
-- --

X Window System:

The Complete Reference to

Xlib, X Protocol, ICCCM, XLFD

X Version 11, Release 4
EY-E755E-DP

Robert W. Scheifler & James Gettys

-- --

X Window System

Copyright  1990 by Digital Equipment Corporation. All rights reserved.

No part of this book may be reproduced, stored in a retrival system, or transmitted in
any form or by any means, electronic, photocopying, recording, or otherwise, without
written permission from the publisher.

This book is also available through Digital Press, order number EY-E757E-DP.

Bitstream Amerigo is a trademark of Bitstream Inc. DEC, DECnet, the Digital logo,
ULTRIX, Micro VAX II, VAX, VAX-11, VAXstation, VAXstation II/GPS,
VAX/VMS, VMS are trademarks of Digital Equipment Corporation, Helvetica and
Times are trademarks of Linotype Company. IBM, Personal Computer AT, Personal
Computer RT are trademarks of International Business Machines Corporation. ITC
Avante Garde Gothic is a tradmark of International Typeface Corporation. MD-DOS is
a trademark of Microsoft Corporation. PostScript and Stone are trademarks of Adobe
Systems, Inc. Times Roman is a trademark of Monotype Corporation. X Window Sys-
tem is a tradmark of The Massachusetts Institute of Technology.

Views expressed in this book are those of the author, not of the publisher. Digital
Equipment Corporation is not responsible for any errors that may appear in this book.

-- --

Chapter Acknowledgments

X Window System, Version 11

The design and implementation of the first ten versions of X were primarily the work of
three individuals: Robert Scheifler (MIT Laboratory for Computer Science), Jim Gettys
(Digital Equipment Corporation), and Ron Newman (MIT), who both were at MIT Pro-
ject Athena. X version 11, however, resulted from the efforts of dozens of individuals at
almost as many locations and organizations. At the risk of offending some of them by
exclusion, we would like to acknowledge some of the people who deserve special credit
and recognition. Our apologies to anyone inadvertently overlooked. Note that all
affiliations mentioned reflect those that the individuals had at the time of their con-
tribution.

Our special thanks go to Sam Fuller, Vice President of Corporate Research at Digital,
who has remained committed to the widest public availability of X and who made it
possible to greatly supplement MIT’s resources with the Digital staff in order to make
version 11 a reality. Many of the people mentioned here are part of the Western
Software Laboratory (Digital) of the ULTRIX Engineering Group and worked for Smo-
key Wallace, who was vital to the project’s success. Others mentioned here are part of
Digital’s Workstation Systems Engineering. Others not mentioned here worked on the
toolkit and are acknowledged in the X Toolkit documentation.

Of course, we must particularly thank Paul Asente, formerly of Stanford University and
now of Digital, who wrote W, the predecessor to X, and Brian Reid, also formerly of
Stanford University and now of Digital, who had much to do with W’s design.

Our thanks also go to MIT, Digital Equipment Corporation, and IBM for providing the
environment where it could happen.

March 26, 1992 1−i

-- --

X Window System

Xlib—C Library X Interface, Release 1

First, our thanks go to Phil Karlton and Scott McGregor, both of Digital, for their con-
siderable contributions to the specification of the version 11 protocol. Susan Ange-
branndt, Raymond Drewry, Todd Newman, and Phil Karlton of Digital worked long and
hard to produce the sample server implementation.

Next, we thank Ralph Swick (Project Athena and Digital), who kept it all together for
us. He handled literally thousands of requests from people everywhere and saved the
sanity of at least one of us. His calm good cheer was a foundation on which we could
build.

Our thanks also go to Todd Brunhoff (Tektronix), who came to Project Athena at
exactly the right moment to provide very capable and much-needed assistance during
the alpha and beta releases. He was responsible for the successful integration of sources
from multiple sites; we would not have had a release without him.

We also thank Al Mento and Al Wojtas of Digital, who with good humor and cheer
took a rough draft and made it an infinitely better and more useful document. The work
they have done will help many everywhere. We also would like to thank Hal Murray
(Digital SRC) and Peter George (Digital VMS), who contributed much by proofreading
the early drafts of this document.

Our thanks also go to Jeff Dike (Digital UEG), Tom Benson, Jackie Granfield, and
Vince Orgovan (Digital VMS), who helped with the library utilities implementation; to
Hania Gajewska (Digital UEG-WSL), who along with Ellis Cohen (CMU and Siemens)
was instrumental in the semantic design of the window manager properties; to David
Rosenthal (Sun Microsystems), who also contributed to the protocol and provided the
sample generic color frame buffer device-dependent code; and to Tim Greenwood (Digi-
tal IECG) for his help in understanding international keyboards and for providing the
KeySyms in appendix E.

The alpha and beta test participants deserve special recognition and thanks as well. It is
significant that the bug reports (and many fixes) during alpha and beta testing came
almost exclusively from just a few of the alpha testers, mostly hardware vendors work-
ing on product implementations of X. The continued public contribution of vendors and
universities is certainly to the benefit of the entire X community.

Release 4

First, our thanks go to Jim Fulton (MIT X Consortium) for designing and specifying the
new Xlib functions needed for Inter-Client Communication Conventions (ICCCM) sup-
port.

We also thank Al Mento of Digital for his continued effort in maintaining this document
and Jim Fulton and Donna Converse (MIT X Consortium) for their much-appreciated

1−ii March 26, 1992

-- --

efforts in reviewing the changes.

X Window System Protocol

The primary contributers to the X11 protocol are Dave Carver (Digital HPW), Branko
Gerovac (Digital HPW), Jim Gettys (MIT/Project Athena, Digital), Phil Karlton (Digital
WSL), Scott McGregor (Digital SSG), Ram Rao (Digital UEG), David Rosenthal (Sun),
and Dave Winchell (Digital UEG).

The implementors of the initial server who provided useful input are Susan Ange-
branndt (Digital), Raymond Drewry (Digital), and Todd Newman (Digital).

The invited reviewers who provided useful input are Andrew Cherenson (Berkeley),
Burns Fisher (Digital), Dan Garfinkel (HP), Leo Hourvitz (Next), Brock Krizan (HP),
David Laidlaw (Stellar), Dave Mellinger (Interleaf), Ron Newman (MIT), John
Ousterhout (Berkeley), Andrew Palay (ITC CMU), Ralph Swick (MIT), Craig Taylor
(Sun), and Jeffery Vroom (Stellar).

Thanks also go to Al Mento (Digital) for formatting and maintaining this document.

Inter-Client Communication Conventions Manual

Our thanks go to David Rosenthal (Sun), who had overall architectural responsibility for
the conventions defined in this document; he wrote most of the text and edited the docu-
ment, but its development has been a communal effort. The details were thrashed out in
meetings at the January 1988 MIT X Conference and at the 1988 Summer USENIX
conference, and through months (and megabytes) of argument on a Consortium mailing
list. Thanks are due to everyone who contributed, but especially to the following people.

For the Selection section, thanks go to Jerry Farrell (Sun), Phil Karlton (Digital),
Loretta Guarino-Reid (Digital), Mark Manasse (Digital), and Bob Scheifler (MIT).

For the Cut Buffer section, thanks go to Andrew Palay (CMU).

For the Window and Session Manager sections, thanks go to Todd Brunhoff (Tek-
tronix), Ellis Cohen (Siemens), Jim Fulton (MIT), Hania Gajewska (Digital), Jordan
Hubbard (Ardent), Kerry Kimbrough (TI), Audrey Ishizaki (H-P), Matt Landau (BBN),
Mark Manasse (Digital), Bob Scheifler (MIT LCS), Ralph Swick (Project Athena and
Digital), Mike Wexler (Wyse), and Glenn Widener (Tektronix).

In addition, thanks go to those who contributed to the public review: Gary Combs
(Tektronix), Errol Crary (Tektronix), Nancy Cyprych (Digital), John Diamant (H-P),
Clive Feather (IXI), Burns Fisher (Digital), Richard Greco (Tektronix), Tim Greenwood
(Digital), Kee Hinckley (Apollo), Brian Holt (Apollo), John Interrante (Stanford), John
Irwin (Franz Inc.), Vania Joloboff (INRIA), John Laporta (Apollo), Ken Lee (Daisy),

March 26, 1992 1−iii

-- --

X Window System

Stuart Marks (Sun), Allan Mimms (Apple), Colas Nahaboo (INRIA), Mark Patrick
(Ardent), Steve Pitschke (Stellar), Brad Reed (EDS), and John Thomas (Tektronix).

X Logical Font Description

Our thanks go to Jim Flowers (Digital), who had architectural and editorial responsibil-
ity for the conventions defined in this X Consortium Standard; he drafted the initial pro-
posal during the final stages of X11 development and guided it through the year-long
internal and external review process.

In addition, a number of Consortium members provided critical input and comments on
the proposal, especially Bob Scheifler (MIT), Phil Karlton (Digital), Glenn Widener
(Tektronix), and Daniel Dardailler (Bull).

Robert W. Scheifler
Laboratory for Computer Science

Massachusetts Institute of Technology

Jim Gettys
Cambridge Research Laboratory

Digital Equipment Corportation

1−iv March 26, 1992

-- --

Chapter Introduction

The X Window System, or X, is a network-transparent window system. With X, multi-
ple applications can run simultaneously in windows, generating text and graphics in
monochrome or color on a bitmap display. Network transparency means that applica-
tion programs can run on machines scattered throughout the network. Because X per-
mits applications to be device-independent, applications need not be rewritten, recom-
piled, or even relinked to work with new display hardware.

X provides facilities for generating multifont text and two-dimensional graphics (such
as points, lines, arcs, and polygons) in a hierarchy of rectangular windows. Every win-
dow can be thought of as a ‘‘virtual screen’’ and can contain subwindows within it, to
an arbitrary depth. Windows can overlap each other like stacks of papers on a desk and
can be moved, resized, and restacked dynamically. Windows are inexpensive resources;
applications using several hundred subwindows are common. For example, windows
are often used to implement individual user interface components such as scroll bars,
menus, buttons, and so forth.

Although users typically think of themselves as clients of the system, X applications, in
terms of the network, are the clients that use the network services of the window sys-
tem. A program running on the machine with the display hardware provides these ser-
vices and so is called the X server. The X server acts as an intermediary between appli-
cations and the display, handling output from the clients to the display and forwarding
input (entered with a keyboard or mouse) to the appropriate clients for processing.

Clients and servers use some form of interprocess communication to exchange informa-
tion. The syntax and semantics of this conversation are defined by a communication
protocol. This protocol is the foundation of the X Window System. Clients use the pro-
tocol to send requests to the server to create and manipulate windows, to generate text
and graphics, to control input from the user, and to communicate with other clients.
The server uses the protocol to send information back to the client in response to vari-
ous requests and to forward keyboard and other user input on to the appropriate clients.

Because a network round-trip is an expensive operation relative to basic request execu-
tion, the protocol is primarily asynchronous, and data can be in transit in both directions
(client to server and server to client) simultaneously. After generating a request, a client
typically does not wait for the server to execute the request before generating a new
request. Instead, the client generates a stream of requests that are eventually received

March 26, 1992 2−i

-- --

X Window System

by the server and executed. The server does not acknowledge receipt of a request and,
in most cases, does not acknowledge execution of a request. (This is possible because
the underlying transport is reliable.)

The protocol is designed explicitly to minimize the need to query the window system
for information. Clients should not depend on the server to obtain information that the
clients initially supplied. In addition, clients do not poll for input by sending requests
to the server. Instead, clients use requests to register interest in various events, and the
server sends event notifications asynchronously. Asynchronous operation may be one
of the most significant differences between X and other window systems.

For the best performance, when the client and the server reside on the same machine,
communication between them often is implemented using shared memory. When the
client and the server reside on different machines, communication can take place over
any network transport layer that provides reliable, in-order delivery of data in both
directions (usually called a reliable duplex byte stream). For example, TCP (in the
Internet protocol family) and DECnet streams are two commonly used transport layers.
To support distributed computing in a heterogeneous environment, the communication
protocol is designed to be independent of the operating system, programming language,
and processor hardware. Thus, a single display can display applications written in mul-
tiple languages under multiple operating systems on multiple hardware architectures
simultaneously.

Although X is fundamentally defined by a network protocol, most application program-
mers do not want to think about bits, bytes, and message formats. Therefore, X has an
interface library. This library provides a familiar procedural interface that masks the
details of the protocol encoding and transport interactions and automatically handles the
buffering of requests for efficient transport to the server, much as the C standard I/O
library buffers output to minimize system calls. The library also provides various utility
functions that are not directly related to the protocol but are nevertheless important in
building applications. The exact interface for this library differs for each programming
language. Xlib is the library for the C programming language.

Figure 1. on page 4 shows a block diagram of a complete X environment. Each X
server controls one or more screens, a keyboard, and a pointing device (typically a
mouse) with one or more buttons on it. There can be many X servers; often there is one
for every workstation on the network. Applications can run on any machine, even those
without X servers. An application might communicate with multiple servers simultane-
ously (for example, to support computer conferencing between individuals in different
locations). Multiple applications can be active at the same time on a single server.

In X, many facilities that are built into other window systems are provided by client
libraries. The X protocol does not specify menus, scroll bars, and dialog boxes or how
an application should respond to user input. The protocol and X library avoid mandat-
ing such policy decisions as much as possible and should be viewed as a construction
kit that provides a rich set of mechanisms that can implement a variety of user interface
policies. Toolkits (providing menus, scroll bars, dialog boxes, and so on), higher-level
graphics libraries (which might transform abstract object descriptions into graphics
requests, for example), and user interface management systems (UIMS) can all be
implemented on top of the X library. Although the X library provides the foundation,

2−ii March 26, 1992

-- --

the expectation is that applications will be written using these higher-level facilities in
conjunction with the facilities of the X library, rather than solely on the ‘‘bare bones’’
of the X library.

A user interface can be viewed as having two primary components: the interaction with
the user that is logically internal to an application (for example, typing text into a text
editor or changing a cell’s contents in a spreadsheet) and the interaction that is logically
external to an application (for example, moving or resizing an application window or
turning an application window into an icon). The external user interface is built into
many other window systems, but this is not the case with X. The X protocol does not
define an external user interface at all. Rather, the protocol provides mechanisms with
which a variety of external user interfaces can be built. These mechanisms are designed
so that a single client, called a window manager, can provide the external user interface
independent of all the other clients.

Figure 2-1. X window system block diagram
#ifdef BOOKREADER

March 26, 1992 2−iii

-- --

X Window System

#endif #ifdef HARDCOPY
 ZK−0404U−R

X Server

Device Library

Screen ScreenKeyboard

X Server

Device Library

ScreenKeyboard

#endif

A window manager can enforce a strict window layout policy if it desires (for example,
‘‘tiling’’ the screen so that application windows never overlap) as well as automatically
provide the following:

• Title bars, borders, and other window decorations for each application

• Uniform icons for applications

• A uniform means of moving and resizing windows

• A uniform interface for switching the keyboard between applications

With a suitable set of conventions, which have been standardized and are called the
Inter-Client Communication Conventions (see Part III), applications are insensitive to

2−iv March 26, 1992

-- --

the external user interface provided by a window manager and run correctly unmodified
in multiple environments.

Because the protocol can deal with such a broad spectrum of user interfaces, no single
program, toolkit, UIMS, or window manager is likely to use all the facilities the proto-
col and the X library provide.

Principles

Early in the development of X, we argued about what should and should not be imple-
mented in the server. For example, we did not know if menus or terminal emulators
could be implemented in the client with adequate performance or whether ‘‘rubber-
banding’’ (dynamically stretching a simple figure in response to movement of the point-
ing device) would be acceptable when performed across a network. Experimentation
during the first months showed us that more was possible than we had first believed.

These observations hardened into the following principles, which guided us through the
early X design:

• Do not add new functionality unless an implementor cannot complete a real applica-
tion without it.

• It is as important to decide what a system is not as to decide what it is. Do not serve
all the world’s needs; rather, make the system extensible so that additional needs can
be met in an upwardly compatible fashion.

• The only thing worse than generalizing from one example is generalizing from no
examples at all.

• If a problem is not completely understood, it is probably best to provide no solution
at all.

• If you can get 90 percent of the desired effect for 10 percent of the work, use the
simpler solution.

• Isolate complexity as much as possible.

• Provide mechanism rather than policy. In particular, place user interface policy in
the clients’ hands.

The first principle kept the wish list under control. Just because someone wanted some-
thing in the server, we did not feel obligated to add it. This kept us focused on the
important issues that made real applications work. This principle was a somewhat more
difficult touchstone to use during the design of the present version of X, given its appre-
ciably larger audience. We modified the principle to be ‘‘know of some real application
that will require it.’’

At each iteration of the X design, there was always more to do than time allowed. We
therefore focused on mechanisms with the broadest applicability and for which con-
sensus in the group could easily be achieved. For example, we focused on two-

March 26, 1992 2−v

-- --

X Window System

dimensional graphics, explicitly deferring three-dimensional graphics.

At the same time, to avoid obsolescence, we designed the present version of X to be
extensible at both the protocol and library interfaces without requiring incompatible
changes to existing applications. Examples of extensions that we had in mind were
additional graphics models (such as GKS, PHIGS, and PostScript), real-time video, and
general programmability in the server. (We view programmability as simply one exam-
ple of an extension, not as the sole mechanism for extensibility; mere programmability
does not give support for video or high-performance support for graphics.)

During the design and implementation process, we generally suspected that any prob-
lems were just the tips of large icebergs. Expending effort to solve an immediate prob-
lem without first trying to generalize the problem is usually a mistake; a few related
examples often make a whole class of problems clear. This is not to say that we
ignored the first instance of a problem; often there were adequate solutions using exist-
ing mechanisms.

We attempted to avoid solutions to problems we did not fully understand. For example,
the preliminary design for the present version of X supported multiple input devices
(more than just a single keyboard and mouse). As we worked through the design, we
realized it had flaws that would take a lot of time and experimentation to correct. As a
result, we removed this support from the system, knowing that correct support could be
added later through the extension mechanism.

We also tried to avoid winning a complexity merit badge. If we could get most of what
we needed with less complexity than a complete solution would require, we were wil-
ling to compromise our goals. Only history will decide if these trade-offs were success-
ful.

Much of the existing complexity is a result of providing support for external window
management; most programmers need not be concerned with this, particularly those
using an X toolkit. We expected that toolkits would hide various forms of tedium from
the programmer. For example, a program that displays ‘‘Hello World’’ with
configurable colors and font and obeys window management conventions is about 150
lines of code when written using only the facilities of the X library. An equivalent pro-
gram written using a toolkit can have fewer than a dozen lines of code. Thus, it is
important to keep in mind that the X library is only one layer in a complete X program-
ming environment.

Isolation of complexity is necessary in large systems. A system in which every com-
ponent is intimately related to every other becomes difficult to change as circumstances
change. We therefore attempted to build as much as possible into client programs,
introducing only the minimum mechanisms required in the server.

Deciding what a system is not is as important as deciding what it is. For example, at
various times people urged that remote execution and general inter-client remote pro-
cedure calls be integral parts of X. They felt there were no established standards in
these areas, and they wanted X to be a self-contained environment. As is often the case,
solving the immediate problem by adding to the existing framework rather than by
integrating into a larger framework is less work, but the result is not satisfactory for
long. The X protocol is correctly viewed as just one component in an overall

2−vi March 26, 1992

-- --

distributed systems architecture, not as the complete architecture by itself.

User interface design is difficult and currently quite diverse. Although global user inter-
face standards might someday be possible, we believed it prudent to promote the
cooperative coexistence of a variety of user interface styles and to support diverse user
communities and ongoing research activities. By separating window management func-
tions from the server and from normal applications and by layering user interface policy
in higher-level libraries on top of the X library, we allowed for experimentation without
forcing all users to be guinea pigs. As a result, many existing user interfaces have been
imported into the X environment. Having a ‘‘pick one or roll your own’’ policy instead
of a ‘‘love it or leave it’’ one has drawbacks; applications developers must choose a
user interface style and user community. The X library and the protocol should be
remembered not as an end but a foundation.

As might have been predicted, X not only has become a fertile ground for experimenta-
tion in user interfaces but also has become a source of market competition. Two major
user interface toolkits and window managers (with quite different look-and-feels) are
Motif1 and Open Look.2 Applications using either can coexist simultaneously (although
they provide quite different results to the end user).

Significant research toolkits include InterViews, written in C++ at Stanford, the Andrew
system of CMU, several Common Lisp toolkits, and a dozen major window managers.
There are a number of user interface management systems and other application builders
for X.

All of this, of course, is to enable applications to be built easily and cheaply. These are
now appearing in quantity for X. It is by these that we must judge the success of X; by
this metric, we have only succeeded in attaining our goals in 1989.

1 Motif, a registered trademark of the Open Software Foundation, is based on technol-
ogy from Hewlett-Packard and Digital Equipment Corporation.

2 Open Look, a registered trademark of AT&T, is based on technology from AT&T and
Sun Microsystems.

History

X was born of necessity in 1984. Bob Scheifler was working at MIT’s Laboratory for
Computer Science (LCS) on the Argus distributed system and was in need of a decent
display environment for debugging multiple distributed processes. Jim Gettys, a Digital
engineer, was assigned to MIT Project Athena, an undergraduate education program
sponsored by Digital and IBM that would ultimately populate the MIT campus with
thousands of workstations.

Neither Digital nor IBM had a workstation product with a bitmap display in 1984. The
closest simulacrum available was from Digital–a VS100 display attached to a VAX.
Both Athena and LCS had VAX-11/750s, and Athena was in the process of acquiring
about 70 VS100s. VS100s were in field test at the time, and the firmware for them was

March 26, 1992 2−vii

-- --

X Window System

unreliable. Athena lent one of the first VS100s to LCS in exchange for cooperative
work on the software. Our immediate goal was clear: we needed to build a window
system environment running under UNIX on VS100s for ourselves and the groups we
worked for. We had little thought of anything beyond these goals but wondered where
to begin. Little software was available elsewhere that was not encumbered by license or
portability.

Paul Asente and Brian Reid, then both at Stanford University, had developed a proto-
type window system, called W, to run under Stanford’s V operating system. W used a
network protocol and supported ‘‘dumb terminal’’ windows and ‘‘transparent graphics’’
windows with display lists maintained in the server. In the summer of 1983, Paul
Asente and Chris Kent, summer students at Digital’s Western Research Laboratory,
ported W to the VS100 under UNIX and were kind enough to give us a copy.

The V system has reasonably fast synchronous remote procedure call, and W in the V
environment was designed with a synchronous protocol. The port to UNIX retained the
synchronous communication even though communication in UNIX was easily five times
slower than in V. The combination of prototype VS100s with unreliable firmware and
W using slow communication was not encouraging, to say the least; one could easily
type faster than the terminal window could echo characters.

In May 1984, we received reliable VS100 hardware and firmware. That summer, Bob
Scheifler replaced the synchronous protocol of W with an asynchronous protocol and
replaced the display lists with immediate mode graphics. The result was sufficiently
different from W that continuing to call it W was inappropriate and would have caused
confusion, as W was in some limited use at Athena. With no particular thought about
the name and because the familial resemblance to W was still strong at that date, Bob
called the result X. Much later, when the name became a serious issue, X had already
stuck and was used by too many people to permit a change.

Development was rapid during the next eight months. The first terminal emulator
(VT52) and window manager were written in the CLU programming language, the
language of choice in the research group where Bob worked. Bob continued develop-
ment of the server and the protocol, which went from version 1 to version 6 during this
period (the version number was incremented each time an incompatible change was
made). Mark Vandevoorde at Athena wrote a new VT100 terminal emulator in C, and
Jim Gettys worked on the X library and the UNIX support for starting the window sys-
tem. Late in 1984, we received faster VS100 firmware, causing the first round of per-
formance analysis and optimization. Within a few weeks, we were again hardware lim-
ited but had a much better understanding of performance issues.

By early 1985, many people inside Digital were using X, and plans were under way for
the first Digital UNIX workstation product, which was based on the MicroVAX-II. At
that time, support for UNIX in Digital was limited, and there was no chance of getting
any other window system except X on Digital hardware. Other systems were either
nonportable or were unavailable because of licensing problems (as was the case with
Andrew). X was the logical candidate. We had ported X version 6 to the QVSS
display on the MicroVAX. Ron Newman joined Project Athena at this time and worked
on documenting the X library, which was already in its third major revision.

2−viii March 26, 1992

-- --

We redesigned X to support color during the second quarter of 1985, with Digital’s
eventual VAXstation-II/GPX as the intended target. Although MIT had licensed ver-
sion 6 to a few outside groups for a brief time at nominal charge, a key decision was
made in the summer of 1985 not to license future versions of X. Instead, it would be
available to anyone at the cost of production. In September 1985, version 9 of X was
made publicly available, and the field test of the VAXstation-II/GPX began. During
that fall, Brown University and MIT started porting X to the IBM RT/PC, which was in
field test at those universities. A problem with reading unaligned data on the RT forced
an incompatible change to the protocol; this was the only difference between version 9
and version 10.

During the fall, the first significant outside contributions of code to X started to appear
from several universities and from Digital. In January 1986, Digital announced the
VAXstation-II/GPX, which was the first commercial X implementation. Release 3 of X
(X10R3) was available in February and was a major watershed in X’s development.
Although we were happy to see a major corporation incorporate X into its product line,
we knew the design was limited to the taste and needs of a small group of people. It
could solve just the problems we faced, and its hardware origins were still obvious in
key aspects of the design. We knew version 10 had inherent limitations that would
force major redesign within a few years, although it was certainly adequate for develop-
ing many interesting applications.

Over the next few months, a strange phenomenon occurred. Many other corporations,
such as Hewlett-Packard, were basing products on version 10, and groups at universities
and elsewhere were porting X to other displays and systems, including Apollo Com-
puter and Sun Microsystems workstations. The server was even ported to the IBM
PC/AT. Somewhat later, Hewlett-Packard contributed their toolkit to the MIT distribu-
tion.

We grew tired of hearing comments such as ‘‘We like X, but there is this one thing you
ought to change.’’ People were already declaring it a standard, which was, to our think-
ing, premature. Before long, however, we were confronted with a fundamental decision
about X’s future. We seriously considered doing nothing; after all, X did almost every-
thing we needed it to, and what it did not do could be added without difficulty. Unfor-
tunately, this would leave many people using an inadequate platform for their work. In
the long run, X would either die because of its inadequacies, or it would spawn wildly
incompatible variations. Alternatively, based on feedback from users and developers,
we could undertake a second major redesign of X.

Although we were willing to do the design work, we knew that the resulting design
would be ambitious and would require much more implementation work than our
meager resources at MIT would permit. Fortunately, Digital’s Western Software
Laboratory (DECWSL) was between projects. This group had the required expertise,
including people who had contributed to pioneering Xerox window systems. More
importantly, these people were intimately familiar with X. Smokey Wallace,
DECWSL’s manager, and Jim Gettys proposed the implementation of version 11, which
would then be given back to MIT for public distribution without a license. Digital
management quickly approved the proposal.

March 26, 1992 2−ix

-- --

X Window System

We started intensive protocol design in May 1986. No proprietary information was
used in the design process. Key contributors included Phil Karlton and Scott McGregor
of Digital. Dave Rosenthal of Sun Microsystems was invited to join Digital engineers
on the design team, and Bob Scheifler acted as the chief architect. At the first design
meeting, we decided it was not feasible to design a protocol that would be upwardly
compatible with version 10 and still provide the functionality essential for the range of
display hardware that had to be supported. With some reluctance, we abandoned com-
patibility with version 10 (although Todd Brunhoff of Tektronix has since shown that
one can build a reasonable ‘‘compatibility server’’ to display version 10 applications on
a version 11 server).

We carried out most of the actual design work using the electronic mail facilities of the
DARPA Internet, which connects hundreds of networks around the country, including
MIT’s campus network and Digital’s engineering network. The entire group held only
three day-long meetings during the design process. During these meetings, we reached
a consensus on issues we could not resolve by mail. Even with group members on
opposite coasts, responses to most design issues were only a few minutes away. A
printed copy of all the messages exchanged during this time would be a stack of paper
several feet high. Without electronic mail, the design simply would not have been pos-
sible.

Once we had completed a preliminary protocol design, we invited people from other
companies and universities to review the specification. By August, we had a design
ready for public review, which was again carried out using electronic mail, courtesy of
the Internet. Design of the sample server implementation started at this time. Phil
Karlton and Susan Angebranndt of DECWSL designed and implemented the device-
independent parts of the server, and Raymond Drewry and Todd machine-independent
graphics library. Jim Gettys acted as the the X library architect and with Ron worked
on the redesign and implementation of the X library. Many other contributions came
from DECWSL as well, such as rewriting version 10 clients and the Xt toolkit intrinsics
(another story in itself).

During the fall of 1986, Digital decided to base its entire desktop workstation strategy
for ULTRIX, VMS, and MS-DOS on X. Although this was gratifying to us, it also
meant we had even more people to talk to. This resulted in some delay, but, in the end,
it also resulted in a better design. Ralph Swick of Digital joined Project Athena during
this period and played a vital role thoughout version 11’s development. The last ver-
sion 10 release was made available in December 1986.

In January 1987, approximately 250 people attended the first X technical conference,
which was held at MIT. During the conference, eleven major computer hardware and
software vendors announced their support for X version 11 at an unprecedented press
conference.

Alpha testing of version 11 started in February 1988, and beta testing started three
months later at over 100 sites. Server back-ends and other code contributions came
from Apollo, Digital, Hewlett-Packard, IBM, Sun, and the University of California at
Berkeley. Tektronix lent Todd Brunhoff to MIT to help coordinate testing and integra-
tion, which was a godsend to us all. Texas Instruments provided an implementation of
a Common Lisp interface library, based on an interface specification by Bob Scheifler.

2−x March 26, 1992

-- --

We made the first release of version 11 (V11R1) available on September 15, 1987.

The MIT X Consortium

Toward the end of the design phase of the version 11 protocol, the MIT principals were
feeling that perhaps it was time to reliquish control of X and let the industry take over,
although we had only vague ideas about what that might mean. Window system design
was something we had fallen into. We did not think of it as our real occupation, and it
seemed there was sufficient industry momentum for X to succeed. We made our feel-
ings known at the first X Technical Conference in January 1987 and during a few proto-
col design sessions.

We were somewhat surprised by the reaction, but this was just another instance of
underestimating the impact of X. Representatives of nine major computer vendors col-
lectively called for a meeting with MIT, held in June 1987; their consistent position was
that it could be fatal to X if MIT relinquished control. They argued that a vendor-
neutral architect was a key factor in the success of X. To make UNIX successful, it was
necessary to encourage application development by independent software vendors
(ISVs). Prior to X, ISVs saw the UNIX marketplace as fragmented with multiple
proprietary graphics and windowing systems. X was bringing coherence to the market-
place. However, without continued vendor-neutral control, different segments of the
industry would surely take divergent paths, and interoperability would again be lost.

From this meeting came the idea of a more formal organization for controlling the evo-
lution of X, with MIT at the helm, and in January 1988 the MIT X Consortium was
born, with Bob Scheifler as its director. The goal of the Consortium is to promote
cooperation within the computer industry in the creation of standard software interfaces
at all layers in the X Window System environment. MIT’s role is to provide the
vendor-neutral architectural and administrative leadership required to make this work.
The Consortium is financially self-supporting from membership fees with membership
open to any organization. At present, over 65 companies as well as several universities
and research organizations (which represent the bulk of the US and a considerable seg-
ment of the international computer industries) belong to the X Consortium.

The X Consortium hosted its fourth annual X conference in January 1990 (approxi-
mately 1300 people attended). The fourth release of version 11 was available January 3,
1990. At present, the X Consortium consists of over 70 organizations, including all
major US computer vendors and many international vendors.

The director of the X Consortium acts as the chief architect for all X specifications and
software and is the final authority for standards. The activities of the Consortium are
overseen by an MIT Steering Committee, which includes the director and one associate
director of LCS. The Steering Committee helps set policy and establish goals as well as
provides strategic guidance and review of the Consortium’s activities. An Advisory
Committee, which is made up of member representatives, meets regularly to review the
Consortium’s plans, assess its progress, and suggest future directions.

March 26, 1992 2−xi

-- --

X Window System

The interests of the Consortium, which are quite broad, include the following:

• Incorporating three-dimensional graphics functionality (such as that provided by the
PHIGS international graphics standard)

• Incorporating live and still video display and control

• Incorporating scalable/outline font technology

• Incorporating security mechanisms in support of both commercial and government
requirements

• Incorporating digital image processing functionality

• Developing high-level toolkits to support the rapid construction of high-quality user
interfaces and to support the reuse of user interface components across applications

• Developing conventions to allow applications to operate reasonably under a variety
of externally controlled window management policies and to allow independent
applications to exchange meaningful data in a cooperative fashion

• Developing programming interfaces to simplify building internationalized applica-
tions that are capable of being tailored to a variety of languages and keyboard input
methods

• Developing control protocols and support services for X terminals (network-based
graphics terminals designed specifically to run the X server)

• Developing and maintaining software test suites for major system components

• Sponsoring an annual conference, open to the public, to promote the exchange of
technical information about X

The Consortium’s activities take place almost exclusively using electronic mail with
occasional meetings only when required. As designs and specifications take shape,
interest groups are formed from experts in the participating organizations. Typically, a
small multi-organization architecture team leads the design with others acting as close
observers and reviewers. Once a complete specification is produced, it is submitted for
formal technical review by the Consortium as a proposed standard. The standards pro-
cess includes public review outside the Consortium and a demonstration of proof of
concept. Proof of concept typically requires a complete, public, portable implementa-
tion of the specification. The MIT staff of the Consortium maintains a software and
documentation collection containing implementations of Consortium standards and a
wide variety of user-contributed software. It also makes periodic distributions of this
collection available to the public without license and for a minimal fee.

Various formal standards bodies have now taken a keen interest in X. The specification
of the X protocol is progressing toward the status of a national standard under the
auspices of the American National Standards Institute (ANSI), and the International
Standards Organization (ISO) has indicated its desire to review the resulting
specification for international standardization. The Institute of Electrical and Electronics
Engineers (IEEE) is currently considering several Consortium standards and several
industry-sponsored X toolkits for review toward ANSI standardization.

2−xii March 26, 1992

-- --

The Structure of This Book

This book consists of four main parts, each a standard specification produced by the
MIT X Consortium:

• Part I, ‘‘Xlib—C Library X Interface,’’ is a reference manual for Xlib, the lowest
level C language X programming interface to the X Window System. The first
chapter provides a basic overview and establishes conventions used throughout Part
I. Chapter 2 deals with opening and closing connections and obtaining basic infor-
mation about the connected display. Chapters 3 and 4 explain how to create and
manipulate windows. Graphics capabilities are presented in chapters 5 and 6.
Chapters 7 and 9 describe window manager functions and data, and chapter 8
explains events and event-handling functions. Finally, chapter 10 describes a variety
of utility functions for keyboard input, command line parsing, region arithmetic, and
resource management.

• Part II, ‘‘X Window System Protocol,’’ is the concise, precise specification of the X
protocol semantics. The protocol specification is independent of any particular pro-
gramming language, and as such, is an appropriate starting point for creating inter-
face libraries for other programming languages. C programmers will prefer the Xlib
reference to the protocol descriptions, although the protocol’s alternative description
may clarify points of confusion.

• Part III, ‘‘Inter-Client Communication Conventions Manual,’’ also known as the
ICCCM, discusses the conventions that govern inter-client communication. These
conventions are language-independent, do not impose any one user interface, and
cover the following areas: the selection mechanism, cut buffers, window managers,
session managers, and the manipulation of colormaps and input devices.

• Part IV, ‘‘X Logical Font Description,’’ also known as the XLFD, discusses the
conventions for font names and font properties, which when followed allow clients
to query and access fonts across X server implementations.

In addition, this book contains a glossary and a number of appendices. The glossary
provides definitions of the basic terminology used specifically in Parts I and II but that
also are relevant to Parts III and IV. Appendix A provides cross-reference information
between protocol requests and library functions. Appendix B provides the standard
predefined cursor shapes in Xlib. Appendix C provides information required to build
Xlib interfaces to protocol extensions. Appendix D provides information about those
X11 and X10 Xlib functions that have been superseded by newer X11 functions but are
provided for compatibility reasons. Appendix E provides the predefined keyboard sym-
bol (KEYSYM) encodings. Appendix F provides the bit and byte description of the X
protocol. Appendix G provides a list of the CharSet names that have been registered
with the X Consortium. Appendix H provides the Bitmap Distribution Format (BDF)
standard for font interchange.

March 26, 1992 2−xiii

-- --

X Window System

Part I. XLib—C Language X Interface

James Gettys Robert W. Scheifler Ron Newman

2−14 March 26, 1992

-- --

Chapter 1. Introduction to Xlib

The X Window System is a network-transparent window system that was designed at
MIT. X display servers run on computers with either monochrome or color bitmap
display hardware. The server distributes user input to and accepts output requests from
various client programs located either on the same machine or elsewhere in the network.
Xlib is a C subroutine library that application programs (clients) use to interface with
the window system by means of a stream connection. Although a client usually runs on
the same machine as the X server it is talking to, this need not be the case.

Part I, ‘‘Xlib – C Language X Interface,’’ is a reference guide to the low-level C
language interface to the X Window System protocol. It is neither a tutorial nor a user’s
guide to programming the X Window System. Rather, it provides a detailed description
of each function in the library as well as a discussion of the related background infor-
mation. It assumes a basic understanding of a graphics window system and of the C
programming language. Other higher-level abstractions (for example, those provided by
the toolkits for X) are built on top of the Xlib library. For further information about
these higher-level libraries, see the appropriate toolkit documentation. Part II, ‘‘X Win-
dow System Protocol,’’ provides the definitive word on the behavior of X. Although
additional information appears here, the protocol document is the ruling document.

To provide an introduction to X programming, this chapter discusses:

• Overview of the X Window System

• Errors

• Naming and argument conventions

• Programming considerations

• Formatting conventions

1.1 Overview of the X Window System

Some of the terms used in this book are unique to X, and other terms that are common
to other window systems have different meanings in X. You may find it helpful to refer

March 26, 1992 1−1

-- --

X Window System

to the glossary, which is located at the end of the book.

The X Window System supports one or more screens containing overlapping windows
or subwindows. A screen is a physical monitor and hardware, which can be either color
or black and white. There can be multiple screens for each display or workstation. A
single X server can provide display services for any number of screens. A set of screens
for a single user with one keyboard and one pointer (usually a mouse) is called a
display.

All the windows in an X server are arranged in strict hierarchies. At the top of each
hierarchy is a root window, which covers each of the display screens. Each root window
is partially or completely covered by child windows. All windows, except for root win-
dows, have parents. There is usually at least one window for each application program.
Child windows may in turn have their own children. In this way, an application pro-
gram can create an arbitrarily deep tree on each screen. X provides graphics, text, and
raster operations for windows.

A child window can be larger than its parent. That is, part or all of the child window
can extend beyond the boundaries of the parent, but all output to a window is clipped
by its parent. If several children of a window have overlapping locations, one of the
children is considered to be on top of or raised over the others thus obscuring them.
Output to areas covered by other windows is suppressed by the window system unless
the window has backing store. If a window is obscured by a second window, the second
window obscures only those ancestors of the second window, which are also ancestors
of the first window.

A window has a border zero or more pixels in width, which can be any pattern (pixmap)
or solid color you like. A window usually but not always has a background pattern,
which will be repainted by the window system when uncovered. Each window has its
own coordinate system. Child windows obscure their parents unless the child windows
(of the same depth) have no background, and graphic operations in the parent window
usually are clipped by the children.

Figure 1-1. Window hierarchy
#ifdef BOOKREADER

1−2 March 26, 1992

-- --

Introduction to Xlib

#endif #ifdef HARDCOPY

Visible Screen

Areas enclosed by dashed lines are not
viewable. Windows labeled A and B are
children of the root window. A.1 and A.2
are children of A; note that children are
clipped by their parent.

B is lower than A in the stacking hierarchy.

Root

A.1 A.2

A B

ZK−0407U−R

#endif

X does not guarantee to preserve the contents of windows. When part or all of a win-
dow is hidden and then brought back onto the screen, its contents may be lost. The
server then sends the client program an Expose event to notify it that part or all of the
window needs to be repainted. Programs must be prepared to regenerate the contents of
windows on demand.

X also provides off-screen storage of graphics objects, called pixmaps. Single plane
(depth 1) pixmaps are sometimes referred to as bitmaps. Pixmaps can be used in most
graphics functions interchangeably with windows and are used in various graphics
operations to define patterns or tiles. Windows and pixmaps together are referred to as
drawables.

March 26, 1992 1−3

-- --

X Window System

Most of the functions in Xlib just add requests to an output buffer. These requests later
execute asynchronously on the X server. Functions that return values of information
stored in the server do not return (that is, they block) until an explicit reply is received
or an error occurs. You can provide an error handler, which will be called when the
error is reported.

If a client does not want a request to execute asynchronously, it can follow the request
with a call to XSync, which blocks until all previously buffered asynchronous events
have been sent and acted on. As an important side effect, the output buffer in Xlib is
always flushed by a call to any function that returns a value from the server or waits for
input.

Many Xlib functions will return an integer resource ID, which allows you to refer to
objects stored on the X server. These can be of type Window,
Font, Pixmap, Colormap, Cursor, and GContext, as defined in the file <X11/X.h>.1

Note that None is the universal NULL resource ID or atom.

These resources are created by requests and are destroyed (or freed) by requests or when
connections are closed. Most of these resources are potentially sharable between appli-
cations, and in fact, windows are manipulated explicitly by window manager programs.
Fonts and cursors are shared automatically across multiple screens. Fonts are loaded and
unloaded as needed and are shared by multiple clients. Fonts are often cached in the
server. Xlib provides no support for sharing graphics contexts between applications.

Client programs are informed of events. Events may either be side effects of a request
(for example, restacking windows generates Expose events) or completely asynchronous
(for example, from the keyboard). A client program asks to be informed of events.
Because other applications can send events to your application, programs must be
prepared to handle (or ignore) events of all types.

Input events (for example, a key pressed or the pointer moved) arrive asynchronously
from the server and are queued until they are requested by an explicit call (for example,
XNextEvent or XWindowEvent). In addition, some library functions (for example,
XRaiseWindow) generate Expose and ConfigureRequest events. These events also
arrive asynchronously, but the client may wish to explicitly wait for them by calling
XSync after calling a function that can cause the server to generate events.

1 The < > has the meaning defined by the # include statement of the C compiler and is a
file relative to a well-known directory. On POSIX-conformant systems, this is
/usr/include.

1.2 Errors

Some functions return Status, an integer error indication. If the function fails, it returns
a zero. If the function returns a status of zero, it has not updated the return arguments.
Because C does not provide multiple return values, many functions must return their
results by writing into client-passed storage. By default, errors are handled either by a
standard library function or by one that you provide. Functions that return pointers to

1−4 March 26, 1992

-- --

Introduction to Xlib

strings return NULL pointers if the string does not exist.

The X server reports protocol errors at the time that it detects them. If more than one
error could be generated for a given request, the server can report any of them.

Because Xlib usually does not transmit requests to the server immediately (that is, it
buffers them), errors can be reported much later than they actually occur. For debugging
purposes, however, Xlib provides a mechanism for forcing synchronous behavior (see
section 8.12.1). When synchronization is enabled, errors are reported as they are gen-
erated.

When Xlib detects an error, it calls an error handler, which your program can provide. If
you do not provide an error handler, the error is printed, and your program terminates.

1.3 Naming and Argument Conventuions within Xlib

Xlib follows a number of conventions for the naming and syntax of the functions. Given
that you remember what information the function requires, these conventions are
intended to make the syntax of the functions more predictable.

The major naming conventions are:

• To differentiate the X symbols from the other symbols, the library uses mixed case
for external symbols. It leaves lowercase for variables and all uppercase for user
macros, as per existing convention.

• All Xlib functions begin with a capital X.

• The beginnings of all function names and symbols are capitalized.

• All user-visible data structures begin with a capital X. More generally, anything that
a user might dereference begins with a capital X.

• Macros and other symbols do not begin with a capital X. To distinguish them from
all user symbols, each word in the macro is capitalized.

• All elements of or variables in a data structure are in lowercase. Compound words,
where needed, are constructed with underscores (_).

• The display argument, where used, is always first in the argument list.

• All resource objects, where used, occur at the beginning of the argument list
immediately after the display argument.

• When a graphics context is present together with another type of resource (most
commonly, a drawable), the graphics context occurs in the argument list after the
other resource. Drawables outrank all other resources.

• Source arguments always precede the destination arguments in the argument list.

• The x argument always precedes the y argument in the argument list.

March 26, 1992 1−5

-- --

X Window System

• The width argument always precedes the height argument in the argument list.

• Where the x, y, width, and height arguments are used together, the x and y argu-
ments always precede the width and height arguments.

• Where a mask is accompanied with a structure, the mask always precedes the
pointer to the structure in the argument list.

• Xlib defines the Boolean values of True and False.

1.4 Programming Considerations

The major programming considerations are:

• Keyboards are the greatest variable between different manufacturers’ workstations. If
you want your program to be portable, you should be particularly conservative here.

• Many display systems have limited amounts of off-screen memory. If you can, you
should minimize use of pixmaps and backing store.

• The user should have control of his screen real estate. Therefore, you should write
your applications to react to window management rather than presume control of the
entire screen. What you do inside of your to-level window, however, is up to your
application. For further information, see chapter 9.

• Coordinates and sizes in X are actually 16-bit quantities. They usually are declared
as an ‘‘int’’ in the interface (int is 16 bits on some machines). Values larger than 16
bits are truncated silently. Sizes (width and height) are unsigned quantities. This
decision was taken to minimize the bandwidth required for a given level of perfor-
mance.

1.5 Formating Conventions

The following conventions are used throughout part I:

• Global symbols are printed in this special font. These can be either function names,
symbols defined in include files, or structure names. Arguments are printed in ital-
ics.

• Each function is introduced by a general discussion that distinguishes it from other
functions. The function declaration itself follows, and each argument is specifically
explained. General discussion of the function, if any is required, follows the argu-
ments. Where applicable, the last paragraph of the explanation lists the possible Xlib
error codes that the function can generate. For a complete discussion of the Xlib
error codes, see section 8.12.2.

1−6 March 26, 1992

-- --

Introduction to Xlib

• To eliminate any ambiguity between those arguments that you pass and those that a
function returns to you, the explanations for all arguments that you pass start with
the word specifies or, in the case of multiple arguments, the word specify. The
explanations for all arguments that are returned to you start with the word returns
or, in the case of multiple arguments, the word return. The explanations for all
arguments that you can pass and are returned start with the words specifies and
returns.

• Any pointer to a structure that is used to return a value is designated as such by the
_return suffix as part of its name. All other pointers passed to these functions are
used for reading only. A few arguments use pointers to structures that are used for
both input and output and are indicated by using the _in_out suffix.

March 26, 1992 1−7

-- --

Chapter 2. Display Functions

Before your program can use a display, you must establish a connection to the X
server. Once you have established a connection, you then can use the Xlib macros and
functions discussed in this chapter to return information about the display. This chapter
discusses how to:

• Open (connect to) the display

• Obtain information about the display, image format, and screen

• Free client-created data

• Close (disconnect from) a display

The chapter concludes with a general discussion of what occurs when the connection to
the X server is closed.

2.1 Opening the Display

To open a connection to the X server that controls a display, use XOpenDisplay.

Display *XOpenDisplay(display_name)
char *display_name;

display_name Specifies the hardware display name, which determines the
display and communications domain to be used. On a POSIX-
conformant system, if the display_name is NULL, it defaults to
the value of the DISPLAY environment variable.

On POSIX-conformant systems, the display name or DISPLAY environment variable is
a string in the format:

hostname:number.screen_number

hostname Specifies the name of the host machine on which the display is
physically attached. You follow the hostname with either a sin-
gle colon (:) or a double colon (::).

March 26, 1992 2−1

-- --

X Window System

number Specifies the number of the display server on that host
machine. You may optionally follow this display number with
a period (.). A single CPU can have more than one display.
Multiple displays are usually numbered starting with zero.

screen_number Specifies the screen to be used on that server. Multiple screens
can be controlled by a single X server. The screen_number sets
an internal variable that can be accessed by using the
DefaultScreen macro or the XDefaultScreen function if you
are using languages other than C (see section 2.2.1).

For example, the following would specify screen 2 of display 0 on the machine named
mit-athena:

mit-athena:0.2

The XOpenDisplay function returns a Display structure that serves as the connection to
the X server and that contains all the information about that X server. XOpenDisplay
connects your application to the X server through TCP, UNIX domain, or DECnet com-
munications protocols, or through some local inter-process communication protocol. If
the hostname is a host machine name and a single colon (:) separates the hostname and
display number, XOpenDisplay connects using TCP streams. If the hostname is not
specified, Xlib uses whatever it believes is the fastest transport. If the hostname is a
host machine name and a double colon (::) separates the hostname and display number,
XOpenDisplay connects using DECnet. A single X server can support any or all of
these transport mechanisms simultaneously. A particular Xlib implementation can sup-
port many more of these transport mechanisms.

If successful, XOpenDisplay returns a pointer to a Display structure, which is defined
in <X11/Xlib.h>. If XOpenDisplay does not succeed, it returns
NULL. After a successful call to XOpenDisplay, all of the screens in the display can
be used by the client. The screen number specified in the display_name argument is
returned by the DefaultScreen macro (or the XDefaultScreen function). You can
access elements of the Display and Screen structures only by using the information
macros or functions. For information about using macros and functions to obtain infor-
mation from the Display structure, see section 2.2.1.

X servers may implement various types of access control mechanisms (see section
7.11).

2.2 Obtaining Information about the Display, Image For-
mats, or Screens

The Xlib library provides a number of useful macros and corresponding functions that
return data from the Display structure. The macros are used for C programming, and
their corresponding function equivalents are for other language bindings. This section
discusses the:

2−2 March 26, 1992

-- --

Display Functions

• Display macros

• Image format macros

• Screen macros

All other members of the Display structure (that is, those for which no macros are
defined) are private to Xlib and must not be used. Applications must never directly
modify or inspect these private members of the Display structure.

Note: The XDisplayWidth, XDisplayHeight, XDisplayCells, XDisplay-
Planes, XDisplayWidthMM, and XDisplayHeightMM functions in the
next sections are misnamed. These functions really should be named
Screenwhatever and XScreenwhatever, not Displaywhatever or
XDisplaywhatever. Our apologies for the resulting confusion.

2.2.1 Display Macros

Applications should not directly modify any part of the Display and Screen structures.
The members should be considered read-only, although they may change as the result of
other operations on the display.

The following lists the C language macros, their corresponding function equivalents that
are for other language bindings, and what data they both can return.

AllPlanes

unsigned long XAllPlanes()

Both return a value with all bits set to 1 suitable for use in a plane argument to a pro-
cedure.

Both BlackPixel and WhitePixel can be used in implementing a mono-
chrome application. These pixel values are for permanently allocated entries in the
default colormap. The actual RGB (red, green, and blue) values are settable on some
screens and, in any case, may not actually be black or white. The names are intended to
convey the expected relative intensity of the colors.

BlackPixel(display, screen_number)

unsigned long XBlackPixel(display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.

Both return the black pixel value for the specified screen.

WhitePixel(display, screen_number)

March 26, 1992 2−3

-- --

X Window System

unsigned long XWhitePixel(display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.

Both return the white pixel value for the specified screen.

ConnectionNumber(display)

int XConnectionNumber(display)
Display *display;

display Specifies the connection to the X server.

Both return a connection number for the specified display. On a POSIX-conformant
system, this is the file descriptor of the connection.

DefaultColormap(display, screen_number)

Colormap XDefaultColormap(display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.

Both return the default colormap ID for allocation on the specified screen. Most routine
allocations of color should be made out of this colormap.

DefaultDepth(display, screen_number)

int XDefaultDepth(display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.

Both return the depth (number of planes) of the default root window for the specified
screen. Other depths may also be supported on this screen (see XMatchVisualInfo).

To determine the number of depths that are available on a given screen, use XList-
Depths.

int *XListDepths(display, screen_number, count_return)
Display *display;
int screen_number;
int *count_return;

display Specifies the connection to the X server.

2−4 March 26, 1992

-- --

Display Functions

screen_number Specifies the appropriate screen number on the host server.

count_return Returns the number of depths.

The XListDepths function returns the array of depths that are available on the specified
screen. If the specified screen_number is valid and sufficient memory for the array can
be allocated, XListDepths sets count_return to the number of available depths. Other-
wise, it does not set count_return and returns NULL. To release the memory allocated
for the array of depths, use XFree.

DefaultGC(display, screen_number)

GC XDefaultGC(display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.

Both return the default graphics context for the root window of the specified screen.
This GC is created for the convenience of simple applications and contains the default
GC components with the foreground and background pixel values initialized to the
black and white pixels for the screen, respectively. You can modify its contents freely
because it is not used in any Xlib function. This GC should never be freed.

DefaultRootWindow(display)

Window XDefaultRootWindow(display)
Display *display;

display Specifies the connection to the X server.

Both return the root window for the default screen.

DefaultScreenOfDisplay(display)

Screen *XDefaultScreenOfDisplay(display)
Display *display;

display Specifies the connection to the X server.

Both return a pointer to the default screen.

ScreenOfDisplay(display, screen_number)

Screen *XScreenOfDisplay(display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.

Both return a pointer to the indicated screen.

March 26, 1992 2−5

-- --

X Window System

DefaultScreen(display)

int XDefaultScreen(display)
Display *display;

display Specifies the connection to the X server.

Both return the default screen number referenced by the XOpenDisplay function. This
macro or function should be used to retrieve the screen number in applications that will
use only a single screen.

DefaultVisual(display, screen_number)

Visual *XDefaultVisual(display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.

Both return the default visual type for the specified screen. For further information
about visual types, see section 3.1.

DisplayCells(display, screen_number)

int XDisplayCells(display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.

Both return the number of entries in the default colormap.

DisplayPlanes(display, screen_number)

int XDisplayPlanes(display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.

Both return the depth of the root window of the specified screen. For an explanation of
depth, see the glossary.

DisplayString(display)

char *XDisplayString(display)
Display *display;

display Specifies the connection to the X server.

2−6 March 26, 1992

-- --

Display Functions

Both return the string that was passed to XOpenDisplay when the current display was
opened. On POSIX-conformant systems, if the passed string was NULL, these return
the value of the DISPLAY environment variable when the current display was opened.
These are useful to applications that invoke the fork system call and want to open a new
connection to the same display from the child process as well as for printing error mes-
sages.

LastKnownRequestProcessed(display)

unsigned long XLastKnownRequestProcessed(display)
Display *display;

display Specifies the connection to the X server.

Both extract the full serial number of the last request known by Xlib to have been pro-
cessed by the X server. Xlib automatically sets this number when replies, events, and
errors are received.

NextRequest(display)

unsigned long XNextRequest(display)
Display *display;

display Specifies the connection to the X server.

Both extract the full serial number that is to be used for the next request. Serial
numbers are maintained separately for each display connection.

ProtocolVersion(display)

int XProtocolVersion(display)
Display *display;

display Specifies the connection to the X server.

Both return the major version number (11) of the X protocol associated with the con-
nected display.

ProtocolRevision(display)

int XProtocolRevision(display)
Display *display;

display Specifies the connection to the X server.

Both return the minor protocol revision number of the X server.

QLength(display)

int XQLength(display)
Display *display;

display Specifies the connection to the X server.

March 26, 1992 2−7

-- --

X Window System

Both return the length of the event queue for the connected display. Note that there
may be more events that have not been read into the queue yet (see XEventsQueued).

RootWindow(display, screen_number)

Window XRootWindow(display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.

Both return the root window. These are useful with functions that need a drawable of a
particular screen and for creating top-level windows.

ScreenCount(display)

int XScreenCount(display)
Display *display;

display Specifies the connection to the X server.

Both return the number of available screens.

ServerVendor(display)

char *XServerVendor(display)
Display *display;

display Specifies the connection to the X server.

Both return a pointer to a null-terminated string that provides some identification of the
owner of the X server implementation.

VendorRelease(display)

int XVendorRelease(display)
Display *display;

display Specifies the connection to the X server.

Both return a number related to a vendor’s release of the X server.

2.2.2 Image Format Functions and Macros

Applications are required to present data to the X server in a format that the server
demands. To help simplify applications, most of the work required to convert the data
is provided by Xlib (see sections 6.7 and 10.9).

The XPixmapFormatValues structure provides an interface to the pixmap format infor-
mation that is returned at the time of a connection setup. It

2−8 March 26, 1992

-- --

Display Functions

contains:

typedef struct {
int depth;
int bits_per_pixel;
int scanline_pad;

} XPixmapFormatValues;

To obtain the pixmap format information for a given display, use XList-
PixmapFormats.

XPixmapFormatValues *XListPixmapFormats(display, count_return)
Display *display;
int *count_return;

display Specifies the connection to the X server.

count_return Returns the number of pixmap formats that are supported by the
display.

The XListPixmapFormats function returns an array of XPixmapFormatValues struc-
tures that describe the types of Z format images supported by the specified display. If
insufficient memory is available, XListPixmapFormats returns NULL. To free the allo-
cated storage for the XPixmapFormatValues structures, use XFree.

The following lists the C language macros, their corresponding function equivalents that
are for other language bindings, and what data they both return for the specified server
and screen. These are often used by toolkits as well as by simple applications.

ImageByteOrder(display)

int XImageByteOrder(display)
Display *display;

display Specifies the connection to the X server.

Both specify the required byte order for images for each scanline unit in XY format
(bitmap) or for each pixel value in Z format. The macro or function can return either
LSBFirst or MSBFirst.

BitmapUnit(display)

int XBitmapUnit(display)
Display *display;

display Specifies the connection to the X server.

Both return the size of a bitmap’s scanline unit in bits. The scanline is calculated in
multiples of this value.

BitmapBitOrder(display)

int XBitmapBitOrder(display)
Display *display;

March 26, 1992 2−9

-- --

X Window System

display Specifies the connection to the X server.

Within each bitmap unit, the left-most bit in the bitmap as displayed on the screen is
either the least-significant or most-significant bit in the unit. This macro or function can
return LSBFirst or MSBFirst.

BitmapPad(display)

int XBitmapPad(display)
Display *display;

display Specifies the connection to the X server.

Each scanline must be padded to a multiple of bits returned by this macro or function.

DisplayHeight(display, screen_number)
int XDisplayHeight(display, screen_number)

Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.

Both return an integer that describes the height of the screen in pixels.

DisplayHeightMM(display, screen_number)

int XDisplayHeightMM(display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.

Both return the height of the specified screen in millimeters.

DisplayWidth(display, screen_number)

int XDisplayWidth(display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.

Both return the width of the screen in pixels.

DisplayWidthMM(display, screen_number)

int XDisplayWidthMM(display, screen_number)
Display *display;
int screen_number;

2−10 March 26, 1992

-- --

Display Functions

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.

Both return the width of the specified screen in millimeters.

2.2.3 Screen Information Macros

The following lists the C language macros, their corresponding function equivalents that
are for other language bindings, and what data they both can return. These macros or
functions all take a pointer to the appropriate screen structure.

BlackPixelOfScreen(screen)

unsigned long XBlackPixelOfScreen(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the black pixel value of the specified screen.

WhitePixelOfScreen(screen)

unsigned long XWhitePixelOfScreen(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the white pixel value of the specified screen.

CellsOfScreen(screen)

int XCellsOfScreen(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the number of colormap cells in the default colormap of the specified
screen.

DefaultColormapOfScreen(screen)

Colormap XDefaultColormapOfScreen(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the default colormap of the specified screen.

DefaultDepthOfScreen(screen)
int XDefaultDepthOfScreen(screen)

Screen *screen;

March 26, 1992 2−11

-- --

X Window System

screen Specifies the appropriate Screen structure.

Both return the depth of the root window.

DefaultGCOfScreen(screen)

GC XDefaultGCOfScreen(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return a default graphics context (GC) of the specified screen, which has the same
depth as the root window of the screen. The GC must never be freed.

DefaultVisualOfScreen(screen)

Visual *XDefaultVisualOfScreen(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the default visual of the specified screen. For information on visual types,
see section 3.1.

DoesBackingStore(screen)

int XDoesBackingStore(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return a value indicating whether the screen supports backing stores. The value
returned can be one of WhenMapped, NotUseful, or Always (see section 3.2.4).

DoesSaveUnders(screen)

Bool XDoesSaveUnders(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return a Boolean value indicating whether the screen supports save unders. If
True, the screen supports save unders. If False, the screen does not support save unders
(see section 3.2.5).

DisplayOfScreen(screen)

Display *XDisplayOfScreen(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the display of the specified screen.

int XScreenNumberOfScreen(screen)
Screen *screen;

2−12 March 26, 1992

-- --

Display Functions

screen Specifies the appropriate Screen structure.

The XScreenNumberOfScreen function returns the screen index number of the
specified screen.

EventMaskOfScreen(screen)
long XEventMaskOfScreen(screen)

Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the event mask of the root window for the specified screen at connection
setup time.

WidthOfScreen(screen)
int XWidthOfScreen(screen)

Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the width of the specified screen in pixels.

HeightOfScreen(screen)

int XHeightOfScreen(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the height of the specified screen in pixels.

WidthMMOfScreen(screen)

int XWidthMMOfScreen(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the width of the specified screen in millimeters.

HeightMMOfScreen(screen)

int XHeightMMOfScreen(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the height of the specified screen in millimeters.

MaxCmapsOfScreen(screen)

int XMaxCmapsOfScreen(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

March 26, 1992 2−13

-- --

X Window System

Both return the maximum number of installed colormaps supported by the specified
screen (see section 7.3).

MinCmapsOfScreen(screen)

int XMinCmapsOfScreen(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the minimum number of installed colormaps supported by the specified
screen (see section 7.3).

PlanesOfScreen(screen)

int XPlanesOfScreen(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the depth of the root window.

RootWindowOfScreen(screen)

Window XRootWindowOfScreen(screen)
Screen *screen;

screen Specifies the appropriate Screen structure.

Both return the root window of the specified screen.

2.3 Generating a NoOperation Protocol Request

To execute a NoOperation protocol request, use XNoOp.

XNoOp(display)
Display *display;

display Specifies the connection to the X server.

The XNoOp function sends a NoOperation protocol request to the X server, thereby
exercising the connection.

2.4 Freeing Client-Created Data

To free any in-memory data that was created by an Xlib function, use XFree.

2−14 March 26, 1992

-- --

Display Functions

XFree(data)
char *data;

data Specifies the data that is to be freed.

The XFree function is a general-purpose Xlib routine that frees the specified data. You
must use it to free any objects that were allocated by Xlib.

2.5 Closing the Display

To close a display or disconnect from the X server, use XCloseDisplay.

XCloseDisplay(display)
Display *display;

display Specifies the connection to the X server.

The XCloseDisplay function closes the connection to the X server for the display
specified in the Display structure and destroys all windows, resource IDs (Window,
Font, Pixmap, Colormap, Cursor, and GContext), or other resources that the client has
created on this display, unless the close-down mode of the resource has been changed
(see XSetCloseDownMode). Therefore, these windows, resource IDs, and other
resources should never be referenced again or an error will be generated. Before exit-
ing, you should call XCloseDisplay explicitly so that any pending errors are reported as
XCloseDisplay performs a final XSync operation.

XCloseDisplay can generate a BadGC error.

2.6 X Server Connection Close Operations

When the X server’s connection to a client is closed either by an explicit call to
XCloseDisplay or by a process that exits, the X server performs the following
automatic operations:

• It disowns all selections owned by the client (see XSetSelectionOwner).

• It performs an XUngrabPointer and XUngrabKeyboard if the client has actively
grabbed the pointer or the keyboard.

• It performs an XUngrabServer if the client has grabbed the server.

• It releases all passive grabs made by the client.

• It marks all resources (including colormap entries) allocated by the client either as
permanent or temporary, depending on whether the close-down mode is Retain-
Permanent or RetainTemporary. However, this does not prevent other client
applications from explicitly destroying the resources (see XSetCloseDownMode).

March 26, 1992 2−15

-- --

X Window System

When the close-down mode is DestroyAll, the X server destroys all of a client’s
resources as follows:

• It examines each window in the client’s save-set to determine if it is an inferior
(subwindow) of a window created by the client. (The save-set is a list of other
clients’ windows, which are referred to as save-set windows.) If so, the X server
reparents the save-set window to the closest ancestor so that the save-set window is
not an inferior of a window created by the client. The reparenting leaves unchanged
the absolute coordinates (with respect to the root window) of the upper-left outer
corner of the save-set window.

• It performs a MapWindow request on the save-set window if the save-set window
is unmapped. The X server does this even if the save-set window was not an infe-
rior of a window created by the client.

• It destroys all windows created by the client.

• It performs the appropriate free request on each nonwindow resource created by the
client in the server (for example, Font, Pixmap, Cursor, Colormap, and GCon-
text).

• It frees all colors and colormap entries allocated by a client application.

Additional processing occurs when the last connection to the X server closes.
An X server goes through a cycle of having no connections and having some connec-
tions. When the last connection to the X server closes as a result of a connection clos-
ing with the close_mode of DestroyAll, the X server does the following:

• It resets its state as if it had just been started. The X server begins by destroying all
lingering resources from clients that have terminated in RetainPermanent or
RetainTemporary mode.

• It deletes all but the predefined atom identifiers.

• It deletes all properties on all root windows (see chapter 4).

• It resets all device maps and attributes (for example, key click, bell volume, and
acceleration) as well as the access control list.

• It restores the standard root tiles and cursors.

• It restores the default font path.

• It restores the input focus to state PointerRoot.

However, the X server does not reset if you close a connection with a close-down mode
set to RetainPermanent or RetainTemporary.

2−16 March 26, 1992

-- --

Chapter 3. Window Functions

In the X Window System, a window is a rectangular area on the screen that lets you
view graphic output. Client applications can display overlapping and nested windows
on one or more screens that are driven by X servers on one or more machines. Clients
who want to create windows must first connect their program to the X server by calling
XOpenDisplay. This chapter begins with a discussion of visual types and window
attributes. The chapter continues with a discussion of the Xlib functions you can use to:

• Create windows

• Destroy windows

• Map windows

• Unmap windows

• Configure windows

• Change the stacking order

• Change window attributes

• Translate window coordinates

This chapter also identifies the window actions that may generate events.

Note that it is vital that your application conform to the established conventions for
communicating with window managers for it to work well with the various window
managers in use (see section 9.1). Toolkits generally adhere to these conventions for
you, relieving you of the burden. Toolkits also often
supersede many functions in this chapter with versions of their own. Refer to the docu-
mentation for the toolkit you are using for more information.

3.1 Visual Types

On some display hardware, it may be possible to deal with color resources in more than
one way. For example, you may be able to deal with a screen of either 12-bit depth

March 26, 1992 3−1

-- --

X Window System

with arbitrary mapping of pixel to color (pseudo-color) or 24-bit depth with 8 bits of the
pixel dedicated to each of red, green, and blue. These different ways of dealing with the
visual aspects of the screen are called visuals. For each screen of the display, there may
be a list of valid visual types supported at different depths of the screen. Because
default windows and visual types are defined for each screen, most simple applications
need not deal with this complexity. Xlib provides macros and functions that return the
default root window, the default depth of the default root window, and the default visual
type (see sections 2.2.1 and 10.8).

Xlib uses an opaque Visual structure that contains information about the possible color
mapping. The visual utility functions (see section 10.8) use an XVisualInfo structure to
return this information to an application. The members of this structure pertinent to this
discussion are class, red_mask, green_mask, blue_mask, bits_per_rgb, and
colormap_size. The class member specifies one of the possible visual classes of the
screen and can be StaticGray, StaticColor, TrueColor, GrayScale, PseudoColor, or
DirectColor.

The following concepts may serve to make the explanation of visual types clearer. The
screen can be color or grayscale, can have a colormap that is writable or read-only, and
can also have a colormap whose indices are decomposed into separate RGB pieces, pro-
vided one is not on a grayscale screen. This leads to the following diagram:

Figure 3-1. Visual Types
#ifdef BOOKREADER

#endif #ifdef HARDCOPY

Undecomposed
Colormap

Decomposed
Colormap

Static
Color

True
Color

Pseudo
Color

Direct
Color

Static
Gray

Gray
Scale

R/O R/W R/O R/W
Color Grayscale

ZK−0213U−R

3−2 March 26, 1992

-- --

Window Functions

#endif

Conceptually, as each pixel is read out of video memory for display on the screen, it
goes through a look-up stage by indexing into a colormap. Colormaps can be manipu-
lated arbitrarily on some hardware, in limited ways on other hardware, and not at all on
other hardware. The visual types affect the colormap and the RGB values in the follow-
ing ways:

• For PseudoColor, a pixel value indexes a colormap to produce independent RGB
values, and the RGB values can be changed dynamically.

• GrayScale is treated the same way as PseudoColor except that the primary that
drives the screen is undefined. Thus, the client should always store the same value
for red, green, and blue in the colormaps.

• For DirectColor, a pixel value is decomposed into separate RGB subfields, and each
subfield separately indexes the colormap for the corresponding value. The RGB
values can be changed dynamically.

• TrueColor is treated the same way as DirectColor except that the colormap has
predefined, read-only RGB values. These RGB values are server-dependent but pro-
vide linear or near-linear ramps in each primary.

• StaticColor is treated the same way as PseudoColor except that the colormap has
predefined, read-only, server-dependent RGB values.

• StaticGray is treated the same way as StaticColor except that the RGB values are
equal for any single pixel value, thus resulting in shades of gray. StaticGray with a
two-entry colormap can be thought of as monochrome.

The red_mask, green_mask, and blue_mask members are only defined for DirectColor
and TrueColor. Each has one contiguous set of bits with no intersections. The
bits_per_rgb member specifies the log base 2 of the number of distinct color values
(individually) of red, green, and blue. Actual RGB values are unsigned 16-bit numbers.
The colormap_size member defines the number of available colormap entries in a newly
created colormap. For DirectColor and TrueColor, this is the size of an individual pixel
subfield.

To obtain the visual ID from a Visual, use XVisualIDFromVisual.

Figure 3-2. Pseudo color, gray scale, static color or static gray
#ifdef BOOKREADER

March 26, 1992 3−3

-- --

X Window System

#endif #ifdef HARDCOPY

0 0

2n Entries

To Display

Red Green Blue

Possible Pixel Values
Are 0 Through 15

ZK−0408U−R

6

#endif

Figure 3-3. Direct color
#ifdef BOOKREADER

3−4 March 26, 1992

-- --

Window Functions

#endif #ifdef HARDCOPY

0

Blue0

1

ZK−0409U−R

March 26, 1992 3−5

-- --

X Window System

#endif

VisualID XVisualIDFromVisual(visual)
Visual *visual;

visual Specifies the visual type.

The XVisualIDFromVisual function returns the visual ID for the specified visual type.

3.2 Window Attributes

All InputOutput windows have a border width of zero or more pixels, an optional
background, an event suppression mask (which suppresses propagation of events from
children), and a property list (see section 4.2). The window border and background can
be a solid color or a pattern, called a tile. All windows except the root have a parent
and are clipped by their parent. If a window is stacked on top of another window, it
obscures that other window for the purpose of input. If a window has a background
(almost all do), it obscures the other window for purposes of output. Attempts to output
to the obscured area do nothing, and no input events (for example, pointer motion) are
generated for the obscured area.

Windows also have associated property lists (see section 4.2).

Both InputOutput and InputOnly windows have the following common attributes,
which are the only attributes of an InputOnly window:

• win-gravity

• event-mask

• do-not-propagate-mask

• override-redirect

• cursor

If you specify any other attributes for an InputOnly window, a BadMatch error
results.

InputOnly windows are used for controlling input events in situations where InputOut-
put windows are unnecessary. InputOnly windows are invisible; can only be used to
control such things as cursors, input event generation, and grabbing; and cannot be used
in any graphics requests. Note that InputOnly windows cannot have InputOutput win-
dows as inferiors.

Windows have borders of a programmable width and pattern as well as a background
pattern or tile. Pixel values can be used for solid colors. The background and border
pixmaps can be destroyed immediately after creating the window if no further explicit
references to them are to be made. The pattern can either be relative to the parent or
absolute. If ParentRelative, the parent’s background is used.

3−6 March 26, 1992

-- --

Window Functions

When windows are first created, they are not visible (not mapped) on the screen. Any
output to a window that is not visible on the screen and that does not have backing store
will be discarded. An application may wish to create a window long before it is
mapped to the screen. When a window is eventually
mapped to the screen (using XMapWindow), the X server generates an Expose event
for the window if backing store has not been maintained.

A window manager can override your choice of size, border width, and position for a
top-level window. Your program must be prepared to use the actual size and position
of the top window. It is not acceptable for a client application to resize itself unless in
direct response to a human command to do so. Instead, either your program should use
the space given to it, or if the space is too small for any useful work, your program
might ask the user to resize the window. The border of your top-level window is con-
sidered fair game for window managers.

To set an attribute of a window, set the appropriate member of the XSet-
WindowAttributes structure and OR in the corresponding value bitmask in your subse-
quent calls to XCreateWindow and XChangeWindowAttributes, or use one of the
other convenience functions that set the appropriate attribute. The symbols for the value
mask bits and the XSetWindowAttributes structure are:

/* Window attribute value mask bits */
#define CWBackPixmap(1L<<0)
#define CWBackPixel (1L<<1)
#define CWBorderPixmap(1L<<2)
#define CWBorderPixel (1L<<3)
#define CWBitGravity (1L<<4)
#define CWWinGravity (1L<<5)
#define CWBackingStore(1L<<6)
#define CWBackingPlanes(1L<<7)
#define CWBackingPixel(1L<<8)
#define CWOverrideRedirect(1L<<9)
#define CWSaveUnder (1L<<10)
#define CWEventMask (1L<<11)
#define CWDontPropagate(1L<<12)
#define CWColormap (1L<<13)
#define CWCursor (1L<<14)
/* Values */
typedef struct {

Pixmap background_pixmap; /* background, None, or P
unsigned long background_pixel; /* background pixel */
Pixmap border_pixmap; /* border of the window
unsigned long border_pixel; /* border pixel value */
int bit_gravity; /* one of bit gravity va
int win_gravity; /* one of the window gra
int backing_store; /* NotUseful, WhenMapped,
unsigned long backing_planes; /* planes to be preserve
unsigned long backing_pixel; /* value to use in resto
Bool save_under; /* should bits under be

March 26, 1992 3−7

-- --

X Window System

long event_mask; /* set of events that sh
long do_not_propagate_mask; /* set of events that sh
Bool override_redirect; /* boolean value for ove
Colormap colormap; /* color map to be assoc
Cursor cursor; /* cursor to be displaye

} XSetWindowAttributes;

The following lists the defaults for each window attribute and indicates whether the
attribute is applicable to InputOutput and InputOnly windows:

33
Attribute Default InputOutput InputOnly
33
background-pixmap None Yes No
background-pixel Undefined Yes No
border-pixmap CopyFromParent Yes No
border-pixel Undefined Yes No
bit-gravity ForgetGravity Yes No
win-gravity NorthWestGravity Yes Yes
backing-store NotUseful Yes No
backing-planes All ones Yes No
backing-pixel zero Yes No
save-under False Yes No
event-mask empty set Yes Yes
do-not-propagate-mask empty set Yes Yes
override-redirect False Yes Yes
colormap CopyFromParent Yes No
cursor None Yes Yes

3.2.1 Background Attribute

Only InputOutput windows can have a background. You can set the background of an
InputOutput window by using a pixel or a pixmap.

The background-pixmap attribute of a window specifies the pixmap to be used for a
window’s background. This pixmap can be of any size, although some sizes may be
faster than others. The background-pixel attribute of a window specifies a pixel value
used to paint a window’s background in a single color.

You can set the background-pixmap to a pixmap, None (default), or ParentRelative.
You can set the background-pixel of a window to any pixel value (no default). If you
specify a background-pixel, it overrides either the default background-pixmap or any
value you may have set in the background-pixmap. A pixmap of an undefined size that
is filled with the background-pixel is used for the background. Range checking is not
performed on the background pixel; it simply is truncated to the appropriate number of
bits.

3−8 March 26, 1992

-- --

Window Functions

If you set the background-pixmap, it overrides the default. The background-pixmap and
the window must have the same depth, or a BadMatch error results. If you set
background-pixmap to None, the window has no defined background. If you set the
background-pixmap to ParentRelative :

• The parent window’s background-pixmap is used. The child window, however, must
have the same depth as its parent, or a BadMatch error results.

• If the parent window has a background-pixmap of None, the window also has a
background-pixmap of None.

• A copy of the parent window’s background-pixmap is not made. The parent’s
background-pixmap is examined each time the child window’s background-pixmap
is required.

• The background tile origin always aligns with the parent window’s background tile
origin. If the background-pixmap is not ParentRelative, the background tile origin
is the child window’s origin.

Setting a new background, whether by setting background-pixmap or background-pixel,
overrides any previous background. The background-pixmap can be freed immediately
if no further explicit reference is made to it (the X server will keep a copy to use when
needed). If you later draw into the pixmap used for the background, what happens is
undefined because the X implementation is free to make a copy of the pixmap or to use
the same pixmap.

When no valid contents are available for regions of a window and either the regions are
visible or the server is maintaining backing store, the server automatically tiles the
regions with the window’s background unless the window has a background of None.
If the background is None, the previous screen contents from other windows of the
same depth as the window are simply left in place as long as the contents come from
the parent of the window or an inferior of the parent. Otherwise, the initial contents of
the exposed regions are undefined. Expose events are then generated for the regions,
even if the background-pixmap is None (see chapter 8).

3.2.2 Border Attribute

Only InputOutput windows can have a border. You can set the border of an InputOut-
put window by using a pixel or a pixmap.

The border-pixmap attribute of a window specifies the pixmap to be used for a
window’s border. The border-pixel attribute of a window specifies a pixmap of
undefined size filled with that pixel be used for a window’s border. Range checking is
not performed on the background pixel; it simply is truncated to the appropriate number
of bits. The border tile origin is always the same as the background tile origin.

You can also set the border-pixmap to a pixmap of any size (some may be faster than
others) or to CopyFromParent (default). You can set the border-pixel to any pixel
value (no default).

March 26, 1992 3−9

-- --

X Window System

If you set a border-pixmap, it overrides the default. The border-pixmap and the window
must have the same depth, or a BadMatch error results. If you set the border-pixmap
to CopyFromParent, the parent window’s border-pixmap is copied. Subsequent
changes to the parent window’s border attribute do not affect the child window. How-
ever, the child window must have the same depth as the parent window, or a BadMatch
error results.

The border-pixmap can be freed immediately if no further explicit reference is made to
it. If you later draw into the pixmap used for the border, what happens is undefined
because the X implementation is free either to make a copy of the pixmap or to use the
same pixmap. If you specify a border-pixel, it overrides either the default border-
pixmap or any value you may have set in the border-pixmap. All pixels in the
window’s border will be set to the border-pixel. Setting a new border, whether by set-
ting border-pixel or by setting border-pixmap, overrides any previous border.

Output to a window is always clipped to the inside of the window. Therefore, graphics
operations never affect the window border.

3.2.3 Gravity Attributes

The bit gravity of a window defines which region of the window should be retained
when an InputOutput window is resized. The default value for the bit-gravity attribute
is ForgetGravity. The window gravity of a window allows you to define how the
InputOutput or InputOnly window should be repositioned if its parent is resized. The
default value for the win-gravity attribute is NorthWestGravity.

If the inside width or height of a window is not changed and if the window is moved or
its border is changed, then the contents of the window are not lost but move with the
window. Changing the inside width or height of the window causes its contents to be
moved or lost (depending on the bit-gravity of the window) and causes children to be
reconfigured (depending on their win-gravity). For a change of width and height, the
(x, y) pairs are defined:

33
Gravity Direction Coordinates
33
NorthWestGravity (0, 0)
NorthGravity (Width/2, 0)
NorthEastGravity (Width, 0)
WestGravity (0, Height/2)
CenterGravity (Width/2, Height/2)
EastGravity (Width, Height/2)
SouthWestGravity (0, Height)
SouthGravity (Width/2, Height)
SouthEastGravity (Width, Height)

When a window with one of these bit-gravity values is resized, the corresponding pair
defines the change in position of each pixel in the window. When a window with one

3−10 March 26, 1992

-- --

Window Functions

of these win-gravities has its parent window resized, the corresponding pair defines the
change in position of the window within the parent. When a window is so repositioned,
a GravityNotify event is generated (see chapter 8).

A bit-gravity of StaticGravity indicates that the contents or origin should not move
relative to the origin of the root window. If the change in size of the
window is coupled with a change in position (x, y), then for bit-gravity the change in
position of each pixel is (–x, –y), and for win-gravity the change
in position of a child when its parent is so resized is (–x, –y). Note that StaticGravity
still only takes effect when the width or height of the window is changed, not when the
window is moved.

Figure 3-4. Window gravity
#ifdef BOOKREADER

#endif #ifdef HARDCOPY P! zk-0410U.ps 22 #endif

A bit-gravity of ForgetGravity indicates that the window’s contents are always dis-
carded after a size change, even if a backing store or save under has been requested.
The window is tiled with its background and zero or more Expose events are generated.
If no background is defined, the existing screen contents are not altered. Some X
servers may also ignore the specified bit-gravity and always generate Expose events.

The contents and borders of inferiors are not affected by their parent’s bit-gravity. A
server is permitted to ignore the specified bit-gravity and use Forget instead.

March 26, 1992 3−11

-- --

X Window System

A win-gravity of UnmapGravity is like NorthWestGravity (the window is not
moved), except the child is also unmapped when the parent is resized, and an Unmap-
Notify event is generated.

3.2.4 Backing Store Attribute

Some implementations of the X server may choose to maintain the contents of Inpu-
tOutput windows. If the X server maintains the contents of a window, the off-screen
saved pixels are known as backing store. The backing store advises the X server on
what to do with the contents of a window. The backing-store attribute can be set to
NotUseful (default), WhenMapped, or Always.

A backing-store attribute of NotUseful advises the X server that maintaining contents is
unnecessary, although some X implementations may still choose to maintain contents
and, therefore, not generate Expose events. A backing-store attribute of WhenMapped
advises the X server that maintaining contents of obscured regions when the window is
mapped would be beneficial. In this case, the server may generate an Expose event
when the window is created. A backing-store attribute of Always advises the X server
that maintaining contents even when the window is unmapped would be beneficial.
Even if the window is larger than its parent, this is a request to the X server to maintain
complete contents, not just the region within the parent window boundaries. While the
X server maintains the window’s contents, Expose events normally are not generated,
but the X server may stop maintaining contents at any time.

When the contents of obscured regions of a window are being maintained, regions
obscured by noninferior windows are included in the destination of graphics requests
(and source, when the window is the source). However, regions obscured by inferior
windows are not included.

3.2.5 Save Under Flag

Some server implementations may preserve contents of InputOutput windows under
other InputOutput windows. This is not the same as preserving the contents of a win-
dow for you. You may get better visual appeal if transient windows (for example, pop-
up menus) request that the system preserve the screen contents under them, so the tem-
porarily obscured applications do not have to repaint.

You can set the save-under flag to True or False (default). If save-under is True, the X
server is advised that, when this window is mapped, saving the contents of windows it
obscures would be beneficial.

3−12 March 26, 1992

-- --

Window Functions

3.2.6 Backing Planes and Backing Pixel Attributes

You can set backing planes to indicate (with bits set to 1) which bit planes of an Inpu-
tOutput window hold dynamic data that must be preserved in backing store and during
save unders. The default value for the backing-planes attribute is all bits set to 1. You
can set backing pixel to specify what bits to use in planes not covered by backing
planes. The default value for the backing-pixel attribute is all bits set to 0. The X
server is free to save only the specified bit planes in the backing store or the save under
and is free to regenerate the remaining planes with the specified pixel value. Any
extraneous bits in these values (that is, those bits beyond the specified depth of the win-
dow) may be simply ignored. If you request backing store or save unders, you should
use these members to minimize the amount of off-screen memory required to store your
window.

3.2.7 Event Mask and Do Not Propagate Mask Attributes

The event mask defines which events the client is interested in for this InputOutput or
InputOnly window (or, for some event types, inferiors of that window). The do-not-
propagate-mask attribute defines which events should not be propagated to ancestor
windows when no client has the event type selected in this InputOutput or InputOnly
window. Both masks are the bitwise inclusive OR of one or more of the valid event
mask bits. You can specify that no maskable events are reported by setting NoE-
ventMask (default).

3.2.8 Override Redirect Flag

To control window placement or to add decoration, a window manager often needs to
intercept (redirect) any map or configure request. Pop-up windows, however, often
need to be mapped without a window manager getting in the way. To control whether
an InputOutput or InputOnly window is to ignore these structure control facilities, use
the override-redirect flag.

The override-redirect flag specifies whether map and configure requests on this window
should override a SubstructureRedirectMask on the parent.
You can set the override-redirect flag to True or False (default). Window managers use
this information to avoid tampering with pop-up windows (see also chapter 9).

3.2.9 Colormap Attribute

The colormap attribute specifies which colormap best reflects the true colors of the

March 26, 1992 3−13

-- --

X Window System

InputOutput window. The colormap must have the same visual type as the window, or
a BadMatch error results. X servers capable of supporting multiple hardware colormaps
can use this information, and window managers can use it for calls to XInstallColor-
map. You can set the colormap attribute to a colormap or to CopyFromParent
(default).

If you set the colormap to CopyFromParent, the parent window’s colormap is copied
and used by its child. However, the child window must have the same visual type as
the parent, or a BadMatch error results. The parent window must not have a colormap
of None, or a BadMatch error results. The colormap is copied by sharing the color-
map object between the child and parent, not by making a complete copy of the color-
map contents. Subsequent changes to the parent window’s colormap attribute do not
affect the child window.

3.2.10 Cursor Attribute

The cursor attribute specifies which cursor is to be used when the pointer is in the Inpu-
tOutput or InputOnly window. You can set the cursor to a cursor or None (default).

If you set the cursor to None, the parent’s cursor is used when the pointer is in the
InputOutput or InputOnly window, and any change in the parent’s cursor will cause
an immediate change in the displayed cursor. By calling XFreeCursor, the cursor can
be freed immediately as long as no further explicit reference to it is made.

3.3 Creating Windows

Xlib provides basic ways for creating windows, and toolkits often supply higher-level
functions specifically for creating and placing top-level windows, which are discussed in
the appropriate toolkit documentation. If you do not use a toolkit, however, you must
provide some standard information or hints for the window manager by using the Xlib
inter-client communication functions (see chapter 9).

If you use Xlib to create your own top-level windows (direct children of the root win-
dow), you must observe the following rules so that all applications interact reasonably
across the different styles of window management:

• You must never fight with the window manager for the size or placement of your
top-level window.

• You must be able to deal with whatever size window you get, even if this means
that your application just prints a message like ‘‘Please make me bigger’’ in its win-
dow.

• You should only attempt to resize or move top-level windows in direct response to a
user request. If a request to change the size of a top-level window fails, you must

3−14 March 26, 1992

-- --

Window Functions

be prepared to live with what you get. You are free to resize or move the children
of top-level windows as necessary. (Toolkits often have facilities for automatic
relayout.)

• If you do not use a toolkit that automatically sets standard window properties, you
should set these properties for top-level windows before mapping them.

For further information, see chapter 9, ‘‘Inter-Client Communication Functions,’’ and
part III, the ‘‘Inter-Client Communication Conventions Manual.’’

XCreateWindow is the more general function that allows you to set specific window
attributes when you create a window. XCreateSimpleWindow creates a window that
inherits its attributes from its parent window.

The X server acts as if InputOnly windows do not exist for the purposes of graphics
requests, exposure processing, and VisibilityNotify events. An InputOnly window can-
not be used as a drawable (that is, as a source or destination for graphics requests).
InputOnly and
InputOutput windows act identically in other respects (properties, grabs, input control,
and so on). Extension packages can define other classes of windows.

To create an unmapped window and set its window attributes, use XCreateWindow.

Window XCreateWindow(display, parent, x, y, width, height, border_width, depth,
class, visual, valuemask, attributes)

Display *display;
Window parent;
int x, y;
unsigned int width, height;
unsigned int border_width;
int depth;
unsigned int class;
Visual *visual
unsigned long valuemask;
XSetWindowAttributes *attributes;

display Specifies the connection to the X server.

parent Specifies the parent window.

x, y Specify the x and y coordinates, which are the top-left outside
corner of the created window’s borders and are relative to the
inside of the parent window’s borders.

width, height Specify the width and height, which are the created window’s
inside dimensions and do not include the created window’s
borders. The dimensions must be nonzero, or a BadValue
error results.

border_width Specifies the width of the created window’s border in pixels.

depth Specifies the window’s depth. A depth of CopyFromParent
means the depth is taken from the parent.

March 26, 1992 3−15

-- --

X Window System

class Specifies the created window’s class. You can pass InputOut-
put,
InputOnly, or CopyFromParent. A class of CopyFrom-
Parent means the class is taken from the parent.

visual Specifies the visual type. A visual of CopyFromParent means
the visual type is taken from the parent.

valuemask Specifies which window attributes are defined in the attributes
argument. This mask is the bitwise inclusive OR of the valid
attribute mask bits. If valuemask is zero, the attributes are
ignored and are not referenced.

attributes Specifies the structure from which the values (as specified by
the value mask) are to be taken. The value mask should have
the appropriate bits set to indicate which attributes have been
set in the structure.

The XCreateWindow function creates an unmapped subwindow for a specified parent
window, returns the window ID of the created window, and causes the X server to gen-
erate a CreateNotify event. The created window is placed on top in the stacking order
with respect to siblings.

The border_width for an InputOnly window must be zero, or a BadMatch error
results. For class InputOutput, the visual type and depth must be a combination sup-
ported for the screen, or a BadMatch error results. The depth need not be the same as
the parent, but the parent must not be a window of class InputOnly, or a BadMatch
error results. For an InputOnly window, the depth must be zero, and the visual must
be one supported by the screen. If either condition is not met, a BadMatch error
results. The parent window, however, may have any depth and class. If you specify
any invalid window attribute for a window, a BadMatch error results.

The created window is not yet displayed (mapped) on the user’s display. To display the
window, call XMapWindow. The new window initially uses the same cursor as its
parent. A new cursor can be defined for the new window by calling XDefineCursor.
The window will not be visible on the screen unless it and all of its ancestors are
mapped and it is not obscured by any of its ancestors.

XCreateWindow can generate BadAlloc, BadColor, BadCursor, BadMatch, BadPix-
map, BadValue, and BadWindow errors.

To create an unmapped InputOutput subwindow of a given parent window, use
XCreateSimpleWindow.

Window XCreateSimpleWindow(display, parent, x, y, width, height, border_width,
border, background)

Display *display;
Window parent;
int x, y;
unsigned int width, height;
unsigned int border_width;
unsigned long border;

3−16 March 26, 1992

-- --

Window Functions

unsigned long background;

display Specifies the connection to the X server.

parent Specifies the parent window. and are relative to the inside of
the parent window’s borders

x, y Specify the x and y coordinates which are the top-left outside
corner of the new window’s borders.

width, height Specify the width and height, which are the created window’s
inside dimensions and do not include the created window’s
borders. The dimensions must be nonzero, or a BadValue
error results.

border_width Specifies the width of the created window’s border in pixels.

border Specifies the border pixel value of the window.

background Specifies the background pixel value of the window.

The XCreateSimpleWindow function creates an unmapped InputOutput subwindow
for a specified parent window, returns the window ID of the created window, and causes
the X server to generate a CreateNotify event. The created window is placed on top in
the stacking order with respect to siblings. Any part of the window that extends outside
its parent window is clipped. The border_width for an InputOnly window must be
zero, or a BadMatch error results. XCreateSimpleWindow inherits its depth, class,
and visual from its parent. All other window attributes, except background and border,
have their default values.

XCreateSimpleWindow can generate BadAlloc, BadMatch, BadValue, and BadWin-
dow errors.

3.4 Destroying Windows

Xlib provides functions that you can use to destroy a window or destroy all subwindows
of a window.

To destroy a window and all of its subwindows, use XDestroyWindow.

XDestroyWindow(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XDestroyWindow function destroys the specified window as well as all of its
subwindows and causes the X server to generate a DestroyNotify event for each win-
dow. The window should never be referenced again. If the window specified by the w
argument is mapped, it is unmapped automatically. The ordering of the DestroyNotify

March 26, 1992 3−17

-- --

X Window System

events is such that for any given window being destroyed, DestroyNotify is generated
on any inferiors of the window before being generated on the window itself. The order-
ing among siblings and across subhierarchies is not otherwise constrained. If the win-
dow you specified is a root window, no windows are destroyed. Destroying a mapped
window will generate Expose events on other windows that were obscured by the win-
dow being destroyed.

XDestroyWindow can generate a BadWindow error.

To destroy all subwindows of a specified window, use XDestroySubwindows.

XDestroySubwindows(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XDestroySubwindows function destroys all inferior windows of the specified win-
dow, in bottom-to-top stacking order. It causes the X server to generate a DestroyNo-
tify event for each window. If any mapped subwindows were actually destroyed, XDes-
troySubwindows causes the X server to generate Expose events on the specified win-
dow. This is much more efficient than deleting many windows one at a time because
much of the work need be performed only once for all of the windows, rather than for
each window. The subwindows should never be referenced again.

XDestroySubwindows can generate a BadWindow error.

3.5 Mapping Windows

A window is considered mapped if a XMapWindow call has been made on it. It may
not be visible on the screen for one of the following reasons:

• It is obscured by another opaque window.

• One of its ancestors is not mapped.

• It is entirely clipped by an ancestor.

Expose events are generated for the window when part or all of it becomes visible on
the screen. A client receives the Expose events only if it has asked for them. Windows
retain their position in the stacking order when they are unmapped.

A window manager may want to control the placement of subwindows. If Substruc-
tureRedirectMask has been selected by a window manager on a parent window (usu-
ally a root window), a map request initiated by other clients on a child window is not
performed, and the window manager is sent a MapRequest event. However, if the
override-redirect flag on the child had been set to True (usually only on pop-up menus),
the map request is performed.

3−18 March 26, 1992

-- --

Window Functions

A tiling window manager might decide to reposition and resize other clients’ windows
and then decide to map the window to its final location. A window manager that wants
to provide decoration might reparent the child into a frame first. For further informa-
tion, see section 3.2.8 and chapter 8. Only a single client at a time can select for Sub-
structureRedirectMask.

Similarly, a single client can select for ResizeRedirectMask on a parent window. Then,
any attempt to resize the window by another client is suppressed, and the client receives
a ResizeRequest event.

To map a given window, use XMapWindow.

XMapWindow(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XMapWindow function maps the window and all of its subwindows that have had
map requests. Mapping a window that has an unmapped ancestor does not display the
window but marks it as eligible for display when the ancestor becomes mapped. Such a
window is called unviewable. When all its ancestors are mapped, the window becomes
viewable and will be visible on the screen if it is not obscured by another window. This
function has no effect if the window is already mapped.

If the override-redirect of the window is False and if some other client has selected
SubstructureRedirectMask on the parent window, then the X server generates a
MapRequest event, and the XMapWindow function does not map the window. Oth-
erwise, the window is mapped, and the X server generates a MapNotify event.

If the window becomes viewable and no earlier contents for it are remembered, the X
server tiles the window with its background. If the window’s background is undefined,
the existing screen contents are not altered, and the X server generates zero or more
Expose events. If backing-store was maintained while the window was unmapped, no
Expose events are generated. If backing-store will now be maintained, a full-window
exposure is always generated. Otherwise, only visible regions may be reported. Similar
tiling and exposure take place for any newly viewable inferiors.

If the window is an InputOutput window, XMapWindow generates Expose events on
each InputOutput window that it causes to be displayed. If the client maps and paints
the window and if the client begins processing events, the window is painted twice. To
avoid this, first ask for Expose events and then map the window, so the client processes
input events as usual. The event list will include Expose for each window that has
appeared on the screen. The client’s normal response to an Expose event should be to
repaint the window. This method usually leads to simpler programs and to proper
interaction with window managers.

XMapWindow can generate a BadWindow error.

To map and raise a window, use XMapRaised.

March 26, 1992 3−19

-- --

X Window System

XMapRaised(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XMapRaised function essentially is similar to XMapWindow in that it maps the
window and all of its subwindows that have had map requests. However, it also raises
the specified window to the top of the stack. For additional information, see
XMapWindow.

XMapRaised can generate multiple BadWindow errors.

To map all subwindows for a specified window, use XMapSubwindows.

XMapSubwindows(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XMapSubwindows function maps all subwindows for a specified window in top-
to-bottom stacking order. The X server generates Expose events on each newly
displayed window. This may be much more efficient than mapping many windows one
at a time because the server needs to perform much of the work only once, for all of the
windows, rather than for each window.

XMapSubwindows can generate a BadWindow error.

3.6 Unmapping Windows

Xlib provides functions that you can use to unmap a window or all subwindows.

To unmap a window, use XUnmapWindow.

XUnmapWindow(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XUnmapWindow function unmaps the specified window and causes the X server
to generate an UnmapNotify event. If the specified window is already unmapped,
XUnmapWindow has no effect. Normal exposure processing on formerly obscured
windows is performed. Any child window will no longer be visible until another map
call is made on the parent. In other words, the subwindows are still mapped but are not

3−20 March 26, 1992

-- --

Window Functions

visible until the parent is mapped. Unmapping a window will generate Expose events
on windows that were formerly obscured by it.

XUnmapWindow can generate a BadWindow error.

To unmap all subwindows for a specified window, use XUnmapSubwindows.

XUnmapSubwindows(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XUnmapSubwindows function unmaps all subwindows for the specified window
in bottom-to-top stacking order. It causes the X server to generate an UnmapNotify
event on each subwindow and Expose events on formerly obscured windows. Using
this function is much more efficient than unmapping multiple windows one at a time
because the server needs to perform much of the work only once, for all of the win-
dows, rather than for each window.

XUnmapSubwindows can generate a BadWindow error.

3.7 Configuring Windows

Xlib provides functions that you can use to move a window, resize a window, move and
resize a window, or change a window’s border width. To change one of these parame-
ters, set the appropriate member of the XWindowChanges structure and OR in the
corresponding value mask in subsequent calls to XConfigureWindow. The symbols
for the value mask bits and the XWindowChanges structure are:

/* Configure window value mask bits */
#define CWX (1<<0)
#define CWY (1<<1)
#define CWWidth (1<<2)
#define CWHeight (1<<3)
#define CWBorderWidth(1<<4)
#define CWSibling(1<<5)
#define CWStackMode(1<<6)
/* Values */
typedef struct {

int x, y;
int width, height;
int border_width;
Window sibling;
int stack_mode;

} XWindowChanges;

March 26, 1992 3−21

-- --

X Window System

The x and y members are used to set the window’s x and y coordinates, which are rela-
tive to the parent’s origin and indicate the position of the upper-left outer corner of the
window. The width and height members are used to set the inside size of the window,
not including the border, and must be nonzero, or a BadValue error results. Attempts
to configure a root window have no effect.

The border_width member is used to set the width of the border in pixels. Note that
setting just the border width leaves the outer-left corner of the window in a fixed posi-
tion but moves the absolute position of the window’s origin. If you attempt to set the
border-width attribute of an InputOnly window nonzero, a BadMatch error results.

The sibling member is used to set the sibling window for stacking operations. The
stack_mode member is used to set how the window is to be restacked and can be set to
Above, Below, TopIf, BottomIf, or Opposite.

If the override-redirect flag of the window is False and if some other client has selected
SubstructureRedirectMask on the parent, the X server generates a ConfigureRequest
event, and no further processing is performed.
Otherwise, if some other client has selected ResizeRedirectMask on the window and
the inside width or height of the window is being changed, a ResizeRequest event is
generated, and the current inside width and height are used instead. Note that the
override-redirect flag of the window has no effect on ResizeRedirectMask and that Sub-
structureRedirectMask on the parent has precedence over ResizeRedirectMask on the
window.

When the geometry of the window is changed as specified, the window is restacked
among siblings, and a ConfigureNotify event is generated if the state of the window
actually changes. GravityNotify events are generated after ConfigureNotify events. If
the inside width or height of the window has actually changed, children of the window
are affected as specified.

If a window’s size actually changes, the window’s subwindows move according to their
window gravity. Depending on the window’s bit gravity, the contents of the window
also may be moved (see section 3.2.3).

If regions of the window were obscured but now are not, exposure processing is per-
formed on these formerly obscured windows, including the window itself and its inferi-
ors. As a result of increasing the width or height, exposure processing is also performed
on any new regions of the window and any regions where window contents are lost.

The restack check (specifically, the computation for BottomIf, TopIf, and Opposite) is
performed with respect to the window’s final size and position (as controlled by the
other arguments of the request), not its initial position. If a sibling is specified without
a stack_mode, a BadMatch error results.

If a sibling and a stack_mode are specified, the window is restacked as follows:

Above The window is placed just above the sibling.

Below The window is placed just below the sibling.

TopIf If the sibling occludes the window, the window is placed at the
top of the stack.

3−22 March 26, 1992

-- --

Window Functions

BottomIf If the window occludes the sibling, the window is placed at the
bottom of the stack.

Opposite If the sibling occludes the window, the window is placed at the
top of the stack. If the window occludes the sibling, the win-
dow is placed at the bottom of the stack.

If a stack_mode is specified but no sibling is specified, the window is restacked as fol-
lows:

Above The window is placed at the top of the stack.

Below The window is placed at the bottom of the stack.

TopIf If any sibling occludes the window, the window is placed at the
top of the stack.

BottomIf If the window occludes any sibling, the window is placed at the
bottom of the stack.

Opposite If any sibling occludes the window, the window is placed at the
top of the stack. If the window occludes any sibling, the win-
dow is placed at the bottom of the stack.

Attempts to configure a root window have no effect.

To configure a window’s size, location, stacking, or border, use XConfigureWindow.

XConfigureWindow(display, w, value_mask, values)
Display *display;
Window w;
unsigned int value_mask;
XWindowChanges *values;

display Specifies the connection to the X server.

w Specifies the window to be reconfigured.

value_mask Specifies which values are to be set using information in the
values structure. This mask is the bitwise inclusive OR of the
valid configure window values bits.

values Specifies the XWindowChanges structure.

The XConfigureWindow function uses the values specified in the XWindowChanges
structure to reconfigure a window’s size, position, border, and stacking order. Values
not specified are taken from the existing geometry of the window.

If a sibling is specified without a stack_mode or if the window is not actually a sibling,
a BadMatch error results. Note that the computations for BottomIf, TopIf, and Opposite
are performed with respect to the window’s final geometry (as controlled by the other
arguments passed to XConfigureWindow), not its initial geometry. Any backing store
contents of the window, its inferiors, and other newly visible windows are either dis-
carded or changed to reflect the current screen contents (depending on the implementa-
tion).

March 26, 1992 3−23

-- --

X Window System

XConfigureWindow can generate BadMatch, BadValue, and BadWindow errors.

To move a window without changing its size, use XMoveWindow.

XMoveWindow(display, w, x, y)
Display *display;
Window w;
int x, y;

display Specifies the connection to the X server.

w Specifies the window to be moved. of the window’s border or
the window itself if it has no border

x, y Specify the x and y coordinates which define the new location
of the top-left pixel of the window’s border or the window itself
if it has no border.

The XMoveWindow function moves the specified window to the specified x and y
coordinates, but it does not change the window’s size, raise the window, or change the
mapping state of the window. Moving a mapped window may or may not lose the
window’s contents depending on if the window is obscured by nonchildren and if no
backing store exists. If the contents of the window are lost, the X server generates
Expose events. Moving a mapped window generates Expose events on any formerly
obscured windows.

If the override-redirect flag of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a ConfigureRequest
event, and no further processing is performed. Otherwise, the window is moved.

XMoveWindow can generate a BadWindow error.

To change a window’s size without changing the upper-left coordinate, use
XResizeWindow.

XResizeWindow(display, w, width, height)
Display *display;
Window w;
unsigned int width, height;

display Specifies the connection to the X server.

w Specifies the window. after the call completes

width, height Specify the width and height which are the interior dimensions
of the window after the call completes.

The XResizeWindow function changes the inside dimensions of the specified window,
not including its borders. This function does not change the window’s upper-left coor-
dinate or the origin and does not restack the window. Changing the size of a mapped
window may lose its contents and generate Expose events. If a mapped window is
made smaller, changing its size generates Expose events on windows that the mapped
window formerly obscured.

3−24 March 26, 1992

-- --

Window Functions

If the override-redirect flag of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a ConfigureRequest
event, and no further processing is performed. If either width or height is zero, a Bad-
Value error results.

XResizeWindow can generate BadValue and BadWindow errors.

To change the size and location of a window, use XMoveResizeWindow.

XMoveResizeWindow(display, w, x, y, width, height)
Display *display;
Window w;
int x, y;
unsigned int width, height;

display Specifies the connection to the X server.

w Specifies the window to be reconfigured.

x, y Specify the x and y coordinates which define the new position
of the window relative to its parent.

width, height Specify the width and height, which define the interior size of
the window.

The XMoveResizeWindow function changes the size and location of the specified win-
dow without raising it. Moving and resizing a mapped window may generate an
Expose event on the window. Depending on the new size and location parameters,
moving and resizing a window may generate Expose events on windows that the win-
dow formerly obscured.

If the override-redirect flag of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a ConfigureRequest
event, and no further processing is performed. Otherwise, the window size and location
are changed.

XMoveResizeWindow can generate BadValue and BadWindow errors.

To change the border width of a given window, use XSetWindowBorderWidth.

XSetWindowBorderWidth(display, w, width)
Display *display;
Window w;
unsigned int width;

display Specifies the connection to the X server.

w Specifies the window.

width Specifies the width of the window border.

The XSetWindowBorderWidth function sets the specified window’s border width to
the specified width.

XSetWindowBorderWidth can generate a BadWindow error.

March 26, 1992 3−25

-- --

X Window System

3.8 Changing Window Stacking Order

Xlib provides functions that you can use to raise, lower, circulate, or restack windows.

To raise a window so that no sibling window obscures it, use XRaiseWindow.

XRaiseWindow(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XRaiseWindow function raises the specified window to the top of the stack so that
no sibling window obscures it. If the windows are regarded as overlapping sheets of
paper stacked on a desk, then raising a window is analogous to moving the sheet to the
top of the stack but leaving its x and y location on the desk constant. Raising a mapped
window may generate Expose events for the window and any mapped subwindows that
were formerly obscured.

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no processing is performed. Otherwise, the window is
raised.

XRaiseWindow can generate a BadWindow error.

To lower a window so that it does not obscure any sibling windows, use XLowerWin-
dow.

XLowerWindow(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XLowerWindow function lowers the specified window to the bottom of the stack
so that it does not obscure any sibling windows. If the windows are regarded as over-
lapping sheets of paper stacked on a desk, then lowering a window is analogous to mov-
ing the sheet to the bottom of the stack but leaving its x and y location on the desk con-
stant. Lowering a mapped window will generate Expose events on any windows it
formerly obscured.

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirectMask on the parent, the X server generates a
ConfigureRequest event, and no processing is performed. Otherwise, the window is
lowered to the bottom of the stack.

XLowerWindow can generate a BadWindow error.

3−26 March 26, 1992

-- --

Window Functions

To circulate a subwindow up or down, use XCirculateSubwindows.

XCirculateSubwindows(display, w, direction)
Display *display;
Window w;
int direction;

display Specifies the connection to the X server.

w Specifies the window.

direction Specifies the direction (up or down) that you want to circulate
the window. You can pass RaiseLowest or LowerHighest.

The XCirculateSubwindows function circulates children of the specified window in the
specified direction. If you specify RaiseLowest, XCirculateSubwindows raises the
lowest mapped child (if any) that is occluded by another child to the top of the stack. If
you specify LowerHighest, XCirculateSubwindows lowers the highest mapped child
(if any) that occludes another child to the bottom of the stack. Exposure processing is
then performed on formerly obscured windows. If some other client has selected
SubstructureRedirectMask on the window, the X server generates a CirculateRequest
event, and no further processing is performed. If a child is actually restacked, the X
server generates a CirculateNotify event.

XCirculateSubwindows can generate BadValue and BadWindow errors.

To raise the lowest mapped child of a window that is partially or completely occluded
by another child, use XCirculateSubwindowsUp.

XCirculateSubwindowsUp(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XCirculateSubwindowsUp function raises the lowest mapped child of the
specified window that is partially or completely occluded by another child. Completely
unobscured children are not affected. This is a convenience function equivalent to XCir-
culateSubwindows with RaiseLowest specified.

XCirculateSubwindowsUp can generate a BadWindow error.

To lower the highest mapped child of a window that partially or completely occludes
another child, use XCirculateSubwindowsDown.

XCirculateSubwindowsDown(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

March 26, 1992 3−27

-- --

X Window System

The XCirculateSubwindowsDown function lowers the highest mapped child of the
specified window that partially or completely occludes another child. Completely unob-
scured children are not affected. This is a convenience function equivalent to XCircula-
teSubwindows with LowerHighest specified.

XCirculateSubwindowsDown can generate a BadWindow error.

To restack a set of windows from top to bottom, use XRestackWindows.

XRestackWindows(display, windows, nwindows);
Display *display;
Window windows[];
int nwindows;

display Specifies the connection to the X server.

windows Specifies an array containing the windows to be restacked.

nwindows Specifies the number of windows to be restacked.

The XRestackWindows function restacks the windows in the order specified, from top
to bottom. The stacking order of the first window in the windows array is unaffected,
but the other windows in the array are stacked underneath the first window, in the order
of the array. The stacking order of the other windows is not affected. For each window
in the window array that is not a child of the specified window, a BadMatch error
results.

If the override-redirect attribute of a window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates ConfigureRequest
events for each window whose override-redirect flag is not set, and no further process-
ing is performed. Otherwise, the windows will be restacked in top to bottom order.

XRestackWindows can generate a BadWindow error.

3.9 Changing Window Attributes

Xlib provides functions that you can use to set window attributes. XChangeWin-
dowAttributes is the more general function that allows you to set one or more window
attributes provided by the XSetWindowAttributes structure. The other functions
described in this section allow you to set one specific window attribute, such as a
window’s background.

To change one or more attributes for a given window, use XChangeWindowAttri-
butes.

XChangeWindowAttributes(display, w, valuemask, attributes)
Display *display;
Window w;
unsigned long valuemask;
XSetWindowAttributes *attributes;

3−28 March 26, 1992

-- --

Window Functions

display Specifies the connection to the X server.

w Specifies the window.

valuemask Specifies which window attributes are defined in the attributes
argument. This mask is the bitwise inclusive OR of the valid
attribute mask bits. If valuemask is zero, the attributes are
ignored and are not referenced. The values and restrictions are
the same as for XCreateWindow.

attributes Specifies the structure from which the values (as specified by
the value mask) are to be taken. The value mask should have
the appropriate bits set to indicate which attributes have been
set in the structure (see section 3.2).

Depending on the valuemask, the XChangeWindowAttributes function uses the win-
dow attributes in the XSetWindowAttributes structure to change the specified window
attributes. Changing the background does not cause the window contents to be
changed. To repaint the window and its background, use XClearWindow. Setting the
border or changing the background such that the border tile origin changes causes the
border to be repainted. Changing the background of a root window to None or Paren-
tRelative restores the default background pixmap. Changing the border of a root win-
dow to CopyFromParent restores the default border pixmap. Changing the win-gravity
does not affect the current position of the window. Changing the backing-store of an
obscured window to WhenMapped or Always, or changing the backing-planes,
backing-pixel, or save-under of a mapped window may have no immediate effect.
Changing the colormap of a window (that is, defining a new map, not changing the con-
tents of the existing map) generates a ColormapNotify event. Changing the colormap
of a visible window may have no immediate effect on the screen because the map may
not be installed (see XInstallColormap). Changing the cursor of a root window to
None restores the default cursor. Whenever possible, you are encouraged to share
colormaps.

Multiple clients can select input on the same window. Their event masks are maintained
separately. When an event is generated, it is reported to all interested clients. However,
only one client at a time can select for SubstructureRedirectMask, Resiz-
eRedirectMask, and ButtonPressMask. If a client attempts to select any of these event
masks and some other client has already selected one, a BadAccess error results. There
is only one do-not-propagate-mask for a window, not one per client.

XChangeWindowAttributes can generate BadAccess, BadColor, BadCursor, Bad-
Match, BadPixmap, BadValue, and BadWindow errors.

To set the background of a window to a given pixel, use XSetWindowBackground.

XSetWindowBackground(display, w, background_pixel)
Display *display;
Window w;
unsigned long background_pixel;

display Specifies the connection to the X server.

March 26, 1992 3−29

-- --

X Window System

w Specifies the window.

background_pixel Specifies the pixel that is to be used for the background.

The XSetWindowBackground function sets the background of the window to the
specified pixel value. Changing the background does not cause the window contents to
be changed. XSetWindowBackground uses a pixmap of undefined size filled with the
pixel value you passed. If you try to change the background of an InputOnly window,
a BadMatch error results.

XSetWindowBackground can generate BadMatch and BadWindow errors.

To set the background of a window to a given pixmap, use XSetWindowBackground-
Pixmap.

XSetWindowBackgroundPixmap(display, w, background_pixmap)
Display *display;
Window w;
Pixmap background_pixmap;

display Specifies the connection to the X server.

w Specifies the window.

background_pixmap
Specifies the background pixmap, ParentRelative, or None.

The XSetWindowBackgroundPixmap function sets the background pixmap of the
window to the specified pixmap. The background pixmap can immediately be freed if
no further explicit references to it are to be made. If ParentRelative is specified, the
background pixmap of the window’s parent is used, or on the root window, the default
background is restored. If you try to change the background of an InputOnly window,
a BadMatch error results. If the background is set to None, the window has no
defined background.

XSetWindowBackgroundPixmap can generate BadMatch, BadPixmap, and
BadWindow errors.

Note: XSetWindowBackground and XSetWindowBackgroundPixmap do
not change the current contents of the window.

To change and repaint a window’s border to a given pixel, use XSetWindowBorder.

XSetWindowBorder(display, w, border_pixel)
Display *display;
Window w;
unsigned long border_pixel;

display Specifies the connection to the X server.

w Specifies the window.

border_pixel Specifies the entry in the colormap.

The XSetWindowBorder function sets the border of the window to the pixel value you
specify. If you attempt to perform this on an InputOnly window, a BadMatch error

3−30 March 26, 1992

-- --

Window Functions

results.

XSetWindowBorder can generate BadMatch and BadWindow errors.

To change and repaint the border tile of a given window, use XSet-
WindowBorderPixmap.

XSetWindowBorderPixmap(display, w, border_pixmap)
Display *display;
Window w;
Pixmap border_pixmap;

display Specifies the connection to the X server.

w Specifies the window.

border_pixmap Specifies the border pixmap or CopyFromParent.

The XSetWindowBorderPixmap function sets the border pixmap of the window to the
pixmap you specify. The border pixmap can be freed immediately if no further explicit
references to it are to be made. If you specify CopyFromParent, a copy of the parent
window’s border pixmap is used. If you attempt to perform this on an InputOnly win-
dow, a BadMatch error results.

XSetWindowBorderPixmap can generate BadMatch, BadPixmap, and BadWindow
errors.

3.10 Translating Window Coordinates

Applications, mostly window managers, often need to perform a coordinate transforma-
tion from the coordinate space of one window to another window or need to determine
which subwindow a coordinate lies in. XTranslate-
Coordinates fulfills these needs (and avoids any race conditions) by asking the X
server to perform this operation.

Bool XTranslateCoordinates(display, src_w, dest_w, src_x, src_y, dest_x_return,
dest_y_return, child_return)

Display *display;
Window src_w, dest_w;
int src_x, src_y;
int *dest_x_return, *dest_y_return;
Window *child_return;

display Specifies the connection to the X server.

src_w Specifies the source window.

dest_w Specifies the destination window.

src_x, src_y Specify the x and y coordinates within the source window.

March 26, 1992 3−31

-- --

X Window System

dest_x_return, dest_y_return
Return the x and y coordinates within the destination window.

child_return Returns the child if the coordinates are contained in a mapped
child of the destination window.

If XTranslateCoordinates returns True, it takes the src_x and src_y coordinates relative
to the source window’s origin and returns these coordinates to dest_x_return and
dest_y_return relative to the destination window’s origin. If XTranslateCoordinates
returns False, src_w and dest_w are on different screens, and dest_x_return and
dest_y_return are zero. If the coordinates are contained in a mapped child of dest_w,
that child is returned to child_return. Otherwise, child_return is set to None.

XTranslateCoordinates can generate a BadWindow error.

3−32 March 26, 1992

-- --

Chapter 4. Window Information Functions

After you connect the display to the X server and create a window, you can use the Xlib
window information functions to:

• Obtain information about a window

• Manipulate property lists

• Obtain and change window properties

• Manipulate selections

4.1 Obtaining Window Information

Xlib provides functions that you can use to obtain information about the window tree,
the window’s current attributes, the window’s current geometry, or the current pointer
coordinates. Because they are most frequently used by window managers, these func-
tions all return a status to indicate whether the window still exists.

To obtain the parent, a list of children, and number of children for a given window, use
XQueryTree.

Status XQueryTree(display, w, root_return, parent_return, children_return,
nchildren_return)

Display *display;
Window w;
Window *root_return;
Window *parent_return;
Window **children_return;
unsigned int *nchildren_return;

display Specifies the connection to the X server.

w Specifies the window whose list of children, root, parent, and
number of children you want to obtain.

March 26, 1992 4−1

-- --

X Window System

root_return Returns the root window.

parent_return Returns the parent window.

children_return Returns the list of children.

nchildren_return Returns the number of children.

The XQueryTree function returns the root ID, the parent window ID, a pointer to the
list of children windows, and the number of children in the list for the specified win-
dow. The children are listed in current stacking order, from bottommost (first) to top-
most (last). XQueryTree returns zero if it fails and nonzero if it succeeds. To free this
list when it is no longer needed, use XFree.

XQueryTree can generate a BadWindow error.

To obtain the current attributes of a given window, use XGetWindowAttributes.

Status XGetWindowAttributes(display, w, window_attributes_return)
Display *display;
Window w;
XWindowAttributes *window_attributes_return;

display Specifies the connection to the X server.

w Specifies the window whose current attributes you want to
obtain.

window_attributes_return
Returns the specified window’s attributes in the XWindow-
Attributes structure.

The XGetWindowAttributes function returns the current attributes for the specified
window to an XWindowAttributes structure.

typedef struct {
int x, y; /* location of window */
int width, height; /* width and height of window */
int border_width; /* border width of window */
int depth; /* depth of window */
Visual *visual; /* the associated visual structur
Window root; /* root of screen containing wind
int class; /* InputOutput, InputOnly*/
int bit_gravity; /* one of the bit gravity values
int win_gravity; /* one of the window gravity valu
int backing_store; /* NotUseful, WhenMapped, Always *
unsigned long backing_planes; /* planes to be preserved if poss
unsigned long backing_pixel; /* value to be used when restorin
Bool save_under; /* boolean, should bits under be
Colormap colormap; /* color map to be associated wit
Bool map_installed; /* boolean, is color map currentl
int map_state; /* IsUnmapped, IsUnviewable, IsViewa
long all_event_masks; /* set of events all people have
long your_event_mask; /* my event mask */

4−2 March 26, 1992

-- --

Window Information Functions

long do_not_propagate_mask; /* set of events that should not
Bool override_redirect; /* boolean value for override-red
Screen *screen; /* back pointer to correct screen

} XWindowAttributes;

The x and y members are set to the upper-left outer corner relative to the parent
window’s origin. The width and height members are set to the inside size of the win-
dow, not including the border. The border_width member is set to the window’s border
width in pixels. The depth member is set to the depth of the window (that is, bits per
pixel for the object). The visual member is a pointer to the screen’s associated Visual
structure. The root member is set to the root window of the screen containing the win-
dow. The class member is set to the window’s class and can be either InputOutput or
InputOnly.

The bit_gravity member is set to the window’s bit gravity and can be one of the follow-
ing:

ForgetGravity EastGravity
NorthWestGravity SouthWestGravity
NorthGravity SouthGravity
NorthEastGravity SouthEastGravity
WestGravity StaticGravity
CenterGravity

The win_gravity member is set to the window’s window gravity and can be one of the
following:

UnmapGravity EastGravity
NorthWestGravity SouthWestGravity
NorthGravity SouthGravity
NorthEastGravity SouthEastGravity
WestGravity StaticGravity
CenterGravity

For additional information on gravity, see section 3.3.

The backing_store member is set to indicate how the X server should maintain the con-
tents of a window and can be WhenMapped, Always, or NotUseful. The
backing_planes member is set to indicate (with bits set to 1) which bit planes of the
window hold dynamic data that must be preserved in backing_stores and during
save_unders. The backing_pixel member is set to indicate what values to use for planes
not set in backing_planes.

The save_under member is set to True or False. The colormap member is set to the
colormap for the specified window and can be a colormap ID or None. The
map_installed member is set to indicate whether the colormap is currently installed and
can be True or False. The map_state member is set to indicate the state of the window
and can be IsUnmapped, IsUnviewable, or IsViewable. IsUnviewable is used if the
window is mapped but some ancestor is unmapped.

The all_event_masks member is set to the bitwise inclusive OR of all event masks
selected on the window by all clients. The your_event_mask member is set to the

March 26, 1992 4−3

-- --

X Window System

bitwise inclusive OR of all event masks selected by the querying client. The
do_not_propagate_mask member is set to the bitwise inclusive OR of the set of events
that should not propagate.

The override_redirect member is set to indicate whether this window overrides structure
control facilities and can be True or False. Window manager clients should ignore the
window if this member is True.

The screen member is set to a screen pointer that gives you a back pointer to the correct
screen. This makes it easier to obtain the screen information without having to loop
over the root window fields to see which field matches.

XGetWindowAttributes can generate BadDrawable and BadWindow errors.

To obtain the current geometry of a given drawable, use XGetGeometry.

Status XGetGeometry(display, d, root_return, x_return, y_return, width_return,
height_return, border_width_return, depth_return)

Display *display;
Drawable d;
Window *root_return;
int *x_return, *y_return;
unsigned int *width_return, *height_return;
unsigned int *border_width_return;
unsigned int *depth_return;

display Specifies the connection to the X server.

d Specifies the drawable, which can be a window or a pixmap

root_return Returns the root window.

x_return, y_return
Return the x and y coordinates that define the location of the
drawable. For a window, these coordinates specify the upper-
left outer corner relative to its parent’s origin. For pixmaps,
these coordinates are always zero.

width_return, height_return
Return the drawable’s dimensions (width and height). For a
window, these dimensions specify the inside size, not including
the border.

border_width_return
Returns the border width in pixels. If the drawable is a pixmap,
it returns zero.

depth_return Returns the depth of the drawable (bits per pixel for the object).

The XGetGeometry function returns the root window and the current geometry of the
drawable. The geometry of the drawable includes the x and y coordinates, width and
height, border width, and depth. These are described in the argument list. It is legal to
pass to this function a window whose class is InputOnly.

4−4 March 26, 1992

-- --

Window Information Functions

XGetGeometry can generate a BadDrawable error.

To obtain the root window the pointer is currently on and the pointer coordinates rela-
tive to the root’s origin, use XQueryPointer.

Bool XQueryPointer(display, w, root_return, child_return, root_x_return, root_y_return,
win_x_return, win_y_return, mask_return)

Display *display;
Window w;
Window *root_return, *child_return;
int *root_x_return, *root_y_return;
int *win_x_return, *win_y_return;
unsigned int *mask_return;

display Specifies the connection to the X server.

w Specifies the window.

root_return Returns the root window that the pointer is in.

child_return Returns the child window that the pointer is located in, if any.

root_x_return, root_y_return
Return the pointer coordinates relative to the root window’s ori-
gin.

win_x_return, win_y_return
Return the pointer coordinates relative to the specified window.

mask_return Returns the current state of the modifier keys and pointer but-
tons.

The XQueryPointer function returns the root window the pointer is logically on and the
pointer coordinates relative to the root window’s origin. If XQueryPointer returns
False, the pointer is not on the same screen as the specified window, and
XQueryPointer returns None to child_return and zero to win_x_return and
win_y_return. If XQueryPointer returns True, the pointer coordinates returned to
win_x_return and win_y_return are relative to the origin of the specified window. In this
case, XQueryPointer returns the child that contains the pointer, if any, or else None to
child_return.

XQueryPointer returns the current logical state of the keyboard buttons and the
modifier keys in mask_return. It sets mask_return to the bitwise inclusive OR of one or
more of the button or modifier key bitmasks to match the current state of the mouse
buttons and the modifier keys.

Note that the logical state of a device (as seen through Xlib) may lag the physical state
if device event processing is frozen (see section 7.4).

XQueryPointer can generate a BadWindow error.

March 26, 1992 4−5

-- --

X Window System

4.2 Properties and Atoms

A property is a collection of named, typed data. The window system has a set of
predefined properties (for example, the name of a window, size hints, and so on), and
users can define any other arbitrary information and associate it with windows. Each
property has a name, which is an ISO Latin-1 string. For each named property, a unique
identifier (atom) is associated with it. A property also has a type, for example, string or
integer. These types are also indicated using atoms, so arbitrary new types can be
defined. Data of only one type may be associated with a single property name. Clients
can store and retrieve prop-
erties associated with windows. For efficiency reasons, an atom is used rather than a
character string. XInternAtom can be used to obtain the atom for property names.

A property is also stored in one of several possible formats. The X server can store the
information as 8-bit quantities, 16-bit quantities, or 32-bit quantities. This permits the X
server to present the data in the byte order that the client expects.

Note: If you define further properties of complex type, you must encode and
decode them yourself. These functions must be carefully written if they
are to be portable. For further information about how to write a library
extension, see appendix C.

The type of a property is defined by an atom, which allows for arbitrary extension in
this type scheme.

Certain property names are predefined in the server for commonly used functions. The
atoms for these properties are defined in <X11/Xatom.h>. To avoid name clashes with
user symbols, the #define name for each atom has the XA_ prefix. For definitions of
these properties, see section 4.3. For an explanation of the functions that let you get and
set much of the information stored in these predefined properties, see chapter 9.

The core protocol imposes no semantics on these property names, but semantics are
specified in other X Consortium standards, such as the ‘‘Inter-Client Communication
Conventions Manual’’ and the ‘‘X Logical Font Description Conventions,’’ which make
up parts III and IV of this book.

You can use properties to communicate other information between applications. The
functions described in this section let you define new properties and get the unique atom
IDs in your applications.

Although any particular atom can have some client interpretation within each of the
name spaces, atoms occur in five distinct name spaces within the protocol:

• Selections

• Property names

• Property types

• Font properties

4−6 March 26, 1992

-- --

Window Information Functions

• Type of a ClientMessage event (none are built into the X server)

The built-in selection property names are:

PRIMARY
SECONDARY

The built-in property names are:

CUT_BUFFER0 RESOURCE_MANAGER
CUT_BUFFER1 WM_CLASS
CUT_BUFFER2 WM_CLIENT_MACHINE
CUT_BUFFER3 WM_COLORMAP_WINDOWS
CUT_BUFFER4 WM_COMMAND
CUT_BUFFER5 WM_HINTS
CUT_BUFFER6 WM_ICON_NAME
CUT_BUFFER7 WM_ICON_SIZE
RGB_BEST_MAP WM_NAME
RGB_BLUE_MAP WM_NORMAL_HINTS
RGB_DEFAULT_MAP WM_PROTOCOLS
RGB_GRAY_MAP WM_STATE
RGB_GREEN_MAP WM_TRANSIENT_FOR
RGB_RED_MAP

The built-in property types are:

ARC PIXMAP
ATOM POINT
BITMAP RGB_COLOR_MAP
CARDINAL RECTANGLE
COLORMAP STRING
CURSOR VISUALID
DRAWABLE WINDOW
FONT WM_HINTS
INTEGER WM_SIZE_HINTS

The built-in font property names are:

MIN_SPACE STRIKEOUT_DESCENT
NORM_SPACE STRIKEOUT_ASCENT
MAX_SPACE ITALIC_ANGLE
END_SPACE X_HEIGHT
SUPERSCRIPT_X QUAD_WIDTH
SUPERSCRIPT_Y WEIGHT
SUBSCRIPT_X POINT_SIZE
SUBSCRIPT_Y RESOLUTION
UNDERLINE_POSITION COPYRIGHT
UNDERLINE_THICKNESS NOTICE
FONT_NAME FAMILY_NAME
FULL_NAME CAP_HEIGHT

March 26, 1992 4−7

-- --

X Window System

For further information about font properties, see section 6.5.

To return an atom for a given name, use XInternAtom.

Atom XInternAtom(display, atom_name, only_if_exists)
Display *display;
char *atom_name;
Bool only_if_exists;

display Specifies the connection to the X server.

atom_name Specifies the name associated with the atom you want returned.

only_if_exists Specifies a Boolean value that indicates whether XInternAtom
creates the atom.

The XInternAtom function returns the atom identifier associated with the specified
atom_name string. If only_if_exists is False, the atom is created if it does not exist.
Therefore, XInternAtom can return None. You should use a null-terminated ISO
Latin-1 string for atom_name. Case matters; the strings thing, Thing, and thinG all
designate different atoms. The atom will remain defined even after the client’s connec-
tion closes. It will become undefined only when the last connection to the X server
closes.

XInternAtom can generate BadAlloc and BadValue errors.

To return a name for a given atom identifier, use XGetAtomName.

char *XGetAtomName(display, atom)
Display *display;
Atom atom;

display Specifies the connection to the X server.

atom Specifies the atom for the property name you want returned.

The XGetAtomName function returns the name associated with the specified atom. To
free the resulting string, call XFree.

XGetAtomName can generate a BadAtom error.

4.3 Obtaining and Changing Window Properties

You can attach a property list to every window. Each property has a name, a type, and a
value (see section 4.2). The value is an array of 8-bit, 16-bit, or 32-bit quantities, whose
interpretation is left to the clients.

Xlib provides functions that you can use to obtain, change, update, or interchange win-
dow properties. In addition, Xlib provides other utility functions for inter-client com-
munication (see chapter 9).

4−8 March 26, 1992

-- --

Window Information Functions

To obtain the type, format, and value of a property of a given window, use XGetWin-
dowProperty.

int XGetWindowProperty(display, w,property, long_offset, long_length,delete, req_type,
actual_type_return, actual_format_return, nitems_return,
bytes_after_return, prop_return)

Display *display;
Window w;
Atom property;
long long_offset, long_length;
Bool delete;
Atom req_type;
Atom *actual_type_return;
int *actual_format_return;
unsigned long *nitems_return;
unsigned long *bytes_after_return;
unsigned char **prop_return;

display Specifies the connection to the X server.

w Specifies the window whose property you want to obtain.

property Specifies the property name.

long_offset Specifies the offset in the specified property (in 32-bit quanti-
ties) where the data is to be retrieved.

long_length Specifies the length in 32-bit multiples of the data to be
retrieved.

delete Specifies a Boolean value that determines whether the property
is deleted.

req_type Specifies the atom identifier associated with the property type or
AnyPropertyType.

actual_type_return
Returns the atom identifier that defines the actual type of the
property.

actual_format_return
Returns the actual format of the property.

nitems_return Returns the actual number of 8-bit, 16-bit, or 32-bit items
stored in the prop_return data.

bytes_after_return
Returns the number of bytes remaining to be read in the pro-
perty if a partial read was performed.

prop_return Returns the data in the specified format.

The XGetWindowProperty function returns the actual type of the property; the actual
format of the property; the number of 8-bit, 16-bit, or 32-bit items transferred; the
number of bytes remaining to be read in the property; and a pointer to the data actually

March 26, 1992 4−9

-- --

X Window System

returned. XGetWindowProperty sets the return arguments as follows:

• If the specified property does not exist for the specified window, XGetWindowPro-
perty returns None to actual_type_return and the value zero to actual_format_return
and bytes_after_return. The nitems_return argument is empty. In this case, the delete
argument is ignored.

• If the specified property exists but its type does not match the specified type,
XGetWindowProperty returns the actual property type to actual_type_return, the
actual property format (never zero) to actual_format_return, and the property length
in bytes (even if the actual_format_return is 16 or 32) to bytes_after_return. It also
ignores the delete argument. The nitems_return argument is empty.

• If the specified property exists and either you assign AnyPropertyType to the
req_type argument or the specified type matches the actual property type, XGetWin-
dowProperty returns the actual property type to actual_type_return and the actual
property format (never zero) to actual_format_return. It also returns a value to
bytes_after_return and nitems_return, by defining the following values:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)

I = 4 * long_offset
T = N – I
L = MINIMUM(T, 4 * long_length)
A = N – (I + L)

The returned value starts at byte index I in the property (indexing from zero), and its
length in bytes is L. If the value for long_offset causes L to be negative, a Bad-
Value error results. The value of bytes_after_return is A, giving the number of trail-
ing unread bytes in the stored property.

XGetWindowProperty always allocates one extra byte in prop_return (even if the pro-
perty is zero length) and sets it to ASCII null so that simple properties consisting of
characters do not have to be copied into yet another string before use. If delete is True
and bytes_after_return is zero, XGetWindowProperty deletes the property from the
window and generates a PropertyNotify event on the window.

The function returns Success if it executes successfully. To free the resulting data, use
XFree.

XGetWindowProperty can generate BadAtom, BadValue, and BadWindow errors.

To obtain a given window’s property list, use XListProperties.

Atom *XListProperties(display, w, num_prop_return)
Display *display;
Window w;
int *num_prop_return;

display Specifies the connection to the X server.

w Specifies the window whose property list you want to obtain.

4−10 March 26, 1992

-- --

Window Information Functions

num_prop_return
Returns the length of the properties array.

The XListProperties function returns a pointer to an array of atom properties that are
defined for the specified window or returns NULL if no properties were found. To free
the memory allocated by this function, use XFree.

XListProperties can generate a BadWindow error.

To change a property of a given window, use XChangeProperty.

XChangeProperty(display, w, property, type, format, mode, data, nelements)
Display *display;
Window w;
Atom property, type;
int format;
int mode;
unsigned char *data;
int nelements;

display Specifies the connection to the X server.

w Specifies the window whose property you want to change.

property Specifies the property name.

type Specifies the type of the property. The X server does not inter-
pret the type but simply passes it back to an application that
later calls XGetWindowProperty.

format Specifies whether the data should be viewed as a list of 8-bit,
16-bit, or 32-bit quantities. Possible values are 8, 16, and 32.
This information allows the X server to correctly perform byte-
swap operations as necessary. If the format is 16-bit or 32-bit,
you must explicitly cast your data pointer to a (char *) in the
call to XChangeProperty.

mode Specifies the mode of the operation. You can pass PropMo-
deReplace, PropModePrepend, or PropModeAppend.

data Specifies the property data.

nelements Specifies the number of elements of the specified data format.

The XChangeProperty function alters the property for the specified window and causes
the X server to generate a PropertyNotify event on that window. XChangeProperty
performs the following:

• If mode is PropModeReplace, XChangeProperty discards the previous property
value and stores the new data.

• If mode is PropModePrepend or PropModeAppend, XChangeProperty inserts
the specified data before the beginning of the existing data or onto the end of the
existing data, respectively. The type and format must match the existing property
value, or a BadMatch error results. If the property is undefined, it is treated as

March 26, 1992 4−11

-- --

X Window System

defined with the correct type and format with zero-length data.

The lifetime of a property is not tied to the storing client. Properties remain until expli-
citly deleted, until the window is destroyed, or until the server resets. For a discussion
of what happens when the connection to the X server is closed, see section 2.5. The
maximum size of a property is server dependent and can vary dynamically depending on
the amount of memory the server has available. (If there is insufficient space, a BadAl-
loc error results.)

XChangeProperty can generate BadAlloc, BadAtom, BadMatch, BadValue, and
BadWindow errors.

To rotate a window’s property list, use XRotateWindowProperties.

XRotateWindowProperties(display, w, properties, num_prop, npositions)
Display *display;
Window w;
Atom properties[];
int num_prop;
int npositions;

display Specifies the connection to the X server.

w Specifies the window.

properties Specifies the array of properties that are to be rotated.

num_prop Specifies the length of the properties array.

npositions Specifies the rotation amount.

The XRotateWindowProperties function allows you to rotate properties on a window
and causes the X server to generate PropertyNotify events. If the property names in the
properties array are viewed as being numbered starting from zero and if there are
num_prop property names in the list, then the value associated with property name I
becomes the value associated with property name (I + npositions) mod N for all I from
zero to N – 1. The effect is to rotate the states by npositions places around the virtual
ring of property names (right for positive npositions, left for negative npositions). If
npositions mod N is nonzero, the X server generates a PropertyNotify event for each
property in the order that they are listed in the array. If an atom occurs more than once
in the list or no property with that name is defined for the window, a BadMatch error
results. If a BadAtom or BadMatch error results, no properties are changed.

XRotateWindowProperties can generate BadAtom, BadMatch, and Bad-
Window errors.

To delete a property on a given window, use XDeleteProperty.

XDeleteProperty(display, w, property)
Display *display;
Window w;
Atom property;

display Specifies the connection to the X server.

4−12 March 26, 1992

-- --

Window Information Functions

w Specifies the window whose property you want to delete.

property Specifies the property name.

The XDeleteProperty function deletes the specified property only if the property was
defined on the specified window and causes the X server to generate a PropertyNotify
event on the window unless the property does not exist.

XDeleteProperty can generate BadAtom and BadWindow errors.

4.4 Selections

Selections are one method used by applications to exchange data. By using the property
mechanism, applications can exchange data of arbitrary types and can negotiate the type
of the data. A selection can be thought of as an indirect property with a dynamic type.
That is, rather than having the property stored in the X server, the property is main-
tained by some client (the owner). A selection is global in nature (considered to belong
to the user but be maintained by clients) rather than being private to a particular window
subhierarchy or a particular set of clients.

Xlib provides functions that you can use to set, get, or request conversion of selections.
This allows applications to implement the notion of current selection, which requires
that notification be sent to applications when they no longer own the selection. Applica-
tions that support selection often highlight the current selection and so must be
informed when another application has acquired the selection so that they can
unhighlight the selection.

When a client asks for the contents of a selection, it specifies a selection target type.
This target type can be used to control the transmitted representation of the contents.
For example, if the selection is ‘‘the last thing the user clicked on’’ and that is currently
an image, then the target type might specify whether the contents of the image should
be sent in XY format or Z format.

The target type can also be used to control the class of contents transmitted, for exam-
ple, asking for the ‘‘looks’’ (fonts, line spacing, indentation, and so forth) of a para-
graph selection, not the text of the paragraph. The target type can also be used for other
purposes. The protocol does not constrain the semantics.

To set the selection owner, use XSetSelectionOwner.

XSetSelectionOwner(display, selection, owner, time)
Display *display;
Atom selection;
Window owner;
Time time;

display Specifies the connection to the X server.

selection Specifies the selection atom.

March 26, 1992 4−13

-- --

X Window System

owner Specifies the owner of the specified selection atom. You can
pass a window or None.

time Specifies the time. You can pass either a timestamp or Current-
Time.

The XSetSelectionOwner function changes the owner and last-change time for the
specified selection and has no effect if the specified time is earlier than the current last-
change time of the specified selection or is later than the current X server time. Other-
wise, the last-change time is set to the specified time, with CurrentTime replaced by the
current server time. If the owner window is specified as None, then the owner of the
selection becomes None (that is, no owner). Otherwise, the owner of the selection
becomes the client executing the request.

If the new owner (whether a client or None) is not the same as the current owner of the
selection and the current owner is not None, the current owner is sent a SelectionClear
event. If the client that is the owner of a selection is later terminated (that is, its connec-
tion is closed) or if the owner window it has specified in the request is later destroyed,
the owner of the selection automatically reverts to None, but the last-change time is not
affected. The selection atom is uninterpreted by the X server. XGetSelectionOwner
returns the owner window, which is reported in SelectionRequest and SelectionClear
events. Selections are global to the X server.

XSetSelectionOwner can generate BadAtom and BadWindow errors.

To return the selection owner, use XGetSelectionOwner.

Window XGetSelectionOwner(display, selection)
Display *display;
Atom selection;

display Specifies the connection to the X server.

selection Specifies the selection atom whose owner you want returned.

The XGetSelectionOwner function returns the window ID associated with the window
that currently owns the specified selection. If no selection was specified, the function
returns the constant None. If None is returned, there is no owner for the selection.

XGetSelectionOwner can generate a BadAtom error.

To request conversion of a selection, use XConvertSelection.

XConvertSelection(display, selection, target, property, requestor, time)
Display *display;
Atom selection, target;
Atom property;
Window requestor;
Time time;

display Specifies the connection to the X server.

selection Specifies the selection atom.

4−14 March 26, 1992

-- --

Window Information Functions

target Specifies the target atom.

property Specifies the property name. You also can pass None.

requestor Specifies the requestor.

time Specifies the time. You can pass either a timestamp or Current-
Time.

XConvertSelection requests that the specified selection be converted to the specified
target type:

• If the specified selection has an owner, the X server sends a SelectionRequest event
to that owner.

• If no owner for the specified selection exists, the X server generates a SelectionNo-
tify event to the requestor with property None.

The arguments are passed on unchanged in either of the events. There are two
predefined selection atoms: PRIMARY and SECONDARY.

XConvertSelection can generate BadAtom and BadWindow errors.

March 26, 1992 4−15

-- --

Chapter 5. Graphics Resource Functions

After you connect your program to the X server by calling XOpenDisplay, you can use
the Xlib graphics resource functions to:

• Create, copy, and destroy colormaps

• Allocate, modify, and free color cells

• Read entries in a colormap

• Create and free pixmaps

• Create, copy, change, and destroy graphics contexts

A number of resources are used when performing graphics operations in X. Most infor-
mation about performing graphics (for example, foreground color, background color,
line style, and so on) are stored in resources called graphics contexts (GC). Most graph-
ics operations (see chapter 6) take a GC as an argument. Although in theory it is possi-
ble to share GCs between applications, it is expected that applications will use their own
GCs when performing operations. Sharing of GCs is highly discouraged because the
library may cache GC state.

Each X window always has an associated colormap that provides a level of indirection
between pixel values and colors displayed on the screen. Many of the hardware
displays built today have a single colormap, so the primitives are written to encourage
sharing of colormap entries between applications. Because colormaps are associated
with windows, X will support displays with multiple colormaps and, indeed, different
types of colormaps. If there are not sufficient colormap resources in the display, some
windows may not be displayed in their true colors. A client or window manager can
control which windows are displayed in their true colors if more than one colormap is
required for the color resources the applications are using.

Off-screen memory or pixmaps are often used to define frequently used images for later
use in graphics operations. Pixmaps are also used to define tiles or patterns for use as
window backgrounds, borders, or cursors. A single bit-plane pixmap is sometimes
referred to as a bitmap.

Note that some screens have very limited off-screen memory. Therefore, you should
regard off-screen memory as a precious resource.

March 26, 1992 5−1

-- --

X Window System

Graphics operations can be performed to either windows or pixmaps, which collectively
are called drawables. Each drawable exists on a single screen and can only be used on
that screen. GCs can also only be used with drawables of matching screens and depths.

5.1 Colormap Functions

Xlib provides functions that you can use to manipulate a colormap. This section
discusses how to:

• Create, copy, and destroy a colormap

• Allocate, modify, and free color cells

• Read entries in a colormap

The following functions manipulate the representation of color on the screen. For each
possible value that a pixel can take in a window, there is a color cell in the colormap.
For example, if a window is 4 bits deep, pixel values 0 through 15 are defined. A color-
map is a collection of color cells. A color cell consists of a triple of red, green, and
blue. As each pixel is read out of display memory, its value is taken and looked up in
the colormap. The values of the cell determine what color is displayed on the screen.
On a multiplane display with a black-and-white monitor (with grayscale but not color),
these values can be combined to determine the brightness on the screen.

Screens always have a default colormap, and programs typically allocate cells out of
this colormap. You should not write applications that monopolize color resources. On
a screen that either cannot load the colormap or cannot have a fully independent color-
map, only certain kinds of allocations may work. Depending on the hardware, one or
more colormaps may be resident (installed) at one time. To install a colormap, use XIn-
stallColormap. The DefaultColormap macro returns the default colormap. The
DefaultVisual macro returns the default visual type for the specified screen. Colormaps
are local to a particular screen. Possible visual types are StaticGray, GrayScale, Sta-
ticColor, PseudoColor, TrueColor, or DirectColor (see section 3.1).

The functions discussed in this section operate on an XColor structure, which contains:

typedef struct {
unsigned long pixel; /* pixel value */
unsigned short red, green, blue; /* rgb values */
char flags; /* DoRed, DoGreen, DoBlue */
char pad;

} XColor;

The red, green, and blue values are scaled between 0 and 65535. On full in a color is a
value of 65535 independent of the number of bits actually used in the display hardware,
and off is 0. This representation gives uniform results for color values across different
screens. In some functions, the flags member controls which of the red, green, and blue
members is used and can be one or more of DoRed, DoGreen, and DoBlue.

5−2 March 26, 1992

-- --

Graphics Resource Functions

The introduction of color changes the view a programmer should take when dealing
with a bitmap display. For example, when printing text, you write a pixel value, which
is defined as a specific color, rather than setting or clearing bits. Hardware will impose
limits (the number of significant bits, for example) on these values. Typically, one allo-
cates color cells or sets of color cells. If read-only, the pixel values for these colors can
be shared among multiple applications, and the RGB values of the cell cannot be
changed. If read/write, they are exclusively owned by the program, and the color cell
associated with the pixel value may be changed at will.

5.1.1 Creating, Copying, and Destroying Colormaps

To create a colormap for a screen, use XCreateColormap.

Colormap XCreateColormap(display, w, visual, alloc)
Display *display;
Window w;
Visual *visual;
int alloc;

display Specifies the connection to the X server.

w Specifies the window on whose screen you want to create a
colormap.

visual Specifies a visual type supported on the screen. If the visual
type is not one supported by the screen, a BadMatch error
results.

alloc Specifies the colormap entries to be allocated. You can pass
AllocNone or AllocAll.

The XCreateColormap function creates a colormap of the specified visual type for the
screen on which the specified window resides and returns the colormap ID associated
with it. Note that the specified window is only used to determine the screen.

The initial values of the colormap entries are undefined for the visual classes GrayS-
cale, PseudoColor, and DirectColor. For StaticGray, StaticColor, and TrueColor, the
entries have defined values, but those values are specific to the visual and are not
defined by X. For StaticGray, StaticColor, and TrueColor, alloc must be AllocNone,
or a BadMatch error results. For the other visual classes, if alloc is AllocNone, the
colormap initially has no allocated entries, and clients can allocate them. For informa-
tion about the visual types, see section 3.1.

If alloc is AllocAll, the entire colormap is allocated writable. The initial values of all
allocated entries are undefined. For GrayScale and PseudoColor, the effect is as if an
XAllocColorCells call returned all pixel values from zero to N – 1, where N is the
colormap entries value in the specified visual. For DirectColor, the effect is as if an
XAllocColorPlanes call returned a pixel value of zero and red_mask, green_mask, and
blue_mask values containing the same bits as the corresponding masks in the specified

March 26, 1992 5−3

-- --

X Window System

visual. However, in all cases, none of these entries can be freed by using XFreeColors.

XCreateColormap can generate BadAlloc, BadMatch, BadValue, and BadWindow
errors.

To create a new colormap when the allocation out of a previously shared colormap has
failed because of resource exhaustion, use XCopyColormapAndFree.

Colormap XCopyColormapAndFree(display, colormap)
Display *display;
Colormap colormap;

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XCopyColormapAndFree function creates a colormap of the same visual type and
for the same screen as the specified colormap and returns the new colormap ID. It also
moves all of the client’s existing allocation from the specified colormap to the new
colormap with their color values intact and their read-only or writable characteristics
intact and frees those entries in the specified colormap. Color values in other entries in
the new colormap are undefined. If the specified colormap was created by the client
with alloc set to AllocAll, the new colormap is also created with AllocAll, all color
values for all entries are copied from the specified colormap, and then all entries in the
specified colormap are freed. If the specified colormap was not created by the client
with AllocAll, the allocations to be moved are all those pixels and planes that have been
allocated by the client using XAllocColor, XAllocNamedColor, XAllocColorCells, or
XAllocColorPlanes and that have not been freed since they were allocated.

XCopyColormapAndFree can generate BadAlloc and BadColor errors.

To set the colormap of a given window, use XSetWindowColormap.

XSetWindowColormap(display, w, colormap)
Display *display;
Window w;
Colormap colormap;

display Specifies the connection to the X server.

w Specifies the window.

colormap Specifies the colormap.

The XSetWindowColormap function sets the specified colormap of the specified win-
dow. The colormap must have the same visual type as the window, or a BadMatch
error results.

XSetWindowColormap can generate BadColor, BadMatch, and BadWindow errors.

To destroy a colormap, use XFreeColormap.

XFreeColormap(display, colormap)
Display *display;
Colormap colormap;

5−4 March 26, 1992

-- --

Graphics Resource Functions

display Specifies the connection to the X server.

colormap Specifies the colormap that you want to destroy.

The XFreeColormap function deletes the association between the colormap resource ID
and the colormap and frees the colormap storage. However, this function has no effect
on the default colormap for a screen. If the specified colormap is an installed map for a
screen, it is uninstalled (see XUninstallColormap). If the specified colormap is defined
as the colormap for a window (by XCreateWindow, XSetWindowColormap, or
XChangeWindowAttributes), XFreeColormap changes the colormap associated with
the window to None and generates a ColormapNotify event. X does not define the
colors displayed for a window with a colormap of None.

XFreeColormap can generate a BadColor error.

5.1.2 Allocating, Modifying, and Freeing Color Cells

There are two ways of allocating color cells: explicitly as read-only entries by pixel
value or read/write, where you can allocate a number of color cells and planes simul-
taneously. The read/write cells you allocate do not have defined colors until set with
XStoreColor or XStoreColors.

To determine the color names, the X server uses a color database. Although you can
change the values in a read/write color cell that is allocated by another application, this
is considered ‘‘antisocial’’ behavior.

To allocate a read-only color cell, use XAllocColor.

Status XAllocColor(display, colormap, screen_in_out)
Display *display;
Colormap colormap;
XColor *screen_in_out;

display Specifies the connection to the X server.

colormap Specifies the colormap.

screen_in_out Specifies and returns the values actually used in the colormap.

The XAllocColor function allocates a read-only colormap entry corresponding to the
closest RGB values supported by the hardware. XAllocColor returns the pixel value of
the color closest to the specified RGB elements supported by the hardware and returns
the RGB values actually used. The corresponding colormap cell is read-only. In addi-
tion, XAllocColor returns nonzero if it succeeded or zero if it failed. Multiple clients
that request the same effective RGB values can be assigned the same read-only entry,
thus allowing entries to be shared. When the last client deallocates a shared cell, it is
deallocated. XAllocColor does not use or affect the flags in the XColor structure.

XAllocColor can generate a BadColor error.

March 26, 1992 5−5

-- --

X Window System

To allocate a read-only color cell by name and return the closest color supported by the
hardware, use XAllocNamedColor.

Status XAllocNamedColor(display, colormap, color_name, screen_def_return,
exact_def_return)

Display *display;
Colormap colormap;
char *color_name;
XColor *screen_def_return, *exact_def_return;

display Specifies the connection to the X server.

colormap Specifies the colormap.

color_name Specifies the color name string (for example, red) whose color
definition structure you want returned.

screen_def_return
Returns the closest RGB values provided by the hardware.

exact_def_return
Returns the exact RGB values.

The XAllocNamedColor function looks up the named color with respect to the screen
that is associated with the specified colormap. It returns both the exact database
definition and the closest color supported by the screen. The allocated color cell is
read-only. You should use the ISO Latin-1 encoding; uppercase and lowercase do not
matter.

XAllocNamedColor can generate a BadColor error.

To look up the name of a color, use XLookupColor.

Status XLookupColor(display, colormap, color_name, exact_def_return, screen_def_return)
Display *display;
Colormap colormap;
char *color_name;
XColor *exact_def_return, *screen_def_return;

display Specifies the connection to the X server.

colormap Specifies the colormap.

color_name Specifies the color name string (for example, red) whose color
definition structure you want returned.

exact_def_return
Returns the exact RGB values.

screen_def_return
Returns the closest RGB values provided by the hardware.

The XLookupColor function looks up the string name of a color with respect to the
screen associated with the specified colormap. It returns both the exact color values and
the closest values provided by the screen with respect to the visual type of the specified
colormap. You should use the ISO Latin-1 encoding; uppercase and lowercase do not

5−6 March 26, 1992

-- --

Graphics Resource Functions

matter. XLookupColor returns nonzero if the name existed in the color database or zero
if it did not exist.

To allocate read/write color cell and color plane combinations for a PseudoColor
model, use XAllocColorCells.

Status XAllocColorCells(display, colormap, contig, plane_masks_return, nplanes,
pixels_return, npixels)

Display *display;
Colormap colormap;
Bool contig;
unsigned long plane_masks_return[];
unsigned int nplanes;
unsigned long pixels_return[];
unsigned int npixels;

display Specifies the connection to the X server.

colormap Specifies the colormap.

contig Specifies a Boolean value that indicates whether the planes
must be contiguous.

plane_mask_return
Returns an array of plane masks.

nplanes Specifies the number of plane masks that are to be returned in
the plane masks array.

pixels_return Returns an array of pixel values.

npixels Specifies the number of pixel values that are to be returned in
the pixels_return array.

The XAllocColorCells function allocates read/write color cells. The number of colors
must be positive and the number of planes nonnegative, or a BadValue error results. If
ncolors and nplanes are requested, then ncolors pixels and nplane plane masks are
returned. No mask will have any bits set to 1 in common with any other mask or with
any of the pixels. By ORing together each pixel with zero or more masks, ncolors *
2nplanes distinct pixels can be produced. All of these are allocated writable by the
request. For GrayScale or PseudoColor, each mask has exactly one bit set to 1. For
DirectColor, each has exactly three bits set to 1. If contig is True and if all masks are
ORed together, a single contiguous set of bits set to 1 will be formed for GrayScale or
PseudoColor and three contiguous sets of bits set to 1 (one within each pixel subfield)
for DirectColor. The RGB values of the allocated entries are undefined. XAllocColor-
Cells returns nonzero if it succeeded or zero if it failed.

Figure 5-1. Request of 3 cells and 2 planes
#ifdef BOOKREADER

March 26, 1992 5−7

-- --

X Window System

#endif #ifdef HARDCOPY

3 Pixels 2 Planes

Returned by XAllocColorCells

You Own These 12 Pixel Values
After Allocation

ZK−0411U−R

#endif

XAllocColorCells can generate BadColor and BadValue errors.

To allocate read/write color resources for a DirectColor model, use
XAllocColorPlanes.

Status XAllocColorPlanes(display, colormap, contig, pixels_return, ncolors, nreds, ngree
nblues, rmask_return, gmask_return, bmask_return)

Display *display;
Colormap colormap;
Bool contig;
unsigned long pixels_return[];
int ncolors;
int nreds, ngreens, nblues;
unsigned long *rmask_return, *gmask_return, *bmask_return;

display Specifies the connection to the X server.

colormap Specifies the colormap.

5−8 March 26, 1992

-- --

Graphics Resource Functions

contig Specifies a Boolean value that indicates whether the planes
must be contiguous.

pixels_return Returns an array of pixel values. XAllocColorPlanes returns the
pixel values in this array.

ncolors Specifies the number of pixel values that are to be returned in
the pixels_return array.

nreds, ngreens, nblues
Specify the number of red, green, and blue planes. The value
you pass must be nonnegative.

rmask_return, gmask_return, bmask_return
Return bit masks for the red, green, and blue planes.

The specified ncolors must be positive; and nreds, ngreens, and nblues must be nonne-
gative, or a BadValue error results. If ncolors colors, nreds reds, ngreens greens, and
nblues blues are requested, ncolors pixels are returned; and the masks have nreds,
ngreens, and nblues bits set to 1, respectively. If contig is True, each mask will have a
contiguous set of bits set to 1. No mask will have any bits set to 1 in common with any
other mask or with any of the pixels. For DirectColor, each mask will lie within the
corresponding pixel subfield. By ORing together subsets of masks with each pixel
value, ncolors * 2(nreds+ngreens+nblues) distinct pixel values can be produced. All of
these are allocated by the request. However, in the colormap, there are only ncolors *
2nreds independent red entries, ncolors * 2ngreens independent green entries, and
ncolors * 2nblues independent blue entries. This is true even for PseudoColor. When
the colormap entry of a pixel value is changed (using XStoreColors, XStoreColor, or
XStoreNamedColor), the pixel is decomposed according to the masks, and the
corresponding independent entries are updated. XAllocColorPlanes returns nonzero if
it succeeded or zero if it failed.

XAllocColorPlanes can generate BadColor and BadValue errors.

To store RGB values into colormap cells, use XStoreColors.

XStoreColors(display, colormap, color, ncolors)
Display *display;
Colormap colormap;
XColor color[];
int ncolors;

display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies an array of color definition structures to be stored.

ncolors Specifies the number of XColor structures in the color definition
array.

The XStoreColors function changes the colormap entries of the pixel values specified in
the pixel members of the XColor structures. You specify which color components are
to be changed by setting DoRed, DoGreen, and/or DoBlue in the flags member of the

March 26, 1992 5−9

-- --

X Window System

XColor structures. If the colormap is an installed map for its screen, the changes are
visible immediately. XStoreColors changes the specified pixels if they are allocated
writable in the colormap by any client, even if one or more pixels generates an error. If
a specified pixel is not a valid index into the colormap, a BadValue error results. If a
specified pixel either is unallocated or is allocated read-only, a BadAccess error
results. If more than one pixel is in error, the one that gets reported is arbitrary.

XStoreColors can generate BadAccess, BadColor, and BadValue errors.

To store an RGB value in a single colormap cell, use XStoreColor.

XStoreColor(display, colormap, color)
Display *display;
Colormap colormap;
XColor *color;

display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies the pixel and RGB values.

The XStoreColor function changes the colormap entry of the pixel value specified in the
pixel member of the XColor structure. You specified this value in the pixel member of
the XColor structure. This pixel value must be a read/write cell and a valid index into
the colormap. If a specified pixel is not a valid index into the colormap, a BadValue
error results. XStoreColor also changes the red, green, and/or blue color components.
You specify which color components are to be changed by setting DoRed, DoGreen,
and/or DoBlue in the flags member of the XColor structure. If the colormap is an
installed map for its screen, the changes are visible immediately.

XStoreColor can generate BadAccess, BadColor, and BadValue errors.

To set the color of a pixel to a named color, use XStoreNamedColor.

XStoreNamedColor(display, colormap, color, pixel, flags)
Display *display;
Colormap colormap;
char *color;
unsigned long pixel;
int flags;

display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies the color name string (for example, red).

pixel Specifies the entry in the colormap.

flags Specifies which red, green, and blue components are set.

The XStoreNamedColor function looks up the named color with respect to the screen
associated with the colormap and stores the result in the specified colormap. The pixel
argument determines the entry in the colormap. The flags argument determines which
of the red, green, and blue components are set. You can set this member to the bitwise

5−10 March 26, 1992

-- --

Graphics Resource Functions

inclusive OR of the bits DoRed, DoGreen, and DoBlue. If the specified pixel is not a
valid index into the colormap, a BadValue error results. If the specified pixel either is
unallocated or is allocated read-only, a BadAccess error results. You should use the
ISO Latin-1 encoding; uppercase and lowercase do not matter.

XStoreNamedColor can generate BadAccess, BadColor, BadName, and BadValue
errors.

To free colormap cells, use XFreeColors.

XFreeColors(display, colormap, pixels, npixels, planes)
Display *display;
Colormap colormap;
unsigned long pixels[];
int npixels;
unsigned long planes;

display Specifies the connection to the X server.

colormap Specifies the colormap.

pixels Specifies an array of pixel values that map to the cells in the
specified colormap.

npixels Specifies the number of pixels.

planes Specifies the planes you want to free.

The XFreeColors function frees the cells represented by pixels whose values are in the
pixels array. The planes argument should not have any bits set to 1 in common with
any of the pixels. The set of all pixels is produced by ORing together subsets of the
planes argument with the pixels. The request frees all of these pixels that were allo-
cated by the client (using XAllocColor, XAllocNamedColor, XAllocColorCells, and
XAllocColorPlanes). Note that freeing an individual pixel obtained from XAllocColor-
Planes may not actually allow it to be reused until all of its related pixels are also
freed. Similarly, a read-only entry is not actually freed until it has been freed by all
clients, and if a client allocates the same read-only entry multiple times, it must free the
entry that many times before the entry is actually freed.

All specified pixels that are allocated by the client in the colormap are freed, even if one
or more pixels produce an error. If a specified pixel is not a valid index into the color-
map, a BadValue error results. If a specified pixel is not allocated by the client (that is,
is unallocated or is only allocated by another client), a BadAccess error results. If more
than one pixel is in error, the one that gets reported is arbitrary.

XFreeColors can generate BadAccess, BadColor, and BadValue errors.

5.1.3 Reading Entries in a Colormap

The XQueryColor and XQueryColors functions return the RGB values stored in the
specified colormap for the pixel value you pass in the pixel member of the XColor

March 26, 1992 5−11

-- --

X Window System

structure(s). The values returned for an unallocated entry are undefined. These func-
tions also set the flags member in the XColor structure to all three colors. If a pixel is
not a valid index into the specified colormap, a BadValue error results. If more than
one pixel is in error, the one that gets reported is arbitrary.

To query the RGB values of a single specified pixel value, use XQueryColor.

XQueryColor(display, colormap, def_in_out)
Display *display;
Colormap colormap;
XColor *def_in_out;

display Specifies the connection to the X server.

colormap Specifies the colormap.

def_in_out Specifies and returns the RGB values for the pixel specified in
the structure.

The XQueryColor function returns the hardware-specific RGB values for each pixel in
the XColor structures and sets the DoRed, DoGreen, and DoBlue flags.

XQueryColor can generate BadColor and BadValue errors.

To query the RGB values of an array of pixels stored in color structures, use
XQueryColors.

XQueryColors(display, colormap, defs_in_out, ncolors)
Display *display;
Colormap colormap;
XColor defs_in_out[];
int ncolors;

display Specifies the connection to the X server.

colormap Specifies the colormap.

defs_in_out Specifies and returns an array of color definition structures for
the pixel specified in the structure.

ncolors Specifies the number of XColor structures in the color definition
array.

The XQueryColors function returns the RGB values for each pixel in the XColor struc-
tures and sets the DoRed, DoGreen, and DoBlue flags.

XQueryColors can generate BadColor and BadValue errors.

5.2 Creating and Freeing Pixmaps

Pixmaps can only be used on the screen on which they were created. Pixmaps are off-
screen resources that are used for various operations, for example, defining cursors as

5−12 March 26, 1992

-- --

Graphics Resource Functions

tiling patterns or as the source for certain raster operations. Most graphics requests can
operate either on a window or on a pixmap. A bitmap is a single bit-plane pixmap.

To create a pixmap of a given size, use XCreatePixmap.

Pixmap XCreatePixmap(display, d, width, height, depth)
Display *display;
Drawable d;
unsigned int width, height;
unsigned int depth;

display Specifies the connection to the X server.

d Specifies which screen the pixmap is created on.

width, height Specify the width and height, which define the dimensions of
the pixmap.

depth Specifies the depth of the pixmap.

The XCreatePixmap function creates a pixmap of the width, height, and depth you
specified and returns a pixmap ID that identifies it. It is valid to pass an InputOnly
window to the drawable argument. The width and height arguments must be nonzero,
or a BadValue error results. The depth argument must be one of the depths supported
by the screen of the specified drawable, or a BadValue error results.

The server uses the specified drawable to determine on which screen to create the pix-
map. The pixmap can be used only on this screen and only with other drawables of the
same depth (see XCopyPlane for an exception to this rule). The initial contents of the
pixmap are undefined.

XCreatePixmap can generate BadAlloc, BadDrawable, and BadValue errors.

To free all storage associated with a specified pixmap, use XFreePixmap.

XFreePixmap(display, pixmap)
Display *display;
Pixmap pixmap;

display Specifies the connection to the X server.

pixmap Specifies the pixmap.

The XFreePixmap function first deletes the association between the pixmap ID and the
pixmap. Then, the X server frees the pixmap storage when there are no references to
it. The pixmap should never be referenced again.

XFreePixmap can generate a BadPixmap error.

5.3 Manipulating Graphics Context/State

Most attributes of graphics operations are stored in Graphic Contexts (GCs). These

March 26, 1992 5−13

-- --

X Window System

include line width, line style, plane mask, foreground, background, tile, stipple, clipping
region, end style, join style, and so on. Graphics operations (for example, drawing
lines) use these values to determine the actual drawing operation. Extensions to X may
add additional components to GCs. The contents of a GC are private to Xlib.

Xlib implements a write-back cache for all elements of a GC that are not resource IDs
to allow Xlib to implement the transparent coalescing of changes to GCs. For example,
a call to XSetForeground of a GC followed by a call to XSetLineAttributes results in
only a single-change GC protocol request to the server. GCs are neither expected nor
encouraged to be shared between client applications, so this write-back caching should
present no problems. Applications cannot share GCs without external synchronization.
Therefore, sharing GCs between applications is highly discouraged.

To set an attribute of a GC, set the appropriate member of the XGCValues structure
and OR in the corresponding value bitmask in your subsequent calls to XCreateGC.
The symbols for the value mask bits and the XGCValues structure are:

/* GC attribute value mask bits */
#define GCFunction (1L<<0)
#define GCPlaneMask (1L<<1)
#define GCForeground (1L<<2)
#define GCBackground (1L<<3)
#define GCLineWidth (1L<<4)
#define GCLineStyle (1L<<5)
#define GCCapStyle (1L<<6)
#define GCJoinStyle (1L<<7)
#define GCFillStyle (1L<<8)
#define GCFillRule (1L<<9)
#define GCTile (1L<<10)
#define GCStipple (1L<<11)
#define GCTileStipXOrigin (1L<<12)
#define GCTileStipYOrigin (1L<<13)
#define GCFont (1L<<14)
#define GCSubwindowMode (1L<<15)
#define GCGraphicsExposures (1L<<16)
#define GCClipXOrigin (1L<<17)
#define GCClipYOrigin (1L<<18)
#define GCClipMask (1L<<19)
#define GCDashOffset (1L<<20)
#define GCDashList (1L<<21)
#define GCArcMode (1L<<22)
/* Values */
typedef struct {

int function; /* logical operation */
unsigned long plane_mask; /* plane mask */
unsigned long foreground; /* foreground pixel */
unsigned long background; /* background pixel */
int line_width; /* line width (in pixels) */
int line_style; /* LineSolid, LineOnOffDash,

5−14 March 26, 1992

-- --

Graphics Resource Functions

LineDoubleDash */
int cap_style; /* CapNotLast, CapButt, CapRound,

CapProjecting */
int join_style; /* JoinMiter, JoinRound, JoinBevel */
int fill_style; /* FillSolid, FillTiled,

FillStippled, FillOpaqueStippled*/
int fill_rule; /* EvenOddRule, WindingRule */
int arc_mode; /* ArcChord, ArcPieSlice */
Pixmap tile; /* tile pixmap for tiling operations *
Pixmap stipple; /* stipple 1 plane pixmap for stipplin
int ts_x_origin; /* offset for tile or stipple operatio
int ts_y_origin;
Font font; /* default text font for text operatio
int subwindow_mode; /* ClipByChildren, IncludeInferiors */
Bool graphics_exposures; /* boolean, should exposures be genera
int clip_x_origin; /* origin for clipping */
int clip_y_origin;
Pixmap clip_mask; /* bitmap clipping; other calls for re
int dash_offset; /* patterned/dashed line information *
char dashes;

} XGCValues;

The default GC values are:

33
Component Default
33
function GXcopy
plane_mask All ones
foreground 0
background 1
line_width 0
line_style LineSolid
cap_style CapButt
join_style JoinMiter
fill_style FillSolid
fill_rule EvenOddRule
arc_mode ArcPieSlice
tile Pixmap of unspecified size filled with foreground pixel

(that is, client specified pixel if any, else 0)
(subsequent changes to foreground do not affect this pixmap)

stipple Pixmap of unspecified size filled with ones
ts_x_origin 0
ts_y_origin 0
font <implementation dependent>
subwindow_mode ClipByChildren
graphics_exposures True
clip_x_origin 0
clip_y_origin 0

March 26, 1992 5−15

-- --

X Window System

clip_mask None
dash_offset 0
dashes 4 (that is, the list [4, 4])

Note that foreground and background are not set to any values likely to be useful in a
window.

The function attributes of a GC are used when you update a section of a drawable (the
destination) with bits from somewhere else (the source). The function in a GC defines
how the new destination bits are to be computed from the source bits and the old desti-
nation bits. GXcopy is typically the most useful because it will work on a color
display, but special applications may use other functions, particularly in concert with
particular planes of a color display. The 16 GC functions, defined in <X11/X.h>, are:
333
Function Name Hex Code Operation
333
GXclear 0x0 0
GXand 0x1 src AND dst
GXandReverse 0x2 src AND NOT dst
GXcopy 0x3 src
GXandInverted 0x4 (NOT src) AND dst
GXnoop 0x5 dst
GXxor 0x6 src XOR dst
GXor 0x7 src OR dst
GXnor 0x8 (NOT src) AND (NOT dst)
GXequiv 0x9 (NOT src) XOR dst
GXinvert 0xa NOT dst
GXorReverse 0xb src OR (NOT dst)
GXcopyInverted 0xc NOT src
GXorInverted 0xd (NOT src) OR dst
GXnand 0xe (NOT src) OR (NOT dst)
GXset 0xf 1

Many graphics operations depend on either pixel values or planes in a GC. The planes
attribute is of type long, and it specifies which planes of the destination are to be
modified, one bit per plane. A monochrome display has only one plane and will be the
least-significant bit of the word. As planes are added to the display hardware, they will
occupy more significant bits in the plane mask.

In graphics operations, given a source and destination pixel, the result is computed bit-
wise on corresponding bits of the pixels. That is, a Boolean operation is performed in
each bit plane. The plane_mask restricts the operation to a subset of planes. A macro
constant AllPlanes can be used to refer to all planes of the screen simultaneously. The
result is computed by the following:

((src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

Range checking is not performed on the values for foreground, background, or
plane_mask. They are simply truncated to the appropriate number of bits. The line-
width is measured in pixels and either can be greater than or equal to one (wide line) or
can be the special value zero (thin line).

5−16 March 26, 1992

-- --

Graphics Resource Functions

Wide lines are drawn centered on the path described by the graphics request. Unless
otherwise specified by the join-style or cap-style, the bounding box of a wide line with
endpoints [x1, y1], [x2, y2] and width w is a rectangle with vertices at the following
real coordinates:

[x1 – (w*sn/2), y1 + (w*cs/2)], [x1 + (w*sn/2), y1 – (w*cs/2)],
[x2 – (w*sn/2), y2 + (w*cs/2)], [x2 + (w*sn/2), y2 – (w*cs/2)]

Here sn is the sine of the angle of the line, and cs is the cosine of the angle of the line.
A pixel is part of the line and so is drawn if the center of the pixel is fully inside the
bounding box (which is viewed as having infinitely thin edges). If the center of the
pixel is exactly on the bounding box, it is part of the line if and only if the interior is
immediately to its right (x increasing direction). Pixels with centers on a horizontal edge
are a special case and are part of the line if and only if the interior or the boundary is
immediately below (y increasing direction) and the interior or the boundary is immedi-
ately to the right (x increasing direction).

Figure 5-2. Example of graphics operation using function and plane mask (4bits/pixel)
#ifdef BOOKREADER

#endif #ifdef HARDCOPY

March 26, 1992 5−17

-- --

X Window System

 ZK−0412U−R

Xor

Function

Graphics
Context

#endif

Thin lines (zero line-width) are one-pixel-wide lines drawn using an unspecified,
device-dependent algorithm. There are only two constraints on this algorithm.

1. If a line is drawn unclipped from [x1,y1] to [x2,y2] and if another line is drawn
unclipped from [x1+ dx,y1+ dy] to [x2 + dx,y2 + dy], a point [x,y] is touched by
drawing the first line if and only if the point [x + dx,y + dy] is touched by drawing
the second line.

2. The effective set of points comprising a line cannot be affected by clipping. That
is, a point is touched in a clipped line if and only if the point lies inside the clip-
ping region and the point would be touched by the line when drawn unclipped.

A wide line drawn from [x1,y1] to [x2,y2] always draws the same pixels as a wide line
drawn from [x2,y2] to [x1,y1], not counting cap-style and join-style. It is recommended
that this property be true for thin lines, but this is not required. A line-width of zero
may differ from a line-width of one in which pixels are drawn. This permits the use of
many manufacturers’ line drawing hardware, which may run many times faster than the
more precisely specified wide lines.

5−18 March 26, 1992

-- --

Graphics Resource Functions

In general, drawing a thin line will be faster than drawing a wide line of width one.
However, because of their different drawing algorithms, thin lines may not mix well
aesthetically with wide lines. If it is desirable to obtain precise and uniform results
across all displays, a client should always use a line-width of one rather than a line-
width of zero.

The line-style defines which sections of a line are drawn:

LineSolid The full path of the line is drawn.

LineDoubleDash The full path of the line is drawn, but the even dashes are filled
differently than the odd dashes (see fill-style) with CapButt
style used where even and odd dashes meet.

LineOnOffDash Only the even dashes are drawn, and cap-style applies to all
internal ends of the individual dashes, except CapNotLast is
treated as CapButt.

The cap-style defines how the endpoints of a path are drawn:

CapNotLast This is equivalent to CapButt except that for a line-width of
zero the final endpoint is not drawn.

CapButt The line is square at the endpoint (perpendicular to the slope of
the line) with no projection beyond.

CapRound The line has a circular arc with the diameter equal to the line-
width, centered on the endpoint. (This is equivalent to CapButt
for line-width of zero.)

CapProjecting The line is square at the end, but the path continues beyond the
endpoint for a distance equal to half the line-width. (This is
equivalent to CapButt for line-width of zero.)

The join-style defines how corners are drawn for wide lines:

JoinMiter The outer edges of two lines extend to meet at an angle. How-
ever, if the angle is less than 11 degrees, then a JoinBevel
join-style is used instead.

JoinRound The corner is a circular arc with the diameter equal to the line-
width, centered on the joinpoint.

JoinBevel The corner has CapButt endpoint styles with the triangular
notch filled.

For a line with coincident endpoints (x1 = x2, y1 = y2), when the cap-style is applied to
both endpoints, the semantics depends on the line-width and the cap-style:

Figure 5-3. Wide line cap and join styles
#ifdef BOOKREADER

March 26, 1992 5−19

-- --

X Window System

#endif #ifdef HARDCOPY
 ZK−0413U−R

Butt Cap
Miter Join

Projecting Cap
Bevel Join

Round Cap
Round Join

#endif

CapNotLast thin The results are device- depen-
dent, but the desired effect is that nothing is

drawn.

CapButt thin The results are device- depen-
dent, but the desired effect is that a single pixel

is drawn.

CapRound thin The results are the same as for
CapButt/thin.

CapProjecting thin The results are the same as for
Butt/thin.

CapButt wide Nothing is drawn.

CapRound wide The closed path is a circle, cen-
tered at the endpoint, and with the diameter

equal to the line-width.

CapProjecting wide The closed path is a square,
aligned with the coordinate axes,
centered at the endpoint, and with

5−20 March 26, 1992

-- --

Graphics Resource Functions

the sides equal to the line-width.

For a line with coincident endpoints (x1 = x2, y1 = y2), when the join-style is applied at
one or both endpoints, the effect is as if the line was removed from the overall path.
However, if the total path consists of or is reduced to a single point joined with itself,
the effect is the same as when the cap-style is applied at both endpoints.

The tile/stipple and clip origins are interpreted relative to the origin of whatever destina-
tion drawable is specified in a graphics request. The tile pixmap must have the same
root and depth as the GC, or a BadMatch error results. The stipple pixmap must have
depth one and must have the same root as the GC, or a BadMatch error results. For
stipple operations where the fill-style is FillStippled but not FillOpaqueStippled, the
stipple pattern is tiled in a single plane and acts as an additional clip mask to be ANDed
with the clip-mask. Although some sizes may be faster to use than others, any size pix-
map can be used for tiling or stippling.

The fill-style defines the contents of the source for line, text, and fill requests. For all
text and fill requests (for example, XDrawText, XDrawText16, XFillRectangle,
XFillPolygon, and XFillArc); for line requests with line-style LineSolid (for example,
XDrawLine, XDrawSegments, XDrawRectangle, XDrawArc); and for the even
dashes for line requests with line-style LineOnOffDash or LineDoubleDash, the follow-
ing apply:

FillSolid Foreground

FillTiled Tile

FillOpaqueStippled
A tile with the same width and height as stipple, but with back-
ground everywhere stipple has a zero and with foreground
everywhere stipple has a one

FillStippled Foreground masked by stipple

When drawing lines with line-style LineDoubleDash, the odd dashes are controlled by
the fill-style in the following manner:

FillSolid Background

FillTiled Same as for even dashes

FillOpaqueStippled
Same as for even dashes

FillStippled Background masked by stipple

Storing a pixmap in a GC might or might not result in a copy being made. If the pix-
map is later used as the destination for a graphics request, the change might or might
not be reflected in the GC. If the pixmap is used simultaneously in a graphics request
both as a destination and as a tile or stipple, the results are undefined.

For optimum performance, you should draw as much as possible with the same GC
(without changing its components). The costs of changing GC components relative to
using different GCs depend upon the display hardware and the server implementation.
It is quite likely that some amount of GC information will be cached in display

March 26, 1992 5−21

-- --

X Window System

hardware and that such hardware can only cache a small number of GCs.

The dashes value is actually a simplified form of the more general patterns that can be
set with XSetDashes. Specifying a value of N is equivalent to specifying the two-
element list [N, N] in XSetDashes. The value must be nonzero, or a BadValue error
results.

The clip-mask restricts writes to the destination drawable. If the clip-mask is set to a
pixmap, it must have depth one and have the same root as the GC, or a BadMatch error
results. If clip-mask is set to None, the pixels are always drawn regardless of the clip
origin. The clip-mask also can be set by calling the XSetClipRectangles or XSetRe-
gion functions. Only pixels where the clip-mask has a bit set to 1 are drawn. Pixels are
not drawn outside the area covered by the clip-mask or where the clip-mask has a bit set
to 0. The clip-mask affects all graphics requests. The clip-mask does not clip sources.
The clip-mask origin is interpreted relative to the origin of whatever destination draw-
able is specified in a graphics request.

You can set the subwindow-mode to ClipByChildren or IncludeInferiors. For ClipBy-
Children, both source and destination windows are additionally clipped by all viewable
InputOutput children. For IncludeInferiors, neither source nor destination window is
clipped by inferiors. This will result in including subwindow contents in the source and
drawing through subwindow boundaries of the destination. The use of IncludeInferiors
on a window of one depth with mapped inferiors of differing depth is not illegal, but the
semantics are undefined by the core protocol.

The fill-rule defines what pixels are inside (drawn) for paths given in XFillPolygon
requests and can be set to EvenOddRule or WindingRule. For EvenOddRule, a point
is inside if an infinite ray with the point as origin crosses the path an odd number of
times. For WindingRule, a point is inside if an infinite ray with the point as origin
crosses an unequal number of clockwise and counterclockwise directed path segments.
A clockwise directed path segment is one that crosses the ray from left to right as
observed from the point. A counterclockwise segment is one that crosses the ray from
right to left as observed from the point. The case where a directed line segment is coin-
cident with the ray is uninteresting because you can simply choose a different ray that is
not coincident with a segment.

Figure 5-4. Fill rule
#ifdef BOOKREADER

5−22 March 26, 1992

-- --

Graphics Resource Functions

#endif #ifdef HARDCOPY

Polygon Before Fill Even Odd Rule Winding Rule

ZK−0414U−R

#endif

For both EvenOddRule and WindingRule, a point is infinitely small, and the path is an
infinitely thin line. A pixel is inside if the center point of the pixel is inside and the
center point is not on the boundary. If the center point is on the
boundary, the pixel is inside if and only if the polygon interior is immediately to its
right (x increasing direction). Pixels with centers on a horizontal edge are a special case
and are inside if and only if the polygon interior is immediately below (y increasing
direction).

The arc-mode controls filling in the XFillArcs function and can be set to ArcPieSlice or
ArcChord. For ArcPieSlice, the arcs are pie-slice filled. For ArcChord, the arcs are
chord filled.

The graphics-exposure flag controls GraphicsExpose event generation for XCopyArea
and XCopyPlane requests (and any similar requests defined by extensions).

Figure 5-5. Arc mode
#ifdef BOOKREADER

March 26, 1992 5−23

-- --

X Window System

#endif #ifdef HARDCOPY

Pie Slice Chord

ZK−0415U−R

#endif

To create a new GC that is usable on a given screen with a depth of drawable, use
XCreateGC.

GC XCreateGC(display, d, valuemask, values)
Display *display;
Drawable d;
unsigned long valuemask;
XGCValues *values;

display Specifies the connection to the X server.

d Specifies the drawable.

valuemask Specifies which components in the GC are to be set using the
information in the specified values structure. This argument is
the bitwise inclusive OR of zero or more of the valid GC com-
ponent mask bits.

values Specifies any values as specified by the valuemask.

The XCreateGC function creates a graphics context and returns a GC. The GC can be
used with any destination drawable having the same root and depth as the specified
drawable. Use with other drawables results in a BadMatch error.

XCreateGC can generate BadAlloc, BadDrawable, BadFont, BadMatch, BadPix-
map, and BadValue errors.

To copy components from a source GC to a destination GC, use XCopyGC.

XCopyGC(display, src, valuemask, dest)
Display *display;
GC src, dest;

5−24 March 26, 1992

-- --

Graphics Resource Functions

unsigned long valuemask;

display Specifies the connection to the X server.

src Specifies the components of the source GC.

valuemask Specifies which components in the GC are to be copied to the
destination GC. This argument is the bitwise inclusive OR of
zero or more of the valid GC component mask bits.

dest Specifies the destination GC.

The XCopyGC function copies the specified components from the source GC to the
destination GC. The source and destination GCs must have the same root and depth, or
a BadMatch error results. The valuemask specifies which component to copy, as for
XCreateGC.

XCopyGC can generate BadAlloc, BadGC, and BadMatch errors.

To change the components in a given GC, use XChangeGC.

XChangeGC(display, gc, valuemask, values)
Display *display;
GC gc;
unsigned long valuemask;
XGCValues *values;

display Specifies the connection to the X server.

gc Specifies the GC.

valuemask Specifies which components in the GC are to be changed using
information in the specified values structure. This argument is
the bitwise inclusive OR of zero or more of the valid GC com-
ponent mask bits.

values Specifies any values as specified by the valuemask.

The XChangeGC function changes the components specified by valuemask for the
specified GC. The values argument contains the values to be set. The values and res-
trictions are the same as for XCreateGC. Changing the clip-mask overrides any previ-
ous XSetClipRectangles request on the context. Changing the dash-offset or dash-list
overrides any previous XSetDashes request on the context. The order in which com-
ponents are verified and altered is server-dependent. If an error is generated, a subset of
the components may have been altered.

XChangeGC can generate BadAlloc, BadFont, BadGC, BadMatch, BadPixmap, and
BadValue errors.

To obtain components of a given GC, use XGetGCValues.

Status XGetGCValues(display, gc, valuemask, values_return)
Display *display;
GC gc;
unsigned long valuemask;
XGCValues *values_return;

March 26, 1992 5−25

-- --

X Window System

display Specifies the connection to the X server.

gc Specifies the GC.

valuemask Specifies which components in the GC are to be returned in the
values_return argument. This argument is the bitwise inclusive
OR of zero or more of the valid GC component mask bits.

values_return Returns the GC values in the specified XGCValues structure.

The XGetGCValues function returns the components specified by valuemask for the
specified GC. Note that the clip-mask and dash-list (represented by the
GCClipMask and GCDashList bits, respectively, in the valuemask) cannot be
requested. If the valuemask contains a valid set of GC mask bits (GCFunction,
GCPlaneMask, GCForeground, GCBackground, GCLineWidth, GCLineStyle,
GCCapStyle, GCJoinStyle, GCFillStyle, GCFillRule, GCTile, GCStipple, GCTileStipX-
Origin, GCTileStipYOrigin, GCFont, GCSubwindowMode, GCGraphicsExposures,
GCClipXOrigin, GCCLipYOrigin, GCDashOffset, or GCArcMode) and no error occur,
XGetGCValues sets the requested components in values_return and returns a nonzero
status. Otherwise, it returns a zero status.

To free a given GC, use XFreeGC.

XFreeGC(display, gc)
Display *display;
GC gc;

display Specifies the connection to the X server.

gc Specifies the GC.

The XFreeGC function destroys the specified GC as well as all the associated storage.

XFreeGC can generate a BadGC error.

To obtain the GContext resource ID for a given GC, use XGContextFromGC.

GContext XGContextFromGC(gc)
GC gc;

gc Specifies the GC for which you want the resource ID.

5.4 Using GC Convenience Routines

This section discusses how to set the:

• Foreground, background, plane mask, or function components

• Line attributes and dashes components

• Fill style and fill rule components

5−26 March 26, 1992

-- --

Graphics Resource Functions

• Fill tile and stipple components

• Font component

• Clip region component

• Arc mode, subwindow mode, and graphics exposure components

5.4.1 Setting the Foreground, Background, Function, or Plane Mask

To set the foreground, background, plane mask, and function components for a given
GC, use XSetState.

XSetState(display, gc, foreground, background, function, plane_mask)
Display *display;
GC gc;
unsigned long foreground, background;
int function;
unsigned long plane_mask;

display Specifies the connection to the X server.

gc Specifies the GC.

foreground Specifies the foreground you want to set for the specified GC.

background Specifies the background you want to set for the specified GC.

function Specifies the function you want to set for the specified GC.

plane_mask Specifies the plane mask.

XSetState can generate BadAlloc, BadGC, and BadValue errors.

To set the foreground of a given GC, use XSetForeground.

XSetForeground(display, gc, foreground)
Display *display;
GC gc;
unsigned long foreground;

display Specifies the connection to the X server.

gc Specifies the GC.

foreground Specifies the foreground you want to set for the specified GC.

XSetForeground can generate BadAlloc and BadGC errors.

To set the background of a given GC, use XSetBackground.

XSetBackground(display, gc, background)
Display *display;
GC gc;
unsigned long background;

March 26, 1992 5−27

-- --

X Window System

display Specifies the connection to the X server.

gc Specifies the GC.

background Specifies the background you want to set for the specified GC.

XSetBackground can generate BadAlloc and BadGC errors.

To set the display function in a given GC, use XSetFunction.

XSetFunction(display, gc, function)
Display *display;
GC gc;
int function;

display Specifies the connection to the X server.

gc Specifies the GC.

function Specifies the function you want to set for the specified GC.

XSetFunction can generate BadAlloc, BadGC, and BadValue errors.

To set the plane mask of a given GC, use XSetPlaneMask.

XSetPlaneMask(display, gc, plane_mask)
Display *display;
GC gc;
unsigned long plane_mask;

display Specifies the connection to the X server.

gc Specifies the GC.

plane_mask Specifies the plane mask.

XSetPlaneMask can generate BadAlloc and BadGC errors.

5.4.2 Setting the Line Attributes and Dashes

To set the line drawing components of a given GC, use XSetLineAttributes.

XSetLineAttributes(display, gc, line_width, line_style, cap_style, join_style)
Display *display;
GC gc;
unsigned int line_width;
int line_style;
int cap_style;
int join_style;

display Specifies the connection to the X server.

gc Specifies the GC.

5−28 March 26, 1992

-- --

Graphics Resource Functions

line_width Specifies the line-width you want to set for the specified GC.

line_style Specifies the line-style you want to set for the specified GC.
You can pass LineSolid, LineOnOffDash, or LineDoubleDash.

cap_style Specifies the line-style and cap-style you want to set for the
specified GC. You can pass CapNotLast, CapButt,
CapRound, or CapProjecting.

join_style Specifies the line join-style you want to set for the specified
GC. You can pass JoinMiter, JoinRound, or JoinBevel.

XSetLineAttributes can generate BadAlloc, BadGC, and BadValue errors.

To set the dash-offset and dash-list for dashed line styles of a given GC, use XSet-
Dashes.

XSetDashes(display, gc, dash_offset, dash_list, n)
Display *display;
GC gc;
int dash_offset;
char dash_list[];
int n;

display Specifies the connection to the X server.

gc Specifies the GC.

dash_offset Specifies the phase of the pattern for the dashed line-style you
want to set for the specified GC.

dash_list Specifies the dash-list for the dashed line-style you want to set
for the specified GC.

n Specifies the number of elements in dash_list.

The XSetDashes function sets the dash-offset and dash-list attributes for dashed line
styles in the specified GC. There must be at least one element in the specified dash_list,
or a BadValue error results. The initial and alternating elements (second, fourth, and so
on) of the dash_list are the even dashes, and the others are the odd dashes. Each ele-
ment specifies a dash length in pixels. All of the elements must be nonzero, or a Bad-
Value error results. Specifying an odd-length list is equivalent to specifying the same
list concatenated with itself to produce an even-length list.

The dash-offset defines the phase of the pattern, specifying how many pixels into the
dash-list the pattern should actually begin in any single graphics request. Dashing is
continuous through path elements combined with a join-style but is reset to the dash-
offset between each sequence of joined lines.

Figure 5-6. Dashes: 20 50 40 50 60 50 80 50 160 50
#ifdef BOOKREADER

March 26, 1992 5−29

-- --

X Window System

#endif #ifdef HARDCOPY
 ZK−0416U−R

#endif

The unit of measure for dashes is the same for the ordinary coordinate system. Ideally,
a dash length is measured along the slope of the line, but implementations are only
required to match this ideal for horizontal and vertical lines. Failing the ideal seman-
tics, it is suggested that the length be measured along the major axis of the line. The
major axis is defined as the x axis for lines drawn at an angle of between –45 and +45
degrees or between 315 and 225 degrees from the x axis. For all other lines, the major
axis is the y axis.

XSetDashes can generate BadAlloc, BadGC, and BadValue errors.

5.4.3 Setting the Fill Style and Fill Rule

To set the fill-style of a given GC, use XSetFillStyle.

XSetFillStyle(display, gc, fill_style)
Display *display;
GC gc;
int fill_style;

display Specifies the connection to the X server.

gc Specifies the GC.

fill_style Specifies the fill-style you want to set for the specified GC.
You can pass FillSolid, FillTiled, FillStippled, or FillOpaqueS-
tippled.

5−30 March 26, 1992

-- --

Graphics Resource Functions

XSetFillStyle can generate BadAlloc, BadGC, and BadValue errors.

To set the fill-rule of a given GC, use XSetFillRule.

XSetFillRule(display, gc, fill_rule)
Display *display;
GC gc;
int fill_rule;

display Specifies the connection to the X server.

gc Specifies the GC.

fill_rule Specifies the fill-rule you want to set for the specified GC. You
can pass EvenOddRule or WindingRule.

XSetFillRule can generate BadAlloc, BadGC, and BadValue errors.

5.4.4 Setting the Fill Tile and Stipple

Some displays have hardware support for tiling or stippling with patterns of specific
sizes. Tiling and stippling operations that restrict themselves to those specific sizes run
much faster than such operations with arbitrary size patterns.
Xlib provides functions that you can use to determine the best size, tile, or stipple for
the display as well as to set the tile or stipple shape and the tile or stipple origin.

To obtain the best size of a tile, stipple, or cursor, use XQueryBestSize.

Status XQueryBestSize(display, class, which_screen, width, height, width_return,
height_return)

Display *display;
int class;
Drawable which_screen;
unsigned int width, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the X server.

class Specifies the class that you are interested in. You can pass
TileShape, CursorShape, or StippleShape.

which_screen Specifies any drawable on the screen.

width, height Specify the width and height.

width_return, height_return
Return the width and height of the object best supported by the
display hardware.

The XQueryBestSize function returns the best or closest size to the specified size. For
CursorShape, this is the largest size that can be fully displayed on the screen specified
by which_screen. For TileShape, this is the size that can be tiled fastest. For

March 26, 1992 5−31

-- --

X Window System

StippleShape, this is the size that can be stippled fastest. For CursorShape, the draw-
able indicates the desired screen. For TileShape and StippleShape, the drawable indi-
cates the screen and possibly the window class and depth. An InputOnly window can-
not be used as the drawable for TileShape or StippleShape, or a BadMatch error
results.

XQueryBestSize can generate BadDrawable, BadMatch, and BadValue errors.

To obtain the best fill tile shape, use XQueryBestTile.

Status XQueryBestTile(display, which_screen, width, height, width_return, height_return)
Display *display;
Drawable which_screen;
unsigned int width, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the X server.

which_screen Specifies any drawable on the screen.

width, height Specify the width and height.

width_return, height_return
Return the width and height of the object best supported by the
display hardware.

The XQueryBestTile function returns the best or closest size, that is, the size that can be
tiled fastest on the screen specified by which_screen. The drawable indicates the screen
and possibly the window class and depth. If an InputOnly window is used as the draw-
able, a BadMatch error results.

XQueryBestTile can generate BadDrawable and BadMatch errors.

To obtain the best stipple shape, use XQueryBestStipple.

Status XQueryBestStipple(display, which_screen, width, height, width_return, height_retu
Display *display;
Drawable which_screen;
unsigned int width, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the X server.

which_screen Specifies any drawable on the screen.

width, height Specify the width and height.

width_return, height_return
Return the width and height of the object best supported by the
display hardware.

The XQueryBestStipple function returns the best or closest size, that is, the size that
can be stippled fastest on the screen specified by which_screen. The drawable indicates
the screen and possibly the window class and depth. If an InputOnly window is used
as the drawable, a BadMatch error results.

5−32 March 26, 1992

-- --

Graphics Resource Functions

XQueryBestStipple can generate BadDrawable and BadMatch errors.

To set the fill tile of a given GC, use XSetTile.

XSetTile(display, gc, tile)
Display *display;
GC gc;
Pixmap tile;

display Specifies the connection to the X server.

gc Specifies the GC.

tile Specifies the fill tile you want to set for the specified GC.

The tile and GC must have the same depth, or a BadMatch error results.

XSetTile can generate BadAlloc, BadGC, BadMatch, and BadPixmap errors.

To set the stipple of a given GC, use XSetStipple.

XSetStipple(display, gc, stipple)
Display *display;
GC gc;
Pixmap stipple;

display Specifies the connection to the X server.

gc Specifies the GC.

stipple Specifies the stipple you want to set for the specified GC.

The stipple must have a depth of one, or a BadMatch error results.

XSetStipple can generate BadAlloc, BadGC, BadMatch, and BadPixmap errors.

To set the tile or stipple origin of a given GC, use XSetTSOrigin.

XSetTSOrigin(display, gc, ts_x_origin, ts_y_origin)
Display *display;
GC gc;
int ts_x_origin, ts_y_origin;

display Specifies the connection to the X server.

gc Specifies the GC.

ts_x_origin, ts_y_origin
Specify the x and y coordinates of the tile and stipple origin.

When graphics requests call for tiling or stippling, the parent’s origin will be interpreted
relative to whatever destination drawable is specified in the graphics request.

XSetTSOrigin can generate BadAlloc and BadGC errors.

March 26, 1992 5−33

-- --

X Window System

5.4.5 Setting the Current Font

To set the current font of a given GC, use XSetFont.

XSetFont(display, gc, font)
Display *display;
GC gc;
Font font;

display Specifies the connection to the X server.

gc Specifies the GC.

font Specifies the font.

XSetFont can generate BadAlloc, BadFont, and BadGC errors.

5.4.6 Setting the Clip Region

Xlib provides functions that you can use to set the clip-origin and the clip-mask or set
the clip-mask to a list of rectangles.

To set the clip-origin of a given GC, use XSetClipOrigin.

XSetClipOrigin(display, gc, clip_x_origin, clip_y_origin)
Display *display;
GC gc;
int clip_x_origin, clip_y_origin;

display Specifies the connection to the X server.

gc Specifies the GC.

clip_x_origin, clip_y_origin
Specify the x and y coordinates of the clip-mask origin.

The clip-mask origin is interpreted relative to the origin of whatever destination draw-
able is specified in the graphics request.

XSetClipOrigin can generate BadAlloc and BadGC errors.

To set the clip-mask of a given GC to the specified pixmap, use XSetClipMask.

XSetClipMask(display, gc, pixmap)
Display *display;
GC gc;
Pixmap pixmap;

display Specifies the connection to the X server.

gc Specifies the GC.

5−34 March 26, 1992

-- --

Graphics Resource Functions

pixmap Specifies the pixmap or None.

If the clip-mask is set to None, the pixels are always drawn (regardless of the clip-
origin).

XSetClipMask can generate BadAlloc, BadGC, BadMatch, and BadValue errors.

To set the clip-mask of a given GC to the specified list of rectangles, use XSetClipRec-
tangles.

XSetClipRectangles(display, gc, clip_x_origin, clip_y_origin, rectangles, n, ordering)
Display *display;
GC gc;
int clip_x_origin, clip_y_origin;
XRectangle rectangles[];
int n;
int ordering;

display Specifies the connection to the X server.

gc Specifies the GC.

clip_x_origin, clip_y_origin
Specify the x and y coordinates of the clip-mask origin.

rectangles Specifies an array of rectangles that define the clip-mask.

n Specifies the number of rectangles.

ordering Specifies the ordering relations on the rectangles. You can pass
Unsorted, YSorted, YXSorted, or YXBanded.

The XSetClipRectangles function changes the clip-mask in the specified GC to the
specified list of rectangles and sets the clip origin. The output is clipped to remain con-
tained within the rectangles. The clip-origin is interpreted relative to the origin of what-
ever destination drawable is specified in a graphics request. The rectangle coordinates
are interpreted relative to the clip-origin.
The rectangles should be nonintersecting, or the graphics results will be undefined.
Note that the list of rectangles can be empty, which effectively disables output. This is
the opposite of passing None as the clip-mask in XCreateGC, XChangeGC, and
XSetClipMask.

If known by the client, ordering relations on the rectangles can be specified with the
ordering argument. This may provide faster operation by the server. If an incorrect ord-
ering is specified, the X server may generate a BadMatch error, but it is not required to
do so. If no error is generated, the graphics results are undefined. Unsorted means the
rectangles are in arbitrary order. YSorted means that the rectangles are nondecreasing in
their Y origin. YXSorted additionally constrains YSorted order in that all rectangles
with an equal Y origin are nondecreasing in their X origin. YXBanded additionally
constrains YXSorted by requiring that, for every possible Y scanline, all rectangles that
include that scanline have an identical Y origins and Y extents.

XSetClipRectangles can generate BadAlloc, BadGC, BadMatch, and BadValue
errors.

March 26, 1992 5−35

-- --

X Window System

Xlib provides a set of basic functions for performing region arithmetic. For information
about these functions, see chapter 10.

5.4.7 Setting the Arc Mode, Subwindow Mode, and Graphics Expo-
sure

To set the arc mode of a given GC, use XSetArcMode.

XSetArcMode(display, gc, arc_mode)
Display *display;
GC gc;
int arc_mode;

display Specifies the connection to the X server.

gc Specifies the GC.

arc_mode Specifies the arc mode. You can pass ArcChord or
ArcPieSlice.

XSetArcMode can generate BadAlloc, BadGC, and BadValue errors.

To set the subwindow mode of a given GC, use XSetSubwindowMode.

XSetSubwindowMode(display, gc, subwindow_mode)
Display *display;
GC gc;
int subwindow_mode;

display Specifies the connection to the X server.

gc Specifies the GC.

subwindow_mode
Specifies the subwindow mode. You can pass ClipByChildren
or
IncludeInferiors.

XSetSubwindowMode can generate BadAlloc, BadGC, and BadValue errors.

To set the graphics-exposures flag of a given GC, use XSetGraphics-
Exposures.

XSetGraphicsExposures(display, gc, graphics_exposures)
Display *display;
GC gc;
Bool graphics_exposures;

display Specifies the connection to the X server.

gc Specifies the GC.

5−36 March 26, 1992

-- --

Graphics Resource Functions

graphics_exposures
Specifies a Boolean value that indicates whether you want
GraphicsExpose and NoExpose events to be reported when
calling XCopyArea and XCopyPlane with this GC.

XSetGraphicsExposures can generate BadAlloc, BadGC, and BadValue errors.

March 26, 1992 5−37

-- --

Chapter 6. Graphics Functions

Once you have connected the display to the X server, you can use the Xlib graphics
functions to:

• Clear and copy areas

• Draw points, lines, rectangles, and arcs

• Fill areas

• Manipulate fonts

• Draw text

• Transfer images between clients and the server

• Manipulate cursors

If the same drawable and GC is used for each call, Xlib batches back-to-back calls to
XDrawPoint, XDrawLine, XDrawRectangle, XFillArc, and XFillRectangle. Note that
this reduces the total number of requests sent to the server.

6.1 Clearing Areas

Xlib provides functions that you can use to clear an area or the entire window. Because
pixmaps do not have defined backgrounds, they cannot be filled by using the functions
described in this section. Instead, to accomplish an analogous operation on a pixmap,
you should use XFillRectangle, which sets the pixmap to a known value.

To clear a rectangular area of a given window, use XClearArea.

XClearArea(display, w, x, y, width, height, exposures)
Display *display;
Window w;
int x, y;
unsigned int width, height;
Bool exposures;

March 26, 1992 6−1

-- --

X Window System

display Specifies the connection to the X server.

w Specifies the window.

x, y Specify the x and y coordinates, which are relative to the origin
of the window and specify the upper-left corner of the rectangle.

width, height Specify the width and height, which are the dimensions of the
rectangle.

exposures Specifies a Boolean value that indicates if Expose events are to
be generated.

The XClearArea function paints a rectangular area in the specified window according
to the specified dimensions with the window’s background pixel or pixmap. The
subwindow-mode effectively is ClipByChildren. If width is zero, it is replaced with the
current width of the window minus x. If height is zero, it is replaced with the current
height of the window minus y. If the window has a defined background tile, the rectan-
gle clipped by any children is filled with this tile. If the window has background None,
the contents of the window are not changed. In either case, if exposures is True, one or
more Expose events are generated for regions of the rectangle that are either visible or
are being retained in a backing store. If you specify a window whose class is Inpu-
tOnly, a BadMatch error results.

XClearArea can generate BadMatch, BadValue, and BadWindow errors.

To clear the entire area in a given window, use XClearWindow.

XClearWindow(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XClearWindow function clears the entire area in the specified window and is
equivalent to XClearArea (display, w, 0, 0, 0, 0, False). If the window has a defined
background tile, the rectangle is tiled with a plane-mask of all ones and GXcopy func-
tion. If the window has background None, the contents of the window are not changed.
If you specify a window whose class is InputOnly, a BadMatch error results.

XClearWindow can generate BadMatch and BadWindow errors.

6.2 Copying Areas

Xlib provides functions that you can use to copy an area or a bit plane.

To copy an area between drawables of the same root and depth, use XCopyArea.

XCopyArea(display, src, dest, gc, src_x, src_y, width, height, dest_x, dest_y)
Display *display;

6−2 March 26, 1992

-- --

Graphics Functions

Drawable src, dest;
GC gc;
int src_x, src_y;
unsigned int width, height;
int dest_x, dest_y;

display Specifies the connection to the X server.

src, dest Specify the source and destination rectangles to be combined.

gc Specifies the GC.

src_x, src_y Specify the x and y coordinates, which are relative to the origin
of the source rectangle and specify its upper-left corner.

width, height Specify the width and height, which are the dimensions of both
the source and destination rectangles.

dest_x, dest_y Specify the x and y coordinates, which are relative to the origin
of the destination rectangle and specify its upper-left corner.

The XCopyArea function combines the specified rectangle of src with the specified rec-
tangle of dest. The drawables must have the same root and depth, or a BadMatch error
results.

If regions of the source rectangle are obscured and have not been retained in backing
store or if regions outside the boundaries of the source drawable are specified, those
regions are not copied. Instead, the following occurs on all corresponding destination
regions that are either visible or are retained in backing store. If the destination is a win-
dow with a background other than None, corresponding regions of the destination are
tiled with that background (with plane-mask of all ones and GXcopy function).
Regardless of tiling or whether the destination is a window or a pixmap, if graphics-
exposures is True, then GraphicsExpose events for all corresponding destination
regions are generated. If graphics-exposures is True but no GraphicsExpose events are
generated, a NoExpose event is generated. Note that by default graphics-exposures is
True in new GCs.

This function uses these GC components: function, plane-mask, subwindow-mode,
graphics-exposures, clip-x-origin, clip-y-origin, and clip-mask.

XCopyArea can generate BadDrawable, BadGC, and BadMatch errors.

To copy a single bit plane of a given drawable, use XCopyPlane.

XCopyPlane(display, src, dest, gc, src_x, src_y, width, height, dest_x, dest_y, plane)
Display *display;
Drawable src, dest;
GC gc;
int src_x, src_y;
unsigned int width, height;
int dest_x, dest_y;
unsigned long plane;

March 26, 1992 6−3

-- --

X Window System

display Specifies the connection to the X server.

src, dest Specify the source and destination rectangles to be combined.

gc Specifies the GC.

src_x, src_y Specify the x and y coordinates, which are relative to the origin
of the source rectangle and specify its upper-left corner.

width, height Specify the width and height, which are the dimensions of both
the source and destination rectangles.

dest_x, dest_y Specify the x and y coordinates, which are relative to the origin
of the destination rectangle and specify its upper-left corner.

plane Specifies the bit plane. You must set exactly one bit to 1.

The XCopyPlane function uses a single bit plane of the specified source rectangle com-
bined with the specified GC to modify the specified rectangle of dest. The drawables
must have the same root but need not have the same depth. If the drawables do not
have the same root, a BadMatch error results. If plane does not have exactly one bit
set to 1 and the values of planes must be less than 2n where n is the depth of src, a
BadValue error results.

Effectively, XCopyPlane forms a pixmap of the same depth as the rectangle of dest and
with a size specified by the source region. It uses the foreground/background pixels in
the GC (foreground everywhere the bit plane in src contains a bit set to 1, background
everywhere the bit plane in src contains a bit set to 0) and the equivalent of a
CopyArea protocol request is performed with all the same exposure semantics. This
can also be thought of as using the specified region of the source bit plane as a stipple
with a fill-style of FillOpaqueStippled for filling a rectangular area of the destination.

This function uses these GC components: function, plane-mask, foreground, back-
ground, subwindow-mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-
mask.

XCopyPlane can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

6.3 Drawing Points, Lines, Rectangles, and Arcs

Xlib provides functions that you can use to draw:

• A single point or multiple points

• A single line or multiple lines

• A single rectangle or multiple rectangles

• A single arc or multiple arcs

Some of the functions described in the following sections use these structures:

6−4 March 26, 1992

-- --

Graphics Functions

typedef struct {
short x1, y1, x2, y2;

} XSegment;
typedef struct {

short x, y;
} XPoint;

typedef struct {
short x, y;
unsigned short width, height;

} XRectangle;

typedef struct {
short x, y;
unsigned short width, height;
short angle1, angle2; /* Degrees * 64 */

} XArc;

All x and y members are signed integers. The width and height members are 16-bit
unsigned integers. You should be careful not to generate coordinates and sizes out of
the 16-bit ranges, because the protocol only has 16-bit fields for these values.

6.3.1 Drawing Single and Multiple Points

To draw a single point in a given drawable, use XDrawPoint.

XDrawPoint(display, d, gc, x, y)
Display *display;
Drawable d;
GC gc;
int x, y;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x, y Specify the x and y coordinates where you want the point
drawn.

To draw multiple points in a given drawable, use XDrawPoints.

XDrawPoints(display, d, gc, points, npoints, mode)
Display *display;
Drawable d;
GC gc;
XPoint *points;
int npoints;
int mode;

March 26, 1992 6−5

-- --

X Window System

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

points Specifies an array of points.

npoints Specifies the number of points in the array.

mode Specifies the coordinate mode. You can pass CoordModeOri-
gin or CoordModePrevious.

The XDrawPoint function uses the foreground pixel and function components of the
GC to draw a single point into the specified drawable; XDrawPoints draws multiple
points this way. CoordModeOrigin treats all coordinates as relative to the origin, and
CoordModePrevious treats all coordinates after the first as relative to the previous
point. XDrawPoints draws the points in the order listed in the array.

Both functions use these GC components: function, plane-mask, foreground,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawPoint can generate BadDrawable, BadGC, and BadMatch errors.
XDrawPoints can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

6.3.2 Drawing Single and Multiple Lines

To draw a single line between two points in a given drawable, use XDrawLine.

XDrawLine(display, d, gc, x1, y1, x2, y2)
Display *display;
Drawable d;
GC gc;
int x1, y1, x2, y2;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x1, y1, x2, y2
Specify the points (x1, y1) and (x2, y2) to be connected.

To draw multiple lines in a given drawable, use XDrawLines.

XDrawLines(display, d, gc, points, npoints, mode)
Display *display;
Drawable d;
GC gc;
XPoint *points;
int npoints;
int mode;

6−6 March 26, 1992

-- --

Graphics Functions

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

points Specifies an array of points.

npoints Specifies the number of points in the array.

mode Specifies the coordinate mode. You can pass CoordModeOri-
gin or CoordModePrevious.

To draw multiple, unconnected lines in a given drawable, use XDrawSegments.

XDrawSegments(display, d, gc, segments, nsegments)
Display *display;
Drawable d;
GC gc;
XSegment *segments;
int nsegments;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

segments Specifies an array of segments.

nsegments Specifies the number of segments in the array.

The XDrawLine function uses the components of the specified GC to draw a line
between the specified set of points (x1, y1) and (x2, y2). It does not perform joining at
coincident endpoints. For any given line, XDrawLine does not draw a pixel more than
once. If lines intersect, the intersecting pixels are drawn multiple times.

The XDrawLines function uses the components of the specified GC to draw npoints–1
lines between each pair of points (point[i], point[i+1]) in the array of XPoint structures.
It draws the lines in the order listed in the array. The lines join correctly at all inter-
mediate points, and if the first and last points coincide, the first and last lines also join
correctly. For any given line, XDrawLines does not draw a pixel more than once. If
thin (zero line-width) lines intersect, the intersecting pixels are drawn multiple times. If
wide lines intersect, the intersecting pixels are drawn only once, as though the entire
PolyLine protocol request were a single, filled shape. CoordModeOrigin treats all
coordinates as relative to the origin, and CoordModePrevious treats all coordinates
after the first as relative to the previous point.

The XDrawSegments function draws multiple, unconnected lines. For each segment,
XDrawSegments draws a line between (x1, y1) and (x2, y2). It draws the lines in the
order listed in the array of XSegment structures and does not perform joining at coin-
cident endpoints. For any given line, XDrawSegments does not draw a pixel more
than once. If lines intersect, the intersecting pixels are drawn multiple times.

All three functions use these GC components: function, plane-mask, line-width, line-
style, cap-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

March 26, 1992 6−7

-- --

X Window System

The XDrawLines function also uses the join-style GC component. All three functions
also use these GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawLine, XDrawLines, and XDrawSegments can generate BadDrawable, BadGC,
and BadMatch errors. XDrawLines also can generate BadValue errors.

6.3.3 Drawing Single and Multiple Rectangles

To draw the outline of a single rectangle in a given drawable, use XDrawRectangle.

XDrawRectangle(display, d, gc, x, y, width, height)
Display *display;
Drawable d;
GC gc;
int x, y;
unsigned int width, height;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x, y Specify the x and y coordinates, which specify the upper-left
corner of the rectangle.

width, height Specify the width and height, which specify the dimensions of
the rectangle.

To draw the outline of multiple rectangles in a given drawable, use XDrawRectangles.

XDrawRectangles(display, d, gc, rectangles, nrectangles)
Display *display;
Drawable d;
GC gc;
XRectangle rectangles[];
int nrectangles;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

rectangles Specifies an array of rectangles.

nrectangles Specifies the number of rectangles in the array.

The XDrawRectangle and XDrawRectangles functions draw the outlines of the
specified rectangle or rectangles as if a five-point PolyLine protocol request were
specified for each rectangle:

6−8 March 26, 1992

-- --

Graphics Functions

[x,y] [x+width,y] [x+width,y+height] [x,y+height] [x,y]

For the specified rectangle or rectangles, these functions do not draw a pixel more than
once. XDrawRectangles draws the rectangles in the order listed in the array. If rec-
tangles intersect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, line-width, line-style,
join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They
also use these GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawRectangle and XDrawRectangles can generate BadDrawable, BadGC, and
BadMatch errors.

6.3.4 Drawing Single and Multiple Arcs

To draw a single arc in a given drawable, use XDrawArc.

XDrawArc(display, d, gc, x, y, width, height, angle1, angle2)
Display *display;
Drawable d;
GC gc;
int x, y;
unsigned int width, height;
int angle1, angle2;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC. and specify the upper-left corner of the
bounding rectangle

x, y Specify the x and y coordinates, which are relative to the origin
of the drawable and specify the upper-left corner of the bound-
ing rectangle.

width, height Specify the width and height, which are the major and minor
axes of the arc.

angle1 Specifies the start of the arc relative to the three-o’clock posi-
tion from the center, in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start of
the arc, in units of degrees * 64.

To draw multiple arcs in a given drawable, use XDrawArcs.

XDrawArcs(display, d, gc, arcs, narcs)
Display *display;
Drawable d;
GC gc;

March 26, 1992 6−9

-- --

X Window System

XArc *arcs;
int narcs;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

arcs Specifies an array of arcs.

narcs Specifies the number of arcs in the array.

XDrawArc draws a single circular or elliptical arc, and XDrawArcs draws multiple cir-
cular or elliptical arcs. Each arc is specified by a rectangle and two angles. The center
of the circle or ellipse is the center of the rectangle, and the major and minor axes are
specified by the width and height. Positive angles indicate counterclockwise motion,
and negative angles indicate clockwise motion. If the magnitude of angle2 is greater
than 360 degrees, XDrawArc or XDrawArcs truncates it to 360 degrees.

For an arc specified as [x, y, width, height, angle1, angle2], the origin of the major

and minor axes is at [x + 2
width333333, y + 2

height333333], and the infinitely thin path

describing the entire circle or ellipse intersects the horizontal axis at [x , y + 2
height333333] and

[x + width , y + 2
height333333] and intersects the vertical axis at [x + 2

width333333 , y] and

[x + 2
width333333, y + height]. These coordinates can be fractional and so are not truncated to

discrete coordinates. The path should be defined by the ideal mathematical path. For a
wide line with line-width lw, the bounding outlines for filling are given by the two
infinitely thin paths consisting of all points whose perpendicular distance from the path
of the circle/ellipse is equal to lw/2 (which may be a fractional value). The cap-style
and join-style are applied the same as for a line corresponding to the tangent of the
circle/ellipse at the endpoint.

For an arc specified as [x, y, width, height, angle1, angle2], the angles must be
specified in the effectively skewed coordinate system of the ellipse (for a circle, the
angles and coordinate systems are identical). The relationship between these angles and
angles expressed in the normal coordinate system of the screen (as measured with a pro-
tractor) is as follows:

skewed-angle = atan



tan(normal-angle)* height

width333333



+ adjust

Figure 6-1. XDrawArc (DPW, W, GC, x, y, width, height, 45*64, 225*64
#ifdef BOOKREADER

6−10 March 26, 1992

-- --

Graphics Functions

#endif #ifdef HARDCOPY

Height 3 O’clock

Angle 2 = 225

ZK−0417U−R

#endif The skewed-angle and normal-angle are expressed in radians (rather than in
degrees scaled by 64) in the range [0, 2π] and where atan returns a value in the range

[− 2
π33 , 2

π33] and adjust is:

0 for normal-angle in the range [0, 2
π33]

π for normal-angle in the range [2
π33 , 2

3π333]

2π for normal-angle in the range [2
3π333 , 2π]

For any given arc, XDrawArc and XDrawArcs do not draw a pixel more than once. If
two arcs join correctly and if the line-width is greater than zero and the arcs intersect,
XDrawArc and XDrawArcs do not draw a pixel more than once. Otherwise, the inter-
secting pixels of intersecting arcs are drawn multiple times. Specifying an arc with one
endpoint and a clockwise extent draws the same pixels as specifying the other endpoint
and an equivalent counterclockwise extent, except as it affects joins.

If the last point in one arc coincides with the first point in the following arc, the two
arcs will join correctly. If the first point in the first arc coincides with the last point in
the last arc, the two arcs will join correctly. By specifying one axis to be zero, a hor-
izontal or vertical line can be drawn. Angles are computed based solely on the coordi-
nate system and ignore the aspect ratio.

Both functions use these GC components: function, plane-mask, line-width, line-style,
cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-
mask. They also use these GC mode-dependent components: foreground, background,
tile, stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

March 26, 1992 6−11

-- --

X Window System

XDrawArc and XDrawArcs can generate BadDrawable, BadGC, and BadMatch
errors.

6.4 Filling Areas

Xlib provides functions that you can use to fill:

• A single rectangle or multiple rectangles

• A single polygon

• A single arc or multiple arcs

6.4.1 Filling Single and Multiple Rectangles

To fill a single rectangular area in a given drawable, use XFillRectangle.

XFillRectangle(display, d, gc, x, y, width, height)
Display *display;
Drawable d;
GC gc;
int x, y;
unsigned int width, height;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x, y Specify the x and y coordinates, which are relative to the origin
of the drawable and specify the upper-left corner of the rectan-
gle.

width, height Specify the width and height, which are the dimensions of the
rectangle to be filled.

To fill multiple rectangular areas in a given drawable, use XFillRectangles.

XFillRectangles(display, d, gc, rectangles, nrectangles)
Display *display;
Drawable d;
GC gc;
XRectangle *rectangles;
int nrectangles;

display Specifies the connection to the X server.

6−12 March 26, 1992

-- --

Graphics Functions

d Specifies the drawable.

gc Specifies the GC.

rectangles Specifies an array of rectangles.

nrectangles Specifies the number of rectangles in the array.

The XFillRectangle and XFillRectangles functions fill the specified rectangle or rectan-
gles as if a four-point FillPolygon protocol request were spec-
ified for each rectangle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height]

Each function uses the x and y coordinates, width and height dimensions, and GC you
specify.

XFillRectangles fills the rectangles in the order listed in the array. For any given rec-
tangle, XFillRectangle and XFillRectangles do not draw a pixel more than once. If rec-
tangles intersect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, subwindow-
mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC mode-
dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, and
tile-stipple-y-origin.

XFillRectangle and XFillRectangles can generate BadDrawable, BadGC, and Bad-
Match errors.

6.4.2 Filling a Single Polygon

To fill a polygon area in a given drawable, use XFillPolygon.

XFillPolygon(display, d, gc, points, npoints, shape, mode)
Display *display;
Drawable d;
GC gc;
XPoint *points;
int npoints;
int shape;
int mode;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

points Specifies an array of points.

npoints Specifies the number of points in the array.

March 26, 1992 6−13

-- --

X Window System

shape Specifies a shape that helps the server to improve performance.
You can pass Complex, Convex, or Nonconvex.

mode Specifies the coordinate mode. You can pass CoordModeOri-
gin or CoordModePrevious.

XFillPolygon fills the region closed by the specified path. The path is closed automati-
cally if the last point in the list does not coincide with the first point. XFillPolygon
does not draw a pixel of the region more than once. CoordModeOrigin treats all coor-
dinates as relative to the origin, and CoordModePrevious treats all coordinates after the
first as relative to the previous point.

Depending on the specified shape, the following occurs:

• If shape is Complex, the path may self-intersect. Note that contiguous coincident
points in the path are not treated as self-intersection.

• If shape is Convex, for every pair of points inside the polygon, the line segment
connecting them does not intersect the path. If known by the client, specifying
Convex can improve performance. If you specify Convex for a path that is not
convex, the graphics results are undefined.

• If shape is Nonconvex, the path does not self-intersect, but the shape is not wholly
convex. If known by the client, specifying Nonconvex instead of Complex may
improve performance. If you specify Nonconvex for a self-intersecting path, the
graphics results are undefined.

The fill-rule of the GC controls the filling behavior of self-intersecting polygons.

This function uses these GC components: function, plane-mask, fill-style, fill-rule,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
and tile-stipple-y-origin.

XFillPolygon can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

6.4.3 Filling Single and Multiple Arcs

To fill a single arc in a given drawable, use XFillArc.

XFillArc(display, d, gc, x, y, width, height, angle1, angle2)
Display *display;
Drawable d;
GC gc;
int x, y;
unsigned int width, height;
int angle1, angle2;

display Specifies the connection to the X server.

6−14 March 26, 1992

-- --

Graphics Functions

d Specifies the drawable.

gc Specifies the GC.

x, y Specify the x and y coordinates, which are relative to the origin
of the drawable and specify the upper-left corner of the bound-
ing rectangle.

width, height Specify the width and height, which are the major and minor
axes of the arc.

angle1 Specifies the start of the arc relative to the three-o’clock posi-
tion from the center, in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start of
the arc, in units of degrees * 64.

To fill multiple arcs in a given drawable, use XFillArcs.

XFillArcs(display, d, gc, arcs, narcs)
Display *display;
Drawable d;
GC gc;
XArc *arcs;
int narcs;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

arcs Specifies an array of arcs.

narcs Specifies the number of arcs in the array.

For each arc, XFillArc or XFillArcs fills the region closed by the infinitely thin path
described by the specified arc and, depending on the arc-mode specified in the GC, one
or two line segments. For ArcChord, the single line segment joining the endpoints of
the arc is used. For ArcPieSlice, the two line segments joining the endpoints of the arc
with the center point are used. XFillArcs fills the arcs in the order listed in the array. For
any given arc,
XFillArc and XFillArcs do not draw a pixel more than once. If regions intersect, the
intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, arc-mode,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
and tile-stipple-y-origin.

XFillArc and XFillArcs can generate BadDrawable, BadGC, and BadMatch errors.

March 26, 1992 6−15

-- --

X Window System

6.5 Font Metrics

A font is a graphical description of a set of characters that are used to increase efficiency
whenever a set of small, similar sized patterns are repeatedly used.

This section discusses how to:

• Load and free fonts

• Obtain and free font names

• Set and retrieve the font search path

• Compute character string sizes

• Return logical extents

• Query character string sizes

The X server loads fonts whenever a program requests a new font. The server can
cache fonts for quick lookup. Fonts are global across all screens in a server. Several
levels are possible when dealing with fonts. Most applications simply use XLoad-
QueryFont to load a font and query the font metrics.

Characters in fonts are regarded as masks. Except for image text requests, the only pix-
els modified are those in which bits are set to 1 in the character. This means that it
makes sense to draw text using stipples or tiles (for example, many menus gray-out
unusable entries).

and consists of the font-specific information as well as a pointer to an array of XChar-
Struct structures for the characters contained in the font. The XFontStruct, XFontProp,
and XCharStruct structures contain:

Figure 6-2. XCharStruct components
#ifdef BOOKREADER

6−16 March 26, 1992

-- --

Graphics Functions

#endif #ifdef HARDCOPY

Descent

New
Origin

Width

ZK−0418U−R

#endif
typedef struct {

short lbearing; /* origin to left edge of raster */
short rbearing; /* origin to right edge of raster *

March 26, 1992 6−17

-- --

X Window System

short width; /* advance to next char’s origin */
short ascent; /* baseline to top edge of raster *
short descent; /* baseline to bottom edge of raste
unsigned short attributes; /* per char flags (not predefined)

} XCharStruct;

typedef struct {
Atom name;
unsigned long card32;

} XFontProp;

typedef struct { /* normal 16 bit characters are two
unsigned char byte1;
unsigned char byte2;

} XChar2b;

typedef struct {
XExtData *ext_data; /* hook for extension to hang data
Font fid; /* Font id for this font */
unsigned direction; /* hint about the direction font is
unsigned min_char_or_byte2; /* first character */
unsigned max_char_or_byte2; /* last character */
unsigned min_byte1; /* first row that exists */
unsigned max_byte1; /* last row that exists */
Bool all_chars_exist; /* flag if all characters have nonz
unsigned default_char; /* char to print for undefined char
int n_properties; /* how many properties there are */
XFontProp *properties; /* pointer to array of additional p
XCharStruct min_bounds; /* minimum bounds over all existing
XCharStruct max_bounds; /* maximum bounds over all existing
XCharStruct *per_char; /* first_char to last_char informat
int ascent; /* logical extent above baseline fo
int descent; /* logical descent below baseline f

} XFontStruct;

X supports single byte/character, two bytes/character matrix, and 16-bit character text
operations. Note that any of these forms can be used with a font, but a single
byte/character text request can only specify a single byte (that is, the first row of a 2-
byte font). You should view 2-byte fonts as a two-dimensional matrix of defined char-
acters: byte1 specifies the range of defined rows and byte2 defines the range of defined
columns of the font. Single byte/character fonts have one row defined, and the byte2
range specified in the structure defines a range of characters.

The bounding box of a character is defined by the XCharStruct of that character. When
characters are absent from a font, the default_char is used. When fonts have all charac-
ters of the same size, only the information in the XFontStruct min and max bounds are
used.

The members of the XFontStruct have the following semantics:

• The direction member can be either FontLeftToRight or FontRightToLeft. It is just a
hint as to whether most XCharStruct elements have a positive (FontLeftToRight) or

6−18 March 26, 1992

-- --

Graphics Functions

a negative (FontRightToLeft) character width metric. The core protocol defines no
support for vertical text.

• If the min_byte1 and max_byte1 members are both zero, min_char_or_byte2
specifies the linear character index corresponding to the first element of the per_char
array, and max_char_or_byte2 specifies the linear character index of the last ele-
ment.

If either min_byte1 or max_byte1 are nonzero, both min_char_or_byte2 and
max_char_or_byte2 are less than 256, and the 2-byte character index values
corresponding to the per_char array element N (counting from 0) are:

byte1 = N/D + min_byte1
byte2 = N\D + min_char_or_byte2

where:

D = max_char_or_byte2 – min_char_or_byte2 + 1
/ = integer division
\ = integer modulus

• If the per_char pointer is NULL, all glyphs between the first and last character
indexes inclusive have the same information, as given by both min_bounds and
max_bounds.

• If all_chars_exist is True, all characters in the per_char array have nonzero bounding
boxes.

• The default_char member specifies the character that will be used when an undefined
or nonexistent character is printed. The default_char is a 16-bit character (not a 2-
byte character). For a font using 2-byte matrix format, the default_char has byte1 in
the most-significant byte and byte2 in the least-significant byte. If the default_char
itself specifies an undefined or nonexistent character, no printing is performed for an
undefined or nonexistent character.

• The min_bounds and max_bounds members contain the most extreme values of each
individual XCharStruct component over all elements of this array (and ignore
nonexistent characters). The bounding box of the font (the smallest rectangle
enclosing the shape obtained by superimposing all of the characters at the same ori-
gin [x,y]) has its upper-left coordinate at:

[x + min_bounds.lbearing, y – max_bounds.ascent]

Its width is:

max_bounds.rbearing – min_bounds.lbearing

March 26, 1992 6−19

-- --

X Window System

Its height is:

max_bounds.ascent + max_bounds.descent

• The ascent member is the logical extent of the font above the baseline that is used
for determining line spacing. Specific characters may extend beyond this.

• The descent member is the logical extent of the font at or below the baseline that is
used for determining line spacing. Specific characters may extend beyond this.

• If the baseline is at Y-coordinate y, the logical extent of the font is inclusive
between the Y-coordinate values (y – font.ascent) and (y + font.descent – 1). Typi-
cally, the minimum interline spacing between rows of text is given by ascent + des-
cent.

For a character origin at [x,y], the bounding box of a character (that is, the smallest rec-
tangle that encloses the character’s shape) described in terms of XCharStruct com-
ponents is a rectangle with its upper-left corner at:

[x + lbearing, y – ascent]

Its width is:

rbearing – lbearing

Its height is:

ascent + descent

The origin for the next character is defined to be:

[x + width, y]

The lbearing member defines the extent of the left edge of the character ink from the
origin. The rbearing member defines the extent of the right edge of the character ink
from the origin. The ascent member defines the extent of the top edge of the character
ink from the origin. The descent member defines the extent of the bottom edge of the
character ink from the origin. The width member defines the logical width of the char-
acter.

Note that the baseline (the y position of the character origin) is logically viewed as
being the scanline just below nondescending characters. When descent is zero, only pix-
els with Y-coordinates less than y are drawn, and the origin is logically viewed as being
coincident with the left edge of a nonkerned character. When lbearing is zero, no pixels
with X-coordinate less than x are drawn. Any of the XCharStruct metric members
could be negative. If the width is negative, the next character will be placed to the left
of the current origin.

The X protocol does not define the interpretation of the attributes member in the
XCharStruct structure. A nonexistent character is represented with all members of its

6−20 March 26, 1992

-- --

Graphics Functions

XCharStruct set to zero.

A font is not guaranteed to have any properties. The interpretation of the property value
(for example, long or unsigned long) must be derived from
a priori knowledge of the property. A basic set of font properties is specified in part
IV, ‘‘X Logical Font Description Conventions.’’

6.5.1 Loading and Freeing Fonts

Xlib provides functions that you can use to load fonts, get font information, unload
fonts, and free font information. A few font functions use a GContext resource ID or a
font ID interchangeably.

To load a given font, use XLoadFont.

Font XLoadFont(display, name)
Display *display;
char *name;

display Specifies the connection to the X server.

name Specifies the name of the font, which is a null-terminated
string.

The XLoadFont function loads the specified font and returns its associated font ID. The
name should be ISO Latin-1 encoding; uppercase and lowercase do not matter. The
interpretation of characters ‘‘?’’ (octal value 77) and ‘‘*’’ (octal value 52) in the name
is not defined by the core protocol but is reserved for future definition. A structured
format for font names is specified in part IV, ‘‘X Logical Font Description Conven-
tions.’’ If XLoadFont was unsuccessful at loading the specified font, a BadName error
results. Fonts are not associated with a particular screen and can be stored as a com-
ponent of any GC. When the font is no longer needed, call XUnloadFont.

XLoadFont can generate BadAlloc and BadName errors.

To return information about an available font, use XQueryFont.

XFontStruct *XQueryFont(display, font_ID)
Display *display;
XID font_ID;

display Specifies the connection to the X server.

font_ID Specifies the font ID or the GContext ID.

The XQueryFont function returns a pointer to the XFontStruct structure, which con-
tains information associated with the font. You can query a font or the font stored in a
GC. The font ID stored in the XFontStruct structure will be the GContext ID, and you
need to be careful when using this ID in other functions (see XGContextFromGC). If
the font does not exist, XQueryFont returns NULL. To free this data, use XFreeFon-
tInfo.

March 26, 1992 6−21

-- --

X Window System

To perform a XLoadFont and XQueryFont in a single operation, use XLoad-
QueryFont.

XFontStruct *XLoadQueryFont(display, name)
Display *display;
char *name;

display Specifies the connection to the X server.

name Specifies the name of the font, which is a null-terminated
string.

The XLoadQueryFont function provides the most common way for accessing a font.
XLoadQueryFont both opens (loads) the specified font and returns a pointer to the
appropriate XFontStruct structure. If the font does not exist, XLoadQueryFont returns
NULL.

XLoadQueryFont can generate a BadAlloc error.

To unload the font and free the storage used by the font structure that was allocated by
XQueryFont or XLoadQueryFont, use XFreeFont.

XFreeFont(display, font_struct)
Display *display;
XFontStruct *font_struct;

display Specifies the connection to the X server.

font_struct Specifies the storage associated with the font.

The XFreeFont function deletes the association between the font resource ID and the
specified font and frees the XFontStruct structure. The font itself will be freed when no
other resource references it. The data and the font should not be referenced again.

XFreeFont can generate a BadFont error.

To return a given font property, use XGetFontProperty.

Bool XGetFontProperty(font_struct, atom, value_return)
XfontStruct *font_struct;
Atom atom;
unsigned long *value_return;

font_struct Specifies the storage associated with the font.

atom Specifies the atom for the property name you want returned.

value_return Returns the value of the font property.

Given the atom for that property, the XGetFontProperty function returns the value of
the specified font property. XGetFontProperty also returns False if the property was not
defined or True if it was defined. A set of predefined atoms exists for font properties,
which can be found in <X11/Xatom.h>. This set contains the standard properties
associated with a font. Although it is not guaranteed, it is likely that the predefined font
properties will be present.

6−22 March 26, 1992

-- --

Graphics Functions

To unload a font that was loaded by XLoadFont, use XUnloadFont.

XUnloadFont(display, font)
Display *display;
Font font;

display Specifies the connection to the X server.

font Specifies the font.

The XUnloadFont function deletes the association between the font resource ID and the
specified font. The font itself will be freed when no other resource references it. The
font should not be referenced again.

XUnloadFont can generate a BadFont error.

6.5.2 Obtaining and Freeing Font Names and Information

You obtain font names and information by matching a wildcard specification when
querying a font type for a list of available sizes and so on.

To return a list of the available font names, use XListFonts.

char **XListFonts(display, pattern, maxnames, actual_count_return)
Display *display;
char *pattern;
int maxnames;
int *actual_count_return;

display Specifies the connection to the X server.

pattern Specifies the null-terminated pattern string that can contain
wildcard characters.

maxnames Specifies the maximum number of names to be returned.

actual_count_return
Returns the actual number of font names.

The XListFonts function returns an array of available font names (as controlled by the
font search path; see XSetFontPath) that match the string you passed to the pattern
argument. The string should be ISO Latin-1; uppercase and lowercase do not matter.
Each string is terminated by an ASCII null. The pattern string can contain any charac-
ters, but each asterisk (*) is a wildcard for any number of characters, and each question
mark (?) is a wildcard for a single character. If there are no matching font names, XList-
Fonts returns NULL. The client should call XFreeFontNames when finished with the
result to free the memory.

To free a font name array, use XFreeFontNames.

XFreeFontNames(list)
char *list[];

March 26, 1992 6−23

-- --

X Window System

list Specifies the array of strings you want to free.

The XFreeFontNames function frees the array and strings returned by XListFonts or
XListFontsWithInfo.

To obtain the names and information about available fonts, use XListFontsWithInfo.

char **XListFontsWithInfo(display, pattern, maxnames, count_return, info_return)
Display *display;
char *pattern;
int maxnames;
int *count_return;
XFontStruct **info_return;

display Specifies the connection to the X server.

pattern Specifies the null-terminated pattern string that can contain
wildcard characters.

maxnames Specifies the maximum number of names to be returned.

count_return Returns the actual number of matched font names.

info_return Returns the font information.

The XListFontsWithInfo function returns a list of font names that match the specified
pattern and their associated font information. The list of names is limited to size
specified by maxnames. The information returned for each font is identical to what
XLoadQueryFont would return except that the per-character metrics are not returned.
The pattern string can contain any characters, but each asterisk (*) is a wildcard for any
number of characters, and each question mark (?) is a wildcard for a single character. If
there are no matching font names, XListFontsWithInfo returns NULL.

To free the allocated name array, the client should call XFreeFontNames. To free the
font information array, the client should call XFreeFontInfo.

To free the the font information array, use XFreeFontInfo.

XFreeFontInfo(names, free_info, actual_count)
char **names;
XFontStruct *free_info;
int actual_count;

names Specifies the list of font names returned by XList-
FontsWithInfo.

free_info Specifies the font information returned by XListFontsWithInfo.

actual_count Specifies the actual number of matched font names returned by
XListFontsWithInfo.

The XFreeFontInfo function frees the the font information array. To free an
XFontStruct structure without closing the font, call XFreeFontInfo with the names argu-
ment specified as NULL.

6−24 March 26, 1992

-- --

Graphics Functions

6.5.3 Setting and Retrieving the Font Search Path

To set the font search path, use XSetFontPath.

XSetFontPath(display, directories, ndirs)
Display *display;
char **directories;
int ndirs;

display Specifies the connection to the X server.

directories Specifies the directory path used to look for a font. Setting the
path to the empty list restores the default path defined for the X
server.

ndirs Specifies the number of directories in the path.

The XSetFontPath function defines the directory search path for font lookup. There is
only one search path per X server, not one per client. The interpretation of the strings is
operating system dependent, but they are intended to specify directories to be searched
in the order listed. Also, the contents of these strings are operating system dependent
and are not intended to be used by client applications. Usually, the X server is free to
cache font information internally rather than having to read fonts from files. In addi-
tion, the X server is guaranteed to flush all cached information about fonts for which
there currently are no explicit resource IDs allocated. The meaning of an error from this
request is operating system dependent.

XSetFontPath can generate a BadValue error.

To get the current font search path, use XGetFontPath.

char **XGetFontPath(display, npaths_return)
Display *display;
int *npaths_return;

display Specifies the connection to the X server.

npaths_return Returns the number of strings in the font path array.

The XGetFontPath function allocates and returns an array of strings containing the
search path. When it is no longer needed, the data in the font path should be freed by
using XFreeFontPath.

To free data returned by XGetFontPath, use XFreeFontPath.

XFreeFontPath(list)
char **list;

list Specifies the array of strings you want to free.

The XFreeFontPath function frees the data allocated by XGetFontPath.

March 26, 1992 6−25

-- --

X Window System

6.5.4 Computing Character String Sizes

Xlib provides functions that you can use to compute the width, the logical extents, and
the server information about 8-bit and 2-byte text strings. The width is computed by
adding the character widths of all the characters. It does not matter if the font is an 8-
bit or 2-byte font. These functions return the sum of the character metrics, in pixels.

To determine the width of an 8-bit character string, use XTextWidth.

int XTextWidth(font_struct, string, count)
XFontStruct *font_struct;
char *string;
int count;

font_struct Specifies the font used for the width computation.

string Specifies the character string.

count Specifies the character count in the specified string.

To determine the width of a 2-byte character string, use XTextWidth16.

int XTextWidth16(font_struct, string, count)
XFontStruct *font_struct;
XChar2b *string;
int count;

font_struct Specifies the font used for the width computation.

string Specifies the character string.

count Specifies the character count in the specified string.

6.5.5 Computing Logical Extents

To compute the bounding box of an 8-bit character string in a given font, use XTextEx-
tents.

XTextExtents(font_struct, string, nchars, direction_return, font_ascent_return,
font_descent_return, overall_return)

XFontStruct *font_struct;
char *string;
int nchars;
int *direction_return;
int *font_ascent_return, *font_descent_return;
XCharStruct *overall_return;

font_struct Specifies the XFontStruct structure.

string Specifies the character string.

6−26 March 26, 1992

-- --

Graphics Functions

nchars Specifies the number of characters in the character string.

direction_return Returns the value of the direction hint (FontLeftToRight or Fon-
tRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct structure.

To compute the bounding box of a 2-byte character string in a given font, use XTextEx-
tents16.

XTextExtents16(font_struct, string, nchars, direction_return, font_ascent_return,
font_descent_return, overall_return)

XFontStruct *font_struct;
XChar2b *string;
int nchars;
int *direction_return;
int *font_ascent_return, *font_descent_return;
XCharStruct *overall_return;

font_struct Specifies the XFontStruct structure.

string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction_return
Returns the value of the direction hint (FontLeftToRight or Fon-
tRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct structure.

The XTextExtents and XTextExtents16 functions perform the size computation locally
and, thereby, avoid the round-trip overhead of XQueryTextExtents and XQueryTex-
tExtents16. Both functions return an XCharStruct structure, whose members are set to
the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters in the
string. The descent member is set to the maximum of the descent metrics. The width
member is set to the sum of the character-width metrics of all characters in the string.
For each character in the string, let W be the sum of the character-width metrics of all
characters preceding it in the string. Let L be the left-side-bearing metric of the charac-
ter plus W. Let R be the right-side-bearing metric of the character plus W. The lbear-
ing member is set to the minimum L of all characters in the string. The rbearing

March 26, 1992 6−27

-- --

X Window System

member is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with byte1 as the
most-significant byte. If the font has no defined default character, undefined characters
in the string are taken to have all zero metrics.

6.5.6 Querying Character String Sizes

To query the server for the bounding box of an 8-bit character string in a given font, use
XQueryTextExtents.

XQueryTextExtents(display, font_ID, string, nchars, direction_return, font_ascent_return,
font_descent_return, overall_return)

Display *display;
XID font_ID;
char *string;
int nchars;
int *direction_return;
int *font_ascent_return, *font_descent_return;
XCharStruct *overall_return;

display Specifies the connection to the X server.

font_ID Specifies either the font ID or the GContext ID that contains
the font.

string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction_return
Returns the value of the direction hint (FontLeftToRight or Fon-
tRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct structure.

To query the server for the bounding box of a 2-byte character string in a given font,
use XQueryTextExtents16.

XQueryTextExtents16(display, font_ID, string, nchars, direction_return,
font_ascent_return,

font_descent_return, overall_return)
Display *display;
XID font_ID;
XChar2b *string;

6−28 March 26, 1992

-- --

Graphics Functions

int nchars;
int *direction_return;
int *font_ascent_return, *font_descent_return;
XCharStruct *overall_return;

display Specifies the connection to the X server.

font_ID Specifies either the font ID or the GContext ID that contains
the font.

string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction_return
Returns the value of the direction hint (FontLeftToRight or Fon-
tRightToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct structure.

The XQueryTextExtents and XQueryTextExtents16 functions return the bounding box
of the specified 8-bit and 16-bit character string in the specified font or the font con-
tained in the specified GC. These functions query the X server and, therefore, suffer the
round-trip overhead that is avoided by
XTextExtents and XTextExtents16. Both functions return a XCharStruct structure,
whose members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters in the
string. The descent member is set to the maximum of the descent metrics. The width
member is set to the sum of the character-width metrics of all characters in the string.
For each character in the string, let W be the sum of the character-width metrics of all
characters preceding it in the string. Let L be the left-side-bearing metric of the charac-
ter plus W. Let R be the right-side-bearing metric of the character plus W. The lbear-
ing member is set to the minimum L of all characters in the string. The rbearing
member is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with byte1 as the most-significant
byte. If the font has no defined default character, undefined characters in the string are
taken to have all zero metrics.

Characters with all zero metrics are ignored. If the font has no defined default_char, the
undefined characters in the string are also ignored.

XQueryTextExtents and XQueryTextExtents16 can generate BadFont and BadGC
errors.

March 26, 1992 6−29

-- --

X Window System

6.6 Drawing Text

This section discusses how to draw:

• Complex text

• Text characters

• Image text characters

The fundamental text functions XDrawText and XDrawText16 use the following struc-
tures.

typedef struct {
char *chars; /* pointer to string */
int nchars; /* number of characters */
int delta; /* delta between strings */
Font font; /* Font to print it in, None don’t change

} XTextItem;

typedef struct {
XChar2b *chars; /* pointer to two-byte characters */
int nchars; /* number of characters */
int delta; /* delta between strings */
Font font; /* font to print it in, None don’t change

} XTextItem16;

If the font member is not None, the font is changed before printing and also is stored in
the GC. If an error was generated during text drawing, the previous items may have
been drawn. The baseline of the characters are drawn starting at the x and y coordinates
that you pass in the text drawing functions.

For example, consider the background rectangle drawn by XDrawImageString. If you
want the upper-left corner of the background rectangle to be at pixel coordinate (x,y),
pass the (x,y + ascent) as the baseline origin coordinates to the text functions. The
ascent is the font ascent, as given in the XFontStruct structure. If you want the lower-
left corner of the background rectangle to be at pixel coordinate (x,y), pass the (x,y –
descent + 1) as the baseline origin coordinates to the text functions. The descent is the
font descent, as given in the XFontStruct structure.

6.6.1 Drawing Complex Text

To draw 8-bit characters in a given drawable, use XDrawText.

XDrawText(display, d, gc, x, y, items, nitems)
Display *display;
Drawable d;
GC gc;

6−30 March 26, 1992

-- --

Graphics Functions

int x, y;
XTextItem *items;
int nitems;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x, y Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char-
acter.

items Specifies an array of text items.

nitems Specifies the number of text items in the array.

To draw 2-byte characters in a given drawable, use XDrawText16.

XDrawText16(display, d, gc, x, y, items, nitems)
Display *display;
Drawable d;
GC gc;
int x, y;
XTextItem16 *items;
int nitems;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC. and define the origin of the first character

x, y Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char-
acter.

items Specifies an array of text items.

nitems Specifies the number of text items in the array.

The XDrawText16 function is similar to XDrawText except that it uses 2-byte or 16-bit
characters. Both functions allow complex spacing and font shifts between counted
strings.

Each text item is processed in turn. A font member other than None in an item causes
the font to be stored in the GC and used for subsequent text. A text element delta
specifies an additional change in the position along the x axis before the string is drawn.
The delta is always added to the character origin and is not dependent on any charac-
teristics of the font. Each character image, as defined by the font in the GC, is treated
as an additional mask for a fill operation on the drawable. The drawable is modified
only where the font character has a bit set to 1. If a text item generates a BadFont
error, the previous text items may have been drawn.

March 26, 1992 6−31

-- --

X Window System

For fonts defined with linear indexing rather than 2-byte matrix indexing, each
XChar2b structure is interpreted as a 16-bit number with byte1 as the most-significant
byte.

Both functions use these GC components: function, plane-mask, fill-style, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
and tile-stipple-y-origin.

XDrawText and XDrawText16 can generate BadDrawable, BadFont, BadGC, and
BadMatch errors.

6.6.2 Drawing Text Characters

To draw 8-bit characters in a given drawable, use XDrawString.

XDrawString(display, d, gc, x, y, string, length)
Display *display;
Drawable d;
GC gc;
int x, y;
char *string;
int length;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x, y Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char-
acter.

string Specifies the character string.

length Specifies the number of characters in the string argument.

To draw 2-byte characters in a given drawable, use XDrawString16.

XDrawString16(display, d, gc, x, y, string, length)
Display *display;
Drawable d;
GC gc;
int x, y;
XChar2b *string;
int length;

display Specifies the connection to the X server.

d Specifies the drawable.

6−32 March 26, 1992

-- --

Graphics Functions

gc Specifies the GC.

x, y Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char-
acter.

string Specifies the character string.

length Specifies the number of characters in the string argument.

Each character image, as defined by the font in the GC, is treated as an additional mask
for a fill operation on the drawable. The drawable is modified only where the font char-
acter has a bit set to 1. For fonts defined with 2-byte matrix indexing and used with
XDrawString16, each byte is used as a byte2 with a byte1 of zero.

Both functions use these GC components: function, plane-mask, fill-style, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
and tile-stipple-y-origin.

XDrawString and XDrawString16 can generate BadDrawable, BadGC, and Bad-
Match errors.

6.6.3 Drawing Image Text Characters

Some applications, in particular terminal emulators, need to print image text in which
both the foreground and background bits of each character are painted. This prevents
annoying flicker on many displays.

To draw 8-bit image text characters in a given drawable, use XDrawImageString.

XDrawImageString(display, d, gc, x, y, string, length)
Display *display;
Drawable d;
GC gc;
int x, y;
char *string;
int length;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x, y Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char-
acter.

string Specifies the character string.

March 26, 1992 6−33

-- --

X Window System

length Specifies the number of characters in the string argument.

To draw 2-byte image text characters in a given drawable, use XDrawImageString16.

XDrawImageString16(display, d, gc, x, y, string, length)
Display *display;
Drawable d;
GC gc;
int x, y;
XChar2b *string;
int length;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x, y Specify the x and y coordinates, which are relative to the origin
of the specified drawable and define the origin of the first char-
acter.

string Specifies the character string.

length Specifies the number of characters in the string argument.

The XDrawImageString16 function is similar to XDrawImageString except that it
uses 2-byte or 16-bit characters. Both functions also use both the foreground and back-
ground pixels of the GC in the destination.

The effect is first to fill a destination rectangle with the background pixel defined in the
GC and then to paint the text with the foreground pixel. The upper-left corner of the
filled rectangle is at:

[x, y – font-ascent]

The width is:

overall-width

The height is:

font-ascent + font-descent

The overall-width, font-ascent, and font-descent are as would be returned by
XQueryTextExtents using gc and string. The function and fill-style defined in the GC
are ignored for these functions. The effective function is GXcopy, and the effective fill-
style is FillSolid.

For fonts defined with 2-byte matrix indexing and used with XDrawImageString, each
byte is used as a byte2 with a byte1 of zero.

Both functions use these GC components: plane-mask, foreground, background, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawImageString and XDrawImageString16 can generate BadDrawable, BadGC,
and BadMatch errors.

6−34 March 26, 1992

-- --

Graphics Functions

6.7 Transfering Images between Client and Server

Xlib provides functions that you can use to transfer images between a client and the
server. Because the server may require diverse data formats, Xlib provides an image
object that fully describes the data in memory and that provides for basic operations on
that data. You should reference the data through the image object rather than referencing
the data directly. However, some implementations of the Xlib library may efficiently
deal with frequently used data formats by replacing functions in the procedure vector
with special case functions. Supported operations include destroying the image, getting
a pixel, storing a pixel, extracting a subimage of an image, and adding a constant to an
image (see chapter 10).

All the image manipulation functions discussed in this section make use of the XImage
data structure, which describes an image as it exists in the client’s memory.

typedef struct _XImage {
int width, height; /* size of image */
int xoffset; /* number of pixels offset in X direction
int format; /* XYBitmap, XYPixmap, ZPixmap */
char *data; /* pointer to image data */
int byte_order; /* data byte order, LSBFirst, MSBFirst */
int bitmap_unit; /* quant. of scanline 8, 16, 32 */
int bitmap_bit_order; /* LSBFirst, MSBFirst */
int bitmap_pad; /* 8, 16, 32 either XY or ZPixmap */
int depth; /* depth of image */
int bytes_per_line; /* accelerator to next scanline */
int bits_per_pixel; /* bits per pixel (ZPixmap) */
unsigned long red_mask; /* bits in z arrangement */
unsigned long green_mask;
unsigned long blue_mask;
char *obdata; /* hook for the object routines to hang o
struct funcs { /* image manipulation routines */

struct _XImage *(*create_image)();
int (*destroy_image)();
unsigned long (*get_pixel)();
int (*put_pixel)();
struct _XImage *(*sub_image)();
int (*add_pixel)();

} f;
} XImage;

You may request that some of the members (for example, height, width, and xoffset) be
changed when the image is sent to the server. That is, you may send a subset of the
image. Other members (for example, byte_order, bitmap_unit, and so forth) are charac-
teristics of both the image and the server. If these members differ between the image
and the server, XPutImage makes the appropriate conversions. The first byte of the
first scanline of plane n is located at the address (data + (n * height * bytes_per_line)).

March 26, 1992 6−35

-- --

X Window System

To combine an image in memory with a rectangle of a drawable on the display, use
XPutImage.

XPutImage(display, d, gc, image, src_x, src_y, dest_x, dest_y, width, height)
Display *display;
Drawable d;
GC gc;
XImage *image;
int src_x, src_y;
int dest_x, dest_y;
unsigned int width, height;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

image Specifies the image you want combined with the rectangle.

src_x Specifies the offset in X from the left edge of the image defined
by the XImage data structure.

src_y Specifies the offset in Y from the top edge of the image defined
by the XImage data structure.

dest_x, dest_y
Specify the x and y coordinates, which are relative to the origin
of the drawable and are the coordinates of the subimage.

width, height Specify the width and height of the subimage, which define the
dimensions of the rectangle.

The XPutImage function combines an image in memory with a rectangle of the
specified drawable. If XYBitmap format is used, the depth must be one, or a Bad-
Match error results. The foreground pixel in the GC defines the source for the one bits
in the image, and the background pixel defines the source for the zero bits. For XYPix-
map and ZPixmap, the depth must match the depth of the drawable, or a BadMatch
error results. The section of the image defined by
the src_x, src_y, width, and height arguments is drawn on the specified part of the draw-
able.

This function uses these GC components: function, plane-mask, subwindow-mode,
clip-x-origin, clip-y-origin, and clip-mask. It also uses these GC mode-dependent com-
ponents: foreground and background.

XPutImage can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

To return the contents of a rectangle in a given drawable on the display, use XGetIm-
age. This function specifically supports rudimentary screen dumps.

XImage *XGetImage(display, d, x, y, width, height, plane_mask, format)
Display *display;
Drawable d;
int x, y;

6−36 March 26, 1992

-- --

Graphics Functions

unsigned int width, height;
unsigned long plane_mask;
int format;

display Specifies the connection to the X server.

d Specifies the drawable.

x, y Specify the x and y coordinates, which are relative to the origin
of the drawable and define the upper-left corner of the rectangle.

width, height Specify the width and height of the subimage, which define the
dimensions of the rectangle.

plane_mask Specifies the plane mask.

format Specifies the format for the image. You can pass XYPixmap or
ZPixmap.

The XGetImage function returns a pointer to an XImage structure. This structure pro-
vides you with the contents of the specified rectangle of the drawable in the format you
specify. If the format argument is XYPixmap, the image contains only the bit planes
you passed to the plane_mask argument. If the plane_mask argument only requests a
subset of the planes of the display, the depth of the returned image will be the number
of planes requested. If the format argument is ZPixmap, XGetImage returns as zero
the bits in all planes not specified in the plane_mask argument. The function performs
no range checking on the values in plane_mask and ignores extraneous bits.

XGetImage returns the depth of the image to the depth member of the XImage struc-
ture. The depth of the image is as specified when the drawable was created, except
when getting a subset of the planes in XYPixmap format, when the depth is given by
the number of bits set to 1 in plane_mask.

If the drawable is a pixmap, the given rectangle must be wholly contained within the
pixmap, or a BadMatch error results. If the drawable is a window, the window must
be viewable, and it must be the case that if there were no inferiors or overlapping win-
dows, the specified rectangle of the window would be fully visible on the screen and
wholly contained within the outside edges of the window, or a BadMatch error results.
Note that the borders of the window can be included and read with this request. If the
window has backing-store, the backing-store contents are returned for regions of the
window that are obscured by noninferior windows. If the window does not have
backing-store, the returned contents of such obscured regions are undefined. The
returned contents of visible regions of inferiors of a different depth than the specified
window’s depth are also undefined. The pointer cursor image is not included in the
returned contents. If a problem occurs, XGetImage returns NULL.

XGetImage can generate BadDrawable, BadMatch, and BadValue errors.

To copy the contents of a rectangle on the display to a location within a preexisting
image structure, use XGetSubImage.

XImage *XGetSubImage(display, d, x, y, width, height, plane_mask, format, dest_image
dest_x, dest_y)

Display *display;

March 26, 1992 6−37

-- --

X Window System

Drawable d;
int x, y;
unsigned int width, height;
unsigned long plane_mask;
int format;
XImage *dest_image;
int dest_x, dest_y;

display Specifies the connection to the X server.

d Specifies the drawable.

x, y Specify the x and y coordinates, which are relative to the origin
of the drawable and define the upper-left corner of the rectangle.

width, height Specify the width and height of the subimage, which define the
dimensions of the rectangle.

plane_mask Specifies the plane mask.

format Specifies the format for the image. You can pass XYPixmap or
ZPixmap.

dest_image Specify the destination image.

dest_x, dest_y Specify the x and y coordinates, which are relative to the origin
of the destination rectangle, specify its upper-left corner, and
determine where the subimage is placed in the destination
image.

The XGetSubImage function updates dest_image with the specified subimage in the
same manner as XGetImage. If the format argument is XYPixmap, the image contains
only the bit planes you passed to the plane_mask argument. If the format argument is
ZPixmap, XGetSubImage returns as zero the bits in all planes not specified in the
plane_mask argument. The function performs no range checking on the values in
plane_mask and ignores extraneous bits. As a convenience, XGetSubImage returns a
pointer to the same XImage structure specified by dest_image.

The depth of the destination XImage structure must be the same as that of the draw-
able. If the specified subimage does not fit at the specified location on the destination
image, the right and bottom edges are clipped. If the drawable is a pixmap, the given
rectangle must be wholly contained within the pixmap, or a BadMatch error results. If
the drawable is a window, the window must be viewable, and it must be the case that if
there were no inferiors or overlapping windows, the specified rectangle of the window
would be fully visible on the screen and wholly contained within the outside edges of
the window, or a BadMatch error results. If the window has backing-store, then the
backing-store contents are returned for regions of the window that are obscured by
noninferior windows. If the window does not have backing-store, the returned contents
of such obscured regions are undefined. The returned contents of visible regions of
inferiors of a different depth than the specified window’s depth are also undefined. If a
problem occurs, XGetSubImage returns NULL.

6−38 March 26, 1992

-- --

Graphics Functions

XGetSubImage can generate BadDrawable, BadGC, BadMatch, and BadValue
errors.

6.8 Cursors

This section discusses how to:

• Create a cursor

• Change or destroy a cursor

• Define the cursor for a window

Each window can have a different cursor defined for it. Whenever the pointer is in a
visible window, it is set to the cursor defined for that window. If no cursor was defined
for that window, the cursor is the one defined for the parent window.

From X’s perspective, a cursor consists of a cursor source, mask, colors, and a hotspot.
The mask pixmap determines the shape of the cursor and must be a depth of one. The
source pixmap must have a depth of one, and the colors determine the colors of the
source. The hotspot defines the point on the cursor that is reported when a pointer
event occurs. There may be limitations imposed by the hardware on cursors as to size
and whether a mask is implemented. XQueryBestCursor can be used to find out what
sizes are possible. It is intended that most standard cursors will be stored as a special
font.

6.8.1 Creating a Cursor

Xlib provides functions that you can use to create a font, bitmap, or glyph cursor.

To create a cursor from a standard font, use XCreateFontCursor.

#include <X11/cursorfont.h>
Cursor XCreateFontCursor(display, shape)

Display *display;
unsigned int shape;

display Specifies the connection to the X server.

shape Specifies the shape of the cursor.

X provides a set of standard cursor shapes in a special font named cursor. Applications
are encouraged to use this interface for their cursors because the font can be customized
for the individual display type. The shape argument specifies which glyph of the stan-
dard fonts to use.

The hotspot comes from the information stored in the cursor font. The initial colors of
a cursor are a black foreground and a white background (see XRecolorCursor). For

March 26, 1992 6−39

-- --

X Window System

further information about cursor shapes, see appendix B.

XCreateFontCursor can generate BadAlloc and BadValue errors.

To create a cursor from two bitmaps, use XCreatePixmapCursor.

Cursor XCreatePixmapCursor(display, source, mask, foreground_color,
background_color, x, y)

Display *display;
Pixmap source;
Pixmap mask;
XColor *foreground_color;
XColor *background_color;
unsigned int x, y;

display Specifies the connection to the X server.

source Specifies the shape of the source cursor.

mask Specifies the cursor’s source bits to be displayed or None.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

x, y Specify the x and y coordinates.

The XCreatePixmapCursor function creates a cursor and returns the cursor ID associ-
ated with it. The foreground and background RGB values must be specified using
foreground_color and background_color, even if the X server only has a StaticGray or
GrayScale screen. The foreground color is used for the pixels set to 1 in the source,
and the background color is used for the pixels set to 0. Both source and mask, if
specified, must have depth one (or a BadMatch error results) but can have any root.
The mask argument defines the shape of the cursor. The pixels set to 1 in the mask
define which source pixels are displayed, and the pixels set to 0 define which pixels are
ignored. If no mask is given, all pixels of the source are displayed. The mask, if
present, must
be the same size as the pixmap defined by the source argument, or a BadMatch error
results. The hotspot must be a point within the source, or a BadMatch error results.

The components of the cursor can be transformed arbitrarily to meet display limita-
tions. The pixmaps can be freed immediately if no further explicit references to them
are to be made. Subsequent drawing in the source or mask pixmap has an undefined
effect on the cursor. The X server might or might not make a copy of the pixmap.

XCreatePixmapCursor can generate BadAlloc and BadPixmap errors.

To create a cursor from font glyphs, use XCreateGlyphCursor.

Cursor XCreateGlyphCursor(display, source_font, mask_font, source_char, mask_char,
foreground_color, background_color)

Display *display;
Font source_font, mask_font;

6−40 March 26, 1992

-- --

Graphics Functions

unsigned int source_char, mask_char;
XColor *foreground_color;
XColor *background_color;

display Specifies the connection to the X server.

source_font Specifies the font for the source glyph.

mask_font Specifies the font for the mask glyph or None.

source_char Specifies the character glyph for the source.

mask_char Specifies the glyph character for the mask.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

The XCreateGlyphCursor function is similar to XCreatePixmapCursor except that the
source and mask bitmaps are obtained from the specified font glyphs. The source_char
must be a defined glyph in source_font, or a BadValue error results. If mask_font is
given, mask_char must be a defined glyph in mask_font, or a BadValue error results.
The mask_font and character are optional. The origins of the source_char and
mask_char (if defined) glyphs are positioned coincidently and define the hotspot. The
source_char and mask_char need not have the same bounding box metrics, and there is
no restriction on the placement of the hotspot relative to the bounding boxes. If no
mask_char is given, all pixels of the source are displayed. You can free the fonts
immediately by calling XFreeFont if no further explicit references to them are to be
made.

For 2-byte matrix fonts, the 16-bit value should be formed with the byte1 member in
the most-significant byte and the byte2 member in the least-significant byte.

XCreateGlyphCursor can generate BadAlloc, BadFont, and BadValue errors.

6.8.2 Changing and Destroying Cursors

Xlib provides functions that you can use to change the cursor color, destroy the cursor,
and determine the best cursor size.

To change the color of a given cursor, use XRecolorCursor.

XRecolorCursor(display, cursor, foreground_color, background_color)
Display *display;
Cursor cursor;
XColor *foreground_color, *background_color;

display Specifies the connection to the X server.

March 26, 1992 6−41

-- --

X Window System

cursor Specifies the cursor.

foreground_color
Specifies the RGB values for the foreground of the source.

background_color
Specifies the RGB values for the background of the source.

The XRecolorCursor function changes the color of the specified cursor, and if the cursor
is being displayed on a screen, the change is visible immediately.

XRecolorCursor can generate a BadCursor error.

To free (destroy) a given cursor, use XFreeCursor.

XFreeCursor(display, cursor)
Display *display;
Cursor cursor;

display Specifies the connection to the X server.

cursor Specifies the cursor.

The XFreeCursor function deletes the association between the cursor resource ID and
the specified cursor. The cursor storage is freed when no other resource references it.
The specified cursor ID should not be referred to again.

XFreeCursor can generate a BadCursor error.

To determine useful cursor sizes, use XQueryBestCursor.

Status XQueryBestCursor(display, d, width, height, width_return, height_return)
Display *display;
Drawable d;
unsigned int width, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the X server.

d Specifies the drawable, which indicates the screen.

width, height Specify the width and height of the cursor that you want the
size information for.

width_return, height_return
Return the best width and height that is closest to the specified
width and height.

Some displays allow larger cursors than other displays. The XQueryBestCursor func-
tion provides a way to find out what size cursors are actually possible on the display. It
returns the largest size that can be displayed. Applications should be prepared to use
smaller cursors on displays that cannot support large ones.

XQueryBestCursor can generate a BadDrawable error.

6−42 March 26, 1992

-- --

Graphics Functions

6.8.3 Defining the Cursor

Xlib provides functions that you can use to define or undefine the cursor that should be
displayed in a window.

To define which cursor will be used in a window, use XDefineCursor.

XDefineCursor(display, w, cursor)
Display *display;
Window w;
Cursor cursor;

display Specifies the connection to the X server.

w Specifies the window.

cursor Specifies the cursor that is to be displayed or None.

If a cursor is set, it will be used when the pointer is in the window. If the cursor is
None, it is equivalent to XUndefineCursor.

XDefineCursor can generate BadCursor and BadWindow errors.

To undefine the cursor in a given window, use XUndefineCursor.

XUndefineCursor(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XUndefineCursor undoes the effect of a previous XDefineCursor for this window.
When the pointer is in the window, the parent’s cursor will now be used. On the root
window, the default cursor is restored.

XUndefineCursor can generate a BadWindow error.

March 26, 1992 6−43

-- --

Chapter 7. Window Manager Functions

Although it is difficult to categorize functions as application only or window manager
only, the functions in this chapter are most often used by window managers. It is not
expected that these functions will be used by most application programs. You can use
the Xlib window manager functions to:

• Change the parent of a window

• Control the lifetime of a window

• Determine resident colormaps

• Grab the pointer

• Grab the keyboard

• Grab the server

• Control event processing

• Manipulate the keyboard and pointer settings

• Control the screen saver

• Control host access

7.1 Changing the Parent of a Window

To change a window’s parent to another window on the same screen, use
XReparentWindow. There is no way to move a window between screens.

XReparentWindow(display, w, parent, x, y)
Display *display;
Window w;
Window parent;
int x, y;

March 26, 1992 7−1

-- --

X Window System

display Specifies the connection to the X server.

w Specifies the window.

parent Specifies the parent window.

x, y Specify the x and y coordinates of the position in the new
parent window.

If the specified window is mapped, XReparentWindow automatically performs an
UnmapWindow request on it, removes it from its current position in the hierarchy, and
inserts it as the child of the specified parent. The window is placed in the stacking
order on top with respect to sibling windows.

After reparenting the specified window, XReparentWindow causes the X server to
generate a ReparentNotify event. The override_redirect member returned in this event
is set to the window’s corresponding attribute. Window manager clients usually should
ignore this window if this member is set to True. Finally, if the specified window was
originally mapped, the X server automatically performs a MapWindow request on it.

The X server performs normal exposure processing on formerly obscured windows.
The X server might not generate Expose events for regions from the initial
UnmapWindow request that are immediately obscured by the final MapWindow
request. A BadMatch error results if:

• The new parent window is not on the same screen as the old parent window.

• The new parent window is the specified window or an inferior of the specified win-
dow.

• The specified window has a ParentRelative background, and the new parent win-
dow is not the same depth as the specified window.

XReparentWindow can generate BadMatch and BadWindow errors.

7.2 Controlling the Lifetime of a Window

The save-set of a client is a list of other clients’ windows that, if they are inferiors of
one of the client’s windows at connection close, should not be destroyed and should be
remapped if they are unmapped. For further information about close-connection pro-
cessing, see section 2.6. To allow an application’s window to survive when a window
manager that has reparented a window fails, Xlib provides the save-set functions that
you can use to control the longevity of subwindows that are normally destroyed when
the parent is destroyed. For example, a window manager that wants to add decoration
to a window by adding a frame might reparent an application’s window. When the
frame is destroyed, the application’s window should not be destroyed but be returned to
its previous place in the window hierarchy.

The X server automatically removes windows from the save-set when they are des-
troyed.

7−2 March 26, 1992

-- --

Window Manager Functions

To add or remove a window from the client’s save-set, use XChangeSaveSet.

XChangeSaveSet(display, w, change_mode)
Display *display;
Window w;
int change_mode;

display Specifies the connection to the X server.

w Specifies the window that you want to add to or delete from the
client’s save-set.

change_mode Specifies the mode. You can pass SetModeInsert or SetMo-
deDelete.

Depending on the specified mode, XChangeSaveSet either inserts or deletes the
specified window from the client’s save-set. The specified window must have been
created by some other client, or a BadMatch error results.

XChangeSaveSet can generate BadMatch, BadValue, and BadWindow errors.

To add a window to the client’s save-set, use XAddToSaveSet.

XAddToSaveSet(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window that you want to add to the client’s save-
set.

The XAddToSaveSet function adds the specified window to the client’s save-set. The
specified window must have been created by some other client, or a BadMatch error
results.

XAddToSaveSet can generate BadMatch and BadWindow errors.

To remove a window from the client’s save-set, use XRemoveFromSaveSet.

XRemoveFromSaveSet(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

w Specifies the window that you want to delete from the client’s
save-set.

The XRemoveFromSaveSet function removes the specified window from the client’s
save-set. The specified window must have been created by some other client, or a Bad-
Match error results.

XRemoveFromSaveSet can generate BadMatch and BadWindow errors.

March 26, 1992 7−3

-- --

X Window System

7.3 Determining Resident Colormaps

Xlib provides functions that you can use to install a colormap, uninstall a colormap, and
obtain a list of installed colormaps.

At any time, there is a subset of the installed maps that is viewed as an ordered list and
is called the required list. The length of the required list is at most M, where M is the
minimum number of installed colormaps specified for the screen in the connection
setup. The required list is maintained as follows. When a colormap is specified to XIn-
stallColormap, it is added to the head of the list; the list is truncated at the tail, if
necessary, to keep its length to at most M. When a colormap is specified to XUnin-
stallColormap and it is in the required list, it is removed from the list. A colormap is
not added to the required list when it is implicitly installed by the X server, and the X
server cannot implicitly uninstall a colormap that is in the required list.

To install a colormap, use XInstallColormap.

XInstallColormap(display, colormap)
Display *display;
Colormap colormap;

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XInstallColormap function installs the specified colormap for its associated
screen. All windows associated with this colormap immediately display with true
colors. You associated the windows with this colormap when you created them by cal-
ling XCreateWindow, XCreateSimpleWindow, XChangeWindowAttributes, or
XSetWindowColormap.

If the specified colormap is not already an installed colormap, the X server generates a
ColormapNotify event on each window that has that colormap. In addition, for every
other colormap that is installed as a result of a call to XInstallColormap, the X server
generates a ColormapNotify event on each window that has that colormap.

XInstallColormap can generate a BadColor error.

To uninstall a colormap, use XUninstallColormap.

XUninstallColormap(display, colormap)
Display *display;
Colormap colormap;

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XUninstallColormap function removes the specified colormap from the required
list for its screen. As a result, the specified colormap might be uninstalled, and the X
server might implicitly install or uninstall additional colormaps. Which colormaps get
installed or uninstalled is server-dependent except that the required list must remain
installed.

7−4 March 26, 1992

-- --

Window Manager Functions

If the specified colormap becomes uninstalled, the X server generates a ColormapNo-
tify event on each window that has that colormap. In addition, for every other colormap
that is installed or uninstalled as a result of a call to XUninstallColormap, the X server
generates a ColormapNotify event on each window that has that colormap.

XUninstallColormap can generate a BadColor error.

To obtain a list of the currently installed colormaps for a given screen, use XListInstal-
ledColormaps.

Colormap *XListInstalledColormaps(display, w, num_return)
Display *display;
Window w;
int *num_return;

display Specifies the connection to the X server.

w Specifies the window that determines the screen.

num_return Returns the number of currently installed colormaps.

The XListInstalledColormaps function returns a list of the currently installed color-
maps for the screen of the specified window. The order of the colormaps in the list is
not significant and is no explicit indication of the required list. When the allocated list
is no longer needed, free it by using XFree.

XListInstalledColormaps can generate a BadWindow error.

7.4 Pointer Grabbing

Xlib provides functions that you can use to control input from the pointer, which usu-
ally is a mouse. Window managers most often use these facilities to implement certain
styles of user interfaces. Some toolkits also need to use these facilities for special pur-
poses.

Usually, as soon as keyboard and mouse events occur, the X server delivers them to the
appropriate client, which is determined by the window and input focus. The X server
provides sufficient control over event delivery to allow window managers to support
mouse ahead and various other styles of user interface. Many of these user interfaces
depend upon synchronous delivery of events. The delivery of pointer and keyboard
events can be controlled independently.

When mouse buttons or keyboard keys are grabbed, events will be sent to the grabbing
client rather than the normal client who would have received the event. If the keyboard
or pointer is in asynchronous mode, further mouse and keyboard events will continue to
be processed. If the keyboard or pointer is in synchronous mode, no further events are
processed until the grabbing client allows them (see XAllowEvents). The keyboard or
pointer is considered frozen during this interval. The event that triggered the grab can
also be replayed.

March 26, 1992 7−5

-- --

X Window System

Note that the logical state of a device (as seen by client applications) may lag the physi-
cal state if device event processing is frozen.

There are two kinds of grabs: active and passive. An active grab occurs when a single
client grabs the keyboard and/or pointer explicitly (see XGrabPointer and XGrabKey-
board). A passive grab occurs when clients grab a particular keyboard key or pointer
button in a window, and the grab will activate when the key or button is actually
pressed. Passive grabs are convenient for implementing reliable pop-up menus. For
example, you can guarantee that the pop-up is mapped before the up pointer button
event occurs by grabbing a button requesting synchronous behavior. The down event
will trigger the grab and freeze further processing of pointer events until you have the
chance to map the pop-up window. You can then allow further event processing. The
up event will then be correctly processed relative to the pop-up window.

For many operations, there are functions that take a time argument. The X server
includes a timestamp in various events. One special time, called CurrentTime,
represents the current server time. The X server maintains the time when the input
focus was last changed, when the keyboard was last grabbed, when the pointer was last
grabbed, or when a selection was last changed. Your application may be slow reacting
to an event. You often need some way to specify that your request should not occur if
another application has in the meanwhile taken control of the keyboard, pointer, or
selection. By providing the timestamp from the event in the request, you can arrange
that the operation not take effect if someone else has performed an operation in the
meanwhile.

A timestamp is a time value, expressed in milliseconds. It typically is the time since the
last server reset. Timestamp values wrap around (after about 49.7 days). The server,
given its current time is represented by timestamp T, always interprets timestamps from
clients by treating half of the timestamp space as being later in time than T. One times-
tamp value, named CurrentTime, is never generated by the server. This value is
reserved for use in requests to represent the current server time.

For many functions in this section, you pass pointer event mask bits. The valid pointer
event mask bits are: ButtonPressMask, ButtonReleaseMask, EnterWindowMask,
LeaveWindowMask, PointerMotionMask, PointerMotionHintMask, Button1Motion-
Mask, Button2MotionMask, Button3MotionMask, Button4MotionMask, Button5-
MotionMask, ButtonMotionMask, and KeyMapStateMask. For other functions in
this section, you pass keymask bits. The valid keymask bits are: ShiftMask, Lock-
Mask, ControlMask, Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, and Mod5-
Mask.

To grab the pointer, use XGrabPointer.

int XGrabPointer(display, grab_window, owner_events, event_mask, pointer_mode,
keyboard_mode, confine_to, cursor, time)

Display *display;
Window grab_window;
Bool owner_events;
unsigned int event_mask;
int pointer_mode, keyboard_mode;
Window confine_to;

7−6 March 26, 1992

-- --

Window Manager Functions

Cursor cursor;
Time time;

display Specifies the connection to the X server.

grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the pointer
events are to be reported as usual or reported with respect to the
grab window if selected by the event mask.

event_mask Specifies which pointer events are reported to the client. The
mask is the bitwise inclusive OR of the valid pointer event
mask bits.

pointer_mode Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

keyboard_mode
Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

confine_to Specifies the window to confine the pointer in or None.

cursor Specifies the cursor that is to be displayed during the grab or
None.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XGrabPointer function actively grabs control of the pointer and returns GrabSuc-
cess if the grab was successful. Further pointer events are reported only to the grabbing
client. XGrabPointer overrides any active pointer grab by this client. If owner_events
is False, all generated pointer events are reported with respect to grab_window and are
reported only if selected by event_mask. If owner_events is True and if a generated
pointer event would normally be reported to this client, it is reported as usual. Other-
wise, the event is reported with respect to the grab_window and is reported only if
selected by event_mask. For either value of owner_events, unreported events are dis-
carded.

If the pointer_mode is GrabModeAsync, pointer event processing continues as usual.
If the pointer is currently frozen by this client, the processing of events for the pointer is
resumed. If the pointer_mode is GrabModeSync, the state of the pointer, as seen by
client applications, appears to freeze, and the X server generates no further pointer
events until the grabbing client calls XAllowEvents or until the pointer grab is
released. Actual pointer changes are not lost while the pointer is frozen; they are sim-
ply queued in the server for later processing.

If the keyboard_mode is GrabModeAsync, keyboard event processing is unaffected by
activation of the grab. If the keyboard_mode is GrabModeSync, the state of the key-
board, as seen by client applications, appears to freeze, and the X server generates no
further keyboard events until the grabbing client calls XAllowEvents or until the
pointer grab is released. Actual keyboard changes are not lost while the pointer is
frozen; they are simply queued in the server for later processing.

March 26, 1992 7−7

-- --

X Window System

If a cursor is specified, it is displayed regardless of what window the pointer is in. If
None is specified, the normal cursor for that window is displayed when the pointer is in
grab_window or one of its subwindows; otherwise, the cursor for grab_window is
displayed.

If a confine_to window is specified, the pointer is restricted to stay contained in that
window. The confine_to window need have no relationship to the grab_window. If the
pointer is not initially in the confine_to window, it is warped automatically to the
closest edge just before the grab activates and enter/leave events are generated as usual.
If the confine_to window is subsequently reconfigured, the pointer is warped automati-
cally, as necessary, to keep it contained in the window.

The time argument allows you to avoid certain circumstances that come up if applica-
tions take a long time to respond or if there are long network delays. Consider a situa-
tion where you have two applications, both of which normally grab the pointer when
clicked on. If both applications specify the timestamp from the event, the second appli-
cation may wake up faster and successfully grab the pointer before the first application.
The first application then will get an indication that the other application grabbed the
pointer before its request was processed.

XGrabPointer generates EnterNotify and LeaveNotify events.

Either if grab_window or confine_to window is not viewable or if the confine_to win-
dow lies completely outside the boundaries of the root window, XGrabPointer fails and
returns GrabNotViewable. If the pointer is actively grabbed by some other client, it
fails and returns AlreadyGrabbed. If the pointer is frozen by an active grab of another
client, it fails and returns GrabFrozen. If the specified time is earlier than the last-
pointer-grab time or later than the current X server time, it fails and returns GrabIn-
validTime. Otherwise, the last-pointer-grab time is set to the specified time (Current-
Time is replaced by the current X server time).

XGrabPointer can generate BadCursor, BadValue, and BadWindow errors.

To ungrab the pointer, use XUngrabPointer.

XUngrabPointer(display, time)
Display *display;
Time time;

display Specifies the connection to the X server.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XUngrabPointer function releases the pointer and any queued events if this client
has actively grabbed the pointer from XGrabPointer, XGrabButton, or from a normal
button press. XUngrabPointer does not release the pointer if the specified time is ear-
lier than the last-pointer-grab time or is later than the current X server time. It also gen-
erates EnterNotify and LeaveNotify events. The X server performs an UngrabPointer
request automatically if the event window or confine_to window for an active pointer
grab becomes not viewable or if window reconfiguration causes the confine_to window
to lie completely outside the boundaries of the root window.

7−8 March 26, 1992

-- --

Window Manager Functions

To change an active pointer grab, use XChangeActivePointerGrab.

XChangeActivePointerGrab(display, event_mask, cursor, time)
Display *display;
unsigned int event_mask;
Cursor cursor;
Time time;

display Specifies the connection to the X server.

event_mask Specifies which pointer events are reported to the client. The
mask is the bitwise inclusive OR of the valid pointer event
mask bits.

cursor Specifies the cursor that is to be displayed or None.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XChangeActivePointerGrab function changes the specified dynamic parameters if
the pointer is actively grabbed by the client and if the specified time is no earlier than
the last-pointer-grab time and no later than the current X server time. This function has
no effect on the passive parameters of a XGrabButton. The interpretation of
event_mask and cursor is the same as described in XGrabPointer.

XChangeActivePointerGrab can generate BadCursor and BadValue errors.

To grab a pointer button, use XGrabButton.

XGrabButton(display, button, modifiers, grab_window, owner_events, event_mask,
pointer_mode, keyboard_mode, confine_to, cursor)

Display *display;
unsigned int button;
unsigned int modifiers;
Window grab_window;
Bool owner_events;
unsigned int event_mask;
int pointer_mode, keyboard_mode;
Window confine_to;
Cursor cursor;

display Specifies the connection to the X server.

button Specifies the pointer button that is to be grabbed or Any-
Button.

modifiers Specifies the set of keymasks or AnyModifier. The mask is the
bitwise inclusive OR of the valid keymask bits.

grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the pointer
events are to be reported as usual or reported with respect to the
grab window if selected by the event mask.

March 26, 1992 7−9

-- --

X Window System

event_mask Specifies which pointer events are reported to the client. The
mask is the bitwise inclusive OR of the valid pointer event
mask bits.

pointer_mode Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

keyboard_mode
Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

confine_to Specifies the window to confine the pointer in or None.

cursor Specifies the cursor that is to be displayed or None.

The XGrabButton function establishes a passive grab. In the future, the pointer is
actively grabbed (as for XGrabPointer), the last-pointer-grab time is set to the time at
which the button was pressed (as transmitted in the ButtonPress event), and the But-
tonPress event is reported if all of the following conditions are true:

• The pointer is not grabbed, and the specified button is logically pressed when the
specified modifier keys are logically down, and no other buttons or modifier keys
are logically down.

• The grab_window contains the pointer.

• The confine_to window (if any) is viewable.

• A passive grab on the same button/key combination does not exist on any ancestor
of grab_window.

The interpretation of the remaining arguments is as for XGrabPointer. The active grab
is terminated automatically when the logical state of the pointer has all buttons released
(independent of the state of the logical modifier keys).

Note that the logical state of a device (as seen by client applications) may lag the physi-
cal state if device event processing is frozen.

This request overrides all previous grabs by the same client on the same button/key
combinations on the same window. A modifiers of AnyModifier is equivalent to issu-
ing the grab request for all possible modifier combinations (including the combination
of no modifiers). It is not required that all modifiers specified have currently assigned
KeyCodes. A button of AnyButton is equivalent to issuing the request for all possible
buttons. Otherwise, it is not required that the specified button currently be assigned to a
physical button.

If some other client has already issued a XGrabButton with the same button/key combi-
nation on the same window, a BadAccess error results. When using AnyModifier or
AnyButton, the request fails completely, and a BadAccess error results (no grabs are
established) if there is a conflicting grab for any combination. XGrabButton has no
effect on an active grab.

XGrabButton can generate BadCursor, BadValue, and BadWindow errors.

7−10 March 26, 1992

-- --

Window Manager Functions

To ungrab a pointer button, use XUngrabButton.

XUngrabButton(display, button, modifiers, grab_window)
Display *display;
unsigned int button;
unsigned int modifiers;
Window grab_window;

display Specifies the connection to the X server.

button Specifies the pointer button that is to be released or AnyBut-
ton.

modifiers Specifies the set of keymasks or AnyModifier. The mask is the
bitwise inclusive OR of the valid keymask bits.

grab_window Specifies the grab window.

The XUngrabButton function releases the passive button/key combination on the
specified window if it was grabbed by this client. A modifiers of AnyModifier is
equivalent to issuing the ungrab request for all possible modifier combinations, includ-
ing the combination of no modifiers. A button of AnyButton is equivalent to issuing
the request for all possible buttons. XUngrabButton has no effect on an active grab.

XUngrabButton can generate BadValue and BadWindow errors.

7.5 Keyboard Grabbing

Xlib provides functions that you can use to grab or ungrab the keyboard as well as
allow events.

For many functions in this section, you pass keymask bits. The valid keymask bits are:
ShiftMask, LockMask, ControlMask, Mod1Mask, Mod2Mask, Mod3Mask,
Mod4Mask, and Mod5Mask.

To grab the keyboard, use XGrabKeyboard.

int XGrabKeyboard(display, grab_window, owner_events, pointer_mode, keyboard_mode,
time)

Display *display;
Window grab_window;
Bool owner_events;
int pointer_mode, keyboard_mode;
Time time;

display Specifies the connection to the X server.

grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the keyboard
events are to be reported as usual.

March 26, 1992 7−11

-- --

X Window System

pointer_mode Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

keyboard_mode
Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XGrabKeyboard function actively grabs control of the keyboard and generates
FocusIn and FocusOut events. Further key events are reported only to the grabbing
client. XGrabKeyboard overrides any active keyboard grab by this client. If
owner_events is False, all generated key events are reported with respect to
grab_window. If owner_events is True and if a generated key event would normally be
reported to this client, it is reported normally; otherwise, the event is reported with
respect to the grab_window. Both KeyPress and KeyRelease events are always
reported, independent of any event selection made by the client.

If the keyboard_mode argument is GrabModeAsync, keyboard event processing con-
tinues as usual. If the keyboard is currently frozen by this client, then processing of key-
board events is resumed. If the keyboard_mode argument is GrabModeSync, the state
of the keyboard (as seen by client applications) appears to freeze, and the X server gen-
erates no further keyboard events until the grabbing client issues a releasing XAl-
lowEvents call or until the keyboard grab is released. Actual keyboard changes are not
lost while the keyboard is frozen; they are simply queued in the server for later process-
ing.

If pointer_mode is GrabModeAsync, pointer event processing is unaffected by activa-
tion of the grab. If pointer_mode is GrabModeSync, the state of the pointer (as seen by
client applications) appears to freeze, and the X server generates no further pointer
events until the grabbing client issues a releasing XAllowEvents call or until the key-
board grab is released. Actual pointer changes are not lost while the pointer is frozen;
they are simply queued in the server for later processing.

If the keyboard is actively grabbed by some other client, XGrabKeyboard fails and
returns AlreadyGrabbed. If grab_window is not viewable, it fails and returns Grab-
NotViewable. If the keyboard is frozen by an active grab of another client, it fails and
returns GrabFrozen. If the specified time is earlier than the last-keyboard-grab time or
later than the current X server time, it fails and returns GrabInvalidTime. Otherwise,
the last-keyboard-grab time is set to the specified time (CurrentTime is replaced by the
current X server time).

XGrabKeyboard can generate BadValue and BadWindow errors.

To ungrab the keyboard, use XUngrabKeyboard.

XUngrabKeyboard(display, time)
Display *display;
Time time;

display Specifies the connection to the X server.

7−12 March 26, 1992

-- --

Window Manager Functions

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XUngrabKeyboard function releases the keyboard and any queued events if this
client has it actively grabbed from either XGrabKeyboard or XGrabKey.
XUngrabKeyboard does not release the keyboard and any queued events if the
specified time is earlier than the last-keyboard-grab time or is later than the current X
server time. It also generates FocusIn and FocusOut events. The X server automati-
cally performs an UngrabKeyboard request if the event window for an active keyboard
grab becomes not viewable.

To passively grab a single key of the keyboard, use XGrabKey.

XGrabKey(display, keycode, modifiers, grab_window, owner_events, pointer_mode,
keyboard_mode)

Display *display;
int keycode;
unsigned int modifiers;
Window grab_window;
Bool owner_events;
int pointer_mode, keyboard_mode;

display Specifies the connection to the X server.

keycode Specifies the KeyCode or AnyKey.

modifiers Specifies the set of keymasks or AnyModifier. The mask is the
bitwise inclusive OR of the valid keymask bits.

grab_window Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the keyboard
events are to be reported as usual.

pointer_mode Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

keyboard_mode
Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

The XGrabKey function establishes a passive grab on the keyboard. In the future, the
keyboard is actively grabbed (as for XGrabKeyboard), the last-keyboard-grab time is
set to the time at which the key was pressed (as transmitted in the KeyPress event), and
the KeyPress event is reported if all of the following conditions are true:

• The keyboard is not grabbed and the specified key (which can itself be a modifier
key) is logically pressed when the specified modifier keys are logically down, and
no other modifier keys are logically down.

• Either the grab_window is an ancestor of (or is) the focus window, or the
grab_window is a descendant of the focus window and contains the pointer.

• A passive grab on the same key combination does not exist on any ancestor of
grab_window.

March 26, 1992 7−13

-- --

X Window System

The interpretation of the remaining arguments is as for XGrabKeyboard. The active
grab is terminated automatically when the logical state of the keyboard has the specified
key released (independent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by client applications) may lag the physi-
cal state if device event processing is frozen.

A modifiers argument of AnyModifier is equivalent to issuing the request for all possi-
ble modifier combinations (including the combination of no modifiers). It is not required
that all modifiers specified have currently assigned KeyCodes. A keycode argument of
AnyKey is equivalent to issuing the request for all possible KeyCodes. Otherwise, the
specified keycode must be in the range specified by min_keycode and max_keycode in
the connection setup, or a BadValue error results.

If some other client has issued a XGrabKey with the same key combination on the
same window, a BadAccess error results. When using AnyModifier or AnyKey, the
request fails completely, and a BadAccess error results (no grabs are established) if
there is a conflicting grab for any combination.

XGrabKey can generate BadAccess, BadValue, and BadWindow errors.

To ungrab a key, use XUngrabKey.

XUngrabKey(display, keycode, modifiers, grab_window)
Display *display;
int keycode;
unsigned int modifiers;
Window grab_window;

display Specifies the connection to the X server.

keycode Specifies the KeyCode or AnyKey.

modifiers Specifies the set of keymasks or AnyModifier. The mask is the
bitwise inclusive OR of the valid keymask bits.

grab_window Specifies the grab window.

The XUngrabKey function releases the key combination on the specified window if it
was grabbed by this client. It has no effect on an active grab. A modifiers of
AnyModifier is equivalent to issuing the request for all possible modifier combinations
(including the combination of no modifiers). A keycode argument of AnyKey is
equivalent to issuing the request for all possible key codes.

XUngrabKey can generate BadValue and BadWindow errors.

To allow further events to be processed when the device has been frozen, use XAl-
lowEvents.

XAllowEvents(display, event_mode, time)
Display *display;
int event_mode;
Time time;

7−14 March 26, 1992

-- --

Window Manager Functions

display Specifies the connection to the X server.

event_mode Specifies the event mode. You can pass AsyncPointer, Sync-
Pointer, AsyncKeyboard, SyncKeyboard, ReplayPointer,
ReplayKeyboard, AsyncBoth, or SyncBoth.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XAllowEvents function releases some queued events if the client has caused a dev-
ice to freeze. It has no effect if the specified time is earlier than the last-grab time of
the most recent active grab for the client or if the specified time is later than the current
X server time. Depending on the event_mode argument, the following occurs:

AsyncPointer If the pointer is frozen by the client, pointer event processing
continues as usual. If the pointer is frozen twice by the client
on behalf of two separate grabs, AsyncPointer thaws for both.
AsyncPointer has no effect if the pointer is not frozen by the
client, but the pointer need not be grabbed by the client.

SyncPointer If the pointer is frozen and actively grabbed by the client,
pointer event processing continues as usual until the next
ButtonPress or ButtonRelease event is reported to the client.
At this time, the pointer again appears to freeze. However, if
the reported event causes the pointer grab to be released, the
pointer does not freeze. SyncPointer has no effect if the
pointer is not frozen by the client or if the pointer is not
grabbed by the client.

ReplayPointer If the pointer is actively grabbed by the client and is frozen as
the result of an event having been sent to the client (either from
the activation of a XGrabButton or from a previous XAllow-
Events with mode SyncPointer but not from a XGrabPointer),
the pointer grab is released and that event is completely repro-
cessed. This time, however, the function ignores any passive
grabs at or above (towards the root of) the grab_window of the
grab just released. The request has no effect if the pointer is not
grabbed by the client or if the pointer is not frozen as the result
of an event.

AsyncKeyboard If the keyboard is frozen by the client, keyboard event process-
ing continues as usual. If the keyboard is frozen twice by the
client on behalf of two separate grabs, AsyncKeyboard thaws
for both. AsyncKeyboard has no effect if the keyboard is not
frozen by the client, but the keyboard need not be grabbed by
the client.

SyncKeyboard If the keyboard is frozen and actively grabbed by the client,
keyboard event processing continues as usual until the next
KeyPress or KeyRelease event is reported to the client. At this
time, the keyboard again appears to freeze. However, if the
reported event causes the keyboard grab to be released, the

March 26, 1992 7−15

-- --

X Window System

keyboard does not freeze. SyncKeyboard has no effect if the
keyboard is not frozen by the client or if the keyboard is not
grabbed by the client.

ReplayKeyboard If the keyboard is actively grabbed by the client and is frozen as
the result of an event having been sent to the client (either from
the activation of a XGrabKey or from a previous XAllow-
Events with mode SyncKeyboard but not from a XGrabKey-
board), the keyboard grab is released and that event is com-
pletely reprocessed. This time, however, the function ignores
any passive grabs at or above (towards the root of) the
grab_window of the grab just released. The request has no
effect if the keyboard is not grabbed by the client or if the key-
board is not frozen as the result of an event.

SyncBoth If both pointer and keyboard are frozen by the client, event pro-
cessing for both devices continues as usual until the next
ButtonPress, ButtonRelease, KeyPress, or KeyRelease event
is reported to the client for a grabbed device (button event for
the pointer, key event for the keyboard), at which time the de-
vices again appear to freeze. However, if the reported event
causes the grab to be released, then the devices do not freeze
(but if the other device is still grabbed, then a subsequent event
for it will still cause both devices to freeze). SyncBoth has no
effect unless both pointer and keyboard are frozen by the client.
If the pointer or keyboard is frozen twice by the client on behalf
of two separate grabs, SyncBoth thaws for both (but a subse-
quent freeze for SyncBoth will only freeze each device once).

AsyncBoth If the pointer and the keyboard are frozen by the client, event
processing for both devices continues as usual. If a device is
frozen twice by the client on behalf of two separate grabs,
AsyncBoth thaws for both. AsyncBoth has no effect unless
both pointer and keyboard are frozen by the client.

AsyncPointer, SyncPointer, and ReplayPointer have no effect on the processing of
keyboard events. AsyncKeyboard, SyncKeyboard, and ReplayKeyboard have no
effect on the processing of pointer events. It is possible for both a pointer grab and a
keyboard grab (by the same or different clients) to be active simultaneously. If a device
is frozen on behalf of either grab, no event processing is performed for the device. It is
possible for a single device to be frozen because of both grabs. In this case, the freeze
must be released on behalf of both grabs before events can again be processed. If a
device is frozen twice by a single client, then a single AllowEvents releases both.

XAllowEvents can generate a BadValue error.

7−16 March 26, 1992

-- --

Window Manager Functions

7.6 Server Grabbing

Xlib provides functions that you can use to grab and ungrab the server. These functions
can be used to control processing of output on other connections by the window system
server. While the server is grabbed, no processing of requests or close downs on any
other connection will occur. A client closing its connection automatically ungrabs the
server. Although grabbing the server is highly discouraged, it is sometimes necessary.

To grab the server, use XGrabServer.

XGrabServer(display)
Display *display;

display Specifies the connection to the X server.

The XGrabServer function disables processing of requests and close downs on all other
connections than the one this request arrived on. You should not grab the X server any
more than is absolutely necessary.

To ungrab the server, use XUngrabServer.

XUngrabServer(display)
Display *display;

display Specifies the connection to the X server.

The XUngrabServer function restarts processing of requests and close downs on other
connections. You should avoid grabbing the X server as much as possible.

7.7 Miscellaneous Control Functions

This section discusses how to:

• Control the input focus

• Control the pointer

• Kill clients

7.7.1 Controlling Input Focus

Xlib provides functions that you can use to move the pointer position as well as to set
and get the input focus.

To move the pointer to an arbitrary point on the screen, use XWarpPointer.

March 26, 1992 7−17

-- --

X Window System

XWarpPointer(display, src_w, dest_w, src_x, src_y, src_width, src_height, dest_x, dest_y)
Display *display;
Window src_w, dest_w;
int src_x, src_y;
unsigned int src_width, src_height;
int dest_x, dest_y;

display Specifies the connection to the X server.

src_w Specifies the source window or None.

dest_w Specifies the destination window or None.

src_x, src_y, src_width, src_height
Specify a rectangle in the source window.

dest_x, dest_y
Specify the x and y coordinates within the destination window.

If dest_w is None, XWarpPointer moves the pointer by the offsets (dest_x, dest_y)
relative to the current position of the pointer. If dest_w is a window, XWarpPointer
moves the pointer to the offsets (dest_x, dest_y) relative to the origin of dest_w. How-
ever, if src_w is a window, the move only takes place if the window src_w contains the
pointer and if the specified rectangle of src_w contains the pointer.

The src_x and src_y coordinates are relative to the origin of src_w. If src_height is
zero, it is replaced with the current height of src_w minus src_y. If src_width is zero, it
is replaced with the current width of src_w minus src_x.

There is seldom any reason for calling this function. The pointer should normally be left
to the user. If you do use this function, however, it generates events just as if the user
had instantaneously moved the pointer from one position to another. Note that you can-
not use XWarpPointer to move the pointer outside the confine_to window of an active
pointer grab. An attempt to do so will only move the pointer as far as the closest edge
of the confine_to window.

XWarpPointer can generate a BadWindow error.

To set the input focus, use XSetInputFocus.

XSetInputFocus(display, focus, revert_to, time)
Display *display;
Window focus;
int revert_to;
Time time;

display Specifies the connection to the X server.

focus Specifies the window, PointerRoot, or None.

revert_to Specifies where the input focus reverts to if the window
becomes not viewable. You can pass RevertToParent, Revert-
ToPointerRoot, or RevertToNone.

7−18 March 26, 1992

-- --

Window Manager Functions

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XSetInputFocus function changes the input focus and the last-focus-change time.
It has no effect if the specified time is earlier than the current last-focus-change time or
is later than the current X server time. Otherwise, the last-focus-change time is set to
the specified time (CurrentTime is replaced by the current X server time). XSetInput-
Focus causes the X server to generate FocusIn and FocusOut events.

Depending on the focus argument, the following occurs:

• If focus is None, all keyboard events are discarded until a new focus window is set,
and the revert_to argument is ignored.

• If focus is a window, it becomes the keyboard’s focus window. If a generated key-
board event would normally be reported to this window or one of its inferiors, the
event is reported as usual. Otherwise, the event is reported relative to the focus win-
dow.

• If focus is PointerRoot, the focus window is dynamically taken to be the root win-
dow of whatever screen the pointer is on at each keyboard event. In this case, the
revert_to argument is ignored.

The specified focus window must be viewable at the time XSetInputFocus is called, or
a BadMatch error results. If the focus window later becomes not viewable, the X
server evaluates the revert_to argument to determine the new focus window as follows:

• If revert_to is RevertToParent, the focus reverts to the parent (or the closest view-
able ancestor), and the new revert_to value is taken to be RevertToNone.

• If revert_to is RevertToPointerRoot or RevertToNone, the focus reverts to Pointer-
Root or None, respectively. When the focus reverts, the X server generates FocusIn
and FocusOut events, but the last-focus-change time is not affected.

XSetInputFocus can generate BadMatch, BadValue, and BadWindow errors.

To obtain the current input focus, use XGetInputFocus.

XGetInputFocus(display, focus_return, revert_to_return)
Display *display;
Window *focus_return;
int *revert_to_return;

display Specifies the connection to the X server.

focus_return Returns the focus window, PointerRoot, or None.

revert_to_return
Returns the current focus state (RevertToParent, RevertTo-
PointerRoot, or RevertToNone).

The XGetInputFocus function returns the focus window and the current focus state.

March 26, 1992 7−19

-- --

X Window System

7.7.2 Killing Clients

Xlib provides functions that you can use to control the lifetime of resources owned by a
client or to cause the connection to a client to be destroyed.

To change a client’s close-down mode, use XSetCloseDownMode.

XSetCloseDownMode(display, close_mode)
Display *display;
int close_mode;

display Specifies the connection to the X server.

close_mode Specifies the client close-down mode. You can pass Destroy-
All, RetainPermanent, or RetainTemporary.

The XSetCloseDownMode defines what will happen to the client’s resources at connec-
tion close. A connection starts in DestroyAll mode. For information on what happens
to the client’s resources when the close_mode argument is RetainPermanent or
RetainTemporary, see section 2.6.

XSetCloseDownMode can generate a BadValue error.

To destroy a client, use XKillClient.

XKillClient(display, resource)
Display *display;
XID resource;

display Specifies the connection to the X server.

resource Specifies any resource associated with the client that you want
to destroy or AllTemporary.

The XKillClient function forces a close-down of the client that created the resource if a
valid resource is specified. If the client has already terminated in either RetainPer-
manent or RetainTemporary mode, all of the client’s resources are destroyed. If
AllTemporary is specified, the resources of all clients that have terminated in Retain-
Temporary are destroyed (see section 2.6). This permits implementation of window
manager facilities that aid debugging. A client can set its close-down mode to Retain-
Temporary. If the client then crashes, its windows would not be destroyed. The pro-
grammer can then inspect the application’s window tree and use the window manager to
destroy the zombie windows.

XKillClient can generate a BadValue error.

7.8 Keyboard and Pointer Settings

Xlib provides functions that you can use to change the keyboard control, obtain a list of
the auto-repeat keys, turn keyboard auto-repeat on or off, ring the bell, set or obtain the

7−20 March 26, 1992

-- --

Window Manager Functions

pointer button or keyboard mapping, and obtain a bit vector for the keyboard.

This section discusses the user-preference options of bell, key click, pointer behavior,
and so on. The default values for many of these functions are determined by command
line arguments to the X server and, on POSIX-conformant systems, are typically set in
the /etc/ttys file. Not all implementations will actually be able to control all of these
parameters.

The XChangeKeyboardControl function changes control of a keyboard and operates
on a XKeyboardControl structure:

/* Mask bits for ChangeKeyboardControl */
#define KBKeyClickPercent (1L<<0)
#define KBBellPercent (1L<<1)
#define KBBellPitch (1L<<2)
#define KBBellDuration (1L<<3)
#define KBLed (1L<<4)
#define KBLedMode (1L<<5)
#define KBKey (1L<<6)
#define KBAutoRepeatMode (1L<<7)
/* Values */
typedef struct {

int key_click_percent;
int bell_percent;
int bell_pitch;
int bell_duration;
int led;
int led_mode; /* LedModeOn, LedModeOff */
int key;
int auto_repeat_mode; /* AutoRepeatModeOff, AutoRepeatModeOn,

AutoRepeatModeDefault */
} XKeyboardControl;

The key_click_percent member sets the volume for key clicks between 0 (off) and 100
(loud) inclusive, if possible. A setting of –1 restores the default.
Other negative values generate a BadValue error.

The bell_percent sets the base volume for the bell between 0 (off) and 100 (loud)
inclusive, if possible. A setting of –1 restores the default. Other negative values generate
a BadValue error. The bell_pitch member sets the pitch (specified in Hz) of the bell, if
possible. A setting of –1 restores the default. Other negative values generate a Bad-
Value error. The bell_duration member sets the duration of the bell specified in mil-
liseconds, if possible. A setting of –1 restores the default. Other negative values gen-
erate a BadValue error.

If both the led_mode and led members are specified, the state of that LED is changed, if
possible. The led_mode member can be set to LedModeOn or LedModeOff. If only
led_mode is specified, the state of all LEDs are changed, if possible. At most 32 LEDs
numbered from one are supported. No standard interpretation of LEDs is defined. If led
is specified without led_mode, a BadMatch error results.

March 26, 1992 7−21

-- --

X Window System

If both the auto_repeat_mode and key members are specified, the auto_repeat_mode of
that key is changed (according to AutoRepeatModeOn, AutoRepeatModeOff, or
AutoRepeatModeDefault), if possible. If only auto_repeat_mode is specified, the glo-
bal auto_repeat_mode for the entire keyboard is changed, if possible, and does not affect
the per key settings. If a key is specified without an auto_repeat_mode, a BadMatch
error results. Each key has an individual mode of whether or not it should auto-repeat
and a default setting for the mode. In addition, there is a global mode of whether auto-
repeat should be enabled or not and a default setting for that mode. When global mode
is AutoRepeatModeOn, keys should obey their individual auto-repeat modes. When
global mode is AutoRepeatModeOff, no keys should auto-repeat. An auto-repeating
key generates alternating KeyPress and KeyRelease events. When a key is used as a
modifier, it is desirable for the key not to auto-repeat, regardless of its auto-repeat set-
ting.

A bell generator connected with the console but not directly on a keyboard is treated as
if it were part of the keyboard. The order in which controls are verified and altered is
server-dependent. If an error is generated, a subset of the controls may have been
altered.

XChangeKeyboardControl(display, value_mask, values)
Display *display;
unsigned long value_mask;
XKeyboardControl *values;

display Specifies the connection to the X server.

value_mask Specifies which controls to change. This mask is the bitwise
inclusive OR of the valid control mask bits.

values Specifies one value for each bit set to 1 in the mask.

The XChangeKeyboardControl function controls the keyboard characteristics defined
by the XKeyboardControl structure. The value_mask argument specifies which values
are to be changed.

XChangeKeyboardControl can generate BadMatch and BadValue errors.

To obtain the current control values for the keyboard, use XGetKeyboardControl.

XGetKeyboardControl(display, values_return)
Display *display;
XKeyboardState *values_return;

display Specifies the connection to the X server.

values_return Returns the current keyboard controls in the specified XKey-
boardState structure.

The XGetKeyboardControl function returns the current control values for the keyboard
to the XKeyboardState structure.

typedef struct {
int key_click_percent;
int bell_percent;

7−22 March 26, 1992

-- --

Window Manager Functions

unsigned int bell_pitch, bell_duration;
unsigned long led_mask;
int global_auto_repeat;
char auto_repeats[32];

} XKeyboardState;

For the LEDs, the least-significant bit of led_mask corresponds to LED one, and each
bit set to 1 in led_mask indicates an LED that is lit. The global_auto_repeat member
can be set to AutoRepeatModeOn or AutoRepeatModeOff. The auto_repeats
member is a bit vector. Each bit set to 1 indicates that auto-repeat is enabled for the
corresponding key. The vector is represented as 32 bytes. Byte N (from 0) contains the
bits for keys 8N to 8N + 7 with the least-significant bit in the byte representing key
8N.

To turn on keyboard auto-repeat, use XAutoRepeatOn.

XAutoRepeatOn(display)
Display *display;

display Specifies the connection to the X server.

The XAutoRepeatOn function turns on auto-repeat for the keyboard on the specified
display.

To turn off keyboard auto-repeat, use XAutoRepeatOff.

XAutoRepeatOff(display)
Display *display;

display Specifies the connection to the X server.

The XAutoRepeatOff function turns off auto-repeat for the keyboard on the specified
display.

To ring the bell, use XBell.

XBell(display, percent)
Display *display;
int percent;

display Specifies the connection to the X server.

percent Specifies the volume for the bell, which can range from –100 to
100 inclusive.

The XBell function rings the bell on the keyboard on the specified display, if possible.
The specified volume is relative to the base volume for the keyboard. If the value for
the percent argument is not in the range –100 to 100 inclusive, a BadValue error
results. The volume at which the bell rings when the percent argument is nonnegative
is:

base – [(base * percent) / 100] + percent

The volume at which the bell rings when the percent argument is negative is:

base + [(base * percent) / 100]

March 26, 1992 7−23

-- --

X Window System

To change the base volume of the bell, use XChangeKeyboardControl.

XBell can generate a BadValue error.

To obtain a bit vector that describes the state of the keyboard, use XQueryKeymap.

XQueryKeymap(display, keys_return)
Display *display;
char keys_return[32];

display Specifies the connection to the X server.

keys_return Returns an array of bytes that identifies which keys are pressed
down. Each bit represents one key of the keyboard.

The XQueryKeymap function returns a bit vector for the logical state of the keyboard,
where each bit set to 1 indicates that the corresponding key is currently pressed down.
The vector is represented as 32 bytes. Byte N (from 0) contains the bits for keys 8N to
8N + 7 with the least-significant bit in the byte representing key 8N.

Note that the logical state of a device (as seen by client applications) may lag the physi-
cal state if device event processing is frozen.

To set the mapping of the pointer buttons, use XSetPointerMapping.

int XSetPointerMapping(display, map, nmap)
Display *display;
unsigned char map[];
int nmap;

display Specifies the connection to the X server.

map Specifies the mapping list.

nmap Specifies the number of items in the mapping list.

The XSetPointerMapping function sets the mapping of the pointer. If it succeeds, the
X server generates a MappingNotify event, and XSetPointerMapping returns Map-
pingSuccess. Element map[i] defines the logical button number for the physical button
i+1. The length of the list must be the same as XGetPointerMapping would return, or
a BadValue error results. A zero element disables a button, and elements are not res-
tricted in value by the number of physical buttons. However, no two elements can have
the same nonzero value, or a BadValue error results. If any of the buttons to be altered
are logically in the down state, XSetPointerMapping returns MappingBusy, and the
mapping is not changed.

XSetPointerMapping can generate a BadValue error.

To get the pointer mapping, use XGetPointerMapping.

int XGetPointerMapping(display, map_return, nmap)
Display *display;
unsigned char map_return[];
int nmap;

7−24 March 26, 1992

-- --

Window Manager Functions

display Specifies the connection to the X server.

map_return Returns the mapping list.

nmap Specifies the number of items in the mapping list.

The XGetPointerMapping function returns the current mapping of the pointer. Pointer
buttons are numbered starting from one. XGetPointerMapping returns the number of
physical buttons actually on the pointer. The nominal mapping for a pointer is
map[i]=i+1. The nmap argument specifies the length of the array where the pointer
mapping is returned, and only the first nmap elements are returned in map_return.

To control the pointer’s interactive feel, use XChangePointerControl.

XChangePointerControl(display, do_accel, do_threshold,
accel_numerator,

accel_denominator, threshold)
Display *display;
Bool do_accel, do_threshold;
int accel_numerator, accel_denominator;
int threshold;

display Specifies the connection to the X server.

do_accel Specifies a Boolean value that controls whether the values for
the accel_numerator or accel_denominator are used.

do_threshold Specifies a Boolean value that controls whether the value for
the threshold is used.

accel_numerator
Specifies the numerator for the acceleration multiplier.

accel_denominator
Specifies the denominator for the acceleration multiplier.

threshold Specifies the acceleration threshold.

The XChangePointerControl function defines how the pointing device moves. The
acceleration, expressed as a fraction, is a multiplier for movement. For example, speci-
fying 3/1 means the pointer moves three times as fast as normal. The fraction may be
rounded arbitrarily by the X server. Acceleration only takes effect if the pointer moves
more than threshold pixels at once and only applies to the amount beyond the value in
the threshold argument. Setting a value to –1 restores the default. The values of the
do_accel and do_threshold arguments must be True for the pointer values to be set, or
the parameters are unchanged. Negative values (other than –1) generate a BadValue
error, as does a zero value for the accel_denominator argument.

XChangePointerControl can generate a BadValue error.

To get the current pointer parameters, use XGetPointerControl.

XGetPointerControl(display, accel_numerator_return, accel_denominator_return,
threshold_return)

Display *display;

March 26, 1992 7−25

-- --

X Window System

int *accel_numerator_return, *accel_denominator_return;
int *threshold_return;

display Specifies the connection to the X server.

accel_numerator_return
Returns the numerator for the acceleration multiplier.

accel_denominator_return
Returns the denominator for the acceleration multiplier.

threshold_return
Returns the acceleration threshold.

The XGetPointerControl function returns the pointer’s current acceleration multiplier
and acceleration threshold.

7.9 Keyboard Encoding

Most applications will find the simple interface XLookupString, which performs simple
translation of a key event to an ASCII string, most useful. Keyboard-related utilities are
discussed in chapter 10. The following section explains how to completely control the
bindings of symbols to keys and modifiers.

A KeyCode represents a physical (or logical) key. KeyCodes lie in the inclusive range
[8,255]. A KeyCode value carries no intrinsic information, although server implemen-
tors may attempt to encode geometry (for example, matrix) information in some fashion
so that it can be interpreted in a server-dependent fashion. The mapping between keys
and KeyCodes cannot be changed.

A KeySym is an encoding of a symbol on the cap of a key. The set of defined KeySyms
includes the ISO Latin character sets (1–4), Katakana, Arabic, Cyrillic, Greek, Techni-
cal, Special, Publishing, APL, Hebrew, and a special miscellany of keys found on key-
boards (Return, Help, Tab, and so on). To the extent possible, these sets are derived
from international standards. In areas where no standards exist, some of these sets are
derived from Digital Equipment Corporation standards. The list of defined symbols can
be found in
<X11/keysymdef.h>. Unfortunately, some C preprocessors have limits on the number
of defined symbols. If you must use KeySyms not in the Latin 1–4, Greek, and miscel-
laneous classes, you may have to define a symbol for those sets. Most applications usu-
ally only include <X11/keysym.h>, which defines symbols for ISO Latin 1–4, Greek,
and miscellaneous.

A list of KeySyms is associated with each KeyCode. The list is intended to convey the
set of symbols on the corresponding key. If the list (ignoring trailing NoSymbol
entries) is a single KeySym ‘‘K ’’, then the list is treated as if it were the list ‘‘K
NoSymbol K NoSymbol.’’ If the list (ignoring trailing NoSymbol entries) is a pair of
KeySyms ‘‘K1 K2’’, then the list is treated as if it were the list ‘‘K1 K2 K1 K2’’. If
the list (ignoring trailing NoSymbol entries) is a triple of KeySyms ‘‘K1 K2 K3’’, then

7−26 March 26, 1992

-- --

Window Manager Functions

the list is treated as if it were the list ‘‘K1 K2 K3 NoSymbol’’. When an explicit
‘‘void’’ element is desired in the list, the value VoidSymbol can be used.

The first four elements of the list are split into two groups of KeySyms. Group 1 con-
tains the first and second KeySyms; Group 2 contains the third and fourth KeySyms.
Within each group, if the second element of the group is NoSymbol, then the group
should be treated as if the second element were the same as the first element, except
when the first element is an alphabetic KeySym ‘‘K ’’ for which both lowercase and
uppercase forms are defined. In that case, the group should be treated as if the first ele-
ment were the lowercase form of ‘‘K ’’ and the second element were the uppercase form
of ‘‘K ’’.

The standard rules for obtaining a KeySym from a KeyPress event make use of only the
Group 1 and Group 2 KeySyms; no interpretation of other KeySyms in the list is
defined. Which group to use is determined by the modifier state. Switching between
groups is controlled by the KeySym named MODE SWITCH, by attaching that
KeySym to some KeyCode and attaching that KeyCode to any one of the modifiers
Mod1 through Mod5. This modifier is called the ‘‘group modifier.’’ For any KeyCode,
Group 1 is used when the group modifier is off, and Group 2 is used when the group
modifier is on.

Within a group, the modifier state also determines which KeySym to use. The first
KeySym is used when the Shift and Lock modifiers are off. The second KeySym is
used when the Shift modifier is on, when the Lock modifier is on and the second
KeySym is uppercase alphabetic, or when the Lock modifier is on and is interpreted as
ShiftLock. Otherwise, when the Lock modifier is on and is interpreted as CapsLock,
the state of the Shift modifier is applied first to select a KeySym; but if that KeySym is
lowercase alphabetic, then the corresponding uppercase KeySym is used instead.

No spatial geometry of the symbols on the key is defined by their order in the KeySym
list, although a geometry might be defined on a vendor-specific basis. The X server
does not use the mapping between KeyCodes and KeySyms. Rather, it stores it merely
for reading and writing by clients.

The KeyMask modifier named Lock is intended to be mapped to either a CapsLock or a
ShiftLock key, but which one is left as application-specific and/or user-specific. How-
ever, it is suggested that the determination be made according to the associated
KeySym(s) of the corresponding KeyCode.

To obtain the legal KeyCodes for a display, use XDisplayKeycodes.

XDisplayKeycodes(display, min_keycodes_return, max_keycodes_return)
Display *display;
int *min_keycodes_return, *max_keycodes_return;

display Specifies the connection to the X server.

min_keycodes_return
Returns the minimum number of KeyCodes.

max_keycodes_return
Returns the maximum number of KeyCodes.

March 26, 1992 7−27

-- --

X Window System

The XDisplayKeycodes function returns the min-keycodes and max-keycodes sup-
ported by the specified display. The minimum number of KeyCodes returned is never
less than 8, and the maximum number of KeyCodes returned is never greater than 255.
Not all KeyCodes in this range are required to have corresponding keys.

To obtain the symbols for the specified KeyCodes, use XGetKeyboardMapping.

KeySym *XGetKeyboardMapping(display, first_keycode, keycode_count,
keysyms_per_keycode_return)

Display *display;
KeyCode first_keycode;
int keycode_count;
int *keysyms_per_keycode_return;

display Specifies the connection to the X server.

first_keycode Specifies the first KeyCode that is to be returned.

keycode_count Specifies the number of KeyCodes that are to be returned.

keysyms_per_keycode_return
Returns the number of KeySyms per KeyCode.

The XGetKeyboardMapping function returns the symbols for the specified number of
KeyCodes starting with first_keycode. The value specified in first_keycode must be
greater than or equal to min_keycode as returned by XDisplayKeycodes, or a Bad-
Value error results. In addition, the following expression must be less than or equal to
max_keycode as returned by XDisplayKeycodes :

first_keycode + keycode_count – 1

If this is not the case, a BadValue error results. The number of elements in the
KeySyms list is:

keycode_count * keysyms_per_keycode_return

KeySym number N, counting from zero, for KeyCode K has the following index in the
list, counting from zero:

(K – first_code) * keysyms_per_code_return + N

The X server arbitrarily chooses the keysyms_per_keycode_return value to be large
enough to report all requested symbols. A special KeySym value of NoSymbol is used
to fill in unused elements for individual KeyCodes. To free the storage returned by
XGetKeyboardMapping, use XFree.

XGetKeyboardMapping can generate a BadValue error.

To change the keyboard mapping, use XChangeKeyboardMapping.

XChangeKeyboardMapping(display, first_keycode, keysyms_per_keycode, keysyms, num_codes)
Display *display;
int first_keycode;
int keysyms_per_keycode;
KeySym *keysyms;

7−28 March 26, 1992

-- --

Window Manager Functions

int num_codes;

display Specifies the connection to the X server.

first_keycode Specifies the first KeyCode that is to be changed.

keysyms_per_keycode
Specifies the number of KeySyms per KeyCode.

keysyms Specifies an array of KeySyms.

num_codes Specifies the number of KeyCodes that are to be changed.

The XChangeKeyboardMapping function defines the symbols for the specified
number of KeyCodes starting with first_keycode. The symbols for KeyCodes outside
this range remain unchanged. The number of elements in keysyms must be:

num_codes * keysyms_per_keycode

The specified first_keycode must be greater than or equal to min_keycode returned by
XDisplayKeycodes, or a BadValue error results. In addition, the following expression
must be less than or equal to max_keycode as returned by XDisplayKeycodes, or a
BadValue error results:

first_keycode + num_codes – 1

KeySym number N, counting from zero, for KeyCode K has the following index in
keysyms, counting from zero:

(K – first_keycode) * keysyms_per_keycode + N

The specified keysyms_per_keycode can be chosen arbitrarily by the client to be large
enough to hold all desired symbols. A special KeySym value of NoSymbol should be
used to fill in unused elements for individual KeyCodes. It is legal for NoSymbol to
appear in nontrailing positions of the effective list for a KeyCode. XChangeKey-
boardMapping generates a MappingNotify event.

There is no requirement that the X server interpret this mapping. It is merely stored for
reading and writing by clients.

XChangeKeyboardMapping can generate BadAlloc and BadValue errors.

The next four functions make use of the XModifierKeymap data structure, which con-
tains:

typedef struct {
int max_keypermod; /* This server’s max number of keys per m
KeyCode *modifiermap; /* An 8 by max_keypermod array of the mod

} XModifierKeymap;

To create an XModifierKeymap structure, use XNewModifiermap.

XModifierKeymap *XNewModifiermap(max_keys_per_mod)
int max_keys_per_mod;

March 26, 1992 7−29

-- --

X Window System

max_keys_per_mod
Specifies the number of KeyCode entries preallocated to the
modifiers in the map.

The XNewModifiermap function returns a pointer to XModifierKeymap structure for
later use.

To add a new entry to an XModifierKeymap structure, use XInsertModifiermapEntry.

XModifierKeymap *XInsertModifiermapEntry(modmap, keycode_entry, modifier)
XModifierKeymap *modmap;
KeyCode keycode_entry;
int modifier;

modmap Specifies the XModifierKeymap structure.

keycode_entry Specifies the KeyCode.

modifier Specifies the modifier.

The XInsertModifiermapEntry function adds the specified KeyCode to the set that con-
trols the specified modifier and returns the resulting XModifierKeymap structure
(expanded as needed).

To delete an entry from an XModifierKeymap structure, use XDelete-
ModifiermapEntry.

XModifierKeymap *XDeleteModifiermapEntry(modmap, keycode_entry, modifier)
XModifierKeymap *modmap;
KeyCode keycode_entry;
int modifier;

modmap Specifies the XModifierKeymap structure.

keycode_entry Specifies the KeyCode.

modifier Specifies the modifier.

The XDeleteModifiermapEntry function deletes the specified KeyCode from the set
that controls the specified modifier and returns a pointer to the resulting
XModifierKeymap structure.

To destroy an XModifierKeymap structure, use XFreeModifiermap.

XFreeModifiermap(modmap)
XModifierKeymap *modmap;

modmap Specifies the XModifierKeymap structure.

The XFreeModifiermap function frees the specified XModifierKeymap structure.

To set the KeyCodes to be used as modifiers, use XSetModifierMapping.

int XSetModifierMapping(display, modmap)
Display *display;
XModifierKeymap *modmap;

7−30 March 26, 1992

-- --

Window Manager Functions

display Specifies the connection to the X server.

modmap Specifies the XModifierKeymap structure.

The XSetModifierMapping function specifies the KeyCodes of the keys (if any) that
are to be used as modifiers. If it succeeds, the X server generates a MappingNotify
event, and XSetModifierMapping returns MappingSuccess. X permits at most eight
modifier keys. If more than eight are specified in the XModifierKeymap structure, a
BadLength error results.

The modifiermap member of the XModifierKeymap structure contains eight sets of
max_keypermod KeyCodes, one for each modifier in the order Shift, Lock, Control,
Mod1, Mod2, Mod3, Mod4, and Mod5. Only nonzero KeyCodes have meaning in
each set, and zero KeyCodes are ignored. In addition, all of the nonzero KeyCodes
must be in the range specified by min_keycode and max_keycode in the Display struc-
ture, or a BadValue error results. No KeyCode may appear twice in the entire map, or
a BadValue error results.

An X server can impose restrictions on how modifiers can be changed, for example, if
certain keys do not generate up transitions in hardware, if auto-repeat cannot be disabled
on certain keys, or if multiple modifier keys are not supported. If some such restriction
is violated, the status reply is MappingFailed, and none of the modifiers are changed.
If the new KeyCodes specified for a modifier differ from those currently defined and
any (current or new) keys for that modifier are in the logically down state,
XSetModifierMapping returns MappingBusy, and none of the modifiers is changed.

XSetModifierMapping can generate BadAlloc and BadValue errors.

To obtain the KeyCodes used as modifiers, use XGetModifierMapping.

XModifierKeymap *XGetModifierMapping(display)
Display *display;

display Specifies the connection to the X server.

The XGetModifierMapping function returns a pointer to a newly created
XModifierKeymap structure that contains the keys being used as modifiers. The struc-
ture should be freed after use by calling XFreeModifiermap. If only zero values appear
in the set for any modifier, that modifier is disabled.

7.10 Screen Saver Control

Xlib provides functions that you can use to set or reset the mode of the screen saver, to
force or activate the screen saver, or to obtain the current screen saver values.

To set the screen saver mode, use XSetScreenSaver.

XSetScreenSaver(display, timeout, interval, prefer_blanking, allow_exposures)
Display *display;
int timeout, interval;

March 26, 1992 7−31

-- --

X Window System

int prefer_blanking;
int allow_exposures;

display Specifies the connection to the X server.

timeout Specifies the timeout, in seconds, until the screen saver turns
on.

interval Specifies the interval, in seconds, between screen saver altera-
tions.

prefer_blanking
Specifies how to enable screen blanking. You can pass Dont-
PreferBlanking, PreferBlanking, or DefaultBlanking.

allow_exposures
Specifies the screen save control values. You can pass Dont-
AllowExposures, AllowExposures, or DefaultExposures.

Timeout and interval are specified in seconds. A timeout of 0 disables the screen saver
(but an activated screen saver is not deactivated), and a timeout of –1 restores the
default. Other negative values generate a BadValue error. If the timeout value is
nonzero, XSetScreenSaver enables the screen saver. An interval of 0 disables the
random-pattern motion. If no input from devices (keyboard, mouse, and so on) is gen-
erated for the specified number of timeout seconds once the screen saver is enabled, the
screen saver is activated.

For each screen, if blanking is preferred and the hardware supports video blanking, the
screen simply goes blank. Otherwise, if either exposures are allowed or the screen can
be regenerated without sending Expose events to clients, the screen is tiled with the root
window background tile randomly re-origined each interval minutes. Otherwise, the
screens’ state do not change, and the screen saver is not activated. The screen saver is
deactivated, and all screen states are restored at the next keyboard or pointer input or at
the next call to XForceScreenSaver with mode ScreenSaverReset.

If the server-dependent screen saver method supports periodic change, the interval argu-
ment serves as a hint about how long the change period should be, and zero hints that
no periodic change should be made. Examples of ways to change the screen include
scrambling the colormap periodically, moving an icon image around the screen periodi-
cally, or tiling the screen with the root window background tile, randomly re-origined
periodically.

XSetScreenSaver can generate a BadValue error.

To force the screen saver on or off, use XForceScreenSaver.

XForceScreenSaver(display, mode)
Display *display;
int mode;

display Specifies the connection to the X server.

mode Specifies the mode that is to be applied. You can pass Screen-
SaverActive or ScreenSaverReset.

7−32 March 26, 1992

-- --

Window Manager Functions

If the specified mode is ScreenSaverActive and the screen saver currently is deac-
tivated, XForceScreenSaver activates the screen saver even if the screen saver had been
disabled with a timeout of zero. If the specified mode is ScreenSaverReset and the
screen saver currently is enabled, XForceScreenSaver deactivates the screen saver if it
was activated, and the activation timer is reset to its initial state (as if device input had
been received).

XForceScreenSaver can generate a BadValue error.

To activate the screen saver, use XActivateScreenSaver.

XActivateScreenSaver(display)
Display *display;

display Specifies the connection to the X server.

To reset the screen saver, use XResetScreenSaver.

XResetScreenSaver(display)
Display *display;

display Specifies the connection to the X server.

To get the current screen saver values, use XGetScreenSaver.

XGetScreenSaver(display, timeout_return, interval_return, prefer_blanking_return,
allow_exposures_return)

Display *display;
int *timeout_return, *interval_return;
int *prefer_blanking_return;
int *allow_exposures_return;

display Specifies the connection to the X server.

timeout_return Returns the timeout, in seconds, until the screen saver turns on.

interval_return Returns the interval between screen saver invocations.

prefer_blanking_return
Returns the current screen blanking preference (DontPrefer-
Blanking, PreferBlanking, or DefaultBlanking).

allow_exposures_return
Returns the current screen save control value (DontAllow-
Exposures, AllowExposures, or DefaultExposures).

7.11 Controlling Host Access

This section discusses how to:

• Add, get, or remove hosts from the access control list

March 26, 1992 7−33

-- --

X Window System

• Change, enable, or disable access

X does not provide any protection on a per-window basis. If you find out the resource
ID of a resource, you can manipulate it. To provide some minimal level of protection,
however, connections are permitted only from machines you trust. This is adequate on
single-user workstations but obviously breaks down on timesharing machines.
Although provisions exist in the X protocol for proper connection authentication, the
lack of a standard authentication server leaves host-level access control as the only com-
mon mechanism.

The initial set of hosts allowed to open connections typically consists of:

• The host the window system is running on.

• On POSIX-conformant systems, each host listed in the /etc/X?.hosts file. The ?
indicates the number of the display. This file should consist of host names
separated by newlines. DECnet nodes must terminate in to distinguish them from
Internet hosts.

If a host is not in the access control list when the access control mechanism is enabled
and if the host attempts to establish a connection, the server refuses the connection. To
change the access list, the client must reside on the same host as the server and/or must
have been granted permission in the initial authorization at connection setup.

Servers also can implement other access control policies in addition to or in place of
this host access facility. For further information about other access control implementa-
tions, see part II, ‘‘X Window System Protocol.’’

7.11.1 Adding, Getting, or Removing Hosts

Xlib provides functions that you can use to add, get, or remove hosts from the access
control list. All the host access control functions use the XHostAddress structure,
which contains:

typedef struct {
int family;/* for example FamilyInternet */
int length;/* length of address, in bytes */
char *address;/* pointer to where to find the address */

} XHostAddress;

The family member specifies which protocol address family to use (for example,
TCP/IP or DECnet) and can be FamilyInternet, FamilyDECnet, or FamilyChaos.
The length member specifies the length of the address in bytes. The address member
specifies a pointer to the address.

For TCP/IP, the address should be in network byte order. For the DECnet family, the
server performs no automatic swapping on the address bytes. A Phase IV address is
two bytes long. The first byte contains the least-significant eight bits of the node
number. The second byte contains the most-significant two bits of the node number in
the least-significant two bits of the byte and the area in the most-significant six bits of

7−34 March 26, 1992

-- --

Window Manager Functions

the byte.

To add a single host, use XAddHost.

XAddHost(display, host)
Display *display;
XHostAddress *host;

display Specifies the connection to the X server.

host Specifies the host that is to be added.

The XAddHost function adds the specified host to the access control list for that
display. The server must be on the same host as the client issuing the command, or a
BadAccess error results.

XAddHost can generate BadAccess and BadValue errors.

To add multiple hosts at one time, use XAddHosts.

XAddHosts(display, hosts, num_hosts)
Display *display;
XHostAddress *hosts;
int num_hosts;

display Specifies the connection to the X server.

hosts Specifies each host that is to be added.

num_hosts Specifies the number of hosts.

The XAddHosts function adds each specified host to the access control list for that
display. The server must be on the same host as the client issuing the command, or a
BadAccess error results.

XAddHosts can generate BadAccess and BadValue errors.

To obtain a host list, use XListHosts.

XHostAddress *XListHosts(display, nhosts_return, state_return)
Display *display;
int *nhosts_return;
Bool *state_return;

display Specifies the connection to the X server.

nhosts_return Returns the number of hosts currently in the access control list.

state_return Returns the state of the access control.

The XListHosts function returns the current access control list as well as whether the use
of the list at connection setup was enabled or disabled.
XListHosts allows a program to find out what machines can make connections. It also
returns a pointer to a list of host structures that were allocated by the function. When no
longer needed, this memory should be freed by calling XFree.

To remove a single host, use XRemoveHost.

March 26, 1992 7−35

-- --

X Window System

XRemoveHost(display, host)
Display *display;
XHostAddress *host;

display Specifies the connection to the X server.

host Specifies the host that is to be removed.

The XRemoveHost function removes the specified host from the access control list for
that display. The server must be on the same host as the client process, or a BadAc-
cess error results. If you remove your machine from the access list, you can no longer
connect to that server, and this operation cannot be reversed unless you reset the server.

XRemoveHost can generate BadAccess and BadValue errors.

To remove multiple hosts at one time, use XRemoveHosts.

XRemoveHosts(display, hosts, num_hosts)
Display *display;
XHostAddress *hosts;
int num_hosts;

display Specifies the connection to the X server.

hosts Specifies each host that is to be removed.

num_hosts Specifies the number of hosts.

The XRemoveHosts function removes each specified host from the access control list
for that display. The X server must be on the same host as the client process, or a
BadAccess error results. If you remove your machine from the access list, you can no
longer connect to that server, and this operation cannot be reversed unless you reset the
server.

XRemoveHosts can generate BadAccess and BadValue errors.

7.11.2 Changing, Enabling, or Disabling Access Control

Xlib provides functions that you can use to enable, disable, or change access control.

For these functions to execute successfully, the client application must reside on the
same host as the X server and/or have been given permission in the initial authorization
at connection setup.

To change access control, use XSetAccessControl.

XSetAccessControl(display, mode)
Display *display;
int mode;

display Specifies the connection to the X server.

7−36 March 26, 1992

-- --

Window Manager Functions

mode Specifies the mode. You can pass EnableAccess or Disa-
bleAccess.

The XSetAccessControl function either enables or disables the use of the access control
list at each connection setup.

XSetAccessControl can generate BadAccess and BadValue errors.

To enable access control, use XEnableAccessControl.

XEnableAccessControl(display)
Display *display;

display Specifies the connection to the X server.

The XEnableAccessControl function enables the use of the access control list at each
connection setup.

XEnableAccessControl can generate a BadAccess error.

To disable access control, use XDisableAccessControl.

XDisableAccessControl(display)
Display *display;

display Specifies the connection to the X server.

The XDisableAccessControl function disables the use of the access control list at each
connection setup.

XDisableAccessControl can generate a BadAccess error.

March 26, 1992 7−37

-- --

Chapter 8. Events and Event-Handling Func-
tions

A client application communicates with the X server through the connection you estab-
lish with the XOpenDisplay function. A client application sends requests to the X
server over this connection. These requests are made by the Xlib functions that are
called in the client application. Many Xlib functions cause the X server to generate
events, and the user’s typing or moving the pointer can generate events asynchro-
nously. The X server returns events to the client on the same connection.

This chapter begins with a discussion of the following topics associated with events:

• Event types

• Event structures

• Event mask

• Event processing

It then discusses the Xlib functions you can use to:

• Select events

• Handle the output buffer and the event queue

• Select events from the event queue

• Send and get events

• Handle error events

Note: Some toolkits use their own event-handling functions and do not allow
you to interchange these event-handling functions with those in Xlib.
For further information, see the documentation supplied with the
toolkit.

Most applications simply are event loops: they wait for an event, decide what to do
with it, execute some amount of code that results in changes to the display, and then
wait for the next event.

March 26, 1992 8−1

-- --

X Window System

8.1 Event Types

An event is data generated asynchronously by the X server as a result of some device
activity or as side effects of a request sent by an Xlib function. Device-related events
propagate from the source window to ancestor windows until some client application
has selected that event type or until the event is explicitly discarded. The X server gen-
erally sends an event to a client application only if the client has specifically asked to be
informed of that event type, typically by setting the event-mask attribute of the win-
dow. The mask can also be set when you create a window or by changing the
window’s event-mask. You can also mask out events that would propagate to ancestor
windows by manipulating the do-not-propagate mask of the window’s attributes. How-
ever, MappingNotify events are always sent to all clients.

An event type describes a specific event generated by the X server. For each event
type, a corresponding constant name is defined in <X11/X.h>, which is used when
referring to an event type. The following table lists the event category and its associ-
ated event type or types. The processing associated with these events is discussed in
section 8.4.

33
Event Category Event Type
33
Keyboard events KeyPress, KeyRelease
Pointer events ButtonPress, ButtonRelease ,

MotionNotify
Window crossing events EnterNotify, LeaveNotify
Input focus events FocusIn, FocusOut
Keymap state notification event KeymapNotify
Exposure events Expose, GraphicsExpose, NoExpose
Structure control events CirculateRequest, ConfigureRequest,

MapRequest, ResizeRequest
Window state notification events CirculateNotify, ConfigureNotify,

CreateNotify, DestroyNotify,
GravityNotify, MapNotify,
MappingNotify, ReparentNotify,
UnmapNotify, VisibilityNotify

Colormap state notification event ColormapNotify
Client communication events ClientMessage, PropertyNotify,

SelectionClear, SelectionNotify,
SelectionRequest

8.2 Event Structures

For each event type, a corresponding structure is declared in <X11/Xlib.h>. All the

8−2 March 26, 1992

-- --

Events and Event-Handling Functions

event structures have the following common members:

typedef struct {
int type;
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window window;

} XAnyEvent;

The type member is set to the event type constant name that uniquely identifies it. For
example, when the X server reports a GraphicsExpose event to a client application, it
sends an XGraphicsExposeEvent structure with the type member set to GraphicsEx-
pose. The display member is set to a pointer to the display the event was read on. The
send_event member is set to True if the event came from a SendEvent protocol
request. The serial member is set from the serial number reported in the protocol but
expanded from the 16-bit least-significant bits to a full 32-bit value. The window
member is set to the window that is most useful to toolkit dispatchers.

The X server can send events at any time in the input stream. Xlib stores any events
received while waiting for a reply in an event queue for later use. Xlib also provides
functions that allow you to check events in the event queue (see section 8.7).

In addition to the individual structures declared for each event type, the XEvent struc-
ture is a union of the individual structures declared for each event type. Depending on
the type, you should access members of each event by using the XEvent union.

typedef union _XEvent {
int type; /* must not be changed */
XAnyEvent xany;
XKeyEvent xkey;
XButtonEvent xbutton;
XMotionEvent xmotion;
XCrossingEvent xcrossing;
XFocusChangeEvent xfocus;
XExposeEvent xexpose;
XGraphicsExposeEvent xgraphicsexpose;
XNoExposeEvent xnoexpose;
XVisibilityEvent xvisibility;
XCreateWindowEvent xcreatewindow;
XDestroyWindowEvent xdestroywindow;
XUnmapEvent xunmap;
XMapEvent xmap;
XMapRequestEvent xmaprequest;
XReparentEvent xreparent;
XConfigureEvent xconfigure;
XGravityEvent xgravity;
XResizeRequestEvent xresizerequest;
XConfigureRequestEvent xconfigurerequest;
XCirculateEvent xcirculate;

March 26, 1992 8−3

-- --

X Window System

XCirculateRequestEvent xcirculaterequest;
XPropertyEvent xproperty;
XSelectionClearEvent xselectionclear;
XSelectionRequestEvent xselectionrequest;
XSelectionEvent xselection;
XColormapEvent xcolormap;
XClientMessageEvent xclient;
XMappingEvent xmapping;
XErrorEvent xerror;
XKeymapEvent xkeymap;
long pad[24];

} XEvent;

An XEvent structure’s first entry always is the type member, which is set to the event
type. The second member always is the serial number of the protocol request that gen-
erated the event. The third member always is send_event, which is a Bool that indicates
if the event was sent by a different client. The fourth member always is a display,
which is the display that the event was read from. Except for keymap events, the fifth
member always is a window, which has been carefully selected to be useful to toolkit
dispatchers. To avoid breaking toolkits, the order of these first five entries is not to
change. Most events also contain a time member, which is the time at which an event
occurred. In addition, a pointer to the generic event must be cast before it is used to
access any other information in the structure.

8.3 Event Masks

Clients select event reporting of most events relative to a window. To do this, pass an
event mask to an Xlib event-handling function that takes an event_mask argument. The
bits of the event mask are defined in <X11/X.h>. Each bit in the event mask maps to
an event mask name, which describes the event or events you want the X server to
return to a client application.

Unless the client has specifically asked for them, most events are not reported to clients
when they are generated. Unless the client suppresses them by setting graphics-
exposures in the GC to False, GraphicsExpose and NoExpose are reported by default
as a result of XCopyPlane and XCopyArea. SelectionClear, SelectionRequest,
SelectionNotify, or ClientMessage cannot be masked. Selection related events are
only sent to clients cooperating with selections (see section 4.4). When the keyboard or
pointer mapping is changed, MappingNotify is always sent to clients.

The following table lists the event mask constants you can pass to the event_mask argu-
ment and the circumstances in which you would want to specify the event mask:

33
Event Mask Circumstances
33
NoEventMask No events wanted

8−4 March 26, 1992

-- --

Events and Event-Handling Functions

KeyPressMask Keyboard down events wanted
KeyReleaseMask Keyboard up events wanted
ButtonPressMask Pointer button down events wanted
ButtonReleaseMask Pointer button up events wanted
EnterWindowMask Pointer window entry events wanted
LeaveWindowMask Pointer window leave events wanted
PointerMotionMask Pointer motion events wanted
PointerMotionHintMask Pointer motion hints wanted
Button1MotionMask Pointer motion while button 1 down
Button2MotionMask Pointer motion while button 2 down
Button3MotionMask Pointer motion while button 3 down
Button4MotionMask Pointer motion while button 4 down
Button5MotionMask Pointer motion while button 5 down
ButtonMotionMask Pointer motion while any button down
KeymapStateMask Keyboard state wanted at window entry and

focus in
ExposureMask Any exposure wanted
VisibilityChangeMask Any change in visibility wanted
StructureNotifyMask Any change in window structure wanted
ResizeRedirectMask Redirect resize of this window
SubstructureNotifyMask Substructure notification wanted
SubstructureRedirectMask Redirect structure requests on children
FocusChangeMask Any change in input focus wanted
PropertyChangeMask Any change in property wanted
ColormapChangeMask Any change in colormap wanted
OwnerGrabButtonMask Automatic grabs should activate with

owner_events set to True

8.4 Event Processing

The event reported to a client application during event processing depends on which
event masks you provide as the event-mask attribute for a window. For some event
masks, there is a one-to-one correspondence between the event mask constant and the
event type constant. For example, if you pass the event mask ButtonPressMask, the X
server sends back only ButtonPress events. Most events contain a time member, which
is the time at which an event occurred.

In other cases, one event mask constant can map to several event type constants. For
example, if you pass the event mask SubstructureNotifyMask, the X server can send
back CirculateNotify, ConfigureNotify, CreateNotify, DestroyNotify, GravityNotify,
MapNotify, ReparentNotify, or UnmapNotify events.

In another case, two event masks can map to one event type. For example, if you pass
either PointerMotionMask or ButtonMotionMask, the X server sends back a Motion-
Notify event.

March 26, 1992 8−5

-- --

X Window System

The following table lists the event mask, its associated event type or types, and the
structure name associated with the event type. Some of these structures actually are
typedefs to a generic structure that is shared between two event types. Note that N.A.
appears in columns for which the information is not applicable.

The sections that follow describe the processing that occurs when you select the
different event masks. The sections are organized according to these processing
categories:

• Keyboard and pointer events

• Window crossing events

• Input focus events

• Keymap state notification events

• Exposure events

• Window state notification events

• Structure control events

• Colormap state notification events

• Client communication events

8.4.1 Keyboard and Pointer Events

333
Event Mask Event Type Structure
333
ButtonMotionMask MotionNotify XPointerMovedEvent
Button1MotionMask
Button2MotionMask
Button3MotionMask
Button4MotionMask
Button5MotionMask
ButtonPressMask ButtonPress XButtonPressedEvent
ButtonReleaseMask ButtonRelease XButtonReleasedEvent
ColormapChangeMask ColormapNotify XColormapEvent
EnterWindowMask EnterNotify XEnterWindowEvent
LeaveWindowMask LeaveNotify XLeaveWindowEvent
ExposureMask Expose XExposeEvent
GCGraphicsExposure in GC GraphicsExpose XGraphicsExposeEvent

NoExpose XNoExposeEvent
FocusChangeMask FocusIn XFocusInEvent

FocusOut XFocusOutEvent
KeymapStateMask KeymapNotify XKeymapEvent
KeyPressMask KeyPress XKeyPressedEvent

8−6 March 26, 1992

-- --

Events and Event-Handling Functions

KeyReleaseMask KeyRelease XKeyReleasedEvent
OwnerGrabButtonMask N.A. N.A.
PointerMotionMask MotionNotify XPointerMovedEvent
PointerMotionHintMask N.A. N.A.
PropertyChangeMask PropertyNotify XPropertyEvent
ResizeRedirectMask ResizeRequest XResizeRequestEvent
StructureNotifyMask CirculateNotify XCirculateEvent

ConfigureNotify XConfigureEvent
DestroyNotify XDestroyWindowEvent
GravityNotify XGravityEvent
MapNotify XMapEvent
ReparentNotify XReparentEvent
UnmapNotify XUnmapEvent

SubstructureNotifyMask CirculateNotify XCirculateEvent
ConfigureNotify XConfigureEvent
CreateNotify XCreateWindowEvent
DestroyNotify XDestroyWindowEvent
GravityNotify XGravityEvent
MapNotify XMapEvent
ReparentNotify XReparentEvent
UnmapNotify XUnmapEvent

SubstructureRedirectMask CirculateRequest XCirculateRequestEven
ConfigureRequest XConfigureRequestEven
MapRequest XMapRequestEvent

N.A. ClientMessage XClientMessageEvent
N.A. MappingNotify XMappingEvent
N.A. SelectionClear XSelectionClearEvent
N.A. SelectionNotify XSelectionEvent
N.A. SelectionRequest XSelectionRequestEven
VisibilityChangeMask VisibilityNotify XVisibilityEvent
This section discusses:

• Pointer button events

• Keyboard and pointer events

8.4.1.1 Pointer Button Events

The following describes the event processing that occurs when a
pointer button press is processed with the pointer in some window
w and when no active pointer grab is in progress.

The X server searches the ancestors of w from the root down, look-
ing for a passive grab to activate. If no matching passive grab on
the button exists, the X server automatically starts an active grab
for the client receiving the event and sets the last-pointer-grab time
to the current server time. The effect is essentially equivalent to an

March 26, 1992 8−7

-- --

X Window System

XGrabButton with these client passed arguments:

33
Argument Value
33
w The event window
event_mask The client’s selected

pointer events on the
event window

pointer_mode GrabModeAsync
keyboard_mode GrabModeAsync
owner_events True, if the client has

selected OwnerGrabBut-
tonMask on the
event window, otherwise
False

confine_to None
cursor None

The active grab is automatically terminated when the logical state
of the pointer has all buttons released. Clients can modify the
active grab by calling XUngrabPointer and XChangeActivePoin-
terGrab.

8.4.1.2 Keyboard and Pointer Events

This section discusses the processing that occurs for the keyboard
events KeyPress and KeyRelease and the pointer events But-
tonPress, ButtonRelease, and MotionNotify. For information
about the keyboard event-handling utilities, see chapter 10.

The X server reports KeyPress or KeyRelease events to clients
wanting information about keys that logically change state. Note
that these events are generated for all keys, even those mapped to
modifier bits. The X server reports ButtonPress or ButtonRelease
events to clients wanting information about buttons that logically
change state.

The X server reports MotionNotify events to clients wanting infor-
mation about when the pointer logically moves. The X server gen-
erates this event whenever the pointer is moved and the pointer
motion begins and ends in the window. The granularity of
MotionNotify events is not guaranteed, but a client that selects this
event type is guaranteed to receive at least one event when the
pointer moves and then rests.

The generation of the logical changes lags the physical changes if
device event processing is frozen.

8−8 March 26, 1992

-- --

Events and Event-Handling Functions

To receive KeyPress, KeyRelease, ButtonPress, and Button-
Release events, set KeyPressMask, KeyReleaseMask, But-
tonPressMask, and ButtonReleaseMask bits in the event-mask
attribute of the window.

To receive MotionNotify events, set one or more of the following
event masks bits in the event-mask attribute of the window.

• Button1MotionMask– Button5MotionMask
The client application receives MotionNotify events only when
one or more of the specified buttons is pressed.

• ButtonMotionMask
The client application receives MotionNotify events only when
at least one button is pressed.

• PointerMotionMask
The client application receives MotionNotify events indepen-
dent of the state of the pointer buttons.

• PointerMotionHint
If PointerMotionHintMask is selected in combination with one
or more of the above masks, the X server is free to send only
one MotionNotify event (with the is_hint member of the
XPointerMovedEvent structure set to NotifyHint) to the client
for the event window, until either the key or button state
changes, the pointer leaves the event window, or the client calls
XQueryPointer or XGetMotionEvents. The server still may
send MotionNotify events without is_hint set to NotifyHint.

The source of the event is the viewable window that the pointer is
in. The window used by the X server to report these events
depends on the window’s position in the window hierarchy and
whether any intervening window prohibits the generation of these
events. Starting with the source window, the X server searches up
the window hierarchy until it locates the first window specified by
a client as having an interest in these events. If one of the inter-
vening windows has its do-not-propagate-mask set to prohibit gen-
eration of the event type, the events of those types will be
suppressed. Clients can modify the actual window used for report-
ing by performing active grabs and, in the case of keyboard events,
by using the focus window.

The structures for these event types contain:

typedef struct {
int type; /* ButtonPress or ButtonRelease */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window window; /* ‘‘event’’ window it is reported relati
Window root; /* root window that the event occurred on

March 26, 1992 8−9

-- --

X Window System

Window subwindow;/* child window */
Time time; /* milliseconds */
int x, y; /* pointer x, y coordinates in event wind
int x_root, y_root; /* coordinates relative to root */
unsigned int state; /* key or button mask */
unsigned int button; /* detail */
Bool same_screen; /* same screen flag */

} XButtonEvent;
typedef XButtonEvent XButtonPressedEvent;
typedef XButtonEvent XButtonReleasedEvent;

typedef struct {
int type; /* KeyPress or KeyRelease */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window window; /* ‘‘event’’ window it is reported relati
Window root; /* root window that the event occurred on
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* pointer x, y coordinates in event wind
int x_root, y_root; /* coordinates relative to root */
unsigned int state; /* key or button mask */
unsigned int keycode; /* detail */
Bool same_screen; /* same screen flag */

} XKeyEvent;
typedef XKeyEvent XKeyPressedEvent;
typedef XKeyEvent XKeyReleasedEvent;

typedef struct {
int type; /* MotionNotify */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window window; /* ‘‘event’’ window reported relative to
Window root; /* root window that the event occurred on
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* pointer x, y coordinates in event wind
int x_root, y_root; /* coordinates relative to root */
unsigned int state; /* key or button mask */
char is_hint; /* detail */
Bool same_screen; /* same screen flag */

} XMotionEvent;
typedef XMotionEvent XPointerMovedEvent;

These structures have the following common members: window,
root, subwindow, time, x, y, x_root, y_root, state, and
same_screen. The window member is set to the window on which

8−10 March 26, 1992

-- --

Events and Event-Handling Functions

the event was generated and is referred to as the event window. As
long as the conditions previously discussed are met, this is the win-
dow used by the X server to report the event. The root member is
set to the source window’s root window. The x_root and y_root
members are set to the pointer’s coordinates relative to the root
window’s origin at the time of the event.

The same_screen member is set to indicate whether the event win-
dow is on the same screen as the root window and can be either
True or False. If True, the event and root windows are on the
same screen. If False, the event and root windows are not on the
same screen.

If the source window is an inferior of the event window, the
subwindow member of the structure is set to the child of the event
window that is the source member or an ancestor of it. Otherwise,
the X server sets the subwindow member to None. The time
member is set to the time when the event was generated and is
expressed in milliseconds.

If the event window is on the same screen as the root window, the
x and y members are set to the coordinates relative to the event
window’s origin. Otherwise, these members are set to zero.

The state member is set to indicate the logical state of the pointer
buttons and modifier keys just prior to the event, which is the bit-
wise inclusive OR of one or more of the button or modifier key
masks: Button1Mask, Button2Mask, Button3Mask,
Button4Mask, Button5Mask, ShiftMask, LockMask, Control-
Mask, Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, and
Mod5Mask.

Each of these structures also has a member that indicates the
detail. For the XKeyPressedEvent and XKeyReleasedEvent
structures, this member is called keycode. It is set to a number that
represents a physical key on the keyboard. The keycode is an arbi-
trary representation for any key on the keyboard (see setions 7.9
and 10.1.1).

For the XButtonPressedEvent and XButtonReleasedEvent struc-
tures, this member is called button. It represents the pointer button
that changed state and can be the Button1, Button2, Button3, But-
ton4, or Button5 value. For the XPointerMovedEvent structure,
this member is called is_hint. It can be set to NotifyNormal or
NotifyHint.

March 26, 1992 8−11

-- --

X Window System

8.4.2 Window Entry/Exit Events

This section describes the processing that occurs for the window
crossing events EnterNotify and LeaveNotify. If a pointer motion
or a window hierarchy change causes the pointer to be in a
different window than before, the X server reports EnterNotify or
LeaveNotify events to clients who have selected for these events.
All EnterNotify and LeaveNotify events caused by a hierarchy
change are generated after any hierarchy event (UnmapNotify,
MapNotify, ConfigureNotify, GravityNotify, CirculateNotify)
caused by that change; however, the X protocol does not constrain
the ordering of EnterNotify and LeaveNotify events with respect
to FocusOut, VisibilityNotify, and Expose events.

This contrasts with MotionNotify events, which are also generated
when the pointer moves but only when the pointer motion begins
and ends in a single window. An EnterNotify or LeaveNotify
event also can be generated when some client application calls
XGrabPointer and XUngrabPointer.

To receive EnterNotify or LeaveNotify events, set the EnterWin-
dowMask or LeaveWindowMask bits of the event-mask attribute
of the window.

The structure for these event types contains:

typedef struct {
int type; /* EnterNotify or LeaveNotify */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window window; /* ‘‘event’’ window reported relative to
Window root; /* root window that the event occurred on
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* pointer x, y coordinates in event wind
int x_root, y_root; /* coordinates relative to root */
int mode; /* NotifyNormal, NotifyGrab, NotifyUngrab */
int detail; /* NotifyAncestor, NotifyVirtual,

NotifyInferior, NotifyNonlinear,
NotifyNonlinearVirtual */

Bool same_screen; /* same screen flag */
Bool focus; /* boolean focus */
unsigned int state; /* key or button mask */

} XCrossingEvent;
typedef XCrossingEvent XEnterWindowEvent;
typedef XCrossingEvent XLeaveWindowEvent;

8−12 March 26, 1992

-- --

Events and Event-Handling Functions

The window member is set to the window on which the EnterNo-
tify or LeaveNotify event was generated and is referred to as the
event window. This is the window used by the X server to report
the event, and is relative to the root window on which the event
occurred. The root member is set to the root window of the screen
on which the event occurred.

For a LeaveNotify event, if a child of the event window contains
the initial position of the pointer, the subwindow component is set
to that child. Otherwise, the X server sets the subwindow member
to None. For an EnterNotify event, if a child of the event window
contains the final pointer position, the subwindow component is set
to that child or None.

The time member is set to the time when the event was generated
and is expressed in milliseconds. The x and y members are set to
the coordinates of the pointer position in the event window. This
position is always the pointer’s final position, not its initial posi-
tion. If the event window is on the same screen as the root win-
dow, x and y are the pointer coordinates relative to the event
window’s origin. Otherwise, x and y are set to zero. The x_root
and y_root members are set to the pointer’s coordinates relative to
the root window’s origin at the time of the event.

The same_screen member is set to indicate whether the event win-
dow is on the same screen as the root window and can be either
True or False. If True, the event and root windows are on the
same screen. If False, the event and root windows are not on the
same screen.

The focus member is set to indicate whether the event window is
the focus window or an inferior of the focus window. The X
server can set this member to either True or False. If True, the
event window is the focus window or an inferior of the focus win-
dow. If False, the event window is not the focus window or an
inferior of the focus window.

The state member is set to indicate the state of the pointer buttons
and modifier keys just prior to the event. The X server can set this
member to the bitwise inclusive OR of one or more of the button
or modifier key masks: Button1Mask, Button2Mask,
Button3Mask, Button4Mask, Button5Mask, ShiftMask, Lock-
Mask, ControlMask, Mod1Mask, Mod2Mask, Mod3Mask,
Mod4Mask, Mod5Mask.

The mode member is set to indicate whether the events are normal
events, pseudo-motion events when a grab activates, or pseudo-
motion events when a grab deactivates. The X server can set this
member to NotifyNormal, NotifyGrab, or NotifyUngrab.

March 26, 1992 8−13

-- --

X Window System

The detail member is set to indicate the notify detail and can be
NotifyAncestor, NotifyVirtual, NotifyInferior, NotifyNonlinear,
or NotifyNonlinearVirtual.

8.4.2.1 Normal Entry/Exit Events

EnterNotify and LeaveNotify events are generated when the
pointer moves from one window to another window. Normal
events are identified by XEnterWindowEvent or XLeaveWin-
dowEvent structures whose mode member is set to NotifyNor-
mal.

• When the pointer moves from window A to window B and A is
an inferior of B, the X server does the following:

— It generates a LeaveNotify event on window A, with the
detail member of the XLeaveWindowEvent structure set to
NotifyAncestor.

— It generates a LeaveNotify event on each window between
window A and window B, exclusive, with the detail
member of each XLeaveWindowEvent structure set to
NotifyVirtual.

— It generates an EnterNotify event on window B, with the
detail member of the
XEnterWindowEvent structure set to NotifyInferior.

• When the pointer moves from window A to window B and B is
an inferior of A, the X server does the following:

— It generates a LeaveNotify event on window A, with the
detail member of the XLeaveWindowEvent structure set to
NotifyInferior.

— It generates an EnterNotify event on each window between
window A and window B, exclusive, with the detail
member of each XEnterWindowEvent structure set to
NotifyVirtual.

— It generates an EnterNotify event on window B, with the
detail member of the XEnterWindowEvent structure set to
NotifyAncestor.

• When the pointer moves from window A to window B and
window C is their least common ancestor, the X server does the
following:

— It generates a LeaveNotify event on window A, with the
detail member of the XLeaveWindowEvent structure set to

8−14 March 26, 1992

-- --

Events and Event-Handling Functions

NotifyNonlinear.

— It generates a LeaveNotify event on each window between
window A and window C, exclusive, with the detail
member of each XLeaveWindowEvent structure set to
NotifyNonlinearVirtual.

— It generates an EnterNotify event on each window between
window C and window B, exclusive, with the detail
member of each XEnterWindowEvent structure set to
NotifyNonlinearVirtual.

— It generates an EnterNotify event on window B, with the
detail member of the XEnterWindowEvent structure set to
NotifyNonlinear.

• When the pointer moves from window A to window B on
different screens, the X server does the following:

— It generates a LeaveNotify event on window A, with the
detail member of the XLeaveWindowEvent structure set to
NotifyNonlinear.

— If window A is not a root window, it generates a LeaveNo-
tify event on each window above window A up to and
including its root, with the detail member of each
XLeaveWindowEvent structure set to NotifyNonlinear-
Virtual.

— If window B is not a root window, it generates an EnterNo-
tify event on each window from window B’s root down to
but not including window B, with the detail member of
each XEnterWindowEvent structure set to NotifyNon-
linearVirtual.

— It generates an EnterNotify event on window B, with the
detail member of the XEnterWindowEvent structure set to
NotifyNonlinear.

8.4.2.2 Grab and Ungrab Entry/Exit Events

Pseudo-motion mode EnterNotify and LeaveNotify events are gen-
erated when a pointer grab activates or deactivates. Events in
which the pointer grab activates are identified by XEnterWin-
dowEvent or XLeaveWindowEvent structures whose mode
member is set to NotifyGrab. Events in which the pointer grab
deactivates are identified by XEnterWindowEvent or XLeaveWin-
dowEvent structures whose mode member is set to NotifyUngrab
(see XGrabPointer).

March 26, 1992 8−15

-- --

X Window System

• When a pointer grab activates after any initial warp into a
confine_to window and before generating any actual But-
tonPress event that activates the grab, G is the grab_window
for the grab, and P is the window the pointer is in, the X server
does the following:

— It generates EnterNotify and LeaveNotify events (see sec-
tion 8.4.2.1) with the mode members of the XEnterWin-
dowEvent and XLeaveWindowEvent structures set to
NotifyGrab. These events are generated as if the pointer
were to suddenly warp
from its current position in P to some position in G. How-
ever, the pointer does not warp, and the X server uses the
pointer position as both the initial and final positions for the
events.

• When a pointer grab deactivates after generating any actual But-
tonRelease event that deactivates the grab, G is the
grab_window for the grab, and P is the window the pointer is
in, the X server does the following:

— It generates EnterNotify and LeaveNotify events (see sec-
tion 8.4.2.1) with the mode members of the XEnterWin-
dowEvent and XLeaveWindowEvent structures set to
NotifyUngrab. These events are generated as if the pointer
were to suddenly warp from some position in G to its
current position in P. However, the pointer does not warp,
and the X server uses the current pointer position as both
the initial and final positions for the events.

8.4.3 Input Focus Events

This section describes the processing that occurs for the input focus
events FocusIn and FocusOut. The X server can report FocusIn or
FocusOut events to clients wanting information about when the
input focus changes. The keyboard is always attached to some
window (typically, the root window or a top-level window), which
is called the focus window. The focus window and the position of
the pointer determine the window that receives keyboard input.
Clients may need to know when the input focus changes to control
highlighting of areas on the screen.

To receive FocusIn or FocusOut events, set the
FocusChangeMask bit in the event-mask attribute of the window.

The structure for these event types contains:

8−16 March 26, 1992

-- --

Events and Event-Handling Functions

typedef struct {
int type;/* FocusIn or FocusOut */
unsigned long serial;/* # of last request processed by server */
Bool send_event;/* true if this came from a SendEvent request */
Display *display;/* Display the event was read from */
Window window;/* window of event */
int mode;/* NotifyNormal, NotifyGrab,

NotifyUngrab */
int detail;/* NotifyAncestor, NotifyVirtual,

NotifyInferior, NotifyNonlinear,
NotifyNonlinearVirtual, NotifyPointer,
NotifyPointerRoot, NotifyDetailNone */

} XFocusChangeEvent;
typedef XFocusChangeEvent XFocusInEvent;
typedef XFocusChangeEvent XFocusOutEvent;

The window member is set to the window on which the FocusIn or
FocusOut event was generated. This is the window used by the X
server to report the event. The mode member is set to indicate
whether the focus events are normal focus events, focus events
while grabbed, focus events when a grab activates, or focus events
when a grab deactivates. The X server can set the mode member
to NotifyNormal, NotifyWhileGrabbed, NotifyGrab, or
NotifyUngrab.

All FocusOut events caused by a window unmap are generated
after any UnmapNotify event; however, the X protocol does not
constrain the ordering of FocusOut events with respect to gen-
erated EnterNotify, LeaveNotify, VisibilityNotify, and Expose
events.

Depending on the event mode, the detail member is set to indicate
the notify detail and can be NotifyAncestor, NotifyVirtual,
NotifyInferior, NotifyNonlinear, NotifyNonlinearVirtual,
NotifyPointer, NotifyPointerRoot, or NotifyDetailNone.

8.4.3.1 Normal Focus Events and Focus Events While Grabbed

Normal focus events are identified by XFocusInEvent or XFocus-
OutEvent structures whose mode member is set to NotifyNormal.
Focus events while grabbed are identified by XFocusInEvent or
XFocusOutEvent structures whose mode member is set to
NotifyWhileGrabbed. The X server processes normal focus and
focus events while grabbed according to the following:

• When the focus moves from window A to window B, A is an
inferior of B, and the pointer is in window P, the X server does

March 26, 1992 8−17

-- --

X Window System

the following:

— It generates a FocusOut event on window A, with the detail
member of the XFocusOutEvent structure set to
NotifyAncestor.

— It generates a FocusOut event on each window between
window A and window B, exclusive, with the detail
member of each XFocusOutEvent structure set to
NotifyVirtual.

— It generates a FocusIn event on window B, with the detail
member of the XFocusOutEvent structure set to NotifyIn-
ferior.

— If window P is an inferior of window B but window P is
not window A or an inferior or ancestor of window A, it
generates a FocusIn event on each window below window
B, down to and including window P, with the detail
member of each XFocusInEvent structure set to
NotifyPointer.

• When the focus moves from window A to window B, B is an
inferior of A, and the pointer is in window P, the X server does
the following:

— If window P is an inferior of window A but P is not an
inferior of window B or an ancestor of B, it generates a
FocusOut event on each window from window P up to but
not including window A, with the detail member of each
XFocusOutEvent structure set to NotifyPointer.

— It generates a FocusOut event on window A, with the detail
member of the XFocusOutEvent structure set to NotifyIn-
ferior.

— It generates a FocusIn event on each window between win-
dow A and window B, exclusive, with the detail member of
each XFocusInEvent structure set to NotifyVirtual.

— It generates a FocusIn event on window B, with the detail
member of the XFocusInEvent structure set to
NotifyAncestor.

• When the focus moves from window A to window B, window
C is their least common ancestor, and the pointer is in window
P, the X server does the following:

— If window P is an inferior of window A, it generates a
FocusOut event on each window from window P up to but
not including window A, with the detail member of the
XFocusOutEvent structure set to NotifyPointer.

8−18 March 26, 1992

-- --

Events and Event-Handling Functions

— It generates a FocusOut event on window A, with the detail
member of the XFocusOutEvent structure set to
NotifyNonlinear.

— It generates a FocusOut event on each window between
window A and window C, exclusive, with the detail
member of each XFocusOutEvent structure set to
NotifyNonlinearVirtual.

— It generates a FocusIn event on each window between C
and B, exclusive, with the detail member of each XFocus-
InEvent structure set to NotifyNonlinearVirtual.

— It generates a FocusIn event on window B, with the detail
member of the XFocusInEvent structure set to NotifyNon-
linear.

— If window P is an inferior of window B, it generates a
FocusIn event on each window below window B down to
and including window P, with the detail member of the
XFocusInEvent structure set to NotifyPointer.

• When the focus moves from window A to window B on
different screens and the pointer is in window P, the X server
does the following:

— If window P is an inferior of window A, it generates a
FocusOut event on each window from window P up to but
not including window A, with the detail member of each
XFocusOutEvent structure set to NotifyPointer.

— It generates a FocusOut event on window A, with the detail
member of the XFocusOutEvent structure set to
NotifyNonlinear.

— If window A is not a root window, it generates a FocusOut
event on each window above window A up to and including
its root, with the detail member of each XFocusOutEvent
structure set to NotifyNonlinearVirtual.

— If window B is not a root window, it generates a FocusIn
event on each window from window B’s root down to but
not including window B, with the detail member of each
XFocusInEvent structure set to NotifyNonlinearVirtual.

— It generates a FocusIn event on window B, with the detail
member of each XFocusInEvent structure set to
NotifyNonlinear.

— If window P is an inferior of window B, it generates a
FocusIn event on each window below window B down to
and including window P, with the detail member of each
XFocusInEvent structure set to NotifyPointer.

March 26, 1992 8−19

-- --

X Window System

• When the focus moves from window A to PointerRoot (events
sent to the window under the pointer) or None (discard), and
the pointer is in window P, the X server does the following:

— If window P is an inferior of window A, it generates a
FocusOut event on each window from window P up to but
not including window A, with the detail member of each
XFocusOutEvent structure set to NotifyPointer.

— It generates a FocusOut event on window A, with the detail
member of the XFocusOutEvent structure set to
NotifyNonlinear.

— If window A is not a root window, it generates a FocusOut
event on each window above window A up to and including
its root, with the detail member of each XFocusOutEvent
structure set to NotifyNonlinearVirtual.

— It generates a FocusIn event on the root window of all
screens, with the detail member of each XFocusInEvent
structure set to NotifyPointerRoot (or NotifyDetailNone).

— If the new focus is PointerRoot, it generates a FocusIn
event on each window from window P’s root down to and
including window P, with the detail member of each
XFocusInEvent structure set to NotifyPointer.

• When the focus moves from PointerRoot (events sent to the
window under the pointer) or None to window A, and the
pointer is in window P, the X server does the following:

— If the old focus is PointerRoot, it generates a FocusOut
event on each window from window P up to and including
window P’s root, with the detail member of each XFocus-
OutEvent structure set to NotifyPointer.

— It generates a FocusOut event on all root windows, with the
detail member of each XFocusOutEvent structure set to
NotifyPointerRoot (or NotifyDetailNone).

— If window A is not a root window, it generates a FocusIn
event on each window from window A’s root down to but
not including window A, with the detail member of each
XFocusInEvent structure set to NotifyNonlinearVirtual.

— It generates a FocusIn event on window A, with the detail
member of the XFocusInEvent structure set to NotifyNon-
linear.

— If window P is an inferior of window A, it generates a
FocusIn event on each window below window A down to
and including window P, with the detail member of each
XFocusInEvent structure set to NotifyPointer.

8−20 March 26, 1992

-- --

Events and Event-Handling Functions

• When the focus moves from PointerRoot (events sent to the
window under the pointer) to None (or vice versa), and the
pointer is in window P, the X server does the following:

— If the old focus is PointerRoot, it generates a FocusOut
event on each window from window P up to and including
window P’s root, with the detail member of each XFocus-
OutEvent structure set to NotifyPointer.

— It generates a FocusOut event on all root windows, with the
detail member of each XFocusOutEvent structure set to
either NotifyPointerRoot or NotifyDetailNone.

— It generates a FocusIn event on all root windows, with the
detail member of each XFocusInEvent structure set to
NotifyDetailNone or NotifyPointerRoot.

— If the new focus is PointerRoot, it generates a FocusIn
event on each window from window P’s root down to and
including window P, with the detail member of each
XFocusInEvent structure set to NotifyPointer.

8.4.3.2 Focus Events Generated by Grabs

Focus events in which the keyboard grab activates are identified by
XFocusInEvent or XFocusOutEvent structures whose mode
member is set to NotifyGrab. Focus events in which the keyboard
grab deactivates are identified by XFocusInEvent or XFocus-
OutEvent structures whose mode member is set to NotifyUngrab
(see XGrabKeyboard).

• When a keyboard grab activates before generating any actual
KeyPress event that activates the grab, G is the grab_window,
and F is the current focus, the X server does the following:

— It generates FocusIn and FocusOut events, with the mode
members of the XFocusInEvent and XFocusOutEvent
structures set to NotifyGrab. These events are generated as
if the focus were to change from F to G.

• When a keyboard grab deactivates after generating any actual
KeyRelease event that deactivates the grab, G is the
grab_window, and F is the current focus, the X server does the
following:

— It generates FocusIn and FocusOut events, with the mode
members of the XFocusInEvent and XFocusOutEvent
structures set to NotifyUngrab. These events are generated
as if the focus were to change from G to F.

March 26, 1992 8−21

-- --

X Window System

8.4.4 Keymap State Notification Events

The X server can report KeymapNotify events to clients that want
information about changes in their keyboard state.

To receive KeymapNotify events, set the KeymapStateMask bit
in the event-mask attribute of the window. The X server generates
this event immediately after every EnterNotify and FocusIn event.

The structure for this event type contains:

/* generated on EnterWindow and FocusIn when KeymapState selected */
typedef struct {

int type; /* KeymapNotify */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window window;
char key_vector[32];

} XKeymapEvent;

The window member is not used but is present to aid some toolk-
its. The key_vector member is set to the bit vector of the key-
board. Each bit set to 1 indicates that the corresponding key is
currently pressed. The vector is represented as 32 bytes. Byte N
(from 0) contains the bits for keys 8N to 8N + 7 with the least-
significant bit in the byte representing key 8N.

8.4.5 Exposure Events

The X protocol does not guarantee to preserve the contents of win-
dow regions when the windows are obscured or reconfigured.
Some implementations may preserve the contents of windows.
Other implementations are free to destroy the contents of windows
when exposed. X expects client applications to assume the respon-
sibility for restoring the contents of an exposed window region.
(An exposed window region describes a formerly obscured window
whose region becomes visible.) Therefore, the X server sends
Expose events describing the window and the region of the win-
dow that has been exposed. A naive client application usually
redraws the entire window. A more sophisticated client application
redraws only the exposed region.

8−22 March 26, 1992

-- --

Events and Event-Handling Functions

8.4.5.1 Expose Events

The X server can report Expose events to clients wanting informa-
tion about when the contents of window regions have been lost.
The circumstances in which the X server generates Expose events
are not as definite as those for other events. However, the X server
never generates Expose events on windows whose class you
specified as InputOnly. The X server can generate Expose events
when no valid contents are available for regions of a window and
either the regions are visible, the regions are viewable and the
server is (perhaps newly) maintaining backing store on the window,
or the window is not viewable but the server is (perhaps newly)
honoring the window’s backing-store attribute of Always or
WhenMapped. The regions decompose into an (arbitrary) set of
rectangles, and an Expose event is generated for each rectangle.
For any given window, the X server guarantees to report contigu-
ously all of the regions exposed by some action that causes Expose
events, such as raising a window.

To receive Expose events, set the ExposureMask bit in the event-
mask attribute of the window.

The structure for this event type contains:

typedef struct {
int type; /* Expose */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window window;
int x, y;
int width, height;
int count; /* if nonzero, at least this many more */

} XExposeEvent;

The window member is set to the exposed (damaged) window.
The x and y members are set to the coordinates relative to the
window’s origin and indicate the upper-left corner of the rectangle.
The width and height members are set to the size (extent) of the
rectangle. The count member is set to the number of Expose
events that are to follow. If count is zero, no more Expose events
follow for this window. However, if count is nonzero, at least that
number of Expose events (and possibly more) follow for this win-
dow. Simple applications that do not want to optimize redisplay
by distinguishing between subareas of its window can just ignore
all Expose events with nonzero counts and perform full redisplays
on events with zero counts.

March 26, 1992 8−23

-- --

X Window System

8.4.5.2 GraphicsExpose and NoExpose Events

The X server can report GraphicsExpose events to clients wanting
information about when a destination region could not be computed
during certain graphics requests: XCopyArea or XCopyPlane.
The X server generates this event whenever a destination region
could not be computed due to an obscured or out-of-bounds source
region. In addition, the X server guarantees to report contiguously
all of the regions exposed by some graphics request (for example,
copying an area of a drawable to a destination drawable).

The X server generates a NoExpose event whenever a graphics
request that might produce a GraphicsExpose event does not pro-
duce any. In other words, the client is really asking for a Gra-
phicsExpose event but instead receives a NoExpose event.

To receive GraphicsExpose or NoExpose events, you must first
set the graphics-exposure attribute of the graphics context to True.
You also can set the graphics-expose attribute when creating a
graphics context using XCreateGC or by calling XSetGraphicsEx-
posures.

The structures for these event types contain:

typedef struct {
int type; /* GraphicsExpose */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Drawable drawable;
int x, y;
int width, height;
int count; /* if nonzero, at least this many more */
int major_code; /* core is CopyArea or CopyPlane */
int minor_code; /* not defined in the core */

} XGraphicsExposeEvent;

typedef struct {
int type; /* NoExpose */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Drawable drawable;
int major_code; /* core is CopyArea or CopyPlane */
int minor_code; /* not defined in the core */

} XNoExposeEvent;

Both structures have these common members: drawable,
major_code, and minor_code. The drawable member is set to the

8−24 March 26, 1992

-- --

Events and Event-Handling Functions

drawable of the destination region on which the graphics request
was to be performed. The major_code member is set to the graph-
ics request initiated by the client and can be either X_CopyArea or
X_CopyPlane. If it is X_CopyArea, a call to XCopyArea ini-
tiated the request. If it is X_CopyPlane, a call to XCopyPlane
initiated the request. These constants are defined in
<X11/Xproto.h>. The minor_code member, like the major_code
member, indicates which graphics request was initiated by the
client. However, the minor_code member is not defined by the core
X protocol and will be zero in these cases, although it may be used
by an extension.

The XGraphicsExposeEvent structure has these additional
members: x, y, width, height, and count. The x and y members are
set to the coordinates relative to the drawable’s origin and indicate
the upper-left corner of the rectangle. The width and height
members are set to the size (extent) of the rectangle. The count
member is set to the number of GraphicsExpose events to follow.
If count is zero, no more GraphicsExpose events follow for this
window. However, if count is nonzero, at least that number of
GraphicsExpose events (and possibly more) are to follow for this
window.

8.4.6 Window State Change Events

The following sections discuss:

• CirculateNotify events

• ConfigureNotify events

• CreateNotify events

• DestroyNotify events

• GravityNotify events

• MapNotify events

• MappingNotify events

• ReparentNotify events

• UnmapNotify events

• VisibilityNotify events

March 26, 1992 8−25

-- --

X Window System

8.4.6.1 CirculateNotify Events

The X server can report CirculateNotify events to clients wanting
information about when a window changes its position in the
stack. The X server generates this event type whenever a window
is actually restacked as a result of a client application calling XCir-
culateSubwindows, XCirculateSubwindowsUp, or XCircula-
teSubwindowsDown.

To receive CirculateNotify events, set the StructureNotifyMask
bit in the event-mask attribute of the window or the Substruc-
tureNotifyMask bit in the event-mask attribute of the parent win-
dow (in which case, circulating any child generates an event).

The structure for this event type contains:

typedef struct {
int type; /* CirculateNotify */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window event;
Window window;
int place; /* PlaceOnTop, PlaceOnBottom */

} XCirculateEvent;

The event member is set either to the restacked window or to its
parent, depending on whether StructureNotify or SubstructureNo-
tify was selected. The window member is set to the window that
was restacked. The place member is set to the window’s position
after the restack occurs and is either PlaceOnTop or PlaceOnBot-
tom. If it is PlaceOnTop, the window is now on top of all
siblings. If it is PlaceOnBottom, the window is now below all
siblings.

8.4.6.2 ConfigureNotify Events

The X server can report ConfigureNotify events to clients wanting
information about actual changes to a window’s state, such as size,
position, border, and stacking order. The X server generates this
event type whenever one of the following configure window
requests made by a client application actually completes:

• A window’s size, position, border, and/or stacking order is
reconfigured by calling XConfigureWindow.

8−26 March 26, 1992

-- --

Events and Event-Handling Functions

• The window’s position in the stacking order is changed by cal-
ling XLowerWindow, XRaiseWindow, or XRestackWin-
dows.

• A window is moved by calling XMoveWindow.

• A window’s size is changed by calling XResizeWindow.

• A window’s size and location is changed by calling XMo-
veResizeWindow.

• A window is mapped and its position in the stacking order is
changed by calling XMapRaised.

• A window’s border width is changed by calling XSetWin-
dowBorderWidth.

To receive ConfigureNotify events, set the StructureNotifyMask
bit in the event-mask attribute of the window or the Substruc-
tureNotifyMask bit in the event-mask attribute of the parent win-
dow (in which case, configuring any child generates an event).

The structure for this event type contains:

typedef struct {
int type; /* ConfigureNotify */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window event;
Window window;
int x, y;
int width, height;
int border_width;
Window above;
Bool override_redirect;

} XConfigureEvent;

The event member is set either to the reconfigured window or to its
parent, depending on whether StructureNotify or SubstructureNo-
tify was selected. The window member is set to the window
whose size, position, border, and/or stacking order was changed.

The x and y members are set to the coordinates relative to the
parent window’s origin and indicate the position of the upper-left
outside corner of the window. The width and height members are
set to the inside size of the window, not including the border. The
border_width member is set to the width of the window’s border,
in pixels.

The above member is set to the sibling window and is used for
stacking operations. If the X server sets this member to None, the
window whose state was changed is on the bottom of the stack

March 26, 1992 8−27

-- --

X Window System

with respect to sibling windows. However, if this member is set to
a sibling window, the window whose state was changed is placed
on top of this sibling window.

The override_redirect member is set to the override-redirect attri-
bute of the window. Window manager clients normally should
ignore this window if the override_redirect member is True.

8.4.6.3 CreateNotify Events

The X server can report CreateNotify events to clients wanting
information about creation of windows. The X server generates
this event whenever a client application creates a window by cal-
ling XCreateWindow or XCreateSimpleWindow.

To receive CreateNotify events, set the SubstructureNotifyMask
bit in the event-mask attribute of the window. Creating any chil-
dren then generates an event.

The structure for the event type contains:

typedef struct {
int type; /* CreateNotify */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window parent; /* parent of the window */
Window window; /* window id of window created */
int x, y; /* window location */
int width, height; /* size of window */
int border_width; /* border width */
Bool override_redirect; /* creation should be overridden */

} XCreateWindowEvent;

The parent member is set to the created window’s parent. The
window member specifies the created window. The x and y
members are set to the created window’s coordinates relative to the
parent window’s origin and indicate the position of the upper-left
outside corner of the created window. The width and height
members are set to the inside size of the created window (not
including the border) and are always nonzero. The border_width
member is set to the width of the created window’s border, in pix-
els. The override_ redirect member is set to the override-redirect
attribute of the window. Window manager clients normally should
ignore this window if the override_ redirect member is True.

8−28 March 26, 1992

-- --

Events and Event-Handling Functions

8.4.6.4 DestroyNotify Events

The X server can report DestroyNotify events to clients wanting
information about which windows are destroyed. The X server
generates this event whenever a client application destroys a win-
dow by calling XDestroyWindow or
XDestroySubwindows.

The ordering of the DestroyNotify events is such that for any given
window, DestroyNotify is generated on all inferiors of the window
before being generated on the window itself. The X protocol does
not constrain the ordering among siblings and across subhierar-
chies.

To receive DestroyNotify events, set the StructureNotifyMask bit
in the event-mask attribute of the window or the SubstructureNo-
tifyMask bit in the event-mask attribute of the parent window (in
which case, destroying any child generates an event).

The structure for this event type contains:

typedef struct {
int type; /* DestroyNotify */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window event;
Window window;

} XDestroyWindowEvent;

The event member is set either to the destroyed window or to its
parent, depending on whether StructureNotify or SubstructureNo-
tify was selected. The window member is set to the window that is
destroyed.

8.4.6.5 GravityNotify Events

The X server can report GravityNotify events to clients wanting
information about when a window is moved because of a change in
the size of its parent. The X server generates this event whenever a
client application actually moves a child window as a result of
resizing its parent by calling XConfigureWindow, XMo-
veResizeWindow, or XResizeWindow.

To receive GravityNotify events, set the StructureNotifyMask bit
in the event-mask attribute of the window or the SubstructureNo-
tifyMask bit in the event-mask attribute of the parent window (in

March 26, 1992 8−29

-- --

X Window System

which case, any child that is moved because its parent has been
resized generates an event).

The structure for this event type contains:

typedef struct {
int type; /* GravityNotify */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window event;
Window window;
int x, y;

} XGravityEvent;

The event member is set either to the window that was moved or to
its parent, depending on whether StructureNotify or Substruc-
tureNotify was selected. The window member is set to the child
window that was moved. The x and y members are set to the coor-
dinates relative to the new parent window’s origin and indicate the
position of the upper-left outside corner of the window.

8.4.6.6 MapNotify Events

The X server can report MapNotify events to clients wanting infor-
mation about which windows are mapped. The X server generates
this event type whenever a client application changes the window’s
state from unmapped to mapped by calling XMapWindow,
XMapRaised, XMapSubwindows, XReparentWindow, or as a
result of save-set processing.

To receive MapNotify events, set the StructureNotifyMask bit in
the event-mask attribute of the window or the SubstructureNo-
tifyMask bit in the event-mask attribute of the parent window (in
which case, mapping any child generates an event).

The structure for this event type contains:

typedef struct {
int type; /* MapNotify */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window event;
Window window;
Bool override_redirect; /* boolean, is override set . . . */

} XMapEvent;

8−30 March 26, 1992

-- --

Events and Event-Handling Functions

The event member is set either to the window that was mapped or
to its parent, depending on whether StructureNotify or Substruc-
tureNotify was selected. The window member is set to the win-
dow that was mapped. The override_redirect member is set to the
override-redirect attribute of the window. Window manager clients
normally should ignore this window if the override-redirect attri-
bute is True, because these events usually are generated from pop-
ups, which override structure control.

8.4.6.7 MappingNotify Events

The X server reports MappingNotify events to all clients. There
is no mechanism to express disinterest in this event. The X server
generates this event type whenever a client application successfully
calls:

• XSetModifierMapping to indicate which KeyCodes are to be
used as modifiers

• XChangeKeyboardMapping to change the keyboard map-
ping

• XSetPointerMapping to set the pointer mapping

The structure for this event type contains:

typedef struct {
int type; /* MappingNotify */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window window; /* unused */
int request; /* one of MappingModifier, MappingKeyboard,

MappingPointer */
int first_keycode; /* first keycode */
int count; /* defines range of change w. first_keyco

} XMappingEvent;

The request member is set to indicate the kind of mapping change
that occurred and can be MappingModifier, MappingKeyboard,
MappingPointer. If it is MappingModifier, the modifier map-
ping was changed. If it is MappingKeyboard, the keyboard map-
ping was changed. If it is MappingPointer, the pointer button
mapping was changed. The first_keycode and count members are
set only if the request member was set to MappingKeyboard.
The number in first_keycode represents the first number in the
range of the altered mapping, and count represents the number of
keycodes altered.

March 26, 1992 8−31

-- --

X Window System

To update the client application’s knowledge of the keyboard, you
should call XRefreshKeyboardMapping.

8.4.6.8 ReparentNotify Events

The X server can report ReparentNotify events to clients wanting
information about changing a window’s parent. The X server gen-
erates this event whenever a client application calls
XReparentWindow and the window is actually reparented.

To receive ReparentNotify events, set the StructureNotifyMask
bit in the event-mask attribute of the window or the Substruc-
tureNotifyMask bit in the event-mask attribute of either the old or
the new parent window (in which case, reparenting any child gen-
erates an event).

The structure for this event type contains:

typedef struct {
int type; /* ReparentNotify */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window event;
Window window;
Window parent;
int x, y;
Bool override_redirect;

} XReparentEvent;

The event member is set either to the reparented window or to the
old or the new parent, depending on whether StructureNotify or
SubstructureNotify was selected. The window member is set to the
window that was reparented. The parent member is set to the new
parent window. The x and y members are set to the reparented
window’s coordinates relative to the new parent window’s origin
and define the upper-left outer corner of the reparented window.
The override_redirect member is set to the override-redirect attri-
bute of the window specified by the window member. Window
manager clients normally should ignore this window if the over-
ride_redirect member is True.

8.4.6.9 UnmapNotify Events

The X server can report UnmapNotify events to clients wanting

8−32 March 26, 1992

-- --

Events and Event-Handling Functions

information about which windows are unmapped. The X server
generates this event type whenever a client application changes the
window’s state from mapped to unmapped.

To receive UnmapNotify events, set the StructureNotifyMask bit
in the event-mask attribute of the window or the SubstructureNo-
tifyMask bit in the event-mask attribute of the parent window (in
which case, unmapping any child window generates an event).

The structure for this event type contains:

typedef struct {
int type; /* UnmapNotify */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window event;
Window window;
Bool from_configure;

} XUnmapEvent;

The event member is set either to the unmapped window or to its
parent, depending on whether StructureNotify or SubstructureNo-
tify was selected. This is the window used by the X server to
report the event. The window member is set to the window that
was unmapped. The from_configure member is set to True if the
event was generated as a result of a resizing of the window’s parent
when the window itself had a win_gravity of UnmapGravity.

8.4.6.10 VisibilityNotify Events

The X server can report VisibilityNotify events to clients wanting
any change in the visibility of the specified window. A region of a
window is visible if someone looking at the screen can actually see
it. The X server generates this event whenever the visibility
changes state. However, this event is never generated for windows
whose class is InputOnly.

All VisibilityNotify events caused by a hierarchy change are gen-
erated after any hierarchy event (UnmapNotify, MapNotify,
ConfigureNotify,
GravityNotify, CirculateNotify) caused by that change. Any
VisibilityNotify event on a given window is generated before any
Expose events on that window, but it is not required that all Visi-
bilityNotify events on all windows be generated before all Expose
events on all windows. The X protocol does not constrain the ord-
ering of VisibilityNotify events with respect to FocusOut, Enter-
Notify, and LeaveNotify events.

March 26, 1992 8−33

-- --

X Window System

To receive VisibilityNotify events, set the VisibilityChangeMask
bit in the event-mask attribute of the window.

The structure for this event type contains:

typedef struct {
int type; /* VisibilityNotify */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window window;
int state;

} XVisibilityEvent;

The window member is set to the window whose visibility state
changes. The state member is set to the state of the window’s visi-
bility and can be VisibilityUnobscured, VisibilityPartiallyOb-
scured, or VisibilityFullyObscured. The X server ignores all of a
window’s subwindows when determining the visibility state of the
window and processes VisibilityNotify events according to the fol-
lowing:

• When the window changes state from partially obscured, fully
obscured, or not viewable to viewable and completely unob-
scured, the X server generates the event with the state member
of the XVisibilityEvent structure set to VisibilityUnobscured.

• When the window changes state from viewable and completely
unobscured or not viewable to viewable and partially obscured,
the X server generates the event with the state member of the
XVisibilityEvent structure set to VisibilityPartiallyObscured.

• When the window changes state from viewable and completely
unobscured, viewable and partially obscured, or not viewable to
viewable and fully obscured, the X server generates the event
with the state member of the XVisibilityEvent structure set to
VisibilityFullyObscured.

8.4.7 Structure Control Events

This section discusses:

• CirculateRequest events

• ConfigureRequest events

• MapRequest events

• ResizeRequest events

8−34 March 26, 1992

-- --

Events and Event-Handling Functions

8.4.7.1 CirculateRequest Events

The X server can report CirculateRequest events to clients want-
ing information about when another client initiates a circulate win-
dow request on a specified window. The X server generates this
event type whenever a client initiates a circulate window request on
a window and a subwindow actually needs to be restacked. The
client initiates a circulate window request on the window by calling
XCirculateSubwindows, XCirculateSubwindowsUp, or
XCirculateSubwindowsDown.

To receive CirculateRequest events, set the Substruc-
tureRedirectMask in the event-mask attribute of the window.
Then, in the future, the circulate window request for the specified
window is not executed, and thus, any subwindow’s position in the
stack is not changed. For example, suppose a client application
calls XCirculateSubwindowsUp to raise a subwindow to the top
of the stack. If you had selected SubstructureRedirectMask on
the window, the X server reports to you a CirculateRequest event
and does not raise the subwindow to the top of the stack.

The structure for this event type contains:

typedef struct {
int type; /* CirculateRequest */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window parent;
Window window;
int place; /* PlaceOnTop, PlaceOnBottom */

} XCirculateRequestEvent;

The parent member is set to the parent window. The window
member is set to the subwindow to be restacked. The place
member is set to what the new position in the stacking order
should be and is either PlaceOnTop or PlaceOnBottom. If it is
PlaceOnTop, the subwindow should be on top of all siblings. If it
is PlaceOnBottom, the subwindow should be below all siblings.

8.4.7.2 ConfigureRequest Events

The X server can report ConfigureRequest events to clients want-
ing information about when a different client initiates a configure
window request on any child of a specified window. The configure
window request attempts to reconfigure a window’s size, position,

March 26, 1992 8−35

-- --

X Window System

border, and stacking order. The X server generates this event
whenever a different client initiates a configure window request on
a window by calling XConfigureWindow, XLowerWindow,
XRaiseWindow, XMapRaised, XMoveResizeWindow, XMo-
veWindow, XResizeWindow, XRestackWindows, or XSetWin-
dowBorderWidth.

To receive ConfigureRequest events, set the Substruc-
tureRedirectMask bit in the event-mask attribute of the window.
ConfigureRequest events are generated when a
ConfigureWindow protocol request is issued on a child window
by another client. For example, suppose a client application calls
XLowerWindow to lower a window. If you had selected
SubstructureRedirectMask on the parent window and if the
override-redirect attribute of the window is set to False, the X
server reports a ConfigureRequest event to you and does not
lower the specified window.

The structure for this event type contains:

typedef struct {
int type; /* ConfigureRequest */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window parent;
Window window;
int x, y;
int width, height;
int border_width;
Window above;
int detail; /* Above, Below, TopIf, BottomIf, Opposite */
unsigned long value_mask;

} XConfigureRequestEvent;

The parent member is set to the parent window. The window
member is set to the window whose size, position, border width,
and/or stacking order is to be reconfigured. The value_mask
member indicates which components were specified in the
ConfigureWindow protocol request. The corresponding values are
reported as given in the request. The remaining values are filled in
from the current geometry of the window, except in the case of
above (sibling) and detail (stack-mode), which are reported as
Above and None, respectively, if they are not given in the
request.

8−36 March 26, 1992

-- --

Events and Event-Handling Functions

8.4.7.3 MapRequest Events

The X server can report MapRequest events to clients wanting
information about a different client’s desire to map windows. A
window is considered mapped when a map window request com-
pletes. The X server generates this event whenever a different
client initiates a map window request on an unmapped window
whose override_redirect member is set to False. Clients initiate
map window requests by calling XMapWindow, XMapRaised, or
XMapSubwindows.

To receive MapRequest events, set the Substruc-
tureRedirectMask bit in the event-mask attribute of the window.
This means another client’s attempts to map a child window by
calling one of the map window request functions is intercepted, and
you are sent a MapRequest instead. For example, suppose a client
application calls XMapWindow to map a window. If you (usually
a window manager) had selected SubstructureRedirectMask on
the parent window and if the override-redirect attribute of the win-
dow is set to False, the X server reports a MapRequest event to
you and does not map the specified window. Thus, this event
gives your window manager client the ability to control the place-
ment of subwindows.

The structure for this event type contains:

typedef struct {
int type; /* MapRequest */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window parent;
Window window;

} XMapRequestEvent;

The parent member is set to the parent window. The window
member is set to the window to be mapped.

8.4.7.4 ResizeRequest Events

The X server can report ResizeRequest events to clients wanting
information about another client’s attempts to change the size of a
window. The X server generates this event whenever some other
client attempts to change the size of the specified window by cal-
ling XConfigureWindow, XResizeWindow, or XMo-
veResizeWindow.

March 26, 1992 8−37

-- --

X Window System

To receive ResizeRequest events, set the ResizeRedirect bit in the
event-mask attribute of the window. Any attempts to change the
size by other clients are then redirected.

The structure for this event type contains:

typedef struct {
int type; /* ResizeRequest */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window window;
int width, height;

} XResizeRequestEvent;

The window member is set to the window whose size another
client attempted to change. The width and height members are set
to the inside size of the window, excluding the border.

8.4.8 Colormap State Change Events

The X server can report ColormapNotify events to clients wanting
information about when the colormap changes and when a color-
map is installed or uninstalled. The X server generates this event
type whenever a client application:

• Changes the colormap member of the XSetWindowAttributes
structure by calling XChangeWindowAttributes, XFreeColor-
map, or XSetWindowColormap

• Installs or uninstalls the colormap by calling XInstall-
Colormap or XUninstallColormap

To receive ColormapNotify events, set the Colormap-
ChangeMask bit in the event-mask attribute of the window.

The structure for this event type contains:

typedef struct {
int type; /* ColormapNotify */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window window;
Colormap colormap; /* colormap or None */
Bool new;
int state; /* ColormapInstalled, ColormapUninstalled */

} XColormapEvent;

8−38 March 26, 1992

-- --

Events and Event-Handling Functions

The window member is set to the window whose associated color-
map is changed, installed, or uninstalled. For a colormap that is
changed, installed, or uninstalled, the colormap member is set to
the colormap associated with the window. For a colormap that is
changed by a call to XFreeColormap, the colormap member is set
to None. The new member is set to indicate whether the colormap
for the specified window was changed or installed or uninstalled
and can be True or False. If it is True, the colormap was changed.
If it is False, the colormap was installed or uninstalled. The state
member is always set to indicate whether the colormap is installed
or uninstalled and can be ColormapInstalled or ColormapUnin-
stalled.

8.4.9 Client Communication Events

This section discusses:

• ClientMessage events

• PropertyNotify events

• SelectionClear events

• SelectionNotify events

• SelectionRequest events

8.4.9.1 ClientMessage Events

The X server generates ClientMessage events only when a client
calls the function XSendEvent.

The structure for this event type contains:

typedef struct {
int type; /* ClientMessage */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window window;
Atom message_type;
int format;
union {

char b[20];
short s[10];
long l[5];

March 26, 1992 8−39

-- --

X Window System

} data;
} XClientMessageEvent;

The message_type member is set to an atom that indicates how the
data should be interpreted by the receiving client. The format
member is set to 8, 16, or 32 and specifies whether the data should
be viewed as a list of bytes, shorts, or longs. The data member is a
union that contains the members b, s, and l. The b, s, and l
members represent data of 20 8-bit values, 10 16-bit values, and 5
32-bit values. Particular message types might not make use of all
these values. The X server places no interpretation on the values in
the message_type or data members.

8.4.9.2 PropertyNotify Events

The X server can report PropertyNotify events to clients wanting
information about property changes for a specified window.

To receive PropertyNotify events, set the PropertyChangeMask
bit in the event-mask attribute of the window.

The structure for this event type contains:

typedef struct {
int type; /* PropertyNotify */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window window;
Atom atom;
Time time;
int state; /* PropertyNewValue or PropertyDelete */

} XPropertyEvent;

The window member is set to the window whose associated pro-
perty was changed. The atom member is set to the property’s atom
and indicates which property was changed or desired. The time
member is set to the server time when the property was changed.
The state member is set to indicate whether the property was
changed to a new value or deleted and can be PropertyNewValue
or PropertyDelete. The state member is set to Proper-
tyNewValue when a property of the window is changed using
XChangeProperty or XRotateWindowProperties (even when
adding zero-length data using XChangeProperty) and when
replacing all or part of a property with identical data using
XChangeProperty or XRotateWindowProperties. The state
member is set to PropertyDelete when a property of the window is
deleted using XDeleteProperty or, if the delete argument is True,

8−40 March 26, 1992

-- --

Events and Event-Handling Functions

XGetWindowProperty.

8.4.9.3 SelectionClear Events

The X server reports SelectionClear events to the current owner of
a selection. The X server generates this event type on the window
losing ownership of the selection to a new owner. This sequence
of events could occur whenever a client calls XSetSelec-
tionOwner.

The structure for this event type contains:

typedef struct {
int type; /* SelectionClear */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window window;
Atom selection;
Time time;

} XSelectionClearEvent;

The window member is set to the window losing ownership of the
selection. The selection member is set to the selection atom. The
time member is set to the last change time recorded for the selec-
tion. The owner member is the window that was specified by the
current owner in its XSetSelectionOwner call.

8.4.9.4 SelectionRequest Events

The X server reports SelectionRequest events to the owner of a
selection. The X server generates this event whenever a client
requests a selection conversion by calling XConvertSelection and
the specified selection is owned by a window.

The structure for this event type contains:

typedef struct {
int type; /* SelectionRequest */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window owner;
Window requestor;
Atom selection;

March 26, 1992 8−41

-- --

X Window System

Atom target;
Atom property;
Time time;

} XSelectionRequestEvent;

The owner member is set to the window owning the selection and
is the window that was specified by the current owner in its XSet-
SelectionOwner call. The requestor member is set to the window
requesting the selection. The selection member is set to the atom
that names the selection. For example, PRIMARY is used to indi-
cate the primary selection. The target member is set to the atom
that indicates the type the selection is desired in. The property
member can be a property name or None. The time member is set
to the time and is a timestamp or CurrentTime from the Convert-
Selection request.

The owner should convert the selection based on the specified tar-
get type and send a SelectionNotify event back to the requestor. A
complete specification for using selections is given in part III,
‘‘Inter-Client Communication Conventions Manual.’’

8.4.9.5 SelectionNotify Events

This event is generated by the X server in response to a Convert-
Selection protocol request when there is no owner for the selec-
tion. When there is an owner, it should be generated by the owner
of the selection by using XSendEvent. The owner of a selection
should send this event to a requestor when a selection has been
converted and stored as a property or when a selection conversion
could not be performed (which is indicated by setting the property
member to None).

If None is specified as the property in the ConvertSelection proto-
col request, the owner should choose a property name, store the
result as that property on the requestor window, and then send a
SelectionNotify giving that actual property name.

The structure for this event type contains:

typedef struct {
int type; /* SelectionNotify */
unsigned long serial; /* # of last request processed by server
Bool send_event; /* true if this came from a SendEvent requ
Display *display; /* Display the event was read from */
Window requestor;
Atom selection;
Atom target;
Atom property; /* atom or None */

8−42 March 26, 1992

-- --

Events and Event-Handling Functions

Time time;
} XSelectionEvent;

The requestor member is set to the window associated with the
requestor of the selection. The selection member is set to the atom
that indicates the selection. For example, PRIMARY is used for
the primary selection. The target member is set to the atom that
indicates the converted type. For example, PIXMAP is used for a
pixmap. The property member is set to the atom that indicates
which property the result was stored on. If the conversion failed,
the property member is set to None. The time member is set to
the time the conversion took place and can be a timestamp or
CurrentTime.

8.5 Selecting Events

There are two ways to select the events you want reported to your
client application. One way is to set the event_mask member of
the XSetWindowAttributes structure when you call XCreateWin-
dow and XChangeWindowAttributes. Another way is to use
XSelectInput.

XSelectInput(display, w, event_mask)
Display *display;
Window w;
long event_mask;

display Specifies the connection to the X server.

w Specifies the window whose events you are
interested in.

event_mask Specifies the event mask.

The XSelectInput function requests that the X server report the
events associated with the specified event mask. Initially, X will
not report any of these events. Events are reported relative to a
window. If a window is not interested in a device event, it usually
propagates to the closest ancestor that is interested, unless the
do_not_propagate mask prohibits it.

Setting the event-mask attribute of a window overrides any previ-
ous call for the same window but not for other clients. Multiple
clients can select for the same events on the same window with the
following restrictions:

• Multiple clients can select events on the same window because
their event masks are disjoint. When the X server generates an
event, it reports it to all interested clients.

March 26, 1992 8−43

-- --

X Window System

• Only one client at a time can select CirculateRequest,
ConfigureRequest, or MapRequest events, which are associ-
ated with the event mask SubstructureRedirectMask.

• Only one client at a time can select a ResizeRequest event,
which is associated with the event mask ResizeRedirectMask.

• Only one client at a time can select a ButtonPress event, which
is associated with the event mask ButtonPressMask.

The server reports the event to all interested clients.

XSelectInput can generate a BadWindow error.

8.6 Handling the Output Buffer

The output buffer is an area used by Xlib to store requests. The
functions described in this section flush the output buffer if the
function would block or not return an event. That is, all requests
residing in the output buffer that have not yet been sent are
transmitted to the X server. These functions differ in the additional
tasks they might perform.

To flush the output buffer, use XFlush.

XFlush(display)
Display *display;

display Specifies the connection to the X server.

The XFlush function flushes the output buffer. Most client applica-
tions need not use this function because the output buffer is
automatically flushed as needed by calls to XPending, XNex-
tEvent, and XWindowEvent. Events generated by the server may
be enqueued into the library’s event queue.

To flush the output buffer and then wait until all requests have
been processed, use XSync.

XSync(display, discard)
Display *display;
Bool discard;

display Specifies the connection to the X server.

discard Specifies a Boolean value that indicates
whether XSync discards all events on the
event queue.

The XSync function flushes the output buffer and then waits until
all requests have been received and processed by the X server.

8−44 March 26, 1992

-- --

Events and Event-Handling Functions

Any errors generated must be handled by the error handler. For
each error event received by Xlib, XSync calls the client
application’s error handling routine (see section 8.12.2). Any
events generated by the server are enqueued into the library’s event
queue.

Finally, if you passed False, XSync does not discard the events in
the queue. If you passed True, XSync discards all events in the
queue, including those events that were on the queue before XSync
was called. Client applications seldom need to call XSync.

8.7 Event Queue Management

Xlib maintains an event queue. However, the operating system
also may be buffering data in its network connection that is not yet
read into the event queue.

To check the number of events in the event queue, use
XEventsQueued.

int XEventsQueued(display, mode)
Display *display;
int mode;

display Specifies the connection to the X server.

mode Specifies the mode. You can pass
QueuedAlready, QueuedAfterFlush, or
QueuedAfterReading.

If mode is QueuedAlready, XEventsQueued returns the number
of events already in the event queue (and never performs a system
call). If mode is QueuedAfterFlush, XEventsQueued returns the
number of events already in the queue if the number is nonzero. If
there are no events in the queue, XEventsQueued flushes the out-
put buffer, attempts to read more events out of the application’s
connection, and returns the number read. If mode is QueuedAf-
terReading, XEventsQueued returns the number of events
already in the queue if the number is nonzero. If there are no
events in the queue, XEventsQueued attempts to read more events
out of the application’s connection without flushing the output
buffer and returns the number read.

XEventsQueued always returns immediately without I/O if there
are events already in the queue. XEventsQueued with mode
QueuedAfterFlush is identical in behavior to XPending.
XEventsQueued with mode QueuedAlready is identical to the
XQLength function.

March 26, 1992 8−45

-- --

X Window System

To return the number of events that are pending, use XPending.

int XPending(display)
Display *display;

display Specifies the connection to the X server.

The XPending function returns the number of events that have
been received from the X server but have not been removed from
the event queue.
XPending is identical to XEventsQueued with the mode
QueuedAfterFlush specified.

8.8 Manipulating the Event Queue

Xlib provides functions that let you manipulate the event queue.
The next three sections discuss how to:

• Obtain events, in order, and remove them from the queue

• Peek at events in the queue without removing them

• Obtain events that match the event mask or the arbitrary predi-
cate procedures that you provide

8.8.1 Returning the Next Event

To get the next event and remove it from the queue, use XNex-
tEvent.

XNextEvent(display, event_return)
Display *display;
XEvent *event_return;

display Specifies the connection to the X server.

event_return Returns the next event in the queue.

The XNextEvent function copies the first event from the event
queue into the specified XEvent structure and then removes it from
the queue. If the event queue is empty, XNextEvent flushes the
output buffer and blocks until an event is received.

To peek at the event queue, use XPeekEvent.

XPeekEvent(display, event_return)
Display *display;
XEvent *event_return;

8−46 March 26, 1992

-- --

Events and Event-Handling Functions

display Specifies the connection to the X server.

event_return Returns a copy of the matched event’s
associated structure.

The XPeekEvent function returns the first event from the event
queue, but it does not remove the event from the queue. If the
queue is empty, XPeekEvent flushes the output buffer and blocks
until an event is received. It then copies the event into the client-
supplied XEvent structure without removing it from the event
queue.

8.8.2 Selecting Events Using a Predicate Procedure

Each of the functions discussed in this section requires you to pass
a predicate procedure that determines if an event matches what you
want. Your predicate procedure must decide only if the event is
useful and must not call Xlib functions. In particular, a predicate is
called from inside the event routine, which must lock data struc-
tures so that the event queue is consistent in a multi-threaded
environment.

The predicate procedure and its associated arguments are:

Bool (*predicate)(display, event, arg)
Display *display;
XEvent *event;
char *arg;

display Specifies the connection to the X server.

event Specifies the XEvent structure.

arg Specifies the argument passed in from the
XIfEvent, XCheckIfEvent, or XPeekI-
fEvent function.

The predicate procedure is called once for each event in the queue
until it finds a match. After finding a match, the predicate pro-
cedure must return True. If it did not find a match, it must return
False.

To check the event queue for a matching event and, if found,
remove the event from the queue, use XIfEvent.

XIfEvent(display, event_return, predicate, arg)
Display *display;
XEvent *event_return;
Bool (*predicate)();
char *arg;

March 26, 1992 8−47

-- --

X Window System

display Specifies the connection to the X server.

event_return Returns the matched event’s associated
structure.

predicate Specifies the procedure that is to be called
to determine if the next event in the queue
matches what you want.

arg Specifies the user-supplied argument that
will be passed to the predicate procedure.

The XIfEvent function completes only when the specified predicate
procedure returns True for an event, which indicates an event in the
queue matches. XIfEvent flushes the output buffer if it blocks
waiting for additional events. XIfEvent removes the matching
event from the queue and copies the structure into the client-
supplied XEvent structure.

To check the event queue for a matching event without blocking,
use XCheckIfEvent.

Bool XCheckIfEvent(display, event_return, predicate, arg)
Display *display;
XEvent *event_return;
Bool (*predicate)();
char *arg;

display Specifies the connection to the X server.

event_return Returns a copy of the matched event’s
associated structure.

predicate Specifies the procedure that is to be called
to determine if the next event in the queue
matches what you want.

arg Specifies the user-supplied argument that
will be passed to the predicate procedure.

When the predicate procedure finds a match, XCheckIfEvent
copies the matched event into the client-supplied XEvent structure
and returns True. (This event is removed from the queue.) If the
predicate procedure finds no match, XCheckIfEvent returns False,
and the output buffer will have been flushed. All earlier events
stored in the queue are not discarded.

To check the event queue for a matching event without removing
the event from the queue, use XPeekIfEvent.

XPeekIfEvent(display, event_return, predicate, arg)
Display *display;
XEvent *event_return;
Bool (*predicate)();

8−48 March 26, 1992

-- --

Events and Event-Handling Functions

char *arg;

display Specifies the connection to the X server.

event_return Returns a copy of the matched event’s
associated structure.

predicate Specifies the procedure that is to be called
to determine if the next event in the queue
matches what you want.

arg Specifies the user-supplied argument that
will be passed to the predicate procedure.

The XPeekIfEvent function returns only when the specified predi-
cate procedure returns True for an event. After the predicate pro-
cedure finds a match, XPeekIfEvent copies the matched event into
the client-supplied XEvent structure without removing the event
from the queue. XPeekIfEvent flushes the output buffer if it
blocks waiting for additional events.

8.8.3 Selecting Events Using a Window or Event Mask

The functions discussed in this section let you select events by
window or event types, allowing you to process events out of
order.

To remove the next event that matches both a window and an event
mask, use XWindowEvent.

XWindowEvent(display, w, event_mask, event_return)
Display *display;
Window w;
long event_mask;
XEvent *event_return;

display Specifies the connection to the X server.

w Specifies the window whose events you are
interested in.

event_mask Specifies the event mask.

event_return Returns the matched event’s associated
structure.

The XWindowEvent function searches the event queue for an
event that matches both the specified window and event mask.
When it finds a match, XWindowEvent removes that event from
the queue and copies it into the specified XEvent structure. The
other events stored in the queue are not discarded. If a matching

March 26, 1992 8−49

-- --

X Window System

event is not in the queue, XWindowEvent flushes the output buffer
and blocks until one is received.

To remove the next event that matches both a window and an event
mask (if any), use XCheckWindowEvent. This function is simi-
lar to XWindowEvent except that it never blocks and it returns a
Bool indicating if the event was returned.

Bool XCheckWindowEvent(display, w, event_mask, event_return)
Display *display;
Window w;
long event_mask;
XEvent *event_return;

display Specifies the connection to the X server.

w Specifies the window whose events you are
interested in.

event_mask Specifies the event mask.

event_return Returns the matched event’s associated
structure.

The XCheckWindowEvent function searches the event queue and
then the events available on the server connection for the first event
that matches the specified window and event mask. If it finds a
match, XCheckWindowEvent removes that event, copies it into
the specified XEvent structure, and returns True. The other events
stored in the queue are not discarded. If the event you requested is
not available, XCheckWindowEvent returns False, and the output
buffer will have been flushed.

To remove the next event that matches an event mask, use
XMaskEvent.

XMaskEvent(display, event_mask, event_return)
Display *display;
long event_mask;
XEvent *event_return;

display Specifies the connection to the X server.

event_mask Specifies the event mask.

event_return Returns the matched event’s associated
structure.

The XMaskEvent function searches the event queue for the events
associated with the specified mask. When it finds a match,
XMaskEvent removes that event and copies it into the specified
XEvent structure. The other events stored in the queue are not dis-
carded. If the event you requested is not in the queue,
XMaskEvent flushes the output buffer and blocks until one is

8−50 March 26, 1992

-- --

Events and Event-Handling Functions

received.

To return and remove the next event that matches an event mask (if
any), use XCheckMaskEvent. This function is similar to
XMaskEvent except that it never blocks and it returns a Bool indi-
cating if the event was returned.

Bool XCheckMaskEvent(display, event_mask, event_return)
Display *display;
long event_mask;
XEvent *event_return;

display Specifies the connection to the X server.

event_mask Specifies the event mask.

event_return Returns the matched event’s associated
structure.

The XCheckMaskEvent function searches the event queue and
then any events available on the server connection for the first
event that matches the specified mask. If it finds a match,
XCheckMaskEvent removes that event, copies it into the specified
XEvent structure, and returns True. The other events stored in the
queue are not discarded. If the event you requested is not avail-
able, XCheckMaskEvent returns False, and the output buffer will
have been flushed.

To return and remove the next event in the queue that matches an
event type, use XCheckTypedEvent.

Bool XCheckTypedEvent(display, event_type, event_return)
Display *display;
int event_type;
XEvent *event_return;

display Specifies the connection to the X server.

event_type Specifies the event type to be compared.

event_return Returns the matched event’s associated
structure.

The XCheckTypedEvent function searches the event queue and
then any events available on the server connection for the first
event that matches the specified type. If it finds a match, XCheck-
TypedEvent removes that event, copies it into the specified
XEvent structure, and returns True. The other events in the queue
are not discarded. If the event is not available, XCheck-
TypedEvent returns False, and the output buffer will have been
flushed.

To return and remove the next event in the queue that matches an
event type and a window, use XCheckTypedWindowEvent.

March 26, 1992 8−51

-- --

X Window System

Bool XCheckTypedWindowEvent(display, w, event_type, event_return)
Display *display;
Window w;
int event_type;
XEvent *event_return;

display Specifies the connection to the X server.

w Specifies the window.

event_type Specifies the event type to be compared.

event_return Returns the matched event’s associated
structure.

The XCheckTypedWindowEvent function searches the event
queue and then any events available on the server connection for
the first event that matches the specified type and window. If it
finds a match, XCheckTypedWindowEvent removes the event
from the queue, copies it into the specified XEvent structure, and
returns True. The other events in the queue are not discarded. If
the event is not available, XCheckTypedWindowEvent returns
False, and the output buffer will have been flushed.

8.9 Putting an Event Back into the Queue

To push an event back into the event queue, use XPutBackEvent.

XPutBackEvent(display, event)
Display *display;
XEvent *event;

display Specifies the connection to the X server.

event Specifies the event.

The XPutBackEvent function pushes an event back onto the head
of the display’s event queue by copying the event into the queue.
This can be useful if you read an event and then decide that you
would rather deal with it later. There is no limit to the number of
times in succession that you can call XPutBackEvent.

8.10 Sending Events to Other Applications

To send an event to a specified window, use XSendEvent. This
function is often used in selection processing. For example, the

8−52 March 26, 1992

-- --

Events and Event-Handling Functions

owner of a selection should use XSendEvent to send a Selection-
Notify event to a requestor when a selection has been converted
and stored as a property.

Status XSendEvent(display, w, propagate, event_mask, event_send)
Display *display;
Window w;
Bool propagate;
long event_mask;
XEvent *event_send;

display Specifies the connection to the X server.

w Specifies the window the event is to be
sent to, PointerWindow, or InputFocus.

propagate Specifies a Boolean value.

event_mask Specifies the event mask.

event_send Specifies the event that is to be sent.

The XSendEvent function identifies the destination window, deter-
mines which clients should receive the specified events, and
ignores any active grabs. This function requires you to pass an
event mask. For a discussion of the valid event mask names, see
section 8.3. This function uses the w argument to identify the des-
tination window as follows:

• If w is PointerWindow, the destination window is the window
that contains the pointer.

• If w is InputFocus and if the focus window contains the
pointer, the destination window is the window that contains the
pointer; otherwise, the destination window is the focus win-
dow.

To determine which clients should receive the specified events,
XSendEvent uses the propagate argument as follows:

• If event_mask is the empty set, the event is sent to the client
that created the destination window. If that client no longer
exists, no event is sent.

• If propagate is False, the event is sent to every client selecting
on destination any of the event types in the event_mask argu-
ment.

• If propagate is True and no clients have selected on destination
any of the event types in event-mask, the destination is replaced
with the closest ancestor of destination for which some client
has selected a type in event-mask and for which no intervening
window has that type in its do-not-propagate-mask. If no such
window exists or if the window is an ancestor of the focus

March 26, 1992 8−53

-- --

X Window System

window and InputFocus was originally specified as the destina-
tion, the event is not sent to any clients. Otherwise, the event
is reported to every client selecting on the final destination any
of the types specified in event_mask.

The event in the XEvent structure must be one of the core events
or one of the events defined by an extension (or a BadValue error
results) so that the X server can correctly byte-swap the contents as
necessary. The contents of the event are otherwise unaltered and
unchecked by the X server except to force send_event to True in
the forwarded event and to set the serial number in the event
correctly.

XSendEvent returns zero if the conversion to wire protocol format
failed and returns nonzero otherwise.

XSendEvent can generate BadValue and BadWindow errors.

8.11 Getting Pointer Motion History

Some X server implementations will maintain a more complete his-
tory of pointer motion than is reported by event notification. The
pointer position at each pointer hardware interrupt may be stored in
a buffer for later retrieval. This buffer is called the motion history
buffer. For example, a few applications, such as paint programs,
want to have a precise history of where the pointer traveled. How-
ever, this historical information is highly excessive for most appli-
cations.

To determine the approximate maximum number of elements in the
motion buffer, use XDisplayMotionBufferSize.

unsigned long XDisplayMotionBufferSize(display)
Display *display;

display Specifies the connection to the X server.

The server may retain the recent history of the pointer motion and
do so to a finer granularity than is reported by MotionNotify
events. The XGetMotionEvents function makes this history avail-
able.

To get the motion history for a specified window and time, use
XGetMotionEvents.

XTimeCoord *XGetMotionEvents(display, w, start, stop, nevents_return)
Display *display;
Window w;
Time start, stop;

8−54 March 26, 1992

-- --

Events and Event-Handling Functions

int *nevents_return;

display Specifies the connection to the X server.

w Specifies the window.

start, stop Specify the time interval in which the
events are returned from the motion history
buffer. You can pass a timestamp or
CurrentTime.

nevents_return Returns the number of events from the
motion history buffer.

The XGetMotionEvents function returns all events in the motion
history buffer that fall between the specified start and stop times,
inclusive, and that have coordinates that lie within the specified
window (including its borders) at its present placement. If the
server does not support motion history, or if the start time is later
than the stop time, or if the start time is in the future, no events are
returned, and XGetMotionEvents returns NULL. If the stop time
is in the future, it is equivalent to specifying CurrentTime. The
return type for this function is a structure defined as follows:

typedef struct {
Time time;
short x, y;

} XTimeCoord;

The time member is set to the time, in milliseconds. The x and y
members are set to the coordinates of the pointer and are reported
relative to the origin of the specified window. To free the data
returned from this call, use XFree.

XGetMotionEvents can generate a BadWindow error.

8.12 Handling Error Events

Xlib provides functions that you can use to enable or disable syn-
chronization and to use the default error handlers.

8.12.1 Enabling or Disabling Synchronization

When debugging X applications, it often is very convenient to
require Xlib to behave synchronously so that errors are reported as
they occur. The following function lets you disable or enable

March 26, 1992 8−55

-- --

X Window System

synchronous behavior. Note that graphics may occur 30 or more
times more slowly when synchronization is enabled. On POSIX-
conformant systems, there is also a global variable _Xdebug that,
if set to nonzero before starting a program under a debugger, will
force synchronous library behavior.

After completing their work, all Xlib functions that generate proto-
col requests call what is known as an after function. XSetAfter-
Function sets which function is to be called.

int (*XSetAfterFunction(display, procedure))()
Display *display;
int (*procedure)();

display Specifies the connection to the X server.

procedure Specifies the function to be called.

The specified procedure is called with only a display pointer.
XSetAfterFunction returns the previous after function.

To enable or disable synchronization, use XSynchronize.

int (*XSynchronize(display, onoff))()
Display *display;
Bool onoff;

display Specifies the connection to the X server.

onoff Specifies a Boolean value that indicates
whether to enable or disable synchroniza-
tion.

The XSynchronize function returns the previous after function. If
onoff is True, XSynchronize turns on synchronous behavior. If
onoff is False,
XSynchronize turns off synchronous behavior.

8.12.2 Using the Default Error Handlers

There are two default error handlers in Xlib: one to handle typi-
cally fatal conditions (for example, the connection to a display
server dying because a machine crashed) and one to handle error
events from the X server. These error handlers can be changed to
user-supplied routines if you prefer your own error handling and
can be changed as often as you like. If either function is passed a
NULL pointer, it will reinvoke the default handler. The action of
the default handlers is to print an explanatory message and exit.

To set the error handler, use XSetErrorHandler.

8−56 March 26, 1992

-- --

Events and Event-Handling Functions

int (*XSetErrorHandler(handler))()
int (*handler)(Display *, XErrorEvent *)

handler Specifies the program’s supplied error
handler.

Xlib generally calls the program’s supplied error handler whenever
an error is received. It is not called on BadName errors from
OpenFont, LookupColor, or AllocNamedColor protocol requests
or on BadFont errors from a QueryFont protocol request. These
errors generally are reflected back to the program through the pro-
cedural interface. Because this condition is not assumed to be
fatal, it is acceptable for your error handler to return. However, the
error handler should not call any functions (directly or indirectly)
on the display that will generate protocol requests or that will look
for input events. The previous error handler is returned.

The XErrorEvent structure contains:

typedef struct {
int type;
Display *display; /* Display the event was read from */
unsigned long serial; /* serial number of failed request */
unsigned char error_code; /* error code of failed request */
unsigned char request_code; /* Major op-code of failed request */
unsigned char minor_code; /* Minor op-code of failed request */
XID resourceid; /* resource id */

} XErrorEvent;

The serial member is the number of requests, starting from one,
sent over the network connection since it was opened. It is the
number that was the value of NextRequest immediately before the
failing call was made. The request_code member is a protocol
request of the procedure that failed, as defined in
<X11/Xproto.h>. The following error codes can be returned by
the functions described in this chapter:

BadAccess A client attempts to grab a key/button
combination already grabbed by another
client. A client attempts to free a colormap
entry that it had not already allocated.
A client attempts to store into a read-only
or unallocated colormap entry.
A client attempts to modify the access con-
trol list from other than the local (or other-
wise authorized) host.
A client attempts to select an event type
that another client has already selected.

BadAlloc The server fails to allocate the requested
resource. Note that the explicit listing of

March 26, 1992 8−57

-- --

X Window System

BadAlloc errors in requests only covers
allocation errors at a very coarse level and
is not intended to (nor can it in practice
hope to) cover all cases of a server running
out of allocation space in the middle of
service. The semantics when a server runs
out of allocation space are left unspecified,
but a server may generate a BadAlloc error
on any request for this reason, and clients
should be prepared to receive such errors
and handle or discard them.

BadAtom A value for an atom argument does not
name a defined atom.

BadColor A value for a colormap argument does not
name a defined colormap.

BadCursor A value for a cursor argument does not
name a defined cursor.

BadDrawable A value for a drawable argument does not
name a defined window or pixmap.

BadFont A value for a font argument does not name
a defined font (or, in some cases, GCon-
text).

BadGC A value for a GContext argument does not
name a defined GContext.

BadIDChoice The value chosen for a resource identifier
either is not included in the range assigned
to the client or is already in use. Under
normal circumstances, this cannot occur
and should be considered a server or Xlib
error.

BadImplementation
The server does not implement some
aspect of the request. A server that gen-
erates this error for a core request is
deficient. As such, this error is not listed
for any of the requests, but clients should
be prepared to receive such errors and han-
dle or discard them.

BadLength The length of a request is shorter or longer
than that required to contain the argu-
ments. This is an internal Xlib or server
error.
The length of a request exceeds the

8−58 March 26, 1992

-- --

Events and Event-Handling Functions

maximum length accepted by the server.

BadMatch In a graphics request, the root and depth of
the graphics context does not match that of
the drawable.
An InputOnly window is used as a draw-
able.
Some argument or pair of arguments has
the correct type and range, but it fails to
match in some other way required by the
request.
An InputOnly window lacks this attri-
bute.

BadName A font or color of the specified name does
not exist.

BadPixmap A value for a pixmap argument does not
name a defined pixmap.

BadRequest The major or minor opcode does not
specify a valid request. This usually is an
Xlib or server error.

BadValue Some numeric value falls outside of the
range of values accepted by the request.
Unless a specific range is specified for an
argument, the full range defined by the
argument’s type is accepted. Any argu-
ment defined as a set of alternatives typi-
cally can generate this error (due to the
encoding).

BadWindow A value for a window argument does not
name a defined window.

Note: The BadAtom, BadColor, BadCursor, BadDraw-
able, BadFont, BadGC, BadPixmap, and
BadWindow errors are also used when the argu-
ment type is extended by a set of fixed alterna-
tives.

To obtain textual descriptions of the specified error code, use
XGetErrorText.

XGetErrorText(display, code, buffer_return, length)
Display *display;
int code;
char *buffer_return;
int length;

display Specifies the connection to the X server.

March 26, 1992 8−59

-- --

X Window System

code Specifies the error code for which you
want to obtain a description.

buffer_return Returns the error description.

length Specifies the size of the buffer.

The XGetErrorText function copies a null-terminated string
describing the specified error code into the specified buffer. It is
recommended that you use this function to obtain an error descrip-
tion because extensions to Xlib may define their own error codes
and error strings.

To obtain error messages from the error database, use XGetError-
DatabaseText.

XGetErrorDatabaseText(display, name, message, default_string, buffer_return, length)
Display *display;
char *name, *message;
char *default_string;
char *buffer_return;
int length;

display Specifies the connection to the X server.

name Specifies the name of the application.

message Specifies the type of the error message.

default_string Specifies the default error message if none
is found in the database.

buffer_return Returns the error description.

length Specifies the size of the buffer.

The XGetErrorDatabaseText function returns a message (or the
default message) from the error message database. Xlib uses this
function internally to look up its error messages. On a POSIX-
conformant system, the error message database is
/usr/lib/X11/XErrorDB.

The name argument should generally be the name of your applica-
tion. The message argument should indicate which type of error
message you want. Xlib uses three predefined message types to
report errors (uppercase and lowercase matter):

XProtoError The protocol error number is used as a
string for the message argument.

XlibMessage These are the message strings that are used
internally by the library.

XRequest For a core protocol request, the major
request protocol number is used for the
message argument. For an extension

8−60 March 26, 1992

-- --

Events and Event-Handling Functions

request, the extension name (as given by
InitExtension) followed by a period (.) and
the minor request protocol number is used
for the message argument. If no string is
found in the error database, the
default_string is returned to the buffer
argument.

To report an error to the user when the requested display does not
exist, use XDisplayName.

char *XDisplayName(string)
char *string;

string Specifies the character string.

The XDisplayName function returns the name of the display that
XOpenDisplay would attempt to use. If a NULL string is
specified, XDisplayName looks in the environment for the display
and returns the display name that XOpenDisplay would attempt to
use. This makes it easier to report to the user precisely which
display the program attempted to open when the initial connection
attempt failed.

To handle fatal I/O errors, use XSetIOErrorHandler.

int (*XSetIOErrorHandler(handler))()
int (*handler)(Display *);

handler Specifies the program’s supplied error
handler.

The XSetIOErrorHandler sets the fatal I/O error handler. Xlib
calls the program’s supplied error handler if any sort of system call
error occurs (for example, the connection to the server was lost).
This is assumed to be a fatal condition, and the called routine
should not return. If the I/O error handler does return, the client
process exits.

Note that the previous error handler is returned.

March 26, 1992 8−61

-- --

Chapter 9. Inter-Client Communication Func-
tions

Part III, ‘‘Inter-Client Communication Conventions Manual,’’ hereafter referred to as
the ICCCM, details the X Consortium approved conventions that govern inter-client
communications. These conventions ensure peer-to-peer client cooperation in the use of
selections, cut buffers, and shared resources as well as client cooperation with window
and session managers. For further information, see part III.

Xlib provides a number of standard properties and programming interfaces that are
ICCCM compliant. The predefined atoms for some of these properties are defined in the
<X11/Xatom.h> header file, where to avoid name conflicts with user symbols their
#define name has an XA_ prefix. For further information about atoms and properties,
see section 4.2.

Xlib’s selection and cut buffer mechanisms provide the primary programming interfaces
by which peer client applications communicate with each other (see sections 4.4 and
10.7). The functions discussed in this chapter provide the primary programming inter-
faces by which client applications communicate with their window and session
managers as well as share standard colormaps.

The standard properties that are of special interest for communicating with window and
session managers are:

33
Name Type Format Description
33
WM_CLASS STRING 8 Set by application

programs to allow window
and session managers to
obtain the application’s
resources from the
resource database.

WM_CLIENT_MACHINE TEXT The string name of
the machine on which the
client application is
running.

WM_COLORMAP_WINDOWS WINDOW 32 The list of window

March 26, 1992 9−1

-- --

X Window System

IDs that may need
a different colormap
than that of their
top-level window.

WM_COMMAND TEXT The command and argu-
ments, separated by
ASCII nulls, used to
invoke the application.

WM_HINTS WM_HINTS 32 Additional hints
set by the client for use
by the window manager.
The C type of this
property is XWMHints.

WM_ICON_NAME TEXT The name to be used
in an icon.

WM_ICON_SIZE WM_ICON_SIZE 32 The window manager
may set this property
on the root window to
specify the icon sizes
it supports. The C type
of this property is
XIconSize.

WM_NAME TEXT The name of the appli-
cation.

WM_NORMAL_HINTS WM_SIZE_HINTS 32 Size hints for
a window in its normal
state. The C type of this
property is XSizeHints.

WM_PROTOCOLS ATOM 32 List of atoms that
identify the communi-
cations protocols between
the client and window
manager in which the
client is willing to
participate.

WM_STATE WM_STATE 32 Intended for commun-
ication between window
and session managers
only.

WM_TRANSIENT_FOR WINDOW 32 Set by application
programs to indicate to
the window manager that
a transient top-level
window, such as a dialog
box.

The remainder of this chapter discusses:

9−2 March 26, 1992

-- --

Inter-Client Communication Functions

• Client-to-window-manager communication

• Client-to-session-manager communication

• Standard colormaps

9.1 Client to Window Manager Communication

This section discusses how to:

• Manipulate top-level windows

• Convert string lists

• Set and read text properties

• Set and read the WM_NAME property

• Set and read the WM_ICON_NAME property

• Set and read the WM_HINTS property

• Set and read the WM_NORMAL_HINTS property

• Set and read the WM_CLASS property

• Set and read the WM_TRANSIENT_FOR property

• Set and read the WM_PROTOCOLS property

• Set and read the WM_COLORMAP_WINDOWS property

• Set and read the WM_ICON_SIZE property

• Use window manager convenience functions

9.1.1 Manipulating Top-Level Windows

Xlib provides functions that you can use to change the visibility or size of top-level
windows (that is, those that were created as children of the root window). Note that the
subwindows that you create are ignored by window managers. Therefore, you should
use the basic window functions described in chapter 3 to manipulate your application’s
subwindows.

To request that a top-level window be iconified, use XIconifyWindow.

Status XIconifyWindow(display, w, screen_number)
Display *display;
Window w;
int screen_number;

March 26, 1992 9−3

-- --

X Window System

display Specifies the connection to the X server.

w Specifies the window.

screen_number Specifies the appropriate screen number on the host server.

The XIconifyWindow function sends a WM_CHANGE_STATE ClientMessage event
with a format of 32 and a first data element of IconicState (as described in Section
4.1.4 of part III, ‘‘Inter-Client Communication Conventions Manual’’) to the root win-
dow of the specified screen. Window managers may elect to receive this message and if
the window is in its normal state, may treat it as a request to change the window’s state
from normal to iconic. If the WM_CHANGE_STATE property cannot be interned,
XIconifyWindow does not send a message and returns a zero status. It returns a
nonzero status if the client message is sent successfully; otherwise, it returns a zero
status.

XIconifyWindow can generate a BadWindow error.

To request that a top-level window be withdrawn, use XWithdrawWindow.

Status XWithdrawWindow(display, w, screen_number)
Display *display;
Window w;
int screen_number;

display Specifies the connection to the X server.

w Specifies the window.

screen_number Specifies the appropriate screen number on the host server.

The XWithdrawWindow function unmaps the specified window and sends a synthetic
UnmapNotify event to the root window of the specified screen. Window managers may
elect to receive this message and may treat it as a request to change the window’s state
to withdrawn. When a window is in the withdrawn state, neither its normal nor its
iconic representations is visible. It returns a nonzero status if the UnmapNotify event is
successfully sent; otherwise, it returns a zero status.

XWithdrawWindow can generate a BadWindow error.

To request that a top-level window be reconfigured, use XReconfigureWMWindow.

Status XReconfigureWMWindow(display, w, screen_number, value_mask, values)
Display *display;
Window w;
int screen_number;
unsigned int value_mask;
XWindowChanges *values;

display Specifies the connection to the X server.

w Specifies the window.

screen_number Specifies the appropriate screen number on the host server.

9−4 March 26, 1992

-- --

Inter-Client Communication Functions

value_mask Specifies which values are to be set using information in the
values structure. This mask is the bitwise inclusive OR of the
valid configure window values bits.

values Specifies the XWindowChanges structure.

The XReconfigureWMWindow function issues a ConfigureWindow request on the
specified top-level window. If the stacking mode is changed and the request fails with a
BadMatch error, the error event is trapped and a synthetic ConfigureRequestEvent
containing the same configuration parameters is sent to the root of the specified win-
dow. Window managers may elect to receive this event and treat it as a request to
reconfigure the indicated window.

XReconfigureWMWindow can generate BadValue and BadWindow errors.

9.1.2 Converting String Lists

Many of the text properties allow a variety of types and formats. Because the data
stored in these properties are not simple null-terminated strings, a XTextProperty struc-
ture is used to describe the encoding, type, and length of the text as well as its value.
The XTextProperty structure contains:

typedef struct {
unsigned char *value;/* property data */
Atom encoding;/* type of property */
int format; /* 8, 16, or 32 */
unsigned long nitems;/* number of items in value */

} XTextProperty;

Xlib provides functions that you can use to convert between lists of pointers to character
strings and text properties.

To set the specified list of strings to a XTextProperty structure, use XStringListTo-
TextProperty.

Status XStringListToTextProperty(list, count, text_prop_return)
char **list;
int count;
XTextProperty *text_prop_return;

list Specifies a list of null-terminated character strings.

count Specifies the number of strings.

text_prop_return
Returns the XTextProperty structure.

The XStringListToTextProperty function sets the specified XTextProperty to be of type
STRING (format 8) with a value representing the concatenation of the specified list of
null-separated character strings. An extra byte containing NULL (which is not included
in the nitems member) is stored at the end of the value field of text_prop_return. If

March 26, 1992 9−5

-- --

X Window System

insufficient memory is available for the new value string, XStringListToTextProperty
does not set any fields in the XTextProperty structure and returns a zero status. Other-
wise, it returns a nonzero status. To free the storage for the value field, use XFree.

To obtain a list of strings from a specified XTextProperty structure, use XText-
PropertyToStringList.

Status XTextPropertyToStringList(text_prop, list_return, count_return)
XTextProperty *text_prop;
char ***list_return;
int *count_return;

text_prop Specifies the XTextProperty structure to be used.

list_return Returns a list of null-terminated character strings.

count_return Returns the number of strings.

The XTextPropertyToStringList function returns a list of strings representing the null-
separated elements of the specified XTextProperty structure. The data in text_prop must
be of type STRING and format 8. Multiple elements of the property (for example, the
strings in a disjoint text selection) are separated by NULL (encoding 0). The contents of
the property are not null-terminated. If insufficient memory is available for the list and
its elements, XTextPropertyToStringList sets no return values and returns a zero status.
Otherwise, it returns a nonzero status. To free the storage for the list and its contents,
use XFreeStringList.

To free the in-memory data associated with the specified string list, use XFreeStringList.

void XFreeStringList(list)
char **list;

list Specifies the list of strings to be freed.

The XFreeStringList function releases memory allocated by XTextPropertyToStringList.

9.1.3 Setting and Reading Text Properties

Xlib provides two functions that you can use to set and read the text properties for a
given window. You can use these functions to set and read those properties of type
TEXT (WM_NAME, WM_ICON_NAME, WM_COMMAND, and
WM_CLIENT_MACHINE). In addition, Xlib provides separate convenience functions
that you can use to set each of these properties. For further information about these con-
venience functions, see sections 9.1.4, 9.1.5, 9.2.1, and 9.2.2, respectively.

To set one of a window’s text properties, use XSetTextProperty.

void XSetTextProperty(display, w, text_prop, property)
Display *display;
Window w;
XTextProperty *text_prop;

9−6 March 26, 1992

-- --

Inter-Client Communication Functions

Atom property;

display Specifies the connection to the X server.

w Specifies the window.

text_prop Specifies the XTextProperty structure to be used.

property Specifies the property name.

The XSetTextProperty function replaces the existing specified property for the named
window with the data, type, format, and number of items determined by the value field,
the encoding field, the format field, and the nitems field, respectively, of the specified
XTextProperty structure. If the property does not already exist, XSetTextProperty sets
it for the specified window.

XSetTextProperty can generate BadAlloc, BadAtom, BadValue, and BadWindow
errors.

To read one of a window’s text properties, use XGetTextProperty.

Status XGetTextProperty(display, w, text_prop_return, property)
Display *display;
Window w;
XTextProperty *text_prop_return;
Atom property;

display Specifies the connection to the X server.

w Specifies the window.

text_prop_return
Returns the XTextProperty structure.

property Specifies the property name.

The XGetTextProperty function reads the specified property from the window and
stores the data in the returned XTextProperty structure. It stores the data in the value
field, the type of the data in the encoding field, the format of the data in the format
field, and the number of items of data in the nitems field. The particular interpretation of
the property’s encoding and data as ‘‘text’’ is left to the calling application. If the
specified property does not exist on the window, XGetTextProperty sets the value field
to NULL, the encoding field to None, the format field to zero, and the nitems field to
zero.

If it was able to set these files in the XTextProperty structure, XGetTextProperty
returns a nonzero status; otherwise, it returns a zero status.

XGetTextProperty can generate BadAtom and BadWindow errors.

March 26, 1992 9−7

-- --

X Window System

9.1.4 Setting and Reading the WM_NAME Property

Xlib provides convenience functions that you can use to set and read the WM_NAME
property for a given window.

To set a window’s WM_NAME property with the supplied convenience function, use
XSetWMName.

void XSetWMName(display, w, text_prop)
Display *display;
Window w;
XTextProperty *text_prop;

display Specifies the connection to the X server.

w Specifies the window.

text_prop Specifies the XTextProperty structure to be used.

The XSetWMName convenience function performs a XSetTextProperty on the
WM_NAME property (see section 9.1.3).

To read a window’s WM_NAME property with the supplied convenience function, use
XGetWMName.

Status XGetWMName(display, w, text_prop_return)
Display *display;
Window w;
XTextProperty *text_prop_return;

display Specifies the connection to the X server.

w Specifies the window.

text_prop_return
Returns the XTextProperty structure.

The XGetWMName convenience function performs an XGetTextProperty on the
WM_NAME property (see section 9.1.3).

The following two functions have been superseded by XSetWMName and XGetWM-
Name, respectively. You can use these additional convenience functions for window
names that are encoded as STRING properties.

To assign a name to a window, use XStoreName.

XStoreName(display, w, window_name)
Display *display;
Window w;
char *window_name;

display Specifies the connection to the X server.

w Specifies the window.

9−8 March 26, 1992

-- --

Inter-Client Communication Functions

window_name Specifies the window name, which should be a null-terminated
string.

The XStoreName function assigns the name passed to window_name to the specified
window. A window manager can display the window name in some prominent place,
such as the title bar, to allow users to identify windows easily. Some window managers
may display a window’s name in the window’s icon, although they are encouraged to
use the window’s icon name if one is provided by the application.

XStoreName can generate BadAlloc and BadWindow errors.

To get the name of a window, use XFetchName.

Status XFetchName(display, w, window_name_return)
Display *display;
Window w;
char **window_name_return;

display Specifies the connection to the X server.

w Specifies the window.

window_name_return
Returns the window name, which is a null-terminated string.

The XFetchName function returns the name of the specified window. If it succeeds, it
returns nonzero; otherwise, no name has been set for the window, and it returns zero. If
the WM_NAME property has not been set for this window, XFetchName sets
window_name_return to NULL. When finished with it, a client must free the window
name string using XFree.

XFetchName can generate a BadWindow error.

9.1.5 Setting and Reading the WM_ICON_NAME Property

Xlib provides convenience functions that you can use to set and read the
WM_ICON_NAME property for a given window.

To set a window’s WM_ICON_NAME property, use XSetWMIconName.

void XSetWMIconName(display, w, text_prop)
Display *display;
Window w;
XTextProperty *text_prop;

display Specifies the connection to the X server.

w Specifies the window.

text_prop Specifies the XTextProperty structure to be used.

The XSetWMIconName convenience function performs a XSetTextProperty on the
WM_ICON_NAME property (see section 9.1.3).

March 26, 1992 9−9

-- --

X Window System

To read a window’s WM_ICON_NAME property, use XGetWMIconName.

Status XGetWMIconName(display, w, text_prop_return)
Display *display;
Window w;
XTextProperty *text_prop_return;

display Specifies the connection to the X server.

w Specifies the window.

text_prop_return
Returns the XTextProperty structure.

The XGetWMIconName convenience function performs an XGetTextProperty on the
WM_ICON_NAME property (see section 9.1.3).

The next two functions have been superseded by XSetWMIconName and XGetWM-
IconName, respectively. You can use these additional convenience functions for win-
dow names that are encoded as STRING properties.

To set the name to be displayed in a window’s icon, use XSetIconName.

XSetIconName(display, w, icon_name)
Display *display;
Window w;
char *icon_name;

display Specifies the connection to the X server.

w Specifies the window.

icon_name Specifies the icon name, which should be a null-terminated
string.

XSetIconName can generate BadAlloc and BadWindow errors.

To get the name a window wants displayed in its icon, use XGetIconName.

Status XGetIconName(display, w, icon_name_return)
Display *display;
Window w;
char **icon_name_return;

display Specifies the connection to the X server.

w Specifies the window.

icon_name_return
Returns the window’s icon name, which is a null-terminated
string.

The XGetIconName function returns the name to be displayed in the specified
window’s icon. If it succeeds, it returns nonzero; otherwise, if no icon name has been
set for the window, it returns zero. If you never assigned a name to the window, XGet-
IconName sets icon_name_return to NULL. When finished with it, a client must free
the icon name string using XFree.

9−10 March 26, 1992

-- --

Inter-Client Communication Functions

XGetIconName can generate a BadWindow error.

9.1.6 Setting and Reading the WM_HINTS Property

Xlib provides functions that you can use to set and read the WM_HINTS property for a
given window. These functions use the flags and the XWMHints structure, as defined in
the <X11/Xutil.h> header file.

To allocate an XWMHints structure, use XAllocWMHints.

XWMHints *XAllocWMHints()

The XAllocWMHints function allocates and returns a pointer to a XWMHints structure.
Note that all fields in the XWMHints structure are initially set to zero. If insufficient
memory is available, XAllocWMHints returns NULL. To free the memory allocated to
this structure, use XFree.

The XWMHints structure contains:

/* Window manager hints mask bits */
#define InputHint (1L << 0)
#define StateHint (1L << 1)
#define IconPixmapHint (1L << 2)
#define IconWindowHint (1L << 3)
#define IconPositionHint (1L << 4)
#define IconMaskHint (1L << 5)
#define WindowGroupHint (1L << 6)
#define AllHints (InputHint | StateHint | IconPixmapHint | IconWindowHint |

IconPositionHint | IconMaskHint | WindowGroupHint)

/* Values */
typedef struct {

long flags; /* marks which fields in this structure a
Bool input; /* does this application rely on the wind

get keyboard input? */
int initial_state; /* see below */
Pixmap icon_pixmap; /* pixmap to be used as icon */
Window icon_window; /* window to be used as icon */
int icon_x, icon_y; /* initial position of icon */
Pixmap icon_mask; /* pixmap to be used as mask for icon_pix
XID window_group; /* id of related window group */

/* this structure may be extended in the
} XWMHints;

The input member is used to communicate to the window manager the input focus
model used by the application. Applications that expect input but never explicitly set
focus to any of their subwindows (that is, use the push model of focus management),
such as X Version 10 style applications that use real-estate driven focus, should set this
member to True. Similarly, applications that set input focus to their subwindows only

March 26, 1992 9−11

-- --

X Window System

when it is given to their top-level window by a window manager should also set this
member to True. Applications that manage their own input focus by explicitly setting
focus to one of their subwindows whenever they want keyboard input (that is, use the
pull model of focus management) should set this member to False. Applications that
never expect any keyboard input also should set this member to False.

Pull model window managers should make it possible for push model applications to
get input by setting input focus to the top-level windows of applications whose input
member is True. Push model window managers should make sure that pull model appli-
cations do not break them by resetting input focus to PointerRoot when it is appropriate
(for example, whenever an application whose input member is False sets input focus to
one of its subwindows).

The definitions for the initial_state flag are:

#define WithdrawnState 0
#define NormalState 1 /* most applications start this way */
#define IconicState 3 /* application wants to start as an icon

The icon_mask specifies which pixels of the icon_pixmap should be used as the icon.
This allows for nonrectangular icons. Both icon_pixmap and icon_mask must be bit-
maps. The icon_window lets an application provide a window for use as an icon for
window managers that support such use. The window_group lets you specify that this
window belongs to a group of other windows. For example, if a single application
manipulates multiple top-level windows, this allows you to provide enough information
that a window manager can iconify all of the windows rather than just the one window.

To set a window’s WM_HINTS property, use XSetWMHints.

XSetWMHints(display, w, wmhints)
Display *display;
Window w;
XWMHints *wmhints;

display Specifies the connection to the X server.

w Specifies the window.

wmhints Specifies the XWMHints structure to be used.

The XSetWMHints function sets the window manager hints that include icon informa-
tion and location, the initial state of the window, and whether the application relies on
the window manager to get keyboard input.

XSetWMHints can generate BadAlloc and BadWindow errors.

To read a window’s WM_HINTS property, use XGetWMHints.

XWMHints *XGetWMHints(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.

9−12 March 26, 1992

-- --

Inter-Client Communication Functions

w Specifies the window.

The XGetWMHints function reads the window manager hints and returns NULL if no
WM_HINTS property was set on the window or returns a pointer to a XWMHints struc-
ture if it succeeds. When finished with the data, free the space used for it by calling
XFree.

XGetWMHints can generate a BadWindow error.

9.1.7 Setting and Reading the WM_NORMAL_HINTS Property

Xlib provides functions that you can use to set or read the WM_NORMAL_HINTS
property for a given window. The functions use the flags and the XSizeHints structure,
as defined in the <X11/Xutil.h> header file.

To allocate an XSizeHints structure, use XAllocSizeHints.

XSizeHints *XAllocSizeHints()

The XAllocSizeHints function allocates and returns a pointer to a XSizeHints structure.
Note that all fields in the XSizeHints structure are initially set to zero. If insufficient
memory is available, XAllocSizeHints returns NULL. To free the memory allocated to
this structure, use XFree.

The XSizeHints structure contains:

/* Size hints mask bits */
#define USPosition (1L << 0) /* user specified x, y */
#define USSize (1L << 1) /* user specified width, height */
#define PPosition (1L << 2) /* program specified position */
#define PSize (1L << 3) /* program specified size */
#define PMinSize (1L << 4) /* program specified minimum size *
#define PMaxSize (1L << 5) /* program specified maximum size *
#define PResizeInc (1L << 6) /* program specified resize increme
#define PAspect (1L << 7) /* program specified min and max as

ratios */
#define PBaseSize (1L << 8)
#define PWinGravity (1L << 9)
#define PAllHints (PPosition | PSize | PMinSize | PMaxSize | PResizeInc | PAspect)

/* Values */
typedef struct {

long flags; /* marks which fields in this structure a
int x, y; /* Obsolete */
int width, height; /* Obsolete */
int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;
struct {

March 26, 1992 9−13

-- --

X Window System

int x;/* numerator */
int y;/* denominator */

} min_aspect, max_aspect;
int base_width, base_height;
int win_gravity;

} XSizeHints;

The x, y, width, and height members are now obsolete and are left solely for compati-
bility reasons. The min_width and min_height members specify the minimum window
size that still allows the application to be useful. The max_width and max_height
members specify the maximum window size. The width_inc and height_inc members
define an arithmetic progression of sizes (minimum to maximum) into which the win-
dow prefers to be resized. The min_aspect and max_aspect members are expressed as
ratios of x and y, and they allow an application to specify the range of aspect ratios it
prefers. The base_width and base_height members define the desired size of the win-
dow. The win_gravity member defines the region of the window that is to be retained
when it is resized.

Note that use of the PAllHints macro is highly discouraged.

To set a window’s WM_NORMAL_HINTS property, use XSetWMNormalHints.

void XSetWMNormalHints(display, w, hints)
Display *display;
Window w;
XSizeHints *hints;

display Specifies the connection to the X server.

w Specifies the window.

hints Specifies the size hints for the window in its normal state.

The XSetWMNormalHints function replaces the size hints for the
WM_NORMAL_HINTS property on the specified window. If the property does not
already exist, XSetWMNormalHints sets the size hints for the WM_NORMAL_HINTS
property on the specified window. The property is stored with a type of
WM_SIZE_HINTS and a format of 32.

XSetWMNormalHints can generate BadAlloc and BadWindow errors.

To read a window’s WM_NORMAL_HINTS property, use XGetWMNormalHints.

Status XGetWMNormalHints(display, w, hints_return, supplied_return)
Display *display;
Window w;
XSizeHints *hints_return;
long *supplied_return;

display Specifies the connection to the X server.

w Specifies the window.

hints_return Returns the size hints for the window in its normal state.

9−14 March 26, 1992

-- --

Inter-Client Communication Functions

supplied_return
Returns the hints that were supplied by the user.

The XGetWMNormalHints function returns the size hints stored in the
WM_NORMAL_HINTS property on the specified window. If the property is of type
WM_SIZE_HINTS, is of format 32, and is long enough to contain either an old (pre-
ICCCM) or new size hints structure, XGetWMNormalHints sets the various fields of
the XSizeHints structure, sets the supplied_return argument to the list of fields that were
supplied by the user (whether or not they contained defined values), and returns a
nonzero status. Otherwise, it returns a zero status.

If XGetWMNormalHints returns successfully and a pre-ICCCM size hints property is
read, the supplied_return argument will contain the following bits:

(USPosition | USSize | PPosition | PSize | PMinSize |
PMaxSize | PResizeInc | PAspect)

If the property is large enough to contain the base size and window gravity fields as
well, the supplied_return argument will also contain the following bits:

PBaseSize |PWinGravity

XGetWMNormalHints can generate a BadWindow error.

To set a window’s WM_SIZE_HINTS property, use XSetWMSizeHints.

void XSetWMSizeHints(display, w, hints, property)
Display *display;
Window w;
XSizeHints *hints;
Atom property;

display Specifies the connection to the X server.

w Specifies the window.

hints Specifies the XSizeHints structure to be used.

property Specifies the property name.

The XSetWMSizeHints function replaces the size hints for the specified property on the
named window. If the specified property does not already exist, XSetWMSizeHints sets
the size hints for the specified property on the named window. The property is stored
with a type of WM_SIZE_HINTS and a format of 32. To set a window’s normal size
hints, you can use the XSetWMNormalHints function.

XSetWMSizeHints can generate BadAlloc, BadAtom, and BadWindow errors.

To read a window’s WM_SIZE_HINTS property, use XGetWMSizeHints.

Status XGetWMSizeHints(display, w, hints_return, supplied_return, property)
Display *display;
Window w;
XSizeHints *hints_return;
long *supplied_return;

March 26, 1992 9−15

-- --

X Window System

Atom property;

display Specifies the connection to the X server.

w Specifies the window.

hints_return Returns the XSizeHints structure.

supplied_return
Returns the hints that were supplied by the user.

property Specifies the property name.

The XGetWMSizeHints function returns the size hints stored in the specified property
on the named window. If the property is of type WM_SIZE_HINTS, is of format 32,
and is long enough to contain either an old (pre-ICCCM) or new size hints structure,
XGetWMSizeHints sets the various fields of the XSizeHints structure, sets the
supplied_return argument to the list of fields that were supplied by the user (whether or
not they contained defined values), and returns a nonzero status. Otherwise, it returns a
zero status. To get a window’s normal size hints, you can use the XGetWMNor-
malHints function.

If XGetWMSizeHints returns successfully and a pre-ICCCM size hints property is read,
the supplied_return argument will contain the following bits:

(USPosition | USSize | PPosition | PSize | PMinSize |
PMaxSize | PResizeInc | PAspect)

If the property is large enough to contain the base size and window gravity fields as
well, the supplied_return argument will also contain the following bits:

PBaseSize | PWinGravity

XGetWMSizeHints can generate BadAtom and BadWindow errors.

9.1.8 Setting and Reading the WM_CLASS Property

Xlib provides functions that you can use to set and get the WM_CLASS property for a
given window. These functions use the XClassHint structure, which is defined in the
<X11/Xutil.h> header file.

To allocate an XClassHint structure, use XAllocClassHint.

XClassHint *XAllocClassHint()

The XAllocClassHint function allocates and returns a pointer to a XClassHint structure.
Note that the pointer fields in the XClassHint structure are initially set to NULL. If
insufficient memory is available, XAllocClassHint returns NULL. To free the memory
allocated to this structure, use XFree.

The XClassHint contains:

9−16 March 26, 1992

-- --

Inter-Client Communication Functions

typedef struct {
char *res_name;
char *res_class;

} XClassHint;

The res_name member contains the application name, and the res_class member con-
tains the application class. Note that the name set in this property may differ from the
name set as WM_NAME. That is, WM_NAME specifies what should be displayed in
the title bar and, therefore, can contain temporal information (for example, the name of
a file currently in an editor’s buffer). On the other hand, the name specified as part of
WM_CLASS is the formal name of the application that should be used when retrieving
the application’s resources from the resource database.

To set a window’s WM_CLASS property, use XSetClassHint.

XSetClassHint(display, w, class_hints)
Display *display;
Window w;
XClassHint *class_hints;

display Specifies the connection to the X server.

w Specifies the window.

class_hints Specifies the XClassHint structure that is to be used.

The XSetClassHint function sets the class hint for the specified window.

XSetClassHint can generate BadAlloc and BadWindow errors.

To read a window’s WM_CLASS property, use XGetClassHint.

Status XGetClassHint(display, w, class_hints_return)
Display *display;
Window w;
XClassHint *class_hints_return;

display Specifies the connection to the X server.

w Specifies the window.

class_hints_return
Returns the XClassHint structure.

The XGetClassHint function returns the class of the specified window. To free
res_name and res_class when finished with the strings, use XFree.

XGetClassHint can generate a BadWindow error.

9.1.9 Setting and Reading the WM_TRANSIENT_FOR Property

Xlib provides functions that you can use to set and read the WM_TRANSIENT_FOR
property for a given window.

March 26, 1992 9−17

-- --

X Window System

To set a window’s WM_TRANSIENT_FOR property, use XSetTransientForHint.

XSetTransientForHint(display, w, prop_window)
Display *display;
Window w;
Window prop_window;

display Specifies the connection to the X server.

w Specifies the window.

prop_window Specifies the window that the WM_TRANSIENT_FOR prop-
erty is to be set to.

The XSetTransientForHint function sets the WM_TRANSIENT_FOR property of the
specified window to the specified prop_window.

XSetTransientForHint can generate BadAlloc and BadWindow errors.

To read a window’s WM_TRANSIENT_FOR property, use XGetTransientForHint.

Status XGetTransientForHint(display, w, prop_window_return)
Display *display;
Window w;
Window *prop_window_return;

display Specifies the connection to the X server.

w Specifies the window.

prop_window_return
Returns the WM_TRANSIENT_FOR property of the specified
window.

The XGetTransientForHint function returns the WM_TRANSIENT_FOR property for
the specified window.

XGetTransientForHint can generate a BadWindow error.

9.1.10 Setting and Reading the WM_PROTOCOLS Property

Xlib provides functions that you can use to set and read the WM_PROTOCOLS prop-
erty for a given window.

To set a window’s WM_PROTOCOLS property, use XSetWMProtocols.

Status XSetWMProtocols(display, w, protocols, count)
Display *display;
Window w;
Atom *protocols;
int count;

9−18 March 26, 1992

-- --

Inter-Client Communication Functions

display Specifies the connection to the X server.

w Specifies the window.

protocols Specifies the list of protocols.

count Specifies the number of protocols in the list.

The XSetWMProtocols function replaces the WM_PROTOCOLS property on the
specified window with the list of atoms specified by the protocols argument. If the prop-
erty does not already exist, XSetWMProtocols sets the WM_PROTOCOLS property on
the specified window to the list of atoms specified by the protocols argument. The prop-
erty is stored with a type of ATOM and a format of 32. If it cannot intern the
WM_PROTOCOLS atom, XSetWMProtocols returns a zero status. Otherwise, it returns
a nonzero status.

XSetWMProtocols can generate BadAlloc and BadWindow errors.

To read a window’s WM_PROTOCOLS property, use XGetWMProtocols.

Status XGetWMProtocols(display, w, protocols_return, count_return)
Display *display;
Window w;
Atom **protocols_return;
int *count_return;

display Specifies the connection to the X server.

w Specifies the window.

protocols_return
Returns the list of protocols.

count_return Returns the number of protocols in the list.

The XGetWMProtocols function returns the list of atoms stored in the
WM_PROTOCOLS property on the specified window. These atoms describe window
manager protocols in which the owner of this window is willing to participate. If the
property exists, is of type ATOM, is of format 32, and the atom WM_PROTOCOLS
can be interned, XGetWMProtocols sets the protocols_return argument to a list of
atoms, sets the count_return argument to the number of elements in the list, and returns
a nonzero status. Otherwise, it sets neither of the return arguments and returns a zero
status. To release the list of atoms, use XFree.

XGetWMProtocols can generate a BadWindow error.

9.1.11 Setting and Reading the WM_COLORMAP_WINDOWS Pro-
perty

Xlib provides functions that you can use to set and read the WM_
COLORMAP_WINDOWS property for a given window.

March 26, 1992 9−19

-- --

X Window System

To set a window’s WM_COLORMAP_WINDOWS property, use XSet-
WMColormapWindows.

Status XSetWMColormapWindows(display, w, colormap_windows, count)
Display *display;
Window w;
Window *colormap_windows;
int count;

display Specifies the connection to the X server.

w Specifies the window.

colormap_windows
Specifies the list of windows.

count Specifies the number of windows in the list.

The XSetWMColormapWindows function replaces the
WM_COLORMAP_WINDOWS property on the specified window with the list of win-
dows specified by the colormap_windows argument. It the property does not already
exist, XSetWMColormapWindows sets the WM_COLORMAP_WINDOWS property
on the specified window to the list of windows specified by the colormap_windows
argument. The property is stored with a type of WINDOW and a format of 32. If it can-
not intern the WM_COLORMAP_WINDOWS atom, XSetWMColormapWindows
returns a zero status. Otherwise, it returns a nonzero status.

XSetWMColormapWindows can generate BadAlloc and BadWindow errors.

To read a window’s WM_COLORMAP_WINDOWS property, use XGetWMColor-
mapWindows.

Status XGetWMColormapWindows(display, w, colormap_windows_return, count_return)
Display *display;
Window w;
Window **colormap_windows_return;
int *count_return;

display Specifies the connection to the X server.

w Specifies the window.

colormap_windows_return
Returns the list of windows.

count_return Returns the number of windows in the list.

The XGetWMColormapWindows function returns the list of window identifiers stored
in the WM_COLORMAP_WINDOWS property on the specified window. These
identifiers indicate the colormaps that the window manager may need to install for this
window. If the property exists, is of type WINDOW, is of format 32, and the atom
WM_COLORMAP_WINDOWS can be interned, XGetWMColormapWindows sets
the windows_return argument to a list of window identifiers, sets the count_return argu-
ment to the number of elements in the list, and returns a nonzero status. Otherwise, it
sets neither of the return arguments and returns a zero status. To release the list of

9−20 March 26, 1992

-- --

Inter-Client Communication Functions

window identifiers, use XFree.

XGetWMColormapWindows can generate a BadWindow error.

9.1.12 Setting and Reading the WM_ICON_SIZE Property

Xlib provides functions that you can use to set and read the WM_ICON_SIZE property
for a given window. These functions use the XIconSize structure, which is defined in
the <X11/Xutil.h> header file.

To allocate an XIconSize structure, use XAllocIconSize.

XIconSize *XAllocIconSize()

The XAllocIconSize function allocates and returns a pointer to an XIconSize structure.
Note that all fields in the XIconSize structure are initially set to zero. If insufficient
memory is available, XAllocIconSize returns NULL. To free the memory allocated to
this structure, use XFree.

The XIconSize structure contains:

typedef struct {
int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;

} XIconSize;

The width_inc and height_inc members define an arithmetic progression of sizes
(minimum to maximum) that represent the supported icon sizes.

To set a window’s WM_ICON_SIZE property, use XSetIconSizes.

XSetIconSizes(display, w, size_list, count)
Display *display;
Window w;
XIconSize *size_list;
int count;

display Specifies the connection to the X server.

w Specifies the window.

size_list Specifies the size list.

count Specifies the number of items in the size list.

The XSetIconSizes function is used only by window managers to set the supported icon
sizes.

XSetIconSizes can generate BadAlloc and BadWindow errors.

To read a window’s WM_ICON_SIZE property, use XGetIconSizes.

March 26, 1992 9−21

-- --

X Window System

Status XGetIconSizes(display, w, size_list_return, count_return)
Display *display;
Window w;
XIconSize **size_list_return;
int *count_return;

display Specifies the connection to the X server.

w Specifies the window.

size_list_return
Returns the size list.

count_return Returns the number of items in the size list.

The XGetIconSizes function returns zero if a window manager has not set icon sizes;
otherwise, it return nonzero. XGetIconSizes should be called by an application that
wants to find out what icon sizes would be most appreciated by the window manager
under which the application is running. The application should then use XSetWMHints
to supply the window manager with an icon pixmap or window in one of the supported
sizes. To free the data allocated in size_list_return, use XFree.

XGetIconSizes can generate a BadWindow error.

9.1.13 Using Window Manager Convenience Functions

Xlib provides two additional convenience functions that you can use to:

• Set the standard window manager properties for a given window

• Obtain window geometry information

To set a window’s standard window manager properties, use XSetWMProperties. The
standard window manager properties for a given window are WM_NAME,
WM_ICON_NAME, WM_HINTS, WM_NORMAL_HINTS, WM_CLASS,
WM_COMMAND, and WM_CLIENT_MACHINE.

void XSetWMProperties(display, w, window_name, icon_name, argv, argc, normal_hints,
wm_hints, class_hints)

Display *display;
Window w;
XTextProperty *window_name;
XTextProperty *icon_name;
char **argv;
int argc;
XSize_hints *normal_hints;
XWMHints *wm_hints;
XClassHint *class_hints;

display Specifies the connection to the X server.

9−22 March 26, 1992

-- --

Inter-Client Communication Functions

w Specifies the window.

window_name Specifies the window name, which should be a null-terminated
string.

icon_name Specifies the icon name, which should be a null-terminated
string.

argv Specifies the application’s argument list.

argc Specifies the number of arguments.

normal_hints Specifies the size hints for the window in its normal state.

wm_hints Specifies the XWMHints structure to be used.

class_hints Specifies the XClassHint structure to be used.

The XSetWMProperties convenience function provides a single programming interface
for setting those essential window properties that are used for communicating with other
clients (particularly window and session managers).

If the window_name argument is non-NULL, XSetWMProperties calls XSetWMName,
which in turn, sets the WM_NAME property (see section 9.1.4). If the icon_name argu-
ment is non-NULL, XSetWMProperties calls XSetWMIconName, which sets the
WM_ICON_NAME property (see section 9.1.5). If the argv argument is non-NULL,
XSetWMProperties calls XSetCommand, which sets the WM_COMMAND property
(see section 9.2.1). Note that an argc of zero is allowed to indicate a zero-length com-
mand. Note also that the hostname of this machine is stored using XSetWM-
ClientMachine (see section 9.2.2).

If the normal_hints argument is non-NULL, XSetWMProperties calls XSetWMNor-
malHints, which sets the WM_NORMAL_HINTS property (see section 9.1.7). If the
wm_hints argument is non-NULL, XSetWMProperties calls XSetWMHints, which sets
the WM_HINTS property (see section 9.1.6).

If the class_hints argument is non-NULL, XSetWMProperties calls XSetClassHint,
which sets the WM_CLASS property (see section 9.1.8). If the res_name member in the
XClassHint structure is set to the NULL pointer and the RESOURCE_NAME environ-
ment variable is set, then the value of the environment variable is substituted for
res_name. If the res_name member is NULL, the environment variable is not set, and
argv and argv[0] are set, then the value of argv[0], stripped of any directory prefixes, is
substituted for res_name.

XSetWMProperties can generate BadAlloc and BadWindow errors.

To obtain a window’s geometry information, use XWMGeometry.

int XWMGeometry(display, screen, user_geom, def_geom, bwidth, hints, x_return, y_return,
width_return, height_return, gravity_return)

Display *display;
int screen;
char *user_geom;
char *def_geom;
unsigned int bwidth;

March 26, 1992 9−23

-- --

X Window System

XSizeHints *hints;
int *x_return, *y_return;
int *width_return;
int *height_return;
int *gravity_return;

display Specifies the connection to the X server.

screen Specifies the screen.

user_geom Specifies the user-specified geometry or NULL.

def_geom Specifies the application’s default geometry or NULL.

bwidth Specifies the border width.

hints Specifies the size hints for the window in its normal state.

x_return, y_return
Return the x and y offsets.

width_return, height_return
Return the width and height determined.

gravity_return Returns the window gravity.

The XWMGeometry function combines any geometry information (given in the format
used by XParseGeometry) specified by the user and by the calling program with size
hints (usually the ones to be stored in WM_NORMAL_HINTS) and returns the posi-
tion, size, and gravity (NorthWestGravity, NorthEastGravity, SouthEastGravity, or
SouthWestGravity) that describe the window. If the base size is not set in the
XSizeHints structure, the minimum size is used if set. Otherwise, a base size of zero is
assumed. If no minimum size is set in the hints structure, the base size is used. A mask
(in the form returned by XParseGeometry) that describes which values came from the
user specification and whether or not the position coordinates are relative to the right
and bottom edges is returned. (Note that these coordinates will have already been
accounted for in the x_return and y_return values.)

Note that invalid geometry specifications can cause a width or height of zero to be
returned. The caller may pass the address of the hints win_gravity field as gravity_return
to update the hints directly.

9.2 Client to Session Manager Communication

This section discusses how to:

• Set and read the WM_COMMAND property

• Set and read the WM_CLIENT_MACHINE property

9−24 March 26, 1992

-- --

Inter-Client Communication Functions

9.2.1 Setting and Reading the WM_COMMAND Property

Xlib provides functions that you can use to set and read the WM_COMMAND property
for a given window.

To set a window’s WM_COMMAND property, use XSetCommand.

XSetCommand(display, w, argv, argc)
Display *display;
Window w;
char **argv;
int argc;

display Specifies the connection to the X server.

w Specifies the window.

argv Specifies the application’s argument list.

argc Specifies the number of arguments.

The XSetCommand function sets the command and arguments used to invoke the
application. (Typically, argv is the argv array of your main program.)

XSetCommand can generate BadAlloc and BadWindow errors.

To read a window’s WM_COMMAND property, use XGetCommand.

Status XGetCommand(display, w, argv_return, argc_return)
Display *display;
Window w;
char ***argv_return;
int *argc_return;

display Specifies the connection to the X server.

w Specifies the window.

argv_return Returns the application’s argument list.

argc_return Returns the number of arguments returned.

The XGetCommand function reads the WM_COMMAND property from the specified
window and returns a string list. If the WM_COMMAND property exists, it is of type
STRING and format 8. If sufficient memory can be allocated to contain the string list,
XGetCommand fills in the argv_return and argc_return arguments and returns a
nonzero status. Otherwise, it returns a zero status. To free the memory allocated to the
string list, use XFreeStringList.

9.2.2 Setting and Reading the WM_CLIENT_MACHINE Property

Xlib provides functions that you can use to set and read the WM_CLIENT_MACHINE

March 26, 1992 9−25

-- --

X Window System

property for a given window.

To set a window’s WM_CLIENT_MACHINE property, use XSetWMClientMachine.

void XSetWMClientMachine(display, w, text_prop)
Display *display;
Window w;
XTextProperty *text_prop;

display Specifies the connection to the X server.

w Specifies the window.

text_prop Specifies the XTextProperty structure to be used.

The XSetWMClientMachine convenience function performs a XSetTextProperty on
the WM_CLIENT_MACHINE property. Note that you also can set the client machine
property by using XSetTextProperty (see section 9.1.3).

To read a window’s WM_CLIENT_MACHINE property, use XGetWM-
ClientMachine.

Status XGetWMClientMachine(display, w, text_prop_return)
Display *display;
Window w;
XTextProperty *text_prop_return;

display Specifies the connection to the X server.

w Specifies the window.

text_prop_return
Returns the XTextProperty structure.

The XGetWMClientMachine convenience function performs an XGetTextProperty on
the WM_CLIENT_MACHINE property. Note that you also can read the client machine
property by using XGetTextProperty (see section 9.1.3).

9.3 Standard Colormaps

Applications with color palettes, smooth-shaded drawings, or digitized images demand
large numbers of colors. In addition, these applications often require an efficient map-
ping from color triples to pixel values that display the appropriate colors.

As an example, consider a three-dimensional display program that wants to draw a
smoothly shaded sphere. At each pixel in the image of the sphere, the program com-
putes the intensity and color of light reflected back to the viewer. The result of each
computation is a triple of RGB coefficients in the range 0.0 to 1.0. To draw the sphere,
the program needs a colormap that provides a large range of uniformly distributed
colors. The colormap should be arranged so that the program can convert its RGB tri-
ples into pixel values very quickly, because drawing the entire sphere requires many

9−26 March 26, 1992

-- --

Inter-Client Communication Functions

such conversions.

On many current workstations, the display is limited to 256 or fewer colors. Applica-
tions must allocate colors carefully, not only to make sure they cover the entire range
they need but also to make use of as many of the available colors as possible. On a typi-
cal X display, many applications are active at once. Most workstations have only one
hardware look-up table for colors, so only one application colormap can be installed at a
given time. The application using the installed colormap is displayed correctly, and the
other applications ‘‘go technicolor’’ and are displayed with false colors.

As another example, consider a user who is running an image processing program to
display earth-resources data. The image processing program needs a colormap set up
with 8 reds, 8 greens, and 4 blues, for a total of 256 colors. Because some colors are
already in use in the default colormap, the image processing program allocates and
installs a new colormap.

The user decides to alter some of the colors in the image by invoking a color palette
program to mix and choose colors. The color palette program also needs a colormap
with eight reds, eight greens, and four blues, so just like the image processing program,
it must allocate and install a new colormap.

Because only one colormap can be installed at a time, the color palette may be
displayed incorrectly whenever the image processing program is active. Conversely,
whenever the palette program is active, the image may be displayed incorrectly. The
user can never match or compare colors in the palette and image. Contention for color-
map resources can be reduced if applications with similar color needs share colormaps.

As another example, the image processing program and the color palette program could
share the same colormap if there existed a convention that described how the colormap
was set up. Whenever either program was active, both would be displayed correctly.

The standard colormap properties define a set of commonly used colormaps. Applica-
tions that share these colormaps and conventions display true colors more often and pro-
vide a better interface to the user.

Standard colormaps allow applications to share commonly used color resources. This
allows many applications to be displayed in true colors simultaneously, even when each
application needs an entirely filled colormap.

Several standard colormaps are described in this section. Usually, a window manager
creates these colormaps. Applications should use the standard colormaps if they already
exist.

To allocate an XStandardColormap structure, use XAllocStandardColormap.

XStandardColormap *XAllocStandardColormap()

The XAllocStandardColormap function allocates and returns a pointer to an XStan-
dardColormap structure. Note that all fields in the XStandardColormap structure are
initially set to zero. If insufficient memory is available, XAllocStandardColormap
returns NULL. To free the memory allocated to this structure, use XFree.

The XStandardColormap structure contains:

March 26, 1992 9−27

-- --

X Window System

/* Hints */
#define ReleaseByFreeingColormap ((XID) 1L)
/* Values */
typedef struct {

Colormap colormap;
unsigned long red_max;
unsigned long red_mult;
unsigned long green_max;
unsigned long green_mult;
unsigned long blue_max;
unsigned long blue_mult;
unsigned long base_pixel;
VisualID visualid;
XID killid;

} XStandardColormap;

The colormap member is the colormap created by the XCreateColormap function. The
red_max, green_max, and blue_max members give the maximum red, green, and blue
values, respectively. Each color coefficient ranges from zero to its max, inclusive. For
example, a common colormap allocation is 3/3/2 (3 planes for red, 3 planes for green,
and 2 planes for blue). This colormap would have red_max = 7, green_max = 7, and
blue_max = 3. An alternate allocation that uses only 216 colors is red_max = 5,
green_max = 5, and blue_max = 5.

The red_mult, green_mult, and blue_mult members give the scale factors used to com-
pose a full pixel value. (See the discussion of the base_pixel members for further infor-
mation.) For a 3/3/2 allocation, red_mult might be 32, green_mult might be 4, and
blue_mult might be 1. For a 6-colors-each allocation, red_mult might be 36, green_mult
might be 6, and blue_mult might be 1.

The base_pixel member gives the base pixel value used to compose a full pixel value.
Usually, the base_pixel is obtained from a call to the XAllocColorPlanes function.
Given integer red, green, and blue coefficients in their appropriate ranges, one then can
compute a corresponding pixel value by using the following expression:

r * red_mult + g * green_mult + b * blue_mult + base_pixel

For GrayScale colormaps, only the colormap, red_max, red_mult, and base_pixel
members are defined. The other members are ignored.

The visualid member gives the ID number of the visual from which the colormap was
created. The killid member gives a resource ID that indicates whether the cells held by
this standard colormap are to be released by freeing the colormap ID or by calling the
XKillClient function on the indicated resource. (Note that this method is necessary for
allocating out of an existing colormap.)

To compute a GrayScale pixel value, use the following expression:

gray * red_mult + base_pixel

The properties containing the XStandardColormap information have the type
RGB_COLOR_MAP.

9−28 March 26, 1992

-- --

Inter-Client Communication Functions

The remainder of this section discusses standard colormap properties and atoms as well
as how to manipulate standard colormaps.

9.3.1 Standard Colormap Properties and Atoms

Several standard colormaps are available. Each standard colormap is defined by a prop-
erty, and each such property is identified by an atom. The following list names the
atoms and describes the colormap associated with each one. The <X11/Xatom.h>
header file contains the definitions for each of the following atoms, which are prefixed
with XA_.

RGB_DEFAULT_MAP
This atom names a property. The value of the property is an array of XStandardColor-
map structures. Each entry in the array describes an RGB subset of the default color-
map for the Visual specified by visual_id.

Some applications only need a few RGB colors and may be able to allocate them from
the system default colormap. This is the ideal situation because the fewer colormaps that
are active in the system the more applications are displayed with correct colors at all
times. A typical allocation for the RGB_DEFAULT_MAP on 8-plane displays is 6 reds,
6 greens, and 6 blues. This gives 216 uniformly distributed colors (6 intensities of 36
different hues) and still leaves 40 elements of a 256-element colormap available for
special-purpose colors for text, borders, and so on.

RGB_BEST_MAP
This atom names a property. The value of the property is an XStandardColormap.

The property defines the best RGB colormap available on the screen. (Of course, this is
a subjective evaluation.) Many image processing and three-dimensional applications
need to use all available colormap cells and to distribute as many perceptually distinct
colors as possible over those cells. This implies that there may be more green values
available than red, as well as more green or red than blue.

For an 8-plane PseudoColor visual, RGB_BEST_MAP should be a 3/3/2 allocation.
For a 24-plane DirectColor visual, RGB_BEST_MAP should be an 8/8/8 allocation.

RGB_RED_MAP
RGB_GREEN_MAP
RGB_BLUE_MAP
These atoms name properties. The value of each property is an XStandardColormap.

The properties define all-red, all-green, and all-blue colormaps, respectively. These
maps are used by applications that want to make color-separated images. For example, a
user might generate a full-color image on an 8-plane display both by rendering an image
three times (once with high color resolution in red, once with green, and once with
blue) and by multiply-exposing a single frame in a camera.

RGB_GRAY_MAP
This atom names a property. The value of the property is an XStandardColormap.

March 26, 1992 9−29

-- --

X Window System

The property describes the best GrayScale colormap available on the screen. As previ-
ously mentioned, only the colormap, red_max, red_mult, and base_pixel members of the
XStandardColormap structure are used for GrayScale colormaps.

9.3.2 Setting and Obtaining Standard Colormaps

Xlib provides functions that you can use to set and obtain an XStandardColormap
structure.

To set an XStandardColormap structure, use XSetRGBColormaps.

void XSetRGBColormaps(display, w, std_colormap, count, property)
Display *display;
Window w;
XStandardColormap *std_colormap;
int count;
Atom property;

display Specifies the connection to the X server.

w Specifies the window.

std_colormap Specifies the XStandardColormap structure to be used.

count Specifies the number of colormaps.

property Specifies the property name.

The XSetRGBColormaps function replaces the RGB colormap definition in the
specified property on the named window. If the property does not already exist,
XSetRGBColormaps sets the RGB colormap definition in the specified property on the
named window. The property is stored with a type of RGB_COLOR_MAP and a format
of 32. Note that it is the caller’s responsibility to honor the ICCCM restriction that only
RGB_DEFAULT_MAP contain more than one definition.

XSetRGBColormaps can generate BadAlloc, BadAtom, and BadWindow errors.

To obtain the XStandardColormap structure associated with the specified property, use
XGetRGBColormaps.

Status XGetRGBColormaps(display, w, std_colormap_return, count_return, property)
Display *display;
Window w;
XStandardColormap **std_colormap_return;
int *count_return;
Atom property;

display Specifies the connection to the X server.

w Specifies the window.

9−30 March 26, 1992

-- --

Inter-Client Communication Functions

std_colormap_return
Returns the XStandardColormap structure.

count_return Returns the number of colormaps.

property Specifies the property name.

The XGetRGBColormaps function returns the RGB colormap definitions stored in the
specified property on the named window. If the property exists, is of type
RGB_COLOR_MAP, is of format 32, and is long enough to contain a colormap
definition, XGetRGBColormaps allocates and fills in space for the returned colormaps
and returns a nonzero status. If the visualid is not present, XGetRGBColormaps
assumes the default visual for the screen on which the window is located; if the killid is
not present, None is assumed, which indicates that the resources cannot be released.
Otherwise, none of the fields are set, and XGetRGBColormaps returns a zero status.
Note that it is the caller’s responsibility to honor the ICCCM restriction that only
RGB_DEFAULT_MAP contain more than one definition.

XGetRGBColormaps can generate BadAtom and BadWindow errors.

March 26, 1992 9−31

-- --

Chapter 10. Application Utility Functions

Once you have initialized the X system, you can use the Xlib utility functions to:

• Handle keyboard events

• Obtain the X environment defaults

• Parse window geometry strings

• Parse hardware colors strings

• Generate regions

• Manipulate regions

• Use cut and paste buffers

• Determine the appropriate visual

• Manipulate images

• Manipulate bitmaps

• Use the resource manager

• Use the context manager

As a group, the functions discussed in this chapter provide the functionality that is fre-
quently needed and that spans toolkits. Many of these functions do not generate actual
protocol requests to the server.

10.1 Keyboard Utility Functions

This section discusses keyboard event functions and KeySym classification macros.

March 26, 1992 10−1

-- --

X Window System

10.1.1 Keyboard Event Functions

The X server does not predefine the keyboard to be ASCII characters. It is often useful
to know that the a key was just pressed or that it was just released. When a key is
pressed or released, the X server sends keyboard events to client programs. The struc-
tures associated with keyboard events contain a keycode member that assigns a number
to each physical key on the keyboard. For a discussion of keyboard event processing,
see section 8.4.1. For information on how to manipulate the keyboard encoding, see
section 7.9.

Because KeyCodes are completely arbitrary and may differ from server to server, client
programs wanting to deal with ASCII text, for example, must explicitly convert the
KeyCode value into ASCII. Therefore, Xlib provides functions to help you customize
the keyboard layout. Keyboards differ dramatically, so writing code that presumes the
existence of a particular key on the main keyboard creates portability problems.

Keyboard events are usually sent to the deepest viewable window underneath the
pointer’s position that is interested in that type of event. It is also possible to assign the
keyboard input focus to a specific window. When the input focus is attached to a win-
dow, keyboard events go to the client that has selected input on that window rather than
the window under the pointer.

The functions in this section handle the shift modifier computations suggested by the
protocol. The KeySym table is internally modified to define the lowercase transforma-
tion of a–z by adding the lowercase KeySym to the first element of the KeySym list
(used internally) defined for the KeyCode, when the list is of length 1. If you want the
untransformed KeySyms defined for a key, you should only use the functions described
in section 7.9.

To look up the KeySym from the list that corresponds to an event’s KeyCode, use
XLookupKeysym.

KeySym XLookupKeysym(key_event, index)
XKeyEvent *key_event;
int index;

key_event Specifies the KeyPress or KeyRelease event.

index Specifies the index into the KeySyms list for the event’s Key-
Code.

The XLookupKeysym function uses a given keyboard event and the index you
specified to return the KeySym from the list that corresponds to the KeyCode member
in the XKeyPressedEvent or XKeyReleasedEvent structure. If no KeySym is defined
for the KeyCode of the event, XLookupKeysym returns NoSymbol.

To refresh the stored modifier and keymap information, use XRefresh-
KeyboardMapping.

XRefreshKeyboardMapping(event_map)
XMappingEvent *event_map;

10−2 March 26, 1992

-- --

Application Utility Functions

event_map Specifies the mapping event that is to be used.

The XRefreshKeyboardMapping function refreshes the stored modifier and keymap
information. You usually call this function when a MappingNotify event with a
request member of MappingKeyboard or MappingModifier occurs. The result is to
update Xlib’s knowledge of the keyboard.

To map a key event to an ISO Latin-1 string, use XLookupString.

int XLookupString(event_struct, buffer_return, bytes_buffer, keysym_return, status_in_out)
XKeyEvent *event_struct;
char *buffer_return;
int bytes_buffer;
KeySym *keysym_return;
XComposeStatus *status_in_out;

event_struct Specifies the key event structure to be used. You can pass
XKeyPressedEvent or XKeyReleasedEvent.

buffer_return Returns the translated characters.

bytes_buffer Specifies the length of the buffer. No more than bytes_buffer of
translation are returned.

keysym_return Returns the KeySym computed from the event if this argument
is not NULL.

status_in_out Specifies or returns the XComposeStatus structure or NULL.

The XLookupString function translates a key event to a KeySym and a string. The
KeySym is obtained by using the standard interpretation of the Shift, Lock, and group
modifiers as defined in the X Protocol specification. If the KeySym has been rebound
(see XRebindKeysym), the bound string will be stored in the buffer. Otherwise, the
KeySym is mapped, if possible, to an ISO Latin-1 character or (if the Control modifier
is on) to an ASCII control character, and that character is stored in the buffer. XLook-
upString returns the number of characters that are stored in the buffer.

If present (non-NULL), the XComposeStatus structure records the state, which is
private to Xlib, that needs preservation across calls to XLookupString to implement
compose processing.

To rebind the meaning of a KeySym for a client, use XRebindKeysym.

XRebindKeysym(display, keysym, list, mod_count, string, bytes_string)
Display *display;
KeySym keysym;
KeySym list[];
int mod_count;
unsigned char *string;
int bytes_string;

display Specifies the connection to the X server.

keysym Specifies the KeySym that is to be rebound.

March 26, 1992 10−3

-- --

X Window System

list Specifies the KeySyms to be used as modifiers.

mod_count Specifies the number of modifiers in the modifier list.

string Specifies the string that is copied and will be returned by
XLookupString.

bytes_string Specifies the length of the string.

The XRebindKeysym function can be used to rebind the meaning of a KeySym for the
client. It does not redefine any key in the X server but merely provides an easy way for
long strings to be attached to keys. XLookupString returns this string when the
appropriate set of modifier keys are pressed and when the KeySym would have been
used for the translation. Note that you can rebind a KeySym that may not exist.

KeySysms that are not part of the Xlib standard may be obtained by using
XStringToKeysym and XKeysymToString. Note that the set of KeySyms that are
available in this manner and the mechanisms by which Xlib obtains them is implemen-
tation dependent.

To convert the name of the KeySym to the KeySym code, use XStringToKeysym.

KeySym XStringToKeysym(string)
char *string;

string Specifies the name of the KeySym that is to be converted.

Valid KeySym names are listed in <X11/keysymdef.h> by removing the XK_ prefix
from each name. If the specified string does not match a valid KeySym,
XStringToKeysym returns NoSymbol.

To convert a KeySym code to the name of the KeySym, use XKeysymToString.

char *XKeysymToString(keysym)
KeySym keysym;

keysym Specifies the KeySym that is to be converted.

The returned string is in a static area and must not be modified. If the specified
KeySym is not defined, XKeysymToString returns a NULL.

To convert a key code to a defined KeySym, use XKeycodeToKeysym.

KeySym XKeycodeToKeysym(display, keycode, index)
Display *display;
KeyCode keycode;
int index;

display Specifies the connection to the X server.

keycode Specifies the KeyCode.

index Specifies the element of KeyCode vector.

The XKeycodeToKeysym function uses internal Xlib tables and returns the KeySym
defined for the specified KeyCode and the element of the KeyCode vector. If no sym-
bol is defined, XKeycodeToKeysym returns NoSymbol.

10−4 March 26, 1992

-- --

Application Utility Functions

To convert a KeySym to the appropriate KeyCode, use XKeysymToKeycode.

KeyCode XKeysymToKeycode(display, keysym)
Display *display;
KeySym keysym;

display Specifies the connection to the X server.

keysym Specifies the KeySym that is to be searched for.

If the specified KeySym is not defined for any KeyCode, XKeysymToKeycode returns
zero.

10.1.2 Keysym Classification Macros

You may want to test if a KeySym is, for example, on the keypad or on one of the func-
tion keys. You can use the KeySym macros to perform the following tests.

IsCursorKey(keysym)

keysym Specifies the KeySym that is to be tested.

Returns True if the specified KeySym is a cursor key.

IsFunctionKey(keysym)

keysym Specifies the KeySym that is to be tested.

Returns True if the specified KeySym is a function key.

IsKeypadKey(keysym)

keysym Specifies the KeySym that is to be tested.

Returns True if the specified KeySym is a keypad key.

IsMiscFunctionKey(keysym)

keysym Specifies the KeySym that is to be tested.

Returns True if the specified KeySym is a miscellaneous function key.

IsModifierKey(keysym)

keysym Specifies the KeySym that is to be tested.

Returns True if the specified KeySym is a modifier key.

IsPFKey(keysym)

keysym Specifies the KeySym that is to be tested.

Returns True if the specified KeySym is a PF key.

March 26, 1992 10−5

-- --

X Window System

10.2 Obtaining the X Environment Defaults

The XGetDefault function provides a primitive interface to the resource manager facili-
ties discussed in section 10.11. Although it can be useful in very simple applications,
XGetDefault is provided primarily for X Version 10 compatibility.

A program often needs a variety of options in the X environment (for example, fonts,
colors, mouse, background, text, and cursor). Specifying these options on the command
line is inefficient and unmanageable because individual users have a variety of tastes
with regard to window appearance. XGetDefault makes it possible to find out the
fonts, colors, and other environment defaults favored by a particular user. Defaults are
usually loaded into the RESOURCE_MANAGER property on the root window at
login. If no such property exists, a resource file in the user’s home directory is loaded.
On a POSIX-conformant system, this file is "$HOME/.Xdefaults". After loading these
defaults, XGetDefault merges additional defaults specified by the XENVIRONMENT
environment variable. If XENVIRONMENT is defined, it contains a full path name for
the additional resource file. If XENVIRONMENT is not defined, XGetDefault looks for
$HOME/.Xdefaults-name, where name specifies the name of the machine on which
the application is running. For details of the format of these files, see section 10.11.

char *XGetDefault(display, program, option)
Display *display;
char *program;
char *option;

display Specifies the connection to the X server.

program Specifies the program name for the Xlib defaults (usually
argv[0] of the main program).

option Specifies the option name.

The XGetDefault function returns the value of the resource prog.option, where prog is
the program argument with the directory prefix removed and option must be a single
component. Note that multi-level resources cannot be used with XGetDefault. The
class "Program.Name" is always used for the resource lookup. If the specified option
name does not exist for this program, XGetDefault returns NULL. The strings returned
by XGetDefault are owned by Xlib and should not be modified or freed by the client.

To obtain a pointer to the resource manager string of a display, use XResour-
ceManagerString.

char *XResourceManagerString(display)
Display *display;

display Specifies the connection to the X server.

The XResourceManagerString returns the RESOURCE_MANAGER property from
the server’s root window of screen zero, which was returned when the connection was
opened using XOpenDisplay. Note that the property value must be in a format that is
acceptable to XrmGetStringDatabase.

10−6 March 26, 1992

-- --

Application Utility Functions

10.3 Parsing the Window Geometry

To parse standard window geometry strings, use XParseGeometry.

int XParseGeometry(parsestring, x_return, y_return, width_return, height_return)
char *parsestring;
int *x_return, *y_return;
unsigned int *width_return, *height_return;

parsestring Specifies the string you want to parse.

x_return, y_return
Return the x and y offsets.

width_return, height_return
Return the width and height determined.

By convention, X applications use a standard string to indicate window size and place-
ment. XParseGeometry makes it easier to conform to this standard because it allows
you to parse the standard window geometry. Specifically, this function lets you parse
strings of the form:

[=][<width>x<height>][{+–}<xoffset>{+–}<yoffset>]

The items in this form map into the arguments associated with this function. (Items
enclosed in <> are integers, items in [] are optional, and items enclosed in {} indicate
‘‘choose one of.’’ Note that the brackets should not appear in the actual string.)

The XParseGeometry function returns a bitmask that indicates which of the four values
(width, height, xoffset, and yoffset) were actually found in the string and whether the x
and y values are negative. By convention, –0 is not equal to +0, because the user needs
to be able to say ‘‘position the window relative to the right or bottom edge.’’ For each
value found, the corresponding argument is updated. For each value not found, the
argument is left unchanged. The bits are represented by XValue, YValue, Width-
Value, HeightValue, XNegative, or YNegative and are defined in <X11/Xutil.h>.
They will be set whenever one of the values is defined or one of the signs is set.

If the function returns either the XValue or YValue flag, you should place the window
at the requested position.

10.4 Parsing the Color Specifications

To parse color values, use XParseColor.

Status XParseColor(display, colormap, spec, exact_def_return)
Display *display;
Colormap colormap;
char *spec;

March 26, 1992 10−7

-- --

X Window System

XColor *exact_def_return;

display Specifies the connection to the X server.

colormap Specifies the colormap.

spec Specifies the color name string; case is ignored.

exact_def_return
Returns the exact color value for later use and sets the DoRed,
DoGreen, and DoBlue flags.

The XParseColor function provides a simple way to create a standard user interface to
color. It takes a string specification of a color, typically from a command line or XGet-
Default option, and returns the corresponding red, green, and blue values that are suit-
able for a subsequent call to XAllocColor or XStoreColor. The color can be specified
either as a color name (as in XAllocNamedColor) or as an initial sharp sign character
followed by a numeric specification, in one of the following formats:

#RGB (4 bits each)
#RRGGBB (8 bits each)
#RRRGGGBBB (12 bits each)
#RRRRGGGGBBBB (16 bits each)

The R, G, and B represent single hexadecimal digits (both uppercase and lowercase).
When fewer than 16 bits each are specified, they represent the most-significant bits of
the value. For example, #3a7 is the same as #3000a0007000. The colormap is used
only to determine which screen to look up the color on. For example, you can use the
screen’s default colormap.

If the initial character is a sharp sign but the string otherwise fails to fit the above for-
mats or if the initial character is not a sharp sign and the named color does not exist in
the server’s database, XParseColor fails and returns zero.

XParseColor can generate a BadColor error.

10.5 Generating Regions

Regions are arbitrary sets of pixel locations. Xlib provides functions for manipulating
regions. The opaque type Region is defined in <X11/Xutil.h>.

To generate a region from a polygon, use XPolygonRegion.

Region XPolygonRegion(points, n, fill_rule)
XPoint points[];
int n;
int fill_rule;

points Specifies an array of points.

10−8 March 26, 1992

-- --

Application Utility Functions

n Specifies the number of points in the polygon.

fill_rule Specifies the fill-rule you want to set for the specified GC. You
can pass EvenOddRule or WindingRule.

The XPolygonRegion function returns a region for the polygon defined by the points
array. For an explanation of fill_rule, see XCreateGC.

To generate the smallest rectangle enclosing the region, use XClipBox.

XClipBox(r, rect_return)
Region r;
XRectangle *rect_return;

r Specifies the region.

rect_return Returns the smallest enclosing rectangle.

The XClipBox function returns the smallest rectangle enclosing the specified region.

10.6 Manipulating Regions

Xlib provides functions that you can use to manipulate regions. This section discusses
how to:

• Create, copy, or destroy regions

• Move or shrink regions

• Compute with regions

• Determine if regions are empty or equal

• Locate a point or rectangle in a region

10.6.1 Creating, Copying, or Destroying Regions

To create a new empty region, use XCreateRegion.

Region XCreateRegion()

To set the clip-mask of a GC to a region, use XSetRegion.

XSetRegion(display, gc, r)
Display *display;
GC gc;
Region r;

display Specifies the connection to the X server.

March 26, 1992 10−9

-- --

X Window System

gc Specifies the GC.

r Specifies the region.

The XSetRegion function sets the clip-mask in the GC to the specified region. Once it
is set in the GC, the region can be destroyed.

To deallocate the storage associated with a specified region, use XDestroyRegion.

XDestroyRegion(r)
Region r;

r Specifies the region.

10.6.2 Moving or Shrinking Regions

To move a region by a specified amount, use XOffsetRegion.

XOffsetRegion(r, dx, dy)
Region r;
int dx, dy;

r Specifies the region.

dx, dy Specify the x and y coordinates, which define the amount you
want to move the specified region.

To reduce a region by a specified amount, use XShrinkRegion.

XShrinkRegion(r, dx, dy)
Region r;
int dx, dy;

r Specifies the region.

dx, dy Specify the x and y coordinates, which define the amount you
want to shrink the specified region.

Positive values shrink the size of the region, and negative values expand the region.

10.6.3 Computing with Regions

To compute the intersection of two regions, use XIntersectRegion.

XIntersectRegion(sra, srb, dr_return)
Region sra, srb, dr_return;

sra, srb Specify the two regions with which you want to perform the
computation.

10−10 March 26, 1992

-- --

Application Utility Functions

dr_return Returns the result of the computation.

To compute the union of two regions, use XUnionRegion.

XUnionRegion(sra, srb, dr_return)
Region sra, srb, dr_return;

sra, srb Specify the two regions with which you want to perform the
computation.

dr_return Returns the result of the computation.

To create a union of a source region and a rectangle, use XUnionRectWithRegion.

XUnionRectWithRegion(rectangle, src_region, dest_region_return)
XRectangle *rectangle;
Region src_region;
Region dest_region_return;

rectangle Specifies the rectangle.

src_region Specifies the source region to be used.

dest_region_return Returns the destination region.

The XUnionRectWithRegion function updates the destination region from a union of
the specified rectangle and the specified source region.

To subtract two regions, use XSubtractRegion.

XSubtractRegion(sra, srb, dr_return)
Region sra, srb, dr_return;

sra, srb Specify the two regions with which you want to perform the
computation.

dr_return Returns the result of the computation.

The XSubtractRegion function subtracts srb from sra and stores the results in
dr_return.

To calculate the difference between the union and intersection of two regions, use
XXorRegion.

XXorRegion(sra, srb, dr_return)
Region sra, srb, dr_return;

sra, srb Specify the two regions with which you want to perform the
computation.

dr_return Returns the result of the computation.

March 26, 1992 10−11

-- --

X Window System

10.6.4 Determining if Regions Are Empty or Equal

To determine if the specified region is empty, use XEmptyRegion.

Bool XEmptyRegion(r)
Region r;

r Specifies the region.

The XEmptyRegion function returns True if the region is empty.

To determine if two regions have the same offset, size, and shape, use XEqualRegion.

Bool XEqualRegion(r1, r2)
Region r1, r2;

r1, r2 Specify the two regions.

The XEqualRegion function returns True if the two regions have the same offset, size,
and shape.

10.6.5 Locating a Point or a Rectangle in a Region

To determine if a specified point resides in a specified region, use XPointInRegion.

Bool XPointInRegion(r, x, y)
Region r;
int x, y;

r Specifies the region.

x, y Specify the x and y coordinates, which define the point.

The XPointInRegion function returns True if the point (x, y) is contained in the region
r.

To determine if a specified rectangle is inside a region, use XRectInRegion.

int XRectInRegion(r, x, y, width, height)
Region r;
int x, y;
unsigned int width, height;

r Specifies the region.

x, y Specify the x and y coordinates, which define the coordinates of
the upper-left corner of the rectangle.

width, height Specify the width and height, which define the rectangle.

The XRectInRegion function returns RectangleIn if the rectangle is entirely in the
specified region, RectangleOut if the rectangle is entirely out of the specified region,
and RectanglePart if the rectangle is partially in the specified region.

10−12 March 26, 1992

-- --

Application Utility Functions

10.7 Using the Cut and Paste Buffers

Xlib provides functions that you can use to cut and paste buffers for programs using this
form of communications. Selections are a more useful mechanism for interchanging
data between clients because typed information can be exchanged. X provides property
names for properties in which bytes can be stored for implementing cut and paste
between windows (implemented by use of properties on the first root window of the
display). It is up to applications to agree on how to represent the data in the buffers.
The data is most often ISO Latin-1 text. The atoms for eight such buffer names are pro-
vided and can be accessed as a ring or as explicit buffers (numbered 0 through 7).

(see section 4.4).

To store data in cut buffer 0, use XStoreBytes.

XStoreBytes(display, bytes, nbytes)
Display *display;
char *bytes;
int nbytes;

display Specifies the connection to the X server.

bytes Specifies the bytes, which are not necessarily ASCII or null-
terminated.

nbytes Specifies the number of bytes to be stored.

Note that the cut buffer’s contents need not be text, so zero bytes are not special. The
cut buffer’s contents can be retrieved later by any client calling XFetchBytes.

XStoreBytes can generate a BadAlloc error.

To store data in a specified cut buffer, use XStoreBuffer.

XStoreBuffer(display, bytes, nbytes, buffer)
Display *display;
char *bytes;
int nbytes;
int buffer;

display Specifies the connection to the X server.

bytes Specifies the bytes, which are not necessarily ASCII or null-
terminated.

nbytes Specifies the number of bytes to be stored.

buffer Specifies the buffer in which you want to store the bytes.

If the property for the buffer has never been created, a BadAtom error results.

XStoreBuffer can generate BadAlloc and BadAtom errors.

March 26, 1992 10−13

-- --

X Window System

To return data from cut buffer 0, use XFetchBytes.

char *XFetchBytes(display, nbytes_return)
Display *display;
int *nbytes_return;

display Specifies the connection to the X server.

nbytes_return Returns the number of bytes in the buffer.

The XFetchBytes function returns the number of bytes in the nbytes_return argument, if
the buffer contains data. Otherwise, the function returns NULL and sets nbytes to 0.
The appropriate amount of storage is allocated and the pointer returned. The client must
free this storage when finished with it by calling XFree. Note that the cut buffer does
not necessarily contain text, so it may contain embedded zero bytes and may not ter-
minate with a null byte.

To return data from a specified cut buffer, use XFetchBuffer.

char *XFetchBuffer(display, nbytes_return, buffer)
Display *display;
int *nbytes_return;
int buffer;

display Specifies the connection to the X server.

nbytes_return Returns the number of bytes in the buffer.

buffer Specifies the buffer from which you want the stored data
returned.

The XFetchBuffer function returns zero to the nbytes_return argument if there is no data
in the buffer.

XFetchBuffer can generate a BadValue error.

To rotate the cut buffers, use XRotateBuffers.

XRotateBuffers(display, rotate)
Display *display;
int rotate;

display Specifies the connection to the X server.

rotate Specifies how much to rotate the cut buffers.

The XRotateBuffers function rotates the cut buffers, such that buffer 0 becomes buffer n,
buffer 1 becomes n + 1 mod 8, and so on. This cut buffer numbering is global to the
display. Note that XRotateBuffers generates BadMatch errors if any of the eight
buffers have not been created.

10−14 March 26, 1992

-- --

Application Utility Functions

10.8 Determining the Appropriate Visual Type

A single display can support multiple screens. Each screen can have several different
visual types supported at different depths. You can use the functions described in this
section to determine which visual to use for your application.

The functions in this section use the visual information masks and the XVisualInfo
structure, which is defined in <X11/Xutil.h> and contains:

/* Visual information mask bits */
#define VisualNoMask 0x0
#define VisualIDMask 0x1
#define VisualScreenMask 0x2
#define VisualDepthMask 0x4
#define VisualClassMask 0x8
#define VisualRedMaskMask 0x10
#define VisualGreenMaskMask 0x20
#define VisualBlueMaskMask 0x40
#define VisualColormapSizeMask 0x80
#define VisualBitsPerRGBMask 0x100
#define VisualAllMask 0x1FF
/* Values */
typedef struct {

Visual *visual;
VisualID visualid;
int screen;
unsigned int depth;
int class;
unsigned long red_mask;
unsigned long green_mask;
unsigned long blue_mask;
int colormap_size;
int bits_per_rgb;

} XVisualInfo;

To obtain a list of visual information structures that match a specified template, use
XGetVisualInfo.

XVisualInfo *XGetVisualInfo(display, vinfo_mask, vinfo_template, nitems_return)
Display *display;
long vinfo_mask;
XVisualInfo *vinfo_template;
int *nitems_return;

display Specifies the connection to the X server.

vinfo_mask Specifies the visual mask value.

vinfo_template Specifies the visual attributes that are to be used in matching
the visual structures.

March 26, 1992 10−15

-- --

X Window System

nitems_return Returns the number of matching visual structures.

The XGetVisualInfo function returns a list of visual structures that have attributes equal
to the attributes specified by vinfo_template. If no visual structures match the template
using the specified vinfo_mask, XGetVisualInfo returns a NULL. To free the data
returned by this function, use XFree.

To obtain the visual information that matches the specified depth and class of the
screen, use XMatchVisualInfo.

Status XMatchVisualInfo(display, screen, depth, class, vinfo_return)
Display *display;
int screen;
int depth;
int class;
XVisualInfo *vinfo_return;

display Specifies the connection to the X server.

screen Specifies the screen.

depth Specifies the depth of the screen.

class Specifies the class of the screen.

vinfo_return Returns the matched visual information.

The XMatchVisualInfo function returns the visual information for a visual that matches
the specified depth and class for a screen. Because multiple visuals that match the
specified depth and class can exist, the exact visual chosen is undefined. If a visual is
found, XMatchVisualInfo returns nonzero and the information on the visual to
vinfo_return. Otherwise, when a visual is not found, XMatchVisualInfo returns zero.

10.9 Manipulating Images

Xlib provides several functions that perform basic operations on images. All operations
on images are defined using an XImage structure, as defined in <X11/Xlib.h>.
Because the number of different types of image formats can be very large, this hides
details of image storage properly from applications.

This section describes the functions for generic operations on images. Manufacturers
can provide very fast implementations of these for the formats frequently encountered
on their hardware. These functions are neither sufficient nor desirable to use for general
image processing. Rather, they are here to provide minimal functions on screen format
images. The basic operations for getting and putting images are XGetImage and XPu-
tImage.

Note that no functions have been defined, as yet, to read and write images to and from
disk files.

10−16 March 26, 1992

-- --

Application Utility Functions

The XImage structure describes an image as it exists in the client’s memory. The user
can request that some of the members such as height, width, and xoffset be changed
when the image is sent to the server. Note that bytes_per_line in concert with offset can
be used to extract a subset of the image. Other members (for example, byte order,
bitmap_unit, and so forth) are characteristics of both the image and the server. If these
members differ between the image and the server, XPutImage makes the appropriate
conversions. The first byte of the first line of plane n must be located at the address
(data + (n * height * bytes_per_line)). For a description of the XImage structure, see
section 6.7.

To allocate sufficient memory for an XImage structure, use XCreateImage.

XImage *XCreateImage(display, visual, depth, format, offset, data, width, height,
bitmap_pad, bytes_per_line)

Display *display;
Visual *visual;
unsigned int depth;
int format;
int offset;
char *data;
unsigned int width;
unsigned int height;
int bitmap_pad;
int bytes_per_line;

display Specifies the connection to the X server.

visual Specifies the Visual structure.

depth Specifies the depth of the image.

format Specifies the format for the image. You can pass XYBitmap,
XYPixmap, or ZPixmap.

offset Specifies the number of pixels to ignore at the beginning of the
scanline.

data Specifies the image data.

width Specifies the width of the image, in pixels.

height Specifies the height of the image, in pixels.

bitmap_pad Specifies the quantum of a scanline (8, 16, or 32). In other
words, the start of one scanline is separated in client memory
from the start of the next scanline by an integer multiple of this
many bits.

bytes_per_line Specifies the number of bytes in the client image between the
start of one scanline and the start of the next.

The XCreateImage function allocates the memory needed for an XImage structure for
the specified display but does not allocate space for the image itself. Rather, it initial-
izes the structure byte-order, bit-order, and bitmap-unit values from the display and

March 26, 1992 10−17

-- --

X Window System

returns a pointer to the XImage structure. The red, green, and blue mask values are
defined for Z format images only and are derived from the Visual structure passed in.
Other values also are passed in. The offset permits the rapid displaying of the image
without requiring each scanline to be shifted into position. If you pass a zero value in
bytes_per_line, Xlib assumes that the scanlines are contiguous in memory and calculates
the value of bytes_per_line itself.

Note that when the image is created using XCreateImage, XGetImage, or XSubIm-
age, the destroy procedure that the XDestroyImage function calls frees both the image
structure and the data pointed to by the image structure.

The basic functions used to get a pixel, set a pixel, create a subimage, and add a con-
stant offset to a Z format image are defined in the image object. The functions in this
section are really macro invocations of the functions in the image object and are defined
in <X11/Xutil.h>.

To obtain a pixel value in an image, use XGetPixel.

unsigned long XGetPixel(ximage, x, y)
XImage *ximage;
int x;
int y;

ximage Specifies the image.

x, y Specify the x and y coordinates.

The XGetPixel function returns the specified pixel from the named image. The pixel
value is returned in normalized format (that is, the least-significant byte of the long is
the least-significant byte of the pixel). The image must contain the x and y coordi-
nates.

To set a pixel value in an image, use XPutPixel.

XPutPixel(ximage, x, y, pixel)
XImage *ximage;
int x;
int y;
unsigned long pixel;

ximage Specifies the image.

x, y Specify the x and y coordinates.

pixel Specifies the new pixel value.

The XPutPixel function overwrites the pixel in the named image with the specified pixel
value. The input pixel value must be in normalized format (that is, the least-significant
byte of the long is the least-significant byte of the pixel). The image must contain the x
and y coordinates.

To create a subimage, use XSubImage.

XImage *XSubImage(ximage, x, y, subimage_width, subimage_height)
XImage *ximage;

10−18 March 26, 1992

-- --

Application Utility Functions

int x;
int y;
unsigned int subimage_width;
unsigned int subimage_height;

ximage Specifies the image.

x, y Specify the x and y coordinates.

subimage_width
Specifies the width of the new subimage, in pixels.

subimage_height
Specifies the height of the new subimage, in pixels.

The XSubImage function creates a new image that is a subsection of an existing one.
It allocates the memory necessary for the new XImage structure and returns a pointer to
the new image. The data is copied from the source image, and the image must contain
the rectangle defined by x, y, subimage_width, and subimage_height.

To increment each pixel in the pixmap by a constant value, use XAddPixel.

XAddPixel(ximage, value)
XImage *ximage;
long value;

ximage Specifies the image.

value Specifies the constant value that is to be added.

The XAddPixel function adds a constant value to every pixel in an image. It is useful
when you have a base pixel value from allocating color resources and need to manipu-
late the image to that form.

To deallocate the memory allocated in a previous call to XCreateImage, use XDestroy-
Image.

XDestroyImage(ximage)
XImage *ximage;

ximage Specifies the image.

The XDestroyImage function deallocates the memory associated with the
XImage structure.

Note that when the image is created using XCreateImage, XGetImage, or XSubIm-
age, the destroy procedure that this macro calls frees both the image structure and the
data pointed to by the image structure.

10.10 Manipulating Bitmaps

Xlib provides functions that you can use to read a bitmap from a file, save a bitmap to a

March 26, 1992 10−19

-- --

X Window System

file, or create a bitmap. This section describes those functions that transfer bitmaps to
and from the client’s file system, thus allowing their reuse in a later connection (for
example, from an entirely different client or to a different display or server).

The X version 11 bitmap file format is:

#define name_width width
#define name_height height
#define name_x_hot x
#define name_y_hot y
static char name_bits[] = { 0xNN, . . . }

The variables ending with _x_hot and _y_hot suffixes are optional because they are
present only if a hotspot has been defined for this bitmap. The other variables are
required. The _bits array must be large enough to contain the size bitmap. The bitmap
unit is eight. The name is derived from the name of the file that you specified on the
original command line by deleting the directory path and extension.

To read a bitmap from a file, use XReadBitmapFile.

int XReadBitmapFile(display, d, filename, width_return, height_return, bitmap_return,
x_hot_return, y_hot_return)

Display *display;
Drawable d;
char *filename;
unsigned int *width_return, *height_return;
Pixmap *bitmap_return;
int *x_hot_return, *y_hot_return;

display Specifies the connection to the X server.

d Specifies the drawable.

filename Specifies the file name to use. The format of the file name is
operating-system dependent.

width_return, height_return
Return the width and height values of the read in bitmap file.

bitmap_return Returns the bitmap that is created.

x_hot_return, y_hot_return
Return the hotspot coordinates.

The XReadBitmapFile function reads in a file containing a bitmap. The ability to read
other than the standard format is implementation dependent. If the file cannot be
opened, XReadBitmapFile returns BitmapOpenFailed. If the file can be opened but
does not contain valid bitmap data, it returns BitmapFileInvalid. If insufficient working
storage is allocated, it returns BitmapNoMemory. If the file is readable and valid, it
returns BitmapSuccess.

XReadBitmapFile returns the bitmap’s height and width, as read from the file, to
width_return and height_return. It then creates a pixmap of the appropriate size, reads
the bitmap data from the file into the pixmap, and assigns the pixmap to the caller’s

10−20 March 26, 1992

-- --

Application Utility Functions

variable bitmap. The caller must free the bitmap using XFreePixmap when finished. If
name_x_hot and name_y_hot exist, XReadBitmapFile returns them to x_hot_return
and y_hot_return; otherwise, it returns –1,–1.

XReadBitmapFile can generate BadAlloc and BadDrawable errors.

To write out a bitmap to a file, use XWriteBitmapFile.

int XWriteBitmapFile(display, filename, bitmap, width, height, x_hot, y_hot)
Display *display;
char *filename;
Pixmap bitmap;
unsigned int width, height;
int x_hot, y_hot;

display Specifies the connection to the X server.

filename Specifies the file name to use. The format of the file name is
operating-system dependent.

bitmap Specifies the bitmap.

width, height Specify the width and height.

x_hot, y_hot Specify where to place the hotspot coordinates (or –1,–1 if none
are present) in the file.

The XWriteBitmapFile function writes a bitmap out to a file in the X version 11 for-
mat. If the file cannot be opened for writing, it returns BitmapOpenFailed. If
insufficient memory is allocated, XWriteBitmapFile returns BitmapNoMemory; other-
wise, on no error, it returns BitmapSuccess. If x_hot and y_hot are not –1, –1, XWri-
teBitmapFile writes them out as the hotspot coordinates for the bitmap.

XWriteBitmapFile can generate BadDrawable and BadMatch errors.

To create a pixmap and then store bitmap-format data into it, use XCreatePixmap-
FromBitmapData.

Pixmap XCreatePixmapFromBitmapData(display, d, data, width, height, fg, bg, depth)
Display *display;
Drawable d;
char *data;
unsigned int width, height;
unsigned long fg, bg;
unsigned int depth;

display Specifies the connection to the X server.

d Specifies the drawable that indicates the screen.

data Specifies the data in bitmap format.

width, height Specify the width and height.

fg, bg Specify the foreground and background pixel values to use.

March 26, 1992 10−21

-- --

X Window System

depth Specifies the depth of the pixmap.

The XCreatePixmapFromBitmapData function creates a pixmap of the given depth
and then does a bitmap-format XPutImage of the data into it. The depth must be sup-
ported by the screen of the specified drawable, or a BadMatch error results.

XCreatePixmapFromBitmapData can generate BadAlloc and BadMatch errors.

To include a bitmap written out by XWriteBitmapFile in a program directly, as opposed
to reading it in every time at run time, use XCreateBitmapFromData.

Pixmap XCreateBitmapFromData(display, d, data, width, height)
Display *display;
Drawable d;
char *data;
unsigned int width, height;

display Specifies the connection to the X server.

d Specifies the drawable that indicates the screen.

data Specifies the location of the bitmap data.

width, height Specify the width and height.

The XCreateBitmapFromData function allows you to include in your C program
(using #include) a bitmap file that was written out by XWriteBitmapFile (X version 11
format only) without reading in the bitmap file. The following example creates a gray
bitmap:

#include "gray.bitmap"
Pixmap bitmap;
bitmap = XCreateBitmapFromData(display, window, gray_bits, gray_width,

gray_height);

If insufficient working storage was allocated, XCreateBitmapFromData returns None.
It is your responsibility to free the bitmap using XFreePixmap when finished.

XCreateBitmapFromData can generate a BadAlloc error.

10.11 Using the Resource Manager

The resource manager is a database manager with a twist. In most database systems,
you perform a query using an imprecise specification, and you get back a set of
records. The resource manager, however, allows you to specify a large set of values
with an imprecise specification, to query the database with a precise specification, and
to get back only a single value. This should be used by applications that need to know
what the user prefers for colors, fonts, and other resources. It is this use as a database
for dealing with X resources that inspired the name ‘‘Resource Manager,’’ although the
resource manager can be and is used in other ways.

10−22 March 26, 1992

-- --

Application Utility Functions

For example, a user of your application may want to specify that all windows should
have a blue background but that all mail-reading windows should have a red back-
ground. Presuming that all applications use the resource manager, a user can define this
information using only two lines of specifications. Your personal resource database
usually is stored in a file and is loaded onto a server property when you log in. This
database is retrieved automatically by Xlib when a connection is opened.

As an example of how the resource manager works, consider a mail-reading application
called xmh. Assume that it is designed so that it uses a complex window hierarchy all
the way down to individual command buttons, which may be actual small subwindows
in some toolkits. These are often called objects or widgets. In such toolkit systems,
each user interface object can be composed of other objects and can be assigned a name
and a class. Fully qualified names or classes can have arbitrary numbers of component
names, but a fully qualified name always has the same number of component names as
a fully qualified class. This generally reflects the structure of the application as com-
posed of these objects, starting with the application itself.

For example, the xmh mail program has a name ‘‘xmh’’ and is one of a class of
‘‘Mail’’ programs. By convention, the first character of class components is capitalized,
and the first letter of name components is in lowercase. Each name and class finally has
an attribute (for example ‘‘foreground’’ or ‘‘font’’). If each window is properly
assigned a name and class, it is easy for the user to specify attributes of any portion of
the application.

At the top level, the application might consist of a paned window (that is, a window
divided into several sections) named ‘‘toc’’. One pane of the paned window is a button
box window named ‘‘buttons’’ and is filled with command buttons. One of these com-
mand buttons is used to retrieve (include) new mail and has the name ‘‘include’’. This
window has a fully qualified name, ‘‘xmh.toc.buttons.include’’, and a fully qualified
class, ‘‘Xmh.VPaned.Box.Command’’. Its fully qualified name is the name of its
parent, ‘‘xmh.toc.buttons’’, followed by its name, ‘‘include’’. Its class is the class of its
parent, ‘‘Xmh.VPaned.Box’’, followed by its particular class, ‘‘Command’’. The fully
qualified name of a resource is the attribute’s name appended to the object’s fully
qualified name, and the fully qualified class is its class appended to the object’s class.

This include button needs the following resources:

• Title string

• Font

• Foreground color for its inactive state

• Background color for its inactive state

• Foreground color for its active state

• Background color for its active state

Each of the resources that this button needs are considered to be attributes of the button
and, as such, have a name and a class. For example, the foreground color for the button
in its active state might be named ‘‘activeForeground’’, and its class would be ‘‘Fore-
ground’’.

March 26, 1992 10−23

-- --

X Window System

When an application looks up a resource (for example, a color), it passes the complete
name and complete class of the resource to a look-up routine. After look up, the
resource manager returns the resource value and the representation type.

The resource manager allows applications to store resources by an incomplete
specification of name, class, and a representation type, as well as to retrieve them given
a fully qualified name and class.

Resource specifications are usually stored in human-readable files and in server proper-
ties (see XResourceManagerString). The BNF of a resource specification is:

ResourceLine = Comment | ResourceSpec
Comment = "!" string | <empty line>
ResourceSpec = WhiteSpace ResourceName WhiteSpace ":" WhiteSpace value
ResourceName = [Binding] ComponentName {Binding ComponentName}
Binding = "." | "*"
WhiteSpace = {" " | "\t"}
ComponentName = {"a"–"z" | "A"–"Z" | "0"–"9" | "_" | "-"}
value = string
string = {<any character not including "\n">}

Note that elements enclosed in curly braces ({...}) indicate zero or more occurrences of
the enclosed elements.

10.11.1 Resource Manager Matching Rules

The algorithm for determining which resource name or names match a given query is
the heart of the database. Resources are stored with only partially specified names and
classes, using pattern matching constructs. An asterisk (*) is used to represent any
number of intervening components (including none). A period (.) is used to separate
immediately adjacent components. All queries fully specify the name and class of the
resource needed. A trailing period and asterisk are not removed. The library supports
100 components in a name or class. The look-up algorithm then searches the database
for the name that most closely matches (is most specific) this full name and class. The
rules for a match in order of precedence are:

1. The attribute of the name and class must match. For example, queries for:

xterm.scrollbar.background (name)
XTerm.Scrollbar.Background (class)

will not match the following database entry:

xterm.scrollbar:on

2. Database entries with name or class prefixed by a period (.) are more specific than
those prefixed by an asterisk (*). For example, the entry xterm.geometry is more

10−24 March 26, 1992

-- --

Application Utility Functions

specific than the entry xterm*geometry.

3. Names are more specific than classes. For example, the entry
‘‘*scrollbar.background’’ is more specific than the entry
‘‘*Scrollbar.Background’’.

4. Specifying a name or class is more specific than omitting either. For example,
the entry ‘‘Scrollbar*Background’’ is more specific than the entry ‘‘*Back-
ground’’.

5. Left components are more specific than right components. For example,
‘‘*vt100*background’’ is more specific than the entry ‘‘*scrollbar*background’’
for the query ‘‘.vt100.scrollbar.background’’.

6. If neither a period (.) nor an asterisk (*) is specified at the beginning, a period (.)
is implicit. For example, ‘‘xterm.background’’ is identical to
‘‘.xterm.background’’.

Names and classes can be mixed. As an example of these rules, assume the following
user preference specification:

xmh*background: red
*command.font: 8x13
*command.background: blue
*Command.Foreground: green
xmh.toc*Command.activeForeground: black

A query for the name ‘‘xmh.toc.messagefunctions.include.activeForeground’’ and class
‘‘Xmh.VPaned.Box.Command.Foreground’’ would match
‘‘xmh.toc*Command.activeForeground’’ and return ‘‘black’’. However, it also matches
‘‘*Command.Foreground’’.

Using the precedence algorithm described above, the resource manager would return the
value specified by ‘‘xmh.toc*Command.activeForeground’’.

10.11.2 Basic Resource Manager Definitions

The definitions for the resource manager’s use are contained in <X11/Xresource.h>.
Xlib also uses the resource manager internally to allow for non-English language error
messages.

Database values consist of a size, an address, and a representation type. The size is
specified in bytes. The representation type is a way for you to store data tagged by
some application-defined type (for example, ‘‘font’’ or ‘‘color’’). It has nothing to do
with the C data type or with its class. The XrmValue structure contains:

typedef struct {
unsigned int size;
caddr_t addr;

} XrmValue, *XrmValuePtr;

March 26, 1992 10−25

-- --

X Window System

A resource database is an opaque type used by the look-up functions.

typedef struct _XrmHashBucketRec *XrmDatabase;

To initialize the resource manager, use XrmInitialize.

void XrmInitialize();

Most uses of the resource manager involve defining names, classes, and representation
types as string constants. However, always referring to strings in the resource manager
can be slow, because it is so heavily used in some toolkits. To solve this problem, a
shorthand for a string is used in place of the string in many of the resource manager
functions. Simple comparisons can be performed rather than string comparisons. The
shorthand name for a string is called a quark and is the type XrmQuark. On some
occasions, you may want to allocate a quark that has no string equivalent.

A quark is to a string what an atom is to a string in the server, but its use is entirely
local to your application.

To allocate a new quark, use XrmUniqueQuark.

XrmQuark XrmUniqueQuark()

The XrmUniqueQuark function allocates a quark that is guaranteed not to represent
any string that is known to the resource manager.

To allocate some memory you will never give back, use Xpermalloc.

char *Xpermalloc(size)
unsigned int size;

The Xpermalloc function is used by some toolkits for permanently allocated storage
and allows some performance and space savings over the completely general memory
allocator.

Each name, class, and representation type is typedef’d as an XrmQuark.

typedef int XrmQuark, *XrmQuarkList;
typedef XrmQuark XrmName;
typedef XrmQuark XrmClass;
typedef XrmQuark XrmRepresentation;

Lists are represented as null-terminated arrays of quarks. The size of the array must be
large enough for the number of components used.

typedef XrmQuarkList XrmNameList;
typedef XrmQuarkList XrmClassList;

To convert a string to a quark, use XrmStringToQuark.

#define XrmStringToName(string) XrmStringToQuark(string)
#define XrmStringToClass(string) XrmStringToQuark(string)
#define XrmStringToRepresentation(string)XrmStringToQuark(string)
XrmQuark XrmStringToQuark(string)

char *string;

10−26 March 26, 1992

-- --

Application Utility Functions

string Specifies the string for which a quark is to be allocated.

To convert a quark to a string, use XrmQuarkToString.

#define XrmNameToString(name) XrmQuarkToString(name)
#define XrmClassToString(class) XrmQuarkToString(class)
#define XrmRepresentationToString(type)XrmQuarkToString(type)
char *XrmQuarkToString(quark)

XrmQuark quark;

quark Specifies the quark for which the equivalent string is desired.

These functions can be used to convert to and from quark representations. The string
pointed to by the return value must not be modified or freed. If no string exists for that
quark, XrmQuarkToString returns NULL.

To convert a string with one or more components to a quark list, use XrmStringTo-
QuarkList.

#define XrmStringToNameList(str, name)XrmStringToQuarkList((str), (name))
#define XrmStringToClassList(str,class)XrmStringToQuarkList((str), (class))
void XrmStringToQuarkList(string, quarks_return)

char *string;
XrmQuarkList quarks_return;

string Specifies the string for which a quark list is to be allocated.

quarks_return Returns the list of quarks.

The XrmStringToQuarkList function converts the null-terminated string (generally a
fully qualified name) to a list of quarks. Note that the string must be in the valid
ResourceName format (see section 10.11). The components of the string are separated
by a period or asterisk character.

A binding list is a list of type XrmBindingList and indicates if components of name or
class lists are bound tightly or loosely (that is, if wildcarding of intermediate com-
ponents is specified).

typedef enum {XrmBindTightly, XrmBindLoosely} XrmBinding, *XrmBindingList;

XrmBindTightly indicates that a period separates the components, and XrmBindLoosely
indicates that an asterisk separates the components.

To convert a string with one or more components to a binding list and a quark list, use
XrmStringToBindingQuarkList.

XrmStringToBindingQuarkList(string, bindings_return, quarks_return)
char *string;
XrmBindingList bindings_return;
XrmQuarkList quarks_return;

string Specifies the string for which a quark list is to be allocated.

bindings_return
Returns the binding list. The caller must allocate sufficient
space for the binding list before calling XrmStringToBinding-

March 26, 1992 10−27

-- --

X Window System

QuarkList.

quarks_return Returns the list of quarks. The caller must allocate sufficient
space for the quarks list before calling XrmStringToBinding-
QuarkList.

Component names in the list are separated by a period or an asterisk character. The
string must be in the format of a valid ResourceName (see section 10.11). If the string
does not start with a period or an asterisk, a Binding, XrmBindTightly is assumed. For
example, ‘‘*a.b*c’’ becomes:

quarks a b c
bindings loose tight loose

10.11.3 Resource Database Access

Xlib provides resource management functions that you can use to manipulate resource
databases. The next sections discuss how to:

• Store and get resources

• Get database levels

• Merge two databases

• Retrieve and store databases

10.11.3.1 Storing Into a Resource Database

To store resources into the database, use XrmPutResource or XrmQPutResource.
Both functions take a partial resource specification, a representation type, and a value.
This value is copied into the specified database.

void XrmPutResource(database, specifier, type, value)
XrmDatabase *database;
char *specifier;
char *type;
XrmValue *value;

database Specifies the resource database.

specifier Specifies a complete or partial specification of the resource.

type Specifies the type of the resource.

value Specifies the value of the resource, which is specified as a
string.

10−28 March 26, 1992

-- --

Application Utility Functions

If database contains NULL, XrmPutResource creates a new database and returns a
pointer to it. XrmPutResource is a convenience function that calls XrmStringToBin-
dingQuarkList followed by:

XrmQPutResource(database, bindings, quarks, XrmStringToQuark(type), value)

void XrmQPutResource(database, bindings, quarks, type, value)
XrmDatabase *database;
XrmBindingList bindings;
XrmQuarkList quarks;
XrmRepresentation type;
XrmValue *value;

database Specifies the resource database.

bindings Specifies a list of bindings.

quarks Specifies the complete or partial name or the class list of the
resource.

type Specifies the type of the resource.

value Specifies the value of the resource, which is specified as a
string.

If database contains NULL, XrmQPutResource creates a new database and returns a
pointer to it.

To add a resource that is specified as a string, use XrmPutStringResource.

void XrmPutStringResource(database, specifier, value)
XrmDatabase *database;
char *specifier;
char *value;

database Specifies the resource database.

specifier Specifies a complete or partial specification of the resource.

value Specifies the value of the resource, which is specified as a
string.

If database contains NULL, XrmPutStringResource creates a new database and returns
a pointer to it. XrmPutStringResource adds a resource with the specified value to the
specified database. XrmPutStringResource is a convenience function that first calls
XrmStringToBindingQuarkList on the specifier and then calls XrmQPutResource,
using a ‘‘String’’ representation type.

To add a string resource using quarks as a specification, use XrmQPutStringResource.

void XrmQPutStringResource(database, bindings, quarks, value)
XrmDatabase *database;
XrmBindingList bindings;
XrmQuarkList quarks;
char *value;

March 26, 1992 10−29

-- --

X Window System

database Specifies the resource database.

bindings Specifies a list of bindings.

quarks Specifies the complete or partial name or the class list of the
resource.

value Specifies the value of the resource, which is specified as a
string.

If database contains NULL, XrmQPutStringResource creates a new database and
returns a pointer to it. XrmQPutStringResource is a convenience routine that con-
structs an XrmValue for the value string (by calling strlen to compute the size) and
then calls XrmQPutResource, using a ‘‘String’’ representation type.

To add a single resource entry that is specified as a string that contains both a name and
a value, use XrmPutLineResource.

void XrmPutLineResource(database, line)
XrmDatabase *database;
char *line;

database Specifies the resource database.

line Specifies the resource name and value pair as a single string in
the valid ResourceLine format (see section 10.11). A single
colon (:) separates the name from the value. Note that comment
lines are not stored.

If database contains NULL, XrmPutLineResource creates a new database and returns a
pointer to it. XrmPutLineResource adds a single resource entry to the specified data-
base. Any white space before or after the name or colon in the line argument is
ignored. The value is terminated by a new-line or a NULL character. To allow values
to contain embedded new-line characters, a ‘‘\n’’ is recognized and replaced by a new-
line character. For example, line might have the value ‘‘xterm*background:green\n’’.
Null-terminated strings without a new line are also permitted.

To allow values to contain arbitrary octets, the 4-character sequence \nnn , where n is a
digit in the range of "0"–"7", is recognized and replaced with a single byte that contains
this sequence interpreted as an octal number. For example, a value containing a NULL
byte can be stored by specifying "\000" in the string.

10.11.3.2 Looking Up from a Resource Database

To retrieve a resource from a resource database, use XrmGetResource or
XrmQGetResource.

Bool XrmGetResource(database, str_name, str_class, str_type_return, value_return)
XrmDatabase database;
char *str_name;
char *str_class;

10−30 March 26, 1992

-- --

Application Utility Functions

char **str_type_return;
XrmValue *value_return;

database Specifies the database that is to be used.

str_name Specifies the fully qualified name of the value being retrieved
(as a string).

str_class Specifies the fully qualified class of the value being retrieved
(as a string).

str_type_return
Returns the representation type of the destination (as a string).

value_return Returns the value in the database.

Bool XrmQGetResource(database, quark_name, quark_class, quark_type_return,
value_return)

XrmDatabase database;
XrmNameList quark_name;
XrmClassList quark_class;
XrmRepresentation *quark_type_return;
XrmValue *value_return;

database Specifies the database that is to be used.

quark_name Specifies the fully qualified name of the value being retrieved
(as a quark).

quark_class Specifies the fully qualified class of the value being retrieved
(as a quark).

quark_type_return
Returns the representation type of the destination (as a quark).

value_return Returns the value in the database.

The XrmGetResource and XrmQGetResource functions retrieve a resource from the
specified database. Both take a fully qualified name/class pair, a destination resource
representation, and the address of a value (size/address pair). The value and returned
type point into database memory; therefore, you must not modify the data.

The database only frees or overwrites entries on XrmPutResource, XrmQPutResource,
or XrmMergeDatabases. A client that is not storing new values into the database or is
not merging the database should be safe using the address passed back at any time until
it exits. If a resource was found, both XrmGetResource and XrmQGetResource return
True; otherwise, they return False.

10.11.3.3 Database Search Lists

Most applications and toolkits do not make random probes into a resource database to
fetch resources. The X toolkit access pattern for a resource database is quite stylized.

March 26, 1992 10−31

-- --

X Window System

A series of from 1 to 20 probes are made with only the last name/class differing in each
probe. The XrmGetResource function is at worst a 2n algorithm, where n is the length
of the name/class list. This can be improved upon by the application programmer by
prefetching a list of database levels that might match the first part of a name/class list.

To return a list of database levels, use XrmQGetSearchList.

typedef XrmHashTable *XrmSearchList;

Bool XrmQGetSearchList(database, names, classes, list_return, list_length)
XrmDatabase database;
XrmNameList names;
XrmClassList classes;
XrmSearchList list_return;
int list_length;

database Specifies the database that is to be used.

names Specifies a list of resource names.

classes Specifies a list of resource classes.

list_return Returns a search list for further use. The caller must allocate
sufficient space for the list before calling XrmQGetSearchList.

list_length Specifies the number of entries (not the byte size) allocated for
list_return.

The XrmQGetSearchList function takes a list of names and classes and returns a list of
database levels where a match might occur. The returned list is in best-to-worst order
and uses the same algorithm as XrmGetResource for determining precedence. If
list_return was large enough for the search list, XrmQGetSearchList returns True; oth-
erwise, it returns False.

The size of the search list that the caller must allocate is dependent upon the number of
levels and wildcards in the resource specifiers that are stored in the database. The worst
case length is 3n, where n is the number of name or class components in names or
classes.

When using XrmQGetSearchList followed by multiple probes for resources with a
common name and class prefix, only the common prefix should be specified in the name
and class list to XrmQGetSearchList.

To search resource database levels for a given resource, use XrmQGet-
SearchResource.

Bool XrmQGetSearchResource(list, name, class, type_return, value_return)
XrmSearchList list;
XrmName name;
XrmClass class;
XrmRepresentation *type_return;
XrmValue *value_return;

10−32 March 26, 1992

-- --

Application Utility Functions

list Specifies the search list returned by XrmQGetSearchList.

name Specifies the resource name.

class Specifies the resource class.

type_return Returns data representation type.

value_return Returns the value in the database.

The XrmQGetSearchResource function searches the specified database levels for the
resource that is fully identified by the specified name and class. The search stops with
the first match. XrmQGetSearchResource returns True if the resource was found; oth-
erwise, it returns False.

A call to XrmQGetSearchList with a name and class list containing all but the last
component of a resource name followed by a call to XrmQGetSearchResource with
the last component name and class returns the same database entry as XrmGetResource
and XrmQGetResource with the fully qualified name and class.

10.11.3.4 Merging Resource Databases

To merge the contents of one database into another database, use XrmMergeData-
bases.

void XrmMergeDatabases(source_db, target_db)
XrmDatabase source_db, *target_db;

source_db Specifies the resource database that is to be merged into the tar-
get database.

target_db Specifies the resource database into which the source database
is to be merged.

The XrmMergeDatabases function merges the contents of one database into another.
It may overwrite entries in the destination database. This function is used to combine
databases (for example, an application specific database of defaults and a database of
user preferences). The merge is destructive; that is, the source database is destroyed.

10.11.3.5 Retrieving and Storing Databases

To retrieve a database from disk, use XrmGetFileDatabase.

XrmDatabase XrmGetFileDatabase(filename)
char *filename;

filename Specifies the resource database file name.

March 26, 1992 10−33

-- --

X Window System

The XrmGetFileDatabase function opens the specified file, creates a new resource
database, and loads it with the specifications read in from the specified file. The
specified file must contain lines in the format accepted by XrmPutLineResource. If it
cannot open the specified file, XrmGetFileDatabase returns NULL.

To store a copy of a database to disk, use XrmPutFileDatabase.

void XrmPutFileDatabase(database, stored_db)
XrmDatabase database;
char *stored_db;

database Specifies the database that is to be used.

stored_db Specifies the file name for the stored database.

The XrmPutFileDatabase function stores a copy of the specified database in the
specified file. The file is an ASCII text file that contains lines in the format that is
accepted by XrmPutLineResource.

To create a database from a string, use XrmGetStringDatabase.

XrmDatabase XrmGetStringDatabase(data)
char *data;

data Specifies the database contents using a string.

The XrmGetStringDatabase function creates a new database and stores the resources
specified in the specified null-terminated string. XrmGetStringDatabase is similar to
XrmGetFileDatabase except that it reads the information out of a string instead of out
of a file. Each line is separated by a new-line character in the format accepted by
XrmPutLineResource.

To destroy a resource database and free its allocated memory, use Xrm-
DestroyDatabase.

void XrmDestroyDatabase(database)
XrmDatabase database;

database Specifies the resource database.

If database is NULL, XrmDestroyDatabase returns immediately.

10.11.4 Parsing Command Line Options

The XrmParseCommand function can be used to parse the command line arguments
to a program and modify a resource database with selected entries from the command
line.

typedef enum {
XrmoptionNoArg, /* Value is specified in XrmOptionDescRec
XrmoptionIsArg, /* Value is the option string itself */
XrmoptionStickyArg, /* Value is characters immediately follow

10−34 March 26, 1992

-- --

Application Utility Functions

XrmoptionSepArg,/* Value is next argument in argv */
XrmoptionResArg, /* Resource and value in next argument in
XrmoptionSkipArg, /* Ignore this option and the next argume
XrmoptionSkipLine, /* Ignore this option and the rest of arg
XrmoptionSkipNArgs /* Ignore this option and the next

XrmOptionDescRec.value arguments in ar
} XrmOptionKind;

Note that XrmoptionSkipArg is equivalent to XrmoptionSkipNArgs with the
XrmOptionDescRec.value field containing the value one. Note also that the value
zero for XrmoptionSkipNArgs indicates that only the option itself is to be skipped.

typedef struct {
char *option; /* Option specification string in argv */
char *specifier; /* Binding and resource name (sans applic

name) */
XrmOptionKind argKind; /* Which style of option it is */
caddr_t value; /* Value to provide if XrmoptionNoArg or

XrmoptionSkipNArgs */
} XrmOptionDescRec, *XrmOptionDescList;

To load a resource database from a C command line, use XrmParseCommand.

void XrmParseCommand(database, table, table_count, name, argc_in_out,
argv_in_out)

XrmDatabase *database;
XrmOptionDescList table;
int table_count;
char *name;
int *argc_in_out;
char **argv_in_out;

database Specifies the resource database.

table Specifies the table of command line arguments to be parsed.

table_count Specifies the number of entries in the table.

name Specifies the application name.

argc_in_out Specifies the number of arguments and returns the number of
remaining arguments.

argv_in_out Specifies the command line arguments and returns the remain-
ing arguments.

The XrmParseCommand function parses an (argc, argv) pair according to the specified
option table, loads recognized options into the specified database with type ‘‘String,’’
and modifies the (argc, argv) pair to remove all recognized options.

The specified table is used to parse the command line. Recognized entries in the table
are removed from argv, and entries are made in the specified resource database. The
table entries contain information on the option string, the option name, the style of
option, and a value to provide if the option kind is XrmoptionNoArg. The argc

March 26, 1992 10−35

-- --

X Window System

argument specifies the number of arguments in argv and is set to the remaining number
of arguments that were not parsed. The name argument should be the name of your
application for use in building the database entry. The name argument is prefixed to the
resourceName in the option table before storing the specification. No separating (bind-
ing) character is inserted. The table must contain either a period (.) or an asterisk (*) as
the first character in each resourceName entry. To specify a more completely qualified
resource name, the resourceName entry can contain multiple components.

The following provides a sample standard option table from an X toolkit initialization
function:

static XrmOptionDescRec opTable[] = {
{"–background", "*background", XrmoptionSepArg, (caddr_t
{"–bd", "*borderColor", XrmoptionSepArg, (caddr_t
{"–bg", "*background", XrmoptionSepArg, (caddr_t
{"–borderwidth", "*TopLevelShell.borderWidth", Xrmoptio
{"–bordercolor", "*borderColor", XrmoptionSepArg, (caddr_t
{"–bw", "*TopLevelShell.borderWidth", Xrmoptio
{"–display", ".display", XrmoptionSepArg, (caddr_t
{"–fg", "*foreground", XrmoptionSepArg, (caddr_t
{"–fn", "*font", XrmoptionSepArg, (caddr_t
{"–font", "*font", XrmoptionSepArg, (caddr_t
{"–foreground", "*foreground", XrmoptionSepArg, (caddr_t
{"–geometry", ".TopLevelShell.geometry", Xrmoptio
{"–iconic", ".TopLevelShell.iconic", Xrmoptio
{"–name", ".name", XrmoptionSepArg, (caddr_t
{"–reverse", "*reverseVideo", XrmoptionNoArg, (caddr_t
{"–rv", "*reverseVideo", XrmoptionNoArg, (caddr_t
{"–synchronous", "*synchronous", XrmoptionNoArg, (caddr_t
{"–title", ".TopLevelShell.title", Xrmoptio
{"–xrm", NULL, XrmoptionResArg, (caddr_t
};

In this table, if the –background (or –bg) option is used to set background colors, the
stored resource specifier matches all resources of attribute background. If the –bor-
derwidth option is used, the stored resource specifier applies only to border width attri-
butes of class TopLevelShell (that is, outer-most windows, including pop-up windows).
If the –title option is used to set a window name, only the topmost application windows
receive the resource.

When parsing the command line, any unique unambiguous abbreviation for an option
name in the table is considered a match for the option. Note that uppercase and lower-
case matter.

10.12 Using the Context Manager

The context manager provides a way of associating data with a window in your

10−36 March 26, 1992

-- --

Application Utility Functions

program. Note that this is local to your program; the data is not stored in the server on a
property list. Any amount of data in any number of pieces can be associated with a
window, and each piece of data has a type associated with it. The context manager
requires knowledge of the window and type to store or retrieve data.

Essentially, the context manager can be viewed as a two-dimensional, sparse array: one
dimension is subscripted by the window and the other by a context type field. Each
entry in the array contains a pointer to the data. Xlib provides context management
functions with which you can save data values, get data values, delete entries, and create
a unique context type. The symbols used are in <X11/Xutil.h>.

To save a data value that corresponds to a window and context type, use XSaveCon-
text.

int XSaveContext(display, w, context, data)
Display *display;
Window w;
XContext context;
caddr_t data;

display Specifies the connection to the X server.

w Specifies the window with which the data is associated.

context Specifies the context type to which the data belongs.

data Specifies the data to be associated with the window and type.

If an entry with the specified window and type already exists, XSaveContext overrides
it with the specified context. The XSaveContext function returns a nonzero error code
if an error has occurred and zero otherwise. Possible errors are XCNOMEM (out of
memory).

To get the data associated with a window and type, use XFindContext.

int XFindContext(display, w, context, data_return)
Display *display;
Window w;
XContext context;
caddr_t *data_return;

display Specifies the connection to the X server.

w Specifies the window with which the data is associated.

context Specifies the context type to which the data belongs.

data_return Returns the data.

Because it is a return value, the data is a pointer. The XFindContext function returns a
nonzero error code if an error has occurred and zero otherwise. Possible errors are
XCNOENT (context-not-found).

To delete an entry for a given window and type, use XDeleteContext.

March 26, 1992 10−37

-- --

X Window System

int XDeleteContext(display, w, context)
Display *display;
Window w;
XContext context;

display Specifies the connection to the X server.

w Specifies the window with which the data is associated.

context Specifies the context type to which the data belongs.

The XDeleteContext function deletes the entry for the given window and type from the
data structure. This function returns the same error codes that XFindContext returns if
called with the same arguments. XDeleteContext does not free the data whose address
was saved.

To create a unique context type that may be used in subsequent calls to XSaveContext
and XFindContext, use XUniqueContext.

XContext XUniqueContext()

10−38 March 26, 1992

-- --

Part II. X Window System Protocol

Robert W. Scheifler

March 26, 1992 10−39

-- --

X Window System

SECTION 1. PROTOCOL FORMATS

Request Format

Every request contains an 8-bit major opcode and a 16-bit length field expressed in
units of four bytes. Every request consists of four bytes of a header (containing the
major opcode, the length field, and a data byte) followed by zero or more additional
bytes of data. The length field defines the total length of the request, including the
header. The length field in a request must equal the minimum length required to con-
tain the request. If the specified length is smaller or larger than the required length, an
error is generated. Unused bytes in a request are not required to be zero. Major
opcodes 128 through 255 are reserved for extensions. Extensions are intended to con-
tain multiple requests, so extension requests typically have an additional minor opcode
encoded in the ‘‘spare’’ data byte in the request header. However, the placement and
interpretation of this minor opcode and of all other fields in extension requests are not
defined by the core protocol. Every request on a given connection is implicitly assigned
a sequence number, starting with one, that is used in replies, errors, and events.

Reply Format

Every reply contains a 32-bit length field expressed in units of four bytes. Every reply
consists of 32 bytes followed by zero or more additional bytes of data, as specified in
the length field. Unused bytes within a reply are not guaranteed to be zero. Every reply
also contains the least-significant 16 bits of the sequence number of the corresponding
request.

Error Format

Error reports are 32 bytes long. Every error includes an 8-bit error code. Error codes
128 through 255 are reserved for extensions. Every error also includes the major and
minor opcodes of the failed request and the least-significant 16 bits of the sequence
number of the request. For the following errors (see section 4), the failing resource ID
is also returned: Colormap, Cursor, Drawable, Font, GContext, IDChoice, Pixmap,
and Window. For Atom errors, the failing atom is returned. For Value errors, the fail-
ing value is returned. Other core errors return no additional data. Unused bytes within
an error are not guaranteed to be zero.

10−40 March 26, 1992

-- --

Event Format

Events are 32 bytes long. Unused bytes within an event are not guaranteed to be zero.
Every event contains an 8-bit type code. The most-significant bit in this code is set if
the event was generated from a SendEvent request. Event codes 64 through 127 are
reserved for extensions, although the core protocol does not define a mechanism for
selecting interest in such events. Every core event (with the exception of KeymapNo-
tify) also contains the least-significant 16 bits of the sequence number of the last request
issued by the client that was (or is currently being) processed by the server.

SECTION 2. SYNTACTIC CONVENTIONS

The rest of this document uses the following syntactic conventions.

• The syntax { . . . } encloses a set of alternatives.

• The syntax [. . .] encloses a set of structure components.

• In general, TYPEs are in uppercase and AlternativeValues are capitalized.

• Requests in section 9 are described in the following format:

RequestName

arg1: type1
. . .
argN: typeN

→
result1: type1
. . .
resultM: typeM

Errors: kind1, . . . , kindK

Description.

If no → is present in the description, then the request has no reply (it is asynchronous),
although errors may still be reported. If → + is used, then one or more replies can be
generated for a single request.

• Events in section 11 are described in the following format:

March 26, 1992 10−41

-- --

X Window System

EventName

value1: type1
. . .
valueN: typeN

Description.

SECTION 3. COMMON TYPES

33
Name Value
33
LISTofFOO A type name of the form LISTofFOO means a counted list of

elements of type FOO. The size of the length field may vary (it
is not necessarily the same size as a FOO), and in some cases,
it may be implicit. It is fully specified in Appendix F.
Except where explicitly noted, zero-length lists are legal.

BITMASK The types BITMASK and LISTofVALUE are somewhat special.
LISTofVALUE Various requests contain arguments of the form:

value-mask: BITMASK
value-list: LISTofVALUE

These are used to allow the client to specify a
subset of a heterogeneous collection of optional arguments.
The value-mask specifies which arguments are to be provided;
each such argument is assigned a unique bit position.
The representation of the BITMASK will typically contain
more bits than there are defined arguments.
The unused bits in the value-mask must be zero (or the server
generates a Value error).
The value-list contains one value for each bit set to
1 in the mask, from least-significant to
most-significant bit in the mask. Each value is represented
with four bytes, but the actual value occupies only the
least-significant bytes as required. The values of the
unused bytes do not matter.

OR A type of the form ‘‘T1 or . . . or Tn’’ means the
union of the indicated types. A single-element type is
given as the element without enclosing braces.

WINDOW 32-bit value (top three bits guaranteed to be zero)

10−42 March 26, 1992

-- --

PIXMAP 32-bit value (top three bits guaranteed to be zero)
CURSOR 32-bit value (top three bits guaranteed to be zero)
FONT 32-bit value (top three bits guaranteed to be zero)
GCONTEXT 32-bit value (top three bits guaranteed to be zero)
COLORMAP 32-bit value (top three bits guaranteed to be zero)
DRAWABLE WINDOW or PIXMAP
FONTABLE FONT or GCONTEXT
ATOM 32-bit value (top three bits guaranteed to be zero)
VISUALID 32-bit value (top three bits guaranteed to be zero)
VALUE 32-bit quantity (used only in LISTofVALUE)
BYTE 8-bit value
INT8 8-bit signed integer
INT16 16-bit signed integer
INT32 32-bit signed integer
CARD8 8-bit unsigned integer
CARD16 16-bit unsigned integer
CARD32 32-bit unsigned integer
TIMESTAMP CARD32
BITGRAVITY {Forget, Static, NorthWest, North, NorthEast, West,

Center, East, SouthWest, South, SoutEast}
WINGRAVITY {Unmap, Static, NorthWest, North, NorthEast, West,

Center, East, SouthWest, South, SouthEast}
BOOL {True, False}
EVENT {KeyPress, KeyRelease, OwnerGrabButton, ButtonPress,

ButtonRelease, EnterWindow, LeaveWindow,
PointerMotion, PointerMotionHint, Button1Motion,
Button2Motion, Button3Motion, Button4Motion,
Button5Motion, ButtonMotion, Exposure,
VisibilityChange, StructureNotify, ResizeRedirect,
SubstructureNotify, SubstructureRedirect, FocusChange,
PropertyChange, ColormapChange, KeymapState}

POINTEREVENT {ButtonPress, ButtonRelease, EnterWindow, LeaveWindow,
PointerMotion, PointerMotionHint, Button1Motion,
Button2Motion, Button3Motion, Button4Motion,
Button5Motion, ButtonMotion,KeymapState}

DEVICEEVENT {KeyPress, KeyRelease, ButtonPress, ButtonRelease,
PointerMotion, Button1Motion, Button2Motion,
Button3Motion, Button4Motion, Button5Motion,
ButtonMotion}

KEYSYM 32-bit value (top three bits guaranteed to be zero)
KEYCODE CARD8
BUTTON CARD8
KEYMASK {Shift, Lock, Control, Mod1, Mod2,

Mod3, Mod4, Mod5}
BUTMASK {Button1, Button2, Button3, Button4, Button5}
KEYBUTMASK KEYMASK or BUTMASK
STRING8 LISTofCARD8
STRING16 LISTofCHAR2B

March 26, 1992 10−43

-- --

X Window System

CHAR2B [byte1, byte2: CARD8]
POINT [x, y: INT16]
RECTANGLE [x, y: INT16

width, height: CARD16]
ARC [x, y: INT16

width, height: CARD16
angle1, angle2: INT16]

HOST [family: {Internet, DECnet, Chaos}
address: LISTofBYTE]

The [x,y] coordinates of a RECTANGLE specify the upper-left corner.

The primary interpretation of large characters in a STRING16 is that they are composed
of two bytes used to index a 2-D matrix; hence, the use of CHAR2B rather than
CARD16. This corresponds to the JIS/ISO method of indexing 2-byte characters. It is
expected that most large fonts will be defined with 2-byte matrix indexing. For large
fonts constructed with linear indexing, a CHAR2B can be interpreted as a 16-bit
number by treating byte1 as the most-significant byte. This means that clients should
always transmit such 16-bit character values most-significant byte first, as the server
will never byte-swap CHAR2B quantities.

The length, format, and interpretation of a HOST address are specific to the family (see
ChangeHosts request).

SECTION 4. ERRORS

In general, when a request terminates with an error, the request has no side effects (that
is, there is no partial execution). The only requests for which this is not true are
ChangeWindowAttributes, ChangeGC, PolyText8, PolyText16, FreeColors,
StoreColors, and ChangeKeyboardControl.

The following error codes result from various requests as follows:

33
Error Description
33
Access An attempt is made to grab a key/button com

grabbed by another client.
An attempt is made to free a colormap entry not a
client.
An attempt is made to store into a read-only or
colormap entry.
An attempt is made to modify the access control list
the local host (or otherwise authorized client).
An attempt is made to select an event type that only
select at a time when another client has already selected it.

Alloc The server failed to allocate the reque

10−44 March 26, 1992

-- --

Note that the explicit listing of Alloc
only covers allocation errors at a very coarse level and is not intended to
server running out of allocation space in the middle of servic

when a server runs out of allocation spa
unspecified, but a server may generate an Alloc

any request for this reason, and clients should be prepared to receive such
discard them.
Atom A value for an ATOM argument does not name a defined ATOM.
Colormap A value for a COLORMAP argument does

defined COLORMAP.
Cursor A value for a CURSOR argument does not name a defined

CURSOR.
Drawable A value for a DRAWABLE argument does

defined WINDOW or PIXMAP.
Font A value for a FONT argument does not name a defined FONT.

A value for a FONTABLE argument does not n
FONT or a defined GCONTEXT.

GContext A value for a GCONTEXT argument does not name
defined GCONTEXT.
IDChoice The value chosen for a resource identifier either
included in the range assigned to the client or is already in use.
Implementation The server does not implement some aspect
request. A server that generates this error for a core request is deficient. A
not listed for any of the requests, but clients should

receive such errors and handle or discard them.
Length The length of a request is shorter or longer
required to minimally contain the arguments.

The length of a request exceeds the m
accepted by the server.

Match An InputOnly window is used as a DRAWABLE.
In a graphics request, the GCONTEXT argume
have the same root and depth as the destinati
argument.
Some argument (or pair of arguments) has
type and range, but it fails to match in som
required by the request.

Name A font or color of the specified name does
Pixmap A value for a PIXMAP argument does not
defined PIXMAP.
Request The major or minor opcode does not specify
request.
Value Some numeric value falls outside the range
accepted by the request. Unless a specific range is specified for an argu
defined by the argument’s type is accepted. Any

as a set of alternatives typically can generate
(due to the encoding).
Window A value for a WINDOW argument does not name
defined WINDOW.

March 26, 1992 10−45

-- --

X Window System

Note: The Atom, Colormap, Cursor, Drawable, Font, GContext, Pixmap,
and Window errors are also used when the argument type is extended
by union with a set of fixed alternatives, for example, <WINDOW or
PointerRoot or None>.

SECTION 5. KEYBOARDS

A KEYCODE represents a physical (or logical) key. Keycodes lie in the inclusive
range [8,255]. A keycode value carries no intrinsic information, although server imple-
mentors may attempt to encode geometry information (for example, matrix) to be inter-
preted in a server-dependent fashion. The mapping between keys and keycodes cannot
be changed using the protocol.

A KEYSYM is an encoding of a symbol on the cap of a key. The set of defined
KEYSYMs include the character sets Latin 1, Latin 2, Latin 3, Latin 4, Kana, Arabic,
Cyrillic, Greek, Tech, Special, Publish, APL, and Hebrew as well as a set of symbols
common on keyboards (Return, Help, Tab, and so on). KEYSYMs with the most-
significant bit (of the 29 bits) set are reserved as vendor-specific.

A list of KEYSYMs is associated with each KEYCODE. The list is intended to convey
the set of symbols on the corresponding key. If the list (ignoring trailing NoSymbol
entries) is a single KEYSYM ‘‘K ’’, then the list is treated as if it were the list ‘‘K
NoSymbol K NoSymbol’’. If the list (ignoring trailing No-
Symbol entries) is a pair of KEYSYMs ‘‘K1 K2’’, then the list is treated as if it were
the list ‘‘K1 K2 K1 K2’’. If the list (ignoring trailing NoSymbol entries) is a triple of
KEYSYMs ‘‘K1 K2 K3’’, then the list is treated as if it were the list ‘‘K1 K2 K3
NoSymbol’’. When an explicit ‘‘void’’ element is desired in the list, the value Void-
Symbol can be used.

The first four elements of the list are split into two groups of KEYSYMs.
Group 1 contains the first and second KEYSYMs, Group 2 contains the third and fourth
KEYSYMs. Within each group, if the second element of the group is NoSymbol, then
the group should be treated as if the second element were the same as the first element,
except when the first element is an alphabetic KEYSYM ‘‘K ’’ for which both lowercase
and uppercase forms are defined. In that case, the group should be treated as if the first
element were the lowercase form of ‘‘K ’’ and the second element were the uppercase
form of ‘‘K ’’.

The standard rules for obtaining a KEYSYM from a KeyPress event make use of only
the Group 1 and Group 2 KEYSYMs; no interpretation of other KEYSYMs in the list is
defined. The modifier state determines which group to use. Switching between groups
is controlled by the KEYSYM named MODE SWITCH, by attaching that KEYSYM to
some KEYCODE and attaching that KEYCODE to any one of the modifiers Mod1
through Mod5. This modifier is called the ‘‘group modifier.’’ For any KEYCODE,
Group 1 is used when the group modifier is off, and Group 2 is used when the group
modifier is on.

10−46 March 26, 1992

-- --

Within a group, the modifier state determines which KEYSYM to use. The first
KEYSYM is used when the Shift and Lock modifiers are off. The second KEYSYM is
used when the Shift modifier is on, or when the Lock modifier is on and the second
KEYSYM is uppercase alphabetic, or when the Lock modifier is on and is interpreted as
ShiftLock. Otherwise, when the Lock modifier is on
and is interpreted as CapsLock, the state of the Shift modifier is applied first to select a
KEYSYM; but if that KEYSYM is lowercase alphabetic, then the corresponding upper-
case KEYSYM is used instead.

The mapping between KEYCODEs and KEYSYMs is not used directly by the server; it
is merely stored for reading and writing by clients.

The KEYMASK modifier named Lock is intended to be mapped to either a CapsLock
or a ShiftLock key, but which one is left as application-specific and/or user-specific.
However, it is suggested that the determination be made according to the associated
KEYSYM(s) of the corresponding KEYCODE.

SECTION 6. POINTERS

Buttons are always numbered starting with one.

SECTION 7. PREDEFINED ATOMS

Predefined atoms are not strictly necessary and may not be useful in all environments,
but they will eliminate many InternAtom requests in most applications. Note that they
are predefined only in the sense of having numeric values, not in the sense of having
required semantics. The core protocol imposes no semantics on these names, but
semantics are specified in other X Consortium standards; see part III, ‘‘Inter-Client
Communication Conventions Manual’’ and part IV, ‘‘X Logical Font Description Con-
ventions.’’

The following names have predefined atom values. Note that uppercase and lowercase
matter.

ARC ITALIC_ANGLE STRING
ATOM MAX_SPACE SUBSCRIPT_X
BITMAP MIN_SPACE SUBSCRIPT_Y
CAP_HEIGHT NORM_SPACE SUPERSCRIPT_X
CARDINAL NOTICE SUPERSCRIPT_Y
COLORMAP PIXMAP UNDERLINE_POSITION
COPYRIGHT POINT UNDERLINE_THICKNES
CURSOR POINT_SIZE VISUALID
CUT_BUFFER0 PRIMARY WEIGHT
CUT_BUFFER1 QUAD_WIDTH WINDOW

March 26, 1992 10−47

-- --

X Window System

CUT_BUFFER2 RECTANGLE WM_CLASS
CUT_BUFFER3 RESOLUTION WM_CLIENT_MACHINE
CUT_BUFFER4 RESOURCE_MANAGER WM_COMMAND
CUT_BUFFER5 RGB_BEST_MAP WM_HINTS
CUT_BUFFER6 RGB_BLUE_MAP WM_ICON_NAME
CUT_BUFFER7 RGB_COLOR_MAP WM_ICON_SIZE
DRAWABLE RGB_DEFAULT_MAP WM_NAME
END_SPACE RGB_GRAY_MAP WM_NORMAL_HINTS
FAMILY_NAME RGB_GREEN_MAP WM_SIZE_HINTS
FONT RGB_RED_MAP WM_TRANSIENT_FOR
FONT_NAME SECONDARY WM_ZOOM_HINTS
FULL_NAME STRIKEOUT_ASCENT X_HEIGHT
INTEGER STRIKEOUT_DESCENT

To avoid conflicts with possible future names for which semantics might be imposed
(either at the protocol level or in terms of higher level user interface models), names
beginning with an underscore should be used for atoms that are private to a particular
vendor or organization. To guarantee no conflicts between vendors and organizations,
additional prefixes need to be used. However, the protocol does not define the mechan-
ism for choosing such prefixes. For names private to a single application or end user
but stored in globally accessible locations, it is suggested that two leading underscores
be used to avoid conflicts with other names.

SECTION 8. CONNECTION SETUP

For remote clients, the X protocol can be built on top of any reliable byte stream.

Connection Initiation

The client must send an initial byte of data to identify the byte order to be employed.
The value of the byte must be octal 102 or 154. The value 102 (ASCII uppercase B)
means values are transmitted most-significant byte first, and value 154 (ASCII lower-
case l) means values are transmitted least-significant byte first. Except where explicitly
noted in the protocol, all 16-bit and 32-bit quantities sent by the client must be
transmitted with this byte order, and all 16-bit and 32-bit quantities returned by the
server will be transmitted with this byte order. Following the byte-order byte, the client
sends the following information at connection setup:

protocol-major-version: CARD16
protocol-minor-version: CARD16
authorization-protocol-name: STRING8
authorization-protocol-data: STRING8

10−48 March 26, 1992

-- --

The version numbers indicate what version of the protocol the client expects the server
to implement.

The authorization name indicates what authorization protocol the client expects the
server to use, and the data is specific to that protocol. Specification of valid authoriza-
tion mechanisms is not part of the core X protocol. It is hoped that eventually one
authorization protocol will be agreed upon. In the meantime, a server that implements a
different protocol than the client expects or that only implements the host-based
mechanism may simply ignore this information. If both name and data strings are
empty, this is to be interpreted as ‘‘no explicit authorization.’’

Server Response

The client receives the following information at connection setup:

success: BOOL
protocol-major-version: CARD16
protocol-minor-version: CARD16
length: CARD16

Length is the amount of additional data to follow, in units of four bytes. The version
numbers are an escape hatch in case future revisions of the protocol are necessary. In
general, the major version would increment for incompatible changes, and the minor
version would increment for small upward compatible changes. Barring changes, the
major version will be 11, and the minor version will be 0. The protocol version
numbers returned indicate the protocol the server actually supports. This might not
equal the version sent by the client.
The server can (but need not) refuse connections from clients that offer a different ver-
sion than the server supports. A server can (but need not) support more than one ver-
sion simultaneously.

The client receives the following additional data if authorization fails:

reason: STRING8

The client receives the following additional data if authorization is accepted:

vendor: STRING8
release-number: CARD32
resource-id-base, resource-id-mask: CARD32
image-byte-order: {LSBFirst, MSBFirst}
bitmap-scanline-unit: {8, 16, 32}
bitmap-scanline-pad: {8, 16, 32}
bitmap-bit-order: {LeastSignificant, MostSignificant}
pixmap-formats: LISTofFORMAT
roots: LISTofSCREEN
motion-buffer-size: CARD32
maximum-request-length: CARD16

March 26, 1992 10−49

-- --

X Window System

min-keycode, max-keycode: KEYCODE

where:

FORMAT: [depth: CARD8
bits-per-pixel: {1, 4, 8, 16, 24, 32}
scanline-pad: {8, 16, 32}]

SCREEN: [root: WINDOW
width-in-pixels, height-in-pixels: CARD16
width-in-millimeters, height-in-millimeters: CARD16
allowed-depths: LISTofDEPTH
root-depth: CARD8
root-visual: VISUALID
default-colormap: COLORMAP
white-pixel, black-pixel: CARD32
min-installed-maps, max-installed-maps: CARD16
backing-stores: {Never, WhenMapped, Always}
save-unders: BOOL
current-input-masks: SETofEVENT]

DEPTH: [depth: CARD8
visuals: LISTofVISUALTYPE]

VISUALTYPE: [visual-id: VISUALID
class: {StaticGray, StaticColor, TrueColor, GrayScale,

PseudoColor, DirectColor}
red-mask, green-mask, blue-mask: CARD32
bits-per-rgb-value: CARD8
colormap-entries: CARD16]

Server Information

The information that is global to the server is:

The vendor string gives some identification of the owner of the server implementation.
The vendor controls the semantics of the release number.

The resource-id-mask contains a single contiguous set of bits (at least 18). The client
allocates resource IDs for types WINDOW, PIXMAP, CURSOR, FONT, GCONTEXT,
and COLORMAP by choosing a value with only some subset of these bits set and
ORing it with resource-id-base. Only values constructed in this way can be used to
name newly created resources over this connection. Resource IDs never have the top
three bits set. The client is not restricted to linear or contiguous allocation of resource
IDs. Once an ID has been freed, it can be reused, but this should not be necessary. An
ID must be unique with respect to the IDs of all other resources, not just other resources
of the same type. However, note that the value spaces of resource identifiers, atoms,
visualids, and keysyms are distinguished by context, and as such, are not required to be
disjoint; for example, a given numeric value might be both a valid window ID, a valid
atom, and a valid keysym.

10−50 March 26, 1992

-- --

Although the server is in general responsible for byte-swapping data to match the client,
images are always transmitted and received in formats (including byte order) specified
by the server. The byte order for images is given by image-byte-order and applies to
each scanline unit in XY format (bitmap format) and to each pixel value in Z format.

A bitmap is represented in scanline order. Each scanline is padded to a multiple of bits
as given by bitmap-scanline-pad. The pad bits are of arbitrary value. The scanline is
quantized in multiples of bits as given by bitmap-scanline-unit. The bitmap-scanline-
unit is always less than or equal to the bitmap-scanline-pad. Within each unit, the left-
most bit in the bitmap is either the least-significant or most-significant bit in the unit, as
given by bitmap-bit-order. If a pixmap is represented in XY format, each plane is
represented as a bitmap, and the planes appear from most-significant to least-significant
in bit order with no padding between planes.

Pixmap-formats contains one entry for each depth value. The entry describes the Z for-
mat used to represent images of that depth. An entry for a depth is included if any
screen supports that depth, and all screens supporting that depth must support only that
Z format for that depth. In Z format, the pixels are in scanline order, left to right within
a scanline. The number of bits used to hold each pixel is given by bits-per-pixel. Bits-
per-pixel may be larger than strictly required by the depth, in which case the least-
significant bits are used to hold the pixmap data, and the values of the unused high-
order bits are undefined. When the bits-per-pixel is 4, the order of nibbles in the byte is
the same as the image byte-order. When the bits-per-pixel is 1, the format is identical
for bitmap format. Each scanline is padded to a multiple of bits as given by scanline-
pad. When bits-per-pixel is 1, this will be identical to bitmap-scan-line-pad.

How a pointing device roams the screens is up to the server implementation and is tran-
sparent to the protocol. No geometry is defined among screens.

The server may retain the recent history of pointer motion and do so to a finer granular-
ity than is reported by MotionNotify events. The GetMotionEvents request makes
such history available. The motion-buffer-size gives the approximate maximum number
of elements in the history buffer.

Maximum-request-length specifies the maximum length of a request accepted by the
server, in 4-byte units. That is, length is the maximum value that can appear in the
length field of a request. Requests larger than this maximum generate a Length error,
and the server will read and simply discard the entire request. Maximum-request-length
will always be at least 4096 (that is, requests of length up to and including 16384 bytes
will be accepted by all servers).

Min-keycode and max-keycode specify the smallest and largest keycode values
transmitted by the server. Min-keycode is never less than 8, and
max-keycode is never greater than 255. Not all keycodes in this range are required to
have corresponding keys.

March 26, 1992 10−51

-- --

X Window System

Screen Information

The information that applies per screen is:

The allowed-depths specifies what pixmap and window depths are supported. Pixmaps
are supported for each depth listed, and windows of that depth are supported if at least
one visual type is listed for the depth. A pixmap depth of one is always supported and
listed, but windows of depth one might not be supported. A depth of zero is never
listed, but zero-depth InputOnly windows are always supported.

Root-depth and root-visual specify the depth and visual type of the root window.
Width-in-pixels and height-in-pixels specify the size of the root window (which cannot
be changed). The class of the root window is always InputOutput. Width-in-
millimeters and height-in-millimeters can be used to determine the physical size and the
aspect ratio.

The default-colormap is the one initially associated with the root window. Clients with
minimal color requirements creating windows of the same depth as the root may want to
allocate from this map by default.

Black-pixel and white-pixel can be used in implementing a monochrome application.
These pixel values are for permanently allocated entries in the default-colormap. The
actual RGB values may be settable on some screens and, in any case, may not actually
be black and white. The names are intended to convey the expected relative intensity of
the colors.

The border of the root window is initially a pixmap filled with the black-pixel. The ini-
tial background of the root window is a pixmap filled with some unspecified two-color
pattern using black-pixel and white-pixel.

Min-installed-maps specifies the number of maps that can be guaranteed to be installed
simultaneously (with InstallColormap), regardless of the number of entries allocated in
each map. Max-installed-maps specifies the maximum number of maps that might pos-
sibly be installed simultaneously, depending on their allocations. Multiple static-visual
colormaps with identical contents but differing in resource ID should be considered as a
single map for the purposes of this number. For the typical case of a single hardware
colormap, both values will be 1.

Backing-stores indicates when the server supports backing stores for this screen,
although it may be storage limited in the number of windows it can support at once. If
save-unders is True, the server can support the save-under mode in CreateWindow and
ChangeWindowAttributes, although again it may be storage limited.

The current-input-events is what GetWindowAttributes would return for the all-event-
masks for the root window.

10−52 March 26, 1992

-- --

Visual Information

The information that applies per visual-type is:

A given visual type might be listed for more than one depth or for more than one
screen.

For PseudoColor, a pixel value indexes a colormap to produce independent RGB
values; the RGB values can be changed dynamically. GrayScale is treated in the same
way as PseudoColor except which primary drives the screen is undefined; thus, the
client should always store the same value for red, green, and blue in colormaps. For
DirectColor, a pixel value is decomposed into separate RGB subfields, and each subfield
separately indexes the colormap for the corresponding value. The RGB values can be
changed dynamically. TrueColor is treated in the same way as DirectColor except the
colormap has predefined read-only RGB values. These values are server-dependent but
provide linear or near-linear increasing ramps in each primary. StaticColor is treated in
the same way as PseudoColor except the colormap has predefined read-only RGB
values, which are server-dependent. StaticGray is treated in the same way as Sta-
ticColor except the red, green, and blue values are equal for any single pixel value,
resulting in shades of gray. StaticGray with a two-entry colormap can be thought of as
monochrome.

The red-mask, green-mask, and blue-mask are only defined for DirectColor and
TrueColor. Each has one contiguous set of bits set to 1 with no intersections. Usually
each mask has the same number of bits set to 1.

The bits-per-rgb-value specifies the log base 2 of the number of distinct color intensity
values (individually) of red, green, and blue. This number need not bear any relation to
the number of colormap entries. Actual RGB values are always passed in the protocol
within a 16-bit spectrum, with 0 being minimum intensity and 65535 being the max-
imum intensity. On hardware that provides a linear zero-based intensity ramp, the fol-
lowing relationship exists:

hw-intensity = protocol-intensity / (65536 / total-hw-intensities)

Colormap entries are indexed from 0. The colormap-entries defines the number of
available colormap entries in a newly created colormap. For DirectColor and
TrueColor, this will usually be 2 to the power of the maximum number of bits set to 1
in red-mask, green-mask, and blue-mask.

SECTION 9. REQUESTS

March 26, 1992 10−53

-- --

X Window System

CreateWindow

wid, parent: WINDOW
class: {InputOutput, InputOnly, CopyFromParent}
depth: CARD8
visual: VISUALID or CopyFromParent
x, y: INT16
width, height, border-width: CARD16
value-mask: BITMASK
value-list: LISTofVALUE

Errors: Alloc, Colormap, Cursor, IDChoice, Match, Pixmap, Value, Window

This request creates an unmapped window and assigns the identifier wid to it.

A class of CopyFromParent means the class is taken from the parent. A depth of zero
for class InputOutput or CopyFromParent means the depth is taken from the parent.
A visual of CopyFromParent means the visual type is taken from the parent. For class
InputOutput, the visual type and depth must be a combination supported for the screen
(or a Match error results). The depth need not be the same as the parent, but the parent
must not be of class InputOnly (or a Match error results). For class InputOnly, the
depth must be zero (or a Match error results), and the visual must be one supported for
the screen (or a Match error results). However, the parent can have any depth and
class.

The server essentially acts as if InputOnly windows do not exist for the purposes of
graphics requests, exposure processing, and VisibilityNotify events. An InputOnly
window cannot be used as a drawable (as a source or destination for graphics requests).
InputOnly and InputOutput windows act identically in other respects—properties,
grabs, input control, and so on.

The window is placed on top in the stacking order with respect to siblings.
The x and y coordinates are relative to the parent’s origin and specify the position of the
upper-left outer corner of the window (not the origin). The width and height specify the
inside size (not including the border) and must be nonzero (or a Value error results).
The border-width for an InputOnly window must be zero (or a Match error results).

The value-mask and value-list specify attributes of the window that are to be explicitly
initialized. The possible values are:

33
Attribute Type
33
background-pixmap PIXMAP or None or ParentRelative
background-pixel CARD32
border-pixmap PIXMAP or CopyFromParent
border-pixel CARD32
bit-gravity BITGRAVITY
win-gravity WINGRAVITY

10−54 March 26, 1992

-- --

backing-store {NotUseful, WhenMapped, Always}
backing-planes CARD32
backing-pixel CARD32
save-under BOOL
event-mask SETofEVENT
do-not-propagate-mask SETofDEVICEEVENT
override-redirect BOOL
colormap COLORMAP or CopyFromParent
cursor CURSOR or None

The default values when attributes are not explicitly initialized are:

33
Attribute Default
33
background-pixmap None
border-pixmap CopyFromParent
bit-gravity Forget
win-gravity NorthWest
backing-store NotUseful
backing-planes all ones
backing-pixel zero
save-under False
event-mask { } (empty set)
do-not-propagate-mask { } (empty set)
override-redirect False
colormap CopyFromParent
cursor None

Only the following attributes are defined for InputOnly windows:

• win-gravity

• event-mask

• do-not-propagate-mask

• override-redirect

• cursor

It is a Match error to specify any other attributes for InputOnly windows.

If background-pixmap is given, it overrides the default background-pixmap. The back-
ground pixmap and the window must have the same root and the same depth (or a
Match error results). Any size pixmap can be used, although some sizes may be faster
than others. If background None is specified, the window has no defined background.
If background ParentRelative is specified, the parent’s background is used, but the
window must have the same depth as the parent (or a Match error results). If the
parent has background None, then the window will also have background None. A
copy of the parent’s background is not made. The parent’s background is reexamined
each time the window background is required. If background-pixel is given, it overrides
the default background-pixmap and any background-pixmap given explicitly, and a

March 26, 1992 10−55

-- --

X Window System

pixmap of undefined size filled with background-pixel is used for the background.
Range checking is not performed on the background-pixel value; it is simply truncated
to the appropriate number of bits. For a ParentRelative background, the background
tile origin always aligns with the parent’s background tile origin. Otherwise, the back-
ground tile origin is always the window origin.

When no valid contents are available for regions of a window and the regions are either
visible or the server is maintaining backing store, the server automatically tiles the
regions with the window’s background unless the window has a background of None.
If the background is None, the previous screen contents from other windows of the
same depth as the window are simply left in place if the contents come from the parent
of the window or an inferior of the parent; otherwise, the initial contents of the exposed
regions are undefined. Exposure events are then generated for the regions, even if the
background is None.

The border tile origin is always the same as the background tile origin. If border-
pixmap is given, it overrides the default border-pixmap. The border pixmap and the
window must have the same root and the same depth (or a Match error results). Any
size pixmap can be used, although some sizes may be faster than others. If CopyFrom-
Parent is given, the parent’s border pixmap is copied (subsequent changes to the
parent’s border attribute do not affect the child), but the window must have the same
depth as the parent (or a Match error results). The pixmap might be copied by sharing
the same pixmap object between the child and parent or by making a complete copy of
the pixmap contents. If border-pixel is given, it overrides the default border-pixmap
and any border-pixmap given explicitly, and a pixmap of undefined size filled with
border-pixel is used for the border. Range checking is not performed on the border-
pixel value; it is simply truncated to the appropriate number of bits.

Output to a window is always clipped to the inside of the window, so that the border is
never affected.

The bit-gravity defines which region of the window should be retained if the window is
resized, and win-gravity defines how the window should be repositioned if the parent is
resized (see ConfigureWindow request).

A backing-store of WhenMapped advises the server that maintaining contents of
obscured regions when the window is mapped would be beneficial. A backing-store of
Always advises the server that maintaining contents even when the window is
unmapped would be beneficial. In this case, the server may generate an exposure event
when the window is created. A value of NotUseful advises the server that maintaining
contents is unnecessary, although a server may still choose to maintain contents while
the window is mapped. Note that if the server maintains contents, then the server
should maintain complete contents not just the region within the parent boundaries,
even if the window is larger than its parent. While the server maintains contents, expo-
sure events will not normally be generated, but the server may stop maintaining con-
tents at any time.

If save-under is True, the server is advised that when this window is mapped, saving the
contents of windows it obscures would be beneficial.

10−56 March 26, 1992

-- --

When the contents of obscured regions of a window are being maintained, regions
obscured by noninferior windows are included in the destination (and source, when the
window is the source) of graphics requests, but regions obscured by inferior windows
are not included.

The backing-planes indicates (with bits set to 1) which bit planes of the window hold
dynamic data that must be preserved in backing-stores and during save-unders. The
backing-pixel specifies what value to use in planes not covered by backing-planes. The
server is free to save only the specified bit planes in the backing-store or save-under and
regenerate the remaining planes with the specified pixel value. Any bits beyond the
specified depth of the window in these values are simply ignored.

The event-mask defines which events the client is interested in for this window (or for
some event types, inferiors of the window). The do-not-propagate-mask defines which
events should not be propagated to ancestor windows when no client has the event type
selected in this window.

The override-redirect specifies whether map and configure requests on this window
should override a SubstructureRedirect on the parent, typically to inform a window
manager not to tamper with the window.

The colormap specifies the colormap that best reflects the true colors of the window.
Servers capable of supporting multiple hardware colormaps may use this information,
and window managers may use it for InstallColormap requests. The colormap must
have the same visual type as the window (or a Match error results). If CopyFrom-
Parent is specified, the parent’s colormap is copied (subsequent changes to the parent’s
colormap attribute do not affect the child). However, the window must have the same
visual type as the parent (or a Match error results), and the parent must not have a
colormap of None (or a Match error results). For an explanation of None, see
FreeColormap request. The colormap is copied by sharing the colormap object
between the child and the parent, not by making a complete copy of the colormap con-
tents.

If a cursor is specified, it will be used whenever the pointer is in the window. If None
is specified, the parent’s cursor will be used when the pointer is in the window, and any
change in the parent’s cursor will cause an immediate change in the displayed cursor.

This request generates a CreateNotify event.

The background and border pixmaps and the cursor may be freed immediately if no
further explicit references to them are to be made.

Subsequent drawing into the background or border pixmap has an undefined effect on
the window state. The server might or might not make a copy of the pixmap.

March 26, 1992 10−57

-- --

X Window System

ChangeWindowAttributes

window: WINDOW
value-mask: BITMASK
value-list: LISTofVALUE

Errors: Access, Colormap, Cursor, Match, Pixmap, Value, Window

The value-mask and value-list specify which attributes are to be changed. The values
and restrictions are the same as for CreateWindow.

Setting a new background, whether by background-pixmap or background-pixel, over-
rides any previous background. Setting a new border, whether by border-pixel or
border-pixmap, overrides any previous border.

Changing the background does not cause the window contents to be changed. Setting
the border or changing the background such that the border tile origin changes causes
the border to be repainted. Changing the background of a root window to None or
ParentRelative restores the default background pixmap. Changing the border of a root
window to CopyFromParent restores the default border pixmap.

Changing the win-gravity does not affect the current position of the window.

Changing the backing-store of an obscured window to WhenMapped or Always or
changing the backing-planes, backing-pixel, or save-under of a mapped window may
have no immediate effect.

Multiple clients can select input on the same window; their event-masks are disjoint.
When an event is generated, it will be reported to all interested clients. However, only
one client at a time can select for SubstructureRedirect, only one client at a time can
select for ResizeRedirect, and only one client at a time can select for ButtonPress. An
attempt to violate these restrictions results in an Access error.

There is only one do-not-propagate-mask for a window, not one per client.

Changing the colormap of a window (by defining a new map, not by changing the con-
tents of the existing map) generates a ColormapNotify event. Changing the colormap
of a visible window might have no immediate effect on the screen (see InstallColor-
map request).

Changing the cursor of a root window to None restores the default cursor.

The order in which attributes are verified and altered is server-dependent. If an error is
generated, a subset of the attributes may have been altered.

10−58 March 26, 1992

-- --

GetWindowAttributes

window: WINDOW
→

visual: VISUALID
class: {InputOutput, InputOnly}
bit-gravity: BITGRAVITY
win-gravity: WINGRAVITY
backing-store: {NotUseful, WhenMapped, Always}
backing-planes: CARD32
backing-pixel: CARD32
save-under: BOOL
colormap: COLORMAP or None
map-is-installed: BOOL
map-state: {Unmapped, Unviewable, Viewable}
all-event-masks, your-event-mask: SETofEVENT
do-not-propagate-mask: SETofDEVICEEVENT
override-redirect: BOOL

Errors: Window

This request returns the current attributes of the window. A window is Unviewable if
it is mapped but some ancestor is unmapped. All-event-masks is the inclusive-OR of
all event masks selected on the window by clients. Your-event-mask is the event mask
selected by the querying client.

DestroyWindow

window: WINDOW

Errors: Window

If the argument window is mapped, an UnmapWindow request is performed automati-
cally. The window and all inferiors are then destroyed, and a DestroyNotify event is
generated for each window. The ordering of the DestroyNotify events is such that for
any given window, DestroyNotify is generated on all inferiors of the window before
being generated on the window itself. The ordering among siblings and across
subhierarchies is not otherwise constrained.

Normal exposure processing on formerly obscured windows is performed.

If the window is a root window, this request has no effect.

March 26, 1992 10−59

-- --

X Window System

DestroySubwindows

window: WINDOW

Errors: Window

This request performs a DestroyWindow request on all children of the window, in
bottom-to-top stacking order.

ChangeSaveSet

window: WINDOW
mode: {Insert, Delete}

Errors: Match, Value, Window

This request adds or removes the specified window from the client’s save-set. The win-
dow must have been created by some other client (or a Match error results). For
further information about the use of the save-set, see section 10.

When windows are destroyed, the server automatically removes them from the save-set.

ReparentWindow

window , parent: WINDOW
x , y: INT16

Errors: Match, Window

If the window is mapped, an UnmapWindow request is performed automatically first.
The window is then removed from its current position in the hierarchy and is inserted as
a child of the specified parent. The x and y coordinates are relative to the parent’s ori-
gin and specify the new position of the upper-left outer corner of the window. The win-
dow is placed on top in the stacking order with respect to siblings. A ReparentNotify
event is then generated. The override-redirect attribute of the window is passed on in

10−60 March 26, 1992

-- --

this event; a value of True indicates that a window manager should not tamper with this
window. Finally, if the window was originally mapped, a MapWindow request is per-
formed automatically.

Normal exposure processing on formerly obscured windows is performed. The server
might not generate exposure events for regions from the initial unmap that are immedi-
ately obscured by the final map.

A Match error is generated if:

• The new parent is not on the same screen as the old parent.

• The new parent is the window itself or an inferior of the window.

• The window has a ParentRelative background, and the new parent is not the same
depth as the window.

MapWindow

window: WINDOW

Errors: Window

If the window is already mapped, this request has no effect.

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirect on the parent, then a MapRequest event is generated,
but the window remains unmapped. Otherwise, the window is mapped, and a MapNo-
tify event is generated.

If the window is now viewable and its contents have been discarded, the window is tiled
with its background (if no background is defined, the existing screen contents are not
altered), and zero or more exposure events are generated. If a backing-store has been
maintained while the window was unmapped, no exposure events are generated. If a
backing-store will now be maintained, a full-window exposure is always generated.
Otherwise, only visible regions may be reported. Similar tiling and exposure take place
for any newly viewable inferiors.

MapSubwindows

window: WINDOW

March 26, 1992 10−61

-- --

X Window System

Errors: Window

This request performs a MapWindow request on all unmapped children of the window,
in top-to-bottom stacking order.

UnmapWindow

window: WINDOW

Errors: Window

If the window is already unmapped, this request has no effect. Otherwise, the window
is unmapped, and an UnmapNotify event is generated. Normal exposure processing on
formerly obscured windows is performed.

UnmapSubwindows

window: WINDOW

Errors: Window

This request performs an UnmapWindow request on all mapped children of the win-
dow, in bottom-to-top stacking order.

ConfigureWindow

window: WINDOW
value-mask: BITMASK
value-list: LISTofVALUE

Errors: Match, Value, Window

This request changes the configuration of the window. The value-mask and value-list
specify which values are to be given. The possible values are:

10−62 March 26, 1992

-- --

333
Attribute Type
333
x INT16
y INT16
width CARD16
height CARD16
border-width CARD16
sibling WINDOW
stack-mode {Above, Below, TopIf, BottomIf, Opposite}

The x and y coordinates are relative to the parent’s origin and specify the position of the
upper-left outer corner of the window. The width and height specify the inside size, not
including the border, and must be nonzero (or a Value error results). Those values not
specified are taken from the existing geometry of the window. Note that changing just
the border-width leaves the outer-left corner of the window in a fixed position but
moves the absolute position of the window’s origin. It is a Match error to attempt to
make the border-width of an InputOnly window nonzero.

If the override-redirect attribute of the window is False and some other client has
selected SubstructureRedirect on the parent, a ConfigureRequest event is generated,
and no further processing is performed. Otherwise, the following is performed:

If some other client has selected ResizeRedirect on the window and the inside width or
height of the window is being changed, a ResizeRequest event is generated, and the
current inside width and height are used instead. Note that the override-redirect attri-
bute of the window has no effect on ResizeRedirect and that SubstructureRedirect on
the parent has precedence over ResizeRedirect on the window.

The geometry of the window is changed as specified, the window is restacked among
siblings, and a ConfigureNotify event is generated if the state of the window actually
changes. If the inside width or height of the window has actually changed, then chil-
dren of the window are affected, according to their win-gravity. Exposure processing is
performed on formerly obscured windows (including the window itself and its inferiors
if regions of them were obscured but now are not). Exposure processing is also per-
formed on any new regions of the window (as a result of increasing the width or height)
and on any regions where window contents are lost.

If the inside width or height of a window is not changed but the window is moved or its
border is changed, then the contents of the window are not lost but move with the win-
dow. Changing the inside width or height of the window causes its contents to be
moved or lost, depending on the bit-gravity of the window. It also causes children to
be reconfigured, depending on their win-gravity. For a change of width and height of
W and H, we define the [x, y] pairs as:

33
Direction Deltas
33
NorthWest [0, 0]
North [W/2, 0]
NorthEast [W, 0]

March 26, 1992 10−63

-- --

X Window System

West [0, H/2]
Center [W/2, H/2]
East [W, H/2]
SouthWest [0, H]
South [W/2, H]
SouthEast [W, H]

When a window with one of these bit-gravities is resized, the corresponding pair defines
the change in position of each pixel in the window. When a window with one of these
win-gravities has its parent window resized, the corresponding pair defines the change
in position of the window within the parent. This repositioning generates a GravityNo-
tify event. GravityNotify events are generated after the ConfigureNotify event is gen-
erated.

A gravity of Static indicates that the contents or origin should not move relative to the
origin of the root window. If the change in size of the window is coupled with a
change in position of [X, Y], then for bit-gravity the change in position of each pixel is
[–X, –Y] and for win-gravity the change in position of a child when its parent is so
resized is [–X, –Y]. Note that Static gravity still only takes effect when the width or
height of the window is changed, not when the window is simply moved.

A bit-gravity of Forget indicates that the window contents are always discarded after a
size change, even if backing-store or save-under has been requested. The window is
tiled with its background (except, if no background is defined, the existing screen con-
tents are not altered) and zero or more exposure events are generated.

The contents and borders of inferiors are not affected by their parent’s bit-gravity. A
server is permitted to ignore the specified bit-gravity and use Forget instead.

A win-gravity of Unmap is like NorthWest, but the child is also unmapped when the
parent is resized, and an UnmapNotify event is generated. UnmapNotify events are
generated after the ConfigureNotify event is generated.

If a sibling and a stack-mode are specified, the window is restacked as follows:

Above The window is placed just above the sibling.

Below The window is placed just below the sibling.

TopIf If the sibling occludes the window, then the window is placed
at the top of the stack.

BottomIf If the window occludes the sibling, then the window is placed
at the bottom of the stack.

Opposite If the sibling occludes the window, then the window is placed
at the top of the stack. Otherwise, if the window occludes the
sibling, then the window is placed at the bottom of the stack.

If a stack-mode is specified but no sibling is specified, the window is restacked as fol-
lows:

Above The window is placed at the top of the stack.

10−64 March 26, 1992

-- --

Below The window is placed at the bottom of the stack.

TopIf If any sibling occludes the window, then the window is placed
at the top of the stack.

BottomIf If the window occludes any sibling, then the window is placed
at the bottom of the stack.

Opposite If any sibling occludes the window, then the window is placed
at the top of the stack. Otherwise, if the window occludes any
sibling, then the window is placed at the bottom of the stack.

It is a Match error if a sibling is specified without a stack-mode or if the window is not
actually a sibling.

Note that the computations for BottomIf, TopIf, and Opposite are performed with
respect to the window’s final geometry (as controlled by the other arguments to the
request), not to its initial geometry.

Attempts to configure a root window have no effect.

CirculateWindow

window: WINDOW
direction: {RaiseLowest, LowerHighest}

Errors: Value, Window

If some other client has selected SubstructureRedirect on the window, then a Circula-
teRequest event is generated, and no further processing is performed. Otherwise, the
following is performed, and then a CirculateNotify event is generated if the window is
actually restacked.

For RaiseLowest, CirculateWindow raises the lowest mapped child (if any) that is
occluded by another child to the top of the stack. For LowerHighest, CirculateWin-
dow lowers the highest mapped child (if any) that occludes another child to the bottom
of the stack. Exposure processing is performed on formerly obscured windows.

GetGeometry

drawable: DRAWABLE
→

March 26, 1992 10−65

-- --

X Window System

root: WINDOW
depth: CARD8
x, y: INT16
width, height, border-width: CARD16

Errors: Drawable

This request returns the root and current geometry of the drawable. The depth is the
number of bits per pixel for the object. The x, y, and border-width will always be zero
for pixmaps. For a window, the x and y coordinates specify the upper-left outer corner
of the window relative to its parent’s origin, and the width and height specify the inside
size, not including the border.

It is legal to pass an InputOnly window as a drawable to this request.

QueryTree

window: WINDOW
→

root: WINDOW
parent: WINDOW or None
children: LISTofWINDOW

Errors: Window

This request returns the root, the parent, and the children of the window. The children
are listed in bottom-to-top stacking order.

InternAtom

name: STRING8
only-if-exists: BOOL

→
atom: ATOM or None

Errors: Alloc, Value

This request returns the atom for the given name. If only-if-exists is False, then the
atom is created if it does not exist. The string should use the ISO Latin-1 encoding.
Uppercase and lowercase matter.

10−66 March 26, 1992

-- --

The lifetime of an atom is not tied to the interning client. Atoms remained defined until
server reset (see section 10).

GetAtomName

atom : ATOM
→

name: STRING8

Errors: Atom

This request returns the name for the given atom.

ChangeProperty

window: WINDOW
property, type: ATOM
format: {8, 16, 32}
mode: {Replace, Prepend, Append}
data: LISTofINT8 or LISTofINT16 or LISTofINT32

Errors: Alloc, Atom, Match, Value, Window

This request alters the property for the specified window. The type is uninterpreted by
the server. The format specifies whether the data should be viewed as a list of 8-bit,
16-bit, or 32-bit quantities so that the server can correctly byte-swap as necessary.

If the mode is Replace, the previous property value is discarded. If the mode is
Prepend or Append, then the type and format must match the existing property value
(or a Match error results). If the property is undefined, it is treated as defined with the
correct type and format with zero-length data. For Prepend, the data is tacked on to
the beginning of the existing data, and for Append, it is tacked on to the end of the
existing data.

This request generates a PropertyNotify event on the window.

The lifetime of a property is not tied to the storing client. Properties remain until expli-
citly deleted, until the window is destroyed, or until server reset (see section 10).

The maximum size of a property is server-dependent and may vary dynamically.

March 26, 1992 10−67

-- --

X Window System

DeleteProperty

window: WINDOW
property: ATOM

Errors: Atom, Window

This request deletes the property from the specified window if the property exists and
generates a PropertyNotify event on the window unless the property does not exist.

GetProperty

window: WINDOW
property: ATOM
type: ATOM or AnyPropertyType
long-offset, long-length: CARD32
delete: BOOL

→
type: ATOM or None
format: {0, 8, 16, 32}
bytes-after: CARD32
value: LISTofINT8 or LISTofINT16 or LISTofINT32

Errors: Atom, Value, Window

If the specified property does not exist for the specified window, then the return type is
None, the format and bytes-after are zero, and the value is empty. The delete argument
is ignored in this case. If the specified property exists but its type does not match the
specified type, then the return type is the actual type of the property, the format is the
actual format of the property (never zero), the bytes-after is the length of the property in
bytes (even if the format is 16 or 32), and the value is empty. The delete argument is
ignored in this case. If the specified property exists and either AnyPropertyType is
specified or the specified type matches the actual type of the property, then the return
type is the actual type of the property, the format is the actual format of the property
(never zero), and the bytes-after and value are as follows, given:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)

I = 4 * long-offset

10−68 March 26, 1992

-- --

T =N – I
L = MINIMUM(T, 4 * long-length)
A = N – (I + L)

The returned value starts at byte index I in the property (indexing from 0), and its
length in bytes is L. However, it is a Value error if long-offset is given such that L is
negative. The value of bytes-after is A, giving the number of trailing unread bytes in
the stored property. If delete is True and the bytes-after is zero, the property is also
deleted from the window, and a PropertyNotify event is generated on the window.

RotateProperties

window: WINDOW
delta: INT16
properties: LISTofATOM

Errors: Atom, Match, Window

If the property names in the list are viewed as being numbered starting from zero, and
there are N property names in the list, then the value associated with property name I
becomes the value associated with property name (I + delta) mod N, for all I from zero
to N – 1. The effect is to rotate the states by delta places around the virtual ring of pro-
perty names (right for positive delta, left for negative delta).

If delta mod N is nonzero, a PropertyNotify event is generated for each property in the
order listed.

If an atom occurs more than once in the list or no property with that name is defined for
the window, a Match error is generated. If an Atom or Match error is generated, no
properties are changed.

ListProperties

window: WINDOW
→

atoms: LISTofATOM

Errors: Window

This request returns the atoms of properties currently defined on the window.

March 26, 1992 10−69

-- --

X Window System

SetSelectionOwner

selection: ATOM
owner : WINDOW or None
time: TIMESTAMP or CurrentTime

Errors: Atom, Window

This request changes the owner, owner window, and last-change time of the specified
selection. This request has no effect if the specified time is earlier than the current last-
change time of the specified selection or is later than the current server time. Other-
wise, the last-change time is set to the specified time with CurrentTime replaced by the
current server time. If the owner window is specified as None, then the owner of the
selection becomes None (that is, no owner). Otherwise, the owner of the selection
becomes the client executing the request. If the new owner (whether a client or None)
is not the same as the current owner and the current owner is not None, then the current
owner is sent a SelectionClear event.

If the client that is the owner of a selection is later terminated (that is, its connection is
closed) or if the owner window it has specified in the request is later destroyed, then the
owner of the selection automatically reverts to None, but the last-change time is not
affected.

The selection atom is uninterpreted by the server. The owner window is returned by the
GetSelectionOwner request and is reported in SelectionRequest and SelectionClear
events.

Selections are global to the server.

GetSelectionOwner

selection: ATOM
→

owner: WINDOW or None

Errors: Atom

This request returns the current owner window of the specified selection, if any. If
None is returned, then there is no owner for the selection.

10−70 March 26, 1992

-- --

ConvertSelection

selection, target: ATOM
property: ATOM or None
requestor : WINDOW
time: TIMESTAMP or CurrentTime

Errors: Atom, Window

If the specified selection has an owner, the server sends a SelectionRequest event to
that owner. If no owner for the specified selection exists, the server generates a Selec-
tionNotify event to the requestor with property None. The arguments are passed on
unchanged in either of the events.

SendEvent

destination: WINDOW or PointerWindow or InputFocus
propagate: BOOL
event-mask: SETofEVENT
event: <normal-event-format>

Errors: Value, Window

If PointerWindow is specified, destination is replaced with the window that the pointer
is in. If InputFocus is specified and the focus window contains the pointer, destination
is replaced with the window that the pointer is in. Otherwise, destination is replaced
with the focus window.

If the event-mask is the empty set, then the event is sent to the client that created the
destination window. If that client no longer exists, no event is sent.

If propagate is False, then the event is sent to every client selecting on destination any
of the event types in event-mask.

If propagate is True and no clients have selected on destination any of the event types in
event-mask, then destination is replaced with the closest ancestor of destination for
which some client has selected a type in event-mask and no intervening window has
that type in its do-not-propagate-mask. If no such window exists or if the window is an
ancestor of the focus window and InputFocus was originally specified as the destina-
tion, then the event is not sent to any clients. Otherwise, the event is reported to every

March 26, 1992 10−71

-- --

X Window System

client selecting on the final destination any of the types specified in event-mask.

The event code must be one of the core events or one of the events defined by an exten-
sion (or a Value error results) so that the server can correctly byte-swap the contents as
necessary. The contents of the event are otherwise unaltered and unchecked by the
server except to force on the most-significant bit of the event code and to set the
sequence number in the event correctly.

Active grabs are ignored for this request.

GrabPointer

grab-window: WINDOW
owner-events: BOOL
event-mask: SETofPOINTEREVENT
pointer-mode, keyboard-mode: {Synchronous, Asynchronous}
confine-to: WINDOW or None
cursor : CURSOR or None
time: TIMESTAMP or CurrentTime

→
status: {Success, AlreadyGrabbed, Frozen, InvalidTime, NotViewable}

Errors: Cursor, Value, Window

This request actively grabs control of the pointer. Further pointer events are only
reported to the grabbing client. The request overrides any active pointer grab by this
client.

If owner-events is False, all generated pointer events are reported with respect to grab-
window and are only reported if selected by event-mask. If owner-events is True and a
generated pointer event would normally be reported to this client, it is reported nor-
mally. Otherwise, the event is reported with respect to the grab-window and is only
reported if selected by event-mask.
For either value of owner-events, unreported events are simply discarded.

If pointer-mode is Asynchronous, pointer event processing continues normally. If the
pointer is currently frozen by this client, then processing of pointer events is resumed.
If pointer-mode is Synchronous, the state of the pointer (as seen by means of the proto-
col) appears to freeze, and no further pointer events are generated by the server until the
grabbing client issues a releasing AllowEvents request or until the pointer grab is
released. Actual pointer changes are not lost while the pointer is frozen. They are sim-
ply queued for later processing.

If keyboard-mode is Asynchronous, keyboard event processing is unaffected by activa-
tion of the grab. If keyboard-mode is Synchronous, the state of the keyboard (as seen
by means of the protocol) appears to freeze, and no further keyboard events are

10−72 March 26, 1992

-- --

generated by the server until the grabbing client issues a releasing AllowEvents request
or until the pointer grab is released. Actual keyboard changes are not lost while the
keyboard is frozen. They are simply queued for later processing.

If a cursor is specified, then it is displayed regardless of what window the pointer is in.
If no cursor is specified, then when the pointer is in grab-window or one of its subwin-
dows, the normal cursor for that window is displayed. Otherwise, the cursor for grab-
window is displayed.

If a confine-to window is specified, then the pointer will be restricted to stay contained
in that window. The confine-to window need have no relationship to the grab-window.
If the pointer is not initially in the confine-to window, then it is warped automatically to
the closest edge (and enter/leave events are generated normally) just before the grab
activates. If the confine-to window is subsequently reconfigured, the pointer will be
warped automatically as necessary to keep it contained in the window.

This request generates EnterNotify and LeaveNotify events.

The request fails with status AlreadyGrabbed if the pointer is actively grabbed by
some other client. The request fails with status Frozen if the pointer is frozen by an
active grab of another client. The request fails with status NotViewable if grab-
window or confine-to window is not viewable or if the confine-to window lies com-
pletely outside the boundaries of the root window. The request fails with status
InvalidTime if the specified time is earlier than the last-pointer-grab time or later than
the current server time. Otherwise, the last-pointer-grab time is set to the specified
time, with CurrentTime replaced by the current server time.

UngrabPointer

time: TIMESTAMP or CurrentTime

This request releases the pointer if this client has it actively grabbed (from either Grab-
Pointer or GrabButton or from a normal button press) and releases any queued events.
The request has no effect if the specified time is earlier than the last-pointer-grab time or
is later than the current server time.

This request generates EnterNotify and LeaveNotify events.

An UngrabPointer request is performed automatically if the event window or confine-
to window for an active pointer grab becomes not viewable or if window
reconfiguration causes the confine-to window to lie completely outside the boundaries of
the root window.

March 26, 1992 10−73

-- --

X Window System

GrabButton

modifiers: SETofKEYMASK or AnyModifier
button : BUTTON or AnyButton
grab-window: WINDOW
owner-events: BOOL
event-mask: SETofPOINTEREVENT
pointer-mode, keyboard-mode: {Synchronous, Asynchronous}
confine-to: WINDOW or None
cursor : CURSOR or None

Errors: Access, Cursor, Value, Window

This request establishes a passive grab. In the future, the pointer is actively grabbed as
described in GrabPointer, the last-pointer-grab time is set to the time at which the but-
ton was pressed (as transmitted in the ButtonPress event), and the ButtonPress event is
reported if all of the following conditions are true:

• The pointer is not grabbed and the specified button is logically pressed when the
specified modifier keys are logically down, and no other buttons or modifier keys
are logically down.

• The grab-window contains the pointer.

• The confine-to window (if any) is viewable.

• A passive grab on the same button/key combination does not exist on any ancestor
of grab-window.

The interpretation of the remaining arguments is the same as for GrabPointer. The
active grab is terminated automatically when the logical state of the pointer has all but-
tons released, independent of the logical state of modifier keys. Note that the logical
state of a device (as seen by means of the protocol) may lag the physical state if device
event processing is frozen.

This request overrides all previous passive grabs by the same client on the same
button/key combinations on the same window. A modifier of AnyModifier is
equivalent to issuing the request for all possible modifier combi-
nations (including the combination of no modifiers). It is not required that all specified
modifiers have currently assigned keycodes. A button of AnyButton is equivalent to
issuing the request for all possible buttons. Otherwise, it is not required that the button
specified currently be assigned to a physical button.

An Access error is generated if some other client has already issued a GrabButton
request with the same button/key combination on the same window. When using
AnyModifier or AnyButton, the request fails completely (no grabs are established), and
an Access error is generated if there is a conflicting grab for any combination. The
request has no effect on an active grab.

10−74 March 26, 1992

-- --

UngrabButton

modifiers: SETofKEYMASK or AnyModifier
button : BUTTON or AnyButton
grab-window: WINDOW

Errors: Value, Window

This request releases the passive button/key combination on the specified window if it
was grabbed by this client. A modifiers argument of AnyModifier is equivalent to issu-
ing the request for all possible modifier combinations (including the combination of no
modifiers). A button of AnyButton is equivalent to issuing the request for all possible
buttons. The request has no effect on an active grab.

ChangeActivePointerGrab

event-mask: SETofPOINTEREVENT
cursor: CURSOR or None
time: TIMESTAMP or CurrentTime

Errors: Cursor, Value

This request changes the specified dynamic parameters if the pointer is actively grabbed
by the client and the specified time is no earlier than the last-pointer-grab time and no
later than the current server time. The interpretation of event-mask and cursor are the
same as in GrabPointer. This request has no effect on the parameters of any passive
grabs established with GrabButton.

GrabKeyboard

grab-window: WINDOW
owner-events: BOOL
pointer-mode, keyboard-mode: {Synchronous, Asynchronous}
time: TIMESTAMP or CurrentTime

March 26, 1992 10−75

-- --

X Window System

→
status: {Success, AlreadyGrabbed, Frozen, InvalidTime, NotViewable}

Errors: Value, Window

This request actively grabs control of the keyboard. Further key events are reported
only to the grabbing client. This request overrides any active keyboard grab by this
client.

If owner-events is False, all generated key events are reported with respect to grab-
window. If owner-events is True and if a generated key event would normally be
reported to this client, it is reported normally. Otherwise, the event is reported with
respect to the grab-window. Both KeyPress and KeyRelease events are always
reported, independent of any event selection made by the client.

If keyboard-mode is Asynchronous, keyboard event processing continues normally. If
the keyboard is currently frozen by this client, then processing of keyboard events is
resumed. If keyboard-mode is Synchronous, the state of the keyboard (as seen by
means of the protocol) appears to freeze. No further keyboard events are generated by
the server until the grabbing client issues a releasing AllowEvents request or until the
keyboard grab is released. Actual keyboard changes are not lost while the keyboard is
frozen. They are simply queued for later processing.

If pointer-mode is Asynchronous, pointer event processing is unaffected by activation
of the grab. If pointer-mode is Synchronous, the state of the pointer (as seen by means
of the protocol) appears to freeze. No further pointer events are generated by the server
until the grabbing client issues a releasing AllowEvents request or until the keyboard
grab is released. Actual pointer changes are not lost while the pointer is frozen. They
are simply queued for later processing.

This request generates FocusIn and FocusOut events.

The request fails with status AlreadyGrabbed if the keyboard is actively grabbed by
some other client. The request fails with status Frozen if the keyboard is frozen by an
active grab of another client. The request fails with status NotViewable if grab-
window is not viewable. The request fails with status InvalidTime if the specified time
is earlier than the last-keyboard-grab time or later than the current server time. Other-
wise, the last-keyboard-grab time is set to the specified time with CurrentTime replaced
by the current server time.

UngrabKeyboard

time: TIMESTAMP or CurrentTime

This request releases the keyboard if this client has it actively grabbed (as a result of
either GrabKeyboard or GrabKey) and releases any queued events. The request has
no effect if the specified time is earlier than the last-keyboard-grab time or is later than

10−76 March 26, 1992

-- --

the current server time.

This request generates FocusIn and FocusOut events.

An UngrabKeyboard is performed automatically if the event window for an active
keyboard grab becomes not viewable.

GrabKey

key: KEYCODE or AnyKey
modifiers: SETofKEYMASK or AnyModifier
grab-window: WINDOW
owner-events: BOOL
pointer-mode, keyboard-mode: {Synchronous, Asynchronous}

Errors: Access, Value, Window

This request establishes a passive grab on the keyboard. In the future, the keyboard is
actively grabbed as described in GrabKeyboard, the last-keyboard-grab time is set to
the time at which the key was pressed (as transmitted in the KeyPress event), and the
KeyPress event is reported if all of the following conditions are true:

• The keyboard is not grabbed and the specified key (which can itself be a modifier
key) is logically pressed when the specified modifier keys are logically down, and
no other modifier keys are logically down.

• Either the grab-window is an ancestor of (or is) the focus window, or the grab-
window is a descendent of the focus window and contains the pointer.

• A passive grab on the same key combination does not exist on any ancestor of
grab-window.

The interpretation of the remaining arguments is the same as for GrabKeyboard. The
active grab is terminated automatically when the logical state of the keyboard has the
specified key released, independent of the logical state of modifier keys. Note that the
logical state of a device (as seen by means of the protocol) may lag the physical state if
device event processing is frozen.

This request overrides all previous passive grabs by the same client on the same key
combinations on the same window. A modifier of AnyModifier is equivalent to issuing
the request for all possible modifier combinations (including the combination of no
modifiers). It is not required that all modifiers specified have currently assigned key-
codes. A key of AnyKey is equivalent to issuing the request for all possible keycodes.
Otherwise, the key must be in the range specified by min-keycode and max-keycode in
the connection setup (or a Value error results).

An Access error is generated if some other client has issued a GrabKey with the same
key combination on the same window. When using AnyModifier or AnyKey, the

March 26, 1992 10−77

-- --

X Window System

request fails completely (no grabs are established), and an Access error is generated if
there is a conflicting grab for any combination.

UngrabKey

key: KEYCODE or AnyKey
modifiers: SETofKEYMASK or AnyModifier
grab-window: WINDOW

Errors: Value, Window

This request releases the key combination on the specified window if it was grabbed by
this client. A modifiers argument of AnyModifier is equivalent to issuing the request
for all possible modifier combinations (including the combination of no modifiers). A
key of AnyKey is equivalent to issuing the request for all possible keycodes. This
request has no effect on an active grab.

AllowEvents

mode: {AsyncPointer, SyncPointer, ReplayPointer, AsyncKeyboard,
SyncKeyboard, ReplayKeyboard, AsyncBoth, SyncBoth}

time: TIMESTAMP or CurrentTime

Errors: Value

This request releases some queued events if the client has caused a device to freeze.
The request has no effect if the specified time is earlier than the
last-grab time of the most recent active grab for the client or if the specified time is later
than the current server time.

For AsyncPointer, if the pointer is frozen by the client, pointer event processing contin-
ues normally. If the pointer is frozen twice by the client on behalf of two separate
grabs, AsyncPointer thaws for both. AsyncPointer has no effect if the pointer is not
frozen by the client, but the pointer need not be grabbed by the client.

For SyncPointer, if the pointer is frozen and actively grabbed by the client, pointer
event processing continues normally until the next ButtonPress or ButtonRelease event
is reported to the client, at which time the pointer again appears to freeze. However, if
the reported event causes the pointer grab to be released, then the pointer does not
freeze. SyncPointer has no effect if the pointer is not frozen by the client or if the

10−78 March 26, 1992

-- --

pointer is not grabbed by the client.

For ReplayPointer, if the pointer is actively grabbed by the client and is frozen as the
result of an event having been sent to the client (either from the activation of a Grab-
Button or from a previous AllowEvents with mode SyncPointer but not from a Grab-
Pointer), then the pointer grab is released and that event is completely reprocessed, this
time ignoring any passive grabs at or above (towards the root) the grab-window of the
grab just released. The request has no effect if the pointer is not grabbed by the client
or if the pointer is not frozen as the result of an event.

For AsyncKeyboard, if the keyboard is frozen by the client, keyboard event processing
continues normally. If the keyboard is frozen twice by the client on behalf of two
separate grabs, AsyncKeyboard thaws for both. AsyncKeyboard has no effect if the
keyboard is not frozen by the client, but the keyboard need not be grabbed by the
client.

For SyncKeyboard, if the keyboard is frozen and actively grabbed by the client, key-
board event processing continues normally until the next KeyPress or KeyRelease
event is reported to the client, at which time the keyboard again appears to freeze.
However, if the reported event causes the keyboard grab to be released, then the key-
board does not freeze. SyncKeyboard has no effect if the keyboard is not frozen by
the client or if the keyboard is not grabbed by the client.

For ReplayKeyboard, if the keyboard is actively grabbed by the client and is frozen as
the result of an event having been sent to the client (either from the
activation of a GrabKey or from a previous AllowEvents with mode SyncKeyboard
but not from a GrabKeyboard), then the keyboard grab is released and that event is
completely reprocessed, this time ignoring any passive grabs at or above (towards the
root) the grab-window of the grab just released. The request has no effect if the key-
board is not grabbed by the client or if the keyboard is not frozen as the result of an
event.

For SyncBoth, if both pointer and keyboard are frozen by the client, event processing
(for both devices) continues normally until the next ButtonPress, ButtonRelease,
KeyPress, or KeyRelease event is reported to the client for a grabbed device (button
event for the pointer, key event for the keyboard), at which time the devices again
appear to freeze. However, if the reported event causes the grab to be released, then the
devices do not freeze (but if the other device is still grabbed, then a subsequent event
for it will still cause both devices to freeze). SyncBoth has no effect unless both pointer
and keyboard are frozen by the client. If the pointer or keyboard is frozen twice by the
client on behalf of two separate grabs, SyncBoth thaws for both (but a subsequent
freeze for SyncBoth will only freeze each device once).

For AsyncBoth, if the pointer and the keyboard are frozen by the client, event process-
ing for both devices continues normally. If a device is frozen twice by the client on
behalf of two separate grabs, AsyncBoth thaws for both.
AsyncBoth has no effect unless both pointer and keyboard are frozen by the client.

AsyncPointer, SyncPointer, and ReplayPointer have no effect on processing of key-
board events. AsyncKeyboard, SyncKeyboard, and ReplayKeyboard have no effect
on processing of pointer events.

March 26, 1992 10−79

-- --

X Window System

It is possible for both a pointer grab and a keyboard grab to be active simultaneously
(by the same or different clients). When a device is frozen on behalf of either grab, no
event processing is performed for the device. It is possible for a single device to be
frozen because of both grabs. In this case, the freeze must be released on behalf of both
grabs before events can again be processed. If a device is frozen twice by a single
client, then a single AllowEvents releases both.

GrabServer

This request disables processing of requests and close-downs on all connections other
than the one this request arrived on.

UngrabServer

This request restarts processing of requests and close-downs on other connections.

QueryPointer

window: WINDOW
→

root: WINDOW
child: WINDOW or None
same-screen: BOOL
root-x, root-y, win-x, win-y: INT16
mask: SETofKEYBUTMASK

Errors: Window

The root window the pointer is logically on and the pointer coordinates relative to the
root’s origin are returned. If same-screen is False, then the pointer is not on the same
screen as the argument window, child is None, and win-x and win-y are zero. If same-
screen is True, then win-x and win-y are the pointer coordinates relative to the argument
window’s origin, and child is the child containing the pointer, if any. The current logi-
cal state of the modifier keys and the buttons are also returned. Note that the logical

10−80 March 26, 1992

-- --

state of a device (as seen by means of the protocol) may lag the physical state if device
event processing is frozen.

GetMotionEvents

start, stop: TIMESTAMP or CurrentTime
window: WINDOW

→
events: LISTofTIMECOORD

where:

TIMECOORD: [x, y: INT16
time: TIMESTAMP]

Errors: Window

This request returns all events in the motion history buffer that fall between the
specified start and stop times (inclusive) and that have coordinates that lie within
(including borders) the specified window at its present placement. The x and y coordi-
nates are reported relative to the origin of the window.

If the start time is later than the stop time or if the start time is in the future, no events
are returned. If the stop time is in the future, it is equivalent to specifying Current-
Time.

TranslateCoordinates

src-window, dst-window : WINDOW
src-x, src-y: INT16

→
same-screen: BOOL
child: WINDOW or None
dst-x, dst-y: INT16

Errors: Window

The src-x and src-y coordinates are taken relative to src-window’s origin and are
returned as dst-x and dst-y coordinates relative to dst-window’s origin. If same-screen
is False, then src-window and dst-window are on different screens, and dst-x and dst-y

March 26, 1992 10−81

-- --

X Window System

are zero. If the coordinates are contained in a mapped child of dst-window, then that
child is returned.

WarpPointer

src-window: WINDOW or None
dst-window: WINDOW or None
src-x, src-y: INT16
src-width, src-height: CARD16
dst-x, dst-y: INT16

Errors: Window

If dst-window is None, this request moves the pointer by offsets [dst-x, dst-y] relative
to the current position of the pointer. If dst-window is a window, this request moves
the pointer to [dst-x, dst-y] relative to dst-window’s origin. However, if src-window is
not None, the move only takes place if src-window contains the pointer and the pointer
is contained in the specified rectangle of src-window.

The src-x and src-y coordinates are relative to src-window’s origin. If src-height is
zero, it is replaced with the current height of src-window minus src-y. If src-width is
zero, it is replaced with the current width of src-window minus src-x.

This request cannot be used to move the pointer outside the confine-to window of an
active pointer grab. An attempt will only move the pointer as far as the closest edge of
the confine-to window.

This request will generate events just as if the user had instantaneously moved the
pointer.

SetInputFocus

focus: WINDOW or PointerRoot or None
revert-to: {Parent, PointerRoot, None}
time: TIMESTAMP or CurrentTime

Errors: Match, Value, Window

This request changes the input focus and the last-focus-change time. The request has no
effect if the specified time is earlier than the current last-focus-change time or is later
than the current server time. Otherwise, the last-focus-change time is set to the

10−82 March 26, 1992

-- --

specified time with CurrentTime replaced by the current server time.

If None is specified as the focus, all keyboard events are discarded until a new focus
window is set. In this case, the revert-to argument is ignored.

If a window is specified as the focus, it becomes the keyboard’s focus window. If a
generated keyboard event would normally be reported to this window or one of its infe-
riors, the event is reported normally. Otherwise, the event is reported with respect to
the focus window.

If PointerRoot is specified as the focus, the focus window is dynamically taken to be
the root window of whatever screen the pointer is on at each keyboard event. In this
case, the revert-to argument is ignored.

This request generates FocusIn and FocusOut events.

The specified focus window must be viewable at the time of the request (or a Match
error results). If the focus window later becomes not viewable, the new focus window
depends on the revert-to argument. If revert-to is Parent, the focus reverts to the parent
(or the closest viewable ancestor) and the new revert-to value is taken to be None. If
revert-to is PointerRoot or None, the focus reverts to that value. When the focus
reverts, FocusIn and FocusOut events are generated, but the last-focus-change time is
not affected.

GetInputFocus

→
focus: WINDOW or PointerRoot or None
revert-to: {Parent, PointerRoot, None}

This request returns the current focus state.

QueryKeymap

→
keys: LISTofCARD8

This request returns a bit vector for the logical state of the keyboard. Each bit set to 1
indicates that the corresponding key is currently pressed. The vector is represented as
32 bytes. Byte N (from 0) contains the bits for keys 8N to 8N + 7 with the least-
significant bit in the byte representing key 8N. Note that the logical state of a device
(as seen by means of the protocol) may lag the physical state if device event processing

March 26, 1992 10−83

-- --

X Window System

is frozen.

OpenFont

fid: FONT
name: STRING8

Errors: Alloc, IDChoice, Name

This request loads the specified font, if necessary, and associates identifier fid with it.
The font name should use the ISO Latin-1 encoding, and uppercase and lowercase do
not matter. The interpretation of characters ‘‘?’’ (octal value 77) and ‘‘*’’ (octal value
52) in the name is not defined by the core protocol, but is reserved for future definition.
A structured format for font names is specified in part IV, ‘‘X Logical Font Description
Conventions.’’

Fonts are not associated with a particular screen and can be stored as a component of
any graphics context.

CloseFont

font: FONT

Errors: Font

This request deletes the association between the resource ID and the font.
The font itself will be freed when no other resource references it.

QueryFont

font: FONTABLE
→

font-info: FONTINFO
char-infos: LISTofCHARINFO

10−84 March 26, 1992

-- --

where:

FONTINFO: [draw-direction: {LeftToRight, RightToLeft}
min-char-or-byte2, max-char-or-byte2: CARD16
min-byte1, max-byte1: CARD8
all-chars-exist: BOOL
default-char: CARD16
min-bounds: CHARINFO
max-bounds: CHARINFO
font-ascent: INT16
font-descent: INT16
properties: LISTofFONTPROP]

FONTPROP: [name: ATOM
value: <32-bit-value>]

CHARINFO: [left-side-bearing: INT16
right-side-bearing: INT16
character-width: INT16
ascent: INT16
descent: INT16
attributes: CARD16]

Errors: Font

This request returns logical information about a font. If a gcontext is given for font, the
currently contained font is used.

The draw-direction is just a hint and indicates whether most char-infos have a positive,
LeftToRight, or a negative, RightToLeft, character-width metric.
The core protocol defines no support for vertical text.

If min-byte1 and max-byte1 are both zero, then min-char-or-byte2 specifies the linear
character index corresponding to the first element of char-infos, and max-char-or-byte2
specifies the linear character index of the last element. If either min-byte1 or max-byte1
are nonzero, then both min-char-or-byte2 and max-char-or-byte2 will be less than 256,
and the 2-byte character index values corresponding to char-infos element N (counting
from 0) are:

byte1 = N/D + min-byte1
byte2 = N\D + min-char-or-byte2

where:

D = max-char-or-byte2 – min-char-or-byte2 + 1
/ = integer division
\ = integer modulus

If char-infos has length zero, then min-bounds and max-bounds will be identical, and
the effective char-infos is one filled with this char-info, of length:

March 26, 1992 10−85

-- --

X Window System

L = D * (max-byte1 – min-byte1 + 1)

That is, all glyphs in the specified linear or matrix range have the same information, as
given by min-bounds (and max-bounds). If all-chars-exist is True, then all characters in
char-infos have nonzero bounding boxes.

The default-char specifies the character that will be used when an undefined or nonex-
istent character is used. Note that default-char is a CARD16, not CHAR2B. For a font
using 2-byte matrix format, the default-char has byte1 in the most-significant byte and
byte2 in the least-significant byte. If the default-char itself specifies an undefined or
nonexistent character, then no printing is performed for an undefined or nonexistent
character.

The min-bounds and max-bounds contain the minimum and maximum values of each
individual CHARINFO component over all char-infos (ignoring nonexistent charac-
ters). The bounding box of the font (that is, the smallest rectangle enclosing the shape
obtained by superimposing all characters at the same origin [x,y]) has its upper-left
coordinate at:

[x + min-bounds.left-side-bearing, y – max-bounds.ascent]

with a width of:

max-bounds.right-side-bearing – min-bounds.left-side-bearing

and a height of:

max-bounds.ascent + max-bounds.descent

The font-ascent is the logical extent of the font above the baseline and is used for deter-
mining line spacing. Specific characters may extend beyond this. The font-descent is
the logical extent of the font at or below the baseline and is used for determining line
spacing. Specific characters may extend beyond this. If the baseline is at Y-coordinate
y, then the logical extent of the font is inclusive between the Y-coordinate values (y –
font-ascent) and (y + font-descent – 1).

A font is not guaranteed to have any properties. The interpretation of the property value
(for example, INT32, CARD32) must be derived from a priori knowledge of the pro-
perty. A basic set of font properties is specified in part IV, ‘‘X Logical Font Descrip-
tion Conventions.’’

For a character origin at [x,y], the bounding box of a character (that is, the smallest rec-
tangle enclosing the character’s shape), described in terms of CHARINFO components,
is a rectangle with its upper-left corner at:

[x + left-side-bearing, y – ascent]

with a width of:

right-side-bearing – left-side-bearing

10−86 March 26, 1992

-- --

and a height of:

ascent + descent

and the origin for the next character is defined to be:

[x + character-width, y]

Note that the baseline is logically viewed as being just below nondescending characters
(when descent is zero, only pixels with Y-coordinates less than y are drawn) and that
the origin is logically viewed as being coincident with the left edge of a nonkerned
character (when left-side-bearing is zero, no pixels with X-coordinate less than x are
drawn).

Note that CHARINFO metric values can be negative.

A nonexistent character is represented with all CHARINFO components zero.

The interpretation of the per-character attributes field is server-dependent.

QueryTextExtents

font: FONTABLE
string : STRING16

→
draw-direction: {LeftToRight, RightToLeft}
font-ascent: INT16
font-descent: INT16
overall-ascent: INT16
overall-descent: INT16
overall-width: INT32
overall-left: INT32
overall-right: INT32

Errors: Font

This request returns the logical extents of the specified string of characters in the
specified font. If a gcontext is given for font, the currently contained font is used. The
draw-direction, font-ascent, and font-descent are the same as described in QueryFont.
The overall-ascent is the maximum of the ascent metrics of all characters in the string,
and the overall-descent is the maximum of the descent metrics. The overall-width is the
sum of the character-width metrics of all characters in the string. For each character in
the string, let W be the sum of the character-width metrics of all characters preceding it
in the string, let L be the left-side-bearing metric of the character plus W, and let R be
the right-side-bearing metric of the character plus W. The overall-left is the minimum L

March 26, 1992 10−87

-- --

X Window System

of all characters in the string, and the overall-right is the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, the server will
interpret each CHAR2B as a 16-bit number that has been transmitted most-significant
byte first (that is, byte1 of the CHAR2B is taken as the most-significant byte).

Characters with all zero metrics are ignored. If the font has no defined default-char,
then undefined characters in the string are also ignored.

ListFonts

pattern: STRING8
max-names: CARD16

→
names: LISTofSTRING8

This request returns a list of available font names (as controlled by the font search path;
see SetFontPath request) that match the pattern. At most,
max-names names will be returned. The pattern should use the ISO Latin-1
encoding, and uppercase and lowercase do not matter. In the pattern, the ‘‘?’’ character
(octal value 77) will match any single character, and the ‘‘*’’ character (octal value 52)
will match any number of characters. The returned names are in lowercase.

ListFontsWithInfo

pattern: STRING8
max-names: CARD16

→+
name: STRING8
info: FONTINFO
replies-hint: CARD32

where:

FONTINFO: <same type definition as in QueryFont>

This request is similar to ListFonts, but it also returns information about each font. The
information returned for each font is identical to what QueryFont would return except
that the per-character metrics are not returned. Note that this request can generate mul-
tiple replies. With each reply, replies-hint may provide an indication of how many

10−88 March 26, 1992

-- --

more fonts will be returned. This number is a hint only and may be larger or smaller
than the number of fonts actually returned. A zero value does not guarantee that no
more fonts will be returned. After the font replies, a reply with a zero-length name is
sent to indicate the end of the reply sequence.

SetFontPath

path: LISTofSTRING8

Errors: Value

This request defines the search path for font lookup. There is only one search path per
server, not one per client. The interpretation of the strings is operating-system-
dependent, but the strings are intended to specify directories to be searched in the order
listed.

Setting the path to the empty list restores the default path defined for the server.

As a side effect of executing this request, the server is guaranteed to flush all cached
information about fonts for which there currently are no explicit resource IDs allocated.

The meaning of an error from this request is system specific.

GetFontPath

→
path: LISTofSTRING8

This request returns the current search path for fonts.

CreatePixmap

pid: PIXMAP
drawable: DRAWABLE
depth: CARD8
width, height: CARD16

March 26, 1992 10−89

-- --

X Window System

Errors: Alloc, Drawable, IDChoice, Value

This request creates a pixmap and assigns the identifier pid to it. The width and height
must be nonzero (or a Value error results). The depth must be one of the depths sup-
ported by the root of the specified drawable (or a Value error results). The initial con-
tents of the pixmap are undefined.

It is legal to pass an InputOnly window as a drawable to this request.

FreePixmap

pixmap: PIXMAP

Errors: Pixmap

This request deletes the association between the resource ID and the pixmap. The pix-
map storage will be freed when no other resource references it.

CreateGC

cid: GCONTEXT
drawable: DRAWABLE
value-mask: BITMASK
value-list: LISTofVALUE

Errors: Alloc, Drawable, Font, IDChoice, Match, Pixmap, Value

This request creates a graphics context and assigns the identifier cid to it. The gcontext
can be used with any destination drawable having the same root and depth as the
specified drawable; use with other drawables results in a Match error.

The value-mask and value-list specify which components are to be explicitly initialized.
The context components are:

33
Component Type
33
function {Clear, And, AndReverse, Copy, AndInverted, NoOp,

Xor, Or, Nor, Equiv, Invert, OrReverse,
CopyInverted, OrInverted, Nand, Set}

plane-mask CARD32

10−90 March 26, 1992

-- --

foreground CARD32
background CARD32
line-width CARD16
line-style {Solid, OnOffDash, DoubleDash}
cap-style {NotLast, Butt, Round, Projecting}
join-style {Miter, Round, Bevel}
fill-style {Solid, Tiled, OpaqueStippled, Stippled}
fill-rule {EvenOdd, Winding}
arc-mode {Chord, PieSlice}
tile PIXMAP
stipple PIXMAP
tile-stipple-x-origin INT16
tile-stipple-y-origin INT16
font FONT
subwindow-mode {ClipByChildren, IncludeInferiors}
graphics-exposures BOOL
clip-x-origin INT16
clip-y-origin INT16
clip-mask PIXMAP or None
dash-offset CARD16
dashes CARD8

In graphics operations, given a source and destination pixel, the result is computed bit-
wise on corresponding bits of the pixels; that is, a Boolean operation is performed in
each bit plane. The plane-mask restricts the operation to a subset of planes, so the
result is:

((src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

Range checking is not performed on the values for foreground, background, or plane-
mask. They are simply truncated to the appropriate number of bits.

The meanings of the functions are:

33
Function Operation
33
Clear 0
And src AND dst
AndReverse src AND (NOT dst)
Copy src
AndInverted (NOT src) AND dst
NoOp dst
Xor src XOR dst
Or src OR dst
Nor (NOT src) AND (NOT dst)
Equiv (NOT src) XOR dst
Invert NOT dst
OrReverse src OR (NOT dst)

March 26, 1992 10−91

-- --

X Window System

CopyInverted NOT src
OrInverted (NOT src) OR dst
Nand (NOT src) OR (NOT dst)
Set 1

The line-width is measured in pixels and can be greater than or equal to one, a wide
line, or the special value zero, a thin line.

Wide lines are drawn centered on the path described by the graphics request. Unless
otherwise specified by the join or cap style, the bounding box of a wide line with end-
points [x1, y1], [x2, y2] and width w is a rectangle with vertices at the following real
coordinates:

[x1 – (w*sn/2), y1 + (w*cs/2)], [x1 + (w*sn/2), y1 – (w*cs/2)],
[x2 – (w*sn/2), y2 + (w*cs/2)], [x2 + (w*sn/2), y2 – (w*cs/2)]

The sn is the sine of the angle of the line and cs is the cosine of the angle of the line. A
pixel is part of the line (and hence drawn) if the center of the pixel is fully inside the
bounding box, which is viewed as having infinitely thin edges. If the center of the pixel
is exactly on the bounding box, it is part of the line if and only if the interior is immedi-
ately to its right (x increasing direction). Pixels with centers on a horizontal edge are a
special case and are part of the line if and only if the interior or the boundary is
immediately below (y increasing direction) and if the interior or the boundary is
immediately to the right (x increasing direction). Note that this description is a
mathematical model describing the pixels that are drawn for a wide line and does not
imply that trigonometry is required to implement such a model. Real or fixed point
arithmetic is recommended for computing the corners of the line endpoints for lines
greater than one pixel in width.

Thin lines (zero line-width) are ‘‘one pixel wide’’ lines drawn using an unspecified,
device-dependent algorithm. There are only two constraints on this algorithm. First, if
a line is drawn unclipped from [x1,y1] to [x2,y2] and another line is drawn unclipped
from [x1+dx,y1+dy] to [x2+dx,y2+dy], then a point [x,y] is touched by drawing the first
line if and only if the point [x+dx,y+dy] is touched by drawing the second line.
Second, the effective set of points comprising a line cannot be affected by clipping.
Thus, a point is touched in a clipped line if and only if the point lies inside the clipping
region and the point would be touched by the line when drawn unclipped.

Note that a wide line drawn from [x1,y1] to [x2,y2] always draws the same pixels as a
wide line drawn from [x2,y2] to [x1,y1], not counting cap-style and join-style. Imple-
mentors are encouraged to make this property true for thin lines, but it is not required.
A line-width of zero may differ from a line-width of one in which pixels are drawn. In
general, drawing a thin line will be faster than drawing a wide line of width one, but
thin lines may not mix well aesthetically with wide lines because of the different draw-
ing algorithms. If it is desirable to obtain precise and uniform results across all
displays, a client should always use a line-width of one, rather than a line-width of
zero.

The line-style defines which sections of a line are drawn:

Solid The full path of the line is drawn.

10−92 March 26, 1992

-- --

DoubleDash The full path of the line is drawn, but the even dashes are filled
differently than the odd dashes (see fill-style), with Butt cap-
style used where even and odd dashes meet.

OnOffDash Only the even dashes are drawn, and cap-style applies to all
internal ends of the individual dashes (except NotLast is treated
as Butt).

The cap-style defines how the endpoints of a path are drawn:

NotLast The result is equivalent to Butt, except that for a line-width of
zero the final endpoint is not drawn.

Butt The result is square at the endpoint (perpendicular to the slope
of the line) with no projection beyond.

Round The result is a circular arc with its diameter equal to the line-
width, centered on the endpoint; it is equivalent to Butt for
line-width zero.

Projecting The result is square at the end, but the path continues beyond
the endpoint for a distance equal to half the line-width; it is
equivalent to Butt for line-width zero.

The join-style defines how corners are drawn for wide lines:

Miter The outer edges of the two lines extend to meet at an angle.
However, if the angle is less than 11 degrees, a Bevel join-style
is used instead.

Round The result is a circular arc with a diameter equal to the line-
width, centered on the joinpoint.

Bevel The result is Butt endpoint styles, and then the triangular
‘‘notch’’ is filled.

For a line with coincident endpoints (x1 = x2, y1 = y2), when the cap-style is applied to
both endpoints, the semantics depends on the line-width and the cap-style:

NotLast thin This is device-dependent, but
the desired effect is that
nothing is drawn.

Butt thin This is device-dependent, but
the desired effect is that
a single pixel is drawn.

Round thin This is the same as Butt/thin.
Projecting thin This is the same as Butt/thin.
Butt wide Nothing is drawn.
Round wide The closed path is a circle,

centered at the endpoint
and with a diameter equal
to the line-width.

Projecting wide The closed path is a square,
aligned with the coordinate

March 26, 1992 10−93

-- --

X Window System

axes, centered at the endpoint
and with sides equal to the
line-width.

For a line with coincident endpoints (x1= x2, y1= y2), when the join-style is applied at
one or both endpoints, the effect is as if the line was removed from the overall path.
However, if the total path consists of (or is reduced to) a single point joined with itself,
the effect is the same as when the cap-style is applied at both endpoints.

The tile/stipple and clip origins are interpreted relative to the origin of whatever destina-
tion drawable is specified in a graphics request.

The tile pixmap must have the same root and depth as the gcontext (or a Match error
results). The stipple pixmap must have depth one and must have the same root as the
gcontext (or a Match error results). For fill-style Stippled (but not fill-style OpaqueS-
tippled), the stipple pattern is tiled in a single plane and acts as an additional clip mask
to be ANDed with the clip-mask. Any size pixmap can be used for tiling or stippling,
although some sizes may be faster to use than others.

The fill-style defines the contents of the source for line, text, and fill requests. For all
text and fill requests (for example, PolyText8, PolyText16, PolyFillRectangle, FillPoly,
and PolyFillArc) as well as for line requests with line-style Solid (for example, Poly-
Line, PolySegment, PolyRectangle, PolyArc), and for the even dashes for line
requests with line-style OnOffDash or DoubleDash:

Solid Foreground

Tiled Tile

OpaqueStippled A tile with the same width and height as stipple but with back-
ground everywhere stipple has a zero and with foreground
everywhere stipple has a one

Stippled Foreground masked by stipple

For the odd dashes for line requests with line-style DoubleDash:

Solid Background

Tiled Same as for even dashes

OpaqueStippled Same as for even dashes

Stippled Background masked by stipple

The dashes value allowed here is actually a simplified form of the more general patterns
that can be set with SetDashes. Specifying a value of N here is equivalent to specify-
ing the two element list [N, N] in SetDashes. The value must be nonzero (or a Value
error results). The meaning of dash-offset and dashes are explained in the SetDashes
request.

The clip-mask restricts writes to the destination drawable. Only pixels where
the clip-mask has bits set to 1 are drawn. Pixels are not drawn outside the area covered
by the clip-mask or where the clip-mask has bits set to 0. The clip-mask affects all
graphics requests, but it does not clip sources. The clip-mask origin is interpreted

10−94 March 26, 1992

-- --

relative to the origin of whatever destination drawable is specified in a graphics request.
If a pixmap is specified as the clip-mask, it must have depth 1 and have the same root
as the gcontext (or a Match error results). If clip-mask is None, then pixels are always
drawn, regardless of the clip origin. The clip-mask can also be set with the SetClipRec-
tangles request.

For ClipByChildren, both source and destination windows are additionally clipped by
all viewable InputOutput children. For IncludeInferiors, neither source nor destination
window is clipped by inferiors. This will result in including subwindow contents in the
source and drawing through subwindow boundaries of the destination. The use of
IncludeInferiors with a source or destination window of one depth with mapped inferi-
ors of differing depth is not illegal, but the semantics is undefined by the core protocol.

The fill-rule defines what pixels are inside (that is, are drawn) for paths given in FillPoly
requests. EvenOdd means a point is inside if an infinite ray with the point as origin
crosses the path an odd number of times. For Winding, a point is inside if an infinite
ray with the point as origin crosses an unequal number of clockwise and counterclock-
wise directed path segments. A clockwise directed path segment is one that crosses the
ray from left to right as observed from the point. A counterclockwise segment is one
that crosses the ray from right to left as observed from the point. The case where a
directed line segment is coincident with the ray is uninteresting because one can simply
choose a different ray that is not coincident with a segment.

For both fill rules, a point is infinitely small and the path is an infinitely thin line. A
pixel is inside if the center point of the pixel is inside and the center point is not on the
boundary. If the center point is on the boundary, the pixel is inside if and only if the
polygon interior is immediately to its right (x increasing direction). Pixels with centers
along a horizontal edge are a special case and are inside if and only if the polygon inte-
rior is immediately below (y increasing direction).

The arc-mode controls filling in the PolyFillArc request.

The graphics-exposures flag controls GraphicsExposure event generation for
CopyArea and CopyPlane requests (and any similar requests defined by extensions).

The default component values are:

33
Component Default
33
function Copy
plane-mask all ones
foreground 0
background 1
line-width 0
line-style Solid
cap-style Butt
join-style Miter
fill-style Solid
fill-rule EvenOdd
arc-mode PieSlice

March 26, 1992 10−95

-- --

X Window System

tile Pixmap of unspecified size
filled with foreground pixel
(that is, client specified
pixel if any, else 0)
(subsequent changes to fore-
ground do not affect this
pixmap)

stipple Pixmap of unspecified size filled with ones
tile-stipple-x-origin 0
tile-stipple-y-origin 0
font <server-dependent-font>
subwindow-mode ClipByChildren
graphics-exposures True
clip-x-origin 0
clip-y-origin 0
clip-mask None
dash-offset 0
dashes 4 (that is, the list [4, 4])

Storing a pixmap in a gcontext might or might not result in a copy being made. If the
pixmap is later used as the destination for a graphics request, the change might or might
not be reflected in the gcontext. If the pixmap is used simultaneously in a graphics
request as both a destination and as a tile or stipple, the results are not defined.

It is quite likely that some amount of gcontext information will be cached in display
hardware and that such hardware can only cache a small number of gcontexts. Given
the number and complexity of components, clients should view switching between
gcontexts with nearly identical state as significantly more expensive than making minor
changes to a single gcontext.

ChangeGC

gc: GCONTEXT
value-mask: BITMASK
value-list: LISTofVALUE

Errors: Alloc, Font, GContext, Match, Pixmap, Value

This request changes components in gc. The value-mask and value-list specify which
components are to be changed. The values and restrictions are the same as for
CreateGC.

Changing the clip-mask also overrides any previous SetClipRectangles request on the
context. Changing dash-offset or dashes overrides any previous SetDashes request on
the context.

10−96 March 26, 1992

-- --

The order in which components are verified and altered is server-dependent. If an error
is generated, a subset of the components may have been altered.

CopyGC

src-gc, dst-gc: GCONTEXT
value-mask: BITMASK

Errors: Alloc, GContext, Match, Value

This request copies components from src-gc to dst-gc. The value-mask specifies which
components to copy, as for CreateGC. The two gcontexts must have the same root and
the same depth (or a Match error results).

SetDashes

gc: GCONTEXT
dash-offset: CARD16
dashes: LISTofCARD8

Errors: Alloc, GContext, Value

This request sets dash-offset and dashes in gc for dashed line styles. Dashes cannot be
empty (or a Value error results). Specifying an odd-length list is equivalent to specify-
ing the same list concatenated with itself to produce an even-length list. The initial and
alternating elements of dashes are the even dashes; the others are the odd dashes. Each
element specifies a dash length in pixels. All of the elements must be nonzero (or a
Value error results). The dash-offset defines the phase of the pattern, specifying how
many pixels into dashes the pattern should actually begin in any single graphics
request. Dashing is continuous through path elements combined with a join-style but is
reset to the dash-offset between each sequence of joined lines.

The unit of measure for dashes is the same as in the ordinary coordinate system.
Ideally, a dash length is measured along the slope of the line, but implementations are
only required to match this ideal for horizontal and vertical lines. Failing the ideal
semantics, it is suggested that the length be measured along the major axis of the line.
The major axis is defined as the x axis for lines drawn at an angle of between –45 and
+45 degrees or between 315 and 225 degrees from the x axis. For all other lines, the
major axis is the y axis.

March 26, 1992 10−97

-- --

X Window System

SetClipRectangles

gc: GCONTEXT
clip-x-origin, clip-y-origin: INT16
rectangles: LISTofRECTANGLE
ordering : {UnSorted, YSorted, YXSorted, YXBanded}

Errors: Alloc, GContext, Match, Value

This request changes clip-mask in gc to the specified list of rectangles and sets the clip
origin. Output will be clipped to remain contained within the rectangles. The clip ori-
gin is interpreted relative to the origin of whatever destination drawable is specified in a
graphics request. The rectangle coordinates are interpreted relative to the clip origin.
The rectangles should be nonintersecting, or graphics results will be undefined. Note
that the list of rectangles can be empty, which effectively disables output. This is the
opposite of passing None as the clip-mask in CreateGC and ChangeGC.

If known by the client, ordering relations on the rectangles can be specified with the
ordering argument. This may provide faster operation by the server. If an incorrect
ordering is specified, the server may generate a Match error, but it is not required to do
so. If no error is generated, the graphics results are undefined. UnSorted means that
the rectangles are in arbitrary order. YSorted means that the rectangles are nondecreas-
ing in their Y origin. YXSorted additionally constrains YSorted order in that all rectan-
gles with an equal Y origin are nondecreasing in their X origin. YXBanded addition-
ally constrains YXSorted by requiring that, for every possible Y scanline, all rectangles
that include that scanline have identical Y origins and Y extents.

FreeGC

gc: GCONTEXT

Errors: GContext

This request deletes the association between the resource ID and the gcontext and des-
troys the gcontext.

10−98 March 26, 1992

-- --

ClearArea

window: WINDOW
x, y: INT16
width, height : CARD16
exposures: BOOL

Errors: Match, Value, Window

The x and y coordinates are relative to the window’s origin and specify the upper-left
corner of the rectangle. If width is zero, it is replaced with the current width of the win-
dow minus x. If height is zero, it is replaced with the current height of the window
minus y. If the window has a defined background tile, the rectangle is tiled with a
plane-mask of all ones and function of Copy and a subwindow-mode of ClipByChil-
dren. If the window has background None, the contents of the window are not
changed. In either case, if exposures is True, then one or more exposure events are gen-
erated for regions of the rectangle that are either visible or are being retained in a back-
ing store.

It is a Match error to use an InputOnly window in this request.

CopyArea

src-drawable, dst-drawable: DRAWABLE
gc: GCONTEXT
src-x, src-y: INT16
width, height: CARD16
dst-x, dst-y: INT16

Errors: Drawable, GContext, Match

This request combines the specified rectangle of src-drawable with the specified rectan-
gle of dst-drawable. The src-x and src-y coordinates are relative to src-drawable’s ori-
gin. The dst-x and dst-y are relative to dst-drawable’s origin, each pair specifying the
upper-left corner of the rectangle. The src-drawable must have the same root and the
same depth as dst-drawable (or a Match error results).

If regions of the source rectangle are obscured and have not been retained in backing
store or if regions outside the boundaries of the source drawable are specified, then
those regions are not copied, but the following occurs on all corresponding destination
regions that are either visible or are retained in backing-store. If the dst-drawable is a
window with a background other than None, these corresponding destination regions

March 26, 1992 10−99

-- --

X Window System

are tiled (with plane-mask of all ones and function Copy) with that background.
Regardless of tiling and whether the destination is a window or a pixmap, if graphics-
exposures in gc is True, then GraphicsExposure events for all corresponding destina-
tion regions are generated.

If graphics-exposures is True but no GraphicsExposure events are generated, then a
NoExposure event is generated.

GC components: function, plane-mask, subwindow-mode, graphics-exposures, clip-x-
origin, clip-y-origin, clip-mask

CopyPlane

src-drawable, dst-drawable: DRAWABLE
gc: GCONTEXT
src-x, src-y: INT16
width, height: CARD16
dst-x, dst-y: INT16
bit-plane: CARD32

Errors: Drawable, GContext, Match, Value

The src-drawable must have the same root as dst-drawable (or a Match error results),
but it need not have the same depth. The bit-plane must have exactly one bit set to 1
and the value of bit-plane must be less than 2n where n is the depth of src-drawable (or
a Value error results). Effectively, a pixmap of the same depth as dst-drawable and
with size specified by the source region is formed using the foreground/background pix-
els in gc (foreground everywhere the bit-plane in src-drawable contains a bit set to 1,
background everywhere the bit-plane contains a bit set to 0), and the equivalent of a
CopyArea is performed, with all the same exposure semantics. This can also be
thought of as using the specified region of the source bit-plane as a stipple with a fill-
style of OpaqueStippled for filling a rectangular area of the destination.

GC components: function, plane-mask, foreground, background, subwindow-mode,
graphics-exposures, clip-x-origin, clip-y-origin, clip-mask

PolyPoint

drawable: DRAWABLE
gc: GCONTEXT

10−100 March 26, 1992

-- --

coordinate-mode: {Origin, Previous}
points: LISTofPOINT

Errors: Drawable, GContext, Match, Value

This request combines the foreground pixel in gc with the pixel at each point in the
drawable. The points are drawn in the order listed.

The first point is always relative to the drawable’s origin. The rest are relative either to
that origin or the previous point, depending on the coordinate-mode.

GC components: function, plane-mask, foreground, subwindow-mode, clip-x-origin,
clip-y-origin, clip-mask

PolyLine

drawable: DRAWABLE
gc: GCONTEXT
coordinate-mode: {Origin, Previous}
points: LISTofPOINT

Errors: Drawable, GContext, Match, Value

This request draws lines between each pair of points (point[i], point[i+1]). The lines are
drawn in the order listed. The lines join correctly at all intermediate points, and if the
first and last points coincide, the first and last lines also join correctly.

For any given line, no pixel is drawn more than once. If thin (zero line-width) lines
intersect, the intersecting pixels are drawn multiple times. If wide lines intersect, the
intersecting pixels are drawn only once, as though the entire PolyLine were a single
filled shape.

The first point is always relative to the drawable’s origin. The rest are relative either to
that origin or the previous point, depending on the coordinate-mode.

GC components: function, plane-mask, line-width, line-style, cap-style, join-style, fill-
style, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, tile-stipple-y-origin, dash-offset, dashes

March 26, 1992 10−101

-- --

X Window System

PolySegment

drawable: DRAWABLE
gc: GCONTEXT
segments: LISTofSEGMENT

where:

SEGMENT: [x1, y1, x2, y2: INT16]

Errors: Drawable, GContext, Match

For each segment, this request draws a line between [x1, y1] and [x2, y2]. The lines are
drawn in the order listed. No joining is performed at coincident endpoints. For any
given line, no pixel is drawn more than once. If lines intersect, the intersecting pixels
are drawn multiple times.

GC components: function, plane-mask, line-width, line-style, cap-style, fill-style,
subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, tile-stipple-y-origin, dash-offset, dashes

PolyRectangle

drawable: DRAWABLE
gc: GCONTEXT
rectangles: LISTofRECTANGLE

Errors: Drawable, GContext, Match

This request draws the outlines of the specified rectangles, as if a five-point PolyLine
were specified for each rectangle:

[x,y] [x + width,y] [x + width,y + height] [x,y + height] [x,y]

The x and y coordinates of each rectangle are relative to the drawable’s origin and
define the upper-left corner of the rectangle.

The rectangles are drawn in the order listed. For any given rectangle, no pixel is drawn
more than once. If rectangles intersect, the intersecting pixels are drawn multiple
times.

10−102 March 26, 1992

-- --

GC components: function, plane-mask, line-width, line-style, join-style, fill-style,
subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, tile-stipple-y-origin, dash-offset, dashes, cap-style.

PolyArc

drawable: DRAWABLE
gc: GCONTEXT
arcs: LISTofARC

Errors: Drawable, GContext, Match

This request draws circular or elliptical arcs. Each arc is specified by a rectangle and
two angles. The angles are signed integers in degrees scaled by 64, with positive indi-
cating counterclockwise motion and negative indicating clockwise motion. The start of
the arc is specified by angle1 relative to the three-o’clock position from the center of the
rectangle, and the path and extent of the arc is specified by angle2 relative to the start of
the arc. If the magnitude of angle2 is greater than 360 degrees, it is truncated to 360
degrees. The x and y coordinates of the rectangle are relative to the origin of the draw-
able. For an arc specified as [x,y,w,h,a1,a2], the origin of the major and minor axes is
at [x+(w/2),y+(h/2)], and the infinitely thin path describing the entire circle/ellipse inter-
sects the horizontal axis at [x,y+(h/2)] and [x+w,y+(h/2)] and intersects the vertical axis
at [x+(w/2),y] and [x+(w/2),y+h]. These coordinates can be fractional; that is, they are
not truncated to discrete coordinates. The path should be defined by the ideal
mathematical path. For a wide line with line-width lw, the bounding outlines for filling
are given by the two infinitely thin paths consisting of all points whose perpendicular
distance from the path of the circle/ellipse is equal to lw/2 (which may be a fractional
value). The cap-style and join-style are applied the same as for a line corresponding to
the tangent of the circle/ellipse at the endpoint.

For an arc specified as [x,y,w,h,a1,a2], the angles must be specified in the effectively
skewed coordinate system of the ellipse (for a circle, the angles and coordinate systems
are identical). The relationship between these angles and angles expressed in the nor-
mal coordinate system of the screen (as measured with a protractor) is as follows:

skewed-angle = atan(tan(normal-angle) * w/h) + adjust

The skewed-angle and normal-angle are expressed in radians (rather than in degrees
scaled by 64) in the range [0,2*PI). The atan returns a value in the range [–PI/2,PI/2].
The adjust is:

0 for normal-angle in the range [0,PI/2)
PI for normal-angle in the range [PI/2,(3*PI)/2)

March 26, 1992 10−103

-- --

X Window System

2*PI for normal-angle in the range [(3*PI)/2,2*PI)

The arcs are drawn in the order listed. If the last point in one arc coincides with the
first point in the following arc, the two arcs will join correctly. If the first point in the
first arc coincides with the last point in the last arc, the two arcs will join correctly. For
any given arc, no pixel is drawn more than once. If two arcs join correctly and the
line-width is greater than zero and the arcs intersect, no pixel is drawn more than once.
Otherwise, the intersecting pixels of intersecting arcs are drawn multiple times. Speci-
fying an arc with one endpoint and a clockwise extent draws the same pixels as specify-
ing the other endpoint and an equivalent counterclockwise extent, except as it affects
joins.

By specifying one axis to be zero, a horizontal or vertical line can be drawn.

Angles are computed based solely on the coordinate system, ignoring the aspect ratio.

GC components: function, plane-mask, line-width, line-style, cap-style, join-style, fill-
style, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, tile-stipple-y-origin, dash-offset, dashes

FillPoly

drawable: DRAWABLE
gc: GCONTEXT
shape: {Complex, Nonconvex, Convex}
coordinate-mode: {Origin, Previous}
points: LISTofPOINT

Errors: Drawable, GContext, Match, Value

This request fills the region closed by the specified path. The path is closed automati-
cally if the last point in the list does not coincide with the first point. No pixel of the
region is drawn more than once.

The first point is always relative to the drawable’s origin. The rest are relative either to
that origin or the previous point, depending on the coordinate-mode.

The shape parameter may be used by the server to improve performance. Complex
means the path may self-intersect. Contiguous coincident points in the path are not
treated as self-intersection.

Nonconvex means the path does not self-intersect, but the shape is not wholly convex.
If known by the client, specifying Nonconvex over Complex may improve perfor-
mance. If Nonconvex is specified for a self-intersecting path, the graphics results are
undefined.

10−104 March 26, 1992

-- --

Convex means that for every pair of points inside the polygon, the line segment con-
necting them does not intersect the path. If known by the client, specifying Convex
can improve performance. If Convex is specified for a path that is not convex, the
graphics results are undefined.

GC components: function, plane-mask, fill-style, fill-rule, subwindow-mode, clip-x-
origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, tile-stipple-y-origin

PolyFillRectangle

drawable: DRAWABLE
gc: GCONTEXT
rectangles: LISTofRECTANGLE

Errors: Drawable, GContext, Match

This request fills the specified rectangles, as if a four-point FillPoly were specified for
each rectangle:

[x,y] [x + width,y] [x + width,y + height] [x,y + height]

The x and y coordinates of each rectangle are relative to the drawable’s origin and
define the upper-left corner of the rectangle.

The rectangles are drawn in the order listed. For any given rectangle, no pixel is drawn
more than once. If rectangles intersect, the intersecting pixels are drawn multiple
times.

GC components: function, plane-mask, fill-style, subwindow-mode, clip-x-origin, clip-
y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, tile-stipple-y-origin

PolyFillArc

drawable: DRAWABLE
gc: GCONTEXT

March 26, 1992 10−105

-- --

X Window System

arcs: LISTofARC

Errors: Drawable, GContext, Match

For each arc, this request fills the region closed by the infinitely thin path described by
the specified arc and one or two line segments, depending on the arc-mode. For Chord,
the single line segment joining the endpoints of the arc is used. For PieSlice, the two
line segments joining the endpoints of the arc with the center point are used. The arcs
are as specified in the PolyArc request.

The arcs are filled in the order listed. For any given arc, no pixel is drawn more than
once. If regions intersect, the intersecting pixels are drawn multiple times.

GC components: function, plane-mask, fill-style, arc-mode, subwindow-mode, clip-x-
origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, tile-stipple-y-origin

PutImage

drawable: DRAWABLE
gc: GCONTEXT
depth: CARD8
width, height: CARD16
dst-x, dst-y: INT16
left-pad: CARD8
format: {Bitmap, XYPixmap, ZPixmap}
data: LISTofBYTE

Errors: Drawable, GContext, Match, Value

This request combines an image with a rectangle of the drawable. The dst-x and dst-y
coordinates are relative to the drawable’s origin.

If Bitmap format is used, then depth must be one (or a Match error results), and the
image must be in XY format. The foreground pixel in gc defines the source for bits set
to 1 in the image, and the background pixel defines the source for the bits set to 0.

For XYPixmap and ZPixmap, the depth must match the depth of the drawable (or a
Match error results). For XYPixmap, the image must be sent in XY format. For ZPix-
map, the image must be sent in the Z format defined for the given depth.

The left-pad must be zero for ZPixmap format (or a Match error results).
For Bitmap and XYPixmap format, left-pad must be less than bitmap-scanline-pad as
given in the server connection setup information (or a Match error results). The first
left-pad bits in every scanline are to be ignored by the server. The actual image begins

10−106 March 26, 1992

-- --

that many bits into the data. The width argument defines the width of the actual image
and does not include left-pad.

GC components: function, plane-mask, subwindow-mode, clip-x-origin, clip-y-origin,
clip-mask

GC mode-dependent components: foreground, background

GetImage

drawable: DRAWABLE
x, y: INT16
width, height: CARD16
plane-mask: CARD32
format: {XYPixmap, ZPixmap}

→
depth: CARD8
visual: VISUALID or None
data: LISTofBYTE

Errors: Drawable, Match, Value

This request returns the contents of the given rectangle of the drawable in the given for-
mat. The x and y coordinates are relative to the drawable’s origin and define the
upper-left corner of the rectangle. If XYPixmap is specified, only the bit planes
specified in plane-mask are transmitted, with the planes appearing from most-significant
to least-significant in bit order. If ZPixmap is specified, then bits in all planes not
specified in plane-mask are transmitted as zero. Range checking is not performed on
plane-mask; extraneous bits are simply ignored. The returned depth is as specified
when the drawable was created and is the same as a depth component in a FORMAT
structure (in the connection setup), not a bits-per-pixel component. If the drawable is a
window, its visual type is returned. If the drawable is a pixmap, the visual is None.

If the drawable is a pixmap, then the given rectangle must be wholly contained within
the pixmap (or a Match error results). If the drawable is a window, the window must
be viewable, and it must be the case that, if there were no inferiors or overlapping win-
dows, the specified rectangle of the window would be fully visible on the screen and
wholly contained within the outside edges of the window (or a Match error results).
Note that the borders of the window can be included and read with this request. If the
window has a backing store, then the backing-store contents are returned for regions of
the window that are obscured by noninferior windows; otherwise, the returned contents
of such obscured regions are undefined. Also undefined are the returned contents of
visible regions of inferiors of different depth than the specified window. The pointer
cursor image is not included in the contents returned.

March 26, 1992 10−107

-- --

X Window System

This request is not general-purpose in the same sense as other graphics-related requests.
It is intended specifically for rudimentary hardcopy support.

PolyText8

drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
items: LISTofTEXTITEM8

where:

TEXTITEM8: TEXTELT8 or FONT
TEXTELT8: [delta: INT8

string: STRING8]

Errors: Drawable, Font, GContext, Match

The x and y coordinates are relative to the drawable’s origin and specify the baseline
starting position (the initial character origin). Each text item is processed in turn. A
font item causes the font to be stored in gc and to be used for subsequent text. Switch-
ing among fonts does not affect the next character origin. A text element delta specifies
an additional change in the position along the x axis before the string is drawn; the delta
is always added to the character origin. Each character image, as defined by the font in
gc, is treated as an additional mask for a fill operation on the drawable.

All contained FONTs are always transmitted most-significant byte first.

If a Font error is generated for an item, the previous items may have been drawn.

For fonts defined with 2-byte matrix indexing, each STRING8 byte is interpreted as a
byte2 value of a CHAR2B with a byte1 value of zero.

GC components: function, plane-mask, fill-style, font, subwindow-mode, clip-x-origin,
clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, tile-stipple-y-origin

10−108 March 26, 1992

-- --

PolyText16

drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
items: LISTofTEXTITEM16

where:

TEXTITEM16: TEXTELT16 or FONT
TEXTELT16: [delta: INT8

string: STRING16]

Errors: Drawable, Font, GContext, Match

This request is similar to PolyText8, except 2-byte (or 16-bit) characters are used. For
fonts defined with linear indexing rather than 2-byte matrix indexing, the server will
interpret each CHAR2B as a 16-bit number that has been transmitted most-significant
byte first (that is, byte1 of the CHAR2B is taken as the most-significant byte).

ImageText8

drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
string : STRING8

Errors: Drawable, GContext, Match

The x and y coordinates are relative to the drawable’s origin and specify the baseline
starting position (the initial character origin). The effect is first to fill a destination rec-
tangle with the background pixel defined in gc and then to paint the text with the fore-
ground pixel. The upper-left corner of the filled rectangle is at:

[x, y – font-ascent]

the width is:

overall-width

and the height is:

March 26, 1992 10−109

-- --

X Window System

font-ascent + font-descent

The overall-width, font-ascent, and font-descent are as they would be returned by a
QueryTextExtents call using gc and string.

The function and fill-style defined in gc are ignored for this request. The effective func-
tion is Copy, and the effective fill-style Solid.

For fonts defined with 2-byte matrix indexing, each STRING8 byte is interpreted as a
byte2 value of a CHAR2B with a byte1 value of zero.

GC components: plane-mask, foreground, background, font, subwin-
dow-mode, clip-x-origin, clip-y-origin, clip-mask

ImageText16

drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
string : STRING16

Errors: Drawable, GContext, Match

This request is similar to ImageText8, except 2-byte (or 16-bit) characters are used.
For fonts defined with linear indexing rather than 2-byte matrix indexing, the server will
interpret each CHAR2B as a 16-bit number that has been transmitted most-significant
byte first (that is, byte1 of the CHAR2B is taken as the most-significant byte).

CreateColormap

mid: COLORMAP
visual: VISUALID
window: WINDOW
alloc: {None, All}

Errors: Alloc, IDChoice, Match, Value, Window

This request creates a colormap of the specified visual type for the screen on which the
window resides and associates the identifier mid with it. The visual type must be one
supported by the screen (or a Match error results). The initial values of the colormap
entries are undefined for classes GrayScale, PseudoColor, and DirectColor. For

10−110 March 26, 1992

-- --

StaticGray, StaticColor, and TrueColor, the entries will have defined values, but those
values are specific to the visual and are not defined by the core protocol. For Sta-
ticGray, StaticColor, and TrueColor, alloc must be specified as None (or a Match error
results). For the other classes, if alloc is None, the colormap initially has no allocated
entries, and clients can allocate entries.

If alloc is All, then the entire colormap is ‘‘allocated’’ writable. The initial values of all
allocated entries are undefined. For GrayScale and PseudoColor, the effect is as if an
AllocColorCells request returned all pixel values from zero to N – 1, where N is the
colormap-entries value in the specified visual. For DirectColor, the effect is as if an
AllocColorPlanes request returned a pixel value of zero and red-mask, green-mask, and
blue-mask values containing the same bits as the corresponding masks in the specified
visual. However, in all cases, none of these entries can be freed with FreeColors.

FreeColormap

cmap: COLORMAP

Errors: Colormap

This request deletes the association between the resource ID and the colormap and frees
the colormap storage. If the colormap is an installed map for a screen, it is uninstalled
(see UninstallColormap request). If the colormap is defined as the colormap for a win-
dow (by means of CreateWindow or ChangeWindowAttributes), the colormap for
the window is changed to None, and a ColormapNotify event is generated. The proto-
col does not define the colors displayed for a window with a colormap of None.

CopyColormapAndFree

mid, src-cmap: COLORMAP

Errors: Alloc, Colormap, IDChoice

This request creates a colormap of the same visual type and for the same screen as src-
cmap, and it associates identifier mid with it. It also moves all of the client’s existing
allocations from src-cmap to the new colormap with their color values intact and their
read-only or writable characteristics intact, and it frees those entries in src-cmap. Color
values in other entries in the new colormap are undefined. If src-cmap was created by
the client with alloc All (see CreateColormap request), then the new colormap is also
created with alloc All, all color values for all entries are copied from src-cmap, and then

March 26, 1992 10−111

-- --

X Window System

all entries in src-cmap are freed. If src-cmap was not created by the client with alloc
All, then the allocations to be moved are all those pixels and planes that have been allo-
cated by the client using either AllocColor, AllocNamedColor, AllocColorCells, or
AllocColorPlanes and that have not been freed since they were allocated.

InstallColormap

cmap: COLORMAP

Errors: Colormap

This request makes this colormap an installed map for its screen. All windows associ-
ated with this colormap immediately display with true colors. As a side effect, addi-
tional colormaps might be implicitly installed or uninstalled by the server. Which other
colormaps get installed or uninstalled is server-dependent except that the required list
must remain installed.

If cmap is not already an installed map, a ColormapNotify event is generated on every
window having cmap as an attribute. In addition, for every other colormap that is
installed or uninstalled as a result of the request, a ColormapNotify event is generated
on every window having that colormap as an attribute.

At any time, there is a subset of the installed maps that are viewed as an ordered list
and are called the required list. The length of the required list is at most M, where M is
the min-installed-maps specified for the screen in the connection setup. The required
list is maintained as follows. When a colormap is an explicit argument to InstallColor-
map, it is added to the head of the list; the list is truncated at the tail, if necessary, to
keep the length of the list to at most M. When a colormap is an explicit argument to
UninstallColormap and it is in the required list, it is removed from the list. A color-
map is not added to the required list when it is installed implicitly by the server, and the
server cannot implicitly uninstall a colormap that is in the required list.

Initially the default colormap for a screen is installed (but is not in the required list).

UninstallColormap

cmap: COLORMAP

Errors: Colormap

10−112 March 26, 1992

-- --

If cmap is on the required list for its screen (see InstallColormap request), it is
removed from the list. As a side effect, cmap might be uninstalled, and additional
colormaps might be implicitly installed or uninstalled. Which colormaps get installed
or uninstalled is server-dependent except that the required list must remain installed.

If cmap becomes uninstalled, a ColormapNotify event is generated on every window
having cmap as an attribute. In addition, for every other colormap that is installed or
uninstalled as a result of the request, a ColormapNotify event is generated on every
window having that colormap as an attribute.

ListInstalledColormaps

window: WINDOW
→

cmaps: LISTofCOLORMAP

Errors: Window

This request returns a list of the currently installed colormaps for the screen of the
specified window. The order of colormaps is not significant, and there is no explicit
indication of the required list (see InstallColormap request).

AllocColor

cmap: COLORMAP
red, green, blue: CARD16

→
pixel: CARD32
red, green, blue: CARD16

Errors: Alloc, Colormap

This request allocates a read-only colormap entry corresponding to the closest RGB
values provided by the hardware. It also returns the pixel and the RGB values actually
used. Multiple clients requesting the same effective RGB values can be assigned the
same read-only entry, allowing entries to be shared.

March 26, 1992 10−113

-- --

X Window System

AllocNamedColor

cmap: COLORMAP
name: STRING8

→
pixel: CARD32
exact-red, exact-green, exact-blue: CARD16
visual-red, visual-green, visual-blue: CARD16

Errors: Alloc, Colormap, Name

This request looks up the named color with respect to the screen associated with the
colormap. Then, it does an AllocColor on cmap. The name should use the ISO Latin-1
encoding, and uppercase and lowercase do not matter. The exact RGB values specify
the true values for the color, and the visual values specify the values actually used in the
colormap.

AllocColorCells

cmap: COLORMAP
colors, planes: CARD16
contiguous: BOOL

→
pixels, masks: LISTofCARD32

Errors: Alloc, Colormap, Value

The number of colors must be positive, and the number of planes must be nonnegative
(or a Value error results). If C colors and P planes are requested, then C pixels and P
masks are returned. No mask will have any bits in common with any other mask or
with any of the pixels. By ORing together masks and pixels, C*2P distinct pixels can
be produced; all of these are allocated writable by the request. For GrayScale or Pseu-
doColor, each mask will have exactly one bit set to 1; for DirectColor, each will have
exactly three bits set to 1. If contiguous is True and if all masks are ORed together, a
single contiguous set of bits will be formed for GrayScale or PseudoColor, and three
contiguous sets of bits (one within each pixel subfield) for DirectColor. The RGB
values of the allocated entries are undefined.

10−114 March 26, 1992

-- --

AllocColorPlanes

cmap: COLORMAP
colors, reds, greens, blues: CARD16
contiguous: BOOL

→
pixels: LISTofCARD32
red-mask, green-mask, blue-mask: CARD32

Errors: Alloc, Colormap, Value

The number of colors must be positive, and the reds, greens, and blues must be nonne-
gative (or a Value error results). If C colors, R reds, G greens, and B blues are
requested, then C pixels are returned, and the masks have R, G, and B bits set, respec-
tively. If contiguous is True, then each mask will have a contiguous set of bits. No
mask will have any bits in common with any other mask or with any of the pixels. For
DirectColor, each mask will lie within the corresponding pixel subfield. By ORing
together subsets of masks with pixels, C*2R+G+B distinct pixels can be produced; all of
these are allocated by the request. The initial RGB values of the allocated entries are
undefined. In the colormap, there are only C*2R independent red entries, C*2G

independent green entries, and C*2B independent blue entries. This is true even for
PseudoColor. When the colormap entry for a pixel value is changed using StoreColors
or StoreNamedColor, the pixel is decomposed according to the masks and the
corresponding independent entries are updated.

FreeColors

cmap: COLORMAP
pixels: LISTofCARD32
plane-mask: CARD32

Errors: Access, Colormap, Value

The plane-mask should not have any bits in common with any of the pixels. The set of
all pixels is produced by ORing together subsets of plane-mask with the pixels. The
request frees all of these pixels that were allocated by the client (using AllocColor,
AllocNamedColor, AllocColorCells, and AllocColorPlanes). Note that freeing an
individual pixel obtained from AllocColorPlanes may not actually allow it to be reused
until all of its related pixels are also freed. Similarly, a read-only entry is not actually
freed until it has been freed by all clients, and if a client allocates the same read-only
entry multiple times, it must free the entry that many times before the entry is actually
freed.

March 26, 1992 10−115

-- --

X Window System

All specified pixels that are allocated by the client in cmap are freed, even if one or
more pixels produce an error. A Value error is generated if a specified pixel is not a
valid index into cmap, and an Access error is generated if a specified pixel is not allo-
cated by the client (that is, is unallocated or is only allocated by another client). If more
than one pixel is in error, it is arbitrary as to which pixel is reported.

StoreColors

cmap: COLORMAP
items: LISTofCOLORITEM

where:

COLORITEM: [pixel: CARD32
do-red, do-green, do-blue: BOOL
red, green, blue: CARD16]

Errors: Access, Colormap, Value

This request changes the colormap entries of the specified pixels. The do-red, do-green,
and do-blue fields indicate which components should actually be changed. If the color-
map is an installed map for its screen, the changes are visible immediately.

All specified pixels that are allocated writable in cmap (by any client) are changed, even
if one or more pixels produce an error. A Value error is generated if a specified pixel
is not a valid index into cmap, and an Access error is generated if a specified pixel is
unallocated or is allocated read-only. If more than one pixel is in error, it is arbitrary as
to which pixel is reported.

StoreNamedColor

cmap: COLORMAP
pixel: CARD32
name: STRING8
do-red, do-green, do-blue: BOOL

Errors: Access, Colormap, Name, Value

This request looks up the named color with respect to the screen associated with cmap
and then does a StoreColors in cmap. The name should use the ISO Latin-1 encoding,

10−116 March 26, 1992

-- --

and uppercase and lowercase do not matter. The Access and Value errors are the same
as in StoreColors.

QueryColors

cmap: COLORMAP
pixels: LISTofCARD32

→
colors: LISTofRGB

where:

RGB: [red, green, blue: CARD16]

Errors: Colormap, Value

This request returns the hardware-specific color values stored in cmap for the specified
pixels. The values returned for an unallocated entry are undefined. A Value error is
generated if a pixel is not a valid index into cmap. If more than one pixel is in error, it
is arbitrary as to which pixel is reported.

LookupColor

cmap: COLORMAP
name: STRING8

→
exact-red, exact-green, exact-blue: CARD16
visual-red, visual-green, visual-blue: CARD16

Errors: Colormap, Name

This request looks up the string name of a color with respect to the screen associated
with cmap and returns both the exact color values and the closest values provided by the
hardware with respect to the visual type of cmap. The name should use the ISO Latin-1
encoding, and uppercase and lowercase do not matter.

March 26, 1992 10−117

-- --

X Window System

CreateCursor

cid: CURSOR
source: PIXMAP
mask: PIXMAP or None
fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16
x, y: CARD16

Errors: Alloc, IDChoice, Match, Pixmap

This request creates a cursor and associates identifier cid with it. The foreground and
background RGB values must be specified, even if the server only has a StaticGray or
GrayScale screen. The foreground is used for the bits set to 1 in the source, and the
background is used for the bits set to 0. Both source and mask (if specified) must have
depth one (or a Match error results), but they can have any root. The mask pixmap
defines the shape of the cursor. That is, the bits set to 1 in the mask define which
source pixels will be displayed, and where the mask has bits set to 0, the corresponding
bits of the source pixmap are ignored. If no mask is given, all pixels of the source are
displayed. The mask, if present, must be the same size as the source (or a Match error
results). The x and y coordinates define the hotspot relative to the source’s origin and
must be a point within the source (or a Match error results).

The components of the cursor may be transformed arbitrarily to meet display limita-
tions.

The pixmaps can be freed immediately if no further explicit references to them are to be
made.

Subsequent drawing in the source or mask pixmap has an undefined effect on the cur-
sor. The server might or might not make a copy of the pixmap.

CreateGlyphCursor

cid: CURSOR
source-font: FONT
mask-font: FONT or None
source-char, mask-char : CARD16
fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16

Errors: Alloc, Font, IDChoice, Value

10−118 March 26, 1992

-- --

This request is similar to CreateCursor, except the source and mask bitmaps are
obtained from the specified font glyphs. The source-char must be a defined glyph in
source-font, and if mask-font is given, mask-char must be a defined glyph in mask-font
(or a Value error results). The mask font and character are optional. The origins of the
source and mask (if it is defined) glyphs are positioned coincidently and define the
hotspot. The source and mask need not have the same bounding box metrics, and there
is no restriction on the placement of the hotspot relative to the bounding boxes. If no
mask is given, all pixels of the source are displayed. Note that source-char and mask-
char are CARD16, not CHAR2B. For 2-byte matrix fonts, the 16-bit value should be
formed with byte1 in the most-significant byte and byte2 in the least-significant byte.

The components of the cursor may be transformed arbitrarily to meet display limita-
tions.

The fonts can be freed immediately if no further explicit references to them are to be
made.

FreeCursor

cursor : CURSOR

Errors: Cursor

This request deletes the association between the resource ID and the cursor. The cursor
storage will be freed when no other resource references it.

RecolorCursor

cursor : CURSOR
fore-red, fore-green, fore-blue: CARD16
back-red, back-green, back-blue: CARD16

Errors: Cursor

This request changes the color of a cursor. If the cursor is being displayed on a screen,
the change is visible immediately.

March 26, 1992 10−119

-- --

X Window System

QueryBestSize

class: {Cursor, Tile, Stipple}
drawable: DRAWABLE
width, height: CARD16

→
width, height: CARD16

Errors: Drawable, Match, Value

This request returns the best size that is closest to the argument size. For Cursor, this is
the largest size that can be fully displayed. For Tile, this is the size that can be tiled
fastest. For Stipple, this is the size that can be stippled fastest.

For Cursor, the drawable indicates the desired screen. For Tile and Stipple, the draw-
able indicates the screen and also possibly the window class and depth. An InputOnly
window cannot be used as the drawable for Tile or Stipple (or a Match error results).

QueryExtension

name: STRING8
→

present: BOOL
major-opcode: CARD8
first-event: CARD8
first-error: CARD8

This request determines if the named extension is present. If so, the major opcode for
the extension is returned, if it has one. Otherwise, zero is returned. Any minor opcode
and the request formats are specific to the extension. If the extension involves addi-
tional event types, the base event type code is returned. Otherwise, zero is returned.
The format of the events is specific to the extension. If the extension involves addi-
tional error codes, the base error code is returned. Otherwise, zero is returned. The for-
mat of additional data in the errors is specific to the extension.

The extension name should use the ISO Latin-1 encoding, and uppercase and lowercase
matter.

10−120 March 26, 1992

-- --

ListExtensions

→
names: LISTofSTRING8

This request returns a list of all extensions supported by the server.

SetModifierMapping

keycodes-per-modifier: CARD8
keycodes: LISTofKEYCODE

→
status: {Success, Busy, Failed}

Errors: Alloc, Value

This request specifies the keycodes (if any) of the keys to be used as modifiers. The
number of keycodes in the list must be 8*keycodes-per-modifier (or a Length error
results). The keycodes are divided into eight sets, with each set containing keycodes-
per-modifier elements. The sets are assigned to the modifiers Shift, Lock, Control,
Mod1, Mod2, Mod3, Mod4, and Mod5, in order. Only nonzero keycode values are
used within each set; zero values are ignored. All of the nonzero keycodes must be in
the range specified by min-keycode and max-keycode in the connection setup (or a
Value error results). The order of keycodes within a set does not matter. If no nonzero
values are specified in a set, the use of the corresponding modifier is disabled, and the
modifier bit will always be zero. Otherwise, the modifier bit will be one whenever at
least one of the keys in the corresponding set is in the down position.

A server can impose restrictions on how modifiers can be changed (for example, if cer-
tain keys do not generate up transitions in hardware, if auto-repeat cannot be disabled
on certain keys, or if multiple keys per modifier are not supported). The status reply is
Failed if some such restriction is violated, and none of the modifiers is changed.

If the new nonzero keycodes specified for a modifier differ from those currently defined
and any (current or new) keys for that modifier are logically in the down state, then the
status reply is Busy, and none of the modifiers is changed.

This request generates a MappingNotify event on a Success status.

March 26, 1992 10−121

-- --

X Window System

GetModifierMapping

→
keycodes-per-modifier: CARD8
keycodes: LISTofKEYCODE

This request returns the keycodes of the keys being used as modifiers. The number of
keycodes in the list is 8*keycodes-per-modifier. The keycodes are divided into eight
sets, with each set containing keycodes-per-modifier elements. The sets are assigned to
the modifiers Shift, Lock, Control, Mod1, Mod2, Mod3, Mod4, and Mod5, in order.
The keycodes-per-modifier value is chosen arbitrarily by the server; zeroes are used to
fill in unused elements within each set. If only zero values are given in a set, the use of
the corresponding modifier has been disabled. The order of keycodes within each set is
chosen arbitrarily by the server.

ChangeKeyboardMapping

first-keycode: KEYCODE
keysyms-per-keycode: CARD8
keysyms: LISTofKEYSYM

Errors: Alloc, Value

This request defines the symbols for the specified number of keycodes, starting with the
specified keycode. The symbols for keycodes outside this range remained unchanged.
The number of elements in the keysyms list must be a multiple of keysyms-per-keycode
(or a Length error results). The first-keycode must be greater than or equal to min-
keycode as returned in the connection setup (or a Value error results) and:

first-keycode + (keysyms-length / keysyms-per-keycode) – 1

must be less than or equal to max-keycode as returned in the connection setup (or a
Value error results). KEYSYM number N (counting from zero) for keycode K has an
index (counting from zero) of:

(K – first-keycode) * keysyms-per-keycode + N

in keysyms. The keysyms-per-keycode can be chosen arbitrarily by the client to be
large enough to hold all desired symbols. A special KEYSYM value of NoSymbol
should be used to fill in unused elements for individual keycodes. It is legal for
NoSymbol to appear in nontrailing positions of the effective list for a keycode.

10−122 March 26, 1992

-- --

This request generates a MappingNotify event.

There is no requirement that the server interpret this mapping; it is merely stored for
reading and writing by clients (see section 5).

GetKeyboardMapping

first-keycode: KEYCODE
count: CARD8

→
keysyms-per-keycode: CARD8
keysyms: LISTofKEYSYM

Errors: Value

This request returns the symbols for the specified number of keycodes, starting with the
specified keycode. The first-keycode must be greater than or equal to min-keycode as
returned in the connection setup (or a Value error results), and:

first-keycode + count – 1

must be less than or equal to max-keycode as returned in the connection setup (or a
Value error results). The number of elements in the keysyms list is:

count * keysyms-per-keycode

and KEYSYM number N (counting from zero) for keycode K has an index (counting
from zero) of:

(K – first-keycode) * keysyms-per-keycode + N

in keysyms. The keysyms-per-keycode value is chosen arbitrarily by the server to be
large enough to report all requested symbols. A special KEYSYM value of NoSymbol
is used to fill in unused elements for individual keycodes.

ChangeKeyboardControl

value-mask: BITMASK
value-list: LISTofVALUE

March 26, 1992 10−123

-- --

X Window System

Errors: Match, Value

This request controls various aspects of the keyboard. The value-mask and value-list
specify which controls are to be changed. The possible values are:
33
Control Type
33
key-click-percent INT8
bell-percent INT8
bell-pitch INT16
bell-duration INT16
led CARD8
led-mode {On, Off}
key KEYCODE
auto-repeat-mode {On, Off, Default}

The key-click-percent sets the volume for key clicks between 0 (off) and 100 (loud)
inclusive, if possible. Setting to –1 restores the default. Other negative values generate
a Value error.

The bell-percent sets the base volume for the bell between 0 (off) and 100 (loud)
inclusive, if possible. Setting to –1 restores the default. Other negative values generate
a Value error.

The bell-pitch sets the pitch (specified in Hz) of the bell, if possible. Setting to –1
restores the default. Other negative values generate a Value error.

The bell-duration sets the duration of the bell (specified in milliseconds), if possible.
Setting to –1 restores the default. Other negative values generate a Value error.

If both led-mode and led are specified, then the state of that LED is changed, if possi-
ble. If only led-mode is specified, then the state of all LEDs are changed, if possible.
At most 32 LEDs, numbered from one, are supported. No standard interpretation of
LEDs is defined. It is a Match error if an led is specified without an led-mode.

If both auto-repeat-mode and key are specified, then the auto-repeat mode of that key is
changed, if possible. If only auto-repeat-mode is specified, then the global auto-repeat
mode for the entire keyboard is changed, if possible, without affecting the per-key set-
tings. It is a Match error if a key is specified without an auto-repeat-mode. Each key
has an individual mode of whether or not it should auto-repeat and a default setting for
that mode. In addition, there is a global mode of whether auto-repeat should be enabled
or not and a default setting for that mode. When the global mode is On, keys should
obey their individual auto-repeat modes. When the global mode is Off, no keys should
auto-repeat. An auto-repeating key generates alternating KeyPress and KeyRelease
events. When a key is used as a modifier, it is desirable for the key not to auto-repeat,
regardless of the auto-repeat setting for that key.

A bell generator connected with the console but not directly on the keyboard is treated
as if it were part of the keyboard.

The order in which controls are verified and altered is server-dependent. If an error is
generated, a subset of the controls may have been altered.

10−124 March 26, 1992

-- --

GetKeyboardControl

→
key-click-percent: CARD8
bell-percent: CARD8
bell-pitch: CARD16
bell-duration: CARD16
led-mask: CARD32
global-auto-repeat: {On, Off}
auto-repeats: LISTofCARD8

This request returns the current control values for the keyboard. For the LEDs, the
least-significant bit of led-mask corresponds to LED one, and each one bit in led-mask
indicates an LED that is lit. The auto-repeats is a bit vector; each one bit indicates that
auto-repeat is enabled for the corresponding key. The vector is represented as 32 bytes.
Byte N (from 0) contains the bits for keys 8N to 8N + 7, with the least-significant bit in
the byte representing key 8N.

Bell

percent: INT8

Errors: Value

This request rings the bell on the keyboard at a volume relative to the base volume for
the keyboard, if possible. Percent can range from –100 to 100 inclusive (or a Value
error results). The volume at which the bell is rung when percent is nonnegative is:

base – [(base * percent) / 100] + percent

When percent is negative, it is:

base + [(base * percent) / 100]

March 26, 1992 10−125

-- --

X Window System

SetPointerMapping

map: LISTofCARD8
→

status: {Success, Busy}

Errors: Value

This request sets the mapping of the pointer. Elements of the list are indexed starting
from one. The length of the list must be the same as GetPointerMapping would return
(or a Value error results). The index is a core button number, and the element of the
list defines the effective number.

A zero element disables a button. Elements are not restricted in value by the number of
physical buttons, but no two elements can have the same nonzero value (or a Value
error results).

If any of the buttons to be altered are logically in the down state, the status reply is
Busy, and the mapping is not changed.

This request generates a MappingNotify event on a Success status.

GetPointerMapping

→
map: LISTofCARD8

This request returns the current mapping of the pointer. Elements of the list are indexed
starting from one. The length of the list indicates the number of physical buttons.

The nominal mapping for a pointer is the identity mapping: map[i] = i.

ChangePointerControl

do-acceleration, do-threshold: BOOL
acceleration-numerator, acceleration-denominator: INT16
threshold: INT16

Errors: Value

10−126 March 26, 1992

-- --

This request defines how the pointer moves. The acceleration is a multiplier for move-
ment expressed as a fraction. For example, specifying 3/1 means the pointer moves
three times as fast as normal. The fraction can be rounded arbitrarily by the server.
Acceleration only takes effect if the pointer moves more than threshold number of pix-
els at once and only applies to the amount beyond the threshold. Setting a value to –1
restores the default. Other negative values generate a Value error, as does a zero value
for acceleration-denominator.

GetPointerControl

→
acceleration-numerator, acceleration-denominator: CARD16
threshold: CARD16

This request returns the current acceleration and threshold for the pointer.

SetScreenSaver

timeout, interval: INT16
prefer-blanking : {Yes, No, Default}
allow-exposures: {Yes, No, Default}

Errors: Value

The timeout and interval are specified in seconds; setting a value to –1 restores the
default. Other negative values generate a Value error. If the timeout value is zero,
screen-saver is disabled (but an activated screen-saver is not deactivated). If the timeout
value is nonzero, screen-saver is enabled. Once screen-saver is enabled, if no input
from the keyboard or pointer is generated for timeout seconds, screen-saver is
activated. For each screen, if blanking is preferred and the hardware supports video
blanking, the screen will simply go blank. Otherwise, if either exposures are allowed or
the screen can be regenerated without sending exposure events to clients, the screen is
changed in a server-dependent fashion to avoid phosphor burn. Otherwise, the state of
the screens does not change, and screen-saver is not activated. At the next keyboard or
pointer input or at the next ForceScreenSaver with mode Reset, screen-saver is deac-
tivated, and all screen states are restored.

If the server-dependent screen-saver method is amenable to periodic change, interval
serves as a hint about how long the change period should be, with zero hinting that no
periodic change should be made. Examples of ways to change the screen include

March 26, 1992 10−127

-- --

X Window System

scrambling the color map periodically, moving an icon image about the screen periodi-
cally, or tiling the screen with the root window background tile, randomly reorigined
periodically.

GetScreenSaver

→
timeout, interval: CARD16
prefer-blanking: {Yes, No}
allow-exposures: {Yes, No}

This request returns the current screen-saver control values.

ForceScreenSaver

mode: {Activate, Reset}

Errors: Value

If the mode is Activate and screen-saver is currently deactivated, then screen-saver is
activated (even if screen-saver has been disabled with a timeout value of zero). If the
mode is Reset and screen-saver is currently enabled, then screen-saver is deactivated (if
it was activated), and the activation timer is reset to its initial state as if device input
had just been received.

ChangeHosts

mode: {Insert, Delete}
host : HOST

Errors: Access, Value

This request adds or removes the specified host from the access control list. When the
access control mechanism is enabled and a host attempts to establish a connection to the
server, the host must be in this list, or the server will refuse the connection.

10−128 March 26, 1992

-- --

The client must reside on the same host as the server and/or have been granted permis-
sion by a server-dependent method to execute this request (or an Access error results).

An initial access control list can usually be specified, typically by naming a file that the
server reads at startup and reset.

The following address families are defined. A server is not required to support these
families and may support families not listed here. Use of an unsupported family, an
improper address format, or an improper address length within a supported family
results in a Value error.

For the Internet family, the address must be four bytes long. The address bytes are in
standard IP order; the server performs no automatic swapping on the address bytes. For
a Class A address, the network number is the first byte in the address, and the host
number is the remaining three bytes, most-significant byte first. For a Class B address,
the network number is the first two bytes and the host number is the last two bytes,
each most-significant byte first. For a Class C address, the network number is the first
three bytes, most-significant byte first, and the last byte is the host number.

For the DECnet family, the server performs no automatic swapping on the address
bytes. A Phase IV address is two bytes long: the first byte contains the least-significant
eight bits of the node number, and the second byte contains the most-significant two
bits of the node number in the least-significant two bits of the byte and the area in the
most-significant six bits of the byte.

For the Chaos family, the address must be two bytes long. The host number is always
the first byte in the address, and the subnet number is always the second byte. The
server performs no automatic swapping on the address bytes.

ListHosts

→
mode: {Enabled, Disabled}
hosts: LISTofHOST

This request returns the hosts on the access control list and whether use of the list at
connection setup is currently enabled or disabled.

Each HOST is padded to a multiple of four bytes.

March 26, 1992 10−129

-- --

X Window System

SetAccessControl

mode: {Enable, Disable}

Errors: Access, Value

This request enables or disables the use of the access control list at connection setups.

The client must reside on the same host as the server and/or have been granted permis-
sion by a server-dependent method to execute this request (or an Access error results).

SetCloseDownMode

mode: {Destroy, RetainPermanent, RetainTemporary}

Errors: Value

This request defines what will happen to the client’s resources at connection close. A
connection starts in Destroy mode. The meaning of the close-down mode is described
in section 10.

KillClient

resource : CARD32 or AllTemporary

Errors: Value

If a valid resource is specified, KillClient forces a close-down of the client that created
the resource. If the client has already terminated in either RetainPermanent or Retain-
Temporary mode, all of the client’s resources are destroyed (see section 10). If
AllTemporary is specified, then the resources of all clients that have terminated in
RetainTemporary are destroyed. NoOperation This request has no arguments and no
results, but the request length field can be nonzero, which allows the request to be any
multiple of four bytes in length. The bytes contained in the request are uninterpreted by
the server.

This request can be used in its minimum four byte form as padding where necessary by
client libraries that find it convenient to force requests to begin on 64-bit boundaries.

10−130 March 26, 1992

-- --

SECTION 10. CONNECTION CLOSE

At connection close, all event selections made by the client are discarded. If the client
has the pointer actively grabbed, an UngrabPointer is performed. If the client has the
keyboard actively grabbed, an UngrabKeyboard is performed. All passive grabs by
the client are released. If the client has the server grabbed, an UngrabServer is per-
formed. All selections (see SetSelectionOwner request) owned by the client are
disowned. If close-down mode (see SetCloseDownMode request) is Retain-
Permanent or RetainTemporary, then all resources (including colormap entries) allo-
cated by the client are marked as permanent or temporary, respectively (but this does
not prevent other clients from explicitly destroying them). If the mode is Destroy, all of
the client’s resources are destroyed.

When a client’s resources are destroyed, for each window in the client’s save-set, if the
window is an inferior of a window created by the client, the save-set window is
reparented to the closest ancestor such that the save-set window is not an inferior of a
window created by the client. If the save-set window is unmapped, a MapWindow
request is performed on it (even if it was not an inferior of a window created by the
client). The reparenting leaves unchanged the absolute coordinates (with respect to the
root window) of the upper-left outer corner of the save-set window. After save-set pro-
cessing, all windows created by the client are destroyed. For each nonwindow resource
created by the client, the appropriate Free request is performed. All colors and color-
map entries allocated by the client are freed.

A server goes through a cycle of having no connections and having some connections.
At every transition to the state of having no connections as a result of a connection clos-
ing with a Destroy close-down mode, the server resets its state as if it had just been
started. This starts by destroying all lingering resources from clients that have ter-
minated in RetainPermanent or RetainTemporary mode. It additionally includes
deleting all but the predefined atom identifiers, deleting all properties on all root win-
dows, resetting all device maps and attributes (key click, bell volume, acceleration),
resetting the access control list, restoring the standard root tiles and cursors, restoring
the default font path, and restoring the input focus to state PointerRoot.

Note that closing a connection with a close-down mode of RetainPermanent or
RetainTemporary will not cause the server to reset.

SECTION 11. EVENTS

When a button press is processed with the pointer in some window W and no active
pointer grab is in progress, the ancestors of W are searched from the root down, looking
for a passive grab to activate. If no matching passive grab on the button exists, then an
active grab is started automatically for the client receiving the event, and the last-
pointer-grab time is set to the current server time. The effect is essentially equivalent to
a GrabButton with arguments:

March 26, 1992 10−131

-- --

X Window System

33
Argument Value
33
event-window Event window
event-mask Client’s selected pointer events on the

event window
pointer-mode and keyboard-mode Asynchronous
owner-events True if the client has OwnerGrabButton

selected on the event window, otherwise
False

confine-to None
cursor None

The grab is terminated automatically when the logical state of the pointer has all buttons
released. UngrabPointer and ChangeActivePointerGrab can both be used to modify
the active grab.

KeyPress, KeyRelease, ButtonPress, ButtonRelease, MotionNotif

root, event: WINDOW
child: WINDOW or None
same-screen: BOOL
root-x, root-y, event-x, event-y: INT16
detail: <see below>
state: SETofKEYBUTMASK
time: TIMESTAMP

These events are generated either when a key or button logically changes state or when
the pointer logically moves. The generation of these logical changes may lag the physi-
cal changes if device event processing is frozen. Note that KeyPress and KeyRelease
are generated for all keys, even those mapped to modifier bits. The source of the event
is the window the pointer is in. The window the event is reported with respect to is
called the event window. The event window is found by starting with the source win-
dow and looking up the hierarchy for the first window on which any client has selected
interest in the event (provided no intervening window prohibits event generation by
including the event type in its do-not-propagate-mask). The actual window used for
reporting can be modified by active grabs and, in the case of keyboard events, can be
modified by the focus window.

The root is the root window of the source window, and root-x and root-y are the pointer
coordinates relative to root’s origin at the time of the event. Event is the event win-
dow. If the event window is on the same screen as root, then event-x and event-y are
the pointer coordinates relative to the event window’s origin. Otherwise, event-x and
event-y are zero. If the source window is an inferior of the event window, then child is
set to the child of the event window that is an ancestor of (or is) the source window.

10−132 March 26, 1992

-- --

Otherwise, it is set to None. The state component gives the logical state of the buttons
and modifier keys just before the event. The detail component type varies with the
event type:

33
Event Component
33
KeyPress, KeyRelease KEYCODE
ButtonPress, ButtonRelease BUTTON
MotionNotify {Normal, Hint}

MotionNotify events are only generated when the motion begins and ends in the win-
dow. The granularity of motion events is not guaranteed, but a client selecting for
motion events is guaranteed to get at least one event when the pointer moves and comes
to rest. Selecting PointerMotion receives events independent of the state of the pointer
buttons. By selecting some subset of Button[1-5]Motion instead, MotionNotify events
will only be received when one or more of the specified buttons are pressed. By select-
ing ButtonMotion, MotionNotify events will be received only when at least one button
is pressed. The events are always of type MotionNotify, independent of the selection.
If PointerMotionHint is selected, the server is free to send only one MotionNotify event
(with detail Hint) to the client for the event window until either the key or button state
changes, the pointer leaves the event window, or the client issues a QueryPointer or
GetMotionEvents request.

EnterNotify, LeaveNotify

root, event: WINDOW
child: WINDOW or None
same-screen: BOOL
root-x, root-y, event-x, event-y: INT16
mode: {Normal, Grab, Ungrab}
detail: {Ancestor, Virtual, Inferior, Nonlinear, NonlinearVirtual}
focus: BOOL
state: SETofKEYBUTMASK
time: TIMESTAMP

If pointer motion or window hierarchy change causes the pointer to be in a different
window than before, EnterNotify and LeaveNotify events are generated instead of a
MotionNotify event. Only clients selecting EnterWindow on a window receive Enter-
Notify events, and only clients selecting LeaveWindow receive LeaveNotify events.
The pointer position reported in the event is always the final position, not the initial
position of the pointer. The root is the root window for this position, and root-x and
root-y are the pointer coordinates relative to root’s origin at the time of the event.
Event is the event window. If the event window is on the same screen as root, then
event-x and event-y are the pointer coordinates relative to the event window’s origin.

March 26, 1992 10−133

-- --

X Window System

Otherwise, event-x and event-y are zero. In a LeaveNotify event, if a child of the event
window contains the initial position of the pointer, then the child component is set to
that child. Otherwise, it is None. For an EnterNotify event, if a child of the event win-
dow contains the final pointer position, then the child component is set to that child.
Otherwise, it is None. If the event window is the focus window or an inferior of the
focus window, then focus is True. Otherwise, focus is False.

Normal pointer motion events have mode Normal. Pseudo-motion events when a grab
activates have mode Grab, and pseudo-motion events when a grab deactivates have
mode Ungrab.

All EnterNotify and LeaveNotify events caused by a hierarchy change are generated
after any hierarchy event caused by that change (that is, UnmapNotify, MapNotify,
ConfigureNotify, GravityNotify, CirculateNotify), but the ordering of EnterNotify and
LeaveNotify events with respect to FocusOut, VisibilityNotify, and Expose events is
not constrained.

Normal events are generated as follows:

When the pointer moves from window A to window B and A is an inferior of B:

• LeaveNotify with detail Ancestor is generated on A.

• LeaveNotify with detail Virtual is generated on each window between A and B
exclusive (in that order).

• EnterNotify with detail Inferior is generated on B.

When the pointer moves from window A to window B and B is an inferior of A:

• LeaveNotify with detail Inferior is generated on A.

• EnterNotify with detail Virtual is generated on each window between A and B
exclusive (in that order).

• EnterNotify with detail Ancestor is generated on B.

When the pointer moves from window A to window B and window C is their least
common ancestor:

• LeaveNotify with detail Nonlinear is generated on A.

• LeaveNotify with detail NonlinearVirtual is generated on each window between A
and C exclusive (in that order).

• EnterNotify with detail NonlinearVirtual is generated on each window between C
and B exclusive (in that order).

• EnterNotify with detail Nonlinear is generated on B.

When the pointer moves from window A to window B on different screens:

• LeaveNotify with detail Nonlinear is generated on A.

• If A is not a root window, LeaveNotify with detail NonlinearVirtual is generated
on each window above A up to and including its root (in order).

10−134 March 26, 1992

-- --

• If B is not a root window, EnterNotify with detail NonlinearVirtual is generated on
each window from B’s root down to but not including B (in order).

• EnterNotify with detail Nonlinear is generated on B.

When a pointer grab activates (but after any initial warp into a confine-to window and
before generating any actual ButtonPress event that activates the grab), G is the grab-
window for the grab, and P is the window the pointer is in:

• EnterNotify and LeaveNotify events with mode Grab are generated (as for Normal
above) as if the pointer were to suddenly warp from its current position in P to some
position in G. However, the pointer does not warp, and the pointer position is used
as both the initial and final positions for the events.

When a pointer grab deactivates (but after generating any actual ButtonRelease event
that deactivates the grab), G is the grab-window for the grab, and P is the window the
pointer is in:

• EnterNotify and LeaveNotify events with mode Ungrab are generated (as for Nor-
mal above) as if the pointer were to suddenly warp from some position in G to its
current position in P. However, the pointer does not warp, and the current pointer
position is used as both the initial and final positions for the events.

FocusIn, FocusOut

event: WINDOW
mode: {Normal, WhileGrabbed, Grab, Ungrab}
detail: {Ancestor, Virtual, Inferior, Nonlinear, NonlinearVirtual, Pointer,

PointerRoot, None}

These events are generated when the input focus changes and are reported to clients
selecting FocusChange on the window. Events generated by SetInputFocus when the
keyboard is not grabbed have mode Normal. Events generated by SetInputFocus when
the keyboard is grabbed have mode WhileGrabbed. Events generated when a key-
board grab activates have mode Grab, and events generated when a keyboard grab deac-
tivates have mode Ungrab.

All FocusOut events caused by a window unmap are generated after any UnmapNotify
event, but the ordering of FocusOut with respect to generated EnterNotify, LeaveNo-
tify, VisibilityNotify, and Expose events is not constrained.

Normal and WhileGrabbed events are generated as follows:

When the focus moves from window A to window B, A is an inferior of B, and the
pointer is in window P:

• FocusOut with detail Ancestor is generated on A.

March 26, 1992 10−135

-- --

X Window System

• FocusOut with detail Virtual is generated on each window between A and B
exclusive (in order).

• FocusIn with detail Inferior is generated on B.

• If P is an inferior of B but P is not A or an inferior of A or an ancestor of A, Focu-
sIn with detail Pointer is generated on each window below B down to and including
P (in order).

When the focus moves from window A to window B, B is an inferior of A, and the
pointer is in window P:

• If P is an inferior of A but P is not an inferior of B or an ancestor of B, FocusOut
with detail Pointer is generated on each window from P up to but not including A
(in order).

• FocusOut with detail Inferior is generated on A.

• FocusIn with detail Virtual is generated on each window between A and B
exclusive (in order).

• FocusIn with detail Ancestor is generated on B.

When the focus moves from window A to window B, window C is their least common
ancestor, and the pointer is in window P:

• If P is an inferior of A, FocusOut with detail Pointer is generated on each window
from P up to but not including A (in order).

• FocusOut with detail Nonlinear is generated on A.

• FocusOut with detail NonlinearVirtual is generated on each window between A
and C exclusive (in order).

• FocusIn with detail NonlinearVirtual is generated on each window between C and
B exclusive (in order).

• FocusIn with detail Nonlinear is generated on B.

• If P is an inferior of B, FocusIn with detail Pointer is generated on each window
below B down to and including P (in order).

When the focus moves from window A to window B on different screens and the
pointer is in window P:

• If P is an inferior of A, FocusOut with detail Pointer is generated on each window
from P up to but not including A (in order).

• FocusOut with detail Nonlinear is generated on A.

• If A is not a root window, FocusOut with detail NonlinearVirtual is generated on
each window above A up to and including its root (in order).

• If B is not a root window, FocusIn with detail NonlinearVirtual is generated on
each window from B’s root down to but not including B (in order).

• FocusIn with detail Nonlinear is generated on B.

10−136 March 26, 1992

-- --

• If P is an inferior of B, FocusIn with detail Pointer is generated on each window
below B down to and including P (in order).

When the focus moves from window A to PointerRoot (or None) and the pointer is in
window P:

• If P is an inferior of A, FocusOut with detail Pointer is generated on each window
from P up to but not including A (in order).

• FocusOut with detail Nonlinear is generated on A.

• If A is not a root window, FocusOut with detail NonlinearVirtual is generated on
each window above A up to and including its root (in order).

• FocusIn with detail PointerRoot (or None) is generated on all root windows.

• If the new focus is PointerRoot, FocusIn with detail Pointer is generated on each
window from P’s root down to and including P (in order).

When the focus moves from PointerRoot (or None) to window A and the pointer is in
window P:

• If the old focus is PointerRoot, FocusOut with detail Pointer is generated on each
window from P up to and including P’s root (in order).

• FocusOut with detail PointerRoot (or None) is generated on all root windows.

• If A is not a root window, FocusIn with detail NonlinearVirtual is generated on
each window from A’s root down to but not including A (in order).

• FocusIn with detail Nonlinear is generated on A.

• If P is an inferior of A, FocusIn with detail Pointer is generated on each window
below A down to and including P (in order).

When the focus moves from PointerRoot to None (or vice versa) and the pointer is in
window P:

• If the old focus is PointerRoot, FocusOut with detail Pointer is generated on each
window from P up to and including P’s root (in order).

• FocusOut with detail PointerRoot (or None) is generated on all root windows.

• FocusIn with detail None (or PointerRoot) is generated on all root windows.

• If the new focus is PointerRoot, FocusIn with detail Pointer is generated on each
window from P’s root down to and including P (in order).

When a keyboard grab activates (but before generating any actual KeyPress event that
activates the grab), G is the grab-window for the grab, and F is the current focus:

• FocusIn and FocusOut events with mode Grab are generated (as for Normal above)
as if the focus were to change from F to G.

When a keyboard grab deactivates (but after generating any actual KeyRelease event
that deactivates the grab), G is the grab-window for the grab, and F is the current focus:

March 26, 1992 10−137

-- --

X Window System

• FocusIn and FocusOut events with mode Ungrab are generated (as for Normal
above) as if the focus were to change from G to F.

KeymapNotify

keys: LISTofCARD8

The value is a bit vector as described in QueryKeymap. This event is reported to
clients selecting KeymapState on a window and is generated immediately after every
EnterNotify and FocusIn.

Expose

window: WINDOW
x, y, width, height: CARD16
count: CARD16

This event is reported to clients selecting Exposure on the window. It is generated
when no valid contents are available for regions of a window, and either the regions are
visible, the regions are viewable and the server is (perhaps newly) maintaining backing
store on the window, or the window is not viewable but the server is (perhaps newly)
honoring window’s backing-store attribute of Always or WhenMapped. The regions
are decomposed into an arbitrary set of rectangles, and an Expose event is generated for
each rectangle.

For a given action causing exposure events, the set of events for a given window are
guaranteed to be reported contiguously. If count is zero, then no more Expose events
for this window follow. If count is nonzero, then at least that many more Expose
events for this window follow (and possibly more).

The x and y coordinates are relative to window’s origin and specify the upper-left
corner of a rectangle. The width and height specify the extent of the rectangle.

Expose events are never generated on InputOnly windows.

All Expose events caused by a hierarchy change are generated after any hierarchy event
caused by that change (for example, UnmapNotify, MapNotify, ConfigureNotify,
GravityNotify, CirculateNotify). All Expose events on a given window are generated
after any VisibilityNotify event on that window, but it is not required that all Expose
events on all windows be generated after all Visibility events on all windows. The ord-
ering of Expose events with respect to FocusOut, EnterNotify, and LeaveNotify events

10−138 March 26, 1992

-- --

is not constrained.

GraphicsExposure

drawable: DRAWABLE
x, y, width, height: CARD16
count: CARD16
major-opcode: CARD8
minor-opcode: CARD16

This event is reported to clients selecting graphics-exposures in a graphics context and
is generated when a destination region could not be computed due to an obscured or
out-of-bounds source region. All of the regions exposed by a given graphics request are
guaranteed to be reported contiguously. If count is zero then no more Graphics-
Exposure events for this window follow. If count is nonzero, then at least that many
more GraphicsExposure events for this window follow (and possibly more).

The x and y coordinates are relative to drawable’s origin and specify the upper-left
corner of a rectangle. The width and height specify the extent of the rectangle.

The major and minor opcodes identify the graphics request used. For the core protocol,
major-opcode is always CopyArea or CopyPlane, and minor-opcode is always zero.

NoExposure

drawable: DRAWABLE
major-opcode: CARD8
minor-opcode: CARD16

This event is reported to clients selecting graphics-exposures in a graphics context and
is generated when a graphics request that might produce GraphicsExposure events does
not produce any. The drawable specifies the destination used for the graphics request.

The major and minor opcodes identify the graphics request used. For the core protocol,
major-opcode is always CopyArea or CopyPlane, and the minor-opcode is always
zero.

March 26, 1992 10−139

-- --

X Window System

VisibilityNotify

window: WINDOW
state: {Unobscured, PartiallyObscured, FullyObscured}

This event is reported to clients selecting VisibilityChange on the window. In the fol-
lowing, the state of the window is calculated ignoring all of the window’s subwindows.
When a window changes state from partially or fully obscured or not viewable to view-
able and completely unobscured, an event with Unobscured is generated. When a win-
dow changes state from viewable and completely unobscured or not viewable, to view-
able and partially obscured, an event with PartiallyObscured is generated. When a
window changes state from viewable and completely unobscured, from viewable and
partially obscured, or from not viewable to viewable and fully obscured, an event with
FullyObscured is generated.

VisibilityNotify events are never generated on InputOnly windows.

All VisibilityNotify events caused by a hierarchy change are generated after any hierar-
chy event caused by that change (for example, UnmapNotify, MapNotify,
ConfigureNotify, GravityNotify, CirculateNotify). Any VisibilityNotify event on a
given window is generated before any Expose events on that window, but it is not
required that all VisibilityNotify events on all windows be generated before all Expose
events on all windows. The ordering of VisibilityNotify events with respect to Focu-
sOut, EnterNotify, and LeaveNotify events is not constrained.

CreateNotify

parent, window: WINDOW
x, y: INT16
width, height, border-width: CARD16
override-redirect: BOOL

This event is reported to clients selecting SubstructureNotify on the parent and is gen-
erated when the window is created. The arguments are as in the CreateWindow
request.

DestroyNotify

event, window: WINDOW

10−140 March 26, 1992

-- --

This event is reported to clients selecting StructureNotify on the window and to clients
selecting SubstructureNotify on the parent. It is generated when the window is des-
troyed. The event is the window on which the event was generated, and the window is
the window that is destroyed.

The ordering of the DestroyNotify events is such that for any given window, Destroy-
Notify is generated on all inferiors of the window before being generated on the win-
dow itself. The ordering among siblings and across subhierarchies is not otherwise con-
strained.

UnmapNotify

event, window: WINDOW
from-configure: BOOL

This event is reported to clients selecting StructureNotify on the window and to clients
selecting SubstructureNotify on the parent. It is generated when the window changes
state from mapped to unmapped. The event is the window on which the event was gen-
erated, and the window is the window that is unmapped. The from-configure flag is
True if the event was generated as a result of the window’s parent being resized when
the window itself had a win-gravity of Unmap.

MapNotify

event, window: WINDOW
override-redirect: BOOL

This event is reported to clients selecting StructureNotify on the window and to clients
selecting SubstructureNotify on the parent. It is generated when the window changes
state from unmapped to mapped. The event is the window on which the event was gen-
erated, and the window is the window that is mapped. The override-redirect flag is
from the window’s attribute.

March 26, 1992 10−141

-- --

X Window System

MapRequest

parent, window: WINDOW

This event is reported to the client selecting SubstructureRedirect on the parent and is
generated when a MapWindow request is issued on an unmapped window with an
override-redirect attribute of False.

ReparentNotify

event, window, parent: WINDOW
x, y: INT16
override-redirect: BOOL

This event is reported to clients selecting SubstructureNotify on either the old or the
new parent and to clients selecting StructureNotify on the window. It is generated
when the window is reparented. The event is the window on which the event was gen-
erated. The window is the window that has been rerooted. The parent specifies the new
parent. The x and y coordinates are relative to the new parent’s origin and specify the
position of the upper-left outer corner of the window. The override-redirect flag is from
the window’s attribute.

ConfigureNotify

event, window: WINDOW
x, y: INT16
width, height, border-width: CARD16
above-sibling : WINDOW or None
override-redirect: BOOL

This event is reported to clients selecting StructureNotify on the window and to clients
selecting SubstructureNotify on the parent. It is generated when a ConfigureWindow
request actually changes the state of the window. The event is the window on which
the event was generated, and the window is the window that is changed. The x and y
coordinates are relative to the new parent’s origin and specify the position of the upper-
left outer corner of the window. The width and height specify the inside size, not
including the border. If above-sibling is None, then the window is on the bottom of the
stack with respect to siblings. Otherwise, the window is immediately on top of the

10−142 March 26, 1992

-- --

specified sibling. The override-redirect flag is from the window’s attribute.

GravityNotify

event, window: WINDOW
x, y: INT16

This event is reported to clients selecting SubstructureNotify on the parent and to
clients selecting StructureNotify on the window. It is generated when a window is
moved because of a change in size of the parent. The event is the window on which the
event was generated, and the window is the window that is moved. The x and y coordi-
nates are relative to the new parent’s origin and specify the position of the upper-left
outer corner of the window.

ResizeRequest

window: WINDOW
width, height: CARD16

This event is reported to the client selecting ResizeRedirect on the window and is gen-
erated when a ConfigureWindow request by some other client on the window attempts
to change the size of the window. The width and height are the inside size, not includ-
ing the border.

ConfigureRequest

parent, window: WINDOW
x, y: INT16
width, height, border-width: CARD16
sibling : WINDOW or None
stack-mode: {Above, Below, TopIf, BottomIf, Opposite}
value-mask: BITMASK

This event is reported to the client selecting SubstructureRedirect on the parent and is
generated when a ConfigureWindow request is issued on the window by some other

March 26, 1992 10−143

-- --

X Window System

client. The value-mask indicates which components were specified in the request. The
value-mask and the corresponding values are reported as given in the request. The
remaining values are filled in from the current geometry of the window, except in the
case of sibling and stack-mode, which are reported as None and Above (respectively) if
not given in the request.

CirculateNotify

event, window: WINDOW
place: {Top, Bottom}

This event is reported to clients selecting StructureNotify on the window and to clients
selecting SubstructureNotify on the parent. It is generated when the window is actually
restacked from a CirculateWindow request. The event is the window on which the
event was generated, and the window is the window that is restacked. If place is Top,
the window is now on top of all siblings. Otherwise, it is below all siblings.

CirculateRequest

parent, window: WINDOW
place: {Top, Bottom}

This event is reported to the client selecting SubstructureRedirect on the parent and is
generated when a CirculateWindow request is issued on the parent and a window actu-
ally needs to be restacked. The window specifies the window to be restacked, and the
place specifies what the new position in the stacking order should be.

PropertyNotify

window: WINDOW
atom : ATOM
state: {NewValue, Deleted}
time: TIMESTAMP

10−144 March 26, 1992

-- --

This event is reported to clients selecting PropertyChange on the window and is gen-
erated with state NewValue when a property of the window is changed using
ChangeProperty or RotateProperties, even when adding zero-length data using
ChangeProperty and when replacing all or part of a property with identical data using
ChangeProperty or RotateProperties. It is generated with state Deleted when a pro-
perty of the window is deleted using request DeleteProperty or GetProperty. The
timestamp indicates the server time when the property was changed.

SelectionClear

owner : WINDOW
selection: ATOM
time: TIMESTAMP

This event is reported to the current owner of a selection and is generated when a new
owner is being defined by means of SetSelectionOwner. The timestamp is the last-
change time recorded for the selection. The owner argument is the window that was
specified by the current owner in its SetSelectionOwner request.

SelectionRequest

owner : WINDOW
selection: ATOM
target: ATOM
property: ATOM or None
requestor : WINDOW
time: TIMESTAMP or CurrentTime

This event is reported to the owner of a selection and is generated when a client issues a
ConvertSelection request. The owner argument is the window that was specified in the
SetSelectionOwner request. The remaining arguments are as in the ConvertSelection
request.

The owner should convert the selection based on the specified target type and send a
SelectionNotify back to the requestor. A complete specification for using selections is
given in part III, ‘‘Inter-Client Communication Conventions Manual.’’

March 26, 1992 10−145

-- --

X Window System

SelectionNotify

requestor : WINDOW
selection, target: ATOM
property: ATOM or None
time: TIMESTAMP or CurrentTime

This event is generated by the server in response to a ConvertSelection request when
there is no owner for the selection. When there is an owner, it should be generated by
the owner using SendEvent. The owner of a selection should send this event to a
requestor either when a selection has been converted and stored as a property or when a
selection conversion could not be performed (indicated with property None).

ColormapNotify

window: WINDOW
colormap: COLORMAP or None
new: BOOL
state: {Installed, Uninstalled}

This event is reported to clients selecting ColormapChange on the window. It is gen-
erated with value True for new when the colormap attribute of the window is changed
and is generated with value False for new when the colormap of a window is installed
or uninstalled. In either case, the state indicates whether the colormap is currently
installed.

MappingNotify

request: {Modifier, Keyboard, Pointer}
first-keycode, count: CARD8

This event is sent to all clients. There is no mechanism to express disinterest in this
event. The detail indicates the kind of change that occurred: Modifiers for a successful
SetModifierMapping, Keyboard for a successful ChangeKeyboardMapping, and
Pointer for a successful SetPointerMapping. If the detail is Keyboard, then first-
keycode and count indicate the range of altered keycodes.

10−146 March 26, 1992

-- --

ClientMessage

window: WINDOW
type: ATOM
format: {8, 16, 32}
data: LISTofINT8 or LISTofINT16 or LISTofINT32

This event is only generated by clients using SendEvent. The type specifies how the
data is to be interpreted by the receiving client; the server places no interpretation on the
type or the data. The format specifies whether the data should be viewed as a list of 8-
bit, 16-bit, or 32-bit quantities, so that the server can correctly byte-swap, as necessary.
The data always consists of either 20 8-bit values or 10 16-bit values or 5 32-bit values,
although particular message types might not make use of all of these values.

SECTION 12. FLOW CONTROL AND CONCURRENCY

Whenever the server is writing to a given connection, it is permissible for the server to
stop reading from that connection (but if the writing would block, it must continue to
service other connections). The server is not required to buffer more than a single
request per connection at one time. For a given connection to the server, a client can
block while reading from the connection but should undertake to read (events and
errors) when writing would block. Failure on the part of a client to obey this rule could
result in a deadlocked connection, although deadlock is probably unlikely unless either
the transport layer has very little buffering or the client attempts to send large numbers
of requests without ever reading replies or checking for errors and events.

Whether or not a server is implemented with internal concurrency, the overall effect
must be as if individual requests are executed to completion in some serial order, and
requests from a given connection must be executed in delivery order (that is, the total
execution order is a shuffle of the individual streams). The execution of a request
includes validating all arguments, collecting all data for any reply, and generating and
queueing all required events. However, it does not include the actual transmission of
the reply and the events. In addition, the effect of any other cause that can generate
multiple events (for example, activation of a grab or pointer motion) must effectively
generate and queue all required events indivisibly with respect to all other causes and
requests. For a request from a given client, any events destined for that client that are
caused by executing the request must be sent to the client before any reply or error is
sent.

March 26, 1992 10−147

-- --

X Window System

Part III. Inter-Client Communication Conventions Manual

David S. H. Rosenthal

10−148 March 26, 1992

-- --

Chapter 1. INTRODUCTION

It was an explicit design goal of X Version 11 to specify mechanism, not policy. As a
result, a client that converses with the server using the protocol defined in part II, ‘‘X
Window System Protocol,’’ may operate correctly in isolation but may not coexist prop-
erly with others sharing the same server.

Being a good citizen in the X Version 11 world involves adhering to conventions that
govern inter-client communications in the following areas:

• Selection mechanism

• Cut buffers

• Window manager

• Session manager

• Manipulation of shared resources

• Resource database

This part of the book proposes suitable conventions without attempting to enforce any
particular user interface. To permit clients written in different languages to communi-
cate, these conventions are expressed solely in terms of protocol operations, not in terms
of their associated Xlib interfaces, which are probably more familiar. The binding of
these operations to the Xlib interface for C and to the equivalent interfaces for other
languages is the subject of other documents.

1.1 Evolution of the Conventions

In the interests of timely acceptance, the ‘‘Inter-Client Communication Conventions
Manual’’ (ICCCM) covers only a minimal set of required conventions. These conven-
tions will be added to and updated as appropriate, based on the experiences of the X
Consortium.

As far as possible, these conventions are upwardly compatible with those in the Febru-
ary 25, 1988, draft that was distributed with the X Version 11, Release 2 of the

March 26, 1992 1−1

-- --

X Window System

software. In some areas, semantic problems were discovered with those conventions,
and, thus, complete upward compatibility could not be assured.

In the course of developing these conventions, a number of minor changes to the proto-
col were identified as desirable. They also are identified in the text and are offered as
input to a future protocol revision process. If and when a protocol revision incorporating
these changes is undertaken, it is anticipated that the ICCCM will need to be revised.
Because it is difficult to ensure that clients and servers are upgraded simultaneously,
clients using the revised conventions should examine the minor protocol revision
number and be prepared to use the older conventions when communicating with an
older server.

It is expected that these revisions will ensure that clients using the conventions
appropriate to protocol minor revision n will interoperate correctly with those that use
the conventions appropriate to protocol minor revision n+1 if the server supports both.

1.2 Atoms

Many of the conventions use atoms. To assist the reader, the following sections attempt
to amplify the description of atoms that is provided in part II, ‘‘X Window System Pro-
tocol.’’

1.2.1 What Are Atoms?

At the conceptual level, atoms are unique names that clients can use to communicate
information to each other. They can be thought of as a bundle of octets, like a string but
without an encoding being specified. The elements are not necessarily ASCII characters,
and no case folding happens.1

The protocol designers felt that passing these sequences of bytes back and forth across
the wire would be too costly. Further, they thought it important that events as they
appear ‘‘on the wire’’ have a fixed size (in fact, 32 bytes) and that because some events
contain atoms, a fixed-size representation for them was needed.

To allow a fixed-size representation, a protocol request (InternAtom) was provided to
register a byte sequence with the server, which returns a 32-bit value (with the top three
bits zero) that maps to the byte sequence. The inverse operator is also available (GetA-
tomName).

1 The comment in the protocol specification for InternAtom that ISO Latin-1 encoding
should be used is in the nature of a convention; the server treats the string as a byte
sequence.

1−2 March 26, 1992

-- --

INTRODUCTION

1.2.2 Predefined Atoms

The protocol specifies a number of atoms as being predefined:

Predefined atoms are not strictly necessary and may not be useful in all environments,
but they will eliminate many InternAtom requests in most applications. Note
that they are predefined only in the sense of having numeric values, not in the
sense of having required semantics.

Predefined atoms are an implementation trick to avoid the cost of interning many of the
atoms that are expected to be used during the startup phase of all applications. The
results of the InternAtom requests, which require a handshake, can be assumed a
priori.

Language interfaces should probably cache the atom-name mappings and get them only
when required. The CLX interface, for instance, makes no distinction between
predefined atoms and other atoms; all atoms are viewed as symbols at the interface.
However, a CLX implementation will typically keep a symbol or atom cache and will
typically initialize this cache with the predefined atoms.

1.2.3 Naming Conventions

The built-in atoms are composed of uppercase ASCII characters with the logical words
separated by an underscore character (_), for example, WM_ICON_NAME. The proto-
col specification recommends that atoms used for private vendor-specific reasons should
begin with an underscore. To prevent conflicts among organizations, additional prefixes
should be chosen (for example, _DEC_WM_DECORATION_GEOMETRY).

The names were chosen in this fashion to make it easy to use them in a natural way
within LISP. Keyword constructors allow the programmer to specify the atoms as LISP
atoms. If the atoms were not all uppercase, special quoting conventions would have to
be used.

1.2.4 Semantics

The core protocol imposes no semantics on atoms except as they are used in
FONTPROP structures. For further information on FONTPROP semantics, see the
definition of QueryFont in part II, ‘‘X Window System Protocol.’’

March 26, 1992 1−3

-- --

X Window System

1.2.5 Name Spaces

The protocol defines six distinct spaces in which atoms are interpreted. Any particular
atom may or may not have some valid interpretation with respect to each of these name
spaces.

33
Space Briefly Examples
33
Property name Name (WM_HINTS, WM_NAME, RGB_BEST_MAP,

and so on)
Property type Type (WM_HINTS, CURSOR, RGB_COLOR_MAP,

and so on)
Selection name Selection (PRIMARY, SECONDARY, CLIPBOARD)
Selection target Target (FILE_NAME, POSTSCRIPT, PIXMAP, and so on)
Font property (QUAD_WIDTH, POINT_SIZE, and so on)
ClientMessage type (WM_SAVE_YOURSELF, _DEC_SAVE_EDITS,

and so on)

1−4 March 26, 1992

-- --

Chapter 2. PEER-TO-PEER COMMUNICATION BY MEANS
OF SELECTIONS

Selections are the primary mechanism that X Version 11 defines for the exchange of
information between clients, for example, by cutting and pasting between windows.
Note that there can be an arbitrary number of selections (each named by an atom) and
that they are global to the server. Section 2.6 discusses the choice of an atom. Each
selection is owned by a client and is attached to a window.

Selections communicate between an owner and a requestor. The owner has the data
representing the value of its selection, and the requestor receives it. A requestor wishing
to obtain the value of a selection provides the following:

• The name of the selection

• The name of a property

• A window

• The atom representing the data type required

If the selection is currently owned, the owner receives an event and is expected to do
the following:

• Convert the contents of the selection to the requested data type

• Place this data in the named property on the named window

• Send the requestor an event to let it know the property is available

Clients are strongly encouraged to use this mechanism. In particular, displaying text in a
permanent window without providing the ability to select and convert it into a string is
definitely considered antisocial.

Note that all data transferred between an owner and a requestor must usually go by
means of the server in an X Version 11 environment. A client cannot assume that
another client can open the same files or even communicate directly. The other client
may be talking to the server by means of a completely different networking mechanism
(for example, one client might be DECnet and the other TCP/IP). Thus, passing
indirect references to data (such as file names, host names and port numbers, and so
on) is permitted only if both clients specifically agree.

March 26, 1992 2−1

-- --

X Window System

2.1 Acquiring Selection Ownership

A client wishing to acquire ownership of a particular selection should call SetSelec-
tionOwner, which is defined as follows:

SetSelectionOwner

selection: ATOM
owner : WINDOW or None
time: TIMESTAMP or CurrentTime

The client should set the specified selection to the atom that represents the selection, set
the specified owner to some window that the client created, and set the specified time to
some time between the current last-change time of the selection concerned and the
current server time. This time value usually will be obtained from the timestamp of the
event that triggers the acquisition of the selection. Clients should not set the time value
to CurrentTime, because if they do so, they have no way of finding when they gained
ownership of the selection. Clients must use a window they created so that requestors
can route events to the owner of the selection.2

Convention
Clients attempting to acquire a selection must set the time value of the Set-
SelectionOwner request to the timestamp of the event triggering the acquisition
attempt, not to CurrentTime. A zero-length append to a property is a way to
obtain a timestamp for this purpose; the timestamp is in the corresponding
PropertyNotify event.

If the time in the SetSelectionOwner request is in the future relative to the server’s
current time or is in the past relative to the last time the specified selection changed
hands, the SetSelectionOwner request appears to the client to succeed, but ownership is
not actually transferred.

Because clients cannot name other clients directly, the specified owner window is used
to refer to the owning client in the replies to GetSelectionOwner, in SelectionRequest
and SelectionClear events, and possibly as a place to put properties describing the
selection in question. To discover the owner of a particular selection, a client should
invoke GetSelectionOwner, which is defined as follows:

2 At present, no part of the protocol requires requestors to send events to the owner of a
selection. This restriction is imposed to prepare for possible future extensions.

2−2 March 26, 1992

-- --

PEER-TO-PEER COMMUNICATION BY MEANS OF SELECTIONS

GetSelectionOwner

selection: ATOM
→

owner : WINDOW or None

Convention
Clients are expected to provide some visible confirmation of selection owner-
ship. To make this feedback reliable, a client must perform a sequence like the
following:

SetSelectionOwner(selection = PRIMARY, owner = Window, time = timestamp)
owner = GetSelectionOwner(selection=PRIMARY)
if (owner != Window) Failure

If the SetSelectionOwner request succeeds (not merely appears to
succeed), the client that issues it is recorded by the server as being
the owner of the selection for the time period starting at the specified
time.

Problem
There is no way for anyone to find out the last-change time of a selection. At
the next protocol revision, GetSelectionOwner should be changed to return the
last-change time as well as the owner.

2.4 Responsibilities of the Selection Owner

When a requestor wants the value of a selection, the owner receives a SelectionRequest
event, which is defined as follows:

SelectionRequest

owner : WINDOW
selection: ATOM
target: ATOM
property: ATOM or None
requestor : WINDOW
time: TIMESTAMP or CurrentTime

March 26, 1992 2−3

-- --

X Window System

The specified owner and selection will be the values that were specified in the SetSelec-
tionOwner request. The owner should compare the timestamp with the period it has
owned the selection and, if the time is outside, refuse the SelectionRequest by sending
the requestor window a SelectionNotify event with the property set to None (by means
of a SendEvent request with an empty event mask).

More advanced selection owners are free to maintain a history of the value of the selec-
tion and to respond to requests for the value of the selection during periods they owned
it even though they do not own it now.

If the specified property is None, the requestor is an obsolete client. Owners are
encouraged to support these clients by using the specified target atom as the property
name to be used for the reply.

Otherwise, the owner should use the target to decide the form into which the selection
should be converted. If the selection cannot be converted into that form, however, the
owner should refuse the SelectionRequest, as previously described.

If the specified property is not None, the owner should place the data resulting from
converting the selection into the specified property on the requestor window and should
set the property’s type to some appropriate value, which need not be the same as the
specified target.

Convention
All properties used to reply to SelectionRequest events must be placed on the
requestor window.

In either case, if the data comprising the selection cannot be stored on the requestor
window (for example, because the server cannot provide sufficient memory), the owner
must refuse the SelectionRequest, as previously described. See also section 2.5.

If the property is successfully stored, the owner should acknowledge the successful
conversion by sending the requestor window a SelectionNotify event (by means of a
SendEvent request with an empty mask). SelectionNotify is defined as follows:

SelectionNotify

requestor : WINDOW
selection, target: ATOM
property: ATOM or None
time: TIMESTAMP or CurrentTime

The owner should set the specified selection, target, time, and property arguments to the
values received in the SelectionRequest event. (Note that setting the property argument
to None indicates that the conversion requested could not be made.)

2−4 March 26, 1992

-- --

PEER-TO-PEER COMMUNICATION BY MEANS OF SELECTIONS

Convention
The selection, target, time, and property arguments in the SelectionNotify event
should be set to the values received in the SelectionRequest event.

The data stored in the property must eventually be deleted. A convention is needed to
assign the responsibility for doing so.

Convention
Selection requestors are responsible for deleting properties whose names they
receive in SelectionNotify events (see section 2.4) or in properties with type
MULTIPLE.

A selection owner will often need confirmation that the data comprising the selection
has actually been transferred. (For example, if the operation has side effects on the
owner’s internal data structures, these should not take place until the requestor has indi-
cated that it has successfully received the data.) Owners should express interest in Pro-
pertyNotify events for the specified requestor window and wait until the property in the
SelectionNotify event has been deleted before assuming that the selection data has been
transferred.

When some other client acquires a selection, the previous owner receives a Selection-
Clear event, which is defined as follows:

SelectionClear

owner : WINDOW
selection: ATOM
time: TIMESTAMP

The timestamp argument is the time at which the ownership changed hands, and the
owner argument is the window the new owner specified in its SetSelectionOwner
request.

If an owner loses ownership while it has a transfer in progress (that is, before it receives
notification that the requestor has received all the data), it must continue to service the
ongoing transfer until it is complete.

2.8 Giving Up Selection Ownership

Clients may either give up selection ownership voluntarily or lose it forcibly as the
result of some other client’s actions.

March 26, 1992 2−5

-- --

X Window System

2.8.1 Voluntarily Giving Up Selection Ownership

To relinquish ownership of a selection voluntarily, a client should execute a SetSelec-
tionOwner request for that selection atom, with owner specified as None and the time
specified as the timestamp that was used to acquire the selection.

Alternatively, the client may destroy the window used as the owner value of the Set-
SelectionOwner request, or the client may terminate. In both cases, the ownership of
the selection involved will revert to None.

2.8.2 Forcibly Giving Up Selection Ownership

If a client gives up ownership of a selection or if some other client executes a SetSelec-
tionOwner for it and thus reassigns it forcibly, the previous owner will receive a Selec-
tionClear event. For the definition of a SelectionClear event, see section 2.2.

The timestamp is the time the selection changed hands. The specified owner is the win-
dow that was specified by the current owner in its SetSelectionOwner request.

2.9 Requesting a Selection

A client that wishes to obtain the value of a selection in a particular form (the requestor)
issues a ConvertSelection request, which is defined as follows:

ConvertSelection

selection, target: ATOM
property: ATOM or None
requestor : WINDOW
time: TIMESTAMP or CurrentTime

The selection argument specifies the particular selection involved, and the target argu-
ment specifies the required form of the information. For information about the choice of
suitable atoms to use, see section 2.6. The requestor should set the requestor argument
to a window that it created; the owner will place the reply property there. The requestor
should set the time argument to the timestamp on the event that triggered the request for
the selection value. Note that clients should not specify CurrentTime.

2−6 March 26, 1992

-- --

PEER-TO-PEER COMMUNICATION BY MEANS OF SELECTIONS

Convention
Clients should not use CurrentTime for the time argument of a ConvertSelec-
tion request. Instead, they should use the timestamp of the event that caused the
request to be made.

The requestor should set the property argument to the name of a property that the owner
can use to report the value of the selection. Note that the requestor of a selection need
not know the client that owns the selection or the window it is attached to.

The protocol allows the property field to be set to None, in which case the owner is
supposed to choose a property name. However, it is difficult for the owner to make this
choice safely.

Conventions
1. Requestors should not use None for the property argument of a Convert-

Selection request.

2. Owners receiving ConvertSelection requests with a property argument of
None are talking to an obsolete client. They should choose the target
atom as the property name to be used for the reply.

The result of the ConvertSelection request is that a SelectionNotify event will be
received. For the definition of a SelectionNotify event, see section 2.2.

The requestor, selection, time, and target arguments will be the same as those on the
ConvertSelection request.

If the property argument is None, the conversion has been refused. This can mean either
that there is no owner for the selection, that the owner does not support the conversion
implied by the target, or that the server did not have sufficient space to accommodate
the data.

If the property argument is not None, then that property will exist on the requestor win-
dow. The value of the selection can be retrieved from this property by using the GetPro-
perty request, which is defined as follows:

GetProperty

window: WINDOW
property: ATOM
type: ATOM or AnyPropertyType
long-offset, long-length: CARD32
delete: BOOL

→
type: ATOM or None
format: {0, 8, 16, 32}

March 26, 1992 2−7

-- --

X Window System

bytes-after: CARD32
value: LISTofINT8 or LISTofINT16 or LISTofINT32

When using GetProperty to retrieve the value of a selection, the property argument
should be set to the corresponding value in the SelectionNotify event. Because the
requestor has no way of knowing beforehand what type the selection owner will use, the
type argument should be set to AnyPropertyType. Several GetProperty requests may
be needed to retrieve all the data in the selection; each should set the long-offset argu-
ment to the amount of data received so far, and the size argument to some reasonable
buffer size (see section 2.5). If the returned value of bytes-after is zero, the whole prop-
erty has been transferred.

Once all the data in the selection has been retrieved (which may require getting the
values of several properties—see section 2.7), the requestor should delete the property
in the SelectionNotify request by using a GetProperty request with the delete argument
set to True. As previously discussed, the owner has no way of knowing when the data
has been transferred to the requestor unless the property is removed.

Convention
The requestor must delete the property named in the SelectionNotify once all
the data has been retrieved. The requestor should invoke either DeleteProperty
or GetProperty(delete==True) after it has successfully retrieved all the data in
the selection. For further information, see section 2.5.

2.12 Large Data Transfers

Selections can get large, which poses two problems:

• Transferring large amounts of data to the server is expensive.

• All servers will have limits on the amount of data that can be stored in properties.
Exceeding this limit will result in an Alloc error on the ChangeProperty request
that the selection owner uses to store the data.

The problem of limited server resources is addressed by the following conventions:

Convention
1. Selection owners should transfer the data describing a large selection

(relative to the maximum-request-size they received in the connection
handshake) using the INCR property mechanism (see section 2.7.2).

2. Any client using SetSelectionOwner to acquire selection ownership
should arrange to process Alloc errors in property change requests. For
clients using Xlib, this involves using the XSetErrorHandler function to
override the default handler.

3. A selection owner must confirm that no Alloc error occurred while storing
the properties for a selection before replying with a confirming

2−8 March 26, 1992

-- --

PEER-TO-PEER COMMUNICATION BY MEANS OF SELECTIONS

SelectionNotify event.

4. When storing large amounts of data (relative to maximum-request-size),
clients should use a sequence of
ChangeProperty(mode==Append) requests for reasonable quantities of
data. This avoids locking servers up and limits the waste of data transfer
an Alloc error would cause.

5. If an Alloc error occurs during the storing of the selection data, all proper-
ties stored for this selection should be deleted and the ConvertSelection
request should be refused (see section 2.2).

6. To avoid locking servers up for inordinate lengths of time, requestors
retrieving large quantities of data from a property should perform a series
of GetProperty requests, each asking for a reasonable amount of data.

Problem
Single-threaded servers should be changed to avoid locking up during large data
transfers.

2.13 Use of Selection Atoms

Defining a new atom consumes resources in the server that are not released until the
server reinitializes. Thus, reducing the need for newly minted atoms is an important
goal for the use of selection atoms.

2.13.1 Selection Atoms

There can be an arbitrary number of selections, each named by an atom. To conform
with the inter-client conventions, however, clients need deal with only these three selec-
tions:

• PRIMARY

• SECONDARY

• CLIPBOARD

Other selections may be used freely for private communication among related groups of
clients.

Problem
How does a client find out which selection atoms are valid?

March 26, 1992 2−9

-- --

X Window System

2.13.1.1 The PRIMARY Selection

The selection named by the atom PRIMARY is used for all commands that take only a
single argument and is the principal means of communication between clients that use
the selection mechanism.

2.13.1.2 The SECONDARY Selection

The selection named by the atom SECONDARY is used:

• As the second argument to commands taking two arguments (for example,
‘‘exchange primary and secondary selections’’)

• As a means of obtaining data when there is a primary selection and the user does
not want to disturb it

2.13.1.3 The CLIPBOARD Selection

The selection named by the atom CLIPBOARD is used to hold data that is being
transferred between clients, that is, data that usually is being cut or copied, and then
pasted. Whenever a client wants to transfer data to the clipboard:

• It should assert ownership of the CLIPBOARD.

• If it succeeds in acquiring ownership, it should be prepared to respond to a request
for the contents of the CLIPBOARD in the usual way (retaining the data to be able
to return it). The request may be generated by the clipboard client described below.

• If it fails to acquire ownership, a cutting client should not actually perform the cut
or provide feedback that would suggest that it has actually transferred data to the
clipboard.

The owner should repeat this process whenever the data to be transferred would change.

Clients wanting to paste data from the clipboard should request the contents of the
CLIPBOARD selection in the usual way.

Except while a client is actually deleting or copying data, the owner of the CLIP-
BOARD selection may be a single, special client implemented for the purpose. This
client maintains the content of the clipboard up-to-date and responds to requests for data
from the clipboard as follows:

• It should assert ownership of the CLIPBOARD selection and reassert it any time the
clipboard data changes.

• If it loses the selection (because another client has some new data for the clipboard),
it should:

2−10 March 26, 1992

-- --

PEER-TO-PEER COMMUNICATION BY MEANS OF SELECTIONS

— Obtain the contents of the selection from the new owner by using the timestamp
in the SelectionClear event.

— Attempt to reassert ownership of the CLIPBOARD selection by using the same
timestamp.

— Restart the process using a newly acquired timestamp if this attempt fails. This
timestamp should be obtained by asking the current owner of the CLIPBOARD
selection to convert it to a TIMESTAMP. If this conversion is refused or if the
same timestamp is received twice, the clipboard client should acquire a fresh
timestamp in the usual way (for example by a zero-length append to a property).

• It should respond to requests for the CLIPBOARD contents in the usual way.

A special CLIPBOARD client is not necessary. The protocol used by the cutting client
and the pasting client is the same whether the CLIPBOARD client is running or not.
The reasons for running the special client include:

• Stability—If the cutting client were to crash or terminate, the clipboard value would
still be available.

• Feedback—The clipboard client can display the contents of the clipboard.

• Simplicity—A client deleting data does not have to retain it for so long, thus reduc-
ing the chance of race conditions causing problems.

The reasons not to run the clipboard client include:

• Performance—Data is only transferred if it is actually required (that is, when some
client actually wants the data).

• Flexibility—The clipboard data may be available as more than one target.

2.13.2 Target Atoms

The atom that a requestor supplies as the target of a ConvertSelection request deter-
mines the form of the data supplied. The set of such atoms is extensible, but a generally
accepted base set of target atoms is needed. As a starting point for this, the following
table contains those that have been suggested so far.

33
Atom Type Data Received
33
TARGETS ATOM A list of valid target atoms
MULTIPLE ATOM_PAIR (see the discussion that follows)
TIMESTAMP INTEGER The timestamp used to acquire the selection
STRING STRING ISO Latin-1 (+TAB+NEWLINE) text
TEXT TEXT The text in the owner’s choice of encoding
LIST_LENGTH INTEGER The number of disjoint parts of the selection
PIXMAP DRAWABLE A list of pixmap IDs
DRAWABLE DRAWABLE A list of drawable IDs

March 26, 1992 2−11

-- --

X Window System

BITMAP BITMAP A list of bitmap IDs
FOREGROUND PIXEL A list of pixmap values
BACKGROUND PIXEL A list of pixel values
COLORMAP COLORMAP A list of colormap IDs
ODIF TEXT ISO Office Document Interchange Format
OWNER_OS TEXT The operating system of the owner client
FILE_NAME TEXT The full path name of a file
HOST_NAME TEXT (see section 5.1.1.2)
CHARACTER_POSITION SPAN The start and end of the selection in bytes
LINE_NUMBER SPAN The start and end line numbers
COLUMN_NUMBER SPAN The start and end column numbers
LENGTH INTEGER The number of bytes in the selection
USER TEXT The name of the user running the owner
PROCEDURE TEXT The name of the selected procedure
MODULE TEXT The name of the selected module
PROCESS INTEGER, The process ID of the owner

TEXT
TASK INTEGER, The task ID of the owner

TEXT
CLASS TEXT (see section 4.1.2.5)
NAME TEXT (see section 4.1.2.1)
CLIENT_WINDOW WINDOW A top-level window of the owner
DELETE NULL (see section 2.6.3.1)
INSERT_SELECTION NULL (see section 2.6.3.2)
INSERT_PROPERTY NULL (see section 2.6.3.3)

It is expected that this table will grow over time.

Selection owners are required to support the following targets. All other targets are
optional.

• TARGETS—The owner should return a list of atoms that represent the targets for
which an attempt to convert the current selection will succeed (barring unforeseeable
problems such as Alloc errors). This list should include all the required atoms.

• MULTIPLE—The MULTIPLE target atom is valid only when a property is
specified on the ConvertSelection request. If the property argument in the Selec-
tionRequest event is None and the target is MULTIPLE, it should be refused.

When a selection owner receives a SelectionRequest(target==MULTIPLE) request,
the contents of the property named in the request will be a list of atom pairs: the
first atom naming a target and the second naming a property (None is not valid
here). The effect should be as if the owner had received a sequence of SelectionRe-
quest events (one for each atom pair) except that:

— The owner should reply with a SelectionNotify only when all the requested
conversions have been performed.

— If the owner fails to convert a target used by an atom in the MULTIPLE prop-
erty, it should replace that atom in the property with None.

2−12 March 26, 1992

-- --

PEER-TO-PEER COMMUNICATION BY MEANS OF SELECTIONS

Convention
The entries in a MULTIPLE property must be processed in the order they
appear in the property. For further information, see section 2.6.3.

• TIMESTAMP—To avoid some race conditions, it is important
that requestors be able to discover the timestamp the owner used
to acquire ownership. Until and unless the protocol is changed so
that a GetSelectionOwner request returns the timestamp used to
acquire ownership, selection owners must support conversion to
TIMESTAMP, returning the timestamp they used to obtain the
selection.

Problem
The protocol should be changed to return in response to a GetSelectionOwner
request the timestamp used to acquire the selection.

2.13.3 Selection Targets with Side Effects

Some targets (for example, DELETE) have side effects. To render these targets unambi-
guous, the entries in a MULTIPLE property must be processed in the order that they
appear in the property.

In general, targets with side effects will return no information (that is, they will return a
zero-length property of type NULL). In all cases, the requested side effect must be per-
formed before the conversion is accepted. If the requested side effect cannot be per-
formed, the corresponding conversion request must be refused.

Conventions
1. Targets with side effects should return no information (that is, they should

have a zero-length property of type NULL).

2. The side effect of a target must be performed before the conversion is
accepted.

3. If the side effect of a target cannot be performed, the corresponding
conversion request must be refused.

Problem
The need to delay responding to the ConvertSelection request until a further
conversion has succeeded poses problems for the Intrinsics interface that need to
be addressed.

These side effect targets are used to implement operations such as ‘‘exchange PRI-
MARY and SECONDARY selections.’’

March 26, 1992 2−13

-- --

X Window System

2.13.3.1 DELETE

When the owner of a selection receives a request to convert it to DELETE, it should
delete the corresponding selection (whatever doing so means for its internal data struc-
tures) and return a zero-length property of type NULL if the deletion was successful.

2.13.3.2 INSERT_SELECTION

When the owner of a selection receives a request to convert it to
INSERT_SELECTION, the property named will be of type ATOM_PAIR. The first
atom will name a selection, and the second will name a target. The owner should use
the selection mechanism to convert the named selection into the named target and
should insert it at the location of the selection for which it got the
INSERT_SELECTION request (whatever doing so means for its internal data struc-
tures).

2.13.3.3 INSERT_PROPERTY

When the owner of a selection receives a request to convert it to INSERT_PROPERTY,
it should insert the property named in the request at the location of the selection for
which it got the INSERT_SELECTION request (whatever doing so means for its inter-
nal data structures).

2.14 Use of Selection Properties

The names of the properties used in selection data transfer are chosen by the requestor.
The use of None property fields in ConvertSelection requests (which request the selec-
tion owner to choose a name) is not permitted by these conventions.

The selection owner always chooses the type of the property in the selection data
transfer. Some types have special semantics assigned by convention, and these are
reviewed in the following sections.

In all cases, a request for conversion to a target should return either a property of one of
the types listed in the previous table for that property or a property of type INCR and
then a property of one of the listed types.

The selection owner will return a list of zero or more items of the type indicated by the
property type. In general, the number of items in the list will correspond to the number
of disjoint parts of the selection. Some targets (for example, side-effect targets) will be

2−14 March 26, 1992

-- --

PEER-TO-PEER COMMUNICATION BY MEANS OF SELECTIONS

of length zero irrespective of the number of disjoint selection parts. In the case of
fixed-size items, the requestor may determine the number of items by the property size.
For variable-length items such as text, the separators are listed in the following table:

33
Type Atom Format Separator
33
STRING 8 Null
ATOM 32 Fixed-size
ATOM_PAIR 32 Fixed-size
BITMAP 32 Fixed-size
PIXMAP 32 Fixed-size
DRAWABLE 32 Fixed-size
SPAN 32 Fixed-size
INTEGER 32 Fixed-size
WINDOW 32 Fixed-size
INCR 32 Fixed-size

It is expected that this table will grow over time.

2.14.1 TEXT Properties

In general, the encoding for the characters in a text string property is specified by its
type. It is highly desirable for there to be a simple, invertible mapping between string
property types and any character set names embedded within font names in any font
naming standard adopted by the Consortium.

The atom TEXT is a polymorphic target. Requesting conversion into TEXT will convert
into whatever encoding is convenient for the owner. The encoding chosen will be indi-
cated by the type of the property returned. TEXT is not defined as a type; it will never
be the returned type from a selection conversion request.

If the requestor wants the owner to return the contents of the selection in a specific
encoding, it should request conversion into the name of that encoding.

In the table in section 2.6.2, the word TEXT (in the Type column) is used to indicate
one of the registered encoding names. The type would not actually be TEXT; it would
be STRING or some other ATOM naming the encoding chosen by the owner.

STRING as a type or a target specifies the ISO Latin-1 character set plus the control
characters TAB (octal 11) and NEWLINE (octal 12). The spacing interpretation of TAB
is context dependent. Other ASCII control characters are explicitly not included in
STRING at the present time.

Type STRING properties will consist of a list of elements separated by NULL charac-
ters; other encodings will need to specify an appropriate list format.

March 26, 1992 2−15

-- --

X Window System

2.14.2 INCR Properties

Requestors may receive a property of type INCR3 in response to any target that results
in selection data. This indicates that the owner will send the actual data incrementally.
The contents of the INCR property will be an integer, which represents a lower bound
on the number of bytes of data in the selection. The requestor and the selection owner
transfer the data in the selection in the following manner.

The selection requestor starts the transfer process by deleting the (type==INCR) prop-
erty forming the reply to the selection.

The selection owner then:

• Appends the data in suitable-size chunks to the same property on the same window
as the selection reply with a type corresponding to the actual type of the converted
selection. The size should be less than the maximum-request-size in the connection
handshake.

• Waits between each append for a PropertyNotify(state==Deleted) event that shows
that the requestor has read the data. The reason for doing this is to limit the con-
sumption of space in the server.

• Waits (after the entire data has been transferred to the server) until a
PropertyNotify^(state==Deleted) event that shows that the data has been read by the
requestor and then writes zero-length data to the property.

The selection requestor:

• Waits for the SelectionNotify event.

• Loops:

— Retrieving data using GetProperty with the delete argument True.

— Waiting for a PropertyNotify with the state argument NewValue.

• Waits until the property named by the PropertyNotify event is zero-length.

• Deletes the zero-length property.

The type of the converted selection is the type of the first partial property. The remain-
ing partial properties must have the same type.

3 These properties were called INCREMENTAL in an earlier draft. The protocol for
using them has changed, and so the name has changed to avoid confusion.

2.14.3 DRAWABLE Properties

Requestors may receive properties of type PIXMAP, BITMAP, DRAWABLE, or WIN-
DOW, which contain an appropriate ID. While information about these drawables is
available from the server by means of the GetGeometry request, the following items

2−16 March 26, 1992

-- --

PEER-TO-PEER COMMUNICATION BY MEANS OF SELECTIONS

are not:

• Foreground pixel

• Background pixel

• Colormap ID

In general, requestors converting into targets whose returned type in the table in section
2.6.2 is one of the DRAWABLE types should expect to convert also into the following
targets (using the MULTIPLE mechanism):

• FOREGROUND returns a PIXEL value.

• BACKGROUND returns a PIXEL value.

• COLORMAP returns a colormap ID.

2.14.4 SPAN Properties

Properties with type SPAN contain a list of cardinal-pairs with the length of the cardi-
nals determined by the format. The first specifies the starting position, and the second
specifies the ending position plus one. The base is zero. If they are the same, the span is
zero-length and is before the specified position. The units are implied by the target
atom, such as LINE_NUMBER or CHARACTER_ POSITION.

March 26, 1992 2−17

-- --

Chapter 3. PEER-TO-PEER COMMUNICATION BY MEANS
OF CUT BUFFERS

The cut buffer mechanism is much simpler but much less powerful than the selection
mechanism. The selection mechanism is active in that it provides a link between the
owner and requestor clients. The cut buffer mechanism is passive; an owner places data
in a cut buffer from which a requestor retrieves the data at some later time.

The cut buffers consist of eight properties on the root of screen zero, named by the
predefined atoms CUT_BUFFER0 to CUT_BUFFER7. These properties must, at
present, have type STRING and format 8. A client that uses the cut buffer mechanism
must initially ensure that all eight properties exist by using ChangeProperty requests
to append zero-length data to each.

A client that stores data in the cut buffers (an owner) first must rotate the ring of buffers
by plus 1 by using RotateProperties requests to rename each buffer; that is,
CUT_BUFFER0 to CUT_BUFFER1, CUT_BUFFER1 to CUT_BUFFER2, . . . , and
CUT_BUFFER7 to CUT_BUFFER0. It then must store the data into CUT_BUFFER0
by using a ChangeProperty request in mode Replace.

A client that obtains data from the cut buffers should use a GetProperty request to
retrieve the contents of CUT_BUFFER0.

In response to a specific user request, a client may rotate the cut buffers by minus 1 by
using RotateProperties requests to rename each buffer; that is,
CUT_BUFFER7 to CUT_BUFFER6, CUT_BUFFER6 to CUT_BUFFER5, . . . , and
CUT_BUFFER0 to CUT_BUFFER7.

Data should be stored to the cut buffers and the ring rotated only when requested by
explicit user action. Users depend on their mental model of cut buffer operation and
need to be able to identify operations that transfer data to and fro.

March 26, 1992 3−1

-- --

Chapter 4. CLIENT TO WINDOW MANAGER COMMUNICA
TION

To permit window managers to perform their role of mediating the competing demands
for resources such as screen space, the clients being managed must adhere to certain
conventions and must expect the window managers to do likewise. These conventions
are covered here from the client’s point of view and again from the window manager’s
point of view in the forthcoming Window and Session Manager Conventions
Manual.

In general, these conventions are somewhat complex and will undoubtedly change as
new window management paradigms are developed. Thus, there is a strong bias toward
defining only those conventions that are essential and that apply generally to all window
management paradigms. Clients designed to run with a particular window manager can
easily define private protocols to add to these conventions, but they must be aware that
their users may decide to run some other window manager no matter how much the
designers of the private protocol are convinced that they have seen the ‘‘one true light’’
of user interfaces.

It is a principle of these conventions that a general client should neither know nor care
which window manager is running or, indeed, if one is running at all. The conventions
do not support all client functions without a window manager running; for example, the
concept of Iconic is not directly supported by clients. If no window manager is running,
the concept of Iconic does not apply. A goal of the conventions is to make it possible to
kill and restart window managers without loss of functionality.

Each window manager will implement a particular window management policy; the
choice of an appropriate window management policy for the user’s circumstances is not
one for an individual client to make but will be made by the user or the user’s system
administrator. This does not exclude the possibility of writing clients that use a private
protocol to restrict themselves to operating only under a specific window manager.
Rather, it merely ensures that no claim of general utility is made for such programs.

For example, the claim is often made: ‘‘The client I’m writing is important, and it needs
to be on top.’’ Perhaps it is important when it is being run in earnest, and it should
then be run under the control of a window manager that recognizes ‘‘important’’ win-
dows through some private protocol and ensures that they are on top. However,

March 26, 1992 4−1

-- --

X Window System

imagine, for example, that the ‘‘important’’ client is being debugged. Then, ensuring
that it is always on top is no longer the appropriate window management policy, and it
should be run under a window manager that allows other windows (for example, the
debugger) to appear on top.

4.1 Client’s Actions

In general, the object of the X Version 11 design is that clients should, as far as possi-
ble, do exactly what they would do in the absence of a window manager, except for the
following:

• Hinting to the window manager about the resources they would like to obtain

• Cooperating with the window manager by accepting the resources they are allocated
even if they are not those requested

• Being prepared for resource allocations to change at any time

4.1.1 Creating a Top-Level Window

A client usually would expect to create its top-level windows as children of one or more
of the root windows by using some boilerplate like the following:

win = XCreateSimpleWindow(dpy, DefaultRootWindow(dpy), xsh.x, xsh.y,
xsh.width, xsh.height, bw, bd, bg);

If a particular one of the root windows was required, however, it could use something
like the following:

win = XCreateSimpleWindow(dpy, RootWindow(dpy, screen), xsh.x, xsh.y,
xsh.width, xsh.height, bw, bd, bg);

Ideally, it should be possible to override the choice of a root window and allow clients
(including window managers) to treat a nonroot window as a pseudo-root. This would
allow, for example, the testing of window managers and the use of application-specific
window managers to control the subwindows owned by the members of a related suite
of clients. Doing so properly requires an extension, the design of which is under study.

From the client’s point of view, the window manager will regard its top-level window
as being in one of three states:

• Normal

• Iconic

• Withdrawn

4−2 March 26, 1992

-- --

CLIENT TO WINDOW MANAGER COMMUNICATION

Newly created windows start in the Withdrawn state. Transitions between states happen
when the top-level window is mapped and unmapped and when the window manager
receives certain messages. For further details, see sections 4.1.2.4 and 4.1.4.

4.1.2 Client Properties

Once the client has one or more top-level windows, it should place properties on those
windows to inform the window manager of the behavior that the client desires. Window
managers will assume values they find convenient for any of these properties that are
not supplied; clients that depend on particular values must explicitly supply them. The
window manager will not change properties written by the client.

The window manager will examine the contents of these properties when the window
makes the transition from the Withdrawn state and will monitor some properties for
changes while the window is in the Iconic or Normal state. When the client changes one
of these properties, it must use Replace mode to overwrite the entire property with new
data; the window manager will retain no memory of the old value of the property. All
fields of the property must be set to suitable values in a single Replace mode
ChangeProperty request. This ensures that the full contents of the property will be
available to a new window manager if the existing one crashes, if it is shut down and
restarted, or if the session needs to be shut down and restarted by the session manager.

Convention
Clients writing or rewriting window manager properties must ensure that the
entire content of each property remains valid at all times.

If these properties are longer than expected, clients should ignore the remainder.
Extending these properties is reserved to the X Consortium; private extensions to them
are forbidden. Private additional communication between clients and window managers
should take place using separate properties.

The next sections describe each of the properties the clients need to set, in turn. They
are summarized in the table in section 4.3.

4.1.2.1 WM_NAME Property

The WM_NAME property is an uninterpreted string that the client wants the window
manager to display in association with the window (for example, in a window headline
bar).

The encoding used for this string (and all other uninterpreted string properties) is
implied by the type of the property. The type atoms to be used for this purpose are
described in section 2.7.1.

March 26, 1992 4−3

-- --

X Window System

Window managers are expected to make an effort to display this information. Simply
ignoring WM_NAME is not acceptable behavior. Clients can assume that at least the
first part of this string is visible to the user and that if the information is not visible to
the user, it is because the user has taken an explicit action to make it invisible.

On the other hand, there is no guarantee that the user can see the WM_NAME string
even if the window manager supports window headlines. The user may have placed the
headline off-screen or have covered it by other windows. WM_NAME should not be
used for application-critical information or to announce asynchronous changes of an
application’s state that require timely user response. The expected uses are to permit the
user to identify one of a number of instances of the same client and to provide the user
with noncritical state information.

Even window managers that support headline bars will place some limit on the length
of the WM_NAME string that can be visible; brevity here will pay dividends.

Problem
A change is needed to XFetchName and similar Xlib functions to allow for
multiple encodings.

4.1.2.2 WM_ICON_NAME Property

The WM_ICON_NAME property is an uninterpreted string that the client wants to be
displayed in association with the window when it is iconified (for example, in an icon
label). In other respects, including the type, it is similar to WM_NAME. For obvious
geometric reasons, fewer characters will normally be visible in WM_ICON_NAME than
WM_NAME.

Clients should not attempt to display this string in their icon pixmaps or windows;
rather, they should rely on the window manager to do so.

4.1.2.3 WM_NORMAL_HINTS Property

The type of the WM_NORMAL_HINTS property is WM_SIZE_HINTS. Its contents
are as follows:

33
Field Type Comments
33
flags CARD32 (see the next table)
pad 4*CARD32 For backwards compatibility
min_width INT32 If missing, assume base_width
min_height INT32 If missing, assume base_height
max_width INT32
max_height INT32

4−4 March 26, 1992

-- --

CLIENT TO WINDOW MANAGER COMMUNICATION

width_inc INT32
height_inc INT32
min_aspect (INT32,INT32)
max_aspect (INT32,INT32)
base_width INT32 If missing, assume min-width
base_height INT32 If missing, assume min_height
win_gravity INT32 If missing, assume NorthWest

The WM_SIZE_HINTS.flags bit definitions are as follows:

33
Name Value Field
33
USPosition 1 User-specified x, y
USSize 2 User-specified width, height
PPosition 4 Program-specified position
PSize 8 Program-specified size
PMinSize 16 Program-specified minimum size
PMaxSize 32 Program-specified maximum size
PResizeInc 64 Program-specified resize increments
PAspect 128 Program-specified min and

max aspect ratios
PBaseSize 256 Program-specified base size
PWinGravity 512 Program-specified window gravity

To indicate that the size and position of the window (when mapped from the Withdrawn
state) was specified by the user, the client should set the USPosition and USSize flags,
which allow a window manager to know that the user specifically asked where the win-
dow should be placed or how the window should be sized and that further interaction is
superfluous. To indicate that it was specified by the client without any user involve-
ment, the client should set PPosition and PSize.

The size specifiers refer to the width and height of the client’s window excluding bord-
ers. The window manager will interpret the position of the window and its border width
to position the point of the outer rectangle of the overall window specified by the
win_gravity in the size hints. The outer rectangle of the window includes any borders or
decorations supplied by the window manager. In other words, if the window manager
decides to place the window where the client asked, the position on the parent window’s
border named by the win_gravity will be placed where the client window would have
been placed in the absence of a window manager.

The defined values for win_gravity are those specified for WINGRAVITY in the core X
protocol with the exception of Unmap and Static: NorthWest (1), North (2),
NorthEast (3), West (4), Center (5), East (6), SouthWest (7), South (8), and SouthEast
(9).

The min_width and min_height elements specify the minimum size that the window can
be for the client to be useful. The max_width and max_height elements specify the
maximum size. The base_width and base_height elements in conjunction with width_inc
and height_inc define an arithmetic progression of preferred window widths and heights
for nonnegative integers i and j :

March 26, 1992 4−5

-- --

X Window System

width = base_width + (i * width_inc)
height = base_height + (j * height_inc)

Window managers are encouraged to use i and j instead of width and height in reporting
window sizes to users. If a base size is not provided, the minimum size is to be used in
its place and vice versa.

The min_aspect and max_aspect fields are fractions with the numerator first and the
denominator second, and they allow a client to specify the range of aspect ratios it
prefers.

Problem
The base and win_gravity arguments need a change to Xlib.

4.1.2.4 WM_HINTS Property

The WM_HINTS property (whose type is WM_HINTS) is used to communicate to the
window manager. It conveys the information the window manager needs other than the
window geometry, which is available from the window itself; the constraints on that
geometry, which is available from the WM_NORMAL_HINTS structure; and various
strings, which need separate properties, such as WM_NAME. The contents of the pro-
perties are as follows:

33
Field Type Comments
33
flags CARD32 (see the next table)
input CARD32 The client’s input model
initial_state CARD32 The state when first mapped
icon_pixmap PIXMAP The pixmap for the icon image
icon_window WINDOW The window for the icon image
icon_x INT32 The icon location
icon_y INT32
icon_mask PIXMAP The mask for the icon shape
window_group WINDOW The ID of the group leader window

The WM_HINTS.flags bit definitions are as follows:

33
Name Value Field
33
InputHint 1 input
StateHint 2 initial_state
IconPixmapHint 4 icon_pixmap
IconWindowHint 8 icon_window
IconPositionHint 16 icon_x & icon_y
IconMaskHint 32 icon_mask

4−6 March 26, 1992

-- --

CLIENT TO WINDOW MANAGER COMMUNICATION

WindowGroupHint 64 window_group
MessageHint 128 This bit is obsolete

Window managers are free to assume convenient values for all fields of the
WM_HINTS property if a window is mapped without one.

The input field is used to communicate to the window manager the input focus model
used by the client (see section 4.1.7).

Clients with the Globally Active and No Input models should set the input flag to False.
Clients with the Passive and Locally Active models should set the input flag to True.

From the client’s point of view, the window manager will regard the client’s top-level
window as being in one of three states:

• Normal

• Iconic

• Withdrawn

The semantics of these states are described in section 4.1.4. Newly created windows
start in the Withdrawn state. Transitions between states happen when a non-override-
redirect top-level window is mapped and unmapped and when the window manager
receives certain messages.

The value of the initial_state field determines the state the client wishes to be in at the
time the top-level window is mapped from the Withdrawn state, as shown in the follow-
ing table:

33
State Value Comments
33
NormalState 1 The window is visible
IconicState 3 The icon is visible

The icon_pixmap field may specify a pixmap to be used as an icon. This pixmap should
be:

• One of the sizes specified in the WM_ICON_SIZE property on the root if it exists
(see section 4.1.3.2).

• 1-bit deep. The window manager will select, through the defaults database, suitable
background (for the 0 bits) and foreground (for the 1 bits) colors. These defaults
can, of course, specify different colors for the icons of different clients.

The icon_mask specifies which pixels of the icon_pixmap should be used as the icon,
allowing for icons to appear nonrectangular.

The icon_window field is the ID of a window the client wants used as its icon. Most,
but not all, window managers will support icon windows. Those that do not are likely to
have a user interface in which small windows that behave like icons are completely
inappropriate. Clients should not attempt to remedy the omission by working around it.

Clients that need more capabilities from the icons than a simple two-color bitmap
should use icon windows. Rules for clients that do are set out in section 4.1.9.

March 26, 1992 4−7

-- --

X Window System

The (icon_x,icon_y) coordinate is a hint to the window manager as to where it should
position the icon. The policies of the window manager control the positioning of icons,
so clients should not depend on attention being paid to this hint.

The window_group field lets the client specify that this window belongs to a group of
windows. An example is a single client manipulating multiple children of the root win-
dow.

Conventions
1. The window_group field should be set to the ID of the group leader. The

window group leader may be a window that exists only for that purpose; a
placeholder group leader of this kind would never be mapped either by the
client or by the window manager.

2. The properties of the window group leader are those for the group as a
whole (for example, the icon to be shown when the entire group is
iconified).

Window managers may provide facilities for manipulating the group as a whole.
Clients, at present, have no way to operate on the group as a whole.

The messages bit, if set in the flags field, indicates that the client is using an obsolete
window manager communication protocol4 rather than the WM_PROTOCOLS mechan-
ism of section 4.1.2.7.

4.1.2.5 WM_CLASS Property

The WM_CLASS property (of type STRING without control characters) contains two
consecutive null-terminated strings. These specify the Instance and Class names to be
used by both the client and the window manager for looking up resources for the appli-
cation or as identifying information. This property must be present when the window
leaves the Withdrawn state and may be changed only while the window is in the With-
drawn state. Window managers may examine the property only when they start up and
when the window leaves the Withdrawn state, but there should be no need for a client to
change its state dynamically.

The two strings, respectively, are:

• A string that names the particular instance of the application to which the client that
owns this window belongs. Resources that are specified by instance name override
any resources that are specified by class name. Instance names can be specified by
the user in an operating-system specific manner. On POSIX-conformant systems, the
following conventions are used:

— If "-name NAME" is given on the command line, NAME is used as the instance
name.

— Otherwise, if the environment variable RESOURCE_NAME is set, its value will
be used as the instance name.

4−8 March 26, 1992

-- --

CLIENT TO WINDOW MANAGER COMMUNICATION

— Otherwise, the trailing part of the name used to invoke the program (argv[0]
stripped of any directory names) is used as the instance name.

• A string that names the general class of applications to which the client that owns
this window belongs. Resources that are specified by class apply to all applications
that have the same class name. Class names are specified by the application writer.
Examples of commonly used class names include: "Emacs", "XTerm", "XClock",
"XLoad", and so on.

Note that WM_CLASS strings are null-terminated and, thus, differ from the general
conventions that STRING properties are null-separated. This inconsistency is necessary
for backwards compatibility.

4.1.2.6 WM_TRANSIENT_FOR Property

The WM_TRANSIENT_FOR property (of type WINDOW) contains the ID of another
top-level window. The implication is that this window is a pop-up on behalf of the
named window, and window managers may decide not to decorate transient windows or
may treat them differently in other ways. In particular, window managers should present
newly mapped WM_TRANSIENT_FOR windows without requiring any user interac-
tion, even if mapping top-level windows normally does require interaction. Dialogue
boxes, for example, are an example of windows that should have
WM_TRANSIENT_FOR set.

It is important not to confuse WM_TRANSIENT_FOR with override-redirect.
WM_TRANSIENT_FOR should be used in those cases where the pointer is not grabbed
while the window is mapped (in other words, if other windows are allowed to be active
while the transient is up). If other windows must be prevented from processing input
(for example, when implementing pop-up menus), use override-redirect and grab the
pointer while the window is mapped.

4.1.2.7 WM_PROTOCOLS Property

The WM_PROTOCOLS property (of type ATOM) is a list of atoms. Each atom
identifies a communication protocol between the client and the window manager in
which the client is willing to participate. Atoms can identify both standard protocols and
private protocols specific to individual window managers.

All the protocols in which a client can volunteer to take part involve the window
manager sending the client a ClientMessage event and the client taking appropriate
action. For details of the contents of the event, see section 4.2.8. In each case, the proto-
col transactions are initiated by the window manager.

The WM_PROTOCOLS property is not required. If it is not present, the client does not
want to participate in any window manager protocols.

March 26, 1992 4−9

-- --

X Window System

The X Consortium will maintain a registry of protocols to avoid collisions in the name
space. The following table lists the protocols that have been defined to date.

333
Protocol Section Purpose
333
WM_TAKE_FOCUS 4.1.7 Assignment of input focus
WM_SAVE_YOURSELF 5.2.1 Save client state warning
WM_DELETE_WINDOW 5.2.2 Request to delete top-level window

It is expected that this table will grow over time.

4.1.2.8 WM_COLORMAP_WINDOWS Property

The WM_COLORMAP_WINDOWS property (of type WINDOW) on a top-level win-
dow is a list of the IDs of windows that may need colormaps installed that differ from
the colormap of the top-level window. The window manager will watch this list of win-
dows for changes in their colormap attributes. The top-level window is always (impli-
citly or explicitly) on the watch list. For the details of this mechanism, see section 4.1.8.

4 This obsolete protocol was described in the July 27, 1988, draft of the ICCCM. Win-
dows using it can also be detected because their WM_HINTS properties are four bytes
longer than expected. Window managers are free to support clients using the obsolete
protocol in a ‘‘backwards compatibility’’ mode.

4.1.3 Window Manager Properties

The properties that were described in the previous section are those that the client is
responsible for maintaining on its top-level windows. This section describes the proper-
ties that the window manager places on client’s top-level windows and on the root.

4.1.3.1 WM_STATE Property

The window manager will place a WM_STATE property (of type WM_STATE) on
each top-level client window. In general, clients should not need to examine the con-
tents of this property; it is intended for communication between window and session
managers. See section 5.1.1.3 for more details.

4−10 March 26, 1992

-- --

CLIENT TO WINDOW MANAGER COMMUNICATION

4.1.3.2 WM_ICON_SIZE Property

A window manager that wishes to place constraints on the sizes of icon pixmaps and/or
windows should place a property called WM_ICON_SIZE on the root.p
The contents of this property are listed in the following table.

33
Field Type Comments
33
min_width CARD32 The data for the icon size series
min_height CARD32
max_width CARD32
max_height CARD32
width_inc CARD32
height_inc CARD32

For more details see section 9.1.7 in part I, ‘‘Xlib—C Language X Interface.’’

4.1.4 Changing Window State

From the client’s point of view, the window manager will regard each of the client’s
top-level nonoverride-redirect windows as being in one of three states, whose semantics
are as follows:

• NormalState —The client’s top-level window is visible.

• IconicState —The client’s top-level window is iconic (whatever that means for this
window manager). The client can assume that its icon_window (if any) will be visi-
ble and, failing that, its icon_pixmap (if any) or its WM_ICON_NAME will be visi-
ble.

• WithdrawnState —Neither the client’s top-level window nor its icon are visible.

In fact, the window manager may implement states with semantics other than those
described above. For example, a window manager might implement a concept of Inac-
tiveState in which an infrequently used client’s window would be represented as a string
in a menu. But this state is invisible to the client, which would see itself merely as
being in IconicState.

Newly created top-level windows are in the Withdrawn state. Once the window has
been provided with suitable properties, the client is free to change its state as follows:5

• Withdrawn → Normal —The client should map the window with
WM_HINTS.initial_ state being NormalState.

• Withdrawn → Iconic —The client should map the window with
WM_HINTS.initial_ state being IconicState.

March 26, 1992 4−11

-- --

X Window System

• Normal → Iconic —The client should send a client message event as described later
in this section.

• Normal → Withdrawn —The client should unmap the window and follow it with a
synthetic UnmapNotify event as described later in this section.6

• Iconic → Normal—The client should map the window. The contents of WM_
HINTS.initial_state are irrelevant in this case.

• Iconic → xquery Withdrawn—The client should unmap the window and follow it
with a synthetic UnmapNotify event as described below.

Once a client’s nonoverride-redirect top-level window has left the Withdrawn state, the
client will know that the window is in the Normal state if it is mapped
and that the window is in the Iconic state if it is not mapped. It may select for Struc-
tureNotify events on the top-level window, and it will receive an UnmapNotify event
when it moves to the Iconic state and a MapNotify event when it moves to the Normal
state. This implies that a reparenting window manager will unmap the top-level window
as well as the parent window when changing to the Iconic state.

Convention
Reparenting window managers must unmap the client’s top-level window when-
ever they unmap the window to which they have reparented it.

If the transition is to the Withdrawn state, a synthetic UnmapNotify event, in addition
to unmapping the window itself, must be sent by using a SendEvent request with the
following arguments:

33
Argument Value
33
destination: The root
propagate: False
event-mask: (SubstructureRedirect|SubstructureNotify)
event: an UnmapNotify with:

event: The root
window: The window itself
from-configure: False

The reason for doing this is to ensure that the window manager gets some notification
of the desire to change state, even though the window may already be unmapped when
the desire is expressed.

If the transition is from the Normal to the Iconic state, the client should send a
ClientMessage event to the root with:

• Window == the window to be iconified

• Type == the atom WM_CHANGE_STATE7

• Format == 32

• Data[0] == IconicState

4−12 March 26, 1992

-- --

CLIENT TO WINDOW MANAGER COMMUNICATION

Other values of data[0] are reserved for future extensions to these conventions.8 The
parameters of the SendEvent event should be those described for the synthetic Unmap-
Notify event.

Clients can also select for VisibilityChange events on their top-level or icon windows.
They will then receive a VisibilityNotify(state==FullyObscured) event when the win-
dow concerned becomes completely obscured even though mapped (and thus, perhaps a
waste of time to update) and a VisibilityNotify (state!=FullyObscured) event when it
becomes even partly viewable.

5 The conventions described in earlier drafts of the ICCCM had some serious semantic
problems. These new conventions are designed to be compatible with clients using ear-
lier conventions, except in areas where the earlier conventions would not actually have
worked.
6 For compatibility with obsolete clients, window managers should trigger the transition
on the real UnmapNotify rather than wait for the synthetic one. They should also
trigger the transition if they receive a synthetic UnmapNotify on a window for which
they have not yet received a real UnmapNotify.
7 The type field of the ClientMessage event (called the message_type field by Xlib)
should not be confused with the code field of the event itself, which will have the value
33 (ClientMessage).
8 The format of this ClientMessage event does not match the format of ClientMes-
sages in section 4.2.8. This is because they are sent by the window manager to clients,
and this is sent by clients to the window manager.

4.1.5 Configuring the Window

Clients can resize and reposition their top-level windows by using the
ConfigureWindow request. The attributes of the window that can be altered with this
request are as follows:

• The [x,y] location of the window’s upper-left outer corner

• The [width,height] of the inner region of the window (excluding borders)

• The border width of the window

• The window’s position in the stack

The coordinate system in which the location is expressed is that of the root (irrespective
of any reparenting that may have occurred). The border width to be used and
win_gravity position hint to be used are those most recently requested by the client.
Client configure requests are interpreted by the window manager in the same manner as
the initial window geometry mapped from the Withdrawn state, as described in section
4.1.2.3. Clients must be aware that there is no guarantee that the window manager will
allocate them the requested size or location and must be prepared to deal with any size
and location. If the window manager decides to respond to a ConfigureRequest request
by:

March 26, 1992 4−13

-- --

X Window System

• Not changing the size or location of the window at all
A client will receive a synthetic ConfigureNotify event that describes the
(unchanged) state of the window. The (x,y) coordinates will be in the root coordi-
nate system and adjusted for the border width the client requested, irrespective of
any reparenting that has taken place. The border_width will be the border width the
client requested. The client will not receive a real ConfigureNotify event because no
change has actually taken place.

• Moving the window without resizing it
A client will receive a synthetic ConfigureNotify event following the move that
describes the new state of the window, whose (x,y) coordinates will be in the root
coordinate system adjusted for the border width the client requested. The
border_width will be the border width the client requested. The client may not
receive a real ConfigureNotify event that describes this change because the window
manager may have reparented the top-level window. If the client does receive a real
event, the synthetic event will follow the real one.

• Resizing the window (whether or not it is moved)
A client that has selected for StructureNotify events will receive a ConfigureNotify
event. Note that the coordinates in this event are relative to the parent, which may
not be the root if the window has been reparented. The coordinates will reflect the
actual border width of the window (which the window manager may have changed).
The TranslateCoordinates request can be used to convert the coordinates if
required.

The general rule is that coordinates in real ConfigureNotify events are in the parent’s
space; in synthetic events, they are in the root space.

Clients should be aware that their borders may not be visible. Window managers are
free to use reparenting techniques to decorate client’s top-level windows with borders
containing titles, controls, and other details to maintain a consistent look-and-feel. If
they do, they are likely to override the client’s attempts to set the border width and set it
to zero. Clients, therefore, should not depend on the top-level window’s border being
visible or use it to display any critical information. Other window managers will allow
the top-level windows border to be visible.

Convention
Clients should set the desired value of the border-width attribute on all
ConfigureWindow requests to avoid a race condition.

Clients that change their position in the stack must be aware that they may have been
reparented, which means that windows that used to be siblings no longer are. Using a
nonsibling as the sibling parameter on a ConfigureWindow request will cause an error.

Convention
Clients that use a ConfigureWindow request to request a change in their posi-
tion in the stack should do so using None in the sibling field.

Clients that must position themselves in the stack relative to some window that was ori-
ginally a sibling must do the ConfigureWindow request (in case they are running under
a nonreparenting window manager), be prepared to deal with a resulting error, and then

4−14 March 26, 1992

-- --

CLIENT TO WINDOW MANAGER COMMUNICATION

follow with a synthetic ConfigureRequest event by invoking a SendEvent request with
the following arguments:

33
Argument Value
33
destination: The root
propagate: False
event-mask: (SubstructureRedirect|SubstructureNotify)
event: a ConfigureRequest with:

event: The root
window: The window itself
. . . . Other parameters from the

ConfigureWindow

Doing this is deprecated, and window managers are in any case free to position win-
dows in the stack as they see fit. Clients should ignore the above field of both real and
synthetic ConfigureNotify events that they receive on their nonoverride-redirect top-
level windows because they cannot be guaranteed to contain useful information.

4.1.6 Changing Window Attributes

The attributes that may be supplied when a window is created may be changed by using
the ChangeWindowAttributes request. The window attributes are listed in the follow-
ing table.

33
Attribute Private to Client
33
Background pixmap Yes
Background pixel Yes
Border pixmap Yes
Border pixel Yes
Bit gravity Yes
Window gravity No
Backing-store hint Yes
Save-under hint No
Event mask No
Do-not-propagate mask Yes
Override-redirect flag No
Colormap Yes
Cursor Yes

Most attributes are private to the client and will never be interfered with by the window
manager. For the attributes that are not private to the client:

• The window manager is free to override the window gravity; a reparenting window
manager may want to set the top-level window’s window gravity for its own

March 26, 1992 4−15

-- --

X Window System

purposes.

• Clients are free to set the save-under hint on their top-level windows, but they must
be aware that the hint may be overridden by the window manager.

• Windows, in effect, have per-client event masks, and so, clients may select for what-
ever events are convenient irrespective of any events the window manager is select-
ing for. There are some events for which only one client at a time may select, but
the window manager should not select for them on any of the client’s windows.

• Clients can set override-redirect on top-level windows but are encouraged not to do
so except as described in sections 4.1.10 and 4.2.9.

4.1.7 Input Focus

There are four models of input handling:

• No Input—The client never expects keyboard input. An example would be xload or
another output-only client.

• Passive Input—The client expects keyboard input but never explicitly sets the input
focus. An example would be a simple client with no subwindows, which will accept
input in PointerRoot mode or when the window manager sets the input focus to its
top-level window (in click-to-type mode).

• Locally Active Input—The client expects keyboard input and explicitly sets the
input focus, but it only does so when one of its windows already has the focus. An
example would be a client with subwindows defining various data entry fields that
uses Next and Prev keys to move the input focus between the fields. It does so when
its top-level window has acquired the focus in PointerRoot mode or when the win-
dow manager sets the input focus to its top-level window (in click-to-type mode).

• Globally Active Input—The client expects keyboard input and explicitly sets the
input focus, even when it is in windows the client does not own. An example would
be a client with a scroll bar that wants to allow users to scroll the window without
disturbing the input focus even if it is in some other window. It wants to acquire the
input focus when the user clicks in the scrolled region but not when the user clicks
in the scroll bar itself. Thus, it wants to prevent the window manager from setting
the input focus to any of its windows.

The four input models and the corresponding values of the input field and the presence
or absence of the WM_TAKE_FOCUS atom in the WM_PROTOCOLS property are
listed in the following table:

33
Input Model Input Field WM_TAKE_FOCUS
33
No Input False Absent
Passive True Absent
Locally Active True Present

4−16 March 26, 1992

-- --

CLIENT TO WINDOW MANAGER COMMUNICATION

Globally Active False Present

Passive and Locally Active clients set the input field of WM_HINTS to True, which
indicates that they require window manager assistance in acquiring the input focus. No
Input and Globally Active clients set the input field to False, which requests that the
window manager not set the input focus to their top-level window.

Clients that use a SetInputFocus request must set the time field to the timestamp of the
event that caused them to make the attempt. This cannot be a FocusIn event because
they do not have timestamps. Clients may also acquire the focus without a correspond-
ing EnterNotify. Note that clients must not use CurrentTime in the time field.

Clients using the Globally Active model can only use a SetInputFocus request to
acquire the input focus when they do not already have it on receipt of one of the follow-
ing events:

• ButtonPress

• ButtonRelease

• Passive-grabbed KeyPress

• Passive-grabbed KeyRelease

In general, clients should avoid using passive-grabbed key events for this purpose,
except when they are unavoidable (as, for example, a selection tool that establishes a
passive grab on the keys that cut, copy, or paste).

The method by which the user commands the window manager to set the focus to a
window is up to the window manager. For example, clients cannot determine whether
they will see the click that transfers the focus.

Windows with the atom WM_TAKE_FOCUS in their WM_PROTOCOLS property
may receive a ClientMessage event from the window manager (as described in section
4.2.8) with WM_TAKE_FOCUS in their data[0] field. If they want the focus, they
should respond with a SetInputFocus request with its window field set to the window
of theirs that last had the input focus or to their ‘‘default input window,’’ and the time
field set to the timestamp in the message. For further information, see section 4.2.7.

A client could receive WM_TAKE_FOCUS when opening from an icon or when the
user has clicked outside the top-level window in an area that indicates to the window
manager that it should assign the focus (for example, clicking in the headline bar can be
used to assign the focus).

The goal is to support window managers that want to assign the input focus to a top-
level window in such a way that the top-level window either can assign it to one of its
subwindows or can decline the offer of the focus. For example, a clock or a text editor
with no currently open frames might not want to take focus even though the window
manager generally believes that clients should take the input focus after being
deiconified or raised.

Problem
There would be no need for WM_TAKE_FOCUS if the FocusIn event con-
tained a timestamp and a previous-focus field. This could avoid the potential

March 26, 1992 4−17

-- --

X Window System

race condition. There is space in the event for this information; it should be
added at the next protocol revision.

Clients that set the input focus need to decide a value for the revert-to field of the SetIn-
putFocus request. This determines the behavior of the input focus if the window the
focus has been set to becomes not viewable. The value can be any of the following:

• Parent —In general, clients should use this value when assigning focus to one of
their subwindows. Unmapping the subwindow will cause focus to revert to the
parent, which is probably what you want.

• PointerRoot —Using this value with a click-to-type focus management policy leads
to race conditions because the window becoming unviewable may coincide with the
window manager deciding to move the focus elsewhere.

• None —Using this value causes problems if the window manager reparents the win-
dow, as most window managers will, and then crashes. The input focus will be
None, and there will probably be no way to change it.

Note that neither PointerRoot nor None is really safe to use.

Convention
Clients that invoke a SetInputFocus request should set the revert-to argument to
Parent.

A convention is also required for clients that want to give up the input focus. There is
no safe value set for them to set the input focus to; therefore, they should ignore input
material.

Convention
Clients should not give up the input focus of their own volition. They should
ignore input that they receive instead.

4.1.8 Colormaps

The window manager is responsible for installing and uninstalling colormaps.9 Clients
provide the window manager with hints as to which colormaps to install and uninstall,
but clients must not install or uninstall colormaps themselves. When a client’s top-level
window gets the colormap focus (as a result of whatever colormap focus policy is
implemented by the window manager), the window manager will insure that one or
more of the client’s colormaps are installed. The reason for this convention is that there
is no safe way for multiple clients to install and uninstall colormaps.

Convention
Clients must not use InstallColormap or UninstallColormap requests.

There are two possible ways in which clients could hint to the window manager about
the colormaps they want installed. Using a property, they could tell the window
manager one of the following:

4−18 March 26, 1992

-- --

CLIENT TO WINDOW MANAGER COMMUNICATION

• A priority ordered list of the colormaps they want installed

• A priority ordered list of the windows whose colormaps they want installed

The second of these alternatives has been selected because:

• It allows window managers to know the visuals for the colormaps, thus, permitting
visual-dependent colormap installation policies.

• It allows window managers to select for VisibilityChange events on the windows
concerned and ensure that maps are only installed if the windows that need them are
visible.

Clients whose top-level windows and subwindows all use the same colormap should set
its ID in the colormap field of the window’s attributes. They should not set a
WM_COLORMAP_WINDOWS property on the top-level window. If they want to
change the colormap, they should change the window attribute. The window manager
will install the colormap for them.

Clients that create windows can use the value CopyFromParent to inherit their parent’s
colormap. Window managers will ensure that the root window’s colormap field contains
a colormap that is suitable for clients to inherit. In particular, the colormap will provide
distinguishable colors for BlackPixel and WhitePixel.

Top-level windows that have subwindows or override-redirect pop-up windows whose
colormap requirements differ from the top-level window should have a
WM_COLORMAP_WINDOWS property. This property contains a list of IDs for win-
dows whose colormaps the window manager should attempt to have installed when, in
the course of its individual colormap focus policy, it assigns the colormap focus to the
top-level window (see section 4.1.2.8). The list is ordered by the importance to the
client of having the colormaps installed. If this order changes, the property should be
updated. The window manager will track changes to this property and will track
changes to the colormap attribute of the windows in the property.

WM_TRANSIENT_FOR windows either can have their own
WM_COLORMAP_WINDOWS property or can appear in the property of the window
they are transient for, as appropriate.

Clients should be aware of the min-installed-maps and max-installed-maps fields of the
connection startup information, and the effect that the minimum value has on the so-
called ‘‘required list:’’

At any time, there is a subset of the installed maps, viewed as an ordered list, called the
required list. The length of the required list is at most M, where M is the min-
installed-maps specified for the screen in the connection setup. The required list is
maintained as follows. When a colormap is an explicit argument to InstallColormap, it
is added to the head of the list, and the list is truncated at the tail if necessary to keep
the length of the list to at most M. When a colormap is an explicit argument to Unin-
stallColormap and it is in the required list, it is removed from the list. A colormap is
not added to the required list when it is installed implicitly by the server, and the server
cannot implicitly uninstall a colormap that is in the required list.

March 26, 1992 4−19

-- --

X Window System

In less precise words, the min-installed-maps most recently installed maps are
guaranteed to be installed. Min-installed-maps will often be one; clients needing multi-
ple colormaps should beware.

The window manager will identify and track changes to the colormap attribute of the
windows identified by the WM_COLORMAP_WINDOWS property and the top-level
window if it does not appear in the list. If the top-level window does not appear in the
list, it will be assumed to be higher priority than any window in the list. It will also
track changes in the contents of the WM_COLORMAP_WINDOWS property, in case
the set of windows or their relative priority changes. The window manager will define
some colormap focus policy and, whenever the top-level window has the colormap
focus, will attempt to maximize the number of colormaps from the head of the
WM_COLORMAP_WINDOWS list that is installed.

9 The conventions described in earlier drafts by which clients and window managers
shared responsibility for installing colormaps suffered from semantic problems.

4.1.9 Icons

A client can hint to the window manager about the desired appearance of its icon by set-
ting:

• A string in WM_ICON_NAME All clients should do this because it provides a fall-
back for window managers whose ideas about icons differ widely from those of the
client.

• A Pixmap into the icon_pixmap field of the WM_HINTS property and possibly
another into the icon_mask field The window manager is expected to display the
pixmap masked by the mask. The pixmap should be one of the sizes found in the
WM_ICON_SIZE property on the root. If this property is not found, the window
manager is unlikely to display icon pixmaps. Window managers usually will clip or
tile pixmaps that do not match WM_ICON_SIZE.

• A window into the icon_window field of the WM_HINTS property The window
manager is expected to map that window whenever the client is in the Iconic state.
In general, the size of the icon window should be one of those specified in
WM_ICON_SIZE on the root, if it exists. Window managers are free to resize icon
windows.

In the Iconic state, the window manager usually will ensure that:

• If the window’s WM_HINTS.icon_window is set, the window it names is visible.

• If the window’s WM_HINTS.icon_window is not set but the window’s
WM_HINTS.icon_pixmap is set, the pixmap it names is visible.

• Otherwise, the window’s WM_ICON_NAME string is visible.

Clients should observe the following conventions about their icon windows:

4−20 March 26, 1992

-- --

CLIENT TO WINDOW MANAGER COMMUNICATION

Conventions
1. The icon window should be an InputOutput child of the root.

2. The icon window should be one of the sizes specified in the
WM_ICON_SIZE property on the root.

3. The icon window should use the root visual and default colormap for the
screen in question.

4. Clients should not map their icon windows.

5. Clients should not unmap their icon windows.

6. Clients should not configure their icon windows.

7. Clients should not set override-redirect on their icon windows or select for
ResizeRedirect events on them.

8. Clients must not depend on being able to receive input events by means of
their icon windows.

9. Clients must not manipulate the borders of their icon windows.

10. nts must select for Exposure events on their icon window and repaint it
when requested.

Window managers will differ as to whether they support input events to client’s icon
windows; most will allow the client to receive some subset of the keys and buttons.

Window managers will ignore any WM_NAME, WM_ICON_NAME,
WM_NORMAL_HINTS, WM_HINTS, WM_CLASS, WM_TRANSIENT_FOR,
WM_PROTOCOLS, or WM_COLORMAP_WINDOWS properties they find on icon
windows. Session managers will ignore any WM_COMMAND or WM_CLIENT_
MACHINE properties they find on icon windows.

4.1.10 Pop-up Windows

Clients that wish to pop up a window can do one of three things:

1. They can create and map another normal top-level window, which will get
decorated and managed as normal by the window manager. See the discussion of
window groups that follows.

2. If the window will be visible for a relatively short time and deserves a somewhat
lighter treatment, they can set the WM_TRANSIENT_FOR property. They can
expect less decoration but can set all the normal window manager properties on
the window. An example would be a dialog box.

3. If the window will be visible for a very short time and should not be decorated at
all, the client can set override-redirect on the window. In general, this should be
done only if the pointer is grabbed while the window is mapped. The window
manager will never interfere with these windows, which should be used with

March 26, 1992 4−21

-- --

X Window System

caution. An example of an appropriate use is a pop-up menu.

Window managers are free to decide if WM_TRANSIENT_FOR windows should be
iconified when the window they are transient for is. Clients displaying
WM_TRANSIENT_FOR windows that have (or request to have) the window they are
transient for iconified do not need to request that the same operation be performed on
the WM_TRANSIENT_FOR window; the window manager will change its state if that
is the policy it wishes to enforce.

4.1.11 Window Groups

A set of top-level windows that should be treated from the user’s point of view as
related (even though they may belong to a number of clients) should be linked together
using the window_group field of the WM_HINTS structure.

One of the windows (that is, the one the others point to) will be the group leader and
will carry the group as opposed to the individual properties. Window managers may
treat the group leader differently from other windows in the group. For example, group
leaders may have the full set of decorations, and other group members may have a res-
tricted set.

It is not necessary that the client ever map the group leader; it may be a window that
exists solely as a placeholder.

It is up to the window manager to determine the policy for treating the windows in a
group. At present, there is no way for a client to request a group, as opposed to an indi-
vidual, operation.

4.2 Client Responses to Window Manager Actions

The window manager performs a number of operations on client resources, primarily on
their top-level windows. Clients must not try to fight this but may elect to receive
notification of the window manager’s operations.

4.2.1 Reparenting

Clients must be aware that some window managers will reparent their nonoverride-
redirect top-level windows so that a window that was created as a child of the root will
be displayed as a child of some window belonging to the window manager. The effects
that this reparenting will have on the client are as follows:

4−22 March 26, 1992

-- --

CLIENT TO WINDOW MANAGER COMMUNICATION

• The parent value returned by a QueryTree request will no longer be the value sup-
plied to the CreateWindow request that created the reparented window. There
should be no need for the client to be aware of the identity of the window to which
the top-level window has been reparented. In particular, a client that wishes to create
further top-level windows should continue to use the root as the parent for these
new windows.

• The server will interpret the (x,y) coordinates in a ConfigureWindow request in the
new parent’s coordinate space. In fact, they usually will not be interpreted by the
server because a reparenting window manager usually will have intercepted these
operations (see section 4.2.2). Clients should use the root coordinate space for these
requests (see section 4.1.5).

• ConfigureWindow requests that name a specific sibling window may fail because
the window named, which used to be a sibling, no longer is after the reparenting
operation (see section 4.1.5).

• The (x,y) coordinates returned by a GetGeometry request are in the parent’s coordi-
nate space and are thus not directly useful after a reparent operation.

• A background of ParentRelative will have unpredictable results.

• A cursor of None will have unpredictable results.

Clients that want to be notified when they are reparented can select for StructureNotify
events on their top-level window. They will receive a ReparentNotify event if and
when reparenting takes place.

If the window manager reparents a client’s window, the reparented window will be
placed in the save-set of the parent window. This means that the reparented window will
not be destroyed if the window manager terminates and will be remapped if it was
unmapped. Note that this applies to all client windows the window manager reparents,
including transient windows and client icon windows.

When the window manager gives up control over a client’s top-level window, it will
reparent it (and any associated windows, for example, WM_TRANSIENT_FOR win-
dows) back to the root.

There is a potential race condition here. A client might want to reuse the top-level win-
dow, reparenting it somewhere else.

Convention
Clients that want to reparent their top-level windows should do so only when
they have their original parents. They may select for StructureNotify events on
their top-level windows and will receive ReparentNotify events informing them
when this is true.

March 26, 1992 4−23

-- --

X Window System

4.2.2 Redirection of Operations

Clients must be aware that some window managers will arrange for some client requests
to be intercepted and redirected. Redirected requests are not executed; they result
instead in events being sent to the window manager, which may decide to do nothing, to
alter the arguments, or to perform the request on behalf of the client.

The possibility that a request may be redirected means that a client cannot assume that
any redirectable request is actually performed when the request is issued or is actually
performed at all. For example, the following is incorrect because the MapWindow
request may be intercepted and the PolyLine output made to an unmapped window:

MapWindow A
PolyLine A GC <point> <point>. . . .

The client must wait for an Expose event before drawing in the window.10

This next example incorrectly assumes that the ConfigureWindow request is actually
executed with the arguments supplied:

ConfigureWindow width=N height=M
<output assuming window is N by M>

The requests that may be redirected are:

• MapWindow

• ConfigureWindow

• CirculateWindow

A window with the override-redirect bit set is immune from redirection, but the bit
should be set on top-level windows only in cases where other windows should be
prevented from processing input while the override-redirect window is mapped (see sec-
tion 4.1.10) and while responding to ResizeRequest events (see section 4.2.9).

Clients that have no non-Withdrawn top-level windows and that map an override-
redirect top-level window are taking over total responsibility for the state of the system.
It is their responsibility to:

• Prevent any preexisting window manager from interfering with their activities

• Restore the status quo exactly after they unmap the window so that any preexisting
window manager does not get confused

In effect, clients of this kind are acting as temporary window managers. Doing so is
strongly discouraged because these clients will be unaware of the user interface policies
the window manager is trying to maintain and because their user interface behavior is
likely to conflict with that of less demanding clients.

10 This is true even if the client set the backing-store attribute to Always. The
backing-store attribute is a only a hint, and the server may stop maintaining backing
store contents at any time.

4−24 March 26, 1992

-- --

CLIENT TO WINDOW MANAGER COMMUNICATION

4.2.3 Window Move

If the window manager moves a top-level window without changing its size, the client
will receive a synthetic ConfigureNotify event following the move that describes the
new location in terms of the root coordinate space. Clients must not respond to being
moved by attempting to move themselves to a better location.

Any real ConfigureNotify event on a top-level window implies that the window’s posi-
tion on the root may have changed, even though the event reports that the window’s
position in its parent is unchanged because the window may have been reparented. Note
that the coordinates in the event will not, in this case, be directly useful.

The window manager will send these events by using a SendEvent request with the fol-
lowing arguments:

33
Argument Value
33
destination: The client’s window
propagate: False
event-mask: StructureNotify

4.2.4 Window Resize

The client can elect to receive notification of being resized by selecting for Struc-
tureNotify events on its top-level windows. It will receive a ConfigureNotify event.
The size information in the event will be correct, but the location will be in the parent
window (which may not be the root).

The response of the client to being resized should be to accept the size it has been given
and to do its best with it. Clients must not respond to being resized by attempting to
resize themselves to a better size. If the size is impossible to work with, clients are free
to request to change to the Iconic state.

4.2.5 Iconify and Deiconify

A nonoverride-redirect window that is not Withdrawn will be in the Normal state if it is
mapped and in the Iconic state if it is unmapped. This will be true even if the window
has been reparented; the window manager will unmap the window as well as its parent
when switching to the Iconic state.

The client can elect to be notified of these state changes by selecting for StructureNo-
tify events on the top-level window. It will receive a UnmapNotify event when it goes
Iconic and a MapNotify event when it goes Normal.

March 26, 1992 4−25

-- --

X Window System

4.2.6 Colormap Change

Clients that wish to be notified of their colormaps being installed or uninstalled should
select for ColormapNotify events on their top-level windows and on any windows they
have named in WM_COLORMAP_WINDOWS properties on their top-level windows.
They will receive ColormapNotify events with the new field FALSE when the color-
map for that window is installed or uninstalled.

Problem
There is an inadequacy in the protocol. At the next revision, the Install-
Colormap request should be changed to include a timestamp to avoid the possi-
bility of race conditions if more than one client attempts to install and uninstall
colormaps. These conventions attempt to avoid the problem by restricting use of
these requests to the window manager.

4.2.7 Input Focus

Clients can request notification that they have the input focus by selecting for
FocusChange events on their top-level windows; they will receive FocusIn and Focu-
sOut events. Clients that need to set the input focus to one of their subwindows should
not do so unless they have set WM_TAKE_FOCUS in their WM_PROTOCOLS prop-
erty and have done one of the following:

• Set the input field of WM_HINTS to True and actually have the input focus in one
of their top-level windows

• Set the input field of WM_HINTS to False and have received a suitable event as
described in section 4.1.7

• Have received a WM_TAKE_FOCUS message as described in section 4.1.7

Clients should not warp the pointer in an attempt to transfer the focus; they should set
the focus and leave the pointer alone. For further information, see section 6.2.

Once a client satisfies these conditions, it may transfer the focus to another of its win-
dows by using the SetInputFocus request, which is defined as follows:

SetInputFocus

focus: WINDOW or PointerRoot or None
revert-to: {Parent, PointerRoot, None}
time: TIMESTAMP or CurrentTime

4−26 March 26, 1992

-- --

CLIENT TO WINDOW MANAGER COMMUNICATION

Conventions
1. Clients that use a SetInputFocus request must set the time argument to

the timestamp of the event that caused them to make the attempt. This
cannot be a FocusIn event because they do not have timestamps. Clients
may also acquire the focus without a corresponding EnterNotify event.
Clients must not use CurrentTime for the time argument.

2. Clients that use a SetInputFocus request to set the focus to one of their
windows must set the revert-to field to Parent.

4.3.1 ClientMessage Events

There is no way for clients to prevent themselves being sent ClientMessage events.

Top-level windows with a WM_PROTOCOLS property may be sent ClientMessage
events specific to the protocols named by the atoms in the property (see section
4.1.2.7). For all protocols, the ClientMessage events have the following:

• WM_PROTOCOLS as the type field11

• Format 32

• The atom that names their protocol in the data[0] field12

• A timestamp in their data[1] field

The remaining fields of the event, including the window field, are determined by the
protocol.

These events will be sent by using a SendEvent request with the following arguments:

33
Argument Value
33
destination: The client’s window
propagate: False
event-mask: () empty
event: As specified by the protocol

11 The type field of the ClientMessage event (called the message_type member by
Xlib) should not be confused with the ‘‘code’’ field of the event itself, which will have
the value 33 (ClientMessage).
12 We use the notation data[n] to indicate the nth element of the LISTofINT8, LISTo-
fINT16, or LISTofINT32 in the data field of the ClientMessage, according to the for-
mat field. The list is indexed from zero.

March 26, 1992 4−27

-- --

X Window System

4.3.2 Redirecting Requests

Normal clients can use the redirection mechanism just as window managers do by
selecting for SubstructureRedirect events on a parent window or ResizeRedirect events
on a window itself. However, at most, one client per window can select for these
events, and a convention is needed to avoid clashes.

Convention
Clients (including window managers) should select for SubstructureRedirect
and ResizeRedirect events only on windows that they own.

In particular, clients that need to take some special action if they are resized can select
for ResizeRedirect events on their top-level windows. They will receive a ResizeRe-
quest event if the window manager resizes their window, and the resize will not actu-
ally take place. Clients are free to make what use they like of the information that the
window manager wants to change their size, but they must configure the window to the
width and height specified in the event in a timely fashion. To ensure that the resize
will actually happen at this stage instead of being intercepted and executed by the win-
dow manager (and thus restarting the process), the client needs temporarily to set
override-redirect on the window.

Convention
Clients receiving ResizeRequest events must respond by doing the following:

• Setting override-redirect on the window specified in the event

• Configuring the window specified in the event to the width and height
specified in the event as soon as possible and before making any other
geometry requests

• Clearing override-redirect on the window specified in the event

If a window manager detects that a client is not obeying this convention, it is free to
take whatever measures it deems appropriate to deal with the client.

4.4 Summary of Window Manager Property Types

The window manager properties are summarized in the following table (see also section
9.1 of part I, ‘‘Xlib—C Language X Interface’’).

33
Name Type Format See Section
33
WM_CLASS STRING 8 4.1.2.5
WM_COLORMAP_WINDOWS WINDOW 32 4.1.2.8
WM_HINTS WM_HINTS 32 4.1.2.4
WM_ICON_NAME TEXT 4.1.2.2

4−28 March 26, 1992

-- --

CLIENT TO WINDOW MANAGER COMMUNICATION

WM_ICON_SIZE WM_ICON_SIZE 32 4.1.3.2
WM_NAME TEXT 4.1.2.1
WM_NORMAL_HINTS WM_SIZE_HINTS 32 4.1.2.3
WM_PROTOCOLS ATOM 32 4.1.2.7
WM_STATE WM_STATE 32 4.1.3.1
WM_TRANSIENT_FOR WINDOW 32 4.1.2.6

March 26, 1992 4−29

-- --

Chapter 5. CLIENT TO SESSION MANAGER COMMUNICA
TION

The session manager’s role is to manage a collection of clients. It should be capable of:

• Starting a collection of clients as a group

• Remembering the state of a collection of clients so that they can be restarted in the
same state

• Stopping a collection of clients in a controlled way

It may also provide a user interface to these capabilities.

5.1 Client Actions

There are two ways in which clients should cooperate with the session manager:

1. Stateful clients should cooperate with the session manager by providing it with
information it can use to restart them if that should become necessary.

2. Clients, typically those with more than one top-level window, whose server con-
nection needs to survive the deletion of their top-level window should take part in
the WM_DELETE_WINDOW protocol (see section 5.2.2).

5.1.1 Properties

The client communicates with the session manager by placing two properties
(WM_COMMAND and WM_CLIENT_MACHINE) on its top-level window. If the
client has a group of top-level windows, these properties should be placed on the group
leader window.

March 26, 1992 5−1

-- --

X Window System

The window manager is responsible for placing a WM_STATE property on each top-
level client window for use by session managers and other clients that need to be able to
identify top-level client windows and their state.

5.1.1.1 WM_COMMAND Property

The WM_COMMAND property represents the command used to start or restart the
client. By updating this property, clients should ensure that it always reflects a com-
mand that will restart them in their current state. The content and type of the property
depends on the operating system of the machine running the client. On POSIX-
conformant systems using ISO Latin-1 characters for their command lines, the property
should:

• Be of type STRING

• Contain a list of null-terminated strings

• Be initialized from argv

Other systems will need to set appropriate conventions for the type and contents of
WM_COMMAND properties. Window and session managers should not assume that
STRING is the type of WM_COMMAND or that they will be able to understand or
display its contents. Note that WM_COMMAND strings are null-terminated and differ
from the general conventions that STRING properties are null-separated. This incon-
sistency is necessary for backwards-compatibility.

A client with multiple top-level windows should ensure that exactly one of them has a
WM_COMMAND with nonzero length. Zero-length WM_COMMAND properties can
be used to reply to WM_SAVE_YOURSELF messages on other top-level windows but
will otherwise be ignored (see section 5.2.1).

5.1.1.2 WM_CLIENT_MACHINE Property

The client should set the WM_CLIENT_MACHINE property (of one of the TEXT
types) to a string that forms the name of the machine running the client as seen from the
machine running the server.

5.1.1.3 WM_STATE Property

The window manager will place a WM_STATE property (of type WM_STATE) on
each top-level client window.

5−2 March 26, 1992

-- --

CLIENT TO SESSION MANAGER COMMUNICATION

Programs like xprop that want to operate on client’s top-level windows can use this
property to identify them. A client’s top-level window is one that has override-redirect
set to False and a WM_STATE property or that is a mapped child of the root that has
no descendant with a WM_STATE property.

Recursion is necessary to cover all window manager reparenting possibilities. Note that
clients other than window and session managers should not need to examine the con-
tents of WM_STATE properties, which are not formally defined by the ICCCM. The
presence or absence of the property is all they need to know.

Suggested contents of the WM_STATE property are listed in the following table:

33
Field Type Comments
33
state CARD32 (see the next table)
icon WINDOW ID of icon window

The following table lists the WM_STATE.state values:

33
State Value
33
WithdrawnState 0
NormalState 1
IconicState 3

Adding other fields to this property is reserved to the X Consortium.

The icon field should either contain the window ID of the window that the window
manager uses as the icon window for the window on which this property is set if one
exists or None if one does not. Note that this window is not necessarily the same as
the icon window that the client may have specified. It can be one of the following:

• The client’s icon window

• A window that the window manager supplied and that contains the client’s icon pix-
map

• The least ancestor of the client’s icon window (or of the window that contains the
client’s icon pixmap), which contains no other icons

The state field describes the window manager’s idea of the state the window is in,
which may not match the client’s idea as expressed in the initial_state field of the
WM_HINTS property (for example, if the user has asked the window manager to icon-
ify the window). If it is NormalState, the window manager believes the client should
be animating its window. If it is IconicState, the client should animate its icon win-
dow. In either state, clients should be prepared to handle exposure events from either
window.

The contents of WM_STATE properties and other aspects of the communication
between window and session managers will be specified in the forthcoming Window
and Session Manager Conventions Manual.

March 26, 1992 5−3

-- --

X Window System

5.1.2 Termination

Because they communicate by means of unreliable network connections, clients must be
prepared for their connection to the server to be terminated at any time without warn-
ing. They cannot depend on getting notification that termination is imminent or on
being able to use the server to negotiate with the user about their fate. For example,
clients cannot depend on being able to put up a dialog box.

Similarly, clients may terminate at any time without notice to the session manager.
When a client terminates itself rather than being terminated by the session manager, it is
viewed as having resigned from the session in question, and it will not be revived if the
session is revived.

5.2 Client Responses to Session Manager Actions

Clients may need to respond to session manager actions in two ways:

• Saving their internal state

• Deleting a window

5.2.1 Saving Client State

Clients that want to be warned when the session manager feels that they should save
their internal state (for example, when termination impends) should include the atom
WM_SAVE_YOURSELF in the WM_PROTOCOLS property on their top-level win-
dows to participate in the WM_SAVE_YOURSELF protocol. They will receive a
ClientMessage event as described in section 4.2.8 with the atom
WM_SAVE_YOURSELF in its data[0] field.

Clients that receive WM_SAVE_YOURSELF should place themselves in a state from
which they can be restarted and should update WM_COMMAND to be a command that
will restart them in this state. The session manager will be waiting for a PropertyNo-
tify event on WM_COMMAND as a confirmation that the client has saved its state.
Therefore, WM_COMMAND should be updated (perhaps with a zero-length append)
even if its contents are correct. No interactions with the user are permitted during this
process.

Once it has received this confirmation, the session manager will feel free to terminate
the client if that is what the user asked for. Otherwise, if the user asked for the session
to be put to sleep, the session manager will ensure that the client does not receive any
mouse or keyboard events.

5−4 March 26, 1992

-- --

CLIENT TO SESSION MANAGER COMMUNICATION

After receiving a WM_SAVE_YOURSELF, saving its state, and updating
WM_COMMAND, the client should not change its state (in the sense of doing anything
that would require a change to WM_COMMAND) until it receives a mouse or keyboard
event. Once it does so, it can assume that the danger is over. The session manager will
ensure that these events do not reach clients until the danger is over or until the clients
have been killed.

Irrespective of how they are arranged in window groups, clients with multiple top-level
windows should ensure the following:

• Only one of their top-level windows has a nonzero-length WM_COMMAND prop-
erty.

• They respond to a WM_SAVE_YOURSELF message by:

— First, updating the nonzero-length WM_COMMAND property, if necessary

— Second, updating the WM_COMMAND property on the window for which they
received the WM_SAVE_YOURSELF message if it was not updated in the first
step

Receiving WM_SAVE_YOURSELF on a window is, conceptually, a command to save
the entire client state.13

13 This convention has changed since earlier drafts because of the introduction of the
protocol in the next section. In the public review draft, there was ambiguity as to
whether WM_SAVE_YOURSELF was a checkpoint or a shutdown facility. It is now
unambiguously a checkpoint facility; if a shutdown facility is judged to be necessary, a
separate WM_PROTOCOLS protocol will be developed and registered with the X Con-
sortium.

5.2.2 Window Deletion

Clients, usually those with multiple top-level windows, whose server connection must
survive the deletion of some of their top-level windows should include the atom
WM_DELETE_WINDOW in the WM_PROTOCOLS property on each such window.
They will receive a ClientMessage event as described in section 4.2.8 whose data[0]
field is WM_DELETE_WINDOW.

Clients receiving a WM_DELETE_WINDOW message should behave as if the user
selected delete window from a hypothetical menu. They should perform any
confirmation dialog with the user and, if they decide to complete the deletion, should do
the following:

• Either change the window’s state to Withdrawn (as described in section 4.1.4) or
destroy the window

• Destroy any internal state associated with the window

If the user aborts the deletion during the confirmation dialog, the client should ignore
the message.

March 26, 1992 5−5

-- --

X Window System

Clients are permitted to interact with the user and ask, for example, whether a file asso-
ciated with the window to be deleted should be saved or the window deletion should be
cancelled. Clients are not required to destroy the window itself; the resource may be
reused, but all associated state (for example, backing store) should be released.

If the client aborts a destroy and the user then selects DELETE WINDOW again, the
window manager should start the WM_DELETE_WINDOW protocol again. Window
managers should not use DestroyWindow requests on a window that has
WM_DELETE_WINDOW in its WM_PROTOCOLS property.

Clients that choose not to include WM_DELETE_WINDOW in the WM_PROTOCOLS
property may be disconnected from the server if the user asks for one of the client’s
top-level windows to be deleted.

Note that the WM_SAVE_YOURSELF and WM_DELETE_WINDOW protocols are
orthogonal to each other and may be selected independently.

5.3 Summary of Session Manager Property Types

The session manager properties are listed in the following table:

33
Name Type Format See Section
33
WM_CLIENT_MACHINE TEXT 5.1.1.2
WM_COMMAND TEXT 5.1.1.1
WM_STATE WM_STATE 32 5.1.1.3

5−6 March 26, 1992

-- --

Chapter 6. MANIPULATION OF SHARED
RESOURCES

X Version 11 permits clients to manipulate a number of shared resources, for example,
the input focus, the pointer, and colormaps. Conventions are required so that clients
share resources in an orderly fashion.

6.1 The Input Focus

Clients that explicitly set the input focus must observe one of two modes:

• Locally active mode

• Globally active mode

Conventions
1. Locally active clients should set the input focus to one of their windows

only when it is already in one of their windows or when they receive a
WM_TAKE_FOCUS message. They should set the input field of the
WM_HINTS structure to True.

2. Globally active clients should set the input focus to one of their windows
only when they receive a button event and a passive-grabbed key event, or
when they receive a WM_TAKE_FOCUS message. They should set the
input field of the WM_HINTS structure to False.

3. In addition, clients should use the timestamp of the event that caused them
to attempt to set the input focus as the time field on the SetInputFocus
request, not CurrentTime.

March 26, 1992 6−1

-- --

X Window System

6.2 The Pointer

In general, clients should not warp the pointer. Window managers, however, may do so
(for example, to maintain the invariant that the pointer is always in the window with the
input focus). Other window managers may want to preserve the illusion that the user is
in sole control of the pointer.

Conventions
1. Clients should not warp the pointer.

2. Clients that insist on warping the pointer should do so only with the src-
window argument of the WarpPointer request set to one of their win-
dows.

6.3 Grabs

A client’s attempt to establish a button or a key grab on a window will fail if some
other client has already established a conflicting grab on the same window. The grabs,
therefore, are shared resources, and their use requires conventions.

In conformance with the principle that clients should behave, as far as possible, when a
window manager is running as they would when it is not, a client that has the input
focus may assume that it can receive all the available keys and buttons.

Convention
Window managers should ensure that they provide some mechanism for their
clients to receive events from all keys and all buttons, except for events involv-
ing keys whose KeySyms are registered as being for window management func-
tions (for example, a hypothetical WINDOW KeySym).

In other words, window managers must provide some mechanism by which a client can
receive events from every key and button (regardless of modifiers) unless and until the
X Consortium registers some KeySyms as being reserved for window management
functions. Currently, no KeySyms are registered for window management functions.

Even so, clients are advised to allow the key and button combinations used to elicit pro-
gram actions to be modified, because some window managers may choose not to
observe this convention or may not provide a convenient method for the user to transmit
events from some keys.

Convention
Clients should establish button and key grabs only on windows that they own.

In particular, this convention means that a window manager that wishes to establish a
grab over the client’s top-level window should either establish the grab on the root, or
reparent the window and establish the grab on a proper ancestor. In some cases, a

6−2 March 26, 1992

-- --

MANIPULATION OF SHARED RESOURCES

window manager may want to consume the event received, placing the window in a
state where a subsequent such event will go to the client. Examples are:

• Clicking in a window to set focus with the click not being offered to the client

• Clicking in a buried window to raise it, again, with the click not offered to the client

More typically, a window manager should add to rather than replace the client’s seman-
tics for key+button combinations by allowing the event to be used by the client after the
window manager is done with it. To ensure this, the window manager should establish
the grab on the parent by using the following:

pointer/keyboard-mode == Synchronous

Then, the window manager should release the grab by using an AllowEvents request
with the following specified:

mode == ReplayPointer/Keyboard

In this way, the client will receive the events as if they had not been intercepted.

Obviously, these conventions place some constraints on possible user interface policies.
There is a trade-off here between freedom for window managers to implement their user
interface policies and freedom for clients to implement theirs. The dilemma is resolved
by:

• Allowing window managers to decide if and when a client will receive an event
from any given key or button

• Placing a requirement on the window manager to provide some mechanism, perhaps
a ‘‘Quote’’ key, by which the user can send an event from any key or button to the
client

6.4 Colormaps

Section 4.1.8 prescribes the following:

Conventions
1. If a client has a top-level window that has subwindows or override-

redirect pop-up windows whose colormap requirements differ from the
top-level window, it should set a WM_COLORMAP_WINDOWS prop-
erty on the top-level window. The WM_COLORMAP_ WINDOWS
property contains a list of the window IDs of windows that the window
manager should track for colormap changes.

2. When a client’s colormap requirements change, the client should change
the colormap window attribute of a top-level window or one of the win-
dows indicated by a WM_COLORMAP_WINDOWS property.

3. Clients must not use InstallColormap or UninstallColormap requests.

March 26, 1992 6−3

-- --

X Window System

If your clients are DirectColor type applications, you should consult section 9.3 of part
I, ‘‘Xlib—C Language X Interface,’’ for conventions connected with sharing standard
colormaps. They should look for and create the properties described there on the root
window of the appropriate screen.

However, the conventions described there are not adequate if the server supports multi-
ple visuals or if standard colormaps need to be deleted. To address this, two additional
fields (visual_id and kill_id) are required in RGB_COLOR_MAP type properties, as
shown in the following table. The colormap described by the property is one appropri-
ate for the screen on whose root the property is found.

The contents of the RGB_COLOR_MAP type property are as follows:

33
Field Type Comments
33
colormap COLORMAP ID of the colormap described
red_max CARD32 Values for pixel calculations
red_mult CARD32
green_max CARD32
green_mult CARD32
blue_max CARD32
blue_mult CARD32
base_pixel CARD32
visual_id VISUALID Visual to which colormap belongs
kill_id CARD32 ID for destroying the resources

When deleting or replacing an RGB_COLOR_MAP, it is not sufficient to delete the
property; it is important to free the associated colormap resources as well. If kill_id is
greater than one, the resources should be freed by issuing a KillClient request with
kill_id as the argument. If kill_id is one, the resources should be freed by issuing a
FreeColormap request with colormap as the colormap argument. If kill_id is zero, no
attempt should be made to free the resources. A client that creates an
RGB_COLOR_MAP for which the colormap resource is created specifically for this
purpose should set kill_id to one (and can create more than one such standard colormap
using a single connection). A client that creates an RGB_COLOR_MAP for which the
colormap resource is shared in some way (for example, is the default colormap for the
root window) should create an arbitrary resource and use its resource ID for kill_id (and
should create no other standard colormaps on the connection).

Convention
If an RGB_COLOR_MAP property is too short to contain the visual_id field, it
can be assumed that the visual_id is the root visual of the appropriate screen. If
an RGB_COLOR_MAP property is too short to contain the kill_id field, a value
of zero can be assumed.

During the connection handshake, the server informs the client of the default colormap
for each screen. This is a colormap for the root visual, and clients can use it to improve
the extent of colormap sharing if they use the root visual.

6−4 March 26, 1992

-- --

MANIPULATION OF SHARED RESOURCES

A similar capability is desirable for other visuals and can be supported by changing the
definition of the RGB_DEFAULT_MAP property in section 9.3.1 of part I, ‘‘Xlib—C
Language X Interface,’’ to read as follows:

This atom names a property. The value of the property is an array of XStandardColor-
map structures (as extended to include visual_id and kill_id fields).

Each entry in the array describes an RGB subset of the default colormap for the visual
specified by visual_id.

6.5 The Keyboard Mapping

The X server contains a table (which is read by GetKeyboardMapping requests) that
describes the set of symbols appearing on the corresponding key for each keycode gen-
erated by the server. This table does not affect the server’s operations in any way; it is
simply a database used by clients that attempt to understand the keycodes they receive.
Nevertheless, it is a shared resource and requires conventions.

It is possible for clients to modify this table by using a ChangeKeyboardMapping
request. In general, clients should not do this. In particular, this is not the way in
which clients should implement key bindings or key remapping. The conversion
between a sequence of keycodes received from the server and a string in a particular
encoding is a private matter for each client (as it must be in a world where applications
may be using different encodings to support different languages and fonts). This
conversion for ISO Latin-1 is implemented by the Xlib XLookupString function; there
will presumably be equivalent functions for other encodings.

The only valid reason for using a ChangeKeyboardMapping request is when the
symbols written on the keys have changed as, for example, when a Dvorak key conver-
sion kit or a set of APL keycaps has been installed. Of course, a client may have to
take the change to the keycap on trust.

The following illustrates a permissible interaction between a client and a user:

Client:‘‘You just started me on a server without a Pause key. Please choose a
key to be the Pause key and press it now.’’

User:Presses the Scroll Lock key

Client:‘‘Adding Pause to the symbols on the Scroll Lock key: Confirm or
Abort.’’

User:Confirms

Client:Uses a ChangeKeyboardMapping request to add Pause to the keycode
that already contains Scroll Lock and issues this request, ‘‘Please paint Pause on the
Scroll Lock key.’’

Convention

March 26, 1992 6−5

-- --

X Window System

Clients should not use ChangeKeyboardMapping requests.

If a client succeeds in changing the keyboard mapping table, all clients will receive
MappingNotify(request==Keyboard) events. There is no mechanism to avoid receiv-
ing these events.

Convention
Clients receiving MappingNotify (request==Keyboard) events should update
any internal keycode translation tables they are using.

6.6 The Modifier Mapping

X Version 11 supports eight modifier bits of which three are preassigned to Shift, Lock,
and Control. Each modifier bit is controlled by the state of a set of keys, and these sets
are specified in a table accessed by GetModifierMapping and SetModifierMapping
requests. This table is a shared resource and requires conventions.

A client that needs to use one of the preassigned modifiers should assume that the
modifier table has been set up correctly to control these modifiers. The Lock modifier
should be interpreted as Caps Lock or Shift Lock according as the keycodes in its con-
trolling set include XK_Caps_Lock or XK_Shift_Lock.

Convention
Clients should determine the meaning of a modifier bit from the KeySyms being
used to control it.

A client that needs to use an extra modifier (for example, META) should do the follow-
ing:

• Scan the existing modifier mappings. If it finds a modifier that contains a keycode
whose set of KeySyms includes XK_Meta_L or XK_Meta_R, it should use that
modifier bit.

• If there is no existing modifier controlled by XK_Meta_L or XK_Meta_R, it should
select an unused modifier bit (one with an empty controlling set) and do the follow-
ing:

— If there is a keycode with XL_Meta_L in its set of KeySyms, add that keycode
to the set for the chosen modifier.

— If there is a keycode with XL_Meta_R in its set of KeySyms, add that keycode
to the set for the chosen modifier.

— If the controlling set is still empty, interact with the user to select one or more
keys to be META.

• If there are no unused modifier bits, ask the user to take corrective action.

Conventions

6−6 March 26, 1992

-- --

MANIPULATION OF SHARED RESOURCES

1. Clients needing a modifier not currently in use should assign keycodes
carrying suitable KeySyms to an unused modifier bit.

2. Clients assigning their own modifier bits should ask the user politely to
remove his or her hands from the key in question if their
SetModifierMapping request returns a Busy status.

There is no good solution to the problem of reclaiming assignments to the five
nonpreassigned modifiers when they are no longer being used.

Convention
The user has to use xmodmap or some other utility to deassign obsolete
modifier mappings by hand.

Problem
This is unpleasantly low-tech.

When a client succeeds in performing a SetModifierMapping request, all clients will
receive MappingNotify(request==Modifier) events. There is no mechanism for
preventing these events from being received. A client that uses one of the nonpreas-
signed modifiers that receives one of these events should do a GetModifierMapping
request to discover the new mapping, and if the modifier it is using has been cleared, it
should reinstall the modifier.

Note that a GrabServer request must be used to make the GetModifierMapping and
SetModifierMapping pair in these transactions atomic.

March 26, 1992 6−7

-- --

X Window System

Part IV. X Logical Font Descriptions

Jim Flowers

6−8 March 26, 1992

-- --

Chapter 1. INTRODUCTION

It is a requirement that X client applications must be portable across server implementa-
tions, with very different file systems, naming conventions, and font libraries. However,
font access requests, as defined by part II, ‘‘X Window System Protocol,’’ neither
specify server-independent conventions for font names nor provide adequate font prop-
erties for logically describing typographic fonts.

X clients must be able to dynamically determine the fonts available on any given server
so that understandable information can be presented to the user or that intelligent font
fallbacks can be chosen. It is desirable for the most common queries to be accom-
plished without the overhead of opening each font and inspecting font properties, by
means of simple ListFonts requests. For example, if a user selected a Helvetica typeface
family, a client application should be able to query the server for all Helvetica fonts and
present only those setwidths, weights, slants, point sizes, and character sets available for
that family.

This part of the book gives a standard logical font description (hereafter referred to as
XLFD) and the conventions to be used in the core protocol so that clients can query and
access screen type libraries in a consistent manner across all X servers. In addition to
completely specifying a given font by means of its FontName, the XLFD also provides
for a standard set of key FontProperties that describe the font in more detail.

The XLFD provides an adequate set of typographic font properties, such as
CAP_HEIGHT, X_HEIGHT, RELATIVE_SETWIDTH, for publishing and other applica-
tions to do intelligent font matching or substitution when handling documents created
on some foreign server that use potentially unknown fonts. In addition, this information
is required by certain clients to position subscripts automatically and determine small
capital heights, recommended leading, word-space values, and so on.

March 26, 1992 1−1

-- --

Chapter 2. REQUIREMENTS AND GOALS

The XLFD meets the short and long-term goals to have a standard logical font descrip-
tion that:

• Provides unique, descriptive font names that support simple pattern matching

• Supports multiple font vendors, arbitrary character sets, and encodings

• Is independent of X server and operating or file system implementations

• Supports arbitrarily complex font matching or substitution

• Is extensible

2.1 Provide Unique and Descriptive Font Names

It should be possible to have font names that are long enough and descriptive enough to
have a reasonable probability of being unique without inventing a new registration
organization. Resolution and size-dependent font masters, multivendor font libraries,
and so on must be anticipated and handled by the font name alone.

The name itself should be structured to be amenable to simple pattern matching and
parsing, thus, allowing X clients to restrict font queries to some subset of all possible
fonts in the server.

2.2 Support Multiple Font Vendors and Character Sets

The font name and properties should distinguish between fonts that were supplied by
different font vendors but that possibly share the same name. We anticipate a highly
competitive font market where users will be able to buy fonts from many sources
according to their particular requirements.

March 26, 1992 2−1

-- --

X Window System

A number of font vendors deliver each font with all glyphs designed for that font, where
charset mappings are defined by encoding vectors. Some server implementations may
force these mappings to proprietary or standard charsets statically in the font data. Oth-
ers may desire to perform the mapping dynamically in the server. Provisions must be
made in the font name that allows a font request to specify or identify specific charset
mappings in server environments where multiple charsets are supported.

2.3 Be Independent of X Server and Operating or File Sys-
tem

X client applications that require a particular font should be able to use the descriptive
name without knowledge of the file system or other repository in use by the server.
However, it should be possible for servers to translate a given font name into a file
name syntax that it knows how to deal with, without compromising the uniqueness of
the font name. This algorithm should be reversible (exactly how this translation is done
is implementation dependent).

2.4 Support Arbitrarily Complex Font Matching and Substi-
tution

In addition to the font name, the XLFD should define a standard list of descriptive font
properties, with agreed upon fallbacks for all fonts. This allows client applications to
derive font-specific formatting or display data and to perform font matching or substitu-
tion when asked to handle potentially unknown fonts, as required.

2.5 Be Extensible

The XLFD must be extensible so that new and/or private descriptive font properties can
be added to conforming fonts without making existing X client or server implementa-
tions obsolete.

2−2 March 26, 1992

-- --

Chapter 3. X LOGICAL FONT DESCRIPTION

XLFD is divided into two basic components: the FontName, which gives all font infor-
mation needed to uniquely identify a font in X protocol requests (for example, Open-
Font, ListFonts, and so on) and a variable list of optional FontProperties, which
describe a font in more detail.

The FontName is used in font queries and is returned as data in certain X protocol
requests. It is also specified as the data value for the FONT item in the X Consortium
Character Bitmap Distribution Format Standard (BDF V2.1—see appendix H).

The FontProperties are supplied on a font-by-font basis and are returned as data in cer-
tain X protocol requests as part of the XFontStruct data structure. The names and asso-
ciated data values for each of the FontProperties may also appear as items of the
STARTPROPERTIES. . .ENDPROPERTIES list in the BDF V2.1 specification.

3.1 FontName

Each FontName is logically composed of two strings: a FontNameRegistry prefix that
is followed by a FontNameSuffix. The FontNameRegistry is an x-registered-name (a
name that has been registered with the X Consortium) that identifies the registration
authority that owns the specified FontNameSuffix syntax and semantics.

All font names that conform to this specification are to use a FontNameRegistry prefix,
which is defined to be the string ‘‘–’’ (that is, ISO 8859-1 HYPHEN - Column/Row
02/13). All FontNameRegistry prefixes of the form: +version–, where the specified
version indicates some future XLFD specification, are reserved by the X Consortium for
future extensions to XLFD font names. If required, extensions to the current XLFD
font name shall be constructed by appending new fields to the current structure, each
delimited by the existing field delimiter. The availability of other FontNameRegistry
prefixes or fonts that support other registries is server implementation dependent.

In the X protocol specification, the FontName is required to be a string; hence, numeric
field values are represented in the name as string equivalents. All FontNameSuffix
fields are also defined as FontProperties; numeric property values are represented as

March 26, 1992 3−1

-- --

X Window System

signed or unsigned integers, as appropriate.

3.1.1 FontName Syntax

The FontName is a structured, parsable string (of type STRING8) whose Backus-Naur
Form syntax description is as follows:

FontName ::= XFontNameRegistry XFontNameSuffix | PrivFontName
Registry PrivFontNameSuffix

XFontNameRegistry ::= XFNDelim | XFNExtPrefix Version XFNDelim
XFontNameSuffix ::= FOUNDRY XFNDelim FAMILY_NAME XFNDelim

WEIGHT_NAME XFNDelim SLANT XFNDelim SETWIDTH_NA
XFNDelim ADD_ STYLE_NAME XFNDelim PIXEL_SIZE
XFNDelim POINT_SIZE XFNDelim RESOLUTION_X XFNDelim
RESOLUTION_Y XFNDelim SPACING XFNDelim AVERAGE_W
XFNDelim CHARSET_ REGISTRY XFNDelim CHARSET_ENCO

Version ::= STRING8—the XLFD version that defines an extension
to the font name syntax (for example, ‘‘1.4’’)

XFNExtPrefix ::= OCTET—the value of ISO8859-1 PLUS (Column/Row 02/11)
XFNDelim ::= OCTET—the value of ISO8859-1 HYPHEN (Column/Row 02/13)

PrivFontNameRegistry ::= STRING8—other than those strings reserved by XLFD
PrivFontNameSuffix ::= STRING8

Field values are constructed as strings of ISO8859-1 graphic characters, excluding the
following:

• HYPHEN (02/13), the XLFD font name delimiter character

• QUESTION MARK (03/15) and ASTERISK (02/10), the X protocol fontname wild-
card characters

Alphabetic case distinctions are allowed but are for human readability concerns only.
Conforming X servers will perform matching on font name query or open requests
independent of case. The entire font name string must have no more than 255 charac-
ters. It is recommended that clients construct font name query patterns by explicitly
including all field delimiters to avoid unexpected results. Note that SPACE is a valid
character of a FontName field; for example, the string ITC Avant Garde Gothic might
be a FAMILY_NAME.

3.1.2 FontName Field Definitions

This section discusses the FontName:

• FOUNDRY field

3−2 March 26, 1992

-- --

X LOGICAL FONT DESCRIPTION

• FAMILY_NAME field

• WEIGHT_NAME field

• SLANT field

• SETWIDTH_NAME field

• ADD_STYLE_NAME field

• PIXEL_SIZE field

• POINT_SIZE field

• RESOLUTION_X and RESOLUTION_Y fields

• SPACING field

• AVERAGE_WIDTH field

• CHARSET_REGISTRY and CHARSET_ENCODING fields

3.1.2.1 FOUNDRY Field

FOUNDRY is an x-registered-name, the name or identifier of the digital type foundry
that digitized and supplied the font data, or if different, the identifier of the organization
that last modified the font shape or metric information.

The reason this distinction is necessary is that a given font design may be licensed from
one source (for example, ITC) but digitized and sold by any number of different type
suppliers. Each digital version of the original design, in general, will be somewhat
different in metrics and shape from the idealized original font data, because each font
foundry, for better or for worse, has its own standards and practices for tweaking a
typeface for a particular generation of output technologies or has its own perception of
market needs.

It is up to the type supplier to register with the X Consortium a suitable name for this
FontName field according to the registration procedures defined by the Consortium.

The X Consortium shall define procedures for registering foundry and other names and
shall maintain and publish, as part of its public distribution, a registry of such registered
names for use in XLFD font names and properties.

3.1.2.2 FAMILY_NAME Field

FAMILY_NAME is a string that identifies the range or ‘‘family’’ of typeface designs
that are all variations of one basic typographic style. This must be spelled out in full,
with words separated by spaces, as required. This name must be human-understandable

March 26, 1992 3−3

-- --

X Window System

and suitable for presentation to a font user to identify the typeface family.

It is up to the type supplier to supply and maintain a suitable string for this field and
font property, to secure the proper legal title to a given name, and to guard against the
infringement of other’s copyrights or trademarks. By convention, FAMILY_NAME is
not translated. FAMILY_NAME may include an indication of design ownership if con-
sidered a valid part of the typeface family name.

The following are examples of FAMILY_NAME:

• Helvetica

• ITC Avant Garde Gothic

• Times

• Times Roman

• Bitstream Amerigo

• Stone

3.1.2.3 WEIGHT_NAME Field

WEIGHT_NAME is a string that identifies the font’s typographic weight, that is, the
nominal blackness of the font, according to the FOUNDRY’s judgment. This name
must be human-understandable and suitable for presentation to a font user.

The interpretation of this field is somewhat problematic because the typographic judg-
ment of weight has traditionally depended on the overall design of the typeface family
in question; that is, it is possible that the DemiBold weight of one font could be almost
equivalent in typographic feel to a Bold font from another family.

WEIGHT_NAME is captured as an arbitrary string because it is an important part of a
font’s complete human-understandable name. However, it should not be used for font
matching or substitution. For this purpose, X client applications should use the weight-
related font properties (RELATIVE_WEIGHT and WEIGHT) that give the coded rela-
tive weight and the calculated weight, respectively.

3.1.2.4 SLANT Field

SLANT is a code-string that indicates the overall posture of the typeface design used in
the font. The encoding is as follows:

33
Code English Translation Description
33
‘‘R’’ Roman Upright design

3−4 March 26, 1992

-- --

X LOGICAL FONT DESCRIPTION

‘‘I’’ Italic Italic design, slanted clockwise from the vertical
‘‘O’’ Oblique Obliqued upright design, slanted clockwise from the

vertical
‘‘RI’’ Reverse Italic Italic design, slanted counterclockwise from the vert
‘‘RO’’ Reverse Oblique Obliqued upright design, slanted counterclockwise

from the vertical
‘‘OT’’ Other Other

The SLANT codes are for programming convenience only and usually are converted
into their equivalent human-understandable form before being presented to a user.

3.1.2.5 SETWIDTH_NAME Field

SETWIDTH_NAME is a string that gives the font’s typographic proportionate width,
that is, the nominal width per horizontal unit of the font, according to the FOUNDRY’s
judgment.

As with WEIGHT_NAME, the interpretation of this field or font property is somewhat
problematic, because the designer’s judgment of setwidth has traditionally depended on
the overall design of the typeface family in question. For purposes of font matching or
substitution, X client applications should either use the RELATIVE_SETWIDTH font
property that gives the relative coded proportionate width or calculate the proportionate
width.

The following are examples of SETWIDTH_NAME:

• Normal

• Condensed

• Narrow

• Double Wide

3.1.2.6 ADD_STYLE_NAME Field

ADD_STYLE_NAME is a string that identifies additional typographic style information
that is not captured by other fields but is needed to identify the particular font.

ADD_STYLE_NAME is not a typeface classification field and is only used for unique-
ness. Its use, as such, is not limited to typographic style distinctions.

The following are examples of ADD_STYLE_NAME:

• Serif

• Sans Serif

March 26, 1992 3−5

-- --

X Window System

• Informal

• Decorated

3.1.2.7 PIXEL_SIZE Field

PIXEL_SIZE is an unsigned integer-string typographic metric in device pixels that
gives the body size of the font at a particular POINT_SIZE and RESOLUTION_Y.
PIXEL_SIZE usually incorporates additional vertical spacing that is considered part of
the font design. (Note, however, that this value is not necessarily equivalent to the
height of the font bounding box.) PIXEL_SIZE is in the range zero to a very large
number.

PIXEL_SIZE usually is used by X client applications that need to query fonts according
to device-dependent size, regardless of the point size or vertical resolution for which the
font was designed.

3.1.2.8 POINT_SIZE Field

POINT_SIZE is an unsigned integer-string typographic metric in device-independent
units that gives the body size for which the font was designed. This field usually incor-
porates additional vertical spacing that is considered part of the font design. (Note,
however, that POINT_SIZE is not necessarily equivalent to the height of the font
bounding box.) POINT_SIZE is expressed in decipoints (where points are as defined in
the X protocol or 72.27 points equal 1 inch) in the range zero to a very large number.

POINT_SIZE and RESOLUTION_Y are used by X clients to query fonts according to
device-independent size to maintain constant text size on the display regardless of the
PIXEL_SIZE used for the font.

3.1.2.9 RESOLUTION_X and RESOLUTION_Y Fields

RESOLUTION_X and RESOLUTION_Y are unsigned integer-strings that give the hor-
izontal and vertical resolution, measured in pixels or dots per inch (dpi), for which the
font was designed. Horizontal and vertical values are required because a separate bit-
map font must be designed for displays with very different aspect ratios (for example,
1:1, 4:3, 2:1, and so on).

The separation of pixel or point size and resolution is necessary because X allows for
servers with very different video characteristics (for example, horizontal and vertical
resolution, screen and pixel size, pixel shape, and so on) to potentially access the same
font library. The font name, for example, must differentiate between a 14 point font

3−6 March 26, 1992

-- --

X LOGICAL FONT DESCRIPTION

designed for 75 dpi (body size of about 14 pixels) or a 14 point font designed for 150
dpi (body size of about 28 pixels). Further, in servers that implement some or all fonts
as continuously scaled and scan-converted outlines, POINT_SIZE and
RESOLUTION_Y may help the server to differentiate between potentially separate font
masters for text, title, and display sizes or for other typographic considerations.

3.1.2.10 SPACING Field

SPACING is a code-string that indicates the escapement class of the font, that is,
monospace (fixed pitch), proportional (variable pitch), or charcell (a special monospaced
font that conforms to the traditional data processing character cell font model). The
encoding is as follows:

33
Code English Translation Description
33
‘‘P’’ Proportional A font whose logical character widths vary
glyph. Note that no other restrictions are placed on the met
‘‘M’’ Monospaced A font whose logical character widths are
is, all char widths of the font are = max_bou

on the metrics of a monospaced font.
‘‘C’’ CharCell A monospaced font that follows the standard
character cell model (that is, the glyphs of the fon

of the same width and height that are imaged
side to form text strings or top-to-bottom to form

the same logical character wid
‘‘ink’’ outside of the character cell. There is no

(that is, on a per character basis with
right-bearing ≤ width; with negative metrics: width

left-bearing ≤ right-bearing ≤ zero). Also, th
exceed the vertical spacing (that is, on a per

basis: ascent ≤ font-ascent and descent ≤ fon
+ font-ascent, and the width = AVERAGE_WIDTH.

3.1.2.11 AVERAGE_WIDTH Field

AVERAGE_WIDTH is an unsigned integer-string typographic metric value that gives
the unweighted arithmetic mean width of all glyphs in the font (measured in tenths of
pixels). For monospaced and character cell fonts, this is the width of all glyphs in the
font.

March 26, 1992 3−7

-- --

X Window System

3.1.2.12 CHARSET_REGISTRY and CHARSET_ENCODING Fields

The character set used to encode the glyphs of the font (and implicitly the font’s glyph
repertoire), as maintained by the X Consortium character set registry. CHAR-
SET_REGISTRY is an x-registered-name that identifies the registration authority that
owns the specified encoding. CHARSET_ENCODING is a registered-name that
identifies the coded character set as defined by that registration authority.

Although the X protocol does not explicitly have any knowledge about character set
encodings, it is expected that server implementers will prefer to embed knowledge of
certain proprietary or standard charsets into their font library for reasons of performance
and convenience. The CHARSET_REGISTRY and CHARSET_ENCODING fields or
properties allow an X client font request to specify a specific charset mapping in server
environments where multiple charsets are supported. The availability of any particular
character set is font and server implementation dependent.

To prevent collisions when defining character set names, it is recommended that
CHARSET_REGISTRY and CHARSET_ENCODING name pairs be constructed
according to the following conventions:

CharsetRegistry ::= StdCharsetRegistryName | PrivCharsetRegistry-
Name

CharsetEncoding ::= StdCharsetEncodingName | PrivCharsetEncoding-
Name

StdCharsetRegistryName ::= StdOrganizationId StdNumber | StdOrganizationId
StdNumber Dot Year

PrivCharsetRegistryName ::= OrganizationId STRING8
StdCharsetEncodingName ::= STRING8–numeric part number of

referenced standard
PrivCharsetEncodingName ::= STRING8

StdOrganizationId ::= STRING8–the registered name or acronym
of the referenced standard organization

StdNumber ::= STRING8–referenced standard number
OrganizationId ::= STRING8–the registered name or acronym

of the organization
Dot ::= ‘‘.’’–ISO 8859-1 FULL STOP (Column/Row 2/14)

Year ::= STRING8–numeric year (for example, 1989)

The X Consortium shall maintain and publish a registry of such character set names for
use in X protocol font names and properties as specified in XLFD (see appendix G, ‘‘X
Consortium Standard Character Set Names’’).

The ISO Latin-1 character set shall be registered by the X Consortium as the
CHARSET_REGISTRY-CHARSET_ENCODING value pair: ‘‘ISO8859-1’’.

3−8 March 26, 1992

-- --

X LOGICAL FONT DESCRIPTION

3.1.3 Examples

The following examples of font names are derived from the screen fonts shipped with
the X11 Release 3 server.

33
Font X FontName
33
75 dpi Fonts

Charter 12 pt -Bitstream-Charter-Medium-R-Normal--12-120-75-75-P-
68-ISO8859-1

Charter Bold 12 pt -Bitstream-Charter-Bold-R-Normal--12-120-75-75-P-76-
ISO8859-1

Charter Bold Italic 12 pt -Bitstream-Charter-Bold-I-Normal--12-120-75-75-P-75-
ISO8859-1

Charter Italic 12 pt -Bitstream-Charter-Medium-I-Normal--12-120-75-75-
ISO8859-1
Courier 8 pt -Adobe-Courier-Medium-R-Normal--8-80-75-75-M-50-

ISO8859-1
Courier 10 pt -Adobe-Courier-Medium-R-Normal--10-100-75-75-M-

60-ISO8859-1
Courier 12 pt -Adobe-Courier-Medium-R-Normal--12-120-75-75-M-

70-ISO8859-1
Courier 14 pt -Adobe-Courier-Medium-R-Normal--14-140-75-75-M-

90-ISO8859-1
Courier 18 pt -Adobe-Courier-Medium-R-Normal--18-180-75-75-M-

110-ISO8859-1
Courier 24 pt -Adobe-Courier-Medium-R-Normal--24-240-75-75-M-150-

ISO8859-1
Courier Bold 10 pt -Adobe-Courier-Bold-R-Normal--10-100-75-75-M-

60-ISO8859-1
Courier Bold Oblique 10 pt -Adobe-Courier-Bold-O-Normal--10-100-75-75-M-.br
ISO8859-1
Courier Oblique 10 pt -Adobe-Courier-Medium-O-Normal--10-100-75-75-M-

60-ISO8859-1

100 dpi Fonts

Symbol 8 pt -Adobe-Symbol-Medium-R-Normal--11-80-100-
100-P-61-Adobe-FONTSPECIFIC

Symbol 10 pt -Adobe-Symbol-Medium-R-Normal--14-100-
100-100-P-85-Adobe-FONTSPECIFIC

Symbol 12 pt -Adobe-Symbol-Medium-R-Normal--17-120-
100-100-P-95-Adobe-FONTSPECIFIC

Symbol 14 pt -Adobe-Symbol-Medium-R-Normal--20-140-
100-100-P-107-Adobe-FONTSPECIFIC

Symbol 18 pt -Adobe-Symbol-Medium-R-Normal--25-180-

March 26, 1992 3−9

-- --

X Window System

100-100-P-142-Adobe-FONTSPECIFIC
Symbol 24 pt -Adobe-Symbol-Medium-R-Normal--34-240-

100-100-P-191-Adobe-FONTSPECIFIC
Times Bold 10 pt -Adobe-Times-Bold-R-Normal--14-100-100-100-P-76-ISO8859
Times Bold Italic 10 pt -Adobe-Times-Bold-I-Normal--14-100-100-100-P-77-ISO8859-
Times Italic 10 pt -Adobe-Times-Medium-I-Normal--14-100-100-100-P-73-ISO88
Times Roman 10 pt -Adobe-Times-Medium-R-Normal--14-100-100-100-P-74-ISO88

3.2 FontProperties

All font properties are optional but will generally include the font name fields and, on a
font-by-font basis, any other useful font descriptive and use information that may be
required to use the font intelligently. The XLFD specifies an extensive set of standard
X font properties, their interpretation, and fallback rules when the property is not
defined for a given font. The goal is to provide client applications with enough font
information to be able to make automatic formatting and display decisions with good
typographic results.

Additional standard X font property definitions may be defined in the future and private
properties may exist in X fonts at any time. Private font properties should be defined to
conform to the general mechanism defined in the X protocol to prevent overlap of name
space and ambiguous property names, that is, private font property names are of the
form: ISO8859-1 UNDERSCORE (Column/Row 05/15), followed by the organizational
identifier, followed by UNDERSCORE, and terminated with the property name.

The Backus-Naur Form syntax description of X font properties is as follows:

Properties ::= OptFontPropList
OptFontPropList ::= NULL | OptFontProp OptFontPropList

OptFontProp ::= PrivateFontProp | XFontProp
PrivateFontProp ::= STRING8 | Underscore OrganizationId Underscore STRING8

XFontProp ::= FOUNDRY | FAMILY_NAME | WEIGHT_NAME | SLANT |
SETWIDTH_NAME | ADD_STYLE_NAME | PIXEL_SIZE |
POINT_SIZE | RESOLUTION_X | RESOLUTION_Y | SPACING |
AVERAGE_WIDTH | CHARSET_REGISTRY | CHARSET_ENCODING |
QUAD_WIDTH | RESOLUTION | MIN_SPACE | NORM_SPACE |
MAX_SPACE | END_SPACE | SUPERSCRIPT_X | SUPERSCRIPT_Y |
SUBSCRIPT_X | SUBSCRIPT_Y | UNDERLINE_POSITION |
UNDERLINE_THICKNESS | STRIKEOUT_ASCENT | STRIKE-
OUT_DESCENT | ITALIC_ANGLE | X_HEIGHT | WEIGHT |
FACE_NAME | COPYRIGHT | AVG_CAPITAL_WIDTH | AVG_LOWER
CASE_WIDTH | RELATIVE_SETWIDTH | RELATIVE_WEIGHT |
CAP_HEIGHT | SUPERSCRIPT_ SIZE | FIGURE_WIDTH | SUB-
SCRIPT_SIZE | SMALL_CAP_SIZE | NOTICE | DESTINATION

Underscore ::= OCTET–the value of ISO8859-1 UNDERSCORE character (Column/Row 0
OrganizationId ::= STRING8–the registered name of the organization

3−10 March 26, 1992

-- --

X LOGICAL FONT DESCRIPTION

3.2.1 FOUNDRY

FOUNDRY is as defined in the FontName except that the property type is ATOM.

FOUNDRY cannot be calculated or defaulted if not supplied as a font property.

3.2.2 FAMILY_NAME

FAMILY_NAME is as defined in the FontName except that the property type is
ATOM.

FAMILY_NAME cannot be calculated or defaulted if not supplied as a font property.

3.2.3 WEIGHT_NAME

WEIGHT_NAME is as defined in the FontName except that the property type is
ATOM.

WEIGHT_NAME can be defaulted if not supplied as a font property, as follows:

if (WEIGHT_NAME undefined) then
WEIGHT_NAME = ATOM(‘‘Medium’’)

3.2.4 SLANT

SLANT is as defined in the FontName except that the property type is ATOM.

SLANT can be defaulted if not supplied as a font property, as follows:

if (SLANT undefined) then
SLANT = ATOM(‘‘R’’)

3.2.5 SETWIDTH_NAME

SETWIDTH_NAME is as defined in the FontName except that the property type is
ATOM.

SETWIDTH_NAME can be defaulted if not supplied as a font property, as follows:

March 26, 1992 3−11

-- --

X Window System

if (SETWIDTH_NAME undefined) then
SETWIDTH_NAME = ATOM(‘‘Normal’’)

3.2.6 ADD_STYLE_NAME

ADD_STYLE_NAME is as defined in the FontName except that the property type is
ATOM.

ADD_STYLE_NAME can be defaulted if not supplied as a font property, as follows:

if (ADD_STYLE_NAME undefined) then
ADD_STYLE_NAME = ATOM(‘‘ ’’)

3.2.7 PIXEL_SIZE

PIXEL_SIZE is as defined in the FontName except that the property type is CARD32.

X clients requiring pixel values for the various typographic fixed spaces (em space, en
space and thin space), can use the following algorithm for computing these values from
other properties specified for a font:

DeciPointsPerInch = 722.7
EMspace = ROUND ((RESOLUTION_X * POINT_SIZE) /

DeciPointsPerInch)
ENspace = ROUND (EMspace / 2)
THINspace = ROUND (EMspace / 3)

where a slash ‘‘/’’ denotes real division, the asterisk ‘‘*’’ denotes real multiplication,
and ‘‘ROUND’’ denotes a function that rounds its real argument ’a’ up or down to the
next integer. This rounding is done according to X = FLOOR(a + O.5), where FLOOR
is a function that rounds its real argument down to an integer.

PIXEL_SIZE can be approximated if not supplied as a font property, according to the
following algorithm:

DeciPointsPerInch = 722.7 if (PIXEL_SIZE undefined) then
PIXEL_SIZE = ROUND ((RESOLUTION_Y * POINT_SIZE) / DeciPointsPerInch)

3.2.8 POINT_SIZE

POINT_SIZE is as defined in the FontName except that the property type is CARD32.

3−12 March 26, 1992

-- --

X LOGICAL FONT DESCRIPTION

X clients requiring device-independent values for em space, en space, and thin space
can use the following algorithm:

EMspace = ROUND (POINT_SIZE / 10)
ENspace = ROUND (POINT_SIZE / 20)
THINspace = ROUND (POINT_SIZE / 30)

Design POINT_SIZE cannot be calculated or approximated.

3.2.9 RESOLUTION_X

RESOLUTION_X is as defined in the FontName except that the property type is
CARD32.

RESOLUTION_X cannot be calculated or approximated.

3.2.10 RESOLUTION_Y

RESOLUTION_Y is as defined in the FontName except that the property type is
CARD32.

RESOLUTION_X cannot be calculated or approximated.

3.2.11 SPACING

SPACING is as defined in the FontName except that the property type is ATOM.

SPACING can be calculated if not supplied as a font property, according to the
definitions given above for the FontName.

3.2.12 AVERAGE_WIDTH

AVERAGE_WIDTH is as defined in the FontName except that the property type is
CARD32.

AVERAGE_WIDTH can be calculated if not provided as a font property, according to
the following algorithm:

if (AVERAGE_WIDTH undefined) then

March 26, 1992 3−13

-- --

X Window System

AVERAGE_WIDTH = ROUND (MEAN (all glyph widths in font) * 10)

where MEAN is a function that returns the arithmetic mean of its arguments.

X clients that require values for the number of characters per inch (pitch) of a
monospaced font can use the following algorithm using the AVERAGE_WIDTH and
RESOLUTION_X font properties:

if (SPACING not proportional) then
CharPitch = (RESOLUTION_X * 10) / AVERAGE_WIDTH

3.2.13 CHARSET_REGISTRY

CHARSET_REGISTRY is as defined in the FontName except that the property type is
ATOM.

CHARSET_REGISTRY cannot be defaulted if not supplied as a font property.

3.2.14 CHARSET_ENCODING

CHARSET_ENCODING is as defined in the FontName except that the property type is
ATOM.

CHARSET_ENCODING cannot be defaulted if not supplied as a font property.

3.2.15 MIN_SPACE

MIN_SPACE is an unsigned integer value (of type CARD32) that gives the recom-
mended minimum word-space value to be used with this font.

MIN_SPACE can be approximated if not provided as a font property, according to the
following algorithm:

if (MIN_SPACE undefined) then
MIN_SPACE = ROUND(0.75 * NORM_SPACE)

3.2.16 NORM_SPACE

NORM_SPACE is an unsigned integer value (of type CARD32) that gives the recom-
mended normal word-space value to be used with this font.

3−14 March 26, 1992

-- --

X LOGICAL FONT DESCRIPTION

NORM_SPACE can be approximated if not provided as a font property, according to
the following algorithm:

DeciPointsPerInch = 722.7
if (NORM_SPACE undefined) then

if (SPACE glyph exists) then
NORM_SPACE = width of SPACE

else NORM_SPACE =
ROUND((0.33 * RESOLUTION_X * POINT_SIZE)/DeciPointsPerInch)

3.2.17 MAX_SPACE

MAX_SPACE is an unsigned integer value (of type CARD32) that gives the recom-
mended maximum word-space value to be used with this font.

MAX_SPACE can be approximated if not provided as a font property, according to the
following algorithm:

if (MAX_SPACE undefined) then
MAX_SPACE = ROUND(1.5 * NORM_SPACE)

3.2.18 END_SPACE

END_SPACE is an unsigned integer value (of type CARD32) that gives the recom-
mended spacing at the end of sentences.

END_SPACE can be approximated if not provided as a font property, according to the
following algorithm:

if (END_SPACE undefined) then
END_SPACE = NORM_SPACE

3.2.19 AVG_CAPITAL_WIDTH

AVG_CAPITAL_WIDTH is an integer value (of type INT32) that gives the unweighted
arithmetic mean width of all the capital glyphs in the font, in tenths of pixels (applies to
Latin and non-Latin fonts). For Latin fonts, capitals are the glyphs A through Z. This
property is usually used for font matching or substitution.

AVG_CAPITAL_WIDTH can be calculated if not provided as a font prop-
erty, according to the following algorithm:

March 26, 1992 3−15

-- --

X Window System

if (AVG_CAPITAL_WIDTH undefined) then
AVG_CAPITAL_WIDTH = ROUND (MEAN (capital glyph widths) * 10)

3.2.20 AVG_LOWERCASE_WIDTH

AVG_LOWERCASE_WIDTH is an integer value (of type INT32) that gives the
unweighted arithmetic mean width of all the lowercase glyphs in the font in tenths of
pixels. For Latin fonts, lowercase are the glyphs a through z. This property is usually
used for font matching or substitution.

Where appropriate, AVG_LOWERCASE_WIDTH can be approximated if not provided
as a font property, according to the following algorithm:

if (AVG_LOWERCASE_WIDTH undefined) then
if (lowercase exists) then

AVG_LOWERCASE_WIDTH = ROUND (MEAN (lowercase glyph widths) * 10)
else AVG_LOWERCASE_WIDTH undefined

3.2.21 QUAD_WIDTH

QUAD_WIDTH is an integer typographic metric (of type INT32) that gives the width
of a quad (em) space.

Note: Because all typographic fixed spaces (em, en, and thin) are constant for
a given font size (that is, they do not vary according to setwidth), the
use of this font property has been deprecated. X clients that require
typographic fixed space values are encouraged to discontinue use of
QUAD_WIDTH and compute these values from other font properties
(for example, PIXEL_SIZE). X clients that require a font-dependent
width value should use either the FIGURE_WIDTH or one of the aver-
age character width font properties (AVERAGE_WIDTH,
AVG_CAPITAL_WIDTH or AVG_LOWERCASE_WIDTH).

3.2.22 FIGURE_WIDTH

FIGURE_WIDTH is an integer typographic metric (of type INT32) that gives the width
of the tabular figures and the dollar sign, if suitable for tabular setting (all widths
equal). For Latin fonts, these tabular figures are the arabic numerals 0 through 9.

FIGURE_WIDTH can be approximated if not supplied as a font property, according to
the following algorithm:

3−16 March 26, 1992

-- --

X LOGICAL FONT DESCRIPTION

if (numerals and DOLLAR sign are defined & widths are equal) then
FIGURE_WIDTH = width of DOLLAR

else FIGURE_WIDTH property undefined

3.2.23 SUPERSCRIPT_X

SUPERSCRIPT_X is an integer value (of type INT32) that gives the recommended hor-
izontal offset in pixels from the position point to the X origin of synthetic superscript
text. If the current position point is at [X,Y], then superscripts should begin at [X +
SUPERSCRIPT_X, Y – SUPERSCRIPT_Y].

SUPERSCRIPT_X can be approximated if not provided as a font property, according to
the following algorithm:

if (SUPERSCRIPT_X undefined) then
if (TANGENT(ITALIC_ANGLE) defined) then

SUPERSCRIPT_X = ROUND((0.40 * CAP_HEIGHT) / TANGENT(ITALIC_ANGLE))
else SUPERSCRIPT_X = ROUND(0.40 * CAP_HEIGHT)

where TANGENT is a trigonometric function that returns the tangent of its argument (in
degrees scaled by 64).

3.2.24 SUPERSCRIPT_Y

SUPERSCRIPT_Y is an integer value (of type INT32) that gives the recommended
vertical offset in pixels from the position point to the Y origin of synthetic superscript
text. If the current position point is at [X,Y], then superscripts should begin at [X +
SUPERSCRIPT_X, Y – SUPERSCRIPT_Y].

SUPERSCRIPT_Y can be approximated if not provided as a font property, according to
the following algorithm:

if (SUPERSCRIPT_Y undefined) then
SUPERSCRIPT_Y = ROUND(0.40 * CAP_HEIGHT)

3.2.25 SUBSCRIPT_X

SUBSCRIPT_X is an integer value (of type INT32) that gives the recommended hor-
izontal offset in pixels from the position point to the X origin of synthetic subscript
text. If the current position point is at [X,Y], then subscripts should begin at [X +
SUBSCRIPT_X, Y + SUBSCRIPT_Y].

March 26, 1992 3−17

-- --

X Window System

SUBSCRIPT_X can be approximated if not provided as a font property, according to
the following algorithm:

if (SUBSCRIPT_X undefined) then
if (TANGENT(ITALIC_ANGLE) defined) then

SUBSCRIPT_X = ROUND((0.40 * CAP_HEIGHT) / TANGENT(ITALIC_ANGLE))
else SUBSCRIPT_X = ROUND(0.40 * CAP_HEIGHT)

3.2.26 SUBSCRIPT_Y

SUBSCRIPT_Y is an integer value (of type INT32) that gives the recommended verti-
cal offset in pixels from the position point to the Y origin of synthetic subscript text. If
the current position point is at [X,Y], then subscripts should begin at [X +
SUBSCRIPT_X, Y + SUBSCRIPT_Y].

SUBSCRIPT_Y can be approximated if not provided as a font property, according to
the following algorithm:

if (SUBSCRIPT_Y undefined) then
SUBSCRIPT_Y = ROUND(0.40 * CAP_HEIGHT)

3.2.27 SUPERSCRIPT_SIZE

SUPERSCRIPT_SIZE is an unsigned integer value (of type CARD32) that gives the
recommended body size of synthetic superscripts to be used with this font, in pixels.
This will generally be smaller than the size of the current font; that is, superscripts are
imaged from a smaller font offset according to SUPERSCRIPT_X and
SUPERSCRIPT_Y.

SUPERSCRIPT_SIZE can be approximated if not provided as a font property, accord-
ing to the following algorithm:

if (SUPERSCRIPT_SIZE undefined) then
SUPERSCRIPT_SIZE = ROUND(0.60 * PIXEL_SIZE)

3.2.28 SUBSCRIPT_SIZE

SUBSCRIPT_SIZE is an unsigned integer value (of type CARD32) that gives the
recommended body size of synthetic subscripts to be used with this font, in pixels. As
with SUPERSCRIPT_SIZE, this will generally be smaller than the size of the current
font; that is, subscripts are imaged from a smaller font offset according to

3−18 March 26, 1992

-- --

X LOGICAL FONT DESCRIPTION

SUBSCRIPT_X and SUBSCRIPT_Y.

SUBSCRIPT_SIZE can be approximated if not provided as a font property, according to
the algorithm:

if (SUBSCRIPT_SIZE undefined) then
SUBSCRIPT_SIZE = ROUND(0.60 * PIXEL_SIZE)

3.2.29 SMALL_CAP_SIZE

SMALL_CAP_SIZE is an integer value (of type CARD32) that gives the recommended
body size of synthetic small capitals to be used with this font, in pixels.
Small capitals are generally imaged from a smaller font of slightly more weight. No
offset [X,Y] is necessary.

SMALL_CAP_SIZE can be approximated if not provided as a font property, according
to the following algorithm:

if (SMALL_CAP_SIZE undefined) then
SMALL_CAP_SIZE = ROUND(PIXEL_SIZE * ((X_HEIGHT

+ ((CAP_HEIGHT – X_HEIGHT) / 3)) / CAP_HEIGHT))

3.2.30 UNDERLINE_POSITION

UNDERLINE_POSITION is an integer value (of type CARD32) that gives the recom-
mended vertical offset in pixels from the baseline to the top of the underline. If the
current position point is at [X,Y], the top of the baseline is given by [X, Y +
UNDERLINE_POSITION].

UNDERLINE_POSITION can be approximated if not provided as a font property,
according to the following algorithm:

if (UNDERLINE_POSITION undefined) then
UNDERLINE_POSITION = ROUND(max_bounds.descent / 2)

3.2.31 UNDERLINE_THICKNESS

UNDERLINE_POSITION is an unsigned integer value (of type CARD32) that gives the
recommended underline thickness, in pixels.

UNDERLINE_THICKNESS can be approximated if not provided as a font property,
according to the following algorithm:

March 26, 1992 3−19

-- --

X Window System

CapStemWidth = average width of the stems of capitals
if (UNDERLINE_THICKNESS undefined) then

UNDERLINE_THICKNESS = CapStemWidth

3.2.32 STRIKEOUT_ASCENT

STRIKEOUT_ASCENT is an integer value (of type INT32) that gives the vertical
ascent for boxing or voiding glyphs in this font. If the current position is at [X,Y] and
the string extent is EXTENT, the upper-left corner of the strikeout box is at [X, Y –
STRIKEOUT_ASCENT] and the lower-right corner of the box is at [X + EXTENT, Y
+ STRIKEOUT_DESCENT].

STRIKEOUT_ASCENT can be approximated if not provided as a font property, accord-
ing to the following algorithm:

if (STRIKEOUT_ASCENT undefined) then
STRIKEOUT_ASCENT = max_bounds.ascent

3.2.33 STRIKEOUT_DESCENT

STRIKEOUT_DESCENT is an integer value (of type INT32) that gives the vertical des-
cent for boxing or voiding glyphs in this font. If the current position is at [X,Y] and the
string extent is EXTENT, the upper-left corner of the strikeout box is at [X, Y –
STRIKEOUT_ASCENT] and the lower-right corner of the box is at [X + EXTENT, Y
+ STRIKEOUT_DESCENT].

STRIKEOUT_DESCENT can be approximated if not provided as a font property,
according to the following algorithm:

if (STRIKEOUT_DESCENT undefined) then
STRIKEOUT_DESCENT = max_bounds.descent

3.2.34 ITALIC_ANGLE

ITALIC_ANGLE is an integer value (of type INT32) that gives the nominal posture
angle of the typeface design, in 1/64 degrees, measured from the glyph origin counter-
clockwise from the three o’clock position.

ITALIC_ANGLE can be defaulted if not provided as a font property, according to the
following algorithm:

if (ITALIC_ANGLE undefined) then

3−20 March 26, 1992

-- --

X LOGICAL FONT DESCRIPTION

ITALIC_ANGLE = (90 * 64)

3.2.35 CAP_HEIGHT

CAP_HEIGHT is an unsigned integer (of type CARD32) that gives the nominal height
of the capital letters contained in the font, as specified by the FOUNDRY or typeface
designer. Where applicable, it is defined to be the height of the Latin uppercase letter
X.

Certain clients require CAP_HEIGHT to compute scale factors and positioning offsets
for synthesized glyphs where this information or designed glyphs are not explicitly pro-
vided by the font (for example, small capitals, superiors, inferiors, and so on).
CAP_HEIGHT is also a critical factor in font matching and substitution.

CAP_HEIGHT can be approximated if not provided as a font property, according to the
following algorithm:

if (CAP_HEIGHT undefined) then
if (latin font) then

CAP_HEIGHT = XCharStruct.ascent[glyph X]
else if (capitals exist) then

CAP_HEIGHT = XCharStruct.ascent[some capital glyph]
else CAP_HEIGHT undefined

3.2.36 X_HEIGHT

X_HEIGHT is a unsigned integer (of type CARD32) that gives the nominal height
above the baseline of the lowercase glyphs contained in the font, as specified by the
FOUNDRY or typeface designer. Where applicable, it is defined to be the height of the
Latin lowercase letter x.

As with CAP_HEIGHT, X_HEIGHT is required by certain clients to compute scale fac-
tors for synthesized small capitals where this information is not explicitly provided by
the font resource. X_HEIGHT is a critical factor in font matching and substitution.

X_HEIGHT can be approximated if not provided as a font property, according to the
following algorithm:

if (X_HEIGHT undefined) then
if (latin font) then

X_HEIGHT = XCharStruct.ascent[glyph x]
else if (lowercase exists) then

X_HEIGHT = XCharStruct.ascent[some lowercase glyph]
else X_HEIGHT is undefined

March 26, 1992 3−21

-- --

X Window System

3.2.37 RELATIVE_SETWIDTH

RELATIVE_SETWIDTH is an integer (of type CARD32) that gives the coded propor-
tionate width of the font, relative to all known fonts of the same typeface family,
according to the type designer’s or FOUNDRY’s judgment.

The possible values are:

33
Code English Translation Description
33
0 Undefined Undefined or unknown
10 UltraCondensed The lowest ratio of average width to height
20 ExtraCondensed
30 Condensed Condensed, Narrow, Compressed, . . .
40 SemiCondensed
50 Medium Medium, Normal, Regular, . . .
60 SemiExpanded SemiExpanded, DemiExpanded, . . .
70 Expanded
80 ExtraExpanded ExtraExpanded, Wide, . . .
90 UltraExpanded The highest ratio of average width to height

RELATIVE_SETWIDTH can be defaulted if not provided as a font property, according
to the following algorithm:

if (RELATIVE_SETWIDTH undefined) then
RELATIVE_SETWIDTH = 50

X clients that want to obtain a calculated proportionate width of the font (that is, a
font-independent way of identifying the proportionate width across all fonts and all font
vendors) can use the following algorithm:

SETWIDTH = AVG_CAPITAL_WIDTH / (CAP_HEIGHT * 10)

where SETWIDTH is a real number with zero being the narrowest calculated setwidth.

3.2.38 RELATIVE_WEIGHT

RELATIVE_WEIGHT is an integer (of type CARD32) that gives the coded weight of
the font, relative to all known fonts of the same typeface family, according to the type
designer’s or FOUNDRY’s judgment.

The possible values are:

33
Code English Translation Description
33

3−22 March 26, 1992

-- --

X LOGICAL FONT DESCRIPTION

0 Undefined Undefined or unknown
10 UltraLight The lowest ratio of stem width to height
20 ExtraLight
30 Light
40 SemiLight SemiLight, Book, . . .
50 Medium Medium, Normal, Regular, . . .
60 SemiBold SemiBold, DemiBold, . . .
70 Bold
80 ExtraBold ExtraBold, Heavy, . . .
90 UltraBold UltraBold, Black, . . ., the highest ratio of

stem width to height

RELATIVE_WEIGHT can be defaulted if not provided as a font property, according to
the following algorithm:

if (RELATIVE_WEIGHT undefined) then
RELATIVE_WEIGHT = 50

3.2.39 WEIGHT

Calculated WEIGHT is an unsigned integer (of type CARD32) that gives the calculated
weight of the font, computed as the ratio of capital stem width to CAP_HEIGHT, in the
range 0 to 1000, where 0 is the lightest weight.

WEIGHT can be calculated if not supplied as a font property, according to the follow-
ing algorithm:

CapStemWidth = average width of the stems of capitals
if (WEIGHT undefined) then

WEIGHT = ROUND ((CapStemWidth * 1000) / CAP_HEIGHT)

A calculated value for weight is necessary when matching fonts from different families
because both the RELATIVE_WEIGHT and the WEIGHT_NAME are assigned by the
typeface supplier, according to its tradition and practice, and therefore, are somewhat
subjective. Calculated WEIGHT provides a font-independent way of identifying the
weight across all fonts and all font vendors.

3.2.40 RESOLUTION

RESOLUTION is an integer, (of type INT32) that gives the resolution for which this
font was created, measured in 1/100 pixels per point.

Note: As independent horizontal and vertical design resolution components
are required to accommodate displays with nonsquare aspect ratios, the

March 26, 1992 3−23

-- --

X Window System

use of this font property has been deprecated, and independent
RESOLUTION_X and RESOLUTION_Y font name fields/properties
have been defined (see sections 3.1.2.9 and 3.1.2.10). X clients are
encouraged to discontinue use of the RESOLUTION property and are
encouraged to use the appropriate X,Y resolution properties, as
required.

3.2.41 FACE_NAME

FACE_NAME is a human-understandable string (of type ATOM) that gives the full
device-independent typeface name, including the owner, weight, slant, set, and so on but
not the resolution, size, and so on. This property may be used as feedback during font
selection.

FACE_NAME cannot be calculated or approximated if not provided as a font property.

3.2.42 COPYRIGHT

COPYRIGHT is a human-understandable string (of type ATOM) that gives the copy-
right information of the legal owner of the digital font data.

This information is a required component of a font but is independent of the particular
format used to represent it (that is, it cannot be captured as a comment that could later
be ‘‘thrown away’’ for efficiency reasons).

COPYRIGHT cannot be calculated or approximated if not provided as a font property.

3.2.43 NOTICE

NOTICE is a human-understandable string (of type ATOM) that gives the copyright
information of the legal owner of the font design or, if not applicable, the trademark
information for the typeface FAMILY_NAME.

Typeface design and trademark protection laws vary from country to country, the USA
having no design copyright protection currently while various countries in Europe offer
both design and typeface family name trademark protection. As with COPYRIGHT,
this information is a required component of a font but is independent of the particular
format used to represent it.

NOTICE cannot be calculated or approximated if not provided as a font property.

3−24 March 26, 1992

-- --

X LOGICAL FONT DESCRIPTION

3.2.44 DESTINATION

DESTINATION is an unsigned integer code (of type CARD32) that gives the font
design destination, that is, whether it was designed as a screen proofing font to match
printer font glyph widths (WYSIWYG), as an optimal video font (possibly with
corresponding printer font) for extended screen viewing (video text), and so on.

The font design considerations are very different, and at current display resolutions, the
readability and legibility of these two kinds of screen fonts are very different. DESTI-
NATION allows publishing clients that use X to model the printed page and video text
clients, such as on-line documentation browsers, to query for X screen fonts that suit
their particular requirements.

The encoding is as follows:

33
Code English Translation Description
33
0 WYSIWYG The font is optimized to match the

typographic design and metrics of an
equivalent printer font

1 Video text The font is optimized for screen legibility
and readability

3.3 Built-in Font Property Atoms

The following font property atom definitions were predefined in the initial version of the
core protocol:

33
Font Property/Atom Name Property Type
33
MIN_SPACE CARD32
NORM_SPACE CARD32
MAX_SPACE CARD32
END_SPACE CARD32
SUPERSCRIPT_X INT32
SUPERSCRIPT_Y INT32
SUBSCRIPT_X INT32
SUBSCRIPT_Y INT32
UNDERLINE_POSITION INT32
UNDERLINE_THICKNESS CARD32
STRIKEOUT_ASCENT INT32
STRIKEOUT_DESCENT INT32
FONT_ASCENT INT32
FONT_DESCENT INT32

March 26, 1992 3−25

-- --

X Window System

ITALIC_ANGLE INT32
X_HEIGHT INT32
QUAD_WIDTH INT32—deprecated
WEIGHT CARD32
POINT_SIZE CARD32
RESOLUTION CARD32—deprecated
COPYRIGHT ATOM
FULL_NAME ATOM
FAMILY_NAME ATOM
DEFAULT_CHAR CARD32

3−26 March 26, 1992

-- --

Chapter 4. AFFECTED ELEMENTS OF XLIB AND THE X
PROTOCOL

The following X protocol requests must use the font naming conventions:

• OpenFont—for the name argument

• ListFonts—for the pattern argument

• ListFontsWithInfo—for the pattern argument
In addition, the following Xlib functions must use the font naming conventions:

• XLoadFont—for the name argument

• XListFontsWithInfo—for the pattern argument

• XLoadQueryFont—for the name argument

• XListFonts—for the pattern argument

March 26, 1992 4−1

-- --

Chapter 5. BDF CONFORMANCE

The bitmap font distribution and interchange format adopted by the X Consortium (BDF
V2.1—see appendix H) provides a general mechanism for identifying the font name of
an X font and a variable list of font properties, but it does not mandate the syntax or
semantics of the font name or the semantics of the font properties that might be pro-
vided in a BDF font. This section identifies the requirements for BDF fonts that con-
form to XLFD.

5.1 XLFD Conformance Requirements

A BDF font conforms to the XLFD V1.3 specification if and only if the following con-
ditions are satisfied:

• The value for the BDF item FONT conforms to the syntax and semantic definition
of a XLFD FontName string.

• The FontName begins with the X FontNameRegistry prefix: ‘‘-’’.

• All XLFD FontName fields are defined.

• Any FontProperties provided conform in name and semantics to the XLFD Font-
Property definitions.

A simple method of testing for conformance would entail verifying that the FontNam-
eRegistry prefix is the string ‘‘-’’, that the number of field delimiters in the string and
coded field values are valid, and that each font property name either matches a standard
XLFD property name or follows the definition of a private property.

5.2 FONT_ASCENT, FONT_DESCENT, and
DEFAULT_CHAR

FONT_ASCENT, FONT_DESCENT, and DEFAULT_CHAR are provided in the BDF

March 26, 1992 5−1

-- --

X Window System

specification as properties that are moved to the XFontStruct by the BDF font compiler
in generating the X server-specific binary font encoding. If present, these properties
shall comply with the following semantic definitions.

5.2.1 FONT_ASCENT

FONT_ASCENT is an unsigned integer (of type INT32) that gives the recommended
typographic ascent above the baseline for determining interline spacing. Specific glyphs
of the font may extend beyond this. If the current position point for line n is at [X,Y],
then the origin of the next line n+1 (allowing for a possible font change) is [X, Y +
FONT_DESCENTn + FONT_ ASCENTn+1].

FONT_ASCENT can be approximated if not provided as a font property, according to
the following algorithm:

if (FONT_ASCENT undefined) then
FONT_ASCENT = max_bounds.ascent

5.2.2 FONT_DESCENT

FONT_DESCENT is an unsigned integer (of type INT32) that gives the recommended
typographic descent below the baseline for determining interline spacing. Specific
glyphs of the font may extend beyond this. If the current position point for line n is at
[X,Y], then the origin of the next line n+1 (allowing for a possible font change) is [X,
Y + FONT_DESCENTn + FONT_ASCENTn+1].

The logical extent of the font is inclusive between the Y-coordinate values: Y –
FONT_ASCENT and Y + FONT_DESCENT + 1.

FONT_DESCENT can be approximated if not provided as a font property, according to
the following algorithm:

if (FONT_DESCENT undefined) then
FONT_DESCENT = max_bounds.descent

5.2.3 DEFAULT_CHAR

DEFAULT_CHAR is an unsigned integer value (of type CARD32) that specifies the
index of the default character to be used by the X server when an attempt is made to
display an undefined or nonexistent character in the font. (For a font using two byte
matrix format, the index bytes are encoded in the integer as byte1 * 65536 + byte2.) If
the DEFAULT_CHAR itself specifies an undefined or nonexistent character in the font,

5−2 March 26, 1992

-- --

BDF CONFORMANCE

then no character is displayed.

March 26, 1992 5−3

-- --

Appendix A. Xlib Functions and Protocol
Requests

This appendix provides two tables that relate to Xlib functions and the X protocol. The
following table lists each Xlib function (in alphabetical order) and the corresponding
protocol request that it generates.

33
Xlib Function Protocol Request
33
XActivateScreenSaver ForceScreenSaver
XAddHost ChangeHosts
XAddHosts ChangeHosts
XAddToSaveSet ChangeSaveSet
XAllocColor AllocColor
XAllocColorCells AllocColorCells
XAllocColorPlanes AllocColorPlanes
XAllocNamedColor AllocNamedColor
XAllowEvents AllowEvents
XAutoRepeatOff ChangeKeyboardControl
XAutoRepeatOn ChangeKeyboardControl
XBell Bell
XChangeActivePointerGrab ChangeActivePointerGrab
XChangeGC ChangeGC
XChangeKeyboardControl ChangeKeyboardControl
XChangeKeyboardMapping ChangeKeyboardMapping
XChangePointerControl ChangePointerControl
XChangeProperty ChangeProperty
XChangeSaveSet ChangeSaveSet
XChangeWindowAttributes ChangeWindowAttributes
XCirculateSubwindows CirculateWindow
XCirculateSubwindowsDown CirculateWindow
XCirculateSubwindowsUp CirculateWindow
XClearArea ClearArea
XClearWindow ClearArea
XConfigureWindow ConfigureWindow

March 26, 1992 A−1

-- --

X Window System

XConvertSelection ConvertSelection
XCopyArea CopyArea
XCopyColormapAndFree CopyColormapAndFree
XCopyGC CopyGC
XCopyPlane CopyPlane
XCreateBitmapFromData CreateGC

CreatePixmap
FreeGC
PutImage

XCreateColormap CreateColormap
XCreateFontCursor CreateGlyphCursor
XCreateGC CreateGC
XCreateGlyphCursor CreateGlyphCursor
XCreatePixmap CreatePixmap
XCreatePixmapCursor CreateCursor
XCreatePixmapFromData CreateGC

CreatePixmap
FreeGC
PutImage

XCreateSimpleWindow CreateWindow
XCreateWindow CreateWindow
XDefineCursor ChangeWindowAttributes
XDeleteProperty DeleteProperty
XDestroySubwindows DestroySubwindows
XDestroyWindow DestroyWindow
XDisableAccessControl SetAccessControl
XDrawArc PolyArc
XDrawArcs PolyArc
XDrawImageString ImageText8
XDrawImageString16 ImageText16
XDrawLine PolySegment
XDrawLines PolyLine
XDrawPoint PolyPoint
XDrawPoints PolyPoint
XDrawRectangle PolyRectangle
XDrawRectangles PolyRectangle
XDrawSegments PolySegment
XDrawString PolyText8
XDrawString16 PolyText16
XDrawText PolyText8
XDrawText16 PolyText16
XEnableAccessControl SetAccessControl
XFetchBytes GetProperty
XFetchName GetProperty
XFillArc PolyFillArc
XFillArcs PolyFillArc
XFillPolygon FillPoly
XFillRectangle PolyFillRectangle

A−2 March 26, 1992

-- --

Xlib Functions and Protocol Requests

XFillRectangles PolyFillRectangle
XForceScreenSaver ForceScreenSaver
XFreeColormap FreeColormap
XFreeColors FreeColors
XFreeCursor FreeCursor
XFreeFont CloseFont
XFreeGC FreeGC
XFreePixmap FreePixmap
XGetAtomName GetAtomName
XGetClassHint GetProperty
XGetFontPath GetFontPath
XGetGeometry GetGeometry
XGetIconName GetProperty
XGetIconSizes GetProperty
XGetImage GetImage
XGetInputFocus GetInputFocus
XGetKeyboardControl GetKeyboardControl
XGetKeyboardMapping GetKeyboardMapping
XGetModifierMapping GetModifierMapping
XGetMotionEvents GetMotionEvents
XGetModifierMapping GetModifierMapping
XGetNormalHints GetProperty
XGetPointerControl GetPointerControl
XGetPointerMapping GetPointerMapping
XGetRGBColormaps GetProperty
XGetScreenSaver GetScreenSaver
XGetSelectionOwner GetSelectionOwner
XGetSizeHints GetProperty
XGetTextProperty GetProperty
XGetTransientForHint GetProperty
XGetWMClientMachine GetProperty
XGetWMColormapWindows GetProperty

InternAtom
XGetWMHints GetProperty
XGetWMIconName GetProperty
XGetWMName GetProperty
XGetWMNormalHints GetProperty
XGetWMProtocols GetProperty

InternAtom
XGetWMSizeHints GetProperty
XGetWindowAttributes GetWindowAttributes

GetGeometry
XGetWindowProperty GetProperty
XGetZoomHints GetProperty
XGrabButton GrabButton
XGrabKey GrabKey
XGrabKeyboard GrabKeyboard
XGrabPointer GrabPointer

March 26, 1992 A−3

-- --

X Window System

XGrabServer GrabServer
XIconifyWindow InternAtom

SendEvent
XInitExtension QueryExtension
XInstallColormap InstallColormap
XInternAtom InternAtom
XKillClient KillClient
XListExtensions ListExtensions
XListFonts ListFonts
XListFontsWithInfo ListFontsWithInfo
XListHosts ListHosts
XListInstalledColormaps ListInstalledColormaps
XListProperties ListProperties
XLoadFont OpenFont
XLoadQueryFont OpenFont

QueryFont
XLookupColor LookupColor
XLowerWindow ConfigureWindow
XMapRaised ConfigureWindow

MapWindow
XMapSubwindows MapSubwindows
XMapWindow MapWindow
XMoveResizeWindow ConfigureWindow
XMoveWindow ConfigureWindow
XNoOp NoOperation
XOpenDisplay CreateGC
XParseColor LookupColor
XPutImage PutImage
XQueryBestCursor QueryBestSize
XQueryBestSize QueryBestSize
XQueryBestStipple QueryBestSize
XQueryBestTile QueryBestSize
XQueryColor QueryColors
XQueryColors QueryColors
XQueryExtension QueryExtension
XQueryFont QueryFont
XQueryKeymap QueryKeymap
XQueryPointer QueryPointer
XQueryTextExtents QueryTextExtents
XQueryTextExtents16 QueryTextExtents
XQueryTree QueryTree
XRaiseWindow ConfigureWindow
XReadBitmapFile CreateGC

CreatePixmap
FreeGC
PutImage

XRecolorCursor RecolorCursor
XReconfigureWMWindow ConfigureWindow

A−4 March 26, 1992

-- --

Xlib Functions and Protocol Requests

SendEvent
XRemoveFromSaveSet ChangeSaveSet
XRemoveHost ChangeHosts
XRemoveHosts ChangeHosts
XReparentWindow ReparentWindow
XResetScreenSaver ForceScreenSaver
XResizeWindow ConfigureWindow
XRestackWindows ConfigureWindow
XRotateBuffers RotateProperties
XRotateWindowProperties RotateProperties
XSelectInput ChangeWindowAttributes
XSendEvent SendEvent
XSetAccessControl SetAccessControl
XSetArcMode ChangeGC
XSetBackground ChangeGC
XSetClassHint ChangeProperty
XSetClipMask ChangeGC
XSetClipOrigin ChangeGC
XSetClipRectangles SetClipRectangles
XSetCloseDownMode SetCloseDownMode
XSetCommand ChangeProperty
XSetDashes SetDashes
XSetFillRule ChangeGC
XSetFillStyle ChangeGC
XSetFont ChangeGC
XSetFontPath SetFontPath
XSetForeground ChangeGC
XSetFunction ChangeGC
XSetGraphicsExposures ChangeGC
XSetIconName ChangeProperty
XSetIconSizes ChangeProperty
XSetInputFocus SetInputFocus
XSetLineAttributes ChangeGC
XSetModifierMapping SetModifierMapping
XSetNormalHints ChangeProperty
XSetPlaneMask ChangeGC
XSetPointerMapping SetPointerMapping
XSetRGBColormaps ChangeProperty
XSetScreenSaver SetScreenSaver
XSetSelectionOwner SetSelectionOwner
XSetSizeHints ChangeProperty
XSetStandardProperties ChangeProperty
XSetState ChangeGC
XSetStipple ChangeGC
XSetSubwindowMode ChangeGC
XSetTextProperty ChangeProperty
XSetTile ChangeGC
XSetTransientForHint ChangeProperty

March 26, 1992 A−5

-- --

X Window System

XSetTSOrigin ChangeGC
XSetWMClientMachine ChangeProperty
XSetWMColormapWindows ChangeProperty

InternAtom
XSetWMHints ChangeProperty
XSetWMIconName ChangeProperty
XSetWMName ChangeProperty
XSetWMNormalHints ChangeProperty
XSetWMProperties ChangeProperty
XSetWMProtocols ChangeProperty

InternAtom
XSetWMSizeHints ChangeProperty
XSetWindowBackground ChangeWindowAttributes
XSetWindowBackgroundPixmap ChangeWindowAttributes
XSetWindowBorder ChangeWindowAttributes
XSetWindowBorderPixmap ChangeWindowAttributes
XSetWindowBorderWidth ConfigureWindow
XSetWindowColormap ChangeWindowAttributes
XSetZoomHints ChangeProperty
XStoreBuffer ChangeProperty
XStoreBytes ChangeProperty
XStoreColor StoreColors
XStoreColors StoreColors
XStoreName ChangeProperty
XStoreNamedColor StoreNamedColor
XSync GetInputFocus
XSynchronize GetInputFocus
XTranslateCoordinates TranslateCoordinates
XUndefineCursor ChangeWindowAttributes
XUngrabButton UngrabButton
XUngrabKey UngrabKey
XUngrabKeyboard UngrabKeyboard
XUngrabPointer UngrabPointer
XUngrabServer UngrabServer
XUninstallColormap UninstallColormap
XUnloadFont CloseFont
XUnmapSubwindows UnmapSubwindows
XUnmapWindow UnmapWindow
XWarpPointer WarpPointer
XWithdrawWindow SendEvent

UnmapWindow

The following table lists each X protocol request (in alphabetical order) and the Xlib
functions that reference it.

33
Protocol Request Xlib Function
33
AllocColor XAllocColor

A−6 March 26, 1992

-- --

Xlib Functions and Protocol Requests

AllocColorCells XAllocColorCells
AllocColorPlanes XAllocColorPlanes
AllocNamedColor XAllocNamedColor
AllowEvents XAllowEvents
Bell XBell
SetAccessControl XDisableAccessControl

XEnableAccessControl
XSetAccessControl

ChangeActivePointerGrab XChangeActivePointerGrab
SetCloseDownMode XSetCloseDownMode
ChangeGC XChangeGC

XSetArcMode
XSetBackground
XSetClipMask
XSetClipOrigin
XSetFillRule
XSetFillStyle
XSetFont
XSetForeground
XSetFunction
XSetGraphicsExposures
XSetLineAttributes
XSetPlaneMask
XSetState
XSetStipple
XSetSubwindowMode
XSetTile
XSetTSOrigin

ChangeHosts XAddHost
XAddHosts
XRemoveHost
XRemoveHosts

ChangeKeyboardControl XAutoRepeatOff
XAutoRepeatOn
XChangeKeyboardControl

ChangeKeyboardMapping XChangeKeyboardMapping
ChangePointerControl XChangePointerControl
ChangeProperty XChangeProperty

XSetClassHint
XSetCommand
XSetIconName
XSetIconSizes
XSetNormalHints
XSetRGBColormaps
XSetSizeHints
XSetStandardProperties
XSetTextProperty
XSetTransientForHint

March 26, 1992 A−7

-- --

X Window System

XSetWMClientMachine
XSetWMColormapWindows
XSetWMHints
XSetWMIconName
XSetWMName
XSetWMNormalHints
XSetWMProperties
XSetWMProtocols
XSetWMSizeHints
XSetZoomHints
XStoreBuffer
XStoreBytes
XStoreName

ChangeSaveSet XAddToSaveSet
XChangeSaveSet
XRemoveFromSaveSet

ChangeWindowAttributes XChangeWindowAttributes
XDefineCursor
XSelectInput
XSetWindowBackground
XSetWindowBackgroundPixmap
XSetWindowBorder
XSetWindowBorderPixmap
XSetWindowColormap
XUndefineCursor

CirculateWindow XCirculateSubwindowsDown
XCirculateSubwindowsUp
XCirculateSubwindows

ClearArea XClearArea
XClearWindow

CloseFont XFreeFont
XUnloadFont

ConfigureWindow XConfigureWindow
XLowerWindow
XMapRaised
XMoveResizeWindow
XMoveWindow
XRaiseWindow
XReconfigureWMWindow
XResizeWindow
XRestackWindows
XSetWindowBorderWidth

ConvertSelection XConvertSelection
CopyArea XCopyArea
CopyColormapAndFree XCopyColormapAndFree
CopyGC XCopyGC
CopyPlane XCopyPlane
CreateColormap XCreateColormap

A−8 March 26, 1992

-- --

Xlib Functions and Protocol Requests

CreateCursor XCreatePixmapCursor
CreateGC XCreateGC

XCreateBitmapFromData
XCreatePixmapFromData
XOpenDisplay
XReadBitmapFile

CreateGlyphCursor XCreateFontCursor
XCreateGlyphCursor

CreatePixmap XCreatePixmap
XCreateBitmapFromData
XCreatePixmapFromData
XReadBitmapFile

CreateWindow XCreateSimpleWindow
XCreateWindow

DeleteProperty XDeleteProperty
DestroySubwindows XDestroySubwindows
DestroyWindow XDestroyWindow
FillPoly XFillPolygon
ForceScreenSaver XActivateScreenSaver

XForceScreenSaver
XResetScreenSaver

FreeColormap XFreeColormap
FreeColors XFreeColors
FreeCursor XFreeCursor
FreeGC XFreeGC

XCreateBitmapFromData
XCreatePixmapFromData
XReadBitmapFile

FreePixmap XFreePixmap
GetAtomName XGetAtomName
GetFontPath XGetFontPath
GetGeometry XGetGeometry

XGetWindowAttributes
GetImage XGetImage
GetInputFocus XGetInputFocus

XSync
XSynchronize

GetKeyboardControl XGetKeyboardControl
GetKeyboardMapping XGetKeyboardMapping
GetModifierMapping XGetModifierMapping
GetMotionEvents XGetMotionEvents
GetPointerControl XGetPointerControl
GetPointerMapping XGetPointerMapping
GetProperty XFetchBytes

XFetchName
XGetClassHint
XGetIconName
XGetIconSizes

March 26, 1992 A−9

-- --

X Window System

XGetNormalHints
XGetRGBColormaps
XGetSizeHints
XGetTextProperty
XGetTransientForHint
XGetWMClientMachine
XGetWMColormapWindows
XGetWMHints
XGetWMIconName
XGetWMName
XGetWMNormalHints
XGetWMProtocols
XGetWMSizeHints
XGetWindowProperty
XGetZoomHints

GetSelectionOwner XGetSelectionOwner
GetWindowAttributes XGetWindowAttributes
GrabButton XGrabButton
GrabKey XGrabKey
GrabKeyboard XGrabKeyboard
GrabPointer XGrabPointer
GrabServer XGrabServer
ImageText16 XDrawImageString16
ImageText8 XDrawImageString
InstallColormap XInstallColormap
InternAtom XGetWMColormapWindows

XGetWMProtocols
XIconifyWindow
XInternAtom
XSetWMColormapWindows
XSetWMProtocols

KillClient XKillClient
ListExtensions XListExtensions
ListFonts XListFonts
ListFontsWithInfo XListFontsWithInfo
ListHosts XListHosts
ListInstalledColormaps XListInstalledColormaps
ListProperties XListProperties
LookupColor XLookupColor

XParseColor
MapSubwindows XMapSubwindows
MapWindow XMapRaised

XMapWindow
NoOperation XNoOp
OpenFont XLoadFont

XLoadQueryFont
PolyArc XDrawArc

XDrawArcs

A−10 March 26, 1992

-- --

Xlib Functions and Protocol Requests

PolyFillArc XFillArc
XFillArcs

PolyFillRectangle XFillRectangle
XFillRectangles

PolyLine XDrawLines
PolyPoint XDrawPoint

XDrawPoints
PolyRectangle XDrawRectangle

XDrawRectangles
PolySegment XDrawLine

XDrawSegments
PolyText16 XDrawString16

XDrawText16
PolyText8 XDrawString

XDrawText
PutImage XPutImage

XCreateBitmapFromData
XCreatePixmapFromData
XReadBitmapFile

QueryBestSize XQueryBestCursor
XQueryBestSize
XQueryBestStipple
XQueryBestTile

QueryColors XQueryColor
XQueryColors

QueryExtension XInitExtension
XQueryExtension

QueryFont XLoadQueryFont
XQueryFont

QueryKeymap XQueryKeymap
QueryPointer XQueryPointer
QueryTextExtents XQueryTextExtents

XQueryTextExtents16
QueryTree XQueryTree
RecolorCursor XRecolorCursor
ReparentWindow XReparentWindow
RotateProperties XRotateBuffers

XRotateWindowProperties
SendEvent XIconifyWindow

XReconfigureWMWindow
XSendEvent
XWithdrawWindow

SetClipRectangles XSetClipRectangles
SetCloseDownMode XSetCloseDownMode
SetDashes XSetDashes
SetFontPath XSetFontPath
SetInputFocus XSetInputFocus
SetModifierMapping XSetModifierMapping

March 26, 1992 A−11

-- --

X Window System

SetPointerMapping XSetPointerMapping
SetScreenSaver XGetScreenSaver

XSetScreenSaver
SetSelectionOwner XSetSelectionOwner
StoreColors XStoreColor

XStoreColors
StoreNamedColor XStoreNamedColor
TranslateCoordinates XTranslateCoordinates
UngrabButton XUngrabButton
UngrabKey XUngrabKey
UngrabKeyboard XUngrabKeyboard
UngrabPointer XUngrabPointer
UngrabServer XUngrabServer
UninstallColormap XUninstallColormap
UnmapSubwindows XUnmapSubWindows
UnmapWindow XUnmapWindow

XWithdrawWindow
WarpPointer XWarpPointer

A−12 March 26, 1992

-- --

Appendix B. X Font Cursors

The following are the available cursors that can be used with XCreateFontCursor.
Refer to printed version for illustrations of the cursors.
XC_X_cursor XC_clock
XC_arrow XC_coffee_mug
XC_based_arrow_down XC_cross
XC_based_arrow_up XC_cross_reverse
XC_boat XC_crosshair
XC_bogosity XC_diamond_cross
XC_bottom_left_corner XC_dot
XC_bottom_right_corner XC_dot_box_mask
XC_bottom_side XC_double_arrow
XC_bottom_tee XC_draft_large
XC_box_spiral XC_draft_small
XC_center_ptr XC_draped_box
XC_circle XC_exchange
XC_fleur XC_right_ptr
XC_gobbler XC_right_side
XC_gumby XC_right_tee
XC_hand1 XC_rightbutton
XC_hand2 XC_rtl_logo
XC_heart XC_sailboat
XC_icon XC_sb_down_arrow
XC_iron_cross XC_sb_h_double_arrow
XC_left_ptr XC_sb_left_arrow
XC_left_side XC_sb_right_arrow
XC_left_tee XC_sb_up_arrow
XC_leftbutton XC_sb_v_double_arrow
XC_ll_angle XC_shuttle
XC_lr_angle XC_sizing
XC_man XC_spider
XC_middlebutton XC_spraycan
XC_mouse XC_star
XC_pencil XC_target
XC_pirate XC_tcross

March 26, 1992 B−1

-- --

X Window System

XC_plus XC_top_left_arrow
XC_question_arrow XC_top_left_corner
XC_top_right_corner XC_umbrella
XC_top_side XC_ur_angle
XC_top_tee XC_watch
XC_trek XC_xterm
XC_ul_angle

B−2 March 26, 1992

-- --

Appendix C. Extensions

Because X can evolve by extensions to the core protocol, it is important that extensions
not be perceived as second class citizens. At some point, your favorite extensions may
be adopted as additional parts of the X Standard.

Therefore, there should be little to distinguish the use of an extension from that of the
core protocol. To avoid having to initialize extensions explicitly in application pro-
grams, it is also important that extensions perform ‘‘lazy evaluations’’ and automati-
cally initialize themselves when called for the first time.

This appendix describes techniques for writing extensions to Xlib that will run at essen-
tially the same performance as the core protocol requests.

Note: It is expected that a given extension to X consists of multiple requests.
Defining ten new features as ten separate extensions is a bad practice.
Rather, they should be packaged into a single extension and should use
minor opcodes to distinguish the requests.

The symbols and macros used for writing stubs to Xlib are listed in <X11/Xlibint.h>.

Basic Protocol Support Routines

The basic protocol requests for extensions are XQueryExtension and XListExtensions.

Bool XQueryExtension(display, name, major_opcode_return, first_event_return,
first_error_return)

Display *display;
char *name;
int *major_opcode_return;
int *first_event_return;
int *first_error_return;

XQueryExtension determines if the named extension is present. If so, the major opcode
for the extension is returned (if it has one); otherwise, False is returned. Any minor
opcode and the request formats are specific to the extension. If the extension involves

March 26, 1992 C−1

-- --

X Window System

additional event types, the base event type code is returned; otherwise, False is returned.
The format of the events is specific to the extension. If the extension involves additional
error codes, the base error code is returned; otherwise, False is returned. The format of
additional data in the errors is specific to the extension.

The extension name should be in the ISO Latin-1 encoding, and uppercase and lower-
case do matter.

char **XListExtensions(display, nextensions_return)
Display *display;
int *nextensions_return;

XListExtensions returns a list of all extensions supported by the server.

XFreeExtensionList(list)
char **list;

XFreeExtensionList frees the memory allocated by XListExtensions.

Hooking into Xlib

These functions allow you to hook into the library. They are not normally used by
application programmers but are used by people who need to extend the core X protocol
and the X library interface. The functions, which generate protocol requests for X, are
typically called stubs.

In extensions, stubs first should check to see if they have initialized themselves on a
connection. If they have not, they then should call XInitExtension to attempt to initial-
ize themselves on the connection.

If the extension needs to be informed of GC/font allocation or deallocation or if the
extension defines new event types, the functions described here allow the extension to
be called when these events occur.

The XExtCodes structure returns the information from XInitExtension and is defined in
<X11/Xlib.h>:

typedef struct _XExtCodes { /* public to extension, cannot be changed
int extension; /* extension number */
int major_opcode; /* major op-code assigned by server */
int first_event; /* first event number for the extension *
int first_error; /* first error number for the extension *

} XExtCodes;

XExtCodes *XInitExtension(display, name)
Display *display;
char *name;

XInitExtension determines if the extension exists. Then, it allocates storage for main-
taining the information about the extension on the connection, chains this onto the

C−2 March 26, 1992

-- --

Extensions

extension list for the connection, and returns the information the stub implementor will
need to access the extension. If the extension does not exist, XInitExtension returns
NULL.

In particular, the extension number in the XExtCodes structure is needed in the other
calls that follow. This extension number is unique only to a single connection.

XExtCodes *XAddExtension(display)
Display *display;

For local Xlib extensions, XAddExtension allocates the XExtCodes structure, bumps
the extension number count, and chains the extension onto the extension list. (This per-
mits extensions to Xlib without requiring server-extensions.)

Hooks into the Library

These functions allow you to define procedures that are to be called when various cir-
cumstances occur. The procedures include the creation of a new GC for a connection,
the copying of a GC, the freeing of a GC, the creating and freeing of fonts, the conver-
sion of events defined by extensions to and from wire format, and the handling of
errors.

All of these functions return the previous routine defined for this extension.

int (*XESetCloseDisplay(display, extension, proc))()
Display *display; /* display */
int extension; /* extension number */
int (*proc)(); /* routine to call when display closed */

You use this procedure to define a procedure to be called whenever XCloseDisplay is
called. This procedure returns any previously defined procedure, usually NULL.

When XCloseDisplay is called, your routine is called with these arguments:

(*proc)(display, codes)
Display *display;
XExtCodes *codes;

int (*XESetCreateGC(display, extension, proc))()
Display *display; /* display */
int extension; /* extension number */
int (*proc)(); /* routine to call when GC created */

You use this procedure to define a procedure to be called whenever a new GC is
created. This procedure returns any previously defined procedure, usually NULL.

When a GC is created, your routine is called with these arguments:

(*proc)(display, gc, codes)
Display *display;
GC gc;

March 26, 1992 C−3

-- --

X Window System

XExtCodes *codes;

int (*XESetCopyGC(display, extension, proc))()
Display *display; /* display */
int extension; /* extension number */
int (*proc)(); /* routine to call when GC copied */

You use this procedure to define a procedure to be called whenever a GC is copied.
This procedure returns any previously defined procedure, usually NULL.

When a GC is copied, your routine is called with these arguments:

(*proc)(display, gc, codes)
Display *display;
GC gc;
XExtCodes *codes;int (*XESetFreeGC(display, extension, proc))()
Display *display; /* display */
int extension; /* extension number */
int (*proc)(); /* routine to call when GC freed */

You use this procedure to define a procedure to be called whenever a GC is freed. This
procedure returns any previously defined procedure, usually NULL.

When a GC is freed, your routine is called with these arguments:

(*proc)(display, gc, codes)
Display *display;
GC gc;
XExtCodes *codes;

int (*XESetCreateFont(display, extension, proc))()
Display *display; /* display */
int extension; /* extension number */
int (*proc)(); /* routine to call when font created */

You use this procedure to define a procedure to be called whenever XLoadQueryFont
and XQueryFont are called. This procedure returns any previously defined procedure,
usually NULL.

When XLoadQueryFont or XQueryFont is called, your routine is called with these
arguments:

(*proc)(display, fs, codes)
Display *display;
XFontStruct *fs;
XExtCodes *codes;

int (*XESetFreeFont(display, extension, proc))()
Display *display; /* display */
int extension; /* extension number */
int (*proc)(); /* routine to call when font freed */

You use this procedure to define a procedure to be called whenever XFreeFont is called.
This procedure returns any previously defined procedure, usually NULL.

C−4 March 26, 1992

-- --

Extensions

When XFreeFont is called, your routine is called with these arguments:

(*proc)(display, fs, codes)
Display *display;
XFontStruct *fs;
XExtCodes *codes;

The next two functions allow you to define new events to the library.

Note: There is an implementation limit such that your host event structure size
cannot be bigger than the size of the XEvent union of structures. There
also is no way to guarantee that more than 24 elements or 96 characters
in the structure will be fully portable between machines.

int (*XESetWireToEvent(display, event_number, proc))()
Display *display; /* display */
int event_number; /* event routine to replace */
Status (*proc)(); /* routine to call when converting event */

You use this procedure to define a procedure to be called when an event needs to be
converted from wire format (xEvent) to host format (XEvent). The event number
defines which protocol event number to install a conversion routine for. This procedure
returns any previously defined procedure.

Note: You can replace a core event conversion routine with one of your own,
although this is not encouraged. It would, however, allow you to inter-
cept a core event and modify it before being placed in the queue or oth-
erwise examined.

When Xlib needs to convert an event from wire format to host format, your routine is
called with these arguments:

Status (*proc)(display, re, event)
Display *display;
XEvent *re;
xEvent *event;

Your routine must return status to indicate if the conversion succeeded. The re argu-
ment is a pointer to where the host format event should be stored, and the event argu-
ment is the 32-byte wire event structure. In the XEvent structure you are creating, you
must fill in the five required members of the event structure. You should fill in the type
member with the type specified for the xEvent structure. You should copy all other
members from the xEvent structure (wire format) to the XEvent structure (host for-
mat). Your conversion routine should return True if the event should be placed in the
queue or False if it should not be placed in the queue.

Status (*XESetEventToWire(display, event_number, proc))()
Display *display; /* display */
int event_number; /* event routine to replace */
int (*proc)(); /* routine to call when converting event */

You use this procedure to define a procedure to be called when an event needs to be
converted from host format (XEvent) to wire format (xEvent) form. The event number

March 26, 1992 C−5

-- --

X Window System

defines which protocol event number to install a conversion routine for. This procedure
returns any previously defined procedure. It returns zero if the conversion fails or
nonzero otherwise.

Note: You can replace a core event conversion routine with one of your own,
although this is not encouraged. It would, however, allow you to inter-
cept a core event and modify it before being sent to another client.

When Xlib needs to convert an event from host format to wire format, your routine is
called with these arguments:

(*proc)(display, re, event)
Display *display;
XEvent *re;
xEvent *event;

The re argument is a pointer to the host format event, and the event argument is a
pointer to where the 32-byte wire event structure should be stored. You should fill in
the type with the type from the XEvent structure. All other members then should be
copied from the host format to the xEvent structure.

int (*XESetError(display, extension, proc))()
Display *display; /* display */
int extension; /* extension number */
int (*proc)(); /* routine to call when X error happens */

Inside Xlib, there are times that you may want to suppress the calling of the external
error handling when an error occurs. This allows status to be returned on a call at the
cost of the call being synchronous (though most such routines are query operations, in
any case, and are typically programmed to be synchronous).

When Xlib detects a protocol error in _XReply, it calls your procedure with these argu-
ments:

int (*proc)(display, err, codes, ret_code)
Display *display;
xError *err;
XExtCodes *codes;
int *ret_code;

The err argument is a pointer to the 32-byte wire format error. The codes argument is a
pointer to the extension codes structure. The ret_code argument is the return code you
may want _XReply returned to.

If your routine returns a zero value, the error is not suppressed, and the client’s error
handler is called. (For further information, see section 8.12.2.) If your routine returns
nonzero, the error is suppressed, and _XReply returns the value of ret_code.

char *(*XESetErrorString(display, extension, proc))()
Display *display; /* display */
int extension; /* extension number */
char *(*proc)(); /* routine to call to obtain an error string *

C−6 March 26, 1992

-- --

Extensions

The XGetErrorText function returns a string to the user for an error. XESetErrorString
allows you to define a routine to be called that should return a pointer to the error mes-
sage. The following is an example.

(*proc)(display, code, codes, buffer, nbytes)
Display *display;
int code;
XExtCodes *codes;
char *buffer;
int nbytes;

Your procedure is called with the error code for every error detected. You should copy
nbytes of a null-terminated string containing the error message into buffer.

int (*XESetFlushGC(display, extension, proc))()
Display *display; /* display */
int extension; /* extension number */
int *(*proc)(); /* routine to call when GC flushed */

The XESetFlushGC procedure is identical to XESetCopyGC except that XESetFlushGC
is called when a GC cache needs to be updated in the server.

Hooks onto Xlib Data Structures

Various Xlib data structures have provisions for extension routines to chain extension
supplied data onto a list. These structures are GC, Visual, Screen, ScreenFormat,
Display, and XFontStruct. Because the list pointer is always the first member in the
structure, a single set of routines can be used to manipulate the data on these lists.

The following structure is used in the routines in this section and is defined in
<X11/Xlib.h>:

typedef struct _XExtData {
int number; /* number returned by XInitExtension */
struct _XExtData *next; /* next item on list of data for structur
int (*free)(); /* if defined, called to free private */
char *private; /* data private to this extension */

} XExtData;

When any of the data structures listed above are freed, the list is walked, and the
structure’s free routine (if any) is called. If free is NULL, then the library frees both the
data pointed to by the private member and the structure itself.

union { Display *display;
GC gc;
Visual *visual;
Screen *screen;
ScreenFormat *pixmap_format;
XFontStruct *font } XEDataObject;

March 26, 1992 C−7

-- --

X Window System

XExtData **XEHeadOfExtensionList(object)
XEDataObject object;

XEHeadOfExtensionList returns a pointer to the list of extension structures attached to
the specified object. In concert with XAddToExtensionList, XEHeadOfExtensionList
allows an extension to attach arbitrary data to any of the structures of types contained in
XEDataObject.

XAddToExtensionList(structure, ext_data)
struct _XExtData **structure; /* pointer to structure to add */
XExtData *ext_data; /* extension data structure to add */

The structure argument is a pointer to one of the data structures enumerated above. You
must initialize ext_data→number with the extension number before calling this routine.

XExtData *XFindOnExtensionList(structure, number)
struct _XExtData **structure;
int number; /* extension number from XInitExtension *

XFindOnExtensionList returns the first extension data structure for the extension num-
bered number. It is expected that an extension will add at most one extension data
structure to any single data structure’s extension data list. There is no way to find addi-
tional structures.

The XAllocID macro, which allocates and returns a resource ID, is defined in
<X11/Xlib.h>.

XAllocID(display)
Display *display;

This macro is a call through the Display structure to the internal resource ID allocator.
It returns a resource ID that you can use when creating new resources.

GC Caching

GCs are cached by the library to allow merging of independent change requests to the
same GC into single protocol requests. This is typically called a write-back cache. Any
extension routine whose behavior depends on the contents of a GC must flush the GC
cache to make sure the server has up-to-date contents in its GC.

The FlushGC macro checks the dirty bits in the library’s GC structure and calls
_XFlushGCCache if any elements have changed. The FlushGC macro is defined as
follows:

FlushGC(display, gc)
Display *display;
GC gc;

Note that if you extend the GC to add additional resource ID components, you should
ensure that the library stub sends the change request immediately. This is because a

C−8 March 26, 1992

-- --

Extensions

client can free a resource immediately after using it, so if you only stored the value in
the cache without forcing a protocol request, the resource might be destroyed before
being set into the GC. You can use the _XFlushGCCache procedure to force the cache
to be flushed. The _XFlushGCCache procedure is defined as follows:

_XFlushGCCache(display, gc)
Display *display;
GC gc;

Graphics Batching

If you extend X to add more poly graphics primitives, you may be able to take advan-
tage of facilities in the library to allow back-to-back single calls to be transformed into
poly requests. This may dramatically improve performance of programs that are not
written using poly requests. A pointer to a xReq, called last_req in the display structure,
is the last request being processed. By checking that the last request type, drawable, gc,
and other options are the same as the new one and that there is enough space left in the
buffer, you may be able to just extend the previous graphics request by extending the
length field of the request and appending the data to the buffer. This can improve per-
formance by five times or more in naive programs. For example, here is the source for
the XDrawPoint stub. (Writing extension stubs is discussed in the next section.)

#include "copyright.h"
#include "Xlibint.h"
/* precompute the maximum size of batching request allowed */
static int size = sizeof(xPolyPointReq) + EPERBATCH * sizeof(xPoint);

XDrawPoint(dpy, d, gc, x, y)
register Display *dpy;

Drawable d;
GC gc;
int x, y; /* INT16 */

{
xPoint *point;
LockDisplay(dpy);
FlushGC(dpy, gc);
{
register xPolyPointReq *req = (xPolyPointReq *) dpy->last_req;
/* if same as previous request, with same drawable, batch requests */
if (

(req->reqType == X_PolyPoint)
&& (req->drawable == d)
&& (req->gc == gc->gid)
&& (req->coordMode == CoordModeOrigin)
&& ((dpy->bufptr + sizeof (xPoint)) <= dpy->bufmax)

March 26, 1992 C−9

-- --

X Window System

&& (((char *)dpy->bufptr - (char *)req) < size)) {
point = (xPoint *) dpy->bufptr;
req->length += sizeof (xPoint) >> 2;
dpy->bufptr += sizeof (xPoint);
}

else {
GetReqExtra(PolyPoint, 4, req); /* 1 point = 4 bytes */
req->drawable = d;
req->gc = gc->gid;
req->coordMode = CoordModeOrigin;
point = (xPoint *) (req + 1);
}

point->x = x;
point->y = y;
}
UnlockDisplay(dpy);
SyncHandle();

}

To keep clients from generating very long requests that may monopolize the server,
there is a symbol defined in <X11/Xlibint.h> of EPERBATCH on the number of
requests batched. Most of the performance benefit occurs in the first few merged
requests. Note that FlushGC is called before picking up the value of last_req, because
it may modify this field.

Writing Extension Stubs

All X requests always contain the length of the request, expressed as a 16-bit quantity
of 32 bits. This means that a single request can be no more than 256K bytes in length.
Some servers may not support single requests of such a length. The value of dpy-
>max_request_size contains the maximum length as defined by the server implementa-
tion. For further information, see part II, ‘‘X Window System Protocol.’’

Requests, Replies, and Xproto.h

The <X11/Xproto.h> file contains three sets of definitions that are of interest to the
stub implementor: request names, request structures, and reply structures.

You need to generate a file equivalent to <X11/Xproto.h> for your extension and need
to include it in your stub routine. Each stub routine also must include
<X11/Xlibint.h>.

C−10 March 26, 1992

-- --

Extensions

The identifiers are deliberately chosen in such a way that, if the request is called
X_DoSomething, then its request structure is xDoSomethingReq, and its reply is xDo-
SomethingReply. The GetReq family of macros, defined in <X11/Xlibint.h>, takes
advantage of this naming scheme.

For each X request, there is a definition in <X11/Xproto.h> that looks similar to this:

#define X_DoSomething 42

In your extension header file, this will be a minor opcode, instead of a major opcode.

Request Format

Every request contains an 8-bit major opcode and a 16-bit length field expressed in
units of four bytes. Every request consists of four bytes of header (containing the major
opcode, the length field, and a data byte) followed by zero or more additional bytes of
data. The length field defines the total length of the request, including the header. The
length field in a request must equal the minimum length required to contain the request.
If the specified length is smaller or larger than the required length, the server should
generate a BadLength error. Unused bytes in a request are not required to be zero.

long XMaxRequestSize(display)
Display *display;

XMaxRequestSize returns the maximum request size (in 4-byte units) supported by the
server. Single protocol requests to the server can be no longer than this size. Exten-
sions should be designed in such a way that long protocol requests can be split up into
smaller requests. The protocol guarantees the size to be no smaller than 4096 units
(16384 bytes).

Major opcodes 128 through 255 are reserved for extensions. Extensions are intended to
contain multiple requests, so extension requests typically have an additional minor
opcode encoded in the ‘‘spare’’ data byte in the request header, but the placement and
interpretation of this minor opcode as well as all other fields in extension requests are
not defined by the core protocol. Every request is implicitly assigned a sequence
number (starting with one) used in replies, errors, and events.

To help but not cure portability problems to certain machines, the B16 and B32 macros
have been defined so that they can become bitfield specifications on some machines.
For example, on a Cray, these should be used for all 16-bit and 32-bit quantities, as dis-
cussed below.

Most protocol requests have a corresponding structure typedef in <X11/Xproto.h>,
which looks like:

typedef struct _DoSomethingReq {
CARD8 reqType; /* X_DoSomething */
CARD8 someDatum; /* used differently in different requests
CARD16 length B16; /* total # of bytes in request, divided b

March 26, 1992 C−11

-- --

X Window System

. . .
/* request-specific data */
. . .

} xDoSomethingReq;

If a core protocol request has a single 32-bit argument, you need not declare a request
structure in your extension header file. Instead, such requests use <X11/Xproto.h>’s
xResourceReq structure. This structure is used for any request whose single argument
is a Window, Pixmap, Drawable, GContext, Font, Cursor, Colormap, Atom, or
VisualID.

typedef struct _ResourceReq {
CARD8 reqType; /* the request type, e.g. X_DoSomething *
BYTE pad; /* not used */
CARD16 length B16; /* 2 (= total # of bytes in request, divi
CARD32 id B32; /* the Window, Drawable, Font, GContext,

} xResourceReq;

If convenient, you can do something similar in your extension header file.

In both of these structures, the reqType field identifies the type of the request (for exam-
ple, X_MapWindow or X_CreatePixmap). The length field tells how long the request is
in units of 4-byte longwords. This length includes both the request structure itself and
any variable length data, such as strings or lists, that follow the request structure.
Request structures come in different sizes, but all requests are padded to be multiples of
four bytes long.

A few protocol requests take no arguments at all. Instead, they use <X11/Xproto.h>’s
xReq structure, which contains only a reqType and a length (and a pad byte).

If the protocol request requires a reply, then <X11/Xproto.h> also contains a reply
structure typedef:

typedef struct _DoSomethingReply {
BYTE type; /* always X_Reply */
BYTE someDatum; /* used differently in different requests
CARD16 sequenceNumber B16; /* # of requests sent so far */
CARD32 length B32; /* # of additional bytes, divided by 4 */
. . .
/* request-specific data */
. . .

} xDoSomethingReply;

Most of these reply structures are 32 bytes long. If there are not that many reply values,
then they contain a sufficient number of pad fields to bring them up to 32 bytes. The
length field is the total number of bytes in the request minus 32, divided by 4. This
length will be nonzero only if:

• The reply structure is followed by variable length data such as a list or string.

• The reply structure is longer than 32 bytes.

C−12 March 26, 1992

-- --

Extensions

Only GetWindowAttributes, QueryFont, QueryKeymap, and GetKeyboardControl
have reply structures longer than 32 bytes in the core protocol.

A few protocol requests return replies that contain no data. <X11/Xproto.h> does not
define reply structures for these. Instead, they use the xGenericReply structure, which
contains only a type, length, and sequence number (and sufficient padding to make it 32
bytes long).

Starting to Write a Stub Routine

An Xlib stub routine should always start like this:

#include "Xlibint.h"
XDoSomething (arguments,. . .)
/* argument declarations */
{

register XDoSomethingReq *req;
. . .

If the protocol request has a reply, then the variable declarations should include the
reply structure for the request. The following is an example:

xDoSomethingReply rep;

Locking Data Structures

To lock the display structure for systems that want to support multithreaded access to a
single display connection, each stub will need to lock its critical section. Generally, this
section is the point from just before the appropriate GetReq call until all arguments to
the call have been stored into the buffer. The precise instructions needed for this lock-
ing depend upon the machine architecture. Two calls, which are generally implemented
as macros, have been provided.

LockDisplay(display)
Display *display;

UnlockDisplay(display)
Display *display;

March 26, 1992 C−13

-- --

X Window System

Sending the Protocol Request and Arguments

After the variable declarations, a stub routine should call one of four macros defined in
<X11/Xlibint.h>: GetReq, GetReqExtra, GetResReq, or GetEmptyReq. All of these
macros take, as their first argument, the name of the protocol request as declared in
<X11/Xproto.h> except with X_ removed. Each one declares a Display structure
pointer, called dpy, and a pointer to a request structure, called req, which is of the
appropriate type. The macro then appends the request structure to the output buffer, fills
in its type and length field, and sets req to point to it.

If the protocol request has no arguments (for instance, X_GrabServer), then use
GetEmptyReq.

GetEmptyReq (DoSomething, req);

If the protocol request has a single 32-bit argument (such as a Pixmap, Window,
Drawable, Atom, and so on), then use GetResReq. The second argument to the macro
is the 32-bit object. X_MapWindow is a good example.

GetResReq (DoSomething, rid, req);

The rid argument is the Pixmap, Window, or other resource ID.

If the protocol request takes any other argument list, then call GetReq. After the
GetReq, you need to set all the other fields in the request structure, usually from argu-
ments to the stub routine.

GetReq (DoSomething, req);
/* fill in arguments here */
req->arg1 = arg1;
req->arg2 = arg2;

A few stub routines (such as XCreateGC and XCreatePixmap) return a resource ID to
the caller but pass a resource ID as an argument to the protocol request. Such routines
use the macro XAllocID to allocate a resource ID from the range of IDs that were
assigned to this client when it opened the connection.

rid = req->rid = XAllocID();
. . .
return (rid);

Finally, some stub routines transmit a fixed amount of variable length data after the
request. Typically, these routines (such as XMoveWindow and XSetBackground) are
special cases of more general functions like XMoveResizeWindow and XChangeGC.
These special case routines use GetReqExtra, which is the same as GetReq except that
it takes an additional argument (the number of extra bytes to allocate in the output
buffer after the request structure). This number should always be a multiple of four.

C−14 March 26, 1992

-- --

Extensions

Variable Length Arguments

Some protocol requests take additional variable length data that follow the xDo-
SomethingReq structure. The format of this data varies from request to request. Some
requests require a sequence of 8-bit bytes, others a sequence of 16-bit or 32-bit entities,
and still others a sequence of structures.

It is necessary to add the length of any variable length data to the length field of the
request structure. That length field is in units of 32-bit longwords. If the data is a string
or other sequence of 8-bit bytes, then you must round the length up and shift it before
adding:

req->length += (nbytes+3)>>2;

To transmit variable length data, use the Data macros. If the data fits into the output
buffer, then this macro copies it to the buffer. If it does not fit, however, the Data
macro calls _XSend, which transmits first the contents of the buffer and then your data.
The Data macros take three arguments: the Display, a pointer to the beginning of the
data, and the number of bytes to be sent.

Data(display, (char *) data, nbytes);

Data16(display, (short *) data, nbytes);

Data32(display, (long *) data, nbytes);

Data, Data16, and Data32 are macros that may use their last argument more than once,
so that argument should be a variable rather than an expression such as
‘‘nitems*sizeof(item)’’. You should do that kind of computation in a separate statement
before calling them. Use the appropriate macro when sending byte, short, or long data.

If the protocol request requires a reply, then call the procedure _XSend instead of the
Data macro. _XSend takes the same arguments, but because it sends your data immedi-
ately instead of copying it into the output buffer (which would later be flushed anyway
by the following call on _XReply), it is faster.

Replies

If the protocol request has a reply, then call _XReply after you have finished dealing
with all the fixed and variable length arguments. _XReply flushes the output buffer and
waits for a xReply packet to arrive. If any events arrive in the meantime, _XReply
places them in the queue for later use.

Status _XReply(display, rep, extra, discard)
Display *display;
xReply *rep;
int extra; /* number of 32-bit words expected after the reply */

March 26, 1992 C−15

-- --

X Window System

Bool discard;/* should I discard data following "extra" words? */

_XReply waits for a reply packet and copies its contents into the specified rep. _XReply
handles error and event packets that occur before the reply is received. _XReply takes
four arguments:

• A Display * structure

• A pointer to a reply structure (which must be cast to a xReply *)

• The number of additional 32-bit words (beyond sizeof(xReply) = 32 bytes) in the
reply structure

• A Boolean that indicates whether _XReply is to discard any additional bytes beyond
those it was told to read

Because most reply structures are 32 bytes long, the third argument is usually 0. The
only core protocol exceptions are the replies to GetWindowAttributes, QueryFont,
QueryKeymap, and GetKeyboardControl, which have longer replies.

The last argument should be False if the reply structure is followed by additional vari-
able length data (such as a list or string). It should be True if there is not any variable
length data.

Note: This last argument is provided for upward-compatibility reasons to
allow a client to communicate properly with a hypothetical later version
of the server that sends more data than the client expected. For exam-
ple, some later version of GetWindowAttributes might use a larger,
but compatible, xGetWindowAttributesReply that contains additional
attribute data at the end.

_XReply returns True if it received a reply successfully or False if it received any sort
of error.

For a request with a reply that is not followed by variable length data, you write some-
thing like:

_XReply(display, (xReply *)&rep, 0, True);
*ret1 = rep.ret1;
*ret2 = rep.ret2;
*ret3 = rep.ret3;
UnlockDisplay(dpy);
SyncHandle();
return (rep.ret4);
}

If there is variable length data after the reply, change the True to False, and use the
appropriate _XRead function to read the variable length data.

_XRead(display, data, nbytes)
Display *display;
char *data;
long nbytes;

C−16 March 26, 1992

-- --

Extensions

_XRead reads the specified number of bytes into data.

_XRead16(display, data, nbytes)
Display *display;
short *data;
long nbytes;

_XRead16 reads the specified number of bytes, unpacking them as 16-bit quantities,
into the specified array as shorts.

_XRead32(display, data, nbytes)
Display *display;
long *data;
long nbytes;

_XRead32 reads the specified number of bytes, unpacking them as 32-bit quantities,
into the specified array as longs.

_XRead16Pad(display, data, nbytes)
Display *display;
short *data;
long nbytes;

_XRead16Pad reads the specified number of bytes, unpacking them as 16-bit quanti-
ties, into the specified array as shorts. If the number of bytes is not a multiple of four,
_XRead16Pad reads up to three additional pad bytes.

_XReadPad(display, data, nbytes)
Display *display;
char *data;
long nbytes;

_XReadPad reads the specified number of bytes into data. If the number of bytes is
not a multiple of four, _XReadPad reads up to three additional pad bytes.

Each protocol request is a little different. For further information, see the Xlib sources
for examples.

Synchronous Calling

To ease debugging, each routine should have a call, just before returning to the user, to
a routine called SyncHandle. This routine generally is implemented as a macro. If
synchronous mode is enabled (see XSynchronize), the request is sent immediately. The
library, however, waits until any error the routine could generate at the server has been
handled.

March 26, 1992 C−17

-- --

X Window System

Allocating and Deallocating Memory

To support the possible reentry of these routines, you must observe several conventions
when allocating and deallocating memory, most often done when returning data to the
user from the window system of a size the caller could not know in advance (for exam-
ple, a list of fonts or a list of extensions). The standard C library routines on many sys-
tems are not protected against signals or other multithreaded uses. The following analo-
gies to standard I/O library routines have been defined:

Xmalloc() Replaces malloc()
XFree() Replaces free()
Xcalloc() Replaces calloc()

These should be used in place of any calls you would make to the normal C library rou-
tines.

If you need a single scratch buffer inside a critical section (for example, to pack and
unpack data to and from the wire protocol), the general memory allocators may be too
expensive to use (particularly in output routines, which are performance critical). The
routine below returns a scratch buffer for your use:

char *_XAllocScratch(display, nbytes)
Display *display;
unsigned long nbytes;

This storage must only be used inside of the critical section of your stub.

Portability Considerations

Many machine architectures, including many of the more recent RISC architectures, do
not correctly access data at unaligned locations; their compilers pad out structures to
preserve this characteristic. Many other machines capable of unaligned references pad
inside of structures as well to preserve alignment, because accessing aligned data is usu-
ally much faster. Because the library and the server use structures to access data at arbi-
trary points in a byte stream, all data in request and reply packets must be naturally
aligned; that is, 16-bit data starts on 16-bit boundaries in the request and 32-bit data on
32-bit boundaries. All requests must be a multiple of 32 bits in length to preserve the
natural alignment in the data stream. You must pad structures out to 32-bit boundaries.
Pad information does not have to be zeroed unless you want to preserve such fields for
future use in your protocol requests. Floating point varies radically between machines
and should be avoided completely if at all possible.

This code may run on machines with 16-bit ints. So, if any integer argument, variable,
or return value either can take only nonnegative values or is declared as a CARD16 in
the protocol, be sure to declare it as unsigned int and not as int. (This, of course, does
not apply to Booleans or enumerations.)

C−18 March 26, 1992

-- --

Extensions

Similarly, if any integer argument or return value is declared CARD32 in the protocol,
declare it as an unsigned long and not as int or long. This also goes for any internal
variables that may take on values larger than the maximum 16-bit unsigned int.

The library currently assumes that a char is 8 bits, a short is 16 bits, an int is 16 or 32
bits, and a long is 32 bits. The PackData macro is a half-hearted attempt to deal with
the possibility of 32 bit shorts. However, much more work is needed to make this work
properly.

Deriving the Correct Extension Opcode

The remaining problem a writer of an extension stub routine faces that the core protocol
does not face is to map from the call to the proper major and minor opcodes. While
there are a number of strategies, the simplest and fastest is outlined below.

1. Declare an array of pointers, _NFILE long (this is normally found in <stdio.h>
and is the number of file descriptors supported on the system) of type
XExtCodes. Make sure these are all initialized to NULL.

2. When your stub is entered, your initialization test is just to use the display pointer
passed in to access the file descriptor and an index into the array. If the entry is
NULL, then this is the first time you are entering the routine for this display. Call
your initialization routine and pass it to the display pointer.

3. Once in your initialization routine, call XInitExtension; if it succeeds, store the
pointer returned into this array. Make sure to establish a close display handler to
allow you to zero the entry. Do whatever other initialization your extension
requires. (For example, install event handlers and so on.) Your initialization rou-
tine would normally return a pointer to the XExtCodes structure for this exten-
sion, which is what would normally be found in your array of pointers.

4. After returning from your initialization routine, the stub can now continue nor-
mally, because it has its major opcode safely in its hand in the XExtCodes struc-
ture.

March 26, 1992 C−19

-- --

Appendix D. Compatibility Functions

The X Version 11 and X Version 10 functions discussed in this appendix are obsolete,
have been superseded by newer X Version 11 functions, and are maintained for compa-
tibility reasons only.

X VERSION 11 COMPATIBILITY FUNCTIONS

You can use the X Version 11 compatibility functions to:

• Set standard properties

• Set and get window sizing hints

• Set and get an XStandardColormap structure

• Parse window geometry

Setting Standard Properties

To specify a minimum set of properties describing the ‘‘quickie’’ application, use
XSetStandardProperties. This function has been superseded by XSetWMProperties
and sets all or portions of the WM_NAME, WM_ICON_NAME, WM_HINTS,
WM_COMMAND, and WM_NORMAL_HINTS properties.

XSetStandardProperties(display, w, window_name, icon_name, icon_pixmap, argv,
argc, hints)

Display *display;
Window w;
char *window_name;
char *icon_name;
Pixmap icon_pixmap;
char **argv;

March 26, 1992 D−1

-- --

X Window System

int argc;
XSizeHints *hints;

display Specifies the connection to the X server.

w Specifies the window.

window_name Specifies the window name, which should be a null-terminated
string.

icon_name Specifies the icon name, which should be a null-terminated
string.

icon_pixmap Specifies the bitmap that is to be used for the icon or None.

argv Specifies the application’s argument list.

argc Specifies the number of arguments.

hints Specifies a pointer to the size hints for the window in its normal
state.

The XSetStandardProperties function provides a means by which simple applications
set the most essential properties with a single call. XSetStandardProperties should be
used to give a window manager some information about your program’s preferences. It
should not be used by applications that need to communicate more information than is
possible with XSetStandardProperties. (Typically, argv is the argv array of your main
program.)

XSetStandardProperties can generate BadAlloc and BadWindow errors.

Setting and Getting Window Sizing Hints

Xlib provides functions that you can use to set or get window sizing hints. The func-
tions discussed in this section use the flags and the XSizeHints structure, as defined in
the <X11/Xutil.h> header file, and use the WM_NORMAL_HINTS property.

To set the size hints for a given window in its normal state, use XSetNormalHints.
This function has been superseded by XSetWMNormalHints.

XSetNormalHints(display, w, hints)
Display *display;
Window w;
XSizeHints *hints;

display Specifies the connection to the X server.

w Specifies the window.

hints Specifies a pointer to the size hints for the window in its normal
state.

D−2 March 26, 1992

-- --

Compatibility Functions

The XSetNormalHints function sets the size hints structure for the specified window.
Applications use XSetNormalHints to inform the window manager of the size or posi-
tion desirable for that window. In addition, an application that wants to move or resize
itself should call XSetNormalHints and specify its new desired location and size as well
as making direct Xlib calls to move or resize. This is because window managers may
ignore redirected configure requests, but they pay attention to property changes.

To set size hints, an application not only must assign values to the appropriate members
in the hints structure but also must set the flags member of the structure to indicate
which information is present and where it came from. A call to XSetNormalHints is
meaningless, unless the flags member is set to indicate which members of the structure
have been assigned values.

XSetNormalHints can generate BadAlloc and BadWindow errors.

To return the size hints for a window in its normal state, use XGetNormalHints. This
function has been superseded by XGetWMNormalHints.

Status XGetNormalHints(display, w, hints_return)
Display *display;
Window w;
XSizeHints *hints_return;

display Specifies the connection to the X server.

w Specifies the window.

hints_return Returns the size hints for the window in its normal state.

The XGetNormalHints function returns the size hints for a window in its normal state.
It returns a nonzero status if it succeeds or zero if the application specified no normal
size hints for this window.

XGetNormalHints can generate a BadWindow error.

The next two functions set and read the WM_ZOOM_HINTS property.

To set the zoom hints for a window, use XSetZoomHints. This function is no longer
supported by part III, ‘‘Inter-Client Communication Conventions Manual.’’

XSetZoomHints(display, w, zhints)
Display *display;
Window w;
XSizeHints *zhints;

display Specifies the connection to the X server.

w Specifies the window.

zhints Specifies a pointer to the zoom hints.

Many window managers think of windows in one of three states: iconic, normal, or
zoomed. The XSetZoomHints function provides the window manager with information
for the window in the zoomed state.

March 26, 1992 D−3

-- --

X Window System

XSetZoomHints can generate BadAlloc and BadWindow errors.

To read the zoom hints for a window, use XGetZoomHints. This function is no longer
supported by part III, ‘‘Inter-Client Communication Conventions Manual.’’

Status XGetZoomHints(display, w, zhints_return)
Display *display;
Window w;
XSizeHints *zhints_return;

display Specifies the connection to the X server.

w Specifies the window.

zhints_return Returns the zoom hints.

The XGetZoomHints function returns the size hints for a window in its zoomed state. It
returns a nonzero status if it succeeds or zero if the application specified no zoom size
hints for this window.

XGetZoomHints can generate a BadWindow error.

To set the value of any property of type WM_SIZE_HINTS, use XSetSizeHints. This
function has been superseded by XSetWMSizeHints.

XSetSizeHints(display, w, hints, property)
Display *display;
Window w;
XSizeHints *hints;
Atom property;

display Specifies the connection to the X server.

w Specifies the window.

hints Specifies a pointer to the size hints.

property Specifies the property name.

The XSetSizeHints function sets the XSizeHints structure for the named property and the
specified window. This is used by XSetNormalHints and XSetZoomHints, and can be
used to set the value of any property of type WM_SIZE_HINTS. Thus, it may be use-
ful if other properties of that type get defined.

XSetSizeHints can generate BadAlloc, BadAtom, and BadWindow errors.

To read the value of any property of type WM_SIZE_HINTS, use XGetSizeHints. This
function has been superseded by XGetWMSizeHints.

Status XGetSizeHints(display, w, hints_return, property)
Display *display;
Window w;
XSizeHints *hints_return;
Atom property;

display Specifies the connection to the X server.

D−4 March 26, 1992

-- --

Compatibility Functions

w Specifies the window.

hints_return Returns the size hints.

property Specifies the property name.

XGetSizeHints returns the XSizeHints structure for the named property and the specified
window. This is used by XGetNormalHints and XGetZoomHints. It also can be used
to retrieve the value of any property of type WM_SIZE_HINTS. Thus, it may be useful
if other properties of that type get defined. XGetSizeHints returns a nonzero status if a
size hint was defined or zero otherwise.

XGetSizeHints can generate BadAtom and BadWindow errors.

Getting and Setting an XStandardColormap Structure

To get the XStandardColormap structure associated with one of the described atoms,
use XGetStandardColormap. This function has been superseded by XGetRGBColor-
map.

Status XGetStandardColormap(display, w, colormap_return, property)
Display *display;
Window w;
XStandardColormap *colormap_return;
Atom property; /* RGB_BEST_MAP, etc. */

display Specifies the connection to the X server.

w Specifies the window.

colormap_return
Returns the colormap associated with the specified atom.

property Specifies the property name.

The XGetStandardColormap function returns the colormap definition associated with
the atom supplied as the property argument. For example, to fetch the standard GrayS-
cale colormap for a display, you use XGetStandardColormap with the following syn-
tax:

XGetStandardColormap(dpy, DefaultRootWindow(dpy), &cmap,
XA_RGB_GRAY_MAP);

Once you have fetched a standard colormap, you can use it to convert RGB values into
pixel values. For example, given a XStandardColormap structure and floating-point
RGB coefficients in the range 0.0 to 1.0, you can compose pixel values with the follow-
ing C expression:

pixel = base_pixel
+ ((unsigned long) (0.5 + r * red_max)) * red_mult
+ ((unsigned long) (0.5 + g * green_max)) * green_mult

March 26, 1992 D−5

-- --

X Window System

+ ((unsigned long) (0.5 + b * blue_max)) * blue_mult;

The use of addition rather than logical OR for composing pixel values permits alloca-
tions where the RGB value is not aligned to bit boundaries.

XGetStandardColormap can generate BadAtom and BadWindow errors.

To set a standard colormap, use XSetStandardColormap. This function has been
superseded by XSetRGBColormap.

XSetStandardColormap(display, w, colormap, property)
Display *display;
Window w;
XStandardColormap *colormap;
Atom property; /* RGB_BEST_MAP, etc. */

display Specifies the connection to the X server.

w Specifies the window.

colormap Specifies the colormap.

property Specifies the property name.

The XSetStandardColormap function usually is only used by window managers. To
create a standard colormap, follow this procedure:

1. Open a new connection to the same server.

2. Grab the server.

3. See if the property is on the property list of the root window for the screen.

4. If the desired property is not present:

• Create a colormap (not required for RGB_DEFAULT_MAP).

• Determine the color capabilities of the display.

• Call XAllocColorPlanes or XAllocColorCells to allocate cells in the color-
map.

• Call XStoreColors to store appropriate color values in the colormap.

• Fill in the descriptive members in the XStandardColormap structure.

• Attach the property to the root window.

• Use XSetCloseDownMode to make the resource permanent.

5. Ungrab the server.

XSetStandardColormap can generate BadAlloc, BadAtom, and BadWindow errors.

D−6 March 26, 1992

-- --

Compatibility Functions

Parsing Window Geometry

To parse window geometry given a user-specified position and a default position, use
XGeometry. This function has been superseded by XWMGeometry.

int XGeometry(display, screen, position, default_position, bwidth, fwidth, fheight, xadder
yadder, x_return, y_return, width_return, height_return)

Display *display;
int screen;
char *position, *default_position;
unsigned int bwidth;
unsigned int fwidth, fheight;
int xadder, yadder;
int *x_return, *y_return;
int *width_return, *height_return;

display Specifies the connection to the X server.

screen Specifies the screen.

position, default_position
Specify the geometry specifications.

bwidth Specifies the border width.

fheight, fwidth Specify the font height and width in pixels (increment size).

xadder, yadder
Specify additional interior padding needed in the window.

x_return, y_return
Return the x and y offsets.

width_return, height_return
Return the width and height determined.

You pass in the border width (bwidth), size of the increments fwidth and fheight (typi-
cally font width and height), and any additional interior space (xadder and yadder) to
make it easy to compute the resulting size. The XGeometry function returns the posi-
tion the window should be placed given a position and a default position. XGeometry
determines the placement of a window using a geometry specification as specified by
XParseGeometry and the additional information about the window. Given a fully
qualified default geometry specification and an incomplete geometry specification,
XParseGeometry returns a bitmask value as defined above in the XParseGeometry
call, by using the position argument.

The returned width and height will be the width and height specified by default_position
as overridden by any user-specified position. They are not affected by fwidth, fheight,
xadder, or yadder. The x and y coordinates are computed by using the border width, the
screen width and height, padding as specified by xadder and yadder, and the fheight and
fwidth times the width and height from the geometry specifications.

March 26, 1992 D−7

-- --

X Window System

X VERSION 10 COMPATIBILITY FUNCTIONS

You can use the X Version 10 compatibility functions to:

• Draw and fill polygons and curves

• Associate user data with a value

Drawing and Filling Polygons and Curves

Xlib provides functions that you can use to draw or fill arbitrary polygons or curves.
These functions are provided mainly for compatibility with X Version 10 and have no
server support. That is, they call other Xlib functions, not the server directly. Thus, if
you just have straight lines to draw, using XDrawLines or XDrawSegments is much
faster.

The functions discussed here provide all the functionality of the X Version 10 functions
XDraw, XDrawFilled, XDrawPatterned, XDrawDashed, and XDrawTiled. They are
as compatible as possible given X Version 11’s new line drawing functions. One thing
to note, however, is that VertexDrawLastPoint is no longer supported. Also, the error
status returned is the opposite of what it was under X Version 10 (this is the X Version
11 standard error status). XAppendVertex and XClearVertexFlag from X Version 10
also are not supported.

Just how the graphics context you use is set up actually determines whether you get
dashes or not, and so on. Lines are properly joined if they connect and include the clos-
ing of a closed figure (see XDrawLines). The functions discussed here fail (return
zero) only if they run out of memory or are passed a Vertex list that has a Vertex with
VertexStartClosed set that is not followed by a Vertex with VertexEndClosed set.

To achieve the effects of the X Version 10 XDraw, XDrawDashed, and XDrawPat-
terned, use XDraw.

#include <X11/X10.h>

Status XDraw(display, d, gc, vlist, vcount)
Display *display;
Drawable d;
GC gc;
Vertex *vlist;
int vcount;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

D−8 March 26, 1992

-- --

Compatibility Functions

vlist Specifies a pointer to the list of vertices that indicate what to
draw.

vcount Specifies how many vertices are in vlist.

XDraw draws an arbitrary polygon or curve. The figure drawn is defined by the
specified list of vertices (vlist). The points are connected by lines as specified in the
flags in the vertex structure.

Each Vertex, as defined in <X11/X10.h>, is a structure with the following members:

typedef struct _Vertex {
short x,y;
unsigned short flags;

} Vertex;

The x and y members are the coordinates of the vertex that are relative to either the
upper-left inside corner of the drawable (if VertexRelative is zero) or the previous ver-
tex (if VertexRelative is one).

The flags, as defined in <X11/X10.h>, are as follows:

VertexRelative 0x0001 /* else absolute */
VertexDontDraw 0x0002 /* else draw */
VertexCurved 0x0004 /* else straight */
VertexStartClosed 0x0008 /* else not */
VertexEndClosed 0x0010 /* else not */

• If VertexRelative is not set, the coordinates are absolute (that is, relative to the
drawable’s origin). The first vertex must be an absolute vertex.

• If VertexDontDraw is one, no line or curve is drawn from the previous vertex to
this one. This is analogous to picking up the pen and moving to another place before
drawing another line.

• If VertexCurved is one, a spline algorithm is used to draw a smooth curve from the
previous vertex through this one to the next vertex. Otherwise, a straight line is
drawn from the previous vertex to this one. It makes sense to set VertexCurved to
one only if a previous and next vertex are both defined (either explicitly in the array
or through the definition of a closed curve).

• It is permissible for VertexDontDraw bits and VertexCurved bits both to be one.
This is useful if you want to define the previous point for the smooth curve but do
not want an actual curve drawing to start until this point.

• If VertexStartClosed is one, then this point marks the beginning of a closed curve.
This vertex must be followed later in the array by another vertex whose effective
coordinates are identical and that has a VertexEndClosed bit of one. The points in
between form a cycle to determine predecessor and successor vertices for the spline
algorithm.

This function uses these GC components: function, plane-mask, line-width, line-style,
cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-
mask. It also uses these GC mode-dependent components: foreground, background, tile,

March 26, 1992 D−9

-- --

X Window System

stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

To achieve the effects of the X Version 10 XDrawTiled and XDrawFilled, use
XDrawFilled.

#include <X11/X10.h>

Status XDrawFilled(display, d, gc, vlist, vcount)
Display *display;
Drawable d;
GC gc;
Vertex *vlist;
int vcount;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

vlist Specifies a pointer to the list of vertices that indicate what to
draw.

vcount Specifies how many vertices are in vlist.

XDrawFilled draws arbitrary polygons or curves and then fills them.

This function uses these GC components: function, plane-mask, line-width, line-style,
cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-
mask. It also uses these GC mode-dependent components: foreground, background, tile,
stipple, tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, dash-list, fill-style, and
fill-rule.

Associating User Data with a Value

These functions have been superseded by the context management functions (see section
10.12). It is often necessary to associate arbitrary information with resource IDs. Xlib
provides the XAssocTable functions that you can use to make such an association.
Application programs often need to be able to easily refer to their own data structures
when an event arrives. The XAssocTable system provides users of the X library with a
method for associating their own data structures with X resources (Pixmaps, Fonts,
Windows, and so on).

A XAssocTable can be used to type X resources. For example, the user may want to
have three or four types of windows, each with different properties. This can be accom-
plished by associating each X window ID with a pointer to a window property data
structure defined by the user. A generic type has been defined in the X library for
resource IDs. It is called an XID.

D−10 March 26, 1992

-- --

Compatibility Functions

There are a few guidelines that should be observed when using a XAssocTable:

• All XIDs are relative to the specified display.

• Because of the hashing scheme used by the association mechanism, the following
rules for determining the size of a XAssocTable should be followed. Associations
will be made and looked up more efficiently if the table size (number of buckets in
the hashing system) is a power of two and if there are not more than 8 XIDs per
bucket.

To return a pointer to a new XAssocTable, use XCreateAssocTable.

XAssocTable *XCreateAssocTable(size)
int size;

size Specifies the number of buckets in the hash system of XAssocT-
able.

The size argument specifies the number of buckets in the hash system of XAssocTable.
For reasons of efficiency the number of buckets should be a power of two. Some size
suggestions might be: use 32 buckets per 100 objects, and a reasonable maximum
number of objects per buckets is 8. If an error allocating memory for the XAssocTable
occurs, a NULL pointer is returned.

To create an entry in a given XAssocTable, use XMakeAssoc.

XMakeAssoc(display, table, x_id, data)
Display *display;
XAssocTable *table;
XID x_id;
char *data;

display Specifies the connection to the X server.

table Specifies the assoc table.

x_id Specifies the X resource ID.

data Specifies the data to be associated with the X resource ID.

XMakeAssoc inserts data into a XAssocTable keyed on a XID. Data is inserted into
the table only once. Redundant inserts are ignored. The queue in each association
bucket is sorted from the lowest XID to the highest XID.

To obtain data from a given XAssocTable, use XLookUpAssoc.

char *XLookUpAssoc(display, table, x_id)
Display *display;
XAssocTable *table;
XID x_id;

display Specifies the connection to the X server.

table Specifies the assoc table.

x_id Specifies the X resource ID.

March 26, 1992 D−11

-- --

X Window System

XLookUpAssoc retrieves the data stored in a XAssocTable by its XID. If an appropri-
ately matching XID can be found in the table, XLookUpAssoc returns the data associ-
ated with it. If the x_id cannot be found in the table, it returns NULL.

To delete an entry from a given XAssocTable, use XDeleteAssoc.

XDeleteAssoc(display, table, x_id)
Display *display;
XAssocTable *table;
XID x_id;

display Specifies the connection to the X server.

table Specifies the assoc table.

x_id Specifies the X resource ID.

XDeleteAssoc deletes an association in a XAssocTable keyed on its XID. Redundant
deletes (and deletes of nonexistent XIDs) are ignored. Deleting associations in no way
impairs the performance of a XAssocTable.

To free the memory associated with a given XAssocTable, use XDestroyAssocTable.

XDestroyAssocTable(table)
XAssocTable *table;

table Specifies the assoc table.

D−12 March 26, 1992

-- --

Appendix E. KEYSYM Encoding

For convenience, KEYSYM values are viewed as split into four bytes:

• Byte 1 (for the purposes of this encoding) is the most-significant 5 bits (because of
the 29-bit effective values)

• Byte 2 is the next most-significant 8 bits

• Byte 3 is the next most-significant 8 bits

• Byte 4 is the least-significant 8 bits

There are two special KEYSYM values: NoSymbol and VoidSymbol.

33
Byte 1 Byte 2 Byte 3 Byte 4 Name
33
0 0 0 0 NoSymbol
0 255 255 255 VoidSymbol

All other standard KEYSYM values have zero values for bytes 1 and 2. Byte 3 indi-
cates a character code set, and byte 4 indicates a particular character within that set.

33
Byte 3 Byte 4
33
0 Latin 1
1 Latin 2
2 Latin 3
3 Latin 4
4 Kana
5 Arabic
6 Cyrillic
7 Greek
8 Technical
9 Special
10 Publishing
11 APL
12 Hebrew

March 26, 1992 E−1

-- --

X Window System

255 Keyboard

Each character set contains gaps where codes have been removed that were duplicates
with codes in previous character sets (that is, character sets with lesser byte 3 value).

The 94 and 96 character code sets have been moved to occupy the right-hand quadrant
(decimal 129 through 256), so the ASCII subset has a unique encoding across byte 4,
which corresponds to the ASCII character code. However, this cannot be guaranteed
with future registrations and does not apply to all of the Keyboard set.

To the best of our knowledge, the Latin, Kana, Arabic, Cyrillic, Greek, APL, and
Hebrew sets are from the appropriate ISO and/or ECMA international standards. There
are no Technical, Special, or Publishing international standards, so these sets are based
on Digital Equipment Corporation standards.

The ordering between the sets (byte 3) is essentially arbitrary. National and interna-
tional standards bodies were commencing deliberations regarding international 2-byte
and 4-byte character sets at the time these keysyms were developed, but we did not
know of any proposed layouts.

The order may be arbitrary, but it is important in dealing with duplicate coding. As far
as possible, keysym values (byte 4) follow the character set encoding standards, except
for the Greek and Cyrillic keysyms, which are based on early draft standards. In the
Latin-1 to Latin-4 sets, all duplicate glyphs occupy the same code position. However,
duplicates between Greek and Technical do not occupy the same code position. Applica-
tions that wish to use the Latin-2, Latin-3, Latin-4, Greek, Cyrillic, or Technical sets
may find it convenient to use arrays to transform the keysyms.

There is a difference between European and US usage of the names Pilcrow, Paragraph,
and Section, as follows:

33
US name European name code position in Latin-1
33
Section sign Paragraph sign 10/07
Paragraph sign Pilcrow sign 11/06

We have adopted the US names (by accident rather than by design).

The Keyboard set is a miscellaneous collection of commonly occurring keys on key-
boards. Within this set, the keypad symbols are generally duplicates of symbols found
on keys on the main part of the keyboard, but they are distinguished here because they
often have a distinguishable semantics associated with them.

Keyboards tend to be comparatively standard with respect to the alphanumeric keys, but
they differ radically on the miscellaneous function keys. Many function keys are left
over from early timesharing days or are designed for a specific application. Keyboard
layouts from large manufacturers tend to have lots of keys for every conceivable pur-
pose, whereas small workstation manufacturers often add keys that are solely for sup-
port of some of their unique functionality. There are two ways of thinking about how
to define keysyms for such a world:

E−2 March 26, 1992

-- --

KEYSYM Encoding

• The Engraving approach

• The Common approach

The Engraving approach is to create a keysym for every unique key engraving. This is
effectively taking the union of all key engravings on all keyboards. For example, some
keyboards label function keys across the top as F1 through Fn, and others label them as
PF1 through PFn. These would be different keys under the Engraving approach. Like-
wise, Lock would differ from Shift Lock, which is different from the up-arrow symbol
that has the effect of changing lowercase to uppercase. There are lots of other aliases
such as Del, DEL, Delete, Remove, and so forth. The Engraving approach makes it
easy to decide if a new entry should be added to the keysym set: if it does not exactly
match an existing one, then a new one is created. One estimate is that there would be
on the order of 300–500 Keyboard keysyms using this approach, without counting
foreign translations and variations.

The Common approach tries to capture all of the keys present on an interesting number
of keyboards, folding likely aliases into the same keysym. For example, Del, DEL, and
Delete are all merged into a single keysym. Vendors would be expected to augment the
keysym set (using the vendor-specific encoding space) to include all of their unique
keys that were not included in the standard set. Each vendor decides which of its keys
map into the standard keysyms, which presumably can be overridden by a user. It is
more difficult to implement this approach, because judgment is required about when a
sufficient set of keyboards implements an engraving to justify making it a keysym in the
standard set and about which engravings should be merged into a single keysym. Under
this scheme there are an estimated 100–150 keysyms.

Although neither scheme is perfect or elegant, the Common approach has been selected
because it makes it easier to write a portable application. Having the Delete functional-
ity merged into a single keysym allows an application to implement a deletion function
and expect reasonable bindings on a wide set of workstations. Under the Common
approach, application writers are still free to look for and interpret vendor-specific
keysyms, but because they are in the extended set, the application developer is more
conscious that they are writing the application in a nonportable fashion.

In the listings below, Code Pos is a representation of byte 4 of the KEYSYM value,
expressed as most-significant/least-significant 4-bit values. The Code Pos numbers are
for reference only and do not affect the KEYSYM value. In all cases, the KEYSYM
value is byte3 * 256 + byte4.

TABLE E-1. Table of Character Values

333
Byte Byte Code *Character Name
3 4 Pos
333
000 032 02/00 SPACE
000 033 02/01 EXCLAMATION POINT
000 034 02/02 QUOTATION MARK
000 035 02/03 NUMBER SIGN
000 036 02/04 DOLLAR SIGN

March 26, 1992 E−3

-- --

X Window System

000 037 02/05 PERCENT SIGN
000 038 02/06 AMPERSAND
000 039 02/07 APOSTROPHE
000 040 02/08 LEFT PARENTHESIS
000 041 02/09 RIGHT PARENTHESIS
000 042 02/10 ASTERISK
000 043 02/11 PLUS SIGN
000 044 02/12 COMMA
000 045 02/13 MINUS SIGN
000 046 02/14 FULL STOP
000 047 02/15 SOLIDUS
000 048 03/00 DIGIT ZERO
000 049 03/01 DIGIT ONE
000 050 03/02 DIGIT TWO
000 051 03/03 DIGIT THREE
000 052 03/04 DIGIT FOUR
000 053 03/05 DIGIT FIVE
000 054 03/06 DIGIT SIX
000 055 03/07 DIGIT SEVEN
000 056 03/08 DIGIT EIGHT
000 057 03/09 DIGIT NINE
000 058 03/10 COLON
000 059 03/11 SEMICOLON
000 060 03/12 LESS THAN SIGN
000 061 03/13 EQUALS SIGN
000 062 03/14 GREATER THAN SIGN
000 063 03/15 QUESTION MARK
000 064 04/00 COMMERCIAL AT
000 065 04/01 LATIN CAPITAL LETTER A
000 066 04/02 LATIN CAPITAL LETTER B
000 067 04/03 LATIN CAPITAL LETTER C
000 068 04/04 LATIN CAPITAL LETTER D
000 069 04/05 LATIN CAPITAL LETTER E
000 070 04/06 LATIN CAPITAL LETTER F
000 071 04/07 LATIN CAPITAL LETTER G
000 072 04/08 LATIN CAPITAL LETTER H
000 073 04/09 LATIN CAPITAL LETTER I
000 074 04/10 LATIN CAPITAL LETTER J
000 075 04/11 LATIN CAPITAL LETTER K
000 076 04/12 LATIN CAPITAL LETTER L
000 077 04/13 LATIN CAPITAL LETTER M
000 078 04/14 LATIN CAPITAL LETTER N
000 079 04/15 LATIN CAPITAL LETTER O
000 080 05/00 LATIN CAPITAL LETTER P
000 081 05/01 LATIN CAPITAL LETTER Q
000 082 05/02 LATIN CAPITAL LETTER R
000 083 05/03 LATIN CAPITAL LETTER S
000 084 05/04 LATIN CAPITAL LETTER T

E−4 March 26, 1992

-- --

KEYSYM Encoding

000 085 05/05 LATIN CAPITAL LETTER U
000 086 05/06 LATIN CAPITAL LETTER V
000 087 05/07 LATIN CAPITAL LETTER W
000 088 05/08 LATIN CAPITAL LETTER X
000 089 05/09 LATIN CAPITAL LETTER Y
000 090 05/10 LATIN CAPITAL LETTER Z
000 091 05/11 LEFT SQUARE BRACKET
000 092 05/12 REVERSE SOLIDUS
000 093 05/13 RIGHT SQUARE BRACKET
000 094 05/14 CIRCUMFLEX ACCENT
000 095 05/15 LOW LINE
000 096 06/00 GRAVE ACCENT
000 097 06/01 LATIN SMALL LETTER a
000 098 06/02 LATIN SMALL LETTER b
000 099 06/03 LATIN SMALL LETTER c
000 100 06/04 LATIN SMALL LETTER d
000 101 06/05 LATIN SMALL LETTER e
000 102 06/06 LATIN SMALL LETTER f
000 103 06/07 LATIN SMALL LETTER g
000 104 06/08 LATIN SMALL LETTER h
000 105 06/09 LATIN SMALL LETTER i
000 106 06/10 LATIN SMALL LETTER j
000 107 06/11 LATIN SMALL LETTER k
000 108 06/12 LATIN SMALL LETTER l
000 109 06/13 LATIN SMALL LETTER m
000 110 06/14 LATIN SMALL LETTER n
000 111 06/15 LATIN SMALL LETTER o
000 112 07/00 LATIN SMALL LETTER p
000 113 07/01 LATIN SMALL LETTER q
000 114 07/02 LATIN SMALL LETTER r
000 115 07/03 LATIN SMALL LETTER s
000 116 07/04 LATIN SMALL LETTER t
000 117 07/05 LATIN SMALL LETTER u
000 118 07/06 LATIN SMALL LETTER v
000 119 07/07 LATIN SMALL LETTER w
000 120 07/08 LATIN SMALL LETTER x
000 121 07/09 LATIN SMALL LETTER y
000 122 07/10 LATIN SMALL LETTER z
000 123 07/11 LEFT CURLY BRACKET
000 124 07/12 VERTICAL LINE
000 125 07/13 RIGHT CURLY BRACKET
000 126 07/14 TILDE
000 160 10/00 NO-BREAK SPACE
000 161 10/01 INVERTED EXCLAMATION MARK
000 162 10/02 CENT SIGN
000 163 10/03 POUND SIGN
000 164 10/04 CURRENCY SIGN
000 165 10/05 YEN SIGN

March 26, 1992 E−5

-- --

X Window System

000 166 10/06 BROKEN VERTICAL BAR
000 167 10/07 SECTION SIGN
000 168 10/08 DIAERESIS
000 169 10/09 COPYRIGHT SIGN
000 170 10/10 FEMININE ORDINAL INDICATOR
000 171 10/11 LEFT ANGLE QUOTATION MARK
000 172 10/12 NOT SIGN
000 173 10/13 HYPHEN
000 174 10/14 REGISTERED TRADEMARK SIGN
000 175 10/15 MACRON
000 176 11/00 DEGREE SIGN, RING ABOVE
000 177 11/01 PLUS-MINUS SIGN
000 178 11/02 SUPERSCRIPT TWO
000 179 11/03 SUPERSCRIPT THREE
000 180 11/04 ACUTE ACCENT
000 181 11/05 MICRO SIGN
000 182 11/06 PARAGRAPH SIGN
000 183 11/07 MIDDLE DOT
000 184 11/08 CEDILLA
000 185 11/09 SUPERSCRIPT ONE
000 186 11/10 MASCULINE ORDINAL INDICATOR
000 187 11/11 RIGHT ANGLE QUOTATION MARK
000 188 11/12 VULGAR FRACTION ONE QUARTER
000 189 11/13 VULGAR FRACTION ONE HALF
000 190 11/14 VULGAR FRACTION THREE QUARTERS
000 191 11/15 INVERTED QUESTION MARK
000 192 12/00 LATIN CAPITAL LETTER A WITH GRAVE
000 193 12/01 LATIN CAPITAL LETTER A WITH ACUTE
000 194 12/02 LATIN CAPITAL LETTER A WITH CIRCUM
000 195 12/03 LATIN CAPITAL LETTER A WITH TILDE
000 196 12/04 LATIN CAPITAL LETTER A WITH DIAERE
000 197 12/05 LATIN CAPITAL LETTER A WITH RING AB
000 198 12/06 LATIN CAPITAL DIPHTHONG AE
000 199 12/07 LATIN CAPITAL LETTER C WITH CEDILLA
000 200 12/08 LATIN CAPITAL LETTER E WITH GRAVE
000 201 12/09 LATIN CAPITAL LETTER E WITH ACUTE A
000 202 12/10 LATIN CAPITAL LETTER E WITH CIRCUM
000 203 12/11 LATIN CAPITAL LETTER E WITH DIAERE
000 204 12/12 LATIN CAPITAL LETTER I WITH GRAVE A
000 205 12/13 LATIN CAPITAL LETTER I WITH ACUTE A
000 206 12/14 LATIN CAPITAL LETTER I WITH CIRCUMF
000 207 12/15 LATIN CAPITAL LETTER I WITH DIAERES
000 208 13/00 ICELANDIC CAPITAL LETTER ETH
000 209 13/01 LATIN CAPITAL LETTER N WITH TILDE
000 210 13/02 LATIN CAPITAL LETTER O WITH GRAVE
000 211 13/03 LATIN CAPITAL LETTER O WITH ACUTE
000 212 13/04 LATIN CAPITAL LETTER O WITH CIRCUM
000 213 13/05 LATIN CAPITAL LETTER O WITH TILDE

E−6 March 26, 1992

-- --

KEYSYM Encoding

000 214 13/06 LATIN CAPITAL LETTER O WITH DIAERE
000 215 13/07 MULTIPLICATION SIGN
000 216 13/08 LATIN CAPITAL LETTER O WITH OBLIQU
000 217 13/09 LATIN CAPITAL LETTER U WITH GRAVE
000 218 13/10 LATIN CAPITAL LETTER U WITH ACUTE
000 219 13/11 LATIN CAPITAL LETTER U WITH CIRCUM
000 220 13/12 LATIN CAPITAL LETTER U WITH DIAERE
000 221 13/13 LATIN CAPITAL LETTER Y WITH ACUTE
000 222 13/14 ICELANDIC CAPITAL LETTER THORN
000 223 13/15 GERMAN SMALL LETTER SHARP s
000 224 14/00 LATIN SMALL LETTER a WITH GRAVE AC
000 225 14/01 LATIN SMALL LETTER a WITH ACUTE AC
000 226 14/02 LATIN SMALL LETTER a WITH CIRCUMFL
000 227 14/03 LATIN SMALL LETTER a WITH TILDE
000 228 14/04 LATIN SMALL LETTER a WITH DIAERESIS
000 229 14/05 LATIN SMALL LETTER a WITH RING ABO
000 230 14/06 LATIN SMALL DIPHTHONG ae
000 231 14/07 LATIN SMALL LETTER c WITH CEDILLA
000 232 14/08 LATIN SMALL LETTER e WITH GRAVE AC
000 233 14/09 LATIN SMALL LETTER e WITH ACUTE AC
000 234 14/10 LATIN SMALL LETTER e WITH CIRCUMFL
000 235 14/11 LATIN SMALL LETTER e WITH DIAERESIS
000 236 14/12 LATIN SMALL LETTER i WITH GRAVE AC
000 237 14/13 LATIN SMALL LETTER i WITH ACUTE AC
000 238 14/14 LATIN SMALL LETTER i WITH CIRCUMFL
000 239 14/15 LATIN SMALL LETTER i WITH DIAERESIS
000 240 15/00 ICELANDIC SMALL LETTER ETH
000 241 15/01 LATIN SMALL LETTER n WITH TILDE
000 242 15/02 LATIN SMALL LETTER o WITH GRAVE AC
000 243 15/03 LATIN SMALL LETTER o WITH ACUTE AC
000 244 15/04 LATIN SMALL LETTER o WITH CIRCUMFL
000 245 15/05 LATIN SMALL LETTER o WITH TILDE
000 246 15/06 LATIN SMALL LETTER o WITH DIAERESIS
000 247 15/07 DIVISION SIGN
000 248 15/08 LATIN SMALL LETTER o WITH OBLIQUE
000 249 15/09 LATIN SMALL LETTER u WITH GRAVE AC
000 250 15/10 LATIN SMALL LETTER u WITH ACUTE AC
000 251 15/11 LATIN SMALL LETTER u WITH CIRCUMFL
000 252 15/12 LATIN SMALL LETTER u WITH DIAERESIS
000 253 15/13 LATIN SMALL LETTER y WITH ACUTE AC
000 254 15/14 ICELANDIC SMALL LETTER THORN
000 255 15/15 LATIN SMALL LETTER y WITH DIAERESIS

001 161 10/01 LATIN CAPITAL LETTER A WITH OGONEK
001 162 10/02 BREVE
001 163 10/03 LATIN CAPITAL LETTER L WITH STROKE
001 165 10/05 LATIN CAPITAL LETTER L WITH CARON

March 26, 1992 E−7

-- --

X Window System

001 166 10/06 LATIN CAPITAL LETTER S WITH ACUTE A
001 169 10/09 LATIN CAPITAL LETTER S WITH CARON
001 170 10/10 LATIN CAPITAL LETTER S WITH CEDILLA
001 171 10/11 LATIN CAPITAL LETTER T WITH CARON
001 172 10/12 LATIN CAPITAL LETTER Z WITH ACUTE A
001 174 10/14 LATIN CAPITAL LETTER Z WITH CARON
001 175 10/15 LATIN CAPITAL LETTER Z WITH DOT AB
001 177 11/01 LATIN SMALL LETTER a WITH OGONEK
001 178 11/02 OGONEK
001 179 11/03 LATIN SMALL LETTER l WITH STROKE
001 181 11/05 LATIN SMALL LETTER l WITH CARON
001 182 11/06 LATIN SMALL LETTER s WITH ACUTE AC
001 183 11/07 CARON
001 185 11/09 LATIN SMALL LETTER s WITH CARON
001 186 11/10 LATIN SMALL LETTER s WITH CEDILLA
001 187 11/11 LATIN SMALL LETTER t WITH CARON
001 188 11/12 LATIN SMALL LETTER z WITH ACUTE AC
001 189 11/13 DOUBLE ACUTE ACCENT
001 190 11/14 LATIN SMALL LETTER z WITH CARON
001 191 11/15 LATIN SMALL LETTER z WITH DOT ABOV
001 192 12/00 LATIN CAPITAL LETTER R WITH ACUTE
001 195 12/03 LATIN CAPITAL LETTER A WITH BREVE
001 197 12/05 LATIN CAPITAL LETTER L WITH ACUTE A
001 198 12/06 LATIN CAPITAL LETTER C WITH ACUTE
001 200 12/08 LATIN CAPITAL LETTER C WITH CARON
001 202 12/10 LATIN CAPITAL LETTER E WITH OGONEK
001 204 12/12 LATIN CAPITAL LETTER E WITH CARON
001 207 12/15 LATIN CAPITAL LETTER D WITH CARON
001 208 13/00 LATIN CAPITAL LETTER D WITH STROKE
001 209 13/01 LATIN CAPITAL LETTER N WITH ACUTE
001 210 13/02 LATIN CAPITAL LETTER N WITH CARON
001 213 13/05 LATIN CAPITAL LETTER O WITH DOUBLE
001 216 13/08 LATIN CAPITAL LETTER R WITH CARON
001 217 13/09 LATIN CAPITAL LETTER U WITH RING AB
001 219 13/11 LATIN CAPITAL LETTER U WITH DOUBLE
001 222 13/14 LATIN CAPITAL LETTER T WITH CEDILLA
001 224 14/00 LATIN SMALL LETTER r WITH ACUTE AC
001 227 14/03 LATIN SMALL LETTER a WITH BREVE
001 229 14/05 LATIN SMALL LETTER l WITH ACUTE AC
001 230 14/06 LATIN SMALL LETTER c WITH ACUTE AC
001 232 14/08 LATIN SMALL LETTER c WITH CARON
001 234 14/10 LATIN SMALL LETTER e WITH OGONEK
001 236 14/12 LATIN SMALL LETTER e WITH CARON
001 239 14/15 LATIN SMALL LETTER d WITH CARON
001 240 15/00 LATIN SMALL LETTER d WITH STROKE
001 241 15/01 LATIN SMALL LETTER n WITH ACUTE AC
001 242 15/02 LATIN SMALL LETTER n WITH CARON
001 245 15/05 LATIN SMALL LETTER o WITH DOUBLE A

E−8 March 26, 1992

-- --

KEYSYM Encoding

001 248 15/08 LATIN SMALL LETTER r WITH CARON
001 249 15/09 LATIN SMALL LETTER u WITH RING ABO
001 251 15/11 LATIN SMALL LETTER u WITH DOUBLE A
001 254 15/14 LATIN SMALL LETTER t WITH CEDILLA
001 255 15/15 DOT ABOVE

002 161 10/01 LATIN CAPITAL LETTER H WITH STROKE
002 166 10/06 LATIN CAPITAL LETTER H WITH CIRCUM
002 169 10/09 LATIN CAPITAL LETTER I WITH DOT ABO
002 171 10/11 LATIN CAPITAL LETTER G WITH BREVE
002 172 10/12 LATIN CAPITAL LETTER J WITH CIRCUM
002 177 11/01 LATIN SMALL LETTER h WITH STROKE
002 182 11/06 LATIN SMALL LETTER h WITH CIRCUMFL
002 185 11/09 SMALL DOTLESS LETTER i
002 187 11/11 LATIN SMALL LETTER g WITH BREVE
002 188 11/12 LATIN SMALL LETTER j WITH CIRCUMFL
002 197 12/05 LATIN CAPITAL LETTER C WITH DOT AB
002 198 12/06 LATIN CAPITAL LETTER C WITH CIRCUM
002 213 13/05 LATIN CAPITAL LETTER G WITH DOT AB
002 216 13/08 LATIN CAPITAL LETTER G WITH CIRCUM
002 221 13/13 LATIN CAPITAL LETTER U WITH BREVE
002 222 13/14 LATIN CAPITAL LETTER S WITH CIRCUM
002 229 14/05 LATIN SMALL LETTER c WITH DOT ABOV
002 230 14/06 LATIN SMALL LETTER c WITH CIRCUMFL
002 245 15/05 LATIN SMALL LETTER g WITH DOT ABOV
002 248 15/08 LATIN SMALL LETTER g WITH CIRCUMFL
002 253 15/13 LATIN SMALL LETTER u WITH BREVE
002 254 15/14 LATIN SMALL LETTER s WITH CIRCUMFL

003 162 10/02 SMALL GREENLANDIC LETTER KRA
003 163 10/03 LATIN CAPITAL LETTER R WITH CEDILLA
003 165 10/05 LATIN CAPITAL LETTER I WITH TILDE
003 166 10/06 LATIN CAPITAL LETTER L WITH CEDILLA
003 170 10/10 LATIN CAPITAL LETTER E WITH MACRON
003 171 10/11 LATIN CAPITAL LETTER G WITH CEDILLA
003 172 10/12 LATIN CAPITAL LETTER T WITH OBLIQU
003 179 11/03 LATIN SMALL LETTER r WITH CEDILLA
003 181 11/05 LATIN SMALL LETTER i WITH TILDE
003 182 11/06 LATIN SMALL LETTER l WITH CEDILLA
003 186 11/10 LATIN SMALL LETTER e WITH MACRON
003 187 11/11 LATIN SMALL LETTER g WITH CEDILLA A
003 188 11/12 LATIN SMALL LETTER t WITH OBLIQUE S
003 189 11/13 LAPPISH CAPITAL LETTER ENG
003 191 11/15 LAPPISH SMALL LETTER ENG
003 192 12/00 LATIN CAPITAL LETTER A WITH MACRO
003 199 12/07 LATIN CAPITAL LETTER I WITH OGONEK
003 204 12/12 LATIN CAPITAL LETTER E WITH DOT AB
003 207 12/15 LATIN CAPITAL LETTER I WITH MACRON
003 209 13/01 LATIN CAPITAL LETTER N WITH CEDILLA

March 26, 1992 E−9

-- --

X Window System

003 210 13/02 LATIN CAPITAL LETTER O WITH MACRO
003 211 13/03 LATIN CAPITAL LETTER K WITH CEDILLA
003 217 13/09 LATIN CAPITAL LETTER U WITH OGONEK
003 221 13/13 LATIN CAPITAL LETTER U WITH TILDE
003 222 13/14 LATIN CAPITAL LETTER U WITH MACRO
003 224 14/00 LATIN SMALL LETTER a WITH MACRON
003 231 14/07 LATIN SMALL LETTER i WITH OGONEK
003 236 14/12 LATIN SMALL LETTER e WITH DOT ABOV
003 239 14/15 LATIN SMALL LETTER i WITH MACRON
003 241 15/01 LATIN SMALL LETTER n WITH CEDILLA
003 242 15/02 LATIN SMALL LETTER o WITH MACRON
003 243 15/03 LATIN SMALL LETTER k WITH CEDILLA
003 249 15/09 LATIN SMALL LETTER u WITH OGONEK
003 253 15/13 LATIN SMALL LETTER u WITH TILDE
003 254 15/14 LATIN SMALL LETTER u WITH MACRON

004 126 07/14 OVERLINE
004 161 10/01 KANA FULL STOP
004 162 10/02 KANA OPENING BRACKET
004 163 10/03 KANA CLOSING BRACKET
004 164 10/04 KANA COMMA
004 165 10/05 KANA CONJUNCTIVE
004 166 10/06 KANA LETTER WO
004 167 10/07 KANA LETTER SMALL A
004 168 10/08 KANA LETTER SMALL I
004 169 10/09 KANA LETTER SMALL U
004 170 10/10 KANA LETTER SMALL E
004 171 10/11 KANA LETTER SMALL O
004 172 10/12 KANA LETTER SMALL YA
004 173 10/13 KANA LETTER SMALL YU
004 174 10/14 KANA LETTER SMALL YO
004 175 10/15 KANA LETTER SMALL TSU
004 176 11/00 PROLONGED SOUND SYMBOL
004 177 11/01 KANA LETTER A
004 178 11/02 KANA LETTER I
004 179 11/03 KANA LETTER U
004 180 11/04 KANA LETTER E
004 181 11/05 KANA LETTER O
004 182 11/06 KANA LETTER KA
004 183 11/07 KANA LETTER KI
004 184 11/08 KANA LETTER KU
004 185 11/09 KANA LETTER KE
004 186 11/10 KANA LETTER KO
004 187 11/11 KANA LETTER SA
004 188 11/12 KANA LETTER SHI
004 189 11/13 KANA LETTER SU
004 190 11/14 KANA LETTER SE
004 191 11/15 KANA LETTER SO

E−10 March 26, 1992

-- --

KEYSYM Encoding

004 192 12/00 KANA LETTER TA
004 193 12/01 KANA LETTER CHI
004 194 12/02 KANA LETTER TSU
004 195 12/03 KANA LETTER TE
004 196 12/04 KANA LETTER TO
004 197 12/05 KANA LETTER NA
004 198 12/06 KANA LETTER NI
004 199 12/07 KANA LETTER NU
004 200 12/08 KANA LETTER NE
004 201 12/09 KANA LETTER NO
004 202 12/10 KANA LETTER HA
004 203 12/11 KANA LETTER HI
004 204 12/12 KANA LETTER FU
004 205 12/13 KANA LETTER HE
004 206 12/14 KANA LETTER HO
004 207 12/15 KANA LETTER MA
004 208 13/00 KANA LETTER MI
004 209 13/01 KANA LETTER MU
004 210 13/02 KANA LETTER ME
004 211 13/03 KANA LETTER MO
004 212 13/04 KANA LETTER YA
004 213 13/05 KANA LETTER YU
004 214 13/06 KANA LETTER YO
004 215 13/07 KANA LETTER RA
004 216 13/08 KANA LETTER RI
004 217 13/09 KANA LETTER RU
004 218 13/10 KANA LETTER RE
004 219 13/11 KANA LETTER RO
004 220 13/12 KANA LETTER WA
004 221 13/13 KANA LETTER N
004 222 13/14 VOICED SOUND SYMBOL
004 223 13/15 SEMIVOICED SOUND SYMBOL

005 172 10/12 ARABIC COMMA
005 187 11/11 ARABIC SEMICOLON
005 191 11/15 ARABIC QUESTION MARK
005 193 12/01 ARABIC LETTER HAMZA
005 194 12/02 ARABIC LETTER MADDA ON ALEF
005 195 12/03 ARABIC LETTER HAMZA ON ALEF
005 196 12/04 ARABIC LETTER HAMZA ON WAW
005 197 12/05 ARABIC LETTER HAMZA UNDER ALEF
005 198 12/06 ARABIC LETTER HAMZA ON YEH
005 199 12/07 ARABIC LETTER ALEF
005 200 12/08 ARABIC LETTER BEH
005 201 12/09 ARABIC LETTER TEH MARBUTA
005 202 12/10 ARABIC LETTER TEH
005 203 12/11 ARABIC LETTER THEH
005 204 12/12 ARABIC LETTER JEEM

March 26, 1992 E−11

-- --

X Window System

005 205 12/13 ARABIC LETTER HAH
005 206 12/14 ARABIC LETTER KHAH
005 207 12/15 ARABIC LETTER DAL
005 208 13/00 ARABIC LETTER THAL
005 209 13/01 ARABIC LETTER RA
005 210 13/02 ARABIC LETTER ZAIN
005 211 13/03 ARABIC LETTER SEEN
005 212 13/04 ARABIC LETTER SHEEN
005 213 13/05 ARABIC LETTER SAD
005 214 13/06 ARABIC LETTER DAD
005 215 13/07 ARABIC LETTER TAH
005 216 13/08 ARABIC LETTER ZAH
005 217 13/09 ARABIC LETTER AIN
005 218 13/10 ARABIC LETTER GHAIN
005 224 14/00 ARABIC LETTER TATWEEL
005 225 14/01 ARABIC LETTER FEH
005 226 14/02 ARABIC LETTER QAF
005 227 14/03 ARABIC LETTER KAF
005 228 14/04 ARABIC LETTER LAM
005 229 14/05 ARABIC LETTER MEEM
005 230 14/06 ARABIC LETTER NOON
005 231 14/07 ARABIC LETTER HA
005 232 14/08 ARABIC LETTER WAW
005 233 14/09 ARABIC LETTER ALEF MAKSURA
005 234 14/10 ARABIC LETTER YEH
005 235 14/11 ARABIC LETTER FATHATAN
005 236 14/12 ARABIC LETTER DAMMATAN
005 237 14/13 ARABIC LETTER KASRATAN
005 238 14/14 ARABIC LETTER FATHA
005 239 14/15 ARABIC LETTER DAMMA
005 240 15/00 ARABIC LETTER KASRA
005 241 15/01 ARABIC LETTER SHADDA
005 242 15/02 ARABIC LETTER SUKUN

006 161 10/01 SERBOCROATION CYRILLIC SMALL LETT
006 162 10/02 MACEDONIAN CYRILLIC SMALL LETTER
006 163 10/03 CYRILLIC SMALL LETTER IO
006 164 10/04 UKRAINIAN CYRILLIC SMALL LETTER IE
006 165 10/05 MACEDONIAN SMALL LETTER DSE
006 166 10/06 BYELORUSSIAN/UKRAINIAN CYRILLIC SM
006 167 10/07 UKRAINIAN SMALL LETTER YI
006 168 10/08 CYRILLIC SMALL LETTER JE
006 169 10/09 CYRILLIC SMALL LETTER LJE
006 170 10/10 CYRILLIC SMALL LETTER NJE
006 171 10/11 SERBIAN SMALL LETTER TSHE
006 172 10/12 MACEDONIAN CYRILLIC SMALL LETTER
006 174 10/14 BYELORUSSIAN SMALL LETTER SHORT U
006 175 10/15 CYRILLIC SMALL LETTER DZHE

E−12 March 26, 1992

-- --

KEYSYM Encoding

006 176 11/00 NUMERO SIGN
006 177 11/01 SERBOCROATIAN CYRILLIC CAPITAL LE
006 178 11/02 MACEDONIAN CYRILLIC CAPITAL LETTE
006 179 11/03 CYRILLIC CAPITAL LETTER IO
006 180 11/04 UKRAINIAN CYRILLIC CAPITAL LETTER
006 181 11/05 MACEDONIAN CAPITAL LETTER DSE
006 182 11/06 BYELORUSSIAN/UKRAINIAN CYRILLIC C
006 183 11/07 UKRAINIAN CAPITAL LETTER YI
006 184 11/08 CYRILLIC CAPITAL LETTER JE
006 185 11/09 CYRILLIC CAPITAL LETTER LJE
006 186 11/10 CYRILLIC CAPITAL LETTER NJE
006 187 11/11 SERBIAN CAPITAL LETTER TSHE
006 188 11/12 MACEDONIAN CYRILLIC CAPITAL LETTE
006 190 11/14 BYELORUSSIAN CAPITAL LETTER SHORT
006 191 11/15 CYRILLIC CAPITAL LETTER DZHE
006 192 12/00 CYRILLIC SMALL LETTER YU
006 193 12/01 CYRILLIC SMALL LETTER A
006 194 12/02 CYRILLIC SMALL LETTER BE
006 195 12/03 CYRILLIC SMALL LETTER TSE
006 196 12/04 CYRILLIC SMALL LETTER DE
006 197 12/05 CYRILLIC SMALL LETTER IE
006 198 12/06 CYRILLIC SMALL LETTER EF
006 199 12/07 CYRILLIC SMALL LETTER GHE
006 200 12/08 CYRILLIC SMALL LETTER HA
006 201 12/09 CYRILLIC SMALL LETTER I
006 202 12/10 CYRILLIC SMALL LETTER SHORT I
006 203 12/11 CYRILLIC SMALL LETTER KA
006 204 12/12 CYRILLIC SMALL LETTER EL
006 205 12/13 CYRILLIC SMALL LETTER EM
006 206 12/14 CYRILLIC SMALL LETTER EN
006 207 12/15 CYRILLIC SMALL LETTER O
006 208 13/00 CYRILLIC SMALL LETTER PE
006 209 13/01 CYRILLIC SMALL LETTER YA
006 210 13/02 CYRILLIC SMALL LETTER ER
006 211 13/03 CYRILLIC SMALL LETTER ES
006 212 13/04 CYRILLIC SMALL LETTER TE
006 213 13/05 CYRILLIC SMALL LETTER U
006 214 13/06 CYRILLIC SMALL LETTER ZHE
006 215 13/07 CYRILLIC SMALL LETTER VE
006 216 13/08 CYRILLIC SMALL SOFT SIGN
006 217 13/09 CYRILLIC SMALL LETTER YERU
006 218 13/10 CYRILLIC SMALL LETTER ZE
006 219 13/11 CYRILLIC SMALL LETTER SHA
006 220 13/12 CYRILLIC SMALL LETTER E
006 221 13/13 CYRILLIC SMALL LETTER SHCHA
006 222 13/14 CYRILLIC SMALL LETTER CHE
006 223 13/15 CYRILLIC SMALL HARD SIGN
006 224 14/00 CYRILLIC CAPITAL LETTER YU

March 26, 1992 E−13

-- --

X Window System

006 225 14/01 CYRILLIC CAPITAL LETTER A
006 226 14/02 CYRILLIC CAPITAL LETTER BE
006 227 14/03 CYRILLIC CAPITAL LETTER TSE
006 228 14/04 CYRILLIC CAPITAL LETTER DE
006 229 14/05 CYRILLIC CAPITAL LETTER IE
006 230 14/06 CYRILLIC CAPITAL LETTER EF
006 231 14/07 CYRILLIC CAPITAL LETTER GHE
006 232 14/08 CYRILLIC CAPITAL LETTER HA
006 233 14/09 CYRILLIC CAPITAL LETTER I
006 234 14/10 CYRILLIC CAPITAL LETTER SHORT I
006 235 14/11 CYRILLIC CAPITAL LETTER KA
006 236 14/12 CYRILLIC CAPITAL LETTER EL
006 237 14/13 CYRILLIC CAPITAL LETTER EM
006 238 14/14 CYRILLIC CAPITAL LETTER EN
006 239 14/15 CYRILLIC CAPITAL LETTER O
006 240 15/00 CYRILLIC CAPITAL LETTER PE
006 241 15/01 CYRILLIC CAPITAL LETTER YA
006 242 15/02 CYRILLIC CAPITAL LETTER ER
006 243 15/03 CYRILLIC CAPITAL LETTER ES
006 244 15/04 CYRILLIC CAPITAL LETTER TE
006 245 15/05 CYRILLIC CAPITAL LETTER U
006 246 15/06 CYRILLIC CAPITAL LETTER ZHE
006 247 15/07 CYRILLIC CAPITAL LETTER VE
006 248 15/08 CYRILLIC CAPITAL SOFT SIGN
006 249 15/09 CYRILLIC CAPITAL LETTER YERU
006 250 15/10 CYRILLIC CAPITAL LETTER ZE
006 251 15/11 CYRILLIC CAPITAL LETTER SHA
006 252 15/12 CYRILLIC CAPITAL LETTER E
006 253 15/13 CYRILLIC CAPITAL LETTER SHCHA
006 254 15/14 CYRILLIC CAPITAL LETTER CHE
006 255 15/15 CYRILLIC CAPITAL HARD SIGN

007 161 10/01 GREEK CAPITAL LETTER ALPHA WITH A
007 162 10/02 GREEK CAPITAL LETTER EPSILON WITH
007 163 10/03 GREEK CAPITAL LETTER ETA WITH ACC
007 164 10/04 GREEK CAPITAL LETTER IOTA WITH ACC
007 165 10/05 GREEK CAPITAL LETTER IOTA WITH DIA
007 167 10/07 GREEK CAPITAL LETTER OMICRON WITH
007 168 10/08 GREEK CAPITAL LETTER UPSILON WITH
007 169 10/09 GREEK CAPITAL LETTER UPSILON WITH
007 171 10/11 GREEK CAPITAL LETTER OMEGA WITH A
007 174 10/14 DIAERESIS AND ACCENT
007 175 10/15 HORIZONTAL BAR
007 177 11/01 GREEK SMALL LETTER ALPHA WITH ACC
007 178 11/02 GREEK SMALL LETTER EPSILON WITH A
007 179 11/03 GREEK SMALL LETTER ETA WITH ACCEN
007 180 11/04 GREEK SMALL LETTER IOTA WITH ACCE
007 181 11/05 GREEK SMALL LETTER IOTA WITH DIAER

E−14 March 26, 1992

-- --

KEYSYM Encoding

007 182 11/06 GREEK SMALL LETTER IOTA WITH ACCE
007 183 11/07 GREEK SMALL LETTER OMICRON WITH A
007 184 11/08 GREEK SMALL LETTER UPSILON WITH A
007 185 11/09 GREEK SMALL LETTER UPSILON WITH D
007 186 11/10 GREEK SMALL LETTER UPSILON WITH A
007 187 11/11 GREEK SMALL LETTER OMEGA WITH AC
007 193 12/01 GREEK CAPITAL LETTER ALPHA
007 194 12/02 GREEK CAPITAL LETTER BETA
007 195 12/03 GREEK CAPITAL LETTER GAMMA
007 196 12/04 GREEK CAPITAL LETTER DELTA
007 197 12/05 GREEK CAPITAL LETTER EPSILON
007 198 12/06 GREEK CAPITAL LETTER ZETA
007 199 12/07 GREEK CAPITAL LETTER ETA
007 200 12/08 GREEK CAPITAL LETTER THETA
007 201 12/09 GREEK CAPITAL LETTER IOTA
007 202 12/10 GREEK CAPITAL LETTER KAPPA
007 203 12/11 GREEK CAPITAL LETTER LAMDA
007 204 12/12 GREEK CAPITAL LETTER MU
007 205 12/13 GREEK CAPITAL LETTER NU
007 206 12/14 GREEK CAPITAL LETTER XI
007 207 12/15 GREEK CAPITAL LETTER OMICRON
007 208 13/00 GREEK CAPITAL LETTER PI
007 209 13/01 GREEK CAPITAL LETTER RHO
007 210 13/02 GREEK CAPITAL LETTER SIGMA
007 212 13/04 GREEK CAPITAL LETTER TAU
007 213 13/05 GREEK CAPITAL LETTER UPSILON
007 214 13/06 GREEK CAPITAL LETTER PHI
007 215 13/07 GREEK CAPITAL LETTER CHI
007 216 13/08 GREEK CAPITAL LETTER PSI
007 217 13/09 GREEK CAPITAL LETTER OMEGA
007 225 14/01 GREEK SMALL LETTER ALPHA
007 226 14/02 GREEK SMALL LETTER BETA
007 227 14/03 GREEK SMALL LETTER GAMMA
007 228 14/04 GREEK SMALL LETTER DELTA
007 229 14/05 GREEK SMALL LETTER EPSILON
007 230 14/06 GREEK SMALL LETTER ZETA
007 231 14/07 GREEK SMALL LETTER ETA
007 232 14/08 GREEK SMALL LETTER THETA
007 233 14/09 GREEK SMALL LETTER IOTA
007 234 14/10 GREEK SMALL LETTER KAPPA
007 235 14/11 GREEK SMALL LETTER LAMDA
007 236 14/12 GREEK SMALL LETTER MU
007 237 14/13 GREEK SMALL LETTER NU
007 238 14/14 GREEK SMALL LETTER XI
007 239 14/15 GREEK SMALL LETTER OMICRON
007 240 15/00 GREEK SMALL LETTER PI
007 241 15/01 GREEK SMALL LETTER RHO
007 242 15/02 GREEK SMALL LETTER SIGMA

March 26, 1992 E−15

-- --

X Window System

007 243 15/03 GREEK SMALL LETTER FINAL SMALL SIG
007 244 15/04 GREEK SMALL LETTER TAU
007 245 15/05 GREEK SMALL LETTER UPSILON
007 246 15/06 GREEK SMALL LETTER PHI
007 247 15/07 GREEK SMALL LETTER CHI
007 248 15/08 GREEK SMALL LETTER PSI
007 249 15/09 GREEK SMALL LETTER OMEGA

008 161 10/01 LEFT RADICAL
008 162 10/02 TOP LEFT RADICAL
008 163 10/03 HORIZONTAL CONNECTOR
008 164 10/04 TOP INTEGRAL
008 165 10/05 BOTTOM INTEGRAL
008 166 10/06 VERTICAL CONNECTOR
008 167 10/07 TOP LEFT SQUARE BRACKET
008 168 10/08 BOTTOM LEFT SQUARE BRACKET
008 169 10/09 TOP RIGHT SQUARE BRACKET
008 170 10/10 BOTTOM RIGHT SQUARE BRACKET
008 171 10/11 TOP LEFT PARENTHESIS
008 172 10/12 BOTTOM LEFT PARENTHESIS
008 173 10/13 TOP RIGHT PARENTHESIS
008 174 10/14 BOTTOM RIGHT PARENTHESIS
008 175 10/15 LEFT MIDDLE CURLY BRACE
008 176 11/00 RIGHT MIDDLE CURLY BRACE
008 177 11/01 TOP LEFT SUMMATION
008 178 11/02 BOTTOM LEFT SUMMATION
008 179 11/03 TOP VERTICAL SUMMATION CONNECTO
008 180 11/04 BOTTOM VERTICAL SUMMATION CONNE
008 181 11/05 TOP RIGHT SUMMATION
008 182 11/06 BOTTOM RIGHT SUMMATION
008 183 11/07 RIGHT MIDDLE SUMMATION
008 188 11/12 LESS THAN OR EQUAL SIGN
008 189 11/13 NOT EQUAL SIGN
008 190 11/14 GREATER THAN OR EQUAL SIGN
008 191 11/15 INTEGRAL
008 192 12/00 THEREFORE
008 193 12/01 VARIATION, PROPORTIONAL TO
008 194 12/02 INFINITY
008 197 12/05 NABLA, DEL
008 200 12/08 IS APPROXIMATE TO
008 201 12/09 SIMILAR OR EQUAL TO
008 205 12/13 IF AND ONLY IF
008 206 12/14 IMPLIES
008 207 12/15 IDENTICAL TO
008 214 13/06 RADICAL
008 218 13/10 IS INCLUDED IN
008 219 13/11 INCLUDES
008 220 13/12 INTERSECTION

E−16 March 26, 1992

-- --

KEYSYM Encoding

008 221 13/13 UNION
008 222 13/14 LOGICAL AND
008 223 13/15 LOGICAL OR
008 239 14/15 PARTIAL DERIVATIVE
008 246 15/06 FUNCTION
008 251 15/11 LEFT ARROW
008 252 15/12 UPWARD ARROW
008 253 15/13 RIGHT ARROW
008 254 15/14 DOWNWARD ARROW

009 223 13/15 BLANK
009 224 14/00 SOLID DIAMOND
009 225 14/01 CHECKERBOARD
009 226 14/02 ‘‘HT’’
009 227 14/03 ‘‘FF’’
009 228 14/04 ‘‘CR’’
009 229 14/05 ‘‘LF’’
009 232 14/08 ‘‘NL’’
009 233 14/09 ‘‘VT’’
009 234 14/10 LOWER-RIGHT CORNER
009 235 14/11 UPPER-RIGHT CORNER
009 236 14/12 UPPER-LEFT CORNER
009 237 14/13 LOWER-LEFT CORNER
009 238 14/14 CROSSING-LINES
009 239 14/15 HORIZONTAL LINE, SCAN 1
009 240 15/00 HORIZONTAL LINE, SCAN 3
009 241 15/01 HORIZONTAL LINE, SCAN 5
009 242 15/02 HORIZONTAL LINE, SCAN 7
009 243 15/03 HORIZONTAL LINE, SCAN 9
009 244 15/04 LEFT ‘‘T’’
009 245 15/05 RIGHT ‘‘T’’
009 246 15/06 BOTTOM ‘‘T’’
009 247 15/07 TOP ‘‘T’’
009 248 15/08 VERTICAL BAR

010 161 10/01 EM SPACE
010 162 10/02 EN SPACE
010 163 10/03 3/EM SPACE
010 164 10/04 4/EM SPACE
010 165 10/05 DIGIT SPACE
010 166 10/06 PUNCTUATION SPACE
010 167 10/07 THIN SPACE
010 168 10/08 HAIR SPACE
010 169 10/09 EM DASH
010 170 10/10 EN DASH
010 172 10/12 SIGNIFICANT BLANK SYMBOL
010 174 10/14 ELLIPSIS
010 175 10/15 DOUBLE BASELINE DOT
010 176 11/00 VULGAR FRACTION ONE THIRD

March 26, 1992 E−17

-- --

X Window System

010 177 11/01 VULGAR FRACTION TWO THIRDS
010 178 11/02 VULGAR FRACTION ONE FIFTH
010 179 11/03 VULGAR FRACTION TWO FIFTHS
010 180 11/04 VULGAR FRACTION THREE FIFTHS
010 181 11/05 VULGAR FRACTION FOUR FIFTHS
010 182 11/06 VULGAR FRACTION ONE SIXTH
010 183 11/07 VULGAR FRACTION FIVE SIXTHS
010 184 11/08 CARE OF
010 187 11/11 FIGURE DASH
010 188 11/12 LEFT ANGLE BRACKET
010 189 11/13 DECIMAL POINT
010 190 11/14 RIGHT ANGLE BRACKET
010 191 11/15 MARKER
010 195 12/03 VULGAR FRACTION ONE EIGHTH
010 196 12/04 VULGAR FRACTION THREE EIGHTHS
010 197 12/05 VULGAR FRACTION FIVE EIGHTHS
010 198 12/06 VULGAR FRACTION SEVEN EIGHTHS
010 201 12/09 TRADEMARK SIGN
010 202 12/10 SIGNATURE MARK
010 203 12/11 TRADEMARK SIGN IN CIRCLE
010 204 12/12 LEFT OPEN TRIANGLE
010 205 12/13 RIGHT OPEN TRIANGLE
010 206 12/14 EM OPEN CIRCLE
010 207 12/15 EM OPEN RECTANGLE
010 208 13/00 LEFT SINGLE QUOTATION MARK
010 209 13/01 RIGHT SINGLE QUOTATION MARK
010 210 13/02 LEFT DOUBLE QUOTATION MARK
010 211 13/03 RIGHT DOUBLE QUOTATION MARK
010 212 13/04 PRESCRIPTION, TAKE, RECIPE
010 214 13/06 MINUTES
010 215 13/07 SECONDS
010 217 13/09 LATIN CROSS
010 218 13/10 HEXAGRAM
010 219 13/11 FILLED RECTANGLE BULLET
010 220 13/12 FILLED LEFT TRIANGLE BULLET
010 221 13/13 FILLED RIGHT TRIANGLE BULLET
010 222 13/14 EM FILLED CIRCLE
010 223 13/15 EM FILLED RECTANGLE
010 224 14/00 EN OPEN CIRCLE BULLET
010 225 14/01 EN OPEN SQUARE BULLET
010 226 14/02 OPEN RECTANGULAR BULLET
010 227 14/03 OPEN TRIANGULAR BULLET UP
010 228 14/04 OPEN TRIANGULAR BULLET DOWN
010 229 14/05 OPEN STAR
010 230 14/06 EN FILLED CIRCLE BULLET
010 231 14/07 EN FILLED SQUARE BULLET
010 232 14/08 FILLED TRIANGULAR BULLET UP
010 233 14/09 FILLED TRIANGULAR BULLET DOWN

E−18 March 26, 1992

-- --

KEYSYM Encoding

010 234 14/10 LEFT POINTER
010 235 14/11 RIGHT POINTER
010 236 14/12 CLUB
010 237 14/13 DIAMOND
010 238 14/14 HEART
010 240 15/00 MALTESE CROSS
010 241 15/01 DAGGER
010 242 15/02 DOUBLE DAGGER
010 243 15/03 CHECK MARK, TICK
010 244 15/04 BALLOT CROSS
010 245 15/05 MUSICAL SHARP
010 246 15/06 MUSICAL FLAT
010 247 15/07 MALE SYMBOL
010 248 15/08 FEMALE SYMBOL
010 249 15/09 TELEPHONE SYMBOL
010 250 15/10 TELEPHONE RECORDER SYMBOL
010 251 15/11 PHONOGRAPH COPYRIGHT SIGN
010 252 15/12 CARET
010 253 15/13 SINGLE LOW QUOTATION MARK
010 254 15/14 DOUBLE LOW QUOTATION MARK
010 255 15/15 CURSOR

011 163 10/03 LEFT CARET
011 166 10/06 RIGHT CARET
011 168 10/08 DOWN CARET
011 169 10/09 UP CARET
011 192 12/00 OVERBAR
011 194 12/02 DOWN TACK
011 195 12/03 UP SHOE (CAP)
011 196 12/04 DOWN STILE
011 198 12/06 UNDERBAR
011 202 12/10 JOT
011 204 12/12 QUAD
011 206 12/14 UP TACK
011 207 12/15 CIRCLE
011 211 13/03 UP STILE
011 214 13/06 DOWN SHOE (CUP)
011 216 13/08 RIGHT SHOE
011 218 13/10 LEFT SHOE
011 220 13/12 LEFT TACK
011 252 15/12 RIGHT TACK

012 223 13/15 DOUBLE LOW LINE
012 224 14/00 HEBREW LETTER ALEPH
012 225 14/01 HEBREW LETTER BET
012 226 14/02 HEBREW LETTER GIMEL
012 227 14/03 HEBREW LETTER DALET
012 228 14/04 HEBREW LETTER HE
012 229 14/05 HEBREW LETTER WAW

March 26, 1992 E−19

-- --

X Window System

012 230 14/06 HEBREW LETTER ZAIN
012 231 14/07 HEBREW LETTER CHET
012 232 14/08 HEBREW LETTER TET
012 233 14/09 HEBREW LETTER YOD
012 234 14/10 HEBREW LETTER FINAL KAPH
012 235 14/11 HEBREW LETTER KAPH
012 236 14/12 HEBREW LETTER LAMED
012 237 14/13 HEBREW LETTER FINAL MEM
012 238 14/14 HEBREW LETTER MEM
012 239 14/15 HEBREW LETTER FINAL NUN
012 240 15/00 HEBREW LETTER NUN
012 241 15/01 HEBREW LETTER SAMECH
012 242 15/02 HEBREW LETTER A’YIN
012 243 15/03 HEBREW LETTER FINAL PE
012 244 15/04 HEBREW LETTER PE
012 245 15/05 HEBREW LETTER FINAL ZADE
012 246 15/06 HEBREW LETTER ZADE
012 247 15/07 HEBREW QOPH
012 248 15/08 HEBREW RESH
012 249 15/09 HEBREW SHIN
012 250 15/10 HEBREW TAW

255 008 00/08 BACKSPACE, BACK SPACE, BACK CHAR
255 009 00/09 TAB
255 010 00/10 LINEFEED, LF
255 011 00/11 CLEAR
255 013 00/13 RETURN, ENTER
255 019 01/03 PAUSE, HOLD
255 020 01/04 SCROLL LOCK
255 027 01/11 ESCAPE
255 032 02/00 MULTI-KEY CHARACTER PREFACE
255 033 02/01 KANJI, KANJI CONVERT
255 034 02/02 MUHENKAN
255 035 02/03 HENKAN MODE
255 036 02/04 ROMAJI
255 037 02/05 HIRAGANA
255 038 02/06 KATAKANA
255 039 02/07 HIRAGANA/KATAKANA TOGGLE
255 040 02/08 ZENKAKU
255 041 02/09 HANKAKU
255 042 02/10 ZENKAKU/HANKAKU TOGGLE
255 043 02/11 TOUROKU
255 044 02/12 MASSYO
255 045 02/13 KANA LOCK
255 046 02/14 KANA SHIFT
255 047 02/15 EISU SHIFT
255 048 03/00 EISU TOGGLE
255 080 05/00 HOME

E−20 March 26, 1992

-- --

KEYSYM Encoding

255 081 05/01 LEFT, MOVE LEFT, LEFT ARROW
255 082 05/02 UP, MOVE UP, UP ARROW
255 083 05/03 RIGHT, MOVE RIGHT, RIGHT ARROW
255 084 05/04 DOWN, MOVE DOWN, DOWN ARROW
255 085 05/05 PRIOR, PREVIOUS
255 086 05/06 NEXT
255 087 05/07 END, EOL
255 088 05/08 BEGIN, BOL
255 096 06/00 SELECT, MARK
255 097 06/01 PRINT
255 098 06/02 EXECUTE, RUN, DO
255 099 06/03 INSERT, INSERT HERE
255 101 06/05 UNDO, OOPS
255 102 06/06 REDO, AGAIN
255 103 06/07 MENU
255 104 06/08 FIND, SEARCH
255 105 06/09 CANCEL, STOP, ABORT, EXIT
255 106 06/10 HELP, QUESTION MARK
255 107 06/11 BREAK
255 126 07/14 MODE SWITCH, SCRIPT SWITCH, CHARAC
255 127 07/15 NUM LOCK
255 128 08/00 KEYPAD SPACE
255 137 08/09 KEYPAD TAB
255 141 08/13 KEYPAD ENTER
255 145 09/01 KEYPAD F1, PF1, A
255 146 09/02 KEYPAD F2, PF2, B
255 147 09/03 KEYPAD F3, PF3, C
255 148 09/04 KEYPAD F4, PF4, D
255 170 10/10 KEYPAD MULTIPLICATION SIGN, ASTERI
255 171 10/11 KEYPAD PLUS SIGN
255 172 10/12 KEYPAD SEPARATOR, COMMA
255 173 10/13 KEYPAD MINUS SIGN, HYPHEN
255 174 10/14 KEYPAD DECIMAL POINT, FULL STOP
255 175 10/15 KEYPAD DIVISION SIGN, SOLIDUS
255 176 11/00 KEYPAD DIGIT ZERO
255 177 11/01 KEYPAD DIGIT ONE
255 178 11/02 KEYPAD DIGIT TWO
255 179 11/03 KEYPAD DIGIT THREE
255 180 11/04 KEYPAD DIGIT FOUR
255 181 11/05 KEYPAD DIGIT FIVE
255 182 11/06 KEYPAD DIGIT SIX
255 183 11/07 KEYPAD DIGIT SEVEN
255 184 11/08 KEYPAD DIGIT EIGHT
255 185 11/09 KEYPAD DIGIT NINE
255 189 11/13 KEYPAD EQUALS SIGN
255 190 11/14 F1
255 191 11/15 F2
255 192 12/00 F3

March 26, 1992 E−21

-- --

X Window System

255 193 12/01 F4
255 194 12/02 F5
255 195 12/03 F6
255 196 12/04 F7
255 197 12/05 F8
255 198 12/06 F9
255 199 12/07 F10
255 200 12/08 F11, L1
255 201 12/09 F12, L2
255 202 12/10 F13, L3
255 203 12/11 F14, L4
255 204 12/12 F15, L5
255 205 12/13 F16, L6
255 206 12/14 F17, L7
255 207 12/15 F18, L8
255 208 13/00 F19, L9
255 209 13/01 F20, L10
255 210 13/02 F21, R1
255 211 13/03 F22, R2
255 212 13/04 F23, R3
255 213 13/05 F24, R4
255 214 13/06 F25, R5
255 215 13/07 F26, R6
255 216 13/08 F27, R7
255 217 13/09 F28, R8
255 218 13/10 F29, R9
255 219 13/11 F30, R10
255 220 13/12 F31, R11
255 221 13/13 F32, R12
255 222 13/14 F33, R13
255 223 13/15 F34, R14
255 224 14/00 F35, R15
255 225 14/01 LEFT SHIFT
255 226 14/02 RIGHT SHIFT
255 227 14/03 LEFT CONTROL
255 228 14/04 RIGHT CONTROL
255 229 14/05 CAPS LOCK
255 230 14/06 SHIFT LOCK
255 231 14/07 LEFT META
255 232 14/08 RIGHT META
255 233 14/09 LEFT ALT
255 234 14/10 RIGHT ALT
255 235 14/11 LEFT SUPER
255 236 14/12 RIGHT SUPER
255 237 14/13 LEFT HYPER
255 238 14/14 RIGHT HYPER
255 255 15/15 DELETE, RUBOUT

E−22 March 26, 1992

-- --

KEYSYM Encoding

* Not available. Refer to printed version.

March 26, 1992 E−23

-- --

Appendix F. Protocol Encoding

Syntactic Conventions

All numbers are in decimal, unless prefixed with #x, in which case they are in hexade-
cimal (base 16).

The general syntax used to describe requests, replies, errors, events, and compound
types is:

NameofThing

encode-form
. . .
encode-form

Each encode-form describes a single component.

For components described in the protocol as:

name: TYPE

the encode-form is:

N TYPE name

N is the number of bytes occupied in the data stream, and TYPE is the interpretation of
those bytes. For example,

depth: CARD8

becomes:

March 26, 1992 F−1

-- --

X Window System

1 CARD8 depth

For components with a static numeric value the encode-form is:

N value name

The value is always interpreted as an N-byte unsigned integer. For example, the first
two bytes of a Window error are always zero (indicating an error in general) and three
(indicating the Window error in particular):

1 0 Error
1 3 code

For components described in the protocol as:

name: {Name1, . . . , NameI}

the encode-form is:

N name
value1 Name1
. . .
valueI NameI

The value is always interpreted as an N-byte unsigned integer. Note that the size of N
is sometimes larger than that strictly required to encode the values. For example:

class: {InputOutput, InputOnly, CopyFromParent}

becomes:

2 class
0 CopyFromParent
1 InputOutput
2 InputOnly

For components described in the protocol as:

NAME: TYPE or Alternative1 . . . or AlternativeI the encode-form is:

N TYPE NAME
value1 Alternative1
. . .
valueI AlternativeI

The alternative values are guaranteed not to conflict with the encoding of TYPE. For
example:

destination: WINDOW or PointerWindow or InputFocus

becomes:

4 WINDOW destination
0 PointerWindow
1 InputFocus

For components described in the protocol as:

F−2 March 26, 1992

-- --

Protocol Encoding

value-mask: BITMASK

the encode-form is:

N BITMASK value-mask
mask1 mask-name1
. . .
maskI mask-nameI

The individual bits in the mask are specified and named, and N is 2 or 4. The most-
significant bit in a BITMASK is reserved for use in defining chained (multiword) bit-
masks, as extensions augment existing core requests. The precise interpretation of this
bit is not yet defined here, although a probable mechanism is that a 1-bit indicates that
another N bytes of bitmask follows, with bits within the overall mask still interpreted
from least-significant to most-significant with an N-byte unit, with N-byte units inter-
preted in stream order, and with the overall mask being byte-swapped in individual N-
byte units.

For LISTofVALUE encodings, the request is followed by a section of the form:

VALUEs
encode-form
. . .
encode-form

listing an encode-form for each VALUE. The NAME in each encode-form keys to the
corresponding BITMASK bit. The encoding of a VALUE always occupies four bytes,
but the number of bytes specified in the encoding-form indicates how many of the
least-significant bytes are actually used; the remaining bytes are unused and their values
do not matter.

In various cases, the number of bytes occupied by a component will be specified by a
lowercase single-letter variable name instead of a specific numeric value, and often
some other component will have its value specified as a simple numeric expression
involving these variables. Components specified with such expressions are always
interpreted as unsigned integers. The scope of such variables is always just the enclos-
ing request, reply, error, event, or compound type structure. For example:

2 3+n request length
4n LISTofPOINT points

For unused bytes (the values of the bytes are undefined and do no matter), the encode-
form is:

N unused

If the number of unused bytes is variable, the encode-form typically is:

p unused, p=pad(E)

where E is some expression, and pad(E) is the number of bytes needed to round E up to
a multiple of four.

pad(E) = (4 – (E mod 4)) mod 4

March 26, 1992 F−3

-- --

X Window System

Common Types

LISTofFOO
In this document the LISTof notation strictly means some number of repetitions of the
FOO encoding; the actual length of the list is encoded elsewhere.

SETofFOO
A set is always represented by a bitmask, with a 1-bit indicating presence in the set.

BITMASK: CARD32
WINDOW: CARD32
PIXMAP: CARD32
CURSOR: CARD32
FONT: CARD32
GCONTEXT: CARD32
COLORMAP: CARD32
DRAWABLE: CARD32
FONTABLE: CARD32
ATOM: CARD32
VISUALID: CARD32
BYTE: 8-bit value
INT8: 8-bit signed integer
INT16: 16-bit signed integer
INT32: 32-bit signed integer
CARD8: 8-bit unsigned integer
CARD16: 16-bit unsigned integer
CARD32: 32-bit unsigned integer
TIMESTAMP: CARD32
BITGRAVITY

0 Forget
1 NorthWest
2 North
3 NorthEast
4 West
5 Center
6 East
7 SouthWest
8 South
9 SouthEast
10 Static

WINGRAVITY

0 Unmap
1 NorthWest
2 North

F−4 March 26, 1992

-- --

Protocol Encoding

3 NorthEast
4 West
5 Center
6 East
7 SouthWest
8 South
9 SouthEast
10 Static

BOOL

0 False
1 True

SETofEVENT

#x00000001 KeyPress
#x00000002 KeyRelease
#x00000004 ButtonPress
#x00000008 ButtonRelease
#x00000010 EnterWindow
#x00000020 LeaveWindow
#x00000040 PointerMotion
#x00000080 PointerMotionHint
#x00000100 Button1Motion
#x00000200 Button2Motion
#x00000400 Button3Motion
#x00000800 Button4Motion
#x00001000 Button5Motion
#x00002000 ButtonMotion
#x00004000 KeymapState
#x00008000 Exposure
#x00010000 VisibilityChange
#x00020000 StructureNotify
#x00040000 ResizeRedirect
#x00080000 SubstructureNotify
#x00100000 SubstructureRedirect
#x00200000 FocusChange
#x00400000 PropertyChange
#x00800000 ColormapChange
#x01000000 OwnerGrabButton
#xfe000000 unused but must be zero

SETofPOINTEREVENT
encodings are the same as for SETofEVENT, except with

#xffff8003 unused but must be zero

March 26, 1992 F−5

-- --

X Window System

SETofDEVICEEVENT
encodings are the same as for SETofEVENT, except with

#xffffc0b0 unused but must be zero

KEYSYM: CARD32
KEYCODE: CARD8
BUTTON: CARD8
SETofKEYBUTMASK

#x0001 Shift
#x0002 Lock
#x0004 Control
#x0008 Mod1
#x0010 Mod2
#x0020 Mod3
#x0040 Mod4
#x0080 Mod5
#x0100 Button1
#x0200 Button2
#x0400 Button3
#x0800 Button4
#x1000 Button5
#xe000 unused but must be zero

SETofKEYMASK
encodings are the same as for SETofKEYBUTMASK, except with

#xff00 unused but must be zero

STRING8: LISTofCARD8
STRING16: LISTofCHAR2B
CHAR2B

1 CARD8 byte1
1 CARD8 byte2

POINT

2 INT16 x
2 INT16 y

RECTANGLE

2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height

ARC

2 INT16 x
2 INT16 y

F−6 March 26, 1992

-- --

Protocol Encoding

2 CARD16 width
2 CARD16 height
2 INT16 angle1
2 INT16 angle2

HOST

1 family
0 Internet
1 DECnet
2 Chaos

1 unused
2 n length of address
n LISTofBYTE address
p unused, p=pad(n)

STR

1 n length of name in bytes
n STRING8 name

Errors

Request

1 0 Error
1 1 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Value

1 0 Error
1 2 code
2 CARD16 sequence number 4 <32-
bits> bad value
2 CARD16 minor opcode

March 26, 1992 F−7

-- --

X Window System

1 CARD8 major opcode
21 unused

Window

1 0 Error
1 3 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Pixmap

1 0 Error
1 4 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Atom

1 0 Error
1 5 code
2 CARD16 sequence number
4 CARD32 bad atom id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Cursor

1 0 Error

F−8 March 26, 1992

-- --

Protocol Encoding

1 6 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Font

1 0 Error
1 7 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Match

1 0 Error
1 8 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Drawable

1 0 Error
1 9 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

March 26, 1992 F−9

-- --

X Window System

Access

1 0 Error
1 10 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Alloc

1 0 Error
1 11 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Colormap

1 0 Error
1 12 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

GContext

1 0 Error
1 13 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode

F−10 March 26, 1992

-- --

Protocol Encoding

21 unused

IDChoice

1 0 Error
1 14 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Name

1 0 Error
1 15 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Length

1 0 Error
1 16 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Implementation

1 0 Error
1 17 code

March 26, 1992 F−11

-- --

X Window System

2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Keyboards

KEYCODE values are always greater than 7 (and less than 256).

KEYSYM values with the bit #x10000000 set are reserved as vendor-specific.

The names and encodings of the standard KEYSYM values are contained in appendix
E.

Pointers

BUTTON values are numbered starting with one.

Predefined Atoms

PRIMARY 1 WM_NORMAL_HINTS 40
SECONDARY 2 WM_SIZE_HINTS 41
ARC 3 WM_ZOOM_HINTS 42
ATOM 4 MIN_SPACE 43
BITMAP 5 NORM_SPACE 44
CARDINAL 6 MAX_SPACE 45
COLORMAP 7 END_SPACE 46
CURSOR 8 SUPERSCRIPT_X 47
CUT_BUFFER0 9 SUPERSCRIPT_Y 48
CUT_BUFFER1 10 SUBSCRIPT_X 49
CUT_BUFFER2 11 SUBSCRIPT_Y 50
CUT_BUFFER3 12 UNDERLINE_POSITION 51
CUT_BUFFER4 13 UNDERLINE_THICKNESS 52
CUT_BUFFER5 14 STRIKEOUT_ASCENT 53
CUT_BUFFER6 15 STRIKEOUT_DESCENT 54
CUT_BUFFER7 16 ITALIC_ANGLE 55
DRAWABLE 17 X_HEIGHT 56
FONT 18 QUAD_WIDTH 57
INTEGER 19 WEIGHT 58

F−12 March 26, 1992

-- --

Protocol Encoding

PIXMAP 20 POINT_SIZE 59
POINT 21 RESOLUTION 60
RECTANGLE 22 COPYRIGHT 61
RESOURCE_MANAGER 23 NOTICE 62
RGB_COLOR_MAP 24 FONT_NAME 63
RGB_BEST_MAP 25 FAMILY_NAME 64
RGB_BLUE_MAP 26 FULL_NAME 65
RGB_DEFAULT_MAP 27 CAP_HEIGHT 66
RGB_GRAY_MAP 28 WM_CLASS 67
RGB_GREEN_MAP 29 WM_TRANSIENT_FOR 68
RGB_RED_MAP 30
STRING 31
VISUALID 32
WINDOW 33
WM_COMMAND 34
WM_HINTS 35
WM_CLIENT_MACHINE 36
WM_ICON_NAME 37
WM_ICON_SIZE 38
WM_NAME 39

Connection Setup

For TCP connections, displays on a given host are numbered starting from 0, and the
server for display N listens and accepts connections on port 6000 + N. For DECnet
connections, displays on a given host are numbered starting from 0, and the server for
display N listens and accepts connections on the object name obtained by concatenating
‘‘X$X’’ with the decimal representation of N, for example, X$X0 and X$X1.

Information sent by the client at connection setup:

1 byte-order
#x42 MSB first
#x6C LSB first

1 unused
2 CARD16 protocol-major-version
2 CARD16 protocol-minor-version
2 n length of authorization-

protocol-name
2 d length of authorization-

protocol-data
2 unused
n STRING8 authorization-protocol-name
p unused, p=pad(n)
d STRING8 authorization-protocol-data
q unused, q=pad(d)

March 26, 1992 F−13

-- --

X Window System

Except where explicitly noted in the protocol, all 16-bit and 32-bit quantities sent by the
client must be transmitted with the specified byte order, and all 16-bit and 32-bit quanti-
ties returned by the server will be transmitted with this byte order.

Information received by the client if authorization fails:

1 0 failed
1 n length of reason in bytes
2 CARD16 protocol-major-version
2 CARD16 protocol-minor-version
2 (n+p)/4 length in 4-byte units of

‘‘additional data’’
n STRING8 reason
p unused, p=pad(n)

Information received by the client if authorization is accepted:

1 1 success
1 unused
2 CARD16 protocol-major-version
2 CARD16 protocol-minor-version
2 8+2n+(v+p+m)/4 length in 4-byte units of

‘‘additional data’’
4 CARD32 release-number
4 CARD32 resource-id-base
4 CARD32 resource-id-mask
4 CARD32 motion-buffer-size
2 v length of vendor
2 CARD16 maximum-request-length
1 CARD8 number of SCREENs in roo
1 n number for FORMATs in

pixmap-formats
1 image-byte-order

0 LSBFirst
1 MSBFirst

1 bitmap-format-bit-order
0 LeastSignificant
1 MostSignificant

1 CARD8 bitmap-format-scanline-unit
1 CARD8 bitmap-format-scanline-pad
1 KEYCODE min-keycode
1 KEYCODE max-keycode
4 unused
v STRING8 vendor
p unused, p=pad(v)
8n LISTofFORMAT pixmap-formats
m LISTofSCREEN roots (m is always a

multiple of 4)

FORMAT

F−14 March 26, 1992

-- --

Protocol Encoding

1 CARD8 depth
1 CARD8 bits-per-pixel
1 CARD8 scanline-pad
5 unused

SCREEN

4 WINDOW root
4 COLORMAP default-colormap
4 CARD32 white-pixel
4 CARD32 black-pixel
4 SETofEVENT current-input-masks
2 CARD16 width-in-pixels
2 CARD16 height-in-pixels
2 CARD16 width-in-millimeters
2 CARD16 height-in-millimeters
2 CARD16 min-installed-maps
2 CARD16 max-installed-maps
4 VISUALID root-visual
1 backing-stores

0 Never
1 WhenMapped
2 Always

1 BOOL save-unders
1 CARD8 root-depth
1 CARD8 number of DEPTHs in

allowed-depths
n LISTofDEPTH allowed-depths (n is always

multiple of 4)

DEPTH

1 CARD8 depth
1 unused
2 n number of VISUALTYPES

in visuals
4 unused
24n LISTofVISUALTYPE visuals

VISUALTYPE

4 VISUALID visual-id
1 class

0 StaticGray
1 GrayScale
2 StaticColor
3 PseudoColor
4 TrueColor

March 26, 1992 F−15

-- --

X Window System

5 DirectColor
1 CARD8 bits-per-rgb-value
2 CARD16 colormap-entries
4 CARD32 red-mask
4 CARD32 green-mask
4 CARD32 blue-mask
4 unused

Requests

CreateWindow

1 1 opcode
1 CARD8 depth
2 8+n request leng
4 WINDOW wid
4 WINDOW parent
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-widt
2 class

0 CopyFromParent
1 InputOutput
2 InputOnly

4 VISUALID visual
0 CopyFromParent

4 BITMASK value-mask
#x00000001 background-pixmap
#x00000002 background-pixel
#x00000004 border-pixmap
#x00000008 border-pixel
#x00000010 bit-gravity
#x00000020 win-gravity
#x00000040 backing-store
#x00000080 backing-planes
#x00000100 backing-pixel
#x00000200 override-redirect
#x00000400 save-under
#x00000800 event-mask

F−16 March 26, 1992

-- --

Protocol Encoding

#x00001000 do-not-propagate-mask
#x00002000 colormap
#x00004000 cursor

4n LISTofVALUE value-list

VALUEs

4 PIXMAP background
0 None
1 ParentRelative

4 CARD32 background
4 PIXMAP border-pixm

0 CopyFromParent
4 CARD32 border-pixe
1 BITGRAVITY bit-gravity
1 WINGRAVITY win-gravity
1 backing-sto

0 NotUseful
1 WhenMapped
2 Always

4 CARD32 backing-pla
4 CARD32 backing-pix
1 BOOL override-red
1 BOOL save-under
4 SETofEVENT event-mask
4 SETofDEVICEEVENT do-not-prop
4 COLORMAP colormap

0 CopyFromParent
4 CURSOR cursor

0 None

ChangeWindowAttributes

1 2 opcode
1 unused
2 3+n request leng
4 WINDOW window
4 BITMASK value-mask

encodings are the same as for CreateWindow
4n LISTofVALUE value-list

encodings are the same as for CreateWindow

March 26, 1992 F−17

-- --

X Window System

GetWindowAttributes

1 3 opcode
1 unused
2 2 request leng
4 WINDOW window

→
1 1 Reply
1 backing-sto

0 NotUseful
1 WhenMapped
2 Always

2 CARD16 sequence nu
4 3 reply length
4 VISUALID visual
2 class

1 InputOutput
2 InputOnly

1 BITGRAVITY bit-gravity
1 WINGRAVITY win-gravity
4 CARD32 backing-pla
4 CARD32 backing-pix
1 BOOL save-under
1 BOOL map-is-insta
1 map-state

0 Unmapped
1 Unviewable
2 Viewable

1 BOOL override-red
4 COLORMAP colormap

0 None
4 SETofEVENT all-event-m
4 SETofEVENT your-event-
2 SETofDEVICEEVENT do-not-prop
2 unused

DestroyWindow

1 4 opcode
1 unused
2 2 request leng
4 WINDOW window

F−18 March 26, 1992

-- --

Protocol Encoding

DestroySubwindows

1 5 opcode
1 unused
2 2 request leng
4 WINDOW window

ChangeSaveSet

1 6 opcode
1 mode

0 Insert
1 Delete

2 2 request leng
4 WINDOW window

ReparentWindow

1 7 opcode
1 unused
2 4 request leng
4 WINDOW window
4 WINDOW parent
2 INT16 x
2 INT16 y

MapWindow

1 8 opcode
1 unused
2 2 request leng
4 WINDOW window

March 26, 1992 F−19

-- --

X Window System

MapSubwindows

1 9 opcode
1 unused
2 2 request leng
4 WINDOW window

UnmapWindow

1 10 opcode
1 unused
2 2 request leng
4 WINDOW window

UnmapSubwindows

1 11 opcode
1 unused
2 2 request leng
4 WINDOW window

ConfigureWindow

1 12 opcode
1 unused
2 3+n request leng
4 WINDOW window
2 BITMASK value-mask

#x0001 x
#x0002 y
#x0004 width
#x0008 height
#x0010 border-width
#x0020 sibling
#x0040 stack-mode

2 unused
4n LISTofVALUE value-list

F−20 March 26, 1992

-- --

Protocol Encoding

VALUEs

2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-widt
4 WINDOW sibling
1 stack-mode

0 Above
1 Below
2 TopIf
3 BottomIf
4 Opposite

CirculateWindow

1 13 opcode
1 direction

0 RaiseLowest
1 LowerHighest

2 2 request leng
4 WINDOW window

GetGeometry

1 14 opcode
1 unused
2 2 request leng
4 DRAWABLE drawable

→
1 1 Reply
1 CARD8 depth
2 CARD16 sequence nu
4 0 reply length
4 WINDOW root
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-widt
10 unused

March 26, 1992 F−21

-- --

X Window System

QueryTree

1 15 opcode
1 unused
2 2 request leng
4 WINDOW window

→
1 1 Reply
1 unused
2 CARD16 sequence nu
4 n reply length
4 WINDOW root
4 WINDOW parent

0 None
2 n number of W

in children
14 unused
4n LISTofWINDOW children

InternAtom

1 16 opcode
1 BOOL only-if-exis
2 2+(n+p)/4 request leng
2 n length of na
2 unused
n STRING8 name
p unused, p=p

→
1 1 Reply
1 unused
2 CARD16 sequence nu
4 0 reply length
4 ATOM atom

0 None
20 unused

GetAtomName

1 17 opcode
1 unused

F−22 March 26, 1992

-- --

Protocol Encoding

2 2 request leng
4 ATOM atom

→
1 1 Reply
1 unused
2 CARD16 sequence nu
4 (n+p)/4 reply length
2 n length of na
22 unused
n STRING8 name
p unused, p=p

ChangeProperty

1 18 opcode
1 mode

0 Replace
1 Prepend
2 Append

2 6+(n+p)/4 request leng
4 WINDOW window
4 ATOM property
4 ATOM type
1 CARD8 format
3 unused
4 CARD32 length of da

(= n for for
(= n/2 for f
(= n/4 for f

n LISTofBYTE data
(n is a mult
format = 16
(n is a mult
format = 32

p unused, p=p

DeleteProperty

1 19 opcode
1 unused
2 3 request leng
4 WINDOW window

March 26, 1992 F−23

-- --

X Window System

4 ATOM property

GetProperty

1 20 opcode
1 BOOL delete
2 6 request leng
4 WINDOW window
4 ATOM property
4 ATOM type

0 AnyPropertyType
4 CARD32 long-offset
4 CARD32 long-length

→
1 1 Reply
1 CARD8 format
2 CARD16 sequence nu
4 (n+p)/4 reply length
4 ATOM type

0 None
4 CARD32 bytes-after
4 CARD32 length of va

(= 0 for for
(= n for for
(= n/2 for f
(= n/4 for f

12 unused
n LISTofBYTE value

(n is zero fo
(n is a mult
format = 16
(n is a mult
format = 32

p unused, p=p

ListProperties

1 21 opcode
1 unused
2 2 request leng
4 WINDOW window

→

F−24 March 26, 1992

-- --

Protocol Encoding

1 1 Reply
1 unused
2 CARD16 sequence nu
4 n reply length
2 n number of A
22 unused
4n LISTofATOM atoms

SetSelectionOwner

1 22 opcode
1 unused
2 4 request leng
4 WINDOW owner

0 None
4 ATOM selection
4 TIMESTAMP time

0 CurrentTime

GetSelectionOwner

1 23 opcode
1 unused
2 2 request leng
4 ATOM selection

→
1 1 Reply
1 unused
2 CARD16 sequence nu
4 0 reply length
4 WINDOW owner

0 None
20 unused

ConvertSelection

1 24 opcode
1 unused
2 6 request leng

March 26, 1992 F−25

-- --

X Window System

4 WINDOW requestor
4 ATOM selection
4 ATOM target
4 ATOM property

0 None
4 TIMESTAMP time

0 CurrentTime:;

SendEvent

1 25 opcode
1 BOOL propagate
2 11 request leng
4 WINDOW destination

0 PointerWindow
1 InputFocus

4 SETofEVENT event-mask
32 standard event format (see the Events section) event

GrabPointer

1 26 opcode
1 BOOL owner-even
2 6 request leng
4 WINDOW grab-windo
2 SETofPOINTEREVENT event-mask
1 pointer-mod

0 Synchronous
1 Asynchronous

1 keyboard-m
0 Synchronous
1 Asynchronous

4 WINDOW confine-to
0 None

4 CURSOR cursor
0 None

4 TIMESTAMP time
0 CurrentTime

→
1 1 Reply
1 status

0 Success

F−26 March 26, 1992

-- --

Protocol Encoding

1 AlreadyGrabbed
2 InvalidTime
3 NotViewable
4 Frozen

2 CARD16 sequence nu
4 0 reply length
24 unused

UngrabPointer

1 27 opcode
1 unused
2 2 request leng
4 TIMESTAMP time

0 CurrentTime

GrabButton

1 28 opcode
1 BOOL owner-even
2 6 request leng
4 WINDOW grab-windo
2 SETofPOINTEREVENT event-mask
1 pointer-mod

0 Synchronous
1 Asynchronous

1 keyboard-m
0 Synchronous
1 Asynchronous

4 WINDOW confine-to
0 None

4 CURSOR cursor
0 None

1 BUTTON button
0 AnyButton

1 unused
2 SETofKEYMASK modifiers

#x8000 AnyModifier

March 26, 1992 F−27

-- --

X Window System

UngrabButton

1 29 opcode
1 BUTTON button

0 AnyButton
2 3 request leng
4 WINDOW grab-windo
2 SETofKEYMASK modifiers

#x8000 AnyModifier
2 unused

ChangeActivePointerGrab

1 30 opcode
1 unused
2 4 request leng
4 CURSOR cursor

0 None
4 TIMESTAMP time

GrabKeyboard

4 WINDOW grab-windo
4 TIMESTAMP time

0 CurrentTime
1 pointer-mod

0 Synchronous
1 Asynchronous

1 keyboard-m
0 Synchronous
1 Asynchronous

2 unused
→

1 1 Reply
1 status

0 Success
1 AlreadyGrabbed
2 InvalidTime
3 NotViewable
4 Frozen

2 CARD16 sequence nu

F−28 March 26, 1992

-- --

Protocol Encoding

4 0 reply length
24 unused

UngrabKeyboard

1 32 opcode
1 unused
2 2 request leng
4 TIMESTAMP time

0 CurrentTime

GrabKey

1 33 opcode
1 BOOL owner-even
2 4 request leng
4 WINDOW grab-windo
2 SETofKEYMASK modifiers

#x8000 AnyModifier
1 KEYCODE key

0 AnyKey
1 pointer-mod

0 Synchronous
1 Asynchronous

1 keyboard-m
0 Synchronous
1 Asynchronous

3 unused

UngrabKey

1 34 opcode
1 KEYCODE key

0 AnyKey
2 3 request leng
4 WINDOW grab-windo
2 SETofKEYMASK modifiers

#x8000 AnyModifier
2 unused

March 26, 1992 F−29

-- --

X Window System

AllowEvents

1 35 opcode
1 mode

0 AsyncPointer
1 SyncPointer
2 ReplayPointer
3 AsyncKeyboard
4 SyncKeyboard
5 ReplayKeyboard
6 AsyncBoth
7 SyncBoth

2 2 request leng
4 TIMESTAMP time

0 CurrentTime

GrabServer

1 36 opcode
1 unused
2 1 request leng

UngrabServer

1 37 opcode
1 unused
2 1 request leng

QueryPointer

1 38 opcode
1 unused
2 2 request leng
4 WINDOW window

→
1 1 Reply
1 BOOL same-screen
2 CARD16 sequence nu

F−30 March 26, 1992

-- --

Protocol Encoding

4 0 reply length
4 WINDOW root
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 win-x
2 INT16 win-y
2 SETofKEYBUTMASK mask
6 unused

GetMotionEvents

1 39 opcode
1 unused
2 4 request leng
4 WINDOW window
4 TIMESTAMP start

0 CurrentTime
4 TIMESTAMP stop

0 CurrentTime
→

1 1 Reply
1 unused
2 CARD16 sequence nu
4 2n reply length
4 n number of T

in events
20 unused
8n LISTofTIMECOORD events

TIMECOORD

4 TIMESTAMP time
2 CARD16 x
2 CARD16 y

TranslateCoordinates

1 40 opcode
1 unused
2 4 request leng

March 26, 1992 F−31

-- --

X Window System

4 WINDOW src-window
4 WINDOW dst-window
2 INT16 src-x
2 INT16 src-y

→
1 1 Reply
1 BOOL same-screen
2 CARD16 sequence nu
4 0 reply length
4 WINDOW child

0 None
2 INT16 dst-x
2 INT16 dst-y
16 unused

WarpPointer

1 41 opcode
1 unused
2 6 request leng
4 WINDOW src-window

0 None
4 WINDOW dst-window

0 None
2 INT16 src-x
2 INT16 src-y
2 CARD16 src-width
2 CARD16 src-height
2 INT16 dst-x
2 INT16 dst-y

SetInputFocus

1 42 opcode
1 revert-to

0 None
1 PointerRoot
2 Parent

2 3 request leng
4 WINDOW focus

0 None
1 PointerRoot

F−32 March 26, 1992

-- --

Protocol Encoding

4 TIMESTAMP time
0 CurrentTime

GetInputFocus

1 43 opcode
1 unused
2 1 request leng

→
1 1 Reply
1 revert-to

0 None
1 PointerRoot
2 Parent

2 CARD16 sequence nu
4 0 reply length
4 WINDOW focus

0 None
1 PointerRoot

20 unused

QueryKeymap

1 44 opcode
1 unused
2 1 request leng

→
1 1 Reply
1 unused
2 CARD16 sequence nu
4 2 reply length
32 LISTofCARD8 keys

OpenFont

1 45 opcode
1 unused
2 3+(n+p)/4 request leng
4 FONT fid

March 26, 1992 F−33

-- --

X Window System

2 n length of na
2 unused
n STRING8 name
p unused, p=p

CloseFont

1 46 opcode
1 unused
2 2 request leng
4 FONT font

QueryFont

1 47 opcode
1 unused
2 2 request leng
4 FONTABLE font

→
1 1 Reply
1 unused
2 CARD16 sequence nu
4 7+2n+3m reply length
12 CHARINFO min-bounds
4 unused
12 CHARINFO max-bound
4 unused
2 CARD16 min-char-or
2 CARD16 max-char-o
2 CARD16 default-char
2 n number of F

in propertie
1 draw-direct

0 LeftToRight
1 RightToLeft

1 CARD8 min-byte1
1 CARD8 max-byte1
1 BOOL all-chars-ex
2 INT16 font-ascent
2 INT16 font-descen
4 m number of C

in char-info

F−34 March 26, 1992

-- --

Protocol Encoding

8n LISTofFONTPROP properties
12m LISTofCHARINFO char-infos

FONTPROP

4 ATOM name
4 <32-bits> value

CHARINFO

2 INT16 left-side-be
2 INT16 right-side-b
2 INT16 character-w
2 INT16 ascent
2 INT16 descent
2 CARD16 attributes

QueryTextExtents

1 48 opcode
1 BOOL odd length,
2 2+(2n+p)/4 request leng
4 FONTABLE font
2n STRING16 string
p unused, p=p

→
1 1 Reply
1 draw-direct

0 LeftToRight
1 RightToLeft

2 CARD16 sequence nu
4 0 reply length
2 INT16 font-ascent
2 INT16 font-descen
2 INT16 overall-asce
2 INT16 overall-desc
4 INT32 overall-wid
4 INT32 overall-left
4 INT32 overall-righ
4 unused

March 26, 1992 F−35

-- --

X Window System

ListFonts

1 49 opcode
1 unused
2 2+(n+p)/4 request leng
2 CARD16 max-names
2 n length of pa
n STRING8 pattern
p unused, p=p

→
1 1 Reply
1 unused
2 CARD16 sequence nu
4 (n+p)/4 reply length
2 CARD16 number of S
22 unused
n LISTofSTR names
p unused, p=p

ListFontsWithInfo

1 50 opcode
1 unused
2 2+(n+p)/4 request leng
2 CARD16 max-names
2 n length of pa
n STRING8 pattern
p unused, p=p

→ (except for last in series)
1 1 Reply
1 n length of na
2 CARD16 sequence nu
4 7+2m+(n+p)/4 reply length
12 CHARINFO min-bounds
4 unused
12 CHARINFO max-bound
4 unused
2 CARD16 min-char-or
2 CARD16 max-char-o
2 CARD16 default-char
2 m number of F

in propertie
1 draw-direct

F−36 March 26, 1992

-- --

Protocol Encoding

0 LeftToRight
1 RightToLeft

1 CARD8 min-byte1
1 CARD8 max-byte1
1 BOOL all-chars-ex
2 INT16 font-ascent
2 INT16 font-descen
4 CARD32 replies-hint
8m LISTofFONTPROP properties
n STRING8 name
p unused, p=p

FONTPROP

encodings are the same as for QueryFont

CHARINFO

encodings are the same as for QueryFont

→ (last in series)
1 1 Reply
1 0 last-reply in
2 CARD16 sequence nu
4 7 reply length
52 unused

SetFontPath

1 51 opcode
1 unused
2 2+(n+p)/4 request leng
2 CARD16 number of S
2 unused
n LISTofSTR path
p unused, p=p

GetFontPath

1 52 opcode
1 unused
2 1 request list

March 26, 1992 F−37

-- --

X Window System

→
1 1 Reply
1 unused
2 CARD16 sequence nu
4 (n+p)/4 reply length
2 CARD16 number of S
22 unused
n LISTofSTR path
p unused, p=p

CreatePixmap

1 53 opcode
1 CARD8 depth
2 4 request leng
4 PIXMAP pid
4 DRAWABLE drawable
2 CARD16 width
2 CARD16 height

FreePixmap

1 54 opcode
1 unused
2 2 request leng
4 PIXMAP pixmap

CreateGC

1 55 opcode
1 unused
2 4+n request leng
4 GCONTEXT cid
4 DRAWABLE drawable
4 BITMASK value-mask

#x00000001 function
#x00000002 plane-mask
#x00000004 foreground
#x00000008 background

F−38 March 26, 1992

-- --

Protocol Encoding

#x00000010 line-width
#x00000020 line-style
#x00000040 cap-style
#x00000080 join-style
#x00000100 fill-style
#x00000200 fill-rule
#x00000400 tile
#x00000800 stipple
#x00001000 tile-stipple-x-origin
#x00002000 tile-stipple-y-origin
#x00004000 font
#x00008000 subwindow-mode
#x00010000 graphics-exposures
#x00020000 clip-x-origin
#x00040000 clip-y-origin
#x00080000 clip-mask
#x00100000 dash-offset
#x00200000 dashes
#x00400000 arc-mode

4n LISTofVALUE value-list

VALUEs

1 function
0 Clear
1 And
2 AndReverse
3 Copy
4 AndInverted
5 NoOp
6 Xor
7 Or
8 Nor
9 Equiv
10 Invert
11 OrReverse
12 CopyInverted
13 OrInverted
14 Nand
15 Set

4 CARD32 plane-mask
4 CARD32 foreground
4 CARD32 background
2 CARD16 line-width
1 line-style

0 Solid
1 OnOffDash
2 DoubleDash

March 26, 1992 F−39

-- --

X Window System

1 cap-style
0 NotLast
1 Butt
2 Round
3 Projecting

1 join-style
0 Miter
1 Round
2 Bevel

1 fill-style
0 Solid
1 Tiled
2 Stippled
3 OpaqueStippled

1 fill-rule
0 EvenOdd
1 Winding

4 PIXMAP tile
4 PIXMAP stipple
2 INT16 tile-stipple-
2 INT16 tile-stipple-
4 FONT font
1 subwindow

0 ClipByChildren
1 IncludeInferiors

1 BOOL graphics-ex
2 INT16 clip-x-origi
2 INT16 clip-y-origi
4 PIXMAP clip-mask

0 None
2 CARD16 dash-offset
1 CARD8 dashes

ChangeGC

4 GCONTEXT gc
4 BITMASK value-mask

encodings are the same as for CreateGC
4n LISTofVALUE value-list

encodings are the same as for CreateGC

F−40 March 26, 1992

-- --

Protocol Encoding

CopyGC

1 57 opcode
1 unused
2 4 request leng
4 GCONTEXT src-gc
4 GCONTEXT dst-gc
4 BITMASK value-mask

encodings are the same as for CreateGC

SetDashes

1 58 opcode
1 unused
2 3+(n+p)/4 request leng
4 GCONTEXT gc
2 CARD16 dash-offset
2 n length of da
n LISTofCARD8 dashes
p unused, p=p

SetClipRectangles

1 59 opcode
1 ordering

0 UnSorted
1 YSorted
2 YXSorted
3 YXBanded

2 3+2n request leng
4 GCONTEXT gc
2 INT16 clip-x-origi
2 INT16 clip-y-origi
8n LISTofRECTANGLE rectangles

March 26, 1992 F−41

-- --

X Window System

FreeGC

1 60 opcode
1 unused
2 2 request leng
4 GCONTEXT gc

ClearArea

1 61 opcode
1 BOOL exposures
2 4 request leng
4 WINDOW window
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height

CopyArea

1 62 opcode
1 unused
2 7 request leng
4 DRAWABLE src-drawabl
4 DRAWABLE dst-drawabl
4 GCONTEXT gc
2 INT16 src-x
2 INT16 src-y
2 INT16 dst-x
2 INT16 dst-y
2 CARD16 width
2 CARD16 height

CopyPlane

1 63 opcode
1 unused
2 8 request leng

F−42 March 26, 1992

-- --

Protocol Encoding

4 DRAWABLE src-drawabl
4 DRAWABLE dst-drawabl
4 GCONTEXT gc
2 INT16 src-x
2 INT16 src-y
2 INT16 dst-x
2 INT16 dst-y
2 CARD16 width
2 CARD16 height
4 CARD32 bit-plane

PolyPoint

1 64 opcode
1 coordinate-m

0 Origin
1 Previous

2 3+n request leng
4 DRAWABLE drawable
4 GCONTEXT gc
4n LISTofPOINT points

PolyLine

1 65 opcode
1 coordinate-m

0 Origin
1 Previous

2 3+n request leng
4 DRAWABLE drawable
4 GCONTEXT gc
4n LISTofPOINT points

PolySegment

1 66 opcode
1 unused
2 3+2n request leng
4 DRAWABLE drawable

March 26, 1992 F−43

-- --

X Window System

4 GCONTEXT gc
8n LISTofSEGMENT segments

SEGMENT

2 INT16 x1
2 INT16 y1
2 INT16 x2
2 INT16 y2

PolyRectangle

1 67 opcode
1 unused
2 3+2n request leng
4 DRAWABLE drawable
4 GCONTEXT gc
8n LISTofRECTANGLE rectangles

PolyArc

1 68 opcode
1 unused
2 3+3n request leng
4 DRAWABLE drawable
4 GCONTEXT gc
12n LISTofARC arcs

FillPoly

1 69 opcode
1 unused
2 4+n request leng
4 DRAWABLE drawable
4 GCONTEXT gc
1 shape

0 Complex
1 Nonconvex
2 Convex

F−44 March 26, 1992

-- --

Protocol Encoding

1 coordinate-m
0 Origin
1 Previous

2 unused
4n LISTofPOINT points

PolyFillRectangle

1 70 opcode
1 unused
2 3+2n request leng
4 DRAWABLE drawable
4 GCONTEXT gc
8n LISTofRECTANGLE rectangles

PolyFillArc

1 71 opcode
1 unused
2 3+3n request leng
4 DRAWABLE drawable
4 GCONTEXT gc
12n LISTofARC arcs

PutImage

1 72 opcode
1 format

0 Bitmap
1 XYPixmap
2 ZPixmap

2 6+(n+p)/4 request leng
4 DRAWABLE drawable
4 GCONTEXT gc
2 CARD16 width
2 CARD16 height
2 INT16 dst-x
2 INT16 dst-y
1 CARD8 left-pad

March 26, 1992 F−45

-- --

X Window System

1 CARD8 depth
2 unused
n LISTofBYTE data
p unused, p=p

GetImage

1 73 opcode
1 format

1 XYPixmap
2 ZPixmap

2 5 request leng
4 DRAWABLE drawable
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
4 CARD32 plane-mask

→
1 1 Reply
1 CARD8 depth
2 CARD16 sequence nu
4 (n+p)/4 reply length
4 VISUALID visual

0 None
20 unused
n LISTofBYTE data
p unused, p=p

PolyText8

1 74 opcode
1 unused
2 4+(n+p)/4 request leng
4 DRAWABLE drawable
4 GCONTEXT gc
2 INT16 x
2 INT16 y
n LISTofTEXTITEM8 items
p unused, p=p

(p is always

F−46 March 26, 1992

-- --

Protocol Encoding

TEXTITEM8

1 m length of st
(cannot be 2

1 INT8 delta
m STRING8 string

or
1 255 font-shift in
1 font byte 3

(most-signifi
1 font byte 2
1 font byte 1
1 font byte 0

(least-signifi

PolyText16

1 75 opcode
1 unused
2 4+(n+p)/4 request leng
4 DRAWABLE drawable
4 GCONTEXT gc
2 INT16 x
2 INT16 y
n LISTofTEXTITEM16 items
p unused, p=p

(p must be

TEXTITEM16

1 m number of C
in string
(cannot be 2

1 INT8 delta
m STRING16 string

or
1 255 font-shift in
1 font byte 3
1 font byte 2
1 font byte 1
1 font byte 0

March 26, 1992 F−47

-- --

X Window System

ImageText8

1 76 opcode
1 n length of st
2 4+(n+p)/4 request leng
4 DRAWABLE drawable
4 GCONTEXT gc
2 INT16 x
2 INT16 y
n STRING8 string
p unused, p=p

ImageText16

1 77 opcode
1 n number of C

in string
2 4+(2n+p)/4 request leng
4 DRAWABLE drawable
4 GCONTEXT gc
2 INT16 x
2 INT16 y
2n STRING16 string
p unused, p=p

CreateColormap

1 78 opcode
1 alloc

0 None
1 All

2 4 request leng
4 COLORMAP mid
4 WINDOW window
4 VISUALID visual

F−48 March 26, 1992

-- --

Protocol Encoding

FreeColormap

1 79 opcode
1 unused
2 2 request leng
4 COLORMAP cmap

CopyColormapAndFree

1 80 opcode
1 unused
2 3 request leng
4 COLORMAP mid
4 COLORMAP src-cmap

InstallColormap

1 81 opcode
1 unused
2 2 request leng
4 COLORMAP cmap

UninstallColormap

1 82 opcode
1 unused
2 2 request leng
4 COLORMAP cmap

ListInstalledColormaps

1 83 opcode
1 unused
2 2 request leng
4 WINDOW window

March 26, 1992 F−49

-- --

X Window System

→
1 1 Reply
1 unused
2 CARD16 sequence nu
4 n reply length
2 n number of C

in cmaps
22 unused
4n LISTofCOLORMAP cmaps

AllocColor

1 84 opcode
1 unused
2 4 request leng
4 COLORMAP cmap
2 CARD16 red
2 CARD16 green
2 CARD16 blue
2 unused

→
1 1 Reply
1 unused
2 CARD16 sequence nu
4 0 reply length
2 CARD16 red
2 CARD16 green
2 CARD16 blue
2 unused
4 CARD32 pixel
12 unused

AllocNamedColor

1 85 opcode
1 unused
2 3+(n+p)/4 request leng
4 COLORMAP cmap
2 n length of na
2 unused
n STRING8 name
p unused, p=p

F−50 March 26, 1992

-- --

Protocol Encoding

→
1 1 Reply
1 unused
2 CARD16 sequence nu
4 0 reply length
4 CARD32 pixel
2 CARD16 exact-red
2 CARD16 exact-green
2 CARD16 exact-blue
2 CARD16 visual-red
2 CARD16 visual-green
2 CARD16 visual-blue
8 unused

AllocColorCells

1 86 opcode
1 BOOL contiguous
2 3 request leng
4 COLORMAP cmap
2 CARD16 colors
2 CARD16 planes

→
1 1 Reply
1 unused
2 CARD16 sequence nu
4 n+m reply length
2 n number of C

in pixels
2 m number of C

in masks
20 unused
4n LISTofCARD32 pixels
4m LISTofCARD32 masks

AllocColorPlanes

1 87 opcode
1 BOOL contiguous
2 4 request leng
4 COLORMAP cmap
2 CARD16 colors

March 26, 1992 F−51

-- --

X Window System

2 CARD16 reds
2 CARD16 greens
2 CARD16 blues

→
1 1 Reply
1 unused
2 CARD16 sequence nu
4 n reply length
2 n number of C

in pixels
2 unused
4 CARD32 red-mask
4 CARD32 green-mask
4 CARD32 blue-mask
8 unused
4n LISTofCARD32 pixels

FreeColors

1 88 opcode
1 unused
2 3+n request leng
4 COLORMAP cmap
4 CARD32 plane-mask
4n LISTofCARD32 pixels

StoreColors

1 89 opcode
1 unused
2 2+3n request leng
4 COLORMAP cmap
12n LISTofCOLORITEM items

COLORITEM

4 CARD32 pixel
2 CARD16 red
2 CARD16 green
2 CARD16 blue
1 do-red, do-g

#x01 do-red (1 is True, 0 is False)

F−52 March 26, 1992

-- --

Protocol Encoding

#x02 do-green (1 is True, 0 is False)
#x04 do-blue (1 is True, 0 is False)
#xf8 unused

1 unused

StoreNamedColor

1 90 opcode
1 do-red, do-g

#x01 do-red (1 is True, 0 is False)
#x02 do-green (1 is True, 0 is False)
#x04 do-blue (1 is True, 0 is False)
#xf8 unused

2 4+(n+p)/4 request leng
4 COLORMAP cmap
4 CARD32 pixel
2 n length of na
2 unused
n STRING8 name
p unused, p=p

QueryColors

1 91 opcode
1 unused
2 2+n request leng
4 COLORMAP cmap
4n LISTofCARD32 pixels

→
1 1 Reply
1 unused
2 CARD16 sequence nu
4 2n reply length
2 n number of R
22 unused
8n LISTofRGB colors

RGB

2 CARD16 red
2 CARD16 green
2 CARD16 blue

March 26, 1992 F−53

-- --

X Window System

2 unused

LookupColor

1 92 opcode
1 unused
2 3+(n+p)/4 request leng
4 COLORMAP cmap
2 n length of na
2 unused
n STRING8 name
p unused, p=p

→
1 1 Reply
1 unused
2 CARD16 sequence nu
4 0 reply length
2 CARD16 exact-red
2 CARD16 exact-green
2 CARD16 exact-blue
2 CARD16 visual-red
2 CARD16 visual-green
2 CARD16 visual-blue
12 unused

CreateCursor

1 93 opcode
1 unused
2 8 request leng
4 CURSOR cid
4 PIXMAP source
4 PIXMAP mask

0 None
2 CARD16 fore-red
2 CARD16 fore-green
2 CARD16 fore-blue
2 CARD16 back-red
2 CARD16 back-green
2 CARD16 back-blue
2 CARD16 x
2 CARD16 y

F−54 March 26, 1992

-- --

Protocol Encoding

CreateGlyphCursor

1 94 opcode
1 unused
2 8 request leng
4 CURSOR cid
4 FONT source-font
4 FONT mask-font

0 None
2 CARD16 source-char
2 CARD16 mask-char
2 CARD16 fore-red
2 CARD16 fore-green
2 CARD16 fore-blue
2 CARD16 back-red
2 CARD16 back-green
2 CARD16 back-blue

FreeCursor

1 95 opcode
1 unused
2 2 request leng
4 CURSOR cursor

RecolorCursor

1 96 opcode
1 unused
2 5 request leng
4 CURSOR cursor
2 CARD16 fore-red
2 CARD16 fore-green
2 CARD16 fore-blue
2 CARD16 back-red
2 CARD16 back-green
2 CARD16 back-blue

March 26, 1992 F−55

-- --

X Window System

QueryBestSize

1 97 opcode
1 class

0 Cursor
1 Tile
2 Stipple

2 3 request leng
4 DRAWABLE drawable
2 CARD16 width
2 CARD16 height

→
1 1 Reply
1 unused
2 CARD16 sequence nu
4 0 reply length
2 CARD16 width
2 CARD16 height
20 unused

QueryExtension

1 98 opcode
1 unused
2 2+(n+p)/4 request leng
2 n length of na
2 unused
n STRING8 name
p unused, p=p

→
1 1 Reply
1 unused
2 CARD16 sequence nu
4 0 reply length
1 BOOL present
1 CARD8 major-opco
1 CARD8 first-event
1 CARD8 first-error
20 unused

F−56 March 26, 1992

-- --

Protocol Encoding

ListExtensions

1 99 opcode
1 unused
2 1 request leng

→
1 1 Reply
1 CARD8 number of S
2 CARD16 sequence nu
4 (n+p)/4 reply length
24 unused
n LISTofSTR names
p unused, p=p

ChangeKeyboardMapping

1 100 opcode
1 n keycode-co
2 2+nm request leng
1 KEYCODE first-keycod
1 m keysyms-pe
2 unused
4nm LISTofKEYSYM keysyms

GetKeyboardMapping

1 101 opcode
1 unused
2 2 request leng
1 KEYCODE first-keycod
1 m count
2 unused

→
1 1 Reply
1 n keysyms-pe
2 CARD16 sequence nu
4 nm reply length

field from t
24 unused
4nm LISTofKEYSYM keysyms

March 26, 1992 F−57

-- --

X Window System

ChangeKeyboardControl

1 102 opcode
1 unused
2 2+n request leng
4 BITMASK value-mask

#x0001 key-click-percent
#x0002 bell-percent
#x0004 bell-pitch
#x0008 bell-duration
#x0010 led
#x0020 led-mode
#x0040 key
#x0080 auto-repeat-mode

4n LISTofVALUE value-list

VALUEs

1 INT8 key-click-pe
1 INT8 bell-percent
2 INT16 bell-pitch
2 INT16 bell-duratio
1 CARD8 led
1 led-mode

0 Off
1 On

1 KEYCODE key
1 auto-repeat

0 Off
1 On
2 Default

GetKeyboardControl

1 103 opcode
1 unused
2 1 request leng

→
1 1 Reply
1 global-auto

0 Off
1 On

2 CARD16 sequence nu

F−58 March 26, 1992

-- --

Protocol Encoding

4 5 reply length
4 CARD32 led-mask
1 CARD8 key-click-p
1 CARD8 bell-percent
2 CARD16 bell-pitch
2 CARD16 bell-duratio
2 unused
32 LISTofCARD8 auto-repeat

Bell

1 104 opcode
1 INT8 percent
2 1 request leng

ChangePointerControl

1 105 opcode
1 unused
2 3 request leng
2 INT16 acceleration
2 INT16 acceleration
2 INT16 threshold
1 BOOL do-accelera
1 BOOL do-threshol

GetPointerControl

1 106 opcode
1 unused
2 1 request leng

→
1 1 Reply
1 unused
2 CARD16 sequence nu
4 0 reply length
2 CARD16 acceleration
2 CARD16 acceleration
2 CARD16 threshold

March 26, 1992 F−59

-- --

X Window System

18 unused

SetScreenSaver

1 107 opcode
1 unused
2 3 request leng
2 INT16 timeout
2 INT16 interval
1 prefer-blank

0 No
1 Yes
2 Default

1 allow-expo
0 No
1 Yes
2 Default

2 unused

GetScreenSaver

1 108 opcode
1 unused
2 1 request leng

→
1 1 Reply
1 unused
2 CARD16 sequence nu
4 0 reply length
2 CARD16 timeout
2 CARD16 interval
1 prefer-blank

0 No
1 Yes

1 allow-expo
0 No
1 Yes

18 unused

F−60 March 26, 1992

-- --

Protocol Encoding

ChangeHosts

1 109 opcode
1 mode

0 Insert
1 Delete

2 2+(n+p)/4 request leng
1 family

0 Internet
1 DECnet
2 Chaos

1 unused
2 n length of ad
n LISTofCARD8 address
p unused, p=p

ListHosts

1 110 opcode
1 unused
2 1 request leng

→
1 1 Reply
1 mode

0 Disabled
1 Enabled

2 CARD16 sequence nu
4 n/4 reply length
2 CARD16 number of H
22 unused
n LISTofHOST hosts (n alw

of 4)

SetAccessControl

1 111 opcode
1 mode

0 Disable
1 Enable

2 1 request leng

March 26, 1992 F−61

-- --

X Window System

SetCloseDownMode

1 112 opcode
1 mode

0 Destroy
1 RetainPermanent
2 RetainTemporary

2 1 request leng

KillClient

1 113 opcode
1 unused
2 2 request leng
4 CARD32 resource

0 AllTemporary

RotateProperties

1 114 opcode
1 unused
2 3+n request leng
4 WINDOW window
2 n number of p
2 INT16 delta
4n LISTofATOM properties

ForceScreenSaver

1 115 opcode
1 mode

0 Reset
1 Activate

2 1 request leng

F−62 March 26, 1992

-- --

Protocol Encoding

SetPointerMapping

1 116 opcode
1 n length of m
2 1+(n+p)/4 request leng
n LISTofCARD8 map
p unused, p=p

→
1 1 Reply
1 status

0 Success
1 Busy

2 CARD16 sequence nu
4 0 reply length
24 unused

GetPointerMapping

1 117 opcode
1 unused
2 1 request leng

→
1 1 Reply
1 n length of m
2 CARD16 sequence nu
4 (n+p)/4 reply length
24 unused
n LISTofCARD8 map
p unused, p=p

SetModifierMapping

1 118 opcode
1 n keycodes-pe
2 1+2n request leng
8n LISTofKEYCODE keycodes

→
1 1 Reply
1 status

0 Success
1 Busy

March 26, 1992 F−63

-- --

X Window System

2 Failed
2 CARD16 sequence nu
4 0 reply length
24 unused

GetModifierMapping

1 119 opcode
1 unused
2 1 request leng

→
1 1 Reply
1 n keycodes-pe
2 CARD16 sequence nu
4 2n reply length
24 unused
8n LISTofKEYCODE keycodes

NoOperation

1 127 opcode
1 unused
2 1 request leng

Events

KeyPress

1 2 code
1 KEYCODE detail
2 CARD16 sequence nu
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

F−64 March 26, 1992

-- --

Protocol Encoding

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 unused

KeyRelease

1 3 code
1 KEYCODE detail
2 CARD16 sequence nu
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 unused

ButtonPress

1 4 code
1 BUTTON detail
2 CARD16 sequence nu
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state

March 26, 1992 F−65

-- --

X Window System

1 BOOL same-screen
1 unused

ButtonRelease

1 5 code
1 BUTTON detail
2 CARD16 sequence nu
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 unused

MotionNotify

1 6 code
1 detail

0 Normal
1 Hint

2 CARD16 sequence nu
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 BOOL same-screen
1 unused

F−66 March 26, 1992

-- --

Protocol Encoding

EnterNotify

1 7 code
1 detail

0 Ancestor
1 Virtual
2 Inferior
3 Nonlinear
4 NonlinearVirtual

2 CARD16 sequence nu
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 mode

0 Normal
1 Grab
2 Ungrab

1 same-screen
#x01 focus (1 is True, 0 is False)
#x02 same-screen (1 is True, 0 is False)
#xfc unused

LeaveNotify

1 8 code
1 detail

0 Ancestor
1 Virtual
2 Inferior
3 Nonlinear
4 NonlinearVirtual

2 CARD16 sequence nu
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

March 26, 1992 F−67

-- --

X Window System

0 None
2 INT16 root-x
2 INT16 root-y
2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state
1 mode

0 Normal
1 Grab
2 Ungrab

1 same-screen

FocusIn

1 Virtual
2 Inferior
3 Nonlinear
4 NonlinearVirtual
5 Pointer
6 PointerRoot
7 None

2 CARD16 sequence nu
4 WINDOW event
1 mode

0 Normal
1 Grab
2 Ungrab
3 WhileGrabbed

23 unused

FocusOut

1 10 code
1 detail

0 Ancestor
1 Virtual
2 Inferior
3 Nonlinear
4 NonlinearVirtual
5 Pointer
6 PointerRoot
7 None

F−68 March 26, 1992

-- --

Protocol Encoding

2 CARD16 sequence nu
4 WINDOW event
1 mode

0 Normal
1 Grab
2 Ungrab
3 WhileGrabbed

23 unused

KeymapNotify

1 11 code
31 LISTofCARD8 keys (byte f

0–7 is omit

Expose

1 12 code
1 unused
2 CARD16 sequence nu
4 WINDOW window
2 CARD16 x
2 CARD16 y
2 CARD16 width
2 CARD16 height
2 CARD16 count
14 unused

GraphicsExposure

1 13 code
1 unused
2 CARD16 sequence nu
4 DRAWABLE drawable
2 CARD16 x
2 CARD16 y
2 CARD16 width
2 CARD16 height
2 CARD16 minor-opco

March 26, 1992 F−69

-- --

X Window System

2 CARD16 count
1 CARD8 major-opco
11 unused

NoExposure

1 14 code
1 unused
2 CARD16 sequence nu
4 DRAWABLE drawable

VisibilityNotify

4 WINDOW window
1 state

0 Unobscured
1 PartiallyObscured
2 FullyObscured

23 unused

CreateNotify

1 16 code
1 unused
2 CARD16 sequence nu
4 WINDOW parent
4 WINDOW window
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-widt
1 BOOL override-red
9 unused

F−70 March 26, 1992

-- --

Protocol Encoding

DestroyNotify

1 17 code
1 unused
2 CARD16 sequence nu
4 WINDOW event
4 WINDOW window
20 unused

UnmapNotify

1 18 code
1 unused
2 CARD16 sequence nu
4 WINDOW event
4 WINDOW window
1 BOOL from-config
19 unused

MapNotify

1 19 code
1 unused
2 CARD16 sequence nu
4 WINDOW event
4 WINDOW window
1 BOOL override-red
19 unused

MapRequest

1 20 code
1 unused
2 CARD16 sequence nu
4 WINDOW parent
4 WINDOW window
20 unused

March 26, 1992 F−71

-- --

X Window System

ReparentNotify

1 21 code
1 unused
2 CARD16 sequence nu
4 WINDOW event
4 WINDOW window
4 WINDOW parent
2 INT16 x
2 INT16 y
1 BOOL override-red
11 unused

ConfigureNotify

1 22 code
1 unused
2 CARD16 sequence nu
4 WINDOW event
4 WINDOW window
4 WINDOW above-siblin

0 None
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-widt
1 BOOL override-red
5 unused

ConfigureRequest

1 23 code
1 stack-mode

0 Above
1 Below
2 TopIf
3 BottomIf
4 Opposite

2 CARD16 sequence nu
4 WINDOW parent

F−72 March 26, 1992

-- --

Protocol Encoding

4 WINDOW window
4 WINDOW sibling

0 None
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-widt
2 BITMASK value-mask

#x0001 x
#x0002 y
#x0004 width
#x0008 height
#x0010 border-width
#x0020 sibling
#x0040 stack-mode

4 unused

GravityNotify

1 24 code
1 unused
2 CARD16 sequence nu
4 WINDOW event
4 WINDOW window
2 INT16 x
2 INT16 y
16 unused

ResizeRequest

1 25 code
1 unused
2 CARD16 sequence nu
4 WINDOW window
2 CARD16 width
2 CARD16 height
20 unused

March 26, 1992 F−73

-- --

X Window System

CirculateNotify

1 26 code
1 unused
2 CARD16 sequence nu
4 WINDOW event
4 WINDOW window
4 WINDOW unused
1 place

0 Top
1 Bottom

15 unused

CirculateRequest

1 27 code
1 unused
2 CARD16 sequence nu
4 WINDOW parent
4 WINDOW window
4 unused
1 place

0 Top
1 Bottom

15 unused

PropertyNotify

1 28 code
1 unused
2 CARD16 sequence nu
4 WINDOW window
4 ATOM atom
4 TIMESTAMP time
1 state

0
1 Deleted

15 unused

F−74 March 26, 1992

-- --

Protocol Encoding

SelectionClear

1 29 code
1 unused
2 CARD16 sequence nu
4 TIMESTAMP time
4 WINDOW owner
4 ATOM selection
16 unused

SelectionRequest

1 30 code
1 unused
2 CARD16 sequence nu
4 TIMESTAMP time

0 CurrentTime
4 WINDOW owner
4 WINDOW requestor
4 ATOM selection
4 ATOM target
4 ATOM property

0 None
4 unused

SelectionNotify

1 31 code
1 unused
2 CARD16 sequence nu
4 TIMESTAMP time

0 CurrentTime
4 WINDOW requestor
4 ATOM selection
4 ATOM target
4 ATOM property

0 None
8 unused

March 26, 1992 F−75

-- --

X Window System

ColormapNotify

1 32 code
1 unused
2 CARD16 sequence nu
4 WINDOW window
4 COLORMAP colormap

0 None
1 BOOL new
1 state

0 Uninstalled
1 Installed

18 unused

ClientMessage

1 33 code
1 CARD8 format
2 CARD16 sequence nu
4 WINDOW window
4 ATOM type
20 data

MappingNotify

1 34 code
1 unused
2 CARD16 sequence nu
1 request

0 Modifier
1 Keyboard
2 Pointer

1 KEYCODE first-keycod
1 CARD8 count
25 unused

F−76 March 26, 1992

-- --

Appendix G. X Consortium Standard Character
Set Names

Font Names

The following CharSet names for the standard character set encodings are registered for
use in font names under the X Logical Font Description:

33
Name Encoding Standard
33
ISO8859-1 ISO 8859-1, Latin alphabet No. 1
ISO8859-2 ISO 8859-2, Latin alphabet No. 2
ISO8859-3 ISO 8859-3, Latin alphabet No. 3
ISO8859-4 ISO 8859-4, Latin alphabet No. 4
ISO8859-5 ISO 8859-5, Latin/Cyrillic alphabet
ISO8859-6 ISO 8859-6, Latin/Arabic alphabet
ISO8859-7 ISO 8859-7, Latin/Greek alphabet
ISO8859-8 ISO 8859-8, Latin/Hebrew alphabet
ISO8859-9 ISO 8859-9, Latin alphabet No. 5
JISX0201.1976-0 JIS X0201-1976 (reaffirmed 1984),

8-Bit Alphanumeric-Katakana Code
GB2312.1980-0 GB2312-1980, GL encoding,

China (PRC) Hanzi
JISX0208.1983-0 JIS X0208-1983, GL encoding,

Japanese Graphic Character Set
KSC5601.1987-0 KS C5601-1987, GL encoding,

Korean Graphic Character Set

March 26, 1992 G−1

-- --

Appendix H. Bitmap Distribution Format Ver-
sion 2.1

Introduction

The Bitmap Distribution Format (BDF), Version 2.1 is an X Consortium standard for
font interchange, intended to be easily understood by both humans and computers.

File Format

Character bitmap information will be distributed in an USASCII encoded, human read-
able form. Each file is encoded in the printable characters (octal 40 through 176) of
USASCII plus carriage return and linefeed. Each file consists of a sequence of
variable-length lines. Each line is terminated either by a carriage-return (octal 015) and
line-feed (octal 012) or by just a line-feed.

The information about a particular family and face at one size and orientation will be
contained in one file. The file begins with information pertaining to the face as a whole,
followed by the information and bitmaps for the individual characters.

A font bitmap description file has the following general form, where each item is con-
tained on a separate line of text in the file. Items on a line are separated by spaces.

1. The word STARTFONT followed by a version number indicating the exact file
format used. The version described here is number 2.1.

2. One or more lines beginning with the word COMMENT. These lines may be
ignored by any program reading the file.

3. The word FONT followed by either the XLFD font name (as specified in part III)
or some private font name. Creators of private font name syntaxes are

March 26, 1992 H−1

-- --

X Window System

encouraged to register unique font name prefixes with the X Consortium to
prevent naming conflicts. Note that the name continues all the way to the end of
the line and may contain spaces.

4. The word SIZE followed by the point size of the characters, the x resolution,
and the y resolution of the device for which these characters were intended.

5. The word FONTBOUNDINGBOX followed by the width in x, height in y, and
the x and y displacement of the lower left corner from the origin. (See the exam-
ples in the next section.)

6. Optionally, the word STARTPROPERTIES followed by the number of properties
(p) that follow.

7. Then come p lines consisting of a word for the property name followed by
either an integer or string surrounded by double-quote (octal 042). Internal
double-quotes characters are indicated by using two in a row.

8. Properties named FONT_ASCENT, FONT_DESCENT, and DEFAULT_CHAR
should be provided to define the logical font-ascent and font-descent and the
default-char for the font. These properties will be removed from the actual font
properties in the binary form produced by a compiler. If these properties are not
provided, a compiler may reject the font or may compute (arbitrary) values for
these properties.

9. The property section, if it exists, is terminated by ENDPROPERTIES.

10. The word CHARS followed by the number of character segments (c) that follow.

11. Then come c character segments of the form:

a. The word STARTCHAR followed by up to 14 characters (no blanks) of
descriptive name of the glyph.

b. The word ENCODING followed by one of the following forms:

i. <n> – the glyph index, that is, a positive integer representing the
character code used to access the glyph in X requests, as defined by
the encoded character set given by the CHARSET_REGISTRY-
CHARSET_ENCODING font properties for XLFD conforming fonts.
If these XLFD font properties are not defined, the encoding scheme is
font-dependent.

ii. –1 <n> – equivalent to form above. This syntax is provided for back-
wards compatibility with previous versions of this specification and is
not recommended for use with new fonts.

iii. –1 – an unencoded glyph. Some font compilers may discard unen-
coded glyphs, but, in general, the glyph names may be used by font
compilers and X servers to implement dynamic mapping of glyph
repertoires to character encodings as seen through the X protocol.

c. The word SWIDTH followed by the scalable width in x and y of charac-
ter. Scalable widths are in units of 1/1000th of the size of the character. If
the size of the character is p points, the width information must be scaled

H−2 March 26, 1992

-- --

Bitmap Distribution Format Version 2.1

by p/1000 to get the width of the character in printer’s points. This width
information should be considered as a vector indication the position of the
next character’s origin relative to the origin of this character. To convert
the scalable width to the width in device pixels, multiply SWIDTH times
p/1000 times r/72, where r is the device resolution in pixels per inch. The
result is a real number giving the ideal print width in device pixels. The
actual device width must of course be an integral number of device pixels
and is given in the next entry. The SWIDTH y value should always be zero
for a standard X font.

d. The word DWIDTH followed by the width in x and y of the character in
device units. Like the SWIDTH, this width information is a vector indicat-
ing the position of the next character’s origin relative to the origin of this
character. Note that the DWIDTH of a given ‘‘hand-tuned’’ WYSIWYG
glyph may deviate slightly from its ideal device-independent width given
by SWIDTH in order to improve its typographic characteristics on a
display. The DWIDTH y value should always be zero for a standard X
font.

e. The word BBX followed by the width in x (BBw), height in y (BBh) and
x and y displacement (BBox, BBoy) of the lower left corner from the ori-
gin of the character.

f. The optional word ATTRIBUTES followed by the attributes as 4 hex-
encoded characters. The interpretation of these attributes is undefined in
this document.

g. The word BITMAP.

h. h lines of hex-encoded bitmap, padded on the right with zeros to the
nearest byte (that is, multiple of 8).

i. The word ENDCHAR.

12. The file is terminated with the word ENDFONT.

Metric Information

Figures H–1 and H–2 best illustrate the bitmap format and character metric information.

Figure H-1. An example of a descender
#ifdef BOOKREADER

March 26, 1992 H−3

-- --

X Window System

#endif #ifdef HARDCOPY

DWIDTH = 8 0
SWIDTH = 355 0
"+" = character origin
 and width

BBoy
BBw=9, BBh=22, BBox=−2, BBoy=−6

BBh

ZK−0419U−R

#endif

Figure H-2. An example with the origin outside the bounding box
#ifdef BOOKREADER

H−4 March 26, 1992

-- --

Bitmap Distribution Format Version 2.1

#endif #ifdef HARDCOPY

DWIDTH = 8 0
SWIDTH = 355 0
"+" = character origin
 and width

BBoy
BBw=9, BBh=22, BBox=−2, BBoy=−6

BBh

ZK−0419U−R

#endif

An Example File

The following is an abbreviated example of a bitmap file containing the specification of
two characters (the j and quoteright in figures H–1 and H–2).

STARTFONT 2.1
COMMENT This is a sample font in 2.1 format.
FONT -Adobe-Helvetica-Bold-R-Normal--24-240-75-75-P-65-ISO8859-1
SIZE 24 75 75
FONTBOUNDINGBOX 9 24 -2 -6
STARTPROPERTIES 19
FOUNDRY "Adobe"

March 26, 1992 H−5

-- --

X Window System

FAMILY "Helvetica"
WEIGHT_NAME "Bold"
SLANT "R"
SETWIDTH_NAME "Normal"
ADD_STYLE_NAME ""
PIXEL_SIZE 24
POINT_SIZE 240
RESOLUTION_X 75
RESOLUTION_Y 75
SPACING "P"
AVERAGE_WIDTH 65
CHARSET_REGISTRY "ISO8859"
CHARSET_ENCODING "1"
MIN_SPACE 4
FONT_ASCENT 21
FONT_DESCENT 7
COPYRIGHT "Copyright (c) 1987 Adobe Systems, Inc."
NOTICE "Helvetica is a registered trademark of Linotype Inc.
ENDPROPERTIES
CHARS 2
STARTCHAR j
ENCODING 106
SWIDTH 355 0
DWIDTH 8 0
BBX 9 22 -2 -6
BITMAP
0380
0380
0380
0380
0000
0700
0700
0700
0700
0E00
0E00
0E00
0E00
0E00
1C00
1C00
1C00
1C00
3C00
7800
F000
E000

H−6 March 26, 1992

-- --

Bitmap Distribution Format Version 2.1

ENDCHAR
STARTCHAR quoteright
ENCODING 39
SWIDTH 223 0
DWIDTH 5 0
BBX 4 6 2 12
ATTRIBUTES 01C0
BITMAP
70
70
70
60
E0
C0
ENDCHAR
ENDFONT

March 26, 1992 H−7

-- --

Glossary

Access control list X maintains a list of hosts from which client programs can be
run. By default, only programs on the local host and hosts specified in an initial list read
by the server can use the display. This access control list can be changed by clients on
the local host. Some server implementations can also implement other authorization
mechanisms in addition to or in place of this mechanism. The action of this mechanism
can be conditional based on the authorization protocol name and data received by the
server at connection setup.

Active grab A grab is active when the pointer or keyboard is actually owned by the
single grabbing client.

Ancestors If W is an inferior of A, then A is an ancestor of W.

Atom An atom is a unique ID corresponding to a string name. Atoms are used to
identify properties, types, and selections.

Background An InputOutput window can have a background, which is defined as a
pixmap. When regions of the window have their contents lost or invalidated, the server
automatically tiles those regions with the background.

Backing store When a server maintains the contents of a window, the pixels saved
off-screen are known as a backing store.

Bit gravity When a window is resized, the contents of the window are not neces-
sarily discarded. It is possible to request that the server relocate the previous contents to
some region of the window (though no guarantees are made). This attraction of window
contents for some location of a window is known as bit gravity.

Bit plane When a pixmap or window is thought of as a stack of bitmaps, each bit-
map is called a bit plane or plane.

Bitmap A bitmap is a pixmap of depth one.

Border An InputOutput window can have a border of equal thickness on all four
sides of the window. The contents of the border are defined by a pixmap, and the server
automatically maintains the contents of the border. Exposure events are never generated
for border regions.

March 26, 1992 9−1

-- --

X Window System

Button grabbing Buttons on the pointer can be passively grabbed by a client. When
the button is pressed, the pointer is then actively grabbed by the client.

Byte order For image (pixmap/bitmap) data, the server defines the byte order, and
clients with different native byte ordering must swap bytes as necessary. For all other
parts of the protocol, the client defines the byte order, and the server swaps bytes as
necessary.

Children The children of a window are its first-level subwindows.

Class Windows can be of different classes or types. See the entries for InputOnly
and InputOutput windows for further information about valid window types.

Client An application program connects to the window system server by some inter-
process communication (IPC) path, such as a TCP connection or a shared memory
buffer. This program is referred to as a client of the window system server. More pre-
cisely, the client is the IPC path itself. A program with multiple paths open to the server
is viewed as multiple clients by the protocol. Resource lifetimes are controlled by con-
nection lifetimes, not by program lifetimes.

Clipping region In a graphics context, a bitmap or list of rectangles can be specified
to restrict output to a particular region of the window. The image defined by the bitmap
or rectangles is called a clipping region.

Colormap A colormap consists of a set of entries defining color values. The color-
map associated with a window is used to display the contents of the window; each pixel
value indexes the colormap to produce RGB values that drive the guns of a monitor.
Depending on hardware limitations, one or more colormaps can be installed at one time
so that windows associated with those maps display with true colors.

Connection The IPC path between the server and client program is known as a con-
nection. A client program typically (but not necessarily) has one connection to the
server over which requests and events are sent.

Containment A window contains the pointer if the window is viewable and the
hotspot of the cursor is within a visible region of the window or a visible region of one
of its inferiors. The border of the window is included as part of the window for contain-
ment. The pointer is in a window if the window contains the pointer but no inferior con-
tains the pointer.

Coordinate system The coordinate system has X horizontal and Y vertical, with the
origin [0, 0] at the upper left. Coordinates are integral and coincide with pixel centers.
Each window and pixmap has its own coordinate system. For a window, the origin is
inside the border at the inside upper-left corner.

Cursor A cursor is the visible shape of the pointer on a screen. It consists of a
hotspot, a source bitmap, a shape bitmap, and a pair of colors. The cursor defined for a
window controls the visible appearance when the pointer is in that window.

Depth The depth of a window or pixmap is the number of bits per pixel it has. The
depth of a graphics context is the depth of the drawables it can be used in conjunction
with graphics output.

9−2 March 26, 1992

-- --

Glossary

Figure 9-1. Coordinate system
#ifdef BOOKREADER

#endif #ifdef HARDCOPY

+Y

+X
(0,0)

Coordinates Are Pixel Centers

ZK−0421U−R

#endif

March 26, 1992 9−3

-- --

X Window System

Device Keyboards, mice, tablets, track-balls, button boxes, and so on are all collec-
tively known as input devices. Pointers can have one or more buttons (the most com-
mon number is three). The core protocol only deals with two devices: the keyboard and
the pointer.

DirectColor DirectColor is a class of colormap in which a pixel value is decomposed
into three separate subfields for indexing. The first subfield indexes an array to produce
red intensity values. The second subfield indexes a second array to produce blue inten-
sity values. The third subfield indexes a third array to produce green intensity values.
The RGB (red, green, and blue) values in the colormap entry can be changed dynami-
cally.

Display A server, together with its screens and input devices, is called a display. The
Xlib Display structure contains all information about the particular display and its
screens as well as the state that Xlib needs to communicate with the display over a par-
ticular connection.

Drawable Both windows and pixmaps can be used as sources and destinations in
graphics operations. These windows and pixmaps are collectively known as drawables.
However, an InputOnly window cannot be used as a source or destination in a graphics
operation.

Event Clients are informed of information asynchronously by means of events. These
events can be either asynchronously generated from devices or generated as side effects
of client requests. Events are grouped into types. The server never sends an event to a
client unless the client has specifically asked to be informed of that type of event. How-
ever, clients can force events to be sent to other clients. Events are typically reported
relative to a window.

Event mask Events are requested relative to a window. The set of event types a
client requests relative to a window is described by using an event mask.

Event propagation Device-related events propagate from the source window to
ancestor windows until some client has expressed interest in handling that type of event
or until the event is discarded explicitly.

Event synchronization There are certain race conditions possible when demultiplex-
ing device events to clients (in particular, deciding where pointer and keyboard events
should be sent when in the middle of window management operations). The event syn-
chronization mechanism allows synchronous processing of device events.

Event source The deepest viewable window that the pointer is in is called the source
of a device-related event.

Exposure event Servers do not guarantee to preserve the contents of windows when
windows are obscured or reconfigured. Exposure events are sent to clients to inform
them when contents of regions of windows have been lost.

Extension Named extensions to the core protocol can be defined to extend the sys-
tem. Extensions to output requests, resources, and event types are all possible and
expected.

9−4 March 26, 1992

-- --

Glossary

Focus window The focus window is another term for the input focus.

Font A font is an array of glyphs (typically characters). The protocol does no transla-
tion or interpretation of character sets. The client simply indicates values used to index
the glyph array. A font contains additional metric information to determine interglyph
and interline spacing.

Frozen events Clients can freeze event processing during keyboard and pointer
grabs.

GC, GContext GC and gcontext are abbreviations for graphics context.

Glyph A glyph is an image in a font, typically of a character.

Grab Keyboard keys, the keyboard, pointer buttons, the pointer, and the server can
be grabbed for exclusive use by a client. In general, these facilities are not intended to
be used by normal applications but are intended for various input and window managers
to implement various styles of user interfaces.

Graphics context Various information for graphics output is stored in a graphics
context (GC), such as foreground pixel, background pixel, line width, clipping region,
and so on. A graphics context can only be used with drawables that have the same root
and the same depth as the graphics context.

Gravity The contents of windows and windows themselves have a gravity, which
determines how the contents move when a window is resized. See Bit gravity and
Window gravity.

GrayScale GrayScale can be viewed as a degenerate case of PseudoColor, in which
the red, green, and blue values in any given colormap entry are equal and thus, produce
shades of gray. The gray values can be changed dynamically.

Hotspot A cursor has an associated hotspot, which defines the point in the cursor
corresponding to the coordinates reported for the pointer.

Identifier An identifier is a unique value associated with a resource that clients use to
name that resource. The identifier can be used over any connection to name the
resource.

Inferiors The inferiors of a window are all of the subwindows nested below it: the
children, the children’s children, and so on.

Input focus The input focus is usually a window defining the scope for processing of
keyboard input. If a generated keyboard event usually would be reported to this window
or one of its inferiors, the event is reported as usual. Otherwise, the event is reported
with respect to the focus window. The input focus also can be set such that all keyboard
events are discarded and such that the focus window is dynamically taken to be the root
window of whatever screen the pointer is on at each keyboard event.

Input manager Control over keyboard input is typically provided by an input
manager client, which usually is part of a window manager.

InputOnly window An InputOnly window is a window that cannot be used for
graphics requests. InputOnly windows are invisible and are used to control such things
as cursors, input event generation, and grabbing. InputOnly windows cannot have

March 26, 1992 9−5

-- --

X Window System

InputOutput windows as inferiors.

InputOutput window An InputOutput window is the normal kind of window that
is used for both input and output. InputOutput windows can have both InputOutput
and InputOnly windows as inferiors.

Key grabbing Keys on the keyboard can be passively grabbed by a client. When the
key is pressed, the keyboard is then actively grabbed by the client.

Keyboard grabbing A client can actively grab control of the keyboard, and key
events will be sent to that client rather than the client the events would normally have
been sent to.

Keysym An encoding of a symbol on a keycap on a keyboard.

Mapped A window is said to be mapped if a map call has been performed on it.
Unmapped windows and their inferiors are never viewable or visible.

Modifier keys Shift, Control, Meta, Super, Hyper, Alt, Compose, Apple, CapsLock,
ShiftLock, and similar keys are called modifier keys.

Monochrome Monochrome is a special case of StaticGray in which there are only
two colormap entries.

Obscure A window is obscured if some other window obscures it. A window can be
partially obscured and so still have visible regions. Window A obscures window B if
both are viewable InputOutput windows, if A is higher in the global stacking order,
and if the rectangle defined by the outside edges of A intersects the rectangle defined by
the outside edges of B. Note the distinction between obscures and occludes. Also note
that window borders are included in the calculation.

Occlude A window is occluded if some other window occludes it. Window A
occludes window B if both are mapped, if A is higher in the global stacking order, and
if the rectangle defined by the outside edges of A intersects the rectangle defined by the
outside edges of B. Note the distinction between occludes and obscures. Also note that
window borders are included in the calculation and that InputOnly windows never
obscure other windows but can occlude other windows.

Padding Some padding bytes are inserted in the data stream to maintain alignment of
the protocol requests on natural boundaries. This increases ease of portability to some
machine architectures.

Parent window If C is a child of P, then P is the parent of C.

Passive grab Grabbing a key or button is a passive grab. The grab activates when the
key or button is actually pressed.

Pixel value A pixel is an N-bit value, where N is the number of bit planes used in a
particular window or pixmap (that is, is the depth of the window or pixmap). A pixel in
a window indexes a colormap to derive an actual color to be displayed.

Pixmap A pixmap is a three-dimensional array of bits. A pixmap is normally thought
of as a two-dimensional array of pixels, where each pixel can be a value from 0 to 2N

-1, and where N is the depth (z axis) of the pixmap. A pixmap can also be thought of as
a stack of N bitmaps. A pixmap can only be used on the screen that it was created in.

9−6 March 26, 1992

-- --

Glossary

Plane When a pixmap or window is thought of as a stack of bitmaps, each bitmap is
called a plane or a bit plane.

Plane mask Graphics operations can be restricted to only affect a subset of bit planes
of a destination. A plane mask is a bit mask describing which planes are to be modified.
The plane mask is stored in a graphics context.

Pointer The pointer is the pointing device currently attached to the cursor and
tracked on the screens.

Pointer grabbing A client can actively grab control of the pointer. Then button and
motion events will be sent to that client rather than the client the events would normally
have been sent to.

Pointing device A pointing device is typically a mouse, tablet, or some other device
with effective dimensional motion. The core protocol defines only one visible cursor,
which tracks whatever pointing device is attached as the pointer.

Property Windows can have associated properties that consist of a name, a type, a
data format, and some data. The protocol places no interpretation on properties. They
are intended as a general-purpose naming mechanism for clients. For example, clients
might use properties to share information such as resize hints, program names, and icon
formats with a window manager.

Property list The property list of a window is the list of properties that have been
defined for the window.

PseudoColor PseudoColor is a class of colormap in which a pixel value indexes the
colormap entry to produce independent RGB values; that is, the colormap is viewed as
an array of triples (RGB values). The RGB values can be changed dynamically.

Rectangle A rectangle specified by [x,y,w,h] has an infinitely thin outline path with
corners at [x,y], [x+w,y], [x+w,y+h], and [x, y+h]. When a rectangle is filled, the
lower-right edges are not drawn. For example, if w=h=0, nothing would be drawn. For
w=h=1, a single pixel would be drawn.

Redirecting control Window managers (or client programs) may enforce window
layout policy in various ways. When a client attempts to change the size or position of a
window, the operation may be redirected to a specified client rather than the operation
actually being performed.

Reply Information requested by a client program using the X protocol is sent back to
the client with a reply. Both events and replies are multiplexed on the same connection.
Most requests do not generate replies, but some requests generate multiple replies.

Request A command to the server is called a request. It is a single block of data sent
over a connection.

Resource Windows, pixmaps, cursors, fonts, graphics contexts, and colormaps are
known as resources. They all have unique identifiers associated with them for naming
purposes. The lifetime of a resource usually is bounded by the lifetime of the connec-
tion over which the resource was created.

March 26, 1992 9−7

-- --

X Window System

RGB values RGB values are the red, green, and blue intensity values that are used to
define a color. These values are always represented as 16-bit, unsigned numbers, with 0
the minimum intensity and 65535 the maximum intensity. The X server scales these
values to match the display hardware.

Root The root of a pixmap or graphics context is the same as the root of whatever
drawable was used when the pixmap or GC was created. The root of a window is the
root window under which the window was created.

Root window Each screen has a root window covering it. The root window cannot
be reconfigured or unmapped, but otherwise it acts as a full-fledged window. A root
window has no parent.

Save set The save set of a client is a list of other clients’ windows that, if they are
inferiors of one of the client’s windows at connection close, should not be destroyed
and that should be remapped if currently unmapped. Save sets are typically used by
window managers to avoid lost windows if the manager should terminate abnormally.

Scanline A scanline is a list of pixel or bit values viewed as a horizontal row (all
values having the same y coordinate) of an image, with the values ordered by increasing
the x coordinate.

Scanline order An image represented in scanline order contains scanlines ordered by
increasing the y coordinate.

Screen A server can provide several independent screens, which typically have physi-
cally independent monitors. This would be the expected configuration when there is
only a single keyboard and pointer shared among the screens. A Screen structure con-
tains the information about that screen and is linked to the Display structure.

Selection A selection can be thought of as an indirect property with dynamic type.
That is, rather than having the property stored in the X server, it is maintained by some
client (the owner). A selection is global and is thought of as belonging to the user and
being maintained by clients, rather than being private to a particular window subhierar-
chy or a particular set of clients. When a client asks for the contents of a selection, it
specifies a selection target type, which can be used to control the transmitted representa-
tion of the contents. For example, if the selection is ‘‘the last thing the user clicked
on,’’ and that is currently an image, then the target type might specify whether the con-
tents of the image should be sent in XY format or Z format. The target type can also be
used to control the class of contents transmitted; for example, asking for the ‘‘looks’’
(fonts, line spacing, indentation, and so forth) of a paragraph selection, rather than the
text of the paragraph. The target type can also be used for other purposes. The protocol
does not constrain the semantics.

Server The server, which is also referred to as the X server, provides the basic win-
dowing mechanism. It handles IPC connections from clients, multiplexes graphics
requests onto the screens, and demultiplexes input back to the appropriate clients.

Server grabbing The server can be grabbed by a single client for exclusive use. This
prevents processing of any requests from other client connections until the grab is com-
pleted. This is typically only a transient state for such things as rubber-banding, pop-up
menus, or executing requests indivisibly.

9−8 March 26, 1992

-- --

Glossary

Sibling Children of the same parent window are known as sibling windows.

Stacking order Sibling windows, similar to sheets of paper on a desk, can stack on
top of each other. Windows above both obscure and occlude lower windows. The rela-
tionship between sibling windows is known as the stacking order.

StaticColor StaticColor can be viewed as a degenerate case of PseudoColor in
which the RGB values are predefined and read-only.

StaticGray StaticGray can be viewed as a degenerate case of GrayScale in which
the gray values are predefined and read-only. The values are typically linear or near-
linear increasing ramps.

Status Many Xlib functions return a success status. If the function does not succeed,
however, its arguments are not disturbed.

Stipple A stipple pattern is a bitmap that is used to tile a region to serve as an addi-
tional clip mask for a fill operation with the foreground color.

String Equivalence Two ISO Latin-1 STRING8 values are considered equal if they
are the same length and if corresponding bytes are either equal or are equivalent as fol-
lows: decimal values 65 to 90 inclusive (characters ‘‘A’’ to ‘‘Z’’) are pairwise
equivalent to decimal values 97 to 122 inclusive (characters ‘‘a’’ to ‘‘z’’), decimal
values 192 to 214 inclusive (characters ‘‘A grave’’ to ‘‘O diaeresis’’) are pairwise
equivalent to decimal values 224 to 246 inclusive (characters ‘‘a grave’’ to ‘‘o
diaeresis’’), and decimal values 216 to 222 inclusive (characters ‘‘O oblique’’ to
‘‘THORN’’) are pairwise equivalent to decimal values 246 to 254 inclusive (characters
‘‘o oblique’’ to ‘‘thorn’’).

Tile A pixmap can be replicated in two dimensions to tile a region. The pixmap itself
is also known as a tile.

Timestamp A timestamp is a time value expressed in milliseconds. It is typically the
time since the last server reset. Timestamp values wrap around (after about 49.7 days).
The server, given its current time is represented by timestamp T, always interprets
timestamps from clients by treating half of the timestamp space as being earlier in time
than T and half of the timestamp space as being later in time than T. One timestamp
value, represented by the constant CurrentTime, is never generated by the server. This
value is reserved for use in requests to represent the current server time.

TrueColor TrueColor can be viewed as a degenerate case of DirectColor in which
the subfields in the pixel value directly encode the corresponding RGB values. That is,
the colormap has predefined read-only RGB values. The values are typically linear or
near-linear increasing ramps.

Type A type is an arbitrary atom used to identify the interpretation of property data.
Types are completely uninterpreted by the server. They are solely for the benefit of
clients. X predefines type atoms for many frequently used types, and clients also can
define new types.

Viewable A window is viewable if it and all of its ancestors are mapped. This does
not imply that any portion of the window is actually visible. Graphics requests can be
performed on a window when it is not viewable, but output will not be retained unless

March 26, 1992 9−9

-- --

X Window System

the server is maintaining backing store.

Visible A region of a window is visible if someone looking at the screen can actually
see it; that is, the window is viewable and the region is not occluded by any other win-
dow.

Window gravity When windows are resized, subwindows may be repositioned
automatically relative to some position in the window. This attraction of a subwindow
to some part of its parent is known as window gravity.

Window manager Manipulation of windows on the screen and much of the user
interface (policy) is typically provided by a window manager client.

XY format The data for a pixmap is said to be in XY format if it is organized as a
set of bitmaps representing individual bit planes with the planes appearing from most-
significant to least-significant bit order.

Z format The data for a pixmap is said to be in Z format if it is organized as a set of
pixel values in scanline order.

9−10 March 26, 1992

-- --

Index33333333333333333333333333333

A
Allocation

colormap, 5-5
read-only colormap cells, 5-6

Atom, predefined, 9-1

B
Bitmap, 1-3

C
Child window, 1-2
Color, 5-2

allocation, 5-5
database, 5-5
naming, 5-6
parsing command lines, 10-7

Color map, 5-2, 5-5
colormaps, standard, 9-29
Cursor, Initial State, 3-16
Cut Buffers, 10-13

D
Destination, 5-16
Display Functions, 5-16
Drawable, 1-3

E
Error, handling, 1-4
Event, 1-4

F
Files, $HOME/.Xdefaults, 10-6
Freeing, resources, 3-6, 3-31

G
Graphics context, 5-1

P
Parent Window, 1-2
Paste Buffers, 10-13
Pixmap, 1-3
Plane, mask, 5-16

R
read-only colormap cells, 5-5

allocating, 5-6
read/write colormap cells, 5-5

March 26, 1992 Index-1

-- --

X Window System

Resource IDs, 1-4
Cursor, 1-4
Font, 1-4
freeing, 3-6, 3-31
GContext, 1-4
Pixmap, 1-4
Window, 1-4

Root, 5-2

S
Screen, 1-2
Source, 5-16
Stacking order, 1-2
Standard Colormaps, 9-29
Status, 1-4

T
Tile, 1-3

mode, 3-6
pixmaps, 3-6

U
UnmapNotify Event, 3-20, 3-21

V
Visual, 3-2

W
Window, 1-2, 3-6

attributes, 3-6
determining location, 10-7
icon name, 9-10
InputOnly, 3-15
mapping, 3-7
name, 9-8

X
XAddPixel, 10-19
XAllocClassHint, 9-16
XAllocColor, 5-5
XAllocIconSize, 9-21
XAllocNamedColor, 5-6
XAllocSizeHints, 9-13
XAllocStandardColormap, 9-27
XAllocWMHints, 9-11
XChangeWindowAttributes, 3-28
XCirculateSubwindowsDown, 3-27
XCirculateSubwindowsUp, 3-27
XClipBox, 10-9
XCreateBitmapFromData, 10-22
XCreateImage, 10-17
XCreatePixmapFromBitmapData,

10-21
XCreateRegion, 10-9
XDefineCursor, 3-16
XDeleteContext, 10-37
XDestroyImage, 10-19
XDestroyRegion, 10-10
XEmptyRegion, 10-12
XEqualRegion, 10-12
XFetchBuffer, 10-14
XFetchBytes, 10-14
XFetchName, 9-9
XFindContext, 10-37
XFreeColormap, 5-4
XFreeStringList, 9-6
XGetClassHint, 9-17
XGetCommand, 9-25
XGetDefault, 10-6
XGetIconName, 9-10

Index-2 March 26, 1992

-- --

Index

XGetIconSizes, 9-21
XGetPixel, 10-18
XGetRGBColormaps, 9-30
XGetTextProperty, 9-7
XGetTransientForHint, 9-18
XGetWMClientMachine, 9-26
XGetWMColormapWindows, 9-20
XGetWMHints, 9-12
XGetWMIconName, 9-10
XGetWMName, 9-8
XGetWMNormalHints, 9-14
XGetWMProtocols, 9-19
XGetWMSizeHints, 9-15
XIconifyWindow, 9-3
XIconSize, 9-21
XIntersectRegion, 10-10
XKeycodeToKeysym, 10-4
XKeysymToKeycode, 10-5
XKeysymToString, 10-4
XLookupKeysym, 10-2
XLookupString, 10-3
XMapSubwindows, 3-20
XMapWindow, 3-7, 3-19
XMatchVisualInfo, 10-16
XOffsetRegion, 10-10
XParseColor, 10-7
XParseGeometry, 10-7
Xpermalloc, 10-26
XPointInRegion, 10-12
XPolygonRegion, 10-8
XPutPixel, 10-18
XQueryBestStipple, 5-32
XReadBitmapFile, 10-20
XRebindKeysym, 10-3
XReconfigureWMWindow, 9-4
XRectInRegion, 10-12
XRefreshKeyboardMapping, 10-2
XResourceManagerString, 10-6
XRestackWindows, 3-28
XrmDestroyDatabase, 10-34
XrmGetFileDatabase, 10-33
XrmGetResource, 10-30
XrmGetStringDatabase, 10-34
XrmInitialize, 10-26
XrmMergeDatabases, 10-33
XrmOptionDescRec, 10-35
XrmOptionKind, 10-34
XrmParseCommand, 10-35

XrmPutFileDatabase, 10-34
XrmPutLineResource, 10-30
XrmPutResource, 10-28
XrmPutStringResource, 10-29
XrmQGetSearchList, 10-32
XrmQGetSearchResource, 10-32
XrmQPutResource, 10-29
XrmQPutStringResource, 10-29
XrmQuarkToString, 10-27
XrmStringToQuark, 10-26
XrmStringToQuarkList, 10-27
XrmUniqueQuark, 10-26
XRotateBuffers, 10-14
XSaveContext, 10-37
XSetClassHint, 9-17
XSetClipMask, 5-34
XSetCommand, 9-25
XSetGraphicsExposures, 5-36
XSetIconName, 9-10
XSetIconSizes, 9-21
XSetRegion, 10-9
XSetRGBColormaps, 9-30
XSetStipple, 5-33
XSetTextProperty, 9-6
XSetTransientForHint, 9-18
XSetWindowBorder, 3-30
XSetWindowBorderPixmap, 3-31
XSetWMClientMachine, 9-26
XSetWMColormapWindows, 9-20
XSetWMHints, 9-12
XSetWMIconName, 9-9
XSetWMName, 9-8
XSetWMNormalHints, 9-14
XSetWMProperties, 9-22
XSetWMProtocols, 9-18
XSetWMSizeHints, 9-15
XShrinkRegion, 10-10
XStoreBuffer, 10-13
XStoreBytes, 10-13
XStoreName, 9-8
XStringListToTextProperty, 9-5
XStringToKeysym, 10-4
XSubImage, 10-18
XSubtractRegion, 10-11
XSync, 1-4
XTextPropertyToStringList, 9-6
XUnionRectWithRegion, 10-11
XUnionRegion, 10-11

March 26, 1992 Index-3

-- --

X Window System

XUniqueContext, 10-38
XUnmapSubwindows, 3-21
XUnmapWindow, 3-20
XWithdrawWindow, 9-4
XWMGeometry, 9-23
XWriteBitmapFile, 10-21, 10-22
XXorRegion, 10-11

Index-4 March 26, 1992

