
identifier for a user, it must provide a mapping to a unique UID for other
mechanisms to properly interoperate and provide synchronized security
information.

A pointer to the SIAENTITY structure (see Section 20.6) is used as an
argument containing intermediate state identifying the entity requesting
a security session function. The SIAENTITY structure also allows for the
sharing of state between security mechanisms while processing a session.

The libc library provides for the allocating and freeing of primitives for
SIAENTITY structures. The allocation of the SIAENTITY structures
occurs as part of the session initialization routine, sia_ses_init(). The
deallocation of the SIAENTITY structure occurs in the call to the session

20–8 Using the SIA Interface

release sia_ses_release() routine. If errors occur during session
processing (such as in the sia_ses_*authent() routines) and you give up
instead of retrying, sia_ses_release() must be called to clean or free up
the SIAENTITY structure related to the session. If errors occur during an
sia_ses_estab() or sia_ses_launch() routine causing failure status to
be returned, the routines call sia_ses_release().

20.9 Return Values

SIA supports the passing of a success or failure response back to the calling
command or utility. The SIAENTITY structure has a reserved error code
field (error), which is available for finer error definition.

The siad_ses_*() routines return bitmapped values that indicate the
following status:

SIADFAIL Indicates conditional failure. Lowest bit
set to 0. Continue to call subsequent
security mechanisms.

SIADSUCCESS Indicates conditional success. Lowest bit
set to 1.

SIADSTOP Modifies the return to be unconditional.
Second lowest bit set to 1. Included with
either SIADFAIL or SIADSUCCESS.

20.10 Debugging and Logging

SIA supports a debugging and logging capability that allows appending
data to the /var/adm/sialog file. The SIA logging facility supports the
following three log-item types:

EVENT Success cases within the SIA processing

ERROR Failures within the SIA processing

ALERT Security configuration or security risks
within the SIA interfaces

The sia_log() logging routine is available to security mechanisms and
accepts formatting strings compatible to printf() format. Each log entry is
time stamped. Example 20–3 is a typical /var/adm/sialog file.

Using the SIA Interface 20–9

Example 20–3: Typical /var/adm/sialog File

SIA:EVENT Wed Feb 3 05:21:31 1999
Successful SIA initialization
SIA:EVENT Wed Feb 3 05:22:08 1999
Successful session authentication for terry on :0
SIA:EVENT Wed Feb 3 05:22:08 1999
Successful establishment of session
SIA:ERROR Wed Feb 3 05:22:47 1999
Failure to authenticate session for root on :0
SIA:ERROR Wed Feb 3 05:22:52 1999
Failure to authenticate session for root on :0
SIA:EVENT Wed Feb 3 05:22:59 1999
Successful session authentication for root on :0
SIA:EVENT Wed Feb 3 05:22:59 1999
Successful establishment of session
SIA:EVENT Wed Feb 3 05:23:00 1999
Successful launching of session
SIA:EVENT Wed Feb 3 05:24:40 1999
Successful authentication for su from root to terry
SIA:EVENT Wed Feb 3 05:25:46 1999
Successful password change for terry

The sia_log() routine is for debugging only. The _ses_* routines use
audgen() for audit logging.

20.11 Integrating Security Mechanisms

Depending on the class or type of SIA processing being requested, the
selection and order of security mechanisms may vary. A typical set of
security mechanisms might include a local mechanism (one that is only
concerned with the local system security) and a distributed security
mechanism (one that is concerned with aspects of security that span several
systems). SIA layering allows these two security mechanisms to either
coexist or be better integrated.

An example of security mechanism integration is the log in or session
processing. SIA layering passes state (SIAENTITY) between the various
security mechanisms during the session processing. This state contains
collected names and passwords and the current state of session processing.
The local security mechanism can be designed to trust the authentication
process of a previously run security mechanism, thus allowing authentication
vouching. In this case, if a user is successfully authenticated by the
distributed mechanism, the local mechanism can accept or trust that
authentication and continue with session processing.

20–10 Using the SIA Interface

SIA also allows the local mechanism to not accept vouching. In this case,
the local mechanism would be forced to do its own authentication process
regardless of previous authentication outcomes. This typically results in the
user being asked for several sets of user names and passwords. Although
SIA allows any ordering of security mechanisms, it makes sense that those
mechanisms that accept vouching should be ordered after those that do not.

______________________ Notes ______________________

The default security mechanism, BASE, accepts authentication
vouching.

The SIA layer deals with the isolation of security mechanisms from the
commands’ specific user interface preferences. To accomplish this isolation,
the calling command provides a pointer to a parameter collection routine as
an argument to the sia_*() routines. The collection routine must support
simple form and menu type processing. The definitions or the requirements
of the collection routine are defined in sia.h. This separation of user
interface from the security mechanisms allows the flexibility to change the
user interface to suit any workstation or dumb terminal model.

20.12 Session Processing

The session processing interfaces are associated with the process of a utility
or command that needs to become or act as some other entity. Figure 20–2
illustrates the SIA routines and their relationship in a typical login session.

Using the SIA Interface 20–11

Figure 20–2: SIA Session Processing

ZK−1085U−AI

si
a_

se
s_

in
it

[s
ia

_s
es

_a
u

th
]

si
a_

se
s_

es
ta

b
lis

h

si
a_

se
s_

la
u

n
ch

si
a_

se
s_

re
le

as
e

si
ad

_s
es

_i
n

it

[s
ia

d
_s

es
_a

u
th

]

si
ad

_s
es

_e
st

ab
lis

h

si
ad

_s
es

_l
au

n
ch

si
ad

_s
es

_r
el

ea
se

Login Code

Mech Implementation

SIA Entity

Independent Layer

Dependent Layer

The session processing interfaces to the security mechanism-dependent
routines (siad_*()) use the same returns to determine the state of the
session and whether it should continue. The returns are as follows:

SIADFAIL A SIADFAIL response from a security mechanism
siad_*() routine indicates that the security
mechanism has failed but that processing should
continue.

SIAD-
FAIL | SIASTOP

A SIADFAIL | SIADSTOP response from a security
mechanism siad_*() routine indicates that the
security mechanism has failed and that the session
processing should be stopped. This return is used
if some major security problem or risk is found.
Such an event should be sent to the sialog file
as an ALERT.

20–12 Using the SIA Interface

SIADSUCCESS The final response is SIADSUCCESS, which
indicates that the security mechanism has
successfully completed that phase of session
processing. Under some conditions, a return of
SIADSUCCESS | SIADSTOP is also useful.

Not all security mechanisms have processing required in each phase of
the session processing. In general, the default response is SIADFAIL to
force the other configured security mechanisms to produce the required
SIADSUCCESS response. The only exceptions to this are the first and
last stages of session processing. If a security mechanism has nothing to
do in either session initialization or session release, it should return a
SIADSUCCESS response. For all other phases of session processing, a
SIADFAIL response is the default.

The session processing interfaces are typically called in the following order:

sia_ses_init() Initialize the session.

sia_ses_authent() Authenticate the session. Can be recalled
on failure for retries.

sia_ses_estab() Establish the session. On failure, calls
sia_ses_release().

sia_ses_launch() Launch the session. On failure, calls
sia_ses_release().

sia_ses_release() Release the session.

The session routines must all have the same number and order of
mechanisms to keep the mechanism index (mechind) consistent.

Example 20–4 is a code fragment that shows session processing for the
login command.

Example 20–4: Session Processing Code for the login Command

.

.

.
/* SIA LOGIN PROCESS BEGINS */

/* Logging of failures to sia_log is done within the libsia */
/* Logging to syslog is responsibility of calling routine */

Using the SIA Interface 20–13

Example 20–4: Session Processing Code for the login Command (cont.)

if((sia_ses_init(&entity, oargc, oargv, hostname, loginname, \
ttyn, 1, NULL)) == SIASUCCESS) {

/***** SIA SESSION AUTHENTICATION *****/

if(!fflag) {
for(cnt=5; cnt; cnt--) {

if((authret=sia_ses_authent(sia_collect,NULL,entity)) \
== SIASUCCESS)

break;
else if(authret & SIASTOP)

break;
fputs(MSGSTR(INCORRECT, "Login incorrect\n"), stderr);

}
if(cnt <= 0 || (authret & SIASTOP)) {

sia_ses_release(&entity);
exit(1);

}
}

/***** SIA SESSION ESTABLISHMENT *****/

if(sia_ses_estab(sia_collect,entity) == SIASUCCESS) {
/****** set up environment *******/
/* destroy environ. unless user requested preservation */
if (!pflag) {

pp = getenv("TERM");
if (pp)
strncpy(term, pp, sizeof term);
clearenv();

}
(void)setenv("HOME", entity->pwd->pw_dir, 1);

if(entity->pwd->pw_shell && *entity->pwd->pw_shell)
strncpy(shell, entity->pwd->pw_shell, sizeof shell);

(void)setenv("SHELL", shell, 1);
if (term[0] == ’ ’)

(void)strncpy(term, stypeof(tty), sizeof(term));
(void)setenv("TERM", term, 0);
(void)setenv("USER", entity->pwd->pw_name, 1);
(void)setenv("LOGNAME", entity->pwd->pw_name, 1);
(void)setenv("PATH", _PATH_DEFPATH, 0);

/***** SIA LAUNCHING SESSION *****/

if(sia_ses_launch(sia_collect,entity) == SIASUCCESS) {
/* 004 - start */
if ((entity -> pwd != NULL) &&

20–14 Using the SIA Interface

Example 20–4: Session Processing Code for the login Command (cont.)

(entity -> pwd -> pw_dir != NULL) &&
(entity -> pwd -> pw_dir [0] != 0))

sprintf (hush_path, "%s/%s",
entity -> pwd -> pw_dir,
_PATH_HUSHLOGIN);

else strcpy (hush_path, _PATH_HUSHLOGIN);
quietlog = access(hush_path, F_OK) == 0;
/* 004 - end */
if(!quietlog)

quietlog = !*entity->pwd->pw_passwd && \
!usershell(entity->pwd->pw_shell);

if (!quietlog) {
struct stat st;
motd();
(void)sprintf(tbuf, "%s/%s", _PATH_MAILDIR, \

entity->pwd->pw_name);
if (stat(tbuf, &st) == 0 && st.st_size != 0)

(void)printf(MSGSTR(MAIL, "You have %smail.\n"),
(st.st_mtime > st.st_atime) ? MSGSTR(NEW, \

"new ") :);
}
sia_ses_release(&entity);

/******* Setup default signals **********/

(void)signal(SIGALRM, SIG_DFL);
(void)signal(SIGQUIT, SIG_DFL);
(void)signal(SIGINT, SIG_DFL);
(void)signal(SIGTSTP, SIG_IGN);

tbuf[0] = ’-’;
(void)strcpy(tbuf + 1, (p = rindex(shell, ’/’)) ?

p + 1 : shell);

/****** Nothing left to fail *******/

if(setreuid(geteuid(),geteuid()) < 0) {
perror("setreuid()");
exit(3);

}
execlp(shell, tbuf, 0);
(void)fprintf(stderr, MSGSTR(NO_SHELL, \

"login: no shell: %s.\n"), strerror(errno));
exit(0);

}
/***** SIA session launch failure *****/

}

Using the SIA Interface 20–15

Example 20–4: Session Processing Code for the login Command (cont.)

/***** SIA session establishment failure *****/
}
logerror(entity);
exit(1);

}

logerror(entity)
SIAENTITY *entity;
{
if(entity != NULL)

{
sia_ses_release(&entity);
}

syslog(LOG_ERR, MSGSTR(FAILURE3," LOGIN FAILURE "));
}
.
.
.

20.12.1 Session Initialization

Session initialization is performed by the sia_ses_init() routine. The
sia_ses_init() routine calls each configured security mechanism’s
siad_ses_init() entry point to do any processing associated with the
start of a session processing sequence. The session initialization stage
is responsible for setting up the SIAENTITY structure, which is used to
maintain state though the different stages of session processing.

20.12.2 Session Authentication

The authentication stage of session processing is responsible for proving the
identity for the session. This stage of the processing must determine the
entity associated with the session. If the entity cannot be determined, the
authentication fails. If the authentication is successful, an entity is derived.

The top level SIA session authentication routine, sia_ses_authent(),
calls the security mechanism-dependent siad_ses_authent() routines
according to the configured sequence stored in the matrix.conf file. As
the multiple authentication routines are called, the SIAENTITY structure
is used to hold precollected parameters like the name, password, and
eventually the associated /etc/passwd entry of the entity.

By using precollected arguments, the security mechanisms avoid recollecting
arguments. An example is when root attempts to log in to a system

20–16 Using the SIA Interface

configured to first call the DCE siad_ses_authent() routine followed by
the local ENHANCED (enhanced security) siad_ses_authent() routine.

It is likely that the DCE authentication process will not be capable
of authenticating root. However, it is capable of asking the user for
a name and password, which are then passed to the ENHANCED
siad_ses_authent() routine using the SIAENTITY structure. This
allows the ENHANCED mechanism to verify the root name and password,
thus authenticating root. As soon as the session authentication stage is
complete, the password field is cleared.

Each security mechanism-dependent authentication routine must have the
ability to determine and set the entity on a successful authentication. If
a security mechanism has its own private interpretation of the entity, it
must provide a translation to the common SIA entity, user name and UID.
Without this restriction there is no way to synchronize security mechanisms
with respect to a common entity.

At the successful completion of the session authentication stage, the
SIAENTITY structure must contain the user name and UID of the
authenticated entity. If the session authentication fails, the calling command
or program can call sia_ses_authent() again to retry the authentication
process. Certain mechanisms may allow other mechanisms to vouch for this
stage of session processing. This usually occurs when local mechanisms
default their authentication process to other distributed mechanisms.

20.12.3 Session Establishment

The session establishment stage is invoked with sia_ses_estab()
following a successful session authentication stage. The sia_ses_estab()
routine is configured to call multiple security mechanism’s
siad_ses_estab() routines in the order defined in the matrix.conf file.
The session establishment stage of session processing is responsible for
checking mechanism resources and licensing to determine whether this
session can be successfully launched. The determination of the passwd
struct entry and any other required security context must occur in this
stage. At the successful completion of the session establishment stage, the
system is prepared to grant the session launching.

20.12.4 Session Launch

The session launch stage is responsible for the logging and the accounting
of the session startup. The local mechanism is additionally responsible for
setting the wtmp and utmp entries, and for setting the effective UID to
the UID associated with the entity. The processing by the setgid() and
initgroup() routines as well as lastlog updating are also done by the

Using the SIA Interface 20–17

local mechanism. Only catastrophic errors should be able to stop the session
from continuing.

20.12.5 Session Release

The last stage of the session processing sequence (either successful or failed)
is the call to the sia_ses_release() routine. This routine frees all session
processing resources, such as the SIAENTITY structure. Each configured
mechanism is called to release any resources which are no longer required
for the session.

20.12.6 Specific Session Processing

The following sections describe specific session processing for the login,
rshd, and rlogind commands. See Section 20.12 for a generic description
of session processing.

20.12.6.1 The login Process

The most common case of session processing is when the login process
becomes the entity associated with a user. The entity is the unique SIA
identifier for any person or process that can be authenticated and authorized.
The code in Example 20–4 is part of the login command.

20.12.6.2 The rshd Process

Session processing for /usr/sbin/rshd differs from login. The rshd
process calls ruserok() to check the .rhosts and host.equiv files for
authorization. If ruserok() fails, the rshd fails.

20.12.6.3 The rlogind Process

The rlogind, program executes the login command with the −f flag if
its call to ruserok() is successful, and without the −f flag if the call to
ruserok() is unsuccessful. If login is executed without the −f flag,
sia_ses_authent() is called, which prompts for a user name and
password, if required.

20.13 Changing Secure Information
The routines described in this section handle the changing of the traditional
/etc/passwd entry information. This class of routines could be extended
to handle other types of common secure information. Only the traditional
passwd, chfn, and chsh types of command processing are specified. Each of
these routines follows the same operational model. When a user requests a
change, the routines in this class check each mechanism that was configured
by calling siad_chk_user() to determine whether the user is registered

20–18 Using the SIA Interface

with the mechanism. Once it is determined that the user is registered with
more than one security mechanism, the user is given a menu selection
by the collection routine to choose which mechanism is targeted for the
change. If only one mechanism is configured to handle the request, then
that mechanism is called directly.

20.13.1 Changing a User’s Password

To change a password, the sia_chg_password() routine calls the
configured mechanisms by using the siad_chg_password() routine.
To determine which mechanisms support a particular user, the
siad_chk_user() call is made to all mechanisms configured for the
siad_chg_passwd() routine. When multiple mechanisms claim registry
of a user, the user is given a selection to choose from. If the user is only
registered with one mechanism, then that mechanism is called.

20.13.2 Changing a User’s Finger Information

The sia_chg_finger() routine calls the configured mechanisms by the
siad_chg_finger() routine to change finger information. To determine
which mechanisms support a particular user, the siad_chk_user() call is
made to all mechanisms configured for the siad_chg_finger() routine.
When multiple mechanisms claim registry of the user, the user is given a
selection menu to choose one from. If the user is only registered with one
mechanism, then that mechanism is called.

20.13.3 Changing a User’s Shell

The sia_chg_shell() routine calls the configured mechanisms by the
siad_chg_shell() routine to change a user’s login shell. To determine
which mechanisms support a particular user, the siad_chk_user() call
is made to all mechanisms configured for the siad_chg_shell() routine.
When multiple mechanisms claim registry of the user, the user is given
a selection menu from which to choose a mechanism. If the user is only
registered with one mechanism, then that mechanism is called.

20.14 Accessing Security Information

The SIA interfaces described in the following sections handle the access to
the traditional UNIX /etc/passwd and /etc/group information. You can
create routines to handle the access of other common secure information.
Mechanism-dependent security information access should not be handled
by the SIA interfaces unless nearly all mechanisms support the type of
information being accessed.

Using the SIA Interface 20–19

The sia_context and mech_contexts structures, defined in sia.h, are
used to maintain state across mechanisms. The structures are as follows:

struct mech_contexts {
void *value;
void (*destructor)();

};

struct sia_context {
FILE *fp;
union {
struct group *group;
struct passwd *pass;
} value;
int pkgind;
unsigned buflen;
char *buffer;
struct mech_contexts mech_contexts[SIASWMAX];

};

Because the getgr*() and the getpw*() routines have SIA interfaces,
security mechanisms need provide only one routine for both reentrant
and nonreentrant, threadsafe applications. This is accomplished by the
sia_getpasswd() and sia_getgroup() routines which encapsulate
the arguments in a common form for the security mechanism’s siad_*()
routines.

20.14.1 Accessing /etc/passwd Information

Access to traditional /etc/passwd entries is accomplished by the getpw*()
routines in libc and libc_r. The sia_getpasswd() routine in the SIA
layer preserves the calling semantics of the current getpw*() routines
and converts them into one common routine used for both single and
multithreaded processes. By doing this conversion, security mechanisms
need only support one set of getpw*() routines. The processing of the
getpwent() routine is accomplished by calling each configured security
mechanism in the predefined order until all entries have been exhausted.

20.14.2 Accessing /etc/group Information

Access to traditional /etc/group entries is accomplished by the getgr*()
routines in libc and libc_r. The sia_getgroup() routine in the SIA
layer preserves the calling semantics of the current getgr*() routines
and converts them into one common routine used for both single and
multithreaded processes. The conversion to a single routine eases the
security mechanism port by reducing the number of routines required.
The processing of the getgrent() routine is accomplished by calling each

20–20 Using the SIA Interface

configured security mechanism in the predefined order until all group
entries have been exhausted.

20.15 Session Parameter Collection
The SIA session interfaces and the interfaces that change secure information
use a predefined parameter collection capability. The calling application
passes the address to a parameter collection routine through the SIA to
the siad_*() routines. The collection routine allows different security
mechanisms to prompt the user for different parameters without having to
be aware of the user interface details.

This capability isolates the SIA security mechanisms from the user
interface and the ability to do simple forms and menus. This collection
capability is sufficiently limited to allow ease of implementation by different
user-interface packages or windowing systems. However, the collection
routines must support simple (up to eight item) menu or form styles of
processing. On dumb terminals, forms processing becomes a set of one line
questions. Without this capability, the application needs to be modified to
support new security questions.

20.16 Packaging Products for the SIA
The SIA defines the security mechanism components that are required to
port to the Tru64 UNIX system. These components are as follows:

• A shared library containing the mechanism-dependent (siad_*())
routines used as an interface to commands and utilities

• A default /etc/sia/matrix.conf file, which is installed to use the
security mechanism through SIA.

The shared library must contain all of the siad_*() routines described
in Table 20–3. The default dummy routine for any siad_*() routine
always returns the SIADFAIL failure response. If a security mechanism is
supplying dummy routines, these routines should not be configured into
the matrix.conf file.

The /etc/sia/matrix.conf file contains one line for each siad_*()
routine. This line contains the mechanism identifiers (called mech_types)
and the actual path to the security mechanism library. The sia_*()
routines use this set of keys to call mechanisms in a right to left ordering.
Example 13–1 illustrates the default matrix.conf settings for Tru64 UNIX.

If the DCE security mechanism is to be called first followed by the BASE
(BSD) security mechanism, the configuration line for siad_init() might
look like the following:

siad_init=(DCE,/usr/shlib/libdcesia.so)(BSD,libc.so)

Using the SIA Interface 20–21

Layered security products must deliver pretested matrix.conf files on
their kits. The modification of an SIA matrix.conf file must be followed
by a reboot. System administrators must never be required to edit a live
matrix.conf file hand.

See Chapter 13 for a more detailed discussion of the matrix.conf file.

20.17 Security Mechanism-Dependent Interface

Security mechanisms are required to provide all of the siad_*() entry
points. See Table 20–3. The default stub routine should return SIADFAIL.
With the exception of the session routines, no stubs should ever be called
in the /etc/sia/matrix.conf file. The session routines must all have
the same number and order of mechanism to keep the mechanism index
(mechind) consistent. However, if an error in configuration occurs, the stub
routines deliver the appropriate SIADFAIL response.

The order of security mechanisms in the /etc/sia/matrix.conf file is
the same for each class of interfaces. Therefore, if a security mechanism
supports session processing, it is called in the same order for all the session
related interfaces.

The layered security mechanism should provide a set of private entry points
prefixed by mechanism_name__ for each of the siad_*() entries used for
internal calls within the mechanism to siad_*() routines. An example
of this is in the BASE mechanism in libc. To assure that the BASE
mechanism is calling its own siad_getpwuid() routine, a separate entry
point is created and called from the siad_getpwuid() entry as follows:

int siad_getpwuid(uid_t uid, struct passwd *result, \
char *buffer, int buflen)

{
return(bsd_siad_getpwuid(uid,result,buffer,buflen));
}

static int bsd_siad_getpwuid(uid_t uid, struct passwd *result, \
char *buffer, int buflen)

{
/* The BSD security mechanism siad_getpwuid() routine */
}

If the convention of supplying internal names is used for all of the siad_*()
entry points, a layered security mechanism can then produce a separate
library containing all the security mechanism-dependent code. This leaves
the configured shared library with only stubs that call the other library.

Security mechanisms generally fall into two categories: local and distributed.
The local security mechanism is responsible for establishing all of the local
context required to establish a session on the local system. There are two

20–22 Using the SIA Interface

local security mechanisms in Tru64 UNIX: the BASE mechanism and the
ENHANCED mechanism.

Distributed mechanisms, like DCE, are more concerned with establishing
distributed session context like Kerberos tickets. However, the distributed
security mechanism may provide some local context that can be used by the
local security mechanism. The distributed security mechanism may also
provide a sufficiently strong authentication to allow a local mechanism to
trust it for authentication. This notion of one mechanism trusting another
is called vouching and allows the user to be authenticated only once to
establish a login session. Local mechanisms should always be configured
last in the calling sequences.

All of the SIA capabilities listed in this section can be configured to use
multiple security mechanisms.

20.18 Single-User Mode

If you want to have your own single-user security mode, you need to rebuild
and replace the commands and utilities affected, such as any statically
linked binaries found in /sbin. This can be accomplished by providing an
siad_*() routine library to precede libc in the link order for the affected
commands.

The new routines need to override the _ _siad_*() routines, as opposed
to the siad_*() routines. The siad_*() naming convention is the weak
symbol entry point, while the _ _siad_*() convention is the strong symbol
entry point that is actually used. See Appendix E for more information about
routine-naming conventions.

Using the SIA Interface 20–23

21
Programming with ACLs

This chapter discusses the following topics:

• An introduction to access control lists (ACLs)

• ACL data representations

• ACL Library Routines

• Rules for creating, replicating, and validating ACLs

• ACL creation example

• ACL inheritance example

21.1 Introduction to ACLs

Tru64 UNIX access control lists (ACLs) are an optional extension to the
discretionary access control (DAC) traditionaly provided on a UNIX system.
Traditional UNIX DAC is the traditional UNIX permission bits; ACLs are
an extension of the UNIX permission bits. A file or directory that has only
the permission bits may be considered an object with an ACL containing
only the three required or base entries that correspond to the usr, group,
and other permission bits.

There are two types of ACLs:

• An access ACL is associated with a file or directory, and is used to
determine if a process may access the file or directory.

• Default ACLs are associated with a directory. Default ACLs are used to
determine the ACLs applied to new files and subdirectories created in
the given directory. See Section 21.6 for more information.

The Tru64 UNIX ACL implementation is based on Draft 13 with some Draft
15 extensions of the POSIX P1003.6 standard.

ACLs can be applied to any file or directory on a file system that supports
property lists. The file systems that support property lists are:

• UFS

• AdvFS

• NFS (between Tru64 UNIX systems)

Programming with ACLs 21–1

ACLs can be applied even if ACL processing is not enabled on the system;
however, ACL access checks and default ACL inheritance do not take place.

See Chapter 5 and Chapter 11 for a more detailed description of using and
administering ACLs. See the acl(4) reference page for more information on
using and programming with ACLs. See the proplist(4) reference page for
more information on property lists.

21.2 ACL Data Representations
An ACL has an internal and an external representation. The external
representation consists of text and is used to enter and display ACLs.
Library routines manipulate ACLs in working storage in an internal
representation that is only indirectly accessible to the calling routine. This
internal representation can be interpreted with the acl.h header file.

21.2.1 Internal Data Representation

The ACL routines manipulate the working storage representation, which is
a set of opaque data structures for ACLs and ACL entries. Your program
should operate on these data structures only through the defined routines.
Because the working storage data structures are subject to change, the
interface is the only reliable way to access the data.

The working storage representation is not contiguous in memory. Also, a
program cannot determine the sizes of ACL entries and ACL descriptors.
The working storage data structures contain internal pointer references and
are therefore meaningless if passed between processes or stored in a file. A
program can convert the working storage representation of an ACL to other
representations of an ACL.

The two types most commonly used to access the opaque data are acl_t,
a pointer to type acl (the ACL structure), and acl_entry_t, a pointer
to an ACL entry structure.

______________________ Note _______________________

The structures in the following sections are opaque internal data
structures that are subject to change. Always use the defined
types and the supplied library routines to access these structures.

The internal representation uses the following basic types and data
structures.

21.2.1.1 typedef struct acl *acl_t;

The acl_t type is used to specify an internal (working storage) format ACL.

21–2 Programming with ACLs

struct acl {
int acl_magic; /* validation member */
int acl_num; /* number of actual acl entries */
int acl_alloc_size; /* size available in the acl */
acl_entry_t acl_current; /* pointer to current entry in */
acl_entry_t acl_first; /* pointer to ACL linked list */
attribute_t *attr_data; /* Pointer to the attr data */

};

21.2.1.2 typedef struct acl_entry *acl_entry_t;

The acl_entry_t type is used to specify an entry within an ACL.

struct acl_entry{
acle_t *entry;
void *head;
struct acl_entry *next;
struct acl_entry *prev;
int acl_magic;
int size;

};

21.2.1.3 typedef uint_t acl_type_t;

The ACL types supported are as follows:

#define ACL_TYPE_ACC 0
#define ACL_TYPE_ACCESS ACL_TYPE_ACC
/* The ACL is an access ACL. The property list

entry name for an access ACL is "DEC_ACL_ACC" */

#define ACL_TYPE_DEF 1
#define ACL_TYPE_DEFAULT ACL_TYPE_DEF
/* The ACL is a default access ACL. The property list

entry name for a default access ACL is "DEC_ACL_ACC" */
#define ACL_TYPE_DEF_DIR 2
#define ACL_TYPE_DEFAULT_DIR ACL_TYPE_DEF_DIR
/* The ACL is a default directory ACL. The property list

entry name for a default directory ACL is "DEC_ACL_DEF_DIR" */

acl_type_t is used to specify the ACL type.

21.2.1.4 typedef uint acl_tag_t;

The acl_tag_t type is used to specify the tag (the type) of an ACL entry.
ACL entries with a tag type of ACL_USER or ACL_GROUP also have an
associated tag qualifier. The tag qualifier is the ID of the user or group. The
ACL entry tag types supported are:

Programming with ACLs 21–3

#define ACL_USER_OBJ 0
/* entry that equates to the owning user permission bits. */
#define ACL_GROUP_OBJ 1
/* entry that equates to the owning group permission bits. */
#define ACL_OTHER 2
#define ACL_OTHER_OBJ ACL_OTHER
/* entry that equates to the other permission bits. */
#define ACL_USER 23
/* entry specifying permissions for a given user. */
#define ACL_GROUP 24
/* entry specifying permissions for a given group. */

21.2.1.5 typedef uint_t acl_perm_t;

The acl_perm_t permission bit definitions are as follows:

#define ACL_EXECUTE 0X001
#define ACL_WRITE 0X002
#define ACL_READ 0X004

21.2.1.6 typedef acl_perm_t *acl_permset_t;

The acl_permset_t type is used to point to the permissions assigned to
an ACL entry.

21.2.1.7 Contiguous Internal Representation ACL

There is also a contiguous persistent data type for an ACL. This
representation should be used only when the internal format ACL must
persist between processes.

21.2.2 External Representation

The human-readable external representation of an ACL consists of a
sequence of lines, each of which is terminated by a new-line character. The
POSIX routines use the external representation when converting between
the working storage representation and the text package.

The external representation is described in Section 5.6. Table 21–1 shows
the structure of individual entries.

21–4 Programming with ACLs

Table 21–1: ACL Entry External Representation
Entry Type acl_tag_t Value Entry

base user USER_OBJ user::perms

base group GROUP_OBJ group::perms

base other OTHER_OBJ other::perms

user USER user:user_name:perms

group GROUP group:group_name:perms

21.3 ACL Library Routines

The ACL routines are contained in the libpacl.a library. The ACL library
routines are based on Draft 13 of the POSIX P1003.6 standard. See the
reference page for each individual routine for detailed information.

The following routines are used to get, set, and validate ACLs:

acl_valid() Checks the specified internal
representation ACL for valid format.

acl_delete_def_fd() Deletes the default access ACL from
the designated directory using the file
descriptor.

acl_delete_def_file() Deletes the default access ACL from the
designated directory.

acl_get_fd() Retrieves the internal representation of
the specified ACL type associated with
the specific file or directory using the
file descriptor.

acl_get_file() Retrieves the internal representation of
the specified ACL type associated with
the specific file or directory.

acl_set_fd() Sets the specified ACL type on the given
file or directory to the specified ACL
internal representation using the file
descriptor.

Programming with ACLs 21–5

acl_set_file() Sets the specified ACL type on the given
file or directory to the specified ACL
internal representation.

The following routines retrieve and manipulate ACL entries:

acl_copy_entry() Copies an ACL entry into the memory
provided.

acl_create_entry() Creates an empty ACL entry for the given
ACL, allocating memory as necessary.

acl_delete_entry() Deletes the designated ACL entry from
an ACL.

acl_first_entry() Resets the current ACL entry so that the
next call to acl_get_entry() returns
the first entry.

acl_get_entry() Returns a pointer to the next ACL entry
of the given ACL.

The following routines retrieve and manipulate fields in an ACL entry:

acl_add_perm() Adds a permission to a set of permissions
belonging to an ACL entry.

acl_clear_perm() Clears a permission in a given ACL entry.

acl_delete_perm() Removes permissions from a set of
permissions belonging to an ACL entry.

acl_get_permset() Copies the permissions from a given ACL
entry to the location provided.

acl_get_qualifier() Returns a pointer to the tag qualifier (ID)
associated with a given ACL entry.

acl_get_tag_type() Copies the tag (type) from the given ACL
entry to the location provided.

acl_set_permset() Sets the permissions in a given ACL entry
to the given permissions.

21–6 Programming with ACLs

acl_set_qualifier() Sets the tag qualifier (ID) of the specified
ACL entry to the given UID or GID.

acl_set_tag_type() Sets the tag (type) of the specified ACL
entry to the given type.

The following routines manage working storage for the ACL manipulation:

acl_free() Releases all working storage associated
with the given ACL.

acl_free_qualifier() Releases working storage associated with
the given tag qualifier.

acl_free_text() Releases the buffer associated with the
given external representation (text) ACL.

acl_init() Allocates and initializes ACL internal
representation working storage.

acl_copy_ext() Copies the working storage internal
format ACL data to the contiguous
persistent ACL format.

acl_copy_int() Copies contiguous persistent ACL data to
working storage.

acl_dup() Creates a copy of the designated ACL. The
copy is independent of the original entry.

acl_size() Calculates the size of the given ACL.

The following routines convert ACLs between external and internal
representations:

acl_from_text() Creates an internal representation ACL
from the given external representation
(text) ACL.

acl_to_text() Creates an external representation
(text) ACL from the given internal
representation ACL.

Programming with ACLs 21–7

21.4 ACL Rules

Some interactions between the ACL and the UNIX permissions are subtle.
Unless you understand the interaction between ACL routines and the
system calls that manipulate UNIX DAC attributes, you might get different
permissions than you intended.

The following sections describe rules for programs that handle ACLs.

21.4.1 Object Creation

If ACLs are enabled and are supported on the file system, the open(),
creat(), and mkdir() functions perform ACL inheritance when creating a
file or directory. See Section 5.7 for a description of ACL inheritance.

When ACL inheritance is performed, the permissions on a created file come
from the mode you provide and the inherited ACL, not the umask. Therefore,
your program must set the mode when creating files and directories. The
program must not depend on umask to protect the files and directories.

When copying one file to another, it is a common practice for a program to
create a new file and propagate the owner, group, and mode. If the source
file has an ACL, your program should propagate that ACL to the target file
in all cases where the mode is propagated.

21.4.2 ACL Replication

Programs that replicate permissions must preserve the ACL. The
discretionary protection of a file or directory is no longer described by the
owner, group, and permissions; it includes the ACL which is a superset of
the permissions. Neglecting to copy the ACL could allow unintended access
to the file or directory.

21.4.3 ACL Validity

Any ACL you create must be valid according to the following POSIX ACL
rules:

• It must have at least the three base entries

• The user entries must have unique valid qualifiers

• The group entries must have unique valid qualifiers

• The user and group identifiers must be valid

You can use the acl_valid() routine to check your ACLs.

21–8 Programming with ACLs

21.5 ACL Creation Example

Assume that you want to set a file’s access ACL to the following permissions:

user::rwx
user:june:r-x
user:sally:r-x

group::rwx
group:mktg:rwx

other::r-x

The following code takes a tabular form of the ACL, creates a working
storage representation of the ACL, and applies it to a file:

struct entries {
acl_tag_t tag_type;
char *qualifier;
acl_permset_t perms;

} table[] = {
{ USER_OBJ, NULL, ACL_PRDWREX },
{ USER, "june", ACL_PRDEX },
{ USER, "sally", ACL_PRDEX },
{ GROUP_OBJ, NULL, ACL_PRDWREX },
{ GROUP, "mktg", ACL_PRDWREX },
{ OTHER_OBJ, NULL, ACL_PRDEX }

};

#define TABLE_ENTRIES (sizeof(table)/sizeof(table[0]))

acl_t acl_p;
acl_entry_t entry_p;
int i;
uid_t uid;
gid_t gid;

/* allocate an ACL */
acl_init(&acl_p); 1

/* walk through the table and create entries */
for (i = 0; i < TABLE_ENTRIES; i++) {

/* allocate the entry */
acl_create_entry(acl_p, &entry_p); 2

/* set the permissions */
acl_set_perm(entry_p, table[i].perms);

/* setting the tag type and qualifier depends
on the type */

Programming with ACLs 21–9

switch (table[i].tag_type) {

case USER:

/* map user name to ID and specify as qualifier */

uid = pw_nametoid(table[i].qualifier); 3
acl_set_tag(entry_p, table[i].tag_type,

(void *) uid); 4

break;

case GROUP:

/* map group name to ID and specify as qualifier */

gid = gr_nametoid(table[i].qualifier); 5
acl_set_tag(entry_p, table[i].tag_type,

(void *) gid);
break;

default:

/* qualifier is NULL for other types */

acl_set_tag(entry_p, table[i].tag_type, NULL);
break;

}
}

/* set the ACL on the file */

if (acl_set_file(filename, ACL_TYPE_ACCESS, acl_p) < 0)
perror(filename);

/* free storage allocated for the ACL */

acl_free(acl_p);

Notes:

1 This demonstrates the use of the initialization call for a working storage
representation of the ACL.

2 A new ACL entry is allocated with this call. The tag type, qualifier, and
permissions have an unspecified type.

3 The pw_nametoid() routine is an optimized mapping from user name to
ID. It is described in the pw_mapping(3) reference page.

21–10 Programming with ACLs

4 The acl_set_tag() function takes a void argument for the qualifier,
and casts it to the appropriate data type depending on obj_type.

5 The gr_nametoid() routine is an optimized mapping from group name
to ID. It is described in the pw_mapping(3) reference page.

21.6 ACL Inheritance Example
This section shows how a program can specify a default access ACL on a
directory and then describes what happens when a file and a directory
are created in that directory. There is another type of default ACL called
a default directory ACL. ACLs are inherited differently if a directory has a
default directory ACL in addition to or in place of a default access ACL. See
Section 5.7 for a complete description of the ACL inheritance rules.

Assume that directory /usr/john/acl_dir has the following access and
default access ACLs:

getacl /usr/john/acl_dir

file:/usr/john/acl_dir
owner:john
group:prog
user::rwx
user:june:r-x
user:fred:r-x

group::rwx
group:mktg:rwx

other::r-x

getacl -d /usr/john/acl_dir

file:/usr/john/acl_dir
owner:john
group:prog
user::rwx
user:june:r-x
user:sally:r-x

group::rwx
group:mktg:rwx

other::r-x

The following code updates the default access ACL to remove read and write
permission from the mktg group entry:

acl_permset_t perms;
acl_id_type qualifier;

Programming with ACLs 21–11

acl_tag_t tag_type;
acl_t acl;
acl_entry_t acl_entry;
char *filename;
gid_t mktg_gid;

/* map the "mktg" group name to an ID */
mktg_gid = gr_nametoid("mktg");

/* allocate an ACL entry */
acl_init(&acl);

/* read the default ACL from the file */
acl=acl_get_file(filename, ACL_TYPE_DEFAULT);

/* scan the ACL looking for the entry */
while (acl_get_entry(acl, &acl_entry) == 1) {

/* retrieve the tag type and qualifier */
acl_get_tag(acl_entry, &tag_type, &qualifier);

/* check for appropriate entry and remove ’r’ and ’w’ */
if (tag_type == GROUP && qualifier.acl_gid == mktg_gid) {

acl_delete_perm(acl_entry, ACL_PRDWR);

/* put the new default ACL on the file */
if (acl_set_file(filename, ACL_TYPE_DEFAULT, acl) < 0) {

fprintf(stderr, "acl_set_file on ");
psecerror(filename);

}
}

}

The following code creates a file and a directory in the directory and
demonstrates the ACL inheritance rules:

#define REGULAR_FILE "regular"
#define DIRECTORY_FILE "dir"

char pathname[100];
int fd;

/* Create the regular file */
sprintf(pathname, "%s/%s", filename, REGULAR_FILE);

fd = creat(pathname, 0644);

/* Create the directory */
sprintf(pathname, "%s/%s", filename, DIRECTORY_FILE);

mkdir(pathname, 0700);

21–12 Programming with ACLs

When the preceding code is executed, the access ACL on the newly created
file and the access and default access ACLs on the newly created directory
are as follows:

getacl /usr/john/acl_dir/regular

file:/usr/john/acl_dir/regular
owner:john
group:prog
user::rw-
user:june:r-x
user:sally:r-x

group::r--
group:mktg:--x

other::r--

Note that the permissions for owning user, owning group, and other are set
to the logical AND of the default access ACL and the mode specified with the
creat() call. The umask is not used when ACL inheritance takes place. The
other entries are taken from the default access ACL of the parent directory.

getacl /usr/john/acl_dir/dir

file:/usr/john/acl_dir/dir
owner:john
group:prog
user::rwx
user:june:r-x
user:sally:r-x

group::---
group:mktg:--x

other::---

Note that the inheritance rules for a subdirectory created in a directory that
has a default access ACL are the same as those for a file. This is true only
if there is not a default directory ACL on the parent directory in addition
to the default access ACL.

getacl -d /usr/john/acl_dir/dir

file:/usr/john/acl_dir/dir
owner:john
group:prog
user::rwx
user:june:r-x
user:sally:r-x
group::rwx

Programming with ACLs 21–13

group:mktg:--x

other::r-x

Note that the default ACL is inherited from the directory’s parent.

21–14 Programming with ACLs

A
TCB File Summary

Table A–1 contains a summary of all the files that are in the trusted
computing base (TCB) on the trusted Tru64 UNIX system. Most of these
files are installed on the base system, some of the files are created during the
installation process, and some are databases created by a running system.
Characteristics of those files are included in the Remarks column of the table.

Table A–1: Trusted Computing Base Files
File Name Remarks

/.cshrc Root account csh startup script

/.login Root account csh startup script

/.logout Root account csh logout script

/.profile Root account startup script

/vmunix OS execution image

/dev/[rz][0-3][a-z] Block device disk partitions

/dev/console System console device used in
single-user mode

/dev/kmem Kernel memory pseudodevice

/dev/mem Kernel memory pseudodevice

/dev/null Bit bucket pseudodevice

/dev/pts/* Pseudo-ttys

/dev/rrz[0-3][a-z] Character device disk partitions

/dev/tty Current terminal pseudodevice

/dev/tty[0-f] Terminal devices

/dev/tty* Pseudo-ttys

/etc/auth/system/default System defaults database

/etc/auth/system/devassign Device assignment database

/etc/auth/system/files File control database

/etc/auth/system/subsystems Printable names for protected
subsystems

TCB File Summary A–1

Table A–1: Trusted Computing Base Files (cont.)

File Name Remarks

/etc/auth/system/ttys.db Terminal control database

/etc/fstab Contains file systems to be mounted

/etc/group Groups database

/etc/inittab System initialization control file

/etc/passwd Accounts database

/etc/policy/acl/pconfig Discretionary policy setup file

/sbin/arp Address resolution protocol
(networking)

/sbin/chown Change file owner

/sbin/clri Clear on-disk inode

/sbin/date Display/change time of day

/sbin/df Display file system free space

/sbin/fsck File system consistency checker

/sbin/fsdb File system debugger

/sbin/halt Bring system down

/sbin/hostid Display/set system host ID

/sbin/hostname Display/set host name

/sbin/ifconfig Display/change network interface
config (BSD networking)

/sbin/kill Send software signal to process

/sbin/killall Kill all active processes

/sbin/mknod Create special files

/sbin/mount Mount file systems or display
mount table

/sbin/newfs Format disk partition

/sbin/ping Send ICMP alive request (BSD
networking)

/sbin/ps Display process status

/sbin/rc[0-3].d System setup scripts

/sbin/reboot Reboot the system

/sbin/route Manage route tables (BSD networking)

/sbin/savecore Dump memory image after crash

A–2 TCB File Summary

Table A–1: Trusted Computing Base Files (cont.)

File Name Remarks

/sbin/sh Shell

/sbin/sulogin Single-user root login password verifier

/sbin/swapon Add swap devices

/sbin/umount Unmount mounted file systems

/tcb/bin/pacld Discretionary policy daemon

Maintain ACL synonym database

/tcb/bin/auditd Audit daemon

/tcb/bin/authck Security database consistency checker

/usr/tcb/bin/edauth Authcap database editor

/usr/tcb/bin/convauth Convert auth databases

/usr/tcb/bin/convuser Convert user profile

/tcb/bin/setacl Change a file’s access control list

/tcb/bin/epa Set process attributes

/tcb/bin/init Initial process, change run levels

/tcb/bin/integrity Security file attribute checker

/tcb/bin/mkaud Audit reinitialization control files

/tcb/bin/reduce Print audit report

/tcb/bin/su Establish user identity program

/tcb/files/PACLDBASE Discretionary policy tag/IR database

/tcb/files/audit Compaction file directory on
root file system

/tcb/files/audit/audit_parms Default audit control file

/tcb/files/audit/audit_select Audit selection criteria

/tcb/files/audit/reports Directory for audit report storage

/tcb/files/auditrparms Directory for reduction selection files

/tcb/files/auth.db Protected password database for
system accounts

/var/tcb/files/auth.db Protected password database for
user accounts

/tmp Temporary directory

TCB File Summary A–3

Table A–1: Trusted Computing Base Files (cont.)

File Name Remarks

/users Parent of users home directory

/usr/bin/at Delayed job submission

/usr/bin/atq List delayed job submissions

/usr/bin/atrm Remove delayed job submissions

/usr/bin/cancel Cancel a print request

/usr/bin/chgrp Change file group

/usr/bin/cpio Perform single-level import/export

/usr/bin/crontab Periodic job table submission

/usr/bin/csh Root account shell

/usr/bin/finger Display account information

/usr/bin/from Display mail headers

/usr/bin/ipcs Display system V IPC object status

/usr/bin/login Login program

/usr/bin/lp Submit print request

/usr/bin/lpr Submit print request

/usr/bin/lprm Cancel print request

/usr/bin/lpstat Display print subsystem status

/var/spool/mail/ Mail directory

/usr/bin/mesg Disable/enable terminal messages

/usr/bin/mt Manipulate tape device

/usr/bin/newgrp Change process group assignment

/usr/bin/nice Run process with different priority

/usr/bin/passwd Password change program

/usr/bin/rcp Network copy (BSD networking)

/usr/bin/rlogin Network login (BSD networking)

/usr/bin/rsh Remote shell (BSD networking)

/usr/bin/tar Perform single-level import/export

/usr/bin/write Open connection to another
user/window

/usr/lbin/acct/accton Enable system accounting

/usr/lbin/ex3.7preserve Preserve an interrupted edit session

A–4 TCB File Summary

Table A–1: Trusted Computing Base Files (cont.)

File Name Remarks

/usr/sbin/cron Delayed/periodic job daemon

/usr/sbin/dcheck Directory check utility

/usr/sbin/dumpfs Display superblock

/usr/sbin/edquota Edit quota controls

/usr/sbin/fastboot Bring system down

/usr/sbin/fasthalt Bring system down

/usr/sbin/icheck Inode check utility

/usr/sbin/link Perform link() system call

/usr/sbin/lpc Line printer control program

/usr/sbin/lpd Line printer daemon

/usr/sbin/mkpasswd Create binary database from
/etc/passwd

/usr/sbin/ncheck Display file associated with
inode number

/usr/sbin/netstat Display network statistics

/usr/sbin/nfsstat Display NFS statistics (NFS)

/usr/sbin/quot Disk quota maintenance command

/usr/sbin/quotacheck Disk quota maintenance command

/usr/sbin/quotaoff Disk quota maintenance command

/usr/sbin/quotaon Disk quota maintenance command

/usr/sbin/renice Change priority of running command

/usr/sbin/repquota Disk quota report

/usr/sbin/shutdown System shutdown program

/usr/sbin/trpt System reporting program

/usr/sbin/tunefs Change values in super block

/usr/sbin/vipw Manipulate passwords

/etc/passwd BASE security password file

/usr/sbin/wall Send message to all logged in users

/usr/share/lib/sechelp/ Help files for user interface programs

/usr/shlib/libsecurity.so Security-relevant library routines

/var/adm/cron/ Administrative control files for cron

TCB File Summary A–5

Table A–1: Trusted Computing Base Files (cont.)

File Name Remarks

/var/adm/pacct Accounting file

/var/adm/utmp Hold user and accounting information
(current)

/var/adm/wtmp Hold user and accounting information
(since boot)

Table A–2 lists files that are installed on the trusted system but not on a
nontrusted system, and files that are modified on a trusted system. The files
in this table are not considered part of the trusted computing base.

Table A–2: Files Not in Trusted Computing Base
File Name Remarks

/usr/include/*.h Many files modified/added

/usr/include/sys/*.h Many files modified/added

A–6 TCB File Summary

B
Auditable Events and Aliases

This appendix contains the default auditable events
(/etc/sec/audit_events) and the default audit event aliases
(/etc/sec/event_aliases) as they as delivered on Tru64 UNIX.

B.1 Default Auditable Events File
The following is the default /etc/sec/audit_events file:

! Audited system calls:
exit succeed fail
fork succeed fail
old open succeed fail
close succeed
old creat succeed fail
link succeed fail
unlink succeed fail
execv succeed fail
chdir succeed fail
fchdir succeed fail
mknod succeed fail
chmod succeed fail
chown succeed fail
getfsstat succeed fail
mount succeed fail
unmount succeed fail
setuid succeed fail
exec_with_loader succeed fail
ptrace succeed fail
nrecvmsg succeed fail
nsendmsg succeed fail
nrecvfrom succeed fail
naccept succeed fail
access succeed fail
kill succeed fail
old stat succeed fail
setpgid succeed fail
old lstat succeed fail
dup succeed fail
pipe succeed fail
open succeed fail
setlogin succeed fail
acct succeed fail

Auditable Events and Aliases B–1

classcntl succeed fail
ioctl succeed fail
reboot succeed fail
revoke succeed fail
symlink succeed fail
readlink succeed fail
execve succeed fail
chroot succeed fail
old fstat succeed fail
vfork succeed fail
stat succeed fail
lstat succeed fail
mmap succeed fail
munmap succeed fail
mprotect succeed fail
old vhangup succeed fail
kmodcall succeed fail
setgroups succeed fail
setpgrp succeed fail
table succeed fail
sethostname succeed fail
dup2 succeed fail
fstat succeed fail
fcntl succeed fail
setpriority succeed fail
socket succeed fail
connect succeed fail
accept succeed fail
bind succeed fail
setsockopt succeed fail
recvmsg succeed fail
sendmsg succeed fail
settimeofday succeed fail
fchown succeed fail
fchmod succeed fail
recvfrom succeed fail
setreuid succeed fail
setregid succeed fail
rename succeed fail
truncate succeed fail
ftruncate succeed fail
setgid succeed fail
sendto succeed fail
shutdown succeed fail
socketpair succeed fail
mkdir succeed fail
rmdir succeed fail
utimes succeed fail
adjtime succeed fail
sethostid succeed fail

B–2 Auditable Events and Aliases

old killpg succeed fail
setsid succeed fail
pid_unblock succeed fail
getdirentries succeed fail
statfs succeed fail
fstatfs succeed fail
setdomainname succeed fail
exportfs succeed fail
getmnt succeed fail
alternate setsid succeed fail
swapon succeed fail
msgctl succeed fail
msgget succeed fail
msgrcv succeed fail
msgsnd succeed fail
semctl succeed fail
semget succeed fail
semop succeed fail
lchown succeed fail
shmat succeed fail
shmctl succeed fail
shmdt succeed fail
shmget succeed fail
utc_adjtime succeed fail
security succeed fail
kloadcall succeed fail
priocntlset succeed fail
sigsendset succeed fail
msfs_syscall succeed fail
sysinfo succeed fail
uadmin succeed fail
fuser succeed fail
proplist_syscall succeed fail
ntp_adjtime succeed fail
audcntl succeed fail
setsysinfo succeed fail
swapctl succeed fail
memcntl succeed fail
SystemV/unlink succeed fail
SystemV/open succeed fail
RT/memlk succeed fail
RT/memunlk succeed fail
RT/psx4_time_drift succeed fail
RT/rt_setprio succeed fail

! Audited trusted events:
audit_start succeed fail
audit_stop succeed fail
auditconfig succeed fail
audit_suspend succeed fail

Auditable Events and Aliases B–3

audit_log_change succeed fail
audit_log_creat succeed fail
audit_xmit_fail succeed fail
audit_reboot succeed fail
audit_log_overwrite succeed fail
audit_daemon_exit succeed fail
login succeed fail
logout succeed fail
auth_event succeed fail
audgen8 succeed fail
net_tcp_stray_packet succeed fail
net_tcp_syn_timeout succeed fail
net_udp_stray_packet succeed fail
net_tcp_rejected_conn succeed fail

! Audited mach traps:
lw_wire succeed fail
lw_unwire succeed fail
init_process succeed fail
host_priv_self succeed fail
semop_fast succeed fail

! Audited mach ipc events:
task_create succeed fail
task_terminate succeed fail
task_threads succeed fail
thread_terminate succeed fail
vm_allocate succeed fail
vm_deallocate succeed fail
vm_protect succeed fail
vm_inherit succeed fail
vm_read succeed fail
vm_write succeed fail
vm_copy succeed fail
vm_region succeed fail
task_by_unix_pid succeed fail
bind_thread_to_cpu succeed fail
task_suspend succeed fail
task_resume succeed fail
task_get_special_port succeed fail
task_set_special_port succeed fail
thread_create succeed fail
thread_suspend succeed fail
thread_resume succeed fail
thread_set_state succeed fail
thread_get_special_port succeed fail
thread_set_special_port succeed fail
port_allocate succeed fail
port_deallocate succeed fail
port_insert_send succeed fail

B–4 Auditable Events and Aliases

port_extract_send succeed fail
port_insert_receive succeed fail
port_extract_receive succeed fail
host_processors succeed fail
processor_start succeed fail
processor_exit succeed fail
processor_set_default succeed fail
xxx_processor_set_default_priv succeed fail
processor_set_tasks succeed fail
processor_set_threads succeed fail
host_processor_set_priv succeed fail
host_processors_name succeed fail
host_processor_priv succeed fail

B.2 Sample Event Aliases File

The following is the sample /etc/sec/event_aliases file provided with
the Tru64 UNIX system:

This is a SAMPLE alias list. Your alias list should be built to
satisfy your site’s requirements.

obj_creat: "old open" "old creat" link mknod open symlink mkdir \
SystemV/open

obj_delete: unlink truncate ftruncate SystemV/unlink rmdir

exec: execv exec_with_loader execve

obj_access: access "old stat" "old lstat" "old open" open statfs \
fstatfs readlink "old fstat" stat lstat fstat close:1:0 \
dup dup2 fcntl "old creat" mmap munmap mprotect memcntl \
SystemV/open

obj_modify: chmod chown fchown fchmod lchown utimes rename

ipc: recvmsg nrecvmsg recvfrom nrecvfrom sendmsg nsendmsg \
sendto accept naccept connect socket bind shutdown \
socketpair pipe sysV_ipc kill "old killpg" setsockopt \
sigsendset

sysV_ipc: msgctl msgget msgrcv msgsnd shmat shmctl shmdt shmget \
semctl semget semop

proc: exit fork chdir fchdir setuid ptrace setpgid setlogin \
chroot vfork setgroups setpgrp setpriority setreuid \
setregid setgid audcntl RT/rt_setprio setsid "alternate \
setsid" priocntlset

system: getfsstat mount unmount acct reboot table sethostname \
settimeofday adjtime sethostid setdomainname exportfs \
getmnt swapon utc_adjtime audcntl setsysinfo kloadcall \
getdirentries revoke "old vhangup" kmodcall security \
sysinfo uadmin swapctl

misc: ioctl msfs_syscall fuser

trusted_event: login logout auth_event audgen8

Auditable Events and Aliases B–5

all: obj_creat obj_delete exec obj_access obj_modify ipc \
proc system misc trusted_event

#++

adjtime is being called once a sec?

profile_audit: audit_start:1:1 audit_stop:1:1 auditconfig:1:1 \
audit_log_creat:1:1 audit_xmit_fail:1:1 \

audit_reboot:1:1 audit_log_overwrite:1:1 \
audit_daemon_exit:1:1 audcntl:1:1 settimeofday:1:1 \
ntp_adjtime:1:1 utc_adjtime:1:1

profile_net: connect:1:1 accept:1:1 bind:1:1

profile_auth: login:1:1 logout:1:1 auth_event:1:1

profile_filesys: mount:1:1 unmount:1:1

profile_creat: "old creat" link mknod symlink mkdir

profile_proc: setuid setgid setlogin chroot setsid \
"alternate setsid"

#==
Definition of catagories

Desktop:
Provides suggested minimal auditing configuration for a single
user system. Configuration provides monitoring of tusted audit
events, no monitoring of files, or network related events.
--
This alias assumes:
- Local access is primarily interactive login, generally limited
to one user at a time, activity tracked and controlled by the
system.
- Individual accountability is primarily maintained by the system.
- User related file area access is only limited by file owner
choice. Browsing is unrestricted.
- System related file areas are mostly readonly. Browsing is
unrestricted.
- Login uid is converted to username.
- Access to the network is monitored.
- Access to controlled files are unmonitored.
Desktop: \
profile_audit \
profile_auth

Servers:
Provides suggested auditing configuration for a system which is
used as a server for networked based applications (such as
databases, web server, etc.). Configuration provides monitoring
of trusted # events, system files, network related files, and
network related events.

This alias assumes:
- Network access is restricted to application (mail, db server,
firewall, etc.) controlled access through network mechanisms
(TCP/IP reserved port, DECnet objects, etc.) with the
application being responsible for tracking activity.
- Interactive access is strictly controlled by the system, activity
is tracked by the system.
- Applications primarily handle access control, system control is
secondary.

B–6 Auditable Events and Aliases

- Local access logins are strictly controlled, activity is tracked
by the system.
- Individual accountability is primarily maintained by applications.
- User related file area access is strictly limited to application
related files. Browsing is controlled.
- System related file areas are at most read-only for user
aplication related functions. Browsing is controlled by
applications.
- Login uid is converted to username.
- Access to the network is monitored.
- Access to controlled files are monitored.
Server: \
profile_audit \
profile_auth \
profile_net \
profile_filesys \
profile_proc \
profile_creat obj_delete obj_modify

Timesharing:
Provides suggested minimal auditing configuration for a system
which is used to support multiple interactive users. Configuration
provides monitoring of trusted events, no monitoring of system
files,or network related events or files.
--
This alias assumes:
- Local access is primarily interactive login, activity is tracked
and controlled by the system.
- Individual accountability is primarily maintained by the system.
- Interactive logins are generally unrestricted.
- User related file area access is only limited by file owner
choice. Browsing is unrestricted.
- System related file areas are mostly readonly. Browsing is
unrestricted.
- Login uid is converted to username.
- Access to the network is unmonitored.
- Access to controlled files is unmonitored.
Timesharing: \
profile_audit \
profile_auth

Timesharing_extended_audit:
Provides suggested auditing configuration for a system which is
used to support multiple interactive users. Configuration provides
monitoring of trusted events, system files, and no monitoring of
network related events or files.
--
This alias assumes:
- Local access is primarily interactive login, activity is tracked
and controlled by the system.
- Individual accountability is primarily maintained by the system.
- Interactive logins are generally unrestricted.
- User related file area access is limited only by file owner
choice. Browsing is unrestricted.
- System related file areas are mostly readonly. Browsing is
unrestricted.
- Access to the network is monitored.
- Access to controlled files is monitored.
Timesharing_extended_audit: \
profile_audit \
profile_auth \
profile_filesys \
profile_proc \
profile_creat obj_delete obj_modify

Auditable Events and Aliases B–7

Networked_system:
Provides suggested auditing configuration for a system which
has networking enabled. Should be used in conjuction with
Desktop, Timesharing, or Timesharing_extended_audit templates.
Configuration provides monitoring of trusted events, network
related files and network related events.
--
This alias assumes:
- Network access is through application (mail, printer, etc.)
controlled network mechanisms (TCP/IP reserved port, DECnet
objects, etc.) which are responsible tracking activity and
controlling access, and Interative login with the system
tracking activity and controlling access.
- Access to the network is monitored.
- Access to controlled files is monitored.
Networked_system: \
profile_audit \
profile_net \
profile_creat obj_delete obj_modify

NIS_server:
Provides suggested auditing configuration for a system used as
a NIS server. Should be used in conjuction with Desktop,
Timesharing, or Timesharing_extended_audit templates.
Configuration provides monitoring of trusted events, NIS
related files and network related events.

This alias assumes:
- Network access is through application (mail, printer, etc.)
controlled network mechanisms (TCP/IP reserved port, DECnet
objects, etc.) which are responsible tracking activity and
controlling access, and Interative login with the system
tracking activity and controlling access.
- NIS is enabled.
- Access to the network is monitored.
- Access to controlled files is monitored.
NIS_server: \
profile_audit \
profile_net \
profile_creat obj_delete obj_modify

B–8 Auditable Events and Aliases

C
Interoperating with and Migrating from

ULTRIX Systems

This appendix describes some of the issues you may encounter when moving
applications and accounts from an ULTRIX system to a Tru64 UNIX system.

C.1 Migration Issues

The following sections describe migration issues you may encounter when
moving from ULTRIX to Tru64 UNIX.

C.1.1 Difference in the audgen System Call

Applications built under ULTRIX, that make use of the audgen() system
call, do not work on Tru64 UNIX because the Tru64 UNIX version of
audgen() takes five parameters instead of three as on ULTRIX. To port
these applications, you can take either of the following steps:

• Convert ULTRIX-style usage of audgen() to the new usage. For
example:

/* ULTRIX */
audgen(event, tokenmask, param_vector);

becomes:

/*Tru64 UNIX*/
audgen(event, tokenmask, param_vector, NULL,NULL);

• Link such applications with the following module:

#include <sys/syscall.h>
#include <stdio.h>
audgen(event, tokenp, argp)
int event;
char *tokenp;
char *argp[];
{

return(syscall(SYS_audgen, event, tokenp, argp, \
NULL, NULL));

}

Interoperating with and Migrating from ULTRIX Systems C–1

C.1.2 Differences in the audcntl Routine

The Tru64 UNIX audcntl() routine takes six parameters instead of five as
on ULTRIX. You need to put a zero (0) in the unused parameter.

C.1.3 Changes to the authaudit Routines

If you are moving from ULTRIX MLS+ or a system based on OSF code,
several of the audit routines in the code base have been superceded in the
Tru64 UNIX operating system by the audgen() and audgenl() routines.
The routines are provided only for backward compatibility and will be
removed in a future release. The routines are:

audit_security_failure()
audit_no_resource()
audit_auth_entry()
audit_subsystem()
audit_login()
audit_rcmd()
audit_passwd()
audit_lock()
sa_audit_lock()
sa_audit_audit()

The functions of the audit_adjust_mask() routine have been superceded
by audcntl().

See Chapter 19 for examples of how to use the audcntl() and audgenl()
routines. More information on audgen(), audgenl(), and audcntl() is
available in the associated reference pages and the auduit.h file.

C.1.4 Difference in the Authentication Interfaces

The Tru64 UNIX SIA authentication interfaces are different from the
ULTRIX interfaces. See Chapter 20 for more information about the SIA
interfaces.

C.1.5 Differences in Password Encryption

The Tru64 UNIX system uses a form of password encryption that is different
from that used on ULTRIX. An ULTRIX system has three security levels:
BSD, UPGRADE, and ENHANCED. Tru64 UNIX has only two security
levels: BASE (equivalent to BSD) and ENHANCED. There is not a direct
equivalent to the ULTRIX UPGRADE security level. There are direct
equivalents only to the BSD and ENHANCED modes. This is because
the default Tru64 UNIX ENHANCED password encryption algorithm is
compatible with the traditional password encryption, which is not the case
for ULTRIX ENHANCED security.

C–2 Interoperating with and Migrating from ULTRIX Systems

Running the Tru64 UNIX secconfig script leaves the system equivalent
to the ULTRIX UPGRADE level; the old password can be used once.
The secauthmigrate script uses the ULTRIX ENHANCED password
encryption algorithm, which is not compatible with the traditional style
password encryption algorithm. If secauthmigrate is going to be used, run
the secconfig script before running secauthmigrate.

C.1.6 Trusted Path Unavailable on Tru64 UNIX

The ULTRIX trusted path feature is not available on Tru64 UNIX systems.

C.1.7 Secure Attention Key (SAK) Unavailable on Tru64 UNIX

The ULTRIX secure attention key (SAK) feature is not available on Tru64
UNIX systems.

C.2 Moving ULTRIX Authentication Files to Tru64 UNIX

Users whose records are being transferred must have valid BSD style login
records (with the exception of valid password fields) on the ULTRIX system.
This can be through NIS as well as a local record in /etc/passwd. (This is
checked with ls −o.) You might want to do an account review, so that only
those users who should still have active accounts are moved.

See the secauthmigrate(8) reference page for more information.

C.2.1 Converting Shared Authentication Files

Use the following procedure to convert ULTRIX shared authentication files
(BIND/Hesiod) to Tru64 UNIX authentication files:

1. On the ULTRIX system, make a copy of the distributed authentication
data as follows:

cp −p /var/dss/namedb/src/auth /tmp/auth.hesiod

2. Copy the /tmp/auth.hesiod file to the Tru64 UNIX system.

3. If the BSD style profile information for the ULTRIX system is shared by
NIS, it is necessary to copy the /var/dss/namedb/src/passwd file
to the Tru64 UNIX system. Add this file to the NIS password maps or
append it to the /etc/passwd file.

4. Run the /usr/sbin/secauthmigrate script as follows:

/usr/sbin/secauthmigrate auth.hesiod

You should test the script by setting the ROOTDIR environment
variable to a temporary location as follows:

Interoperating with and Migrating from ULTRIX Systems C–3

/usr/bin/env ROOTDIR=/tmp \
/usr/sbin/secauthmigrate auth.hesiod

5. Continue the migration by going to Section C.2.3.

C.2.2 Converting Local Authentication Files

Use the following procedure to convert the ULTRIX local authentication files:

1. Because the /etc/auth file is not normally up-to-date, use getauth to
obtain the current values from /etc/auth.{pag,dir} as follows:

umask 077

getauth > /tmp/auth.local

2. Copy the /tmp/auth.local file to the Tru64 UNIX system.

3. Run the /usr/sbin/secauthmigrate script as follows:

/usr/sbin/secauthmigrate auth.local

You should test the script using the ROOTDIR environment variable
first.

4. Continue the migration by going to Section C.2.3.

C.2.3 After Converting the Authentication Files

If any accounts are left in /tcb/files/auth/<a-z>/<username>:ULT,
it is because there was already a protected profile for the user. Use the
following procedure to complete the migration:

1. Merge the values as appropriate. Edit the file using a duplicate and
copy the new file to /tcb/files/auth/<a-z>/<username>:t.

2. Check to be sure that the base file (/tcb/files/auth/<a-
z>/<username>) has not been changed. If it has, merge the change into
the /tcb/files/auth/<a-z>/<username>:t file.

3. Rename the /tcb/files/auth/<a-z>/<username>:t file to
/tcb/files/auth/<a-z>/<username>.

If a UID is not known, the secauthmigrate script reports that it cannot
translate a UID to a name using the following code:

ls −o /tmp/file

This test is performed on a file owned by the UID in question. It may be
necessary to check the contents of /etc/passwd or the NIS setup. If this
discrepancy persists, it indicates that there was an orphaned authentication
record in the original ULTRIX data.

C–4 Interoperating with and Migrating from ULTRIX Systems

Once all the records have been converted, review their contents with the
dxaccounts program.

C.3 Audit Data Compatibility

The following are compatibility issues between the auditing subsystems on
ULTRIX and Tru64 UNIX systems:

• Audit data on a Tru64 UNIX system is not compatible with audit data on
an ULTRIX system.

• Audit data generated on an ULTRIX system is read using the
audit_tool.ultrix program. See the audit_tool(8) reference page
for more information.

• The Tru64 UNIX auditd and the ULTRIX auditd commands do not
communicate with each other.

• The auditd command line is different between ULTRIX and Tru64
UNIX systems. See the auditd(8) reference page for details.

• The auditd access control list, which is found in /etc/auditd_clients
on ULTRIX, is found in /etc/sec/auditd_clients on Tru64 UNIX
systems.

Interoperating with and Migrating from ULTRIX Systems C–5

D
Coding Examples

The examples in this appendix illustrate how to use some of the routines
in the trusted Tru64 UNIX system.

D.1 Source Code for a Reauthentication Program
(sia-reauth.c)
Example D–1 is a program that performs password checking.

Example D–1: Reauthentication Program

#include <sia.h>
#include <siad.h>

#ifndef NOUID
#define NOUID ((uid_t) -1)
#endif

main (argc, argv)
int argc;
char **argv;
{

int i;
SIAENTITY *entity = NULL;
int (*sia_collect)() = sia_collect_trm;
char uname[32];
struct passwd *pw;
uid_t myuid;

myuid = getluid();
if (myuid == NOUID)
myuid = getuid(); /* get ruid */
pw = getpwuid(myuid);
if (!pw || !pw->pw_name || !*pw->pw_name) {
sleep(3); /* slow down attacks */
(void) fprintf(stderr, "sorry");
return 1;
}
(void) strcpy(uname, pw->pw_name);
i = sia_ses_init(&entity, argc, argv, NULL, uname, \

NULL, TRUE, NULL);
if (i != SIASUCCESS) {
sleep(3); /* slow down attacks */
(void) fprintf(stderr, "sorry");
return 1;
}
i = sia_ses_reauthent(sia_collect, entity);
if (i != SIASUCCESS) {
(void) sia_ses_release(&entity);
sleep(3); /* slow down attacks */
(void) fprintf(stderr, "sorry");

Coding Examples D–1

Example D–1: Reauthentication Program (cont.)

return 1;
}
i = sia_ses_release(&entity);
if (i != SIASUCCESS) {
sleep(3); /* slow down attacks */
(void) fprintf(stderr, "sorry");
return 1;
}

(void) fprintf(stderr, "Ok");

return 0;
}

D.2 Source Code for a Superuser Authentication Program
(sia-suauth.c)
Example D–2 is a program that allows root to become a user to run daemons
(such as crontab or sendmail) for the user.

Example D–2: Superuser Authentication Program

#include <sia.h>
#include <siad.h>

main (argc, argv)
int argc;
char **argv;
{

int i;

i = sia_auth(getuid());
printf("result is %d", i);

}

int sia_auth(uid)
int uid;
{

char uname[32];
static SIAENTITY *entity=NULL;
static int oargc = 1;
static char *oargv[1] = { "siatest" };
static int (*sia_collect)()=sia_collect_trm;

struct passwd *pw;

pw = getpwuid(uid);
if (!pw) {

printf("getpwuid failure");
return 8;

}
(void) strcpy(uname, pw->pw_name);

printf("SIA authentication for uid: %d, uname: %s ", \
uid, uname);

if (sia_ses_init(&entity,oargc,oargv,NULL,uname,NULL, \

D–2 Coding Examples

Example D–2: Superuser Authentication Program (cont.)

FALSE, NULL) == SIASUCCESS) {
printf("sia_ses_init successful");
entity->authtype = SIA_A_SUAUTH;

if (sia_make_entity_pwd(pw, entity) == SIASUCCESS) {
printf("sia_make_entity_pwd successful");

}
else {

printf("sia_make_entity_pwd un-successful");
}

if ((sia_ses_launch(NULL, entity)) == SIASUCCESS) {
printf("sia_ses_launch successful");

}
else {

printf("sia_ses_launch un-successful");
entity = NULL;

}
if ((sia_ses_release(&entity)) == SIASUCCESS) {

printf("sia_ses_release successful");
}
else {

printf("sia_ses_release un-successful");
return(4);

}

}
else {

printf("sia_ses_init un-successful");
return(5);

}
printf("sia **** successful");
return(6);

}

Coding Examples D–3

E
Symbol Preemption for SIA Routines

This appendix describes the naming convention for routines (added by
developers) that must be followed to stay in compliance with ANSI C routine
naming rules.

E.1 Overview of the Symbol Preemption Problem

Overriding the symbols used by the SIA routines in libc is not as simple
as providing routines named the same as the SIA routines (such as,
siad_ses_init()) in a library loaded before libc.a. This is because of
the ANSI C convention for libc routine names and the symbols that must
be reserved to the user.

A conflict exists between the requirements of ANSI C and the expectations
of the application developers regarding what entry points can exist in
the libc.a and libc.so libraries. The ANSI C standard lists the
symbols allowed, and the only other symbols that are valid must be of the
“reserved-to-vendor” form. That is, they must start with two underscores, or
one underscore and a capital letter. This set of symbols is limited, and does
not meet the expectations of the general user community.

E.2 The Tru64 UNIX Solution

To satisfy both ANSI C and developer expectations, Tru64 UNIX uses
“strong” and “weak” symbols to provide the additional names. If a routine
such as bcopy() is not allowed by ANSI C, it has a weak symbol named
bcopy() and a strong symbol named _ _bcopy().

The weak symbol can be preempted by the user with no effect on the
bcopy() routine within libc, because the library uses the strong symbols
for these “namespace-protected” routines.

For the SIA routines, this means that there is a weak symbol for
siad_ses_init which is normally bound to the strong symbol
_ _siad_ses_init(). If other code already uses the symbol
siad_ses_init(), only the binding of the weak symbol is affected.

The SIA code in libc references the strong symbol _ _siad_ses_init()
for its own uses. Thus, to override the default BASE security mechanism

Symbol Preemption for SIA Routines E–1

for single-user mode, it is necessary to provide a replacement for the
_ _siad_ses_init() routine.

For a library that is only dynamically loaded under the control of the SIA
routines and the /etc/sia/matrix.conf file, it is only necessary to
provide the siad_ses_init() form of the symbol name. If the dynamically
loaded library is only used through the matrix.conf file, it is acceptable
to provide both forms of symbols. This simplifies the code, but is not safe if
the library usage ever changes to require that the library be linked against,
not just dynamically loaded.

E.3 Replacing the Single-User Environment

Example E–1 shows the code to use if a security mechanism library
developer needs to replace the single-user environment as well as provide a
normal shared library for matrix.conf.

Example E–1: Preempting Symbols in Single-User Mode

/* preempt libc.a symbols in single-user mode */
#ifdef SINGLE_USER
pragma weak siad_ses_init = _ _siad_ses_init
define siad_ses_init _ _siad_ses_init
#endif
#include <sia.h>
#include <siad.h>

The single-user (static) library modules are then compiled as follows:

% cc −DSINGLE_USER ...

This keeps the shared library from interfering with the libc.so symbols,
but allows the preemption of the libc.a symbols for the nonshared images
used in single-user mode. The nonshared images are then built with the
replacement mechanism library supplied to the linker before libc.a as in
the following example:

% cc −non_shared −o passwd passwd.o −ldemo_mech

The shared library is built in the normal fashion.

E–2 Symbol Preemption for SIA Routines

F
C2 Level Security Configuration

This appendix provides a procedure for configuring your system to meet or
exceed a C2 level of security as described in the Orange Book. When the
system is used in accordance with a site security policy, a C2 network, and
the appropriate physical security, a C2 level environment can be achieved.

You can configure your system to meet the minimum C2 requirements
by following the instructions in Section F.3 or you can configure for the
maximum practical level of security by using this entire document.

This appendix contains information on the following subjects:

• Evaluation status for Tru64 UNIX

• Site security policy

• Minimum C2 configuration

• Procedures to establish a secure installation of a Tru64 UNIX system

• Physical security

• Applications

• Periodic security administration procedures

• Reference documents and verification tools

F.1 Evaluation Status

The Tru64 UNIX operating system is delivered with an optional enhanced
security subset. When this subset is installed and configured, the
system is referred to as a trusted system. The Tru64 UNIX enhanced
security features are designed to meet the C2 class of trust, as defined
by the Trusted Computer System Evaluation Criteria (also called the
Orange Book) An on-line version of the Orange Book is available at
http://nsi.org/Library/Compsec/orangebo.txt.

The system is also designed to meet the F-C2 functional class, as defined in
the Information Technology Security Evaluation Criteria (ITSEC).

The system’s security mechanisms maintain full compatibility with existing
Tru64 UNIX security mechanisms, while expanding the protection of user
and system information.

C2 Level Security Configuration F–1

Contact your sales representative for the latest evaluation and certification
status of the Tru64 UNIX product.

F.2 Establishing a Security Policy

A security policy is a statement of the rules and practices that regulate
how an organization maintains its computing environment and how the
organization manages, protects, and distributes sensitive information.

An organization carries out its security policy by configuring the system
as described in this procedure and by adhering to the administrative and
procedural guidelines defined in the site policy.

Compaq recommends that you establish a written security policy for your
site, as described in the Site Security Handbook (RFC 1244).

Security consulting services are available from Compaq by calling (in the
USA) 1.800.AT.COMPAQ. For more information, see the following Web site:
http://www.compaq.com/services/internet/security/index.html

To create your site’s security policy do the following:

• Document the process for maintaining and changing the security policy.

• Establish the action taken by system administrators in the case of a
break-in or other breach of security.

• Determine your site’s audit policy including the following:

– User activities you want to audit.

– Locally defined audit events.

– Location for audit logs.

– Procedures for the review of audit logs.

– Whether the auditing of login attempts to unrecognized account
names (login_uname) is needed. Using this attribute can put
passwords, entered out of sequence, with respect to the prompts, in
the audit logs.

• Establish a service access policy (supervision, passwords).

• Determine the umask for your system (022 is the system default).

• Establish a schedule for verifying the integrity, including passwords, of
your system and site.

• Define the boundaries of the system and the interfaces (telnet, ftp, for
example) between the boundaries.

• Establish a magnetic media policy, especially for removable media.

F–2 C2 Level Security Configuration

• Determine what application software will be installed on your system
and what its security implications are.

• Determine the password policy for your users. Some considerations
follow:

– Long passwords are hard to break, but inevitably they are written
down.

– If user-chosen passwords are used, only one person knows the
password.

– Machine-generated passwords are harder to break, but also harder to
remember and will probably be written down.

• Determine the login controls for your system.

• Establish a procedure for system startups, shutdowns and upgrades.

• Establish a backup and recovery procedure.

• Determine who the system administrators (root access) are and exactly
what their functions are to be.

• Establish one or more secure account prototypes (Local Templates) for
creating user accounts using the Account Manager program.

• Establish a secure account template with startup files in the /usr/skel
directory.

• Determine the access restrictions for each object on your system.

• Establish the groups for your system.

• Determine the access restrictions for each user on your system.

• Record for reference all the programs on your system that can set the
UID or GID.

• Determine the export restrictions for file systems on your system.

• Establish change control procedures for subjects and objects on your
system.

• Establish a procedure for physical access changes.

• Establish the physical access requirements for your system and console.

• Establish the physical access requirements for your network components.

• Establish your network security policy.

• Determine which remote access programs (ftp, telnet, and such) will
run on your system.

• Determine the remote systems that will have access to your
system. (Compaq recommends that you do not allow .rhosts and
.hosts.equiv files.)

C2 Level Security Configuration F–3

• Determine the console password requirements for your system and site.

• Establish a modem policy. (Consider authentication, the configuration
for dial-in and dial-out access.)

• Create a “User Security Training” course or document for your site.

• Document how users will access the system: operating system, database,
or application menu.

• Determine the secure devices for your site.

After your system is configured, the configuration files should change little
and always in predictable ways. During periodic security reviews of your
system, compare the base configuration files for content and permissions to
the current files. Document the base system and network configuration by
obtaining a listing of the following files and attaching them to the security
policy:

/usr/skel/.profile
/usr/skel/.cshrc
/usr/skel/.login
/var/yp/<domain>/auto.master
/var/yp/<domain>/auto.home
/var/yp/<domain>/auto.###
/etc/auto.*
/etc/auth/*
/etc/dumpdates
/etc/ethers
/etc/exports
/etc/fstab
/etc/ftpusers
/etc/group
/etc/hosts
/etc/hosts.equiv
/etc/inetd.conf
/etc/motd
/etc/netgroups
/etc/passwd
/etc/profile
/etc/csh.login
/etc/logout if used
/etc/remote
/etc/resolv.conf
/etc/rc.config
/etc/rc.site optional, used with /etc/rc.config
/etc/screend.config
/etc/services
/etc/sec/site_events
/etc/sec/audit_events
/etc/sec/auditd_clients
/etc/sec/event_aliases

F–4 C2 Level Security Configuration

/etc/sec/auditd_cons
/etc/sec/audit_loc
/etc/securettys
/etc/svc.conf
/tcb/*
/usr/adm/messages
/var/spool/uucp/Permissions if UUCP is active
/var/spool/uucp/Systems if UUCP is active
/var/spool/uucp/remote.unknown if UUCP is active
/var/adm/cron/at.allow
/var/adm/cron/at.deny
/var/adm/cron/cron.allow
/var/adm/cron/cron.deny
/var/adm/crontab/ any files in these directories
/var/tcb/*
/var/yp/src/*

F.3 Minimum C2 Configuration

Compaq’s interpretation of the Orange Book’s requirements for a minimum
C2 system is that the configuration for Tru64 UNIX is as follows:

• The requirement for a site security policy is met when you establish
a security policy for your site as described in Section F.2 and the Site
Security Handbook (RFC 1244). Your security policy should be in written
form.

• Users should be able to change their own passwords and the passwords
should be machine-generated (Green Book recommendation). See
Section F.4.2 for password configuration details.

• The requirement for users to be notified of their last login is met when
enhanced security is configured.

• The discretionary access control requirement is met by configuring ACLs
(access control lists) on your system. See Section F.4.6 for configuration
details. Compaq does not recommend using the /usr/groups approach
for small systems (less than 32 users).

• The object reuse requirement mandates that workstations be configured
with no xhost entries.

• Shared memory separation must be enabled. You do this by answering
yes when secconfig asks if you want to disable segment sharing.

• The audit subsystem needs to be configured and available for use.
Compaq recommends that, at a minimum, you run audit as described
in Section F.4.5.

C2 Level Security Configuration F–5

• The ability to verify the integrity of the trusted computing base (TCB)
is met by running the fverify and authck commands periodically as
determined by your site’s security policy.

F.4 Initial Configuration
After you have installed the Tru64 UNIX software subsets (including the
optional enhanced security and documentation extension subsets) onto your
system, you will start the software configuration. During the configuration,
several of the selections you make will affect the security of your system. The
assumption is that you need the maximum practical security configuration
for your system. The following sections document the areas of concern for
security and Compaq’s recommended configuration.

F.4.1 General Configuration

Compaq recommends the following general system configurations:

• Ensure that the /tmp, /var/tmp, and /var/spool directories are on a
file system other than that of the root (/) and /usr directories.

• Do not run Netscape Navigator with JAVA enabled. Only enable JAVA
when you are connected to known secure sites.

• Avoid connecting systems to the Internet whenever possible.

F.4.2 Enhanced Passwords and Authentication Using secconfig

Select the enhanced password attributes to match your site’s security policy.
See Section F.2 and Section 7.5.4 for details.

Compaq recommends the following password attributes (defaults are defined
in the /etc/auth/system/default file):

• Select either user-chosen or machine-generated passwords and configure
as follows:

– For user-chosen passwords (u_pickpw field in the
/etc/auth/system/default file), set the minimum length to 8
characters (u_minlen#8) and the maximum length to 80 characters
(u_maxlen#80).

– For machine-generated passwords (no u_pickpw field in the
/etc/auth/system/default file), set the minimum length to 0
characters (u_minlen#0) and the maximum length to 10 characters
(u_maxlen#10). The value of 0 for minimum length causes Tru64
UNIX to use the Green Book algorithm to generate passwords.

• Ensure that null passwords cannot be used (u_nullpw@)

• Set the password expiration time to 180 days (u_exp#15724800)

F–6 C2 Level Security Configuration

• Set the account lifetime set to 360 days (u_life#31449600)

• Set the depth of the password history file to 9 (u_pwdepth#9)

• Set the number of tries to enter a password before locking the account to
5 (u_maxtries#5)

• Set new accounts to be locked (u_lock)

• Set the maximum number of login attempts before the terminal is locked
to 10 (t_maxtries#10)

• Set the delay between attempted logins to 2 seconds (t_logdelay#2)

• Select triviality checks (u_restrict) and site password restrictions
(u_policy)

Use the Account Manager (dxaccounts) or the edauth program to change
the default settings.

F.4.3 Libraries

The libraries on your system can be used in an attack. Secure the libraries
as follows:

• Disable segment sharing by answering yes when prompted by
secconfig.

• Verify that the permissions are correct (no write access except
for the owner) and that the ownership is root on shared libraries
(/usr/shlib/*.so), including any linked target files. Use the ls −lL
command for this procedure.

F.4.4 Account Prototypes and Templates

The account templates used to create user account startup files are
/usr/skel/.login, /usr/skel/.cshrc and /usr/skel/.profile.

Account prototypes (referred to as Local Templates) are provided by the
Account Manager (dxaccounts). The prototypes let you set attributes like
password expiration and login attempts for individual user accounts. If an
attribute value is not specified in the local template, the value from the
default file is used. The system-wide default attribute values are stored in
the /etc/auth/system/default file. System default values are set with
the /usr/tcb/bin/edauth command.

Configure user accounts as follows:

• Using the provided default templates, create account templates that
reflect your site’s security policy.

• Set the umask in the /usr/skel/.login file. (Compaq recommends
a value of 027.)

C2 Level Security Configuration F–7

• Designate a restricted shell (Rsh) for users where appropriate.

• Verify that each user has a valid entry path (login shell) on the system.
Users can be placed directly into an application by executing the
application from the user’s /home/.profile or from the entry in the
/etc/passwd file or as a start point for the user with the execution of
a startup program.

• If user access is restricted through menu scripts called from the user’s
.profile file, the scripts should have a trap command at the beginning
of the file to ensure that Ctrl/C and other keyboard interrupts are
ignored.

F.4.5 Configuring the Audit Subsystem

Before the audit subsystem kernel option can be configured, it needs to be
included for the kernel build. Use the sysman auditconfig utility to
configure the audit subsystem any time after the kernel build. Compaq
recommends that you configure and run audit as follows:

• Use the default location for audit logs (/var/audit/auditlog.nnn).
For overflow protection, put the audit logs on a file system other than
root (/) and /usr.

• Establish an alternate location for audit logs to provide for an overflow of
audit log data by editing the /etc/sec/auditd_loc file.

• Send auditd messages to the console (/dev/console).

• Set the audit mask to audit trusted_events and to log the name of
a user (as described in your site policy) who attempts to log in to an
invalid account.

If you are starting the audit daemon from the command line, use the
following command:

/sbin/init.d/audit start

See Chapter 10 for audit configuration details.

F.4.6 Configuring ACLs

ACL processing can be dynamically enabled using the sysconfig command
and can also be configured to be enabled automatically as part of system
startup using the sysconfigdb command.

See the sysconfig(8) reference page and Chapter 11 for ACL configuration
details.

F–8 C2 Level Security Configuration

F.4.7 Verifying That Your Installation Is Secure

After you have rebooted the system to enable the enhanced security options,
run the fverify and authck programs to verify the integrity of your system.

F.4.8 Configuring Network Security

Proper network configuration is a critical part of your secure computing
environment. Use the following checklist as an aid to network configuration:

• Do not use NIS (Network Information Services, formerly called Yellow
Pages) to distribute root account information. See Section 9.5 for details.

• When using NIS, use the /etc/yp/securenets file, as described in the
ypserv(8) reference page.

• Run ypbind with the −S flag and without the −ypset or −ypsetme
options (default).

• If uucp is configured on your system, do the following:

– Ensure that the uucp account is password controlled and that a
separate uucp account is established for each machine that requires
access.

– Ensure that the /var/spool/uucp/Permission file has only valid
entries.

– Ensure that the /var/spool/uucp/Systems file has only valid
entries.

• Ensure that the File Transfer Protocol (FTP) is secured and that, if
possible, there are no anonymous FTP accounts. If you must use
anonymous FTP, ensure the following:

– The FTP account has an asterisk in the protected password field.

– A /usr/ftp home directory is created for FTP. Create /bin and
/etc subdirectories under the /usr/ftp directory.

– Nothing in the home directory is owned by ftp.

– A public subdirectory is created under the /usr/ftp directory for
placement and retrieval of transferred files. User ftp should only
have write access to the public subdirectory.

– Create an ~ftp/etc/passwd file with only the ftp account and
no password.

– Copy the /etc/sia/bsd_matrix.conf file to ~ftp/etc/sia/ma-
trix.conf.

– Copy /sbin/ls to ~ftp/bin/ls.

– The login shell for the ftp account should be /sbin/sink.

C2 Level Security Configuration F–9

• Ensure that workstations are using DES-cookie based authentication
(default). See the XDM-AUTHORIZATION-1 parts of the dtlogin(1)
reference page for more information.

• When /usr/bin/X11/xhost is run, nothing should be reported. The
output should look like the following:

xhost
access control enabled, only authorized clients can connect
#

F.4.9 Postinstallation Security Configuration

After the system is installed and configured, perform the activities in the
following sections.

F.4.9.1 umask for Remote Access

Add a umask entry as described in your site security policy to the
/etc/csh.login, /etc/profile, and /etc/init.d/inet files.
(Note that the /etc/init.d/inet file is overwritten during an update
installation.)

F.4.9.2 Devices

Using /usr/tcb/bin/dxdevices, create the devices with the security
attributes that reflect your site’s security policy.

Ensure that terminal ports are readable only by the owner by modifying
the remote login shell file as follows:

Add the following to the /etc/profile file:

case "$TERM" in
none) ;;
*) /usr/bin/setacl −b ‘/usr/bin/tty‘ ;;
esac

Add the following to the /etc/csh.login file:

if ($?TERM) then
if ("$TERM" != "none") then

/usr/bin/setacl −b ‘/usr/bin/tty‘
endif

endif

See Chapter 8 for details dealing with devices.

F.4.9.3 Accounts

Compaq recommends that you create and verify accounts as follows:

F–10 C2 Level Security Configuration

• Create the user accounts for your system using either the Account
Manager (/usr/bin/X11/dxaccounts) or by restoring the /usr/users
area and associated files from a previous system.

• Ensure that home directories are mounted with the noexec, nosuid,
and nodev options.

• Ensure that CDE users have the autopause feature enabled by using a
command similar to the following:

grep extension.lockTimeout \
~/.dt/sessions/current/dt.resources

A 0 status indicates that the autopause feature is disabled.

• Review the /etc/passwd and /var/tcb/files/auth.db databases to
verify that user home directories and passwords are appropriate.

See Chapter 9 for details on account creation.

F.4.9.4 Root Access

Because root access must be carefully controlled and monitored, make sure
the following conditions are met:

• That all passwords are changed after a system installation or after
support vendors have had access to your machine.

• That the root password is changed before vendor access is granted to
prevent exposure of your password generation methodology.

• That the single-user password feature is enabled. See the sulogin(8)
reference page.

• That using the su command to become root is logged by audit.

• That access to the setuid 0 or setgid 0 programs on your system is
restricted (700, 710, or 711)

• That the /var/spool/cron/crontabs files are accessible only by root
or the owner.

• That root access is restricted to certain devices for login or that
users must use the su command to access the root account. See the
securettys(4) reference page for more information.

• The logins for the system-supplied UIDs are limited (setting the u_lock
field) where appropriate. The following table provides the restrictions
recommended by Compaq:

UID Recommended login Status

root Restricted

daemon Not allowed

C2 Level Security Configuration F–11

bin Not allowed

sys Not allowed

uucp Restricted

nobody Not allowed

adm Restricted

lp Not allowed

F.4.10 Network Configuration

Review the /etc/svc.conf file and ensure that a logical configuration has
been set up for NIS. Also, if NIS is being used, verify that the client machines
and the server have the correct domain name defined in the NIS_DOMAIN
variable in the /etc/rc.config or /etc/rc.site file.

Ensure that the network files in the following table are protected:

File Comment

/etc/exports Validate the entries. Avoid using the −root= option
if possible. Use the −access=<hostname> and
−ro options on all specified file systems

/etc/hosts

/etc/services

/etc/protocols

/etc/inetd.conf

/etc/hosts.equiv Validate that the entries are local hosts.

/etc/ethers

~username/.rhosts Remove these files or run rlogind and rshd
with the −l flag set.

F.5 Physical Security

An important part of your site’s security is the physical security of all the
components in the environment. Check your physical security as follows:

• Verify that the system and its cabling are in a secure environment.

• Verify that all network components are physically secured. These include
file servers, bridges, routers, hubs/concentrators, gateways, terminal
servers, and modems.

• From the console prompt, ensure that the boot flags are set according to
your site policy using the following command:

F–12 C2 Level Security Configuration

>>> show

• If your system supports the console password feature, ensure that it is
being used. Consult your hardware documentation for information on
console password support.

• Verify that a console terminal’s function keys have not been programmed
for login or password information.

• Ensure that modems have an automatic disconnect feature. Also make
sure modems are in a secure environment.

F.6 Applications

To ensure the security of application software running on your system, make
sure that the following conditions are met:

• Restrict any setuid or setgid programs.

• Ensure that any control files and executable files are writable only by
root.

• If a firewall product is installed, see the firewall’s documentation for the
appropriate configuration information.

• If you are running the screend program, configure as described in the
screend(8) reference page.

• If you have tunneling software installed, ensure that it is secure, as
described in its documentation.

F.7 Periodic Security Administration Procedures

The frequency of the different classes of review activities is determined by
your site’s security policy. Perform the following activities on a regular
schedule:

• Back up the system and its applications.

• Review the audit logs.

• Review the system accounting logs.

• Run the fverify and authck programs to verify the integrity of your
system. Some public domain programs, such as cops and tripwire, are
useful to help verify system integrity.

• Verify that your system has only necessary and authorized programs.

• Verify that compilers are available only on systems used for development.

• Verify that your system has only authorized root-owned setuid and
setgid programs using the following command:
find / \(−perm −4000 −o −perm −2000 \) −ls

C2 Level Security Configuration F–13

• Review the /etc/exports file to verify that all entries are valid.

• Check your user accounts as follows:

– Review the /etc/passwd file to verify that all accounts are still
valid.

– Run the following command to ensure there are no enhanced profiles
(prpasswd entries) without /etc/passwd entries:

/usr/tcb/bin/convuser −dN

– Verify that the home directory permissions are set according to your
site policy.

– Verify that all files in a user’s home directory are owned by that user.

– Verify that each user has a valid entry path (login shell) on the
system.

– Verify that entries in a .rhosts or .netrc file are appropriate.
Verify that that any .exrc and .netrc files are located only in user
home directories.

– Review the hosts.equiv file for valid entries.

– Ensure that entries in the following files do not conflict with system
parameters and that the files are protected by a permission of 755:

.profile

.login

.cshrc

.kshrc

.logout

– Verify that user masks are set in accordance with your site policy
using the following command:

grep umask /usr/users/*/.*

The system default mask is set to 022.

• Review the /dev directory and verify the following:

– That special devices have the proper permission.

– That access to devices such as mem, kmem, and swap are properly
protected (440).

– That terminal ports are readable only by the owner.

– That users do not own any devices other than their terminal device
and their printer.

• Verify that your modem authentication is functioning as intended.

F–14 C2 Level Security Configuration

• Use the following commands to verify that the same user name is not
used for different UIDs, including between the local /etc/passwd file
and NIS:

(ypcat passwd ; grep −v ’^[-+]’ /etc/passwd) | \
sort −t: −k 1,1 −k 3,3n −u | \
awk −F: ’{if (n == $1) {print p; print}; \

n=$1; p=$0}’ | \
more

• Use the following commands to verify that no user names use the same
UID, including between the local /etc/passwd file and NIS:

(ypcat passwd ; grep −v ’^[-+]’ /etc/passwd) | \
sort −t: −k 3,3n −k 1,1 −u | \
awk −F: ’BEGIN {u=-1} {if (u == $3) \

{print p; print}; u=$3; p=$0}’ | \
more

• Use both of the following commands to verify that all accounts have
local or NIS passwords:

sort −t: −n /etc/passwd | awk −F: ’$2 == "" print’
/usr/tcb/bin/edauth −g | sed −f sed_file | egrep −v \

’:u_pwd=[^:]|:u_istemplate:’

The commands in sed_file are as follows:

: top
/:\\$/ {
N
b top
}
s/:\\/:/g
s/:[<tab><space>]*:/:/g
s/:[<tab><space>]*:/:/g

• Use the following command to validate all the hidden files on your
system:

find / \(−name ’.*’ ! −name . ! −name .. \) −print

• Use the following command to verify that no device files exist outside
the /dev directory:

find / \(−type b −o −type c \) −print

• Ensure that entries in the following startup scripts are appropriate and
that the files are properly protected:

/sbin/inittab
/etc/init.d
/sbin/rc?.d ? is the run level

• Ensure that the data saved in /var/adm/crash in the event of a system
crash is accessible only to root and adm users.

C2 Level Security Configuration F–15

• Using a password cracker program such as the public domain crack
program, ensure that user passwords cannot be determined.

• Verify your site’s physical security as described in Section F.5.

• Verify the permissions and ownership on the following directories are
as listed:

Directory Permission Owner Group

/ 755 root system

/bin 755 root system

/dev 640 root or bin system

/dev/null 666 root system

/dev/ttys 666 root system

/etc 755 root system

/etc/rc.config 755 bin bin

/etc/exports 644 root system

/etc/passwd 644 root system

/etc/resolv.conf 644 root system

/etc/screend.config 755 root system

/etc/sec 755 root system

/home 555 root system

/lib 755 root system

/opt 755 root system

/sbin 755 root system

/sys 755 root system

/tcb 755 root system

/tmp 1777 root system

/usr 755 root system

/usr/bin 755 root system

/usr/lib 755 root system

/usr/ucb 755 root system

/usr/ucb 755 root system

/var 755 root system

/var/adm 755 root system

/var/adm/crash 700 root system

F–16 C2 Level Security Configuration

/var/adm/cron 755 root system

/var/spool 755 root system

/var/spool/cron 755 root system

/var/spool/cron/atjobs 755 root system

/var/spool/cron/crontabs 755 root system

/var/spool/cron 755 root system

/var/tcb 755 root system

/var/tcb/audit 755 root system

/var/tcb/bin 755 root system

/var/tcb/files 755 root system

F.8 Documents

The following documents will help you create and maintain a secure
computing environment:

• Site Security Handbook (RFC 1244). This handbook is the product
of the Site Security Policy Handbook Working Group, a combined
effort of the Security Area and User Services Area of the Internet
Engineering Task Force. An online copy of this document is available at
http://www.net.ohio-state.edu/hypertext/rfc1244/toc.html

• Tru64 UNIX Installation Guide

• Tru64 UNIX and Installation Guide — Advanced Topics

• Trusted Computer System Evaluation Criteria. U.S. Department of
Defense, National Computer Security Center, DoD 5200.28-STD,
December, 1985. This document, known as the Orange Book
because of the color of its cover, is the U.S. Government’s definitive
guide to the development and evaluation of trusted computer
systems. An online copy of the Orange Book is available at
http://nsi.org/Library/Compsec/orangebo.txt

• Password Management Guideline. U.S. Department of Defense,
(CSC-STD-002-85), April 12, 1985. This document, known as the
Green Book because of the color of its cover, supports the Orange
Book by presenting a set of recommended practices for the design,
implementation, and use of password-based user authentication
mechanisms. An online copy of the Green Book is available at
http://www.radium.ncsc.mil/tpep/library/rainbow/CSC-STD-
002-85.html

The following documents will help you understand security concepts and
procedures:

C2 Level Security Configuration F–17

• Computer Security Basics - O’Reilly and Associates, Inc.

• Practical UNIX Security - O’Reilly and Associates, Inc.

• UNIX: Its Use, Control, and Audit - Contact the Institute of Internal
Auditors Research Foundation at 249 Maitland Avenue, Altamonte
Springs, Florida 32701-4201.

F.9 Tools
The following tools can help you maintain a secure environment:

• crack — A public domain password-checking program available at
ftp://ftp.cert.org/pub/tools/crack/.

• tripwire — An integrity-monitor for UNIX systems. The tripwire
software uses several checksum/signature routines to detect changes to
files and to monitor selected items of system-maintained information.
The program also monitors for changes in permissions, links, and sizes of
files and directories. The tripwire package can be downloaded from
ftp://coast.cs.purdue.edu/pub/COAST/Tripwire/.

• COPS — The Computer Oracle and Password System (COPS) package
from Purdue University examines a system for a number of known
weaknesses and alerts the system administrator to them; in some cases
it can automatically correct these problems. The COPS package can be
downloaded from ftp://ftp.cert.org/pub/tools/cops/.

• SATAN — SATAN is a tool that helps system administrators
recognize several common networking-related security problems.
It reports the problems without actually exploiting them. For
each type of problem found, SATAN offers a tutorial that explains
the problem and what its impact could be and what can be done
about the problem. SATAN and several other security tools and
documents are available at Wietse Zweitze Venema’s Web site at
ftp://ftp.win.tue.nl/pub/security/index.html.

The following script is an example of a tool you can create to extract login
and logout information from the audit logs:

#!/usr/bin/ksh −ph

Script to return summary of login/logout activities on the
system since the last time it was run.

export PATH=/usr/sbin:/usr/bin:/usr/ccs/bin:/sbin

where this script should run
Bdir=/var/adm/local
where to find audit log files
Adir=/var/audit

F–18 C2 Level Security Configuration

Ofile="${Bdir}/lasttime"
Nfile="${Bdir}/newtime"
Afile="${Bdir}/lastdata"
Tfile="${Bdir}/lastmsg"

Events="-e trusted_event"

umask 077

ensure the output format we need from date.
export LANG=C LC_ALL=C
export TZ=:UTC

if [! −f "${Ofile}"]
then
print 700101000001 > "${Ofile}"
touch −t 197001010000.01 "${Ofile}"
fi

date +%y%m%d%H%M%S > "${Nfile}"

curfile=$(auditd −q)
auditd −dx
sleep 20 # give time for compression of the old log
while [−f "$curfile" −a −f "$curfile".Z] || [−f "$curfile" \

−a −f "$curfile".gz]
do

sleep 2 # wait some more
done

: > "${Afile}"

for af in $(find "$Adir" −name "auditlog.*" −newer "${Ofile}" \
−print | sort)

do
audit_tool −b −t $(<"${Ofile}") −T $(<"${Nfile}") >> \

"${Afile}" −o −Q $Events "${af}" 2>/dev/null

the suppressed errors are for the {un,}compressed messages
done

TZ=:localtime

if [−s "${Afile}"]
then
audit_tool −B −Q "${Afile}" > "${Tfile}"
if [−s "${Tfile}"]
then
Mail −s ’login/out audit summary’ root < "${Tfile}"

C2 Level Security Configuration F–19

fi
fi

mv −f "${Nfile}" "${Ofile}"
rm −f "${Afile}"

The following is the crontab entry for the above logging script:

0 9 * * * /var/adm/local/lreport

F–20 C2 Level Security Configuration

G
Enhanced Security in a Cluster

G.1 Overview of Security in a Cluster

The following discussion is based on a cluster consisting of Compaq systems
running Tru64 UNIX Version 5.1 and TruCluster Server Version 5.1.

A TruCluster is a single security domain. Identification and authentication,
access control lists (ACLs), and auditing are configured identically on each
member by default, presenting a coherent interface to the user and the
system administrator.

Because a single copy of the authentication files is shared among all cluster
members, each user account is valid on all cluster members and a user
can log in to the cluster alias without concern for which member accepts
the connection. Identically configured ACL checking means consistent
authorization and file access control; a user has the same access rights from
every member. Cluster wide audit settings ensure a uniform capture of
cluster activity.

G.2 Enabling Security Features in a Cluster

The following sections describe how the enhanced security features are
enabled in a cluster.

G.2.1 Access Control Lists

The Security Configuration icon on the Custom Setup menu of the
secconfig utility contains a checkbox that enables or disables access
control list support on all cluster members, under either base or enhanced
authentication. ACL support determines the state (enabled or disabled)
of access checking and ACL inheritance. Note that ACLs can be created,
modified, deleted and examined regardless of the state of ACL support.

The NFS file systems require the proplistd daemon to support ACLs.

G.2.2 Audit

The Audit Configuration icon on the Custom Setup menu of the
auditconfig utility configures audit options cluster wide. The kernel build
performed by cluster creation automatically includes support for audit.

Enhanced Security in a Cluster G–1

Audit configuration occurs in two steps. In the first, the parameters for
the audit daemon, such as the name and location of the audit log file, are
specified. In the second, a set of events to audit, called the audit mask,
is selected. The configuration utility ensures that the same parameters
and events are used on each cluster member. To maintain a single point of
administration, the auditconfig utility stores this audit configuration
information in the /etc/rc.config.common file.

G.2.3 Authentication

Both base and enhanced authentication are supported in a cluster. Base
security, which uses the standard UNIX /etc/passwd and /etc/group
authentication files, is the default configuration. Enhanced authentication,
which moves passwords into an authentication database, is configured
using the Security Configuration icon on the Custom Setup menu of the
secconfig utility.

The ideal time to configure enhanced authentication for a cluster is
before loading the TruCluster Server license and subsets and creating the
cluster. You must select the enhanced security subsets (OSFC2SECxxx and
OSFXC2SECxxx) during the installation. Enhanced authentication options
are enabled cluster wide in the Custom or Shadow Password mode. (You can
also enable ACL support from this utility.)

G.2.4 Distributed Logins and NIS

A cluster provides a common authentication environment to enable secure,
distributed, highly available logins. The cluster can additionally function as
a NIS master, slave, or client. (Note that all cluster members should play
the same role in a NIS environment.)

As a NIS master, the cluster supports the NIS distribution of both standard
user profiles from /etc/passwd and the enhanced user profiles available
with enhanced security maintained in the protected password database.
These enhanced user profiles can be distributed by NIS as the prpasswd
map, in the same manner that /etc/passwd is distributed as the passwd
map.

G.2.5 Configuring a NIS Master in a Cluster with Enhanced Security

To set up a cluster running enhanced security as a NIS master, perform the
following procedure:

1. Set up enhanced security as previously discussed.

2. Load /var/yp/src, including passwd with specified accounts, as
discussed in the Tru64 UNIX Network Administration guide.

G–2 Enhanced Security in a Cluster

3. Set up the prpasswd map with one line per entry using convuser -Mc.
See the convuser(8) reference page.

4. Set up NIS as described in the Tru64 UNIX Network Administration
guide. When running nissetup, select the -S security option of ypbind
to bind the member to an authorized list of NIS servers and specify the
cluster alias as one of these servers.

5. Modify the map maintenance scripts to support prpasswd maps as
discussed in the Tru64 UNIX Network Administration guide.

______________________ Notes ______________________

In domains where one or more nodes are running enhanced
security and that mix Tru64 UNIX Version 5.1 and higher and
DIGITAL UNIX Version 4.x systems, a Tru64 UNIX Version 5.1 or
higer system must be the master. If none of the nodes are running
enhanced security, a Version 4.x system can be the master.

The dxaccounts utility does not allow you to add a NIS account
and change the user’s security options at the same time. You
must first create the account and then change the user’s security
options.

The useradd command fails unless the user’s primary group is
defined in the /var/yp/src/group map.

G.3 Authentication in a Cluster

Enabling enhanced security introduces a new daemon, prpasswdd. Two
instances of the daemon, a parent and a child, execute on each cluster
member. The parent is primarily responsible for starting or restarting the
child. The child is responsible for writing changes to the authentication
database. To eliminate lock contention in a cluster, only the daemon on the
cluster member serving the /var mount point actually performs writes for
all clients. The other prpasswdd daemons are in hot standby mode. If the
cluster member serving the mount point and containing the active daemon
fails, another member assumes both roles.

On a cluster acting as a NIS master with enhanced security, the
rpc.yppasswdd daemon acts in the same fashion as the prpasswdd for the
NIS prpasswd map.

G.4 Auditing in a Cluster

In a Version 5.1 cluster, no additional kernel rebuild is required to enable
auditing because the DEC_AUDIT kernel option and the /dev/audit

Enhanced Security in a Cluster G–3

special file are automatically included on all cluster members in the initial
cluster kernel build.

When auditing is enabled, an audit daemon (auditd) runs on each
member of the cluster. Each audit daemon records event-specific
audit log entries in a private audit log file, named by default
/var/audit/auditlog.{membername}.nnn. Each audit log entry
includes the hostname of the member on which it occurred, facilitating a
merged display of the entries from multiple audit log files. Figure G–1
illustrates how audit data is gathered.

Figure G–1: Audit Data Flow in a Cluster

cluster stooge

Member
Moe

Member
Larry

Member
Curly

Each member logs
 records to /var/audit:

ex./var/audit/auditlog.moe.001
CDSL for audit console messages:

/var/adm/syslog.dated/...
current/daemon.log

Each member has an audit
mask set in its kernel and
an audit daemon.

Each member's auditd controls binary
log file creation.
Each member logs to the same directory,
/var/audit. Logs are of the form /auditlog.host.001.
Select the member logs of interest and use
audit_tool for extraction.
Each member's audit console messages are
written to the members CDSL syslog.dated
daemon.log file.

ZK-1579U-AI

Each audit daemon writes its error or status messages to the local
/var/adm/syslog.dated/DATE/daemon.log file, or optionally to a
common audit console file.

The set of events to be audited, called the audit mask, is initially generated
using the auditconfig utility. This utility specifies a common audit
mask that is created cluster wide. Initial start up of the audit daemon
uses information from the /etc/rc.config.common file. Thus, the same
auditd command-line options and the same audit mask are used for each
member.

On a running cluster, the auditd commands may be directed to every
active daemon using the auditd -cluster option. For instance, auditd
-cluster -w displays the status of each member. Similarly, the auditmask
-cluster option can change or display the audit mask on every active
member.

G–4 Enhanced Security in a Cluster

While it is possible to specify different audit daemon parameters or different
audit masks for the audit daemons in a cluster, this can be confusing and
is not recommended.

The audit_tool utility can merge audit log files to present a cluster
wide view of events sorted by forward time progression. Because host
name information is recorded with each event, event origin can easily be
determined.

G.4.1 Cluster Command Examples

This section provides examples of audit commands as they would be executed
on a member system in a two member (haydn and handel), Version 5.1
cluster.

To get each member’s auditd status, enter the following:
auditd -cluster -w

Audit data and msgs:
-l) audit data destination = /var/audit/auditlog.handel.003
-c) audit console messages = syslog

Network:
-s) network audit server status (toggle) = off
-t) connection timeout value (sec) = 4

Overflow control:
-f) % free space before overflow condition = 10
-o) action to take on overflow = ignore

cluster member haydn.zk3.dec.com auditd standard output:

Audit data and msgs:
-l) audit data destination = /var/audit/testauditlog.haydn.003
-c) audit console messages = syslog

Network:
-s) network audit server status (toggle) = off
-t) connection timeout value (sec) = 4

Overflow control:
-f) % free space before overflow condition = 10
-o) action to take on overflow = ignore

To get each member system’s audit mask status, enter the following:
auditmask -cluster

! Audited system calls:

! Audited trusted events:
login fail

! Audstyle flags: exec_argp exec_envp login_uname obj_sel

**** cluster member haydn.zk3.dec.com standard output: ******
! Audited system calls:

! Audited trusted events:

Enhanced Security in a Cluster G–5

login fail

! Audstyle flags: exec_argp exec_envp login_uname obj_sel

To determine what log file names the members are currently logging to,
enter the following (entered from member hayden):
auditd -cluster -q

/var/audit/auditlog.haydn.001

cluster member handel.zk3.dec.com auditd standard output:
/var/audit/auditlog.handel.001

To explicitly flush all the cluster member’s kernel auditd buffers to get the
latest audit records, enter the following:
auditd -cluster -d

To print the login event for both members to stdout, enter the following:
audit_tool -e login auditlog.handel.001 auditlog.haydn.001

ruid/euid: 0/0
pid: 525424 ppid: 525423 cttydev: (6,1)
event: login
login name: root
devname: /dev/pts/1
...........
-- remote/secondary identification data --
hostname: mk.zk3.dec.com
...........
char param: argv=login -h mk.zk3.dec.com -p
char param: Failed authentication
error: 13
ip address: 10.0.0.1 (haydn-mc0)
timestamp: Mon May 3 15:54:18.19 1999 EDT

ruid/euid: 0/0
pid: 525424 ppid: 525423 cttydev: (6,1)
event: login
login name: (nil)
devname: /dev/pts/1
...........
-- remote/secondary identification data --
hostname: mk.zk3.dec.com
...........
char param: argv=login -h mk.zk3.dec.com -p
char param: Failed authentication
error: 13
ip address: 10.0.0.1 (haydn-mc0)
timestamp: Mon May 3 15:54:26.44 1999 EDT

ruid/euid: 0/0
pid: 1049810 ppid: 1049809 cttydev: (6,2)
event: login
login name: root
devname: /dev/pts/2
...........
-- remote/secondary identification data --
hostname: mk.zk3.dec.com
...........

G–6 Enhanced Security in a Cluster

char param: argv=login -h mk.zk3.dec.com -
char param: Failed authentication
error: 13
ip address: 10.0.0.2 (handel-mc0)
timestamp: Mon May 3 15:54:37.74 1999 EDT

ruid/euid: 0/0
pid: 1049810 ppid: 1049809 cttydev: (6,2)
event: login
login name: (nil)
devname: /dev/pts/2
...........
-- remote/secondary identification data --
hostname: mk.zk3.dec.com
...........
char param: argv=login -h mk.zk3.dec.com -p
char param: Failed authentication
error: 13
ip address: 10.0.0.2 (handel-mc0)
timestamp: Mon May 3 15:54:43.14 1999 EDT

4 records output
6 records processed
#

G.5 Restrictions

The following restrictions apply to Tru64 UNIX Version 5.1 and TruCluster
Server Version 5.1 when it is run on Tru64 UNIX Version 5.1 security.

G.5.1 Upgrades

Upgrading from base to enhanced authentication in an existing cluster
requires a full cluster reboot. The upgrade copies user accounts from
/etc/passwd into /var/tcb/files/auth.db, removes passwords from
/etc/passwd, and switches to a new security library. A new process
authenticating a user name and password, such as a telnet session, uses
the new library and accesses the new databases. However, an existing
process, such as a dtlogin session or a locked CDE window, continues to
use the original library. Because this library expects to access /etc/passwd,
from which passwords have been removed, an existing process consistently
encounters password verification failures. In particular, the console login
window encounters this problem, which can create the erroneous belief that
the root account is disabled. The cluster reboot prevents this situation.

G.5.2 Terminal Logging

Under enhanced security, the system administrator can optionally enable
terminal logging. When terminal logging is enabled, a terminal entry in the
security terminal database, etc/auth/system/ttys.db, is updated with
login information whenever a login occurs over it. This logging is controlled

Enhanced Security in a Cluster G–7

from an option in the secconfig utility, or from the d_skip_ttys_updates
field in the /etc/auth/system/default file. This setting is ignored in
cluster members and terminal logging is not performed.

G–8 Enhanced Security in a Cluster

H
Division of Privileges

This appendix provides information about the division of administrative
privileges using DOP.

H.1 Assigning System Administration Privilegess

Without a division of privileges feature, the only persons who can gain access
to many of the system administration programs are authorized users of the
root (superuser) account. This means that to split the responsibilities of
administering systems, it is often necessary to share the root password, a
significant security risk. When an authorized person is removed from the
list of authorized users, it is necessary to change root account passwords.

The dop utility enables a root user to assign access to certain classes of
administrative tasks to other users or groups of users. This enables a site to
minimize access to the root account. Users or members of groups assigned
a particular privilege can perform administrative tasks without knowing
the root password. For example, a user granted the AccountManagement
privilege can run the tasks listed under the Accounts branch of the SysMan
Menu.

Administrative tasks (or actions) are organized into related groups and
named for the particular privilege they confer to a user. For example the
Security privilege is extensive, and when granted to users other than root,
it enables those users to run the following tasks:

dopconfig Run dop, and grant privileges to other users

Dopaction Run from Sysman Menu to grant privileges to other
users

secconfig Configure the overall system security level

auditconfig Configure the audit environment on the system
using the SysMan Menu interfaces.

dxaudit Configure the audit environment on the system using
the X11 compliant interface Audit Configuration.

Division of Privileges H–1

This is available from the CDE Application Manager
—> Configuration.

This organization of tasks ensures that no matter what type of interface
the privileged user invokes, he or she will have the authority to use it as if
they were the root user.

In contrast, other privileges, such as mailManagement, are not extensive,
and grant only access to the mail management task. However, before
granting privileges to groups, you should use SysMan Menu to ensure that
the members of a group are appropriate candidates for the privileges. If NIS
is in use, you should also check the members of NIS groups before assigning
a NIS group any privileges. Use the SysMan Menu Accounts option to review
groups, and if necessary, to create new groups of privileged users.

To view a complete list of privileges, invoke dop as described in the following
sections, which also describe the process of granting privileges to users and
groups.

H.1.1 Invoking dop

You can invoke dop by the following methods:

• From the command line, type dop followed by the command options
you require. For information on the dop command options, refer to the
dop(8) reference page. The command line is mostly used for maintaining
the privilege database, but it does also enable you to launch privileged
actions directly from the command line, as described in Section H.1.2.

• From a command-line on a terminal, you can also invoke the
character-cell SysMan Menu interface to dop using the sysman
dopconfig command.

• From the SysMan Menu Security option, expand the menu option list
and select the option titled Configure Division of Privileges (DOP). The
SysMan Menu interface for dop can be run from a terminal, a personal
computer (using Java), or an X11-compliant windowing environment.
Refer to the System Administration guide for information on using the
SysMan Menu.

When dop is run as a graphical user interface or SysMan Menu option,
online help is available for the interface. For information on using this
interface, see Section H.1.4. Note that you can also write scripts to access
dop features using the SysMan Menu command-line interface sysman
-cli. For more information, refer to the System Administration guide
and the sysman_cli(8) reference page.

• From the CDE Application Manager, select the Configuration folder
and invoke dop by clicking on the DOP icon. Note that this invokes

H–2 Division of Privileges

the SysMan Menu and launches the X11 version of the interface. Refer
to the System Administration guide for information on using CDE.
When dop is run as a graphical user interface or SysMan Menu option,
online help is available for the interface. For information on using this
interface, see Section H.1.4.

H.1.2 Using the dop Command Line

You can maintain the dop database or attempt to run privileged actions
(tasks or programs) using dop command-line options. The SysMan Menu
option described in Section H.1.4 provides you with an easy way to look up
privileges and actions; however it does not provide the dop database options
available from the command line.

For a complete list of the command-line options, refer to the dop(8) reference
page. Help on the dop command options can be obtained by typing dop -h.

The following sections provide some examples of using dop from the
command line.

H.1.2.1 Launching Privileged Actions (Tasks)

You can attempt to run any action (a task or program) from the command
line, and the dop utility verifies your access to the privilege against the
privilege database as follows:

• If you are not root user, typing the command dop action prompts for
the root password. For example:

dop users

• The -N option attempts to run the action without privileges. For example,
to attempt to run the AccountManagement action users, enter:

dop -N users

• The -n option invokes a prompt asking if you want to run the command
as yourself or as root user. You need the root password for the latter. To
attempt to run the HostManagement action dxhosts unprivileged, type:

dop -n dxhosts

If you have the privilege, the action is launched. In this case, the user
management interface of the SysMan Menu Accounts option is launched.

H.1.2.2 Administering the DOP Database

To administer the DOP database, you use certain command-line flags and
options with the dop command. The database is a binary image to ensure
security, so only the dop command should be used to make changes. Only
the root user is permitted to make changes to the database.

Division of Privileges H–3

Administering the database involves adding, deleting, or modifying database
entries and updating (writing) the binary file. Before you perform any of
these tasks, you need to gather the following information:

1. Optionally, an action name — If you are adding actions to the
database, you need to assign a name to it that enables you to easily
recognize what program is being run by the action. For example, if
you add /usr/bin/X11/xhost to the HostManagement privileges, you
may want to name it hostmanager_cli to identify it as a command
—line interface.

2. Required — The names of any privileges that you plan to change. To
obtain a complete list of privileges you need to use the SysMan Menu
DOP option, as described in Section H.1.4.

3. Required — The absolute paths to any programs that you intend to add
to a privilege. For example, /usr/bin/X11/xhost. You also have an
option to specify (or restrict) the type of user interfaces under which the
action will be launched, such as X11 for CDE, or cli for command-line
interface. Ensure that the program will run under any interfaces that
you intend to specify. Programs that run under SysMan Menu will
usually support the greatest range of interfaces.

Using the information you gathered and dop options, you can perform the
following administrative tasks:

• Add new actions to the database, updating the binary image. For
example, if you want to add the /usr/sbin/adduser utility to the
AccountManagement privileges, use the following command:

#dop -a AccountManagement adduser_script /user/sbin/adduser

Note that this comand assigns the name adduser_script to the action
and that name is used by privileged users to invoke the action. The
dopaction editor (Manage DOP Actions) can also be used to add new
actions and you will not have to worry about binary images.

Using the method of viewing privileges described in Section H.1.4,
you will see the new action added to the list of AccountManagement
actions as follows:

Priv AccountManagement is required by action(s)
accounts
users
groups
nis_users
nis_groups
adduser_script

• Delete existing actions from the database, updating the binary image.
For example, if you want to select the /usr/sbin/adduser utility added

H–4 Division of Privileges

in the previous example and remove it from the AccountManagement
privilege, use the following command:

dop -d adduser_script

The dopaction editor (Manage DOP Actions) can also be used to delete
actions and you will not have to worry about binary images.

Using the method of viewing privileges described in Section H.1.4, you
will see that the action was removed from the list of AccountManagement
actions as follows:

Priv AccountManagement is required by action(s)
accounts
users
groups
nis_users
nis_groups

• To write the binary image of the revised database, you have the following
options:

– dop -w Writes the binary image without changing the source, source.

– dop -W Updates actionlist from the dop action file then writes
binary image.

H.1.3 Defining and Managing New Actions

The Manage DOP Actions facility allows administrators to create new
actions which includes what commands the actions execute as well as what
privileges are required to run the actions. Manage DOP Actions can be
started from the Security branch of the SysMan Menu or from the command
line with the following command:

sysman dopaction

_____________________ Warning _____________________

Compaq strongly recommends that users of Manage DOP Actions
do not modify the DOP actions that are supplied with the
operating system. To do so may cause the system management
facilities integral to the Tru64 UNIX system to fail. The Manage
DOP Actions facility is provided to allow administrators to add
and maintain new actions corresponding to tasks particular to
their production environments.

Division of Privileges H–5

H.1.4 Viewing or Modifying Privileges Using SysMan

The SysMan Menu option, Configure Division of Privileges (DOP), is
located under Security. When you select this option, a window is displayed
titled Configure DOP on hostname, where hostname is the name of the
local system. This interface does not offer as many options as the dop
command-line. Refer to the dop(8) reference page for more information on
command line options, and see Section H.1.2 for examples of use.

The Configure DOP on hostname window enables you to view or modify
the current assignment of privileges by adding new users and groups, or
removing existing users and groups. The SysMan Privilege List: field
contains a list of all the currently available privileges. The following are
examples of some of the privileges on the list, and a brief description of what
a privileged user or group can do:

1. AccountManagement — Enables privileged users to create user
accounts and groups on the local system. If NIS is in use, it enables the
privileged user to create NIS accounts and groups.

2. EventManagement — Enables privileged users to administer certain
Event Management (EVM) services such as the SysMan Menu View
events option or monitor.

3. HostManagement — Enables privileged users to perform host
management tasks associated with the dxhosts graphical interface
or xhost command.

To view the current assignments of any privilege, either double-click on a
list entry (such as PowerManagement) or highlight an entry and press the
Modify... button.

A second screen titled Configure DOP: Modify privilege <privilege_name>
is displayed, where privilege_name is the list item you selected, such
as NetworkManagement. This window contains the following information
and options:

• Description — A brief description of the actions allowed under this
privilege, and the list of actions that are allowed. For example, the
following actions are displayed under AccountManagement:

accounts
users
groups
nis_users
nis_groups

This means that users who are granted the AccountManagement
privilege can use any user account management interfaces, such as
dxaccount or the SysMan Menu option Accounts - Manage local users.

H–6 Division of Privileges

• Specific users granted this privilege — A space-separated list of user
names from the /etc/passwd file. Every user in this list is currently
a privileged user. The field is blank if no users or groups have been
granted this privilege.

• Specific groups granted this privilege — A space-separated list of groups
from the /etc/groupfile. Every member of every group in this list
is currently a privileged user. The field is blank if no users or groups
have been granted this privilege.

• Browse... — These buttons enable you to browse a list of all authorized
system users and groups as follows:

– Browse Specific users: - Displays an alphabetic scrolling list of all
authorized users from the /etc/passwd file. If NIS is in use, you will
be shown all NIS users who have access to the local system. Use the
mouse pointer to double-click on any user name to select that user.

– Browse Specific groups: — Displays an alphabetic scrolling list of all
groups from the /etc/group file. If NIS is in use, you will be shown
all NIS groups who have access to the local system. Use the mouse
pointer to double-click on any group to select that group.

Any authorized member of that group will be granted the privilege. You
may want to create your own groups of privileged users so that you can
administer privileges more easily. Refer to the System Administration
guide for information on creating groups.

You can modify the existing privilege assignments, adding or removing
existing users and groups, as follows:

1. In the window titled Configure DOP on hostname, select the required
privilege and press the Modify... button.

2. In the window titled Configure DOP: Modify privilege
<privilege_name>, change the assignments as follows:

a. To administer users, type (or delete) user names from the
space-separated list. Use the Browse... option button to view a list
of current system users.

b. To administer groups, type (or delete) group names from the
space-separated list. Use the Browse... option button to view a list
of current groups.

c. Press OK to update the dop database and exit from the window,
or press Cancel to abort the operation. You will be returned to the
previous window, where you can select another privilege or exit
and return to the SysMan Menu.

Refer to the online help for more information on the options.

Division of Privileges H–7

Glossary

absolute pathname
A pathname that begins at the root directory; a pathname that always
begins with a slash (/). For example, /usr/games is an absolute pathname.
Also called a full pathname.

ACL (access control list)
An optional extension of the traditional UNIX permission bits, which gives
the user the ability to specify read, write, and execute permissions on a
per user and per group basis.

Access ACL
The formal name of the ACL that is checked for access decisions on an object.

administrator
This document uses the term administrator in a generic sense to refer to any
user involved in the security operation of the system.

auditing
The recording, examining, and reviewing of security-related activities on a
trusted system.

audit event
An event that is monitored and reported by the audit subsystem. Events
include system events, application events, and site-definable events. An
event can be any command, system call, routine, or program that runs on
the system.

audit ID (AUID)
An ID that is created at login time and that is inherited across all processes.

BASE security
The traditional security that is delivered on BSD UNIX systems. BASE
security consists of user authentications based on the /etc/passwd file. A
nontrusted Tru64 UNIX system has BASE security.

BSD (Berkeley Software Distribution)
A UNIX software release of the Computer System Research Group of the
University of California at Berkeley −- the basis for some features of Tru64
UNIX.

Glossary–1

Default ACLs
The ACLs associated with directories. These two types of ACLs (default
access ACL and default directory ACL) determine what ACLs are given to
files and subdirectories created in a directory.

discretionary access control (DAC)
The traditional UNIX form of file permissions set with the chmod command.

effective user ID (EUID)
The current user ID, but not necessarily the user’s ID. For example, a user
logged in under a login ID may change to another user’s ID. The ID to which
the user changes becomes the effective user ID until the user switches back
to the original login ID.

enhanced passwords
Passwords with the enhanced attributes made available by the enhanced
security option. Enhanced passwords are stored in the prpasswd file and
are sometimes refered to as extended, protected, or shadowed passwords.

ENHANCED security
The optional security feature that supplement BASE security. Enhanced
security consists of enhanced password profiles.

entity
The security integration architecture (SIA) introduces the term entity to
mean a user, program, or system that can be authenticated. The entity
identifier is the user ID (UID).

ER (external representation)
A POSIX-compliant ASCII representation of an ACL used for presentation
to the user. See also IR (internal representation).

evaluation criteria
The Trusted Computer System Evaluation Criteria (TCSEC). The enhanced
security features in the Tru64 UNIX system have been designed to meet
this criteria.

IR (internal representation)
A binary representation of an ACL used by the ACL library routines. See
also ER (external representation).

login spoofing program
Any program that represents itself as a login program to steal a password.
For example, a spoofing program might print the login banner on an
unattended terminal and wait for input from the user.

Glossary–2

operator
The person responsible for the day-to-day maintenance of a system, including
backups, line printer maintenance, and other routine maintenance tasks.

process ID (PID)
A unique number assigned to a process that is running.

process
A unit of control of the operating system. A process is always executing one
program, which can change when the current program invokes the exec()
system call. A process is considered trusted when its current program is
trusted. See also program.

program
A set of algorithms designed, compiled, and installed in an executable file for
eventual execution by a process. A program is considered trusted when it
upholds the security policies of the system. See also process.

PPID (parent process ID)
The process ID of the parent or spawning process.

root
The login name for the superuser (system administrator).

root directory
The name applied to the topmost directory in the UNIX system’s tree-like
file structure; hence, the beginning of an absolute pathname. The root
directory is represented in pathnames by an initial slash (/); a reference to
the root directory itself consists of a single slash.

root file system
The basic file system, onto which all other file systems can be mounted.
The root file system contains the operating system files that get the rest
of the system to run.

security attributes
The parameters used by the trusted computing base (TCB) to enforce
security. Security attributes include the various user and group identities.

SIA (Security Integration Architecture)
The Security Integration Architecture isolates the security-sensitive
commands from the specific security mechanisms, thus eliminating the need
to modify them for each new security mechanism.

site-defined events
Audit events that are created by application software (that is, not the
operating system).

Glossary–3

spoofing program
See login spoofing program.

system administrator
The system administrator is responsible for file system maintenance and
repair, account creation, and other miscellaneous administrative duties.

TCB (trusted computing base)
The set of hardware, software, and firmware that together enforce the
system’s security policy. The Tru64 UNIX TCB includes the system
hardware and firmware as delivered, the trusted Tru64 UNIX operating
system, and the trusted commands and utilities that enforce the security
policy. The operating system and other software distributed with the trusted
Tru64 UNIX system satisfy security requirements.

Traditional security
See BASE security

triviality checks
Checks performed on passwords to prevent the use of easily guessed
passwords. Triviality checks prevent the use of words found in the dictionary,
user names, and variations of the user name as passwords.

Trojan horse
Any program that when invoked by a user steals the user’s data, corrupts
the user’s files, or otherwise creates a mechanism whereby the Trojan horse
planter can gain access to the user’s account. Viruses and worms can be
types of Trojan horses. See also virus, worm.

virus
A computer program designed to insinuate itself into other programs or files
in a system and then to replicate itself through any available means (disk
file, network, and so forth) into other similar computers, from which it can
attack yet more systems. Viruses are designed with the object of damaging
or destroying the “infected” programs or systems and are often programmed
to become destructive at a specific time, such as the birthday of the virus’s
programmer. See also Trojan horse, worm.

vouching
A technique that allows a security mechanism to trust the authentication
process of a previously run security mechanism. This feature is implemented
by the Security Integration Architecture (SIA).

worm
A computer program designed to insinuate itself into other programs or files
in a system and then to replicate itself through any available means (disk
file, network, and so forth) into other similar computers, from which it can
attack yet more systems. Worms are designed with no serious intent to do

Glossary–4

damage, but they are harmful because they occupy resources intended for
legitimate use. See also Trojan horse, virus.

Glossary–5

Index

A
A_PROCMASK_SET macro, 19–6
abbreviated audit reports, 10–35
absolute pathname, 16–4
access control list, 5–1

(See also ACL)
access control list (ACL), 5–3

protecting files, 2–10
accessing the databases, 17–1
account lock, 18–4
account management, 9–11
account tempates, 9–3
account template, modifying, 9–8
accountability, 1–2, 1–3
accounting tools, 10–44
accounts, 9–1, 9–14

adding, 7–1
anonymous ftp, 3–4
creating, 7–7, 9–1
deleting, 9–8
disabled, 9–7
locked, 9–7
maintaining, 9–1
modifying, 9–1
new, 9–7
passwords, 9–7
retiring, 9–8

ACL, 5–1, 11–1
administering, 11–1
administration, 11–1
archival tools, 11–5
base entry, 21–1
configuring, 7–4
decision process, 5–7

default, 5–3, 21–11
description, 6–5
enabling, 11–3
entry rules, 21–8
example of setting for file, 21–9
external representation, 21–4
format, 5–5
getacl command, 5–4, 5–5
inheritance, 5–12, 21–11
initialization, 5–12
installation, 11–1
installing, 11–3
kernel status, 11–3
library routines, 21–7
ls command, 5–5
maintaining, 5–12
object creation rule, 21–8
overview, 5–3, 11–1
propagation, 21–8
protecting objects, 5–4
recovery, 11–4
replication rule, 21–8
setacl command, 5–5
standalone system, 11–4
status, 5–3
umask, 21–8
using, 5–1
verifying status, 11–3
viewing, 5–4
working storage, 21–2
working storage: example, 21–9

administrating a trusted operating
system, 6–8

administrative roles
(See role responsibilities)

Index–1

administrators, introduction, 6–1
aliases for audit events, 10–23
aliases for auditable events, B–5
allowSendEvents resource, 16–6
anonymous ftp account, 3–4
ANSI C

symbol preemption, E–1
antecedent directories, 15–5
application-specific auditing, 10–18
applications

adding to the file control database,
12–2

assigning terminal devices, 7–8, 8–1
attributes, file

(See file attributes)
AUD_MAXEVENT_LEN, 19–7
AUD_T public audit tokens, 19–2
AUD_TP private audit tokens, 19–4
audcntl routine, C–2
audgen command, 10–5
audgen system call, C–1
audgen(), 19–1

specifying audit log, 19–9
audgen8 trusted event, 10–17
audgenl()

example, 19–1, 19–7
audit, 10–1, 10–12, 10–23

accessing the graphic interface,
10–5

accounting tools, 10–44
active processes, 10–37
administration tools, 10–4
advanced configuration, 10–9
application-specific auditing, 10–18
application-specific records, 19–6
AUD_T public tokens, 19–2
AUD_TP private tokens, 19–4
audcntl flag, 19–6
audgen command, 10–5
audit control flag, 10–21
audit hosts file, 10–29
audit hub, 10–29
Audit Manager, 10–5
audit mask, 10–21

control flag, 10–21
audit_tool command, 10–5, 10–14,

10–36
audit_tool.ultrix command, 10–5
auditable events, 10–15
auditconfig command, 10–5, 10–9
auditd command, 10–5, 10–12
auditing remotely, 10–29
auditmask command, 10–5, 10–12
auditmask flag, 19–6
AUID (audit ID), 10–31
CDE interface, 10–5
choosing events, 10–15
commands, 10–5
configuring, 10–6, 10–9, 10–12
console messages, 10–3
content of records, 10–30
control flag, 10–21
crash recovery, 10–38
creating own log, 19–9
data recovery, 10–38
data--managing growth of, 10–20
dependencies among audit events,

10–19
deselection files for audit reports,

10–36
disabling system-call auditing,

19–5
/etc/sec/auditd_clients file, 10–29
event types, 19–2
events, 10–15

preselection, 10–20
site-defined events, 10–18
state-dependent information,

10–19
trusted events, 10–16

files, 10–3
site_events file, 10–18

filtering data, 10–36
fixed-length tokens, 19–3
generating reports, 10–14, 10–36
getting started, 10–6
graphic interface, 10–5

Index–2

GUI, 10–5
ID (AUID), 10–31
implementation notes, 10–39
iovec-type tokens, 19–3
log files, 10–3
log location, 10–12
logging tools, 10–44
login audit mask

setting, 10–23
login process mask, 10–21
LUID (login ID), 10–31
managing data, 10–20
masks, 10–21, 19–4
messages, 10–3
modifying for process, 19–6
network audit hosts file, 10–29
networked auditing, 10–29
overflow handling, 10–12
overview, 10–1
pointer-type tokens, 19–3
preselection, 10–12, 10–20
process audit mask, 10–21
process control flag, 19–4
processing audit information,

10–14, 10–36
quick start, 10–6
record as series of tuples, 19–2
record content, 10–30
record generation, 19–1
reducing audit information, 10–14,

10–36
report deselection files, 10–36
reports, 10–14, 10–36
reports, abbreviated, 10–35
responding to audit reports, 10–40
selecting audit events, 10–12
selecting events, 10–15
self-auditing commands, 10–16
site-defined events, 10–18, 19–7
starting, 10–6, 10–9
stopping, 10–29

system audit mask, 10–21
tokens, 19–2
tools, 10–4
tracing system calls, 10–41
trusted application, 19–1
trusted events, 10–16
tuples, 19–2
turning off/on auditing, 10–12
user audit mask

setting, 10–23
user process mask, 10–21

audit events
default events, B–1

audit features, 6–3
audit ID (AUID), 1–2, 1–3, 18–1
audit log

reading, 19–9
reading algorithm, 19–14
tuple formats, 19–10

Audit Manager graphic interface,
10–5

audit subsystem, 1–2, 10–1
(See also audit)
anonymous ftp, 3–4
configuring, 7–3
default auditable events, B–1
default event aliases, B–5
setting up, 7–8
ULTRIX compatibility, C–5

audit trail, 1–2
audit_daemon_exit trusted event,

10–16
audit_log_change trusted event,

10–16
audit_log_create trusted event, 10–16
audit_log_overwrite trusted event,

10–16
audit_reboot trusted event, 10–16
audit_start trusted event, 10–17
audit_stop trusted event, 10–17
audit_subsystem

Index–3

event aliases, 10–23
audit_suspend trusted event, 10–17
audit_tool command, 10–5, 10–14,

10–36
audit_tool.ultrix command, 10–5
audit_xmit_fail trusted event, 10–17
auditable events, 10–15, B–1
auditconfig command, 10–6, 10–9
auditconfig trusted event, 10–17
auditd command, 10–5, 10–12
auditing for applications, 10–18
auditing in a cluster, G–4
auditmask command, 10–5, 10–12
AUID (audit ID), 10–31
auth_event trusted event, 10–17
authaudit routines, C–2
authck command, 12–1
authck program, 12–1
authentication, 6–4, 9–1, 18–1

programming concerns, 18–1
authentication configuration, 7–4

encryption, 7–7
failed login records, 7–7
log in records, 7–6
maximum log in attempts, 7–6
password aging, 7–5
password change time, 7–5
password-changing controls, 7–5
profile migration, 7–7
successful login records, 7–6
terminal breakin, 7–6
time between log in attempts, 7–6
time between log ins, 7–6
vouching, 7–7

authentication database, 9–1, 12–1,
17–1
conversion, 7–1

authentication files, C–3
authentication in a cluster, G–3
authentication profile, 1–3–2–2,

6–10, 6–12, 14–2, 17–9, 18–1
authentication program, 18–1
authentication subsystem, 9–1

authorization list
(See terminal authorization

list)

B
background job, 2–8
backup procedures, 7–9, 14–1
Berkeley database, 6–6
binary compatibility, 6–1
boot loading software, 14–5
buffer management, 17–4

C
C2 features

audit, 1–2
login control, 1–1
password control, 1–2

CDE
authorizing host access, 4–2
secure keyboard, 4–4
security, 4–1

CDE session
pausing current, 4–4
screen lock, 4–4

centralized account management,
9–11

changing a password, 2–3
changing permissions, 5–1
character-mode terminal, 2–1
chgrp

command, 5–2
child process

inherited file access, 16–5
signal mask and, 16–5

chmod command, 5–1
octal example of, 3–5

chown system call
SUID or SGID permissions, 16–1

close-on-exec flag, 16–5
cluster

overview, 6–15
clusters

Index–4

auditing, G–4
authetication, G–3
distributed logins, G–2
NIS, G–2
restrictions, G–7
terminal logging, G–7
upgrades, G–7

commands
chgrp, 5–2
chmod, 5–1

compatibility with ULTRIX auditing,
C–5

configuration
encryption, 7–7
failed login records, 7–7
log in records, 7–6
maximum log in attempts, 7–6
password aging, 7–5
password change time, 7–5
password-changing controls, 7–5
profile migration, 7–7
succesful login records, 7–6
terminal breakin, 7–6
time between log in attempts, 7–6
time between log ins, 7–6
vouching, 7–7

configuring
ACLs, 7–4
audit, 7–3, 10–6, 10–9, 10–12
enhanced passwords, 7–4
security features, 7–3

configuring enhanced security, 6–8
connecting to other systems, 3–1
console file, 14–4
console messages

audit, 10–3
content of audit records, 10–30
control flag

audit control flag, 10–21
convauth command, 7–1
core files, 16–4
crash recovery

audit data, 10–38
create_file_securely() library routine,

17–8
creating accounts, 7–7, 9–1
creating groups, 7–7, 9–7
crypt() support, 7–7
cu command, 3–6

example of, 3–6

D
DAC

protecting the TCB, 15–5
daemon programs, 18–2
data

storing in a secure location, 16–3
data files, 15–4
data loss, 14–1
database update, 17–7
databases, 6–6

accessing, 17–1
enhanced password, 14–2
entries, 17–2
file control, 12–2
groups, 14–4
system defaults, 17–2
terminal control, 17–2
update, 17–4

databases fields, 17–2
dcp command, 3–7
DECnet protocol, 3–1, 3–7

dcp command, 3–7
dlogin command, 3–7
dls command, 3–7
generic guest accounts, 3–8

default ACL, 21–11
defaults database, 6–13
defaults for devices, 8–1
deleting layered security products,

13–4
deleting user accounts, 9–8

Index–5

denial of service, 6–3
dependencies among audit events,

10–19
deselection files for audit reports,

10–36
/dev/console file, 14–4
/dev/pts/* file, 14–4
/dev/tty* file, 14–4
device

assignment, 6–10, 7–8, 8–1
defaults, 8–1
installation, 8–1

device assignment database, 6–14,
8–2, 12–1, 17–7

devices, 8–1
differences between file and directory

permissions, 5–2
directories

permissions, 5–2
disabled accounts, 9–7
display access, 4–1
distributed logins in a cluster, G–2
dlogin command, 3–7
dls command, 3–7
DOP, H–1
dtterm window

protecting, 4–4
dxaccounts program, 6–7
dxaudit program, 6–7
dxdevices program, 6–7

E
EACCES errno value, 16–2
effective group ID, 2–2
effective user ID, 2–2
EGID

(See effective group ID)
encrypted password, 14–3, 17–9
encryption configuration, 7–7
enhanced password database, 6–12,

12–1, 14–2, 17–9, 18–1
enhanced passwords, 7–4, 9–14

enhanced profile configuration, 7–4
entry points, E–1
EPERM errno value, 16–2
EROFS errno value, 16–2
errno variable, 16–2
/etc/auth/system/default file, 14–3
/etc/auth/system/devassign file, 14–4
/etc/auth/system/ttys file, 17–10
/etc/auth/system/ttys.db file, 14–3
/etc/group file, 14–4
/etc/hosts.equiv file

interaction with .rhosts file, 3–3
security concerns, 3–2

/etc/passwd file, 12–2, 14–4, 17–9,
18–4

/etc/sec/audit_events file, B–1
/etc/sec/auditd_clients file, 10–29
/etc/sec/event_aliases, 10–23
/etc/sec/event_aliases file, B–5
/etc/sec/site_events file, 10–18, 19–7
/etc/sysconfigtab

setting audit-site-events, 19–7
EUID

(See effective user ID)
evasion time configuration, 7–6
event

audit, 19–2
event aliases, B–5
events

aliases for audit events, 10–23
managing audit events, 10–20
site-defined audit events, 10–18
trusted audit events, 10–16

events to audit, B–1
example

ACL creation, 21–9
ACL inheritance, 21–11
ACL permission removal, 21–11
application-specific audit record,

19–7
audgenl(), 19–1
audit tuple parsing macros, 19–14
audit: iovec-type record, 19–3
auditmask, 19–6

Index–6

site-defined audit event, 19–8
executable stack, 16–2
execute permission, 5–2
execve system call, 16–5
extended passwords

(See enhanced passwords)
external representation

ACL, 21–4

F
fcntl system call

close-on-exec flag, 16–5
features, 1–1, 6–3
file

protecting, 16–3
required, 14–1

file attributes, 14–5
file control database, 12–2

description, 6–14, 17–8
location, 12–1

file descriptors, 16–5
file permissions

remote sessions, 3–4
file summary, A–1
file systems, 6–11
files

protecting, 5–1
filtering audit data, 10–36
fork system call, 16–5, 18–1
ftp command, 3–4

description of, 3–4
security risks of anonymous ftp,

3–4
use of .netrc file with, 3–4

FTP protocol, 3–1
fverfy command, 14–5

G
generating audit reports, 10–14,

10–36

getacl command, 5–4
getluid system call, 18–2
getty command, 2–8
GID

(See group ID)
graphic interface

for audit subsystem, 10–5
group database, 14–4
group ID

effective (EGID), 2–2
real (RGID), 2–2

groups
creating, 7–7, 9–7
database file, 14–4
supplementary, 2–2

H
hardware privilege, 6–2
header files, 15–1

I
I and A, 1–3, 6–4, 18–1
identification, 18–1
identification and authentication

(See I and A)
Information Systems Security Officer

ISSO, 6–10
installation, 7–1
installing enhanced security, 6–8
installing layered security products,

13–3
integrating security mechanisms,

20–10
integrity, 6–3, 6–10, 6–14, 12–1
integrity features, 6–5
interoperating with ULTRIX auditing,

C–5
interprocess communication

security consideration, 16–3
introduction for administrators, 6–1

Index–7

introduction for users, 1–1
iovec

audit record using, 19–3
ISSO, 6–10

tasks, 7–8

K
keyboard

securing, 16–6
securing in CDE environment, 4–4

keyboard input, 4–4

L
LAT protocol, 3–1

description of, 3–5
LAT groups, 3–5

libaud library, 15–1
libraries

as part of the TCB, 15–4
security relevent, 15–1

library routines, 15–3
library routines for ACLs, 21–7
libsecurity library, 15–1
Local Area Transport

(See LAT protocol)
Local Area Transport (LAT), 3–5
lock file, 14–1
locked accounts, 9–7
log files, 10–3, 10–44

designating, 10–12
log in

maximum tries configuration, 7–6
log in records configuration, 7–6
logging in, 2–1

to remote systems with rlogin, 3–1
logging tools, 10–44
login, 2–1

audit mask, 10–21
audit mask, setting, 10–23
enhancements, 1–1

invalidating terminal file
descriptors, 2–8

login ID (LUID), 10–31
problems, 2–11
setting password during, 2–3
shell, 2–2
trusted event, 10–18
user ID (AUID), 2–2

login command, 2–8
login records configuration, 7–6, 7–7
login timouts, 8–3
login tips, 2–7
login user ID, 2–6
logout tips, 2–7
logout trusted event, 10–18
LUID (login ID), 10–31

M
macro

audit tuple parsing, 19–14
maintaining accounts, 9–1
matrix.conf file, 13–3, 20–21
mechanism-dependent interface,

20–22
migration issues

audcntl routine, C–2
audgen system call, C–1
authaudit routines, C–2
BIND/Hesiod authentication files,

C–3
MLS+, C–2
NIS, 9–14
password databases, C–2
secauthmigrate script, C–3
secure attention key (SAK), C–3
trusted path, C–3
ULTRIX, C–1
ULTRIX authentication files, C–3

MIN_SITE_EVENT, 19–7
modem

with tip and cu commands, 3–6
with UUCP utility, 3–5

Index–8

modifying database entries, 17–7
modifying the account template, 9–8
modifying user accounts, 9–1
mouse

securing, 16–6

N
naming routines, E–1
need-to-know access, 6–3
.netrc, 3–4
network

audit hub, 10–29
auditing across a network, 10–29

network protocols, 3–1
network security concerns, 4–1

anonymous ftp, 3–4
DECnet generic guest accounts,

3–8
/etc/hosts.equiv file, 3–2
file permissions, 3–4
.rhosts file, 3–3
tip and cu commands, 3–7
UUCP commands, 3–5
workstation display access, 4–1

NIS
account management, 9–11
automated procedures, 9–12
backing out, 9–14
client setup, 9–13
large databases, 9–12
master server setup, 9–11
migration, 9–14
overrides, 9–4, 9–5
slave server setup, 9–12
user account database, 9–3

null password, 18–3

O
object code, 15–4

open file descriptor, 16–5
operational features, 6–2
operator responsibilities, 6–11
overflow handling

audit, 10–12

P
passwd file, 14–4
password, 18–6

aging, 2–5
aging configuration, 7–5
change time configuration, 7–5
choosing, 2–3
coding example, D–1
configuration, 7–4
controls configuration, 7–5
database, 14–4
enhanced, 7–4
enhanced database, 6–12
enhancements, 1–2
expiration, 2–2
expiration of, 2–5
expiration time, 2–8
maximum tries configuration, 7–6
new accounts, 9–7
random character, 2–4
random letter, 2–4
random pronounceable, 2–4
setting and changing, 2–3
system-generated, 2–4
threats, 3–2
tips, 2–6

password databases, C–2
passwords, 2–3, 18–1
PATH variable

defining, 16–4
null entry in, 16–4
secure shell scripts, 16–8

pathname
absolute, 16–4

Index–9

relative, 16–4
pausing CDE sessions, 4–4
permanent file, 16–3
permissions

changing, 5–1
directory, 5–2

physical device, 6–15
physical security

in CDE environment, 4–5
preselection of audit events, 10–12,

10–20
private audit tokens, 19–4
privileges, H–1
process

audit control flag, 19–4
process audit mask, 10–21
process priority, 17–9
profile migration configuration, 7–7
programming in the trusted

environment, 15–1
protected subsystem pseudogroup,

17–4
protected subsystems, 6–12
protecting files, 5–1

access control list (ACL), 2–10
protecting removable media, 4–5
prpasswd file, 9–14
pseudo tty, 14–4
pts/* file, 14–4

R
rc[023] files, 14–4
rcp command, 3–2
read permission, 5–2
read-only file systems, 15–5
recovering

audit data, 10–38
recovering ACLs, 11–4
reducing audit data, 10–14, 10–36
relative pathname, 16–4
remote auditing, 10–29
remote commands, 3–1
remote file transfer

with UUCP utility, 3–5
remote login

suggestions for tip and cu
commands, 3–7

using dlogin command, 3–7
using rlogin command, 3–1
using tip and cu commands, 3–6

remote systems
in /etc/hosts.equiv file, 3–2
in .rhosts file, 3–3

reports
audit reports, 10–14, 10–36

required files, 14–1
responding to audit reports, 10–40
responsibilities

ISSO, 6–10
operator, 6–11
system administrator, 6–10
user, 1–3

retiring user accounts, 9–8
.rhosts file

interaction with /etc/hosts.equiv
file, 3–3

security concerns, 3–3
suggested permissions on, 3–5

rlogin command, 3–1
role responsibilities, 6–1

ISSO, 6–10
operator, 6–11
system administration, 6–9
system administrator, 6–10

root authentication profile, 14–2
root user, 2–6
rsh command, 3–2

S
/sbin/rc[023] files, 14–4
screen lock in CDE sessions, 4–4
secauthmigrate script, C–3
secconfig command, 7–3
secure attention key (SAK), C–3
secure devices, 8–1
secure keyboard, 4–4

Index–10

Secure Keyboard menu item, 16–6
security

authentication programming
concerns, 18–1

security breach
possible program responses to,

16–2
Security Integration Architecture

(See SIA)
Security Integration Architecture

(SIA), 13–1, 20–1
security policy, 6–2, F–2
security requirements, 8–1
security sensitive commands, 20–1
segment sharing, 7–2
segments, 16–3
selecting audit events, 10–12
semaphores, 16–3
set group ID on execution

(See SGID)
set user ID on execution

(See SUID)
set_auth_parameters() library routine,

18–2
setluid system call, 18–2
setting

file permissions, 5–1
setting up a trusted system, 7–1
setting up enhanced security, 7–3
SGID

set group ID on execution, 2–10
set group ID programs, 16–1

shadowed passwords
(See enhanced passwords)

shared libraries, 7–2
shell

defining variables, 16–4
path variable syntax, 16–4
rsh command invokes remote, 3–2

shell process, 2–6
shell script, 15–4

security consideration, 16–8

shell variable
specific shell variables, 16–3

SIA
accessing secure information,

20–19
administering, 13–1
audit logging, 20–10
callbacks, 20–7
changing a user shell, 20–19
changing finger information, 20–19
changing secure information,

20–18
coding example, D–1
debugging, 20–10
deleting layered security product,

13–4
group info, accessing, 20–20
header files, 20–6
initialization, 20–5
installing layered security product,

13–3
integrating mechanisms, 20–10
interface routines, 20–2
layering, 20–4
login process, 20–18
logs, 20–9
maintaining state, 20–8
matrix.conf file, 13–3, 20–21
mechanism-dependent interface,

20–22
packaging layered products, 20–21
parameter collection, 20–7, 20–21
password, accessing, 20–20
passwords, changing, 20–19
programming, 20–1
return values, 20–9, 20–12
rlogind process, 20–18
rshd process, 20–18
security sensitive commands, 20–1
session authentication, 20–16
session establishment, 20–17

Index–11

session initialization, 20–16
session launch, 20–17
session processing, 20–11
session release, 20–18
SIAENTITY structure, 20–6
siainit command, 20–5
sialog file, 20–9
vouching, 20–10

signal
secure response to, 16–4

signal routine, 16–4
SIGQUIT signal

security consideration, 16–4
SIGTRAP signal

security consideration, 16–4
single-user mode, 14–3
site-defined audit events, 10–18,

19–7
site_events file, 19–7
stack

executable, 16–2
standalone system

ACLs, 11–4
starting the audit subsystem, 10–6,

10–9
startup script, 18–1
state-dependent audit events, 10–19
sticky bit, 15–5

setting, 2–9
using to secure temporary files,

16–3
UUCP directory, 3–6

sticky directory, 2–9
strong symbols, E–1
su command, 2–5
subset installation, 7–1
SUID

executable stack, 16–2
set user ID on execution, 2–10
set user ID programs, 16–1

superuser authority, 5–2
supplementary groups, 2–2
symbol preemption, E–1
system administrator, 6–10

(See also role responsibilities)
remote file transfer concerns, 3–4
tasks, 7–7

system audit mask, 10–21
system call

common return value, 16–2
security consideration for a failed

call, 16–2
system console, 14–4
system defaults database

description, 6–13, 17–9
undefined fields, 17–2
updating, 8–2

system startup, 14–1

T
TCB, 6–2, 15–4

defining a trusted system, 6–2
executable file, 15–4
hardware privilege, 6–2
indirect programs, 15–4
kernel, 6–2
security configuration, 15–1
trusted program, 15–4
trusted system directories, 15–2

/tcb/files/auth/r/root file, 14–2
TCP/IP protocol, 3–1
templates for user accounts, 9–3
temporary files, 16–3, 17–8
terminal authorization list, 2–2
terminal breakin configuration, 7–6
terminal character-mode, 2–1
terminal control database, 6–13, 8–2,

12–1, 17–2, 17–10
terminal devices, assigning, 7–8, 8–1
terminal file descriptors

invalidating, 2–8
terminal logging, G–7
terminal session

security suggestions, 3–7
tftp command, 3–4

description of, 3–4

Index–12

TFTP protocol, 3–1
time delay, 17–10
tip command, 3–6
tmp file

security consideration, 16–4
token

audit fixed-length, 19–3
audit iovec-type, 19–3
audit pointer-type, 19–3
audit private, 19–4
audit public, 19–2

tools for auditing, 10–4
tracing system calls, 10–41
traditional file protection mechanism

group, 5–6
owner, 5–6
permission bits, 5–6

traditional logging, 10–44
traditional security, 1–1
trojan horse program, 3–7
troubleshooting, 14–1
trusted computing base, 6–1, 15–4

(See also TCB)
trusted events, 10–16
trusted path, C–3
trusted program, 15–4
trusted programming techniques,

16–1
tty* file, 14–4
tuple

common to audit logs, 19–10
detailed description, 19–10
parsing audit, 19–14

U
ULTRIX audit compatibility, C–5
ULTRIX authentication files, C–3
ULTRIX interoperability issues, C–5
ULTRIX migration issues, C–1
umask

ACL, 21–8
umask system call

using to secure temporary files,
16–3

undefined field, 17–2
UNIX-to-UNIX Copy Program

(See UUCP)
unlink system call

protecting file access, 16–3
update installation, 7–1
user audit mask, 10–21

setting, 10–23
user ID, 2–2

effective (EUID), 2–2
real (RUID), 2–2

user input
security consideration, 16–6

users, introduction, 1–1
/usr/spool/uucppublic, 3–6
/usr/tmp file

tmp file, 16–4
uucp command, 3–6
UUCP utility, 3–5
uux command, 3–7

V
vouching, 20–10
vouching configuration, 7–7

W
weak symbols, E–1
windowing environment, 4–1
working storage

ACL, 21–2
workstation, 4–5

(See also CDE)
physical security, 4–5
protecting removable media, 4–5

workstation environment, 4–1
workstation physical security, 4–5

Index–13

write permission, 5–2
writing database entries, 17–7

X
X displays, 8–3
X environment

use of in a secure environment,
16–6

writing secure programs in, 16–5
X window, 16–6

(See also X environment)
XGrabKeyboard() routine, 16–6
XReparentWindow() routine

using in a secure environment,
16–7

XSendEvent() routine, 16–6

Index–14

How to Order Tru64 UNIX Documentation

To order Tru64 UNIX documentation in the United States and Canada, call
800-344-4825. In other countries, contact your local Compaq subsidiary.

If you have access to Compaq’s intranet, you can place an order at the following
Web site:

http://asmorder.nqo.dec.com/

If you need help deciding which documentation best meets your needs, see the Tru64
UNIX Documentation Overview, which describes the structure and organization of
the Tru64 UNIX documentation and provides brief overviews of each document.

The following table provides the order numbers for the Tru64 UNIX operating system
documentation kits. For additional information about ordering this and related
documentation, see the Documentation Overview or contact Compaq.

Name Order Number

Tru64 UNIX Documentation CD-ROM QA-6ADAA-G8

Tru64 UNIX Documentation Kit QA-6ADAA-GZ

End User Documentation Kit QA-6ADAB-GZ

Startup Documentation Kit QA-6ADAC-GZ

General User Documentation Kit QA-6ADAD-GZ

System and Network Management Documentation Kit QA-6ADAE-GZ

Developer’s Documentation Kit QA-6ADAF-GZ

Reference Pages Documentation Kit QA-6ADAG-GZ

TruCluster Server Documentation Kit QA-6BRAA-GZ

Reader’s Comments

Tru64 UNIX
Security
AA-RH95C-TE

Compaq welcomes your comments and suggestions on this manual. Your input will help us to write
documentation that meets your needs. Please send your suggestions using one of the following methods:

• This postage-paid form

• Internet electronic mail: readers_comment@zk3.dec.com

• Fax: (603) 884-0120, Attn: UBPG Publications, ZKO3-3/Y32

If you are not using this form, please be sure you include the name of the document, the page number, and
the product name and version.

Please rate this manual:

Excellent Good Fair Poor
Accuracy (software works as manual says) � � � �

Clarity (easy to understand) � � � �

Organization (structure of subject matter) � � � �

Figures (useful) � � � �

Examples (useful) � � � �

Index (ability to find topic) � � � �

Usability (ability to access information quickly) � � � �

Please list errors you have found in this manual:

Page Description
_________ ___
_________ ___
_________ ___
_________ ___

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? _______________________

Name, title, department ___
Mailing address __
Electronic mail ___
Telephone __
Date ___

UBPG PUBLICATIONS MANAGER

 Do Not Cut or Tear - Fold Here

 Do Not Cut or Tear - Fold Here and Tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

FIRST CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

ZKO3-3/Y32
110 SPIT BROOK RD

COMPAQ COMPUTER CORPORATION

NASHUA NH 03062-2698

C
ut on T

his L
ine

