X Window System:
The Complete Reference to

Xlib, X Protocol, ICCCM, XLFD

X Version 11, Release 4
EY-E755E-DP
Robert W. Scheifler & James Gettys

X Window System

Copyright [0 1990 by Digital Equipment Corporation. All rights reserved.

No part of this book may be reproduced, stored in a retrival system, or transmitted in
any form or by any means, electronic, photocopying, recording, or otherwise, without
written permission from the publisher.

This book is also available through Digital Press, order number EY -E757E-DP.

Bitstream Amerigo is a trademark of Bitstream Inc. DEC, DECnet, the Digital logo,
ULTRIX, Micro VAX Il, VAX, VAX-11, VAXstation, VAXstation I[I/GPS,
VAXIVMS, VMS are trademarks of Digital Equipment Corporation, Helvetica and
Times are trademarks of Linotype Company. IBM, Personal Computer AT, Personal
Computer RT are trademarks of International Business Machines Corporation. ITC
Avante Garde Gothic is a tradmark of International Typeface Corporation. MD-DOS is
a trademark of Microsoft Corporation. PostScript and Stone are trademarks of Adobe
Systems, Inc. Times Roman is a trademark of Monotype Corporation. X Window Sys-
tem is atradmark of The Massachusetts Institute of Technology.

Views expressed in this book are those of the author, not of the publisher. Digital
Equipment Corporation is not responsible for any errors that may appear in this book.

Chapter Acknowledgments

X Window System, Version 11

The design and implementation of the first ten versions of X were primarily the work of
three individuals: Robert Scheifler (MIT Laboratory for Computer Science), Jim Gettys
(Digital Equipment Corporation), and Ron Newman (MIT), who both were at MIT Pro-
ject Athena. X version 11, however, resulted from the efforts of dozens of individuals at
amost as many locations and organizations. At the risk of offending some of them by
exclusion, we would like to acknowledge some of the people who deserve specia credit
and recognition. Our apologies to anyone inadvertently overlooked. Note that all
affiliations mentioned reflect those that the individuals had at the time of their con-
tribution.

Our special thanks go to Sam Fuller, Vice President of Corporate Research at Digital,
who has remained committed to the widest public availability of X and who made it
possible to greatly supplement MIT’s resources with the Digital staff in order to make
version 11 a redity. Many of the people mentioned here are part of the Western
Software Laboratory (Digital) of the ULTRIX Engineering Group and worked for Smo-
key Wallace, who was vital to the project’s success. Others mentioned here are part of
Digital’s Workstation Systems Engineering. Others not mentioned here worked on the
toolkit and are acknowledged in the X Toolkit documentation.

Of course, we must particularly thank Paul Asente, formerly of Stanford University and
now of Digital, who wrote W, the predecessor to X, and Brian Reid, also formerly of
Stanford University and now of Digital, who had much to do with W’s design.

Our thanks also go to MIT, Digital Equipment Corporation, and IBM for providing the
environment where it could happen.

March 26, 1992 1-i

X Window System

Xlib—C Library X Interface, Release 1

First, our thanks go to Phil Karlton and Scott McGregor, both of Digital, for their con-
siderable contributions to the specification of the version 11 protocol. Susan Ange-
branndt, Raymond Drewry, Todd Newman, and Phil Karlton of Digital worked long and
hard to produce the sample server implementation.

Next, we thank Ralph Swick (Project Athena and Digital), who kept it all together for
us. He handled literally thousands of requests from people everywhere and saved the
sanity of at least one of us. His calm good cheer was a foundation on which we could
build.

Our thanks also go to Todd Brunhoff (Tektronix), who came to Project Athena at
exactly the right moment to provide very capable and much-needed assistance during
the alpha and beta releases. He was responsible for the successful integration of sources
from multiple sites; we would not have had a release without him.

We also thank Al Mento and Al Wojtas of Digital, who with good humor and cheer
took a rough draft and made it an infinitely better and more useful document. The work
they have done will help many everywhere. We also would like to thank Hal Murray
(Digital SRC) and Peter George (Digital VMS), who contributed much by proofreading
the early drafts of this document.

Our thanks also go to Jeff Dike (Digital UEG), Tom Benson, Jackie Granfield, and
Vince Orgovan (Digital VMS), who helped with the library utilities implementation; to
Hania Gajewska (Digital UEG-WSL), who along with Ellis Cohen (CMU and Siemens)
was instrumental in the semantic design of the window manager properties, to David
Rosenthal (Sun Microsystems), who also contributed to the protocol and provided the
sample generic color frame buffer device-dependent code; and to Tim Greenwood (Digi-
tal IECG) for his help in understanding international keyboards and for providing the
KeySyms in appendix E.

The alpha and beta test participants deserve special recognition and thanks as well. It is
significant that the bug reports (and many fixes) during alpha and beta testing came
amost exclusively from just a few of the alpha testers, mostly hardware vendors work-
ing on product implementations of X. The continued public contribution of vendors and
universities is certainly to the benefit of the entire X community.

Release 4

1-ii

First, our thanks go to Jim Fulton (MIT X Consortium) for designing and specifying the
new Xlib functions needed for Inter-Client Communication Conventions (ICCCM) sup-
port.

We also thank Al Mento of Digital for his continued effort in maintaining this document
and Jim Fulton and Donna Converse (MIT X Consortium) for their much-appreciated

March 26, 1992

efforts in reviewing the changes.

X Window System Protocol

The primary contributers to the X11 protocol are Dave Carver (Digital HPW), Branko
Gerovac (Digital HPW), Jim Gettys (MIT/Project Athena, Digital), Phil Karlton (Digital
WSL), Scott McGregor (Digital SSG), Ram Rao (Digital UEG), David Rosenthal (Sun),
and Dave Winchell (Digital UEG).

The implementors of the initial server who provided useful input are Susan Ange-
branndt (Digital), Raymond Drewry (Digital), and Todd Newman (Digital).

The invited reviewers who provided useful input are Andrew Cherenson (Berkeley),
Burns Fisher (Digital), Dan Garfinkel (HP), Leo Hourvitz (Next), Brock Krizan (HP),
David Laidlaw (Stellar), Dave Méllinger (Interleaf), Ron Newman (MIT), John
Ousterhout (Berkeley), Andrew Palay (ITC CMU), Ralph Swick (MIT), Craig Taylor
(Sun), and Jeffery Vroom (Stellar).

Thanks also go to Al Mento (Digital) for formatting and maintaining this document.

I nter-Client Communication Conventions M anual

Our thanks go to David Rosenthal (Sun), who had overall architectural responsibility for
the conventions defined in this document; he wrote most of the text and edited the docu-
ment, but its development has been a communal effort. The details were thrashed out in
meetings at the January 1988 MIT X Conference and at the 1988 Summer USENIX
conference, and through months (and megabytes) of argument on a Consortium mailing
list. Thanks are due to everyone who contributed, but especially to the following people.

For the Selection section, thanks go to Jerry Farrell (Sun), Phil Karlton (Digital),
Loretta Guarino-Reid (Digital), Mark Manasse (Digital), and Bob Scheifler (MIT).

For the Cut Buffer section, thanks go to Andrew Palay (CMU).

For the Window and Session Manager sections, thanks go to Todd Brunhoff (Tek-
tronix), Ellis Cohen (Siemens), Jm Fulton (MIT), Hania Gaewska (Digital), Jordan
Hubbard (Ardent), Kerry Kimbrough (TI1), Audrey Ishizaki (H-P), Matt Landau (BBN),
Mark Manasse (Digital), Bob Scheifler (MIT LCS), Ralph Swick (Project Athena and
Digital), Mike Wexler (Wyse), and Glenn Widener (Tektronix).

In addition, thanks go to those who contributed to the public review: Gary Combs
(Tektronix), Errol Crary (Tektronix), Nancy Cyprych (Digital), John Diamant (H-P),
Clive Feather (1XI), Burns Fisher (Digital), Richard Greco (Tektronix), Tim Greenwood
(Digital), Kee Hinckley (Apollo), Brian Holt (Apollo), John Interrante (Stanford), John
Irwin (Franz Inc.), Vania Joloboff (INRIA), John Laporta (Apollo), Ken Lee (Daisy),

March 26, 1992 1-iii

X Window System

Stuart Marks (Sun), Allan Mimms (Apple), Colas Nahaboo (INRIA), Mark Patrick
(Ardent), Steve Pitschke (Stellar), Brad Reed (EDS), and John Thomas (Tektronix).

X Logical Font Description

1-iv

Our thanks go to Jm Flowers (Digital), who had architectural and editorial responsibil-
ity for the conventions defined in this X Consortium Standard; he drafted the initial pro-
posal during the final stages of X11 development and guided it through the year-long
internal and external review process.

In addition, a number of Consortium members provided critical input and comments on
the proposal, especially Bob Scheifler (MIT), Phil Karlton (Digital), Glenn Widener
(Tektronix), and Daniel Dardailler (Bull).

Robert W. Scheifler
Laboratory for Computer Science
Massachusetts Institute of Technology

Jm Gettys
Cambridge Research Laboratory
Digital Equipment Corportation

March 26, 1992

Chapter Introduction

The X Window System, or X, is a network-transparent window system. With X, multi-
ple applications can run simultaneously in windows, generating text and graphics in
monochrome or color on a bitmap display. Network transparency means that applica
tion programs can run on machines scattered throughout the network. Because X per-
mits applications to be device-independent, applications need not be rewritten, recom-
piled, or even relinked to work with new display hardware.

X provides facilities for generating multifont text and two-dimensional graphics (such
as points, lines, arcs, and polygons) in a hierarchy of rectangular windows. Every win-
dow can be thought of as a ‘‘virtual screen’’ and can contain subwindows within it, to
an arbitrary depth. Windows can overlap each other like stacks of papers on a desk and
can be moved, resized, and restacked dynamically. Windows are inexpensive resources;
applications using several hundred subwindows are common. For example, windows
are often used to implement individual user interface components such as scroll bars,
menus, buttons, and so forth.

Although users typically think of themselves as clients of the system, X applications, in
terms of the network, are the clients that use the network services of the window sys-
tem. A program running on the machine with the display hardware provides these ser-
vices and so is called the X server. The X server acts as an intermediary between appli-
cations and the display, handling output from the clients to the display and forwarding
input (entered with a keyboard or mouse) to the appropriate clients for processing.

Clients and servers use some form of interprocess communication to exchange informa-
tion. The syntax and semantics of this conversation are defined by a communication
protocol. This protocol is the foundation of the X Window System. Clients use the pro-
tocol to send requests to the server to create and manipulate windows, to generate text
and graphics, to control input from the user, and to communicate with other clients.
The server uses the protocol to send information back to the client in response to vari-
ous requests and to forward keyboard and other user input on to the appropriate clients.

Because a network round-trip is an expensive operation relative to basic request execu-
tion, the protocol is primarily asynchronous, and data can be in transit in both directions
(client to server and server to client) simultaneously. After generating a request, a client
typically does not wait for the server to execute the request before generating a new
request. Instead, the client generates a stream of requests that are eventually received

March 26, 1992 2-i

X Window System

2-ii

by the server and executed. The server does not acknowledge receipt of a request and,
in most cases, does not acknowledge execution of a request. (This is possible because
the underlying transport is reliable.)

The protocol is designed explicitly to minimize the need to query the window system
for information. Clients should not depend on the server to obtain information that the
clients initially supplied. In addition, clients do not poll for input by sending requests
to the server. Instead, clients use requests to register interest in various events, and the
server sends event notifications asynchronously. Asynchronous operation may be one
of the most significant differences between X and other window systems.

For the best performance, when the client and the server reside on the same machine,
communication between them often is implemented using shared memory. When the
client and the server reside on different machines, communication can take place over
any network transport layer that provides reliable, in-order delivery of data in both
directions (usualy caled a reliable duplex byte stream). For example, TCP (in the
Internet protocol family) and DECnet streams are two commonly used transport layers.
To support distributed computing in a heterogeneous environment, the communication
protocol is designed to be independent of the operating system, programming language,
and processor hardware. Thus, a single display can display applications written in mul-
tiple languages under multiple operating systems on multiple hardware architectures
simultaneoudly.

Although X is fundamentally defined by a network protocol, most application program-
mers do not want to think about bits, bytes, and message formats. Therefore, X has an
interface library. This library provides a familiar procedura interface that masks the
details of the protocol encoding and transport interactions and automatically handles the
buffering of requests for efficient transport to the server, much as the C standard 1/O
library buffers output to minimize system calls. The library also provides various utility
functions that are not directly related to the protocol but are nevertheless important in
building applications. The exact interface for this library differs for each programming
language. Xlib isthe library for the C programming language.

Figure 1. on page 4 shows a block diagram of a complete X environment. Each X
server controls one or more screens, a keyboard, and a pointing device (typicaly a
mouse) with one or more buttons on it. There can be many X servers; often there is one
for every workstation on the network. Applications can run on any machine, even those
without X servers. An application might communicate with multiple servers simultane-
ously (for example, to support computer conferencing between individuals in different
locations). Multiple applications can be active at the same time on a single server.

In X, many facilities that are built into other window systems are provided by client
libraries. The X protocol does not specify menus, scroll bars, and dialog boxes or how
an application should respond to user input. The protocol and X library avoid mandat-
ing such policy decisions as much as possible and should be viewed as a construction
kit that provides arich set of mechanisms that can implement a variety of user interface
policies. Toolkits (providing menus, scroll bars, dialog boxes, and so on), higher-level
graphics libraries (which might transform abstract object descriptions into graphics
requests, for example), and user interface management systems (UIMS) can al be
implemented on top of the X library. Although the X library provides the foundation,

March 26, 1992

the expectation is that applications will be written using these higher-level facilities in
conjunction with the facilities of the X library, rather than solely on the ‘*bare bones”’
of the X library.

A user interface can be viewed as having two primary components. the interaction with
the user that is logically internal to an application (for example, typing text into a text
editor or changing a cell’s contents in a spreadsheet) and the interaction that is logically
external to an application (for example, moving or resizing an application window or
turning an application window into an icon). The externa user interface is built into
many other window systems, but this is not the case with X. The X protocol does not
define an external user interface at all. Rather, the protocol provides mechanisms with
which a variety of external user interfaces can be built. These mechanisms are designed
so that a single client, called a window manager, can provide the external user interface
independent of all the other clients.

Figure2-1. X window system block diagram
#ifdef BOOKREADER

March 26, 1992 2-iii

X Window

2-iv

A Server

Device Library Device Library

N —
Keyboard Screen| |Screen Keyboard % Screen
#d u .‘

ZK-0404U-R

#endif

A window manager can enforce a strict window layout policy if it desires (for example,

““tiling’" the screen so that application windows never overlap) as well as automatically
provide the following:

« Title bars, borders, and other window decorations for each application
+ Uniform icons for applications

+ A uniform means of moving and resizing windows

« A uniform interface for switching the keyboard between applications

With a suitable set of conventions, which have been standardized and are called the
Inter-Client Communication Conventions (see Part 111), applications are insensitive to

March 26, 1992

the external user interface provided by a window manager and run correctly unmodified
in multiple environments.

Because the protocol can deal with such a broad spectrum of user interfaces, no single
program, toolkit, UIMS, or window manager is likely to use all the facilities the proto-
col and the X library provide.

Principles

Early in the development of X, we argued about what should and should not be imple-
mented in the server. For example, we did not know if menus or terminal emulators
could be implemented in the client with adequate performance or whether ‘*‘rubber-
banding’’ (dynamically stretching a simple figure in response to movement of the point-
ing device) would be acceptable when performed across a network. Experimentation
during the first months showed us that more was possible than we had first believed.

These observations hardened into the following principles, which guided us through the
early X design:

+ Do not add new functionality unless an implementor cannot complete a rea applica-
tion without it.

« Itis asimportant to decide what a system is not as to decide what it is. Do not serve
al the world’s needs; rather, make the system extensible so that additional needs can
be met in an upwardly compatible fashion.

+ The only thing worse than generalizing from one example is generalizing from no
examples at all.

« If aproblem is not completely understood, it is probably best to provide no solution
at all.

« If you can get 90 percent of the desired effect for 10 percent of the work, use the
simpler solution.

« Isolate complexity as much as possible.

+ Provide mechanism rather than policy. In particular, place user interface policy in
the clients' hands.

The first principle kept the wish list under control. Just because someone wanted some-
thing in the server, we did not feel obligated to add it. This kept us focused on the
important issues that made real applications work. This principle was a somewhat more
difficult touchstone to use during the design of the present version of X, given its appre-
ciably larger audience. We modified the principle to be *‘know of some real application
that will requireit.’”’

At each iteration of the X design, there was always more to do than time allowed. We
therefore focused on mechanisms with the broadest applicability and for which con-
sensus in the group could easily be achieved. For example, we focused on two-

March 26, 1992 2-v

X Window System

2-vi

dimensional graphics, explicitly deferring three-dimensional graphics.

At the same time, to avoid obsolescence, we designed the present version of X to be
extensible at both the protocol and library interfaces without requiring incompatible
changes to existing applications. Examples of extensions that we had in mind were
additional graphics models (such as GKS, PHIGS, and PostScript), real-time video, and
general programmability in the server. (We view programmability as smply one exam-
ple of an extension, not as the sole mechanism for extensibility; mere programmability
does not give support for video or high-performance support for graphics.)

During the design and implementation process, we generally suspected that any prob-
lems were just the tips of large icebergs. Expending effort to solve an immediate prob-
lem without first trying to generalize the problem is usually a mistake; a few related
examples often make a whole class of problems clear. This is not to say that we
ignored the first instance of a problem; often there were adequate solutions using exist-
ing mechanisms.

We attempted to avoid solutions to problems we did not fully understand. For example,
the preliminary design for the present version of X supported multiple input devices
(more than just a single keyboard and mouse). As we worked through the design, we
realized it had flaws that would take a lot of time and experimentation to correct. As a
result, we removed this support from the system, knowing that correct support could be
added later through the extension mechanism.

We aso tried to avoid winning a complexity merit badge. If we could get most of what
we needed with less complexity than a complete solution would require, we were wil-
ling to compromise our goals. Only history will decide if these trade-offs were success-
ful.

Much of the existing complexity is a result of providing support for external window
management; most programmers need not be concerned with this, particularly those
using an X toolkit. We expected that toolkits would hide various forms of tedium from
the programmer. For example, a program that displays ‘‘Hello World’ with
configurable colors and font and obeys window management conventions is about 150
lines of code when written using only the facilities of the X library. An equivalent pro-
gram written using a toolkit can have fewer than a dozen lines of code. Thus, it is
important to keep in mind that the X library is only one layer in a complete X program-
ming environment.

Isolation of complexity is necessary in large systems. A system in which every com-
ponent is intimately related to every other becomes difficult to change as circumstances
change. We therefore attempted to build as much as possible into client programs,
introducing only the minimum mechanisms required in the server.

Deciding what a system is not is as important as deciding what it is. For example, at
various times people urged that remote execution and general inter-client remote pro-
cedure calls be integral parts of X. They felt there were no established standards in
these areas, and they wanted X to be a self-contained environment. Asis often the case,
solving the immediate problem by adding to the existing framework rather than by
integrating into a larger framework is less work, but the result is not satisfactory for
long. The X protocol is correctly viewed as just one component in an overal

March 26, 1992

distributed systems architecture, not as the complete architecture by itself.

User interface design is difficult and currently quite diverse. Although global user inter-
face standards might someday be possible, we believed it prudent to promote the
cooperative coexistence of a variety of user interface styles and to support diverse user
communities and ongoing research activities. By separating window management func-
tions from the server and from normal applications and by layering user interface policy
in higher-level libraries on top of the X library, we allowed for experimentation without
forcing all usersto be guinea pigs. As aresult, many existing user interfaces have been
imported into the X environment. Having a‘‘pick one or roll your own’’ policy instead
of a‘‘love it or leave it"’ one has drawbacks,; applications developers must choose a
user interface style and user community. The X library and the protocol should be
remembered not as an end but a foundation.

As might have been predicted, X not only has become a fertile ground for experimenta-
tion in user interfaces but aso has become a source of market competition. Two major
user interface toolkits and window managers (with quite different look-and-feels) are
Motif! and Open Look.2 Applications using either can coexist simultaneously (although
they provide quite different results to the end user).

Significant research toolkits include InterViews, written in C++ at Stanford, the Andrew
system of CMU, several Common Lisp toolkits, and a dozen major window managers.
There are a number of user interface management systems and other application builders
for X.

All of this, of course, is to enable applications to be built easily and cheaply. These are
now appearing in quantity for X. It is by these that we must judge the success of X; by
this metric, we have only succeeded in attaining our goalsin 1989.

1 Motif, a registered trademark of the Open Software Foundation, is based on technol-
ogy from Hewlett-Packard and Digital Equipment Corporation.

2 Open Look, aregistered trademark of AT&T, is based on technology from AT& T and
Sun Microsystems.

History

X was born of necessity in 1984. Bob Scheifler was working at MIT’s Laboratory for
Computer Science (LCS) on the Argus distributed system and was in need of a decent
display environment for debugging multiple distributed processes. Jim Gettys, a Digital
engineer, was assigned to MIT Project Athena, an undergraduate education program
sponsored by Digital and IBM that would ultimately populate the MIT campus with
thousands of workstations.

Neither Digital nor IBM had a workstation product with a bitmap display in 1984. The
closest simulacrum available was from Digital—a VS100 display attached to a VAX.

Both Athena and LCS had VAX-11/750s, and Athena was in the process of acquiring
about 70 VS100s. VS100s were in field test at the time, and the firmware for them was

March 26, 1992 2-vii

X Window System

2-viii

unreliable. Athena lent one of the first VS100s to LCS in exchange for cooperative
work on the software. Our immediate goal was clear: we needed to build a window
system environment running under UNIX on VS100s for ourselves and the groups we
worked for. We had little thought of anything beyond these goals but wondered where
to begin. Little software was available elsewhere that was not encumbered by license or
portability.

Paul Asente and Brian Reid, then both at Stanford University, had developed a proto-
type window system, called W, to run under Stanford’s V operating system. W used a
network protocol and supported ‘‘dumb terminal’” windows and *‘transparent graphics'”’
windows with display lists maintained in the server. In the summer of 1983, Paul
Asente and Chris Kent, summer students at Digital’s Western Research Laboratory,

ported W to the VS100 under UNIX and were kind enough to give us a copy.

The V system has reasonably fast synchronous remote procedure call, and W in the V
environment was designed with a synchronous protocol. The port to UNIX retained the
synchronous communication even though communication in UNIX was easily five times
dower than in V. The combination of prototype VS100s with unreliable firmware and
W using slow communication was not encouraging, to say the least; one could easily
type faster than the terminal window could echo characters.

In May 1984, we received reliable VS100 hardware and firmware. That summer, Bob
Scheifler replaced the synchronous protocol of W with an asynchronous protocol and
replaced the display lists with immediate mode graphics. The result was sufficiently
different from W that continuing to call it W was inappropriate and would have caused
confusion, as W was in some limited use at Athena. With no particular thought about
the name and because the familial resemblance to W was still strong at that date, Bob
caled the result X. Much later, when the name became a serious issue, X had already
stuck and was used by too many people to permit a change.

Development was rapid during the next eight months. The first terminal emulator
(VT52) and window manager were written in the CLU programming language, the
language of choice in the research group where Bob worked. Bob continued develop-
ment of the server and the protocol, which went from version 1 to version 6 during this
period (the version number was incremented each time an incompatible change was
made). Mark Vandevoorde at Athena wrote a new VT100 terminal emulator in C, and
Jim Gettys worked on the X library and the UNIX support for starting the window sys-
tem. Late in 1984, we received faster VS100 firmware, causing the first round of per-
formance analysis and optimization. Within a few weeks, we were again hardware lim-
ited but had a much better understanding of performance issues.

By early 1985, many people inside Digital were using X, and plans were under way for
the first Digital UNIX workstation product, which was based on the MicroVAX-II. At
that time, support for UNIX in Digital was limited, and there was no chance of getting
any other window system except X on Digital hardware. Other systems were either
nonportable or were unavailable because of licensing problems (as was the case with
Andrew). X was the logical candidate. We had ported X version 6 to the QVSS
display on the MicroVAX. Ron Newman joined Project Athena at this time and worked
on documenting the X library, which was already in its third major revision.

March 26, 1992

We redesigned X to support color during the second quarter of 1985, with Digital’s
eventual VAXstation-11/GPX as the intended target. Although MIT had licensed ver-
sion 6 to a few outside groups for a brief time at nomina charge, a key decision was
made in the summer of 1985 not to license future versions of X. Instead, it would be
available to anyone at the cost of production. In September 1985, version 9 of X was
made publicly available, and the field test of the VAXstation-I1/GPX began. During
that fall, Brown University and MIT started porting X to the IBM RT/PC, which was in
field test at those universities. A problem with reading unaligned data on the RT forced
an incompatible change to the protocol; this was the only difference between version 9
and version 10.

During the fall, the first significant outside contributions of code to X started to appear
from several universities and from Digital. In January 1986, Digita announced the
VAXstation-11/GPX, which was the first commercial X implementation. Release 3 of X
(X10R3) was available in February and was a magjor watershed in X's development.

Although we were happy to see a magjor corporation incorporate X into its product line,
we knew the design was limited to the taste and needs of a small group of people. It
could solve just the problems we faced, and its hardware origins were still obvious in
key aspects of the design. We knew version 10 had inherent limitations that would
force major redesign within a few years, although it was certainly adequate for devel op-
ing many interesting applications.

Over the next few months, a strange phenomenon occurred. Many other corporations,
such as Hewlett-Packard, were basing products on version 10, and groups at universities
and elsewhere were porting X to other displays and systems, including Apollo Com-
puter and Sun Microsystems workstations. The server was even ported to the IBM
PC/AT. Somewhat later, Hewlett-Packard contributed their toolkit to the MIT distribu-
tion.

We grew tired of hearing comments such as ‘‘We like X, but there is this one thing you
ought to change.”” People were already declaring it a standard, which was, to our think-
ing, premature. Before long, however, we were confronted with a fundamental decision
about X's future. We seriously considered doing nothing; after all, X did amost every-
thing we needed it to, and what it did not do could be added without difficulty. Unfor-
tunately, this would leave many people using an inadequate platform for their work. In
the long run, X would either die because of its inadequacies, or it would spawn wildly
incompatible variations. Alternatively, based on feedback from users and developers,
we could undertake a second major redesign of X.

Although we were willing to do the design work, we knew that the resulting design
would be ambitious and would require much more implementation work than our
meager resources at MIT would permit. Fortunately, Digital’s Western Software
Laboratory (DECWSL) was between projects. This group had the required expertise,
including people who had contributed to pioneering Xerox window systems. More
importantly, these people were intimately familiar with X. Smokey Wallace,
DECWSL's manager, and Jim Gettys proposed the implementation of version 11, which
would then be given back to MIT for public distribution without a license. Digital
management quickly approved the proposal.

March 26, 1992 2-ix

X Window System

We started intensive protocol design in May 1986. No proprietary information was
used in the design process. Key contributors included Phil Karlton and Scott McGregor
of Digital. Dave Rosenthal of Sun Microsystems was invited to join Digital engineers
on the design team, and Bob Scheifler acted as the chief architect. At the first design
meeting, we decided it was not feasible to design a protocol that would be upwardly
compatible with version 10 and still provide the functionality essential for the range of
display hardware that had to be supported. With some reluctance, we abandoned com-
patibility with version 10 (although Todd Brunhoff of Tektronix has since shown that
one can build a reasonable *‘ compatibility server’” to display version 10 applications on
aversion 11 server).

We carried out most of the actual design work using the electronic mail facilities of the
DARPA Internet, which connects hundreds of networks around the country, including
MIT’s campus network and Digital’s engineering network. The entire group held only
three day-long meetings during the design process. During these meetings, we reached
a consensus on issues we could not resolve by mail. Even with group members on
opposite coasts, responses to most design issues were only a few minutes away. A
printed copy of all the messages exchanged during this time would be a stack of paper
several feet high. Without electronic mail, the design simply would not have been pos-
sible.

Once we had completed a preliminary protocol design, we invited people from other
companies and universities to review the specification. By August, we had a design
ready for public review, which was again carried out using electronic mail, courtesy of
the Internet. Design of the sample server implementation started at this time. Phil
Karlton and Susan Angebranndt of DECWSL designed and implemented the device-
independent parts of the server, and Raymond Drewry and Todd machine-independent
graphics library. Jim Gettys acted as the the X library architect and with Ron worked
on the redesign and implementation of the X library. Many other contributions came
from DECWSL as well, such as rewriting version 10 clients and the Xt toolkit intrinsics
(another story in itself).

During the fall of 1986, Digital decided to base its entire desktop workstation strategy
for ULTRIX, VMS, and MS-DOS on X. Although this was gratifying to us, it also
meant we had even more people to talk to. This resulted in some delay, but, in the end,
it also resulted in a better design. Ralph Swick of Digital joined Project Athena during
this period and played a vita role thoughout version 11's development. The last ver-
sion 10 release was made available in December 1986.

In January 1987, approximately 250 people attended the first X technical conference,
which was held at MIT. During the conference, eleven major computer hardware and
software vendors announced their support for X version 11 at an unprecedented press
conference.

Alpha testing of version 11 started in February 1988, and beta testing started three
months later at over 100 sites. Server back-ends and other code contributions came
from Apollo, Digital, Hewlett-Packard, IBM, Sun, and the University of California at
Berkeley. Tektronix lent Todd Brunhoff to MIT to help coordinate testing and integra-
tion, which was a godsend to us all. Texas Instruments provided an implementation of
a Common Lisp interface library, based on an interface specification by Bob Scheifler.

March 26, 1992

We made the first release of version 11 (V11R1) available on September 15, 1987.

The MIT X Consortium

Toward the end of the design phase of the version 11 protocol, the MIT principals were
feeling that perhaps it was time to reliquish control of X and let the industry take over,
although we had only vague ideas about what that might mean. Window system design
was something we had fallen into. We did not think of it as our real occupation, and it
seemed there was sufficient industry momentum for X to succeed. We made our feel-
ings known at the first X Technical Conference in January 1987 and during a few proto-
col design sessions.

We were somewhat surprised by the reaction, but this was just another instance of
underestimating the impact of X. Representatives of nine major computer vendors col-
lectively called for a meeting with MIT, held in June 1987; their consistent position was
that it could be fatal to X if MIT relinquished control. They argued that a vendor-
neutral architect was a key factor in the success of X. To make UNIX successful, it was
necessary to encourage application development by independent software vendors
(ISVs). Prior to X, 1SVs saw the UNIX marketplace as fragmented with multiple
proprietary graphics and windowing systems. X was bringing coherence to the market-
place. However, without continued vendor-neutral control, different segments of the
industry would surely take divergent paths, and interoperability would again be lost.

From this meeting came the idea of a more formal organization for controlling the evo-
lution of X, with MIT at the helm, and in January 1988 the MIT X Consortium was
born, with Bob Scheifler as its director. The goa of the Consortium is to promote
cooperation within the computer industry in the creation of standard software interfaces
at al layers in the X Window System environment. MIT’s role is to provide the
vendor-neutral architectural and administrative leadership required to make this work.

The Consortium is financially self-supporting from membership fees with membership
open to any organization. At present, over 65 companies as well as severa universities
and research organizations (which represent the bulk of the US and a considerable seg-
ment of the international computer industries) belong to the X Consortium.

The X Consortium hosted its fourth annual X conference in January 1990 (approxi-
mately 1300 people attended). The fourth release of version 11 was available January 3,
1990. At present, the X Consortium consists of over 70 organizations, including all
major US computer vendors and many international vendors.

The director of the X Consortium acts as the chief architect for all X specifications and
software and is the final authority for standards. The activities of the Consortium are
overseen by an MIT Steering Committee, which includes the director and one associate
director of LCS. The Steering Committee helps set policy and establish goals as well as
provides strategic guidance and review of the Consortium’s activities. An Advisory
Committee, which is made up of member representatives, meets regularly to review the
Consortium'’s plans, assess its progress, and suggest future directions.

March 26, 1992 2-xi

X Window System

2-Xii

The interests of the Consortium, which are quite broad, include the following:

« Incorporating three-dimensional graphics functionality (such as that provided by the
PHIGS international graphics standard)

« Incorporating live and still video display and control
« Incorporating scalable/outline font technology

« Incorporating security mechanisms in support of both commercial and government
requirements

« Incorporating digital image processing functionality

« Developing high-level toolkits to support the rapid construction of high-quality user
interfaces and to support the reuse of user interface components across applications

» Developing conventions to allow applications to operate reasonably under a variety
of externally controlled window management policies and to alow independent
applications to exchange meaningful data in a cooperative fashion

« Developing programming interfaces to simplify building internationalized applica-
tions that are capable of being tailored to a variety of languages and keyboard input
methods

« Developing control protocols and support services for X terminas (network-based
graphics terminals designed specifically to run the X server)

« Developing and maintaining software test suites for major system components

» Sponsoring an annua conference, open to the public, to promote the exchange of
technical information about X

The Consortium’s activities take place amost exclusively using electronic mail with
occasional mesetings only when required. As designs and specifications take shape,
interest groups are formed from experts in the participating organizations. Typically, a
small multi-organization architecture team leads the design with others acting as close
observers and reviewers. Once a complete specification is produced, it is submitted for
formal technical review by the Consortium as a proposed standard. The standards pro-
cess includes public review outside the Consortium and a demonstration of proof of
concept. Proof of concept typically requires a complete, public, portable implementa
tion of the specification. The MIT staff of the Consortium maintains a software and
documentation collection containing implementations of Consortium standards and a
wide variety of user-contributed software. It also makes periodic distributions of this
collection available to the public without license and for aminimal fee.

Various formal standards bodies have now taken a keen interest in X. The specification
of the X protocol is progressing toward the status of a national standard under the
auspices of the American National Standards Institute (ANSI), and the International
Standards Organization (ISO) has indicated its desire to review the resulting
specification for international standardization. The Institute of Electrical and Electronics
Engineers (IEEE) is currently considering several Consortium standards and several
industry-sponsored X toolkits for review toward ANSI standardization.

March 26, 1992

The Structure of This Book

This book consists of four main parts, each a standard specification produced by the
MIT X Consortium:

« Part |, ““Xlib—C Library X Interface,”’ is a reference manual for Xlib, the lowest
level C language X programming interface to the X Window System. The first
chapter provides a basic overview and establishes conventions used throughout Part
I. Chapter 2 deals with opening and closing connections and obtaining basic infor-
mation about the connected display. Chapters 3 and 4 explain how to create and
manipulate windows. Graphics capabilities are presented in chapters 5 and 6.
Chapters 7 and 9 describe window manager functions and data, and chapter 8
explains events and event-handling functions. Finally, chapter 10 describes a variety
of utility functions for keyboard input, command line parsing, region arithmetic, and
resource management.

« Part I1, **X Window System Protocol,’’ is the concise, precise specification of the X
protocol semantics. The protocol specification is independent of any particular pro-
gramming language, and as such, is an appropriate starting point for creating inter-
face libraries for other programming languages. C programmers will prefer the Xlib
reference to the protocol descriptions, although the protocol’s aternative description
may clarify points of confusion.

o Part Ill, ‘‘Inter-Client Communication Conventions Manual,”” aso known as the
ICCCM, discusses the conventions that govern inter-client communication. These
conventions are language-independent, do not impose any one user interface, and
cover the following areas: the selection mechanism, cut buffers, window managers,
session managers, and the manipulation of colormaps and input devices.

« Part 1V, ““X Logical Font Description,”” aso known as the XLFD, discusses the
conventions for font names and font properties, which when followed allow clients
to query and access fonts across X server implementations.

In addition, this book contains a glossary and a number of appendices. The glossary
provides definitions of the basic terminology used specifically in Parts | and |1 but that
also are relevant to Parts |1l and IV. Appendix A provides cross-reference information
between protocol requests and library functions. Appendix B provides the standard
predefined cursor shapes in Xlib. Appendix C provides information required to build
Xlib interfaces to protocol extensions. Appendix D provides information about those
X11 and X10 Xlib functions that have been superseded by newer X11 functions but are
provided for compatibility reasons. Appendix E provides the predefined keyboard sym-
bol (KEYSYM) encodings. Appendix F provides the bit and byte description of the X
protocol. Appendix G provides a list of the CharSet names that have been registered
with the X Consortium. Appendix H provides the Bitmap Distribution Format (BDF)
standard for font interchange.

March 26, 1992 2-xiii

X Window System

Part |. XLib—C Language X Interface

James Gettys Robert W. Scheifler Ron Newman

2-14 March 26, 1992

Chapter 1. Introduction to Xlib

The X Window System is a network-transparent window system that was designed at
MIT. X display servers run on computers with either monochrome or color bitmap
display hardware. The server distributes user input to and accepts output requests from
various client programs located either on the same machine or elsewhere in the network.
Xlib is a C subroutine library that application programs (clients) use to interface with
the window system by means of a stream connection. Although a client usually runs on
the same machine as the X server it is taking to, this need not be the case.

Part I, ‘‘Xlib — C Language X Interface,”’ is a reference guide to the low-level C
language interface to the X Window System protocol. It is neither a tutorial nor a user’s
guide to programming the X Window System. Rather, it provides a detailed description
of each function in the library as well as a discussion of the related background infor-
mation. It assumes a basic understanding of a graphics window system and of the C
programming language. Other higher-level abstractions (for example, those provided by
the toolkits for X) are built on top of the Xlib library. For further information about
these higher-level libraries, see the appropriate toolkit documentation. Part 11, ** X Win-
dow System Protocol,’” provides the definitive word on the behavior of X. Although
additional information appears here, the protocol document is the ruling document.

To provide an introduction to X programming, this chapter discusses:
+ Overview of the X Window System
« Errors
« Naming and argument conventions
« Programming considerations

« Formatting conventions

1.1 Overview of the X Window System

Some of the terms used in this book are unique to X, and other terms that are common
to other window systems have different meanings in X. You may find it helpful to refer

March 26, 1992 1-1

X Window System

1-2

to the glossary, which is located at the end of the book.

The X Window System supports one or more screens containing overlapping windows
or subwindows. A screen is a physical monitor and hardware, which can be either color
or black and white. There can be multiple screens for each display or workstation. A
single X server can provide display services for any number of screens. A set of screens
for a single user with one keyboard and one pointer (usualy a mouse) is caled a

display.

All the windows in an X server are arranged in strict hierarchies. At the top of each
hierarchy is a root window, which covers each of the display screens. Each root window
is partially or completely covered by child windows. All windows, except for root win-
dows, have parents. There is usualy at least one window for each application program.
Child windows may in turn have their own children. In this way, an application pro-
gram can create an arbitrarily deep tree on each screen. X provides graphics, text, and
raster operations for windows.

A child window can be larger than its parent. That is, part or al of the child window
can extend beyond the boundaries of the parent, but al output to a window is clipped
by its parent. If several children of a window have overlapping locations, one of the
children is considered to be on top of or raised over the others thus obscuring them.
Output to areas covered by other windows is suppressed by the window system unless
the window has backing store. If awindow is obscured by a second window, the second
window obscures only those ancestors of the second window, which are also ancestors
of the first window.

A window has a border zero or more pixels in width, which can be any pattern (pixmap)
or solid color you like. A window usually but not always has a background pattern,
which will be repainted by the window system when uncovered. Each window has its
own coordinate system. Child windows obscure their parents unless the child windows
(of the same depth) have no background, and graphic operations in the parent window
usually are clipped by the children.

Figure1-1. Window hierarchy
#ifdef BOOKREADER

March 26, 1992

Visible Screen

Areas enclosed by dashed lines are not

viewable. Windows labeled A and B are . .
children of the root window. A.1 and Arroduction to Xlib
are children of A; note that children are

clipped by their parent.

B is lower than A in the stacking hierarchy.

ZK-0407U-R

#endif

X does not guarantee to preserve the contents of windows. When part or all of a win-
dow is hidden and then brought back onto the screen, its contents may be lost. The
server then sends the client program an Expose event to notify it that part or al of the
window needs to be repainted. Programs must be prepared to regenerate the contents of
windows on demand.

X dso provides off-screen storage of graphics objects, called pixmaps. Single plane
(depth 1) pixmaps are sometimes referred to as bitmaps. Pixmaps can be used in most
graphics functions interchangeably with windows and are used in various graphics
operations to define patterns or tiles. Windows and pixmaps together are referred to as
drawables.

March 26, 1992 1-3

X Window System

Most of the functions in Xlib just add requests to an output buffer. These requests later
execute asynchronously on the X server. Functions that return values of information
stored in the server do not return (that is, they block) until an explicit reply is received
or an error occurs. You can provide an error handler, which will be called when the
error is reported.

If a client does not want a request to execute asynchronously, it can follow the request
with a call to XSync, which blocks until all previously buffered asynchronous events
have been sent and acted on. As an important side effect, the output buffer in Xlib is
always flushed by a call to any function that returns a value from the server or waits for
input.

Many Xlib functions will return an integer resource ID, which alows you to refer to
objects stored on the X server. These can be of type Window,
Font, Pixmap, Colormap, Cursor, and GContext, as defined in the file <x11/X.h>.1
Note that None is the universa NULL resource ID or aom.

These resources are created by requests and are destroyed (or freed) by requests or when
connections are closed. Most of these resources are potentially sharable between appli-
cations, and in fact, windows are manipulated explicitly by window manager programs.
Fonts and cursors are shared automatically across multiple screens. Fonts are loaded and
unloaded as needed and are shared by multiple clients. Fonts are often cached in the
server. Xlib provides no support for sharing graphics contexts between applications.

Client programs are informed of events. Events may either be side effects of a request
(for example, restacking windows generatesExpose events) or completely asynchronous
(for example, from the keyboard). A client program asks to be informed of events.
Because other applications can send events to your application, programs must be
prepared to handle (or ignore) events of al types.

Input events (for example, a key pressed or the pointer moved) arrive asynchronously
from the server and are queued until they are requested by an explicit call (for example,
XNextEvent or XWindowEvent). In addition, some library functions (for example,
XRaiseWindow) generate Expose and ConfigureRequest events. These events also
arrive asynchronously, but the client may wish to explicitly wait for them by calling
XSync after calling a function that can cause the server to generate events.

1 The <> has the meaning defined by the # include statement of the C compiler and is a
file relative to a well-known directory. On POSIX-conformant systems, this is
/usr/include.

1.2 Errors

1-4

Some functions return Status, an integer error indication. If the function fails, it returns
a zero. If the function returns a status of zero, it has not updated the return arguments.

Because C does not provide multiple return values, many functions must return their
results by writing into client-passed storage. By default, errors are handled either by a
standard library function or by one that you provide. Functions that return pointers to

March 26, 1992

Introduction to Xlib

strings return NULL pointers if the string does not exist.

The X server reports protocol errors at the time that it detects them. If more than one
error could be generated for a given request, the server can report any of them.

Because Xlib usually does not transmit requests to the server immediately (that is, it
buffers them), errors can be reported much later than they actually occur. For debugging
purposes, however, Xlib provides a mechanism for forcing synchronous behavior (see
section 8.12.1). When synchronization is enabled, errors are reported as they are gen-
erated.

When Xlib detects an error, it calls an error handler, which your program can provide. If
you do not provide an error handler, the error is printed, and your program terminates.

1.3 Naming and Argument Conventuions within Xlib

Xlib follows a number of conventions for the naming and syntax of the functions. Given
that you remember what information the function requires, these conventions are
intended to make the syntax of the functions more predictable.

The major naming conventions are:

« To differentiate the X symbols from the other symbols, the library uses mixed case
for external symbols. It leaves lowercase for variables and all uppercase for user
macros, as per existing convention.

« All Xlib functions begin with a capital X.
+ The beginnings of all function names and symbols are capitalized.

« All user-visible data structures begin with a capital X. More generally, anything that
a user might dereference begins with a capital X.

+ Macros and other symbols do not begin with a capital X. To distinguish them from
all user symbols, each word in the macro is capitalized.

« All elements of or variables in a data structure are in lowercase. Compound words,
where needed, are constructed with underscores ().

« The display argument, where used, is aways first in the argument list.

« All resource objects, where used, occur at the beginning of the argument list
immediately after the display argument.

« When a graphics context is present together with another type of resource (most
commonly, a drawable), the graphics context occurs in the argument list after the
other resource. Drawables outrank all other resources.

« Source arguments always precede the destination arguments in the argument list.

« The x argument always precedes the y argument in the argument list.

March 26, 1992 1-5

X Window System

The width argument always precedes the height argument in the argument list.

Where the X, y, width, and height arguments are used together, the x and y argu-
ments always precede the width and height arguments.

Where a mask is accompanied with a structure, the mask always precedes the
pointer to the structure in the argument list.

Xlib defines the Boolean values of True and False.

1.4 Programming Considerations

The major programming considerations are:

« Keyboards are the greatest variable between different manufacturers’ workstations. If
you want your program to be portable, you should be particularly conservative here.

« Many display systems have limited amounts of off-screen memory. If you can, you
should minimize use of pixmaps and backing store.

» The user should have control of his screen real estate. Therefore, you should write
your applications to react to window management rather than presume control of the
entire screen. What you do inside of your to-level window, however, is up to your
application. For further information, see chapter 9.

« Coordinates and sizes in X are actually 16-bit quantities. They usually are declared
asan “‘int”" in the interface (int is 16 bits on some machines). Values larger than 16
bits are truncated silently. Sizes (width and height) are unsigned quantities. This
decision was taken to minimize the bandwidth required for a given level of perfor-
mance.

1.5 Formating Conventions

1-6

The following conventions are used throughout part I:

+ Global symbols are printed in this special font. These can be either function names,

symbols defined in include files, or structure names. Arguments are printed in ital-
ics.

« Each function is introduced by a general discussion that distinguishes it from other

functions. The function declaration itself follows, and each argument is specifically
explained. General discussion of the function, if any is required, follows the argu-
ments. Where applicable, the last paragraph of the explanation lists the possible Xlib
error codes that the function can generate. For a complete discussion of the Xlib
error codes, see section 8.12.2.

March 26, 1992

Introduction to Xlib

» To eliminate any ambiguity between those arguments that you pass and those that a
function returns to you, the explanations for all arguments that you pass start with
the word specifies or, in the case of multiple arguments, the word specify. The
explanations for all arguments that are returned to you start with the word returns
or, in the case of multiple arguments, the word return. The explanations for all
arguments that you can pass and are returned start with the words specifies and
returns.

« Any pointer to a structure that is used to return a value is designated as such by the
_return suffix as part of its name. All other pointers passed to these functions are
used for reading only. A few arguments use pointers to structures that are used for
both input and output and are indicated by using the _in_out suffix.

March 26, 1992 1-7

Chapter 2. Display Functions

Before your program can use a display, you must establish a connection to the X
server. Once you have established a connection, you then can use the Xlib macros and
functions discussed in this chapter to return information about the display. This chapter
discusses how to:

+ Open (connect to) the display

« Obtain information about the display, image format, and screen
« Free client-created data

+ Close (disconnect from) a display

The chapter concludes with a general discussion of what occurs when the connection to
the X server is closed.

2.1 Opening the Display

To open a connection to the X server that controls a display, use XOpenDisplay.

Di spl ay *XOpenDi spl ay (display_name)
char *display_name;

display_name Specifies the hardware display name, which determines the
display and communications domain to be used. On a POSIX-
conformant system, if the display_name is NULL, it defaults to
the value of the DISPLAY environment variable.

On POSIX-conformant systems, the display name or DISPLAY environment variable is
astring in the format:

hostname: number. screen_number

hostname Specifies the name of the host machine on which the display is
physically attached. You follow the hosthame with either a sin-
gle colon () or a double colon (::).

March 26, 1992 2-1

X Window System

number Specifies the number of the display server on that host
machine. You may optionally follow this display number with
a period (). A single CPU can have more than one display.
Multiple displays are usually numbered starting with zero.

screen_number Specifies the screen to be used on that server. Multiple screens
can be controlled by a single X server. The screen_number sets
an internal variable that can be accessed by using the
DefaultScreen macro or the XDefaultScreen function if you
are using languages other than C (see section 2.2.1).

For example, the following would specify screen 2 of display 0 on the machine named
mit-athena:

mt-at hena: 0.2

The XOpenDisplay function returns aDisplay structure that serves as the connection to
the X server and that contains all the information about that X server. XOpenDisplay
connects your application to the X server through TCP, UNIX domain, or DECnet com-
munications protocols, or through some local inter-process communication protocol. |If
the hostname is a host machine name and a single colon () separates the hostname and
display number, XOpenDisplay connects using TCP streams. If the hostname is not
specified, Xlib uses whatever it believes is the fastest transport. If the hostname is a
host machine name and a double colon (::) separates the hostname and display number,
XOpenDisplay connects using DECnet. A single X server can support any or all of
these transport mechanisms simultaneously. A particular Xlib implementation can sup-
port many more of these transport mechanisms.

If successful, XOpenDisplay returns a pointer to a Display structure, which is defined
in <X11/Xlib.h>. If XOpenDisplay does not succeed, it returns
NULL. After a successful call to XOpenDisplay, al of the screens in the display can
be used by the client. The screen number specified in the display _name argument is
returned by the DefaultScreen macro (or the XDefaultScreen function). You can
access elements of the Display and Screen structures only by using the information
macros or functions. For information about using macros and functions to obtain infor-
mation from the Display structure, see section 2.2.1.

X servers may implement various types of access control mechanisms (see section
7.11).

2.2 Obtaining Information about the Display, |mage For -

2-2

mats, or Screens

The Xlib library provides a number of useful macros and corresponding functions that
return data from the Display structure. The macros are used for C programming, and
their corresponding function equivalents are for other language bindings. This section
discusses the:

March 26, 1992

221

Display Functions

+ Display macros
+ Image format macros
 Screen macros

All other members of the Display structure (that is, those for which no macros are
defined) are private to Xlib and must not be used. Applications must never directly
modify or inspect these private members of the Display structure.

Note: The XDisplayWidth, XDisplayHeight, XDisplayCells, XDisplay-
Planes, XDisplayWidthMM, and XDisplayHeightMM functions in the
next sections are misnamed. These functions really should be named
Screenwhatever and XScreenwhatever, not Displaywhatever or
XDisplaywhatever. Our apologies for the resulting confusion.

Display Macros

Applications should not directly modify any part of the Display and Screen structures.
The members should be considered read-only, although they may change as the result of
other operations on the display.

The following lists the C language macros, their corresponding function equivalents that
are for other language bindings, and what data they both can return.

Al'| Pl anes

unsi gned | ong XAl | Pl anes()

Both return a value with al bits set to 1 suitable for use in a plane argument to a pro-
cedure.

Both BlackPixel and WhitePixel can be wused in implementing a mono-
chrome application. These pixel values are for permanently alocated entries in the
default colormap. The actual RGB (red, green, and blue) values are settable on some
screens and, in any case, may not actually be black or white. The names are intended to
convey the expected relative intensity of the colors.

Bl ackPi xel (display, screen_number)
unsi gned | ong XBl ackPi xel (display, screen_number)

Di spl ay *display;
i nt screen_number;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.
Both return the black pixel value for the specified screen.

Wi t ePi xel (display, screen_number)

March 26, 1992 2-3

X Window System

2-4

unsi gned | ong XWi t ePi xel (display, screen_number)
Di spl ay *display;
i nt screen_number;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.
Both return the white pixel value for the specified screen.
Connect i onNunber (display)
i nt XConnecti onNunber (display)
Di spl ay *display;
display Specifies the connection to the X server.

Both return a connection number for the specified display. On a POSIX-conformant
system, this is the file descriptor of the connection.

Def aul t Col or map(display, screen_number)
Col or map XDef aul t Col or map(display, screen_number)

Di spl ay *display;
i nt screen_number;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the default colormap ID for allocation on the specified screen. Most routine
allocations of color should be made out of this colormap.

Def aul t Dept h(display, screen_number)
i nt XDef aul t Dept h(display, screen_number)

Di spl ay *display;
i nt screen_number;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the depth (number of planes) of the default root window for the specified
screen. Other depths may also be supported on this screen (see XMatchVisualinfo).

To determine the number of depths that are available on a given screen, use XList-
Depths.

i nt *XLi st Dept hs(display, screen_number, count_return)
Di spl ay *display;
i nt screen_number;
i nt *count_return;

display Specifies the connection to the X server.

March 26, 1992

Display Functions

screen_number Specifies the appropriate screen number on the host server.
count_return Returns the number of depths.

The XListDepths function returns the array of depths that are available on the specified
screen. If the specified screen_number is valid and sufficient memory for the array can
be alocated, XListDepths sets count_return to the number of available depths. Other-
wise, it does not set count_return and returns NULL. To release the memory allocated
for the array of depths, use XFree.

Def aul t GC(display, screen_number)
GC XDef aul t GC(display, screen_number)

Di spl ay *display;
i nt screen_number;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the default graphics context for the root window of the specified screen.
This GC is created for the convenience of simple applications and contains the default
GC components with the foreground and background pixel values initialized to the
black and white pixels for the screen, respectively. You can modify its contents freely
because it is not used in any Xlib function. This GC should never be freed.

Def aul t Root W ndow(display)
W ndow XDef aul t Root W ndow(display)
Di spl ay *display;
display Specifies the connection to the X server.
Both return the root window for the default screen.
Def aul t Scr eenO Di spl ay (display)
Screen *XDef aul t Scr eenOf Di spl ay (display)
Di spl ay *display;
display Specifies the connection to the X server.
Both return a pointer to the default screen.
ScreenO™ Di spl ay(display, screen_number)
Screen *XScreenO Di spl ay (display, screen_number)

Di spl ay *display;
i nt screen_number;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return a pointer to the indicated screen.

March 26, 1992 2-5

X Window System

2-6

Def aul t Scr een(display)
i nt XDef aul t Scr een(display)
Di spl ay *display;
display Specifies the connection to the X server.

Both return the default screen number referenced by the XOpenDisplay function. This
macro or function should be used to retrieve the screen number in applications that will
use only a single screen.

Def aul t Vi sual (display, screen_number)
Vi sual *XDef aul t Vi sual (display, screen_number)

Di spl ay *display;
i nt screen_number;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the default visual type for the specified screen. For further information
about visual types, see section 3.1.

Di spl ayCel | s(display, screen_number)
i nt XDi spl ayCel | s(display, screen_number)

Di spl ay *display;
i nt screen_number;

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.
Both return the number of entries in the default colormap.

Di spl ayPl anes(display, screen_number)

i nt XDi spl ayPl anes(display, screen_number)

Di spl ay *display;
i nt screen_number;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the depth of the root window of the specified screen. For an explanation of
depth, see the glossary.

Di spl ayStri ng(display)

char *XDi spl ayStri ng(display)
Di spl ay *display;

display Specifies the connection to the X server.

March 26, 1992

Display Functions

Both return the string that was passed to XOpenDisplay when the current display was
opened. On POSIX-conformant systems, if the passed string was NULL, these return
the value of the DISPLAY environment variable when the current display was opened.

These are useful to applications that invoke the fork system call and want to open a new
connection to the same display from the child process as well as for printing error mes-

sages.

Last KnownRequest Processed(display)

unsi gned | ong XLast KnownRequest Pr ocessed(display)
Di spl ay *display;

display Specifies the connection to the X server.

Both extract the full serial number of the last request known by Xlib to have been pro-
cessed by the X server. Xlib automatically sets this number when replies, events, and
errors are received.

Next Request (display)
unsi gned | ong XNext Request (display)
Di spl ay *display;
display Specifies the connection to the X server.

Both extract the full serial number that is to be used for the next request. Seria
numbers are maintained separately for each display connection.

Pr ot ocol Ver si on(display)
i nt XProtocol Versi on(display)
Di spl ay *display;
display Specifies the connection to the X server.

Both return the major version number (11) of the X protocol associated with the con-
nected display.

Pr ot ocol Revi si on(display)
i nt XProt ocol Revi si on(display)
Di spl ay *display;
display Specifies the connection to the X server.

Bath return the minor protocol revision number of the X server.
QLengt h(display)

i nt XQLengt h(display)
Di spl ay *display;

display Specifies the connection to the X server.

March 26, 1992 2-7

X Window System

222

2-8

Both return the length of the event queue for the connected display. Note that there
may be more events that have not been read into the queue yet (see XEventsQueued).

Root W ndow(display, screen_number)
W ndow XRoot W ndow(display, screen_number)

Di spl ay *display;
i nt screen_number;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the root window. These are useful with functions that need a drawable of a
particular screen and for creating top-level windows.

Scr eenCount (display)
i nt XScreenCount (display)
Di spl ay *display;
display Specifies the connection to the X server.
Both return the number of available screens.
Ser ver Vendor (display)
char *XServer Vendor (display)
Di spl ay *display;
display Specifies the connection to the X server.

Both return a pointer to a null-terminated string that provides some identification of the
owner of the X server implementation.

Vendor Rel ease(display)
i nt XVendor Rel ease(display)
Di spl ay *display;
display Specifies the connection to the X server.

Both return a number related to a vendor’ s release of the X server.

Image Format Functions and M acros

Applications are required to present data to the X server in a format that the server
demands. To help simplify applications, most of the work required to convert the data
is provided by Xlib (see sections 6.7 and 10.9).

The XPixmapFormatValues structure provides an interface to the pixmap format infor-
mation that is returned a the time of a connection setup. It

March 26, 1992

Display Functions

contains:

typedef struct {
i nt depth;
int bits_per_ pixel;
int scanline_pad;

} XPi xmapFor mat Val ues;

To obtain the pixmap format information for a given display, use XList-
PixmapFormats.

XPi xmapFor mat Val ues * XLi st Pi xnapFor mat s(display, count_return)

Di spl ay *display;
i nt *count_return;

display Specifies the connection to the X server.
count_return Returns the number of pixmap formats that are supported by the
display.

The XListPixmapFormats function returns an array of XPixmapFormatValues struc-
tures that describe the types of Z format images supported by the specified display. |If
insufficient memory is available, XListPixmapFormats returns NULL. To free the allo-
cated storage for the XPixmapFormatValues structures, use XFree.

The following lists the C language macros, their corresponding function equivalents that
are for other language bindings, and what data they both return for the specified server
and screen. These are often used by toolkits as well as by simple applications.

| mageByt eOr der (display)
i nt Xl nageByt eOr der (display)
Di spl ay *display;
display Specifies the connection to the X server.

Both specify the required byte order for images for each scanline unit in XY format
(bitmap) or for each pixel value in Z format. The macro or function can return either
LSBFirst or MSBFirst.

Bi t mapUni t (display)
i nt XBit mapUnit (display)
Di spl ay *display;
display Specifies the connection to the X server.

Both return the size of a bitmap’s scanline unit in bits. The scanline is calculated in
multiples of this value.

Bi t mapBi t Or der (display)

i nt XBi tnmapBit O der (display)
Di spl ay *display;

March 26, 1992 2-9

X Window System

display Specifies the connection to the X server.

Within each bitmap unit, the left-most bit in the bitmap as displayed on the screen is
either the least-significant or most-significant bit in the unit. This macro or function can
return LSBFirst or MSBFirst.

Bi t mapPad (display)
i nt XBi t mapPad(display)
Di spl ay *display;
display Specifies the connection to the X server.
Each scanline must be padded to a multiple of bits returned by this macro or function.

Di spl ayHei ght (display, screen_number)

i nt XDi spl ayHei ght (display, screen_number)
Di spl ay *display;
i nt screen_number;

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.
Both return an integer that describes the height of the screen in pixels.

Di spl ayHei ght M display, screen_number)

i nt XDi spl ayHei ght M display, screen_number)

Di spl ay *display;
i nt screen_number;

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.
Both return the height of the specified screen in millimeters.

Di spl ayW dt h(display, screen_number)

i nt XDi spl ayW dt h(display, screen_number)

Di spl ay *display;
i nt screen_number;

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.
Both return the width of the screen in pixels.

Di spl ayW dt hMW(display, screen_number)

i nt XDi spl ayW dt hMW(display, screen_number)

Di spl ay *display;
i nt screen_number;

2-10 March 26, 1992

2.2.3

Display Functions

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the width of the specified screen in millimeters.

Screen Information Macros

The following lists the C language macros, their corresponding function equivalents that
are for other language bindings, and what data they both can return. These macros or
functions al take a pointer to the appropriate screen structure.

Bl ackPi xel OF Scr een(screen)

unsi gned | ong XBl ackPi xel OF Scr een(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the black pixel value of the specified screen.

Wi t ePi xel OF Scr een(screen)

unsi gned | ong XWi t ePi xel OF Scr een(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the white pixel value of the specified screen.

Cel | sOF Scr een(screen)

i nt XCell sOF Screen(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the number of colormap cells in the default colormap of the specified
screen.

Def aul t Col or mapOF Scr een(screen)

Col or map XDef aul t Col or mapCOF Scr een(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the default colormap of the specified screen.

Def aul t Dept hOF Scr een(screen)
i nt XDef aul t Dept hOf Scr een(screen)
Screen *screen;

March 26, 1992 2-11

X Window System

2-12

screen Specifies the appropriate Screen structure.
Both return the depth of the root window.
Def aul t GCOf Scr een(screen)
GC XDef aul t GCOF Scr een(screen)
Screen *screen;
screen Specifies the appropriate Screen structure.

Both return a default graphics context (GC) of the specified screen, which has the same
depth as the root window of the screen. The GC must never be freed.

Def aul t Vi sual OF Scr een(screen)
Vi sual *XDef aul t Vi sual OF Scr een(screen)
Screen *screen;
screen Specifies the appropriate Screen structure.

Both return the default visual of the specified screen. For information on visual types,
see section 3.1.

DoesBacki ngSt or e (screen)
i nt XDoesBacki ngSt or e(screen)
Screen *screen;
screen Specifies the appropriate Screen structure.

Both return a value indicating whether the screen supports backing stores. The value
returned can be one of WhenMapped, NotUseful, or Always (see section 3.2.4).

DoesSaveUnder s (screen)
Bool XDoesSaveUnder s (screen)
Screen *screen;
screen Specifies the appropriate Screen structure.

Both return a Boolean value indicating whether the screen supports save unders. |If
True, the screen supports save unders. If False, the screen does not support save unders
(see section 3.2.5).

Di spl ayOFf Scr een(screen)
Di spl ay *XDi spl ayOF Scr een(screen)
Screen *screen;
screen Specifies the appropriate Screen structure.
Both return the display of the specified screen.

i nt XScreenNunber O Scr een(screen)
Screen *screen;

March 26, 1992

Display Functions

screen Specifies the appropriate Screen structure.

The XScreenNumberOfScreen function returns the screen index number of the
specified screen.

Event MaskOf Scr een(screen)
| ong XEvent MaskOf Scr een(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the event mask of the root window for the specified screen at connection
setup time.

W dt hOF Scr een(screen)
i nt XW dt hOF Scr een(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.
Both return the width of the specified screen in pixels.
Hei ght OF Scr een(screen)
i nt XHei ght OF Scr een(screen)

Screen *screen;
screen Specifies the appropriate Screen structure.
Both return the height of the specified screen in pixels.
W dt hMMOF Scr een(screen)
int XW dt hMMOF Scr een(screen)

Screen *screen;
screen Specifies the appropriate Screen structure.
Both return the width of the specified screen in millimeters.
Hei ght MMOF Scr een(screen)
i nt XHei ght MMOF Scr een(screen)

Screen *screen;
screen Specifies the appropriate Screen structure.
Both return the height of the specified screen in millimeters.
MaxCmapsOF Scr een(screen)
i nt XMaxCrmapsOF Scr een(screen)

Screen *screen;

screen Specifies the appropriate Screen structure.

March 26, 1992 2-13

X Window System

Both return the maximum number of installed colormaps supported by the specified
screen (see section 7.3).

M nCmapsOF Scr een(screen)
int XM nCmapsOf Scr een(screen)
Screen *screen;
screen Specifies the appropriate Screen structure.

Both return the minimum number of installed colormaps supported by the specified
screen (see section 7.3).

Pl anesCOF Scr een(screen)
i nt XPl anesOf Scr een(screen)
Screen *screen;
screen Specifies the appropriate Screen structure.
Both return the depth of the root window.
Root W ndowOr Scr een(screen)
W ndow XRoot W ndowCF Scr een(screen)
Screen *screen;
screen Specifies the appropriate Screen structure.

Both return the root window of the specified screen.

2.3 Generating a NoOperation Protocol Request

To execute a NoOperation protocol regquest, use XNoOp.

XNoOp (display)
Di spl ay *display;

display Specifies the connection to the X server.

The XNoOp function sends a NoOperation protocol request to the X server, thereby
exercising the connection.

2.4 Freeing Client-Created Data

To free any in-memory data that was created by an Xlib function, use XFree.

2-14 March 26, 1992

Display Functions

XFr ee(data)
char *data;

data Specifies the data that is to be freed.

The XFree function is a general-purpose Xlib routine that frees the specified data. You
must use it to free any objects that were allocated by Xlib.

2.5 Closing the Display

To close adisplay or disconnect from the X server, use XCloseDisplay.

XC oseDi spl ay (display)
Di spl ay *display;

display Specifies the connection to the X server.

The XCloseDisplay function closes the connection to the X server for the display
specified in the Display structure and destroys all windows, resource IDs (Window,
Font, Pixmap, Colormap, Cursor, and GContext), or other resources that the client has
created on this display, unless the close-down mode of the resource has been changed
(see XSetCloseDownMode). Therefore, these windows, resource IDs, and other
resources should never be referenced again or an error will be generated. Before exit-
ing, you should call XCloseDisplay explicitly so that any pending errors are reported as
XCloseDisplay performs afinal XSync operation.

XCloseDisplay can generate a BadGC error.

2.6 X Server Connection Close Operations

When the X server's connection to a client is closed either by an explicit cal to
XCloseDisplay or by a process that exits, the X server performs the following
automatic operations:

« It disowns all selections owned by the client (see XSetSelectionOwner).

« It performs an XUngrabPointer and XUngrabKeyboard if the client has actively
grabbed the pointer or the keyboard.

« It performs an XUngrabServer if the client has grabbed the server.
« It releases al passive grabs made by the client.

« It marks all resources (including colormap entries) allocated by the client either as
permanent or temporary, depending on whether the close-down mode is Retain-
Permanent or RetainTemporary. However, this does not prevent other client
applications from explicitly destroying the resources (see XSetCloseDownMode).

March 26, 1992 2-15

X Window System

2-16

When the close-down mode is DestroyAll, the X server destroys all of a client’s
resources as follows:

It examines each window in the client’s save-set to determine if it is an inferior
(subwindow) of a window created by the client. (The save-set is a list of other
clients windows, which are referred to as save-set windows.) If so, the X server
reparents the save-set window to the closest ancestor so that the save-set window is
not an inferior of a window created by the client. The reparenting leaves unchanged
the absolute coordinates (with respect to the root window) of the upper-left outer
corner of the save-set window.

It performs a MapWindow request on the save-set window if the save-set window
is unmapped. The X server does this even if the save-set window was not an infe-
rior of awindow created by the client.

It destroys all windows created by the client.

It performs the appropriate free request on each nonwindow resource created by the
client in the server (for example, Font, Pixmap, Cursor, Colormap, and GCon-
text).

It frees all colors and colormap entries allocated by a client application.

Additional processing occurs when the last connection to the X server closes.
An X server goes through a cycle of having no connections and having some connec-
tions. When the last connection to the X server closes as a result of a connection clos-
ing with the close_mode of DestroyAll, the X server does the following:

It resets its state as if it had just been started. The X server begins by destroying all
lingering resources from clients that have terminated in RetainPermanent or
RetainTemporary mode.

It deletes all but the predefined atom identifiers.
It deletes all properties on al root windows (see chapter 4).

It resets al device maps and attributes (for example, key click, bell volume, and
acceleration) as well as the access control list.

It restores the standard root tiles and cursors.
It restores the default font path.

It restores the input focus to state PointerRoot.

However, the X server does not reset if you close a connection with a close-down mode
set to RetainPermanent or RetainTemporary.

March 26, 1992

Chapter 3. Window Functions

In the X Window System, a window is a rectangular area on the screen that lets you
view graphic output. Client applications can display overlapping and nested windows
on one or more screens that are driven by X servers on one or more machines. Clients
who want to create windows must first connect their program to the X server by calling
XOpenDisplay. This chapter begins with a discussion of visua types and window
attributes. The chapter continues with a discussion of the Xlib functions you can use to:

« Create windows
«+ Destroy windows
+ Map windows

+ Unmap windows

Configure windows
« Change the stacking order
+ Change window attributes
« Trandate window coordinates
This chapter also identifies the window actions that may generate events.

Note that it is vital that your application conform to the established conventions for
communicating with window managers for it to work well with the various window
managers in use (see section 9.1). Toolkits generally adhere to these conventions for
you, relieving you of the burden. Toolkits aso often
supersede many functions in this chapter with versions of their own. Refer to the docu-
mentation for the toolkit you are using for more information.

3.1 Visual Types

On some display hardware, it may be possible to deal with color resources in more than
one way. For example, you may be able to deal with a screen of either 12-bit depth

March 26, 1992 3-1

X Window System

3-2

with arbitrary mapping of pixel to color (pseudo-color) or 24-bit depth with 8 bits of the
pixel dedicated to each of red, green, and blue. These different ways of dealing with the
visual aspects of the screen are called visuals. For each screen of the display, there may
be a list of valid visual types supported at different depths of the screen. Because
default windows and visual types are defined for each screen, most simple applications
need not deal with this complexity. Xlib provides macros and functions that return the
default root window, the default depth of the default root window, and the default visual
type (see sections 2.2.1 and 10.8).

Xlib uses an opague Visual structure that contains information about the possible color
mapping. The visual utility functions (see section 10.8) use an XVisuallnfo structure to
return this information to an application. The members of this structure pertinent to this
discussion are class, red mask, green mask, blue mask, bits per rgh, and
colormap_size. The class member specifies one of the possible visua classes of the
screen and can be StaticGray, StaticColor, TrueColor, GrayScale, PseudoColor, or
DirectColor.

The following concepts may serve to make the explanation of visual types clearer. The
screen can be color or grayscale, can have a colormap that is writable or read-only, and
can aso have a colormap whose indices are decomposed into separate RGB pieces, pro-
vided one is not on a grayscale screen. This leads to the following diagram:

Figure3-1. Visua Types
#ifdef BOOKREADER

Color Grayscale
R/O RW R/O RW
Undecomposed Static Pseudo Static Gray
Colormap Color Color Gray Scale
Decomposed True Direct
Colormap Color Color

Homaf e HARDCOPY
ZK-0213U-R

March 26, 1992

Window Functions

#endif

Conceptually, as each pixel is read out of video memory for display on the screen, it
goes through a look-up stage by indexing into a colormap. Colormaps can be manipu-
lated arbitrarily on some hardware, in limited ways on other hardware, and not at all on
other hardware. The visual types affect the colormap and the RGB values in the follow-

ing ways:
+ For PseudoColor, a pixel value indexes a colormap to produce independent RGB
values, and the RGB values can be changed dynamically.

« GrayScale is treated the same way as PseudoColor except that the primary that
drives the screen is undefined. Thus, the client should aways store the same vaue
for red, green, and blue in the colormaps.

For DirectColor, a pixel value is decomposed into separate RGB subfields, and each
subfield separately indexes the colormap for the corresponding value. The RGB
values can be changed dynamically.

«» TrueColor is treated the same way as DirectColor except that the colormap has
predefined, read-only RGB values. These RGB values are server-dependent but pro-
vide linear or near-linear ramps in each primary.

StaticColor is treated the same way as PseudoColor except that the colormap has
predefined, read-only, server-dependent RGB values.

StaticGray is treated the same way as StaticColor except that the RGB values are
equal for any single pixel value, thus resulting in shades of gray. StaticGray with a
two-entry colormap can be thought of as monochrome.

The red_mask, green_mask, and blue_mask members are only defined for DirectColor
and TrueColor. Each has one contiguous set of bits with no intersections. The
bits per_rgb member specifies the log base 2 of the number of distinct color values
(individually) of red, green, and blue. Actual RGB values are unsigned 16-hit numbers.
The colormap_size member defines the number of available colormap entries in a newly
created colormap. For DirectColor and TrueColor, this is the size of an individual pixel
subfield.

To obtain the visual 1D from aVisual, use XVisuallDFromVisual.

Figure 3-2. Pseudo color, gray scale, static color or static gray
#ifdef BOOKREADER

March 26, 1992 3-3

To Display

X Window System
Possible Pixel Values
Are 0 Through 15

0 0
#endif #ifdef HARDCOPY Red Green Blue

ZK-0408U-R

#endif

Figure 3-3. Direct color
#ifdef BOOKREADER

3-4 March 26, 1992

Window Functions

»

#endif #ifdef HAI!nr‘an 0

March 26, 1992

Blue

ZK-0409U-R

3-5

X Window System

#endif

Vi sual | D XVi sual | DFr onVi sual (visual)
Vi sual *visual;
visual Specifies the visual type.

The XVisuallDFromVisual function returns the visual 1D for the specified visual type.

3.2 Window Attributes

3-6

All InputOutput windows have a border width of zero or more pixels, an optiona
background, an event suppression mask (which suppresses propagation of events from
children), and a property list (see section 4.2). The window border and background can
be a solid color or a pattern, called a tile. All windows except the root have a parent
and are clipped by their parent. If a window is stacked on top of another window, it
obscures that other window for the purpose of input. If a window has a background
(almost al do), it obscures the other window for purposes of output. Attempts to output
to the obscured area do nothing, and no input events (for example, pointer motion) are
generated for the obscured area.

Windows also have associated property lists (see section 4.2).
Both InputOutput and InputOnly windows have the following common attributes,
which are the only attributes of an InputOnly window:

+ win-gravity

+ event-mask

« do-not-propagate-mask

« override-redirect

« cursor

If you specify any other attributes for an InputOnly window, a BadMatch error
results.

InputOnly windows are used for controlling input events in situations where InputOut-
put windows are unnecessary. InputOnly windows are invisible; can only be used to
control such things as cursors, input event generation, and grabbing; and cannot be used
in any graphics requests. Note that InputOnly windows cannot have InputOutput win-
dows as inferiors.

Windows have borders of a programmable width and pattern as well as a background
pattern or tile. Pixel values can be used for solid colors. The background and border
pixmaps can be destroyed immediately after creating the window if no further explicit
references to them are to be made. The pattern can either be relative to the parent or
absolute. If ParentRelative, the parent’s background is used.

March 26, 1992

Window Functions

When windows are first created, they are not visible (not mapped) on the screen. Any
output to awindow that is not visible on the screen and that does not have backing store
will be discarded. An application may wish to create a window long before it is
mapped to the screen. When a window is eventually
mapped to the screen (using XMapWindow), the X server generates an Expose event
for the window if backing store has not been maintained.

A window manager can override your choice of size, border width, and position for a
top-level window. Your program must be prepared to use the actual size and position
of the top window. It is not acceptable for a client application to resize itself unless in
direct response to a human command to do so. Instead, either your program should use
the space given to it, or if the space is too small for any useful work, your program
might ask the user to resize the window. The border of your top-level window is con-
sidered fair game for window managers.

To set an attribute of a window, set the appropriate member of the XSet-
WindowAttributes structure and OR in the corresponding value bitmask in your subse-
guent calls to XCreateWindow and XChangeWindowAttributes, or use one of the
other convenience functions that set the appropriate attribute. The symbols for the value
mask bits and the XSetWindowAittributes structure are:

/* Wndow attribute value mask bits */
#define CwBackPixmap(1L<<0)
#define CwBackpPixel (1L<<1)
#defi ne CWBorderPixmap(1L<<2)
#defi ne CwBorderPixel (1L<<3)
#defi ne CWBItGravity (1L<<4)
#define CWWinGravity (1L<<5)
#define CwBackingStore(1L<<6)
#defi ne CwBackingPlanes(1L<<7)
#defi ne CWBackingPixel(1L<<8)
#defi ne CwOverrideRedirect(1L<<9)
#define CwSaveUnder (1L<<10)
#defi ne CWEventMask (1L<<11)
#defi ne CwDontPropagate(1L<<12)
#define CWColormap (1L<<13)
#defi ne CWCursor (1L<<14)

/* Val ues */

typedef struct {

Pi xmap background_pi xmap; /* background, None,

unsi gned | ong background_pi xel ;
Pi xmap border _pi xmap;

unsi gned | ong border_pi xel;

int bit_gravity;

int wn_gravity;

i nt backi ng_store;

unsi gned | ong backi ng_pl anes;
unsi gned | ong backi ng_pi xel ;
Bool save_under;

March 26, 1992

/*
/*
/*
/*
/*
/*
/*
/*
/*

background pixel */

border of the w ndow
border pixel value */
one of bit gravity va
one of the wi ndow gra
NotUseful, WhenMapped,
pl anes to be preserve
value to use in resto
shoul d bits under be

3-7

X Window System

| ong event _mask; /* set of events that sh
| ong do_not _propagat e_nask; /* set of events that sh
Bool override_redirect; /* bool ean val ue for ove
Col or map col or map; /* color nmap to be assoc
Cur sor cursor; /* cursor to be displaye
} XSet W ndowAttri but es;

The following lists the defaults for each window attribute and indicates whether the

attribute is applicable to InputOutput and InputOnly windows:

Attribute Default InputOutput InputOnly
background-pixmap None Yes No
background-pixel Undefined Yes No
border-pixmap CopyFromParent Yes No
border-pixel Undefined Yes No
bit-gravity ForgetGravity Yes No
win-gravity NorthWestGravity Yes Yes
backing-store NotUseful Yes No
backing-planes All ones Yes No
backing-pixel zero Yes No
save-under False Yes No
event-mask empty set Yes Yes
do-not-propagate-mask empty set Yes Yes
override-redirect False Yes Yes
colormap CopyFromParent Yes No
cursor None Yes Yes

321

Background Attribute

3-8

Only InputOutput windows can have a background. You can set the background of an
InputOutput window by using a pixel or a pixmap.

The background-pixmap attribute of a window specifies the pixmap to be used for a
window’s background. This pixmap can be of any size, athough some sizes may be
faster than others. The background-pixel attribute of a window specifies a pixel value
used to paint a window’s background in a single color.

You can set the background-pixmap to a pixmap, None (default), or ParentRelative.
You can set the background-pixel of a window to any pixel value (no default). If you
specify a background-pixel, it overrides either the default background-pixmap or any
value you may have set in the background-pixmap. A pixmap of an undefined size that
is filled with the background-pixel is used for the background. Range checking is not
performed on the background pixel; it simply is truncated to the appropriate number of
bits.

March 26, 1992

322

Window Functions

If you set the background-pixmap, it overrides the default. The background-pixmap and
the window must have the same depth, or a BadMatch error results. If you set
background-pixmap to None, the window has no defined background. If you set the
background-pixmap to ParentRelative :

« The parent window’ s background-pixmap is used. The child window, however, must
have the same depth as its parent, or aBadMatch error results.

« If the parent window has a background-pixmap of None, the window also has a
background-pixmap of None.

« A copy of the parent window’s background-pixmap is not made. The parent’s
background-pixmap is examined each time the child window’s background-pixmap
is required.

+ The background tile origin aways aligns with the parent window’s background tile
origin. If the background-pixmap is not ParentRelative, the background tile origin
is the child window’s origin.

Setting a new background, whether by setting background-pixmap or background-pixel,
overrides any previous background. The background-pixmap can be freed immediately
if no further explicit reference is made to it (the X server will keep a copy to use when
needed). If you later draw into the pixmap used for the background, what happens is
undefined because the X implementation is free to make a copy of the pixmap or to use
the same pixmap.

When no valid contents are available for regions of a window and either the regions are
visible or the server is maintaining backing store, the server automatically tiles the
regions with the window’s background unless the window has a background of None.

If the background is None, the previous screen contents from other windows of the
same depth as the window are simply left in place as long as the contents come from
the parent of the window or an inferior of the parent. Otherwise, the initial contents of
the exposed regions are undefined. Expose events are then generated for the regions,
even if the background-pixmap is None (see chapter 8).

Border Attribute

Only InputOutput windows can have a border. You can set the border of an InputOut-
put window by using a pixel or a pixmap.

The border-pixmap attribute of a window specifies the pixmap to be used for a
window’s border. The border-pixel attribute of a window specifies a pixmap of
undefined size filled with that pixel be used for a window’s border. Range checking is
not performed on the background pixel; it simply is truncated to the appropriate number
of bits. The border tile origin is always the same as the background tile origin.

You can aso set the border-pixmap to a pixmap of any size (some may be faster than
others) or to CopyFromParent (default). You can set the border-pixel to any pixel
value (no default).

March 26, 1992 3-9

X Window System

3.2.3

3-10

If you set a border-pixmap, it overrides the default. The border-pixmap and the window
must have the same depth, or aBadMatch error results. If you set the border-pixmap
to CopyFromParent, the parent window's border-pixmap is copied. Subsequent
changes to the parent window’s border attribute do not affect the child window. How-
ever, the child window must have the same depth as the parent window, or aBadMatch
error results.

The border-pixmap can be freed immediately if no further explicit reference is made to
it. If you later draw into the pixmap used for the border, what happens is undefined
because the X implementation is free either to make a copy of the pixmap or to use the
same pixmap. |If you specify a border-pixel, it overrides either the default border-
pixmap or any value you may have set in the border-pixmap. All pixels in the
window’s border will be set to the border-pixel. Setting a new border, whether by set-
ting border-pixel or by setting border-pixmap, overrides any previous border.

Output to a window is always clipped to the inside of the window. Therefore, graphics
operations never affect the window border.

Gravity Attributes

The bit gravity of a window defines which region of the window should be retained
when an InputOutput window is resized. The default value for the bit-gravity attribute
is ForgetGravity. The window gravity of a window allows you to define how the
InputOutput or InputOnly window should be repositioned if its parent is resized. The
default value for the win-gravity attribute is NorthWestGravity.

If the inside width or height of a window is not changed and if the window is moved or
its border is changed, then the contents of the window are not lost but move with the
window. Changing the inside width or height of the window causes its contents to be
moved or lost (depending on the bit-gravity of the window) and causes children to be
reconfigured (depending on their win-gravity). For a change of width and height, the
(X, y) pairs are defined:

Gravity Direction Coordinates
NorthWestGravity (0,0
NorthGravity (Width/2, 0)
NorthEastGravity (Width, 0)
WestGravity (O, Height/2)
CenterGravity (Width/2, Height/2)
EastGravity (Width, Height/2)
SouthWestGravity (O, Height)
SouthGravity (Width/2, Height)
SouthEastGravity (Width, Height)

When a window with one of these bit-gravity values is resized, the corresponding pair
defines the change in position of each pixel in the window. When a window with one

March 26, 1992

Window Functions

of these win-gravities has its parent window resized, the corresponding pair defines the
change in position of the window within the parent. When awindow is so repositioned,
aGravityNotify event is generated (see chapter 8).

A bit-gravity of StaticGravity indicates that the contents or origin should not move
relative to the origin of the root window. |If the change in size of the
window is coupled with a change in position (x, y), then for bit-gravity the change in
position of each pixed is (=%, -y), and for win-gravity the change
in position of a child when its parent is so resized is (X, —y). Note that StaticGravity
still only takes effect when the width or height of the window is changed, not when the
window is moved.

Figure 3-4. Window gravity
#ifdef BOOKREADER

#endif #ifdef HARDCOPY P! zk-0410U.ps 22 #endif

A bit-gravity of ForgetGravity indicates that the window's contents are aways dis-
carded after a size change, even if a backing store or save under has been requested.
The window is tiled with its background and zero or more Expose events are generated.
If no background is defined, the existing screen contents are not altered. Some X
servers may also ignore the specified bit-gravity and always generate Expose events.

The contents and borders of inferiors are not affected by their parent’s bit-gravity. A
server is permitted to ignore the specified bit-gravity and use Forget instead.

March 26, 1992 3-11

X Window System

324

3.25

3-12

A win-gravity of UnmapGravity is like NorthWestGravity (the window is not
moved), except the child is also unmapped when the parent is resized, and an Unmap-
Notify event is generated.

Backing Store Attribute

Some implementations of the X server may choose to maintain the contents of Inpu-
tOutput windows. If the X server maintains the contents of a window, the off-screen
saved pixels are known as backing store. The backing store advises the X server on
what to do with the contents of a window. The backing-store attribute can be set to
NotUseful (default), WhenMapped, or Always.

A backing-store attribute of NotUseful advises the X server that maintaining contents is
unnecessary, athough some X implementations may till choose to maintain contents
and, therefore, not generate Expose events. A backing-store attribute of WhenMapped
advises the X server that maintaining contents of obscured regions when the window is
mapped would be beneficial. In this case, the server may generate an Expose event
when the window is created. A backing-store attribute of Always advises the X server
that maintaining contents even when the window is unmapped would be beneficial.
Even if the window is larger than its parent, this is a request to the X server to maintain
complete contents, not just the region within the parent window boundaries. While the
X server maintains the window’s contents, Expose events normally are not generated,
but the X server may stop maintaining contents at any time.

When the contents of obscured regions of a window are being maintained, regions
obscured by noninferior windows are included in the destination of graphics requests
(and source, when the window is the source). However, regions obscured by inferior
windows are not included.

Save Under Flag

Some server implementations may preserve contents of InputOutput windows under
other InputOutput windows. This is not the same as preserving the contents of a win-
dow for you. You may get better visual appeal if transient windows (for example, pop-
up menus) request that the system preserve the screen contents under them, so the tem-
porarily obscured applications do not have to repaint.

You can set the save-under flag to True or False (default). If save-under is True, the X
server is advised that, when this window is mapped, saving the contents of windows it
obscures would be beneficial.

March 26, 1992

3.2.6

3.2.7

3.2.8

3.29

Window Functions

Backing Planes and Backing Pixel Attributes

You can set backing planes to indicate (with bits set to 1) which bit planes of an Inpu-
tOutput window hold dynamic data that must be preserved in backing store and during
save unders. The default value for the backing-planes attribute is al bits set to 1. You
can set backing pixel to specify what bits to use in planes not covered by backing
planes. The default value for the backing-pixel attribute is all bits set to 0. The X
server is free to save only the specified bit planes in the backing store or the save under
and is free to regenerate the remaining planes with the specified pixel value. Any
extraneous hits in these values (that is, those bits beyond the specified depth of the win-
dow) may be simply ignored. If you request backing store or save unders, you should
use these members to minimize the amount of off-screen memory required to store your
window.

Event Mask and Do Not Propagate Mask Attributes

The event mask defines which events the client is interested in for this InputOutput or
InputOnly window (or, for some event types, inferiors of that window). The do-not-
propagate-mask attribute defines which events should not be propagated to ancestor
windows when no client has the event type selected in this InputOutput or InputOnly
window. Both masks are the bhitwise inclusive OR of one or more of the valid event
mask hits. You can specify that no maskable events are reported by setting NoE-
ventMask (default).

Override Redirect Flag

To control window placement or to add decoration, a window manager often needs to
intercept (redirect) any map or configure request. Pop-up windows, however, often
need to be mapped without a window manager getting in the way. To control whether
an InputOutput or InputOnly window is to ignore these structure control facilities, use
the override-redirect flag.

The override-redirect flag specifies whether map and configure requests on this window
should override a SubstructureRedirectMask on the parent.
You can set the override-redirect flag to True or False (default). Window managers use
this information to avoid tampering with pop-up windows (see also chapter 9).

Colormap Attribute

The colormap attribute specifies which colormap best reflects the true colors of the

March 26, 1992 3-13

X Window System

InputOutput window. The colormap must have the same visua type as the window, or
aBadMatch error results. X servers capable of supporting multiple hardware colormaps
can use this information, and window managers can use it for calls to XinstallColor-
map. You can set the colormap attribute to a colormap or to CopyFromParent
(default).

If you set the colormap to CopyFromParent, the parent window’s colormap is copied
and used by its child. However, the child window must have the same visua type as
the parent, or aBadMatch error results. The parent window must not have a colormap
of None, or aBadMatch error results. The colormap is copied by sharing the color-
map object between the child and parent, not by making a complete copy of the color-
map contents. Subsequent changes to the parent window’s colormap attribute do not
affect the child window.

3.2.10 Cursor Attribute

The cursor attribute specifies which cursor is to be used when the pointer is in the Inpu-
tOutput or InputOnly window. You can set the cursor to a cursor or None (default).

If you set the cursor to None, the parent’s cursor is used when the pointer is in the
InputOutput or InputOnly window, and any change in the parent’s cursor will cause
an immediate change in the displayed cursor. By calling XFreeCursor, the cursor can
be freed immediately as long as no further explicit referenceto it is made.

3.3 Creating Windows

Xlib provides basic ways for creating windows, and toolkits often supply higher-level
functions specifically for creating and placing top-level windows, which are discussed in
the appropriate toolkit documentation. If you do not use a toolkit, however, you must
provide some standard information or hints for the window manager by using the Xlib
inter-client communication functions (see chapter 9).

If you use Xlib to create your own top-level windows (direct children of the root win-
dow), you must observe the following rules so that all applications interact reasonably
across the different styles of window management:

« You must never fight with the window manager for the size or placement of your
top-level window.

« You must be able to deal with whatever size window you get, even if this means
that your application just prints a message like ‘‘ Please make me bigger’’ in its win-
dow.

+ You should only attempt to resize or move top-level windows in direct response to a
user request. If a request to change the size of a top-level window fails, you must

3-14 March 26, 1992

Window Functions

be prepared to live with what you get. You are free to resize or move the children
of top-level windows as necessary. (Toolkits often have facilities for automatic
relayout.)

« If you do not use a toolkit that automatically sets standard window properties, you
should set these properties for top-level windows before mapping them.

For further information, see chapter 9, *‘Inter-Client Communication Functions,”” and
part 111, the ** Inter-Client Communication Conventions Manual.”’

XCreateWindow is the more general function that allows you to set specific window
attributes when you create a window. XCreateSimpleWindow creates a window that
inherits its attributes from its parent window.

The X server acts as if InputOnly windows do not exist for the purposes of graphics
reguests, exposure processing, and VisibilityNotify events. An InputOnly window can-
not be used as a drawable (that is, as a source or destination for graphics requests).

InputOnly and

InputOutput windows act identically in other respects (properties, grabs, input control,
and so on). Extension packages can define other classes of windows.

To create an unmapped window and set its window attributes, use XCreateWindow.

W ndow XCr eat eW ndow(display, parent, x, y, width, height, border_width, depth,
class, visual, valuemask, attributes)
Di spl ay *display;
W ndow parent;
int x, vy;
unsi gned i nt width, height;
unsi gned i nt border_width;
i nt depth;
unsi gned int class;
Vi sual *visual
unsi gned | ong valuemask;
XSet W ndowAt t ri but es *attributes;

display Specifies the connection to the X server.
parent Specifies the parent window.
X, Y Specify the x and y coordinates, which are the top-left outside

corner of the created window’'s borders and are relative to the
inside of the parent window’s borders.

width, height Specify the width and height, which are the created window’s
inside dimensions and do not include the created window’s
borders. The dimensions must be nonzero, or a BadValue

error results.
border_width Specifies the width of the created window’ s border in pixels.
depth Specifies the window’s depth. A depth of CopyFromParent

means the depth is taken from the parent.

March 26, 1992 3-15

X Window System

3-16

class Specifies the created window’s class. You can pass InputOut-
put,
InputOnly, or CopyFromParent. A class of CopyFrom-
Parent means the class is taken from the parent.

visual Specifies the visual type. A visua of CopyFromParent means
the visua type is taken from the parent.
valuemask Specifies which window attributes are defined in the attributes

argument. This mask is the bitwise inclusive OR of the valid
attribute mask bits. If vauemask is zero, the attributes are
ignored and are not referenced.

attributes Specifies the structure from which the values (as specified by
the value mask) are to be taken. The value mask should have
the appropriate bits set to indicate which attributes have been
Set in the structure.

The XCreateWindow function creates an unmapped subwindow for a specified parent
window, returns the window 1D of the created window, and causes the X server to gen-
erate a CreateNotify event. The created window is placed on top in the stacking order
with respect to siblings.

The border_width for an InputOnly window must be zero, or a BadMatch error
results. For class InputOutput, the visual type and depth must be a combination sup-
ported for the screen, or aBadMatch error results. The depth need not be the same as
the parent, but the parent must not be a window of class InputOnly, or a BadMatch
error results. For an InputOnly window, the depth must be zero, and the visual must
be one supported by the screen. If either condition is not met, a BadMatch error
results. The parent window, however, may have any depth and class. If you specify
any invalid window attribute for a window, a BadMatch error results.

The created window is not yet displayed (mapped) on the user’s display. To display the
window, cal XMapWindow. The new window initially uses the same cursor as its
parent. A new cursor can be defined for the new window by calling XDefineCursor.
The window will not be visible on the screen unless it and al of its ancestors are
mapped and it is not obscured by any of its ancestors.

XCreateWindow can generate BadAlloc, BadColor, BadCursor, BadMatch, BadPix-
map, BadValue, and BadWindow errors.

To create an unmapped InputOutput subwindow of a given parent window, use
XCreateSimpleWindow.

W ndow XCr eat eSi npl eW ndow(display, parent, x, y, width, height,
border, background)
Di spl ay *display;
W ndow parent;
int x, vy;
unsi gned i nt width, height;
unsi gned i nt border_width;
unsi gned | ong border;

March 26, 1992

border_width,

Window Functions

unsi gned | ong background;

display
parent

Xy

width, height

border_width
border

background

Specifies the connection to the X server.

Specifies the parent window. and are relative to the inside of
the parent window’s borders

Specify the x and y coordinates which are the top-left outside
corner of the new window’s borders.

Specify the width and height, which are the created window’s
inside dimensions and do not include the created window’s
borders. The dimensions must be nonzero, or a BadValue
error results.

Specifies the width of the created window’s border in pixels.
Specifies the border pixel value of the window.

Specifies the background pixel value of the window.

The XCreateSimpleWindow function creates an unmapped InputOutput subwindow
for a specified parent window, returns the window 1D of the created window, and causes
the X server to generate a CreateNotify event. The created window is placed on top in
the stacking order with respect to siblings. Any part of the window that extends outside
its parent window is clipped. The border_width for an InputOnly window must be
zero, or a BadMatch error results. XCreateSimpleWindow inherits its depth, class,
and visual from its parent. All other window attributes, except background and border,
have their default values.

XCreateSimpleWindow can generate BadAlloc, BadMatch, BadValue, and BadWin-

dow errors.

3.4 Destroying Windows

Xlib provides functions that you can use to destroy a window or destroy al subwindows

of awindow.

To destroy awindow and all of its subwindows, use XDestroyWindow.

XDest r oyW ndow(display, w)
Di spl ay *display;

W ndow w;

display
w

Specifies the connection to the X server.

Specifies the window.

The XDestroyWindow function destroys the specified window as well as al of its
subwindows and causes the X server to generate a DestroyNotify event for each win-
dow. The window should never be referenced again. If the window specified by the w
argument is mapped, it is unmapped automatically. The ordering of the DestroyNotify

March 26, 1992

3-17

X Window System

events is such that for any given window being destroyed, DestroyNotify is generated
on any inferiors of the window before being generated on the window itself. The order-
ing among siblings and across subhierarchies is not otherwise constrained. If the win-
dow you specified is a root window, no windows are destroyed. Destroying a mapped
window will generate Expose events on other windows that were obscured by the win-
dow being destroyed.

XDestroyWindow can generate aBadWindow error.
To destroy all subwindows of a specified window, use XDestroySubwindows.
XDest r oySubwi ndows (display, w)

Di spl ay *display;
W ndow w;

display Specifies the connection to the X server.
w Specifies the window.

The XDestroySubwindows function destroys all inferior windows of the specified win-
dow, in bottom-to-top stacking order. It causes the X server to generate a DestroyNo-
tify event for each window. If any mapped subwindows were actually destroyed, XDes-
troySubwindows causes the X server to generate Expose events on the specified win-
dow. This is much more efficient than deleting many windows one at a time because
much of the work need be performed only once for all of the windows, rather than for
each window. The subwindows should never be referenced again.

XDestroySubwindows can generate aBadwWindow error.

3.5 Mapping Windows

3-18

A window is considered mapped if a XMapWindow call has been made on it. It may
not be visible on the screen for one of the following reasons:

« It is obscured by another opagque window.
« One of its ancestors is not mapped.
« It isentirely clipped by an ancestor.

Expose events are generated for the window when part or all of it becomes visible on
the screen. A client receives the Expose events only if it has asked for them. Windows
retain their position in the stacking order when they are unmapped.

A window manager may want to control the placement of subwindows. If Substruc-
tureRedirectMask has been selected by a window manager on a parent window (usu-
aly aroot window), a map request initiated by other clients on a child window is not
performed, and the window manager is sent a MapRequest event. However, if the
override-redirect flag on the child had been set to True (usually only on pop-up menus),
the map request is performed.

March 26, 1992

Window Functions

A tiling window manager might decide to reposition and resize other clients windows
and then decide to map the window to its final location. A window manager that wants
to provide decoration might reparent the child into a frame first. For further informa-
tion, see section 3.2.8 and chapter 8. Only a single client at a time can select for Sub-
structureRedirectMask.

Similarly, asingle client can select for ResizeRedirectMask on a parent window. Then,
any attempt to resize the window by another client is suppressed, and the client receives
aResizeRequest event.

To map a given window, use XMapWindow.

XMapW ndow(display, w)
Di spl ay *display;
W ndow w;

display Specifies the connection to the X server.
w Specifies the window.

The XMapWindow function maps the window and all of its subwindows that have had
map requests. Mapping a window that has an unmapped ancestor does not display the
window but marks it as eligible for display when the ancestor becomes mapped. Such a
window is called unviewable. When al its ancestors are mapped, the window becomes
viewable and will be visible on the screen if it is not obscured by another window. This
function has no effect if the window is already mapped.

If the override-redirect of the window is False and if some other client has selected
SubstructureRedirectMask on the parent window, then the X server generates a
MapRequest event, and the XMapWindow function does not map the window. Oth-
erwise, the window is mapped, and the X server generates a MapNotify event.

If the window becomes viewable and no earlier contents for it are remembered, the X
server tiles the window with its background. If the window’s background is undefined,
the existing screen contents are not altered, and the X server generates zero or more
Expose events. If backing-store was maintained while the window was unmapped, no
Expose events are generated. |f backing-store will now be maintained, a full-window
exposure is aways generated. Otherwise, only visible regions may be reported. Similar
tiling and exposure take place for any newly viewable inferiors.

If the window is an InputOutput window, XMapWindow generates Expose events on
each InputOutput window that it causes to be displayed. If the client maps and paints
the window and if the client begins processing events, the window is painted twice. To
avoid this, first ask for Expose events and then map the window, so the client processes
input events as usual. The event list will include Expose for each window that has
appeared on the screen. The client’s normal response to an Expose event should be to
repaint the window. This method usually leads to simpler programs and to proper
interaction with window managers.

XMapWindow can generate a BadWindow error.

To map and raise a window, use XMapRaised.

March 26, 1992 3-19

X Window System

XMapRai sed(display, w)
Di spl ay *display;
W ndow w;

display Specifies the connection to the X server.
w Specifies the window.

The XMapRaised function essentialy is similar to XMapWindow in that it maps the
window and all of its subwindows that have had map requests. However, it also raises
the specified window to the top of the stack. For additional information, see
XMapWindow.

XMapRaised can generate multiple BadwWindow errors.
To map al subwindows for a specified window, use XMapSubwindowvs.

XMapSubwi ndows (display, w)
Di spl ay *display;
W ndow w;

display Specifies the connection to the X server.
w Specifies the window.

The XMapSubwindows function maps all subwindows for a specified window in top-
to-bottom stacking order. The X server generates Expose events on each newly
displayed window. This may be much more efficient than mapping many windows one
at atime because the server needs to perform much of the work only once, for al of the
windows, rather than for each window.

XMapSubwindows can generate aBadWindow error.

3.6 Unmapping Windows

3-20

Xlib provides functions that you can use to unmap a window or al subwindows.
To unmap a window, use XUnmapWindow.

XUnmapW ndow(display, w)
Di spl ay *display;
W ndow w;

display Specifies the connection to the X server.
w Specifies the window.

The XUnmapWindow function unmaps the specified window and causes the X server
to generate an UnmapNotify event. If the specified window is already unmapped,
XUnmapWindow has no effect. Normal exposure processing on formerly obscured
windows is performed. Any child window will no longer be visible until another map
call is made on the parent. In other words, the subwindows are still mapped but are not

March 26, 1992

Window Functions

visible until the parent is mapped. Unmapping a window will generate Expose events
on windows that were formerly obscured by it.

XUnmapWindow can generate a BadWindow error.
To unmap all subwindows for a specified window, use XUnmapSubwindows.

XUnmapSubwi ndows (display, w)
Di spl ay *display;
W ndow w;

display Specifies the connection to the X server.
w Specifies the window.

The XUnmapSubwindows function unmaps all subwindows for the specified window
in bottom-to-top stacking order. It causes the X server to generate an UnmapNotify
event on each subwindow and Expose events on formerly obscured windows. Using
this function is much more efficient than unmapping multiple windows one at a time
because the server needs to perform much of the work only once, for all of the win-
dows, rather than for each window.

XUnmapSubwindows can generate a BadWindow error.

3.7 Configuring Windows

Xlib provides functions that you can use to move a window, resize a window, move and
resize a window, or change a window’s border width. To change one of these parame-
ters, set the appropriate member of the XWindowChanges structure and OR in the
corresponding value mask in subsequent calls to XConfigureWindow. The symbols
for the value mask bits and the XwindowChanges structure are:

/* Configure w ndow val ue mask bits */
#define CwX (1<<0)
#define Cwy (1<<1)
#define Cwwidth (1<<2)
#define CWHeight (1<<3)
#defi ne CWBorderwWidth(1<<4)
#define CWwSibling(1<<5)
#define CwsStackMode(1<<6)
/* Val ues */
t ypedef struct {

int x, y;

int width, height;

i nt border _wi dth;

W ndow si bl i ng;

i nt stack node;
} XW ndowChanges;

March 26, 1992 3-21

X Window System

3-22

The x and y members are used to set the window’s x and y coordinates, which are rela-
tive to the parent’s origin and indicate the position of the upper-left outer corner of the
window. The width and height members are used to set the inside size of the window,
not including the border, and must be nonzero, or aBadValue error results. Attempts
to configure a root window have no effect.

The border_width member is used to set the width of the border in pixels. Note that
setting just the border width leaves the outer-left corner of the window in a fixed posi-
tion but moves the absolute position of the window’s origin. If you attempt to set the
border-width attribute of an InputOnly window nonzero, aBadMatch error results.

The sibling member is used to set the sibling window for stacking operations. The
stack_mode member is used to set how the window is to be restacked and can be set to
Above, Below, Toplf, Bottomlf, or Opposite.

If the override-redirect flag of the window is False and if some other client has selected
SubstructureRedirectMask on the parent, the X server generates a ConfigureRequest
event, and no further processing is performed.
Otherwise, if some other client has selected ResizeRedirectMask on the window and
the inside width or height of the window is being changed, a ResizeRequest event is
generated, and the current inside width and height are used instead. Note that the
override-redirect flag of the window has no effect on ResizeRedirectMask and that Sub-
structureRedirectMask on the parent has precedence over ResizeRedirectMask on the
window.

When the geometry of the window is changed as specified, the window is restacked
among siblings, and a ConfigureNotify event is generated if the state of the window
actually changes. GravityNotify events are generated after ConfigureNotify events. If
the inside width or height of the window has actually changed, children of the window
are affected as specified.

If awindow’s size actualy changes, the window’s subwindows move according to their
window gravity. Depending on the window’s bit gravity, the contents of the window
also may be moved (see section 3.2.3).

If regions of the window were obscured but how are not, exposure processing is per-
formed on these formerly obscured windows, including the window itself and its inferi-
ors. As aresult of increasing the width or height, exposure processing is also performed
on any new regions of the window and any regions where window contents are lost.

The restack check (specifically, the computation for Bottomlf, Toplf, and Opposite) is
performed with respect to the window’s final size and position (as controlled by the
other arguments of the request), not its initial position. If a sibling is specified without
a stack_mode, aBadMatch error results.

If asibling and a stack_mode are specified, the window is restacked as follows:

Above The window is placed just above the sibling.
Below The window is placed just below the sibling.
Toplf If the sibling occludes the window, the window is placed at the

top of the stack.

March 26, 1992

Window Functions

Bottomlf If the window occludes the sibling, the window is placed at the
bottom of the stack.

Opposite If the sibling occludes the window, the window is placed at the
top of the stack. If the window occludes the sibling, the win-
dow is placed at the bottom of the stack.

If a stack_mode is specified but no sibling is specified, the window is restacked as fol-
lows:

Above The window is placed at the top of the stack.
Below The window is placed at the bottom of the stack.
Toplf If any sibling occludes the window, the window is placed at the

top of the stack.

Bottomlf If the window occludes any sibling, the window is placed at the
bottom of the stack.

Opposite If any sibling occludes the window, the window is placed at the
top of the stack. If the window occludes any sibling, the win-
dow is placed at the bottom of the stack.

Attempts to configure a root window have no effect.
To configure awindow’s size, location, stacking, or border, use XConfigureWindow.

XConf i gur eW ndow(display, w, value_mask, values)
Di spl ay *display;
W ndow w;
unsi gned i nt value_mask;
XW ndowChanges *values;

display Specifies the connection to the X server.
w Specifies the window to be reconfigured.
value_mask Specifies which values are to be set using information in the

values structure. This mask is the bitwise inclusive OR of the
valid configure window values hits.

values Specifies the XWindowChanges structure.

The XConfigureWindow function uses the values specified in the XWindowChanges
structure to reconfigure a window’s size, position, border, and stacking order. Values
not specified are taken from the existing geometry of the window.

If asibling is specified without a stack_mode or if the window is not actually a sibling,
aBadMatch error results. Note that the computations for Bottomlf, Toplf, and Opposite
are performed with respect to the window’s final geometry (as controlled by the other
arguments passed to XConfigureWindow), not its initial geometry. Any backing store
contents of the window, its inferiors, and other newly visible windows are either dis-
carded or changed to reflect the current screen contents (depending on the implementa-
tion).

March 26, 1992 3-23

X Window System

3-24

XConfigureWindow can generate BadMatch, BadValue, and BadWindow efrors.
To move awindow without changing its size, use XMoveWindow.

XMoveW ndow(display, w, X, V)
Di spl ay *display;

W ndow w;
int x, y;
display Specifies the connection to the X server.
w Specifies the window to be moved. of the window's border or
the window itself if it has no border
X, Y Specify the x and y coordinates which define the new location

of the top-left pixel of the window’s border or the window itself
if it has no border.

The XMoveWindow function moves the specified window to the specified x and y
coordinates, but it does not change the window’s size, raise the window, or change the
mapping state of the window. Moving a mapped window may or may not lose the
window’s contents depending on if the window is obscured by nonchildren and if no
backing store exists. If the contents of the window are lost, the X server generates
Expose events. Moving a mapped window generates Expose events on any formerly
obscured windows.

If the override-redirect flag of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a ConfigureRequest
event, and no further processing is performed. Otherwise, the window is moved.

XMoveWindow can generate aBadwWindow error.

To change a window's size without changing the upper-left coordinate, use
XResizeWindow.

XResi zeW ndow(display, w, width, height)
Di spl ay *display;
W ndow w;
unsi gned i nt width, height;

display Specifies the connection to the X server.
w Specifies the window. after the call completes
width, height Specify the width and height which are the interior dimensions

of the window after the call completes.

The XResizeWindow function changes the inside dimensions of the specified window,
not including its borders. This function does not change the window’s upper-left coor-
dinate or the origin and does not restack the window. Changing the size of a mapped
window may lose its contents and generate Expose events. If a mapped window is
made smaller, changing its size generates Expose events on windows that the mapped
window formerly obscured.

March 26, 1992

Window Functions

If the override-redirect flag of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a ConfigureRequest
event, and no further processing is performed. If either width or height is zero, aBad-
Value error results.

XResizeWindow can generate BadValue and BadwWindow errors.
To change the size and location of a window, use XMoveResizeWindow.

XMoveResi zeW ndow(display, w, x, y, width, height)
Di spl ay *display;

W ndow w;
int x, v;
unsi gned i nt width, height;
display Specifies the connection to the X server.
w Specifies the window to be reconfigured.
X, Y Specify the x and y coordinates which define the new position
of the window relative to its parent.
width, height Specify the width and height, which define the interior size of
the window.

The XMoveResizeWindow function changes the size and location of the specified win-
dow without raising it. Moving and resizing a mapped window may generate an
Expose event on the window. Depending on the new size and location parameters,
moving and resizing a window may generate Expose events on windows that the win-
dow formerly obscured.

If the override-redirect flag of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a ConfigureRequest
event, and no further processing is performed. Otherwise, the window size and location
are changed.

XMoveResizeWindow can generate BadValue and BadWindow errors.
To change the border width of a given window, use XSetWindowBorderWidth.

XSet W ndowBor der W dt h(display, w, width)
Di spl ay *display;
W ndow w;
unsi gned i nt width;

display Specifies the connection to the X server.
w Specifies the window.
width Specifies the width of the window border.

The XSetWindowBorderWidth function sets the specified window's border width to
the specified width.

XSetWindowBorderWidth can generate aBadwWindow error.

March 26, 1992 3-25

X Window System

3.8 Changing Window Stacking Order

3-26

Xlib provides functions that you can use to raise, lower, circulate, or restack windows.
To raise a window so that no sibling window obscures it, use XRaiseWindow.

XRai seW ndow(display, w)
Di spl ay *display;
W ndow w;

display Specifies the connection to the X server.
w Specifies the window.

The XRaiseWindow function raises the specified window to the top of the stack so that
no sibling window obscures it. If the windows are regarded as overlapping sheets of
paper stacked on a desk, then raising a window is analogous to moving the sheet to the
top of the stack but leaving its x and y location on the desk constant. Raising a mapped
window may generate Expose events for the window and any mapped subwindows that
were formerly obscured.

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no processing is performed. Otherwise, the window is
raised.

XRaiseWindow can generate aBadWindow error.

To lower a window so that it does not obscure any sibling windows, use XLowerWin-
dow.

XLower W ndow(display, w)
Di spl ay *display;
W ndow w;

display Specifies the connection to the X server.
w Specifies the window.

The XLowerWindow function lowers the specified window to the bottom of the stack
so that it does not obscure any sibling windows. |f the windows are regarded as over-
lapping sheets of paper stacked on a desk, then lowering a window is analogous to mov-
ing the sheet to the bottom of the stack but leaving its x and y location on the desk con-
stant. Lowering a mapped window will generate Expose events on any windows it
formerly obscured.

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no processing is performed. Otherwise, the window is
lowered to the bottom of the stack.

XLowerWindow can generate aBadWindow error.

March 26, 1992

Window Functions

To circulate a subwindow up or down, use XCirculateSubwindowvs.

XGCi r cul at eSubwi ndows (display, w, direction)
Di spl ay *display;
W ndow w;
i nt direction;

display Specifies the connection to the X server.
w Specifies the window.
direction Specifies the direction (up or down) that you want to circulate

the window. Y ou can pass RaiseLowest or LowerHighest.

The XCirculateSubwindows function circulates children of the specified window in the
specified direction. If you specify RaiseLowest, XCirculateSubwindows raises the
lowest mapped child (if any) that is occluded by another child to the top of the stack. If
you specify LowerHighest, XCirculateSubwindows lowers the highest mapped child
(if any) that occludes another child to the bottom of the stack. Exposure processing is
then performed on formerly obscured windows. If some other client has selected
SubstructureRedirectMask on the window, the X server generates a CirculateRequest
event, and no further processing is performed. If a child is actually restacked, the X
server generates a CirculateNotify event.

XCirculateSubwindows can generate BadValue and Badwindow errors.

To raise the lowest mapped child of a window that is partially or completely occluded
by another child, use XCirculateSubwindowsUp.

XGi r cul at eSubwi ndowsUp (display, w)
Di spl ay *display;
W ndow w;

display Specifies the connection to the X server.
w Specifies the window.

The XCirculateSubwindowsUp function raises the lowest mapped child of the
specified window that is partially or completely occluded by another child. Completely
unobscured children are not affected. This is a convenience function equivaent to XCir-
culateSubwindows with RaiseLowest specified.

XCirculateSubwindowsUp can generate aBadWindow error.

To lower the highest mapped child of a window that partially or completely occludes
another child, use XCirculateSubwindowsDown.

XCi r cul at eSubwi ndowsDown (display, w)
Di spl ay *display;
W ndow w;

display Specifies the connection to the X server.

w Specifies the window.

March 26, 1992 3-27

X Window System

The XCirculateSubwindowsDown function lowers the highest mapped child of the
specified window that partially or completely occludes another child. Completely unob-
scured children are not affected. This is a convenience function equivalent to XCircula-
teSubwindows with LowerHighest specified.

XCirculateSubwindowsDown can generate aBadwindow error.
To restack a set of windows from top to bottom, use XRestackWindowvs.

XRest ackW ndows (display, windows, nwindows) ;
Di spl ay *display;
W ndow windows|[] ;
i nt nwindows;

display Specifies the connection to the X server.
windows Specifies an array containing the windows to be restacked.
nwindows Specifies the number of windows to be restacked.

The XRestackWindows function restacks the windows in the order specified, from top
to bottom. The stacking order of the first window in the windows array is unaffected,
but the other windows in the array are stacked underneath the first window, in the order
of the array. The stacking order of the other windows is not affected. For each window
in the window array that is not a child of the specified window, a BadMatch error
results.

If the override-redirect attribute of a window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates ConfigureRequest
events for each window whose override-redirect flag is not set, and no further process-
ing is performed. Otherwise, the windows will be restacked in top to bottom order.

XRestackWindows can generate aBadwindow error.

3.9 Changing Window Attributes

3-28

Xlib provides functions that you can use to set window attributes. XChangeWin-
dowAttributes is the more general function that allows you to set one or more window
attributes provided by the XSetwWindowAttributes structure. The other functions
described in this section alow you to set one specific window attribute, such as a
window’ s background.

To change one or more attributes for a given window, use XChangeWindowAittri-
butes.

XChangeW ndowAt t ri but es (display, w, valuemask, attributes)
Di spl ay *display;
W ndow w;
unsi gned | ong valuemask;
XSet W ndowAt t ri but es *attributes;

March 26, 1992

Window Functions

display Specifies the connection to the X server.
w Specifies the window.
valuemask Specifies which window attributes are defined in the attributes

argument. This mask is the bitwise inclusive OR of the valid
attribute mask hits. If valuemask is zero, the attributes are
ignored and are not referenced. The values and restrictions are
the same as for XCreateWindow.

attributes Specifies the structure from which the values (as specified by
the value mask) are to be taken. The value mask should have
the appropriate bits set to indicate which attributes have been
set in the structure (see section 3.2).

Depending on the valuemask, the XChangeWindowAttributes function uses the win-
dow attributes in the XSetWindowAttributes structure to change the specified window
attributes. Changing the background does not cause the window contents to be
changed. To repaint the window and its background, use XClearWindow. Setting the
border or changing the background such that the border tile origin changes causes the
border to be repainted. Changing the background of a root window to None or Paren-
tRelative restores the default background pixmap. Changing the border of a root win-
dow to CopyFromParent restores the default border pixmap. Changing the win-gravity
does not affect the current position of the window. Changing the backing-store of an
obscured window to WhenMapped or Always, or changing the backing-planes,
backing-pixel, or save-under of a mapped window may have no immediate effect.

Changing the colormap of awindow (that is, defining a new map, not changing the con-
tents of the existing map) generates a ColormapNotify event. Changing the colormap
of a visible window may have no immediate effect on the screen because the map may
not be installed (see XlinstallColormap). Changing the cursor of a root window to
None restores the default cursor. Whenever possible, you are encouraged to share
colormaps.

Multiple clients can select input on the same window. Their event masks are maintained
separately. When an event is generated, it is reported to all interested clients. However,
only one client a a time can select for SubstructureRedirectMask, Resiz-
eRedirectMask, and ButtonPressMask. If a client attempts to select any of these event
masks and some other client has already selected one, aBadAccess error results. There
is only one do-not-propagate-mask for a window, not one per client.

XChangeWindowAttributes can generate BadAccess, BadColor, BadCursor, Bad-
Match, BadPixmap, BadValue, and BadWindow efrors.

To set the background of a window to a given pixel, use XSetWindowBackground.

XSet W ndowBackgr ound(display, w, background_pixel)
Di spl ay *display;
W ndow w;
unsi gned | ong background_pixel;

display Specifies the connection to the X server.

March 26, 1992 3-29

X Window System

3-30

w Specifies the window.
background_pixel Specifies the pixel that is to be used for the background.

The XSetWindowBackground function sets the background of the window to the
specified pixel value. Changing the background does not cause the window contents to
be changed. XSetWindowBackground uses a pixmap of undefined size filled with the
pixel value you passed. If you try to change the background of an InputOnly window,
aBadMatch error results.

XSetWindowBackground can generate BadMatch and BadWindow errors.
To set the background of a window to a given pixmap, use XSetWindowBackground-
Pixmap.
XSet W ndowBackgr oundPi xmap (display, w, background_pixmap)
Di spl ay *display;
W ndow w;
Pi xmap background_pixmap;

display Specifies the connection to the X server.
w Specifies the window.
background_pixmap

Specifies the background pixmap, ParentRelative, or None.

The XSetWindowBackgroundPixmap function sets the background pixmap of the
window to the specified pixmap. The background pixmap can immediately be freed if
no further explicit references to it are to be made. If ParentRelative is specified, the
background pixmap of the window’s parent is used, or on the root window, the default
background is restored. If you try to change the background of an InputOnly window,
a BadMatch error results. If the background is set to None, the window has no
defined background.

XSetWindowBackgroundPixmap can generate BadMatch, BadPixmap, and
BadWindow errors.

Note: XSetWindowBackground and XSetWindowBackgroundPixmap do
not change the current contents of the window.

To change and repaint a window’ s border to a given pixel, use XSetWindowBorder.
XSet W ndowBor der (display, w, border_pixel)

Di spl ay *display;

W ndow w;

unsi gned | ong border_pixel;

display Specifies the connection to the X server.
w Specifies the window.
border_pixel Specifies the entry in the colormap.

The XSetWindowBorder function sets the border of the window to the pixel value you
specify. If you attempt to perform this on an InputOnly window, a BadMatch error

March 26, 1992

Window Functions

results.
XSetWindowBorder can generate BadMatch and BadwWindow errors.

To change and repaint the border tile of a given window, use XSet-
WindowBorderPixmap.

XSet W ndowBor der Pi xmap(display, w, border_pixmap)
Di spl ay *display;
W ndow w;
Pi xmap border_pixmap;

display Specifies the connection to the X server.
w Specifies the window.
border_pixmap Specifies the border pixmap or CopyFromParent.

The XSetWindowBorderPixmap function sets the border pixmap of the window to the
pixmap you specify. The border pixmap can be freed immediately if no further explicit
references to it are to be made. If you specify CopyFromParent, a copy of the parent
window’s border pixmap is used. If you attempt to perform this on an InputOnly win-
dow, aBadMatch error results.

XSetWindowBorderPixmap can generate BadMatch, BadPixmap, and BadwWindow
errors.

3.10 Trandating Window Coordinates

Applications, mostly window managers, often need to perform a coordinate transforma-
tion from the coordinate space of one window to another window or need to determine
which subwindow a coordinate lies in. XTranslate-
Coordinates fulfills these needs (and avoids any race conditions) by asking the X
server to perform this operation.

Bool XTransl at eCoor di nat es(display, src w, dest w, src_x, srcy, dest x return,
dest_y return, child_return)
Di spl ay *display;
W ndow src_w, dest w;
i nt src_x, src.y;
i nt *dest x_return, *dest y return;
W ndow *child_return;

display Specifies the connection to the X server.

SR Specifies the source window.

dest w Specifies the destination window.

SIC_ X, SfIC_y Specify the x and y coordinates within the source window.

March 26, 1992 3-31

X Window System

3-32

dest_x_return, dest_y return
Return the x and y coordinates within the destination window.

child_return Returns the child if the coordinates are contained in a mapped
child of the destination window.

If XTranslateCoordinates returnsTrue, it takes the src_x and src_y coordinates relative
to the source window’s origin and returns these coordinates to dest_x_return and
dest_y return relative to the destination window’s origin. If XTranslateCoordinates
returns False, src w and dest w are on different screens, and dest x_return and
dest y return are zero. If the coordinates are contained in a mapped child of dest w,
that child is returned to child_return. Otherwise, child_return is set to None.

XTranslateCoordinates can generate a BadwWindow error.

March 26, 1992

Chapter 4. Window Information Functions

After you connect the display to the X server and create a window, you can use the Xlib
window information functions to:

+ Obtain information about a window
+ Manipulate property lists
« Obtain and change window properties

« Manipulate selections

4.1 Obtaining Window Information

Xlib provides functions that you can use to obtain information about the window tree,
the window's current attributes, the window's current geometry, or the current pointer
coordinates. Because they are most frequently used by window managers, these func-
tions all return a status to indicate whether the window still exists.

To obtain the parent, a list of children, and number of children for a given window, use
XQueryTree.

St at us XQueryTree(display, w, root return, parent_return, children_return,
nchildren_return)
Di spl ay *display;
W ndow w;
W ndow *root_return;
W ndow * parent_return;
W ndow **children_return;
unsi gned i nt *nchildren_return;

display Specifies the connection to the X server.

w Specifies the window whose list of children, root, parent, and
number of children you want to obtain.

March 26, 1992 4-1

X Window System

root_return Returns the root window.

parent_return Returns the parent window.

children_return Returns the list of children.

nchildren_return Returns the number of children.

The XQueryTree function returns the root ID, the parent window 1D, a pointer to the
list of children windows, and the number of children in the list for the specified win-
dow. The children are listed in current stacking order, from bottommost (first) to top-
most (last). XQueryTree returns zero if it fails and nonzero if it succeeds. To free this
list when it is no longer needed, use XFree.

XQueryTree can generate a BadwWindow error.
To obtain the current attributes of a given window, use XGetWindowAttributes.

St at us XGet W ndowAt t ri but es(display, w, window_attributes_return)
Di spl ay *display;
W ndow w;
XW ndowAt t ri but es *window_attributes_return;

display Specifies the connection to the X server.
w Specifies the window whose current attributes you want to
obtain.

window_attributes return
Returns the specified window’'s attributes in the XWindow-
Attributes structure.

The XGetWindowAttributes function returns the current attributes for the specified
window to an XWindowAttributes structure.

t ypedef struct {

t he associ ated vi sual structu
root of screen containing win

one of the wi ndow gravity val

pl anes to be preserved if pos:
val ue to be used when restori

color map to be associated w
bool ean, is color map current|
IsUnmapped, IsUnviewable, IsViewa

int x, vy; /* location of w ndow */

int wdth, height; /* width and hei ght of w ndow */
i nt border_wi dt h; /* border width of w ndow */

i nt depth; /* depth of w ndow */

Vi sual *vi sual ; /*

W ndow r oot ; /*

i nt class; [* InputOutput, InputOnly*/

int bit_gravity; /* one of the bit gravity val ues
int wn_gravity; /*

i nt backi ng_store; /* NotUseful, WhenMapped, Always *
unsi gned | ong backi ng_pl anes; /*

unsi gned | ong backi ng_pi xel ; /*

Bool save_under; /* bool ean, should bits under be
Col ormap col or nap; /*

Bool map_install ed; /*

int nmap_state; /*

Il ong all _event nasks; /* set of events all people have
| ong your event nask; /* nmy event mask */

March 26, 1992

Window Information Functions

| ong do_not _propagat e_nask; /* set of events that should not
Bool override_redirect; /* bool ean val ue for override-re
Screen *screen; /* back pointer to correct scree

} XW ndowAt t ri but es;

The x and y members are set to the upper-left outer corner relative to the parent
window’s origin. The width and height members are set to the inside size of the win-
dow, not including the border. The border_width member is set to the window’s border
width in pixels. The depth member is set to the depth of the window (that is, bits per
pixel for the object). The visual member is a pointer to the screen’s associated Visual
structure. The root member is set to the root window of the screen containing the win-
dow. The class member is set to the window’s class and can be either InputOutput or

InputOnly.

The bit_gravity member is set to the window’s bit gravity and can be one of the follow-
ing:

ForgetGravity EastGravity

NorthWestGravity SouthWestGravity

NorthGravity SouthGravity

NorthEastGravity SouthEastGravity

WestGravity StaticGravity

CenterGravity

The win_gravity member is set to the window’s window gravity and can be one of the

following:

UnmapGravity EastGravity
NorthWestGravity SouthWestGravity
NorthGravity SouthGravity
NorthEastGravity SouthEastGravity
WestGravity StaticGravity

CenterGravity
For additional information on gravity, see section 3.3.

The backing_store member is set to indicate how the X server should maintain the con-
tents of a window and can be WhenMapped, Always, or NotUseful. The
backing_planes member is set to indicate (with bits set to 1) which bit planes of the
window hold dynamic data that must be preserved in backing_stores and during
save_unders. The backing_pixel member is set to indicate what values to use for planes
not set in backing_planes.

The save_under member is set to True or False. The colormap member is set to the
colormap for the specified window and can be a colormap ID or None. The
map_installed member is set to indicate whether the colormap is currently installed and
can be True or False. The map_state member is set to indicate the state of the window
and can be IsUnmapped, IsUnviewable, or IsViewable. IsUnviewable is used if the
window is mapped but some ancestor is unmapped.

The al_event_masks member is set to the bitwise inclusive OR of all event masks
selected on the window by all clients. The your_event_mask member is set to the

March 26, 1992 4-3

X Window System

bitwise inclusive OR of all event masks selected by the querying client. The
do_not_propagate_mask member is set to the bitwise inclusive OR of the set of events
that should not propagate.

The override redirect member is set to indicate whether this window overrides structure
control facilities and can be True or False. Window manager clients should ignore the
window if this member isTrue.

The screen member is set to a screen pointer that gives you a back pointer to the correct
screen. This makes it easier to obtain the screen information without having to loop
over the root window fields to see which field matches.

XGetWindowAttributes can generate BadDrawable and BadwWindow errors.
To obtain the current geometry of a given drawable, use XGetGeometry.

St at us XGet Geonet ry(display, d, root return, Xx_return, y return, width_return,
height_return, border_width_return, depth_return)
Di spl ay *display;
Dr awabl e d;
W ndow *root_return;
i nt *x_return, *y return;
unsi gned i nt *width_return, *height_return;
unsi gned i nt *border width_return;
unsi gned i nt *depth_return;

display Specifies the connection to the X server.
d Specifies the drawable, which can be a window or a pixmap
root_return Returns the root window.

X_return, y_return
Return the x and y coordinates that define the location of the
drawable. For a window, these coordinates specify the upper-
left outer corner relative to its parent’s origin. For pixmaps,
these coordinates are aways zero.

width_return, height_return
Return the drawable’'s dimensions (width and height). For a
window, these dimensions specify the inside size, not including
the border.

border_width_return
Returns the border width in pixels. If the drawable is a pixmap,
it returns zero.

depth _return Returns the depth of the drawable (bits per pixel for the object).

The XGetGeometry function returns the root window and the current geometry of the
drawable. The geometry of the drawable includes the x and y coordinates, width and
height, border width, and depth. These are described in the argument list. It is legal to
pass to this function a window whose class is InputOnly.

4-4 March 26, 1992

Window Information Functions

XGetGeometry can generate a BadDrawable error.

To obtain the root window the pointer is currently on and the pointer coordinates rela-
tive to the root’s origin, use XQueryPointer.

Bool XQueryPoi nt er (display, w, root return, child return, root x return, root y return,
win_x_return, win_y return, mask return)
Di spl ay *display;
W ndow w;
W ndow *root_return, *child_return;
i nt *root x return, *root y return;
i nt *win_x_return, *win_y return;
unsi gned i nt *mask return;

display Specifies the connection to the X server.

w Specifies the window.

root_return Returns the root window that the pointer isin.

child_return Returns the child window that the pointer is located in, if any.

root_x_return, root_y return
Return the pointer coordinates relative to the root window’s ori-
gin.

win_x_return, win_y_return
Return the pointer coordinates relative to the specified window.

mask_return Returns the current state of the modifier keys and pointer but-
tons.

The XQueryPointer function returns the root window the pointer is logically on and the
pointer coordinates relative to the root window's origin. If XQueryPointer returns
False, the pointer is not on the same screen as the specified window, and
XQueryPointer returns None to child return and zero to win X _return and
win_y _return. If XQueryPointer returns True, the pointer coordinates returned to
win_x_return and win_y_return are relative to the origin of the specified window. In this
case, XQueryPointer returns the child that contains the pointer, if any, or else None to
child_return.

XQueryPointer returns the current logical state of the keyboard buttons and the
modifier keys in mask_return. It sets mask_return to the bitwise inclusive OR of one or
more of the button or modifier key bitmasks to match the current state of the mouse
buttons and the modifier keys.

Note that the logical state of a device (as seen through Xlib) may lag the physica state
if device event processing is frozen (see section 7.4).

XQueryPointer can generate aBadWindow error.

March 26, 1992 4-5

X Window System

4.2 Properties and Atoms

A property is a collection of named, typed data. The window system has a set of
predefined properties (for example, the name of a window, size hints, and so on), and
users can define any other arbitrary information and associate it with windows. Each
property has a name, which is an 1SO Latin-1 string. For each named property, a unique
identifier (atom) is associated with it. A property also has a type, for example, string or
integer. These types are also indicated using atoms, so arbitrary new types can be
defined. Data of only one type may be associated with a single property hame. Clients
can store and retrieve prop-
erties associated with windows. For efficiency reasons, an atom is used rather than a
character string. XinternAtom can be used to obtain the atom for property names.

A property is aso stored in one of several possible formats. The X server can store the
information as 8-bit quantities, 16-bit quantities, or 32-bit quantities. This permits the X
server to present the data in the byte order that the client expects.

Note: If you define further properties of complex type, you must encode and
decode them yourself. These functions must be carefully written if they
are to be portable. For further information about how to write a library
extension, see appendix C.

The type of a property is defined by an atom, which allows for arbitrary extension in
this type scheme.

Certain property names are predefined in the server for commonly used functions. The
atoms for these properties are defined in <X11/Xatom.h>. To avoid name clashes with
user symbals, the #define name for each atom has the XA _ prefix. For definitions of
these properties, see section 4.3. For an explanation of the functions that let you get and
set much of the information stored in these predefined properties, see chapter 9.

The core protocol imposes no semantics on these property names, but semantics are
specified in other X Consortium standards, such as the ‘‘Inter-Client Communication
Conventions Manual’* and the ** X Logical Font Description Conventions,”” which make
up parts 111 and IV of this book.

You can use properties to communicate other information between applications. The
functions described in this section let you define new properties and get the unique atom
IDs in your applications.

Although any particular atom can have some client interpretation within each of the
name spaces, atoms occur in five distinct name spaces within the protocol:

+ Selections
+ Property names
« Property types

« Font properties

March 26, 1992

Window Information Functions

» Type of aClientMessage event (none are built into the X server)

The built-in selection property names are:

PRIMARY
SECONDARY

The built-in property names are:

CUT_BUFFERO
CUT_BUFFER1
CUT_BUFFER2
CUT_BUFFER3
CUT_BUFFER4
CUT_BUFFER5
CUT_BUFFERG
CUT_BUFFER7
RGB_BEST_MAP
RGB_BLUE_MAP
RGB_DEFAULT_MAP
RGB_GRAY_MAP
RGB_GREEN_MAP
RGB_RED MAP

The built-in property types are:

ARC

ATOM
BITMAP
CARDINAL
COLORMAP
CURSOR
DRAWABLE
FONT
INTEGER

The built-in font property names are:

MIN_SPACE
NORM_SPACE
MAX_SPACE
END_SPACE
SUPERSCRIPT_X
SUPERSCRIPT Y
SUBSCRIPT_X
SUBSCRIPT_Y
UNDERLINE_POSITION
UNDERLINE_THICKNESS
FONT_NAME
FULL_NAME

March 26, 1992

RESOURCE_MANAGER
WM_CLASS
WM_CLIENT_MACHINE

WM_COLORMAP_WINDOWS

WM_COMMAND
WM_HINTS
WM_ICON_NAME
WM_ICON_SIZE
WM_NAME
WM_NORMAL_HINTS
WM_PROTOCOLS
WM_STATE
WM_TRANSIENT _FOR

PIXMAP

POINT
RGB_COLOR_MAP
RECTANGLE
STRING

VISUALID
WINDOW
WM_HINTS
WM_SIZE_HINTS

STRIKEOUT _DESCENT
STRIKEOUT _ASCENT
ITALIC_ANGLE
X_HEIGHT
QUAD_WIDTH
WEIGHT

POINT_SIZE
RESOLUTION
COPYRIGHT

NOTICE
FAMILY_NAME
CAP_HEIGHT

X Window System

For further information about font properties, see section 6.5.

To return an atom for a given name, use XinternAtom.

At om Xl nt er nAt om(display, atom_name, only_if exists)
Di spl ay *display;
char *atom_name;
Bool only_if_exists;

display Specifies the connection to the X server.

atom_name Specifies the name associated with the atom you want returned.

only if exists Specifies a Boolean value that indicates whether XinternAtom
creates the atom.

The XinternAtom function returns the atom identifier associated with the specified
atom_name string. If only_if _exists is False, the atom is created if it does not exist.
Therefore, XinternAtom can return None. You should use a null-terminated SO
Latin-1 string for atom_name. Case matters; the strings thing, Thing, and thinG all
designate different atoms. The atom will remain defined even after the client’s connec-
tion closes. It will become undefined only when the last connection to the X server
closes.

XInternAtom can generate BadAlloc and BadValue errors.
To return a name for a given atom identifier, use XGetAtomName.

char *XGet At omNane (display, atom)
Di spl ay *display;
At om atom;

display Specifies the connection to the X server.
atom Specifies the atom for the property name you want returned.

The XGetAtomName function returns the name associated with the specified atom. To
free the resulting string, call XFree.

XGetAtomName can generate aBadAtom error.

4.3 Obtaining and Changing Window Properties

You can attach a property list to every window. Each property has a name, atype, and a
value (see section 4.2). The value is an array of 8-bit, 16-bit, or 32-bit quantities, whose
interpretation is left to the clients.

Xlib provides functions that you can use to obtain, change, update, or interchange win-
dow properties. In addition, Xlib provides other utility functions for inter-client com-
munication (see chapter 9).

March 26, 1992

Window Information Functions

To obtain the type, format, and value of a property of a given window, use XGetWin-

dowProperty.

i nt XGet WndowPr operty(display, w, property,

long_offset,
actual_format_return,
prop_return)

actual_type_return,
bytes_after_return,

Di spl ay *display;

W ndow w;

At om property;

| ong long_offset,
delete;

Bool

long_length;

At om req_type;

At om *actual_type_return;

i nt *actual format_return;

unsi gned | ong *nitems_return;
unsi gned | ong *bytes after_return;
unsi gned char **prop_return;

display
w

property
long_offset

long_length

delete

req type

actual_type return

actual_format_return

nitems_return

bytes after _return

prop_return

Specifies the connection to the X server.
Specifies the window whose property you want to obtain.
Specifies the property name.

Specifies the offset in the specified property (in 32-bit quanti-
ties) where the datais to be retrieved.

Specifies the length in 32-bit multiples of the data to be
retrieved.

Specifies a Boolean value that determines whether the property
is deleted.

Specifies the atom identifier associated with the property type or
AnyPropertyType.

Returns the atom identifier that defines the actual type of the
property.

Returns the actual format of the property.

Returns the actual number of 8-bit, 16-bit, or 32-bit items
stored in the prop_return data.

Returns the number of bytes remaining to be read in the pro-
perty if a partial read was performed.

Returns the data in the specified format.

The XGetWindowProperty function returns the actual type of the property; the actual
format of the property; the number of 8-bit, 16-bit, or 32-bit items transferred; the
number of bytes remaining to be read in the property; and a pointer to the data actually

March 26, 1992

long_length, delete,

req_type,

nitems_return,

X Window System

4-10

returned. XGetWindowProperty sets the return arguments as follows:

« If the specified property does not exist for the specified window, XGetWindowPro-
perty returns None to actual_type return and the value zero to actual_format_return
and bytes after_return. The nitems_return argument is empty. In this case, the delete
argument is ignored.

« If the specified property exists but its type does not match the specified type,
XGetWindowProperty returns the actual property type to actual_type return, the
actual property format (never zero) to actual_format_return, and the property length
in bytes (even if the actual_format_return is 16 or 32) to bytes after_return. It also
ignores the delete argument. The nitems_return argument is empty.

« If the specified property exists and either you assign AnyPropertyType to the
req_type argument or the specified type matches the actual property type, XGetWin-
dowProperty returns the actual property type to actual_type return and the actual
property format (never zero) to actual format return. It also returns a value to
bytes after_return and nitems_return, by defining the following values:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)

| =4* long_offset

T=N-I

L = MINIMUM(T, 4 * long_length)
A=N-(+L)

The returned value starts at byte index | in the property (indexing from zero), and its
length in bytes is L. If the value for long_offset causes L to be negative, a Bad-
Value error results. The value of bytes after_returnis A, giving the number of trail-
ing unread bytes in the stored property.

XGetWindowProperty always allocates one extra byte in prop_return (even if the pro-
perty is zero length) and sets it to ASCII null so that simple properties consisting of
characters do not have to be copied into yet another string before use. If delete is True
and bytes after_return is zero, XGetWindowProperty deletes the property from the
window and generates aPropertyNotify event on the window.

The function returns Success if it executes successfully. To free the resulting data, use
XFree.

XGetWindowProperty can generate BadAtom, BadValue, and BadwWindow errors.
To obtain a given window’s property list, use XListProperties.

At om * XLi st Properti es(display, w, num_prop_return)
Di spl ay *display;
W ndow w;
i nt *num_prop_return;

display Specifies the connection to the X server.

w Specifies the window whose property list you want to obtain.

March 26, 1992

Window Information Functions

num_prop_return
Returns the length of the properties array.

The XListProperties function returns a pointer to an array of atom properties that are
defined for the specified window or returns NULL if no properties were found. To free
the memory allocated by this function, use XFree.

XListProperties can generate aBadWindow error.
To change a property of a given window, use XChangeProperty.

XChangePr operty(display, w, property, type, format, mode, data, nelements)
Di spl ay *display;
W ndow w;
At om property, type;
i nt format;
i nt mode;
unsi gned char *data;
i nt nelements;

display Specifies the connection to the X server.

w Specifies the window whose property you want to change.
property Specifies the property name.

type Specifies the type of the property. The X server does not inter-

pret the type but simply passes it back to an application that
later calls XGetWindowProperty.

format Specifies whether the data should be viewed as a list of 8-hit,
16-bit, or 32-bit quantities. Possible values are 8, 16, and 32.
This information allows the X server to correctly perform byte-
swap operations as necessary. If the format is 16-bit or 32-hit,
you must explicitly cast your data pointer to a (char *) in the
call to XChangeProperty.

mode Specifies the mode of the operation. You can pass PropMo-
deReplace, PropModePrepend, or PropModeAppend.

data Specifies the property data.

nelements Specifies the number of elements of the specified data format.

The XChangeProperty function aters the property for the specified window and causes
the X server to generate a PropertyNotify event on that window. XChangeProperty
performs the following:

« If mode is PropModeReplace, XChangeProperty discards the previous property
value and stores the new data.

« If mode is PropModePrepend or PropModeAppend, XChangeProperty inserts
the specified data before the beginning of the existing data or onto the end of the
existing data, respectively. The type and format must match the existing property
value, or a BadMatch error results. If the property is undefined, it is treated as

March 26, 1992 4-11

X Window System

4-12

defined with the correct type and format with zero-length data.

The lifetime of a property is not tied to the storing client. Properties remain until expli-
citly deleted, until the window is destroyed, or until the server resets. For a discussion
of what happens when the connection to the X server is closed, see section 2.5. The
maximum size of a property is server dependent and can vary dynamically depending on
the amount of memory the server has available. (If there is insufficient space, a BadAl-
loc error results.)

XChangeProperty can generate BadAlloc, BadAtom, BadMatch, BadValue, and
BadWindow errors.

To rotate a window’ s property list, use XRotateWindowProperties.

XRot at eW ndowPr operti es(display, w, properties, num_prop, npositions)

Di spl ay *display;
W ndow w;

At om properties[] ;
i nt num_prop;

i nt npositions;

display Specifies the connection to the X server.

w Specifies the window.

properties Specifies the array of properties that are to be rotated.
num_prop Specifies the length of the properties array.
npositions Specifies the rotation amount.

The XRotateWindowProperties function allows you to rotate properties on a window
and causes the X server to generate PropertyNotify events. If the property names in the
properties array are viewed as being numbered starting from zero and if there are
num_prop property names in the list, then the value associated with property name |
becomes the value associated with property name (I + npositions) mod N for al | from
zero to N — 1. The effect is to rotate the states by npositions places around the virtual
ring of property names (right for positive npositions, left for negative npositions). If
npositions mod N is nonzero, the X server generates a PropertyNotify event for each
property in the order that they are listed in the array. |f an atom occurs more than once
in the list or no property with that name is defined for the window, aBadMatch error
results. If aBadAtom or BadMatch error results, no properties are changed.

XRotateWindowProperties can generate BadAtom, BadMatch, and Bad-
Window errors.

To delete a property on a given window, use XDeleteProperty.

XDel et eProperty(display, w, property)
Di spl ay *display;
W ndow w;
At om property;

display Specifies the connection to the X server.

March 26, 1992

Window Information Functions

w Specifies the window whose property you want to delete.
property Specifies the property name.

The XDeleteProperty function deletes the specified property only if the property was
defined on the specified window and causes the X server to generate a PropertyNotify
event on the window unless the property does not exist.

XDeleteProperty can generate BadAtom and Badwindow errors.

4.4 Selections

Selections are one method used by applications to exchange data. By using the property
mechanism, applications can exchange data of arbitrary types and can negotiate the type
of the data. A selection can be thought of as an indirect property with a dynamic type.
That is, rather than having the property stored in the X server, the property is main-
tained by some client (the owner). A selection is global in nature (considered to belong
to the user but be maintained by clients) rather than being private to a particular window
subhierarchy or a particular set of clients.

Xlib provides functions that you can use to set, get, or request conversion of selections.
This alows applications to implement the notion of current selection, which requires
that notification be sent to applications when they no longer own the selection. Applica-
tions that support selection often highlight the current selection and so must be
informed when another application has acquired the selection so that they can
unhighlight the selection.

When a client asks for the contents of a selection, it specifies a selection target type.
This target type can be used to control the transmitted representation of the contents.
For example, if the selection is ‘‘the last thing the user clicked on’’ and that is currently
an image, then the target type might specify whether the contents of the image should
be sent in XY format or Z format.

The target type can also be used to control the class of contents transmitted, for exam-
ple, asking for the ‘‘looks”’ (fonts, line spacing, indentation, and so forth) of a para
graph selection, not the text of the paragraph. The target type can also be used for other
purposes. The protocol does not constrain the semantics.

To set the selection owner, use XSetSelectionOwner.

XSet Sel ecti onOwner (display, selection, owner, time)
Di spl ay *display;
At om selection;
W ndow owner;
Ti e time;

display Specifies the connection to the X server.

selection Specifies the selection atom.

March 26, 1992 4-13

X Window System

owner Specifies the owner of the specified selection atom. You can
pass a window or None.

time Specifies the time. You can pass either a timestamp or Current-
Time.

The XSetSelectionOwner function changes the owner and last-change time for the
specified selection and has no effect if the specified time is earlier than the current last-
change time of the specified selection or is later than the current X server time. Other-
wise, the last-change time is set to the specified time, with CurrentTime replaced by the
current server time. If the owner window is specified as None, then the owner of the
selection becomes None (that is, no owner). Otherwise, the owner of the selection
becomes the client executing the request.

If the new owner (whether a client or None) is not the same as the current owner of the
selection and the current owner is not None, the current owner is sent aSelectionClear
event. If the client that is the owner of a selection is later terminated (that is, its connec-
tion is closed) or if the owner window it has specified in the request is later destroyed,
the owner of the selection automatically reverts to None, but the last-change time is not
affected. The selection atom is uninterpreted by the X server. XGetSelectionOwner
returns the owner window, which is reported in SelectionRequest and SelectionClear
events. Selections are global to the X server.

XSetSelectionOwner can generate BadAtom and BadWindow errors.
To return the selection owner, use XGetSelectionOwner.

W ndow XCet Sel ecti onOaner (display, selection)
Di spl ay *display;
At om selection;

display Specifies the connection to the X server.
selection Specifies the selection atom whose owner you want returned.

The XGetSelectionOwner function returns the window ID associated with the window
that currently owns the specified selection. If no selection was specified, the function
returns the constant None. If None is returned, there is no owner for the selection.

XGetSelectionOwner can generate aBadAtom error.
To request conversion of a selection, use XConvertSelection.

XConvert Sel ecti on(display, selection, target, property, requestor, time)
Di spl ay *display;
At om selection, target;
At om property;
W ndow requestor;
Ti me time;

display Specifies the connection to the X server.

selection Specifies the selection atom.

4-14 March 26, 1992

Window Information Functions

target Specifies the target atom.

property Specifies the property name. Y ou aso can pass None.

requestor Specifies the requestor.

time Specifies the time. Y ou can pass either a timestamp or Current-
Time.

XConvertSelection requests that the specified selection be converted to the specified
target type:

« If the specified selection has an owner, the X server sends aSelectionRequest event
to that owner.

« If no owner for the specified selection exists, the X server generates a SelectionNo-
tify event to the requestor with property None.

The arguments are passed on unchanged in either of the events. There are two
predefined selection atoms: PRIMARY and SECONDARY .

XConvertSelection can generate BadAtom and BadwWindow errors.

March 26, 1992 4-15

Chapter 5. Graphics Resource Functions

After you connect your program to the X server by calling XOpenDisplay, you can use
the Xlib graphics resource functions to:

« Create, copy, and destroy colormaps

« Allocate, modify, and free color cells

+ Read entriesin a colormap

+ Create and free pixmaps

« Create, copy, change, and destroy graphics contexts

A number of resources are used when performing graphics operations in X. Most infor-
mation about performing graphics (for example, foreground color, background color,
line style, and so on) are stored in resources called graphics contexts (GC). Most graph-
ics operations (see chapter 6) take a GC as an argument. Although in theory it is possi-
ble to share GCs between applications, it is expected that applications will use their own
GCs when performing operations. Sharing of GCs is highly discouraged because the
library may cache GC state.

Each X window aways has an associated colormap that provides a level of indirection
between pixel values and colors displayed on the screen. Many of the hardware
displays built today have a single colormap, so the primitives are written to encourage
sharing of colormap entries between applications. Because colormaps are associated
with windows, X will support displays with multiple colormaps and, indeed, different
types of colormaps. If there are not sufficient colormap resources in the display, some
windows may not be displayed in their true colors. A client or window manager can
control which windows are displayed in their true colors if more than one colormap is
required for the color resources the applications are using.

Off-screen memory or pixmaps are often used to define frequently used images for later
use in graphics operations. Pixmaps are also used to define tiles or patterns for use as
window backgrounds, borders, or cursors. A single bit-plane pixmap is sometimes
referred to as a bitmap.

Note that some screens have very limited off-screen memory. Therefore, you should
regard off-screen memory as a precious resource.

March 26, 1992 5-1

X Window System

Graphics operations can be performed to either windows or pixmaps, which collectively
are called drawables. Each drawable exists on a single screen and can only be used on
that screen. GCs can aso only be used with drawables of matching screens and depths.

5.1 Colormap Functions

Xlib provides functions that you can use to manipulate a colormap. This section
discusses how to:

- Create, copy, and destroy a colormap
« Allocate, modify, and free color cells
+ Read entriesin a colormap

The following functions manipulate the representation of color on the screen. For each
possible value that a pixel can take in a window, there is a color cell in the colormap.
For example, if awindow is 4 bits deep, pixel values 0 through 15 are defined. A color-
map is a collection of color cells. A color cell consists of a triple of red, green, and
blue. As each pixel is read out of display memory, its value is taken and looked up in
the colormap. The values of the cell determine what color is displayed on the screen.
On amultiplane display with a black-and-white monitor (with grayscale but not color),
these values can be combined to determine the brightness on the screen.

Screens always have a default colormap, and programs typically alocate cells out of
this colormap. Y ou should not write applications that monopolize color resources. On
a screen that either cannot load the colormap or cannot have a fully independent color-
map, only certain kinds of alocations may work. Depending on the hardware, one or
more colormaps may be resident (installed) at one time. To install a colormap, use XIn-
stallColormap. The DefaultColormap macro returns the default colormap. The
DefaultVisual macro returns the default visual type for the specified screen. Colormaps
are local to a particular screen. Possible visual types are StaticGray, GrayScale, Sta-
ticColor, PseudoColor, TrueColor, or DirectColor (see section 3.1).

The functions discussed in this section operate on an XColor structure, which contains:

t ypedef struct {

unsi gned | ong pi xel ; /* pixel value */
unsi gned short red, green, bl ue; /* rgb val ues */
char fl ags; / * DoRed, DoGreen, DoBlue */
char pad;
} XCol or;

The red, green, and blue values are scaled between 0 and 65535. On full in a color is a
value of 65535 independent of the number of bits actually used in the display hardware,
and off is 0. This representation gives uniform results for color values across different
screens. In some functions, the flags member controls which of the red, green, and blue
members is used and can be one or more of DoRed, DoGreen, and DoBlue.

5-2 March 26, 1992

5.1.1

Graphics Resource Functions

The introduction of color changes the view a programmer should take when dealing
with a bitmap display. For example, when printing text, you write a pixel value, which
is defined as a specific color, rather than setting or clearing bits. Hardware will impose
limits (the number of significant bits, for example) on these values. Typically, one allo-
cates color cells or sets of color cells. If read-only, the pixel values for these colors can
be shared among multiple applications, and the RGB values of the cell cannot be
changed. If read/write, they are exclusively owned by the program, and the color cell
associated with the pixel value may be changed at will.

Creating, Copying, and Destroying Color maps

To create a colormap for a screen, use XCreateColormap.

Col ormap XCr eat eCol or map(display, w, visual, alloc)
Di spl ay *display;

W ndow w;
Vi sual *visual;
i nt alloc;
display Specifies the connection to the X server.
w Specifies the window on whose screen you want to create a
colormap.
visual Specifies a visual type supported on the screen. If the visual
type is not one supported by the screen, a BadMatch error
results.
alloc Specifies the colormap entries to be allocated. You can pass

AllocNone or AllocAll.

The XCreateColormap function creates a colormap of the specified visua type for the
screen on which the specified window resides and returns the colormap 1D associated
with it. Note that the specified window is only used to determine the screen.

The initial values of the colormap entries are undefined for the visua classes Grays-
cale, PseudoColor, and DirectColor. For StaticGray, StaticColor, and TrueColor, the
entries have defined values, but those values are specific to the visual and are not
defined by X. For StaticGray, StaticColor, and TrueColor, aloc must be AllocNone,
or a BadMatch error results. For the other visua classes, if aloc is AllocNone, the
colormap initially has no alocated entries, and clients can alocate them. For informa-
tion about the visual types, see section 3.1.

If aloc is AllocAll, the entire colormap is alocated writable. The initial values of all
alocated entries are undefined. For GrayScale and PseudoColor, the effect is as if an
XAllocColorCells call returned all pixel values from zero to N — 1, where N is the
colormap entries value in the specified visual. For DirectColor, the effect is as if an
XAllocColorPlanes call returned a pixel value of zero and red_mask, green_mask, and
blue_mask values containing the same bits as the corresponding masks in the specified

March 26, 1992 5-3

X Window System

visual. However, in all cases, none of these entries can be freed by using XFreeColors.

XCreateColormap can generate BadAlloc, BadMatch, BadValue, and BadwWindow
errors.

To create a new colormap when the allocation out of a previously shared colormap has
failed because of resource exhaustion, use XCopyColormapAndFree.

Col or map XCopyCol or mapAndFr ee(display, colormap)
Di spl ay *display;
Col or map colormap;

display Specifies the connection to the X server.
colormap Specifies the colormap.

The XCopyColormapAndFree function creates a colormap of the same visual type and
for the same screen as the specified colormap and returns the new colormap ID. It also
moves all of the client’s existing alocation from the specified colormap to the new
colormap with their color values intact and their read-only or writable characteristics
intact and frees those entries in the specified colormap. Color values in other entries in
the new colormap are undefined. If the specified colormap was created by the client
with aloc set to AllocAll, the new colormap is also created with AllocAll, all color
values for all entries are copied from the specified colormap, and then all entries in the
specified colormap are freed. If the specified colormap was not created by the client
with AllocAll, the allocations to be moved are all those pixels and planes that have been
alocated by the client using XAllocColor, XAllocNamedColor, XAllocColorCells, or
XAllocColorPlanes and that have not been freed since they were alocated.

XCopyColormapAndFree can generate BadAlloc and BadColor errors.
To set the colormap of a given window, use XSetWindowColormap.

XSet W ndowCol or map (display, w, colormap)
Di spl ay *display;
W ndow w;
Col or map colormap;

display Specifies the connection to the X server.
W Specifies the window.
colormap Specifies the colormap.

The XSetWindowColormap function sets the specified colormap of the specified win-
dow. The colormap must have the same visua type as the window, or a BadMatch
error results.

XSetWindowColormap can generate BadColor, BadMatch, and BadWindow errors.
To destroy a colormap, use XFreeColormap.

XFr eeCol or map(display, colormap)
Di spl ay *display;
Col or map colormap;

March 26, 1992

Graphics Resource Functions

display Specifies the connection to the X server.
colormap Specifies the colormap that you want to destroy.

The XFreeColormap function deletes the association between the colormap resource ID
and the colormap and frees the colormap storage. However, this function has no effect
on the default colormap for a screen. |If the specified colormap is an installed map for a
screen, it is uninstalled (see XUninstallColormap). If the specified colormap is defined
as the colormap for a window (by XCreateWindow, XSetWindowColormap, or
XChangeWindowAittributes), XFreeColormap changes the colormap associated with
the window to None and generates a ColormapNotify event. X does not define the
colors displayed for a window with a colormap of None.

XFreeColormap can generate aBadColor error.

5.1.2 Allocating, Modifying, and Freeing Color Cells

There are two ways of alocating color cells: explicitly as read-only entries by pixel
value or read/write, where you can allocate a number of color cells and planes simul-
taneously. The read/write cells you alocate do not have defined colors until set with
XStoreColor or XStoreColors.

To determine the color names, the X server uses a color database. Although you can
change the values in a read/write color cell that is allocated by another application, this
is considered ‘*antisocia’’ behavior.

To alocate a read-only color cell, use XAllocColor.

St at us XAl | ocCol or (display, colormap, screen_in_out)
Di spl ay *display;
Col or map colormap;
XCol or *screen_in_out;

display Specifies the connection to the X server.
colormap Specifies the colormap.
screen_in_out Specifies and returns the values actually used in the colormap.

The XAllocColor function allocates a read-only colormap entry corresponding to the
closest RGB values supported by the hardware. XAllocColor returns the pixel value of
the color closest to the specified RGB elements supported by the hardware and returns
the RGB values actually used. The corresponding colormap cell is read-only. In addi-
tion, XAllocColor returns nonzero if it succeeded or zero if it failed. Multiple clients
that request the same effective RGB values can be assigned the same read-only entry,
thus allowing entries to be shared. When the last client deallocates a shared cell, it is
deallocated. XAllocColor does not use or affect the flags in the XColor structure.

XAllocColor can generate a BadColor error.

March 26, 1992 5-5

X Window System

To allocate a read-only color cell by name and return the closest color supported by the
hardware, use XAllocNamedColor.

St at us XAl | ocNanmedCol or (display, colormap, color_name, screen_def return,

exact_def return)
Di spl ay *display;
Col or map colormap;
char *color_name;
XCol or *screen_def return, *exact def return;

display Specifies the connection to the X server.
colormap Specifies the colormap.
color_name Specifies the color name string (for example, red) whose color

definition structure you want returned.

screen_def _return
Returns the closest RGB values provided by the hardware.

exact_def return
Returns the exact RGB values.

The XAllocNamedColor function looks up the named color with respect to the screen
that is associated with the specified colormap. It returns both the exact database
definition and the closest color supported by the screen. The allocated color cdl is
read-only. You should use the ISO Latin-1 encoding; uppercase and lowercase do not
matter.

XAllocNamedColor can generate aBadColor error.

To look up the name of a color, use XLookupColor.

St at us XLookupCol or (display, colormap, color_name, exact def return,
Di spl ay *display;
Col or map colormap;

char *color_name;
XCol or *exact_def return, *screen_def return;

display Specifies the connection to the X server.
colormap Specifies the colormap.
color_name Specifies the color name string (for example, red) whose color

definition structure you want returned.

exact_def return
Returns the exact RGB vaues.

screen def _return
Returns the closest RGB values provided by the hardware.

The XLookupColor function looks up the string name of a color with respect to the
screen associated with the specified colormap. It returns both the exact color values and
the closest values provided by the screen with respect to the visua type of the specified
colormap. You should use the ISO Latin-1 encoding; uppercase and lowercase do not

March 26, 1992

screen_def _return)

Graphics Resource Functions

matter. XLookupColor returns nonzero if the name existed in the color database or zero
if it did not exist.

To dlocate read/write color cell and color plane combinations for a PseudoColor
model, use XAllocColorCells.

St at us XAl | ocCol or Cel | s(display, colormap, contig, plane _masks _return, nplanes,
pixels_return, npixels)
Di spl ay *display;
Col or map colormap;
Bool contig;
unsi gned | ong plane_masks_return[] ;
unsi gned i nt nplanes;
unsi gned | ong pixels_return[] ;
unsi gned i nt npixels;

display Specifies the connection to the X server.
colormap Specifies the colormap.
contig Specifies a Boolean value that indicates whether the planes

must be contiguous.

plane_mask return
Returns an array of plane masks.

nplanes Specifies the number of plane masks that are to be returned in
the plane masks array.

pixels return Returns an array of pixel values.

npixels Specifies the number of pixel values that are to be returned in

the pixels return array.

The XAllocColorCells function allocates read/write color cells. The number of colors
must be positive and the number of planes nonnegative, or aBadValue error results. |If
ncolors and nplanes are requested, then ncolors pixels and nplane plane masks are
returned. No mask will have any bits set to 1 in common with any other mask or with
any of the pixels. By ORing together each pixel with zero or more masks, ncolors *
2nplanes distinct pixels can be produced. All of these are alocated writable by the
request. For GrayScale or PseudoColor, each mask has exactly one bit set to 1. For
DirectColor, each has exactly three bits set to 1. If contig is True and if all masks are
ORed together, a single contiguous set of bits set to 1 will be formed for GrayScale or
PseudoColor and three contiguous sets of bits set to 1 (one within each pixel subfield)
for DirectColor. The RGB values of the allocated entries are undefined. XAllocColor-
Cells returns nonzero if it succeeded or zero if it failed.

Figure5-1. Request of 3 cells and 2 planes
#ifdef BOOKREADER

March 26, 1992 5-7

X Window

3 Pixels 2 Planes You Own These 12 Pixel Values
After Allocation
AP AR NRESEERS
ZK-0411U-R
#Hendif

XAllocColorCells can generate BadColor and BadValue errors.

To adllocate read/write color resources for a DirectColor model, use
XAllocColorPlanes.

St at us XAl | ocCol or Pl anes(display, colormap, contig, pixels_return, ncolors, nreds, ngree
nblues, rmask_return, gmask_return, bmask_return)
Di spl ay *display;
Col or map colormap;
Bool contig;
unsi gned | ong pixels_return[] ;
i nt ncolors;
i nt nreds, ngreens, nblues;
unsi gned | ong *rmask_return, *gmask_return, *bmask_return;

display Specifies the connection to the X server.

colormap Specifies the colormap.

5-8 March 26, 1992

Graphics Resource Functions

contig Specifies a Boolean value that indicates whether the planes
must be contiguous.

pixels return Returns an array of pixel values. XAllocColorPlanes returns the
pixel valuesin this array.

ncolors Specifies the number of pixel values that are to be returned in
the pixels_return array.

nreds, ngreens, nblues
Specify the number of red, green, and blue planes. The value
you pass must be nonnegative.

rmask_return, gmask return, bmask return
Return bit masks for the red, green, and blue planes.

The specified ncolors must be positive; and nreds, ngreens, and nblues must be nonne-
gative, or aBadValue error results. If ncolors colors, nreds reds, ngreens greens, and
nblues blues are requested, ncolors pixels are returned; and the masks have nreds,
ngreens, and nblues bits set to 1, respectively. If contig is True, each mask will have a
contiguous set of bits set to 1. No mask will have any bits set to 1 in common with any
other mask or with any of the pixels. For DirectColor, each mask will lie within the
corresponding pixel subfield. By ORing together subsets of masks with each pixel
value, ncolors * 2(nreds+ngreens+nblues) distinct pixel values can be produced. All of
these are alocated by the request. However, in the colormap, there are only ncolors *
2nreds jndependent red entries, ncolors * 2ngreens jndependent green entries, and
ncolors * 2nblues jndependent blue entries. This is true even for PseudoColor. When
the colormap entry of a pixel value is changed (using XStoreColors, XStoreColor, or
XStoreNamedColor), the pixel is decomposed according to the masks, and the
corresponding independent entries are updated. XAllocColorPlanes returns nonzero if
it succeeded or zero if it failed.

XAllocColorPlanes can generate BadColor and BadValue errors.
To store RGB values into colormap cells, use XStoreColors.

XSt or eCol or s(display, colormap, color, ncolors)
Di spl ay *display;
Col or map colormap;
XCol or color[] ;

i nt ncolors;
display Specifies the connection to the X server.
colormap Specifies the colormap.
color Specifies an array of color definition structures to be stored.
ncolors Specifies the number of XColor structures in the color definition
array.

The XStoreColors function changes the colormap entries of the pixel values specified in
the pixel members of the XColor structures. You specify which color components are
to be changed by setting DoRed, DoGreen, and/or DoBlue in the flags member of the

March 26, 1992 5-9

X Window System

5-10

XColor structures. |If the colormap is an installed map for its screen, the changes are
visible immediately. XStoreColors changes the specified pixels if they are allocated
writable in the colormap by any client, even if one or more pixels generates an error. If
a specified pixel is not a valid index into the colormap, a BadValue error results. If a
specified pixel either is unallocated or is alocated read-only, a BadAccess error
results. If more than one pixel isin error, the one that gets reported is arbitrary.

XStoreColors can generate BadAccess, BadColor, and BadValue errors.
To store an RGB value in a single colormap cell, use XStoreColor.

XSt or eCol or (display, colormap, color)
Di spl ay *display;
Col or map colormap;
XCol or *color;

display Specifies the connection to the X server.
colormap Specifies the colormap.
color Specifies the pixel and RGB values.

The XStoreColor function changes the colormap entry of the pixel value specified in the
pixel member of the XColor structure. You specified this value in the pixel member of
the XColor structure. This pixel value must be a read/write cell and a valid index into
the colormap. |If a specified pixel is not a valid index into the colormap, a BadValue
error results. XStoreColor also changes the red, green, and/or blue color components.
You specify which color components are to be changed by setting DoRed, DoGreen,
and/or DoBlue in the flags member of the XColor structure. If the colormap is an
installed map for its screen, the changes are visible immediately.

XStoreColor can generate BadAccess, BadColor, and BadValue errors.
To set the color of a pixel to a named color, use XStoreNamedColor.

XSt or eNamedCol or (display, colormap, color, pixel, flags)
Di spl ay *display;
Col or map colormap;
char *color;
unsi gned | ong pixel;

i nt flags;
display Specifies the connection to the X server.
colormap Specifies the colormap.
color Specifies the color name string (for example, red).
pixel Specifies the entry in the colormap.
flags Specifies which red, green, and blue components are set.

The XStoreNamedColor function looks up the named color with respect to the screen
associated with the colormap and stores the result in the specified colormap. The pixel
argument determines the entry in the colormap. The flags argument determines which
of the red, green, and blue components are set. You can set this member to the bitwise

March 26, 1992

5.1.3

Graphics Resource Functions

inclusive OR of the bits DoRed, DoGreen, and DoBlue. If the specified pixel is not a
valid index into the colormap, aBadValue error results. If the specified pixel either is
unalocated or is allocated read-only, a BadAccess error results. You should use the
ISO Latin-1 encoding; uppercase and lowercase do not matter.

XStoreNamedColor can generate BadAccess, BadColor, BadName, and BadValue
errors.

To free colormap cells, use XFreeColors.

XFr eeCol or s(display, colormap, pixels, npixels, planes)
Di spl ay *display;
Col or map colormap;
unsi gned | ong pixels[];
i nt npixels;
unsi gned | ong planes;

display Specifies the connection to the X server.

colormap Specifies the colormap.

pixels Specifies an array of pixel values that map to the cells in the
specified colormap.

npixels Specifies the number of pixels.

planes Specifies the planes you want to free.

The XFreeColors function frees the cells represented by pixels whose values are in the
pixels array. The planes argument should not have any bits set to 1 in common with
any of the pixels. The set of al pixels is produced by ORing together subsets of the
planes argument with the pixels. The request frees all of these pixels that were allo-
cated by the client (using XAllocColor, XAllocNamedColor, XAllocColorCells, and
XAllocColorPlanes). Note that freeing an individual pixel obtained from XAllocColor-
Planes may not actually allow it to be reused until all of its related pixels are aso
freed. Similarly, a read-only entry is not actually freed until it has been freed by all
clients, and if a client allocates the same read-only entry multiple times, it must free the
entry that many times before the entry is actually freed.

All specified pixels that are alocated by the client in the colormap are freed, even if one
or more pixels produce an error. If a specified pixel is not a valid index into the color-
map, aBadValue error results. If a specified pixel is not allocated by the client (that is,
is unallocated or is only allocated by another client), aBadAccess error results. If more
than one pixel isin error, the one that gets reported is arbitrary.

XFreeColors can generate BadAccess, BadColor, and BadValue errors.

Reading Entriesin a Colormap

The XQueryColor and XQueryColors functions return the RGB values stored in the
specified colormap for the pixel value you pass in the pixel member of the XColor

March 26, 1992 5-11

X Window System

structure(s). The values returned for an unallocated entry are undefined. These func-
tions aso set the flags member in the XColor structure to all three colors. If a pixel is
not a vaid index into the specified colormap, a BadValue error results. If more than
one pixel isin error, the one that gets reported is arbitrary.

To query the RGB values of a single specified pixel value, use XQueryColor.

XQuer yCol or (display, colormap, def_in_out)
Di spl ay *display;
Col or map colormap;
XCol or *def _in_out;

display Specifies the connection to the X server.

colormap Specifies the colormap.

def_in_out Specifies and returns the RGB values for the pixel specified in
the structure.

The XQueryColor function returns the hardware-specific RGB values for each pixel in
the XColor structures and sets the DoRed, DoGreen, and DoBlue flags.

XQueryColor can generateBadColor and BadValue errors.

To query the RGB vaues of an array of pixels stored in color structures, use
XQueryColors.

XQuer yCol or s(display, colormap, defs_in_out, ncolors)
Di spl ay *display;
Col or map colormap;
XCol or defs_in_out[] ;

i nt ncolors;
display Specifies the connection to the X server.
colormap Specifies the colormap.
defs_in_out Specifies and returns an array of color definition structures for
the pixel specified in the structure.
ncolors Specifies the number of XColor structures in the color definition

array.

The XQueryColors function returns the RGB values for each pixel in the XColor struc-
tures and sets the DoRed, DoGreen, and DoBlue flags.

XQueryColors can generate BadColor and BadValue errors.

5.2 Creating and Freeing Pixmaps

Pixmaps can only be used on the screen on which they were created. Pixmaps are off-
screen resources that are used for various operations, for example, defining cursors as

5-12 March 26, 1992

Graphics Resource Functions

tiling patterns or as the source for certain raster operations. Most graphics requests can
operate either on awindow or on a pixmap. A bitmap is a single bit-plane pixmap.

To create a pixmap of a given size, use XCreatePixmap.

Pi xmap XCreat ePi xmap(display, d, width, height, depth)
Di spl ay *display;
Drawabl e d;
unsi gned i nt width, height;
unsi gned i nt depth;

display Specifies the connection to the X server.

d Specifies which screen the pixmap is created on.

width, height Specify the width and height, which define the dimensions of
the pixmap.

depth Specifies the depth of the pixmap.

The XCreatePixmap function creates a pixmap of the width, height, and depth you
specified and returns a pixmap 1D that identifies it. It is valid to pass an InputOnly
window to the drawable argument. The width and height arguments must be nonzero,
or aBadValue error results. The depth argument must be one of the depths supported
by the screen of the specified drawable, or aBadValue error results.

The server uses the specified drawable to determine on which screen to create the pix-
map. The pixmap can be used only on this screen and only with other drawables of the
same depth (see XCopyPlane for an exception to this rule). The initial contents of the
pixmap are undefined.

XCreatePixmap can generate BadAlloc, BadDrawable, and BadValue errors.
To free al storage associated with a specified pixmap, use XFreePixmap.

XFr eePi xmap(display, pixmap)
Di spl ay *display;
Pi xmap pixmap;

display Specifies the connection to the X server.
pixmap Specifies the pixmap.

The XFreePixmap function first deletes the association between the pixmap ID and the
pixmap. Then, the X server frees the pixmap storage when there are no references to
it. The pixmap should never be referenced again.

XFreePixmap can generate a BadPixmap error.

5.3 Manipulating Graphics Context/State

Most attributes of graphics operations are stored in Graphic Contexts (GCs). These

March 26, 1992 5-13

X Window System

include line width, line style, plane mask, foreground, background, tile, stipple, clipping
region, end style, join style, and so on. Graphics operations (for example, drawing
lines) use these values to determine the actual drawing operation. Extensions to X may
add additional components to GCs. The contents of a GC are private to Xlib.

Xlib implements a write-back cache for all elements of a GC that are not resource IDs
to alow Xlib to implement the transparent coalescing of changesto GCs. For example,
a call to XSetForeground of a GC followed by a call to XSetLineAttributes results in
only a single-change GC protocol request to the server. GCs are neither expected nor
encouraged to be shared between client applications, so this write-back caching should
present no problems. Applications cannot share GCs without external synchronization.

Therefore, sharing GCs between applications is highly discouraged.

To set an attribute of a GC, set the appropriate member of the XGCValues structure
and OR in the corresponding value bitmask in your subsequent calls to XCreateGC.
The symbols for the value mask bits and the XGCValues structure are:

/* GC attribute value mask bits */

#defi ne GCFunction (1L<<0)
#defi ne GCPlaneMask (1L<<1)
#defi ne GCForeground (1L<<2)
#defi ne GCBackground (1L<<3)
#define GCLinewidth (1L<<4)
#define GCLineStyle (1L<<b)
#defi ne GCCapStyle (1L<<6)
#defi ne GCJoinStyle (1L<<7)
#defi ne GCFillstyle (1L<<8)
#define GCFillRule (1L<<9)
#define GCTile (1L<<10)
#define GCstipple (1L<<1l)
#defi ne GCTileStipXOrigin (1L<<12)
#defi ne GCTileStipYOrigin (1L<<13)
#define GCFont (1L<<14)
#defi ne GCSubwindowMode (1L<<15)
#defi ne GCGraphicsExposures (1L<<16)
#define GCClipXOrigin (1L<<17)
#defi ne GCClipYOrigin (1L<<18)
#defi ne GCClipMask (1L<<19)
#defi ne GCDashOffset (1L<<20)
#defi ne GCDashList (1L<<21)
#define GCArcMode (1L<<22)
/* Val ues */
t ypedef struct {

int function; /* | ogical operation */

unsi gned | ong pl ane_mnask;
unsi gned | ong foreground,;

unsi gned | ong backgr ound;
line_wdth;
line_style;

5-14

nt
nt

/* plane mask */
/* foreground pixel */
/* background pixel */

/* line width (in pixels)

/ * LineSolid, LineOnOffDash,

March 26, 1992

*/

Graphics Resource Functions

LineDoubleDash */

int cap_style; /* CapNotLast, CapButt, CapRound,
CapProjecting */
int join_style; / * JoinMiter, JoinRound, JoinBevel */
int fill _style; / * FillSolid, FillTiled,
Fillstippled, FillOpaqueStippled*/

int fill_rule; /* EvenOddRule, WindingRule */
i nt arc_node; /* ArcChord, ArcPieSlice */
Pixmap tile; /* tile pixmap for tiling operations *
Pi xmap sti ppl e; /* stipple 1 plane pixmap for stipplir
int ts_x_ origin; /* offset for tile or stipple operatic
int ts_y origin;
Font font; /* default text font for text operatic
i nt subw ndow node; [* ClipByChildren, Includelnferiors */
Bool graphi cs_exposures; /* bool ean, shoul d exposures be genere
int clip_x_origin; /* origin for clipping */
int clip_y origin;
Pi xmap cli p_nask; /* bitmap clipping; other calls for re
i nt dash_of fset; /* patterned/ dashed line information *
char dashes;

} XGCval ues;

The default GC values are:

Component Default

function GXcopy

plane_mask All ones

foreground 0

background 1

line_width 0

line_style LineSolid

cap_style CapButt

join_style JoinMiter

fill_style FillSolid

fill_rule EvenOddRule

arc_mode ArcPieSlice

tile Pixmap of unspecified size filled with foreground pixel

(that is, client specified pixel if any, else 0)
(subsequent changes to foreground do not affect this pixmap)

stipple Pixmap of unspecified size filled with ones
ts x_origin 0

ts y_origin 0

font <implementation dependent>
subwindow_mode ClipByChildren

graphics_exposures True

clip_x_origin 0

clip_y_origin 0

March 26, 1992 5-15

X Window System

5-16

clip_mask None
dash_offset 0
dashes 4 (that is, the list [4, 4])

Note that foreground and background are not set to any values likely to be useful in a
window.

The function attributes of a GC are used when you update a section of a drawable (the
destination) with bits from somewhere else (the source). The function in a GC defines
how the new destination bits are to be computed from the source bits and the old desti-
nation bits. GXcopy is typically the most useful because it will work on a color
display, but special applications may use other functions, particularly in concert with
particular planes of a color display. The 16 GC functions, defined in <X11/X.h>, are:

Function Name Hex Code Operation

GXclear 0x0 0

GXand Ox1 src AND dst
GXandReverse 0x2 src AND NOT dst
GXcopy 0x3 src

GXandlInverted 0x4 (NOT src) AND dst
GXnoop 0x5 dst

GXxor Ox6 src XOR dst

GXor Ox7 src OR dst

GXnor 0x8 (NOT src) AND (NOT dst)
GXequiv 0x9 (NOT src) XOR dst
GXinvert Oxa NOT dst

GXorReverse Oxb src OR (NOT dst)
GXcopylnverted Oxc NOT src

GXorlnverted Oxd (NOT src) OR dst
GXnand Oxe (NOT src) OR (NOT dst)
GXset Oxf 1

Many graphics operations depend on either pixel values or planesin a GC. The planes
atribute is of type long, and it specifies which planes of the destination are to be
modified, one bit per plane. A monochrome display has only one plane and will be the
least-significant bit of the word. As planes are added to the display hardware, they will
occupy more significant bits in the plane mask.

In graphics operations, given a source and destination pixel, the result is computed bit-
wise on corresponding bits of the pixels. That is, a Boolean operation is performed in
each bit plane. The plane_mask restricts the operation to a subset of planes. A macro
constant AllPlanes can be used to refer to all planes of the screen simultaneously. The
result is computed by the following:

((src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

Range checking is not performed on the values for foreground, background, or
plane mask. They are simply truncated to the appropriate number of bits. The line-
width is measured in pixels and either can be greater than or equal to one (wide line) or
can be the special value zero (thin line).

March 26, 1992

Graphics Resource Functions

Wide lines are drawn centered on the path described by the graphics request. Unless
otherwise specified by the join-style or cap-style, the bounding box of a wide line with
endpoints [x1, y1], [x2, y2] and width w is a rectangle with vertices at the following
real coordinates:

[X1—(w*sn/2), y1+ (w*cg/2)], [X1+ (w*sn/2), yl—(w*cs/2)],
[x2—(w*sn/2), y2+ (W*cs/2)], [x2+ (W*sn/2), y2—(w*cs/2)]

Here sn is the sine of the angle of the line, and csis the cosine of the angle of the line.

A pixel is part of the line and so is drawn if the center of the pixel is fully inside the
bounding box (which is viewed as having infinitely thin edges). If the center of the
pixel is exactly on the bounding box, it is part of the line if and only if the interior is
immediately to its right (X increasing direction). Pixels with centers on a horizontal edge
are a special case and are part of the line if and only if the interior or the boundary is
immediately below (y increasing direction) and the interior or the boundary is immedi-
ately to the right (x increasing direction).

Figure5-2. Example of graphics operation using function and plane mask (4bits/pixel)
#ifdef BOOKREADER

#endif #fdef HARDCOPY

March 26, 1992 5-17

= = = L

Xor

X Window System Function

5-18

Graphics
Context

ZK-0412U-R

#endif

Thin lines (zero line-width) are one-pixel-wide lines drawn using an unspecified,
device-dependent algorithm. There are only two constraints on this algorithm.

1. If aline is drawn unclipped from [x1,y1] to [x2,y2] and if another line is drawn
unclipped from [x1+dx,y1+dy] to [x2+dx,y2+dy], a point [X,y] is touched by
drawing the first line if and only if the point [x +dx,y +dy] is touched by drawing
the second line.

2. The effective set of points comprising a line cannot be affected by clipping. That
is, a point is touched in a clipped line if and only if the point lies inside the clip-
ping region and the point would be touched by the line when drawn unclipped.

A wide line drawn from [x1,y1] to [x2,y2] aways draws the same pixels as a wide line
drawn from [x2,y2] to [x1,y1], not counting cap-style and join-style. It is recommended
that this property be true for thin lines, but this is not required. A line-width of zero
may differ from a line-width of one in which pixels are drawn. This permits the use of
many manufacturers' line drawing hardware, which may run many times faster than the
more precisely specified wide lines.

March 26, 1992

Graphics Resource Functions

In general, drawing a thin line will be faster than drawing a wide line of width one.
However, because of their different drawing algorithms, thin lines may not mix well
aesthetically with wide lines. If it is desirable to obtain precise and uniform results
across al displays, a client should always use a line-width of one rather than a line-
width of zero.

The line-style defines which sections of a line are drawn:
LineSolid The full path of the line is drawn.

LineDoubleDash The full path of the line is drawn, but the even dashes are filled
differently than the odd dashes (see fill-style) with CapButt
style used where even and odd dashes meet.

LineOnOffDash Only the even dashes are drawn, and cap-style applies to all
internal ends of the individual dashes, except CapNotLast is
treated as CapButt.

The cap-style defines how the endpoints of a path are drawn:

CapNotLast This is equivalent to CapButt except that for a line-width of
zero the final endpoint is not drawn.

CapButt The line is square at the endpoint (perpendicular to the slope of
the line) with no projection beyond.

CapRound The line has a circular arc with the diameter equal to the line-
width, centered on the endpoint. (This is equivalent to CapButt
for line-width of zero.)

CapProjecting The line is square at the end, but the path continues beyond the
endpoint for a distance equal to haf the line-width. (This is
equivalent to CapButt for line-width of zero.)

The join-style defines how corners are drawn for wide lines:

JoinMiter The outer edges of two lines extend to meet at an angle. How-
ever, if the angle is less than 11 degrees, then a JoinBevel
join-style is used instead.

JoinRound The corner is a circular arc with the diameter equal to the line-
width, centered on the joinpoint.

JoinBevel The corner has CapButt endpoint styles with the triangular
notch filled.

For a line with coincident endpoints (x1=x2, y1=y2), when the cap-style is applied to
both endpoints, the semantics depends on the line-width and the cap-style:

Figure5-3. Wideline cap and join styles
#ifdef BOOKREADER

March 26, 1992 5-19

X Windao

5-20

Butt Cap
Miter Join

#endif #fdef HARDCOPY

Projecting Cap
Bevel Join

#endif

CapNotLast thin
dent, but the desired
CapButt thin
dent, but the desired
CapRound thin
CapButt/thin.

CapProjecting thin
Butt/thin.

CapButt wide
CapRound wide
tered at the endpoint,
CapProjecting wide

Round Cap
Round Join

ZK-0413U-R

The results are device- depen-
effect is that nothing s
drawn.
The results are device- depen-
effect is that a single pixe
is drawn.
The results are the same as for
The results are the same as for
Nothing is drawn.
The closed path is a circle, cen-
and with the diameter
equal to the line-width.
The closed path is a square,
aligned with the coordinate axes,
centered at the endpoint, and with

March 26, 1992

Graphics Resource Functions

the sides equal to the line-width.

For a line with coincident endpoints (x1=x2, y1=y2), when the join-style is applied at
one or both endpoints, the effect is as if the line was removed from the overall path.
However, if the total path consists of or is reduced to a single point joined with itself,
the effect is the same as when the cap-style is applied at both endpoints.

The tile/stipple and clip origins are interpreted relative to the origin of whatever destina-
tion drawable is specified in a graphics request. The tile pixmap must have the same
root and depth as the GC, or aBadMatch error results. The stipple pixmap must have
depth one and must have the same root as the GC, or a BadMatch error results. For
stipple operations where the fill-style is FillStippled but not FillOpaqueStippled, the
stipple pattern is tiled in a single plane and acts as an additional clip mask to be ANDed
with the clip-mask. Although some sizes may be faster to use than others, any size pix-
map can be used for tiling or stippling.

The fill-style defines the contents of the source for line, text, and fill requests. For al
text and fill requests (for example, XDrawText, XDrawText16, XFillRectangle,
XFillPolygon, and XFillArc); for line requests with line-style LineSolid (for example,
XDrawlLine, XDrawSegments, XDrawRectangle, XDrawArc); and for the even
dashes for line requests with line-style LineOnOffDash or LineDoubleDash, the follow-
ing apply:

FillSolid Foreground

FillTiled Tile

FillOpaqueStippled
A tile with the same width and height as stipple, but with back-
ground everywhere stipple has a zero and with foreground
everywhere stipple has a one

FillStippled Foreground masked by stipple

When drawing lines with line-style LineDoubleDash, the odd dashes are controlled by
the fill-style in the following manner:

FillSolid Background
FillTiled Same as for even dashes
FillOpaqueStippled

Same as for even dashes
Fillstippled Background masked by stipple

Storing a pixmap in a GC might or might not result in a copy being made. If the pix-
map is later used as the destination for a graphics request, the change might or might
not be reflected in the GC. If the pixmap is used simultaneously in a graphics request
both as a destination and as atile or stipple, the results are undefined.

For optimum performance, you should draw as much as possible with the same GC
(without changing its components). The costs of changing GC components relative to
using different GCs depend upon the display hardware and the server implementation.
It is quite likely that some amount of GC information will be cached in display

March 26, 1992 5-21

X Window System

5-22

hardware and that such hardware can only cache a small number of GCs.

The dashes value is actually a simplified form of the more genera patterns that can be
set with XSetDashes. Specifying a value of N is equivalent to specifying the two-
element list [N, N] in XSetDashes. The value must be nonzero, or a BadValue error
results.

The clip-mask restricts writes to the destination drawable. If the clip-mask is set to a
pixmap, it must have depth one and have the same root as the GC, or aBadMatch error
results. If clip-mask is set to None, the pixels are always drawn regardless of the clip
origin. The clip-mask also can be set by calling the XSetClipRectangles or XSetRe-
gion functions. Only pixels where the clip-mask has a bit set to 1 are drawn. Pixels are
not drawn outside the area covered by the clip-mask or where the clip-mask has a bit set
to 0. The clip-mask affects all graphics requests. The clip-mask does not clip sources.
The clip-mask origin is interpreted relative to the origin of whatever destination draw-
able is specified in a graphics request.

You can set the subwindow-mode to ClipByChildren or Includelnferiors. For ClipBy-
Children, both source and destination windows are additionally clipped by all viewable
InputOutput children. For Includelnferiors, neither source nor destination window is
clipped by inferiors. This will result in including subwindow contents in the source and
drawing through subwindow boundaries of the destination. The use of Includelnferiors
on awindow of one depth with mapped inferiors of differing depth is not illegal, but the
semantics are undefined by the core protocol.

The fill-rule defines what pixels are inside (drawn) for paths given in XFillPolygon
reguests and can be set to EvenOddRule or WindingRule. For EvenOddRule, a point
is inside if an infinite ray with the point as origin crosses the path an odd number of
times. For WindingRule, a point is inside if an infinite ray with the point as origin
crosses an unequal number of clockwise and counterclockwise directed path segments.

A clockwise directed path segment is one that crosses the ray from left to right as
observed from the point. A counterclockwise segment is one that crosses the ray from
right to left as observed from the point. The case where a directed line segment is coin-
cident with the ray is uninteresting because you can simply choose a different ray that is
not coincident with a segment.

Figure5-4. Fill rule
#ifdef BOOKREADER

March 26, 1992

Graphics rce Fun

Polygon Before Fill Even Odd Rule Winding Rule

#endif #fdef HARDCOPY
ZK-0414U-R

#endif

For both EvenOddRule and WindingRule, a point is infinitely small, and the path is an
infinitely thin line. A pixel is inside if the center point of the pixel is inside and the
center point is not on the boundary. If the center point is on the
boundary, the pixel is inside if and only if the polygon interior is immediately to its
right (x increasing direction). Pixels with centers on a horizontal edge are a specia case
and are inside if and only if the polygon interior is immediately below (y increasing
direction).

The arc-mode controls filling in the XFillArcs function and can be set to ArcPieSlice or
ArcChord. For ArcPieSlice, the arcs are pie-dice filled. For ArcChord, the arcs are
chord filled.

The graphics-exposure flag controls GraphicsExpose event generation for XCopyArea
and XCopyPlane requests (and any similar requests defined by extensions).

Figure5-5. Arc mode
#ifdef BOOKREADER

March 26, 1992 5-23

X Windo

5-24

Pie Slice Chord
#endif #ifdef HARDCOPY
ZK-0415U-R
#endif

To create a new GC that is usable on a given screen with a depth of drawable, use
XCreateGC.

GC XCreat eGC(display, d, valuemask, values)
Di spl ay *display;
Dr awabl e d;
unsi gned | ong valuemask;
XGCVal ues * values;

display Specifies the connection to the X server.
d Specifies the drawable.
valuemask Specifies which components in the GC are to be set using the

information in the specified values structure. This argument is
the bitwise inclusive OR of zero or more of the valid GC com-
ponent mask bits.

values Specifies any values as specified by the valuemask.

The XCreateGC function creates a graphics context and returns a GC. The GC can be
used with any destination drawable having the same root and depth as the specified
drawable. Use with other drawables results in aBadMatch error.

XCreateGC can generate BadAlloc, BadDrawable, BadFont, BadMatch, BadPix-
map, and BadValue efrors.

To copy components from a source GC to a destination GC, use XCopyGC.

XCopyGC(display, src, valuemask, dest)
Di spl ay *display;
GC src, dest;

March 26, 1992

Graphics Resource Functions

unsi gned | ong valuemask;

display Specifies the connection to the X server.
src Specifies the components of the source GC.
valuemask Specifies which components in the GC are to be copied to the

destination GC. This argument is the bitwise inclusive OR of
zero or more of the valid GC component mask bits.

dest Specifies the destination GC.

The XCopyGC function copies the specified components from the source GC to the
destination GC. The source and destination GCs must have the same root and depth, or
aBadMatch error results. The valuemask specifies which component to copy, as for
XCreateGC.

XCopyGC can generate BadAlloc, BadGC, and BadMatch errors.
To change the components in a given GC, use XChangeGC.

XChangeGC(display, gc, valuemask, values)
Di spl ay *display;
GC gc;
unsi gned | ong valuemask;
X@CVal ues * values;

display Specifies the connection to the X server.
gc Specifies the GC.
valuemask Specifies which components in the GC are to be changed using

information in the specified values structure. This argument is
the bitwise inclusive OR of zero or more of the valid GC com-
ponent mask bits.

values Specifies any values as specified by the valuemask.

The XChangeGC function changes the components specified by valuemask for the
specified GC. The values argument contains the values to be set. The values and res-
trictions are the same as for XCreateGC. Changing the clip-mask overrides any previ-
ous XSetClipRectangles request on the context. Changing the dash-offset or dash-list
overrides any previous XSetDashes request on the context. The order in which com-
ponents are verified and altered is server-dependent. If an error is generated, a subset of
the components may have been altered.

XChangeGC can generate BadAlloc, BadFont, BadGC, BadMatch, BadPixmap, and
BadValue errors.

To obtain components of a given GC, use XGetGCValues.

St at us XGet GCVal ues (display, gc, valuemask, values_return)
Di spl ay *display;
GC gc;
unsi gned | ong valuemask;
XGCVal ues *values_return;

March 26, 1992 5-25

X Window System

display Specifies the connection to the X server.
gc Specifies the GC.
valuemask Specifies which components in the GC are to be returned in the

values return argument. This argument is the bitwise inclusive
OR of zero or more of the valid GC component mask bits.

values_return Returns the GC values in the specified XGCValues structure.

The XGetGCValues function returns the components specified by valuemask for the
specified GC. Note that the clip-mask and dash-list (represented by the
GCClipMask and GCbDashList hits, respectively, in the valuemask) cannot be
requested. If the valuemask contains a valid set of GC mask bits (GCFunction,
GCPlaneMask, GCForeground, GCBackground, GCLineWidth, GCLineStyle,
GCCapsStyle, GCJoinStyle, GCFillstyle, GCFillRule, GCTile, GCStipple, GCTileStipX-
Origin, GCTileStipYOrigin, GCFont, GCSubwindowMode, GCGraphicsExposures,
GCClipXOrigin, GCCLipYOrigin, GCDashOffset, or GCArcMode) and no error occur,
XGetGCValues sets the requested components in values return and returns a nonzero
status. Otherwise, it returns a zero status.

To free agiven GC, use XFreeGC.

XFr eeGC(display, gc)
Di spl ay *display;
GC gc;

display Specifies the connection to the X server.

gc Specifies the GC.

The XFreeGC function destroys the specified GC as well as al the associated storage.
XFreeGC can generate aBadGC error.

To obtain the GContext resource ID for a given GC, use XGContextFromGC.

GCont ext XGCont ext Fr omGC(gc)
GC gc;

gc Specifies the GC for which you want the resource ID.

5.4 Using GC Convenience Routines

This section discusses how to set the:
« Foreground, background, plane mask, or function components
» Line attributes and dashes components

« Fill style and fill rule components

5-26 March 26, 1992

Graphics Resource Functions

« Fill tile and stipple components

« Font component

Clip region component

Arc mode, subwindow mode, and graphics exposure components

5.4.1 Setting the Foreground, Background, Function, or Plane Mask

To set the foreground, background, plane mask, and function components for a given
GC, use XSetState.

XSet St at e (display, gc, foreground, background, function, plane_mask)
Di spl ay *display;

GC gc;

unsi gned | ong foreground, background;

i nt function;

unsi gned | ong plane_mask;
display Specifies the connection to the X server.
gc Specifies the GC.
foreground Specifies the foreground you want to set for the specified GC.
background Specifies the background you want to set for the specified GC.
function Specifies the function you want to set for the specified GC.
plane_mask Specifies the plane mask.

XSetState can generate BadAlloc, BadGC, and BadValue errors.
To set the foreground of a given GC, use XSetForeground.

XSet For egr ound(display, gc, foreground)
Di spl ay *display;
GC gc;
unsi gned | ong foreground;

display Specifies the connection to the X server.
gc Specifies the GC.
foreground Specifies the foreground you want to set for the specified GC.

XSetForeground can generate BadAlloc and BadGC errors.
To set the background of a given GC, use XSetBackground.

XSet Backgr ound(display, gc, background)
Di spl ay *display;
GC gc;
unsi gned | ong background;

March 26, 1992 5-27

X Window System

5.4.2

5-28

display

gc
background

Specifies the connection to the X server.
Specifies the GC.
Specifies the background you want to set for the specified GC.

XSetBackground can generate BadAlloc and BadGC errors.

To set the display function in a given GC, use XSetFunction.

XSet Funct i on(display, gc, function)
Di spl ay *display;

GC gc;
i nt function;
display Specifies the connection to the X server.
gc Specifies the GC.
function Specifies the function you want to set for the specified GC.

XSetFunction can generate BadAlloc, BadGC, and BadValue errors.

To set the plane mask of agiven GC, use XSetPlaneMask.

XSet Pl aneMask (display, gc, plane_mask)
Di spl ay *display;
GC gc;
unsi gned | ong plane_mask;

display

gc
plane_mask

Specifies the connection to the X server.
Specifies the GC.
Specifies the plane mask.

XSetPlaneMask can generate BadAlloc and BadGC errors.

Setting the Line Attributes and Dashes

To set the line drawing components of a given GC, use XSetLineAttributes.

XSet Li neAttri butes(display, gc, line_width, line_style, cap_style,
Di spl ay *display;
GC gc;
unsi gned int line_width;

i nt

line_style;

i nt cap_style;
i nt join_style;

display
gc

Specifies the connection to the X server.
Specifies the GC.

join_style)

March 26, 1992

Graphics Resource Functions

line_width Specifies the line-width you want to set for the specified GC.

line_style Specifies the line-style you want to set for the specified GC.
Y ou can passLineSolid, LineOnOffDash, or LineDoubleDash.

cap_style Specifies the line-style and cap-style you want to set for the
specified GC. You can pass CapNotLast, CapButt,
CapRound, or CapProjecting.

join_style Specifies the line join-style you want to set for the specified
GC. You can pass JoinMiter, JoinRound, or JoinBevel.

XSetLineAttributes can generate BadAlloc, BadGC, and BadValue errors.

To set the dash-offset and dash-list for dashed line styles of a given GC, use XSet-
Dashes.

XSet Dashes (display, gc, dash_offset, dash_list, n)
Di spl ay *display;
GC gc;
i nt dash_offset;
char dash_list[] ;

int n;

display Specifies the connection to the X server.

gc Specifies the GC.

dash_offset Specifies the phase of the pattern for the dashed line-style you
want to set for the specified GC.

dash_list Specifies the dash-list for the dashed line-style you want to set
for the specified GC.

n Specifies the number of elements in dash list.

The XSetDashes function sets the dash-offset and dash-list attributes for dashed line
styles in the specified GC. There must be at least one element in the specified dash_list,
or aBadValue error results. The initial and aternating elements (second, fourth, and so
on) of the dash_list are the even dashes, and the others are the odd dashes. Each ele-
ment specifies a dash length in pixels. All of the elements must be nonzero, or aBad-
Value error results. Specifying an odd-length list is equivalent to specifying the same
list concatenated with itself to produce an even-length list.

The dash-offset defines the phase of the pattern, specifying how many pixels into the
dash-list the pattern should actually begin in any single graphics request. Dashing is
continuous through path elements combined with a join-style but is reset to the dash-
offset between each sequence of joined lines.

Figure5-6. Dashes: 20 50 40 50 60 50 80 50 160 50
#ifdef BOOKREADER

March 26, 1992 5-29

=========£

X Windof[System

5.4.3

5-30

#gmmm===- o=

ZK-0416U-R

#endif

The unit of measure for dashes is the same for the ordinary coordinate system. Idedly,
a dash length is measured along the dope of the line, but implementations are only
required to match this ideal for horizontal and vertical lines. Failing the ideal seman-
tics, it is suggested that the length be measured along the major axis of the line. The
major axis is defined as the x axis for lines drawn at an angle of between —45 and +45
degrees or between 315 and 225 degrees from the x axis. For al other lines, the mgjor
axisisthey axis.

XSetDashes can generate BadAlloc, BadGC, and BadValue errors.

Setting the Fill Style and Fill Rule

To set the fill-style of a given GC, use XSetFillStyle.

XSet Fi Il Styl e(display, gc, fill_style)
Di spl ay *display;

GC gc;
i nt fill_style;
display Specifies the connection to the X server.
gc Specifies the GC.
fill_style Specifies the fill-style you want to set for the specified GC.
You can pass FillSolid, FillTiled, FillStippled, or FillOpaqueS-
tippled.

March 26, 1992

5.4.4

Graphics Resource Functions

XSetFillStyle can generateBadAlloc, BadGC, and BadValue errors.
To set the fill-rule of a given GC, use XSetFillRule.

XSet Fi | | Rul e(display, gc, fill_rule)
Di spl ay *display;

GC gc;
i nt fill_rule;
display Specifies the connection to the X server.
gc Specifies the GC.
fill_rule Specifies the fill-rule you want to set for the specified GC. You

can pass EvenOddRule or WindingRule.

XSetFillRule can generate BadAlloc, BadGC, and BadValue errors.

Setting the Fill Tile and Stipple

Some displays have hardware support for tiling or stippling with patterns of specific
sizes. Tiling and stippling operations that restrict themselves to those specific sizes run
much faster than such operations with arbitrary size patterns.
Xlib provides functions that you can use to determine the best size, tile, or stipple for
the display as well as to set the tile or stipple shape and the tile or stipple origin.

To obtain the best size of atile, stipple, or cursor, use XQueryBestSize.

St at us XQuer yBest Si ze(display, class, which_screen, width, height,
height_return)
Di spl ay *display;
i nt class;
Dr awabl e which_screen;
unsi gned i nt width, height;
unsi gned i nt *width_return, *height_return;

display Specifies the connection to the X server.

class Specifies the class that you are interested in. You can pass
TileShape, CursorShape, or StippleShape.

which_screen Specifies any drawable on the screen.

width, height Specify the width and height.

width_return, height_return
Return the width and height of the object best supported by the
display hardware.

The XQueryBestSize function returns the best or closest size to the specified size. For
CursorShape, this is the largest size that can be fully displayed on the screen specified
by which_screen. For TileShape, this is the size that can be tiled fastest. For

March 26, 1992 5-31

width_return,

X Window System

StippleShape, this is the size that can be stippled fastest. For CursorShape, the draw-
able indicates the desired screen. For TileShape and StippleShape, the drawable indi-
cates the screen and possibly the window class and depth. An InputOnly window can-
not be used as the drawable for TileShape or StippleShape, or a BadMatch error
results.

XQueryBestSize can generate BadDrawable, BadMatch, and BadValue errors.

To obtain the best fill tile shape, use XQueryBestTile.

St at us XQueryBest Ti | e(display, which_screen, width, height, width_return, height_return)
Di spl ay *display;
Dr awabl e which_screen;

unsi gned i nt width, height;
unsi gned i nt *width_return, *height_return;

display Specifies the connection to the X server.
which_screen Specifies any drawable on the screen.
width, height Specify the width and height.

width_return, height_return
Return the width and height of the object best supported by the
display hardware.

The XQueryBestTile function returns the best or closest size, that is, the size that can be
tiled fastest on the screen specified by which_screen. The drawable indicates the screen
and possibly the window class and depth. If an InputOnly window is used as the draw-
able, aBadMatch error results.

XQueryBestTile can generate BadDrawable and BadMatch errors.

To obtain the best stipple shape, use XQueryBestStipple.

St at us XQueryBest Sti ppl e(display, which_screen, width, height, width_return, height_rett
Di spl ay *display;
Dr awabl e which_screen;

unsi gned i nt width, height;
unsi gned i nt *width_return, *height return;

display Specifies the connection to the X server.
which_screen Specifies any drawable on the screen.
width, height Specify the width and height.

width_return, height_return
Return the width and height of the object best supported by the
display hardware.

The XQueryBestStipple function returns the best or closest size, that is, the size that
can be stippled fastest on the screen specified by which_screen. The drawable indicates
the screen and possibly the window class and depth. If an InputOnly window is used
as the drawable, aBadMatch error results.

5-32 March 26, 1992

Graphics Resource Functions

XQueryBestStipple can generate BadDrawable and BadMatch errors.
To set the fill tile of a given GC, use XSetTile.

XSet Ti | e(display, gc, tile)
Di spl ay *display;

GC gc;
Pi xmap tile;
display Specifies the connection to the X server.
gc Specifies the GC.
tile Specifies the fill tile you want to set for the specified GC.

Thetile and GC must have the same depth, or aBadMatch error results.
XSetTile can generate BadAlloc, BadGC, BadMatch, and BadPixmap errors.
To set the stipple of a given GC, use XSetStipple.

XSet Sti ppl e(display, gc, stipple)
Di spl ay *display;
GC gc;
Pi xmap stipple;

display Specifies the connection to the X server.
gc Specifies the GC.
stipple Specifies the stipple you want to set for the specified GC.

The stipple must have a depth of one, or aBadMatch error results.
XSetStipple can generate BadAlloc, BadGC, BadMatch, and BadPixmap errors.
To set the tile or stipple origin of a given GC, use XSetTSOrigin.

XSet TSOri gi n(display, gc, ts_x_ origin, ts_y origin)
Di spl ay *display;
GC gc;
i nt ts_x origin, ts y origin;

display Specifies the connection to the X server.
gc Specifies the GC.

ts_x_origin, ts_y origin
Specify the x and y coordinates of the tile and stipple origin.

When graphics requests call for tiling or stippling, the parent’s origin will be interpreted
relative to whatever destination drawable is specified in the graphics request.

XSetTSOrigin can generate BadAlloc and BadGC errors.

March 26, 1992 5-33

X Window System

5.4.5

5.4.6

Setting the Current Font

To set the current font of a given GC, use XSetFont.

XSet Font (display, gc, font)
Di spl ay *display;

GC gc;

Font font;
display Specifies the connection to the X server.
gc Specifies the GC.
font Specifies the font.

XSetFont can generate BadAlloc, BadFont, and BadGC errors.

Setting the Clip Region

Xlib provides functions that you can use to set the clip-origin and the clip-mask or set
the clip-mask to alist of rectangles.

To set the clip-origin of a given GC, use XSetClipOrigin.

XSet C i pOrigi n(display, gc, clip_x origin, clip_y origin)
Di spl ay *display;
GC gc;
i nt clip_x_origin, clip_y_origin;

display Specifies the connection to the X server.
gc Specifies the GC.

clip_x_origin, clip_y_origin
Specify the x and y coordinates of the clip-mask origin.

The clip-mask origin is interpreted relative to the origin of whatever destination draw-
able is specified in the graphics request.

XSetClipOrigin can generate BadAlloc and BadGC errors.
To set the clip-mask of a given GC to the specified pixmap, use XSetClipMask.

XSet O i pMask(display, gc, pixmap)
Di spl ay *display;
GC gc;
Pi xmap pixmap;

display Specifies the connection to the X server.
gc Specifies the GC.

March 26, 1992

Graphics Resource Functions

pixmap Specifies the pixmap or None.

If the clip-mask is set to None, the pixels are aways drawn (regardless of the clip-
origin).

XSetClipMask can generate BadAlloc, BadGC, BadMatch, and BadValue errors.

To set the clip-mask of a given GC to the specified list of rectangles, use XSetClipRec-
tangles.

XSet Cl i pRect angl es(display, gc, clip_x_origin, clip_y_origin, rectangles, n, ordering)
Di spl ay *display;
GC gc;
i nt clip_x_origin, clip_y origin;
XRect angl e rectangles[] ;
int n;
i nt ordering;

display Specifies the connection to the X server.
gc Specifies the GC.

clip_x_origin, clip_y_origin
Specify the x and y coordinates of the clip-mask origin.

rectangles Specifies an array of rectangles that define the clip-mask.
n Specifies the number of rectangles.
ordering Specifies the ordering relations on the rectangles. Y ou can pass

Unsorted, YSorted, YXSorted, or YXBanded.

The XSetClipRectangles function changes the clip-mask in the specified GC to the
specified list of rectangles and sets the clip origin. The output is clipped to remain con-
tained within the rectangles. The clip-origin is interpreted relative to the origin of what-
ever destination drawable is specified in a graphics request. The rectangle coordinates
are interpreted relative to the clip-origin.
The rectangles should be nonintersecting, or the graphics results will be undefined.
Note that the list of rectangles can be empty, which effectively disables output. Thisis
the opposite of passing None as the clip-mask in XCreateGC, XChangeGC, and
XSetClipMask.

If known by the client, ordering relations on the rectangles can be specified with the
ordering argument. This may provide faster operation by the server. If an incorrect ord-
ering is specified, the X server may generate aBadMatch error, but it is not required to
do so. If no error is generated, the graphics results are undefined. Unsorted means the
rectangles are in arbitrary order. YSorted means that the rectangles are nondecreasing in
their Y origin. YXSorted additionally constrains YSorted order in that al rectangles
with an equal Y origin are nondecreasing in their X origin. YXBanded additionally
constrains YXSorted by requiring that, for every possible Y scanline, all rectangles that
include that scanline have an identical Y originsand Y extents.

XSetClipRectangles can generate BadAlloc, BadGC, BadMatch, and BadValue
errors.

March 26, 1992 5-35

X Window System

5.4.7

5-36

Xlib provides a set of basic functions for performing region arithmetic. For information
about these functions, see chapter 10.

Setting the Arc Mode, Subwindow M ode, and Graphics Expo-
sure

To set the arc mode of a given GC, use XSetArcMode.

XSet Ar cMbde (display, gc, arc_mode)
Di spl ay *display;
GC gc;
i nt arc_mode;

display Specifies the connection to the X server.

gc Specifies the GC.

arc_mode Specifies the arc mode. You can pass ArcChord or
ArcPieSlice.

XSetArcMode can generate BadAlloc, BadGC, and BadValue errors.
To set the subwindow mode of a given GC, use XSetSubwindowMode.

XSet Subwi ndowivbde (display, gc, subwindow_mode)
Di spl ay *display;
G&C gc;
i nt subwindow_mode;

display Specifies the connection to the X server.
gc Specifies the GC.

subwindow_mode
Specifies the subwindow mode. You can pass ClipByChildren
or
Includelnferiors.

XSetSubwindowMode can generate BadAlloc, BadGC, and BadValue errors.

To set the graphics-exposures flag of a given GC, use XSetGraphics-
Exposures.

XSet Gr aphi csExposur es(display, gc, graphics_exposures)
Di spl ay *display;
GC gc;
Bool graphics_exposures;

display Specifies the connection to the X server.
gc Specifies the GC.

March 26, 1992

Graphics Resource Functions

graphics_exposures
Specifies a Boolean value that indicates whether you want
GraphicsExpose and NoExpose events to be reported when
calling XCopyArea and XCopyPlane with this GC.

XSetGraphicsExposures can generate BadAlloc, BadGC, and BadValue errors.

March 26, 1992 5-37

Chapter 6. Graphics Functions

Once you have connected the display to the X server, you can use the Xlib graphics
functions to:

+ Clear and copy areas

+ Draw points, lines, rectangles, and arcs

« Fill areas

« Manipulate fonts

« Draw text

« Transfer images between clients and the server
+ Manipulate cursors

If the same drawable and GC is used for each call, Xlib batches back-to-back calls to
XDrawPoint, XDrawLine, XDrawRectangle, XFillArc, and XFillRectangle. Note that
this reduces the total number of requests sent to the server.

6.1 Clearing Areas

Xlib provides functions that you can use to clear an area or the entire window. Because
pixmaps do not have defined backgrounds, they cannot be filled by using the functions
described in this section. Instead, to accomplish an analogous operation on a pixmap,
you should use XFillRectangle, which sets the pixmap to a known value.

To clear arectangular area of a given window, use XClearArea.

X ear Ar ea(display, w, x, y, width, height, exposures)
Di spl ay *display;
W ndow w;
int x,y;
unsi gned i nt width, height;
Bool exposures;

March 26, 1992 6-1

X Window System

display Specifies the connection to the X server.

w Specifies the window.

X, Y Specify the x and y coordinates, which are relative to the origin
of the window and specify the upper-left corner of the rectangle.

width, height Specify the width and height, which are the dimensions of the
rectangle.

exposures Specifies a Boolean value that indicates if Expose events are to
be generated.

The XClearArea function paints a rectangular area in the specified window according
to the specified dimensions with the window’s background pixel or pixmap. The
subwindow-mode effectively is ClipByChildren. If width is zero, it is replaced with the
current width of the window minus x. If height is zero, it is replaced with the current
height of the window minusy. If the window has a defined background tile, the rectan-
gle clipped by any children is filled with this tile. If the window has background None,
the contents of the window are not changed. In either case, if exposuresis True, one or
more Expose events are generated for regions of the rectangle that are either visible or
are being retained in a backing store. If you specify a window whose class is Inpu-
tOnly, aBadMatch error results.

XClearArea can generate BadMatch, BadValue, and BadWindow errors.
To clear the entire areain a given window, use XClearwWindow.

XCl ear W ndow(display, w)
Di spl ay *display;
W ndow w;

display Specifies the connection to the X server.
w Specifies the window.

The XClearWindow function clears the entire area in the specified window and is
equivalent to XClearArea (display, w, O, O, O, O, False). If the window has a defined
background tile, the rectangle is tiled with a plane-mask of al ones and GXcopy func-
tion. If the window has background None, the contents of the window are not changed.
If you specify a window whose class is InputOnly, aBadMatch error results.

XClearWindow can generate BadMatch and BadwWindow errors.

6.2 Copying Areas

Xlib provides functions that you can use to copy an area or a bit plane.
To copy an area between drawables of the same root and depth, use XCopyArea.

XCopyAr ea(display, src, dest, gc, src x, src_y, width, height, dest x, dest y)
Di spl ay *display;

6-2 March 26, 1992

Graphics Functions

Dr awabl e src, dest;

G&C gc;

i nt src_x, src.y;

unsi gned i nt width, height;
i nt dest x, desty;

display Specifies the connection to the X server.

src, dest Specify the source and destination rectangles to be combined.

gc Specifies the GC.

Src_Xx, src_y Specify the x and y coordinates, which are relative to the origin
of the source rectangle and specify its upper-left corner.

width, height Specify the width and height, which are the dimensions of both

the source and destination rectangles.

dest_x, dest y Specify the x and y coordinates, which are relative to the origin
of the destination rectangle and specify its upper-left corner.

The XCopyArea function combines the specified rectangle of src with the specified rec-
tangle of dest. The drawables must have the same root and depth, or a BadMatch error
results.

If regions of the source rectangle are obscured and have not been retained in backing
store or if regions outside the boundaries of the source drawable are specified, those
regions are not copied. Instead, the following occurs on all corresponding destination
regions that are either visible or are retained in backing store. If the destination is a win-
dow with a background other than None, corresponding regions of the destination are
tiled with that background (with plane-mask of all ones and GXcopy function).
Regardless of tiling or whether the destination is a window or a pixmap, if graphics-
exposures is True, then GraphicsExpose events for all corresponding destination
regions are generated. If graphics-exposuresis True but no GraphicsExpose events are
generated, a NoExpose event is generated. Note that by default graphics-exposures is
True in new GCs.

This function uses these GC components: function, plane-mask, subwindow-mode,
graphics-exposures, clip-x-origin, clip-y-origin, and clip-mask.

XCopyArea can generate BadDrawable, BadGC, and BadMatch errors.
To copy asingle bit plane of a given drawable, use XCopyPlane.

XCopyPl ane(display, src, dest, gc, src_x, srcy, width, height, dest x, dest y, plane)
Di spl ay *display;
Dr awabl e src, dest;
GC gc;
i nt src_x, src.y;
unsi gned i nt width, height;
i nt dest x, desty;
unsi gned | ong plane;

March 26, 1992 6-3

X Window System

display Specifies the connection to the X server.

src, dest Specify the source and destination rectangles to be combined.
gc Specifies the GC.

Src_Xx, src_y Specify the x and y coordinates, which are relative to the origin

of the source rectangle and specify its upper-left corner.

width, height Specify the width and height, which are the dimensions of both
the source and destination rectangles.

dest_x, dest y Specify the x and y coordinates, which are relative to the origin
of the destination rectangle and specify its upper-left corner.

plane Specifies the bit plane. You must set exactly one bit to 1.

The XCopyPlane function uses a single bit plane of the specified source rectangle com-
bined with the specified GC to modify the specified rectangle of dest. The drawables
must have the same root but need not have the same depth. If the drawables do not
have the same root, a BadMatch error results. If plane does not have exactly one bit
set to 1 and the values of planes must be less than 2n where n is the depth of src, a
BadValue error results.

Effectively, XCopyPlane forms a pixmap of the same depth as the rectangle of dest and
with a size specified by the source region. It uses the foreground/background pixels in
the GC (foreground everywhere the hit plane in src contains a bit set to 1, background
everywhere the bit plane in src contains a bit set to 0) and the equivalent of a
CopyArea protocol request is performed with all the same exposure semantics. This
can aso be thought of as using the specified region of the source bit plane as a stipple
with afill-style of FillOpaqueStippled for filling a rectangular area of the destination.

This function uses these GC components: function, plane-mask, foreground, back-
ground, subwindow-maode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-
mask.

XCopyPlane can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

6.3 Drawing Points, Lines, Rectangles, and Arcs

6-4

Xlib provides functions that you can use to draw:
+ A single point or multiple points
« A single line or multiple lines
« A single rectangle or multiple rectangles
+ A single arc or multiple arcs

Some of the functions described in the following sections use these structures:

March 26, 1992

6.3.1

Graphics Functions

typedef struct {
short x1, yl1, x2, y2;
} XSegnent ;
typedef struct {
short x, v;
} XPoint;

t ypedef struct {

short x, vy;

unsi gned short w dth, height;
} XRectangl e;

typedef struct {

short x, v;

unsi gned short w dth, height;

short angl el, angl ez; /* Degrees * 64 */
} XArc;

All x and y members are signed integers. The width and height members are 16-bit
unsigned integers. You should be careful not to generate coordinates and sizes out of
the 16-bit ranges, because the protocol only has 16-bit fields for these values.

Drawing Single and Multiple Points

To draw a single point in a given drawable, use XDrawPoint.

XDr awPoi nt (display, d, gc, X, Y)
Di spl ay *display;

Dr awabl e d;
G&C gc;
int X, vy;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
X, Y Specify the x and y coordinates where you want the point
drawn.

To draw multiple points in a given drawable, use XDrawPoints.

XDr awPoi nt s(display, d, gc, points, npoints, mode)
Di spl ay *display;
Dr awabl e d;
GC gc;
XPoi nt * points;
i nt npoints;
i nt mode;

March 26, 1992 6-5

X Window System

6.3.2

6-6

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

points Specifies an array of points.

npoints Specifies the number of points in the array.

mode Specifies the coordinate mode. You can pass CoordModeOri-

gin or CoordModePrevious.

The XDrawPoint function uses the foreground pixel and function components of the
GC to draw a single point into the specified drawable; XDrawPoints draws multiple
points this way. CoordModeOrigin treats all coordinates as relative to the origin, and
CoordModePrevious treats all coordinates after the first as relative to the previous
point. XDrawPoints draws the points in the order listed in the array.

Both functions use these GC components. function, plane-mask, foreground,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawPoint can generate BadDrawable, BadGC, and BadMatch errors.
XDrawPoints can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

Drawing Single and Multiple Lines

To draw a single line between two points in a given drawable, use XDrawlLine.

XDr awLi ne(display, d, gc, x1, yl, x2, y2)
Di spl ay *display;

Drawabl e d;
GC gc;
int x1, yl, x2, y2;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
x1, y1, x2,y2

Specify the points (x1, y1) and (x2, y2) to be connected.
To draw multiple lines in a given drawable, use XDrawLines.

XDr awLi nes(display, d, gc, points, npoints, mode)
Di spl ay *display;
Drawabl e d;
G&C gc;
XPoi nt *points;
i nt npoints;
i nt mode;

March 26, 1992

Graphics Functions

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

points Specifies an array of points.

npoints Specifies the number of points in the array.

mode Specifies the coordinate mode. You can pass CoordModeOri-

gin or CoordModePrevious.
To draw multiple, unconnected lines in a given drawable, use XDrawSegments.

XDr awSegnent s(display, d, gc, segments, nsegments)
Di spl ay *display;
Drawabl e d;
GC gc;
XSegnent *segments;
i nt nsegments;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

segments Specifies an array of segments.

nsegments Specifies the number of segments in the array.

The XDrawLine function uses the components of the specified GC to draw a line
between the specified set of points (x1, y1) and (x2, y2). It does not perform joining at
coincident endpoints. For any given line, XDrawLine does not draw a pixel more than
once. If lines intersect, the intersecting pixels are drawn multiple times.

The XDrawLines function uses the components of the specified GC to draw npoints-1
lines between each pair of points (point[i], point[i+1]) in the array of XPoint structures.
It draws the lines in the order listed in the array. The lines join correctly at al inter-
mediate points, and if the first and last points coincide, the first and last lines aso join
correctly. For any given ling, XDrawLines does not draw a pixel more than once. |f
thin (zero line-width) lines intersect, the intersecting pixels are drawn multiple times. |If
wide lines intersect, the intersecting pixels are drawn only once, as though the entire
PolyLine protocol request were a single, filled shape. CoordModeOrigin treats all
coordinates as relative to the origin, and CoordModePrevious treats al coordinates
after the first as relative to the previous point.

The XDrawSegments function draws multiple, unconnected lines. For each segment,
XDrawSegments draws a line between (x1, y1) and (x2, y2). It draws the lines in the
order listed in the array of XSegment structures and does not perform joining at coin-
cident endpoints. For any given line, XDrawSegments does not draw a pixel more
than once. If lines intersect, the intersecting pixels are drawn multiple times.

All three functions use these GC components: function, plane-mask, line-width, line-
style, cap-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

March 26, 1992 6-7

X Window System

6.3.3

The XDrawlLines function also uses the join-style GC component. All three functions
also use these GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawLine, XDrawLines, and XDrawSegments can generate BadDrawable, BadGC,
and BadMatch errors. XDrawLines also can generate BadValue errors.

Drawing Single and Multiple Rectangles

To draw the outline of a single rectangle in a given drawable, use XDrawRectangle.

XDr awRect angl e(display, d, gc, x, y, width, height)
Di spl ay *display;

Dr awabl e d;
GC gc;
int x, vy;
unsi gned i nt width, height;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
X,y Specify the x and y coordinates, which specify the upper-left
corner of the rectangle.
width, height Specify the width and height, which specify the dimensions of
the rectangle.

To draw the outline of multiple rectangles in a given drawable, use XDrawRectangles.

XDr awRect angl es(display, d, gc, rectangles, nrectangles)
Di spl ay *display;
Drawabl e d;
GC gc;
XRect angl e rectangles|] ;
i nt nrectangles;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

rectangles Specifies an array of rectangles.

nrectangles Specifies the number of rectanglesin the array.

The XDrawRectangle and XDrawRectangles functions draw the outlines of the
specified rectangle or rectangles as if a five-point PolyLine protocol request were
specified for each rectangle:

March 26, 1992

Graphics Functions

[x.,y] [xtwidth,y] [x+width,y+height] [x,y+height] [X,y]

For the specified rectangle or rectangles, these functions do not draw a pixel more than
once. XDrawRectangles draws the rectangles in the order listed in the array. If rec-
tangles intersect, the intersecting pixels are drawn multiple times.

Both functions use these GC components. function, plane-mask, line-width, line-style,
join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They
also use these GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawRectangle and XDrawRectangles can generate BadDrawable, BadGC, and
BadMatch errors.

6.3.4 Drawing Single and Multiple Arcs

To draw a single arc in a given drawable, use XDrawArc.

XDr awAr c (display, d, gc, x, y, width, height, anglel, angle2)
Di spl ay *display;

Dr awabl e d;
GC gc;
int X, y;

unsi gned i nt width, height;
i nt anglel, angle2;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC. and specify the upper-left corner of the
bounding rectangle

X, Y Specify the x and y coordinates, which are relative to the origin
of the drawable and specify the upper-left corner of the bound-
ing rectangle.

width, height Specify the width and height, which are the major and minor

axes of the arc.

anglel Specifies the start of the arc relative to the three-o’clock posi-
tion from the center, in units of degrees* 64.

angle2 Specifies the path and extent of the arc relative to the start of
the arc, in units of degrees* 64.

To draw multiple arcs in a given drawable, use XDrawArcs.

XDr awAr cs (display, d, gc, arcs, narcs)
Di spl ay *display;
Dr awabl e d;
GC gc;

March 26, 1992 6-9

X Window System

6-10

_XAr c *arcs;
i nt narcs;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
arcs Specifies an array of arcs.
narcs Specifies the number of arcsin the array.

XDrawArc draws a single circular or dliptical arc, and XDrawArcs draws multiple cir-
cular or dliptical arcs. Each arc is specified by a rectangle and two angles. The center
of the circle or ellipse is the center of the rectangle, and the major and minor axes are
specified by the width and height. Positive angles indicate counterclockwise motion,
and negative angles indicate clockwise motion. If the magnitude of angle2 is greater
than 360 degrees, XDrawArc or XDrawArcs truncates it to 360 degrees.

For an arc specified as[x, y, width, height, anglel, angle2 1, the origin of the mgor
and minor axes is a [x+ Wigth y. heght) and the infinitely thin path

describing the entire circle or ellipse intersects the horizontal axis at [x, y+ heizqht] and
[x+ width, y+ NEON] and intersects the vertical axis a [x+ Widh y] and

[x+ WG v+ height]. These coordinates can be fractional and so are not truncated to

discrete coordinates. The path should be defined by the ideal mathematical path. For a
wide line with line-width lw, the bounding outlines for filling are given by the two
infinitely thin paths consisting of all points whose perpendicular distance from the path
of the circle/ellipse is equal to Iw/2 (which may be a fractional value). The cap-style
and join-style are applied the same as for a line corresponding to the tangent of the
circle/ellipse at the endpoint.

For an arc specified as [x, y, width, height, anglel, angle2], the angles must be
specified in the effectively skewed coordinate system of the ellipse (for a circle, the
angles and coordinate systems are identical). The relationship between these angles and
angles expressed in the normal coordinate system of the screen (as measured with a pro-
tractor) is as follows:

O) O
skewed-angle = atan [tan(normal -angle)* r‘{‘&‘g}ﬁ‘t O+ adjust
O O

Figure6-1. XDrawArc (DPW, W, GC, x, y, width, height, 45*64, 225* 64
#ifdef BOOKREADER

March 26, 1992

Height » 3 O’clock _ _
Graphics Functions

v

#endif #ifdef HARDIEQPY25”
ZK-0417U-R

#endif The skewed-angle and normal-angle are expressed in radians (rather than in
degrees scaled by 64) in the range [0, 2] and where atan returns a value in the range

[- 5, 01 and adjust is:
0 for norma-anglein the range [0, §]
n for norma-anglein therange [§, 31]

2t for normal-angle in the range [32”, 21

For any given arc, XDrawArc and XDrawArcs do not draw a pixel more than once. If
two arcs join correctly and if the line-width is greater than zero and the arcs intersect,
XDrawArc and XDrawArcs do not draw a pixel more than once. Otherwise, the inter-
secting pixels of intersecting arcs are drawn multiple times. Specifying an arc with one
endpoint and a clockwise extent draws the same pixels as specifying the other endpoint
and an equivalent counterclockwise extent, except as it affects joins.

If the last point in one arc coincides with the first point in the following arc, the two
arcs will join correctly. If the first point in the first arc coincides with the last point in
the last arc, the two arcs will join correctly. By specifying one axis to be zero, a hor-
izontal or vertical line can be drawn. Angles are computed based solely on the coordi-
nate system and ignore the aspect ratio.

Both functions use these GC components: function, plane-mask, line-width, line-style,
cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-
mask. They also use these GC mode-dependent components: foreground, background,
tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

March 26, 1992 6-11

X Window System

XDrawArc and XDrawArcs can generate BadDrawable, BadGC, and BadMatch

errors.

6.4 Filling Areas

Xlib provides functions that you can use to fill:

+ A single rectangle or multiple rectangles

« A single polygon

« A single arc or multiple arcs

6.4.1 Filling Single and Multiple Rectangles

To fill asingle rectangular areain a given drawable, use XFillRectangle.

XFi | | Rect angl e(display, d, gc, x, y, width, height)
Di spl ay *display;

unsi gned i nt width, height;

Specifies the connection to the X server.
Specifies the drawable.
Specifies the GC.

Specify the x and y coordinates, which are relative to the origin
of the drawable and specify the upper-left corner of the rectan-
gle.

Dr awabl e d;
GC gc;
int x, v;
display
d
gc
X,y
width, height

Specify the width and height, which are the dimensions of the
rectangle to be filled.

To fill multiple rectangular areas in a given drawable, use XFillRectangles.

XFi | | Rect angl es(display, d, gc, rectangles, nrectangles)
Di spl ay *display;
Dr awabl e d;

GC gc;

XRect angl e *rectangles;
i nt nrectangles;

display

6-12

Specifies the connection to the X server.

March 26, 1992

6.4.2

Graphics Functions

d Specifies the drawable.

gc Specifies the GC.

rectangles Specifies an array of rectangles.

nrectangles Specifies the number of rectanglesin the array.

The XFillRectangle and XFillRectangles functions fill the specified rectangle or rectan-
ges as if a four-point FillPolygon protocol request were spec-
ified for each rectangle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height]

Each function uses the x and y coordinates, width and height dimensions, and GC you
specify.
XFillRectangles fills the rectangles in the order listed in the array. For any given rec-

tangle, XFillRectangle and XFillRectangles do not draw a pixel more than once. If rec-
tangles intersect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, subwindow-
mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC mode-
dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, and
tile-stipple-y-origin.

XFillRectangle and XFillRectangles can generate BadDrawable, BadGC, and Bad-
Match errors.

Filling a Single Polygon

To fill apolygon areain a given drawable, use XFillPolygon.
XFi I | Pol ygon(display, d, gc, points, npoints, shape, mode)
Di spl ay *display;
Dr awabl e d;
GC gc;
XPoi nt *points;
i nt npoints;
i nt shape;
i nt mode;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
points Specifies an array of points.

npoints Specifies the number of points in the array.

March 26, 1992 6-13

X Window System

6.4.3

6-14

shape Specifies a shape that helps the server to improve performance.
Y ou can pass Complex, Convex, or Nonconvex.

mode Specifies the coordinate mode. You can pass CoordModeOri-
gin or CoordModePrevious.

XFillPolygon fills the region closed by the specified path. The path is closed automati-
cally if the last point in the list does not coincide with the first point. XFillPolygon
does not draw a pixel of the region more than once. CoordModeOrigin treats al coor-
dinates as relative to the origin, and CoordModePrevious treats al coordinates after the
first as relative to the previous point.

Depending on the specified shape, the following occurs:

« If shape is Complex, the path may self-intersect. Note that contiguous coincident
points in the path are not treated as self-intersection.

« If shape is Convex, for every pair of points inside the polygon, the line segment
connecting them does not intersect the path. If known by the client, specifying
Convex can improve performance. If you specify Convex for a path that is not
convex, the graphics results are undefined.

« If shape is Nonconvex, the path does not self-intersect, but the shape is not wholly
convex. If known by the client, specifying Nonconvex instead of Complex may
improve performance. If you specify Nonconvex for a self-intersecting path, the
graphics results are undefined.

The fill-rule of the GC controls the filling behavior of self-intersecting polygons.

This function uses these GC components: function, plane-mask, fill-style, fill-rule,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It aso uses these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
and tile-stipple-y-origin.

XFillPolygon can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

Filling Single and Multiple Arcs

Tofill asingle arc in a given drawable, use XFillArc.

XFill Arc(display, d, gc, x, y, width, height, anglel, angle2)
Di spl ay *display;

Dr awabl e d;
GC gc;
int x, v;

unsi gned i nt width, height;
i nt anglel, angle2;

display Specifies the connection to the X server.

March 26, 1992

Graphics Functions

d Specifies the drawable.

gc Specifies the GC.

X, Y Specify the x and y coordinates, which are relative to the origin
of the drawable and specify the upper-left corner of the bound-
ing rectangle.

width, height Specify the width and height, which are the major and minor

axes of the arc.

anglel Specifies the start of the arc relative to the three-0'clock posi-
tion from the center, in units of degrees* 64.

angle2 Specifies the path and extent of the arc relative to the start of
the arc, in units of degrees* 64.

To fill multiple arcsin a given drawable, use XFillArcs.

XFi || Arcs(display, d, gc, arcs, narcs)
Di spl ay *display;

Dr awabl e d;
GC gc;
XAr c *arcs;
i nt narcs;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
arcs Specifies an array of arcs.
narcs Specifies the number of arcsin the array.

For each arc, XFillArc or XFillArcs fills the region closed by the infinitely thin path
described by the specified arc and, depending on the arc-mode specified in the GC, one
or two line segments. For ArcChord, the single line segment joining the endpoints of
the arc is used. For ArcPieSlice, the two line segments joining the endpoints of the arc
with the center point are used. XFillArcs fills the arcs in the order listed in the array. For
any given arc,
XFillArc and XFillArcs do not draw a pixel more than once. If regions intersect, the
intersecting pixels are drawn multiple times.

Both functions use these GC components. function, plane-mask, fill-style, arc-mode,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
and tile-stipple-y-origin.

XFillArc and XFillArcs can generate BadDrawable, BadGC, and BadMatch errors.

March 26, 1992 6-15

X Window System

6.5 Font Metrics

6-16

A font is agraphical description of a set of charactersthat are used to increase efficiency
whenever a set of small, similar sized patterns are repeatedly used.

This section discusses how to:
« Load and free fonts
+ Obtain and free font names
+ Set and retrieve the font search path
« Compute character string sizes
+ Return logical extents
+ Query character string sizes

The X server loads fonts whenever a program requests a new font. The server can
cache fonts for quick lookup. Fonts are global across all screens in a server. Severa
levels are possible when dealing with fonts. Most applications simply use XLoad-
QueryFont to load a font and query the font metrics.

Characters in fonts are regarded as masks. Except for image text requests, the only pix-
els modified are those in which bits are set to 1 in the character. This means that it
makes sense to draw text using stipples or tiles (for example, many menus gray-out
unusable entries).

and consists of the font-specific information as well as a pointer to an array of XChar-
Struct structures for the characters contained in the font. The XFontStruct, XFontProp,
and XCharStruct structures contain:

Figure 6-2. XCharStruct components
#ifdef BOOKREADER

March 26, 1992

l New
Origin
Graphics Functions
#endif #ifdef HARDCOW¥ith
ZK-0418U-R

#endif
t ypedef struct {

short | bearing; /* origin to |left edge of raster */

short rbearing; /[* origin to right edge of raster *

March 26, 1992 6-17

X Window System

short w dth;

6-18

short ascent;

short descent;

unsi gned short attributes;
} XChar Struct;

typedef struct {

At om nane;

unsi gned | ong card32;
} XFont Prop;

t ypedef struct {
unsi gned char bytel;
unsi gned char byte2;
} XChar 2b;

typedef struct {
XExt Dat a *ext _dat a;
Font fid;
unsi gned direction;
unsi gned m n_char_or_byte2;
unsi gned max_char _or _byt e2;
unsi gned min_bytel;
unsi gned max_byt el;
Bool all _chars_exi st;
unsi gned default_char;
int n_properties;
XFont Prop *properti es;
XChar Struct m n_bounds;
XChar Struct nmax_bounds;
XChar Struct *per_char;
i nt ascent;
i nt descent;

} XFont Struct;

/*
/*
/*
/*

/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

advance to next char’s origin */
baseline to top edge of raster *
baseline to bottom edge of raste
per char flags (not predefined)

normal 16 bit characters are two

hook for extension to hang data
Font id for this font */

hi nt about the direction font is
first character */

| ast character */

first row that exists */

| ast row that exists */

flag if all characters have nonz
char to print for undefined char
how many properties there are */
pointer to array of additional p
m ni mrum bounds over all existing
maxi mum bounds over all existing
first_char to last_char informat
| ogi cal extent above baseline fo
| ogi cal descent bel ow baseline f

X supports single byte/character, two bytes/character matrix, and 16-bit character text
operations. Note that any of these forms can be used with a font, but a single
byte/character text request can only specify a single byte (that is, the first row of a 2-
byte font). You should view 2-byte fonts as a two-dimensional matrix of defined char-
acters: bytel specifies the range of defined rows and byte? defines the range of defined
columns of the font. Single byte/character fonts have one row defined, and the byte2

range specified in the structure defines a range of characters.

The bounding box of a character is defined by the XCharStruct of that character. When
characters are absent from a font, the default_char is used. When fonts have all charac-
ters of the same size, only the information in the XFontStruct min and max bounds are

used.

The members of the XFontStruct have the following semantics:

« The direction member can be either FontLeftToRight or FontRightToLeft. It is just a
hint as to whether most XCharStruct elements have a positive (FontLeftToRight) or

March 26, 1992

Graphics Functions

a negative (FontRightTolLeft) character width metric. The core protocol defines no
support for vertical text.

If the min bytel and max_bytel members are both zero, min_char_or_byte2
specifies the linear character index corresponding to the first element of the per_char
array, and max_char_or_byte2 specifies the linear character index of the last ele-
ment.

If either min_bytel or max_bytel are nonzero, both min_char_or_byte2 and
max_char_or_byte2 are less than 256, and the 2-byte character index values
corresponding to the per_char array element N (counting from Q) are:

bytel = N/D + min_bytel
byte2 = N\D + min_char_or_byte2
where:
D = max_char_or_byte2 —min_char_or_byte?2 + 1
[= integer division
\ = integer modulus

If the per_char pointer is NULL, al glyphs between the first and last character
indexes inclusive have the same information, as given by both min_bounds and
max_bounds.

If all_chars exist isTrue, al charactersin the per_char array have nonzero bounding
boxes.

The default_char member specifies the character that will be used when an undefined
or nonexistent character is printed. The default_char is a 16-bit character (not a 2-
byte character). For afont using 2-byte matrix format, the default_char has bytel in
the most-significant byte and byte2 in the least-significant byte. If the default_char
itself specifies an undefined or nonexistent character, no printing is performed for an
undefined or nonexistent character.

The min_bounds and max_bounds members contain the most extreme values of each
individual XCharStruct component over al elements of this array (and ignore
nonexistent characters). The bounding box of the font (the smallest rectangle
enclosing the shape obtained by superimposing al of the characters at the same ori-
gin [x,y]) has its upper-left coordinate at:

[x + min_bounds.Ibearing, y — max_bounds.ascent]

ltswidth is;

max_bounds.rbearing — min_bounds.|bearing

March 26, 1992 6-19

X Window System

6-20

Its height is:

max_bounds.ascent + max_bounds.descent

« The ascent member is the logical extent of the font above the basdline that is used
for determining line spacing. Specific characters may extend beyond this.

+ The descent member is the logical extent of the font at or below the baseline that is
used for determining line spacing. Specific characters may extend beyond this.

« If the basdline is at Y-coordinate y, the logical extent of the font is inclusive
between the Y -coordinate values (y — font.ascent) and (y + font.descent — 1). Typi-
cally, the minimum interline spacing between rows of text is given by ascent + des-
cent.

For a character origin at [X,y], the bounding box of a character (that is, the smallest rec-
tangle that encloses the character’s shape) described in terms of XCharStruct com-
ponents is a rectangle with its upper-left corner at:

[x + Ibearing, y — ascent]
Its width is:
rbearing — |bearing
Its height is:
ascent + descent
The origin for the next character is defined to be:
[x + width, y]

The Ibearing member defines the extent of the left edge of the character ink from the
origin. The rbearing member defines the extent of the right edge of the character ink
from the origin. The ascent member defines the extent of the top edge of the character
ink from the origin. The descent member defines the extent of the bottom edge of the
character ink from the origin. The width member defines the logical width of the char-
acter.

Note that the baseline (the y position of the character origin) is logicaly viewed as
being the scanline just below nondescending characters. When descent is zero, only pix-
els with Y-coordinates less than y are drawn, and the origin is logically viewed as being
coincident with the left edge of a nonkerned character. When Ibearing is zero, no pixels
with X-coordinate less than x are drawn. Any of the XCharStruct metric members
could be negative. If the width is negative, the next character will be placed to the left
of the current origin.

The X protocol does not define the interpretation of the attributes member in the
XCharStruct structure. A nonexistent character is represented with all members of its

March 26, 1992

6.5.1

Graphics Functions

XCharStruct Set to zero.

A font is not guaranteed to have any properties. The interpretation of the property value
(for example, long or unsigned long) must be deived from
a priori knowledge of the property. A basic set of font properties is specified in part
IV, **X Logica Font Description Conventions.”’

Loading and Freeing Fonts

Xlib provides functions that you can use to load fonts, get font information, unload
fonts, and free font information. A few font functions use a GContext resource ID or a
font ID interchangeably.

To load a given font, use XLoadFont.

Font XLoadFont (display, name)
Di spl ay *display;
char *name;

display Specifies the connection to the X server.
name Specifies the name of the font, which is a null-terminated
string.

The XLoadFont function loads the specified font and returns its associated font ID. The
name should be 1SO Latin-1 encoding; uppercase and lowercase do not matter. The
interpretation of characters **?’ (octal value 77) and ‘**’’ (octal value 52) in the name
is not defined by the core protocol but is reserved for future definition. A structured
format for font names is specified in part 1V, ‘X Logical Font Description Conven-
tions.”’ If XLoadFont was unsuccessful at loading the specified font, aBadName error
results. Fonts are not associated with a particular screen and can be stored as a com-
ponent of any GC. When the font is no longer needed, call XUnloadFont.

XLoadFont can generate BadAlloc and BadName errors.
To return information about an available font, use XQueryFont.
XFont St ruct *XQuer yFont (display, font ID)

Di spl ay *display;
Xl D font_ID;

display Specifies the connection to the X server.
font_ID Specifies the font ID or the GContext ID.

The XQueryFont function returns a pointer to the XFontStruct structure, which con-
tains information associated with the font. You can query afont or the font stored in a
GC. Thefont ID stored in the XFontStruct structure will be the GContext ID, and you
need to be careful when using this ID in other functions (see XGContextFromGC). If
the font does not exist, XQueryFont returns NULL. To free this data, use XFreeFon-
tinfo.

March 26, 1992 6-21

X Window System

6-22

To perform a XLoadFont and XQueryFont in a single operation, use XLoad-
QueryFont.

XFont St ruct *XLoadQuer yFont (display, name)

Di spl ay *display;
char *name;

display Specifies the connection to the X server.
name Specifies the name of the font, which is a null-terminated
string.

The XLoadQueryFont function provides the most common way for accessing a font.
XLoadQueryFont both opens (loads) the specified font and returns a pointer to the
appropriate XFontStruct structure. |If the font does not exist, XLoadQueryFont returns
NULL.

XLoadQueryFont can generate a BadAlloc error.

To unload the font and free the storage used by the font structure that was allocated by
XQueryFont or XLoadQueryFont, use XFreeFont.

XFr eeFont (display, font_struct)
Di spl ay *display;
XFont St ruct *font_struct;

display Specifies the connection to the X server.
font_struct Specifies the storage associated with the font.

The XFreeFont function deletes the association between the font resource ID and the
specified font and frees the XFontStruct structure. The font itself will be freed when no
other resource referencesit. The data and the font should not be referenced again.

XFreeFont can generate aBadFont error.
To return a given font property, use XGetFontProperty.

Bool XGet Font Property(font_struct, atom, value_return)
Xfont St ruct *font_struct;
At om atom;
unsi gned | ong *value_return;

font_struct Specifies the storage associated with the font.
atom Specifies the atom for the property name you want returned.
value_return Returns the value of the font property.

Given the atom for that property, the XGetFontProperty function returns the value of
the specified font property. XGetFontProperty also returnsFalse if the property was not
defined or True if it was defined. A set of predefined atoms exists for font properties,
which can be found in <X11/Xatom.h>. This set contains the standard properties
associated with afont. Although it is not guaranteed, it is likely that the predefined font
properties will be present.

March 26, 1992

6.5.2

Graphics Functions

To unload a font that was loaded by XLoadFont, use XUnloadFont.

XUnl oadFont (display, font)
Di spl ay *display;
Font font;

display Specifies the connection to the X server.
font Specifies the font.

The XUnloadFont function deletes the association between the font resource ID and the
specified font. The font itself will be freed when no other resource referencesit. The
font should not be referenced again.

XUnloadFont can generate aBadFont error.

Obtaining and Freeing Font Names and Infor mation

You obtain font names and information by matching a wildcard specification when
guerying a font type for alist of available sizes and so on.

To return alist of the available font names, use XListFonts.

char **XLi st Font s(display, pattern, maxnames, actual _count_return)
Di spl ay *display;
char * pattern;
i nt maxnames;
i nt *actual _count_return;

display Specifies the connection to the X server.

pattern Specifies the null-terminated pattern string that can contain
wildcard characters.

maxnames Specifies the maximum number of names to be returned.

actual_count_return
Returns the actual number of font names.

The XListFonts function returns an array of available font names (as controlled by the
font search path; see XSetFontPath) that match the string you passed to the pattern
argument. The string should be 1SO Latin-1; uppercase and lowercase do not matter.
Each string is terminated by an ASCII null. The pattern string can contain any charac-
ters, but each asterisk (*) is a wildcard for any number of characters, and each question
mark (?) is awildcard for a single character. |If there are no matching font names, XList-
Fonts returns NULL. The client should call XFreeFontNames when finished with the
result to free the memory.

To free afont name array, use XFreeFontNames.

XFr eeFont Nanes (list)
char *list[];

March 26, 1992 6-23

X Window System

list Specifies the array of strings you want to free.

The XFreeFontNames function frees the array and strings returned by XListFonts or
XListFontsWithInfo.

To obtain the names and information about available fonts, use XListFontsWithInfo.

char **XLi st Font sWt hl nf o(display, pattern, maxnames, count_return, info_return)
Di spl ay *display;
char *pattern;
i nt maxnames;
i nt *count return;
XFont Struct **info_return;

display Specifies the connection to the X server.

pattern Specifies the null-terminated pattern string that can contain
wildcard characters.

maxnames Specifies the maximum number of names to be returned.

count_return Returns the actual number of matched font names.

info_return Returns the font information.

The XListFontsWithinfo function returns a list of font names that match the specified
pattern and their associated font information. The list of names is limited to size
specified by maxnames. The information returned for each font is identical to what
XLoadQueryFont would return except that the per-character metrics are not returned.

The pattern string can contain any characters, but each asterisk (*) is a wildcard for any
number of characters, and each question mark (?) is awildcard for a single character. |If
there are no matching font names, XListFontsWithinfo returns NULL.

To free the alocated name array, the client should call XFreeFontNames. To free the
font information array, the client should call XFreeFontinfo.

To free the the font information array, use XFreeFontinfo.

XFr eeFont | nf o(names, free_info, actual_count)
char **names;
XFont St ruct *free_info;
i nt actual_count;

names Specifies the list of font names returned by XList-
FontsWithinfo.

free_info Specifies the font information returned by XListFontsWithinfo.

actual_count Specifies the actual number of matched font names returned by

XListFontsWithInfo.

The XFreeFontinfo function frees the the font information array. To free an
XFontStruct structure without closing the font, call XFreeFontinfo with the names argu-
ment specified as NULL.

6-24 March 26, 1992

Graphics Functions

6.5.3 Setting and Retrieving the Font Search Path

To set the font search path, use XSetFontPath.
XSet Font Pat h(display, directories, ndirs)
Di spl ay *display;
char **directories;

i nt ndirs;
display Specifies the connection to the X server.
directories Specifies the directory path used to look for a font. Setting the
path to the empty list restores the default path defined for the X
server.
ndirs Specifies the number of directoriesin the path.

The XSetFontPath function defines the directory search path for font lookup. There is
only one search path per X server, not one per client. The interpretation of the strings is
operating system dependent, but they are intended to specify directories to be searched
in the order listed. Also, the contents of these strings are operating system dependent
and are not intended to be used by client applications. Usually, the X server is free to
cache font information internally rather than having to read fonts from files. In addi-
tion, the X server is guaranteed to flush all cached information about fonts for which
there currently are no explicit resource IDs allocated. The meaning of an error from this
request is operating system dependent.

XSetFontPath can generate a BadValue error.
To get the current font search path, use XGetFontPath.

char **XGet Font Pat h(display, npaths_return)
Di spl ay *display;
i nt *npaths_return;

display Specifies the connection to the X server.
npaths_return Returns the number of strings in the font path array.

The XGetFontPath function allocates and returns an array of strings containing the
search path. When it is no longer needed, the data in the font path should be freed by
using XFreeFontPath.

To free data returned by XGetFontPath, use XFreeFontPath.

XFr eeFont Pat h(list)
char **list;

list Specifies the array of strings you want to free.

The XFreeFontPath function frees the data allocated by XGetFontPath.

March 26, 1992 6-25

X Window System

6.5.4 Computing Character String Sizes

Xlib provides functions that you can use to compute the width, the logical extents, and
the server information about 8-bit and 2-byte text strings. The width is computed by
adding the character widths of all the characters. It does not matter if the font is an 8-
bit or 2-byte font. These functions return the sum of the character metrics, in pixels.

To determine the width of an 8-bit character string, use XTextWidth.

i nt XText W dt h(font_struct, string, count)
XFont St ruct *font_struct;
char *string;

i nt count;
font_struct Specifies the font used for the width computation.
string Specifies the character string.
count Specifies the character count in the specified string.

To determine the width of a 2-byte character string, use XTextWidth16.

i nt XText W dt h16(font_struct, string, count)
XFont St ruct *font_struct;
XChar 2b *string;

i nt count;
font_struct Specifies the font used for the width computation.
string Specifies the character string.
count Specifies the character count in the specified string.

6.5.5 Computing Logical Extents

To compute the bounding box of an 8-bit character string in a given font, use XTextEx-
tents.

XText Ext ent s(font_struct, string, nchars, direction_return, font ascent_return,
font_descent_return, overall_return)
XFont St ruct *font_struct;
char *string;
i nt nchars;
i nt *direction_return;
i nt *font_ascent_return, *font descent return;
XChar St ruct *overall_return;

font_struct Specifies the XFontStruct structure.

string Specifies the character string.

6—-26 March 26, 1992

Graphics Functions

nchars Specifies the number of charactersin the character string.

direction_return Returns the value of the direction hint (FontLeftToRight or Fon-
tRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent _return
Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct structure.

To compute the bounding box of a 2-byte character string in a given font, use XTextEx-
tents16.

XText Ext ent s16(font_struct, string, nchars, direction_return, font _ascent_return,

font_descent_return, overall_return)

XFont St ruct *font_struct;

XChar 2b *string;

i nt nchars;

i nt *direction_return;

i nt *font_ascent_return, *font descent return;

XChar Struct *overall_return;

font_struct Specifies the XFontStruct structure.
string Specifies the character string.
nchars Specifies the number of charactersin the character string.

direction_return
Returns the value of the direction hint (FontLeftToRight or Fon-
tRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct structure.

The XTextExtents and XTextExtents16 functions perform the size computation locally
and, thereby, avoid the round-trip overhead of XQueryTextExtents and XQueryTex-
tExtents16. Both functions return an XCharStruct structure, whose members are set to
the values as follows.

The ascent member is set to the maximum of the ascent metrics of al charactersin the
string. The descent member is set to the maximum of the descent metrics. The width
member is set to the sum of the character-width metrics of all charactersin the string.

For each character in the string, let W be the sum of the character-width metrics of all
characters preceding it in the string. Let L be the left-side-bearing metric of the charac-
ter plus W. Let R be the right-side-bearing metric of the character plus W. The |bear-
ing member is set to the minimum L of al characters in the string. The rbearing

March 26, 1992 6-27

X Window System

member is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with bytel as the
most-significant byte. If the font has no defined default character, undefined characters
in the string are taken to have al zero metrics.

6.5.6 Querying Character String Sizes

To query the server for the bounding box of an 8-bit character string in a given font, use
XQueryTextExtents.

XQuer yText Ext ent s(display, font_ID, string, nchars, direction_return, font_ascent_return,
font_descent_return, overall_return)
Di spl ay *display;
Xl D font_ID;
char *string;
i nt nchars;
i nt *direction_return;
i nt *font_ascent_return, *font descent return;
XChar Struct *overall_return;

display Specifies the connection to the X server.

font_ID Specifies either the font ID or the GContext ID that contains
the font.

string Specifies the character string.

nchars Specifies the number of charactersin the character string.

direction_return
Returns the value of the direction hint (FontLeftToRight or Fon-
tRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return Returns the font descent.
overall_return Returns the overall size in the specified XCharStruct structure.

To query the server for the bounding box of a 2-byte character string in a given font,
use XQueryTextExtentsl16.

XQuer yText Ext ent s16(display, font ID, string, nchars, direction_return,
font_ascent_return,
font_descent_return, overall_return)
Di spl ay *display;
Xl D font_ID;
XChar 2b *string;

6-28 March 26, 1992

Graphics Functions

i nt nchars;

i nt *direction_return;

i nt *font_ascent_return, *font descent return;
XChar Struct *overall_return;

display Specifies the connection to the X server.

font_ID Specifies either the font ID or the GContext ID that contains
the font.

string Specifies the character string.

nchars Specifies the number of charactersin the character string.

direction_return
Returns the value of the direction hint (FontLeftToRight or Fon-
tRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct structure.

The XQueryTextExtents and XQueryTextExtents16 functions return the bounding box
of the specified 8-bit and 16-bit character string in the specified font or the font con-
tained in the specified GC. These functions query the X server and, therefore, suffer the
round-trip overhead that is avoided by
XTextExtents and XTextExtents16. Both functions return a XCharStruct structure,
whose members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of al charactersin the
string. The descent member is set to the maximum of the descent metrics. The width
member is set to the sum of the character-width metrics of all characters in the string.

For each character in the string, let W be the sum of the character-width metrics of all
characters preceding it in the string. Let L be the left-side-bearing metric of the charac-
ter plus W. Let R be the right-side-bearing metric of the character plus W. The |bear-
ing member is set to the minimum L of al characters in the string. The rbearing
member is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with bytel as the most-significant
byte. If the font has no defined default character, undefined charactersin the string are
taken to have al zero metrics.

Characters with all zero metrics are ignored. If the font has no defined default_char, the
undefined characters in the string are aso ignored.

XQueryTextExtents and XQueryTextExtentsl6 can generate BadFont and BadGC
errors.

March 26, 1992 6-29

X Window System

6.6 Drawing Text

This section discusses how to draw:
« Complex text
+ Text characters
+ Image text characters

The fundamental text functions XDrawText and XDrawText16 use the following struc-

tures.
typedef struct {
char *chars; /* pointer to string */
int nchars; /* nunber of characters */
i nt delta; /* delta between strings */
Font font; /* Font to print it in, None don't change

} XTextltem

t ypedef struct {

XChar 2b *chars; /* pointer to two-byte characters */

i nt nchars; /* nunber of characters */

int delta; /* delta between strings */

Font font; /* font to print it in, None don’t change

} XTextlteml6;

If the font member is not None, the font is changed before printing and also is stored in
the GC. If an error was generated during text drawing, the previous items may have
been drawn. The baseline of the characters are drawn starting at the x and y coordinates
that you pass in the text drawing functions.

For example, consider the background rectangle drawn by XDrawlmageString. If you
want the upper-left corner of the background rectangle to be at pixel coordinate (X,y),
pass the (x,y + ascent) as the baseline origin coordinates to the text functions. The
ascent is the font ascent, as given in the XFontStruct structure. If you want the lower-
left corner of the background rectangle to be at pixel coordinate (x,y), pass the (x,y —
descent + 1) as the baseline origin coordinates to the text functions. The descent is the
font descent, as given in the XFontStruct structure.

6.6.1 Drawing Complex Text

To draw 8-hit charactersin a given drawable, use XDrawText.

XDr awText (display, d, gc, X, y, items, nitems)
Di spl ay *display;
Dr awabl e d;
GC gc;

6-30 March 26, 1992

Graphics Functions

int x, y;
XText It em *items;
i nt nitems;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

X, Y Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char-
acter.

items Specifies an array of text items.

nitems Specifies the number of text items in the array.

To draw 2-byte charactersin a given drawable, use XDrawText16.

XDr awText 16(display, d, gc, X, y, items, nitems)
Di spl ay *display;

Drawabl e d;
GC gc;
int x, y;
XText | tenml6 *items;
i nt nitems;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC. and define the origin of the first character
X, Y Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char-
acter.
items Specifies an array of text items.
nitems Specifies the number of text items in the array.

The XDrawText16 function is similar to XDrawText except that it uses 2-byte or 16-bit
characters. Both functions allow complex spacing and font shifts between counted
strings.

Each text item is processed in turn. A font member other than None in an item causes
the font to be stored in the GC and used for subsequent text. A text element delta
specifies an additional change in the position along the x axis before the string is drawn.
The delta is aways added to the character origin and is not dependent on any charac-
teristics of the font. Each character image, as defined by the font in the GC, is treated
as an additional mask for a fill operation on the drawable. The drawable is modified
only where the font character has a bit set to 1. If a text item generates a BadFont
error, the previous text items may have been drawn.

March 26, 1992 6-31

X Window System

6.6.2

6-32

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with bytel as the most-significant
byte.

Both functions use these GC components. function, plane-mask, fill-style, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
and tile-stipple-y-origin.

XDrawText and XDrawTextl6 can generate BadDrawable, BadFont, BadGC, and
BadMatch errors.

Drawing Text Characters

To draw 8-hit charactersin a given drawable, use XDrawsString.

XDrawst ri ng(display, d, gc, x, y, string, length)
Di spl ay *display;

Drawabl e d;
GC gc;

int x, vy;
char *string;
i nt length;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

X,y Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char-
acter.

string Specifies the character string.

length Specifies the number of charactersin the string argument.

To draw 2-byte charactersin a given drawable, use XDrawsString16.

XDrawSt ri ngl6(display, d, gc, x, y, string, length)
Di spl ay *display;

Dr awabl e d;

GC gc;

int x, v;

XChar 2b *string;

i nt length;
display Specifies the connection to the X server.
d Specifies the drawable.

March 26, 1992

6.6.3

Graphics Functions

gc Specifies the GC.

X, Y Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char-
acter.

string Specifies the character string.

length Specifies the number of charactersin the string argument.

Each character image, as defined by the font in the GC, is treated as an additional mask
for afill operation on the drawable. The drawable is modified only where the font char-
acter has a bit set to 1. For fonts defined with 2-byte matrix indexing and used with
XDrawstring16, each byte is used as a byte2 with a bytel of zero.

Both functions use these GC components: function, plane-mask, fill-style, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They aso use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
and tile-stipple-y-origin.

XDrawstring and XDrawsStringl6 can generate BadDrawable, BadGC, and Bad-
Match errors.

Drawing Image Text Characters

Some applications, in particular terminal emulators, need to print image text in which
both the foreground and background bits of each character are painted. This prevents
annoying flicker on many displays.

To draw 8-hit image text charactersin a given drawable, use XDrawlmageString.

XDr awl mageSt ri ng(display, d, gc, X, y, string, length)
Di spl ay *display;

Dr awabl e d;
GC gc;

int x, y;
char *string;
i nt length;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

X,y Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char-
acter.

string Specifies the character string.

March 26, 1992 6-33

X Window System

length Specifies the number of charactersin the string argument.
To draw 2-byte image text charactersin a given drawable, use XDrawlmageString16.

XDr am mageStri ngl6(display, d, gc, X, y, string, length)
Di spl ay *display;

Dr awabl e d;

GC gc;

int x, vy;

XChar 2b *string;
i nt length;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

X, Y Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char-
acter.

string Specifies the character string.

length Specifies the number of charactersin the string argument.

The XDrawlmageString16 function is similar to XDrawlmageString except that it
uses 2-byte or 16-bit characters. Both functions also use both the foreground and back-
ground pixels of the GC in the destination.

The effect is first to fill a destination rectangle with the background pixel defined in the
GC and then to paint the text with the foreground pixel. The upper-left corner of the
filled rectangleis at:

[X, y — font-ascent]
The width is:
overall-width
The height is:
font-ascent + font-descent

The overdl-width, font-ascent, and font-descent are as would be returned by
XQueryTextExtents using gc and string. The function and fill-style defined in the GC
are ignored for these functions. The effective function is GXcopy, and the effective fill-
style isFillSolid.

For fonts defined with 2-byte matrix indexing and used with XDrawlmageString, each
byte is used as a byte? with a bytel of zero.

Both functions use these GC components. plane-mask, foreground, background, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawlmageString and XDrawlmageStringl6 can generate BadDrawable, BadGC,
and BadMatch errors.

March 26, 1992

Graphics Functions

6.7 Transfering Images between Client and Server

Xlib provides functions that you can use to transfer images between a client and the
server. Because the server may require diverse data formats, Xlib provides an image
object that fully describes the datain memory and that provides for basic operations on
that data. Y ou should reference the data through the image object rather than referencing
the data directly. However, some implementations of the Xlib library may efficiently
deal with frequently used data formats by replacing functions in the procedure vector
with specia case functions. Supported operations include destroying the image, getting
a pixel, storing a pixel, extracting a subimage of an image, and adding a constant to an
image (see chapter 10).

All the image manipulation functions discussed in this section make use of the XImage
data structure, which describes an image as it exists in the client’s memory.

t ypedef struct _Xlmage {

int width, height; /* size of imge */

i nt xoffset; /* nunber of pixels offset in X directi ot
int format; [* XYBitmap, XYPixmap, ZPixmap */

char *dat a; /* pointer to inage data */

i nt byte_order; /* data byte order, LSBFirst, MSBFirst */
int bitmap_unit; /* quant. of scanline 8, 16, 32 */
int bitmap_bit_order; /* LSBFirst, MSBFirst */

int bitmap_pad; /* 8, 16, 32 either XY or ZPixnap */
i nt dept h; /* depth of imge */

int bytes_per_line; /* accel erator to next scanline */
int bits_per_pixel; /* bits per pixel (zZPixmap) */

unsi gned | ong red_mask; /* bits in z arrangenent */

unsi gned | ong green_mask;

unsi gned | ong bl ue_nask;

char *obdat a; /* hook for the object routines to hang ¢

struct funcs { /* image mani pul ati on routines */
struct _Xlnmage *(*create_i mge)();
int (*destroy_image)();
unsigned long (*get_pixel)();
int (*put_pixel)();
struct _Xlimage *(*sub_i mage)();
int (*add_pixel)();

rof
} Xl mage;

You may request that some of the members (for example, height, width, and xoffset) be
changed when the image is sent to the server. That is, you may send a subset of the
image. Other members (for example, byte_order, bitmap_unit, and so forth) are charac-
teristics of both the image and the server. If these members differ between the image
and the server, XPutimage makes the appropriate conversions. The first byte of the
first scanline of plane n is located at the address (data + (n * height * bytes per_ling)).

March 26, 1992 6-35

X Window System

6-36

To combine an image in memory with a rectangle of a drawable on the display, use
XPutlmage.

XPut | mage (display, d, gc, image, src X, srcy, dest x, desty, width,

Di spl ay *display;

Drawabl e d;

GC gc;

Xl mage *image;

i nt src_x, src.y;

i nt dest x, desty;

unsi gned i nt width, height;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

image Specifies the image you want combined with the rectangle.
Src_x Specifies the offset in X from the left edge of the image defined

by the XImage data structure.

src_y Specifies the offset in Y from the top edge of the image defined
by the XImage data structure.

dest_x, dest_y
Specify the x and y coordinates, which are relative to the origin
of the drawable and are the coordinates of the subimage.

width, height Specify the width and height of the subimage, which define the
dimensions of the rectangle.

The XPutlimage function combines an image in memory with a rectangle of the
specified drawable. If XYBitmap format is used, the depth must be one, or a Bad-
Match error results. The foreground pixel in the GC defines the source for the one bits
in the image, and the background pixel defines the source for the zero bits. For XYPix-
map and ZPixmap, the depth must match the depth of the drawable, or a BadMatch
error results. The section of the image defined by
the src_x, src_y, width, and height arguments is drawn on the specified part of the draw-
able.

This function uses these GC components: function, plane-mask, subwindow-mode,
clip-x-origin, clip-y-origin, and clip-mask. It also uses these GC mode-dependent com-
ponents: foreground and background.

XPutimage can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

To return the contents of a rectangle in a given drawable on the display, use XGetim-
age. Thisfunction specifically supports rudimentary screen dumps.

height)

Xl mage *XCGet | mage(display, d, X, y, width, height, plane_mask, format)

Di spl ay *display;
Dr awabl e d;
int x, v;

March 26, 1992

Graphics Functions

unsi gned i nt width, height;
unsi gned | ong plane_mask;

i nt format;

display Specifies the connection to the X server.

d Specifies the drawable.

X,y Specify the x and y coordinates, which are relative to the origin
of the drawable and define the upper-left corner of the rectangle.

width, height Specify the width and height of the subimage, which define the
dimensions of the rectangle.

plane_mask Specifies the plane mask.

format Specifies the format for the image. Y ou can pass XYPixmap or
ZPixmap.

The XGetlmage function returns a pointer to an XImage structure. This structure pro-
vides you with the contents of the specified rectangle of the drawable in the format you
specify. If the format argument is XYPixmap, the image contains only the bit planes
you passed to the plane_mask argument. If the plane_mask argument only requests a
subset of the planes of the display, the depth of the returned image will be the number
of planes requested. If the format argument is ZPixmap, XGetimage returns as zero
the bits in all planes not specified in the plane_mask argument. The function performs
no range checking on the values in plane_mask and ignores extraneous bits.

XGetlmage returns the depth of the image to the depth member of the XImage struc-
ture. The depth of the image is as specified when the drawable was created, except
when getting a subset of the planes in XYPixmap format, when the depth is given by
the number of bits set to 1 in plane_mask.

If the drawable is a pixmap, the given rectangle must be wholly contained within the
pixmap, or aBadMatch error results. If the drawable is a window, the window must
be viewable, and it must be the case that if there were no inferiors or overlapping win-
dows, the specified rectangle of the window would be fully visible on the screen and
wholly contained within the outside edges of the window, or aBadMatch error results.
Note that the borders of the window can be included and read with this request. If the
window has backing-store, the backing-store contents are returned for regions of the
window that are obscured by noninferior windows. If the window does not have
backing-store, the returned contents of such obscured regions are undefined. The
returned contents of visible regions of inferiors of a different depth than the specified
window’s depth are also undefined. The pointer cursor image is not included in the
returned contents. If a problem occurs, XGetlmage returns NULL.

XGetlmage can generate BadDrawable, BadMatch, and BadValue errors.

To copy the contents of a rectangle on the display to a location within a preexisting
image structure, use XGetSublmage.

Xl mage * XGet Subl mage(display, d, x, y, width, height, plane_mask, format, dest image
dest x, dest y)
Di spl ay *display;

March 26, 1992 6-37

X Window System

6-38

Drawabl e d;

int x, vy;

unsi gned i nt width, height;
unsi gned | ong plane_mask;
i nt format;

Xl mage *dest_image;

i nt dest_x, desty;

display Specifies the connection to the X server.

d Specifies the drawable.

X,y Specify the x and y coordinates, which are relative to the origin
of the drawable and define the upper-left corner of the rectangle.

width, height Specify the width and height of the subimage, which define the
dimensions of the rectangle.

plane_mask Specifies the plane mask.

format Specifies the format for the image. You can pass XYPixmap or
ZPixmap.

dest_image Specify the destination image.

dest_x, dest y Specify the x and y coordinates, which are relative to the origin

of the destination rectangle, specify its upper-left corner, and
determine where the subimage is placed in the destination
image.

The XGetSublmage function updates dest_image with the specified subimage in the
same manner as XGetlmage. If the format argument is XYPixmap, the image contains
only the bit planes you passed to the plane_mask argument. If the format argument is
ZPixmap, XGetSublmage returns as zero the bits in all planes not specified in the
plane_mask argument. The function performs no range checking on the values in
plane_mask and ignores extraneous bits. As a convenience, XGetSublmage returns a
pointer to the same XImage structure specified by dest_image.

The depth of the destination XImage structure must be the same as that of the draw-
able. If the specified subimage does not fit at the specified location on the destination
image, the right and bottom edges are clipped. If the drawable is a pixmap, the given
rectangle must be wholly contained within the pixmap, or aBadMatch error results. |If
the drawable is a window, the window must be viewable, and it must be the case that if
there were no inferiors or overlapping windows, the specified rectangle of the window
would be fully visible on the screen and wholly contained within the outside edges of
the window, or a BadMatch error results. If the window has backing-store, then the
backing-store contents are returned for regions of the window that are obscured by
noninferior windows. If the window does not have backing-store, the returned contents
of such obscured regions are undefined. The returned contents of visible regions of
inferiors of a different depth than the specified window’s depth are aso undefined. If a
problem occurs, XGetSublmage returns NULL.

March 26, 1992

Graphics Functions

XGetSublmage can generate BadDrawable, BadGC, BadMatch, and BadValue
errors.

6.8 Cursors

6.8.1

This section discusses how to:
+ Create a cursor
« Change or destroy a cursor
+ Define the cursor for a window

Each window can have a different cursor defined for it. Whenever the pointer is in a
visible window, it is set to the cursor defined for that window. If no cursor was defined
for that window, the cursor is the one defined for the parent window.

From X's perspective, a cursor consists of a cursor source, mask, colors, and a hotspot.
The mask pixmap determines the shape of the cursor and must be a depth of one. The
source pixmap must have a depth of one, and the colors determine the colors of the
source. The hotspot defines the point on the cursor that is reported when a pointer
event occurs. There may be limitations imposed by the hardware on cursors as to size
and whether a mask is implemented. XQueryBestCursor can be used to find out what
sizes are possible. It is intended that most standard cursors will be stored as a special
font.

Creating a Cursor

Xlib provides functions that you can use to create a font, bitmap, or glyph cursor.
To create a cursor from a standard font, use XCreateFontCursor.

#i ncl ude <X11/cursorfont. h>

Cur sor XCreat eFont Cur sor (display, shape)
Di spl ay *display;
unsi gned i nt shape;

display Specifies the connection to the X server.
shape Specifies the shape of the cursor.

X provides a set of standard cursor shapes in a special font named cursor. Applications
are encouraged to use this interface for their cursors because the font can be customized
for the individual display type. The shape argument specifies which glyph of the stan-
dard fonts to use.

The hotspot comes from the information stored in the cursor font. The initia colors of
a cursor are a black foreground and a white background (see XRecolorCursor). For

March 26, 1992 6-39

X Window System

further information about cursor shapes, see appendix B.
XCreateFontCursor can generate BadAlloc and BadValue errors.
To create a cursor from two bitmaps, use XCreatePixmapCursor.

Cursor XCreat ePi xmapCur sor (display, source, mask, foreground_color,
background_color, x, vy)
Di spl ay *display;
Pi xmap source;
Pi xmap mask;
XCol or *foreground_color;
XCol or *background_color;
unsigned int x, Vy;

display Specifies the connection to the X server.
source Specifies the shape of the source cursor.
mask Specifies the cursor’s source bits to be displayed or None.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

X,y Specify the x and y coordinates.

The XCreatePixmapCursor function creates a cursor and returns the cursor ID associ-
ated with it. The foreground and background RGB values must be specified using
foreground_color and background_color, even if the X server only has a StaticGray or
GrayScale screen. The foreground color is used for the pixels set to 1 in the source,
and the background color is used for the pixels set to 0. Both source and mask, if
specified, must have depth one (or a BadMatch error results) but can have any root.
The mask argument defines the shape of the cursor. The pixels set to 1 in the mask
define which source pixels are displayed, and the pixels set to 0 define which pixels are
ignored. If no mask is given, all pixels of the source are displayed. The mask, if
present, must
be the same size as the pixmap defined by the source argument, or a BadMatch error
results. The hotspot must be a point within the source, or aBadMatch error results.

The components of the cursor can be transformed arbitrarily to meet display limita-
tions. The pixmaps can be freed immediately if no further explicit references to them
are to be made. Subsequent drawing in the source or mask pixmap has an undefined
effect on the cursor. The X server might or might not make a copy of the pixmap.

XCreatePixmapCursor can generate BadAlloc and BadPixmap errors.
To create a cursor from font glyphs, use XCreateGlyphCursor.

Cur sor XCreated yphCursor (display, source font, mask font, source_char, mask char,
foreground_color, background_color)
Di spl ay *display;
Font source font, mask font;

6-40 March 26, 1992

6.8.2

Graphics Functions

unsi gned i nt source_char, mask_char;
XCol or *foreground_color;
XCol or *background_color;

display Specifies the connection to the X server.
source_font Specifies the font for the source glyph.
mask_font Specifies the font for the mask glyph or None.
source_char Specifies the character glyph for the source.
mask_char Specifies the glyph character for the mask.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

The XCreateGlyphCursor function is similar to XCreatePixmapCursor except that the
source and mask bitmaps are obtained from the specified font glyphs. The source char
must be a defined glyph in source font, or a BadValue error results. If mask_font is
given, mask_char must be a defined glyph in mask_font, or aBadValue error results.
The mask font and character are optional. The origins of the source char and
mask_char (if defined) glyphs are positioned coincidently and define the hotspot. The
source_char and mask_char need not have the same bounding box metrics, and there is
no restriction on the placement of the hotspot relative to the bounding boxes. If no
mask_char is given, all pixels of the source are displayed. You can free the fonts
immediately by calling XFreeFont if no further explicit references to them are to be
made.

For 2-byte matrix fonts, the 16-bit value should be formed with the bytel member in
the most-significant byte and the byte2 member in the least-significant byte.

XCreateGlyphCursor can generate BadAlloc, BadFont, and BadValue errors.

Changing and Destroying Cursors

Xlib provides functions that you can use to change the cursor color, destroy the cursor,
and determine the best cursor size.

To change the color of a given cursor, use XRecolorCursor.

XRecol or Cur sor (display, cursor, foreground color, background_color)
Di spl ay *display;
Cur sor cursor,;
XCol or *foreground_color, *background_color;

display Specifies the connection to the X server.

March 26, 1992 6-41

X Window System

cursor Specifies the cursor.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

The XRecolorCursor function changes the color of the specified cursor, and if the cursor
is being displayed on a screen, the change is visible immediately.

XRecolorCursor can generate aBadCursor error.
To free (destroy) a given cursor, use XFreeCursor.

XFr eeCur sor (display, cursor)
Di spl ay *display;
Cur sor cursor;

display Specifies the connection to the X server.
cursor Specifies the cursor.

The XFreeCursor function deletes the association between the cursor resource ID and
the specified cursor. The cursor storage is freed when no other resource references it.
The specified cursor ID should not be referred to again.

XFreeCursor can generate aBadCursor error.
To determine useful cursor sizes, use XQueryBestCursor.

St at us XQuer yBest Cur sor (display, d, width, height, width_return, height_return)
Di spl ay *display;
Dr awabl e d;
unsi gned i nt width, height;
unsi gned int *width_return, *height return;

display Specifies the connection to the X server.
d Specifies the drawable, which indicates the screen.
width, height Specify the width and height of the cursor that you want the

size information for.

width_return, height_return
Return the best width and height that is closest to the specified
width and height.

Some displays allow larger cursors than other displays. The XQueryBestCursor func-
tion provides a way to find out what size cursors are actually possible on the display. It
returns the largest size that can be displayed. Applications should be prepared to use
smaller cursors on displays that cannot support large ones.

XQueryBestCursor can generate a BadDrawable error.

6-42 March 26, 1992

Graphics Functions

6.8.3 Defining the Cursor

Xlib provides functions that you can use to define or undefine the cursor that should be
displayed in a window.

To define which cursor will be used in a window, use XDefineCursor.
XDef i neCur sor (display, w, cursor)

Di spl ay *display;

W ndow w;

Cur sor cursor;

display Specifies the connection to the X server.
w Specifies the window.
cursor Specifies the cursor that is to be displayed or None.

If a cursor is set, it will be used when the pointer is in the window. If the cursor is
None, it is equivalent to XUndefineCursor.

XDefineCursor can generateBadCursor and BadWindow errors.
To undefine the cursor in a given window, use XUndefineCursor.

XUndef i neCur sor (display, w)
Di spl ay *display;
W ndow w;

display Specifies the connection to the X server.
w Specifies the window.

The XUndefineCursor undoes the effect of a previous XDefineCursor for this window.
When the pointer is in the window, the parent’s cursor will now be used. On the root
window, the default cursor is restored.

XUndefineCursor can generate a BadwWindow error.

March 26, 1992 6-43

Chapter 7. Window Manager Functions

Although it is difficult to categorize functions as application only or window manager
only, the functions in this chapter are most often used by window managers. It is not
expected that these functions will be used by most application programs. You can use
the Xlib window manager functions to:

+ Change the parent of a window

« Control the lifetime of a window

« Determine resident colormaps

+ Grab the pointer

+ Grab the keyboard

+ Grab the server

« Control event processing

+ Manipulate the keyboard and pointer settings
+ Control the screen saver

« Control host access

7.1 Changing the Parent of a Window

To change a window's parent to another window on the same screen, use
XReparentWindow. Thereis no way to move a window between screens.

XRepar ent W ndow(display, w, parent, X, YY)
Di spl ay *display;
W ndow w;
W ndow parent;
int x, y;

March 26, 1992 7-1

X Window System

display Specifies the connection to the X server.

w Specifies the window.

parent Specifies the parent window.

X, Y Specify the x and y coordinates of the position in the new

parent window.

If the specified window is mapped, XReparentWindow automatically performs an
UnmapWindow request on it, removes it from its current position in the hierarchy, and
inserts it as the child of the specified parent. The window is placed in the stacking
order on top with respect to sibling windows.

After reparenting the specified window, XReparentWindow causes the X server to
generate a ReparentNotify event. The override redirect member returned in this event
is set to the window's corresponding attribute. Window manager clients usually should
ignore this window if this member is set to True. Finally, if the specified window was
originally mapped, the X server automatically performs a MapWindow request on it.

The X server performs normal exposure processing on formerly obscured windows.
The X server might not generate Expose events for regions from the initial
UnmapWindow reguest that are immediately obscured by the fina MapWindow
request. A BadMatch error results if:

« The new parent window is not on the same screen as the old parent window.

« The new parent window is the specified window or an inferior of the specified win-
dow.

« The specified window has a ParentRelative background, and the new parent win-
dow is not the same depth as the specified window.

XReparentWindow can generate BadMatch and BadwWindow errors.

7.2 Controlling the Lifetime of a Window

7-2

The save-set of aclient is a list of other clients windows that, if they are inferiors of
one of the client’s windows at connection close, should not be destroyed and should be
remapped if they are unmapped. For further information about close-connection pro-
cessing, see section 2.6. To allow an application’s window to survive when a window
manager that has reparented a window fails, Xlib provides the save-set functions that
you can use to control the longevity of subwindows that are normally destroyed when
the parent is destroyed. For example, a window manager that wants to add decoration
to a window by adding a frame might reparent an application’s window. When the
frame is destroyed, the application’s window should not be destroyed but be returned to
its previous place in the window hierarchy.

The X server automatically removes windows from the save-set when they are des-
troyed.

March 26, 1992

Window Manager Functions

To add or remove a window from the client’s save-set, use XChangeSaveSet.

XChangeSaveSet (display, w, change_mode)
Di spl ay *display;
W ndow w;
i nt change_mode;

display Specifies the connection to the X server.

w Specifies the window that you want to add to or delete from the
client’s save-set.

change_mode Specifies the mode. You can pass SetModelnsert or SetMo-
deDelete.

Depending on the specified mode, XChangeSaveSet either inserts or deletes the
specified window from the client’s save-set. The specified window must have been
created by some other client, or aBadMatch error results.

XChangeSaveSet can generate BadMatch, BadValue, and BadWindow errors.
To add awindow to the client’s save-set, use XAddToSaveSet.

XAddToSaveSet (display, w)
Di spl ay *display;
W ndow w;

display Specifies the connection to the X server.

w Specifies the window that you want to add to the client’s save-
Set.

The XAddToSaveSet function adds the specified window to the client’s save-set. The
specified window must have been created by some other client, or a BadMatch error
results.

XAddToSaveSet can generate BadMatch and BadWindow errors.
To remove awindow from the client’s save-set, use XRemoveFromSaveSet.

XRenoveFr onSaveSet (display, w)
Di spl ay *display;
W ndow w;

display Specifies the connection to the X server.

w Specifies the window that you want to delete from the client’s
save-set.

The XRemoveFromSaveSet function removes the specified window from the client’s
save-set. The specified window must have been created by some other client, or a Bad-
Match error results.

XRemoveFromSaveSet can generate BadMatch and BadwWindow errors.

March 26, 1992 7-3

X Window System

7.3 Determining Resident Colormaps

7-4

Xlib provides functions that you can use to install a colormap, uninstall a colormap, and
obtain alist of installed colormaps.

At any time, there is a subset of the installed maps that is viewed as an ordered list and
is called the required list. The length of the required list is at most M, where M is the
minimum number of installed colormaps specified for the screen in the connection
setup. The required list is maintained as follows. When a colormap is specified to XIn-
stallColormap, it is added to the head of the list; the list is truncated at the tail, if
necessary, to keep its length to at most M. When a colormap is specified to XUnin-
stallColormap and it is in the required list, it is removed from the list. A colormap is
not added to the required list when it is implicitly installed by the X server, and the X
server cannot implicitly uninstall a colormap that is in the required list.

To install a colormap, use XinstallColormap.

Xl nst al | Col or map(display, colormap)
Di spl ay *display;
Col or map colormap;

display Specifies the connection to the X server.
colormap Specifies the colormap.

The XinstallColormap function installs the specified colormap for its associated
screen. All windows associated with this colormap immediately display with true
colors. You associated the windows with this colormap when you created them by cal-
ling XCreateWindow, XCreateSimpleWindow, XChangeWindowAttributes, or
XSetWindowColormap.

If the specified colormap is not already an installed colormap, the X server generates a
ColormapNotify event on each window that has that colormap. In addition, for every
other colormap that is installed as a result of a call to XinstallColormap, the X server
generates aColormapNotify event on each window that has that colormap.

XlnstallColormap can generate a BadColor error.
To uninstall a colormap, use XUninstallColormap.

XUni nst al | Col or map(display, colormap)
Di spl ay *display;
Col or map colormap;

display Specifies the connection to the X server.
colormap Specifies the colormap.

The XUninstallColormap function removes the specified colormap from the required
list for its screen. As a result, the specified colormap might be uninstalled, and the X
server might implicitly install or uninstall additional colormaps. Which colormaps get
installed or uninstalled is server-dependent except that the required list must remain
installed.

March 26, 1992

Window Manager Functions

If the specified colormap becomes uninstalled, the X server generates a ColormapNo-
tify event on each window that has that colormap. In addition, for every other colormap
that isinstalled or uninstalled as a result of a call to XUninstallColormap, the X server
generates aColormapNotify event on each window that has that colormap.

XUninstallColormap can generate a BadColor error.

To obtain a list of the currently installed colormaps for a given screen, use XListInstal-
ledColormaps.

Col ormap *XLi st nstal | edCol or naps(display, w, num_return)
Di spl ay *display;
W ndow w;
i nt *num_return;

display Specifies the connection to the X server.
w Specifies the window that determines the screen.
num_return Returns the number of currently installed colormaps.

The XListInstalledColormaps function returns a list of the currently installed color-
maps for the screen of the specified window. The order of the colormaps in the list is
not significant and is no explicit indication of the required list. When the alocated list
is no longer needed, freeit by using XFree.

XListinstalledColormaps can generate a BadWindow error.

7.4 Pointer Grabbing

Xlib provides functions that you can use to control input from the pointer, which usu-
aly isamouse. Window managers most often use these facilities to implement certain
styles of user interfaces. Some toolkits also need to use these facilities for special pur-
pOSES.

Usually, as soon as keyboard and mouse events occur, the X server delivers them to the
appropriate client, which is determined by the window and input focus. The X server
provides sufficient control over event delivery to allow window managers to support
mouse ahead and various other styles of user interface. Many of these user interfaces
depend upon synchronous delivery of events. The delivery of pointer and keyboard
events can be controlled independently.

When mouse buttons or keyboard keys are grabbed, events will be sent to the grabbing
client rather than the normal client who would have received the event. If the keyboard
or pointer is in asynchronous mode, further mouse and keyboard events will continue to
be processed. If the keyboard or pointer is in synchronous mode, no further events are
processed until the grabbing client allows them (see XAllowEvents). The keyboard or
pointer is considered frozen during this interval. The event that triggered the grab can
also be replayed.

March 26, 1992 7-5

X Window System

Note that the logical state of a device (as seen by client applications) may lag the physi-
cal state if device event processing is frozen.

There are two kinds of grabs: active and passive. An active grab occurs when a single
client grabs the keyboard and/or pointer explicitly (see XGrabPointer and XGrabKey-
board). A passive grab occurs when clients grab a particular keyboard key or pointer
button in a window, and the grab will activate when the key or button is actually
pressed. Passive grabs are convenient for implementing reliable pop-up menus. For
example, you can guarantee that the pop-up is mapped before the up pointer button
event occurs by grabbing a button requesting synchronous behavior. The down event
will trigger the grab and freeze further processing of pointer events until you have the
chance to map the pop-up window. You can then allow further event processing. The
up event will then be correctly processed relative to the pop-up window.

For many operations, there are functions that take a time argument. The X server
includes a timestamp in various events. One specia time, called CurrentTime,
represents the current server time. The X server maintains the time when the input
focus was last changed, when the keyboard was last grabbed, when the pointer was last
grabbed, or when a selection was last changed. Y our application may be slow reacting
to an event. You often need some way to specify that your request should not occur if
another application has in the meanwhile taken control of the keyboard, pointer, or
selection. By providing the timestamp from the event in the request, you can arrange
that the operation not take effect if someone else has performed an operation in the
meanwhile.

A timestamp is a time value, expressed in milliseconds. It typically is the time since the
last server reset. Timestamp values wrap around (after about 49.7 days). The server,
given its current time is represented by timestamp T, aways interprets timestamps from
clients by treating half of the timestamp space as being later in time than T. One times-
tamp vaue, named CurrentTime, is never generated by the server. This value is
reserved for use in requests to represent the current server time.

For many functions in this section, you pass pointer event mask bits. The valid pointer
event mask bits are: ButtonPressMask, ButtonReleaseMask, EnterWindowMask,
LeaveWindowMask, PointerMotionMask, PointerMotionHintMask, Button1Motion-
Mask, Button2MotionMask, Button3MotionMask, Button4MotionMask, Button5-
MotionMask, ButtonMotionMask, and KeyMapStateMask. For other functions in
this section, you pass keymask hits. The valid keymask bits are: ShiftMask, Lock-
Mask, ControlMask, Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, and Mod5-
Mask.

To grab the pointer, use XGrabPointer.

i nt XGrabPoi nt er (display, grab _window, owner_events, event mask, pointer_mode,
keyboard_mode, confine_to, cursor, time)
Di spl ay *display;
W ndow grab_window;
Bool owner_events;
unsi gned i nt event mask;
i nt pointer_mode, keyboard _mode;
W ndow confine_to;

7-6 March 26, 1992

Window Manager Functions

Cur sor cursor;

Ti me time;

display Specifies the connection to the X server.

grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the pointer
events are to be reported as usual or reported with respect to the
grab window if selected by the event mask.

event_mask Specifies which pointer events are reported to the client. The
mask is the hitwise inclusive OR of the valid pointer event
mask bits.

pointer_mode Specifies further processing of pointer events. You can pass

GrabModeSync or GrabModeAsync.

keyboard_mode
Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

confine_to Specifies the window to confine the pointer in or None.

cursor Specifies the cursor that is to be displayed during the grab or
None.

time Specifies the time. You can pass either a timestamp or

CurrentTime.

The XGrabPointer function actively grabs control of the pointer and returns GrabSuc-
cess if the grab was successful. Further pointer events are reported only to the grabbing
client. XGrabPointer overrides any active pointer grab by this client. If owner_events
is False, all generated pointer events are reported with respect to grab_window and are
reported only if selected by event mask. If owner_events is True and if a generated
pointer event would normally be reported to this client, it is reported as usual. Other-
wise, the event is reported with respect to the grab_window and is reported only if
selected by event_mask. For either value of owner_events, unreported events are dis-
carded.

If the pointer_mode is GrabModeAsync, pointer event processing continues as usual.

If the pointer is currently frozen by this client, the processing of events for the pointer is
resumed. If the pointer_mode is GrabModeSync, the state of the pointer, as seen by
client applications, appears to freeze, and the X server generates no further pointer
events until the grabbing client calls XAllowEvents or until the pointer grab is
released. Actual pointer changes are not lost while the pointer is frozen; they are sim-
ply queued in the server for later processing.

If the keyboard_maode is GrabModeAsync, keyboard event processing is unaffected by
activation of the grab. If the keyboard_mode is GrabModeSync, the state of the key-
board, as seen by client applications, appears to freeze, and the X server generates no
further keyboard events until the grabbing client calls XAllowEvents or until the
pointer grab is released. Actual keyboard changes are not lost while the pointer is
frozen; they are ssimply queued in the server for later processing.

March 26, 1992 -7

X Window System

7-8

If a cursor is specified, it is displayed regardless of what window the pointer is in. If
None is specified, the normal cursor for that window is displayed when the pointer isin
grab_window or one of its subwindows; otherwise, the cursor for grab_window is

displayed.

If a confine_to window is specified, the pointer is restricted to stay contained in that
window. The confine_to window need have no relationship to the grab_window. If the
pointer is not initially in the confine to window, it is warped automatically to the
closest edge just before the grab activates and enter/leave events are generated as usual.
If the confine _to window is subsequently reconfigured, the pointer is warped automati-
cally, as necessary, to keep it contained in the window.

The time argument allows you to avoid certain circumstances that come up if applica
tions take a long time to respond or if there are long network delays. Consider a situa-
tion where you have two applications, both of which normally grab the pointer when
clicked on. If both applications specify the timestamp from the event, the second appli-
cation may wake up faster and successfully grab the pointer before the first application.
The first application then will get an indication that the other application grabbed the
pointer before its request was processed.

XGrabPointer generates EnterNotify and LeaveNotify events.

Either if grab_window or confine_to window is not viewable or if the confine_to win-
dow lies completely outside the boundaries of the root window, XGrabPointer fails and
returns GrabNotViewable. [f the pointer is actively grabbed by some other client, it
fails and returns AlreadyGrabbed. If the pointer is frozen by an active grab of another
client, it fails and returns GrabFrozen. If the specified time is earlier than the last-
pointer-grab time or later than the current X server time, it fails and returns Grabln-
validTime. Otherwise, the last-pointer-grab time is set to the specified time (Current-
Time is replaced by the current X server time).

XGrabPointer can generate BadCursor, BadValue, and BadWindow errors.
To ungrab the pointer, use XUngrabPointer.

XUngr abPoi nt er (display, time)
Di spl ay *display;
Ti me time;

display Specifies the connection to the X server.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XUngrabPointer function releases the pointer and any queued events if this client
has actively grabbed the pointer from XGrabPointer, XGrabButton, or from a normal
button press. XUngrabPointer does not release the pointer if the specified time is ear-
lier than the last-pointer-grab time or is later than the current X server time. It also gen-
erates EnterNotify and LeaveNotify events. The X server performs an UngrabPointer
request automatically if the event window or confine_to window for an active pointer
grab becomes not viewable or if window reconfiguration causes the confine _to window
to lie completely outside the boundaries of the root window.

March 26, 1992

Window Manager Functions

To change an active pointer grab, use XChangeActivePointerGrab.

XChangeAct i vePoi nt er G- ab(display, event_mask, cursor, time)
Di spl ay *display;
unsi gned i nt event mask;
Cur sor cursor;

Ti e time;
display Specifies the connection to the X server.
event_mask Specifies which pointer events are reported to the client. The
mask is the bitwise inclusive OR of the valid pointer event
mask bits.
cursor Specifies the cursor that is to be displayed or None.
time Specifies the time. You can pass either a timestamp or

CurrentTime.

The XChangeActivePointerGrab function changes the specified dynamic parameters if
the pointer is actively grabbed by the client and if the specified time is no earlier than
the last-pointer-grab time and no later than the current X server time. This function has
no effect on the passive parameters of a XGrabButton. The interpretation of
event_mask and cursor is the same as described in XGrabPointer.

XChangeActivePointerGrab can generate BadCursor and BadValue errors.
To grab a pointer button, use XGrabButton.

XG abBut t on(display, button, modifiers, grab_window, owner_events, event_mask,
pointer_mode, keyboard_mode, confine_to, cursor)
Di spl ay *display;
unsi gned i nt button;
unsi gned i nt modifiers;
W ndow grab_window;
Bool owner_events;
unsi gned i nt event_mask;
i nt pointer_mode, keyboard_mode;
W ndow confine_to;
Cur sor cursor;

display Specifies the connection to the X server.

button Specifies the pointer button that is to be grabbed or Any-
Button.

modifiers Specifies the set of keymasks or AnyModifier. The mask is the
bitwise inclusive OR of the valid keymask hits.

grab_window Specifies the grab window.

owner_events Specifies a Boolean vaue that indicates whether the pointer

events are to be reported as usual or reported with respect to the
grab window if selected by the event mask.

March 26, 1992 7-9

X Window System

7-10

event_mask Specifies which pointer events are reported to the client. The
mask is the bitwise inclusive OR of the valid pointer event
mask bits.

pointer_mode Specifies further processing of pointer events. You can pass

GrabModeSync or GrabModeAsync.

keyboard_mode
Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

confine_to Specifies the window to confine the pointer in or None.
cursor Specifies the cursor that is to be displayed or None.

The XGrabButton function establishes a passive grab. In the future, the pointer is
actively grabbed (as for XGrabPointer), the last-pointer-grab time is set to the time at
which the button was pressed (as transmitted in the ButtonPress event), and the But-
tonPress event is reported if al of the following conditions are true:

« The pointer is not grabbed, and the specified button is logically pressed when the
specified modifier keys are logicaly down, and no other buttons or modifier keys
are logically down.

« The grab_window contains the pointer.
« The confine_to window (if any) is viewable.

+ A passive grab on the same button/key combination does not exist on any ancestor
of grab_window.

The interpretation of the remaining arguments is as for XGrabPointer. The active grab
is terminated automatically when the logical state of the pointer has all buttons released
(independent of the state of the logical modifier keys).

Note that the logical state of a device (as seen by client applications) may lag the physi-
cal state if device event processing is frozen.

This request overrides all previous grabs by the same client on the same button/key
combinations on the same window. A modifiers of AnyModifier is equivalent to issu-
ing the grab request for all possible modifier combinations (including the combination
of no modifiers). It is not required that all modifiers specified have currently assigned
KeyCodes. A button of AnyButton is equivalent to issuing the request for all possible
buttons. Otherwise, it is not required that the specified button currently be assigned to a
physical button.

If some other client has already issued a XGrabButton with the same button/key combi-
nation on the same window, a BadAccess error results. When using AnyMaodifier or
AnyButton, the request fails completely, and a BadAccess error results (no grabs are
established) if there is a conflicting grab for any combination. XGrabButton has no
effect on an active grab.

XGrabButton can generate BadCursor, BadValue, and BadWindow errors.

March 26, 1992

Window Manager Functions

To ungrab a pointer button, use XUngrabButton.

XUngr abBut t on(display, button, modifiers, grab_window)
Di spl ay *display;
unsi gned i nt button;
unsi gned i nt modifiers;
W ndow grab_window;

display Specifies the connection to the X server.

button Specifies the pointer button that is to be released or AnyBut-
ton.

modifiers Specifies the set of keymasks or AnyModifier. The mask is the

bitwise inclusive OR of the valid keymask bits.
grab_window Specifies the grab window.

The XUngrabButton function releases the passive button/key combination on the
specified window if it was grabbed by this client. A modifiers of AnyModifier is
equivalent to issuing the ungrab request for all possible modifier combinations, includ-
ing the combination of no modifiers. A button of AnyButton is equivalent to issuing
the request for al possible buttons. XUngrabButton has no effect on an active grab.

XUngrabButton can generate BadValue and Badwindow errors.

7.5 Keyboard Grabbing

Xlib provides functions that you can use to grab or ungrab the keyboard as well as
allow events.

For many functions in this section, you pass keymask bits. The valid keymask bits are:
ShiftMask, LockMask, ControlMask, ModlMask, Mod2Mask, Mod3Mask,
Mod4Mask, and Mod5Mask.

To grab the keyboard, use XGrabKeyboard.

i nt XG abKeyboar d(display, grab window, owner_events, pointer_mode, keyboard mode,
time)
Di spl ay *display;
W ndow grab_window;
Bool owner_events;
i nt pointer_mode, keyboard_mode;

Ti me time;
display Specifies the connection to the X server.
grab_window Specifies the grab window.
owner_events Specifies a Boolean value that indicates whether the keyboard

events are to be reported as usual.

March 26, 1992 7-11

X Window System

7-12

pointer_mode Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

keyboard_mode
Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XGrabKeyboard function actively grabs control of the keyboard and generates
Focusin and FocusOut events. Further key events are reported only to the grabbing
client. XGrabKeyboard overrides any active keyboard grab by this client. If
owner_events is False, all generated key events are reported with respect to
grab_window. If owner_events is True and if a generated key event would normally be
reported to this client, it is reported normally; otherwise, the event is reported with
respect to the grab window. Both KeyPress and KeyRelease events are aways
reported, independent of any event selection made by the client.

If the keyboard mode argument is GrabModeAsync, keyboard event processing con-
tinues as usual. If the keyboard is currently frozen by this client, then processing of key-
board events is resumed. If the keyboard_mode argument is GrabModeSync, the state
of the keyboard (as seen by client applications) appears to freeze, and the X server gen-
erates no further keyboard events until the grabbing client issues a releasing XAl-
lowEvents call or until the keyboard grab is released. Actual keyboard changes are not
lost while the keyboard is frozen; they are ssimply queued in the server for later process-
ing.

If pointer_mode is GrabModeAsync, pointer event processing is unaffected by activa
tion of the grab. If pointer_mode is GrabModeSync, the state of the pointer (as seen by
client applications) appears to freeze, and the X server generates no further pointer
events until the grabbing client issues a releasing XAllowEvents call or until the key-
board grab is released. Actual pointer changes are not lost while the pointer is frozen;
they are simply queued in the server for later processing.

If the keyboard is actively grabbed by some other client, XGrabKeyboard fails and
returns AlreadyGrabbed. [If grab_window is not viewable, it fails and returns Grab-
NotViewable. If the keyboard is frozen by an active grab of another client, it fails and
returns GrabFrozen. If the specified time is earlier than the last-keyboard-grab time or
later than the current X server time, it fails and returns GrablnvalidTime. Otherwise,
the last-keyboard-grab time is set to the specified time (CurrentTime is replaced by the
current X server time).

XGrabKeyboard can generate BadValue and BadwWindow errors.
To ungrab the keyboard, use XUngrabKeyboard.

XUngr abKeyboar d(display, time)
Di spl ay *display;
Ti me time;

display Specifies the connection to the X server.

March 26, 1992

Window Manager Functions

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XUngrabKeyboard function releases the keyboard and any queued events if this
client has it actively grabbed from either XGrabKeyboard or XGrabKey.
XUngrabKeyboard does not release the keyboard and any queued events if the
specified time is earlier than the last-keyboard-grab time or is later than the current X
server time. It also generates Focusin and FocusOut events. The X server automati-
cally performs an UngrabKeyboard request if the event window for an active keyboard
grab becomes not viewable.

To passively grab a single key of the keyboard, use XGrabKey.

XG abKey (display, keycode, modifiers, grab_window, owner_events, pointer_mode,

keyboard_mode)

Di spl ay *display;

i nt keycode;

unsi gned i nt modifiers;

W ndow grab_window;

Bool owner_events;

i nt pointer_mode, keyboard_mode;

display Specifies the connection to the X server.

keycode Specifies the KeyCode or AnyKey.

modifiers Specifies the set of keymasks or AnyModifier. The mask is the
bitwise inclusive OR of the valid keymask bits.

grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the keyboard

events are to be reported as usual.

pointer_mode Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

keyboard_mode
Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

The XGrabKey function establishes a passive grab on the keyboard. In the future, the
keyboard is actively grabbed (as for XGrabKeyboard), the last-keyboard-grab time is
set to the time at which the key was pressed (as transmitted in the KeyPress event), and
the KeyPress event is reported if al of the following conditions are true:

« The keyboard is not grabbed and the specified key (which can itself be a modifier
key) is logicaly pressed when the specified modifier keys are logically down, and
no other modifier keys are logically down.

« Either the grab_window is an ancestor of (or is) the focus window, or the
grab_window is a descendant of the focus window and contains the pointer.

« A passive grab on the same key combination does not exist on any ancestor of
grab_window.

March 26, 1992 7-13

X Window System

7-14

The interpretation of the remaining arguments is as for XGrabKeyboard. The active
grab is terminated automatically when the logical state of the keyboard has the specified
key released (independent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by client applications) may lag the physi-
cal state if device event processing is frozen.

A modifiers argument of AnyModifier is equivalent to issuing the request for al possi-
ble modifier combinations (including the combination of no modifiers). It is not required
that al modifiers specified have currently assigned KeyCodes. A keycode argument of
AnyKey is equivalent to issuing the request for al possible KeyCodes. Otherwise, the
specified keycode must be in the range specified by min_keycode and max_keycode in
the connection setup, or aBadValue error results.

If some other client has issued a XGrabKey with the same key combination on the
same window, a BadAccess error results. When using AnyMaodifier or AnyKey, the
request fails completely, and a BadAccess error results (no grabs are established) if
there is a conflicting grab for any combination.

XGrabKey can generate BadAccess, BadValue, and BadwWindow errors.
To ungrab a key, use XUngrabKey.
XUngr abKey (display, keycode, modifiers, grab_window)

Di spl ay *display;

i nt keycode;

unsi gned i nt modifiers;
W ndow grab_window;

display Specifies the connection to the X server.
keycode Specifies the KeyCode or AnyKey.
modifiers Specifies the set of keymasks or AnyModifier. The mask is the

bitwise inclusive OR of the valid keymask bits.
grab_window Specifies the grab window.

The XUngrabKey function releases the key combination on the specified window if it
was grabbed by this client. It has no effect on an active grab. A modifiers of
AnyModifier is equivalent to issuing the request for all possible modifier combinations
(including the combination of no modifiers). A keycode argument of AnyKey is
equivalent to issuing the request for all possible key codes.

XUngrabKey can generate BadValue and BadWindow errors.

To alow further events to be processed when the device has been frozen, use XAl-
lowEvents.

XAl | owEvent s(display, event_mode, time)
Di spl ay *display;
i nt event_mode;
Ti me time;

March 26, 1992

display

event_mode

time

Window Manager Functions

Specifies the connection to the X server.

Specifies the event mode. You can pass AsyncPointer, Sync-
Pointer, AsyncKeyboard, SyncKeyboard, ReplayPointer,
ReplayKeyboard, AsyncBoth, or SyncBoth.

Specifies the time. You can pass either a timestamp or
CurrentTime.

The XAllowEvents function releases some queued events if the client has caused a dev-
ice to freeze. It has no effect if the specified time is earlier than the last-grab time of
the most recent active grab for the client or if the specified time is later than the current
X server time. Depending on the event_mode argument, the following occurs.

AsyncPointer

SyncPointer

ReplayPointer

AsyncKeyboard

SyncKeyboard

March 26, 1992

If the pointer is frozen by the client, pointer event processing
continues as usual. If the pointer is frozen twice by the client
on behalf of two separate grabs, AsyncPointer thaws for both.

AsyncPointer has no effect if the pointer is not frozen by the
client, but the pointer need not be grabbed by the client.

If the pointer is frozen and actively grabbed by the client,
pointer event processing continues as usua until the next
ButtonPress or ButtonRelease event is reported to the client.
At this time, the pointer again appears to freeze. However, if
the reported event causes the pointer grab to be released, the
pointer does not freeze. SyncPointer has no effect if the
pointer is not frozen by the client or if the pointer is not
grabbed by the client.

If the pointer is actively grabbed by the client and is frozen as
the result of an event having been sent to the client (either from
the activation of a XGrabButton or from a previous XAllow-
Events with mode SyncPointer but not from a XGrabPointer),
the pointer grab is released and that event is completely repro-
cessed. This time, however, the function ignores any passive
grabs at or above (towards the root of) the grab_window of the
grab just released. The request has no effect if the pointer is not
grabbed by the client or if the pointer is not frozen as the result
of an event.

If the keyboard is frozen by the client, keyboard event process-
ing continues as usual. If the keyboard is frozen twice by the
client on behalf of two separate grabs, AsyncKeyboard thaws
for both. AsyncKeyboard has no effect if the keyboard is not
frozen by the client, but the keyboard need not be grabbed by
the client.

If the keyboard is frozen and actively grabbed by the client,
keyboard event processing continues as usual until the next
KeyPress or KeyRelease event is reported to the client. At this
time, the keyboard again appears to freeze. However, if the
reported event causes the keyboard grab to be released, the

7-15

X Window System

7-16

ReplayKeyboard

SyncBoth

AsyncBoth

keyboard does not freeze. SyncKeyboard has no effect if the
keyboard is not frozen by the client or if the keyboard is not
grabbed by the client.

If the keyboard is actively grabbed by the client and is frozen as
the result of an event having been sent to the client (either from
the activation of a XGrabKey or from a previous XAllow-
Events with mode SyncKeyboard but not from a XGrabKey-
board), the keyboard grab is released and that event is com-
pletely reprocessed. This time, however, the function ignores
any passive grabs at or above (towards the root of) the
grab_window of the grab just released. The request has no
effect if the keyboard is not grabbed by the client or if the key-
board is not frozen as the result of an event.

If both pointer and keyboard are frozen by the client, event pro-
cessing for both devices continues as usua until the next
ButtonPress, ButtonRelease, KeyPress, or KeyRelease event
is reported to the client for a grabbed device (button event for
the pointer, key event for the keyboard), at which time the de-
vices again appear to freeze. However, if the reported event
causes the grab to be released, then the devices do not freeze
(but if the other device is still grabbed, then a subsequent event
for it will till cause both devices to freeze). SyncBoth has no
effect unless both pointer and keyboard are frozen by the client.

If the pointer or keyboard is frozen twice by the client on behalf
of two separate grabs, SyncBoth thaws for both (but a subse-
quent freeze for SyncBoth will only freeze each device once).

If the pointer and the keyboard are frozen by the client, event
processing for both devices continues as usual. If a device is
frozen twice by the client on behalf of two separate grabs,
AsyncBoth thaws for both. AsyncBoth has no effect unless
both pointer and keyboard are frozen by the client.

AsyncPointer, SyncPointer, and ReplayPointer have no effect on the processing of
keyboard events. AsyncKeyboard, SyncKeyboard, and ReplayKeyboard have no
effect on the processing of pointer events. It is possible for both a pointer grab and a
keyboard grab (by the same or different clients) to be active smultaneously. |If a device
is frozen on behalf of either grab, no event processing is performed for the device. It is
possible for a single device to be frozen because of both grabs. In this case, the freeze
must be released on behalf of both grabs before events can again be processed. If a
device is frozen twice by a single client, then a single AllowEvents releases both.

XAllowEvents can generate a BadValue error.

March 26, 1992

Window Manager Functions

7.6 Server Grabbing

Xlib provides functions that you can use to grab and ungrab the server. These functions
can be used to control processing of output on other connections by the window system
server. While the server is grabbed, no processing of requests or close downs on any
other connection will occur. A client closing its connection automatically ungrabs the
server. Although grabbing the server is highly discouraged, it is sometimes necessary.

To grab the server, use XGrabServer.

XG abSer ver (display)
Di spl ay *display;

display Specifies the connection to the X server.

The XGrabServer function disables processing of requests and close downs on all other
connections than the one this request arrived on. You should not grab the X server any
more than is absolutely necessary.

To ungrab the server, use XUngrabServer.

XUngr abSer ver (display)
Di spl ay *display;

display Specifies the connection to the X server.

The XUngrabServer function restarts processing of requests and close downs on other
connections. You should avoid grabbing the X server as much as possible.

7.7 Miscellaneous Control Functions

This section discusses how to:
« Control the input focus
« Control the pointer

- Kill clients

7.7.1 Controlling Input Focus

Xlib provides functions that you can use to move the pointer position as well as to set
and get the input focus.

To move the pointer to an arbitrary point on the screen, use XWarpPointer.

March 26, 1992 7-17

X Window System

7-18

XWar pPoi nt er (display, src_w, dest w, src_x, src_y, src_width, src_height,

Di spl ay *display;

W ndow src_w, dest w;

i nt src_x, src.y;

unsi gned i nt src_ width, src_height;
i nt dest x, desty;

display Specifies the connection to the X server.
Src_w Specifies the source window or None.
dest w Specifies the destination window or None.

src_x, src_y, src_width, src_height
Specify a rectangle in the source window.

dest_x, dest_y
Specify the x and y coordinates within the destination window.

If dest w is None, XWarpPointer moves the pointer by the offsets (dest_x, dest y)
relative to the current position of the pointer. If dest w is a window, XWarpPointer
moves the pointer to the offsets (dest_x, dest_y) relative to the origin of dest_ w. How-
ever, if src_w is awindow, the move only takes place if the window src_w contains the
pointer and if the specified rectangle of src_w contains the pointer.

The src_x and src_y coordinates are relative to the origin of src w. If src_height is
zero, it is replaced with the current height of src_ w minus src_y. If src_width is zero, it
is replaced with the current width of src_w minus src_x.

There is seldom any reason for calling this function. The pointer should normally be left
to the user. If you do use this function, however, it generates events just as if the user
had instantaneously moved the pointer from one position to another. Note that you can-
not use XWarpPointer to move the pointer outside the confine_to window of an active
pointer grab. An attempt to do so will only move the pointer as far as the closest edge
of the confine_to window.

XWarpPointer can generate a BadWindow error.
To set the input focus, use XSetinputFocus.

XSet | nput Focus (display, focus, revert to, time)
Di spl ay *display;
W ndow focus;
i nt revert_to;

Ti me time;
display Specifies the connection to the X server.
focus Specifies the window, PointerRoot, or None.
revert_to Specifies where the input focus reverts to if the window

becomes not viewable. You can pass RevertToParent, Revert-
ToPointerRoot, or RevertToNone.

March 26, 1992

dest X,

dest_y)

Window Manager Functions

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XSetlnputFocus function changes the input focus and the last-focus-change time.
It has no effect if the specified time is earlier than the current last-focus-change time or
is later than the current X server time. Otherwise, the last-focus-change time is set to
the specified time (CurrentTime is replaced by the current X server time). XSetlnput-
Focus causes the X server to generate Focusin and FocusOut events.

Depending on the focus argument, the following occurs:

« If focus isNone, al keyboard events are discarded until a new focus window is set,
and the revert_to argument is ignored.

« If focus is a window, it becomes the keyboard's focus window. If a generated key-
board event would normally be reported to this window or one of its inferiors, the
event is reported as usual. Otherwise, the event is reported relative to the focus win-
dow.

« If focus is PointerRoot, the focus window is dynamically taken to be the root win-
dow of whatever screen the pointer is on at each keyboard event. In this case, the
revert_to argument is ignored.

The specified focus window must be viewable at the time XSetinputFocus is called, or
a BadMatch error results. |f the focus window later becomes not viewable, the X
server evaluates the revert_to argument to determine the new focus window as follows:

« If revert_to is RevertToParent, the focus reverts to the parent (or the closest view-
able ancestor), and the new revert_to value is taken to be RevertToNone.

« If revert_to is RevertToPointerRoot or RevertToNone, the focus reverts to Pointer-
Root or None, respectively. When the focus reverts, the X server generates Focusin
and FocusOut events, but the last-focus-change time is not affected.

XSetlnputFocus can generate BadMatch, BadValue, and BadWindow efrors.
To obtain the current input focus, use XGetlnputFocus.

XGet | nput Focus (display, focus_return, revert to_return)
Di spl ay *display;
W ndow *focus_return;
i nt *revert to_return;

display Specifies the connection to the X server.
focus_return Returns the focus window, PointerRoot, or None.

revert_to_return
Returns the current focus state (RevertToParent, RevertTo-
PointerRoot, or RevertToNone).

The XGetlnputFocus function returns the focus window and the current focus state.

March 26, 1992 7-19

X Window System

7.7.2 Killing Clients

Xlib provides functions that you can use to control the lifetime of resources owned by a
client or to cause the connection to a client to be destroyed.

To change a client’s close-down mode, use XSetCloseDownMaode.

XSet Cl oseDownMbde (display, close_mode)
Di spl ay *display;
i nt close_mode;

display Specifies the connection to the X server.

close_mode Specifies the client close-down mode. You can pass Destroy-
All, RetainPermanent, or RetainTemporary.

The XSetCloseDownMode defines what will happen to the client’s resources at connec-
tion close. A connection starts in DestroyAll mode. For information on what happens
to the client’s resources when the close mode argument is RetainPermanent or
RetainTemporary, see section 2.6.

XSetCloseDownMode can generate a BadValue error.
To destroy a client, use XKillClient.

XKi | I dient (display, resource)
Di spl ay *display;
Xl D resource;

display Specifies the connection to the X server.

resource Specifies any resource associated with the client that you want
to destroy or AllTemporary.

The XKillClient function forces a close-down of the client that created the resource if a
valid resource is specified. If the client has aready terminated in either RetainPer-
manent or RetainTemporary mode, al of the client’s resources are destroyed. If
AllTemporary is specified, the resources of al clients that have terminated in Retain-
Temporary are destroyed (see section 2.6). This permits implementation of window
manager facilities that aid debugging. A client can set its close-down maode to Retain-
Temporary. If the client then crashes, its windows would not be destroyed. The pro-
grammer can then inspect the application’s window tree and use the window manager to
destroy the zombie windows.

XKillClient can generate a BadValue error.

7.8 Keyboard and Pointer Settings

Xlib provides functions that you can use to change the keyboard control, obtain a list of
the auto-repeat keys, turn keyboard auto-repeat on or off, ring the bell, set or obtain the

7-20 March 26, 1992

Window Manager Functions

pointer button or keyboard mapping, and obtain a bit vector for the keyboard.

This section discusses the user-preference options of bell, key click, pointer behavior,
and so on. The default values for many of these functions are determined by command
line arguments to the X server and, on POSIX-conformant systems, are typicaly set in
the Zetc/ttys file. Not al implementations will actually be able to control all of these
parameters.

The XChangeKeyboardControl function changes control of a keyboard and operates
on aXKeyboardControl structure:

/* Mask bits for ChangeKeyboardControl */

#defi ne KBKeyClickPercent (1L<<0)
#defi ne KBBellPercent (1L<<1)
#defi ne KBBellPitch (1L<<2)
#defi ne KBBellDuration (1L<<3)
#define KBLed (1L<<4)
#define KBLedMode (1L<<b)
#defi ne KBKey (1L<<6)
#defi ne KBAutoRepeatMode (1L<<7)

/* Val ues */
typedef struct {
int key click _percent;
int bell percent;

int bell pitch;

int bell duration;

int |ed;
[
[
[

nt | ed_node; /* LedModeOn, LedModeOff */
nt key;
nt auto_repeat node; [* AutoRepeatModeOff, AutoRepeatModeOn,

AutoRepeatModeDefault */
} XKeyboardControl ;

The key_click_percent member sets the volume for key clicks between 0 (off) and 100
(loud) inclusive, if possiblee A setting of -1 restores the default.
Other negative values generate aBadValue error.

The bell_percent sets the base volume for the bell between 0 (off) and 100 (loud)
inclusive, if possible. A setting of —1 restores the default. Other negative values generate
aBadValue error. The bell_pitch member sets the pitch (specified in Hz) of the bell, if
possible. A setting of —1 restores the default. Other negative values generate a Bad-
Value error. The bell_duration member sets the duration of the bell specified in mil-
liseconds, if possible. A setting of —1 restores the default. Other negative values gen-
erate aBadValue error.

If both the led_mode and led members are specified, the state of that LED is changed, if
possible. The led_mode member can be set to LedModeOn or LedModeOff. If only
led_mode is specified, the state of al LEDs are changed, if possible. At most 32 LEDs
numbered from one are supported. No standard interpretation of LEDs is defined. If led
is specified without led mode, aBadMatch error results.

March 26, 1992 7-21

X Window System

7-22

If both the auto_repeat_mode and key members are specified, the auto_repeat_mode of
that key is changed (according to AutoRepeatModeOn, AutoRepeatModeOff, or
AutoRepeatModeDefault), if possible. If only auto_repeat_ mode is specified, the glo-
bal auto_repeat_ mode for the entire keyboard is changed, if possible, and does not affect
the per key settings. If a key is specified without an auto_repeat_mode, a BadMatch
error results. Each key has an individual mode of whether or not it should auto-repeat
and a default setting for the mode. In addition, there is a global mode of whether auto-
repeat should be enabled or not and a default setting for that mode. When global mode
is AutoRepeatModeOn, keys should obey their individual auto-repeat modes. When
global mode is AutoRepeatModeOff, ho keys should auto-repeat. An auto-repeating
key generates alternating KeyPress and KeyRelease events. When a key is used as a
modifier, it is desirable for the key not to auto-repeat, regardless of its auto-repeat set-
ting.

A bell generator connected with the console but not directly on a keyboard is treated as
if it were part of the keyboard. The order in which controls are verified and atered is
server-dependent. If an error is generated, a subset of the controls may have been
altered.

XChangeKeyboar dCont r ol (display, value_mask, values)
Di spl ay *display;
unsi gned | ong value_mask;
XKeyboar dCont rol *values;

display Specifies the connection to the X server.

value_mask Specifies which controls to change. This mask is the bitwise
inclusive OR of the valid control mask bits.

values Specifies one value for each bit set to 1 in the mask.

The XChangeKeyboardControl function controls the keyboard characteristics defined
by the XKeyboardControl structure. The value_mask argument specifies which values
are to be changed.

XChangeKeyboardControl can generate BadMatch and BadValue errors.
To obtain the current control values for the keyboard, use XGetKeyboardControl.

XCGet Keyboar dCont r ol (display, values_return)
Di spl ay *display;
XKeyboar dSt at e *values_return;

display Specifies the connection to the X server.

values_return Returns the current keyboard controls in the specified XKey-
boardState structure.

The XGetKeyboardControl function returns the current control values for the keyboard
to the XKeyboardState structure.

t ypedef struct {
int key click percent;
int bell percent;

March 26, 1992

Window Manager Functions

unsigned int bell _pitch, bell_duration;
unsi gned | ong | ed_mask;
i nt global _auto_repeat;
char auto_repeats[32];

} XKeyboar dSt at e;

For the LEDs, the least-significant bit of led _mask corresponds to LED one, and each
bit set to 1 in led_mask indicates an LED that is lit. The global_auto_repeat member
can be set to AutoRepeatModeOn or AutoRepeatModeOff. The auto_repeats
member is a bit vector. Each bit set to 1 indicates that auto-repeat is enabled for the
corresponding key. The vector is represented as 32 bytes. Byte N (from 0) contains the
bits for keys 8N to 8N + 7 with the least-significant bit in the byte representing key
8N.

To turn on keyboard auto-repeat, use XAutoRepeatOn.

XAut oRepeat On(display)
Di spl ay *display;

display Specifies the connection to the X server.

The XAutoRepeatOn function turns on auto-repeat for the keyboard on the specified
display.
To turn off keyboard auto-repeat, use X AutoRepeatOff.

XAut oRepeat O f (display)
Di spl ay *display;

display Specifies the connection to the X server.

The XAutoRepeatOff function turns off auto-repeat for the keyboard on the specified
display.
To ring the bell, use XBell.

XBel | (display, percent)
Di spl ay *display;

i nt percent;
display Specifies the connection to the X server.
percent Specifies the volume for the bell, which can range from —100 to
100 inclusive.

The XBell function rings the bell on the keyboard on the specified display, if possible.
The specified volume is relative to the base volume for the keyboard. If the value for
the percent argument is not in the range —100 to 100 inclusive, a BadValue error
results. The volume at which the bell rings when the percent argument is nonnegative
is.

base — [(base * percent) / 100] + percent
The volume at which the bell rings when the percent argument is negative is:

base + [(base * percent) / 100]

March 26, 1992 7-23

X Window System

7-24

To change the base volume of the bell, use XChangeKeyboardControl.
XBell can generate aBadValue error.
To obtain a bit vector that describes the state of the keyboard, use XQueryKeymap.

XQuer yKeynmap (display, keys return)
Di spl ay *display;
char keys return[32] ;

display Specifies the connection to the X server.

keys_return Returns an array of bytes that identifies which keys are pressed
down. Each bit represents one key of the keyboard.

The XQueryKeymap function returns a bit vector for the logical state of the keyboard,
where each bit set to 1 indicates that the corresponding key is currently pressed down.
The vector is represented as 32 bytes. Byte N (from 0) contains the bits for keys 8N to
8N + 7 with the least-significant bit in the byte representing key 8N.

Note that the logical state of a device (as seen by client applications) may lag the physi-
cal state if device event processing is frozen.

To set the mapping of the pointer buttons, use XSetPointerMapping.

i nt XSet Poi nt er Mappi ng(display, map, nmap)
Di spl ay *display;
unsi gned char map[];

i nt nmap,;
display Specifies the connection to the X server.
map Specifies the mapping list.
nmap Specifies the number of items in the mapping list.

The XSetPointerMapping function sets the mapping of the pointer. If it succeeds, the
X server generates a MappingNotify event, and XSetPointerMapping returns Map-
pingSuccess. Element map][i] defines the logical button number for the physical button
i+1. The length of the list must be the same as XGetPointerMapping would return, or
aBadValue error results. A zero element disables a button, and elements are not res-
tricted in value by the number of physical buttons. However, no two elements can have
the same nonzero value, or aBadValue error results. If any of the buttons to be altered
are logically in the down state, XSetPointerMapping returns MappingBusy, and the
mapping is not changed.

XSetPointerMapping can generate a BadValue error.
To get the pointer mapping, use XGetPointerMapping.

i nt XGet Poi nt er Mappi ng(display, map_return, nmap)
Di spl ay *display;
unsi gned char map_return[] ;
i nt nmap;

March 26, 1992

Window Manager Functions

display Specifies the connection to the X server.
map_return Returns the mapping list.
nmap Specifies the number of items in the mapping list.

The XGetPointerMapping function returns the current mapping of the pointer. Pointer
buttons are numbered starting from one. XGetPointerMapping returns the number of
physical buttons actually on the pointer. The nomina mapping for a pointer is
map[i]=i+1. The nmap argument specifies the length of the array where the pointer
mapping is returned, and only the first nmap elements are returned in map_return.

To control the pointer’s interactive feel, use XChangePointerControl.

XChangePoi nt er Cont r ol (display, do_accel, do_threshold,
accel_numerator,
accel_denominator, threshold)
Di spl ay *display;
Bool do_accel, do_threshold;
i nt accel numerator, accel _denominator;
i nt threshold;

display Specifies the connection to the X server.

do_accel Specifies a Boolean value that controls whether the values for
the accel_numerator or accel_denominator are used.

do_threshold Specifies a Boolean value that controls whether the value for
the threshold is used.

accel_numerator
Specifies the numerator for the acceleration multiplier.

accel_denominator
Specifies the denominator for the acceleration multiplier.

threshold Specifies the acceleration threshold.

The XChangePointerControl function defines how the pointing device moves. The
acceleration, expressed as a fraction, is a multiplier for movement. For example, speci-
fying 3/1 means the pointer moves three times as fast as normal. The fraction may be
rounded arbitrarily by the X server. Acceleration only takes effect if the pointer moves
more than threshold pixels at once and only applies to the amount beyond the value in
the threshold argument. Setting a value to —1 restores the default. The values of the
do_accel and do_threshold arguments must be True for the pointer values to be set, or
the parameters are unchanged. Negative values (other than —1) generate a BadValue
error, as does a zero value for the accel_denominator argument.

XChangePointerControl can generate aBadValue error.
To get the current pointer parameters, use XGetPointerControl.

XGet Poi nt er Cont r ol (display, accel numerator_return, accel_denominator_return,
threshold_return)
Di spl ay *display;

March 26, 1992 7-25

X Window System

i nt *accel numerator_return, *accel denominator_return;
i nt *threshold_return;

display Specifies the connection to the X server.

accel_numerator_return
Returns the numerator for the acceleration multiplier.

accel_denominator_return
Returns the denominator for the acceleration multiplier.

threshold_return
Returns the acceleration threshold.

The XGetPointerControl function returns the pointer’s current acceleration multiplier
and acceleration threshold.

7.9 Keyboard Encoding

7-26

Most applications will find the smple interface XLookupString, which performs simple
trangation of a key event to an ASCII string, most useful. Keyboard-related utilities are
discussed in chapter 10. The following section explains how to completely control the
bindings of symbols to keys and modifiers.

A KeyCode represents a physical (or logical) key. KeyCodes lie in the inclusive range
[8,255]. A KeyCode value carries no intrinsic information, although server implemen-
tors may attempt to encode geometry (for example, matrix) information in some fashion
so that it can be interpreted in a server-dependent fashion. The mapping between keys
and KeyCodes cannot be changed.

A KeySym is an encoding of a symbol on the cap of akey. The set of defined KeySyms
includes the SO Latin character sets (1-4), Katakana, Arabic, Cyrillic, Greek, Techni-
cal, Special, Publishing, APL, Hebrew, and a special miscellany of keys found on key-
boards (Return, Help, Tab, and so on). To the extent possible, these sets are derived
from international standards. In areas where no standards exist, some of these sets are
derived from Digital Equipment Corporation standards. The list of defined symbols can
be found in
<X11/keysymdef.n>. Unfortunately, some C preprocessors have limits on the number
of defined symbols. If you must use KeySyms not in the Latin 14, Greek, and miscel-
laneous classes, you may have to define a symbol for those sets. Most applications usu-
aly only include <X11/keysym.h>, which defines symbols for 1SO Latin 1-4, Greek,
and miscellaneous.

A list of KeySyms is associated with each KeyCode. The list is intended to convey the
set of symbols on the corresponding key. If the list (ignoring trailing NoSymbol
entries) is a single KeySym “‘K’’, then the list is treated as if it were the list 'K
NoSymbol K NoSymbol.”” If the list (ignoring trailing NoSymbol entries) is a pair of
KeySyms ‘K1 K2'’, then the list is treated as if it were the list **K1 K2 K1 K2, If
the list (ignoring trailing NoSymbol entries) is atriple of KeySyms ‘K1 K2 K3'’, then

March 26, 1992

Window Manager Functions

the list is treated as if it were the list *‘K1 K2 K3 NoSymbol’*. When an explicit
““void’’ element is desired in the list, the value VoidSymbol can be used.

The first four elements of the list are split into two groups of KeySyms. Group 1 con-
tains the first and second KeySyms; Group 2 contains the third and fourth KeySyms.
Within each group, if the second element of the group is NoSymbol, then the group
should be treated as if the second element were the same as the first element, except
when the first element is an aphabetic KeySym ‘“*K’’ for which both lowercase and
uppercase forms are defined. In that case, the group should be treated as if the first ele-
ment were the lowercase form of **K’’ and the second element were the uppercase form
of ““K’".

The standard rules for obtaining a KeySym from aKeyPress event make use of only the
Group 1 and Group 2 KeySyms; no interpretation of other KeySyms in the list is
defined. Which group to use is determined by the modifier state. Switching between
groups is controlled by the KeySym named MODE SWITCH, by attaching that
KeySym to some KeyCode and attaching that KeyCode to any one of the modifiers
Mod1 through Mod5. This modifier is called the *‘ group modifier.”” For any KeyCode,
Group 1 is used when the group modifier is off, and Group 2 is used when the group
modifier is on.

Within a group, the modifier state also determines which KeySym to use. The first
KeySym is used when the Shift and Lock modifiers are off. The second KeySym is
used when the Shift modifier is on, when the Lock modifier is on and the second
KeySym is uppercase alphabetic, or when the Lock modifier is on and is interpreted as
ShiftLock. Otherwise, when the Lock modifier is on and is interpreted as CapslL ock,
the state of the Shift modifier is applied first to select a KeySym; but if that KeySym is
lowercase alphabetic, then the corresponding uppercase KeySym is used instead.

No spatial geometry of the symbols on the key is defined by their order in the KeySym
list, although a geometry might be defined on a vendor-specific basis. The X server
does not use the mapping between KeyCodes and KeySyms. Rather, it stores it merely
for reading and writing by clients.

The KeyMask modifier named Lock is intended to be mapped to either a CapsLock or a
ShiftLock key, but which one is left as application-specific and/or user-specific. How-
ever, it is suggested that the determination be made according to the associated
KeySym(s) of the corresponding KeyCode.

To obtain the legal KeyCodes for a display, use XDisplayKeycodes.

XDi spl ayKeycodes (display, min_keycodes_return, max_keycodes_return)
Di spl ay *display;
i nt *min_keycodes_return, * max_keycodes return;

display Specifies the connection to the X server.

min_keycodes_return
Returns the minimum number of KeyCodes.

max_keycodes_return
Returns the maximum number of KeyCodes.

March 26, 1992 7-27

X Window System

The XDisplayKeycodes function returns the min-keycodes and max-keycodes sup-
ported by the specified display. The minimum number of KeyCodes returned is never
less than 8, and the maximum number of KeyCodes returned is never greater than 255.
Not all KeyCodes in this range are required to have corresponding keys.

To obtain the symbols for the specified KeyCodes, use XGetKeyboardMapping.

KeySym * XGet Keyboar dMappi ng(display, first_keycode, keycode_count,
keysyms_per_keycode_return)
Di spl ay *display;
KeyCode first _keycode;
i nt keycode count;
i nt *keysyms_per_keycode return;

display Specifies the connection to the X server.
first_keycode Specifies the first KeyCode that is to be returned.
keycode_count Specifies the number of KeyCodes that are to be returned.

keysyms_per_keycode return
Returns the number of KeySyms per KeyCode.

The XGetKeyboardMapping function returns the symbols for the specified number of
KeyCodes starting with first_keycode. The value specified in first_keycode must be
greater than or equal to min_keycode as returned by XDisplayKeycodes, or a Bad-
Value error results. In addition, the following expression must be less than or equal to
max_keycode as returned by XDisplayKeycodes :

first_keycode + keycode count — 1

If this is not the case, a BadValue error results. The number of elements in the
KeySymslist is:

keycode count * keysyms per_keycode return

KeySym number N, counting from zero, for KeyCode K has the following index in the
list, counting from zero:

(K —first_code) * keysyms per_code return + N

The X server arbitrarily chooses the keysyms per_keycode return value to be large
enough to report al requested symbols. A special KeySym value of NoSymbol is used
to fill in unused elements for individual KeyCodes. To free the storage returned by
XGetKeyboardMapping, use XFree.

XGetKeyboardMapping can generate a BadValue error.
To change the keyboard mapping, use XChangeKeyboardMapping.

XChangeKeyboar dMappi ng(display, first keycode, keysyms per_keycode, keysyms, num_codes)
Di spl ay *display;
i nt first_keycode;
i nt keysyms_per_keycode;
KeySym * keysyms;

7-28 March 26, 1992

Window Manager Functions

i nt num_codes;
display Specifies the connection to the X server.
first_keycode Specifies the first KeyCode that is to be changed.

keysyms_per_keycode
Specifies the number of KeySyms per KeyCode.

keysyms Specifies an array of KeySyms.
num_codes Specifies the number of KeyCodes that are to be changed.

The XChangeKeyboardMapping function defines the symbols for the specified
number of KeyCodes starting with first_keycode. The symbols for KeyCodes outside
this range remain unchanged. The number of elements in keysyms must be:

num_codes * keysyms per_keycode

The specified first_keycode must be greater than or equal to min_keycode returned by
XDisplayKeycodes, or aBadValue error results. In addition, the following expression
must be less than or equal to max_keycode as returned by XDisplayKeycodes, or a
BadValue error results:

first_keycode + num_codes — 1

KeySym number N, counting from zero, for KeyCode K has the following index in
keysyms, counting from zero:

(K —first_keycode) * keysyms per_keycode + N

The specified keysyms per_keycode can be chosen arbitrarily by the client to be large
enough to hold all desired symbols. A specia KeySym value of NoSymbol should be
used to fill in unused elements for individual KeyCodes. It is legal for NoSymbol to
appear in nontrailing positions of the effective list for a KeyCode. XChangeKey-
boardMapping generates a MappingNotify event.

There is no requirement that the X server interpret this mapping. It is merely stored for
reading and writing by clients.

XChangeKeyboardMapping can generate BadAlloc and BadValue errors.

The next four functions make use of the XModifierKeymap data structure, which con-

tains:

t ypedef struct {
i nt max_keyper nod,; /* This server’s nmax nunber of keys per 1
KeyCode *nodifier map; /* An 8 by nmax_keypernmod array of the no

} XModi fi er Keymap;
To create an XModifierKeymap structure, use XNewModifiermap.

XModi fi er Keymap * XNewibdi fi er map(max_keys _per_mod)
i nt max_keys_per_mod;

March 26, 1992 7-29

X Window System

7-30

max_keys_per_mod
Specifies the number of KeyCode entries preallocated to the
modifiers in the map.

The XNewModifiermap function returns a pointer to XModifierkeymap structure for
later use.

To add a new entry to an XModifierKeymap structure, use XinsertModifiermapEntry.

XModi fi er Keymap * Xl nsert Modi fi er mapEnt ry(modmap, keycode_entry,
XModi fi er Keymap * modmap;
KeyCode keycode_entry;

i nt modifier;
modmap Specifies the XModifierKeymap structure.
keycode_entry Specifies the KeyCaode.
modifier Specifies the modifier.

The XInsertModifiermapEntry function adds the specified KeyCode to the set that con-
trols the specified modifier and returns the resulting XModifierKeymap structure
(expanded as needed).

To delete an entry from an XModifierkeymap structure, use XDelete-
ModifiermapEntry.

XModi fi er Keynmap *XDel et eModi fi er mapEnt ry(modmap, keycode entry,
XModi i er Keymap * modmap;
KeyCode keycode_entry;
i nt modifier;

modmap Specifies the XModifierKeymap structure.
keycode_entry Specifies the KeyCode.
modifier Specifies the modifier.

The XDeleteModifiermapEntry function deletes the specified KeyCode from the set
that controls the specified modifier and returns a pointer to the resulting
XModifierKeymap structure.

To destroy an XModifierKeymap structure, use XFreeModifiermap.

XFr eeModi fi er map(modmap)
XModi fi er Keynmap * modmap;

modmap Specifies the XModifierKeymap structure.
The XFreeModifiermap function frees the specified XModifierKeymap structure.
To set the KeyCodes to be used as modifiers, use XSetModifierMapping.

i nt XSet Modi fi er Mappi ng(display, modmap)
Di spl ay *display;
XModi fi er Keymap * modmap;

March 26, 1992

modifier)

modifier)

7.10

Window Manager Functions

display Specifies the connection to the X server.
modmap Specifies the XModifierkeymap structure.

The XSetModifierMapping function specifies the KeyCodes of the keys (if any) that
are to be used as modifiers. If it succeeds, the X server generates a MappingNotify
event, and XSetModifierMapping returns MappingSuccess. X permits at most eight
modifier keys. If more than eight are specified in the XModifierKeymap structure, a
BadLength error results.

The modifiermap member of the XModifierKeymap structure contains eight sets of
max_keypermod KeyCodes, one for each modifier in the order Shift, Lock, Control,
Mod1, Mod2, Mod3, Mod4, and Mod5. Only nonzero KeyCodes have meaning in
each set, and zero KeyCodes are ignored. In addition, al of the nonzero KeyCodes
must be in the range specified by min_keycode and max_keycode in the Display struc-
ture, or aBadValue error results. No KeyCode may appear twice in the entire map, or
aBadValue error results.

An X server can impose restrictions on how moadifiers can be changed, for example, if
certain keys do not generate up transitions in hardware, if auto-repeat cannot be disabled
on certain keys, or if multiple modifier keys are not supported. If some such restriction
is violated, the status reply is MappingFailed, and none of the modifiers are changed.
If the new KeyCodes specified for a modifier differ from those currently defined and
any (current or new) keys for that modifier are in the logicaly down state,
XSetModifierMapping returns MappingBusy, and none of the modifiers is changed.

XSetModifierMapping can generate BadAlloc and BadValue errors.
To obtain the KeyCodes used as modifiers, use XGetModifierMapping.

XModi fi er Keynap * XGet Modi fi er Mappi ng(display)
Di spl ay *display;

display Specifies the connection to the X server.

The XGetModifierMapping function returns a pointer to a newly created
XModifierKeymap structure that contains the keys being used as modifiers. The struc-
ture should be freed after use by calling XFreeModifiermap. If only zero values appear
in the set for any modifier, that modifier is disabled.

Screen Saver Control

Xlib provides functions that you can use to set or reset the mode of the screen saver, to
force or activate the screen saver, or to obtain the current screen saver values.

To set the screen saver mode, use XSetScreenSaver.

XSet Scr eenSaver (display, timeout, interval, prefer_blanking, allow_exposures)

Di spl ay *display;
i nt timeout, interval;

March 26, 1992 7-31

X Window System

7-32

i nt prefer_blanking;
i nt allow_exposures;

display Specifies the connection to the X server.

timeout Specifies the timeout, in seconds, until the screen saver turns
on.

interval Specifies the interval, in seconds, between screen saver altera-
tions.

prefer_blanking
Specifies how to enable screen blanking. You can pass Dont-
PreferBlanking, PreferBlanking, or DefaultBlanking.

allow_exposures
Specifies the screen save control values. You can pass Dont-
AllowExposures, AllowExposures, or DefaultExposures.

Timeout and interval are specified in seconds. A timeout of O disables the screen saver
(but an activated screen saver is not deactivated), and a timeout of —1 restores the
default. Other negative values generate a BadValue error. If the timeout value is
nonzero, XSetScreenSaver enables the screen saver. An interval of O disables the
random-pattern motion. If no input from devices (keyboard, mouse, and so on) is gen-
erated for the specified number of timeout seconds once the screen saver is enabled, the
screen saver is activated.

For each screen, if blanking is preferred and the hardware supports video blanking, the
screen simply goes blank. Otherwise, if either exposures are allowed or the screen can
be regenerated without sending Expose events to clients, the screen is tiled with the root
window background tile randomly re-origined each interval minutes. Otherwise, the
screens state do not change, and the screen saver is not activated. The screen saver is
deactivated, and all screen states are restored at the next keyboard or pointer input or at
the next call to XForceScreenSaver with mode ScreenSaverReset.

If the server-dependent screen saver method supports periodic change, the interval argu-
ment serves as a hint about how long the change period should be, and zero hints that
no periodic change should be made. Examples of ways to change the screen include
scrambling the colormap periodically, moving an icon image around the screen periodi-
cally, or tiling the screen with the root window background tile, randomly re-origined
periodically.

XSetScreenSaver can generate a BadValue error.
To force the screen saver on or off, use XForceScreenSaver.

XFor ceScreenSaver (display, mode)
Di spl ay *display;
i nt mode;

display Specifies the connection to the X server.

mode Specifies the mode that is to be applied. You can pass Screen-
SaverActive or ScreenSaverReset.

March 26, 1992

Window Manager Functions

If the specified mode is ScreenSaverActive and the screen saver currently is deac-
tivated, XForceScreenSaver activates the screen saver even if the screen saver had been
disabled with a timeout of zero. If the specified mode is ScreenSaverReset and the
screen saver currently is enabled, XForceScreenSaver deactivates the screen saver if it
was activated, and the activation timer is reset to its initial state (as if device input had
been received).

XForceScreenSaver can generate aBadValue error.
To activate the screen saver, use XActivateScreenSaver.

XAct i vat eScr eenSaver (display)

Di spl ay *display;
display Specifies the connection to the X server.
To reset the screen saver, use XResetScreenSaver.
XReset Scr eenSaver (display)

Di spl ay *display;
display Specifies the connection to the X server.
To get the current screen saver values, use XGetScreenSaver.

XGet Scr eenSaver (display, timeout_return, interval _return, prefer_blanking return,
allow_exposures_return)
Di spl ay *display;
i nt *timeout return, *interval_return;
i nt *prefer_blanking_return;
i nt *allow_exposures_return;

display Specifies the connection to the X server.
timeout_return Returns the timeout, in seconds, until the screen saver turns on.
interval_return Returns the interval between screen saver invocations.

prefer_blanking_return
Returns the current screen blanking preference (DontPrefer-
Blanking, PreferBlanking, or DefaultBlanking).

allow_exposures_return
Returns the current screen save control value (DontAllow-
Exposures, AllowExposures, or DefaultExposures).

7.11 Controlling Host Access

This section discusses how to:

« Add, get, or remove hosts from the access control list

March 26, 1992 7-33

X Window System

+ Change, enable, or disable access

X does not provide any protection on a per-window basis. If you find out the resource
ID of aresource, you can manipulate it. To provide some minimal level of protection,
however, connections are permitted only from machines you trust. This is adequate on
single-user workstations but obviously breaks down on timesharing machines.

Although provisions exist in the X protocol for proper connection authentication, the
lack of a standard authentication server leaves host-level access control as the only com-
mon mechanism.

The initial set of hosts alowed to open connections typically consists of:
« The host the window system is running on.

» On POSIX-conformant systems, each host listed in the Zetc/X?.hosts file. The ?
indicates the number of the display. This file should consist of host names
separated by newlines. DECnet nodes must terminate in to distinguish them from
Internet hosts.

If a host is not in the access control list when the access control mechanism is enabled
and if the host attempts to establish a connection, the server refuses the connection. To
change the access list, the client must reside on the same host as the server and/or must
have been granted permission in the initial authorization at connection setup.

Servers also can implement other access control policies in addition to or in place of
this host access facility. For further information about other access control implementa-
tions, see part I1, ** X Window System Protocol.’”’

7.11.1 Adding, Getting, or Removing Hosts

7-34

Xlib provides functions that you can use to add, get, or remove hosts from the access
control list. All the host access control functions use the XHostAddress structure,
which contains:

t ypedef struct {

int famly;/* for exanpl e Familyinternet */

int length;/* length of address, in bytes */

char *address;/* pointer to where to find the address */
} XHost Addr ess;

The family member specifies which protocol address family to use (for example,
TCP/IP or DECnet) and can be Familylnternet, FamilyDECnet, or FamilyChaos.
The length member specifies the length of the address in bytes. The address member
specifies a pointer to the address.

For TCP/IP, the address should be in network byte order. For the DECnet family, the
server performs no automatic swapping on the address bytes. A Phase IV address is
two bytes long. The first byte contains the least-significant eight bits of the node
number. The second byte contains the most-significant two bits of the node number in
the least-significant two bits of the byte and the area in the most-significant six bits of

March 26, 1992

Window Manager Functions

the byte.
To add a single host, use XAddHost.

XAddHost (display, host)
Di spl ay *display;
XHost Addr ess * host;

display Specifies the connection to the X server.
host Specifies the host that is to be added.

The XAddHost function adds the specified host to the access control list for that
display. The server must be on the same host as the client issuing the command, or a
BadAccess error results.

XAddHost can generate BadAccess and BadValue errors.
To add multiple hosts at one time, use XAddHosts.

XAddHost s (display, hosts, num_hosts)
Di spl ay *display;
XHost Addr ess * hosts;
i nt num_hosts;

display Specifies the connection to the X server.
hosts Specifies each host that is to be added.
num_hosts Specifies the number of hosts.

The XAddHosts function adds each specified host to the access control list for that
display. The server must be on the same host as the client issuing the command, or a
BadAccess error results.

XAddHosts can generate BadAccess and BadValue errors.
To obtain a host list, use XListHosts.

XHost Addr ess * XLi st Host s(display, nhosts_return, state_return)
Di spl ay *display;
i nt *nhosts_return;
Bool *state return;

display Specifies the connection to the X server.
nhosts_return Returns the number of hosts currently in the access control list.
state_return Returns the state of the access control.

The XListHosts function returns the current access control list as well as whether the use
of the list a connection setup was enabled or disabled.
XListHosts allows a program to find out what machines can make connections. It aso
returns a pointer to alist of host structures that were allocated by the function. When no
longer needed, this memory should be freed by calling XFree.

To remove a single host, use XRemoveHost.

March 26, 1992 7-35

X Window System

XRenoveHost (display, host)
Di spl ay *display;
XHost Addr ess * host;

display Specifies the connection to the X server.
host Specifies the host that is to be removed.

The XRemoveHost function removes the specified host from the access control list for
that display. The server must be on the same host as the client process, or a BadAc-
cess error results. If you remove your machine from the access list, you can no longer
connect to that server, and this operation cannot be reversed unless you reset the server.

XRemoveHost can generate BadAccess and BadValue errors.
To remove multiple hosts at one time, use XRemoveHosts.

XRenoveHost s (display, hosts, num_hosts)
Di spl ay *display;
XHost Addr ess * hosts;
i nt num_hosts;

display Specifies the connection to the X server.
hosts Specifies each host that is to be removed.
num_hosts Specifies the number of hosts.

The XRemoveHosts function removes each specified host from the access control list
for that display. The X server must be on the same host as the client process, or a
BadAccess error results. If you remove your machine from the access list, you can no
longer connect to that server, and this operation cannot be reversed unless you reset the
server.

XRemoveHosts can generate BadAccess and BadValue errors.

7.11.2 Changing, Enabling, or Disabling Access Control

7-36

Xlib provides functions that you can use to enable, disable, or change access control.

For these functions to execute successfully, the client application must reside on the
same host as the X server and/or have been given permission in the initial authorization
at connection setup.

To change access control, use XSetAccessControl.

XSet AccessCont rol (display, mode)
Di spl ay *display;
i nt mode;

display Specifies the connection to the X server.

March 26, 1992

Window Manager Functions

mode Specifies the mode. You can pass EnableAccess or Disa-
bleAccess.

The XSetAccessControl function either enables or disables the use of the access control
list at each connection setup.

XSetAccessControl can generate BadAccess and BadValue errors.
To enable access control, use XEnableAccessControl.

XEnabl eAccessCont r ol (display)
Di spl ay *display;

display Specifies the connection to the X server.

The XEnableAccessControl function enables the use of the access control list at each
connection setup.

XEnableAccessControl can generate a BadAccess error.
To disable access control, use XDisableAccessControl.

XDi sabl eAccessControl (display)
Di spl ay *display;

display Specifies the connection to the X server.

The XDisableAccessControl function disables the use of the access control list at each
connection setup.

XDisableAccessControl can generate a BadAccess error.

March 26, 1992 7-37

Chapter 8. Events and Event-Handling Func-
tions

A client application communicates with the X server through the connection you estab-
lish with the XOpenDisplay function. A client application sends requests to the X
server over this connection. These requests are made by the Xlib functions that are
caled in the client application. Many Xlib functions cause the X server to generate
events, and the user’s typing or moving the pointer can generate events asynchro-
nously. The X server returns events to the client on the same connection.

This chapter begins with a discussion of the following topics associated with events:
- Event types
- Event structures
+ Event mask
« Event processing
It then discusses the Xlib functions you can use to:
 Select events
« Handle the output buffer and the event queue
+ Select events from the event queue
+ Send and get events
« Handle error events

Note: Some toolkits use their own event-handling functions and do not allow
you to interchange these event-handling functions with those in Xlib.
For further information, see the documentation supplied with the
toolkit.

Most applications simply are event loops: they wait for an event, decide what to do
with it, execute some amount of code that results in changes to the display, and then
wait for the next event.

March 26, 1992 8-1

X Window System

8.1 Event Types

An event is data generated asynchronously by the X server as a result of some device
activity or as side effects of a request sent by an Xlib function. Device-related events
propagate from the source window to ancestor windows until some client application
has selected that event type or until the event is explicitly discarded. The X server gen-
erally sends an event to a client application only if the client has specifically asked to be
informed of that event type, typically by setting the event-mask attribute of the win-
dow. The mask can aso be set when you create a window or by changing the
window’s event-mask. You can aso mask out events that would propagate to ancestor
windows by manipulating the do-not-propagate mask of the window’s attributes. How-
ever, MappingNotify events are always sent to all clients.

An event type describes a specific event generated by the X server. For each event
type, a corresponding constant name is defined in <X11/X.h>, which is used when
referring to an event type. The following table lists the event category and its associ-
ated event type or types. The processing associated with these events is discussed in

section 8.4.

Event Category Event Type

Keyboard events KeyPress, KeyRelease

Pointer events ButtonPress, ButtonRelease ,
MotionNotify

Window crossing events EnterNotify, LeaveNotify

Input focus events Focusln, FocusOut

Keymap state notification event KeymapNotify

Exposure events Expose, GraphicsExpose, NOExpose

Structure control events CirculateRequest, ConfigureRequest,
MapRequest, ResizeRequest

Window state notification events CirculateNotify, ConfigureNotify,
CreateNotify, DestroyNotify,
GravityNotify, MapNotify,
MappingNotify, ReparentNotify,
UnmapNotify, VisibilityNotify

Colormap state notification event ColormapNotify

Client communication events ClientMessage, PropertyNotify,

SelectionClear, SelectionNotify,
SelectionRequest

8.2 Event Structures

For each event type, a corresponding structure is declared in <X11/Xlib.h>. All the

8-2 March 26, 1992

Events and Event-Handling Functions

event structures have the following common members:

t ypedef struct {

int type;
unsi gned | ong serial; /* # of |ast request processed by server
Bool send_event; /* true if this canme from a SendEvent reqL
Di spl ay *di spl ay; /* Display the event was read from */
W ndow wi ndow,

} XAnyEvent;

The type member is set to the event type constant name that uniquely identifies it. For
example, when the X server reports a GraphicsExpose event to a client application, it
sends an XGraphicsExposeEvent structure with the type member set to GraphicsEx-
pose. The display member is set to a pointer to the display the event was read on. The
send_event member is set to True if the event came from a SendEvent protocol
request. The seria member is set from the serial number reported in the protocol but
expanded from the 16-bit least-significant bits to a full 32-bit value. The window
member is set to the window that is most useful to toolkit dispatchers.

The X server can send events at any time in the input stream. Xlib stores any events
received while waiting for a reply in an event queue for later use. Xlib also provides
functions that alow you to check events in the event queue (see section 8.7).

In addition to the individual structures declared for each event type, the XEvent struc-
ture is a union of the individual structures declared for each event type. Depending on
the type, you should access members of each event by using the XEvent union.

t ypedef union _XEvent {
int type; /* must not be changed */
XAnyEvent xany;
XKeyEvent xkey;
XBut t onEvent xbutton;
XMot i onEvent xnoti on;
XCr ossi ngEvent xcrossi ng;
XFocusChangeEvent xfocus;
XExposeEvent xexpose;
XGr aphi csExposeEvent xgraphi csexpose;
XNoExposeEvent xnoexpose;
XVisibilityEvent xvisibility;
XCr eat eW ndowEvent xcreat ew ndow,
XDest r oyW ndowEvent xdestroyw ndow,
XUnmapEvent xunmap;
XMapEvent xmap;
XMapRequest Event xmaprequest;
XRepar ent Event xreparent;
XConf i gur eEvent xconfi gure;
XGravityEvent xgravity;
XResi zeRequest Event xresi zer equest ;
XConfi gur eRequest Event xconfi gurerequest;
XCircul at eEvent xcircul at e;

March 26, 1992 8-3

X Window System

XGi r cul at eRequest Event xci rcul at er equest ;
XPr opertyEvent xproperty;
XSel ecti onCl ear Event xsel ectioncl ear;
XSel ecti onRequest Event xsel ecti onr equest ;
XSel ecti onEvent xsel ecti on;
XCol or mapEvent xcol or map;
XC i ent MessageEvent xclient;
XMappi ngEvent xmappi ng;
XError Event xerror;
XKeymapEvent xkeymap;
| ong pad[24];
} XEvent;

An XEvent structure's first entry always is the type member, which is set to the event
type. The second member always is the serial number of the protocol request that gen-
erated the event. The third member always is send_event, which is aBool that indicates
if the event was sent by a different client. The fourth member always is a display,
which is the display that the event was read from. Except for keymap events, the fifth
member always is a window, which has been carefully selected to be useful to toolkit
dispatchers. To avoid breaking toolkits, the order of these first five entries is not to
change. Most events also contain a time member, which is the time at which an event
occurred. In addition, a pointer to the generic event must be cast before it is used to
access any other information in the structure.

8.3 Event Masks

Clients select event reporting of most events relative to a window. To do this, pass an
event mask to an Xlib event-handling function that takes an event_mask argument. The
bits of the event mask are defined in <X11/X.h>. Each bit in the event mask maps to
an event mask name, which describes the event or events you want the X server to
return to a client application.

Unless the client has specifically asked for them, most events are not reported to clients
when they are generated. Unless the client suppresses them by setting graphics
exposures in the GC to False, GraphicsExpose and NoExpose are reported by default
as a result of XCopyPlane and XCopyArea. SelectionClear, SelectionRequest,
SelectionNotify, or ClientMessage cannot be masked. Selection related events are
only sent to clients cooperating with selections (see section 4.4). When the keyboard or
pointer mapping is changed, MappingNotify is always sent to clients.

The following table lists the event mask constants you can pass to the event_mask argu-
ment and the circumstances in which you would want to specify the event mask:

Event Mask Circumstances

NoEventMask No events wanted

March 26, 1992

Events and Event-Handling Functions

KeyPressMask Keyboard down events wanted
KeyReleaseMask Keyboard up events wanted
ButtonPressMask Pointer button down events wanted
ButtonReleaseMask Pointer button up events wanted
EnterwWindowMask Pointer window entry events wanted
LeaveWindowMask Pointer window leave events wanted
PointerMotionMask Pointer motion events wanted
PointerMotionHintMask Pointer motion hints wanted
Button1MotionMask Pointer motion while button 1 down
Button2MotionMask Pointer motion while button 2 down
Button3MotionMask Pointer motion while button 3 down
Button4MotionMask Pointer motion while button 4 down
Button5MotionMask Pointer motion while button 5 down
ButtonMotionMask Pointer motion while any button down
KeymapStateMask Keyboard state wanted at window entry and
focusin
ExposureMask Any exposure wanted
VisibilityChangeMask Any change in visibility wanted
StructureNotifyMask Any change in window structure wanted
ResizeRedirectMask Redirect resize of this window
SubstructureNotifyMask Substructure notification wanted
SubstructureRedirectMask Redirect structure requests on children
FocusChangeMask Any change in input focus wanted
PropertyChangeMask Any change in property wanted
ColormapChangeMask Any change in colormap wanted
OwnerGrabButtonMask Automatic grabs should activate with

owner_events set to True

8.4 Event Processing

The event reported to a client application during event processing depends on which
event masks you provide as the event-mask attribute for a window. For some event
masks, there is a one-to-one correspondence between the event mask constant and the
event type constant. For example, if you pass the event mask ButtonPressMask, the X
server sends back only ButtonPress events. Most events contain a time member, which
is the time at which an event occurred.

In other cases, one event mask constant can map to severa event type constants. For
example, if you pass the event mask SubstructureNotifyMask, the X server can send
back CirculateNotify, ConfigureNotify, CreateNotify, DestroyNotify, GravityNotify,
MapNotify, ReparentNotify, or UnmapNotify events.

In another case, two event masks can map to one event type. For example, if you pass
either PointerMotionMask or ButtonMotionMask, the X server sends back a Motion-
Notify event.

March 26, 1992 8-5

X Window System

8.4.1 Keyboard and Pointer Events

The following table lists the event mask, its associated event type or types, and the
structure name associated with the event type. Some of these structures actually are

typedefs to a generic structure that is shared between two event types. Note that N.A.

appears in columns for which the information is not applicable.

The sections that follow describe the processing that occurs when you select the
different event masks. The sections are organized according to these processing
categories:

Keyboard and pointer events
Window crossing events

Input focus events

Keymap state notification events
Exposure events

Window state notification events
Structure control events
Colormap state notification events

Client communication events

Event Mask

ButtonMotionMask
Button1MotionMask
Button2MotionMask
Button3MotionMask
Button4MotionMask
Button5MotionMask
ButtonPressMask
ButtonReleaseMask
ColormapChangeMask
EnterwWindowMask
LeaveWindowMask
ExposureMask
GCGraphicsExposure in GC

FocusChangeMask

KeymapStateMask
KeyPressMask

Event Type

MotionNotify

ButtonPress
ButtonRelease
ColormapNotify
EnterNotify
LeaveNotify
Expose
GraphicsExpose
NoExpose
Focusin
FocusOut
KeymapNotify
KeyPress

March 26, 1992

Structure

XPointerMovedEvent

XButtonPressedEvent
XButtonReleasedEvent
XColormapEvent
XEnterWindowEvent
XLeaveWindowEvent
XExposeEvent
XGraphicsExposeEvent
XNoExposeEvent
XFocuslnEvent
XFocusOutEvent
XKeymapEvent
XKeyPressedEvent

KeyReleaseMask
OwnerGrabButtonMask
PointerMotionMask
PointerMotionHintMask
PropertyChangeMask
ResizeRedirectMask
StructureNotifyMask

SubstructureNotifyMask

SubstructureRedirectMask

N.A.
N.A.
N.A.
N.A.
N.A.
VisibilityChangeMask
This section discusses:

Events and Event-Handling Functions

KeyRelease
N.A.
MotionNotify
N.A.
PropertyNotify
ResizeRequest
CirculateNotify
ConfigureNotify
DestroyNotify
GravityNotify
MapNotify
ReparentNotify
UnmapNotify
CirculateNotify
ConfigureNotify
CreateNotify
DestroyNotify
GravityNotify
MapNotify
ReparentNotify
UnmapNotify
CirculateRequest

ConfigureRequest

MapRequest
ClientMessage
MappingNotify
SelectionClear
SelectionNotify
SelectionRequest
VisibilityNotify

XKeyReleasedEvent
N.A.
XPointerMovedEvent
N.A.

XPropertyEvent
XResizeRequestEvent
XCirculateEvent
XConfigureEvent
XDestroyWindowEvent
XGravityEvent
XMapEvent
XReparentEvent
XUnmapEvent
XCirculateEvent
XConfigureEvent
XCreateWindowEvent
XDestroyWindowEvent
XGravityEvent
XMapEvent
XReparentEvent
XUnmapEvent
XCirculateRequestEver
XConfigureRequestEve
XMapRequestEvent
XClientMessageEvent
XMappingEvent
XSelectionClearEvent
XSelectionEvent
XSelectionRequestEver
XVisibilityEvent

- Pointer button events

- Keyboard and pointer events

8.4.1.1 Pointer Button Events

The following describes the event processing that occurs when a
pointer button press is processed with the pointer in some window
w and when no active pointer grab is in progress.

The X server searches the ancestors of w from the root down, look-
ing for a passive grab to activate. If no matching passive grab on
the button exists, the X server automatically starts an active grab
for the client receiving the event and sets the last-pointer-grab time
to the current server time. The effect is essentially equivalent to an

March 26, 1992 8-7

X Window System

XGrabButton with these client passed arguments:

Argument Value
w The event window
event_mask The client’s selected

pointer events on the
event window

pointer_mode GrabModeAsync

keyboard_mode GrabModeAsync

owner_events True, if the client has
selected OwnerGrabBut-

tonMask on the
event window, otherwise

False
confine_to None
cursor None

The active grab is automatically terminated when the logical state
of the pointer has all buttons released. Clients can modify the
active grab by calling XUngrabPointer and XChangeActivePoin-
terGrab.

8.4.1.2 Keyboard and Pointer Events

This section discusses the processing that occurs for the keyboard
events KeyPress and KeyRelease and the pointer events But-
tonPress, ButtonRelease, and MotionNotify. For information
about the keyboard event-handling utilities, see chapter 10.

The X server reports KeyPress or KeyRelease events to clients
wanting information about keys that logically change state. Note
that these events are generated for al keys, even those mapped to
modifier bits. The X server reports ButtonPress or ButtonRelease
events to clients wanting information about buttons that logically
change state.

The X server reports MotionNotify events to clients wanting infor-
mation about when the pointer logically moves. The X server gen-
erates this event whenever the pointer is moved and the pointer
motion begins and ends in the window. The granularity of
MotionNotify eventsis not guaranteed, but a client that selects this
event type is guaranteed to receive at least one event when the
pointer moves and then rests.

The generation of the logical changes lags the physical changes if
device event processing is frozen.

March 26, 1992

Events and Event-Handling Functions

To receive KeyPress, KeyRelease, ButtonPress, and Button-
Release events, set KeyPressMask, KeyReleaseMask, But-
tonPressMask, and ButtonReleaseMask bits in the event-mask
attribute of the window.

To receive MotionNotify events, set one or more of the following
event masks bits in the event-mask attribute of the window.

- Button1MotionMask—Button5MotionMask
The client application receives MotionNotify events only when
one or more of the specified buttons is pressed.

 ButtonMotionMask
The client application receives MotionNotify events only when
at least one button is pressed.

» PointerMotionMask
The client application receives MotionNotify events indepen-
dent of the state of the pointer buttons.

« PointerMotionHint

If PointerMotionHintMask is selected in combination with one
or more of the above masks, the X server is free to send only
one MotionNotify event (with the is hint member of the
XPointerMovedEvent structure set to NotifyHint) to the client
for the event window, until either the key or button state
changes, the pointer leaves the event window, or the client calls
XQueryPointer or XGetMotionEvents. The server still may
send MotionNotify events without is_hint set to NotifyHint.

The source of the event is the viewable window that the pointer is
in. The window used by the X server to report these events
depends on the window’s position in the window hierarchy and
whether any intervening window prohibits the generation of these
events. Starting with the source window, the X server searches up
the window hierarchy until it locates the first window specified by
a client as having an interest in these events. If one of the inter-
vening windows has its do-not-propagate-mask set to prohibit gen-
eration of the event type, the events of those types will be
suppressed. Clients can modify the actual window used for report-
ing by performing active grabs and, in the case of keyboard events,
by using the focus window.

The structures for these event types contain:

t ypedef struct {

ButtonRelease */
request processed by server

int type; / * ButtonPress or
unsi gned | ong serial; [* # of

Bool send_event; /*

Di spl ay *di spl ay; /*

W ndow wi ndow; /*

W ndow r oot ; /*

March 26, 1992

true if this cane from a SendEvent reqt
Di splay the event was read from */

‘“‘event’’ window it is reported relati
root wi ndow that the event occurred ot

8-9

X Window System

8-10

W ndow subwi ndow; /* child wi ndow */

Time tine; /* mlliseconds */

int x, y; /* pointer X, y coordinates in event W n
int x _root, y root; /* coordinates relative to root */

unsi gned int state; /* key or button nmask */

unsi gned int button; /* detail */

Bool same_screen; /* same screen flag */

} XButtonEvent;
t ypedef XButtonEvent XButtonPressedEvent;
t ypedef XButtonEvent XButtonRel easedEvent;

t ypedef struct {

int type; /* KeyPress or KeyRelease */

unsi gned | ong serial; /* # of |ast request processed by server
Bool send_event; /* true if this cane from a SendEvent reqL
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow; /[* ““event’’ window it is reported relati
W ndow r oot ; /* root window that the event occurred ot
W ndow subwi ndow, /* child wi ndow */

Time tine; /* mlliseconds */

int x, vy; /* pointer X, y coordinates in event w n
int x_root, y_root; /* coordinates relative to root */
unsigned int state; /* key or button nmask */

unsi gned i nt keycode; [* detail */

Bool same_screen; /* same screen flag */

} XKeyEvent;
t ypedef XKeyEvent XKeyPressedEvent;
t ypedef XKeyEvent XKeyRel easedEvent;

t ypedef struct {

int type; / * MotionNotify */

unsi gned | ong serial; /* # of last request processed by server
Bool send_event; /* true if this cane from a SendEvent reqt
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow; /* “‘event’’ window reported relative to
W ndow r oot ; /* root wi ndow that the event occurred ol
W ndow subwi ndow, /* child wi ndow */

Time tine; /* mlliseconds */

int x, y; /* pointer X, y coordinates in event W n
int x _root, y root; /* coordinates relative to root */
unsigned int state; /* key or button nmask */

char is_hint; /* detail */

Bool same_screen; /* same screen flag */

} XMbtionEvent;
t ypedef XMdti onEvent XPoi nter MovedEvent;

These structures have the following common members. window,
root, subwindow, time, X, Yy, X root, y root, state, and
same_screen. The window member is set to the window on which

March 26, 1992

Events and Event-Handling Functions

the event was generated and is referred to as the event window. As
long as the conditions previously discussed are met, this is the win-
dow used by the X server to report the event. The root member is
set to the source window’s root window. The x_root and y_root
members are set to the pointer's coordinates relative to the root
window’s origin at the time of the event.

The same_screen member is set to indicate whether the event win-
dow is on the same screen as the root window and can be either
True or False. If True, the event and root windows are on the
same screen. If False, the event and root windows are not on the
same screen.

If the source window is an inferior of the event window, the
subwindow member of the structure is set to the child of the event
window that is the source member or an ancestor of it. Otherwise,
the X server sets the subwindow member to None. The time
member is set to the time when the event was generated and is
expressed in milliseconds.

If the event window is on the same screen as the root window, the
x and y members are set to the coordinates relative to the event
window’s origin. Otherwise, these members are set to zero.

The state member is set to indicate the logical state of the pointer
buttons and modifier keys just prior to the event, which is the bit-
wise inclusive OR of one or more of the button or modifier key
masks: Button1Mask, Button2Mask, Button3Mask,
Button4Mask, Button5Mask, ShiftMask, LockMask, Control-
Mask, Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, and
Mod5Mask.

Each of these structures also has a member that indicates the
detail. For the XKeyPressedEvent and XKeyReleasedEvent
structures, this member is called keycode. It is set to a number that
represents a physical key on the keyboard. The keycode is an arbi-
trary representation for any key on the keyboard (see setions 7.9
and 10.1.1).

For the XButtonPressedEvent and XButtonReleasedEvent struc-
tures, this member is called button. It represents the pointer button
that changed state and can be the Button1, Button2, Button3, But-
ton4, or Button5 value. For the XPointerMovedEvent structure,
this member is called is hint. It can be set to NotifyNormal or
NotifyHint.

March 26, 1992

8-11

X Window System

8.4.2 Window Entry/Exit Events

This section describes the processing that occurs for the window
crossing events EnterNotify and LeaveNotify. If a pointer maotion
or a window hierarchy change causes the pointer to be in a
different window than before, the X server reports EnterNotify or
LeaveNotify events to clients who have selected for these events.

All EnterNotify and LeaveNotify events caused by a hierarchy
change are generated after any hierarchy event (UnmapNotify,
MapNotify, ConfigureNotify, GravityNotify, CirculateNotify)
caused by that change; however, the X protocol does not constrain
the ordering of EnterNotify and LeaveNotify events with respect
to FocusOut, VisibilityNotify, and Expose events.

This contrasts with MotionNotify events, which are also generated
when the pointer moves but only when the pointer maotion begins
and ends in a single window. An EnterNotify or LeaveNotify
event also can be generated when some client application calls
XGrabPointer and XUngrabPointer.

To receive EnterNotify or LeaveNotify events, set the EnterWin-
dowMask or LeaveWindowMask bits of the event-mask attribute
of the window.

The structure for these event types contains:

typedef struct {

int type; / * EnterNotify or LeaveNotify */

unsi gned | ong serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent reqt
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow; /[* “‘event’’ window reported relative to
W ndow r oot ; /* root window that the event occurred ot
W ndow subwi ndow; /* child wi ndow */

Time tine; /* mlliseconds */

int x, y; /* pointer x, y coordinates in event w n
int x_root, y root; /* coordinates relative to root */

i nt node; /* NotifyNormal, NotifyGrab, NotifyUngrab */
int detail; [* NotifyAncestor, NotifyVirtual,

Notifylnferior, NotifyNonlinear,
NotifyNonlinearVirtual */

Bool same_screen; /* same screen flag */
Bool focus; /* bool ean focus */
unsi gned int state; /* key or button mask */

} XCrossi ngEvent;
t ypedef XCrossi ngEvent XEnter W ndowEvent ;
t ypedef XCrossi ngEvent XLeaveW ndowEvent;

8-12 March 26, 1992

Events and Event-Handling Functions

The window member is set to the window on which the EnterNo-
tify or LeaveNotify event was generated and is referred to as the
event window. This is the window used by the X server to report
the event, and is relative to the root window on which the event
occurred. The root member is set to the root window of the screen
on which the event occurred.

For aLeaveNotify event, if a child of the event window contains
the initial position of the pointer, the subwindow component is set
to that child. Otherwise, the X server sets the subwindow member
to None. For an EnterNotify event, if a child of the event window
contains the final pointer position, the subwindow component is set
to that child or None.

The time member is set to the time when the event was generated
and is expressed in milliseconds. The x and y members are set to
the coordinates of the pointer position in the event window. This
position is always the pointer's final position, not its initial posi-
tion. If the event window is on the same screen as the root win-
dow, x and y are the pointer coordinates relative to the event
window’s origin. Otherwise, x and y are set to zero. The x_root
and y_root members are set to the pointer’s coordinates relative to
the root window’s origin at the time of the event.

The same_screen member is set to indicate whether the event win-
dow is on the same screen as the root window and can be either
True or False. If True, the event and root windows are on the
same screen. |If False, the event and root windows are not on the
same screen.

The focus member is set to indicate whether the event window is
the focus window or an inferior of the focus window. The X
server can set this member to either True or False. If True, the
event window is the focus window or an inferior of the focus win-
dow. If False, the event window is not the focus window or an
inferior of the focus window.

The state member is set to indicate the state of the pointer buttons
and modifier keys just prior to the event. The X server can set this
member to the bitwise inclusive OR of one or more of the button
or modifier key masks. ButtonlMask, Button2Mask,
Button3Mask, Button4Mask, Button5Mask, ShiftMask, Lock-
Mask, ControlMask, ModlMask, Mod2Mask, Mod3Mask,
Mod4Mask, Mod5Mask.

The mode member is set to indicate whether the events are normal
events, pseudo-motion events when a grab activates, or pseudo-
motion events when a grab deactivates. The X server can set this
member to NotifyNormal, NotifyGrab, or NotifyUngrab.

March 26, 1992

8-13

X Window System

The detail member is set to indicate the notify detail and can be
Notify Ancestor, NotifyVirtual, Notifylnferior, NotifyNonlinear,
or NotifyNonlinearVirtual.

8.4.2.1 Normal Entry/Exit Events

EnterNotify and LeaveNotify events are generated when the
pointer moves from one window to another window. Normal
events are identified by XEnterwindowEvent or XLeaveWin-
dowEvent structures whose mode member is set to NotifyNor-
mal.

+ When the pointer moves from window A to window B and A is
an inferior of B, the X server does the following:

— It generates a LeaveNotify event on window A, with the
detall member of the XLeaveWindowEvent structure set to
Notify Ancestor.

— It generates aLeaveNotify event on each window between
window A and window B, exclusive, with the detail
member of each XLeaveWindowEvent structure set to
NotifyVirtual.

— It generates an EnterNotify event on window B, with the
detail member of the
XEnterWindowEvent structure set to NotifylInferior.

« When the pointer moves from window A to window B and B is
an inferior of A, the X server does the following:

— It generates a LeaveNotify event on window A, with the
detail member of the XLeaveWindowEvent structure set to
NotifyInferior.

— It generates an EnterNotify event on each window between
window A and window B, exclusive, with the detall
member of each XEnterWindowEvent structure set to
NotifyVirtual.

— It generates an EnterNotify event on window B, with the
detail member of the XEnterwindowEvent structure set to
Notify Ancestor.

» When the pointer moves from window A to window B and
window C is their least common ancestor, the X server does the
following:

— It generates a LeaveNotify event on window A, with the
detail member of the XLeaveWindowEvent structure set to

8-14

March 26, 1992

Events and Event-Handling Functions

NotifyNonlinear.

— It generates aLeaveNotify event on each window between
window A and window C, exclusive, with the detail
member of each XLeaveWindowEvent structure set to
NotifyNonlinearVirtual.

— It generates an EnterNotify event on each window between
window C and window B, exclusive, with the detail
member of each XEnterwWindowEvent structure set to
NotifyNonlinearVirtual.

— It generates an EnterNotify event on window B, with the
detail member of the XEnterwindowEvent structure set to
NotifyNonlinear.

« When the pointer moves from window A to window B on
different screens, the X server does the following:

— It generates a LeaveNotify event on window A, with the
detail member of the XLeaveWindowEvent structure set to
NotifyNonlinear.

— If window A is not aroot window, it generates aLeaveNo-
tify event on each window above window A up to and
including its root, with the detall member of each
XLeaveWindowEvent structure set to NotifyNonlinear-
Virtual.

— If window B is not a root window, it generates an EnterNo-
tify event on each window from window B'’s root down to
but not including window B, with the detail member of
each XEnterWindowEvent structure set to NotifyNon-
linearVirtual.

— It generates an EnterNotify event on window B, with the
detail member of the XEnterwindowEvent structure set to
NotifyNonlinear.

8.4.2.2 Grab and Ungrab Entry/Exit Events

Pseudo-motion mode EnterNotify and LeaveNotify events are gen-
erated when a pointer grab activates or deactivates. Events in
which the pointer grab activates are identified by XEnterwin-
dowEvent or XLeaveWindowEvent structures whose mode
member is set to NotifyGrab. Events in which the pointer grab
deactivates are identified by XEnterwindowEvent or XLeaveWin-
dowEvent structures whose mode member is set to NotifyUngrab
(see XGrabPointer).

March 26, 1992

8-15

X Window System

« When a pointer grab activates after any initial warp into a
confine_to window and before generating any actual But-
tonPress event that activates the grab, G is the grab_window
for the grab, and P is the window the pointer is in, the X server
does the following:

— It generates EnterNotify and LeaveNotify events (see sec-
tion 8.4.2.1) with the mode members of the XEnterwWin-
dowEvent and XLeaveWindowEvent structures set to
NotifyGrab. These events are generated as if the pointer
were to suddenly warp
from its current position in P to some position in G. How-
ever, the pointer does not warp, and the X server uses the
pointer position as both the initial and final positions for the
events.

« When a pointer grab deactivates after generating any actual But-
tonRelease event that deactivates the grab, G is the
grab_window for the grab, and P is the window the pointer is
in, the X server does the following:

— It generates EnterNotify and LeaveNotify events (see sec-
tion 8.4.2.1) with the mode members of the XEnterwin-
dowEvent and XLeaveWindowEvent structures set to
NotifyUngrab. These events are generated as if the pointer
were to suddenly warp from some position in G to its
current position in P. However, the pointer does not warp,
and the X server uses the current pointer position as both
the initial and final positions for the events.

8.4.3 Input Focus Events

8-16

This section describes the processing that occurs for the input focus
events Focusin and FocusOut. The X server can report Focusin or
FocusOut events to clients wanting information about when the
input focus changes. The keyboard is always attached to some
window (typically, the root window or a top-level window), which
is caled the focus window. The focus window and the position of
the pointer determine the window that receives keyboard input.

Clients may need to know when the input focus changes to control
highlighting of areas on the screen.

To receive Focusin or FocusOut events, set the
FocusChangeMask bit in the event-mask attribute of the window.

The structure for these event types contains:

March 26, 1992

Events and Event-Handling Functions

typedef struct {
int type;/* Focusln or FocusOut */
unsigned long serial;/* # of |last request processed by server */
Bool send event;/* true if this cane from a SendEvent request */
Di splay *display;/* Display the event was read from */
W ndow wi ndow; / * wi ndow of event */
i nt node; /* NotifyNormal, NotifyGrab,
NotifyUngrab */
int detail;/* NotifyAncestor, NotifyVirtual,
Notifylnferior, NotifyNonlinear,
NotifyNonlinearVirtual, NotifyPointer,
NotifyPointerRoot, NotifyDetailNone */
} XFocusChangeEvent ;
t ypedef XFocusChangeEvent XFocusl nEvent;
t ypedef XFocusChangeEvent XFocusQut Event;

The window member is set to the window on which the Focusin or
FocusOut event was generated. This is the window used by the X
server to report the event. The mode member is set to indicate
whether the focus events are norma focus events, focus events
while grabbed, focus events when a grab activates, or focus events
when a grab deactivates. The X server can set the mode member
to NotifyNormal, NotifyWhileGrabbed, NotifyGrab, or
NotifyUngrab.

All FocusOut events caused by a window unmap are generated
after any UnmapNotify event; however, the X protocol does not
constrain the ordering of FocusOut events with respect to gen-
erated EnterNotify, LeaveNotify, VisibilityNotify, and Expose
events.

Depending on the event mode, the detail member is set to indicate
the notify detail and can be NotifyAncestor, NotifyVirtual,
NotifylInferior, NotifyNonlinear, NotifyNonlinearVirtual,
NotifyPointer, NotifyPointerRoot, or NotifyDetailNone.

8.4.3.1 Normal Focus Events and Focus Events While Grabbed

Normal focus events are identified by XFocusInEvent or XFocus-
OutEvent structures whose mode member is set to NotifyNormal.
Focus events while grabbed are identified by XFocusIinEvent or
XFocusOutEvent structures whose mode member is set to
NotifyWhileGrabbed. The X server processes normal focus and
focus events while grabbed according to the following:

« When the focus moves from window A to window B, A is an
inferior of B, and the pointer is in window P, the X server does

March 26, 1992 8-17

X Window System

8-18

the following:

It generates aFocusOut event on window A, with the detail
member of the XFocusOutEvent structure set to
Notify Ancestor.

It generates a FocusOut event on each window between
window A and window B, exclusive, with the detail
member of each XFocusOutEvent structure set to
NotifyVirtual.

It generates a Focusin event on window B, with the detail
member of the XFocusOutEvent structure set to NotifyIn-
ferior.

If window P is an inferior of window B but window P is
not window A or an inferior or ancestor of window A, it
generates a Focusin event on each window below window
B, down to and including window P, with the detail
member of each XFocusinEvent Structure set to
NotifyPointer.

When the focus moves from window A to window B, B is an
inferior of A, and the pointer isin window P, the X server does
the following:

If window P is an inferior of window A but P is not an
inferior of window B or an ancestor of B, it generates a
FocusOut event on each window from window P up to but
not including window A, with the detail member of each
XFocusOutEvent structure set to NotifyPointer.

It generates aFocusOut event on window A, with the detall
member of the XFocusOutEvent structure set to NotifyIn-
ferior.

It generates a Focusin event on each window between win-
dow A and window B, exclusive, with the detail member of
each XFocusInEvent structure set to NotifyVirtual.

It generates a Focusin event on window B, with the detail
member of the XFocusinEvent structure set to
Notify Ancestor.

When the focus moves from window A to window B, window
C is their least common ancestor, and the pointer is in window
P, the X server does the following:

— If window P is an inferior of window A, it generates a

FocusOut event on each window from window P up to but
not including window A, with the detail member of the
XFocusOutEvent structure set to NotifyPointer.

March 26, 1992

Events and Event-Handling Functions

It generates aFocusOut event on window A, with the detail
member of the XFocusOutEvent structure set to
NotifyNonlinear.

It generates a FocusOut event on each window between
window A and window C, exclusive, with the detall
member of each XFocusOutEvent structure set to
NotifyNonlinearVirtual.

It generates a Focusin event on each window between C
and B, exclusive, with the detail member of each XFocus-
InEvent structure set to NotifyNonlinearVirtual.

It generates a Focusin event on window B, with the detail
member of the XFocusinEvent structure set to NotifyNon-
linear.

If window P is an inferior of window B, it generates a
Focusln event on each window below window B down to
and including window P, with the detail member of the
XFocusIinEvent structure set to NotifyPointer.

« When the focus moves from window A to window B on
different screens and the pointer is in window P, the X server
does the following:

If window P is an inferior of window A, it generates a
FocusOut event on each window from window P up to but
not including window A, with the detail member of each
XFocusOutEvent structure set to NotifyPointer.

It generates aFocusOut event on window A, with the detail
member of the XFocusOutEvent structure set to
NotifyNonlinear.

If window A is not a root window, it generates a FocusOut
event on each window above window A up to and including
its root, with the detail member of each XFocusOutEvent
structure set to NotifyNonlinearVirtual.

If window B is not a root window, it generates a Focusin
event on each window from window B'’s root down to but
not including window B, with the detail member of each
XFocuslnEvent structure set to NotifyNonlinearVirtual.

It generates a Focusin event on window B, with the detail
member of each XFocusinEvent Structure set to
NotifyNonlinear.

If window P is an inferior of window B, it generates a
Focusln event on each window below window B down to
and including window P, with the detail member of each
XFocusIinEvent structure set to NotifyPointer.

March 26, 1992

8-19

X Window System

8-20

» When the focus moves from window A to PointerRoot (events
sent to the window under the pointer) or None (discard), and
the pointer is in window P, the X server does the following:

— If window P is an inferior of window A, it generates a
FocusOut event on each window from window P up to but
not including window A, with the detail member of each
XFocusOutEvent structure set to NotifyPointer.

— It generates aFocusOut event on window A, with the detail
member of the XFocusOutEvent structure set to
NotifyNonlinear.

— If window A is not aroot window, it generates a FocusOut
event on each window above window A up to and including
its root, with the detail member of each XFocusOutEvent
Structure set to NotifyNonlinearVirtual.

— It generates a Focusin event on the root window of all
screens, with the detail member of each XFocusInEvent
structure set to NotifyPointerRoot (or NotifyDetailNone).

— If the new focus is PointerRoot, it generates a Focusin
event on each window from window P's root down to and
including window P, with the detail member of each
XFocusIinEvent structure set to NotifyPointer.

+ When the focus moves from PointerRoot (events sent to the
window under the pointer) or None to window A, and the
pointer is in window P, the X server does the following:

— If the old focus is PointerRoot, it generates a FocusOut
event on each window from window P up to and including
window P's root, with the detaill member of each XFocus-
OutEvent structure set to NotifyPointer.

— It generates aFocusOut event on all root windows, with the
detail member of each XFocusOutEvent structure set to
NotifyPointerRoot (or NotifyDetailNone).

— If window A is not a root window, it generates a Focusin
event on each window from window A’s root down to but
not including window A, with the detail member of each
XFocuslnEvent structure set to NotifyNonlinearVirtual.

— It generates a Focusin event on window A, with the detail
member of the XFocusinEvent structure set to NotifyNon-
linear.

— If window P is an inferior of window A, it generates a
Focusin event on each window below window A down to
and including window P, with the detail member of each
XFocusIinEvent structure set to NotifyPointer.

March 26, 1992

Events and Event-Handling Functions

+ When the focus moves from PointerRoot (events sent to the
window under the pointer) to None (or vice versa), and the
pointer is in window P, the X server does the following:

— If the old focus is PointerRoot, it generates a FocusOut
event on each window from window P up to and including
window P's root, with the detaill member of each XFocus-
OutEvent structure set to NotifyPointer.

— It generates aFocusOut event on all root windows, with the
detail member of each XFocusOutEvent structure set to
either NotifyPointerRoot or NotifyDetailNone.

— It generates a Focusin event on all root windows, with the
detail member of each XFocusinEvent structure set to
NotifyDetailNone or NotifyPointerRoot.

— If the new focus is PointerRoot, it generates a Focusin
event on each window from window P's root down to and
including window P, with the detaill member of each
XFocusIinEvent structure set to NotifyPointer.

8.4.3.2 Focus Events Generated by Grabs

Focus events in which the keyboard grab activates are identified by
XFocusinEvent or XFocusOutEvent structures whose mode
member is set to NotifyGrab. Focus events in which the keyboard
grab deactivates are identified by XFocuslnEvent or XFocus-
OutEvent structures whose mode member is set to NotifyUngrab
(see XGrabKeyboard).

+ When a keyboard grab activates before generating any actual
KeyPress event that activates the grab, G is the grab_window,
and F is the current focus, the X server does the following:

— It generates Focusin and FocusOut events, with the mode
members of the XFocusinEvent and XFocusOutEvent
structures set to NotifyGrab. These events are generated as
if the focus were to change from F to G.

« When a keyboard grab deactivates after generating any actual
KeyRelease event that deactivates the grab, G is the
grab_window, and F is the current focus, the X server does the
following:

— It generates Focusin and FocusOut events, with the mode
members of the XFocusinEvent and XFocusOutEvent
structures set to NotifyUngrab. These events are generated
as if the focus were to change from G to F.

March 26, 1992

8-21

X Window System

8.4.4

8.4.5

8-22

Keymap State Notification Events

The X server can report KeymapNotify events to clients that want
information about changes in their keyboard state.

To receive KeymapNotify events, set the KeymapStateMask bit
in the event-mask attribute of the window. The X server generates
this event immediately after every EnterNotify and Focusin event.

The structure for this event type contains:

/* generated on EnterWindow and Focusin when KeymapState sel ected */

t ypedef struct {

int type; [* KeymapNotify */

unsi gned | ong serial; /* # of last request processed by server
Bool send_event; /* true if this cane from a SendEvent reqt
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow;
char key vector[32];
} XKeynmapEvent;

The window member is not used but is present to aid some toolk-
its. The key_vector member is set to the bit vector of the key-
board. Each bit set to 1 indicates that the corresponding key is
currently pressed. The vector is represented as 32 bytes. Byte N
(from 0) contains the bits for keys 8N to 8N + 7 with the least-
significant bit in the byte representing key 8N.

Exposure Events

The X protocol does not guarantee to preserve the contents of win-
dow regions when the windows are obscured or reconfigured.

Some implementations may preserve the contents of windows.

Other implementations are free to destroy the contents of windows
when exposed. X expects client applications to assume the respon-
sibility for restoring the contents of an exposed window region.
(An exposed window region describes a formerly obscured window
whose region becomes visible) Therefore, the X server sends
Expose events describing the window and the region of the win-
dow that has been exposed. A naive client application usually
redraws the entire window. A more sophisticated client application
redraws only the exposed region.

March 26, 1992

Events and Event-Handling Functions

8.4.5.1 Expose Events

The X server can report Expose events to clients wanting informa-
tion about when the contents of window regions have been lost.

The circumstances in which the X server generates Expose events
are not as definite as those for other events. However, the X server
never generates Expose events on windows whose class you
gpecified as InputOnly. The X server can generate Expose events
when no valid contents are available for regions of a window and
either the regions are visible, the regions are viewable and the
server is (perhaps newly) maintaining backing store on the window,
or the window is not viewable but the server is (perhaps newly)
honoring the window’s backing-store attribute of Always or
WhenMapped. The regions decompose into an (arbitrary) set of
rectangles, and an Expose event is generated for each rectangle.

For any given window, the X server guarantees to report contigu-
oudly all of the regions exposed by some action that causes Expose
events, such as raising a window.

To receive Expose events, set the ExposureMask bit in the event-
mask attribute of the window.

The structure for this event type contains:

t ypedef struct {

int type; | * Expose */

unsi gned | ong serial; /* # of last request processed by server
Bool send_event; /* true if this cane from a SendEvent reqt
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow;

int x, vy;

int width, height;

i nt count; /* if nonzero, at least this many nore */

} XExposeEvent;

The window member is set to the exposed (damaged) window.
The x and y members are set to the coordinates relative to the
window’s origin and indicate the upper-left corner of the rectangle.
The width and height members are set to the size (extent) of the
rectangle. The count member is set to the number of Expose
events that are to follow. If count is zero, no more Expose events
follow for this window. However, if count is nonzero, at least that
number of Expose events (and possibly more) follow for this win-
dow. Simple applications that do not want to optimize redisplay
by distinguishing between subareas of its window can just ignore
all Expose events with nonzero counts and perform full redisplays
on events with zero counts.

March 26, 1992 8-23

X Window System

8.4.5.2 GraphicsExpose and NoExpose Events

The X server can report GraphicsExpose events to clients wanting
information about when a destination region could not be computed
during certain graphics requests. XCopyArea or XCopyPlane.

The X server generates this event whenever a destination region
could not be computed due to an obscured or out-of-bounds source
region. In addition, the X server guarantees to report contiguously
al of the regions exposed by some graphics request (for example,

copying an area of a drawable to a destination drawable).

The X server generates a NoExpose event whenever a graphics
regquest that might produce a GraphicsExpose event does not pro-
duce any. In other words, the client is really asking for a Gra-

phicsExpose event but instead receives aNoExpose event.

To receive GraphicsExpose or NoExpose events, you must first
set the graphics-exposure attribute of the graphics context to True.

You also can set the graphics-expose attribute when creating a
graphics context using XCreateGC or by caling XSetGraphicsEx-

posures.
The structures for these event types contain:

typedef struct {

int type; /*
unsi gned | ong serial; /*
Bool send_event; /*
Di spl ay *di spl ay; /*
Dr awabl e dr awabl e;
int x, y;
int width, height;
int count; /*
i nt naj or _code; /*
i nt nminor_code; /*
} XGraphi csExposeEvent ;
t ypedef struct {
int type; /*
unsi gned | ong serial; /*
Bool send_event; [*
Di spl ay *di spl ay; /*
Dr awabl e drawabl e;
i nt naj or_code; /*
i nt mnor_code; /*

} XNoExposeEvent;

Both structures have these common members:

GraphicsExpose */

of last request processed by server
true if this cane from a SendEvent reqt
Di splay the event was read from */

if nonzero, at least this many nore */
core i s CopyArea or CopyPlane */
not defined in the core */

NoExpose */

of |ast request processed by server
true if this cane from a SendEvent reqt
Di spl ay the event was read from */

core i s CopyArea or CopyPlane */
not defined in the core */

drawable,

major_code, and minor_code. The drawable member is set to the

8-24

March 26, 1992

Events and Event-Handling Functions

drawable of the destination region on which the graphics request
was to be performed. The major_code member is set to the graph-
ics request initiated by the client and can be either X_CopyArea or
X_CopyPlane. If it is X_CopyArea, a cal to XCopyArea ini-
tiated the request. If it is X_CopyPlane, a cal to XCopyPlane
initiated the request. These constants are defined in
<X11/Xproto.h>. The minor_code member, like the mgor_code
member, indicates which graphics request was initiated by the
client. However, the minor_code member is not defined by the core
X protocol and will be zero in these cases, athough it may be used
by an extension.

The XGraphicsExposeEvent structure has these additional
members: X, y, width, height, and count. The x and y members are
set to the coordinates relative to the drawable’'s origin and indicate
the upper-left corner of the rectangle. The width and height
members are set to the size (extent) of the rectangle. The count
member is set to the number of GraphicsExpose events to follow.

If count is zero, no more GraphicsExpose events follow for this
window. However, if count is nonzero, at least that number of
GraphicsExpose events (and possibly more) are to follow for this
window.

8.4.6 Window State Change Events

The following sections discuss:

« CirculateNotify events

- ConfigureNotify events

- CreateNotify events

» DestroyNotify events

» GravityNotify events

- MapNotify events

- MappingNotify events

+ ReparentNotify events

« UnmapNotify events

« VisibilityNotify events

March 26, 1992 8-25

X Window System

8.4.6.1 CirculateNotify Events

The X server can report CirculateNotify events to clients wanting
information about when a window changes its position in the
stack. The X server generates this event type whenever a window
is actually restacked as a result of a client application calling XCir-
culateSubwindows, XCirculateSubwindowsUp, or XCircula-
teSubwindowsDown.

To receive CirculateNotify events, set the StructureNotifyMask
bit in the event-mask attribute of the window or the Substruc-
tureNotifyMask bit in the event-mask attribute of the parent win-
dow (in which case, circulating any child generates an event).

The structure for this event type contains.

typedef struct {

int type; [* CirculateNotify */

unsi gned | ong serial; [* # of

Di spl ay *di spl ay;
W ndow event ;
W ndow wi ndow;

i nt place; /* PlaceOnTop,

} XCircul at eEvent;

The event member is set either to the restacked window or to its
parent, depending on whether StructureNotify or SubstructureNo-
tify was selected. The window member is set to the window that
was restacked. The place member is set to the window’s position
after the restack occurs and is either PlaceOnTop or PlaceOnBot-
tom. If it is PlaceOnTop, the window is now on top of all
siblings. If it is PlaceOnBottom, the window is now below all
siblings.

8.4.6.2 ConfigureNotify Events

8-26

The X server can report ConfigureNotify events to clients wanting
information about actual changes to a window’s state, such as size,
position, border, and stacking order. The X server generates this
event type whenever one of the following configure window
reguests made by a client application actually completes:

« A window’s size, position, border, and/or stacking order is
reconfigured by calling XConfigureWindow.

| ast

March 26, 1992

PlaceOnBottom */

request processed by server
Bool send_event; /* true if this came from a SendEvent reqt
/* Display the event was read from */

Events and Event-Handling Functions

» The window’s position in the stacking order is changed by cal-
ling XLowerWindow, XRaiseWindow, or XRestackWin-
dows.

A window is moved by calling XMoveWindow.

A window’s size is changed by calling XResizeWindow.

« A window’'s size and location is changed by caling XMo-
veResizeWindow.

« A window is mapped and its position in the stacking order is
changed by calling XMapRaised.

« A window's border width is changed by caling XSetWin-
dowBorderWidth.

To receive ConfigureNotify events, set the StructureNotifyMask
bit in the event-mask attribute of the window or the Substruc-
tureNotifyMask bit in the event-mask attribute of the parent win-
dow (in which case, configuring any child generates an event).

The structure for this event type contains:

typedef struct {

int type; [* ConfigureNotify */

unsi gned | ong serial; /* # of |ast request processed by server
Bool send_event; /[* true if this cane from a SendEvent reqL
Di spl ay *di spl ay; /* Display the event was read from */

W ndow event ;

W ndow wi ndow;

int x, y;

int width, height;

i nt border_wi dth;

W ndow above;

Bool override redirect;
} XConfi gureEvent;

The event member is set either to the reconfigured window or to its
parent, depending on whether StructureNotify or SubstructureNo-
tify was selected. The window member is set to the window
whose size, position, border, and/or stacking order was changed.

The x and y members are set to the coordinates relative to the
parent window’s origin and indicate the position of the upper-left
outside corner of the window. The width and height members are
set to the inside size of the window, not including the border. The
border_width member is set to the width of the window’s border,
in pixels.

The above member is set to the sibling window and is used for
stacking operations. If the X server sets this member to None, the
window whose state was changed is on the bottom of the stack

March 26, 1992 8-27

X Window System

with respect to sibling windows. However, if this member is set to
a sibling window, the window whose state was changed is placed
on top of this sibling window.

The override_redirect member is set to the override-redirect attri-
bute of the window. Window manager clients normally should
ignore this window if the override redirect member isTrue.

8.4.6.3 CreateNotify Events

8-28

The X server can report CreateNotify events to clients wanting
information about creation of windows. The X server generates
this event whenever a client application creates a window by cal-
ling XCreateWindow or XCreateSimpleWindow.

To receive CreateNotify events, set the SubstructureNotifyMask
bit in the event-mask attribute of the window. Creating any chil-
dren then generates an event.

The structure for the event type contains:

typedef struct {

int type; [* CreateNotify */

unsi gned | ong serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent reqt
Di spl ay *di spl ay; /* Display the event was read from */

W ndow parent; /* parent of the wi ndow */

W ndow wi ndow; /* window id of window created */

int x, vy; /* window | ocation */

int width, height; /* size of w ndow */

i nt border_wi dth; /* border width */

Bool override_redirect; /* creation should be overridden */

} XCreat eW ndowEvent ;

The parent member is set to the created window’s parent. The
window member specifies the created window. The x and y
members are set to the created window’s coordinates relative to the
parent window’s origin and indicate the position of the upper-left
outside corner of the created window. The width and height
members are set to the inside size of the created window (not
including the border) and are aways nonzero. The border_width
member is set to the width of the created window’s border, in pix-
els. The override redirect member is set to the override-redirect
attribute of the window. Window manager clients normally should
ignore this window if the override_ redirect member is True.

March 26, 1992

Events and Event-Handling Functions

8.4.6.4 DestroyNotify Events

The X server can report DestroyNotify events to clients wanting
information about which windows are destroyed. The X server
generates this event whenever a client application destroys a win-
dow by calling XDestroyWindow or
XDestroySubwindows.

The ordering of the DestroyNotify events is such that for any given
window, DestroyNotify is generated on all inferiors of the window
before being generated on the window itself. The X protocol does
not constrain the ordering among siblings and across subhierar-
chies.

To receive DestroyNotify events, set the StructureNotifyMask bit
in the event-mask attribute of the window or the SubstructureNo-
tifyMask bit in the event-mask attribute of the parent window (in
which case, destroying any child generates an event).

The structure for this event type contains:

t ypedef struct {

int type; / * DestroyNotify */

unsi gned | ong serial; /* # of |last request processed by server
Bool send_event; /* true if this cane from a SendEvent reqL
Di spl ay *di spl ay; /* Display the event was read from */

W ndow event ;
W ndow wi ndow;
} XDestroyW ndowEvent ;

The event member is set either to the destroyed window or to its
parent, depending on whether StructureNotify or SubstructureNo-
tify was selected. The window member is set to the window that is
destroyed.

8.4.6.5 GravityNotify Events

The X server can report GravityNotify events to clients wanting
information about when a window is moved because of a change in
the size of its parent. The X server generates this event whenever a
client application actually moves a child window as a result of
resizing its parent by caling XConfigureWindow, XMo-
veResizeWindow, or XResizeWindow.

To receive GravityNotify events, set the StructureNotifyMask bit
in the event-mask attribute of the window or the SubstructureNo-
tifyMask bit in the event-mask attribute of the parent window (in

March 26, 1992 8-29

X Window System

which case, any child that is moved because its parent has been
resized generates an event).

The structure for this event type contains.

t ypedef struct {

int type; [* GravityNotify */

unsi gned | ong serial; [* # of request processed by server
Bool send_event; /* true if this came from a SendEvent reqt
Di spl ay *di spl ay; /* Display the event was read from */

W ndow event ;
W ndow wi ndow;
int x, vy;

} XGravityEvent;

The event member is set either to the window that was moved or to
its parent, depending on whether StructureNotify or Substruc-
tureNotify was selected. The window member is set to the child
window that was moved. The x and y members are set to the coor-
dinates relative to the new parent window’s origin and indicate the
position of the upper-left outside corner of the window.

8.4.6.6 MapNotify Events

8-30

The X server can report MapNotify events to clients wanting infor-
mation about which windows are mapped. The X server generates
this event type whenever a client application changes the window’s
state from unmapped to mapped by caling XMapWindow,
XMapRaised, XMapSubwindows, XReparentWindow, or as a
result of save-set processing.

To receive MapNotify events, set the StructureNotifyMask bit in
the event-mask attribute of the window or the SubstructureNo-
tifyMask bit in the event-mask attribute of the parent window (in
which case, mapping any child generates an event).

The structure for this event type contains:

typedef struct {

int type; /* MapNotify */

unsi gned |l ong serial; [* # of request processed by server
Bool send_event; /* true if this came from a SendEvent reqL
Di spl ay *di spl ay; /* Display the event was read from */

W ndow event ;
W ndow wi ndow;

Bool override_redirect; /* bool ean,

} XMapEvent;

is override set

March 26, 1992

*/

Events and Event-Handling Functions

The event member is set either to the window that was mapped or
to its parent, depending on whether StructureNotify or Substruc-
tureNotify was selected. The window member is set to the win-
dow that was mapped. The override redirect member is set to the
override-redirect attribute of the window. Window manager clients
normally should ignore this window if the override-redirect attri-
bute is True, because these events usually are generated from pop-
ups, which override structure control.

8.4.6.7 MappingNotify Events

The X server reports MappingNotify events to al clients. There
is no mechanism to express disinterest in this event. The X server
generates this event type whenever a client application successfully
cals:

+ XSetModifierMapping to indicate which KeyCodes are to be
used as modifiers

+ XChangeKeyboardMapping to change the keyboard map-
ping
+ XSetPointerMapping to set the pointer mapping
The structure for this event type contains:

t ypedef struct {

int type; /*
unsi gned | ong serial; /*
Bool send_event; [*
Di spl ay *di spl ay; /*
W ndow wi ndow; /*
i nt request; /*
int first_keycode; /*
i nt count; /*

MappingNotify */

of last request processed by server
true if this cane from a SendEvent reqL
Di splay the event was read from */
unused */

one of MappingModifier, MappingKeyboard,
MappingPointer */

first keycode */

defines range of change w. first_keyce

} XMappi ngEvent ;

The request member is set to indicate the kind of mapping change
that occurred and can be MappingModifier, MappingKeyboard,
MappingPointer. If it is MappingModifier, the modifier map-
ping was changed. If it is MappingKeyboard, the keyboard map-
ping was changed. If it is MappingPointer, the pointer button
mapping was changed. The first_keycode and count members are
set only if the request member was set to MappingKeyboard.
The number in first_keycode represents the first number in the
range of the atered mapping, and count represents the number of
keycodes altered.

March 26, 1992

8-31

X Window System

To update the client application’s knowledge of the keyboard, you
should call XRefreshKeyboardMapping.

8.4.6.8 ReparentNotify Events

The X server can report ReparentNotify events to clients wanting
information about changing a window’s parent. The X server gen-
erates this event whenever a client application cals
XReparentWindow and the window is actually reparented.

To receive ReparentNotify events, set the StructureNotifyMask
bit in the event-mask attribute of the window or the Substruc-
tureNotifyMask bit in the event-mask attribute of either the old or
the new parent window (in which case, reparenting any child gen-
erates an event).

The structure for this event type contains:

typedef struct {

int type; [* ReparentNotify */

unsi gned | ong serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent reqt
Di spl ay *di spl ay; /* Display the event was read from */

W ndow event ;

W ndow wi ndow;

W ndow parent;

int x, vy;

Bool override redirect;
} XRepar ent Event;

The event member is set either to the reparented window or to the
old or the new parent, depending on whether StructureNotify or
SubstructureNotify was selected. The window member is set to the
window that was reparented. The parent member is set to the new
parent window. The x and y members are set to the reparented
window’s coordinates relative to the new parent window’s origin
and define the upper-left outer corner of the reparented window.
The override redirect member is set to the override-redirect attri-
bute of the window specified by the window member. Window
manager clients normally should ignore this window if the over-
ride_redirect member is True.

8.4.6.9 UnmapNotify Events

The X server can report UnmapNotify events to clients wanting

8-32 March 26, 1992

Events and Event-Handling Functions

information about which windows are unmapped. The X server
generates this event type whenever a client application changes the
window’ s state from mapped to unmapped.

To receive UnmapNotify events, set the StructureNotifyMask bit
in the event-mask attribute of the window or the SubstructureNo-
tifyMask bit in the event-mask attribute of the parent window (in
which case, unmapping any child window generates an event).

The structure for this event type contains:

t ypedef struct {

int type; /* UnmapNotify */

unsi gned | ong serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent reqt
Di spl ay *di spl ay; /* Display the event was read from */

W ndow event ;

W ndow wi ndow;

Bool from configure;
} XUnnmapEvent ;

The event member is set either to the unmapped window or to its
parent, depending on whether StructureNotify or SubstructureNo-
tify was selected. This is the window used by the X server to
report the event. The window member is set to the window that
was unmapped. The from_configure member is set to True if the
event was generated as a result of aresizing of the window’s parent
when the window itself had awin_gravity of UnmapGravity.

8.4.6.10 VisibilityNotify Events

The X server can report VisibilityNotify events to clients wanting
any change in the visibility of the specified window. A region of a
window is visible if someone looking at the screen can actually see
it. The X server generates this event whenever the vishility
changes state. However, this event is never generated for windows
whose class is InputOnly.

All VisibilityNotify events caused by a hierarchy change are gen-
erated after any hierarchy event (UnmapNotify, MapNotify,
ConfigureNotify,

GravityNotify, CirculateNotify) caused by that change. Any
VisibilityNotify event on a given window is generated before any
Expose events on that window, but it is not required that al Visi-
bilityNotify events on all windows be generated before all Expose
events on all windows. The X protocol does not constrain the ord-
ering of VisibilityNotify events with respect to FocusOut, Enter-
Notify, and LeaveNotify events.

March 26, 1992 8-33

X Window System

To receive VisibilityNotify events, set the VisibilityChangeMask
bit in the event-mask attribute of the window.

The structure for this event type contains:

t ypedef struct {

int type; / * VisibilityNotify */

unsi gned | ong serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent reqt
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow;

int state;

} XVisibilityEvent;

The window member is set to the window whose visibility state
changes. The state member is set to the state of the window’s visi-
bility and can be VisibilityUnobscured, VisibilityPartiallyOb-
scured, or VisibilityFullyObscured. The X server ignores all of a
window’s subwindows when determining the visibility state of the
window and processes VisibilityNotify events according to the fol-
lowing:

« When the window changes state from partially obscured, fully
obscured, or not viewable to viewable and completely unob-
scured, the X server generates the event with the state member
of the XVisibilityEvent structure set to VisibilityUnobscured.

» When the window changes state from viewable and completely
unobscured or not viewable to viewable and partially obscured,
the X server generates the event with the state member of the
XVisibilityEvent structure set to VisibilityPartiallyObscured.

« When the window changes state from viewable and completely
unobscured, viewable and partially obscured, or not viewable to
viewable and fully obscured, the X server generates the event
with the state member of the XVisibilityEvent structure set to
VisibilityFullyObscured.

8.4.7 Structure Control Events

This section discusses:
- CirculateRequest events
» ConfigureRequest events
 MapRequest events

» ResizeRequest events

March 26, 1992

Events and Event-Handling Functions

84.7.1 CirculateRequest Events

The X server can report CirculateRequest events to clients want-
ing information about when another client initiates a circulate win-
dow request on a specified window. The X server generates this
event type whenever a client initiates a circulate window request on
a window and a subwindow actually needs to be restacked. The
client initiates a circulate window request on the window by calling
XCirculateSubwindowvs, XCirculateSubwindowsUp, or
XCirculateSubwindowsDown.

To receive CirculateRequest events, set the Substruc-
tureRedirectMask in the event-mask attribute of the window.
Then, in the future, the circulate window request for the specified
window is not executed, and thus, any subwindow’s position in the
stack is not changed. For example, suppose a client application
calls XCirculateSubwindowsUp to raise a subwindow to the top
of the stack. If you had selected SubstructureRedirectMask on
the window, the X server reports to you a CirculateRequest event
and does not raise the subwindow to the top of the stack.

The structure for this event type contains:

t ypedef struct {

int type; [* CirculateRequest */

unsi gned | ong serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent reqt
Di spl ay *di spl ay; /* Display the event was read from */

W ndow parent;

W ndow wi ndow;

i nt place; /* PlaceOnTop, PlaceOnBottom */
} XGircul at eRequest Event ;

The parent member is set to the parent window. The window
member is set to the subwindow to be restacked. The place
member is set to what the new position in the stacking order
should be and is either PlaceOnTop or PlaceOnBottom. If it is
PlaceOnTop, the subwindow should be on top of al siblings. If it
is PlaceOnBottom, the subwindow should be below all siblings.

8.4.7.2 ConfigureRequest Events

The X server can report ConfigureRequest events to clients want-
ing information about when a different client initiates a configure
window reguest on any child of a specified window. The configure
window request attempts to reconfigure a window's size, position,

March 26, 1992 8-35

X Window System

8-36

border, and stacking order. The X server generates this event
whenever a different client initiates a configure window request on
a window by cdling XConfigureWindow, XLowerWindow,
XRaiseWindow, XMapRaised, XMoveResizeWindow, XMo-
veWindow, XResizeWindow, XRestackWindows, or XSetWin-
dowBorderWidth.

To recelve ConfigureRequest events, set the Substruc-
tureRedirectMask hit in the event-mask attribute of the window.
ConfigureRequest events are generated when a
ConfigureWindow protocol request is issued on a child window
by another client. For example, suppose a client application calls
XLowerWindow to lower a window. If you had selected
SubstructureRedirectMask on the parent window and if the
override-redirect attribute of the window is set to False, the X
server reports a ConfigureRequest event to you and does not
lower the specified window.

The structure for this event type contains:

typedef struct {

int type; /* ConfigureRequest */

unsi gned |l ong serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent reqt
Di spl ay *di spl ay; /* Display the event was read from */

W ndow par ent;
W ndow wi ndow;
int x, vy;
int width, height;
i nt border_wi dth;
W ndow above;
int detail; [/ * Above,
unsi gned | ong val ue_mask;
} XConfi gur eRequest Event ;

The parent member is set to the parent window. The window
member is set to the window whose size, position, border width,
and/or stacking order is to be reconfigured. The value mask
member indicates which components were specified in the
ConfigureWindow protocol request. The corresponding values are
reported as given in the request. The remaining values are filled in
from the current geometry of the window, except in the case of
above (sibling) and detail (stack-mode), which are reported as
Above and None, respectively, if they are not given in the
request.

Below, Toplf, Bottomlf, Opposite */

March 26, 1992

Events and Event-Handling Functions

8.4.7.3 MapRequest Events

The X server can report MapRequest events to clients wanting
information about a different client’s desire to map windows. A
window is considered mapped when a map window request com-
pletes. The X server generates this event whenever a different
client initiates a map window request on an unmapped window
whose override_redirect member is set to False. Clients initiate
map window requests by calling XMapWindow, XMapRaised, or
XMapSubwindows.

To recelve MapRequest events, set the Substruc-
tureRedirectMask bit in the event-mask attribute of the window.
This means another client’s attempts to map a child window by
caling one of the map window request functions is intercepted, and
you are sent aMapRequest instead. For example, suppose a client
application calls XMapWindow to map awindow. If you (usually
a window manager) had selected SubstructureRedirectMask on
the parent window and if the override-redirect attribute of the win-
dow is set to False, the X server reports a MapRequest event to
you and does not map the specified window. Thus, this event
gives your window manager client the ability to control the place-
ment of subwindows.

The structure for this event type contains:

typedef struct {

int type; /* MapRequest */

unsi gned | ong serial; /* # of |ast request processed by server
Bool send_event; /* true if this came from a SendEvent reqt
Di spl ay *di spl ay; /* Display the event was read from */

W ndow par ent;
W ndow wi ndow;
} XMapRequest Event ;

The parent member is set to the parent window. The window
member is set to the window to be mapped.

8.4.7.4 ResizeRequest Events

The X server can report ResizeRequest events to clients wanting
information about another client’s attempts to change the size of a
window. The X server generates this event whenever some other
client attempts to change the size of the specified window by cal-
ling XConfigureWindow, XResizeWindow, or XMo-
veResizeWindow.

March 26, 1992 8-37

X Window System

To receive ResizeRequest events, set the ResizeRedirect bit in the
event-mask attribute of the window. Any attempts to change the
size by other clients are then redirected.

The structure for this event type contains:

t ypedef struct {

int type; / * ResizeRequest */

unsi gned | ong serial; /* # of last request processed by server
Bool send_event; /* true if this cane from a SendEvent reqt
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow;
int width, height;
} XResi zeRequest Event ;

The window member is set to the window whose size another
client attempted to change. The width and height members are set
to the inside size of the window, excluding the border.

8.4.8 Colormap State Change Events

8-38

The X server can report ColormapNotify events to clients wanting
information about when the colormap changes and when a color-
map is installed or uninstalled. The X server generates this event
type whenever a client application:

+ Changes the colormap member of the XSetWindowAttributes
structure by calling XChangeWindowAttributes, XFreeColor-
map, or XSetWindowColormap

« Installs or wuninstalls the colormap by calling Xinstall-
Colormap or XUninstallColormap

To recelve ColormapNotify events, set the Colormap-
ChangeMask hit in the event-mask attribute of the window.

The structure for this event type contains:

typedef struct {

int type; [* ColormapNotify */

unsi gned | ong serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent reqt
Di spl ay *di spl ay; /* Display the event was read from*/

W ndow wi ndow,

Col or map col or nap; /* colormap or None */

Bool new,

int state; /* Colormaplnstalled, ColormapUninstalled */

} XCol or mapEvent;

March 26, 1992

Events and Event-Handling Functions

The window member is set to the window whose associated color-
map is changed, installed, or uninstalled. For a colormap that is
changed, installed, or uninstalled, the colormap member is set to
the colormap associated with the window. For a colormap that is
changed by a call to XFreeColormap, the colormap member is set
to None. The new member is set to indicate whether the colormap
for the specified window was changed or installed or uninstalled
and can beTrue or False. If it isTrue, the colormap was changed.
If it is False, the colormap was installed or uninstalled. The state
member is always set to indicate whether the colormap is installed
or uninstalled and can be Colormaplnstalled or ColormapUnin-
stalled.

8.4.9 Client Communication Events

This section discusses:
- ClientMessage events
- PropertyNotify events
- SelectionClear events
- SelectionNotify events

- SelectionRequest events

8.4.9.1 ClientMessage Events

The X server generates ClientMessage events only when a client
calls the function XSendEvent.

The structure for this event type contains:

t ypedef struct {

int type; / * ClientMessage */

unsi gned | ong serial; /* # of last request processed by server
Bool send_event; /* true if this cane from a SendEvent reqt
Di spl ay *di spl ay; /* Display the event was read from*/

W ndow wi ndow;
At om nessage_type;

int format;

uni on {
char b[20];
short s[10];
long I[5];

March 26, 1992 8-39

X Window System

} data;
} Xdient MessageEvent;

The message _type member is set to an atom that indicates how the
data should be interpreted by the receiving client. The format
member is set to 8, 16, or 32 and specifies whether the data should
be viewed as alist of bytes, shorts, or longs. The data member is a
union that contains the members b, s, and I. The b, s, and |
members represent data of 20 8-bit values, 10 16-bit values, and 5
32-bit values. Particular message types might not make use of all
these values. The X server places no interpretation on the valuesin
the message type or data members.

8.4.9.2 PropertyNotify Events

The X server can report PropertyNotify events to clients wanting
information about property changes for a specified window.

To receive PropertyNotify events, set the PropertyChangeMask
bit in the event-mask attribute of the window.

The structure for this event type contains:

t ypedef struct {

int type; [* PropertyNotify */

unsi gned | ong serial; [* # of

Di spl ay *di spl ay;
W ndow wi ndow;

At om at om

Tinme tine;

int state; [* PropertyNewValue or PropertyDelete */

} XPropertyEvent;

The window member is set to the window whose associated pro-
perty was changed. The atom member is set to the property’s atom
and indicates which property was changed or desired. The time
member is set to the server time when the property was changed.
The state member is set to indicate whether the property was
changed to a new value or deleted and can be PropertyNewValue
or PropertyDelete. The state member is set to Proper-
tyNewValue when a property of the window is changed using
XChangeProperty or XRotateWindowProperties (even when
adding zero-length data using XChangeProperty) and when
replacing all or part of a property with identical data using
XChangeProperty or XRotateWindowProperties. The state
member is set to PropertyDelete when a property of the window is
deleted using XDeleteProperty or, if the delete argument is True,

| ast

March 26, 1992

request processed by server
Bool send_event; /* true if this cane from a SendEvent reqt
/* Display the event was read from */

Events and Event-Handling Functions

XGetWindowProperty.

8.4.9.3 SdectionClear Events

The X server reports SelectionClear events to the current owner of
a selection. The X server generates this event type on the window
losing ownership of the selection to a new owner. This sequence
of events could occur whenever a client cals XSetSelec-
tionOwner.

The structure for this event type contains:

typedef struct {

int type; [* SelectionClear */

unsi gned | ong serial; /* # of |ast request processed by server
Bool send_event; /* true if this came from a SendEvent reqL
Di spl ay *di spl ay; /* Display the event was read from */

W ndow wi ndow;

At om sel ecti on;

Tinme tine;
} XSel ecti onCl ear Event ;
The window member is set to the window losing ownership of the
selection. The selection member is set to the selection atom. The
time member is set to the last change time recorded for the selec-
tion. The owner member is the window that was specified by the
current owner in its XSetSelectionOwner call.

8.4.9.4 SelectionRequest Events

The X server reports SelectionRequest events to the owner of a
selection. The X server generates this event whenever a client
requests a selection conversion by calling XConvertSelection and
the specified selection is owned by a window.

The structure for this event type contains:

t ypedef struct {

int type; / * SelectionRequest */

unsi gned | ong serial; /* # of |last request processed by server
Bool send _event; /[* true if this came from a SendEvent reqt
Di spl ay *di spl ay; /* Display the event was read from */

W ndow owner ;
W ndow r equest or;
At om sel ecti on;

March 26, 1992 8-41

X Window System

Atom t ar get ;

At om property;

Time tine;
} XSel ecti onRequest Event ;
The owner member is set to the window owning the selection and
is the window that was specified by the current owner in its XSet-
SelectionOwner call. The requestor member is set to the window
requesting the selection. The selection member is set to the atom
that names the selection. For example, PRIMARY is used to indi-
cate the primary selection. The target member is set to the atom
that indicates the type the selection is desired in. The property
member can be a property name or None. The time member is set
to the time and is a timestamp or CurrentTime from the Convert-
Selection request.

The owner should convert the selection based on the specified tar-
get type and send aSelectionNotify event back to the requestor. A
complete specification for using selections is given in part IlI,
“*Inter-Client Communication Conventions Manual.”’

8.4.9.5 SelectionNotify Events

8-42

This event is generated by the X server in response to a Convert-
Selection protocol request when there is no owner for the selec-
tion. When there is an owner, it should be generated by the owner
of the selection by using XSendEvent. The owner of a selection
should send this event to a requestor when a selection has been
converted and stored as a property or when a selection conversion
could not be performed (which is indicated by setting the property
member to None).

If None is specified as the property in the ConvertSelection proto-
col request, the owner should choose a property name, store the
result as that property on the requestor window, and then send a
SelectionNotify giving that actual property name.

The structure for this event type contains:

t ypedef struct {

int type;

unsi gned | ong serial;
Bool send _event;

Di spl ay *di spl ay;

W ndow r equest or;

At om sel ecti on;

Atom t arget;

At om property;

/ * SelectionNotify */

/* # of |last request processed by server
/* true if this cane from a SendEvent reqt
/* Display the event was read from */

/* atom or None */

March 26, 1992

Events and Event-Handling Functions

Time tine;

} XSel ecti onEvent;

The requestor member is set to the window associated with the
requestor of the selection. The selection member is set to the atom
that indicates the selection. For example, PRIMARY is used for
the primary selection. The target member is set to the atom that
indicates the converted type. For example, PIXMAP is used for a
pixmap. The property member is set to the atom that indicates
which property the result was stored on. If the conversion failed,
the property member is set to None. The time member is set to
the time the conversion took place and can be a timestamp or
CurrentTime.

8.5 Selecting Events

There are two ways to select the events you want reported to your
client application. One way is to set the event_mask member of
the XSetWindowAttributes structure when you call XCreateWin-
dow and XChangeWindowAttributes. Another way is to use
XSelectinput.

XSel ect | nput (display, w, event_mask)
Di spl ay *display;
W ndow w;
| ong event_mask;

display Specifies the connection to the X server.

w Specifies the window whose events you are
interested in.

event_mask Specifies the event mask.

The XSelectinput function requests that the X server report the
events associated with the specified event mask. Initialy, X will
not report any of these events. Events are reported relative to a
window. If awindow is not interested in a device event, it usually
propagates to the closest ancestor that is interested, unless the
do_not_propagate mask prohibits it.

Setting the event-mask attribute of a window overrides any previ-
ous call for the same window but not for other clients. Multiple
clients can select for the same events on the same window with the
following restrictions:

+ Multiple clients can select events on the same window because
their event masks are digoint. When the X server generates an
event, it reportsit to al interested clients.

March 26, 1992 8-43

X Window System

+ Only one client at a time can select CirculateRequest,
ConfigureRequest, or MapRequest events, which are associ-
ated with the event mask SubstructureRedirectMask.

« Only one client at a time can select a ResizeRequest event,
which is associated with the event mask ResizeRedirectMask.

» Only one client at atime can select aButtonPress event, which
is associated with the event mask ButtonPressMask.

The server reports the event to al interested clients.

XSelectlnput can generate a BadWindow error.

8.6 Handling the Output Buffer

The output buffer is an area used by Xlib to store requests. The
functions described in this section flush the output buffer if the
function would block or not return an event. That is, al requests
residing in the output buffer that have not yet been sent are
transmitted to the X server. These functions differ in the additional
tasks they might perform.

To flush the output buffer, use XFlush.

XFl ush(display)
Di spl ay *display;

display Specifies the connection to the X server.

The XFlush function flushes the output buffer. Most client applica-
tions need not use this function because the output buffer is
automatically flushed as needed by calls to XPending, XNex-
tEvent, and XWindowEvent. Events generated by the server may
be enqueued into the library’s event queue.

To flush the output buffer and then wait until all requests have
been processed, use XSync.

XSync (display, discard)

Di spl ay *display;
Bool discard;

display Specifies the connection to the X server.

discard Specifies a Boolean value that indicates
whether XSync discards all events on the
event queue.

The XSync function flushes the output buffer and then waits until
al requests have been received and processed by the X server.

March 26, 1992

Events and Event-Handling Functions

Any errors generated must be handled by the error handler. For
each error event received by Xlib, XSync calls the client
application’s error handling routine (see section 8.12.2). Any
events generated by the server are enqueued into the library’s event
queue.

Finally, if you passed False, XSync does not discard the events in
the queue. If you passed True, XSync discards al events in the
gueue, including those events that were on the queue before XSync
was caled. Client applications seldom need to call XSync.

8.7 Event Queue Management

Xlib maintains an event queue. However, the operating system
also may be buffering data in its network connection that is not yet
read into the event queue.

To check the number of events in the event queue, use
XEventsQueued.

i nt XEvent sQueued(display, mode)
Di spl ay *display;
i nt mode;

display Specifies the connection to the X server.

mode Specifies the mode. You can pass
QueuedAlready, QueuedAfterFlush, or
QueuedAfterReading.

If mode is QueuedAlready, XEventsQueued returns the number
of events aready in the event queue (and never performs a system
cal). If mode is QueuedAfterFlush, XEventsQueued returns the
number of events aready in the queue if the number is nonzero. If
there are no events in the queue, XEventsQueued flushes the out-
put buffer, attempts to read more events out of the application’s
connection, and returns the number read. If mode is QueuedAf-
terReading, XEventsQueued returns the number of events
dready in the queue if the number is nonzero. If there are no
events in the queue, XEventsQueued attempts to read more events
out of the application’s connection without flushing the output
buffer and returns the number read.

XEventsQueued aways returns immediately without 1/O if there
are events dready in the queue. XEventsQueued with mode
QueuedAfterFlush is identical in behavior to XPending.
XEventsQueued with mode QueuedAlready is identical to the
XQLength function.

March 26, 1992 8-45

X Window System

To return the number of events that are pending, use XPending.

i nt XPendi ng(display)
Di spl ay *display;

display Specifies the connection to the X server.

The XPending function returns the number of events that have
been received from the X server but have not been removed from
the event gueue.
XPending is identical to XEventsQueued with the mode
QueuedAfterFlush specified.

8.8 Manipulating the Event Queue

8.8.1

8-46

Xlib provides functions that let you manipulate the event queue.
The next three sections discuss how to:

» Obtain events, in order, and remove them from the queue
+ Peek at events in the queue without removing them

« Obtain events that match the event mask or the arbitrary predi-
cate procedures that you provide

Returning the Next Event

To get the next event and remove it from the queue, use XNex-
tEvent.

XNext Event (display, event_return)

Di spl ay *display;
XEvent *event_return;

display Specifies the connection to the X server.
event_return Returns the next event in the queue.

The XNextEvent function copies the first event from the event
gueue into the specified XEvent structure and then removes it from
the queue. If the event queue is empty, XNextEvent flushes the
output buffer and blocks until an event is received.

To peek at the event queue, use XPeekEvent.

XPeekEvent (display, event_return)
Di spl ay *display;
XEvent *event_return;

March 26, 1992

8.8.2

Events and Event-Handling Functions

display Specifies the connection to the X server.

event_return Returns a copy of the matched event's
associated structure.

The XPeekEvent function returns the first event from the event
queue, but it does not remove the event from the queue. If the
gueue is empty, XPeekEvent flushes the output buffer and blocks
until an event is received. It then copies the event into the client-
supplied XEvent structure without removing it from the event
queue.

Selecting Events Using a Predicate Procedure

Each of the functions discussed in this section requires you to pass
a predicate procedure that determines if an event matches what you
want. Your predicate procedure must decide only if the event is
useful and must not call Xlib functions. In particular, a predicateis
called from inside the event routine, which must lock data struc-
tures so that the event queue is consistent in a multi-threaded
environment.

The predicate procedure and its associated arguments are:

Bool (*predicate) (display, event, arg)
Di spl ay *display;
XEvent *event;

char *arg;
display Specifies the connection to the X server.
event Specifies the XEvent structure.
arg Specifies the argument passed in from the

XIfEvent, XChecklfEvent, or XPeekl-
fEvent function.

The predicate procedure is called once for each event in the queue
until it finds a match. After finding a match, the predicate pro-
cedure must return True. If it did not find a match, it must return
False.

To check the event queue for a matching event and, if found,
remove the event from the queue, use XIfEvent.

XI f Event (display, event_return, predicate, arg)
Di spl ay *display;
XEvent *event_return;
Bool (*predicate) () ;
char *arg;

March 26, 1992

8-47

X Window System

display Specifies the connection to the X server.

event_return Returns the matched event's associated
structure.

predicate Specifies the procedure that is to be called

to determine if the next event in the queue
matches what you want.

arg Specifies the user-supplied argument that
will be passed to the predicate procedure.

The XIfEvent function completes only when the specified predicate
procedure returns True for an event, which indicates an event in the
queue matches. XIfEvent flushes the output buffer if it blocks
waiting for additional events. XIfEvent removes the matching
event from the queue and copies the structure into the client-
supplied XEvent structure.

To check the event queue for a matching event without blocking,
use XChecklIfEvent.

Bool XCheckl f Event (display, event_return, predicate,
Di spl ay *display;
XEvent *event_return;
Bool (*predicate) () ;

char *arg;

display Specifies the connection to the X server.

event_return Returns a copy of the matched event's
associated structure.

predicate Specifies the procedure that is to be called
to determine if the next event in the queue
matches what you want.

arg Specifies the user-supplied argument that

will be passed to the predicate procedure.

When the predicate procedure finds a match, XChecklfEvent
copies the matched event into the client-supplied XEvent structure
and returns True. (This event is removed from the queue.) If the
predicate procedure finds no match, XChecklIfEvent returns False,
and the output buffer will have been flushed. All earlier events
stored in the queue are not discarded.

To check the event queue for a matching event without removing
the event from the queue, use XPeeklIfEvent.

XPeekl f Event (display, event_return, predicate, arg)
Di spl ay *display;
XEvent *event return;
Bool (*predicate) () ;

arg)

March 26, 1992

8.8.3

Events and Event-Handling Functions

char *arg;

display Specifies the connection to the X server.

event_return Returns a copy of the matched event's
associated structure.

predicate Specifies the procedure that is to be called
to determine if the next event in the queue
matches what you want.

arg Specifies the user-supplied argument that

will be passed to the predicate procedure.

The XPeeklfEvent function returns only when the specified predi-
cate procedure returns True for an event. After the predicate pro-
cedure finds a match, XPeeklfEvent copies the matched event into
the client-supplied XEvent structure without removing the event
from the queue. XPeeklfEvent flushes the output buffer if it
blocks waiting for additional events.

Selecting Events Using a Window or Event Mask

The functions discussed in this section let you select events by
window or event types, allowing you to process events out of
order.

To remove the next event that matches both a window and an event
mask, use XWindowEvent.

XW ndowEvent (display, w, event_mask, event return)
Di spl ay *display;
W ndow w;
| ong event_mask;
XEvent *event_return;

display Specifies the connection to the X server.

w Specifies the window whose events you are
interested in.

event_mask Specifies the event mask.

event_return Returns the matched event's associated
structure.

The XWindowEvent function searches the event queue for an
event that matches both the specified window and event mask.
When it finds a match, XWindowEvent removes that event from
the queue and copies it into the specified XEvent structure. The
other events stored in the queue are not discarded. If a matching

March 26, 1992

8-49

X Window System

8-50

event is not in the queue, XWindowEvent flushes the output buffer
and blocks until one is received.

To remove the next event that matches both a window and an event
mask (if any), use XCheckWindowEvent. This function is simi-
lar to XWindowEvent except that it never blocks and it returns a
Bool indicating if the event was returned.

Bool XCheckW ndowEvent (display, w, event_mask, event return)

Di spl ay *display;

W ndow w;

| ong event_mask;
XEvent *event return;

display Specifies the connection to the X server.

w Specifies the window whose events you are
interested in.

event_mask Specifies the event mask.

event_return Returns the matched event's associated
structure.

The XCheckWindowEvent function searches the event queue and
then the events available on the server connection for the first event
that matches the specified window and event mask. If it finds a
match, XCheckWindowEvent removes that event, copies it into
the specified XEvent structure, and returns True. The other events
stored in the queue are not discarded. If the event you requested is
not available, XCheckWindowEvent returns False, and the output
buffer will have been flushed.

To remove the next event that matches an event mask, use
XMaskEvent.

XMaskEvent (display, event_mask, event_return)
Di spl ay *display;
| ong event_mask;
XEvent *event return;

display Specifies the connection to the X server.

event_mask Specifies the event mask.

event_return Returns the matched event's associated
structure.

The XMaskEvent function searches the event queue for the events
associated with the specified mask. When it finds a match,
XMaskEvent removes that event and copies it into the specified
XEvent structure. The other events stored in the queue are not dis-
carded. If the event you requested is not in the queue,
XMaskEvent flushes the output buffer and blocks until one is

March 26, 1992

Events and Event-Handling Functions

received.

To return and remove the next event that matches an event mask (if
any), use XCheckMaskEvent. This function is similar to
XMaskEvent except that it never blocks and it returns aBool indi-
cating if the event was returned.

Bool XCheckMaskEvent (display, event_mask, event_return)
Di spl ay *display;
| ong event_mask;
XEvent *event_return;

display Specifies the connection to the X server.

event_mask Specifies the event mask.

event_return Returns the matched event's associated
structure.

The XCheckMaskEvent function searches the event queue and
then any events available on the server connection for the first
event that matches the specified mask. If it finds a match,
XCheckMaskEvent removes that event, copies it into the specified
XEvent structure, and returns True. The other events stored in the
gueue are not discarded. If the event you requested is not avail-
able, XCheckMaskEvent returns False, and the output buffer will
have been flushed.

To return and remove the next event in the queue that matches an
event type, use XCheckTypedEvent.

Bool XCheckTypedEvent (display, event type, event return)
Di spl ay *display;
i nt event type;
XEvent *event return;

display Specifies the connection to the X server.

event_type Specifies the event type to be compared.

event_return Returns the matched event’'s associated
structure.

The XCheckTypedEvent function searches the event queue and
then any events available on the server connection for the first
event that matches the specified type. If it finds a match, XCheck-
TypedEvent removes that event, copies it into the specified
XEvent structure, and returns True. The other events in the queue
are not discarded. If the event is not available, XCheck-
TypedEvent returns False, and the output buffer will have been
flushed.

To return and remove the next event in the queue that matches an
event type and a window, use XCheckTypedWindowEvent.

March 26, 1992 8-51

X Window System

Bool XCheckTypedW ndowEvent (display, w, event_type,

Di spl ay *display;

W ndow w;

i nt event type;
XEvent *event return;

display Specifies the connection to the X server.

w Specifies the window.

event_type Specifies the event type to be compared.

event_return Returns the matched event's associated
structure.

The XCheckTypedWindowEvent function searches the event
gueue and then any events available on the server connection for
the first event that matches the specified type and window. If it
finds a match, XCheckTypedWindowEvent removes the event
from the queue, copies it into the specified XEvent structure, and
returns True. The other events in the queue are not discarded. If
the event is not available, XCheckTypedWindowEvent returns
False, and the output buffer will have been flushed.

8.9 Putting an Event Back into the Queue

8.10

8-52

To push an event back into the event queue, use XPutBackEvent.

XPut BackEvent (display, event)
Di spl ay *display;
XEvent *event;

display Specifies the connection to the X server.
event Specifies the event.

The XPutBackEvent function pushes an event back onto the head
of the display’s event queue by copying the event into the queue.
This can be useful if you read an event and then decide that you
would rather deal with it later. There is no limit to the number of
times in succession that you can call XPutBackEvent.

Sending Eventsto Other Applications

To send an event to a specified window, use XSendEvent. This
function is often used in selection processing. For example, the

event_return)

March 26, 1992

Events and Event-Handling Functions

owner of a selection should use XSendEvent to send a Selection-
Notify event to a requestor when a selection has been converted
and stored as a property.

St at us XSendEvent (display, w, propagate, event mask, event send)
Di spl ay *display;
W ndow w;
Bool propagate;
| ong event_mask;
XEvent *event send;

display Specifies the connection to the X server.

w Specifies the window the event is to be
sent to, PointerWindow, or InputFocus.

propagate Specifies a Boolean value.

event_mask Specifies the event mask.

event_send Specifies the event that is to be sent.

The XSendEvent function identifies the destination window, deter-
mines which clients should receive the specified events, and
ignores any active grabs. This function requires you to pass an
event mask. For a discussion of the valid event mask names, see
section 8.3. This function uses the w argument to identify the des-
tination window as follows:

« If w isPointerwindow, the destination window is the window
that contains the pointer.

« If w is InputFocus and if the focus window contains the
pointer, the destination window is the window that contains the
pointer; otherwise, the destination window is the focus win-
dow.

To determine which clients should receive the specified events,
XSendEvent uses the propagate argument as follows:

« If event_mask is the empty set, the event is sent to the client
that created the destination window. If that client no longer
exists, no event is sent.

- If propagate is False, the event is sent to every client selecting
on destination any of the event types in the event_mask argu-
ment.

« If propagate is True and no clients have selected on destination
any of the event types in event-mask, the destination is replaced
with the closest ancestor of destination for which some client
has selected a type in event-mask and for which no intervening
window has that type in its do-not-propagate-mask. If no such
window exists or if the window is an ancestor of the focus

March 26, 1992 8-53

X Window System

8.11

window and InputFocus was originally specified as the destina-
tion, the event is not sent to any clients. Otherwise, the event
is reported to every client selecting on the final destination any
of the types specified in event_mask.

The event in the XEvent structure must be one of the core events
or one of the events defined by an extension (or aBadValue efror
results) so that the X server can correctly byte-swap the contents as
necessary. The contents of the event are otherwise unaltered and
unchecked by the X server except to force send_event to True in
the forwarded event and to set the serial number in the event
correctly.

XSendEvent returns zero if the conversion to wire protocol format
failed and returns nonzero otherwise.

XSendEvent can generate BadValue and Badwindow errors.

Getting Pointer Motion History

Some X server implementations will maintain a more complete his-
tory of pointer motion than is reported by event natification. The
pointer position at each pointer hardware interrupt may be stored in
a buffer for later retrieval. This buffer is called the motion history
buffer. For example, a few applications, such as paint programs,
want to have a precise history of where the pointer traveled. How-
ever, this historical information is highly excessive for most appli-
cations.

To determine the approximate maximum number of elements in the
motion buffer, use XDisplayMotionBufferSize.

unsi gned | ong XDi spl ayMoti onBuff er Si ze(display)
Di spl ay *display;

display Specifies the connection to the X server.

The server may retain the recent history of the pointer motion and

do so to a finer granularity than is reported by MotionNotify

events. The XGetMotionEvents function makes this history avail-
able.

To get the motion history for a specified window and time, use
XGetMotionEvents.

XTi meCoord *XGet Mot i onEvent s(display, w, start, stop,

Di spl ay *display;
W ndow w;
Ti me start, stop;

March 26, 1992

nevents_return)

8.12

Events and Event-Handling Functions

i nt *nevents_return;

display Specifies the connection to the X server.
W Specifies the window.
start, stop Specify the time interval in which the

events are returned from the motion history
buffer. You can pass a timestamp or
CurrentTime.

nevents_return Returns the number of events from the
motion history buffer.

The XGetMotionEvents function returns all events in the motion
history buffer that fall between the specified start and stop times,
inclusive, and that have coordinates that lie within the specified
window (including its borders) at its present placement. If the
server does not support mation history, or if the start time is later
than the stop time, or if the start time is in the future, no events are
returned, and XGetMotionEvents returns NULL. If the stop time
is in the future, it is equivalent to specifying CurrentTime. The
return type for this function is a structure defined as follows:

t ypedef struct {
Time tine;
short x, vy;

} XTi neCoor d;

The time member is set to the time, in milliseconds. The x and y
members are set to the coordinates of the pointer and are reported
relative to the origin of the specified window. To free the data
returned from this call, use XFree.

XGetMotionEvents can generate aBadWindow error.

Handling Error Events

Xlib provides functions that you can use to enable or disable syn-
chronization and to use the default error handlers.

8.12.1 Enabling or Disabling Synchronization

When debugging X applications, it often is very convenient to
require Xlib to behave synchronously so that errors are reported as
they occur. The following function lets you disable or enable

March 26, 1992

8-55

X Window System

synchronous behavior. Note that graphics may occur 30 or more
times more slowly when synchronization is enabled. On POSIX-
conformant systems, there is aso a global variable _Xdebug that,
if set to nonzero before starting a program under a debugger, will
force synchronous library behavior.

After completing their work, al Xlib functions that generate proto-
col requests call what is known as an after function. XSetAfter-
Function sets which function is to be called.

int (*XSetAfterFunction(display, procedure)) ()
Di spl ay *display;
i nt (*procedure) ();

display Specifies the connection to the X server.
procedure Specifies the function to be called.

The specified procedure is caled with only a display pointer.
XSetAfterFunction returns the previous after function.

To enable or disable synchronization, use XSynchronize.

int (*XSynchroni ze(display, onoff)) ()
Di spl ay *display;

Bool onoff;
display Specifies the connection to the X server.
onoff Specifies a Boolean value that indicates
whether to enable or disable synchroniza
tion.

The XSynchronize function returns the previous after function. |f
onoff is True, XSynchronize turns on synchronous behavior. If
onoff is False,
XSynchronize turns off synchronous behavior.

8.12.2 Using the Default Error Handlers

8-56

There are two default error handlers in Xlib: one to handle typi-
cally fatal conditions (for example, the connection to a display
server dying because a machine crashed) and one to handle error
events from the X server. These error handlers can be changed to
user-supplied routines if you prefer your own error handling and
can be changed as often as you like. If either function is passed a
NULL pointer, it will reinvoke the default handler. The action of
the default handlersis to print an explanatory message and exit.

To set the error handler, use XSetErrorHandler.

March 26, 1992

Events and Event-Handling Functions

int (*XSetErrorHandl er (handler)) ()
int (*handler) (D splay *, XErrorEvent *)

handler Specifies the program’s supplied error
handler.

Xlib generally calls the program’s supplied error handler whenever
an error is received. It is not caled on BadName errors from
OpenFont, LookupColor, or AllocNamedColor protocol requests
or on BadFont errors from a QueryFont protocol request. These
errors generally are reflected back to the program through the pro-
cedural interface. Because this condition is not assumed to be
fatal, it is acceptable for your error handler to return. However, the
error handler should not call any functions (directly or indirectly)
on the display that will generate protocol requests or that will ook
for input events. The previous error handler is returned.

The XErrorEvent structure contains:

t ypedef struct {

int type;

Di spl ay *di spl ay; /* Display the event was read from */
unsi gned | ong serial; /* serial nunber of failed request */
unsi gned char error_code; /* error code of failed request

unsi gned char request_code; /* Major op-code of failed request */
unsi gned char m nor _code; /* M nor op-code of failed request */
XI' D resourcei d; /* resource id */

} XErrorEvent;

The serial member is the number of requests, starting from one,
sent over the network connection since it was opened. It is the
number that was the value of NextRequest immediately before the
failing call was made. The request_code member is a protocol
request of the procedure that failed, as defined in
<X11/Xproto.h>. The following error codes can be returned by
the functions described in this chapter:

BadAccess A client attempts to grab a key/button
combination aready grabbed by another
client. A client attempts to free a colormap
entry that it had not already allocated.

A client attempts to store into a read-only
or unallocated colormap entry.

A client attempts to modify the access con-
trol list from other than the local (or other-
wise authorized) host.

A client attempts to select an event type
that another client has aready selected.

BadAlloc The server fails to alocate the requested
resource. Note that the explicit listing of

March 26, 1992

8-57

X Window System

8-58

BadAtom

BadColor

BadCursor

BadDrawable

BadFont

BadGC

BadIDChoice

Badlimplementation

BadlLength

BadAlloc errors in requests only covers
alocation errors at a very coarse level and
is not intended to (nor can it in practice
hope to) cover all cases of a server running
out of alocation space in the middle of
service. The semantics when a server runs
out of allocation space are left unspecified,
but a server may generate aBadAlloc error
on any request for this reason, and clients
should be prepared to receive such errors
and handle or discard them.

A vaue for an atom argument does not
name a defined atom.

A vaue for a colormap argument does not
name a defined colormap.

A vaue for a cursor argument does not
name a defined cursor.

A value for a drawable argument does not
name a defined window or pixmap.

A vaue for a font argument does not name
a defined font (or, in some cases, GCon-
text).

A vaue for aGContext argument does not
name a defined GContext.

The value chosen for a resource identifier
either is not included in the range assigned
to the client or is already in use. Under
normal circumstances, this cannot occur
and should be considered a server or Xlib
error.

The server does not implement some
aspect of the request. A server that gen-
erates this error for a core request is
deficient. As such, this error is not listed
for any of the requests, but clients should
be prepared to receive such errors and han-
dle or discard them.

The length of a request is shorter or longer
than that required to contain the argu-
ments. This is an interna Xlib or server
error.

The length of a request exceeds the

March 26, 1992

BadMatch

BadName

BadPixmap

BadRequest

BadValue

BadWindow

Events and Event-Handling Functions

maximum length accepted by the server.

In a graphics request, the root and depth of
the graphics context does not match that of
the drawable.

An InputOnly window is used as a draw-
able.

Some argument or pair of arguments has
the correct type and range, but it fails to
match in some other way required by the
request.

An InputOnly window lacks this attri-
bute.

A font or color of the specified name does
not exist.

A value for a pixmap argument does not
name a defined pixmap.

The maor or minor opcode does not
specify a valid request. This usualy is an
Xlib or server error.

Some numeric value fals outside of the
range of values accepted by the request.
Unless a specific range is specified for an
argument, the full range defined by the
argument’s type is accepted. Any argu-
ment defined as a set of aternatives typi-
cally can generate this error (due to the
encoding).

A value for a window argument does not
name a defined window.

Note: The BadAtom, BadColor, BadCursor, BadDraw-

able,

BadFont, BadGC, BadPixmap, and

BadWindow errors are also used when the argu-
ment type is extended by a set of fixed aterna-

tives.

To obtain textual descriptions of the specified error code, use

XGetErrorText.

XGet Err or Text (display, code, buffer_return, length)
Di spl ay *display;

i nt code;

char *buffer_return;

i nt length;
display

March 26, 1992

Specifies the connection to the X server.

8-59

X Window System

code Specifies the error code for which you
want to obtain a description.

buffer_return Returns the error description.

length Specifies the size of the buffer.

The XGetErrorText function copies a null-terminated string
describing the specified error code into the specified buffer. It is
recommended that you use this function to obtain an error descrip-
tion because extensions to Xlib may define their own error codes
and error strings.

To obtain error messages from the error database, use XGetError-
DatabaseText.

XGet Err or Dat abaseText (display, name, message, default_string, buffer_return, length)
Di spl ay *display;
char *name, *message;
char *default_string;
char *buffer_return;

i nt length;
display Specifies the connection to the X server.
name Specifies the name of the application.
message Specifies the type of the error message.
default_string Specifies the default error message if none

is found in the database.

buffer_return Returns the error description.
length Specifies the size of the buffer.

The XGetErrorDatabaseText function returns a message (or the
default message) from the error message database. Xlib uses this
function internally to look up its error messages. On a POSIX-
conformant system, the error message database is
/usr/lib/X11/XErrorDB.

The name argument should generally be the name of your applica-
tion. The message argument should indicate which type of error
message you want. Xlib uses three predefined message types to
report errors (uppercase and |owercase matter):

XProtoError The protocol error number is used as a
string for the message argument.

XlibMessage These are the message strings that are used
internally by the library.

XRegquest For a core protocol request, the major
request protocol number is used for the
message argument. For an extension

8-60 March 26, 1992

Events and Event-Handling Functions

request, the extension name (as given by
InitExtension) followed by a period (.) and
the minor request protocol number is used
for the message argument. If no string is
found in the error database, the
default_string is returned to the buffer
argument.

To report an error to the user when the requested display does not
exist, use XDisplayName.

char *XDi spl ayNane(string)
char *string;

string Specifies the character string.

The XDisplayName function returns the name of the display that
XOpenDisplay would attempt to use. If a NULL string is
specified, XDisplayName looks in the environment for the display
and returns the display name that XOpenDisplay would attempt to
use. This makes it easier to report to the user precisely which
display the program attempted to open when the initial connection
attempt failed.

To handle fatal 1/O errors, use XSetlOErrorHandler.
int (*XSetl CerrorHandl er (handler)) ()
int (*handler) (D splay *);
handler Specifies the program’s supplied error
handler.

The XSetlOErrorHandler sets the fatal 1/O error handler. Xlib
calls the program’s supplied error handler if any sort of system call
error occurs (for example, the connection to the server was lost).
This is assumed to be a fatal condition, and the called routine
should not return. If the I/O error handler does return, the client
process exits.

Note that the previous error handler is returned.

March 26, 1992 8-61

Chapter 9. Inter-Client Communication Func-

tions

Part 111, ‘‘Inter-Client Communication Conventions Manual,”’ hereafter referred to as
the ICCCM, details the X Consortium approved conventions that govern inter-client
communications. These conventions ensure peer-to-peer client cooperation in the use of
selections, cut buffers, and shared resources as well as client cooperation with window
and session managers. For further information, see part I11.

Xlib provides a number of standard properties and programming interfaces that are
ICCCM compliant. The predefined atoms for some of these properties are defined in the
<X11/Xatom.h> header file, where to avoid name conflicts with user symbols their
#define name has an XA_ prefix. For further information about atoms and properties,
see section 4.2,

Xlib's selection and cut buffer mechanisms provide the primary programming interfaces
by which peer client applications communicate with each other (see sections 4.4 and
10.7). The functions discussed in this chapter provide the primary programming inter-
faces by which client applications communicate with their window and session
managers as well as share standard colormaps.

The standard properties that are of special interest for communicating with window and
SESSion Managers are:

Name Type Format

Description

WM_CLASS STRING 8 Set by application
programs to allow window
and session managers to
obtain the application’s
resources from the
resource database.

WM_CLIENT_MACHINE TEXT The string name of
the machine on which the
client application is

WM_COLORMAP_WINDOWS WINDOW 32 The list of window

March 26, 1992 9-1

X Window System

IDs that may need
a different colormap
than that of their
top-level window.
WM_COMMAND TEXT The command and argu-
ments, separated by
ASCII nulls, used to
invoke the application.
WM_HINTS WM_HINTS 32 Additional hints
set by the client for use
by the window manager.
The C type of this
property is X\WMHints.

WM_ICON_NAME TEXT The name to be used
in anicon.

WM _ICON_SIZE WM _ICON_SIZE 32 The window manager
may set this property

on the root window to
specify the icon sizes
it supports. The C type
of this property is

XlconSize.
WM_NAME TEXT The name of the appli-

cation.
WM_NORMAL_HINTS WM_SIZE_HINTS 32 Size hints for

awindow in its normal
state. The C type of this
property is XSizeHints.

WM_PROTOCOLS ATOM 32 List of atoms that
identify the communi-
cations protocols between
the client and window
manager in which the
client iswilling to
participate.

WM_STATE WM_STATE 32 Intended for commun-
ication between window
and session managers
only.

WM_TRANSIENT_FOR WINDOW 32 Set by application
programs to indicate to
the window manager that
atransient top-level
window, such as adialog
box.

The remainder of this chapter discusses:

9-2 March 26, 1992

Inter-Client Communication Functions

« Client-to-window-manager communication
« Client-to-session-manager communication

« Standard colormaps

9.1 Client to Window Manager Communication

This section discusses how to:

« Manipulate top-level windows

» Convert string lists

+ Set and read text properties

+ Set and read the WM_NAME property

+ Set and read the WM _ICON_NAME property

+ Set and read the WM_HINTS property
Set and read the WM_NORMAL_HINTS property
Set and read the WM _CLASS property
Set and read the WM_TRANSIENT_FOR property
Set and read the WM_PROTOCOLS property
Set and read the WM_COLORMAP_WINDOWS property
+ Set and read the WM _ICON_SIZE property

Use window manager convenience functions

9.1.1 Manipulating Top-Level Windows

Xlib provides functions that you can use to change the visibility or size of top-level
windows (that is, those that were created as children of the root window). Note that the
subwindows that you create are ignored by window managers. Therefore, you should
use the basic window functions described in chapter 3 to manipulate your application’s
subwindows.

To request that a top-level window be iconified, use XiconifyWindow.

St at us Xl coni f yW ndow(display, w, screen_number)
Di spl ay *display;
W ndow w;
i nt screen_number;

March 26, 1992 9-3

X Window System

94

display Specifies the connection to the X server.
w Specifies the window.
screen_number Specifies the appropriate screen number on the host server.

The XlconifyWindow function sends a WM_CHANGE_STATE ClientMessage event
with a format of 32 and a first data element of IconicState (as described in Section
4.1.4 of part I, ‘*Inter-Client Communication Conventions Manual’’) to the root win-
dow of the specified screen. Window managers may elect to receive this message and if
the window is in its normal state, may treat it as a request to change the window’s state
from normal to iconic. If the WM_CHANGE_STATE property cannot be interned,
XlconifyWindow does not send a message and returns a zero status. It returns a
nonzero status if the client message is sent successfully; otherwise, it returns a zero
status.

XlconifyWindow can generate a BadWindow error.
To request that a top-level window be withdrawn, use XWithdrawWindow.

St at us XW 't hdr awW ndow(display, w, screen_number)
Di spl ay *display;
W ndow w;
i nt screen_number;

display Specifies the connection to the X server.
w Specifies the window.
screen_number Specifies the appropriate screen number on the host server.

The XwithdrawWindow function unmaps the specified window and sends a synthetic
UnmapNotify event to the root window of the specified screen. Window managers may
elect to receive this message and may treat it as a request to change the window’s state
to withdrawn. When a window is in the withdrawn state, neither its norma nor its
iconic representations is visible. It returns a nonzero status if the UnmapNotify event is
successfully sent; otherwise, it returns a zero status.

XWithdrawWindow can generate a BadWindow error.

To request that a top-level window be reconfigured, use XReconfigureWMWindow.

St at us XReconf i gur eWWV ndow(display, w, screen_number, value_mask, values)

Di spl ay *display;

W ndow w;

i nt screen_number;

unsi gned i nt value_mask;
XW ndowChanges *values;

display Specifies the connection to the X server.
w Specifies the window.
screen_number Specifies the appropriate screen number on the host server.

March 26, 1992

9.1.2

Inter-Client Communication Functions

value_mask Specifies which values are to be set using information in the
values structure. This mask is the bitwise inclusive OR of the
valid configure window values bits.

values Specifies the XWindowChanges structure.

The XReconfigureWMWindow function issues a ConfigureWindow request on the
specified top-level window. If the stacking mode is changed and the request fails with a
BadMatch error, the error event is trapped and a synthetic ConfigureRequestEvent
containing the same configuration parameters is sent to the root of the specified win-
dow. Window managers may elect to receive this event and treat it as a request to
reconfigure the indicated window.

XReconfigureWMWindow can generate BadValue and Badwindow errors.

Converting String Lists

Many of the text properties allow a variety of types and formats. Because the data
stored in these properties are not simple null-terminated strings, a XTextProperty struc-
ture is used to describe the encoding, type, and length of the text as well as its value.
The XTextProperty structure contains:

t ypedef struct {
unsi gned char *value;/* property data */
At om encodi ng; /* type of property */
int format; /* 8, 16, or 32 */
unsi gned long nitens;/* nunber of itens in value */
} XText Property;

Xlib provides functions that you can use to convert between lists of pointers to character
strings and text properties.

To set the specified list of strings to a XTextProperty structure, use XStringListTo-
TextProperty.

Status XStringLi st ToText Property(list, count, text prop_return)

char **list;

i nt count;

XText Property *text_prop_return;
list Specifies alist of null-terminated character strings.
count Specifies the number of strings.

text_prop_return
Returns the XTextProperty structure.

The XStringListToTextProperty function sets the specified XTextProperty to be of type
STRING (format 8) with a value representing the concatenation of the specified list of
null-separated character strings. An extra byte containing NULL (which is not included
in the nitems member) is stored at the end of the value field of text prop return. If

March 26, 1992 9-5

X Window System

9.1.3

9-6

insufficient memory is available for the new value string, XStringListToTextProperty
does not set any fields in the XTextProperty structure and returns a zero status. Other-
wise, it returns a nonzero status. To free the storage for the value field, use XFree.

To obtain a list of strings from a specified XTextProperty structure, use XText-
PropertyToStringList.

St at us XText PropertyToStringLi st (text_prop, list_return, count_return)

XText Property *text_prop;
char ***list_return;
i nt *count return;

text_prop Specifies the XTextProperty structure to be used.
list_return Returns a list of null-terminated character strings.
count_return Returns the number of strings.

The XTextPropertyToStringList function returns a list of strings representing the null-
separated elements of the specified XTextProperty structure. The data in text_prop must
be of type STRING and format 8. Multiple elements of the property (for example, the
strings in a digoint text selection) are separated by NULL (encoding 0). The contents of
the property are not null-terminated. If insufficient memory is available for the list and
its elements, XTextPropertyToStringList sets no return values and returns a zero status.
Otherwise, it returns a nonzero status. To free the storage for the list and its contents,
use XFreeStringList.

To free the in-memory data associated with the specified string list, use XFreeStringList.

voi d XFreeStringLi st (list)
char **list;

list Specifies the list of strings to be freed.
The XFreeStringList function releases memory allocated by XTextPropertyToStringList.

Setting and Reading Text Properties

Xlib provides two functions that you can use to set and read the text properties for a
given window. You can use these functions to set and read those properties of type
TEXT (WM_NAME, WM_ICON_NAME, WM_COMMAND, and
WM_CLIENT_MACHINE). In addition, Xlib provides separate convenience functions
that you can use to set each of these properties. For further information about these con-
venience functions, see sections 9.1.4, 9.1.5, 9.2.1, and 9.2.2, respectively.

To set one of awindow’s text properties, use XSetTextProperty.

voi d XSet Text Property(display, w, text prop, property)
Di spl ay *display;
W ndow w;
XText Property *text prop;

March 26, 1992

Inter-Client Communication Functions

At om property;

display Specifies the connection to the X server.

w Specifies the window.

text_prop Specifies the XTextProperty structure to be used.
property Specifies the property name.

The XSetTextProperty function replaces the existing specified property for the named
window with the data, type, format, and number of items determined by the value field,
the encoding field, the format field, and the nitems field, respectively, of the specified
XTextProperty structure. If the property does not already exist, XSetTextProperty sets
it for the specified window.

XSetTextProperty can generate BadAlloc, BadAtom, BadValue, and BadwWindow
errors.

To read one of a window’s text properties, use XGetTextProperty.

St at us XGet Text Property(display, w, text prop_return, property)
Di spl ay *display;
W ndow w;
XText Property *text prop_return;
At om property;

display Specifies the connection to the X server.
w Specifies the window.

text_prop_return
Returns the XTextProperty structure.

property Specifies the property name.

The XGetTextProperty function reads the specified property from the window and
stores the data in the returned XTextProperty structure. It stores the data in the value
field, the type of the data in the encoding field, the format of the data in the format
field, and the number of items of data in the nitems field. The particular interpretation of
the property’s encoding and data as ‘‘text’’ is left to the calling application. If the
specified property does not exist on the window, XGetTextProperty sets the value field
to NULL, the encoding field to None, the format field to zero, and the nitems field to
zero.

If it was able to set these files in the XTextProperty structure, XGetTextProperty
returns a nonzero status; otherwise, it returns a zero status.

XGetTextProperty can generate BadAtom and BadwWindow errors.

March 26, 1992 9-7

X Window System

9.1.4 Setting and Reading the WM _NAME Property

9-8

Xlib provides convenience functions that you can use to set and read the WM_NAME
property for a given window.

To set a window’'s WM_NAME property with the supplied convenience function, use
XSetWMName.

voi d XSet WWNane (display, w, text_prop)
Di spl ay *display;
W ndow w;
XText Property *text prop;

display Specifies the connection to the X server.
w Specifies the window.
text_prop Specifies the XTextProperty structure to be used.

The XSetWMName convenience function performs a XSetTextProperty on the
WM_NAME property (see section 9.1.3).

To read a window’'s WM_NAME property with the supplied convenience function, use
XGetWMName.

St at us XGet WWNane (display, w, text prop_return)
Di spl ay *display;
W ndow w;
XText Property *text_prop_return;

display Specifies the connection to the X server.
w Specifies the window.

text_prop_return
Returns the XTextProperty structure.

The XGetWMName convenience function performs an XGetTextProperty on the
WM_NAME property (see section 9.1.3).

The following two functions have been superseded by XSetwMName and XGetWM-
Name, respectively. You can use these additional convenience functions for window
names that are encoded as STRING properties.

To assign a hame to a window, use XStoreName.

XSt or eNane (display, w, window_name)
Di spl ay *display;
W ndow w;
char *window_name;

display Specifies the connection to the X server.

W Specifies the window.

March 26, 1992

9.15

Inter-Client Communication Functions

window_name Specifies the window name, which should be a null-terminated
string.

The XStoreName function assigns the name passed to window_name to the specified
window. A window manager can display the window name in some prominent place,
such as the title bar, to allow users to identify windows easily. Some window managers
may display a window’s name in the window’s icon, although they are encouraged to
use the window’ s icon name if one is provided by the application.

XStoreName can generate BadAlloc and BadWindow errors.
To get the name of a window, use XFetchName.

St at us XFet chName (display, w, window_name_return)
Di spl ay *display;
W ndow w;
char **window_name_return;

display Specifies the connection to the X server.
w Specifies the window.

window_name_return
Returns the window name, which is a null-terminated string.

The XFetchName function returns the name of the specified window. If it succeeds, it
returns nonzero; otherwise, no name has been set for the window, and it returns zero. If
the WM_NAME property has not been set for this window, XFetchName sets
window_name _return to NULL. When finished with it, a client must free the window
name string using XFree.

XFetchName can generate a BadWindow error.

Setting and Reading the WM _ICON_NAME Property

Xlib provides convenience functions that you can use to set and read the
WM_ICON_NAME property for a given window.

To set awindow’s WM _ICON_NAME property, use XSetwWMIconName.
voi d XSet WM conNane(display, w, text _prop)

Di spl ay *display;

W ndow w;

XText Property *text prop;

display Specifies the connection to the X server.
w Specifies the window.
text_prop Specifies the XTextProperty structure to be used.

The XSetWMIconName convenience function performs a XSetTextProperty on the
WM _ICON_NAME property (see section 9.1.3).

March 26, 1992 9-9

X Window System

9-10

To read awindow’s WM_ICON_NAME property, use XGetWMIconName.

St at us XGet WM conNarme (display, w, text prop_return)
Di spl ay *display;
W ndow w;
XText Property *text prop_return;

display Specifies the connection to the X server.
w Specifies the window.

text_prop_return
Returns the XTextProperty structure.

The XGetWMIconName convenience function performs an XGetTextProperty on the
WM_ICON_NAME property (see section 9.1.3).

The next two functions have been superseded by XSetWMIiconName and XGetWM-
IconName, respectively. You can use these additional convenience functions for win-
dow names that are encoded as STRING properties.

To set the name to be displayed in awindow’ sicon, use XSeticonName.
XSet | conNane(display, w, icon_name)
Di spl ay *display;

W ndow w;
char *icon_name;

display Specifies the connection to the X server.

w Specifies the window.

icon_name Specifies the icon name, which should be a null-terminated
string.

XSetlconName can generate BadAlloc and BadWindow errors.
To get the name a window wants displayed in its icon, use XGetlconName.

St at us XGet | conNanme(display, w, icon_name_return)
Di spl ay *display;
W ndow w;
char **icon_name_return;

display Specifies the connection to the X server.
w Specifies the window.

icon_name_return
Returns the window’s icon name, which is a null-terminated
string.

The XGetlconName function returns the name to be displayed in the specified
window’'s icon. If it succeeds, it returns nonzero; otherwise, if no icon name has been
set for the window, it returns zero. If you never assigned a name to the window, XGet-
IconName sets icon_name_return to NULL. When finished with it, a client must free
the icon name string using XFree.

March 26, 1992

9.1.6

Inter-Client Communication Functions

XGetlconName can generate aBadWindow error.

Setting and Reading the WM _HINTS Property

Xlib provides functions that you can use to set and read the WM_HINTS property for a
given window. These functions use the flags and the XWMHints structure, as defined in
the <X11/Xutil.h> header file.

To dlocate an XWMHints structure, use XAllocWMHints.
XWWHI nts * XAl | ocWWHI nts()

The XAllocWMHints function allocates and returns a pointer to a X\WMHints structure.
Note that all fields in the XWMHints structure are initially set to zero. If insufficient
memory is available, XAllocWMHints returns NULL. To free the memory allocated to
this structure, use XFree.

The XWMHints structure contains;

/* W ndow manager hints mask bits */

#define InputHint (1L << 0)
#define StateHint (1L << 1)
#defi ne IconPixmapHint (1L << 2)
#defi ne IlconWindowHint (1L << 3)
#defi ne IconPositionHint (1L << 4)
#define IconMaskHint (1L << 5)
#defi ne WindowGroupHint (1L << 6)

#define AllHints (InputHint| StateHint| IconPixmapHint| IconWindowHint |
IconPositionHint | IconMaskHint | WindowGroupHint)

/* Val ues */
t ypedef struct {

I ong fl ags; /* marks which fields in this structure
Bool i nput; /* does this application rely on the w n
get keyboard input? */

int initial _state; /* see bel ow */

Pi xmap i con_pi xmap; /* pixmap to be used as icon */

W ndow i con_wi ndow;, /* window to be used as icon */

int icon_x, icon_y; /* initial position of icon */

Pi xmap i con_mask; /* pixmap to be used as nask for icon_pi>

Xl D wi ndow_gr oup; /* id of related w ndow group */

/* this structure may be extended in the

} XWWHi nt s;

The input member is used to communicate to the window manager the input focus
model used by the application. Applications that expect input but never explicitly set
focus to any of their subwindows (that is, use the push model of focus management),
such as X Version 10 style applications that use real-estate driven focus, should set this
member to True. Similarly, applications that set input focus to their subwindows only

March 26, 1992 9-11

X Window System

when it is given to their top-level window by a window manager should also set this
member to True. Applications that manage their own input focus by explicitly setting
focus to one of their subwindows whenever they want keyboard input (that is, use the
pull model of focus management) should set this member to False. Applications that
never expect any keyboard input also should set this member to False.

Pull model window managers should make it possible for push model applications to
get input by setting input focus to the top-level windows of applications whose input
member is True. Push model window managers should make sure that pull model appli-
cations do not break them by resetting input focus to PointerRoot when it is appropriate
(for example, whenever an application whose input member is False sets input focus to
one of its subwindows).

The definitions for the initial_state flag are:

#defi ne WithdrawnState 0
#defi ne NormalState 1 /* most applications start this way */
#defi ne IconicState 3 /* application wants to start as an icon

The icon_mask specifies which pixels of the icon_pixmap should be used as the icon.
This alows for nonrectangular icons. Both icon_pixmap and icon_mask must be bit-
maps. The icon_window lets an application provide a window for use as an icon for
window managers that support such use. The window_group lets you specify that this
window belongs to a group of other windows. For example, if a single application
manipulates multiple top-level windows, this allows you to provide enough information
that a window manager can iconify al of the windows rather than just the one window.

To set awindow’s WM_HINTS property, use XSetWMHints.
XSet WWHi nt s (display, w, wmhints)
Di spl ay *display;

W ndow w;
XWWH nts *wmhints;

display Specifies the connection to the X server.
w Specifies the window.
wmhints Specifies the XWMHints structure to be used.

The XSetWMHints function sets the window manager hints that include icon informa-
tion and location, the initial state of the window, and whether the application relies on
the window manager to get keyboard input.

XSetWMHints can generate BadAlloc and BadwWindow errors.
To read awindow’'s WM_HINTS property, use XGetWMHints.

XWWHi nts * XGet WWHi nt s (display, w)
Di spl ay *display;
W ndow w;

display Specifies the connection to the X server.

9-12 March 26, 1992

9.1.7

Inter-Client Communication Functions

w Specifies the window.

The XGetWMHints function reads the window manager hints and returns NULL if no
WM_HINTS property was set on the window or returns a pointer to a XWMHints struc-
ture if it succeeds. When finished with the data, free the space used for it by calling
XFree.

XGetWMHints can generate a BadwWindow error.

Setting and Reading the WM_NORMAL_HINTS Property

Xlib provides functions that you can use to set or read the WM_NORMAL_HINTS
property for a given window. The functions use the flags and the XSizeHints structure,
as defined in the <X11/Xutil.h> header file.

To dlocate an XSizeHints structure, use XAllocSizeHints.
XSi zeH nts *XAll ocSi zeH nts()

The XAllocSizeHints function allocates and returns a pointer to a XSizeHints structure.
Note that all fields in the XSizeHints structure are initially set to zero. If insufficient
memory is available, XAllocSizeHints returns NULL. To free the memory alocated to
this structure, use XFree.

The XSizeHints structure contains;

/* Size hints mask bits */

#define USPosition (1L << 0) /* user specified x, y */

#define USSize (1L << 1) /* user specified width, height */

#define PPosition (1L << 2) /* program specified position */

#defi ne PSize (1L << 3) /* program specified size */

#defi ne PMinSize (1L << 4) /* program specified mnimum size *

#defi ne PMaxSize (1L << 5) [* program specified maxi mum si ze *

#define PResizelnc (1L << 6) [* program specified resize increne

#define PAspect (1L << 7) /* program specified mn and nmax as
ratios */

#defi ne PBaseSize (1L << 8)

#defi ne PWinGravity (1L << 9)

#defi ne PAIllHints (PPosition| PSize | PMinSize| PMaxSize | PResizelnc| PAspect)

/* Val ues */
typedef struct {

l ong fl ags; /* marks which fields in this structure
nt x, vy; /* Cbsolete */
nt w dth, height; /* Cbsolete */

nt max_w dth, max_hei ght;
nt width_inc, height _inc;
struct {

i
i
int min wdth, mn_height;
[
[

March 26, 1992 9-13

X Window System

9-14

int x;/* nunerator */

int y;/* denom nator */
} mn_aspect, nax_aspect;
i nt base_w dth, base height;
int win_gravity;

} XSi zeHints;

The x, y, width, and height members are now obsolete and are left solely for compati-
bility reasons. The min_width and min_height members specify the minimum window
size that still alows the application to be useful. The max_width and max_height
members specify the maximum window size. The width inc and height_inc members
define an arithmetic progression of sizes (minimum to maximum) into which the win-
dow prefers to be resized. The min_aspect and max_aspect members are expressed as
ratios of x and y, and they allow an application to specify the range of aspect ratios it
prefers. The base width and base height members define the desired size of the win-
dow. The win_gravity member defines the region of the window that is to be retained
when it is resized.

Note that use of the PAlIHints macro is highly discouraged.
To set awindow’s WM_NORMAL_HINTS property, use XSetWMNormalHints.

voi d XSet WWNor mal Hi nt s(display, w, hints)
Di spl ay *display;
W ndow w;
XSi zeH nts *hints;

display Specifies the connection to the X server.
w Specifies the window.
hints Specifies the size hints for the window in its normal state.

The XSetWMNormalHints function replaces the size hints for the
WM_NORMAL_HINTS property on the specified window. If the property does not
aready exist, XSetWMNormalHints sets the size hints for the WM_NORMAL_HINTS
property on the specified window. The property is stored with a type of
WM_SIZE HINTS and aformat of 32.

XSetWMNormalHints can generate BadAlloc and Badwindow errors.

To read awindow’s WM_NORMAL_HINTS property, use XGetWMNormalHints.

St at us XGet WMNor mal Hi nt s(display, w, hints_return, supplied_return)
Di spl ay *display;
W ndow w;

XSi zeHi nts *hints_return;
| ong *supplied_return;

display Specifies the connection to the X server.
w Specifies the window.
hints_return Returns the size hints for the window in its normal state.

March 26, 1992

Inter-Client Communication Functions

supplied_return
Returns the hints that were supplied by the user.

The XGetWMNormalHints function returns the size hints stored in the
WM_NORMAL_HINTS property on the specified window. If the property is of type
WM_SIZE HINTS, is of format 32, and is long enough to contain either an old (pre-
ICCCM) or new size hints structure, XGetWMNormalHints sets the various fields of
the XSizeHints structure, sets the supplied_return argument to the list of fields that were
supplied by the user (whether or not they contained defined values), and returns a
nonzero status. Otherwise, it returns a zero status.

If XGetWMNormalHints returns successfully and a pre-ICCCM size hints property is
read, the supplied_return argument will contain the following bits:

(USPosition | USSize | PPosition | PSize | PMinSize |
PMaxSize | PResizelnc | PAspect)

If the property is large enough to contain the base size and window gravity fields as
well, the supplied_return argument will also contain the following bits:

PBaseSize |PWinGravity
XGetWMNormalHints can generate a BadwWindow error.
To set awindow’s WM_SIZE_HINTS property, use XSetWMSizeHints.

voi d XSet WVBi zeHi nt s(display, w, hints, property)
Di spl ay *display;
W ndow w;
XSi zeH nts *hints;
At om property;

display Specifies the connection to the X server.

w Specifies the window.

hints Specifies the XSizeHints structure to be used.
property Specifies the property name.

The XSetWMSizeHints function replaces the size hints for the specified property on the
named window. If the specified property does not aready exist, XSetWMSizeHints sets
the size hints for the specified property on the named window. The property is stored
with a type of WM_SIZE HINTS and a format of 32. To set a window's normal size
hints, you can use the XSetWMNormalHints function.

XSetWMSizeHints can generate BadAlloc, BadAtom, and BadwWindow errors.
To read awindow’s WM_SIZE_HINTS property, use XGetWMSizeHints.

St at us XGet WVSI zeHi nt s(display, w, hints_return, supplied_return, property)
Di spl ay *display;
W ndow w;
XSi zeHi nts *hints_return;
| ong *supplied_return;

March 26, 1992 9-15

X Window System

9.1.8

9-16

At om property;

display Specifies the connection to the X server.
w Specifies the window.
hints_return Returns the XSizeHints structure.

supplied_return
Returns the hints that were supplied by the user.

property Specifies the property name.

The XGetWMSizeHints function returns the size hints stored in the specified property
on the named window. If the property is of type WM_SIZE HINTS, is of format 32,
and is long enough to contain either an old (pre-ICCCM) or new size hints structure,
XGetWMSizeHints sets the various fields of the XSizeHints structure, sets the
supplied_return argument to the list of fields that were supplied by the user (whether or
not they contained defined values), and returns a nonzero status. Otherwise, it returns a
zero status. To get a window’'s normal size hints, you can use the XGetWMNor-
malHints function.

If XGetWMSizeHints returns successfully and a pre-ICCCM size hints property is read,
the supplied_return argument will contain the following bits:

(USPosition | USSize | PPosition | PSize | PMinSize |
PMaxsSize | PResizelnc | PAspect)

If the property is large enough to contain the base size and window gravity fields as
well, the supplied_return argument will also contain the following bits:

PBaseSize |PWinGravity

XGetWMSizeHints can generate BadAtom and BadWindow errors.

Setting and Reading the WM _CLASS Property

Xlib provides functions that you can use to set and get the WM_CLASS property for a
given window. These functions use the XClassHint structure, which is defined in the
<X11/Xutil.h> header file.

To dlocate an XClassHint structure, use XAllocClassHint.
Xd assH nt *XAl |l ocd assHint ()

The XAllocClassHint function allocates and returns a pointer to a XClassHint structure.
Note that the pointer fields in the XClassHint structure are initially set to NULL. If
insufficient memory is available, XAllocClassHint returns NULL. To free the memory
allocated to this structure, use XFree.

The XClassHint contains;

March 26, 1992

9.1.9

Inter-Client Communication Functions

typedef struct {
char *res_nane;
char *res_cl ass;
} Xd assHint;

The res_name member contains the application name, and the res _class member con-
tains the application class. Note that the name set in this property may differ from the
name set as WM_NAME. That is, WM_NAME specifies what should be displayed in
the title bar and, therefore, can contain temporal information (for example, the name of
a file currently in an editor’s buffer). On the other hand, the name specified as part of
WM_CLASS is the formal name of the application that should be used when retrieving
the application’s resources from the resource database.

To set awindow’s WM_CLASS property, use XSetClassHint.
XSet C assHi nt (display, w, class_hints)
Di spl ay *display;

W ndow w;
XA assHi nt *class_hints;

display Specifies the connection to the X server.
w Specifies the window.
class_hints Specifies the XClassHint structure that is to be used.

The XSetClassHint function sets the class hint for the specified window.
XSetClassHint can generate BadAlloc and BadwWindow errors.
To read awindow’s WM_CLASS property, use XGetClassHint.

St at us XGet d assHi nt (display, w, class_hints_return)
Di spl ay *display;
W ndow w;
XO assHi nt *class_hints_return;

display Specifies the connection to the X server.
W Specifies the window.

class_hints_return
Returns the XClassHint structure.

The XGetClassHint function returns the class of the specified window. To free
res_name and res_class when finished with the strings, use XFree.

XGetClassHint can generate a BadWindow error.

Setting and Reading the WM_TRANSIENT_FOR Property

Xlib provides functions that you can use to set and read the WM_TRANSIENT_FOR
property for a given window.

March 26, 1992 9-17

X Window System

To set awindow’s WM_TRANSIENT_FOR property, use XSetTransientForHint.

XSet Tr ansi ent For Hi nt (display, w, prop_window)
Di spl ay *display;
W ndow w;
W ndow prop_window;

display Specifies the connection to the X server.
w Specifies the window.
prop_window Specifies the window that the WM_TRANSIENT_FOR prop-

erty isto be set to.

The XSetTransientForHint function sets the WM_TRANSIENT_FOR property of the
specified window to the specified prop_window.

XSetTransientForHint can generate BadAlloc and BadWindow errors.
To read awindow's WM_TRANSIENT_FOR property, use XGetTransientForHint.

St at us XGet Tr ansi ent For Hi nt (display, w, prop_window_return)
Di spl ay *display;
W ndow w;
W ndow * prop_window_return;

display Specifies the connection to the X server.
w Specifies the window.

prop_window_return
Returns the WM_TRANSIENT_FOR property of the specified
window.

The XGetTransientForHint function returns the WM_TRANSIENT_FOR property for
the specified window.

XGetTransientForHint can generate a BadWindow error.

9.1.10 Setting and Reading the WM_PROTOCOLS Property

9-18

Xlib provides functions that you can use to set and read the WM_PROTOCOLS prop-
erty for a given window.

To set awindow’s WM_PROTOCOLS property, use XSetWMProtocols.
St at us XSet WWPr ot ocol s(display, w, protocols, count)
Di spl ay *display;
W ndow w;

At om * protocols;
i nt count;

March 26, 1992

Inter-Client Communication Functions

display Specifies the connection to the X server.

w Specifies the window.

protocols Specifies the list of protocols.

count Specifies the number of protocols in the list.

The XSetWMProtocols function replaces the WM_PROTOCOLS property on the
specified window with the list of atoms specified by the protocols argument. If the prop-
erty does not already exist, XSetWMProtocols sets the WM_PROTOCOLS property on
the specified window to the list of atoms specified by the protocols argument. The prop-
erty is stored with a type of ATOM and a format of 32. If it cannot intern the
WM _PROTOCOLS atom, XSetWMProtocols returns a zero status. Otherwise, it returns
a nonzero status.

XSetWMProtocols can generate BadAlloc and BadWindow errors.

To read a window’'s WM_PROTOCOLS property, use XGetWMProtocols.

St at us XGet WWPr ot ocol s(display, w, protocols return, count return)
Di spl ay *display;
W ndow w;

At om ** protocols_return;
i nt *count return;

display Specifies the connection to the X server.
w Specifies the window.

protocols_return
Returns the list of protocols.

count_return Returns the number of protocolsin the list.

The XGetWMProtocols function returns the list of atoms stored in the
WM_PROTOCOLS property on the specified window. These atoms describe window
manager protocols in which the owner of this window is willing to participate. If the
property exists, is of type ATOM, is of format 32, and the atom WM_PROTOCOLS
can be interned, XGetWMProtocols sets the protocols return argument to a list of
atoms, sets the count_return argument to the number of elements in the list, and returns
a nonzero status. Otherwise, it sets neither of the return arguments and returns a zero
status. To release the list of atoms, use XFree.

XGetWMProtocols can generate a BadWindow error.

9.1.11 Setting and Reading the WM_COLORMAP_WINDOWS Pro-
perty

Xlib provides functions that you can use to set and read the WM_
COLORMAP_WINDOWS property for a given window.

March 26, 1992 9-19

X Window System

9-20

To st a window's WM_COLORMAP_WINDOWS property, use XSet-
WMColormapWindowvs.

St at us XSet WMCol or mapW ndows (display, w, colormap_windows, count)
Di spl ay *display;

W ndow w;

W ndow * colormap_windows;

i nt count;
display Specifies the connection to the X server.
w Specifies the window.

colormap_windows
Specifies the list of windows.

count Specifies the number of windows in the list.

The XSetWMColormapWindows function replaces the
WM_COLORMAP_WINDOWS property on the specified window with the list of win-
dows specified by the colormap windows argument. It the property does not already
exist, XSetwMColormapWindows sets the WM_COLORMAP_WINDOWS property
on the specified window to the list of windows specified by the colormap_windows
argument. The property is stored with a type of WINDOW and a format of 32. If it can-
not intern the WM_COLORMAP_WINDOWS atom, XSetwWMColormapWindows
returns a zero status. Otherwise, it returns a nonzero status.

XSetWMColormapWindows can generate BadAlloc and BadWindow efrors.

To read a window's WM_COLORMAP_WINDOWS property, use XGetWMColor-
mapWindows.

St at us XGet WMCol or mapW ndows (display, w, colormap_windows_return,
Di spl ay *display;
W ndow w;
W ndow **colormap_windows_return;
i nt *count_return;

display Specifies the connection to the X server.
w Specifies the window.

colormap_windows_return
Returns the list of windows.

count_return Returns the number of windows in the list.

The XGetWMColormapWindows function returns the list of window identifiers stored
in the WM_COLORMAP_WINDOWS property on the specified window. These
identifiers indicate the colormaps that the window manager may need to install for this
window. If the property exists, is of type WINDOW, is of format 32, and the atom
WM_COLORMAP_WINDOWS can be interned, XGetWMColormapWindows sets
the windows _return argument to a list of window identifiers, sets the count_return argu-
ment to the number of elements in the list, and returns a nonzero status. Otherwise, it
sets neither of the return arguments and returns a zero status. To release the list of

March 26, 1992

count_return)

Inter-Client Communication Functions

window identifiers, use XFree.

XGetWMColormapWindows can generate a BadWindow error.

9.1.12 Setting and Reading the WM _|ICON_SIZE Property

Xlib provides functions that you can use to set and read the WM _ICON_SIZE property
for a given window. These functions use the XiconSize structure, which is defined in
the <X11/Xutil.h> header file.

To alocate an XlconSize structure, use XAlloclconSize.
Xl conSi ze *XAl | ocl conSi ze()

The XAlloclconSize function alocates and returns a pointer to an XlconSize structure.
Note that all fields in the XlconSize structure are initially set to zero. If insufficient
memory is available, XAlloclconSize returns NULL. To free the memory allocated to
this structure, use XFree.

The XlIconSize structure contains:

t ypedef struct {
int min wdth, mn_height;
int max_wi dth, max_height;
int width_inc, height _inc;

} XlconSi ze;

The width_inc and height_inc members define an arithmetic progression of sizes
(minimum to maximum) that represent the supported icon sizes.

To set awindow’s WM_ICON_SIZE property, use XSetlconSizes.

XSet | conSi zes(display, w, size_list, count)
Di spl ay *display;

W ndow w;
Xl conSi ze *size_list;
i nt count;
display Specifies the connection to the X server.
w Specifies the window.
size_list Specifies the size list.
count Specifies the number of itemsin the sizelist.

The XSetlconSizes function is used only by window managers to set the supported icon
sizes.

XSetlconSizes can generate BadAlloc and BadwWindow errors.
To read awindow’'s WM_ICON_SIZE property, use XGetlconSizes.

March 26, 1992 9-21

X Window System

Status XGet | conSi zes (display,
Di spl ay *display;
W ndow w;
Xl conSi ze **size list_return;
i nt *count return;

w,

display
w Specifies the window.

size_list_return
Returns the size list.

count_return

size_list_return,

count_return)

Specifies the connection to the X server.

Returns the number of itemsin the size list.

The XGetlconSizes function returns zero if a window manager has not set icon sizes;
otherwise, it return nonzero. XGetlconSizes should be called by an application that
wants to find out what icon sizes would be most appreciated by the window manager
under which the application is running. The application should then use XSetWMHints
to supply the window manager with an icon pixmap or window in one of the supported
sizes. To freethe data alocated in size list_return, use XFree.

XGetlconSizes can generate a BadWindow error.

9.1.13 Using Window Manager Convenience Functions

Xlib provides two additional convenience functions that you can use to:

+ Set the standard window manager properties for a given window

« Obtain window geometry information

To set a window's standard window manager properties, use XSetWMProperties. The

standard window manager properties for

a given window are WM_NAME,

WM_ICON_NAME, WM_HINTS, = WM_NORMAL_HINTS, = WM_CLASS,

WM_COMMAND, and WM_CLIENT_MACHINE.

voi d XSet WWPr operti es(display, w, window _name, icon_name, argv,
wm_hints, class_hints)

Di spl ay *display;
W ndow w;

XText Property *window_name;

XText Property *icon_name;
char **argv;

i nt argc;

XSi ze_hi nts *normal_hints;
XWWH nts *wm_hints;

Xd assHi nt *class_hints;

display

9-22

Specifies the connection to the X server.

March 26, 1992

argc,

normal_hints,

Inter-Client Communication Functions

w Specifies the window.

window_name Specifies the window name, which should be a null-terminated
string.

icon_name Specifies the icon name, which should be a null-terminated
string.

argv Specifies the application’s argument list.

argc Specifies the number of arguments.

normal_hints Specifies the size hints for the window in its normal state.

wm_hints Specifies the X\WMHints structure to be used.

class_hints Specifies the XClassHint structure to be used.

The XSetWMProperties convenience function provides a single programming interface
for setting those essential window properties that are used for communicating with other
clients (particularly window and session managers).

If the window_name argument is non-NULL, XSetWMProperties calls XSetWMName,
which in turn, sets the WM_NAME property (see section 9.1.4). If the icon_name argu-
ment is non-NULL, XSetWMProperties calls XSetwWMIlconName, which sets the
WM_ICON_NAME property (see section 9.1.5). If the argv argument is non-NULL,
XSetWMProperties cals XSetCommand, which sets the WM_COMMAND property
(see section 9.2.1). Note that an argc of zero is alowed to indicate a zero-length com-
mand. Note aso that the hostname of this machine is stored using XSetWM-
ClientMachine (see section 9.2.2).

If the normal_hints argument is non-NULL, XSetWMProperties calls XSetwMNor-
malHints, which sets the WM_NORMAL_HINTS property (see section 9.1.7). If the
wm_hints argument is non-NULL, XSetWMProperties calls XSetWMHints, which sets
the WM_HINTS property (see section 9.1.6).

If the class_hints argument is non-NULL, XSetWMProperties calls XSetClassHint,
which sets the WM_CLASS property (see section 9.1.8). If the res_name member in the
XClassHint structure is set to the NULL pointer and the RESOURCE_NAME environ-
ment variable is set, then the value of the environment variable is substituted for
res name. If the res hame member is NULL, the environment variable is not set, and
argv and argv[0] are set, then the value of argv[0], stripped of any directory prefixes, is
substituted for res_name.

XSetWMProperties can generate BadAlloc and Badwindow errors.
To obtain awindow’s geometry information, use X\WMGeometry.

i nt XWMzeonet ry(display, screen, user_geom, def geom, bwidth, hints, x_return, vy return,
width_return, height_return, gravity_return)
Di spl ay *display;
i nt screen;
char *user_geom;
char *def geom;
unsi gned i nt bwidth;

March 26, 1992 9-23

X Window System

XSi zeHi nts *hints;

i nt *x_return, *y return;
i nt *width_return;

i nt *height_return;

i nt *gravity _return;

display Specifies the connection to the X server.

screen Specifies the screen.

user_geom Specifies the user-specified geometry or NULL.
def_geom Specifies the application’s default geometry or NULL.
bwidth Specifies the border width.

hints Specifies the size hints for the window in its normal state.

x_return, y_return
Return the x and y offsets.

width_return, height_return
Return the width and height determined.

gravity_return Returns the window gravity.

The XWMGeometry function combines any geometry information (given in the format
used by XParseGeometry) specified by the user and by the calling program with size
hints (usually the ones to be stored in WM_NORMAL_HINTS) and returns the posi-
tion, size, and gravity (NorthWestGravity, NorthEastGravity, SouthEastGravity, or
SouthWestGravity) that describe the window. If the base size is not set in the
XSizeHints structure, the minimum size is used if set. Otherwise, a base size of zero is
assumed. If no minimum size is set in the hints structure, the base size is used. A mask
(in the form returned by XParseGeometry) that describes which values came from the
user specification and whether or not the position coordinates are relative to the right
and bottom edges is returned. (Note that these coordinates will have aready been
accounted for in the X_return and y_return values.)

Note that invalid geometry specifications can cause a width or height of zero to be
returned. The caller may pass the address of the hints win_gravity field as gravity return
to update the hints directly.

9.2 Client to Session Manager Communication

9-24

This section discusses how to:
+ Set and read the WM_COMMAND property
+ Set and read the WM_CLIENT_MACHINE property

March 26, 1992

Inter-Client Communication Functions

9.2.1 Setting and Reading the WM _COMMAND Property

Xlib provides functions that you can use to set and read the WM_COMMAND property
for a given window.

To set awindow’s WM_COMMAND property, use XSetCommand.

XSet Command (display, w, argv, argc)
Di spl ay *display;

W ndow w;

char **argv;

i nt argc;
display Specifies the connection to the X server.
w Specifies the window.
argv Specifies the application’s argument list.
argc Specifies the number of arguments.

The XSetCommand function sets the command and arguments used to invoke the
application. (Typicaly, argv is the argv array of your main program.)
XSetCommand can generate BadAlloc and BadWindow errors.
To read a window's WM_COMMAND property, use XGetCommand.
St at us XGet Command (display, w, argv_return, argc_return)
Di spl ay *display;
W ndow w;

char ***argv_return;
i nt *argc_return;

display Specifies the connection to the X server.
w Specifies the window.

argv_return Returns the application’s argument list.
argc_return Returns the number of arguments returned.

The XGetCommand function reads the WM_COMMAND property from the specified
window and returns a string list. If the WM_COMMAND property exists, it is of type
STRING and format 8. If sufficient memory can be allocated to contain the string list,
XGetCommand fills in the argv_return and argc return arguments and returns a
nonzero status. Otherwise, it returns a zero status. To free the memory alocated to the
string list, use XFreeStringList.

9.2.2 Setting and Readingthe WM _CLIENT_MACHINE Property

Xlib provides functions that you can use to set and read the WM_CLIENT_MACHINE

March 26, 1992 9-25

X Window System

property for a given window.
To set awindow’s WM_CLIENT_MACHINE property, use XSetWMClientMachine.
voi d XSet WM i ent Machi ne(display, w, text prop)

Di spl ay *display;

W ndow w;

XText Property *text prop;

display Specifies the connection to the X server.
W Specifies the window.
text_prop Specifies the XTextProperty structure to be used.

The XSetwMClientMachine convenience function performs a XSetTextProperty on
the WM_CLIENT_MACHINE property. Note that you also can set the client machine
property by using XSetTextProperty (see section 9.1.3).

To read a window's WM _CLIENT MACHINE property, use XGetWM-
ClientMachine.

St at us XGet WM i ent Machi ne(display, w, text_prop_return)
Di spl ay *display;
W ndow w;
XText Property *text prop_return;

display Specifies the connection to the X server.
w Specifies the window.

text_prop_return
Returns the XTextProperty structure.

The XGetWMClientMachine convenience function performs an XGetTextProperty on
the WM_CLIENT_MACHINE property. Note that you also can read the client machine
property by using XGetTextProperty (see section 9.1.3).

9.3 Standard Colormaps

9-26

Applications with color palettes, smooth-shaded drawings, or digitized images demand
large numbers of colors. In addition, these applications often require an efficient map-
ping from color triples to pixel values that display the appropriate colors.

As an example, consider a three-dimensional display program that wants to draw a
smoothly shaded sphere. At each pixel in the image of the sphere, the program com-
putes the intensity and color of light reflected back to the viewer. The result of each
computation is a triple of RGB coefficients in the range 0.0 to 1.0. To draw the sphere,
the program needs a colormap that provides a large range of uniformly distributed
colors. The colormap should be arranged so that the program can convert its RGB tri-
ples into pixel values very quickly, because drawing the entire sphere requires many

March 26, 1992

Inter-Client Communication Functions

such conversions.

On many current workstations, the display is limited to 256 or fewer colors. Applica
tions must allocate colors carefully, not only to make sure they cover the entire range
they need but also to make use of as many of the available colors as possible. On a typi-
cal X display, many applications are active at once. Most workstations have only one
hardware look-up table for colors, so only one application colormap can be installed at a
given time. The application using the installed colormap is displayed correctly, and the
other applications ‘*go technicolor’’ and are displayed with false colors.

As another example, consider a user who is running an image processing program to
display earth-resources data. The image processing program needs a colormap set up
with 8 reds, 8 greens, and 4 blues, for a total of 256 colors. Because some colors are
aready in use in the default colormap, the image processing program allocates and
installs a new colormap.

The user decides to alter some of the colors in the image by invoking a color palette
program to mix and choose colors. The color palette program also needs a colormap
with eight reds, eight greens, and four blues, so just like the image processing program,
it must allocate and install a new colormap.

Because only one colormap can be installed at a time, the color palette may be
displayed incorrectly whenever the image processing program is active. Conversdly,
whenever the palette program is active, the image may be displayed incorrectly. The
user can never match or compare colors in the palette and image. Contention for color-
map resources can be reduced if applications with similar color needs share colormaps.

As another example, the image processing program and the color palette program could
share the same colormap if there existed a convention that described how the colormap
was set up. Whenever either program was active, both would be displayed correctly.

The standard colormap properties define a set of commonly used colormaps. Applica
tions that share these colormaps and conventions display true colors more often and pro-
vide a better interface to the user.

Standard colormaps alow applications to share commonly used color resources. This
allows many applications to be displayed in true colors simultaneously, even when each
application needs an entirely filled colormap.

Several standard colormaps are described in this section. Usualy, a window manager
creates these colormaps. Applications should use the standard colormaps if they already
exist.

To allocate an XStandardColormap structure, use XAllocStandardColormap.
XSt andar dCol or map * XAl | ocSt andar dCol or map()

The XAllocStandardColormap function allocates and returns a pointer to an XStan-
dardColormap structure. Note that all fields in the XStandardColormap structure are
initially set to zero. If insufficient memory is available, XAllocStandardColormap
returns NULL. To free the memory allocated to this structure, use XFree.

The XStandardColormap structure contains.

March 26, 1992 9-27

X Window System

9-28

[* Hints */

#defi ne ReleaseByFreeingColormap ((XI D) 1L)

/* Val ues */

t ypedef struct {
Col or map col or nap;
unsi gned | ong red_nex;
unsigned long red_mult;
unsi gned | ong green_nax;
unsi gned |l ong green_mult;
unsi gned | ong bl ue_nax;
unsi gned long blue nult;
unsi gned | ong base_pi xel ;
Vi sual I D vi sual i d;
XID killid;

} XSt andar dCol or map;

The colormap member is the colormap created by the XCreateColormap function. The
red max, green_max, and blue_max members give the maximum red, green, and blue
values, respectively. Each color coefficient ranges from zero to its max, inclusive. For
example, a common colormap allocation is 3/3/2 (3 planes for red, 3 planes for green,
and 2 planes for blue). This colormap would have red max = 7, green max = 7, and
blue max = 3. An dternate alocation that uses only 216 colors is red max = 5,
green_max = 5, and blue_max = 5.

The red_mult, green_mult, and blue_mult members give the scale factors used to com-
pose a full pixel value. (See the discussion of the base_pixel members for further infor-
mation.) For a 3/3/2 alocation, red_mult might be 32, green_mult might be 4, and
blue_mult might be 1. For a 6-colors-each allocation, red_mult might be 36, green_mult
might be 6, and blue_mult might be 1.

The base_pixel member gives the base pixel value used to compose a full pixel value.
Usualy, the base pixel is obtained from a call to the XAllocColorPlanes function.
Given integer red, green, and blue coefficients in their appropriate ranges, one then can
compute a corresponding pixel value by using the following expression:

r* red mult + g* green_mult + b * blue mult + base pixel

For GrayScale colormaps, only the colormap, red max, red mult, and base pixel
members are defined. The other members are ignored.

The visualid member gives the ID number of the visual from which the colormap was
created. The killid member gives a resource ID that indicates whether the cells held by
this standard colormap are to be released by freeing the colormap ID or by calling the
XKillClient function on the indicated resource. (Note that this method is necessary for
alocating out of an existing colormap.)

To compute aGrayScale pixel value, use the following expression:
gray * red_mult + base_pixel

The properties containing the XStandardColormap information have the type
RGB_COLOR_MAP.

March 26, 1992

931

Inter-Client Communication Functions

The remainder of this section discusses standard colormap properties and atoms as well
as how to manipulate standard colormaps.

Standard Colormap Properties and Atoms

Severa standard colormaps are available. Each standard colormap is defined by a prop-
erty, and each such property is identified by an atom. The following list hames the
atoms and describes the colormap associated with each one. The <X11/Xatom.h>
header file contains the definitions for each of the following atoms, which are prefixed
with XA _.

RGB_DEFAULT_MAP

This atom names a property. The value of the property is an array of XStandardColor-
map structures. Each entry in the array describes an RGB subset of the default color-
map for the Visual specified by visua_id.

Some applications only need a few RGB colors and may be able to allocate them from
the system default colormap. This is the ideal situation because the fewer colormaps that
are active in the system the more applications are displayed with correct colors at al
times. A typical alocation for the RGB_DEFAULT_MAP on 8-plane displays is 6 reds,
6 greens, and 6 blues. This gives 216 uniformly distributed colors (6 intensities of 36
different hues) and still leaves 40 elements of a 256-element colormap available for
special-purpose colors for text, borders, and so on.

RGB_BEST _MAP
This atom names a property. The value of the property is an XStandardColormap.

The property defines the best RGB colormap available on the screen. (Of course, thisis
a subjective evaluation.) Many image processing and three-dimensional applications
need to use all available colormap cells and to distribute as many perceptually distinct
colors as possible over those cells. This implies that there may be more green values
available than red, as well as more green or red than blue.

For an 8-plane PseudoColor visua, RGB_BEST MAP should be a 3/3/2 alocation.
For a 24-plane DirectColor visua, RGB_BEST MAP should be an 8/8/8 allocation.

RGB_RED_MAP

RGB_GREEN_MAP

RGB_BLUE_MAP

These atoms name properties. The value of each property is an XStandardColormap.

The properties define all-red, all-green, and al-blue colormaps, respectively. These
maps are used by applications that want to make color-separated images. For example, a
user might generate a full-color image on an 8-plane display both by rendering an image
three times (once with high color resolution in red, once with green, and once with
blue) and by multiply-exposing a single frame in a camera.

RGB_GRAY_MAP
This atom names a property. The value of the property is an XStandardColormap.

March 26, 1992 9-29

X Window System

9.3.2

9-30

The property describes the best GrayScale colormap available on the screen. As previ-
ously mentioned, only the colormap, red_max, red_mult, and base _pixel members of the
XStandardColormap structure are used for GrayScale colormaps.

Setting and Obtaining Standard Color maps

Xlib provides functions that you can use to set and obtain an XStandardColormap
structure.

To set an XStandardColormap structure, use XSetRGBColormaps.

voi d XSet RGBCol or maps(display, w, std_colormap, count, property)
Di spl ay *display;

W ndow w;
XSt andar dCol or map *std_colormap;
i nt count;
At om property;
display Specifies the connection to the X server.
w Specifies the window.
std_colormap Specifies the XStandardColormap structure to be used.
count Specifies the number of colormaps.
property Specifies the property name.

The XSetRGBColormaps function replaces the RGB colormap definition in the
specified property on the named window. If the property does not aready exist,
XSetRGBColormaps sets the RGB colormap definition in the specified property on the
named window. The property is stored with atype of RGB_COLOR_MAP and a format
of 32. Note that it is the caller’s responsibility to honor the ICCCM restriction that only
RGB_DEFAULT_MAP contain more than one definition.

XSetRGBColormaps can generate BadAlloc, BadAtom, and BadwWindow errors.

To obtain the XStandardColormap structure associated with the specified property, use
XGetRGBColormaps.
St at us XGet RGCol or maps (display, w, std_colormap_return, count_return,
Di spl ay *display;
W ndow w;
XSt andar dCol or map **std_colormap_return;
i nt *count_return;
At om property;

display Specifies the connection to the X server.

w Specifies the window.

March 26, 1992

property)

Inter-Client Communication Functions

std_colormap_return
Returns the XStandardColormap structure.

count_return Returns the number of colormaps.
property Specifies the property name.

The XGetRGBColormaps function returns the RGB colormap definitions stored in the
specified property on the named window. If the property exists, is of type
RGB_COLOR_MAP, is of format 32, and is long enough to contain a colormap
definition, XGetRGBColormaps allocates and fills in space for the returned colormaps
and returns a nonzero status. If the visualid is not present, XGetRGBColormaps
assumes the default visual for the screen on which the window is located; if the killid is
not present, None is assumed, which indicates that the resources cannot be released.
Otherwise, none of the fields are set, and XGetRGBColormaps returns a zero status.
Note that it is the caler's responsibility to honor the ICCCM restriction that only
RGB_DEFAULT_MAP contain more than one definition.

XGetRGBColormaps can generate BadAtom and BadWindow errors.

March 26, 1992 9-31

Chapter 10. Application Utility Functions

Once you have initialized the X system, you can use the Xlib utility functions to:
« Handle keyboard events
+ Obtain the X environment defaults
+ Parse window geometry strings
« Parse hardware colors strings
« Generate regions
+ Manipulate regions
+ Use cut and paste buffers
« Determine the appropriate visual
« Manipulate images
+ Manipulate bitmaps
+ Use the resource manager
+ Use the context manager

As a group, the functions discussed in this chapter provide the functionality that is fre-
quently needed and that spans toolkits. Many of these functions do not generate actual
protocol requests to the server.

10.1 Keyboard Utility Functions

This section discusses keyboard event functions and KeySym classification macros.

March 26, 1992 10-1

X Window System

10.1.1 Keyboard Event Functions

10-2

The X server does not predefine the keyboard to be ASCII characters. It is often useful
to know that the a key was just pressed or that it was just released. When a key is
pressed or released, the X server sends keyboard events to client programs. The struc-
tures associated with keyboard events contain a keycode member that assigns a number
to each physical key on the keyboard. For a discussion of keyboard event processing,
see section 8.4.1. For information on how to manipulate the keyboard encoding, see
section 7.9.

Because KeyCodes are completely arbitrary and may differ from server to server, client
programs wanting to deal with ASCII text, for example, must explicitly convert the
KeyCode value into ASCII. Therefore, Xlib provides functions to help you customize
the keyboard layout. Keyboards differ dramatically, so writing code that presumes the
existence of a particular key on the main keyboard creates portability problems.

Keyboard events are usually sent to the deepest viewable window underneath the
pointer’s position that is interested in that type of event. It is also possible to assign the
keyboard input focus to a specific window. When the input focus is attached to a win-
dow, keyboard events go to the client that has selected input on that window rather than
the window under the pointer.

The functions in this section handle the shift modifier computations suggested by the
protocol. The KeySym table is internally modified to define the lowercase transforma-
tion of a—z by adding the lowercase KeySym to the first element of the KeySym list
(used internally) defined for the KeyCode, when the list is of length 1. If you want the
untransformed KeySyms defined for a key, you should only use the functions described
in section 7.9.

To look up the KeySym from the list that corresponds to an event's KeyCode, use
XLookupKeysym.

KeySym XLookupKeysyn{ key_event, index)
XKeyEvent *key_event;
i nt index;

key event Specifies the KeyPress or KeyRelease event.

index Specifies the index into the KeySyms list for the event’s Key-
Code.

The XLookupKeysym function uses a given keyboard event and the index you
specified to return the KeySym from the list that corresponds to the KeyCode member
in the XKeyPressedEvent or XKeyReleasedEvent structure. If no KeySym is defined
for the KeyCode of the event, XLookupKeysym returns NoSymbol.

To refresh the stored modifier and keymap information, use XRefresh-
KeyboardMapping.

XRef r eshKeyboar dMappi ng(event_map)
XMappi ngEvent *event_map;

March 26, 1992

Application Utility Functions

event_map Specifies the mapping event that is to be used.

The XRefreshKeyboardMapping function refreshes the stored modifier and keymap
information. You usualy cal this function when a MappingNotify event with a
request member of MappingKeyboard or MappingModifier occurs. The result is to
update Xlib’'s knowledge of the keyboard.

To map akey event to an SO Latin-1 string, use XLookupString.

i nt XLookupString(event_struct, buffer_return, bytes buffer, keysym_return, status_in_out)
XKeyEvent *event_struct;
char *buffer_return;
i nt bytes buffer;
KeySym * keysym_return;
XConposeSt at us *status_in_out;

event_struct Specifies the key event structure to be used. You can pass
XKeyPressedEvent or XKeyReleasedEvent.

buffer_return Returns the translated characters.

bytes_buffer Specifies the length of the buffer. No more than bytes buffer of
tranglation are returned.

keysym_return Returns the KeySym computed from the event if this argument
isnot NULL.

status_in_out Specifies or returns the XComposeStatus structure or NULL.

The XLookupString function trandates a key event to a KeySym and a string. The
KeySym is obtained by using the standard interpretation of the Shift, Lock, and group
modifiers as defined in the X Protocol specification. If the KeySym has been rebound
(see XRebindKeysym), the bound string will be stored in the buffer. Otherwise, the
KeySym is mapped, if possible, to an 1SO Latin-1 character or (if the Control modifier
is on) to an ASCII control character, and that character is stored in the buffer. XLook-
upString returns the number of charactersthat are stored in the buffer.

If present (non-NULL), the XComposeStatus structure records the state, which is
private to Xlib, that needs preservation across calls to XLookupString to implement
compose processing.
To rebind the meaning of a KeySym for a client, use XRebindKeysym.
XRebi ndKeysyn{ display, keysym, list, mod_count, string, bytes string)
Di spl ay *display;
KeySym keysym;
KeySym list[] ;
i nt mod_count;

unsi gned char *string;
i nt bytes_string;

display Specifies the connection to the X server.
keysym Specifies the KeySym that is to be rebound.

March 26, 1992 10-3

X Window System

10-4

list Specifies the KeySyms to be used as modifiers.
mod_count Specifies the number of modifiers in the modifier list.
string Specifies the string that is copied and will be returned by

XLookupString.
bytes_string Specifies the length of the string.

The XRebindKeysym function can be used to rebind the meaning of a KeySym for the
client. It does not redefine any key in the X server but merely provides an easy way for
long strings to be attached to keys. XLookupString returns this string when the
appropriate set of modifier keys are pressed and when the KeySym would have been
used for the tranglation. Note that you can rebind a KeySym that may not exist.

KeySysms that are not part of the Xlib standard may be obtained by using
XStringToKeysym and XKeysymToString. Note that the set of KeySyms that are
available in this manner and the mechanisms by which Xlib obtains them is implemen-
tation dependent.

To convert the name of the KeySym to the KeySym code, use XStringToKeysym.

KeySym XSt ri ngToKeysym(string)
char *string;

string Specifies the name of the KeySym that is to be converted.

Valid KeySym names are listed in <X11/keysymdef.h> by removing the XK__ prefix
from each name |If the specified string does not match a valid KeySym,
XStringToKeysym returns NoSymbol.

To convert a KeySym code to the name of the KeySym, use XKeysymToString.

char *XKeysyniroSt ri ng(keysym)
KeySym keysym;

keysym Specifies the KeySym that is to be converted.

The returned string is in a static area and must not be modified. If the specified
KeySym is not defined, XKeysymToString returns a NULL.

To convert a key code to a defined KeySym, use XKeycodeToKeysym.

KeySym XKeycodeToKeysym(display, keycode, index)
Di spl ay *display;
KeyCode keycode;

i nt index;
display Specifies the connection to the X server.
keycode Specifies the KeyCaode.
index Specifies the element of KeyCode vector.

The XKeycodeToKeysym function uses internal Xlib tables and returns the KeySym
defined for the specified KeyCode and the element of the KeyCode vector. If no sym-
bol is defined, XKeycodeToKeysym returns NoSymbol.

March 26, 1992

Application Utility Functions

To convert a KeySym to the appropriate KeyCode, use XKeysymToKeycode.

KeyCode XKeysymloKeycode(display, keysym)
Di spl ay *display;
KeySym keysym;

display Specifies the connection to the X server.
keysym Specifies the KeySym that is to be searched for.

If the specified KeySym is not defined for any KeyCode, XKeysymToKeycode returns
zero.

10.1.2 Keysym Classification Macros

You may want to test if aKeySym is, for example, on the keypad or on one of the func-
tion keys. You can use the KeySym macros to perform the following tests.

| sCur sor Key (keysym)

keysym Specifies the KeySym that is to be tested.
Returns True if the specified KeySym is a cursor key.

| sFunct i onKey (keysym)

keysym Specifies the KeySym that is to be tested.
Returns True if the specified KeySym is a function key.

| skeypadKey (keysym)

keysym Specifies the KeySym that is to be tested.
Returns True if the specified KeySym is a keypad key.

I sM scFuncti onKey (keysym)

keysym Specifies the KeySym that is to be tested.
Returns True if the specified KeySym is a miscellaneous function key.
| sMbdi fi er Key (keysym)

keysym Specifies the KeySym that is to be tested.
Returns True if the specified KeySym is a modifier key.

| sPFKey (keysym)

keysym Specifies the KeySym that is to be tested.
Returns True if the specified KeySym is a PF key.

March 26, 1992 10-5

X Window System

10.2 Obtaining the X Environment Defaults

10-6

The XGetDefault function provides a primitive interface to the resource manager facili-
ties discussed in section 10.11. Although it can be useful in very simple applications,
XGetDefault is provided primarily for X Version 10 compatibility.

A program often needs a variety of options in the X environment (for example, fonts,
colors, mouse, background, text, and cursor). Specifying these options on the command
line is inefficient and unmanageable because individual users have a variety of tastes
with regard to window appearance. XGetDefault makes it possible to find out the
fonts, colors, and other environment defaults favored by a particular user. Defaults are
usualy loaded into the RESOURCE MANAGER property on the root window at
login. If no such property exists, a resource file in the user’s home directory is loaded.

On a POSIX-conformant system, this file is "SHOME/.Xdefaults". After loading these
defaults, XGetDefault merges additional defaults specified by the XENVIRONMENT
environment variable. If XENVIRONMENT is defined, it contains a full path name for
the additiona resourcefile. If XENVIRONMENT is not defined, XGetDefault looks for
$HOME/ . Xdefaults-name, where name specifies the name of the machine on which
the application is running. For details of the format of these files, see section 10.11.

char *XGet Def aul t (display, program, option)
Di spl ay *display;
char *program;
char *option;

display Specifies the connection to the X server.

program Specifies the program name for the Xlib defaults (usualy
argv[0] of the main program).

option Specifies the option name.

The XGetDefault function returns the value of the resource prog.option, where prog is
the program argument with the directory prefix removed and option must be a single
component. Note that multi-level resources cannot be used with XGetDefault. The
class "Program.Name" is always used for the resource lookup. If the specified option
name does not exist for this program, XGetDefault returns NULL. The strings returned
by XGetDefault are owned by Xlib and should not be modified or freed by the client.

To obtain a pointer to the resource manager string of a display, use XResour-
ceManagerString.

char *XResour ceManager St ri ng(display)
Di spl ay *display;
display Specifies the connection to the X server.
The XResourceManagerString returns the RESOURCE_MANAGER property from
the server’s root window of screen zero, which was returned when the connection was

opened using XOpenDisplay. Note that the property value must be in a format that is
acceptable to XrmGetStringDatabase.

March 26, 1992

Application Utility Functions

10.3 Parsing the Window Geometry

To parse standard window geometry strings, use XParseGeometry.

i nt XParseGeonetry(parsestring, x return, y return, width_return, height return)
char *parsestring;
i nt *x_return, *y return;
unsi gned i nt *width_return, *height_return;

parsestring Specifies the string you want to parse.

x_return,y_return
Return the x and y offsets.

width_return, height_return
Return the width and height determined.

By convention, X applications use a standard string to indicate window size and place-
ment. XParseGeometry makes it easier to conform to this standard because it allows
you to parse the standard window geometry. Specifically, this function lets you parse
strings of the form:

[=][<width>x<height>][{ +-} <xoffset>{ +-} <yoffset>]

The items in this form map into the arguments associated with this function. (Items
enclosed in <> are integers, items in [] are optional, and items enclosed in {} indicate
‘*choose one of.”” Note that the brackets should not appear in the actual string.)

The XParseGeometry function returns a bitmask that indicates which of the four values
(width, height, xoffset, and yoffset) were actually found in the string and whether the x
and y values are negative. By convention, -0 is not equal to +0, because the user needs
to be able to say ‘‘position the window relative to the right or bottom edge.”” For each
value found, the corresponding argument is updated. For each value not found, the
argument is left unchanged. The bits are represented by XValue, YValue, Width-
Value, HeightValue, XNegative, or YNegative and are defined in <X11/Xutil.h>.

They will be set whenever one of the values is defined or one of the signs is set.

If the function returns either the XValue or YValue flag, you should place the window
at the requested position.

10.4 Parsing the Color Specifications

To parse color values, use XParseColor.

St at us XPar seCol or (display, colormap, spec, exact def return)
Di spl ay *display;
Col or map colormap;
char *spec;

March 26, 1992 10-7

X Window System

10.5

10-8

XCol or *exact_def return;

display Specifies the connection to the X server.
colormap Specifies the colormap.
spec Specifies the color name string; case is ignored.

exact_def return
Returns the exact color value for later use and sets the DoRed,
DoGreen, and DoBlue flags.

The XParseColor function provides a simple way to create a standard user interface to
color. It takes a string specification of a color, typically from a command line or XGet-
Default option, and returns the corresponding red, green, and blue values that are suit-
able for a subseguent call to XAllocColor or XStoreColor. The color can be specified
either as a color name (as in XAllocNamedColor) or as an initial sharp sign character
followed by a numeric specification, in one of the following formats:

#RGB (4 bits each)
#RRGGBB (8 bits each)
#RRRGGGBBB (12 bits each)
#RRRRGGGGBBBB (16 bits each)

The R, G, and B represent single hexadecimal digits (both uppercase and lowercase).
When fewer than 16 bits each are specified, they represent the most-significant bits of
the value. For example, #3a7 is the same as #3000a0007000. The colormap is used
only to determine which screen to look up the color on. For example, you can use the
screen’s default colormap.

If the initial character is a sharp sign but the string otherwise fails to fit the above for-
mats or if the initial character is not a sharp sign and the named color does not exist in
the server’s database, XParseColor fails and returns zero.

XParseColor can generate a BadColor error.

Generating Regions

Regions are arbitrary sets of pixel locations. Xlib provides functions for manipulating
regions. The opaque type Region is defined in <X11/Xutil.h>.

To generate a region from a polygon, use XPolygonRegion.

Regi on XPol ygonRegi on(points, n, fill_rule)
XPoi nt points[];
int n;
i nt fill_rule;

points Specifies an array of points.

March 26, 1992

10.6

Application Utility Functions

n Specifies the number of points in the polygon.

fill_rule Specifies the fill-rule you want to set for the specified GC. You
can pass EvenOddRule or WindingRule.

The XPolygonRegion function returns a region for the polygon defined by the points
array. For an explanation of fill_rule, see XCreateGC.

To generate the smallest rectangle enclosing the region, use XClipBox.

Xd i pBox(r, rect_return)
Regi on r;
XRect angl e *rect_return;

r Specifies the region.
rect_return Returns the smallest enclosing rectangle.

The XClipBox function returns the smallest rectangle enclosing the specified region.

Manipulating Regions

Xlib provides functions that you can use to manipulate regions. This section discusses
how to:

« Create, copy, or destroy regions

» Move or shrink regions

« Compute with regions

« Determine if regions are empty or equal

« Locate a point or rectangle in aregion

10.6.1 Creating, Copying, or Destroying Regions

To create a new empty region, use XCreateRegion.
Regi on XCr eat eRegi on()
To set the clip-mask of a GC to aregion, use XSetRegion.

XSet Regi on(display, gc, r)
Di spl ay *display;
GC gc;
Regi on r;

display Specifies the connection to the X server.

March 26, 1992 10-9

X Window System

gc Specifies the GC.
r Specifies the region.

The XSetRegion function sets the clip-mask in the GC to the specified region. Once it
is set in the GC, the region can be destroyed.

To dedllocate the storage associated with a specified region, use XDestroyRegion.

XDest r oyRegi on(r)
Regi on r;

r Specifies the region.

10.6.2 Moving or Shrinking Regions

To move aregion by a specified amount, use XOffsetRegion.

XOfF fset Region(r, dx, dy)
Regi on r;
i nt dx, dy;

r Specifies the region.

dx, dy Specify the x and y coordinates, which define the amount you
want to move the specified region.

To reduce a region by a specified amount, use XShrinkRegion.

XShri nkRegi on(r, dx, dy)
Regi on r;
int dx, dy;

r Specifies the region.

dx, dy Specify the x and y coordinates, which define the amount you
want to shrink the specified region.

Positive values shrink the size of the region, and negative values expand the region.

10.6.3 Computing with Regions

To compute the intersection of two regions, use XintersectRegion.

Xl nt ersect Regi on(sra, srb, dr_return)
Regi on sra, srb, dr_return;

sra, srb Specify the two regions with which you want to perform the
computation.

10-10 March 26, 1992

Application Utility Functions

dr_return Returns the result of the computation.
To compute the union of two regions, use XUnionRegion.

XUni onRegi on(sra, srb, dr_return)
Regi on sra, srb, dr_return;

sra, srb Specify the two regions with which you want to perform the
computation.
dr_return Returns the result of the computation.

To create a union of a source region and a rectangle, use XUnionRectWithRegion.

XUni onRect Wt hRegi on(rectangle, src_region, dest region_return)
XRect angl e *rectangle;
Regi on src_region;
Regi on dest_region_return;

rectangle Specifies the rectangle.
src_region Specifies the source region to be used.
dest_region_return Returns the destination region.

The XUnionRectWithRegion function updates the destination region from a union of
the specified rectangle and the specified source region.

To subtract two regions, use XSubtractRegion.

XSubt ract Regi on(sra, srb, dr_return)
Regi on sra, srb, dr_return;

sra, srb Specify the two regions with which you want to perform the
computation.
dr_return Returns the result of the computation.

The XSubtractRegion function subtracts srb from sra and stores the results in
dr_return.

To calculate the difference between the union and intersection of two regions, use
XXorRegion.

XXor Regi on(sra, srb, dr_return)
Regi on sra, srb, dr_return;

sra, srb Specify the two regions with which you want to perform the
computation.
dr_return Returns the result of the computation.

March 26, 1992 10-11

X Window System

10.6.4 Determining if Regions Are Empty or Equal

To determine if the specified region is empty, use XEmptyRegion.

Bool XEnpt yRegi on(r)
Regi on r;

r Specifies the region.
The XEmptyRegion function returnsTrue if the region is empty.
To determine if two regions have the same offset, size, and shape, use XEqualRegion.

Bool XEqual Regi on(rl, r2)
Regi on rl, r2;

ri, r2 Specify the two regions.

The XEqualRegion function returns True if the two regions have the same offset, size,
and shape.

10.6.5 Locating a Point or a Rectangle in a Region

10-12

To determine if a specified point resides in a specified region, use XPointinRegion.

Bool XPointlnRegion(r, x, y)
Regi on r;
int X, y;

r Specifies the region.
X,y Specify the x and y coordinates, which define the point.

The XPointinRegion function returns True if the point (X, y) is contained in the region
r.

To determine if a specified rectangle is inside a region, use XRectinRegion.

int XRectlnRegion(r, X, Yy, width, height)

Regi on r;
int x, y;
unsi gned i nt width, height;
r Specifies the region.
X,y Specify the x and y coordinates, which define the coordinates of
the upper-left corner of the rectangle.
width, height Specify the width and height, which define the rectangle.

The XRectInRegion function returns Rectangleln if the rectangle is entirely in the
specified region, RectangleOut if the rectangle is entirely out of the specified region,
and RectanglePart if the rectangle is partially in the specified region.

March 26, 1992

Application Utility Functions

10.7 Using the Cut and Paste Buffers

Xlib provides functions that you can use to cut and paste buffers for programs using this
form of communications. Selections are a more useful mechanism for interchanging
data between clients because typed information can be exchanged. X provides property
names for properties in which bytes can be stored for implementing cut and paste
between windows (implemented by use of properties on the first root window of the
display). It is up to applications to agree on how to represent the data in the buffers.

The datais most often ISO Latin-1 text. The atoms for eight such buffer names are pro-
vided and can be accessed as a ring or as explicit buffers (numbered O through 7).

(see section 4.4).

To store data in cut buffer 0, use XStoreBytes.

XSt or eByt es (display, bytes, nbytes)
Di spl ay *display;
char *bytes;

i nt nbytes;
display Specifies the connection to the X server.
bytes Specifies the bytes, which are not necessarily ASCII or null-
terminated.
nbytes Specifies the number of bytes to be stored.

Note that the cut buffer’s contents need not be text, so zero bytes are not special. The
cut buffer’s contents can be retrieved later by any client calling XFetchBytes.

XStoreBytes can generate a BadAlloc error.
To store data in a specified cut buffer, use XStoreBuffer.

XSt or eBuf f er (display, bytes, nbytes, buffer)
Di spl ay *display;
char *bytes;

i nt nbytes;
i nt buffer;
display Specifies the connection to the X server.
bytes Specifies the bytes, which are not necessarily ASCII or null-
terminated.
nbytes Specifies the number of bytes to be stored.
buffer Specifies the buffer in which you want to store the bytes.

If the property for the buffer has never been created, aBadAtom error results.

XStoreBuffer can generate BadAlloc and BadAtom errors.

March 26, 1992 10-13

X Window System

To return data from cut buffer 0, use XFetchBytes.

char *XFet chByt es(display, nbytes_return)
Di spl ay *display;
i nt *nbytes_return;

display Specifies the connection to the X server.
nbytes_return Returns the number of bytes in the buffer.

The XFetchBytes function returns the number of bytes in the nbytes return argument, if
the buffer contains data. Otherwise, the function returns NULL and sets nbytes to O.

The appropriate amount of storage is allocated and the pointer returned. The client must
free this storage when finished with it by calling XFree. Note that the cut buffer does
not necessarily contain text, so it may contain embedded zero bytes and may not ter-
minate with a null byte.

To return data from a specified cut buffer, use XFetchBuffer.

char *XFet chBuf f er (display, nbytes return, buffer)
Di spl ay *display;
i nt *nbytes_return;

i nt buffer;
display Specifies the connection to the X server.
nbytes_return Returns the number of bytes in the buffer.
buffer Specifies the buffer from which you want the stored data

returned.

The XFetchBuffer function returns zero to the nbytes return argument if there is no data
in the buffer.

XFetchBuffer can generate a BadValue error.
To rotate the cut buffers, use XRotateBuffers.

XRot at eBuf f er s(display, rotate)
Di spl ay *display;
i nt rotate;

display Specifies the connection to the X server.
rotate Specifies how much to rotate the cut buffers.

The XRotateBuffers function rotates the cut buffers, such that buffer O becomes buffer n,
buffer 1 becomes n + 1 mod 8, and so on. This cut buffer numbering is global to the
display. Note that XRotateBuffers generates BadMatch errors if any of the eight
buffers have not been created.

10-14 March 26, 1992

Application Utility Functions

10.8 Determining the Appropriate Visual Type

A single display can support multiple screens. Each screen can have severa different
visual types supported at different depths. You can use the functions described in this
section to determine which visual to use for your application.

The functions in this section use the visua information masks and the XVisuallnfo
structure, which is defined in <X11/Xutil.h> and contains;

/* Visual information nask bits */

#defi ne VisualNoMask 0x0
#defi ne VisuallDMask Ox1
#defi ne VisualScreenMask 0x2
#defi ne VisualDepthMask 0x4
#defi ne VisualClassMask 0x8
#defi ne VisualRedMaskMask 0x10
#defi ne VisualGreenMaskMask 0x20
#defi ne VisualBlueMaskMask 0x40
#defi ne VisualColormapSizeMask 0x80
#defi ne VisualBitsPerRGBMask 0x100
#defi ne VisualAllMask Ox1FF

/* Val ues */
typedef struct {
Vi sual *vi sual
Vi sual I D vi sual i d;
i nt screen;
unsi gned i nt depth;
i nt class;
unsi gned | ong red_mask;
unsi gned | ong green_mask;
unsi gned | ong bl ue_mask;
i nt col ormap_si ze;
int bits_per_rgb;
} XVi sual I nf o;

To obtain a list of visua information structures that match a specified template, use
XGetVisuallnfo.

XVi sual I nfo *XGet Vi sual | nf o(display, vinfo_mask, vinfo_template, nitems_return)
Di spl ay *display;
| ong vinfo_mask;
XVi sual | nf o *vinfo_template;
i nt *nitems_return;

display Specifies the connection to the X server.
vinfo_mask Specifies the visual mask value.
vinfo_template Specifies the visual attributes that are to be used in matching

the visual structures.

March 26, 1992 10-15

X Window System

10.9

10-16

nitems_return Returns the number of matching visual structures.

The XGetVisualinfo function returns a list of visual structures that have attributes equal
to the attributes specified by vinfo_template. If no visua structures match the template
using the specified vinfo_mask, XGetVisualinfo returns a NULL. To free the data
returned by this function, use XFree.

To obtain the visual information that matches the specified depth and class of the
screen, use XMatchVisualinfo.

St at us XMat chVi sual | nf o(display, screen, depth, class, vinfo_return)
Di spl ay *display;

i nt screen;

i nt depth;

i nt class;

XVi sual | nf o *vinfo_return;
display Specifies the connection to the X server.
screen Specifies the screen.
depth Specifies the depth of the screen.
class Specifies the class of the screen.
vinfo_return Returns the matched visual information.

The XMatchVisuallnfo function returns the visual information for a visual that matches
the specified depth and class for a screen. Because multiple visuals that match the
specified depth and class can exit, the exact visual chosen is undefined. If avisud is
found, XMatchVisualinfo returns nonzero and the information on the visual to
vinfo_return. Otherwise, when avisual is not found, XMatchVisuallnfo returns zero.

Manipulating Images

Xlib provides several functions that perform basic operations on images. All operations
on images are defined using an Xlmage structure, as defined in <X11/Xlib.h>.
Because the number of different types of image formats can be very large, this hides
details of image storage properly from applications.

This section describes the functions for generic operations on images. Manufacturers
can provide very fast implementations of these for the formats frequently encountered
on their hardware. These functions are neither sufficient nor desirable to use for genera
image processing. Rather, they are here to provide minimal functions on screen format
images. The basic operations for getting and putting images are XGetimage and XPu-
timage.

Note that no functions have been defined, as yet, to read and write images to and from
disk files.

March 26, 1992

Application Utility Functions

The XImage structure describes an image as it exists in the client’s memory. The user
can request that some of the members such as height, width, and xoffset be changed
when the image is sent to the server. Note that bytes per_line in concert with offset can
be used to extract a subset of the image. Other members (for example, byte order,
bitmap_unit, and so forth) are characteristics of both the image and the server. If these
members differ between the image and the server, XPutimage makes the appropriate
conversions. The first byte of the first line of plane n must be located at the address
(data + (n * height * bytes per_ling)). For a description of the XImage structure, see
section 6.7.

To alocate sufficient memory for an XImage structure, use XCreatelmage.

Xl mage *XCreat el mage(display, visual, depth, format, offset, data, width, height,
bitmap_pad, bytes per_line)
Di spl ay *display;
Vi sual *visual;
unsi gned i nt depth;
i nt format;
i nt offset;
char *data;
unsi gned i nt width;
unsi gned i nt height;
i nt bitmap_pad;
i nt bytes per_line;

display Specifies the connection to the X server.

visual Specifies the Visual structure.

depth Specifies the depth of the image.

format Specifies the format for the image. You can pass XYBitmap,
XYPixmap, or ZPixmap.

offset Specifies the number of pixels to ignore at the beginning of the
scanline.

data Specifies the image data.

width Specifies the width of the image, in pixels.

height Specifies the height of the image, in pixels.

bitmap_pad Specifies the quantum of a scanline (8, 16, or 32). In other

words, the start of one scanline is separated in client memory
from the start of the next scanline by an integer multiple of this
many bits.

bytes_per_line Specifies the number of bytes in the client image between the
start of one scanline and the start of the next.

The XCreatelmage function allocates the memory needed for an XImage structure for
the specified display but does not allocate space for the image itself. Rather, it initial-
izes the structure byte-order, bit-order, and bitmap-unit values from the display and

March 26, 1992 10-17

X Window System

10-18

returns a pointer to the Ximage structure. The red, green, and blue mask values are
defined for Z format images only and are derived from the Visual structure passed in.
Other values also are passed in. The offset permits the rapid displaying of the image
without requiring each scanline to be shifted into position. If you pass a zero value in
bytes per_line, Xlib assumes that the scanlines are contiguous in memory and calculates
the value of bytes per_line itself.

Note that when the image is created using XCreatelmage, XGetlmage, or XSublm-
age, the destroy procedure that the XDestroylmage function calls frees both the image
structure and the data pointed to by the image structure.

The basic functions used to get a pixel, set a pixel, create a subimage, and add a con-
stant offset to a Z format image are defined in the image object. The functions in this
section are really macro invocations of the functions in the image object and are defined
in <X11/Xutil.h>.

To obtain a pixel value in an image, use XGetPixel.

unsi gned | ong XGet Pi xel (ximage, X, YY)
Xl mage *ximage;
int Xx;
int vy;

ximage Specifies the image.
X,y Specify the x and y coordinates.

The XGetPixel function returns the specified pixel from the named image. The pixel
value is returned in normalized format (that is, the least-significant byte of the long is
the least-significant byte of the pixel). The image must contain the x and y coordi-
nates.

To set apixel value in an image, use XPutPixel.

XPut Pi xel (ximage, X, Yy, pixel)
Xl mage *ximage;

int Xx;

int vy;

unsi gned | ong pixel;
ximage Specifies the image.
X,y Specify the x and y coordinates.
pixel Specifies the new pixel value.

The XPutPixel function overwrites the pixel in the named image with the specified pixel
value. The input pixel value must be in normalized format (that is, the least-significant
byte of the long is the least-significant byte of the pixel). The image must contain the x
and y coordinates.

To create a subimage, use XSublmage.

Xl mage *XSubl mage(ximage, X, Yy, subimage width, subimage_ height)
Xl mage *ximage;

March 26, 1992

Application Utility Functions

int Xx;
int vy;
unsi gned i nt subimage_width;
unsi gned i nt subimage height;

ximage Specifies the image.
X, Y Specify the x and y coordinates.

subimage_width
Specifies the width of the new subimage, in pixels.

subimage_height
Specifies the height of the new subimage, in pixels.

The XSublmage function creates a new image that is a subsection of an existing one.
It allocates the memory necessary for the new Ximage structure and returns a pointer to
the new image. The data is copied from the source image, and the image must contain
the rectangle defined by X, y, subimage width, and subimage_height.

To increment each pixel in the pixmap by a constant value, use XAddPixel.

XAddPi xel (ximage, value)
Xl mage *ximage;
| ong value;

ximage Specifies the image.
value Specifies the constant value that is to be added.

The XAddPixel function adds a constant value to every pixel in an image. It is useful
when you have a base pixel value from alocating color resources and need to manipu-
late the image to that form.

To deallocate the memory allocated in a previous call to XCreatelmage, use XDestroy-
Image.

XDest r oyl mage (ximage)
Xl mage * ximage;

ximage Specifies the image.

The XDestroylmage function deallocates the memory associated with the
XIlmage structure.

Note that when the image is created using XCreatelmage, XGetlmage, or XSublm-
age, the destroy procedure that this macro calls frees both the image structure and the
data pointed to by the image structure.

10.10 Manipulating Bitmaps

Xlib provides functions that you can use to read a bitmap from afile, save a bitmap to a

March 26, 1992 10-19

X Window System

file, or create a bitmap. This section describes those functions that transfer bitmaps to
and from the client’s file system, thus allowing their reuse in a later connection (for
example, from an entirely different client or to a different display or server).

The X version 11 bitmap file format is;

#defi ne name_w dt h width

#def i ne name_hei ght height

#defi ne name_x_hot x

#define name_y hot vy

static char name bits[] = { OxNN, . . . }

The variables ending with _x hot and _y hot suffixes are optional because they are
present only if a hotspot has been defined for this bitmap. The other variables are
required. The _bits array must be large enough to contain the size bitmap. The bitmap
unit is eight. The name is derived from the name of the file that you specified on the
original command line by deleting the directory path and extension.

To read a bitmap from afile, use XReadBitmapFile.

i nt XReadBi t mapFi | e(display, d, filename, width_return, height_return, bitmap_return,
x_hot_return, y_hot_return)
Di spl ay *display;
Dr awabl e d;
char *filename;
unsi gned i nt *width_return, *height return;
Pi xmap *bitmap_return;
i nt *x_hot_return, *y hot_return;

display Specifies the connection to the X server.
d Specifies the drawable.
filename Specifies the file name to use. The format of the file name is

operating-system dependent.

width_return, height_return
Return the width and height values of the read in bitmap file.

bitmap_return Returns the bitmap that is created.

x_hot_return, y_hot_return
Return the hotspot coordinates.

The XReadBitmapFile function reads in a file containing a bitmap. The ability to read
other than the standard format is implementation dependent. If the file cannot be
opened, XReadBitmapFile returns BitmapOpenFailed. If the file can be opened but
does not contain valid bitmap data, it returns BitmapFilelnvalid. If insufficient working
storage is allocated, it returns BitmapNoMemory. If the file is readable and valid, it
returns BitmapsSuccess.

XReadBitmapFile returns the bitmap’s height and width, as read from the file, to
width_return and height_return. It then creates a pixmap of the appropriate size, reads
the bitmap data from the file into the pixmap, and assigns the pixmap to the caller's

10-20 March 26, 1992

Application Utility Functions

variable bitmap. The caller must free the bitmap using XFreePixmap when finished. |f
name_x_hot and name_y_hot exist, XReadBitmapFile returns them to x_hot_return
and y_hot_return; otherwise, it returns —1,—1.

XReadBitmapFile can generate BadAlloc and BadDrawable errors,
To write out a bitmap to afile, use XWriteBitmapFile.

int XWiteBitmapFil e(display, filename, bitmap, width, height, x_hot, y hot)
Di spl ay *display;
char *filename;
Pi xmap bitmap;
unsi gned i nt width, height;
i nt x_hot, y_hot;

display Specifies the connection to the X server.

filename Specifies the file name to use. The format of the file name is
operating-system dependent.

bitmap Specifies the bitmap.

width, height Specify the width and height.

x_hot, y_hot Specify where to place the hotspot coordinates (or —1,—1 if none

are present) in the file.

The XWriteBitmapFile function writes a bitmap out to a file in the X version 11 for-
mat. If the file cannot be opened for writing, it returns BitmapOpenFailed. If
insufficient memory is allocated, XWriteBitmapFile returns BitmapNoMemory; other-
wise, on no error, it returns BitmapSuccess. If x_hot and y_hot are not -1, —1, XWri-
teBitmapFile writes them out as the hotspot coordinates for the bitmap.

XWriteBitmapFile can generate BadDrawable and BadMatch errors.

To create a pixmap and then store bitmap-format data into it, use XCreatePixmap-
FromBitmapData.

Pi xmap XCreat ePi xnapFronBi t mapDat a(display, d, data, width, height, fg, bg, depth)
Di spl ay *display;
Dr awabl e d;
char *data;
unsi gned i nt width, height;
unsi gned | ong fg, bg;
unsi gned i nt depth;

display Specifies the connection to the X server.

d Specifies the drawable that indicates the screen.

data Specifies the data in bitmap format.

width, height Specify the width and height.

fg, bg Specify the foreground and background pixel values to use.

March 26, 1992 10-21

X Window System

depth Specifies the depth of the pixmap.

The XCreatePixmapFromBitmapData function creates a pixmap of the given depth
and then does a bitmap-format XPutimage of the data into it. The depth must be sup-
ported by the screen of the specified drawable, or aBadMatch error results.

XCreatePixmapFromBitmapData can generateBadAlloc and BadMatch errors.

To include a bitmap written out by XWriteBitmapFile in a program directly, as opposed
to reading it in every time at run time, use XCreateBitmapFromData.

Pi xmap XCreat eBi t mapFr onDat a(display, d, data, width, height)
Di spl ay *display;
Dr awabl e d;
char *data;
unsi gned i nt width, height;

display Specifies the connection to the X server.

d Specifies the drawabl e that indicates the screen.
data Specifies the location of the bitmap data
width, height Specify the width and height.

The XCreateBitmapFromData function alows you to include in your C program

(using #include) a bitmap file that was written out by XWriteBitmapFile (X version 11

format only) without reading in the bitmap file. The following example creates a gray

bitmap:

#include "gray.bitmap"

Pixmap bitmap;

bitmap = X CreateBitmapFromData(display, window, gray bits, gray_width,
gray_height);

If insufficient working storage was allocated, XCreateBitmapFromData returns None.

It is your responsibility to free the bitmap using XFreePixmap when finished.

XCreateBitmapFromData can generate a BadAlloc error.

10.11 Using the Resour ce M anager

10-22

The resource manager is a database manager with a twist. In most database systems,
you perform a query using an imprecise specification, and you get back a set of
records. The resource manager, however, alows you to specify a large set of values
with an imprecise specification, to query the database with a precise specification, and
to get back only a single value. This should be used by applications that need to know
what the user prefers for colors, fonts, and other resources. It is this use as a database
for dealing with X resources that inspired the name *‘ Resource Manager,”’ athough the
resource manager can be and is used in other ways.

March 26, 1992

Application Utility Functions

For example, a user of your application may want to specify that all windows should
have a blue background but that all mail-reading windows should have a red back-
ground. Presuming that all applications use the resource manager, a user can define this
information using only two lines of specifications. Your personal resource database
usually is stored in a file and is loaded onto a server property when you log in. This
database is retrieved automatically by Xlib when a connection is opened.

As an example of how the resource manager works, consider a mail-reading application
called xmh. Assume that it is designed so that it uses a complex window hierarchy al
the way down to individual command buttons, which may be actual small subwindows
in some toolkits. These are often called objects or widgets. In such toolkit systems,
each user interface object can be composed of other objects and can be assigned a name
and a class. Fully qualified names or classes can have arbitrary numbers of component
names, but a fully qualified name always has the same number of component names as
a fully qualified class. This generally reflects the structure of the application as com-
posed of these objects, starting with the application itself.

For example, the xmh mail program has a name ‘‘xmh’’ and is one of a class of
““Mail’’ programs. By convention, the first character of class components is capitalized,
and the first letter of name componentsis in lowercase. Each name and class finally has
an attribute (for example ‘‘foreground”’ or ‘‘font’’). If each window is properly
assigned a name and class, it is easy for the user to specify attributes of any portion of
the application.

At the top level, the application might consist of a paned window (that is, a window
divided into several sections) named ‘‘toc’’. One pane of the paned window is a button
box window named ‘‘buttons’ and is filled with command buttons. One of these com-
mand buttons is used to retrieve (include) new mail and has the name *‘include’’. This
window has a fully qualified name, ‘‘xmh.toc.buttons.include’’, and a fully qualified
class, ‘‘Xmh.VPaned.Box.Command'’. Its fully qualified name is the name of its
parent, ‘‘xmh.toc.buttons’’, followed by its name, *‘include’’. Its classis the class of its
parent, ‘*Xmh.VPaned.Box'’, followed by its particular class, ‘*Command’’. The fully
gualified name of a resource is the attribute’s name appended to the object’s fully
qualified name, and the fully qualified class is its class appended to the object’s class.

This include button needs the following resources:
« Title string
 Font
« Foreground color for its inactive state
« Background color for its inactive state
« Foreground color for its active state
« Background color for its active state

Each of the resources that this button needs are considered to be attributes of the button
and, as such, have a name and a class. For example, the foreground color for the button
in its active state might be named ‘*activeForeground'’, and its class would be ‘‘Fore-
ground’’.

March 26, 1992 10-23

X Window System

When an application looks up a resource (for example, a color), it passes the complete
name and complete class of the resource to a look-up routine. After look up, the
resource manager returns the resource value and the representation type.

The resource manager alows applications to store resources by an incomplete
specification of name, class, and a representation type, as well as to retrieve them given
afully qualified name and class.

Resource specifications are usually stored in human-readable files and in server proper-
ties (see XResourceManagerString). The BNF of a resource specification is:

Resourceline = Comment | ResourceSpec

Comment = "I" string | <empty line>

ResourceSpec = WhiteSpace ResourceName WhiteSpace ":" WhiteSpace value
ResourceName = [Binding] ComponentName { Binding ComponentName}
Binding = A

WhiteSpace = """}

ComponentName = {ra'="z* | "A"="Z" | "0 =" | | ")

value = string

string = {<any character not including "\n">}

Note that elements enclosed in curly braces ({...}) indicate zero or more occurrences of
the enclosed elements.

10.11.1 Resource Manager Matching Rules

The agorithm for determining which resource name or nhames match a given query is
the heart of the database. Resources are stored with only partially specified names and
classes, using pattern matching constructs. An asterisk (*) is used to represent any
number of intervening components (including none). A period (.) is used to separate
immediately adjacent components. All queries fully specify the name and class of the
resource needed. A trailing period and asterisk are not removed. The library supports
100 components in a name or class. The look-up agorithm then searches the database
for the name that most closely matches (is most specific) this full name and class. The
rules for amatch in order of precedence are:

1. The attribute of the name and class must match. For example, queries for:

xterm.scrollbar.background (name)
XTerm.Scrollbar.Background (class)

will not match the following database entry:

xterm.scrollbar:on

2. Database entries with name or class prefixed by a period (.) are more specific than
those prefixed by an asterisk (*). For example, the entry xterm.geometry is more

10-24 March 26, 1992

Application Utility Functions

specific than the entry xterm*geometry.

3. Names ae more gpecific than classes. For example, the entry
“**scrollbar.background’”’ is more specific than the entry
“**Scrollbar.Background'”.

4. Specifying a name or class is more specific than omitting either. For example,
the entry ‘‘Scrollbar*Background’’ is more specific than the entry ‘‘*Back-
ground’’.

5. Left components are more specific than right components. For example,
“*vt100* background’’ is more specific than the entry *‘*scrollbar* background’”’
for the query **.vt100.scrollbar.background’’.

6. If neither a period (.) nor an asterisk (*) is specified at the beginning, a period (.)
is implicit. For example, ‘‘xterm.background’’ is identica to
‘* xterm.background’’.

Names and classes can be mixed. As an example of these rules, assume the following
user preference specification:

xmh* background: red
*command.font: 8x13
* command.background: blue
* Command.Foreground: green
xmh.toc* Command.activeForeground: black

A query for the name ‘‘xmh.toc.messagefunctions.include.activeForeground’’ and class
“*Xmh.VPaned.Box.Command.Foreground’”’ would match
“*xmh.toc* Command.activeForeground’’ and return *‘black’. However, it also matches
“**Command.Foreground’’.

Using the precedence algorithm described above, the resource manager would return the
value specified by *‘ xmh.toc* Command.activeForeground’’ .

10.11.2 Basic Resource Manager Definitions

The definitions for the resource manager’s use are contained in <X11/Xresource.h>.
Xlib aso uses the resource manager internally to allow for non-English language error

messages.

Database values consist of a size, an address, and a representation type. The size is
specified in bytes. The representation type is a way for you to store data tagged by
some application-defined type (for example, *‘font’” or ‘‘color’”). It has nothing to do
with the C data type or with its class. The XrmValue structure contains:

typedef struct {
unsi gned int size;
caddr _t addr;

} XrnVal ue, *XrnVal uePtr;

March 26, 1992 10-25

X Window System

A resource database is an opague type used by the look-up functions.
t ypedef struct _XrnHashBucket Rec * XrnDat abase;
To initialize the resource manager, use Xrminitialize.

void Xriminitialize();

Most uses of the resource manager involve defining names, classes, and representation
types as string constants. However, always referring to strings in the resource manager
can be dow, because it is so heavily used in some toolkits. To solve this problem, a
shorthand for a string is used in place of the string in many of the resource manager
functions. Simple comparisons can be performed rather than string comparisons. The
shorthand name for a string is called a quark and is the type XrmQuark. On some
occasions, you may want to alocate a quark that has no string equivalent.

A quark is to a string what an atom is to a string in the server, but its use is entirely
local to your application.

To alocate a new quark, use XrmUniqueQuark.
XrmQuar k Xr mni queQuar k()

The XrmUniqueQuark function alocates a quark that is guaranteed not to represent
any string that is known to the resource manager.

To alocate some memory you will never give back, use Xpermalloc.

char *Xpermal | oc(size)
unsi gned i nt size;

The Xpermalloc function is used by some toolkits for permanently allocated storage
and allows some performance and space savings over the completely general memory
allocator.

Each name, class, and representation type is typedef’d as an XrmQuark.

typedef int XrnQuark, *XrmQuarkLi st;
typedef XrmQuar k XrmNane;

t ypedef XrmQuark XrnC ass;

typedef XrmQuark XrnRepresentation;

Lists are represented as null-terminated arrays of quarks. The size of the array must be
large enough for the number of components used.

typedef XrmQuar kLi st XrmNaneLi st ;
t ypedef XrmQuarkLi st XrnmC asslLi st;

To convert a string to a quark, use XrmStringToQuark.

#define XrnBtringToNanme(string) XrntringToQuar k(string)
#define XrnStringTod ass(string) XrnStringToQuar k(string)
#define XrnBtringToRepresentation(string)XrnStringToQuark(string)
XrmQuar k Xrntri ngToQuar k (string)

char *string;

10-26 March 26, 1992

Application Utility Functions

string Specifies the string for which a quark is to be allocated.
To convert a quark to a string, use XrmQuarkToString.

#define XrmNaneToStri ng(nane) XrmQuar kToSt ri ng(nane)
#define XrnCl assToString(cl ass) XrmQuar kToStri ng(cl ass)
#defi ne XrnRepresentationToString(type) XrmQuar kToStri ng(type)
char *XrnQuar kToSt ri ng(quark)

XrmQuar k quark;

guark Specifies the quark for which the equivalent string is desired.

These functions can be used to convert to and from quark representations. The string
pointed to by the return value must not be modified or freed. If no string exists for that
guark, XrmQuarkToString returns NULL.

To convert a string with one or more components to a quark list, use XrmStringTo-
QuarkList.

#define XrntBtringToNaneLi st (str, nane) XrnStringToQuarkList((str), (nane))
#define XrnStringTod assList(str,class)XrnttringToQuarkList((str), (class))
voi d XrnStringToQuarkLi st (string, quarks_return)

char *string;

XrmQuar kLi st quarks_return;

string Specifies the string for which a quark list is to be allocated.
quarks_return Returns the list of quarks.

The XrmStringToQuarkList function converts the null-terminated string (generaly a
fully qualified name) to a list of quarks. Note that the string must be in the valid
ResourceName format (see section 10.11). The components of the string are separated
by a period or asterisk character.

A binding list is alist of type XrmBindingList and indicates if components of name or
class lists are bound tightly or loosely (that is, if wildcarding of intermediate com-
ponents is specified).

typedef enum { XrmBindTightly, XrmBindLoosely} XrmBinding, * XrmBindingList;

XrmBindTightly indicates that a period separates the components, and XrmBindLoosely
indicates that an asterisk separates the components.

To convert a string with one or more components to a binding list and a quark list, use
XrmStringToBindingQuarkList.

Xr 6t ri ngToBi ndi ngQuar kLi st (string, bindings_return, quarks_return)
char *string;
XrnmBi ndi ngLi st bindings_return;
XrmQuar kLi st quarks_return;

string Specifies the string for which a quark list is to be allocated.

bindings_return
Returns the binding list. The caler must allocate sufficient
space for the binding list before caling XrmStringToBinding-

March 26, 1992 10-27

X Window System

QuarkList.

guarks_return Returns the list of quarks. The caller must alocate sufficient
space for the quarks list before caling XrmStringToBinding-
QuarkList.

Component names in the list are separated by a period or an asterisk character. The
string must be in the format of a valid ResourceName (see section 10.11). If the string
does not start with a period or an asterisk, a Binding, XrmBindTightly is assumed. For
example, ‘‘*ab*c’’ becomes:

guarks a b c
bindings loose tight loose

10.11.3 Resource Database Access

Xlib provides resource management functions that you can use to manipulate resource
databases. The next sections discuss how to:

« Store and get resources
+ Get database levels
« Merge two databases

- Retrieve and store databases

10.11.3.1 Storing Into a Resource Database

10-28

To store resources into the database, use XrmPutResource or XrmQPutResource.
Both functions take a partial resource specification, a representation type, and a value.
This value is copied into the specified database.

voi d XrnPut Resour ce(database, specifier, type, value)
Xr mDat abase *database;
char *specifier;
char *type;
Xrmval ue *value;

database Specifies the resource database.

specifier Specifies a complete or partial specification of the resource.

type Specifies the type of the resource.

value Sp_ecifi% the value of the resource, which is specified as a
string.

March 26, 1992

Application Utility Functions

If database contains NULL, XrmPutResource creates a new database and returns a
pointer to it. XrmPutResource is a convenience function that calls XrmStringToBin-
dingQuarkList followed by:

XrmQPutResource(database, bindings, quarks, XrmStringToQuark(type), value)

voi d Xr nQPut Resour ce(database, bindings, quarks, type, value)
Xr nDat abase *database;
Xr mBi ndi ngLi st bindings;
XrmQuar kLi st quarks;
XrmRepr esent ati on type;
Xr mval ue *value;

database Specifies the resource database.

bindings Specifies alist of bindings.

guarks Specifies the complete or partial name or the class list of the
resource.

type Specifies the type of the resource.

value Sp_ecifi&s the value of the resource, which is specified as a
string.

If database contains NULL, XrmQPutResource creates a new database and returns a
pointer to it.

To add a resource that is specified as a string, use XrmPutStringResource.

voi d XrnPut Stri ngResour ce(database, specifier, value)
XrnDat abase *database;
char *specifier;
char *value;

database Specifies the resource database.

specifier Specifies a complete or partial specification of the resource.

value Specifies the value of the resource, which is specified as a
string.

If database contains NULL, XrmPutStringResource creates a new database and returns
a pointer to it. XrmPutStringResource adds a resource with the specified value to the
specified database. XrmPutStringResource is a convenience function that first calls
XrmStringToBindingQuarkList on the specifier and then calls XrmQPutResource,
using a‘‘String’’ representation type.

To add a string resource using quarks as a specification, use XrmQPutStringResource.

voi d XrnQPut St ri ngResour ce(database, bindings, quarks, value)
XrnDat abase *database;
Xr mBi ndi ngLi st bindings;
XrmQuar kLi st quarks;
char *value;

March 26, 1992 10-29

X Window System

database Specifies the resource database.

bindings Specifies alist of bindings.

guarks Specifies the complete or partial name or the class list of the
resource.

value Specifies the value of the resource, which is specified as a
string.

If database contains NULL, XrmQPutStringResource creates a new database and
returns a pointer to it. XrmQPutStringResource is a convenience routine that con-
structs an XrmValue for the value string (by caling strlen to compute the size) and
then calls XrmQPutResource, using a‘‘ String’’ representation type.

To add a single resource entry that is specified as a string that contains both a name and
avalue, use XrmPutLineResource.

voi d XrnPut Li neResour ce(database, line)
Xr mDat abase *database;
char *line;

database Specifies the resource database.

line Specifies the resource name and value pair as a single string in
the valid Resourceline format (see section 10.11). A single
colon (:) separates the name from the value. Note that comment
lines are not stored.

If database contains NULL, XrmPutLineResource creates a new database and returns a
pointer to it. XrmPutLineResource adds a single resource entry to the specified data-
base. Any white space before or after the name or colon in the line argument is
ignored. The value is terminated by a new-line or a NULL character. To allow values
to contain embedded new-line characters, a‘‘\n’’ is recognized and replaced by a new-
line character. For example, line might have the value ‘‘xterm* background:green\n’’.
Null-terminated strings without a new line are also permitted.

To alow values to contain arbitrary octets, the 4-character sequence \nnn, wheren is a
digit in the range of "0"-"7", is recognized and replaced with a single byte that contains
this sequence interpreted as an octal number. For example, a value containing a NULL
byte can be stored by specifying "\000" in the string.

10.11.3.2 Looking Up from a Resource Database

10-30

To retrieve a resource from a resource database, use XrmGetResource or
XrmQGetResource.

Bool Xrnet Resour ce(database, str_name, str_class, str_type return,
Xr mDat abase database;
char *str_name;
char *str_class;

March 26, 1992

value_return)

Application Utility Functions

char **str_type_return;
XrnVal ue *value_return;

database Specifies the database that is to be used.

str_name Specifies the fully qualified name of the value being retrieved
(as astring).

str_class Specifies the fully qualified class of the value being retrieved
(asastring).

str_type_return
Returns the representation type of the destination (as a string).

value_return Returns the value in the database.

Bool XrnmQGet Resour ce(database, quark _name, quark class, quark_type_return,
value_return)
XrnDat abase database;
XrmNaneLi st quark_name;
XrnCl assLi st quark_class;
XrmRepr esent ati on *quark_type_return;
Xrmval ue *value return;

database Specifies the database that is to be used.

guark_name Specifies the fully qualified name of the value being retrieved
(as a quark).

quark_class Specifies the fully qualified class of the value being retrieved
(as a quark).

guark_type_return
Returns the representation type of the destination (as a quark).

value_return Returns the value in the database.

The XrmGetResource and XrmQGetResource functions retrieve a resource from the
specified database. Both take a fully qualified name/class pair, a destination resource
representation, and the address of a value (size/address pair). The value and returned
type point into database memory; therefore, you must not modify the data.

The database only frees or overwrites entries on XrmPutResource, XrmQPutResource,
or XrmMergeDatabases. A client that is not storing new values into the database or is
not merging the database should be safe using the address passed back at any time until
it exits. If aresource was found, both XrmGetResource and XrmQGetResource return
True; otherwise, they return False.

10.11.3.3 Database Search Lists

Most applications and toolkits do not make random probes into a resource database to
fetch resources. The X toolkit access pattern for a resource database is quite stylized.

March 26, 1992 10-31

X Window System

A series of from 1 to 20 probes are made with only the last name/class differing in each
probe. The XrmGetResource function is at worst a 2n algorithm, where n is the length
of the name/class list. This can be improved upon by the application programmer by
prefetching a list of database levels that might match the first part of a name/class list.

To return alist of database levels, use XrmQGetSearchList.
typedef XrmHashTabl e *XrnSear chLi st ;

Bool XrnXCet Sear chlLi st (database, names, classes, list_return, list_length)
Xr mDat abase database;
Xr mNaneLi st names;
Xr nCl assLi st classes;
XrnSear chlLi st list_return;

i nt list_length;

database Specifies the database that is to be used.

names Specifies alist of resource names.

classes Specifies alist of resource classes.

list_return Returns a search list for further use. The caller must alocate
sufficient space for the list before calling XrmQGetSearchlList.

list_length Specifies the number of entries (not the byte size) allocated for
list_return.

The XrmQGetSearchList function takes a list of names and classes and returns a list of
database levels where a match might occur. The returned list is in best-to-worst order
and uses the same algorithm as XrmGetResource for determining precedence. If
list_return was large enough for the search list, XrmQGetSearchlList returns True; oth-
erwise, it returnsFalse.

The size of the search list that the caller must alocate is dependent upon the number of
levels and wildcards in the resource specifiers that are stored in the database. The worst
case length is 3, where n is the number of name or class components in names or
classes.

When using XrmQGetSearchList followed by multiple probes for resources with a
common name and class prefix, only the common prefix should be specified in the name
and class list to XrmQGetSearchlList.

To search resource database levels for a given resource, use XrmQGet-
SearchResource.

Bool XrnmQGet Sear chResour ce(list, name, class, type return, value_return)
Xr nBear chlLi st list;
XrmName name;
XrmC ass class;
XrnRepr esent ati on *type_return,;
Xrmval ue *value_return;

10-32 March 26, 1992

Application Utility Functions

list Specifies the search list returned by XrmQGetSearchList.
name Specifies the resource name.

class Specifies the resource class.

type_return Returns data representation type.

value_return Returns the value in the database.

The XrmQGetSearchResource function searches the specified database levels for the
resource that is fully identified by the specified name and class. The search stops with
the first match. XrmQGetSearchResource returns True if the resource was found; oth-
erwise, it returns False.

A cal to XrmQGetSearchList with a name and class list containing al but the last
component of a resource name followed by a call to XrmQGetSearchResource with
the last component name and class returns the same database entry as XrmGetResource
and XrmQGetResource with the fully qualified name and class.

10.11.3.4 Merging Resour ce Databases

To merge the contents of one database into another database, use XrmMergeData-
bases.

voi d Xrmver geDat abases(source_db, target _db)
XrmDat abase source_db, *target db;

source_db Specifies the resource database that is to be merged into the tar-
get database.
target_db Specifies the resource database into which the source database

is to be merged.

The XrmMergeDatabases function merges the contents of one database into another.

It may overwrite entries in the destination database. This function is used to combine
databases (for example, an application specific database of defaults and a database of
user preferences). The merge is destructive; that is, the source database is destroyed.

10.11.3.5 Retrieving and Storing Databases

To retrieve a database from disk, use XrmGetFileDatabase.

XrnmDat abase Xrnet Fi | eDat abase(filename)
char *filename;

filename Specifies the resource database file name.

March 26, 1992 10-33

X Window System

The XrmGetFileDatabase function opens the specified file, creates a new resource
database, and loads it with the specifications read in from the specified file. The
specified file must contain lines in the format accepted by XrmPutLineResource. |f it
cannot open the specified file, XrmGetFileDatabase returns NULL.

To store a copy of a database to disk, use XrmPutFileDatabase.

voi d XrnPut Fi | eDat abase(database, stored_db)
Xr mDat abase database;
char *stored_db;

database Specifies the database that is to be used.
stored_db Specifies the file name for the stored database.

The XrmPutFileDatabase function stores a copy of the specified database in the
specified file. The file is an ASCII text file that contains lines in the format that is
accepted by XrmPutLineResource.

To create a database from a string, use XrmGetStringDatabase.

XrnmDat abase XrnCet St ri ngDat abase(data)
char *data;

data Specifies the database contents using a string.

The XrmGetStringDatabase function creates a new database and stores the resources
specified in the specified null-terminated string. XrmGetStringDatabase is similar to
XrmGetFileDatabase except that it reads the information out of a string instead of out
of a file. Each line is separated by a new-line character in the format accepted by
XrmPutLineResource.

To destroy a resource database and free its allocated memory, use Xrm-
DestroyDatabase.

voi d XrnDest r oyDat abase (database)
XrnDat abase database;

database Specifies the resource database.

If database is NULL, XrmDestroyDatabase returns immediately.

10.11.4 Parsing Command Line Options

The XrmParseCommand function can be used to parse the command line arguments
to a program and modify a resource database with selected entries from the command

line.

t ypedef enum {
Xr nopt i onNoAr g, /* Value is specified in XrnOpti onDescRec
Xrroptionl sArg, /* Value is the option string itself */
XrroptionSti ckyArg, /* Value is characters inmmediately foll o

10-34 March 26, 1992

Application Utility Functions

XrnoptionSepArg,/* Value is next argunment in argv */

Xr mopt i onResAr g, /* Resource and val ue in next argunent it
Xr nopt i onSki pArg, /* Ignore this option and the next argum
Xrrmopt i onSki pLi ne, /* lgnore this option and the rest of ar¢
Xrmopt i onSki pNAr gs /* lgnore this option and t he next

} XrmOpti onKi nd;

XrnmOpti onDescRec. val ue argunents in al

Note that XrmoptionSkipArg is equivalent to XrmoptionSkipNArgs with the
XrmOptionDescRec.value field containing the value one. Note aso that the value
zero for XrmoptionSkipNArgs indicates that only the option itself is to be skipped.

t ypedef struct {
char *option;

/* Option specification string in argv */

char *specifier; /* Binding and resource nanme (sans appli
nane) */

XrmOpt i onKi nd ar gKi nd; /* Which style of option it is */

caddr _t val ue; /* Value to provide if XrrmoptionNoArg or

Xrmopti onSki pNArgs */

} XrmOptionDescRec, *XrmOptionDesclLi st;

To load a resource database from a C command line, use XrmParseCommand.

voi d XrnPar seCommand(database, table, table count, name, argc_in_out,

argv_in_out)

Xr nDat abase *database;
XrmOpt i onDescLi st table;
i nt table count;

char *name;
int *argc_ in_o

ut;

char **argv_in_out;

database
table
table_count
name

argc_in_out

argv_in_out

Specifies the resource database.

Specifies the table of command line arguments to be parsed.
Specifies the number of entries in the table.

Specifies the application name.

Specifies the number of arguments and returns the number of
remaining arguments.

Specifies the command line arguments and returns the remain-
ing arguments.

The XrmParseCommand function parses an (argc, argv) pair according to the specified

option table, loads reco

gnized options into the specified database with type ‘‘ String,”’

and modifies the (argc, argv) pair to remove al recognized options.

The specified table is used to parse the command line. Recognized entries in the table

are removed from argv,

and entries are made in the specified resource database. The

table entries contain information on the option string, the option name, the style of

option, and a vaue to

March 26, 1992

provide if the option kind is XrmoptionNoArg. The argc

10-35

X Window System

argument specifies the number of arguments in argv and is set to the remaining number
of arguments that were not parsed. The name argument should be the name of your
application for use in building the database entry. The name argument is prefixed to the
resourceName in the option table before storing the specification. No separating (bind-
ing) character is inserted. The table must contain either a period (.) or an asterisk (*) as
the first character in each resourceName entry. To specify a more completely qualified
resource name, the resourceName entry can contain multiple components.

The following provides a sample standard option table from an X toolkit initialization
function:

static XrnOptionDescRec opTable[] = {

{"-background", "*packground", Xr nopt i onSepAr g,
{"—bd", "*porderCol or", XrnoptionSepArg,
{"-bg", "*pbackground", XrnoptionSepArg,
{"—borderw dt h", "*TopLevel Shel | . border Wdt h",
{"—-bordercol or", "*porderCol or", XrnoptionSepArg,
{"—bw", "*TopLevel Shel | . border W dt h",
{"—di spl ay", ".display", Xr nopt i onSepAr g,
{"-fg", "*foreground", Xrnmopt i onSepAr g,
{"—fn", "*font", Xr nopt i onSepAr g,
{"-font", "*font", Xr mopt i onSepAr g,
{"-foreground", "*foreground", XrnoptionSepArg,
{"—geonetry", ". TopLevel Shel | . geonetry",
{"—=iconic", ". TopLevel Shel |l .iconic",
{"—nane", ". name", Xrmopt i onSepAr g,
{"-reverse", "*reverseVi deo", Xrnopti onNoAr g,
{"=rv", "*reverseVi deo", Xrnopti onNoAr g,
{"-=synchr onous", "*synchronous", Xrnopti onNoArg,
{"-title", ".TopLevel Shel |l . title",

{"=xrnt, NULL, Xrnopt i onResAr g,
1

In this table, if the —background (or —bg) option is used to set background colors, the
stored resource specifier matches al resources of attribute background. If the —bor-
derwidth option is used, the stored resource specifier applies only to border width attri-
butes of class TopLevelShell (that is, outer-most windows, including pop-up windows).
If the —title option is used to set a window name, only the topmost application windows
receive the resource.

When parsing the command line, any unique unambiguous abbreviation for an option
name in the table is considered a match for the option. Note that uppercase and lower-
case matter.

10.12 Using the Context M anager

The context manager provides a way of associating data with a window in your

March 26, 1992

(caddr _t
(caddr _t
(caddr _t
Xrmopti ¢
(caddr _t
Xrmoptic
(caddr _t
(caddr _t
(caddr _t
(caddr _t
(caddr _t
Xrmoptic
Xrnmopti c
(caddr _t
(caddr _t
(caddr _t
(caddr _t
Xrmoptic
(caddr _t

Application Utility Functions

program. Note that this is local to your program; the datais not stored in the server on a
property list. Any amount of data in any number of pieces can be associated with a
window, and each piece of data has a type associated with it. The context manager
requires knowledge of the window and type to store or retrieve data.

Essentially, the context manager can be viewed as a two-dimensional, sparse array: one
dimension is subscripted by the window and the other by a context type field. Each
entry in the array contains a pointer to the data. Xlib provides context management
functions with which you can save data values, get data values, delete entries, and create
a unique context type. The symbols used are in <X11/Xutil.h>.

To save a data value that corresponds to a window and context type, use XSaveCon-
text.

i nt XSaveCont ext (display, w, context, data)
Di spl ay *display;
W ndow w;
XCont ext context;
caddr t data;

display Specifies the connection to the X server.

w Specifies the window with which the data is associated.
context Specifies the context type to which the data belongs.

data Specifies the data to be associated with the window and type.

If an entry with the specified window and type aready exists, XSaveContext overrides
it with the specified context. The XSaveContext function returns a nonzero error code
if an error has occurred and zero otherwise. Possible errors are XCNOMEM (out of
memory).

To get the data associated with a window and type, use XFindContext.

i nt XFi ndCont ext (display, w, context, data_return)
Di spl ay *display;
W ndow w;
XCont ext context;
caddr _t *data return;

display Specifies the connection to the X server.

w Specifies the window with which the data is associated.
context Specifies the context type to which the data belongs.
data_return Returns the data.

Because it is a return value, the data is a pointer. The XFindContext function returns a
nonzero error code if an error has occurred and zero otherwise. Possible errors are
XCNOENT (context-not-found).

To delete an entry for a given window and type, use XDeleteContext.

March 26, 1992 10-37

X Window System

10-38

i nt XDel et eCont ext (display, w, context)
Di spl ay *display;
W ndow w;
XCont ext context;

display Specifies the connection to the X server.
w Specifies the window with which the data is associated.
context Specifies the context type to which the data belongs.

The XDeleteContext function deletes the entry for the given window and type from the
data structure. This function returns the same error codes that XFindContext returns if
called with the same arguments. XDeleteContext does not free the data whose address
was saved.

To create a unique context type that may be used in subsequent calls to XSaveContext
and XFindContext, use XUniqueContext.

XCont ext XUni queCont ext ()

March 26, 1992

Part Il1. X Window System Protocol

Robert W. Scheifler

March 26, 1992 10-39

X Window System

SECTION 1. PROTOCOL FORMATS

Request Format

Every request contains an 8-bit mgjor opcode and a 16-bit length field expressed in
units of four bytes. Every request consists of four bytes of a header (containing the
major opcode, the length field, and a data byte) followed by zero or more additional
bytes of data. The length field defines the total length of the request, including the
header. The length field in a request must equal the minimum length required to con-
tain the request. If the specified length is smaller or larger than the required length, an
error is generated. Unused bytes in a request are not required to be zero. Mgor
opcodes 128 through 255 are reserved for extensions. Extensions are intended to con-
tain multiple requests, so extension requests typically have an additional minor opcode
encoded in the ‘‘spare’’ data byte in the request header. However, the placement and
interpretation of this minor opcode and of all other fields in extension requests are not
defined by the core protocol. Every request on a given connection is implicitly assigned
a sequence number, starting with one, that is used in replies, errors, and events.

Reply Format

Every reply contains a 32-bit length field expressed in units of four bytes. Every reply
consists of 32 bytes followed by zero or more additional bytes of data, as specified in
the length field. Unused bytes within a reply are not guaranteed to be zero. Every reply
also contains the least-significant 16 bits of the sequence number of the corresponding
request.

Error Format

10-40

Error reports are 32 bytes long. Every error includes an 8-bit error code. Error codes
128 through 255 are reserved for extensions. Every error also includes the major and
minor opcodes of the failed request and the least-significant 16 bits of the sequence
number of the request. For the following errors (see section 4), the failing resource ID
is also returned: Colormap, Cursor, Drawable, Font, GContext, IDChoice, Pixmap,
and Window. For Atom errors, the failing atom is returned. For Value errors, the fail-
ing value is returned. Other core errors return no additional data. Unused bytes within
an error are not guaranteed to be zero.

March 26, 1992

Event Format

Events are 32 bytes long. Unused bytes within an event are not guaranteed to be zero.

Every event contains an 8-bit type code. The most-significant bit in this code is set if
the event was generated from a SendEvent request. Event codes 64 through 127 are
reserved for extensions, although the core protocol does not define a mechanism for
selecting interest in such events. Every core event (with the exception of KeymapNo-
tify) also contains the least-significant 16 bits of the sequence number of the last request
issued by the client that was (or is currently being) processed by the server.

SECTION 2. SYNTACTIC CONVENTIONS

The rest of this document uses the following syntactic conventions.
« Thesyntax { ...} encloses aset of aternatives.
« Thesyntax [...] encloses a set of structure components.
+ In general, TYPEs are in uppercase and AlternativeValues are capitalized.

+ Reguests in section 9 are described in the following format:

RequestName

argl: typel

argN: typeN

resultl: typel
resultM: typeM

Errors: kindl, . . . , kindK
Description.

If no - is present in the description, then the request has no reply (it is asynchronous),
although errors may still be reported. If — + is used, then one or more replies can be
generated for a single request.

« Eventsin section 11 are described in the following format:

March 26, 1992 10-41

X Window System

EventName

valuel: typel

valueN: typeN

Description.

SECTION 3. COMMON TYPES

Name

LISTofFOO

BITMASK
LISTofVALUE

OR

WINDOW

10-42

Value

A type name of the form LISTofFOO means a counted list of
elements of type FOO. The size of the length field may vary (it
is not necessarily the same size as a FOO), and in some cases,

it may be implicit. It isfully specified in Appendix F.

Except where explicitly noted, zero-length lists are legal.

The types BITMASK and LISTofVALUE are somewhat special.
Various requests contain arguments of the form:

value-mask: BITMASK
value-list: LISTofVALUE

These are used to allow the client to specify a

subset of a heterogeneous collection of optional arguments.
The value-mask specifies which arguments are to be provided;
each such argument is assigned a unique bit position.

The representation of the BITMASK will typicaly contain
more bits than there are defined arguments.

The unused bits in the value-mask must be zero (or the server
generates aValue error).

The value-list contains one value for each bit set to

1 in the mask, from least-significant to

most-significant bit in the mask. Each value is represented
with four bytes, but the actual value occupies only the
least-significant bytes as required. The values of the

unused bytes do not matter.

A typeof theform “*T1lor ... or Tn"’ meansthe

union of the indicated types. A single-element typeis

given as the element without enclosing braces.

32-bit value (top three bits guaranteed to be zero)

March 26, 1992

PIXMAP
CURSOR
FONT
GCONTEXT
COLORMAP
DRAWABLE
FONTABLE
ATOM
VISUALID
VALUE
BYTE

INT8

INT16
INT32
CARDS8
CARD16
CARD32
TIMESTAMP
BITGRAVITY

WINGRAVITY

BOOL
EVENT

POINTEREVENT

DEVICEEVENT

KEY SYM
KEYCODE
BUTTON
KEYMASK

BUTMASK

KEYBUTMASK

STRINGS8
STRING16

March 26, 1992

32-hit value (top three bits guaranteed to be zero)
32-bit value (top three bits guaranteed to be zero)
32-bit value (top three bits guaranteed to be zero)
32-bit value (top three bits guaranteed to be zero)
32-bit value (top three bits guaranteed to be zero)
WINDOW or PIXMAP

FONT or GCONTEXT

32-bit value (top three bits guaranteed to be zero)
32-bit value (top three bits guaranteed to be zero)
32-bit quantity (used only in LISTofVALUE)

8-hit value

8-bit signed integer

16-bit signed integer

32-hit signed integer

8-bit unsigned integer

16-bit unsigned integer

32-bit unsigned integer

CARD32

{Forget, Static, NorthWest, North, NorthEast, West,
Center, East, SouthWest, South, SoutEast}
{Unmap, Static, NorthWest, North, NorthEast, West,
Center, East, SouthWest, South, SouthEast}

{True, False}

{KeyPress, KeyRelease, OwnerGrabButton, ButtonPress,
ButtonRelease, EnterWindow, LeaveWindow,
PointerMotion, PointerMotionHint, Button1Motion,
Button2Motion, Button3Motion, Button4Motion,
Button5Motion, ButtonMotion, Exposure,
VisibilityChange, StructureNotify, ResizeRedirect,
SubstructureNotify, SubstructureRedirect, FocusChange,
PropertyChange, ColormapChange, KeymapState}
{ButtonPress, ButtonRelease, EnterWindow, LeaveWindow,
PointerMotion, PointerMotionHint, Button1Motion,
Button2Motion, Button3Motion, Button4Motion,
Button5Motion, ButtonMotion,KeymapState}
{KeyPress, KeyRelease, ButtonPress, ButtonRelease,
PointerMotion, Button1Motion, Button2Motion,
Button3Motion, Button4Motion, Button5Motion,
ButtonMotion}

32-bit value (top three bits guaranteed to be zero)
CARDS8

CARDS8

{Shift, Lock, Control, Mod1, Mod2,

Mod3, Mod4, Mod5}

{Buttonl, Button2, Button3, Button4, Button5}
KEYMASK or BUTMASK

LISTofCARDS

LISTofCHAR2B

10-43

X Window System

CHAR2B [bytel, byte2: CARDS]
POINT [x, y: INT16]
RECTANGLE [x,y: INT16

width, height: CARD16]
ARC [X,y: INT16

width, height: CARD16
anglel, angle2: INT16]

HOST [family: {Internet, DECnet, Chaos}
address: LISTofBY TE]

The [x,y] coordinates of a RECTANGLE specify the upper-left corner.

The primary interpretation of large charactersin a STRING16 is that they are composed
of two bytes used to index a 2-D matrix; hence, the use of CHAR2B rather than
CARD16. This corresponds to the J'S/1SO method of indexing 2-byte characters. It is
expected that most large fonts will be defined with 2-byte matrix indexing. For large
fonts constructed with linear indexing, a CHAR2B can be interpreted as a 16-bit
number by treating bytel as the most-significant byte. This means that clients should
aways transmit such 16-bit character values most-significant byte first, as the server
will never byte-swap CHAR2B quantities.

The length, format, and interpretation of a HOST address are specific to the family (see
ChangeHosts request).

SECTION 4. ERRORS

10-44

In general, when a request terminates with an error, the request has no side effects (that
is, there is no partial execution). The only requests for which this is not true are
ChangeWindowAttributes, ChangeGC, PolyText8, PolyTextl6, FreeColors,
StoreColors, and ChangeKeyboardControl.

The following error codes result from various requests as follows:
Error Description

Access An attempt is made to grab
grabbed by another client.

a

key/button

An atempt is made to free a colormap entry

client.

An atempt is made to store into

colormap entry.

a

cor

not

read-only or

An atempt is made to modify the access control

the local host (or otherwise authorized client).

An atempt is made to sdect an event

type

select at atime when another client has already selected it.

Alloc The server failed to alocate

March 26, 1992

the

that

list
only

reque

Note that the explicit listing of Alloc

only covers alocation errors at a very coarse level and is not intended to

server running out of dlocation space in the middle of servic
when a server runs out of alocation P
unspecified, but a server may generate an Alloc

any request for this reason, and clients should be prepared to receive such

discard them.

Atom A value for an ATOM argument does not hame a defined ATOM.

Colormap A value for a COLORMAP argument does
defined COLORMAP.

Cursor A value for a CURSOR argument does not name a defined
CURSOR.

Drawable A value for a DRAWABLE argument does
defined WINDOW or PIXMAP.

Font A value for aFONT argument does not name a defined FONT.
A vadue for a FONTABLE agument does not n
FONT or a defined GCONTEXT.

GContext A value for a GCONTEXT argument does not name

defined GCONTEXT.

IDChoice The value chosen for a resource identifier either

included in the range assigned to the client or is aready in use.

Implementation The server does not implement some aspect

request. A server that generates this error for a core request is deficient. |

not listed for any of the requests, but clients should
receive such errors and handle or discard them.

Length The length of a request is shorter or longer

required to minimally contain the arguments.
The length of a regquest exceeds the n
accepted by the server.

Match An InputOnly window is used as a DRAWABLE.

In a graphics reguest, the GCONTEXT argume
have the same root and depth as the dedtindi

argument.
Some argument (or pair of arguments) has
type and range, but it fals to match in so
required by the request.

Name A font or color of the specified name does

Pixmap A value for a PIXMAP argument does not

defined PIXMAP.

Request The major or minor opcode does not specify

request.

Value Some numeric value falls outside the range

accepted by the request. Unless a specific range is specified for an argL

defined by the argument's type is accepted. Any

as a set of alternatives typicaly can generate
(due to the encoding).
Window A vaue for a WINDOW argument does not name
defined WINDOW.

March 26, 1992 10-45

X Window System

Note: The Atom, Colormap, Cursor, Drawable, Font, GContext, Pixmap,
and Window errors are also used when the argument type is extended
by union with a set of fixed aternatives, for example, <WINDOW or
PointerRoot or None>.

SECTION 5. KEYBOARDS

10-46

A KEYCODE represents a physical (or logical) key. Keycodes lie in the inclusive
range [8,255]. A keycode value carries no intrinsic information, although server imple-
mentors may attempt to encode geometry information (for example, matrix) to be inter-
preted in a server-dependent fashion. The mapping between keys and keycodes cannot
be changed using the protocol.

A KEYSYM is an encoding of a symbol on the cap of a key. The set of defined
KEY SYMs include the character sets Latin 1, Latin 2, Latin 3, Latin 4, Kana, Arabic,
Cyrillic, Greek, Tech, Special, Publish, APL, and Hebrew as well as a set of symbols
common on keyboards (Return, Help, Tab, and so on). KEYSYMs with the most-
significant bit (of the 29 bits) set are reserved as vendor-specific.

A list of KEYSYMsiis associated with each KEY CODE. Thelist is intended to convey
the set of symbols on the corresponding key. If the list (ignoring trailing NoSymbol
entries) is a single KEYSYM “‘K’’, then the list is treated as if it were the list *'K
NoSymbol K NoSymbol’’. If the list (ignoring trailing No-
Symbol entries) is a pair of KEYSYMs ‘K1 K2, then the list is treated as if it were
the list **K1 K2 K1 K2'". If the list (ignoring trailing NoSymbol entries) is a triple of
KEYSYMs ‘K1 K2 K3, then the list is treated as if it were the list *'K1 K2 K3
NoSymbol’’. When an explicit ‘‘void’’ element is desired in the list, the value Void-
Symbol can be used.

The first four elements of the list are split into two groups of KEYSYMs.
Group 1 contains the first and second KEY SYMs, Group 2 contains the third and fourth
KEYSYMs. Within each group, if the second element of the group is NoSymbol, then
the group should be treated as if the second element were the same as the first element,
except when the first element is an alphabetic KEYSYM ‘‘K’’ for which both lowercase
and uppercase forms are defined. In that case, the group should be treated as if the first
element were the lowercase form of ‘‘K’’ and the second element were the uppercase
form of “'K’’.

The standard rules for obtaining a KEYSYM from a KeyPress event make use of only
the Group 1 and Group 2 KEY SYMs; no interpretation of other KEYSYMs in thelist is
defined. The modifier state determines which group to use. Switching between groups
is controlled by the KEYSYM named MODE SWITCH, by attaching that KEYSYM to
some KEYCODE and attaching that KEYCODE to any one of the modifiers Mod1
through Mod5. This modifier is called the *‘group modifier.”” For any KEYCODE,
Group 1 is used when the group modifier is off, and Group 2 is used when the group
modifier is on.

March 26, 1992

Within a group, the modifier state determines which KEYSYM to use. The first
KEYSYM is used when the Shift and Lock modifiers are off. The second KEYSYM is
used when the Shift modifier is on, or when the Lock modifier is on and the second
KEYSYM is uppercase alphabetic, or when the Lock modifier is on and is interpreted as
ShiftL ock. Otherwise, when the Lock modifier is on
and is interpreted as CapsLock, the state of the Shift modifier is applied first to select a
KEYSYM; but if that KEYSYM is lowercase alphabetic, then the corresponding upper-
case KEYSYM is used instead.

The mapping between KEY CODEs and KEY SYMs is not used directly by the server; it
is merely stored for reading and writing by clients.

The KEYMASK modifier named Lock is intended to be mapped to either a CapsLock
or a ShiftLock key, but which one is left as application-specific and/or user-specific.
However, it is suggested that the determination be made according to the associated
KEY SYM(s) of the corresponding KEY CODE.

SECTION 6. POINTERS

Buttons are always numbered starting with one.

SECTION 7. PREDEFINED ATOMS

Predefined atoms are not strictly necessary and may not be useful in al environments,
but they will eliminate many InternAtom requests in most applications. Note that they
are predefined only in the sense of having numeric values, not in the sense of having
required semantics. The core protocol imposes no semantics on these names, but

semantics are specified in other X Consortium standards, see part 111, “‘Inter-Client
Communication Conventions Manual’’ and part IV, **X Logical Font Description Con-
ventions.”’

The following names have predefined atom values. Note that uppercase and lowercase

matter.

ARC ITALIC_ANGLE STRING

ATOM MAX_SPACE SUBSCRIPT_X

BITMAP MIN_SPACE SUBSCRIPT_Y
CAP_HEIGHT NORM_SPACE SUPERSCRIPT_X
CARDINAL NOTICE SUPERSCRIPT_Y
COLORMAP PIXMAP UNDERLINE_POSITION
COPYRIGHT POINT UNDERLINE_THICKNES
CURSOR POINT_SIZE VISUALID
CUT_BUFFERO PRIMARY WEIGHT
CUT_BUFFER1 QUAD_WIDTH WINDOW

March 26, 1992 10-47

X Window System

CUT_BUFFER2
CUT_BUFFER3
CUT_BUFFER4
CUT_BUFFERS5
CUT BUFFER6
CUT _BUFFER?
DRAWABLE
END_SPACE
FAMILY_NAME
FONT
FONT_NAME
FULL_NAME
INTEGER

RECTANGLE
RESOLUTION
RESOURCE_MANAGER
RGB_BEST MAP
RGB_BLUE_MAP
RGB_COLOR_MAP
RGB_DEFAULT_MAP
RGB_GRAY_MAP
RGB_GREEN _MAP
RGB_RED_MAP
SECONDARY
STRIKEOUT _ASCENT

WM_CLASS
WM_CLIENT_MACHINE
WM_COMMAND
WM_HINTS
WM_ICON_NAME
WM_ICON_SIZE
WM_NAME
WM_NORMAL_HINTS
WM_SIZE HINTS
WM_TRANSIENT_FOR
WM_ZOOM_HINTS
X_HEIGHT
STRIKEOUT _DESCENT

To avoid conflicts with possible future names for which semantics might be imposed
(either at the protocol level or in terms of higher level user interface models), names
beginning with an underscore should be used for atoms that are private to a particular
vendor or organization. To guarantee no conflicts between vendors and organizations,
additional prefixes need to be used. However, the protocol does not define the mechan-
ism for choosing such prefixes. For names private to a single application or end user
but stored in globally accessible locations, it is suggested that two leading underscores
be used to avoid conflicts with other names.

SECTION 8. CONNECTION SETUP

For remote clients, the X protocol can be built on top of any reliable byte stream.

Connection Initiation

10-48

The client must send an initial byte of data to identify the byte order to be employed.
The value of the byte must be octal 102 or 154. The value 102 (ASCII uppercase B)
means values are transmitted most-significant byte first, and value 154 (ASCII lower-
case |) means values are transmitted least-significant byte first. Except where explicitly
noted in the protocol, al 16-bit and 32-bit quantities sent by the client must be
transmitted with this byte order, and al 16-bit and 32-bit quantities returned by the
server will be transmitted with this byte order. Following the byte-order byte, the client
sends the following information at connection setup:

protocol-major-version: CARD16
protocol-minor-version: CARD16
authorization-protocol-name: STRING8
authorization-protocol-data: STRING8

March 26, 1992

The version numbers indicate what version of the protocol the client expects the server
to implement.

The authorization name indicates what authorization protocol the client expects the
server to use, and the data is specific to that protocol. Specification of valid authoriza-
tion mechanisms is not part of the core X protocol. It is hoped that eventually one
authorization protocol will be agreed upon. In the meantime, a server that implements a
different protocol than the client expects or that only implements the host-based
mechanism may simply ignore this information. If both name and data strings are
empty, thisisto be interpreted as ‘‘no explicit authorization.”

Server Response

The client receives the following information at connection setup:

success: BOOL
protocol-major-version: CARD16
protocol-minor-version: CARD16
length: CARD16

Length is the amount of additional data to follow, in units of four bytes. The version
numbers are an escape hatch in case future revisions of the protocol are necessary. In
general, the major version would increment for incompatible changes, and the minor
version would increment for small upward compatible changes. Barring changes, the
major version will be 11, and the minor version will be 0. The protocol version
numbers returned indicate the protocol the server actually supports. This might not
equal the version sent by the client.
The server can (but need not) refuse connections from clients that offer a different ver-
sion than the server supports. A server can (but need not) support more than one ver-
sion simultaneously.

The client receives the following additional dataif authorization fails:
reason: STRINGS8
The client receives the following additional data if authorization is accepted:

vendor: STRINGS

release-number: CARD32

resource-id-base, resource-id-mask: CARD32
image-byte-order: {LSBFirst, MSBFirst}
bitmap-scanline-unit: {8, 16, 32}
bitmap-scanline-pad: {8, 16, 32}
bitmap-bit-order: {LeastSignificant, MostSignificant}
pixmap-formats: LISTofFORMAT

roots: LISTof SCREEN

motion-buffer-size: CARD32
maximum-request-length: CARD16

March 26, 1992 10-49

X Window System

min-keycode, max-keycode: KEY CODE
where:

FORMAT: [depth: CARDS8
bits-per-pixd: {1, 4, 8, 16, 24, 32}
scanline-pad: {8, 16, 32}]

SCREEN: [root: WINDOW
width-in-pixels, height-in-pixels: CARD16
width-in-millimeters, height-in-millimeters: CARD16
allowed-depths: LISTof DEPTH
root-depth: CARDS
root-visual: VISUALID
default-colormap: COLORMAP
white-pixel, black-pixel: CARD32
min-installed-maps, max-installed-maps: CARD16
backing-stores. { Never, WhenMapped, Always}
save-unders. BOOL
current-input-masks. SETof EVENT]

DEPTH: [depth: CARDS
visudls: LISTofVISUALTY PE]
VISUALTY PE: [visual-id: VISUALID

class: { StaticGray, StaticColor, TrueColor, GrayScale,
PseudoColor, DirectColor}

red-mask, green-mask, blue-mask: CARD32

bits-per-rgb-value: CARD8

colormap-entries: CARD16]

Server Information

10-50

The information that is global to the server is:

The vendor string gives some identification of the owner of the server implementation.
The vendor controls the semantics of the release number.

The resource-id-mask contains a single contiguous set of bits (at least 18). The client
alocates resource IDs for types WINDOW, PIXMAP, CURSOR, FONT, GCONTEXT,
and COLORMAP by choosing a value with only some subset of these bits set and
ORing it with resource-id-base. Only values constructed in this way can be used to
name newly created resources over this connection. Resource IDs never have the top
three bits set. The client is not restricted to linear or contiguous allocation of resource
IDs. Once an ID has been freed, it can be reused, but this should not be necessary. An
ID must be unique with respect to the IDs of all other resources, not just other resources
of the same type. However, note that the value spaces of resource identifiers, atoms,
visualids, and keysyms are distinguished by context, and as such, are not required to be
digoint; for example, a given numeric value might be both a valid window 1D, a valid
atom, and avalid keysym.

March 26, 1992

Although the server is in general responsible for byte-swapping data to match the client,
images are aways transmitted and received in formats (including byte order) specified
by the server. The byte order for images is given by image-byte-order and applies to
each scanline unit in XY format (bitmap format) and to each pixel vauein Z format.

A bitmap is represented in scanline order. Each scanline is padded to a multiple of bits
as given by bitmap-scanline-pad. The pad bits are of arbitrary value. The scanline is
guantized in multiples of bits as given by bitmap-scanline-unit. The bitmap-scanline-
unit is aways less than or equal to the bitmap-scanline-pad. Within each unit, the left-
most bit in the bitmap is either the least-significant or most-significant bit in the unit, as
given by bitmap-bit-order. If a pixmap is represented in XY format, each plane is
represented as a bitmap, and the planes appear from most-significant to least-significant
in bit order with no padding between planes.

Pixmap-formats contains one entry for each depth value. The entry describes the Z for-
mat used to represent images of that depth. An entry for a depth is included if any
screen supports that depth, and all screens supporting that depth must support only that
Z format for that depth. In Z format, the pixels are in scanline order, left to right within
a scanline. The number of bits used to hold each pixel is given by bits-per-pixel. Bits-
per-pixel may be larger than strictly required by the depth, in which case the least-
significant bits are used to hold the pixmap data, and the values of the unused high-
order bits are undefined. When the bits-per-pixel is 4, the order of nibbles in the byte is
the same as the image byte-order. When the bits-per-pixel is 1, the format is identical
for bitmap format. Each scanline is padded to a multiple of bits as given by scanline-
pad. When bits-per-pixel is 1, this will be identical to bitmap-scan-line-pad.

How a pointing device roams the screens is up to the server implementation and is tran-
gparent to the protocol. No geometry is defined among screens.

The server may retain the recent history of pointer motion and do so to a finer granular-
ity than is reported by MotionNotify events. The GetMotionEvents request makes
such history available. The motion-buffer-size gives the approximate maximum number
of elements in the history buffer.

Maximum-request-length specifies the maximum length of a request accepted by the
server, in 4-byte units. That is, length is the maximum value that can appear in the
length field of a request. Requests larger than this maximum generate a Length error,
and the server will read and simply discard the entire request. Maximum-reguest-length
will always be at least 4096 (that is, requests of length up to and including 16384 bytes
will be accepted by al servers).

Min-keycode and max-keycode specify the smallest and largest keycode values
transmitted by the server. Min-keycode is never less than 8, and
max-keycode is never greater than 255. Not al keycodes in this range are required to
have corresponding keys.

March 26, 1992 10-51

X Window System

Screen I nformation

10-52

The information that applies per screenis:

The allowed-depths specifies what pixmap and window depths are supported. Pixmaps
are supported for each depth listed, and windows of that depth are supported if at |east
one visual type is listed for the depth. A pixmap depth of one is always supported and
listed, but windows of depth one might not be supported. A depth of zero is never
listed, but zero-depth InputOnly windows are aways supported.

Root-depth and root-visual specify the depth and visua type of the root window.
Width-in-pixels and height-in-pixels specify the size of the root window (which cannot
be changed). The class of the root window is aways InputOutput. Width-in-
millimeters and height-in-millimeters can be used to determine the physica size and the
aspect ratio.

The default-colormap is the one initially associated with the root window. Clients with
minimal color requirements creating windows of the same depth as the root may want to
alocate from this map by default.

Black-pixel and white-pixel can be used in implementing a monochrome application.

These pixel values are for permanently allocated entries in the default-colormap. The
actual RGB values may be settable on some screens and, in any case, may not actually
be black and white. The names are intended to convey the expected relative intensity of
the colors.

The border of the root window is initially a pixmap filled with the black-pixel. The ini-
tial background of the root window is a pixmap filled with some unspecified two-color
pattern using black-pixel and white-pixel.

Min-installed-maps specifies the number of maps that can be guaranteed to be installed
simultaneously (with InstallColormap), regardless of the number of entries allocated in
each map. Max-installed-maps specifies the maximum number of maps that might pos-
sibly be installed simultaneously, depending on their alocations. Multiple static-visual
colormaps with identical contents but differing in resource ID should be considered as a
single map for the purposes of this number. For the typica case of a single hardware
colormap, both values will be 1.

Backing-stores indicates when the server supports backing stores for this screen,
although it may be storage limited in the number of windows it can support at once. If
save-undersis True, the server can support the save-under mode in CreateWindow and
ChangeWindowAittributes, although again it may be storage limited.

The current-input-events is what GetwindowAttributes would return for the all-event-
masks for the root window.

March 26, 1992

Visual Information

The information that applies per visual-type is:

A given visua type might be listed for more than one depth or for more than one
screen.

For PseudoColor, a pixel value indexes a colormap to produce independent RGB
values; the RGB values can be changed dynamically. GrayScale is treated in the same
way as PseudoColor except which primary drives the screen is undefined; thus, the
client should always store the same value for red, green, and blue in colormaps. For
DirectColor, a pixel value is decomposed into separate RGB subfields, and each subfield
separately indexes the colormap for the corresponding value. The RGB values can be
changed dynamically. TrueColor is treated in the same way as DirectColor except the
colormap has predefined read-only RGB values. These values are server-dependent but
provide linear or near-linear increasing ramps in each primary. StaticColor is treated in
the same way as PseudoColor except the colormap has predefined read-only RGB
values, which are server-dependent. StaticGray is treated in the same way as Sta-
ticColor except the red, green, and blue values are equal for any single pixel value,
resulting in shades of gray. StaticGray with a two-entry colormap can be thought of as
monochrome.

The red-mask, green-mask, and blue-mask are only defined for DirectColor and
TrueColor. Each has one contiguous set of bits set to 1 with no intersections. Usually
each mask has the same number of bits set to 1.

The bits-per-rgb-value specifies the log base 2 of the number of distinct color intensity
values (individually) of red, green, and blue. This number need not bear any relation to
the number of colormap entries. Actual RGB values are always passed in the protocol
within a 16-bit spectrum, with 0 being minimum intensity and 65535 being the max-
imum intensity. On hardware that provides a linear zero-based intensity ramp, the fol-
lowing relationship exists:

hw-intensity = protocol-intensity / (65536 / total-hw-intensities)

Colormap entries are indexed from 0. The colormap-entries defines the number of
available colormap entries in a newly created colormap. For DirectColor and
TrueColor, this will usually be 2 to the power of the maximum number of bits set to 1
in red-mask, green-mask, and blue-mask.

SECTION 9. REQUESTS

March 26, 1992 10-53

X Window System

CreateWindow

10-54

wid, parent: WINDOW

class: {InputOutput, InputOnly, CopyFromParent}
depth: CARD8

visual: VISUALID or CopyFromParent

X, Y. INT16

width, height, border-width: CARD16
value-mask: BITMASK

value-list: LISTof VALUE

Errors. Alloc, Colormap, Cursor, IDChoice, Match, Pixmap, Value, Window
This request creates an unmapped window and assigns the identifier wid to it.

A class of CopyFromParent means the class is taken from the parent. A depth of zero
for class InputOutput or CopyFromParent means the depth is taken from the parent.

A visua of CopyFromParent means the visua type is taken from the parent. For class
InputOutput, the visual type and depth must be a combination supported for the screen
(or aMatch error results). The depth need not be the same as the parent, but the parent
must not be of class InputOnly (or a Match error results). For class InputOnly, the
depth must be zero (or a Match error results), and the visual must be one supported for
the screen (or a Match error results). However, the parent can have any depth and
class.

The server essentially acts as if InputOnly windows do not exist for the purposes of
graphics reguests, exposure processing, and VisibilityNotify events. An InputOnly
window cannot be used as a drawable (as a source or destination for graphics requests).
InputOnly and InputOutput windows act identically in other respects—properties,
grabs, input control, and so on.

The window is placed on top in the stacking order with respect to siblings.
The x and y coordinates are relative to the parent’s origin and specify the position of the
upper-left outer corner of the window (not the origin). The width and height specify the
inside size (not including the border) and must be nonzero (or a VValue error results).

The border-width for an InputOnly window must be zero (or aMatch error results).

The value-mask and value-list specify attributes of the window that are to be explicitly
initialized. The possible values are:

Attribute Type

background-pixmap PIXMAP or None or ParentRelative
background-pixel CARD32

border-pixmap PIXMAP or CopyFromParent
border-pixel CARD32

bit-gravity BITGRAVITY

win-gravity WINGRAVITY

March 26, 1992

backing-store {NotUseful, WhenMapped, Always}

backing-planes CARD32

backing-pixel CARD32

save-under BOOL

event-mask SETof EVENT
do-not-propagate-mask SETof DEVICEEVENT
override-redirect BOOL

colormap COLORMAP or CopyFromParent
cursor CURSOR or None

The default values when attributes are not explicitly initialized are:

Attribute Default
background-pixmap None
border-pixmap CopyFromParent
bit-gravity Forget
win-gravity NorthWest
backing-store NotUseful
backing-planes al ones
backing-pixel zero

save-under False

event-mask {} (empty set)
do-not-propagate-mask {} (empty set)
override-redirect False

colormap CopyFromParent
cursor None

Only the following attributes are defined for InputOnly windows:
« win-gravity
« event-mask
« do-not-propagate-mask
« override-redirect
« cursor
It isaMatch error to specify any other attributes for InputOnly windows.

If background-pixmap is given, it overrides the default background-pixmap. The back-
ground pixmap and the window must have the same root and the same depth (or a
Match error results). Any size pixmap can be used, although some sizes may be faster
than others. If background None is specified, the window has no defined background.

If background ParentRelative is specified, the parent’s background is used, but the
window must have the same depth as the parent (or a Match error results). If the
parent has background None, then the window will also have background None. A
copy of the parent’s background is not made. The parent’s background is reexamined
each time the window background is required. If background-pixel is given, it overrides
the default background-pixmap and any background-pixmap given explicitly, and a

March 26, 1992 10-55

X Window System

10-56

pixmap of undefined size filled with background-pixel is used for the background.
Range checking is not performed on the background-pixel value; it is simply truncated
to the appropriate number of bits. For a ParentRelative background, the background
tile origin aways aligns with the parent’s background tile origin. Otherwise, the back-
ground tile origin is always the window origin.

When no valid contents are available for regions of a window and the regions are either
visible or the server is maintaining backing store, the server automatically tiles the
regions with the window’s background unless the window has a background of None.
If the background is None, the previous screen contents from other windows of the
same depth as the window are simply left in place if the contents come from the parent
of the window or an inferior of the parent; otherwise, the initial contents of the exposed
regions are undefined. Exposure events are then generated for the regions, even if the
background is None.

The border tile origin is aways the same as the background tile origin. If border-
pixmap is given, it overrides the default border-pixmap. The border pixmap and the
window must have the same root and the same depth (or a Match error results). Any
size pixmap can be used, although some sizes may be faster than others. If CopyFrom-
Parent is given, the parent's border pixmap is copied (subsequent changes to the
parent’s border attribute do not affect the child), but the window must have the same
depth as the parent (or a Match error results). The pixmap might be copied by sharing
the same pixmap object between the child and parent or by making a complete copy of
the pixmap contents. |f border-pixel is given, it overrides the default border-pixmap
and any border-pixmap given explicitly, and a pixmap of undefined size filled with
border-pixel is used for the border. Range checking is not performed on the border-
pixel value; it is simply truncated to the appropriate number of bits.

Output to a window is always clipped to the inside of the window, so that the border is
never affected.

The bit-gravity defines which region of the window should be retained if the window is
resized, and win-gravity defines how the window should be repositioned if the parent is
resized (see ConfigureWindow request).

A backing-store of WhenMapped advises the server that maintaining contents of
obscured regions when the window is mapped would be beneficial. A backing-store of
Always advises the server that maintaining contents even when the window is
unmapped would be beneficial. In this case, the server may generate an exposure event
when the window is created. A value of NotUseful advises the server that maintaining
contents is unnecessary, although a server may still choose to maintain contents while
the window is mapped. Note that if the server maintains contents, then the server
should maintain complete contents not just the region within the parent boundaries,
even if the window is larger than its parent. While the server maintains contents, expo-
sure events will not normally be generated, but the server may stop maintaining con-
tents at any time.

If save-under is True, the server is advised that when this window is mapped, saving the
contents of windows it obscures would be beneficial.

March 26, 1992

When the contents of obscured regions of a window are being maintained, regions
obscured by noninferior windows are included in the destination (and source, when the
window is the source) of graphics requests, but regions obscured by inferior windows
are not included.

The backing-planes indicates (with bits set to 1) which bit planes of the window hold
dynamic data that must be preserved in backing-stores and during save-unders. The
backing-pixel specifies what value to use in planes not covered by backing-planes. The
server is free to save only the specified bit planes in the backing-store or save-under and
regenerate the remaining planes with the specified pixel value. Any bits beyond the
specified depth of the window in these values are simply ignored.

The event-mask defines which events the client is interested in for this window (or for
some event types, inferiors of the window). The do-not-propagate-mask defines which
events should not be propagated to ancestor windows when no client has the event type
selected in this window.

The override-redirect specifies whether map and configure requests on this window
should override a SubstructureRedirect on the parent, typically to inform a window
manager not to tamper with the window.

The colormap specifies the colormap that best reflects the true colors of the window.

Servers capable of supporting multiple hardware colormaps may use this information,
and window managers may use it for InstallColormap requests. The colormap must
have the same visua type as the window (or a Match error results). |If CopyFrom-
Parent is specified, the parent’s colormap is copied (subsequent changes to the parent’s
colormap attribute do not affect the child). However, the window must have the same
visual type as the parent (or a Match error results), and the parent must not have a
colormap of None (or a Match error results). For an explanation of None, see
FreeColormap request. The colormap is copied by sharing the colormap object
between the child and the parent, not by making a complete copy of the colormap con-
tents.

If a cursor is specified, it will be used whenever the pointer is in the window. If None
is specified, the parent’s cursor will be used when the pointer is in the window, and any
change in the parent’s cursor will cause an immediate change in the displayed cursor.

This request generates aCreateNotify event.

The background and border pixmaps and the cursor may be freed immediately if no
further explicit references to them are to be made.

Subsequent drawing into the background or border pixmap has an undefined effect on
the window state. The server might or might not make a copy of the pixmap.

March 26, 1992 10-57

X Window System

ChangeWindowAttributes

10-58

window: WINDOW
value-mask: BITMASK
value-list: LISTofVALUE

Errors. Access, Colormap, Cursor, Match, Pixmap, Value, Window

The value-mask and value-list specify which attributes are to be changed. The values
and restrictions are the same as for CreateWindow.

Setting a new background, whether by background-pixmap or background-pixel, over-
rides any previous background. Setting a new border, whether by border-pixel or
border-pixmap, overrides any previous border.

Changing the background does not cause the window contents to be changed. Setting
the border or changing the background such that the border tile origin changes causes
the border to be repainted. Changing the background of a root window to None or
ParentRelative restores the default background pixmap. Changing the border of a root
window to CopyFromParent restores the default border pixmap.

Changing the win-gravity does not affect the current position of the window.

Changing the backing-store of an obscured window to WhenMapped or Always or
changing the backing-planes, backing-pixel, or save-under of a mapped window may
have no immediate effect.

Multiple clients can select input on the same window; their event-masks are digoint.
When an event is generated, it will be reported to al interested clients. However, only
one client at a time can select for SubstructureRedirect, only one client at a time can
select for ResizeRedirect, and only one client at a time can select for ButtonPress. An
attempt to violate these restrictions results in an Access error.

There is only one do-not-propagate-mask for a window, not one per client.

Changing the colormap of a window (by defining a new map, not by changing the con-
tents of the existing map) generates a ColormapNotify event. Changing the colormap
of a visible window might have no immediate effect on the screen (see InstallColor-
map request).

Changing the cursor of aroot window to None restores the default cursor.

The order in which attributes are verified and altered is server-dependent. If an error is
generated, a subset of the attributes may have been altered.

March 26, 1992

GetWindowAttributes

window: WINDOW

visual: VISUALID

class: { InputOutput, InputOnly}

bit-gravity: BITGRAVITY

win-gravity: WINGRAVITY

backing-store: { NotUseful, WhenMapped, Always}
backing-planes: CARD32

backing-pixel: CARD32

save-under: BOOL

colormap: COLORMAP or None

map-is-installed: BOOL

map-state: { Unmapped, Unviewable, Viewable}
al-event-masks, your-event-mask: SETOfEVENT
do-not-propagate-mask: SETof DEVICEEVENT
override-redirect: BOOL

Errors: Window

This request returns the current attributes of the window. A window is Unviewable if
it is mapped but some ancestor is unmapped. All-event-masks is the inclusive-OR of
al event masks selected on the window by clients. Y our-event-mask is the event mask
selected by the querying client.

DestroyWindow

window: WINDOW

Errors: Window

If the argument window is mapped, an UnmapWindow request is performed automati-
cally. The window and al inferiors are then destroyed, and a DestroyNotify event is
generated for each window. The ordering of the DestroyNotify events is such that for
any given window, DestroyNotify is generated on al inferiors of the window before
being generated on the window itself. The ordering among siblings and across
subhierarchies is not otherwise constrained.

Normal exposure processing on formerly obscured windows is performed.

If the window is aroot window, this request has no effect.

March 26, 1992 10-59

X Window System

DestroySubwindows

window: WINDOW

Errors. Window

This request performs a DestroyWindow request on al children of the window, in
bottom-to-top stacking order.

ChangeSaveSet

window: WINDOW
mode: {Insert, Delete}
Errors. Match, Value, Window

This request adds or removes the specified window from the client’s save-set. The win-
dow must have been created by some other client (or a Match error results). For
further information about the use of the save-set, see section 10.

When windows are destroyed, the server automatically removes them from the save-set.

ReparentWindow

10-60

window, parent: WINDOW
X, Y:INT16

Errors. Match, Window

If the window is mapped, an UnmapWindow request is performed automatically first.

The window is then removed from its current position in the hierarchy and is inserted as
a child of the specified parent. The x and y coordinates are relative to the parent’s ori-
gin and specify the new position of the upper-left outer corner of the window. The win-
dow is placed on top in the stacking order with respect to siblings. A ReparentNotify
event is then generated. The override-redirect attribute of the window is passed on in

March 26, 1992

this event; a value of True indicates that a window manager should not tamper with this
window. Finaly, if the window was originaly mapped, aMapWindow request is per-
formed automatically.

Normal exposure processing on formerly obscured windows is performed. The server
might not generate exposure events for regions from the initial unmap that are immedi-
ately obscured by the final map.

A Match error is generated if:
« The new parent is not on the same screen as the old parent.
« The new parent is the window itself or an inferior of the window.

» The window has a ParentRelative background, and the new parent is not the same
depth as the window.

MapWindow

window: WINDOW

Errors: Window
If the window is aready mapped, this request has no effect.

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirect on the parent, then a MapRequest event is generated,
but the window remains unmapped. Otherwise, the window is mapped, and a MapNo-
tify event is generated.

If the window is now viewable and its contents have been discarded, the window is tiled
with its background (if no background is defined, the existing screen contents are not
atered), and zero or more exposure events are generated. |f a backing-store has been
maintained while the window was unmapped, no exposure events are generated. If a
backing-store will now be maintained, a full-window exposure is aways generated.

Otherwise, only visible regions may be reported. Similar tiling and exposure take place
for any newly viewable inferiors.

M apSubwindows

window: WINDOW

March 26, 1992 10-61

X Window System

Errors: Window

This request performs a MapWindow request on al unmapped children of the window,
in top-to-bottom stacking order.

UnmapWindow

window: WINDOW

Errors: Window

If the window is already unmapped, this request has no effect. Otherwise, the window

is unmapped, and an UnmapNotify event is generated. Normal exposure processing on
formerly obscured windows is performed.

UnmapSubwindows

window: WINDOW

Errors: Window

This request performs an UnmapWindow request on al mapped children of the win-
dow, in bottom-to-top stacking order.

ConfigureWindow

10-62

window: WINDOW
value-mask: BITMASK
value-list: LISTofVALUE

Errors: Match, Value, Window

This regquest changes the configuration of the window. The value-mask and value-list
specify which values are to be given. The possible values are:

March 26, 1992

Attribute Type

X INT16

y INT16

width CARD16

height CARD16

border-width CARD16

sibling WINDOW

stack-mode { Above, Below, Toplf, Bottomlf, Opposite}

The x and y coordinates are relative to the parent’s origin and specify the position of the
upper-left outer corner of the window. The width and height specify the inside size, not
including the border, and must be nonzero (or a VValue error results). Those values not
specified are taken from the existing geometry of the window. Note that changing just
the border-width leaves the outer-left corner of the window in a fixed position but
moves the absolute position of the window’s origin. It is a Match error to attempt to
make the border-width of an InputOnly window nonzero.

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirect on the parent, a ConfigureRequest event is generated,
and no further processing is performed. Otherwise, the following is performed:

If some other client has selected ResizeRedirect on the window and the inside width or
height of the window is being changed, a ResizeRequest event is generated, and the
current inside width and height are used instead. Note that the override-redirect attri-
bute of the window has no effect on ResizeRedirect and that SubstructureRedirect on
the parent has precedence over ResizeRedirect on the window.

The geometry of the window is changed as specified, the window is restacked among
siblings, and a ConfigureNotify event is generated if the state of the window actualy
changes. If the inside width or height of the window has actually changed, then chil-
dren of the window are affected, according to their win-gravity. Exposure processing is
performed on formerly obscured windows (including the window itself and its inferiors
if regions of them were obscured but now are not). Exposure processing is also per-
formed on any new regions of the window (as a result of increasing the width or height)
and on any regions where window contents are |ost.

If the inside width or height of awindow is not changed but the window is moved or its
border is changed, then the contents of the window are not lost but move with the win-
dow. Changing the inside width or height of the window causes its contents to be
moved or lost, depending on the bit-gravity of the window. It also causes children to
be reconfigured, depending on their win-gravity. For a change of width and height of
W and H, we define the [X, y] pairs as:

Direction Deltas
NorthWest [0, 0]
North [W/2, 0]
NorthEast [W, 0]

March 26, 1992 10-63

X Window System

10-64

West [0, H/2]
Center [W/2, H/2]
East [W, H/2]
SouthWest [0, H]
South [W/2, H]
SouthEast [W, H]

When a window with one of these bit-gravities is resized, the corresponding pair defines
the change in position of each pixel in the window. When a window with one of these
win-gravities has its parent window resized, the corresponding pair defines the change
in position of the window within the parent. This repositioning generates a GravityNo-
tify event. GravityNotify events are generated after the ConfigureNotify event is gen-
erated.

A gravity of Static indicates that the contents or origin should not move relative to the
origin of the root window. If the change in size of the window is coupled with a
change in position of [X, Y], then for bit-gravity the change in position of each pixel is
[-X, =Y] and for win-gravity the change in position of a child when its parent is so
resized is [-X, —Y]. Note that Static gravity still only takes effect when the width or
height of the window is changed, not when the window is smply moved.

A bit-gravity of Forget indicates that the window contents are always discarded after a
size change, even if backing-store or save-under has been requested. The window is
tiled with its background (except, if no background is defined, the existing screen con-
tents are not altered) and zero or more exposure events are generated.

The contents and borders of inferiors are not affected by their parent’s bit-gravity. A
server is permitted to ignore the specified bit-gravity and use Forget instead.

A win-gravity of Unmap is like NorthWest, but the child is also unmapped when the
parent is resized, and an UnmapNotify event is generated. UnmapNotify events are
generated after the ConfigureNotify event is generated.

If asibling and a stack-mode are specified, the window is restacked as follows:

Above The window is placed just above the sibling.
Below The window is placed just below the sibling.
Toplf If the sibling occludes the window, then the window is placed

at the top of the stack.

Bottomlf If the window occludes the sibling, then the window is placed
a the bottom of the stack.

Opposite If the sibling occludes the window, then the window is placed
at the top of the stack. Otherwise, if the window occludes the
sibling, then the window is placed at the bottom of the stack.

If a stack-mode is specified but no sibling is specified, the window is restacked as fol-
lows:

Above The window is placed at the top of the stack.

March 26, 1992

Below The window is placed at the bottom of the stack.

Toplf If any sibling occludes the window, then the window is placed
at the top of the stack.

Bottomlf If the window occludes any sibling, then the window is placed
at the bottom of the stack.

Opposite If any sibling occludes the window, then the window is placed
at the top of the stack. Otherwise, if the window occludes any
sibling, then the window is placed at the bottom of the stack.

It is aMatch error if asibling is specified without a stack-mode or if the window is not
actually a sibling.

Note that the computations for Bottomlf, Toplf, and Opposite are performed with
respect to the window’s final geometry (as controlled by the other arguments to the
reguest), not to itsinitial geometry.

Attempts to configure a root window have no effect.

CirculateWindow

window: WINDOW
direction: {RaiseLowest, LowerHighest}

Errors. Value, Window

If some other client has selected SubstructureRedirect on the window, then a Circula-
teRequest event is generated, and no further processing is performed. Otherwise, the
following is performed, and then a CirculateNotify event is generated if the window is
actually restacked.

For RaiseLowest, CirculateWindow raises the lowest mapped child (if any) that is
occluded by another child to the top of the stack. For LowerHighest, CirculateWin-
dow lowers the highest mapped child (if any) that occludes another child to the bottom
of the stack. Exposure processing is performed on formerly obscured windows.

GetGeometry

drawable: DRAWABLE

—

March 26, 1992 10-65

X Window System

root: WINDOW

depth: CARDS8

X, ¥: INT16

width, height, border-width: CARD16

Errors: Drawable

This request returns the root and current geometry of the drawable. The depth is the
number of bits per pixel for the object. The x, y, and border-width will always be zero
for pixmaps. For a window, the x and y coordinates specify the upper-left outer corner
of the window relative to its parent’s origin, and the width and height specify the inside
size, not including the border.

It is legal to pass an InputOnly window as a drawable to this request.

QueryTree

window: WINDOW

—

root: WINDOW
parent: WINDOW or None
children: LISTof WINDOW

Errors. Window

This request returns the root, the parent, and the children of the window. The children
are listed in bottom-to-top stacking order.

| nternAtom

10-66

name: STRINGS8
only-if-exists: BOOL

atom: ATOM or None

Errors: Alloc, Value

This request returns the atom for the given name. If only-if-exists is False, then the
atom is created if it does not exist. The string should use the ISO Latin-1 encoding.
Uppercase and lowercase matter.

March 26, 1992

The lifetime of an atom is not tied to the interning client. Atoms remained defined until
server reset (see section 10).

GetAtomName

atom: ATOM

name: STRINGS8

Errors. Atom

This request returns the name for the given atom.

ChangeProperty

window: WINDOW

property, type: ATOM

format: {8, 16, 32}

mode: {Replace, Prepend, Append}

data: LISTofINT8 or LISTofINT16 or LISTofINT32

Errors. Alloc, Atom, Match, Value, Window

This request alters the property for the specified window. The type is uninterpreted by
the server. The format specifies whether the data should be viewed as a list of 8-hit,
16-bit, or 32-bit quantities so that the server can correctly byte-swap as necessary.

If the mode is Replace, the previous property value is discarded. If the mode is
Prepend or Append, then the type and format must match the existing property value
(or aMatch error results). If the property is undefined, it is treated as defined with the
correct type and format with zero-length data. For Prepend, the data is tacked on to
the beginning of the existing data, and for Append, it is tacked on to the end of the
existing data.

This request generates aPropertyNotify event on the window.

The lifetime of a property is not tied to the storing client. Properties remain until expli-
citly deleted, until the window is destroyed, or until server reset (see section 10).

The maximum size of a property is server-dependent and may vary dynamically.

March 26, 1992 10-67

X Window System

DeleteProperty

window: WINDOW
property: ATOM
Errors. Atom, Window

This request deletes the property from the specified window if the property exists and
generates aPropertyNotify event on the window unless the property does not exist.

GetProperty

10-68

window: WINDOW

property: ATOM

type: ATOM or AnyPropertyType

long-offset, long-length: CARD32

delete: BOOL

type: ATOM or None

format: {0, 8, 16, 32}

bytes-after: CARD32

value: LISTofINT8 or LISTofINT16 or LISTofINT32

Errors. Atom, VValue, Window

If the specified property does not exist for the specified window, then the return type is
None, the format and bytes-after are zero, and the value is empty. The delete argument
is ignored in this case. If the specified property exists but its type does not match the
specified type, then the return type is the actual type of the property, the format is the
actual format of the property (never zero), the bytes-after is the length of the property in
bytes (even if the format is 16 or 32), and the value is empty. The delete argument is
ignored in this case. If the specified property exists and either AnyPropertyType is
specified or the specified type matches the actual type of the property, then the return
type is the actua type of the property, the format is the actual format of the property
(never zero), and the bytes-after and value are as follows, given:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)
| =4 * long-offset

March 26, 1992

NT—<
L = MINIMUM(T, 4 * long-length)
A=N-(+L)

The returned value starts at byte index | in the property (indexing from 0), and its
length in bytesis L. However, it is aValue error if long-offset is given such that L is
negative. The value of bytes-after is A, giving the number of trailing unread bytes in
the stored property. If delete is True and the bytes-after is zero, the property is also
deleted from the window, and aPropertyNotify event is generated on the window.

RotateProperties

window: WINDOW
delta: INT16
properties: LISTofATOM

Errors. Atom, Match, Window

If the property names in the list are viewed as being numbered starting from zero, and
there are N property names in the list, then the value associated with property name |
becomes the value associated with property name (I + delta) mod N, for al | from zero
to N — 1. The effect is to rotate the states by delta places around the virtua ring of pro-
perty names (right for positive delta, |eft for negative delta).

If delta mod N is nonzero, a PropertyNotify event is generated for each property in the
order listed.

If an atom occurs more than once in the list or no property with that name is defined for
the window, a Match error is generated. If an Atom or Match error is generated, no
properties are changed.

ListProperties

window: WINDOW

atoms; LISTofATOM

Errors. Window

This request returns the atoms of properties currently defined on the window.

March 26, 1992 10-69

X Window System

SetSelectionOwner

selection: ATOM
owner: WINDOW or None
time: TIMESTAMP or CurrentTime

Errors. Atom, Window

This regquest changes the owner, owner window, and last-change time of the specified
selection. This request has no effect if the specified time is earlier than the current last-
change time of the specified selection or is later than the current server time. Other-
wise, the last-change time is set to the specified time with CurrentTime replaced by the
current server time. |If the owner window is specified as None, then the owner of the
selection becomes None (that is, no owner). Otherwise, the owner of the selection
becomes the client executing the request. If the new owner (whether a client or None)
is not the same as the current owner and the current owner is not None, then the current
owner is sent aSelectionClear event.

If the client that is the owner of a selection is later terminated (that is, its connection is
closed) or if the owner window it has specified in the request is later destroyed, then the
owner of the selection automatically reverts to None, but the last-change time is not
affected.

The selection atom is uninterpreted by the server. The owner window is returned by the
GetSelectionOwner request and is reported in SelectionRequest and SelectionClear
events.

Selections are global to the server.

GetSelectionOwner

10-70

selection: ATOM

—

owner: WINDOW or None

Errors. Atom

This reguest returns the current owner window of the specified selection, if any. If
None is returned, then there is no owner for the selection.

March 26, 1992

ConvertSdaection

selection, target: ATOM

property: ATOM or None
requestor : WINDOW

time: TIMESTAMP or CurrentTime

Errors. Atom, Window

If the specified selection has an owner, the server sends a SelectionRequest event to
that owner. If no owner for the specified selection exists, the server generates a Selec-
tionNotify event to the requestor with property None. The arguments are passed on
unchanged in either of the events.

SendEvent

destination: WINDOW or PointerWindow or InputFocus
propagate: BOOL

event-mask: SETofEVENT

event: <normal-event-format>

Errors. Value, Window

If PointerWindow is specified, destination is replaced with the window that the pointer
isin. If InputFocus is specified and the focus window contains the pointer, destination
is replaced with the window that the pointer is in. Otherwise, destination is replaced
with the focus window.

If the event-mask is the empty set, then the event is sent to the client that created the
destination window. If that client no longer exists, no event is sent.

If propagate is False, then the event is sent to every client selecting on destination any
of the event types in event-mask.

If propagate is True and no clients have selected on destination any of the event typesin
event-mask, then destination is replaced with the closest ancestor of destination for
which some client has selected a type in event-mask and no intervening window has
that type in its do-not-propagate-mask. If no such window exists or if the window is an
ancestor of the focus window and InputFocus was originally specified as the destina-
tion, then the event is not sent to any clients. Otherwise, the event is reported to every

March 26, 1992 10-71

X Window System

client selecting on the final destination any of the types specified in event-mask.

The event code must be one of the core events or one of the events defined by an exten-
sion (or aValue error results) so that the server can correctly byte-swap the contents as
necessary. The contents of the event are otherwise unaltered and unchecked by the
server except to force on the most-significant bit of the event code and to set the
sequence number in the event correctly.

Active grabs are ignored for this request.

GrabPointer

10-72

grab-window: WINDOW

owner-events: BOOL

event-mask: SETofPOINTEREVENT

pointer-mode, keyboard-mode: {Synchronous, Asynchronous}
confine-to: WINDOW or None

cursor: CURSOR or None

time: TIMESTAMP or CurrentTime

status: {Success, AlreadyGrabbed, Frozen, InvalidTime, NotViewable}

Errors. Cursor, Value, Window

This request actively grabs control of the pointer. Further pointer events are only
reported to the grabbing client. The request overrides any active pointer grab by this
client.

If owner-events is False, all generated pointer events are reported with respect to grab-
window and are only reported if selected by event-mask. If owner-events is True and a
generated pointer event would normally be reported to this client, it is reported nor-
mally. Otherwise, the event is reported with respect to the grab-window and is only
reported if selected by event-mask.
For either value of owner-events, unreported events are ssimply discarded.

If pointer-mode is Asynchronous, pointer event processing continues normally. If the
pointer is currently frozen by this client, then processing of pointer events is resumed.

If pointer-mode is Synchronous, the state of the pointer (as seen by means of the proto-
col) appears to freeze, and no further pointer events are generated by the server until the
grabbing client issues a releasing AllowEvents request or until the pointer grab is
released. Actual pointer changes are not lost while the pointer is frozen. They are sim-
ply queued for later processing.

If keyboard-mode is Asynchronous, keyboard event processing is unaffected by activa-
tion of the grab. If keyboard-mode is Synchronous, the state of the keyboard (as seen
by means of the protocol) appears to freeze, and no further keyboard events are

March 26, 1992

generated by the server until the grabbing client issues a releasing AllowEvents request
or until the pointer grab is released. Actua keyboard changes are not lost while the
keyboard is frozen. They are ssmply queued for later processing.

If a cursor is specified, then it is displayed regardless of what window the pointer is in.

If no cursor is specified, then when the pointer is in grab-window or one of its subwin-
dows, the normal cursor for that window is displayed. Otherwise, the cursor for grab-
window is displayed.

If a confine-to window is specified, then the pointer will be restricted to stay contained
in that window. The confine-to window need have no relationship to the grab-window.
If the pointer is not initially in the confine-to window, then it is warped automatically to
the closest edge (and enter/leave events are generated normally) just before the grab
activates. If the confine-to window is subsequently reconfigured, the pointer will be
warped automatically as necessary to keep it contained in the window.

This request generates EnterNotify and LeaveNotify events.

The request fails with status AlreadyGrabbed if the pointer is actively grabbed by
some other client. The request fails with status Frozen if the pointer is frozen by an
active grab of another client. The request fails with status NotViewable if grab-
window or confine-to window is not viewable or if the confine-to window lies com-
pletely outside the boundaries of the root window. The request fails with status
InvalidTime if the specified time is earlier than the last-pointer-grab time or later than
the current server time. Otherwise, the last-pointer-grab time is set to the specified
time, with CurrentTime replaced by the current server time.

UngrabPointer

time: TIMESTAMP or CurrentTime

This request releases the pointer if this client has it actively grabbed (from either Grab-
Pointer or GrabButton or from a normal button press) and releases any queued events.

The request has no effect if the specified time is earlier than the last-pointer-grab time or
is later than the current server time.

This request generates EnterNotify and LeaveNotify events.

An UngrabPointer request is performed automatically if the event window or confine-
to window for an active pointer grab becomes not viewable or if window
reconfiguration causes the confine-to window to lie completely outside the boundaries of
the root window.

March 26, 1992 10-73

X Window System

GrabButton

10-74

modifiers: SETofKEYMASK or AnyModifier

button: BUTTON or AnyButton

grab-window: WINDOW

owner-events: BOOL

event-mask: SETofPOINTEREVENT

pointer-mode, keyboard-mode: {Synchronous, Asynchronous}
confine-to: WINDOW or None

cursor : CURSOR or None

Errors. Access, Cursor, Value, Window

This request establishes a passive grab. In the future, the pointer is actively grabbed as
described in GrabPointer, the last-pointer-grab time is set to the time at which the but-
ton was pressed (as transmitted in the ButtonPress event), and the ButtonPress event is
reported if all of the following conditions are true:

« The pointer is not grabbed and the specified button is logically pressed when the
specified modifier keys are logically down, and no other buttons or modifier keys
are logically down.

+ The grab-window contains the pointer.
+ The confine-to window (if any) is viewable.

« A passive grab on the same button/key combination does not exist on any ancestor
of grab-window.

The interpretation of the remaining arguments is the same as for GrabPointer. The
active grab is terminated automatically when the logical state of the pointer has al but-
tons released, independent of the logical state of modifier keys. Note that the logical
state of a device (as seen by means of the protocol) may lag the physical state if device
event processing is frozen.

This request overrides al previous passive grabs by the same client on the same
button/key combinations on the same window. A modifier of AnyModifier is
equivalent to issuing the request for al possible modifier combi-
nations (including the combination of no modifiers). It is not required that all specified
modifiers have currently assigned keycodes. A button of AnyButton is equivalent to
issuing the request for al possible buttons. Otherwise, it is not required that the button
specified currently be assigned to a physical button.

An Access error is generated if some other client has already issued a GrabButton
request with the same button/key combination on the same window. When using
AnyModifier or AnyButton, the request fails completely (no grabs are established), and
an Access error is generated if there is a conflicting grab for any combination. The
request has no effect on an active grab.

March 26, 1992

UngrabButton

modifiers: SETofKEYMASK or AnyModifier
button: BUTTON or AnyButton
grab-window: WINDOW

Errors: Value, Window

This request releases the passive button/key combination on the specified window if it
was grabbed by this client. A modifiers argument of AnyModifier is equivalent to issu-
ing the request for all possible modifier combinations (including the combination of no
modifiers). A button of AnyButton is equivalent to issuing the request for all possible
buttons. The request has no effect on an active grab.

ChangeActivePointer Grab

event-mask: SETofPOINTEREVENT
cursor: CURSOR or None
time: TIMESTAMP or CurrentTime

Errors. Cursor, Value

This request changes the specified dynamic parameters if the pointer is actively grabbed
by the client and the specified time is no earlier than the last-pointer-grab time and no
later than the current server time. The interpretation of event-mask and cursor are the
same as in GrabPointer. This regquest has no effect on the parameters of any passive
grabs established with GrabButton.

GrabKeyboard

grab-window: WINDOW

owner-events: BOOL

pointer-mode, keyboard-mode: {Synchronous, Asynchronous}
time: TIMESTAMP or CurrentTime

March 26, 1992 10-75

X Window System

—

status: { Success, AlreadyGrabbed, Frozen, InvalidTime, NotViewable}

Errors. Value, Window

This request actively grabs control of the keyboard. Further key events are reported
only to the grabbing client. This request overrides any active keyboard grab by this
client.

If owner-events is False, all generated key events are reported with respect to grab-
window. If owner-events is True and if a generated key event would normally be
reported to this client, it is reported normally. Otherwise, the event is reported with
respect to the grab-window. Both KeyPress and KeyRelease events are aways
reported, independent of any event selection made by the client.

If keyboard-mode is Asynchronous, keyboard event processing continues normally. If
the keyboard is currently frozen by this client, then processing of keyboard events is
resumed. If keyboard-mode is Synchronous, the state of the keyboard (as seen by
means of the protocol) appears to freeze. No further keyboard events are generated by
the server until the grabbing client issues a releasing AllowEvents request or until the
keyboard grab is released. Actual keyboard changes are not lost while the keyboard is
frozen. They are ssimply queued for later processing.

If pointer-mode is Asynchronous, pointer event processing is unaffected by activation
of the grab. If pointer-mode is Synchronous, the state of the pointer (as seen by means
of the protocol) appears to freeze. No further pointer events are generated by the server
until the grabbing client issues a releasing AllowEvents request or until the keyboard
grab is released. Actual pointer changes are not lost while the pointer is frozen. They
are simply queued for later processing.

This request generates Focusin and FocusOut events.

The request fails with status AlreadyGrabbed if the keyboard is actively grabbed by
some other client. The request fails with status Frozen if the keyboard is frozen by an
active grab of another client. The request fails with status NotViewable if grab-
window is not viewable. The request fails with status InvalidTime if the specified time
is earlier than the last-keyboard-grab time or later than the current server time. Other-
wise, the last-keyboard-grab time is set to the specified time with CurrentTime replaced
by the current server time.

UngrabK eyboard

10-76

time: TIMESTAMP or CurrentTime

This request releases the keyboard if this client has it actively grabbed (as a result of
either GrabKeyboard or GrabKey) and releases any queued events. The request has
no effect if the specified time is earlier than the last-keyboard-grab time or is later than

March 26, 1992

the current server time.
This request generates Focusin and FocusOut events.

An UngrabKeyboard is performed automatically if the event window for an active
keyboard grab becomes not viewable.

GrabKey

key: KEY CODE or AnyKey

modifiers: SETofKEYMASK or AnyModifier

grab-window: WINDOW

owner-events: BOOL

pointer-mode, keyboard-mode: {Synchronous, Asynchronous}

Errors. Access, Value, Window

This request establishes a passive grab on the keyboard. In the future, the keyboard is
actively grabbed as described in GrabKeyboard, the last-keyboard-grab time is set to
the time at which the key was pressed (as transmitted in the KeyPress event), and the
KeyPress event is reported if all of the following conditions are true:

« The keyboard is not grabbed and the specified key (which can itself be a modifier
key) is logically pressed when the specified modifier keys are logically down, and
no other modifier keys are logically down.

« Either the grab-window is an ancestor of (or is) the focus window, or the grab-
window is a descendent of the focus window and contains the pointer.

« A passive grab on the same key combination does not exist on any ancestor of
grab-window.
The interpretation of the remaining arguments is the same as for GrabKeyboard. The
active grab is terminated automatically when the logical state of the keyboard has the
specified key released, independent of the logical state of modifier keys. Note that the
logical state of a device (as seen by means of the protocol) may lag the physical state if
device event processing is frozen.

This request overrides all previous passive grabs by the same client on the same key
combinations on the same window. A modifier of AnyModifier is equivalent to issuing
the request for al possible modifier combinations (including the combination of no
modifiers). It is not required that all modifiers specified have currently assigned key-
codes. A key of AnyKey is equivalent to issuing the request for all possible keycodes.
Otherwise, the key must be in the range specified by min-keycode and max-keycode in
the connection setup (or aValue error results).

An Access error is generated if some other client has issued a GrabKey with the same
key combination on the same window. When using AnyModifier or AnyKey, the

March 26, 1992 10-77

X Window System

regquest fails completely (no grabs are established), and an Access error is generated if
there is a conflicting grab for any combination.

UngrabKey

key: KEYCODE or AnyKey
modifiers: SETofKEYMASK or AnyModifier
grab-window: WINDOW

Errors. Value, Window

This request releases the key combination on the specified window if it was grabbed by
this client. A modifiers argument of AnyModifier is equivalent to issuing the request
for all possible modifier combinations (including the combination of no modifiers). A
key of AnyKey is equivaent to issuing the request for al possible keycodes. This
reguest has no effect on an active grab.

AllowEvents

10-78

mode: { AsyncPointer, SyncPointer, ReplayPointer, AsyncKeyboard,
SyncKeyboard, ReplayKeyboard, AsyncBoth, SyncBoth}
time: TIMESTAMP or CurrentTime

Errors. Value

This reguest releases some queued events if the client has caused a device to freeze.
The request has no effect if the specified time is earlier than the
last-grab time of the most recent active grab for the client or if the specified timeis later
than the current server time.

For AsyncPointer, if the pointer is frozen by the client, pointer event processing contin-
ues normally. If the pointer is frozen twice by the client on behalf of two separate
grabs, AsyncPointer thaws for both. AsyncPointer has no effect if the pointer is not
frozen by the client, but the pointer need not be grabbed by the client.

For SyncPointer, if the pointer is frozen and actively grabbed by the client, pointer
event processing continues normally until the next ButtonPress or ButtonRelease event
is reported to the client, at which time the pointer again appears to freeze. However, if
the reported event causes the pointer grab to be released, then the pointer does not
freeze. SyncPointer has no effect if the pointer is not frozen by the client or if the

March 26, 1992

pointer is not grabbed by the client.

For ReplayPointer, if the pointer is actively grabbed by the client and is frozen as the
result of an event having been sent to the client (either from the activation of a Grab-
Button or from a previous AllowEvents with mode SyncPointer but not from a Grab-
Pointer), then the pointer grab is released and that event is completely reprocessed, this
time ignoring any passive grabs at or above (towards the root) the grab-window of the
grab just released. The request has no effect if the pointer is not grabbed by the client
or if the pointer is not frozen as the result of an event.

For AsyncKeyboard, if the keyboard is frozen by the client, keyboard event processing
continues normally. If the keyboard is frozen twice by the client on behalf of two
separate grabs, AsyncKeyboard thaws for both. AsyncKeyboard has no effect if the
keyboard is not frozen by the client, but the keyboard need not be grabbed by the
client.

For SyncKeyboard, if the keyboard is frozen and actively grabbed by the client, key-
board event processing continues normally until the next KeyPress or KeyRelease
event is reported to the client, at which time the keyboard again appears to freeze.
However, if the reported event causes the keyboard grab to be released, then the key-
board does not freeze. SyncKeyboard has no effect if the keyboard is not frozen by
the client or if the keyboard is not grabbed by the client.

For ReplayKeyboard, if the keyboard is actively grabbed by the client and is frozen as
the result of an event having been sent to the client (either from the
activation of a GrabKey or from a previous AllowEvents with mode SyncKeyboard
but not from a GrabKeyboard), then the keyboard grab is released and that event is
completely reprocessed, this time ignoring any passive grabs at or above (towards the
root) the grab-window of the grab just released. The request has no effect if the key-
board is not grabbed by the client or if the keyboard is not frozen as the result of an
event.

For SyncBoth, if both pointer and keyboard are frozen by the client, event processing
(for both devices) continues normally until the next ButtonPress, ButtonRelease,
KeyPress, or KeyRelease event is reported to the client for a grabbed device (button
event for the pointer, key event for the keyboard), at which time the devices again
appear to freeze. However, if the reported event causes the grab to be released, then the
devices do not freeze (but if the other device is still grabbed, then a subsequent event
for it will till cause both devicesto freeze). SyncBoth has no effect unless both pointer
and keyboard are frozen by the client. If the pointer or keyboard is frozen twice by the
client on behalf of two separate grabs, SyncBoth thaws for both (but a subsequent
freeze for SyncBoth will only freeze each device once).

For AsyncBoth, if the pointer and the keyboard are frozen by the client, event process-
ing for both devices continues normally. If a device is frozen twice by the client on
behalf of two separate grabs, AsyncBoth thaws for both.
AsyncBoth has no effect unless both pointer and keyboard are frozen by the client.

AsyncPointer, SyncPointer, and ReplayPointer have no effect on processing of key-
board events. AsyncKeyboard, SyncKeyboard, and ReplayKeyboard have no effect
on processing of pointer events.

March 26, 1992 10-79

X Window System

It is possible for both a pointer grab and a keyboard grab to be active simultaneously
(by the same or different clients). When a device is frozen on behalf of either grab, no
event processing is performed for the device. It is possible for a single device to be
frozen because of both grabs. In this case, the freeze must be released on behalf of both
grabs before events can again be processed. If a device is frozen twice by a single
client, then a single AllowEvents releases both.

GrabServer

This request disables processing of requests and close-downs on all connections other
than the one this request arrived on.

UngrabServer

This request restarts processing of requests and close-downs on other connections.

QueryPointer

10-80

window: WINDOW

—

root: WINDOW

child: WINDOW or None
same-screen: BOOL

root-x, root-y, win-x, win-y: INT16
mask: SETofKEYBUTMASK

Errors: Window

The root window the pointer is logically on and the pointer coordinates relative to the
root’s origin are returned. If same-screen is False, then the pointer is not on the same
screen as the argument window, child is None, and win-x and win-y are zero. If same-
screen is True, then win-x and win-y are the pointer coordinates relative to the argument
window’s origin, and child is the child containing the pointer, if any. The current logi-
cal state of the modifier keys and the buttons are also returned. Note that the logical

March 26, 1992

state of a device (as seen by means of the protocol) may lag the physical state if device
event processing is frozen.

GetMotionEvents

start, stop: TIMESTAMP or CurrentTime
window: WINDOW

—

events: LISTof TIMECOORD
where:

TIMECOORD: [x,y: INT16
time: TIMESTAMP]

Errors. Window

This request returns all events in the motion history buffer that fall between the
specified start and stop times (inclusive) and that have coordinates that lie within
(including borders) the specified window at its present placement. The x and y coordi-
nates are reported relative to the origin of the window.

If the start time is later than the stop time or if the start time is in the future, no events
are returned. If the stop time is in the future, it is equivalent to specifying Current-
Time.

TrandateCoordinates

src-window, dst-window : WINDOW
src-x, src-y: INT16

same-screen: BOOL

child: WINDOW or None

dst-x, dst-y: INT16

Errors: Window

The src-x and src-y coordinates are taken relative to src-window’s origin and are
returned as dst-x and dst-y coordinates relative to dst-window’s origin. |f same-screen
is False, then src-window and dst-window are on different screens, and dst-x and dst-y

March 26, 1992 10-81

X Window System

are zero. If the coordinates are contained in a mapped child of dst-window, then that
child is returned.

War pPointer

src-window: WINDOW or None
dst-window: WINDOW or None
Src-x, src-y: INT16
src-width, src-height: CARD16
dst-x, dst-y: INT16

Errors: Window

If dst-window is None, this request moves the pointer by offsets [dst-x, dst-y] relative
to the current position of the pointer. If dst-window is a window, this request moves
the pointer to [dst-x, dst-y] relative to dst-window’s origin. However, if src-window is
not None, the move only takes place if src-window contains the pointer and the pointer
is contained in the specified rectangle of src-window.

The src-x and src-y coordinates are relative to src-window’s origin. If src-height is
zero, it is replaced with the current height of src-window minus src-y. If src-width is
zero, it is replaced with the current width of src-window minus src-x.

This reguest cannot be used to move the pointer outside the confine-to window of an
active pointer grab. An attempt will only move the pointer as far as the closest edge of
the confine-to window.

This request will generate events just as if the user had instantaneously moved the
pointer.

SetlnputFocus

10-82

focus: WINDOW or PointerRoot or None
revert-to: {Parent, PointerRoot, None}
time: TIMESTAMP or CurrentTime

Errors. Match, Value, Window

This request changes the input focus and the last-focus-change time. The request has no
effect if the specified time is earlier than the current last-focus-change time or is later
than the current server time. Otherwise, the last-focus-change time is set to the

March 26, 1992

specified time with CurrentTime replaced by the current server time.

If None is specified as the focus, all keyboard events are discarded until a new focus
window is set. In this case, the revert-to argument is ignored.

If a window is specified as the focus, it becomes the keyboard's focus window. If a
generated keyboard event would normally be reported to this window or one of its infe-
riors, the event is reported normally. Otherwise, the event is reported with respect to
the focus window.

If PointerRoot is specified as the focus, the focus window is dynamicaly taken to be
the root window of whatever screen the pointer is on at each keyboard event. In this
case, the revert-to argument is ignored.

This request generates Focusin and FocusOut events.

The specified focus window must be viewable at the time of the request (or a Match
error results). If the focus window later becomes not viewable, the new focus window
depends on the revert-to argument. If revert-to is Parent, the focus reverts to the parent
(or the closest viewable ancestor) and the new revert-to value is taken to be None. |If
revert-to is PointerRoot or None, the focus reverts to that value. When the focus
reverts, Focusin and FocusOut events are generated, but the last-focus-change time is
not affected.

GetlnputFocus

—

focus: WINDOW or PointerRoot or None
revert-to: {Parent, PointerRoot, None}

This request returns the current focus state.

QueryKeymap

keys. LISTofCARDS

This request returns a bit vector for the logical state of the keyboard. Each bit set to 1
indicates that the corresponding key is currently pressed. The vector is represented as
32 bytes. Byte N (from Q) contains the bits for keys 8N to 8N + 7 with the least-
significant bit in the byte representing key 8N. Note that the logical state of a device
(as seen by means of the protocol) may lag the physical state if device event processing

March 26, 1992 10-83

X Window System

is frozen.

OpenFont

fid: FONT
name: STRINGS8

Errors. Alloc, IDChoice, Name

This request loads the specified font, if necessary, and associates identifier fid with it.

The font name should use the 1SO Latin-1 encoding, and uppercase and lowercase do
not matter. The interpretation of characters‘‘?’ (octal value 77) and ***"’ (octal value
52) in the name is not defined by the core protocol, but is reserved for future definition.

A structured format for font names is specified in part 1V, **X Logical Font Description
Conventions.””’

Fonts are not associated with a particular screen and can be stored as a component of
any graphics context.

CloseFont

font: FONT

Errors. Font

This regquest deletes the association between the resource ID and the font.
The font itself will be freed when no other resource referencesiit.

QueryFont

10-84

font: FONTABLE

—

font-info: FONTINFO
char-infos: LISTofCHARINFO

March 26, 1992

where:

FONTINFO: [draw-direction: { LeftToRight, RightToLeft}
min-char-or-byte2, max-char-or-byte2: CARD16
min-bytel, max-bytel: CARD8
all-chars-exist: BOOL
default-char: CARD16
min-bounds: CHARINFO
max-bounds: CHARINFO
font-ascent: INT16
font-descent: INT16
properties. LISTofFONTPROP]

FONTPROP: [name: ATOM
value: <32-bit-value>]
CHARINFO: [left-side-bearing: INT16

right-side-bearing: INT16
character-width: INT16
ascent: INT16

descent: INT16
attributes: CARD16]

Errors. Font

This request returns logical information about a font. If a gcontext is given for font, the
currently contained font is used.

The draw-direction is just a hint and indicates whether most char-infos have a positive,
LeftToRight, or a negative, RightToLeft, character-width metric.
The core protocol defines no support for vertical text.

If min-bytel and max-bytel are both zero, then min-char-or-byte2 specifies the linear
character index corresponding to the first element of char-infos, and max-char-or-byte2
specifies the linear character index of the last element. If either min-bytel or max-bytel
are nonzero, then both min-char-or-byte2 and max-char-or-byte2 will be less than 256,
and the 2-byte character index values corresponding to char-infos element N (counting
from Q) are:

bytel = N/D + min-bytel
byte2 = N\D + min-char-or-byte2
where;
D = max-char-or-byte2 — min-char-or-byte2 + 1
[= integer division
\ = integer modulus

If char-infos has length zero, then min-bounds and max-bounds will be identical, and
the effective char-infos is one filled with this char-info, of length:

March 26, 1992 10-85

X Window System

10-86

L = D * (max-bytel — min-bytel + 1)

That is, al glyphs in the specified linear or matrix range have the same information, as
given by min-bounds (and max-bounds). If all-chars-exist is True, then all charactersin
char-infos have nonzero bounding boxes.

The default-char specifies the character that will be used when an undefined or nonex-
istent character is used. Note that default-char is a CARD16, not CHAR2B. For afont
using 2-byte matrix format, the default-char has bytel in the most-significant byte and
byte2 in the least-significant byte. If the default-char itself specifies an undefined or
nonexistent character, then no printing is performed for an undefined or nonexistent
character.

The min-bounds and max-bounds contain the minimum and maximum values of each
individual CHARINFO component over al char-infos (ignoring nonexistent charac-
ters). The bounding box of the font (that is, the smallest rectangle enclosing the shape
obtained by superimposing all characters at the same origin [x,y]) has its upper-left
coordinate at:

[x + min-bounds.|eft-side-bearing, y — max-bounds.ascent]
with a width of:
max-bounds.right-side-bearing — min-bounds.| eft-side-bearing
and a height of:
max-bounds.ascent + max-bounds.descent

The font-ascent is the logical extent of the font above the baseline and is used for deter-
mining line spacing. Specific characters may extend beyond this. The font-descent is
the logical extent of the font at or below the baseline and is used for determining line
spacing. Specific characters may extend beyond this. If the baseline is at Y -coordinate
y, then the logical extent of the font is inclusive between the Y -coordinate values (y —
font-ascent) and (y + font-descent — 1).

A font is not guaranteed to have any properties. The interpretation of the property value
(for example, INT32, CARD32) must be derived from a priori knowledge of the pro-
perty. A basic set of font properties is specified in part 1V, ‘X Logica Font Descrip-
tion Conventions.”’

For a character origin at [X,y], the bounding box of a character (that is, the smallest rec-
tangle enclosing the character’s shape), described in terms of CHARINFO components,
is arectangle with its upper-left corner at:

[x + left-side-bearing, y — ascent]

with a width of:

right-side-bearing — left-side-bearing

March 26, 1992

and a height of:
ascent + descent
and the origin for the next character is defined to be:
[x + character-width, y]

Note that the baseline is logically viewed as being just below nondescending characters
(when descent is zero, only pixels with Y-coordinates less than y are drawn) and that
the origin is logically viewed as being coincident with the left edge of a nonkerned
character (when left-side-bearing is zero, no pixels with X-coordinate less than x are
drawn).

Note that CHARINFO metric values can be negative.
A nonexistent character is represented with all CHARINFO components zero.

The interpretation of the per-character attributes field is server-dependent.

QueryTextExtents

font: FONTABLE

string: STRING16

draw-direction: {LeftToRight, RightToLeft}
font-ascent: INT16

font-descent: INT16

overall-ascent: INT16

overall-descent: INT16

overal-width: INT32

overall-left: INT32

overal-right: INT32

Errors. Font

This request returns the logical extents of the specified string of characters in the
specified font. If a gcontext is given for font, the currently contained font is used. The
draw-direction, font-ascent, and font-descent are the same as described in QueryFont.

The overall-ascent is the maximum of the ascent metrics of al characters in the string,
and the overall-descent is the maximum of the descent metrics. The overall-width is the
sum of the character-width metrics of al charactersin the string. For each character in
the string, let W be the sum of the character-width metrics of all characters preceding it
in the string, let L be the left-side-bearing metric of the character plus W, and let R be
the right-side-bearing metric of the character plus W. The overall-left is the minimum L

March 26, 1992 10-87

X Window System

of all charactersin the string, and the overall-right is the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, the server will
interpret each CHAR2B as a 16-bit number that has been transmitted most-significant
byte first (that is, bytel of the CHARZ2B is taken as the most-significant byte).

Characters with all zero metrics are ignored. If the font has no defined default-char,
then undefined charactersin the string are aso ignored.

ListFonts

pattern: STRINGS
max-names: CARD16

—

names; LISTof STRING8

This request returns a list of available font names (as controlled by the font search path;
see SetFontPath request) that match the pattern. At most,
max-names names will be returned. The pattern should use the 1SO Latin-1
encoding, and uppercase and lowercase do not matter. In the pattern, the **?’ character
(octal vaue 77) will match any single character, and the ***’’ character (octal value 52)
will match any number of characters. The returned names are in lowercase.

ListFontsWithlnfo

10-88

pattern: STRINGS8

max-names: CARD16
-+

name: STRINGS8

info: FONTINFO

replies-hint: CARD32

where:

FONTINFO: <same type definition as in QueryFont>

This request is similar to ListFonts, but it also returns information about each font. The
information returned for each font is identical to what QueryFont would return except
that the per-character metrics are not returned. Note that this request can generate mul-
tiple replies. With each reply, replies-hint may provide an indication of how many

March 26, 1992

more fonts will be returned. This number is a hint only and may be larger or smaller
than the number of fonts actually returned. A zero value does not guarantee that no
more fonts will be returned. After the font replies, a reply with a zero-length name is
sent to indicate the end of the reply sequence.

SetFontPath

path: LISTof STRINGS

Errors. Value

This request defines the search path for font lookup. There is only one search path per
server, not one per client. The interpretation of the strings is operating-system-
dependent, but the strings are intended to specify directories to be searched in the order
listed.

Setting the path to the empty list restores the default path defined for the server.

As a side effect of executing this request, the server is guaranteed to flush all cached
information about fonts for which there currently are no explicit resource 1Ds alocated.

The meaning of an error from this request is system specific.

GetFontPath

path: LISTof STRINGS8
This request returns the current search path for fonts.

CreatePixmap

pid: PIXMAP
drawable: DRAWABLE
depth: CARDS8

width, height: CARD16

March 26, 1992 10-89

X Window System

Errors. Alloc, Drawable, IDChoice, Value

This request creates a pixmap and assigns the identifier pid to it. The width and height
must be nonzero (or aValue error results). The depth must be one of the depths sup-
ported by the root of the specified drawable (or aValue error results). The initial con-
tents of the pixmap are undefined.

It is legal to pass an InputOnly window as a drawable to this request.

FreePixmap

pixmap: PIXMAP

Errors: Pixmap

This request deletes the association between the resource ID and the pixmap. The pix-
map storage will be freed when no other resource referencesit.

CreateGC

10-90

cid: GCONTEXT
drawable: DRAWABLE
value-mask: BITMASK
value-list: LISTofVALUE

Errors: Alloc, Drawable, Font, IDChoice, Match, Pixmap, Value

This request creates a graphics context and assigns the identifier cid to it. The gcontext
can be used with any destination drawable having the same root and depth as the
specified drawable; use with other drawables results in aMatch error.

The value-mask and value-list specify which components are to be explicitly initialized.
The context components are:

Component Type

function {Clear, And, AndReverse, Copy, AndInverted, NoOp,

Xor, Or, Nor, Equiv, Invert, OrReverse,
Copylnverted, Orinverted, Nand, Set}
plane-mask CARD32

March 26, 1992

foreground
background
line-width
line-style

cap-style
join-style

fill-style

fill-rule

arc-mode

tile

stipple
tile-stipple-x-origin
tile-stipple-y-origin
font
subwindow-mode
graphics-exposures
clip-x-origin
clip-y-origin
clip-mask
dash-offset

dashes

CARD32

CARD32

CARD16

{Solid, OnOffDash, DoubleDash}
{ NotLast, Butt, Round, Projecting}
{ Miter, Round, Bevel}

{Solid, Tiled, OpaquesStippled, Stippled}
{EvenOdd, Winding}

{Chord, PieSlice}

PIXMAP

PIXMAP

INT16

INT16

FONT

{ClipByChildren, Includelnferiors}
BOOL

INT16

INT16

PIXMAP or None

CARD16

CARDS8

In graphics operations, given a source and destination pixel, the result is computed bit-
wise on corresponding bits of the pixels; that is, a Boolean operation is performed in
each bit plane. The plane-mask restricts the operation to a subset of planes, so the

result is:

((src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

Range checking is not performed on the values for foreground, background, or plane-
mask. They are simply truncated to the appropriate number of bits.

The meanings of the functions are:

Function

Clear

And
AndReverse
Copy
AndInverted
NoOp

Xor

Or

Nor

Equiv

Invert
OrReverse

March 26, 1992

Operation

0

src AND dst

src AND (NOT dst)
src

(NOT src) AND dst
dst

src XOR dst

src OR dst

(NOT src) AND (NOT dst)
(NOT src) XOR dst
NOT dst

src OR (NOT dst)

10-91

X Window System

10-92

Copylnverted NOT src

Orlnverted (NOT src) OR dst

Nand (NOT src) OR (NOT dst)
Set 1

The line-width is measured in pixels and can be greater than or equal to one, a wide
ling, or the special value zero, a thin line.

Wide lines are drawn centered on the path described by the graphics request. Unless
otherwise specified by the join or cap style, the bounding box of a wide line with end-
points [x1, y1], [x2, y2] and width w is a rectangle with vertices at the following rea
coordinates:

[x1—(w*sn/2), y1+ (w*cs/2)], [x1+ (w*sn/2), y1—(w*cs/2)],
[x2—(w*sn/2), y2+ (w*cs/2)], [x2+ (W*sn/2), y2—(w*cs/2)]

The sn is the sine of the angle of the line and csis the cosine of the angle of theline. A
pixel is part of the line (and hence drawn) if the center of the pixe is fully inside the
bounding box, which is viewed as having infinitely thin edges. If the center of the pixel
is exactly on the bounding box, it is part of the line if and only if the interior is immedi-
ately to its right (x increasing direction). Pixels with centers on a horizontal edge are a
specia case and are part of the line if and only if the interior or the boundary is
immediately below (y increasing direction) and if the interior or the boundary is
immediately to the right (x increasing direction). Note that this description is a
mathematical model describing the pixels that are drawn for a wide line and does not
imply that trigonometry is required to implement such a model. Rea or fixed point
arithmetic is recommended for computing the corners of the line endpoints for lines
greater than one pixel in width.

Thin lines (zero line-width) are ‘‘one pixel wide’ lines drawn using an unspecified,
device-dependent algorithm. There are only two constraints on this algorithm. First, if
aline is drawn unclipped from [x1,y1] to [x2,y2] and another line is drawn unclipped
from [x1+dx,y1+dy] to [x2+dx,y2+dy], then a point [X,y] is touched by drawing the first
line if and only if the point [x+dx,y+dy] is touched by drawing the second line.
Second, the effective set of points comprising a line cannot be affected by clipping.
Thus, a point is touched in a clipped line if and only if the point lies inside the clipping
region and the point would be touched by the line when drawn unclipped.

Note that a wide line drawn from [x1,y1] to [x2,y2] dways draws the same pixels as a
wide line drawn from [x2,y2] to [x1,y1], not counting cap-style and join-style. Imple-
mentors are encouraged to make this property true for thin lines, but it is not required.

A line-width of zero may differ from a line-width of one in which pixels are drawn. In
general, drawing a thin line will be faster than drawing a wide line of width one, but
thin lines may not mix well aesthetically with wide lines because of the different draw-
ing algorithms. If it is desirable to obtain precise and uniform results across all
displays, a client should always use a line-width of one, rather than a line-width of
zero.

The line-style defines which sections of aline are drawn:

Solid The full path of the line is drawn.

March 26, 1992

DoubleDash

OnOffDash

The full path of the line is drawn, but the even dashes are filled
differently than the odd dashes (see fill-style), with Butt cap-
style used where even and odd dashes meet.

Only the even dashes are drawn, and cap-style applies to all
internal ends of the individual dashes (except NotLast is treated
as Butt).

The cap-style defines how the endpoints of a path are drawn:

NotLast

Butt

Round

Projecting

The result is equivalent to Butt, except that for a line-width of
zero the final endpoaint is not drawn.

The result is sguare at the endpoint (perpendicular to the slope
of the line) with no projection beyond.

The result is a circular arc with its diameter equa to the line-
width, centered on the endpoint; it is equivalent to Butt for
line-width zero.

The result is sguare at the end, but the path continues beyond
the endpoint for a distance equal to half the line-width; it is
equivalent to Butt for line-width zero.

The join-style defines how corners are drawn for wide lines:

Miter

Round

Bevel

The outer edges of the two lines extend to meet at an angle.
However, if the angleis less than 11 degrees, aBevel join-style
is used instead.

The result is a circular arc with a diameter equal to the line-
width, centered on the joinpoint.

The result is Butt endpoint styles, and then the triangular
““notch’” isfilled.

For a line with coincident endpoints (x1=x2, y1=y2), when the cap-style is applied to
both endpoints, the semantics depends on the line-width and the cap-style:

NotLast

Butt

Round
Projecting
Butt
Round

Projecting

March 26, 1992

thin This is device-dependent, but
the desired effect is that
nothing is drawn.

thin This is device-dependent, but
the desired effect is that
asingle pixel is drawn.

thin This is the same as Butt/thin.

thin This is the same as Butt/thin.

wide Nothing is drawn.

wide The closed path is a circle,
centered a the endpoint
and with a diameter equal
to the line-width.

wide The closed path is a square,
aigned with the coordinate

10-93

X Window System

10-94

axes, centered a the endpoint
and with sides equal to the
line-width.

For a line with coincident endpoints (x1=x2, y1=y2), when the join-style is applied at
one or both endpoints, the effect is as if the line was removed from the overall path.
However, if the total path consists of (or is reduced to) a single point joined with itself,
the effect is the same as when the cap-style is applied at both endpoints.

The tile/stipple and clip origins are interpreted relative to the origin of whatever destina-
tion drawable is specified in a graphics request.

The tile pixmap must have the same root and depth as the gcontext (or a Match error
results). The stipple pixmap must have depth one and must have the same root as the
gcontext (or aMatch error results). For fill-style Stippled (but not fill-style Opaques-
tippled), the stipple pattern is tiled in a single plane and acts as an additional clip mask
to be ANDed with the clip-mask. Any size pixmap can be used for tiling or stippling,
although some sizes may be faster to use than others.

The fill-style defines the contents of the source for line, text, and fill requests. For all
text and fill requests (for example, PolyText8, PolyText16, PolyFillRectangle, FillPoly,
and PolyFillArc) as well as for line requests with line-style Solid (for example, Poly-
Line, PolySegment, PolyRectangle, PolyArc), and for the even dashes for line
reguests with line-style OnOffDash or DoubleDash:

Solid Foreground
Tiled Tile
OpaqueStippled A tile with the same width and height as stipple but with back-

ground everywhere stipple has a zero and with foreground
everywhere stipple has a one

Stippled Foreground masked by stipple

For the odd dashes for line requests with line-style DoubleDash:
Solid Background

Tiled Same as for even dashes

OpaqueStippled Same as for even dashes

Stippled Background masked by stipple

The dashes value alowed here is actually a simplified form of the more general patterns
that can be set with SetDashes. Specifying a value of N here is equivalent to specify-
ing the two element list [N, N] in SetDashes. The value must be nonzero (or aValue
error results). The meaning of dash-offset and dashes are explained in the SetDashes
request.

The clip-mask restricts writes to the destination drawable. Only pixels where
the clip-mask has bits set to 1 are drawn. Pixels are not drawn outside the area covered
by the clip-mask or where the clip-mask has bits set to 0. The clip-mask affects all
graphics requests, but it does not clip sources. The clip-mask origin is interpreted

March 26, 1992

relative to the origin of whatever destination drawable is specified in a graphics request.
If a pixmap is specified as the clip-mask, it must have depth 1 and have the same root
as the gcontext (or a Match error results). If clip-mask is None, then pixels are always
drawn, regardless of the clip origin. The clip-mask can also be set with the SetClipRec-
tangles request.

For ClipByChildren, both source and destination windows are additionally clipped by
al viewable InputOutput children. For Includelnferiors, neither source nor destination
window is clipped by inferiors. This will result in including subwindow contents in the
source and drawing through subwindow boundaries of the destination. The use of
Includelnferiors with a source or destination window of one depth with mapped inferi-
ors of differing depth is not illegal, but the semantics is undefined by the core protocol.

The fill-rule defines what pixels are inside (that is, are drawn) for paths given in FillPoly
requests. EvenOdd means a point is inside if an infinite ray with the point as origin
crosses the path an odd number of times. For Winding, a point is inside if an infinite
ray with the point as origin crosses an unequal number of clockwise and counterclock-
wise directed path segments. A clockwise directed path segment is one that crosses the
ray from left to right as observed from the point. A counterclockwise segment is one
that crosses the ray from right to left as observed from the point. The case where a
directed line segment is coincident with the ray is uninteresting because one can smply
choose a different ray that is not coincident with a segment.

For both fill rules, a point is infinitely small and the path is an infinitely thin line. A
pixel isinside if the center point of the pixel is inside and the center point is not on the
boundary. If the center point is on the boundary, the pixel is inside if and only if the
polygon interior is immediately to its right (X increasing direction). Pixels with centers
along a horizontal edge are a special case and are inside if and only if the polygon inte-
rior isimmediately below (y increasing direction).

The arc-mode controls filling in the PolyFillArc request.

The graphics-exposures flag controls GraphicsExposure event generation for
CopyArea and CopyPlane requests (and any similar requests defined by extensions).

The default component values are:

Component Default
function Copy
plane-mask all ones
foreground 0
background 1
line-width 0
line-style Solid
cap-style Butt
join-style Miter
fill-style Solid
fill-rule EvenOdd
arc-mode PieSlice

March 26, 1992

10-95

X Window System

tile

stipple
tile-stipple-x-origin
tile-stipple-y-origin
font
subwindow-mode

Pixmap of unspecified Size
filled with foreground pixel
(that is, client specified
pixel if any, else 0)
(subsequent changes to fore-
ground do not affect this
pixmap)

Pixmap of unspecified size filled with ones
0

0

<server-dependent-font>

ClipByChildren

graphics-exposures True

clip-x-origin 0

clip-y-origin 0

clip-mask None

dash-offset 0

dashes 4 (that is, the list [4, 4])

Storing a pixmap in a gcontext might or might not result in a copy being made. If the
pixmap is later used as the destination for a graphics request, the change might or might
not be reflected in the gecontext. If the pixmap is used simultaneously in a graphics
reguest as both a destination and as atile or stipple, the results are not defined.

It is quite likely that some amount of gcontext information will be cached in display
hardware and that such hardware can only cache a small number of gcontexts. Given
the number and complexity of components, clients should view switching between
gecontexts with nearly identical state as significantly more expensive than making minor
changes to a single gcontext.

ChangeGC

10-96

gc: GCONTEXT
value-mask: BITMASK
value-list: LISTofVALUE

Errors. Alloc, Font, GContext, Match, Pixmap, Value

This request changes components in gc. The value-mask and value-list specify which
components are to be changed. The values and restrictions are the same as for
CreateGC.

Changing the clip-mask also overrides any previous SetClipRectangles request on the
context. Changing dash-offset or dashes overrides any previous SetDashes request on
the context.

March 26, 1992

The order in which components are verified and altered is server-dependent. If an error
is generated, a subset of the components may have been atered.

CopyGC

src-gc, dst-gc: GCONTEXT
value-mask: BITMASK

Errors. Alloc, GContext, Match, Value

This request copies components from src-gc to dst-gc. The value-mask specifies which
components to copy, as for CreateGC. The two gcontexts must have the same root and
the same depth (or aMatch error results).

SetDashes

gc: GCONTEXT
dash-offset: CARD16
dashes: LISTofCARDS8

Errors. Alloc, GContext, Value

This request sets dash-offset and dashes in gc for dashed line styles. Dashes cannot be
empty (or aValue error results). Specifying an odd-length list is equivalent to specify-
ing the same list concatenated with itself to produce an even-length list. The initial and
aternating elements of dashes are the even dashes; the others are the odd dashes. Each
element specifies a dash length in pixels. All of the eements must be nonzero (or a
Value error results). The dash-offset defines the phase of the pattern, specifying how
many pixels into dashes the pattern should actually begin in any single graphics
request. Dashing is continuous through path elements combined with a join-style but is
reset to the dash-offset between each sequence of joined lines.

The unit of measure for dashes is the same as in the ordinary coordinate system.

Ideally, a dash length is measured along the slope of the line, but implementations are
only required to match this ideal for horizontal and vertical lines. Failing the ideal
semantics, it is suggested that the length be measured along the major axis of the line.

The major axis is defined as the x axis for lines drawn at an angle of between —45 and
+45 degrees or between 315 and 225 degrees from the x axis. For al other lines, the
major axis isthey axis.

March 26, 1992 10-97

X Window System

SetClipRectangles

gc: GCONTEXT

clip-x-origin, clip-y-origin: INT16

rectangles: LISTofRECTANGLE

ordering: {UnSorted, YSorted, YXSorted, YXBanded}

Errors. Alloc, GContext, Match, Value

This request changes clip-mask in gc to the specified list of rectangles and sets the clip
origin. Output will be clipped to remain contained within the rectangles. The clip ori-
gin is interpreted relative to the origin of whatever destination drawable is specified in a
graphics request. The rectangle coordinates are interpreted relative to the clip origin.
The rectangles should be nonintersecting, or graphics results will be undefined. Note
that the list of rectangles can be empty, which effectively disables output. This is the
opposite of passing None as the clip-mask in CreateGC and ChangeGC.

If known by the client, ordering relations on the rectangles can be specified with the
ordering argument. This may provide faster operation by the server. If an incorrect
ordering is specified, the server may generate a Match error, but it is not required to do
so0. If no error is generated, the graphics results are undefined. UnSorted means that
the rectangles are in arbitrary order. YSorted means that the rectangles are nondecreas-
ing in their Y origin. YXSorted additionally constrains YSorted order in that all rectan-
gles with an equal Y origin are nondecreasing in their X origin. YXBanded addition-
aly constrains YXSorted by requiring that, for every possible Y scanline, al rectangles
that include that scanline have identical Y originsand Y extents.

FreeGC

10-98

gc: GCONTEXT

Errors: GContext

This request deletes the association between the resource ID and the gcontext and des-
troys the gcontext.

March 26, 1992

ClearArea

window: WINDOW

X, y: INT16

width, height: CARD16
exposures: BOOL

Errors. Match, VValue, Window

The x and y coordinates are relative to the window’s origin and specify the upper-left
corner of the rectangle. If width is zero, it is replaced with the current width of the win-
dow minus x. If height is zero, it is replaced with the current height of the window
minus y. If the window has a defined background tile, the rectangle is tiled with a
plane-mask of all ones and function of Copy and a subwindow-mode of ClipByChil-
dren. If the window has background None, the contents of the window are not
changed. In either case, if exposures is True, then one or more exposure events are gen-
erated for regions of the rectangle that are either visible or are being retained in a back-
ing store.

It is aMatch error to use an InputOnly window in this request.

CopyArea

src-drawable, dst-drawable: DRAWABLE
gc: GCONTEXT

Src-X, src-y: INT16

width, height: CARD16

dst-x, dst-y: INT16

Errors. Drawable, GContext, Match

This request combines the specified rectangle of src-drawable with the specified rectan-
gle of dst-drawable. The src-x and src-y coordinates are relative to src-drawable’s ori-
gin. The dst-x and dst-y are relative to dst-drawable’s origin, each pair specifying the
upper-left corner of the rectangle. The src-drawable must have the same root and the
same depth as dst-drawable (or aMatch error results).

If regions of the source rectangle are obscured and have not been retained in backing
store or if regions outside the boundaries of the source drawable are specified, then
those regions are not copied, but the following occurs on al corresponding destination
regions that are either visible or are retained in backing-store. If the dst-drawable is a
window with a background other than None, these corresponding destination regions

March 26, 1992 10-99

X Window System

are tiled (with plane-mask of all ones and function Copy) with that background.
Regardless of tiling and whether the destination is a window or a pixmap, if graphics-
exposures in gc is True, then GraphicsExposure events for al corresponding destina-
tion regions are generated.

If graphics-exposures is True but no GraphicsExposure events are generated, then a
NoExposure event is generated.

GC components: function, plane-mask, subwindow-mode, graphics-exposures, clip-x-
origin, clip-y-origin, clip-mask

CopyPlane

src-drawable, dst-drawable: DRAWABLE
gc: GCONTEXT

Src-x, src-y: INT16

width, height: CARD16

dst-x, dst-y: INT16

bit-plane: CARD32

Errors: Drawable, GContext, Match, Value

The src-drawable must have the same root as dst-drawable (or a Match error results),
but it need not have the same depth. The bit-plane must have exactly one bit set to 1
and the value of bit-plane must be less than 2n where n is the depth of src-drawable (or
a Value error results). Effectively, a pixmap of the same depth as dst-drawable and
with size specified by the source region is formed using the foreground/background pix-
els in gc (foreground everywhere the bit-plane in src-drawable contains a bit set to 1,
background everywhere the bit-plane contains a bit set to 0), and the equivalent of a
CopyArea is performed, with al the same exposure semantics. This can aso be
thought of as using the specified region of the source bit-plane as a stipple with a fill-
style of OpaquesStippled for filling a rectangular area of the destination.

GC components: function, plane-mask, foreground, background, subwindow-mode,
graphics-exposures, clip-x-origin, clip-y-origin, clip-mask

PolyPoint

10-100

drawable: DRAWABLE
gc: GCONTEXT

March 26, 1992

coordinate-mode: {Origin, Previous}
points: LISTofPOINT

Errors. Drawable, GContext, Match, Value

This request combines the foreground pixel in gc with the pixel at each point in the
drawable. The points are drawn in the order listed.

The first point is aways relative to the drawable’ s origin. The rest are relative either to
that origin or the previous point, depending on the coordinate-mode.

GC components: function, plane-mask, foreground, subwindow-mode, clip-x-origin,
clip-y-origin, clip-mask

PolyLine

drawable: DRAWABLE

gc: GCONTEXT

coordinate-mode: {Origin, Previous}
points: LISTofPOINT

Errors. Drawable, GContext, Match, Value

This request draws lines between each pair of points (point[i], point[i+1]). The lines are
drawn in the order listed. The lines join correctly at all intermediate points, and if the
first and last points coincide, the first and last lines also join correctly.

For any given line, no pixel is drawn more than once. If thin (zero line-width) lines
intersect, the intersecting pixels are drawn multiple times. If wide lines intersect, the
intersecting pixels are drawn only once, as though the entire PolyLine were a single
filled shape.

The first point is aways relative to the drawable’ s origin. The rest are relative either to
that origin or the previous point, depending on the coordinate-mode.

GC components. function, plane-mask, line-width, line-style, cap-style, join-style, fill-
style, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, tile-stipple-y-origin, dash-offset, dashes

March 26, 1992 10-101

X Window System

PolySegment

drawable: DRAWABLE
gc: GCONTEXT
segments: LISTof SEGMENT

where:

SEGMENT: [x1, y1, X2, y2: INT16]

Errors. Drawable, GContext, Match

For each segment, this request draws a line between [x1, y1] and [x2, y2]. The lines are
drawn in the order listed. No joining is performed at coincident endpoints. For any
given line, no pixel is drawn more than once. If lines intersect, the intersecting pixels
are drawn multiple times.

GC components: function, plane-mask, line-width, line-style, cap-style, fill-style,
subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, tile-stipple-y-origin, dash-offset, dashes

PolyRectangle

drawable: DRAWABLE
gc: GCONTEXT
rectangles: LISToOfRECTANGLE
Errors. Drawable, GContext, Match
This request draws the outlines of the specified rectangles, as if a five-point PolyLine
were specified for each rectangle:
[x,y] [x +width,y] [x +width,y + height] [,y + height] [X,y]
The x and y coordinates of each rectangle are relative to the drawable's origin and
define the upper-left corner of the rectangle.

The rectangles are drawn in the order listed. For any given rectangle, no pixel is drawn
more than once. If rectangles intersect, the intersecting pixels are drawn multiple
times.

10-102 March 26, 1992

GC components: function, plane-mask, line-width, line-style, join-style, fill-style,
subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, tile-stipple-y-origin, dash-offset, dashes, cap-style.

PolyArc

drawable: DRAWABLE
gc: GCONTEXT
arcs: LISTofARC

Errors. Drawable, GContext, Match

This request draws circular or elliptical arcs. Each arc is specified by a rectangle and
two angles. The angles are signed integers in degrees scaled by 64, with positive indi-
cating counterclockwise motion and negative indicating clockwise motion. The start of
the arc is specified by anglel relative to the three-0’ clock position from the center of the
rectangle, and the path and extent of the arc is specified by angle? relative to the start of
the arc. If the magnitude of angle2 is greater than 360 degrees, it is truncated to 360
degrees. The x and y coordinates of the rectangle are relative to the origin of the draw-
able. For an arc specified as [x,y,w,h,al,a2], the origin of the major and minor axes is
a [x+(w/2),y+(h/2)], and the infinitely thin path describing the entire circle/ellipse inter-
sects the horizontal axis at [x,y+(h/2)] and [x+w,y+(h/2)] and intersects the vertical axis
a [x+(w/2),y] and [x+(w/2),y+h]. These coordinates can be fractiona; that is, they are
not truncated to discrete coordinates. The path should be defined by the ideal
mathematical path. For a wide line with line-width Iw, the bounding outlines for filling
are given by the two infinitely thin paths consisting of all points whose perpendicular
distance from the path of the circle/ellipse is equal to Iw/2 (which may be a fractional
value). The cap-style and join-style are applied the same as for a line corresponding to
the tangent of the circle/ellipse at the endpoint.

For an arc specified as [x,y,w,h,al,a2], the angles must be specified in the effectively
skewed coordinate system of the ellipse (for a circle, the angles and coordinate systems
are identical). The relationship between these angles and angles expressed in the nor-
mal coordinate system of the screen (as measured with a protractor) is as follows:

skewed-angle = atan(tan(normal-angle) * w/h) + adjust

The skewed-angle and normal-angle are expressed in radians (rather than in degrees
scaled by 64) in the range [0,2*Pl). The atan returns a value in the range [-Pl/2,P1/2].

The adjust is:
0 for normal-angle in the range [O,P1/2)
PI for normal-angle in the range [P1/2,(3* P1)/2)

March 26, 1992 10-103

X Window System

2*Pl for normal-angle in the range [(3* P1)/2,2*Pl)

The arcs are drawn in the order listed. If the last point in one arc coincides with the
first point in the following arc, the two arcs will join correctly. If the first point in the
first arc coincides with the last point in the last arc, the two arcs will join correctly. For
any given arc, no pixel is drawn more than once. If two arcs join correctly and the
line-width is greater than zero and the arcs intersect, no pixel is drawn more than once.

Otherwise, the intersecting pixels of intersecting arcs are drawn multiple times. Speci-
fying an arc with one endpoint and a clockwise extent draws the same pixels as specify-
ing the other endpoint and an equivalent counterclockwise extent, except as it affects
joins.

By specifying one axis to be zero, a horizontal or vertical line can be drawn.

Angles are computed based solely on the coordinate system, ignoring the aspect ratio.

GC components. function, plane-mask, line-width, line-style, cap-style, join-style, fill-
style, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components. foreground, background, tile, stipple, tile-stipple-x-
origin, tile-stipple-y-origin, dash-offset, dashes

FillPoly

drawable: DRAWABLE

gc: GCONTEXT

shape: {Complex, Nonconvex, Convex}
coordinate-mode: {Origin, Previous}
points: LISTofPOINT

Errors. Drawable, GContext, Match, VValue

This request fills the region closed by the specified path. The path is closed automati-
caly if the last point in the list does not coincide with the first point. No pixel of the
region is drawn more than once.

The first point is always relative to the drawable’s origin. The rest are relative either to
that origin or the previous point, depending on the coordinate-mode.

The shape parameter may be used by the server to improve performance. Complex
means the path may self-intersect. Contiguous coincident points in the path are not
treated as self-intersection.

Nonconvex means the path does not self-intersect, but the shape is not wholly convex.

If known by the client, specifying Nonconvex over Complex may improve perfor-
mance. If Nonconvex is specified for a self-intersecting path, the graphics results are
undefined.

10-104 March 26, 1992

Convex means that for every pair of points inside the polygon, the line segment con-
necting them does not intersect the path. If known by the client, specifying Convex
can improve performance. If Convex is specified for a path that is not convex, the
graphics results are undefined.

GC components: function, plane-mask, fill-style, fill-rule, subwindow-mode, clip-x-
origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, tile-stipple-y-origin

PolyFillRectangle

drawable: DRAWABLE
gc: GCONTEXT
rectangles: LISTofRECTANGLE
Errors. Drawable, GContext, Match
This request fills the specified rectangles, as if a four-point FillPoly were specified for
each rectangle:
[x,y] [x+width,y] [x +width,y + height] [X,y + height]
The x and y coordinates of each rectangle are relative to the drawable's origin and
define the upper-left corner of the rectangle.

The rectangles are drawn in the order listed. For any given rectangle, no pixel is drawn
more than once. If rectangles intersect, the intersecting pixels are drawn multiple
times.

GC components: function, plane-mask, fill-style, subwindow-mode, clip-x-origin, clip-
y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, tile-stipple-y-origin

PolyFillArc

drawable: DRAWABLE
gc: GCONTEXT

March 26, 1992 10-105

X Window System

arcs: LISTofARC

Errors. Drawable, GContext, Match

For each arc, this request fills the region closed by the infinitely thin path described by
the specified arc and one or two line segments, depending on the arc-mode. For Chord,
the single line segment joining the endpoints of the arc is used. For PieSlice, the two
line segments joining the endpoints of the arc with the center point are used. The arcs
are as specified in the PolyArc request.

The arcs are filled in the order listed. For any given arc, no pixel is drawn more than
once. If regions intersect, the intersecting pixels are drawn multiple times.

GC components: function, plane-mask, fill-style, arc-mode, subwindow-mode, clip-x-
origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, tile-stipple-y-origin

Putlmage

drawable: DRAWABLE

gc: GCONTEXT

depth: CARD8

width, height: CARD16

dst-x, dst-y: INT16

left-pad: CARDS8

format: {Bitmap, XYPixmap, ZPixmap}
data: LISTofBYTE

Errors. Drawable, GContext, Match, VValue

This request combines an image with a rectangle of the drawable. The dst-x and dst-y
coordinates are relative to the drawable’ s origin.

If Bitmap format is used, then depth must be one (or a Match error results), and the
image must be in XY format. The foreground pixel in gc defines the source for bits set
to 1 in the image, and the background pixel defines the source for the bits set to 0.

For XYPixmap and ZPixmap, the depth must match the depth of the drawable (or a
Match error results). For XYPixmap, the image must be sent in XY format. For ZPix-
map, the image must be sent in the Z format defined for the given depth.

The left-pad must be zero for zZPixmap format (or a Match error results).
For Bitmap and XYPixmap format, left-pad must be less than bitmap-scanline-pad as
given in the server connection setup information (or a Match error results). The first
left-pad bits in every scanline are to be ignored by the server. The actual image begins

10-106 March 26, 1992

that many bits into the data. The width argument defines the width of the actual image
and does not include left-pad.

GC components. function, plane-mask, subwindow-maode, clip-x-origin, clip-y-origin,
clip-mask

GC mode-dependent components: foreground, background

Getlmage

drawable: DRAWABLE

X, Y: INT16

width, height: CARD16
plane-mask: CARD32

format: {XYPixmap, ZPixmap}

depth: CARDS8
visual: VISUALID or None
data: LISTofBYTE

Errors. Drawable, Match, Value

This reguest returns the contents of the given rectangle of the drawable in the given for-
mat. The x and y coordinates are relative to the drawable's origin and define the
upper-left corner of the rectangle. If XYPixmap is specified, only the bit planes
specified in plane-mask are transmitted, with the planes appearing from most-significant
to least-significant in bit order. If ZPixmap is specified, then bits in al planes not
specified in plane-mask are transmitted as zero. Range checking is not performed on
plane-mask; extraneous bits are simply ignored. The returned depth is as specified
when the drawable was created and is the same as a depth component in a FORMAT
structure (in the connection setup), not a bits-per-pixel component. If the drawable is a
window, its visual typeis returned. If the drawableis a pixmap, the visual isNone.

If the drawable is a pixmap, then the given rectangle must be wholly contained within
the pixmap (or a Match error results). If the drawable is a window, the window must
be viewable, and it must be the case that, if there were no inferiors or overlapping win-
dows, the specified rectangle of the window would be fully visible on the screen and
wholly contained within the outside edges of the window (or a Match error results).
Note that the borders of the window can be included and read with this request. If the
window has a backing store, then the backing-store contents are returned for regions of
the window that are obscured by noninferior windows; otherwise, the returned contents
of such obscured regions are undefined. Also undefined are the returned contents of
visible regions of inferiors of different depth than the specified window. The pointer
cursor image is not included in the contents returned.

March 26, 1992 10-107

X Window System

This request is not general-purpose in the same sense as other graphics-related requests.
It is intended specifically for rudimentary hardcopy support.

PolyText8

10-108

drawable: DRAWABLE
gc: GCONTEXT

X, y: INT16

items: LISToOf TEXTITEMS8

where:
TEXTITEMS: TEXTELTS8 or FONT
TEXTELTS: [delta: INT8

string: STRINGS]

Errors. Drawable, Font, GContext, Match

The x and y coordinates are relative to the drawable’s origin and specify the baseline
starting position (the initial character origin). Each text item is processed in turn. A
font item causes the font to be stored in gc and to be used for subsequent text. Switch-
ing among fonts does not affect the next character origin. A text element delta specifies
an additional change in the position along the x axis before the string is drawn; the delta
is always added to the character origin. Each character image, as defined by the font in
gc, is treated as an additional mask for a fill operation on the drawable.

All contained FONTSs are always transmitted most-significant byte first.
If aFont error is generated for an item, the previous items may have been drawn.

For fonts defined with 2-byte matrix indexing, each STRING8 byte is interpreted as a
byte? value of a CHAR2B with a bytel value of zero.

GC components. function, plane-mask, fill-style, font, subwindow-mode, clip-x-origin,
clip-y-origin, clip-mask

GC mode-dependent components. foreground, background, tile, stipple, tile-stipple-x-
origin, tile-stipple-y-origin

March 26, 1992

PolyText16

drawable: DRAWABLE
gc: GCONTEXT

X, y: INT16

items: LISTOfTEXTITEM16

where:
TEXTITEM16: TEXTELT16 or FONT
TEXTELT16: [delta: INT8

string: STRING16]

Errors. Drawable, Font, GContext, Match

This request is similar to PolyText8, except 2-byte (or 16-hit) characters are used. For
fonts defined with linear indexing rather than 2-byte matrix indexing, the server will
interpret each CHAR2B as a 16-bit number that has been transmitted most-significant
byte first (that is, bytel of the CHAR2B is taken as the most-significant byte).

|mageT ext8

drawable: DRAWABLE
gc: GCONTEXT

X, y: INT16

string: STRING8

Errors. Drawable, GContext, Match
The x and y coordinates are relative to the drawable's origin and specify the baseline
starting position (the initial character origin). The effect is first to fill a destination rec-
tangle with the background pixel defined in gc and then to paint the text with the fore-
ground pixel. The upper-left corner of the filled rectangleis at:

[x, y — font-ascent]
the width is:

overall-width

and the height is:

March 26, 1992 10-109

X Window System

font-ascent + font-descent

The overal-width, font-ascent, and font-descent are as they would be returned by a
QueryTextExtents call using gc and string.

The function and fill-style defined in gc are ignored for this request. The effective func-
tion isCopy, and the effective fill-style Solid.

For fonts defined with 2-byte matrix indexing, each STRINGS8 byte is interpreted as a
byte? value of a CHAR2B with a bytel value of zero.

GC components: plane-mask, foreground, background, font, subwin-
dow-mode, clip-x-origin, clip-y-origin, clip-mask

| mageT ext16

drawable: DRAWABLE
gc: GCONTEXT

X, y: INT16

string: STRING16

Errors. Drawable, GContext, Match

This request is similar to ImageText8, except 2-byte (or 16-bit) characters are used.
For fonts defined with linear indexing rather than 2-byte matrix indexing, the server will
interpret each CHAR2B as a 16-bit number that has been transmitted most-significant
byte first (that is, bytel of the CHARZ2B is taken as the most-significant byte).

CreateColormap

mid: COLORMAP
visual: VISUALID
window: WINDOW
alloc: {None, All}

Errors. Alloc, IDChoice, Match, Value, Window

This request creates a colormap of the specified visual type for the screen on which the
window resides and associates the identifier mid with it. The visual type must be one
supported by the screen (or a Match error results). The initial values of the colormap
entries are undefined for classes GrayScale, PseudoColor, and DirectColor. For

10-110 March 26, 1992

StaticGray, StaticColor, and TrueColor, the entries will have defined values, but those
values are specific to the visual and are not defined by the core protocol. For Sta-
ticGray, StaticColor, and TrueColor, aloc must be specified as None (or aMatch error
results). For the other classes, if aloc is None, the colormap initially has no allocated
entries, and clients can alocate entries.

If alloc is All, then the entire colormap is *‘allocated’’ writable. The initial values of all
alocated entries are undefined. For GrayScale and PseudoColor, the effect is as if an
AllocColorCells request returned all pixel values from zero to N — 1, where N is the
colormap-entries value in the specified visual. For DirectColor, the effect is as if an
AllocColorPlanes request returned a pixel value of zero and red-mask, green-mask, and
blue-mask values containing the same bits as the corresponding masks in the specified
visual. However, in al cases, none of these entries can be freed with FreeColors.

FreeColormap

cmap: COLORMAP

Errors. Colormap

This request deletes the association between the resource ID and the colormap and frees
the colormap storage. If the colormap is an installed map for a screen, it is uninstalled
(see UninstallColormap request). If the colormap is defined as the colormap for a win-
dow (by means of CreateWindow or ChangeWindowAttributes), the colormap for
the window is changed to None, and a ColormapNotify event is generated. The proto-
col does not define the colors displayed for a window with a colormap of None.

CopyColormapAndFree

mid, src-cmap: COLORMAP

Errors. Alloc, Colormap, IDChoice

This request creates a colormap of the same visual type and for the same screen as src-
cmap, and it associates identifier mid with it. It also moves al of the client’s existing
alocations from src-cmap to the new colormap with their color values intact and their
read-only or writable characteristics intact, and it frees those entries in src-cmap. Color
values in other entries in the new colormap are undefined. If src-cmap was created by
the client with alloc All (see CreateColormap request), then the new colormap is also
created with alloc All, all color values for al entries are copied from src-cmap, and then

March 26, 1992 10-111

X Window System

al entries in src-cmap are freed. If src-cmap was not created by the client with alloc
All, then the alocations to be moved are al those pixels and planes that have been alo-
cated by the client using either AllocColor, AllocNamedColor, AllocColorCells, or
AllocColorPlanes and that have not been freed since they were alocated.

I nstallColormap

cmap: COLORMAP

Errors. Colormap

This request makes this colormap an installed map for its screen. All windows associ-
ated with this colormap immediately display with true colors. As a side effect, addi-
tional colormaps might be implicitly installed or uninstalled by the server. Which other
colormaps get installed or uninstalled is server-dependent except that the required list
must remain installed.

If cmap is not already an installed map, a ColormapNotify event is generated on every
window having cmap as an attribute. In addition, for every other colormap that is
installed or uninstalled as a result of the request, a ColormapNotify event is generated
on every window having that colormap as an attribute.

At any time, there is a subset of the installed maps that are viewed as an ordered list
and are called the required list. The length of the required list is at most M, where M is
the min-installed-maps specified for the screen in the connection setup. The required
list is maintained as follows. When a colormap is an explicit argument to InstallColor-
map, it is added to the head of the list; the list is truncated at the tail, if necessary, to
keep the length of the list to at most M. When a colormap is an explicit argument to
UninstallColormap and it is in the required list, it is removed from the list. A color-
map is not added to the required list when it is installed implicitly by the server, and the
server cannot implicitly uninstall a colormap that is in the required list.

Initially the default colormap for a screen is installed (but is not in the required list).

UninstallColormap

10-112

cmap: COLORMAP

Errors. Colormap

March 26, 1992

If cmap is on the required list for its screen (see InstallColormap request), it is
removed from the list. As a side effect, cmap might be uninstalled, and additional
colormaps might be implicitly installed or uninstalled. Which colormaps get installed
or uninstalled is server-dependent except that the required list must remain installed.

If cmap becomes uninstalled, a ColormapNotify event is generated on every window
having cmap as an attribute. In addition, for every other colormap that is installed or
uninstalled as a result of the request, a ColormapNotify event is generated on every
window having that colormap as an attribute.

ListlnstalledColor maps

window: WINDOW

—

cmaps. LISTof COLORMAP

Errors: Window

This request returns a list of the currently installed colormaps for the screen of the
specified window. The order of colormaps is not significant, and there is no explicit
indication of the required list (see InstallColormap request).

AllocColor

cmap: COLORMAP

red, green, blue: CARD16
pixel: CARD32

red, green, blue: CARD16

Errors: Alloc, Colormap

This request allocates a read-only colormap entry corresponding to the closest RGB
values provided by the hardware. It also returns the pixel and the RGB values actualy
used. Multiple clients requesting the same effective RGB values can be assigned the
same read-only entry, allowing entries to be shared.

March 26, 1992 10-113

X Window System

AllocNamedColor

cmap: COLORMAP
name: STRINGS8

—

pixel: CARD32
exact-red, exact-green, exact-blue: CARD16
visual-red, visual-green, visual-blue; CARD16

Errors. Alloc, Colormap, Name

This request looks up the named color with respect to the screen associated with the
colormap. Then, it does an AllocColor on cmap. The name should use the ISO Latin-1
encoding, and uppercase and lowercase do not matter. The exact RGB values specify
the true values for the color, and the visual values specify the values actually used in the
colormap.

AllocColorCdlls

cmap: COLORMAP
colors, planes: CARD16
contiguous: BOOL

—

10-114

pixels, masks: LISTof CARD32

Errors. Alloc, Colormap, Value

The number of colors must be positive, and the number of planes must be nonnegative
(or aValue error results). If C colors and P planes are requested, then C pixels and P
masks are returned. No mask will have any bits in common with any other mask or
with any of the pixels. By ORing together masks and pixels, C*2P distinct pixels can
be produced; all of these are allocated writable by the request. For GrayScale or Pseu-
doColor, each mask will have exactly one bit set to 1; for DirectColor, each will have
exactly three bits set to 1. If contiguous is True and if all masks are ORed together, a
single contiguous set of bits will be formed for GrayScale or PseudoColor, and three
contiguous sets of bits (one within each pixel subfield) for DirectColor. The RGB
values of the allocated entries are undefined.

March 26, 1992

AllocColor Planes

cmap: COLORMAP

colors, reds, greens, blues: CARD16
contiguous: BOOL

pixels: LISTof CARD32

red-mask, green-mask, blue-mask: CARD32

Errors: Alloc, Colormap, Value

The number of colors must be positive, and the reds, greens, and blues must be nonne-
gative (or a Value error results). If C colors, R reds, G greens, and B blues are
requested, then C pixels are returned, and the masks have R, G, and B bits set, respec-
tively. If contiguous is True, then each mask will have a contiguous set of bits. No
mask will have any bits in common with any other mask or with any of the pixels. For
DirectColor, each mask will lie within the corresponding pixel subfield. By ORing
together subsets of masks with pixels, C*2R+G+B digtinct pixels can be produced; all of
these are allocated by the request. The initial RGB values of the allocated entries are
undefined. In the colormap, there are only C*2R independent red entries, C*2G
independent green entries, and C*2B independent blue entries. This is true even for
PseudoColor. When the colormap entry for a pixel value is changed using StoreColors
or StoreNamedColor, the pixel is decomposed according to the masks and the
corresponding independent entries are updated.

FreeColors

cmap: COLORMAP
pixels: LISTof CARD32
plane-mask: CARD32

Errors. Access, Colormap, Value

The plane-mask should not have any bits in common with any of the pixels. The set of
al pixels is produced by ORing together subsets of plane-mask with the pixels. The
request frees al of these pixels that were allocated by the client (using AllocColor,
AllocNamedColor, AllocColorCells, and AllocColorPlanes). Note that freeing an
individual pixel obtained from AllocColorPlanes may not actually allow it to be reused
until all of its related pixels are also freed. Similarly, a read-only entry is not actually
freed until it has been freed by all clients, and if a client allocates the same read-only
entry multiple times, it must free the entry that many times before the entry is actually
freed.

March 26, 1992 10-115

X Window System

All specified pixels that are allocated by the client in cmap are freed, even if one or
more pixels produce an error. A Value error is generated if a specified pixel is not a
valid index into cmap, and an Access error is generated if a specified pixel is not allo-
cated by the client (that is, is unallocated or is only allocated by another client). If more
than one pixel isin error, it is arbitrary as to which pixel is reported.

StoreColors

cmap: COLORMAP
items: LISTof COLORITEM

where:

COLORITEM: [pixel: CARD32
do-red, do-green, do-blue: BOOL
red, green, blue: CARD16]

Errors. Access, Colormap, Value

This reguest changes the colormap entries of the specified pixels. The do-red, do-green,
and do-blue fields indicate which components should actually be changed. If the color-
map is an installed map for its screen, the changes are visible immediately.

All specified pixels that are allocated writable in cmap (by any client) are changed, even
if one or more pixels produce an error. A Value error is generated if a specified pixel
is not a valid index into cmap, and an Access error is generated if a specified pixel is
unallocated or is alocated read-only. If more than one pixel isin e