DIGITAL UNIX

Common Desktop Environment:

Desktop Kornshell User’s Guide
Order Number: AA-QTLOA-TE

March 1996

Product Version: DIGITAL UNIX Version 4.0 or higher

Digital Equipment Corporation
Maynard, Massachusetts

B&
Please
Recycle

Copyright 0 1995 Digital Equipment Corporation

Copyright 0 1994, 1995 Hewlett-Packard Company

Copyright 00 1994, 1995 International Business Machines Corp.
Copyright 0 1994, 1995 Sun Microsystems, Inc.

Copyright 0 1994, 1995 Novell, Inc.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the
restrictions set forth in DFARS 252.227-7013 (¢)(1)(ii) and FAR 52.227-19.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

The code and documentation for the DtComboBox and DtSpinBox widgets were contributed by Interleaf, Inc. Copyright
1993, Interleaf, Inc.

UNIX is a trademark exclusively licensed through X/Open Company, Ltd.
OSF/Motif and Motif are trademarks of Open Software Foundation, Ltd.

X Window System is a trademark of X Consortium, Inc.

Contents

Preface vii
1. Introduction to Desktop KornShell 11
Using Desktop KornShell to Create Motif Applications ... 11

ReSOUrCeS 12
Unsupported Resources., 13
dtksh app-defaults File 14
Variable Values 15
ReturnValues 16
Immediate Return Value 17
Initializing the Xt Intrinsics. 18
CreatingWidgets. 19
UsingaCallback 20
Registeringa Callback. 20
Passing Datatoa Callback 21

2. ASample Script........ e 23

Writingthe Script 23

Addinga Callback 25
Advanced TOPICS 27
Using Context Variables 27

Event Handler Context Variables. 27

Translation Context Variables. 28

Workspace Callback Context Variables. 28

Input Context Variables 29
Accessing Event Subfields. 30
Responding to a Window Manager Close Notice 31
Responding to a Session Manager Save State Notice 32
Cooperating with Workspace Manager. 35
Creating Localized Shell Scripts. 35
Using dtksh to Access X Drawing Functions 36
Setting Widget Translations 37
AComplex Script. 39
Usingscript find......... 39
Analyzing script_find 42

Functionsand Callbacks 42

Main Script 44
dtkshCommands. 51
Built-in Xlib Commands 52
Built-in Xt IntrinsicCommands. 54
Built-in Motif Commands 59

Desktop KornShell User’s Guide

Built-in Common Desktop Environment Application Help

Commands 71
Built-in Localization Commands 72
Built-in libDt Session Management Commands 73
Built-in libDt Workspace Management Commands. 74
Built-in libDt Action Commands 75
Built-in libDt Data-Typing Commands 76
Miscellaneous Built-in libDt Commands 78
Built-in Desktop Services Message Set Commands. 78

B. dtksh Convenience Functions. 87
DtkshAddButtons 88
DtkshSetReturnKeyControls 89

DtkshUnder, DtkshOver, DtkshRightOf, and DtkshLeftOf. 90
DtkshFloatRight, DtkshFloatLeft, DtkshFloatTop, and

DtkshFloatBottom 91
DtkshAnchorRight, DtkshAnchorLeft, DtkshAnchorTop, and

DtkshAnchorBottom 92
DtkshSpanWidth and DtkshSpanHeight. 93

DtkshDisplaylnformationDialog, DtkshDisplayQuestionDialog,
DtDisplayWarningDialog, DtkshDisplayWorkingDialog, and
DtkshDisplayErrorDialog 94

DtkshDisplayQuickHelpDialog and DtkshDisplayHelpDialog 95

C. Thescript findScript............................ 97
Listing for script_find 97
Find.sticky 105
Find.help 105

Contents v

Vi

Desktop KornShell User’s Guide

Preface

The Desktop KornShell User’s Guide provides the information you need to
create Motif applications with KornShell (kshell) scripts. In addition to the
basic information you'll need to get started, several example scripts of
increasing complexity are described. Throughout this guide the term dtksh
means the Desktop KornShell.

Who Should Use This Guide

This guide is intended for programmers who want a quick and easy means
of creating Motif applications, but don't have the time, knowledge, or
inclination to use the C programming language. A good understanding of
kshell programming, Motif, the Xt Intrinsics, and, to a lesser extent, Xlib is
needed. An understanding of C would also be helpful.

How This Guide Is Organized

Chapter 1, “Introduction to Desktop KornShell,” describes the basic
information you need to begin writing Motif applications in dtksh scripts.

Chapter 2, “A Sample Script,” describes two simple dtksh scripts. The
first script creates a push button widget within a bulletin board widget.
The second script expands the first by adding a callback for the push
button.

Chapter 3, “Advanced Topics,” describes more advanced topics
pertaining to dtksh scripts.

Vil

Related Books

viii

Chapter 4, “A Complex Script,” describes a much more complex script
than either of the ones described in Chapter 2. This script creates a
graphic interface to the find command.

Appendix A, “dtksh Commands,” lists all the dtksh commands.

Appendix B, “dtksh Convenience Functions,” contains man pages for
commands or functions that are not documented elsewhere.

Appendix C, “The script_find Script,” contains the complete listing of
the complex script described in Chapter 4.

The following books provide information on kshell programming, Motif, the
Xt Intrinsics, and Xlib:

® Desktop KornShell Graphical Programming For the Common Desktop
Environment Version 1.0, by J. Stephen Pendergrast, Jr., published by
Addison-Wesley, Reading, MA 01867.

® The New KornShell Command and Programming Language, by Morris I.
Bolsky and David G. Korn, published by Prentice-Hall, Englewood Cliffs,
NJ 07632.

* KornShell Programming Tutorial, by Barry Rosenberg, published by
Addison-Wesley, Reading, MA 01867.

® OSF/Motif Programmer’s Guide, Open Software Foundation, 11
Cambridge Center, Cambridge, MA 02142, published by Prentice-Hall,
Englewood Cliffs, NJ 07632.

® OSF/Motif Programmer’s Reference, Open Software Foundation, 11
Cambridge Center, Cambridge, MA 02142, published by Prentice-Hall,
Englewood Cliffs, NJ 07632.

®* OSF/Motif Reference Guide, by Douglas A. Young, published by Prentice-
Hall, Englewood Cliffs, NJ 07632.

® Mastering OSF/Motif Widgets (Second Edition), by Donald L. McMinds,
published by Addison-Wesley, Reading, MA 01867

®* The X Window System Programming and Applications with Xt
OSF/Motif Edition, by Douglas A. Young, published by Prentice-Hall,
Englewood Cliffs, NJ 07632.

Desktop KornShell User’s Guide

® The Definitive Guides to the X Window System, Volume 1: Xlib
Programming Manual, by Adrian Nye, published by O'Reilly and
Associates, Sebastopol, CA 95472.

® The Definitive Guides to the X Window System, Volume 2: Xlib Reference
Manual, edited by Adrian Nye, published by O'Reilly and Associates,
Sebastopol, CA 95472.

® The Definitive Guides to the X Window System, Volume 3: X Window
System User's Guide, by Valerie Quercia and Tim O'Reilly, published by
O'Reilly and Associates, Sebastopol, CA 95472.

® The Definitive Guides to the X Window System, Volume 4: X Toolkit
Intrinsics Programming Manual, by Adrian Nye and Tim O'Reilly,
published by O'Reilly and Associates, Sebastopol, CA 95472.

® The Definitive Guides to the X Window System, Volume 5: X Toolkit
Intrinsics Reference Manual, edited by Tim O'Reilly, published by
O'Reilly and Associates, Sebastopol, CA 95472.

® The Definitive Guides to the X Window System, Volume 6: Motif
Programming Manual, by Dan Heller, published by O'Reilly and
Associates, Sebastopol, CA 95472.

What Typographic Changes and Symbols Mean

The following table describes the type changes and symbols used in this

book.

Table P-1 Typographic Conventions

Typeface
or Symbol

Meaning

Example

AaBbCc123

AaBbCc123

AaBbCc123

The names of commands, files,
and directories; onscreen
computer output

Command-line placeholder:
replace with a real name or
value

Book titles, new words or
terms, or words to be
emphasized

Edit your .login file.
Usels -a to list all files.
system% You have malil

To delete a file, type rm
filename.

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Preface

Table P-1 Typographic Conventions

Typeface

or Symbol Meaning Example

Code samples may display the following:

% UNIX C shell prompt system%

$ UNIX Bourne and Korn shell system$
prompt

Superuser prompt, all shells system#

Desktop KornShell User’s Guide

Introductionto Desktop KornShell 1=

Desktop KornShell(ldtksh) provides kshell scripts with the means for
easily accessing most of the existing Xt and Motif™ functions. dtksh is
based on ksh-93 , which provides a powerful set of tools and commands for
the shell programmer, and which supports the standard set of kshell
programming commands.

dtksh supports all the features and commands provided by ksh-93 . In
addition, dtksh supports a large selection of the libDt functions, most of
the widget-related Motif functions, a large subset of the Xt Intrinsics
functions, and a small subset of the Xlib functions. All the supported
functions are listed in Appendix A.

Using Desktop KornShell to Create Motif Applications

This section describes how to use dtksh to create Motif applications. To
successfully use dtksh , you should have experience with Xlib, the Xt
Intrinsics, the Motif widgets, and KornShell programming. It is also
helpful to know the C programming language. If you are not familiar with
any of these, you should refer to the appropriate documentation. Even if
you are familiar with these systems, you should have access to the
applicable man pages for reference.

In addition, your system should have these libraries:

* libDtHelp
¢ |ibDtSvc
* libX11

11

12

Resources

® libXm
® [ibXt
® libtt

Resources are widget variables that you use to define attributes such as
size, location, or color. Each widget usually has a combination of its own
resources, plus resources it inherits from higher level widgets. Xt
Intrinsics and Motif resource names consist of a prefix (XtN or XmN
followed by the base name. The first letter of the base name is always
lowercase, and the first letter of subsequent words within the base name is
always uppercase. The convention for resource names in dtksh scripts is
to delete the prefix and use the base name. Thus, the resource
XmNtopShadowColor becomes topShadowColor

Some Xt and Motif commands allow the shell script to pass in a variable
number of parameters, representing resource-value pairs. This is similar to
the argument list passed to the corresponding Xt or Motif C function.
Examples include any of the commands used to create a widget, plus the
XtSetValues command. In dtksh , resources are specified by a string with
the following syntax:

resource: value

where resource is the name of the resource and value is the value assigned
to the resource. dtksh automatically converts the value string to an
appropriate internal representation. For example:

XtSetValues $WIDGET height:100 width:200 resizePolicy:RESIZE_ANY
XmCreateLabel LABEL $PARENT myLabel labelString:"Close Dialog”

When you retrieve widget resource values using XtGetValues , the return
value is placed in an environment variable. Thus, unlike the Xt Intrinsics,
the dtksh version of XtGetValues uses a name:(environment) variable
pair, rather than a name:value pair. For example:
XtGetValues $WIDGET height:HEIGHT resizePolicy:POLICY

sensitive:SENSITIVE
echo $HEIGHT
echo $POLICY
echo $SENSITIVE

The preceding dtksh segment might produce this output:

Desktop KornShell User’s Guide

1]

100
RESIZE ANY
TRUE

Certain types of resource values, including string tables and bit masks,
have special representation. For example, the List widget allows a string
table to be specified for both the items and selectedltems resources. In
dtksh , a string table is represented as a comma-separated list of strings,
which is similar to how Motif treats them. When a resource that returns a
string table is queried using XtGetValues , the resulting value is a comma-
separated set of strings.

A resource that expects a bit mask value to be passed to it expects the
mask to be specified as a string composed of the various mask values
separated by the |(bar) character. When a resource that returns a bit
mask is queried, the return value is a string representing the enabled bits,
separated by the | character. For example, you could use the following
command to set the mwmFunctions resource for the VendorShell widget
class:

XtSetValues mwmFunctions: MWM_FUNC_ALL|MWM_FUNC_RESIZE

Unsupported Resources

dtksh supports most of the Motif resources. The following lists
unsupported resources. Resources with an * (asterisk) can be specified at
widget creation time by using XtSetValues , but can't be retrieved using
XtGetValues

* All widget and gadget Classes:
* Any fontlist resource *
* Any pixmap resource *
® Composite:
* insertPosition
« children
® Core:
 accelerators
* translations *
 colormap
® XmText:
 selectionArray
* selectionArrayCount

Introduction to Desktop KornShell 13

14

* ApplicationShell
e argv

* WMShell :
* iconWindow
« windowGroup

® Shell
 createPopupChildrenProc

® XmSelectionBox
 textAccelerators

®* Manager, Primitive , and Gadget Subclasses:
e userData

® XmFileSelectionBox
 dirSearchProc
« fileSearchProc
 qualifySearchDataProc

dtksh app-defaults File

The dtksh app-defaults file, named Dtksh , is found in a location based
on the following path description:

Jusr/dt/app-defaults/<LANG>

The only information contained in this app-defaults file is the inclusion
of the standard Dt base app-defaults file. The following is a listing of the
dtksh app-defaults file:

#include "Dt"

The file Dt is also located in /usr/dt/app-defaults/<LANG> and is shown in
the following listing.
*foregroundThreshold:70

\HHH#

1#

Help system specific resources
I#

Vi

1%

I# Display Area Colors

I#

These resources set the colors for the display area (where

Desktop KornShell User’s Guide

1]

actual help text is displayed). The resources are complex

I# because they have to override the standard color resources

inall cases.

1#

*XmDialogShell.DtHelpDialog*DisplayArea.background: White
*XmDialogShell*XmDialogShell.DtHelpDialog*DisplayArea.background:
White

*XmDialogShell.DtHelpDialog*DisplayArea.foreground: Black
*XmDialogShell*XmDialogShell.DtHelpDialog*DisplayArea.foreground:
Black

I#

I# Menu Accelerators

I#

I# The following resources establish keyboard accelerators
I# for the most frequently accessed menu commands.

I#

*DtHelpDialogWidget*searchMenu.keyword.acceleratorText: Ctrl+l
*DtHelpDialogWidget*searchMenu.keyword.accelerator: Ctrl<Key>i
*DtHelpDialogWidget*navigateMenu.backTrack.acceleratorText: Ctrl+B
*DtHelpDialogWidget*navigateMenu.backTrack.accelerator: Ctrl<Key>b
*DtHelpDialogWidget*navigateMenu.homeTopic.acceleratorText: Ctrl+H
*DtHelpDialogWidget*navigateMenu.homeTopic.accelerator: Ctrl<Key>h
*DtHelpDialogWidget*fileMenu.close.acceleratorText: Alt+F4
*DtHelpDialogWidget*fileMenu.close.accelerator: Alt<Key>f4

Variable Values

This section describes the types of values for some of the variables in a
dtksh app-defaults file.

Defined Values

The C bindings of the interfaces to X, Xt and Motif include many nonstring
values that are defined in header files. The general format of such values
consists of an Xt or Xmprefix followed by a descriptive name. For example,
one of the constraint values for a child of a form widget is XmATTACH_FORM
Equivalent values are specified in dtksh by dropping the prefix, just as in
a Motif defaults file:

* XmDIALOG_COMMAND_TEXEecomes DIALOG_COMMAND_TEXT
* XtATTACH_FORMbecomes ATTACH_FORM

Introduction to Desktop KornShell 15

16

Boolean Values

You can specify a Boolean value as a parameter to a dtksh command using
the words True or False; case is not significant. A Boolean result is
returned as either True or False, using all lowercase letters.

Return Values

Graphical commands in dtksh fall into one of four categories, based on the
definition of the corresponding C function:

1. The function is void and returns no values. Example: XtMapWidget()

2. The function is void, but returns one or more values through reference
parameters. Example: XmGetColors()

3. The function returns a non-Boolean value. Example:
XtCreateManagedWidget()

4. The function returns a Boolean value. Example: XtlsSensitive()

Category 1

A dtksh category 1 command follows the calling sequence of its
corresponding C function. The number and order of parameters can be
determined by looking at the standard documentation for the function.
Example:

XtMapWidget $FORM

Category 2

A dtksh category 2 command also generally follows the calling sequence of
its corresponding C function. It returns a value in an environment
variable, instead of passing a pointer to a return variable. Example:

XmGetColors $FORM $BG FOREGROUND TOPSHADOW BOTTOMSHADOW SELECT
echo “Foreground color = “ $FOREGROUND

Desktop KornShell User’s Guide

1]

Category 3

A dtksh category 3 command differs slightly from its corresponding C
function. Where the C function returns its value as the value of the
procedure call, a dtksh command requires an additional parameter. This
parameter is the name of an environment variable into which the return
value is to be placed. It is always the first parameter. Example:

XmTextGetString TEXT_VALUE $TEXT_WIDGET
echo “The value of the text field is “$TEXT_VALUE

Category 4

A dtksh category 4 command returns a value that can be used in a
conditional expression just as in C. If the C function also returns values
through reference variables (as in category 2), the dtksh command also
uses variable names for the corresponding parameters. Example:

if XmlIsTraversable $PUSH_BUTTON; then

echo “The pushbutton is traversable”

else

echo “The pushbutton is not traversable”
fi

Generally, the order and type of parameters passed to a command matches
those passed to the corresponding C function, except as noted for category 3
commands.

Immediate Return Value

Many of the category 3 commands return a single value using an
environment variable specified as the first parameter to the command (for
these special commands, the first parameter has the name variable). If this
return value is immediately used in an expression, the special environment
variable "-" may be used in place of a variable name. When dtksh
encounters "-" as the name of the environment variable in which the return
value is to be returned, it instead returns the result as the value of the
command. This allows the shell script to embed the command call in
another command call. This feature only works for commands that return
a single value, and the value is returned in the first parameter. For
example:

XtDisplay DISPLAY $FORM

Introduction to Desktop KornShell 17

XSync $DISPLAY true

can be replaced by the equivalent statement:
XSync $(XtDisplay "-* $FORM) true

The reference to $DISPLAY is replaced with the value returned by the call
to XtDisplay

This capability is available for all category 3 commands except those that
create a widget, those that return more than a single value, and those
whose first parameter is not a named variable. Commands that do not
accept "-" as the environment variable name include the following:

Xtinitialize()
XtCreateApplicationShell()
XtCreatePopupShell()
XtCreateManagedWidget()
XtCreateWidget()

All commands of the form:

XmCreate...()
® Most commands of the form:

tt_...()

Initializing the Xt Intrinsics

18

A dtksh script must first initialize the Xt Intrinsics before it can call any of
the Xlib, Xt, Motif, or libDt commands. You accomplish this by invoking
the Xtinitialize command, which returns an application shell widget.
As is true for all dtksh commands that return a widget 1D, XtInitialize
returns the widget ID in the environment variable that is the first
argument. For example, in:

Xtlnitialize TOPLEVEL myShellName Dtksh $0 “$@”
the widget ID is returned in the environment variable TOPLEVEL

dtksh provides a default app-defaults file, which is used if the call to
Xtlnitialize specifies an application class name of Dtksh . This
app-defaults file contains the standard set of Dt application default
values, so dtksh applications have a consistent look with other Dt
applications.

Desktop KornShell User’s Guide

1]

Creating Widgets
There are several commands you can use to create widgets:

XtCreateWidget Creates an unmanaged widget.
XtCreateManagedWidget Creates a managed widget.
XtCreateApplicationShell Creates an application shell.
XtCreatePopupShell Creates a pop-up shell.

XmCreate <widgettypes> Creates an unmanaged widget.

There is a specific format for each of these commands that you must follow.
For example, suppose you want to create an unmanaged push button
widget as a child of the top-level widget. You can use either
XtCreateWidget or XmCreatePushButton . The formats for these
commands are:

® XtCreateWidget variable name widgetclass $parent [resource:value ...]
¢ XmCreatePushButton variable $parent name [resource:value ...]

The actual commands to create a push button widget are:

XtCreateWidget BUTTON button XmPushButton $TOPLEVEL
XmCreatePushButton BUTTON $TOPLEVEL button

Each of the preceeding commands do exactly the same thing: create an
unmanaged push button. Note that no resource values are set. Suppose
that you want the background color of the push button to be red, and the
foreground color to be black. You can set the values of these resources this
way:

XtCreateWidget BUTTON button XmPushButton $TOPLEVEL \

background:Red \

foreground:Black

XmCreatePushButton BUTTON $TOPLEVEL button\

background:Red \

foreground:Black

All of the C functions that create a widget return a widget ID, or ID. The
corresponding dtksh commands set an environment variable equal to the
widget ID. These are category 3 commands, so the first argument is the
name of the environment variable in which to return the widget ID. The
widget ID is an ASCII string used by dtksh to access the actual widget

Introduction to Desktop KornShell 19

1]

Using a Callback

pointer. Either of the following commands could be used to create a new
form widget; however, in each case the widget ID for the new form widget is
returned in the environment variable FORM

® XtCreateManagedWidget FORM name XmForm $PARENT
® XmCreateForm FORM $PARENT name

After either of these commands, you can use $FORMto reference the new
form widget. For example, you could use this command to create a label
widget within the new form widget:

XmCreatelLabel LABEL $FORM name\
labelString:"Hi Mom” \

CH_FORM\
leftAttachment:ATTACH_FORM

Note — There is a special widget ID called NULL, provided for cases where
a shell script may need to specify a NULL widget. For example, to disable
the defaultButton resource for a form widget, use the command
XtSetValues $FORM defaultButton:NULL

A callback is a function or procedure that is executed when an event or
combination of events occurs. For example, a callback is used to achieve
the desired result when a push button is “pressed.” It is easy for a dtksh
shell script to assign a command to be activated whenever a particular
callback is invoked for a widget. The command could be as simple as a
string of commands blocked together, or the name of the shell function to
invoke.

Registering a Callback

20

An application registers a callback with a widget to specify a condition in
which it is interested and to specify what action should occur when that

condition occurs. The callback is registered using XtAddCallback . The

action can be any valid dtksh command. For example:

XtAddCallback $WIDGET activateCallback “ActivateProc”
XtAddCallback $WIDGET activateCallback \
“XtSetSensitive $BUTTON false”

Desktop KornShell User’s Guide

1]

Passing Data to a Callback

A callback needs to be passed context information, so it can determine what
condition led to its call. For a C procedure, this information is typically
passed in a callData structure. For example, a scale widget invoking a
valueChangedCallback passes an instance of the following structure in
callData
typedef struct {

int reason;

XEvent event;

int value;
}IXmScaleCallbackStruct;

The C application’s callback then does something like:

if (scaleCallData->reason == XmCR_VALUE_CHANGED)
{

eventType = scaleCallData->event->type;
display = scaleCallData->event->xany.display;

}

Similarly, when a callback is invoked in dtksh , the following special
environment variable is set up before the callback command executes:

CB_WIDGET

This is set to the widget ID for the widget that is invoking the callback.
CB_CALL_DATA

This is set to the address of the callData structure passed by the widget
to the callback.

The CB_CALL_DATAenvironment variable represents a pointer to a
structure, and access to its fields uses a syntax similar to that of C. Nested
environment variables are defined, named the same as the fields of the
structure (but all in uppercase), and a dot is used to indicate containment
of an element in a structure. Thus, the previous C code to access the
callData provided by the scale widget translates to:

if [${CB_CALL_DATA.REASON} = “CR_VALUE_CHANGED"]; then
eventType=${CB_CALL_DATA.EVENT.TYPE}
display=${CB_CALL_DATA.EVENT.XANY.DISPLAY}

fi

The same is true of the event structure within the callData structure.

Introduction to Desktop KornShell 21

22

For most callback structures, the shell script is able to reference any of the
fields defined for the particular callback structure, using the technique
described earlier. In most cases, the shell script is not able to alter the
values of the fields within these structures. The exception to this is the

XmTextVerifyCallbackStruct , Which is available during the
losingFocusCallback , the modifyVerifyCallback and the
motionVerifyCallback for the text widget. dtksh supports the

modification of certain fields within this structure, to the extent that it is
supported by Motif. The following fields within the callback structure are
capable of being modified:

CB_CALL_DATA.DOIT
CB_CALL_DATA.STARTPOS
CB_CALL_DATA.TEXT.PTR
CB_CALL_DATA.TEXT.LENGTH
CB_CALL_DATA.TEXT.FORMAT

This is an example of how one of these fields can be modified:

® CB_CALL_DATA.DOIT="false”
* CB_CALL_DATATEXT.PTR="*"
® CB_CALL_DATA.TEXT.LENGTH=1

Desktop KornShell User’s Guide

Writing the Script

A Sample Script 2

This chapter shows you how to use what you learned about dtksh in
Chapter 1. The two simple scripts described here should give you a good
start at writing your own scripts.

This script creates a bulletin board widget within which a push button
widget is placed. The script is kept simple by not including any callbacks.
The second script includes a callback.

Here’s the first script:

#!/usr/dt/bin/dtksh

Xtlnitialize TOPLEVEL dttestl Dtksh $0

XtSetValues $TOPLEVEL title:“dttest1”

XtCreateManagedWidget BBOARD bboard XmBulletinBoard $TOPLEVEL \
resizePolicy:RESIZE_NONE height:150 width:250\
background:SkyBlue

XtCreateManagedWidget BUTTON pushbutton XmPushButton $BBOARD \
background:goldenrod \
foreground:MidnightBlue \
labelString:"Push Here” \
height:30 width:100 x:75 y:60 shadowThickness:3

XtRealizeWidget $TOPLEVEL

XtMainLoop

23

24

Figure 2-1 shows the window that the first script produces.

Himest]

Pual Hairne

Figure 2-1 Window from script dttest

The first line of the script:
#!/usr/dt/bin/dtksh

tells the operating system that this script should be executed using
{usr/dt/bin/dtksh rather than the standard shell.

The next line initializes the Xt Intrinsics.
XtInitialize TOPLEVEL dttestl Dtksh $0

The name of the top-level widget is saved in the environment variable
$TOPLEVEL the shell widget name is dttestl , the application class name
is Dtksh, and the application name is given by the dtksh variable $0.

The next line sets the title resource to the name of the script.
XtSetValues $TOPLEVEL title:"dttest1”

Notice that there is no space between the colon after the resource name
(title) and its value. An error message appears if you have a space between
them.

The next four lines create a bulletin board widget and set some of its

resources.

XtCreateManagedWidget BBOARD bboard XmBbulletinBoard $TOPLEVEL \
resizePolicy:RESIZE_NONE \

background:SkyBlue\
height:150 width:250

The bulletin board widget's ID is saved in the environment variable
$BBOARD The widget's name is bboard . This name is used by the Xt
Intrinsics to set the values of resources that might be named in an external

Desktop KornShell User’s Guide

2

Adding a Callback

resource file. The widget class is XmBulletinBoard . The bulletin board’s
parent widget is the widget ID contained in the environment variable
$TOPLEVEL This is the topl-evel widget created by the initializion
command in the first line. The \ (backslash) at the end of the line tells
dtksh that this command continues on the next line.

The next six lines create a push button widget as a child of the bulletin
board, and set some of the push button’s resources.

XtCreateManagedWidget BUTTON pushbutton XmPushButton $BBOARD \
background:goldenrod \
foreground:MidnightBlue \
labelString:"Push Here™\
height:30 width:100 x:75 y:60\
shadowThickness:3

This is basically the same procedure used to create the bulletin board,
except that the variable, name, class, and parent are different.

The next line causes the toplevel widget and all its children to be realized.
XtRealizeWidget $TOPLEVEL

Finally, the XtMainLoop command initiates a loop processing of events for
the widgets.

XtMainLoop

In this script, all that happens is the window appears on the display. It
stays there until you terminate the script, either by choosing Close on the
Window Manager menu or by pressing CTRL C in the terminal window
from which you executed the script.

To provide a function for the push button so that when it is pressed a
message appears in the terminal window and the script terminates, you
have to add a callback. Also, you must tell the push button about the
existence of this callback. The following is the script with the new code
added:

#!/usr/dt/bin/dtksh
activateCB() {

echo “Pushbutton activated; normal termination.”
exit 0

A Sample Script 25

26

}

Xtlnitialize TOPLEVEL dttest2 Dtksh $0
XtSetValues $TOPLEVEL title:"dttest2”
XtCreateManagedWidget BBOARD bboard XmBulletinBoard $TOPLEVEL \
resizePolicy:RESIZE_NONE \
background:SkyBlue \
height:150 width:250
XtCreateManagedWidget BUTTON pushbutton XmPushButton $BBOARD \
background:goldenrod \
foreground:MidnightBlue \
labelString:"Push Here™\
height:30 width:100 x:75 y:60 shadowThickness:3

XtAddCallback $BUTTON activateCallback activateCB
XtRealizeWidget $TOPLEVEL
XtMainLoop

The callback is the function activateCB() . You typically add the callback
to the push button after it (the push button) has been created:

XtAddCallback $BUTTON activateCallback activateCB

Now the pushbutton knows about the callback. When you click the push
button, the function activateCB() is executed, and the message
“Pushbutton activated; normal termination. ” appears in the
terminal window from which you executed the script. The script is
terminated by the call to the function exit O

Desktop KornShell User’s Guide

Advanced Topics 3

Now that you have the basic information about dtksh , this chapter
introduces you to more advanced topics.

Using Context Variables

dtksh has a number of variables that provide context to certain aspects of
an application.

Event Handler Context Variables

An application registers event handlers with a widget to specify an action
to occur when one of the specified events occurs. The action can be any
arbitrary dtksh command line. For example:

XtAddEventHandler $W "Button2MotionMask" false "ActivateProc"

XtAddEventHandler $W "ButtonPressMask|ButtonReleaseMask" \
false "echo action"

Two environment variables are defined to provide context to the event

handler:

EH_WIDGET Set to the ID of the widget for which the event
handler is registered.

EH_EVENT Set to the address of the XEvent which triggered the

event handler.

27

28

Access to the fields within the XEvent structure is shown in the following
example:

if [${EH_EVENT.TYPE} = "ButtonPress" |; then
echo "X = "${EH_EVENT.XBUTTON.X}
echo"Y = "${EH_EVENT.XBUTTON.Y}

elif [${EH_EVENT.TYPE} = "KeyPress" |; then
echo "X = "${EH_EVENT.XKEY.X}
echo "Y = "${EH_EVENT.XKEY.Y}

fi

Translation Context Variables

The Xt Intrinsics provides for event translations to be registered for a

widget. Context for event translation is provided in the same way it is
provided for event handlers. The two variables defined for translation

commands are:

TRANSLATION_WIDGET Set to the widget handle for the widget for
which the translation is registered.

TRANSLATION_EVENT Set to the address of the XEvent that
triggered the translation.
Dot-notation provides access to the fields of the event:

echo "Event type = "${TRANSLATION_EVENT.TYPE}
echo "Display = "${TRANSLATION_EVENT.XANY.DISPLAY}

Workspace Callback Context Variables

An application has the ability to register a callback function that is invoked
whenever the user changes to a new workspace. When the callback is
invoked, two special environment variables are set, and can be accessed by
the shell callback code:

CB_WIDGET Set to the ID for the widget that is invoking the
callback.

CB_CALL_DATA Set to the X atom that uniquely identifies the new
workspace. This can be converted to its string
representation, using the XmGetAtomNamecommand.

Desktop KornShell User’s Guide

w
1]

Input Context Variables

The Xt Intrinsics provides the XtAddInput facility, which allows an
application to register interest in any data available from a particular file
descriptor. When programming in C, the application provides a handler
function, which is invoked when input is available. It is up to the handler
to read the data from the input source and to handle character escaping
and line continuations.

dtksh also supports the XtAddinput facility, but takes it a step further
and makes it easier for shell programmers to use. By default, when a shell
script registers interest in a file descriptor, dtksh invokes the shell script's
input handler only when a complete line of text has been received. A
complete line of text is defined as a line terminated either by an unescaped
newline character or by the end of the file. The input handler is also called
if no data is available and the end of the file has been reached. The
handler can then use XtRemovelnput to remove the input source and to
close the file descriptor. The advantage of this default behavior is that
input handlers need not be concerned with escape processing or with
handling line continuations. The disadvantage is that it assumes that all
of the input is line-oriented and contains no binary information.

dtksh also supports a “raw” input mode if the input source contains binary
information or if the input handler wants to read the data from the input
source directly. In raw mode, dtksh does not read any of the data from the
input source. Whenever dtksh is notified that input is available on the
input source, it invokes the shell script's input handler. It is then the
handler's responsibility to read the incoming data, perform any required
buffering and escape processing, and detect when the end of the file has
been reached (so that the input source can be removed and the file
descriptor closed). This mode seldom needs to be used by a dtksh script.

Whether the input handler has been configured to operate in the default
mode or in raw mode, dtksh sets up several environment variables before
calling the shell script's input handler. These environment variables
provide the input handler with everything needed to handle the incoming
data. The environment variables are:

INPUT_LINE If operating in the default mode, this variable
contains the next complete line of input available
from the input source. If INPUT_EOFis true, then

Advanced Topics 29

INPUT_EOF

INPUT_SOURCE

INPUT_ID

Accessing Event Subfields

30

there is no data in this buffer. If operating in raw
mode, then this variable always contains an empty
string.

If operating in the default mode, this variable is set
to false anytime INPUT_LINE contains data, and it is
set to true when the end of file is reached. When the
end of file is reached, the shell script's input handler
should unregister the input source and close the file
descriptor. If operating in raw mode, this variable is
always set to false.

This indicates the file descriptor for which input is
available. If operating in raw mode, this file
descriptor is used to obtain the pending input. The
file descriptor is also used to close the input source,
when no longer needed.

This indicates the ID returned by XtAddinput
when the input source was originally registered.
This information is needed to remove the input
source with XtRemovelnput

The XEvent structure has many different configurations, based on the
event's type. dtksh provides access only to the most frequently used
XEvents . Any of the other standard XEvents can be accessed using the
event type XANY followed by any of the subfields defined by the XANYevent
structure, which includes the following subfields:

${TRANSLATION_EVENT.XANY.TYPE}
${TRANSLATION_EVENT.XANY.SERIAL}
${TRANSLATION_EVENT.XANY.SEND_EVENT}
${TRANSLATION_EVENT.XANY.DISPLAY}
${TRANSLATION_EVENT.XANY.WINDOW}

dtksh supports full access to all of the event fields for the following event

types:

° XANY
* XBUTTON
* XEXPOSE
[]
°

XNOEXPOSE

XGRAPHICSEXPOSE

Desktop KornShell User’s Guide

w
1]

XKEY
¢ XMOTION

The following examples show how the subfields for the preceding event
types can be accessed:
${TRANSLATION_EVENT.XBUTTON.X}

$(CB_CALL_DATA.EVENT.XKEY.STATE}
${EH_EVENT.XGRAPHICSEXPOSE.WIDTH}

Responding to a Window Manager Close Notice

When the user selects Close from the Window Manager menu for an
application, the application is terminated unless it has arranged to “catch
the Close notification. If the application does not catch the notification,
then multiple windows managed by the application all disappear and
application data may be left in an undesirable state. To avoid this, dtksh
provides for catching and handling the Close notification. The application
must:

® Define a procedure to handle the Close notification
® Request notification when Close is selected
® Override the response, so the application is not shut down

The following code illustrates this processing.

This is the “callback' invoked when the user selects
the "Close' menu item

WMCallback()

{

echo "User has selected the Close menu item"
}

Create the toplevel application shell
Xtlnitialize TOPLEVEL test Dtksh $0 "$@"
XtDisplay DISPLAY $TOPLEVEL

Request notification when the user selects the “Close'

menu item

XminternAtom DELETE_ATOM $DISPLAY "WM_DELETE_WINDOW" false
XmAddWMProtocolCallback $TOPLEVEL $DELETE_ATOM "WMCallback"

Ask Motif to not automatically close down your

application window
XtSetValues $TOPLEVEL deleteResponse:DO_NOTHING

Advanced Topics 31

3

Responding to a Session Manager Save State Notice

Session Manager allows applications to save their current state when the
user terminates the current session, so that when the user later restarts
the session, an application can return to the state it was in. In dtksh , this
is accomplished by setting up a handler in a similar way of handling a
Close notification. If a handler is not set up, the application has to be
restarted manually in the new session, and the application does not retain
any state.

To set up a handler to save the current state, the application must:

® Define functions to save the state at the end of the session and to restore
it on startup
Register interest in the Session Manager notification
Register the function to save the state
At startup, determine whether the saved state should be restored

The following code illustrates this process.

#! Jusr/dt/bin/dtksh
Function invoked when the session is being ended by the user
SessionCallback()
{
Get the name of the file into which we should save our
session information
if DtSessionSavePath $TOPLEVEL PATH SAVEFILE; then
exec 9>$PATH

Save off whether we are currently in an iconified state
if DtShelllslconified $STOPLEVEL ; then
print -u9 “Iconified'
else
print -u9 “Deiconified’
fi

Save off the list of workspaces we currently reside in
if DtWsmGetWorkspacesOccupied $(XtDisplay "-" $TOPLEVEL) \
$(XtWindow "-" $TOPLEVEL) \
CURRENT_WS_LIST;
then
Map the comma-separated list of atoms into
their string representation
oldIFS=$IFS
IFS=","

32 Desktop KornShell User’s Guide

w
1]

for item in SCURRENT_WS_LIST;
do
XmGetAtomName NAME $(XtDisplay "-" $TOPLEVEL) \
$item
print -u9 $NAME
done
IFS=$oldIFS
fi

exec 9<&-

Let the session manager know how to invoke us when
the session is restored
DtSetStartupCommand $TOPLEVEL \
"Jusr/dt/contrib/dtksh/SessionTest $SAVEFILE"

else
echo "DtSessionSavePath FAILED!!"
exit -3

fi

}

Function invoked during a restore session; restores the
application to its previous state
RestoreSession()
{
Retrieve the path where our session file resides
if DtSessionRestorePath $TOPLEVEL PATH $1; then
exec 9<$PATH
read -u9 ICONIFY

Extract and restore our iconified state

case $ICONIFY in
Iconified) DtSetlconifyHint $STOPLEVEL True;;
*) DtSetlconifyHint $TOPLEVEL False;

esac

Extract the list of workspaces we belong in, convert
them to atoms, and ask the Workspace Manager to relocate
us to those workspaces
WS_LIST=""
while read -u9 NAME
do

XminternAtom ATOM $(XtDisplay "-* $TOPLEVEL) \

$NAME False
if [${#WS_LIST} -gt 0]; then
WS_LIST=$WS_LIST,$ATOM

Advanced Topics 33

34

else
WS_LIST=$ATOM
fi
done

DtWsmSetWorkspacesOccupied $(XtDisplay "-" $TOPLEVEL) \
$(XtWindow "-" $TOPLEVEL) $WS_LIST

exec 9<&-
else
echo "DtSessionRestorePath FAILED!"
exit -3
fi
}
BHHHHHHHHER . Create the Main Ul #HHHHHHHEHHHHEHHETHT
XtlInitialize TOPLEVEL wmProtTest Dtksh $0 "$@"
XtCreateManagedWidget DA da XmDrawingArea $TOPLEVEL \
height:200 width:200
XminternAtom SAVE_SESSION_ATOM $(XtDisplay "-" $TOPLEVEL) \
"WM_SAVE_YOURSELF" False

If a command-line argument was supplied, then treat it as the
name of the session file
if ($# > 0))
then
Restore to the state specified in the passed-in session file
XtSetValues $TOPLEVEL mappedWhenManaged:False
XtRealizeWidget $TOPLEVEL
XSync $(XtDisplay "-" $TOPLEVEL) False
RestoreSession $1
XtSetValues $TOPLEVEL mappedWhenManaged:True
XtPopup $TOPLEVEL GrabNone
else
This is not a session restore, so come up in the default state
XtRealizeWidget $STOPLEVEL
XSync $(XtDisplay "-" $TOPLEVEL) False
fi

Register the fact that we are interested in participating in

session management

XmAddWMProtocols $STOPLEVEL $SAVE_SESSION_ATOM

XmAddWMProtocolCallback $TOPLEVEL $SAVE_SESSION_ATOM \
SessionCallback

XtMainLoop

Desktop KornShell User’s Guide

w
1]

Cooperating with Workspace Manager

dtksh provides access to all of the major Workspace Manager functions of
the Dt libraries, including functions for querying and setting the set of
workspaces with which an application is associated; for querying the list of
all workspaces; for querying and setting the current workspace; and for
requesting that an application be notified any time the user changes to a
different workspace.

From a user's perspective, workspaces are identified by a set of names, but
from the Workspace Manager's standpoint, workspaces are identified by X
atoms. Whenever the shell script asks for a list of workspace identifiers, a
string of X atoms is returned. If more than one X atom is present, then the
list is comma-separated. The Workspace Manager expects that the shell
script uses the same format when passing workspace identifiers back to it.
During a given session, it is safe for the shell script to work with the X
atoms, since they remain constant over the lifetime of the session.
However, as was shown in the Session Manager shell script example in the
previous section, if the shell script is going to save and restore workspace
identifiers, the identifiers must be converted from their X atom
representation to a string before they are saved. Then, when the session is
restored, the shell script needs to remap the names into X atoms before
passing the information on to the Workspace Manager. Mapping between X
atoms and strings, and between strings and X atoms, is accomplished using
the following two commands:

* XminternAtom ATOM $DISPLAY $WORKSPACE_NAME false
®* XmGetAtomName NAME $DISPLAY $ATOM

Specific dtksh commands for dealing with workspace management are
documented in “Built-in libDt Session Management Commands” in
Appendix A.

Creating Localized Shell Scripts

dtksh scripts are internationalized and then localized in a process similar
to C applications. All strings that may be presented to the user are
identified in the script. A post-processor extracts the strings from the script
and, from them, builds a catalogue, which can then be translated to any
desired locale. When the script executes, the current locale determines
which message catalog is searched for strings to display. When a string is to

Advanced Topics 35

be presented, it is identified by a message-set ID (corresponding to the
catalog) and a message number within the set. These values determine
what text the user sees. The following code illustrates the process:

Attempt to open our message catalog
catopen MSG_CAT_ID "myCatalog.cat"

The localized button label is in set 1, and is message # 2
XtCreatePushButton OK $SPARENT ok \
labelString:$(catgets $MSG_CAT_ID 1 2 "OK")

The localized button label is in set 1, and is message #3
XtCreatePushButton CANCEL $PARENT cancel \
labelString:$(catgets $MSG_CAT_ID 1 3 "Cancel”)

Close the message catalog, when no longer needed
catclose $SMSG_CAT_ID

It is important to note that the file descriptor returned by catopen must be
closed using catclose and not by using the kshell exec command.

Using dtksh to Access X Drawing Functions

36

dtksh commands include standard Xlib drawing functions to draw lines,
points, segments, rectangles, arcs, and polygons. In the standard C
programming environment, these functions take a graphics context (GC) as
an argument, in addition to the drawing data. In dtksh drawing functions,
a collection of GC options are specified in the parameter list to the
command.

By default, the drawing commands create a GC that is used for that specific
command and then discarded. If the script specifies the -gc option, the
name of a graphics context object can be passed to the command. This GC
is used in interpreting the command, and the variable is updated with any
modifications to the GC performed by the command.

-gc <GC> <GC> is the name of an environment variable
which has not yet been initialized or which
has been left holding a graphic context by a
previous drawing command. If this option is
specified, then it must be the first GC option
specified.

Desktop KornShell User’s Guide

3

-foreground <color> The foreground color, which may be either the
name of a color or a pixel number.

-background <color> The background color, which may be either the
name of a color or a pixel number.

-font The name of the font to be used.

-line_width <number> The line width to be used during drawing.

-function <drawing function>
The drawing function, which can be xor,
or, clear, and, copy, noop, nor,
nand, set, invert, equiv, andReverse,
orReverse, or copylnverted

-line_style <style> The line style, which can be any of the
following: LineSolid , LineDoubleDash , or
LineOnOffDash

Setting Widget Translations

dtksh provides mechanisms for augmenting, overriding, and removing
widget translations, much as in the C programming environment. In C, an
application installs a set of translation action procedures, which can then
be attached to specific sequences of events (translations are composed of an
event sequence and the associated action procedure). Translations within
dtksh are handled in a similar fashion, except only a single action
procedure is available. This action procedure, named ksh_eval , interprets
any parameters passed to it as dtksh commands and evaluates them when
the translation is triggered. The following shell script segment gives an
example of how translations can be used:

BtnDownProcedure()

{

echo "Button Down event occurred in button "$1
}
XtCreateManagedWidget BUTTON1 buttonl XmPushButton $PARENT \
labelString:"Button 1" \
translations:'#augment
<EnterNotify>:ksh_eval("echo Buttonl entered")
<Btn1Down>:ksh_eval("BtnDownProcedure 1")'
XtCreateManagedWidget BUTTON2 button2 XmPushButton $PARENT \
labelString:"Button 2"
XtOverrideTranslations $BUTTON2 \
‘#override

Advanced Topics 37

38

<Btn1Down>:ksh_eval("BtnDownProcedure 2")'

Desktop KornShell User’s Guide

Using script_find

A Complex Script 4

This chapter describes a much more complex script than that described in
Chapter 2. Because of its length, the entire script is listed in Appendix C.
Remember that this guide is not a tutorial on KornShell programming. If
you are not familiar with KornShell programming, you should obtain a
book on the subject and have it handy for reference.

The script, script_find , demonstrates how you can use dtksh to provide
a graphical interface to the find command. script_find produces a
window within which you can specify parameters for the find command.
To fully understand the script, you should be familiar with the find
command and you should have its man page available. A number of the
toggle button menu choices in the window produced by script_find

require some knowledge of the find command.

The script’'s window allows you to specify a search directory and a file
name. Other options allow you to place restrictions on the type of file
system to search and the file type on which to match. Figure 4-1 shows the
script’s window.

39

40

Find Fllps

Search [Nreciorys

Filamame Patlam:

Crmps Maund Poaris Pring Matching Filenames
Soanch Hidden Subdire-oborkss Follorey Bymbobo Links

Duacand Bubdiiacobiias Firs

Negdrict Scarch To Filo Systom Typee: no restricthons

Mateh Oy Filas (6F Typa: no rmEdricEone

Ok Agpnly Close Hirlig

Figure 4-1 Window for script_find

Enter the search directory and file name you're looking for in the text fields
at the top of the window. In addition, select any applicable choice (or
choices) from the five toggle buttons. You can further restrict the search
with the option menus. When you have made all the necessary selections,
click OK. If all is well, a window appears shortly thereafter and displays
the results of the find operation. An error dialog appears if you don't
specify a search directory or file name, or if the specified search directory is
invalid. For example, suppose you want to find a file called
two_letter_calls , and you think it resides somewhere in the directory
/users/dim . When you enter the directory in the Search Directory text
field, you inadvertently type /users/din instead of /users/dim . When
you click OK or Apply, script_find can't find the directory /users/din
so it creates the error dialog to notify you of this.

Desktop KornShell User’s Guide

N
Il

Fisal Ev v i
Than Follawing snarch directory dees nat pxet:
Fuser) dla

]

Figure 4-2 script_find error dialog

When you correct the mistake, script_find then executes properly and
creates a dtterm window within which it displays the complete path of the
file you requested, providing that the file is found.

Fird & [il
Heder LR [plkies o

foupery/dio hexfows_lettsr_calla

Figure 4-3 Window showing complete path

If script_find cannot find the file in the specified directory, nothing
appears in the dtterm window.

A Complex Script 41

4

Analyzing script_find

The structure of script_find is similar to a C program: some functions
and callbacks appear first, followed by the main script.

The first two lines of the script are important, and should be included in
every dtksh script you write:

#! Jusr/dt/bin/dtksh
. lusr/dt/lib/dtksh/DtFunc.dtsh

The first line executes the dtksh system and the second loads the dtksh
convenience functions. The second line wasn't used in the scripts described
in Chapter 2 because those scripts did not use any dtksh convenience
functions.

Functions and Callbacks

42

script_find has the following functions and callbacks:

PostErrorDialog()

OkCallback()

LoadStickyValues()

EvalCmd()
RetrieveAndSaveCurrentValues()

PostErrorDialog()

This function is called when an error is detected, such as when the user
enters an invalid directory. The function calls the convenience function
DtkshDisplayErrorDialog() which displays a dialog box whose title is
Find Error and whose message is contained in the variable $1, which is
passed from the calling location.

dialogPostErrorDialog()

{
DtDisplayErrorDialog “Find Error” “$1” \

DIALOG_PRIMARY_APPLICATION_MODAL
}

The last parameter, DIALOG_PRIMARY_APPLICATION_MODALtells dtksh to
create a dialog that must be responded to before any other interaction can
occur.

Desktop KornShell User’s Guide

N
Il

OkCallback()

OkCallback() is called when either the OK or Apply button on the main
script_find window is pressed. If the OK button is pressed, the
script_find window is unmanaged. For either Apply or OK, the input
search directory is validated; if it is invalid, then OkCallback() calls
PostErrorDialog() . If it is valid, checks are made on the status of the
toggle buttons on the script_find window and corresponding adjustments
are made to the variable $CMD This variable contains the entire command
that is ultimately executed.

LoadStickyValues()

This function is called from the main program after the window has been
created and managed. It loads all the values from the most recent
execution of the script. These values are saved in a file called

Find.sticky by the function RetrieveandSaveCurrentValues()

EvalCmd()

EvalCmd() is used by LoadStickyValues() to evaluate each line in
Find.sticky as a dtksh command. The following is a list of a
Find.sticky file:

XmTextSetString $SD “/users/dim”
XmTextFieldSetlnsertionPosition $SD 10
XmTextSetString $FNP “two_letter_calls”
XmTextFieldSetinsertionPosition $FNP 16
XtSetValues $FSTYPE menuHistory:$NODIR
XtSetValues $FILETYPE menuHistory:$NOTYPE
XmToggleButtonSetState $T2 true false
XmToggleButtonSetState $T4 true false

RetrievAndSaveCurrentValues()

RetrieveAndSaveCurrentValues() retrieves the current settings and
values of the widgets in the script_find window and saves them in the
file Find.sticky . Find.sticky is then used by LoadStickyValues()

the next time the script is executed.

A Complex Script 43

Il
N

Main Script
The remainder of the script is the equivalent of Main() in a C program. It
initializes the Xt Intrinsics and creates all the widgets used in the
script_find window. The set-f in the first line tells dtksh to suppress
expansion of wildcard characters in path names. This is necessary so that
the find command can perform this expansion.
The script_find window (see Figure 4-4) consists of a Form widget with
four areas. The areas are marked by Separator widgets, and each area has
several widgets, all of which are children of the Form.
Firsd Flles
Lnbel Smmrch Dirsciorge : Tzl Fimld
Label Flename Pamarm: | Tisil Fiddl
Srpnrsior
Croas Mownt Pointa Pabrit Matching Fllamamps
Faree Cabmmn with i
vk TagPetation fmarch Hidden Subdirectories | Follow Symbalio Links
Do iiet] Bislilir gciniias First
TR = = = = = e e
Laiwel | Miestrict Segrch To File Systes Type; o resirictions Cplign Hena
el Maich Only Files D Typa: i raElricions Cplizn Ham
Fimaralir
O AppHy Closa Hidg RShisisna

Figure 4-4 Widgets in script_find window

The widgets are created in sequence by area, from top to bottom.

Initialize
Initialize is accomplished by the Xt Intrinsics function Xtinitialize
Xtlnitialize TOPLEVEL find Dtksh $0 “${@:-}"

44 Desktop KornShell User’s Guide

4

This creates a top-level shell that serves as the parent of a Form widget,
which is created next.

Create a Form Widget

A Form widget is used as the main parent widget. Form is a Manager
widget that allows you to place constraints on its children. Most of the
widgets in the main script_find window are children of the Form. The
description of the creation of the rest of the widgets is separated into the
four areas of the window (see Figure 4-4).

First Area

The first area consists of two Label widgets, two TextField widgets, and a
Separator widget that separates the first and second areas.

Find Fillas

Labed Baarch Dirgctory Tasel skl

Laked Filpname Paciesry; Tewcd Flsidd

A e e A A e e

Figure 4-5 First area of script_find Window

The following code segment creates and positions the first Label widget and
positions it within the Form using the DtkshAnchorTop and
DtkshAnchorLeft convenience functions:

XtCreateManagedWidget SDLABEL sdlabel XmLabel $SFORM \
labelString:"Search Directory:” \
$(DtkshAnchorTop 12) \
$(DtkshAnchorLeft 10)

The following code segment creates and positions the first TextField widget.
Note that it is positioned in relation to both the Form and the Label widget.

XtCreateManagedWidget SD sd XmText $SFORM \
columns:30 \
value:".” \
$(DtkshAnchorTop 6) \
$(DtkshRightOf $SDLABEL 10) \
$(DtkshAnchorRight 10) \

A Complex Script 45

46

navigationType:EXCLUSIVE_TAB_GROUP
XmTextFieldSetinsertionPosition $SD 1

The remaining Label widget and TextField widget are created in the same
manner.

The Separator widget is created as a child of the Form widget and
positioned under the second TextField widget.

XtCreateManagedWidget SEP sep XmSeparator $FORM \
separatorType:SINGLE_DASHED_LINE \
$(DtkshUnder $FNP 10) \
$(DtkshSpanWwidth)

Second Area

The second area consists of a RowColumn widget, five ToggleButton
gadgets, and another Separator widget.

Criovis MOiiin Podeils Priidt Manching Filaisimas
Forw Colan will
it Toapipha Bail by Smmrh Hhiden Subidirecioies Froflorey Symboles |Links
ipasie b
Doscend Subdirsctorios Flret
e B

Figure 4-6 Second Area of script_find Window

A gadget is a widget that relies on its parent for many of its attributes,
thus saving memory resources.

The RowColumn widget is created as a child of the Form widget, and
positioned directly under the Separator widget created in the first area.

XtCreateManagedWidget RC rc XmRowColumn $FORM \
orientation:HORIZONTAL \
numColumns:3\
packing:PACK_COLUMN \
$(DtkshUnder $SEP 10) \
$(DtkshSpanWwidth 10 10) \
navigationType:EXCLUSIVE_TAB_GROUP

Desktop KornShell User’s Guide

4

The five ToggleButton gadgets are created as chlldren of the RowColumn
using the convenience function DtkshAddButtons

DtkshAddButtons -w $RC XmToggleButtonGadget \
T1 “Cross Mount Points” “\
T2 “Print Matching Filenames” ““\
T3 “Search Hidden Subdirectories” ““\
T4 “Follow Symbolic Links” “\
T5 “Descend Subdirectories First” ““

Another Separator is then created to separate the second and third areas.
Note that this Separator widget ID is called SEP2

XtCreateManagedWidget SEP2 sep XmSeparator $FORM \
separatorType:SINGLE_DASHED_LINE \
$(DtkshUnder $RC 10) \
$(DtkshSpanWwidth)

Third Area

The third area consists of two option menus and another Separator widget.

Label Fnmtrict Search Ta Flie Sysiem Type: e restricbans Cplian aru
Labs#l Mlanchs Only Files OF Typo: i re st CEonE Oy than e
Jeparaine

Figure 4-7 Third area of script_find Window

The Option Menus are pull-down menus. When the user clicks the option
menu button, a menu pane with a number of choices appears. The user
drags the pointer to the appropriate choice and releases the mouse button.
The menu pane disappears and the option menu button label displays the
new choice.

The first option menu menu pane consists of a number of push button
gadgets, representing various restrictions that can be imposed upon the
find command:

XmCreatePulldownMenu PANE $FORM pane
DtkshAddButtons -w $PANE XmPushButtonGadget \
NODIR “no restrictions” “\
NFS “nfs” “\

A Complex Script 47

48

CDFS “cdfs” “\
HFS “hfs” “
Next, the Option Menu button itself is created and managed, with the
menu pane just created ($PANE) identified as a subMenuld:
XmCreateOptionMenu FSTYPE $FORM fstype \
labelString:”"Restrict Search To File System Type:”\
menuHistory:$NODIR \
subMenuld:$PANE \
$(DtkshUnder $SEP2 20) \
$(DtkshSpanWidth 10 10) \
navigationType:EXCLUSIVE_TAB_GROUP
XtManageChild $FSTYPE

The second option menu button is created in the same manner. It provides
further restrictions on the find command.

The third separator is created in the same manner as the other separators.

Fourth Area

The fourth area consists of four push button widgets, all children of the
Form widget.

ik Apply Cinmme Hulp Pushisstions

The four push buttons are used as follows:

® OK executes the find command with the parameters input in the
script_find window and removes the script_find window.

* Apply executes the find command with the parameters input in the
script_find window but does not remove the script_find window.
® Close terminates script_find without executing the find command.

® Help creates a dialog box with information on the use of script_find

The push buttons are created and positioned in much the same manner as
any of the other widgets, although they are each labeled differently. The
following code segment shows how the OK push button is created:

XtCreateManagedWidget OK ok XmPushButton $FORM \
labelString:"Ok” \

Desktop KornShell User’s Guide

N
Il

$(DtkshUnder $SEP3 10) \
$(DtkshFloatLeft 4) \
$(DtkshFloatRight 24) \
$(DtkshAnchorBottom 10)
XtAddCallback $OK activateCallback “OkCallback”

Set Operating Parameters

XtSetValues is used to set some initial operating parameters:

XtSetValues $FORM \
initialFocus:$SD \
defaultButton:$OK \
cancelButton:$CLOSE \
navigationType:EXCLUSIVE_TAB_GROUP

® [Initial focus is set to the first TextField widget in the first area.
® Default button is set to the OK push button in the fourth area.
® Cancel button is set to the Close button in the fourth area.

®* Navigation type is set to EXCLUSIVE_TAB_GROUP.

The following line configures the TextField widgets so that pressing the
return key does not activate the default button within the Form. See the
description of EXCLUSIVE_TAB_GROUIM Appendix B for more information on
its use.

DtkshSetReturnKeyControls $SD $FNP $FORM $OK

Realize and Loop

The last three lines of the script load the previous values of the
script_find window, realize the top-level widget, and then enter a loop
waiting for user input.

LoadStickyValues

XtRealizeWidget $TOPLEVEL
XtMainLoop

A Complex Script 49

50

Desktop KornShell User’s Guide

dtksh Commands A

This appendix contains a list of the commands supported by dtksh . Many
of these commands are almost identical to their Motif, Xt Intrinsics, or Xlib
counterparts. Commands that return a value must have the return
variable as an environment variable that is the first parameter in the call.
Some commands have more differences.

The following subsections give a synopsis of each of the dtksh commands.
In general, parameter ordering and types are the same as for corresponding
C procedures; exceptions are noted. For more detail on the functionality
and parameters of a command, see the standard documentation for the
corresponding Xlib, Xt Intrinsics, or Motif procedure.

In the command definitions, parameters named var, var2, var3, and so on,
indicate that the shell script should supply the name of an environment
variable into which some value will be returned. The word variable
indicates an environment variable that accepts a return value.

Commands that return a Boolean value (which can be used directly as part
of an if statement), are noted as such.

Parameters enclosed within [] are optional.

51

=A

Built-in Xlib Commands

52

XBell display volume

XClearArea display drawable [optional GC arguments] x y width height
exposures

XClearWindow display drawable

XCopyArea display src dest srcX srcY width height destX destY [optional
GC
arguments]

XDefineCursor display window cursor

XDrawArc display drawable [optional GC arguments] x y width height
anglel
angle2

XDrawLine display drawable [optional GC arguments] x1 y1 x2 y2

XDrawLines display drawable [-coordinateMode] [optional GC arguments]
x1yl
X2 y2 [x3y3..]

where coordinateMode is either CoordModeOrigin or
CoordModePrevious

XDrawPoint display drawable [optional GC arguments] x y

XDrawPoints display drawable [-coordinateMode] [optional GC arguments]
x1yl
[x2 y2 x3 y3 ...]

where coordinateMode is either CoordModeOrigin or
CoordModePrevious

XDrawRectangle display drawable [optional GC arguments] x y width
height

XDrawSegments display drawable [optional GC arguments] x1 y1 x2 y2 [x3
y3 x4

ya ..]
XDrawsString display drawable [optional GC arguments] x y string

Desktop KornShell User’s Guide

A=

XDrawlmageString display drawable [optional GC arguments] x y string

XFillArc display drawable [optional GC arguments] x y width height
anglel
angle2

XFillPolygon display drawable [-shape] [-coordinateMode] [optional GC
arguments] x1 y1 x2 y2 ...

where shape is either Complex, Convex, or Nonconvex, and
coordinateMode is either CoordModeOrigin or CoordModePrevious.

XFillRectangle display drawable [optional GC arguments] x y width
height

XFlush display
XHeightOfScreen variable screen
XRaiseWindow display window
XRootWindowOfScreen variable screen
XSync display discard

where discard is either true or false.

XTextWidth variable fontName string

Note — The XTextWidth command is different from the corresponding Xlib
procedure because it takes the name of a font instead of a pointer to a font
structure.

XUndefineCursor display window

XWidthOfScreen variable screen

dtksh Commands 53

=A

Built-in Xt Intrinsic Commands

54

All the Xt Intrinsics commands used to create a new widget require that
you specify a widget class for the new widget. The widget (or gadget) class
name is the standard class name provided by Motif. For example, the class
name for a Motif push button widget is XmPushButton , while the class
name for the Motif label gadget is XmLabelGadget .

XtAddCallback widgetHandle callbackName ksh-command

where callbackName is one of the standard Motif or Xt callback names,
with the Xt or Xmprefix dropped. For example, activateCallback

XtAddEventHandler widgetHandle eventMask nonMaskableFlag ksh-
command

where eventMask is of the form mask | mask] mask and the mask
components are any of the standard set of X event masks, and
nonMaskableFlag is either true or false

XtAddInput variable [-r] fileDescriptor ksh-command

Registers the indicated file descriptor with the X Toolkit as an alternate
input source. It is the responsibility of the shell script’s input handler to
unregister the input source when it is no longer needed and to close the
file descriptor.

If the -r option is specified (raw mode), then dtksh does not
automatically read any of the data available from the input source; it
will be up to the specified kshell command to read all data. If the -r
option is not specified, then the command specified in ksh-command is
invoked only when a full line is read (that is, a line terminated by either
an unescaped newline character or the end of the file) or when the end of
the file is reached. The raw mode is useful for handlers that expect to
process nontextual data, or for handlers that do not want dtksh
automatically reading in a line of data. When the end of file is detected,
it is the shell script’s input handler’s responsibility to use
XtRemovelnput to remove the input source and to close the file
descriptor, if necessary.

In all cases, several environment variables are set up, which can be used
by the handler. These include:

Desktop KornShell User’s Guide

A=

INPUT_LINE Empty if in raw mode; otherwise, it contains the
next line to be processed.

INPUT_EOF Set to true if end-of-file is reached; otherwise, set to
false.

INPUT_SOURCE File descriptor associated with this input source.

INPUT_ID The ID associated with this input handler; returned

by XtAddinput ().
XtAddTimeout variable interval ksh-command
XtAddWorkProc variable ksh-command

In dtksh , the kshell command is typically a kshell function name. Like
regular work procedures, this function is expected to return a value that
indicates whether the work procedure wants to be called again, or
whether it has completed its work and can be automatically
unregistered. If the dtksh function returns 0, then the work procedure
remains registered; any other value causes the work procedure to be
automatically unregistered.

XtAugmentTranslations widgetHandle translations

XtCreateApplicationShell variable applicationName widgetClass
[resource:value ...]

XtCallCallbacks widgetHandle callbackName

where callbackName is one of the standard Motif or Xt callback names,
with
the Xt or Xmprefix dropped; for example, activateCallback.

XtClass variable widgetHandle

Returns the name of the widget class associated with the passed-in
widget handle.

XtCreateManagedWidget variable widgetName widgetClass
parentWidgetHandle [resource:value ...]

XtCreatePopupShell variable widgetName widgetClass
parentWidgetHandle [resource:value ...]

XtCreateWidget variable widgetName widgetClass

dtksh Commands 55

56

parentWidgetHandle [resource:value ...]
XtDestroyWidget widgetHandle [widgetHandle ...]
XtDisplay variable widgetHandle
XtDisplayOfObject variable widgetHandle
XtGetValues widgetHandle resource:varl [resource:var?2 ...]
XtHasCallbacks variable widgetHandle callbackName

where callbackName is one of the standard Motif or Xt callback names,
with the Xt or Xmprefix dropped; for example, activateCallback.

variable is set to one of the strings CallbackNoList
CallbackHasNone , or CallbackHasSome

XtInitialize variable shelIName applicationClassName applicationName
[arguments]

Using Dtksh as the applicationClassName causes the application to use
the default dtksh app-defaults file. The arguments parameter is used
to reference any command-line arguments that might have been
specified by the user of the shell script; these are typically referred to
using the shell syntax of "$@".

Returns a value which can be used in a conditional statement.
XtlsManaged widgetHandle

Returns a value which can be used in a conditional statement.
XtlsSubclass widgetHandle widgetClass

where widgetClass is the name of a widget class. Returns a value which
can be used in a conditional statement.

XtNameToWidget variable referenceWidget name
XtlsRealized widgetHandle

Returns a value which can be used in a conditional statement.
XtlsSensitive widgetHandle

Returns a value which can be used in a conditional statement.

Desktop KornShell User’s Guide

>
1]

XtisShell widgetHandle

Returns a value which can be used in a conditional statement.
XtLastTimestampProcessed variable display
XtMainLoop
XtManageChild widgetHandle
XtManageChildren widgetHandle [widgetHandle ...]
XtMapWidget widgetHandle
XtOverrideTranslations widgetHandle translations
XtParent variable widgetHandle
XtPopdown widgetHandle
XtPopup widgetHandle grabType

where grabType is one of the strings GrabNone, GrabNonexclusive or
GrabExclusive

XtRealizeWidget widgetHandle
XtRemoveAllCallbacks widgetHandle callbackName

where callbackName is one of the standard Motif or Xt callback names,
with the Xt or Xmprefix dropped; for example, activateCallback

XtRemoveCallback widgetHandle callbackName ksh-command

where callbackName is one of the standard Motif or Xt callback names,
with the Xt or Xm prefix dropped; for example, activateCallback . As
is true with traditional Xt callbacks, when a callback is removed, the
same kshell command string must be specified as was specified when the
callback was originally registered.

dtksh Commands 57

58

XtRemoveEventHandler widgetHandle eventMask nonMaskableFlag
ksh-command

where eventMask is of the form mask | mask| mask and the mask
components are any of the standard set of X event masks; that is.
ButtonPressMask where nonMaskableFlag is either true or false.

As is true with traditional Xt event handlers, when an event handler is
removed, the same eventMask, nonMaskableFlag setting, and kshell
command string must be specified as was specified when the event
handler was originally registered.

XtRemovelnput inputld

where inputld is the handle that was returned in the specified
environment variable when the alternate input source was registered
using the XtAddinput command.

XtRemoveTimeOut timeoutld

where timeoutld is the handle that was returned in the specified
environment variable when the timeout was registered using the
XtAddTimeOut command.

XtRemoveWorkProc workproclD

where workproclD is the handle that was returned in the specified
environment variable when the work procedure was registered using the
XtAddWorkProc command.

XtScreen variable widgetHandle
XtSetSensitive widgetHandle state
where state is either true or false.
XtSetValues widgetHandle resource:value [resource:value ...]
XtUninstallTranslations widgetHandle
XtUnmanageChild widgetHandle
XtUnmanageChildren widgetHandle [widgetHandle ...]

XtUnmapWidget widgetHandle

Desktop KornShell User’s Guide

>
1]

XtUnrealizeWidget widgetHandle

XtWindow variable widgetHandle

Built-in Motif Commands
XmAddWMProtocolCallback widgetHandle protocolAtom ksh-command

where protocolAtom is typically obtained using the XminternAtom
command.

XmAddWMProtocols widgetHandle protocolAtom [protocolAtom ...]

where protocolAtom is typically obtained using the XmlnternAtom
command.

XmCommandAppendValue widgetHandle string
XmCommandError widgetHandle errorString
XmCommandGetChild variable widgetHandle childType

where childType is one of the strings DIALOG_COMMAND_TEXT
DIALOG_PROMPT_LABEIDIALOG_HISTORY_LIST, or
DIALOG_WORK_AREA

XmCommandSetValue widgetHandle commandString

XmCreateArrowButton variable parentWidgetHandle name [resource:value

]

XmCreateArrowButtonGadget variable parentWidgetHandle name
[resource:value ...]

XmCreateBulletinBoard variable parentWidgetHandle name
[resource:value ...]

XmCreateBulletinBoardDialog variable parentWidgetHandle name
[resource:value ...]

XmCreateCascadeButton variable parentWidgetHandle name
[resource:value ...]

XmCreateCascadeButtonGadget variable parentWidgetHandle name
[resource:value ...]

dtksh Commands 59

60

XmCreateCommand variable parentWidgetHandle name [resource:value ...]

XmCreateDialogShell variable parentWidgetHandle name
[resource:value ...]

XmCreateDrawingArea variable parentWidgetHandle name
[resource:value ...]

XmCreateDrawnButton variable parentWidgetHandle name [resource:value

]

XmCreateErrorDialog variable parentWidgetHandle name [resource:value

]

XmCreateFileSelectionBox variable parentWidgetHandle name
[resource:value ...]

XmCreateFileSelectionDialog variable parentWidgetHandle name
[resource:value ...]

XmCreateForm variable parentWidgetHandle name [resource:value ...]

XmCreateFormDialog variable parentWidgetHandle name [resource:value

]

XmCreateFrame variable parentWidgetHandle name [resource:value ...]

XmCreatelnformationDialog variable parentWidgetHandle name
[resource:value ...]

XmCreateLabel variable parentWidgetHandle name [resource:value ...]

XmCreateLabelGadget variable parentWidgetHandle name [resource:value

]

XmCreatelList variable parentWidgetHandle name [resource:value ...]

XmCreateMainWindow variable parentWidgetHandle name [resource:value

]

XmCreateMenuBar variable parentWidgetHandle name [resource:value ...]

XmCreateMenuShell variable parentWidgetHandle name [resource:value

]

Desktop KornShell User’s Guide

A=

XmCreateMessageBox variable parentWidgetHandle name [resource:value

]

XmCreateMessageDialog variable parentWidgetHandle name
[resource:value ...]

XmCreateOptionMenu variable parentWidgetHandle name [resource:value

]

XmCreatePanedWindow variable parentWidgetHandle name
[resource:value ...]

XmCreatePopupMenu variable parentWidgetHandle name [resource:value

]

XmCreatePromptDialog variable parentWidgetHandle name
[resource:value ...]

XmCreatePulldownMenu variable parentWidgetHandle name
[resource:value ...]

XmCreatePushButton variable parentWidgetHandle name [resource:value

]

XmCreatePushButtonGadget variable parentWidgetHandle name
[resource:value ...]

XmCreateQuestionDialog variable parentWidgetHandle name
[resource:value ...]

XmCreateRadioBox variable parentWidgetHandle name [resource:value ...]

XmCreateRowColumn variable parentWidgetHandle name [resource:value

]

XmCreateScale variable parentWidgetHandle name [resource:value ...]

XmCreateScrollBar variable parentWidgetHandle name [resource:value
e
XmCreateScrolledList variable parentWidgetHandle name

[resource:value ...]

XmCreateScrolledText variable parentWidgetHandle name
[resource:value ...]

dtksh Commands 61

62

XmCreateScrolledWindow variable parentWidgetHandle name
[resource:value ...]

XmCreateSelectionBox variable parentWidgetHandle name
[resource:value ...]

XmCreateSelectionDialog variable parentWidgetHandle name
[resource:value ...]

XmCreateSeparator variable parentWidgetHandle name [resource:value

]

XmCreateSeparatorGadget variable parentWidgetHandle name
[resource:value ...]

XmCreateText variable parentWidgetHandle name [resource:value ...]

XmCreateTextField variable parentWidgetHandle name [resource:value

]

XmCreateToggleButton variable parentWidgetHandle name
[resource:value ...]

XmCreateToggleButtonGadget variable parentWidgetHandle name
[resource:value ...]

XmCreateWarningDialog variable parentWidgetHandle name
[resource:value ...]

XmCreateWorkArea variable parentWidgetHandle name [resource:value ...]

XmCreateWorkingDialog variable parentWidgetHandle name
[resource:value ...]

XmFileSelectionDoSearch widgetHandle directoryMask
XmFileSelectionBoxGetChild variable widgetHandle childType

where childType is one of the strings DIALOG_APPLY_BUTTON,
DIALOG_CANCEL_BUTTON, DIALOG_DEFAULT_BUTTON,
DIALOG_DIR_LIST, DIALOG_DIR_LIST_LABEL,
DIALOG_FILTER_LABEL, DIALOG_FILTER_TEXT,
DIALOG_HELP_BUTTON, DIALOG_LIST, DIALOG_LIST LABEL,
DIALOG_OK_BUTTON, DIALOG_SEPARATOR,
DIALOG_SELECTION_LABEL, DIALOG_TEXT, or DIALOG_WORK_AREA

Desktop KornShell User’s Guide

>
1]

XmGetAtomNamevariable display atom
XmGetColors widgetHandle background variable var2 var3 var4

The XmGetColors command differs from the C procedure in that it takes
a widgetHandle instead of a screen pointer and a colormap.

XmGetFocusWidget variable widgetHandle
XmGetPostedFromWidget variable widgetHandle
XmGetTabGroup variable widgetHandle
XmGetTearOffControl variable widgetHandle
XmGetVisibility variable widgetHandle
XminternAtom variable display atomString onlylfExistsFlag
where onlylfExistsFlag can be set to either true or false.
XmlsTraversable widgetHandle
Returns a value which can be used in a conditional statement.
XmListAdditem widgetHandle position itemString

The order of the parameters for the XmListAddlitem command is not
identical to its corresponding C programming counterpart.

XmListAdditems widgetHandle position itemString [itemString ...]

The order of the parameters for the XmListAddltems command is not
identical to its corresponding C programming counterpart.

XmListAddIltemsUnselected widgetHandle position itemString
[itemString ...]

The order of the parameters for the XmListAddltemsUnselected
command is not identical to its corresponding C programming
counterpart.

XmListAdditemUnselected widgetHandle position itemString

The ordering of the parameters to the XmListAddIitemUnselected
command are not identical to its corresponding C programming
counterpart.

dtksh Commands 63

64

XmListDeleteAllltems widgetHandle

XmlListDeleteltem widgetHandle itemString
XmlListDeleteltems widgetHandle itemString [itemString ...]
XmListDeleteltemsPos widgetHandle itemCount position

XmListDeletePos widgetHandle position

XmListDeletePositions widgetHandle position [position ...]
XmListDeselectAllltems widgetHandle
XmListDeselectltem widgetHandle itemString

XmListDeselectPos widgetHandle position
XmListGetSelectedPos variable widgetHandle

Returns a comma-separated list of indices in variable. Returns a value
which can be used in a conditional statement.

XmListGetKbditemPos variable widgetHandle
XmListGetMatchPos variable widgetHandle itemString

Returns a comma-separated list of indices in variable. Returns a value
which can be used in a conditional statement.

XmListltemEXxists widgetHandle itemString

Returns a value which can be used in a conditional statement.
XmListltemPos variable widgetHandle itemString
XmListPosSelected widgetHandle position

Returns a value which can be used in a conditional statement.
XmListPosToBounds widgetHandle position variable var2 var3 vari4

Returns a value which can be used in a conditional statement.

Desktop KornShell User’s Guide

A=

XmListReplaceltemsPos widgetHandle position itemString [itemString

]

The order of the parameters for the XmListReplaceltemsPos command
is not identical to its corresponding C programming counterpart.

XmListReplaceltemsPosUnselected widgetHandle position itemString
[itemString ...]

The order of the parameters for the
XmListReplaceltemsPosUnselected command is not identical to its
corresponding C programming counterpart.

XmListSelectltem widgetHandle itemString notifyFlag

where notifyFlag can be set to either true or false.
XmListSelectPos widgetHandle position notifyFlag

where notifyFlag can be set to either true or false.
XmListSetAddMode widgetHandle state

where state can be set to either true or false.
XmListSetBottomltem widgetHandle itemString
XmListSetBottomPos widgetHandle position
XmListSetHorizPos widgetHandle position
XmListSetltem widgetHandle itemString
XmListSetKbdltemPos widgetHandle position

Returns a value which can be used in a conditional statement.
XmListSetPos widgetHandle position
XmListUpdateSelectedList widgetHandle
XmMainWindowSepl variable widgetHandle
XmMainWindowSep2 variable widgetHandle

XmMainWindowSep3 variable widgetHandle

dtksh Commands 65

66

XmMainWindowSetAreas widgetHandle menuWidgetHandle
commandWidgetHandle
horizontalScrollbarwWidgetHandle
verticalScrollbarWidgetHandle
workRegionWidgetHandle

XmMenuPosition widgetHandle eventHandle

where eventHandle refers to an X event, which has typically been
obtained by accessing the CB_CALL_DATA.EVENT, EH_EVENTor
TRANSLATION_EVENENvironment variables.

XmMessageBoxGetChild variable widgetHandle childType

where childType is one of the strings DIALOG_CANCEL_BUTTON,
DIALOG_DEFAULT_BUTTON, DIALOG_HELP_BUTTON,
DIALOG_MESSAGE_LABEL, DIALOG_OK_BUTTON,
DIALOG_SEPARATOR, or DIALOG_SYMBOL_LABEL

XmOptionButtonGadget variable widgetHandle
XmOptionLabelGadget variable widgetHandle
XmProcessTraversal widgetHandle direction

where direction is one of the strings TRAVERSE_CURRENT,
TRAVERSE_DOWN, TRAVERSE_HOME, TRAVERSE_LEFT,
TRAVERSE_NEXT, TRAVERSE_NEXT_TAB_GROUP, TRAVERSE_PREV,
TRAVERSE_PREV_TAB_GROUP, TRAVERSE_RIGHF TRAVERSE_UP

Returns a value which can be used in a conditional statement.
XmRemoveWMProtocolCallback widgetHandle protocolAtom ksh-command

where protocolAtom is typically obtained using the XminternAtom
command.

As is true with traditional Window Manager callbacks, when a callback
is removed, the same kshell command string must be specified, as was
specified when the callback was originally registered.

XmRemoveWMProtocols widgetHandle protocolAtom [protocolAtom ...]

where protocolAtom is typically obtained using the XminternAtom
command.

Desktop KornShell User’s Guide

>
1]

XmScaleGetValue widgetHandle variable
XmScaleSetValue widgetHandle value
XmScrollBarGetValues widgetHandle variable var2 var3 var4

XmScrollBarSetValues widgetHandle value sliderSize increment
pagelncrement
notifyFlag

where notifyFlag can be set to either true or false.

XmScrollVisible widgetHandle widgetHandle leftRightMargin
topBottomMargin

XmSelectionBoxGetChild variable widgetHandle childType

where childType is one of the strings DIALOG_CANCEL_BUTTON,
DIALOG_DEFAULT_BUTTON, DIALOG_HELP_BUTTON,
DIALOG_APPLY_BUTTON, DIALOG_LIST, DIALOG_LIST_LABEL,
DIALOG_OK_BUTTON, DIALOG_SELECTION_LABEL,
DIALOG_SEPARATOR, DIALOG_TEXTor DIALOG_WORK_AREA

XmTextClearSelection widgetHandle time

where time is typically either obtained from within an X Event or is
queried by a call to the XtLastTimestampProcessed command.

XmTextCopy widgetHandle time

where time is typically either obtained from within an X Event or is
queried by a call to the XtLastTimestampProcessed command.

Returns a value which can be used in a conditional statement.
XmTextCut widgetHandle time

where time is typically either obtained from within an X Event or is
queried by a call to the XtLastTimestampProcessed command.

Returns a value which can be used in a conditional statement.
XmTextDisableRedisplay widgetHandle
XmTextEnableDisplay widgetHandle

dtksh Commands 67

68

XmTextFindString widgetHandle startPosition string direction variable
where direction is one of the strings TEXT _FORWAROr TEXT_BACKWARD
Returns a value which can be used in a conditional statement.

XmTextGetBaseline variable widgetHandle

XmTextGetEditable widgetHandle
Returns a value which can be used in a conditional statement.

XmTextGetlnsertionPosition variable widgetHandle

XmTextGetLastPosition variable widgetHandle

XmTextGetMaxLength variable widgetHandle

XmTextGetSelection variable widgetHandle

XmTextGetSelectionPosition widgetHandle variable var2
Returns a value which can be used in a conditional statement.

XmTextGetString variable widgetHandle

XmTextGetTopCharacter variable widgetHandle

XmTextinsert widgetHandle position string

XmTextPaste widgetHandle
Returns a value which can be used in a conditional statement.

XmTextPosToXY widgetHandle position variable var2
Returns a value which can be used in a conditional statement.

XmTextRemove widgetHandle
Returns a value which can be used in a conditional statement.

XmTextReplace widgetHandle fromPosition toPosition string

XmTextScroll widgetHandle lines

XmTextSetAddMode widgetHandle state

where state can be set to either true or false.

Desktop KornShell User’s Guide

>
1]

XmTextSetEditable widgetHandle editableFlag
where editableFlag can be set to either true or false.
XmTextSetHighlight widgetHandle leftPosition rightPosition mode

where mode is one of the strings HIGHLIGHT_NORMAL
HIGHLIGHT_SELECTEDor HIGHLIGHT_SECONDARY_SELECTED

XmTextSetInsertionPosition widgetHandle position
XmTextSetMaxLength widgetHandle maxLength
XmTextSetSelection widgetHandle firstPosition lastPosition time

where time is typically either obtained from within an X Event or is
queried by a call to the XtLastTimestampProcessed command.

XmTextSetString widgetHandle string
XmTextSetTopCharacter widgetHandle topCharacterPosition
XmTextShowPosition widgetHandle position
XmTextXYToPos variable widgetHandle x y
XmTextFieldClearSelection widgetHandle time

where time is typically either obtained from within an X Event or is
queried by a call to the XtLastTimestampProcessed command.

XmTextFieldGetBaseline variable widgetHandle
XmTextFieldGetEditable widgetHandle

Returns a value which can be used in a conditional statement.
XmTextFieldGetlnsertionPosition variable widgetHandle
XmTextFieldGetLastPosition variable widgetHandle
XmTextFieldGetMaxLength variable widgetHandle
XmTextFieldGetSelection variable widgetHandle
XmTextFieldGetSelectionPosition widgetHandle variable var2

Returns a value which can be used in a conditional statement.

dtksh Commands 69

70

XmTextFieldGetString variable widgetHandle
XmTextFieldInsert widgetHandle position string
XmTextFieldPosToXY widgetHandle position variable var2

Returns a value which can be used in a conditional statement.
XmTextFieldRemove widgetHandle

Returns a value which can be used in a conditional statement.
XmTextFieldReplace widgetHandle fromPosition toPosition string
XmTextFieldSetEditable widgetHandle editableFlag

where editableFlag can be set to either true or false.
XmTextFieldSetHighlight widgetHandle leftPosition rightPosition mode

where mode is one of the strings HIGHLIGHT_NORMAL
HIGHLIGHT_SELECTED or HIGHLIGHT_SECONDARY_SELECTED

XmTextFieldSetinsertionPosition widgetHandle position
XmTextFieldSetMaxLength widgetHandle maxLength
XmTextFieldSetSelection widgetHandle firstPosition lastPosition time

where time is typically either obtained from within an X Event or is
queried by a call to the XtLastTimestampProcessed command.

XmTextFieldSetString widgetHandle string
XmTextFieldShowPosition widgetHandle position
XmTextFieldXYToPos variable widgetHandle x y
XmTextFieldCopy widgetHandle time

where time is typically either obtained from within an X Event or is
queried by a call to the XtLastTimestampProcessed command.

Returns a value which can be used in a conditional statement.

Desktop KornShell User’s Guide

A

XmTextFieldCut widgetHandle time

where time is typically either obtained from within an X Event or is
queried by a call to the XtLastTimestampProcessed command.

Returns a value which can be used in a conditional statement.
XmTextFieldPaste widgetHandle

Returns a value which can be used in a conditional statement.
XmTextFieldSetAddMode widgetHandle state

where state can be set to either true or false.
XmToggleButtonGadgetGetState widgetHandle

Returns a value which can be used in a conditional statement.
XmToggleButtonGadgetSetState widgetHandle state notifyFlag

where state can be set to either true or false, and where notifyFlag can be
set to either true or false.

XmToggleButtonGetState widgetHandle
Returns a value which can be used in a conditional statement.
XmToggleButtonSetState widgetHandle state notifyFlag

where state can be set to either true or false, and where notifyFlag can be
set to either true or false.

XmUpdateDisplay widgetHandle

Built-in Common Desktop Environment Application Help Commands

DtCreateQuickHelpDialog variable parentWidgetHandle name
[resource:value ...]

DtCreateHelpDialog variable parentWidgetHandle name [resource:value

]

dtksh Commands 71

DtHelpQuickDialogGetChild variable widgetHandle childType

where childType is one of the strings HELP_QUICK_OK_BUTTON,
HELP_QUICK_PRINT_BUTTON, HELP_QUICK_HELP_BUTTON,
HELP_QUICK_SEPARATOR, HELP_QUICK_MORE_BUTTQ@N
HELP_QUICK_BACK_BUTTON

DtHelpReturnSelectedWidgetld variable widgetHandle var2

variable is set to one of the strings HELP_SELECT_VALID,
HELP_SELECT_INVALID, HELP_SELECT_ABORT or
HELP_SELECT_ERRQRvar? is set to the widgetHandle for the selected
widget.

DtHelpSetCatalogName catalogName

Built-in Localization Commands

72

catopen variable catalogName

Opens the indicated message catalog and returns the catalog ID in the
environment variable specified by variable. If a shell script needs to
close the file descriptor associated with a message catalog, then the
catalog ID must be closed using the catclose command.

catgets variable catalogld setNumber messageNumber
defaultMessageString

Attempts to extract the requested message string from the message
catalog associated with the catalogld parameter. If the message string
cannot be located, then the default message string is returned. In either
case, the returned message string is placed into the environment
variable indicated by variable.

catclose catalogld

Closes the message catalog associated with the indicated catalogld.

Desktop KornShell User’s Guide

>
1]

Built-in libDt Session Management Commands
DtSessionRestorePath widgetHandle variable sessionFile

Given the file name for the session file (excluding any path information),
this command returns the full path for the session file in the
environment variable variable.

Returns O if successful, 1 if unsuccessful.
DtSessionSavePath widgetHandle variable var2

The full path name for the session file is returned in the environment
variable variable. The file name portion of the session file (excluding any
path information) is returned in the environment variable indicated by
var2.

Returns O if successful, 1 if unsuccessful.
DtShelllslconified widgetHandle

Allows a shell script to query the iconified state of a shell window.
Returns O if successful, 1 if unsuccessful.

DtSetStartupCommand widgetHandle commandString

Part of the session management process is telling the Session Manager
how to restart your application the next time the user reopens the
session. This command passes the specified command string to the
Session Manager. The widget handle should refer to an application
shell.

DtSetlconifyHint widgetHandle iconifyHint
where iconifyHint can be set to either true or false.

Allows the initial iconified state for a shell window to be set. This
command only works if the window associated with the widget has been
realized but not yet displayed.

dtksh Commands 73

=A

Built-in libDt Workspace Management Commands

74

DtWsmAddCurrentWorkspaceCallback variable widgetHandle ksh-
command

Evaluates the specified kshell command whenever the user changes
workspaces. The handle associated with this callback is returned in the
environment variable indicated by variable. The widget indicated by
widgetHandle should be a shell widget.

DtwWsmRemoveWorkspaceCallback callbackHandle

Removes a workspace notification callback. When removing a workspace
callback, you must pass in the callback handle that was returned when
you registered the callback with DtWsmAddCurrentWorkspaceCallback.

DtWsmGetCurrentWorkspace display rootWindow variable

Returns the X atom that represents the user’s current workspace in the
environment variable indicated by variable. Use the XmGetAtomName
command to map the X atom into its string representation.

DtWsmSetCurrentWorkspace widgetHandle workspaceNameAtom

Changes the user’s current workspace to the workspace indicated by
workspaceNameAtom.

Returns 0 if successful, 1 if unsuccessful.
DtWsmGetWorkspaceList display rootWindow variable

Returns a string of comma-separated X atoms, representing the current
set of workspaces defined for the user, in the environment variable
indicated by variable.

Returns O if successful, 1 if unsuccessful.
DtWsmGetWorkspacesOccupied display window variable

Returns a string of comma-separated X atoms, representing the current
set of workspaces occupied by the indicated shell window in the
environment variable indicated by variable.

Returns 0 if successful, 1 if unsuccessful.

Desktop KornShell User’s Guide

A

DtWsmSetWorkspacesOccupied display window workspaceL.ist

Moves the indicated shell window to the set of workspaces indicated by
the string workspaceL.ist, which must be a comma-separated list of X
atoms.

DtWsmAddWorkspaceFunctions display window

Forces the Window Manager menu to include the functions used to move
the window to other workspaces. This command only works if the
window is in the withdrawn state.

DtWsmRemoveWorkspaceFunctions display window

Forces the Window Manager menu to not display the functions used to
move the window to other workspaces; this prevents the window from
being moved to any other workspaces. This command only works if the
window is in the withdrawn state.

DtWsmOccupyAllWorkspaces display window

Requests that a window occupy all workspaces, including new
workspaces, as they are created.

DtWsmGetCurrentBackdropWindows display rootWindow variable

Returns a string of comma-separated window IDs, representing the set
of root backdrop windows.

Built-in libDt Action Commands

The set of commands in this section provide you with the tools for loading
the action databases, querying information about actions defined in the
databases, and requesting that an action be initiated.

DtDbLoad

Reads in the action and data-types databases. If called multiple times,
then the old databases are freed before the new ones are read. This
command must be called before any of the other libDt action
commands, or any of the libDt data typing commands. The shell script
should also use the DtDbReloadNotify command, so that the shell script
can be notified if new databases must be loaded.

dtksh Commands 75

1]
>

DtDbReloadNotify ksh-command

Requests notification whenever the action or data-types databases need
to be reloaded. The specified kshell command is executed when the
notification is received. Typically, the kshell command includes a call to
the DtDbLoad command.

DtActionExists actionName

Tests to see if an action exists in the database with the name specified by
the actionName parameter. Returns a value which can be used in a
conditional statement.

DtActionLabel variable actionName

Returns the localizable LABEL attribute associated with the indicated
action. If the action does not exist, then an empty string is returned.

DtActionDescription variable actionName

Returns the value of the DESCRIPTION attribute associated with the
indicated action. An empty string is returned if the action is not defined,
or if the DESCRIPTION attribute was not specified.

Built-in libDt Data-Typing Commands
DtLoadDataTypes

Loads the data-typing databases and should be invoked before any of the
other data-typing commands.

DtDtsFileToDataType variable filePath

Returns the name of the data type associated with the file indicated by
the filePath argument in the variable argument. The variable argument
is set to an empty string if the file cannot be typed.

DtDtsFileToAttributeValue variable filePath attrName

Returns the string representing the value of the specified attribute for
the data type associated with the indicated file. If the attribute is not
defined, or if the file could not be typed, then the variable argument is
set to an empty string.

76 Desktop KornShell User’s Guide

A

DtDtsFileToAttributeList variable filePath

Returns the space-separated list of attribute names defined for the data
type associated with the indicated file. A shell script can then query the
individual values for the attributes, using the

DtDtsFileToAttributeValue command. The variable argument is set
to an empty string if the file cannot be typed. This command differs
from its corresponding C programming counterpart, in that it only
returns the names of the defined attributes and not their values.

DtDtsDataTypeToAttributeValue variable dataType attrName optName

Returns the string representing the value of the specified attribute for
the indicated data type. If the attribute is not defined, or if the indicated
data type does not exist, then the variable argument is set to an empty
string.

DtDtsDataTypeToAttributeList variable dataType optName

Returns the space-separated list of attribute names defined for the
indicated data type. A shell script can then query the individual values
for the attributes, using the DtDtsDataTypeToAttributeValue

command. The variable argument is set to an empty string if the data
type is not defined. This command differs from its corresponding C
programming counterpart, in that it only returns the names of the
defined attributes and not their values.

DtDtsFindAttribute variable name value

Returns a space-separated list of datatype names whose attribute
indicated by the name argument has the value indicated by the value
argument. If an error occurs, the variable argument is set to an empty
string.

DtDtsDataTypeNames variable

Returns a space-separated list representing all the data types currently
defined in the data-types database. If an error occurs, then the variable
argument is set to an empty string.

DtDtsSetDataType variable filePath dataType override

Sets a data type for the specified directory. The variable argument is set
to the resultant saved data type for the directory.

dtksh Commands 77

DtDtsDataTypelsAction dataType

Determines whether a particular data type represents an action entry.
Returns a value which can be used in a conditional statement.

Miscellaneous Built-in libDt Commands

DtGetHourGlassCursor variable display

Returns the X cursor ID associated with the standard Dt hourglass
cursor.

DtTurnOnHourGlass widgetHandle
Turns on the standard Dt hourglass cursor for the indicated widget.
DtTurnOffHourGlass widgetHandle

Turns off the standard Dt hourglass cursor for the indicated widget.

Built-in Desktop Services Message Set Commands

78

The following set of commands implements the minimum subset of the
Desktop Services Message Set required to allow a shell script to participate
in the Desktop Services protocol. Many of the ToolTalk commands differ
slightly from their associated C programming call. For ToolTalk commands
that typically return a pointer, a C application validates that pointer by
calling the tt_ptr_error () function; this function call returns a

Tt _status value, which indicates whether the pointer was valid, and if
not, why it was not valid. Because of the kshell code’s design, the string
pointer that the shell script sees is not typically the same as the string
pointer returned by the underlying C code. Typically, during shell
programming, this is not a problem because the important information is
the string value, not the string pointer.

To allow shell scripts to get the status of a pointer, any of the commands
that normally return a pointer also return the associated Tt_status value
for the pointer automatically. This saves the shell script from needing to
make an additional call to check the validity of the original pointer. In the
case of a pointer error occurring, dtksh returns an empty string for the
pointer value and sets the Tt_status code accordingly.

Desktop KornShell User’s Guide

A=

The Tt _status value is returned in the status argument. The Tt_status
value is a string representing the error and can assume any of the following
values:

TT_OK
TT_WRN_NOTFOUND
TT_WRN_STALE_OBJID
TT_WRN_STOPPED
TT_WRN_SAME_OBJID
TT_WRN_START_MESSAGE
TT_ERR_CLASS
TT_ERR_DBAVAIL
TT_ERR_DBEXIST
TT_ERR_FILE
TT_ERR_INVALID
TT_ERR_MODE
TT_ERR_ACCESS
TT_ERR_NOMP
TT_ERR_NOTHANDLER
TT_ERR_NUM
TT_ERR_OBJID
TT_ERR_OP
TT_ERR_OTYPE
TT_ERR_ADDRESS
TT_ERR_PATH
TT_ERR_POINTER
TT_ERR_PROCID
TT_ERR_PROPLEN
TT_ERR_PROPNAME
TT_ERR_PTYPE
TT_ERR_DISPOSITION
TT_ERR_SCOPE
TT_ERR_SESSION
TT_ERR_VTYPE
TT_ERR_NO_VALUE
TT_ERR_INTERNAL
TT_ERR_READONLY
TT_ERR_NO_MATCH
TT_ERR_UNIMP
TT_ERR_OVERFLOW
TT_ERR_PTPE_START

dtksh Commands 79

80

TT_ERR_CATEGORY
TT_ERR_DBUPDATE
TT_ERR_DBFULL
TT_ERR_DBCONSIST
TT_ERR_STATE
TT_ERR_NOMEM
TT_ERR_SLOTNAME
TT_ERR_XDR
TT_DESKTOP_EPERM
TT_DESKTOP_ENOENT
TT_DESKTOP_EINTR
TT_DESKTOP_EIO
TT_DESKTOP_EAGAIN
TT_DESKTOP_ENOMEM
TT_DESKTOP_EACCES
TT_DESKTOP_EFAULT
TT_DESKTOP_EEXIST
TT_DESKTOP_ENODEV
TT_DESKTOP_ENOTDIR
TT_DESKTOP_EISDIR
TT_DESKTOP_EINVAL
TT_DESKTOP_ENFILE
TT_DESKTOP_EMFILE
TT_DESKTOP_ETXBSY
TT_DESKTOP_EFBIG
TT_DESKTOP_ENOSPC
TT_DESKTOP_EROFS
TT_DESKTOP_EMLINK
TT_DESKTOP_EPIPE
TT_DESKTOP_ENOMSG
TT_DESKTOP_EDEADLK
TT_DESKTOP_ECANCELED
TT_DESKTOP_ENOTSUP
TT_DESKTOP_ENODATA
TT_DESKTOP_EPROTO
TT_DESKTOP_ENOTEMPTY
TT_DESKTOP_ETIMEDOUT
TT_DESKTOP_EALREADY
TT_DESKTOP_UNMODIFIED
TT_MEDIA_ERR_SIZE

Desktop KornShell User’s Guide

A

TT_MEDIA_ERR_FORMAT

Some of the commands take a message scope as a parameter. The scope
indicates which clients have the potential of receiving the outgoing
message. For these commands, the scope parameter can be set to any of
the following values:

TT_SCOPE_NONE
TT_SESSION

TT_FILE

TT_BOTH
TT_FILE_IN_SESSION

tt_file_netfile variable status filename

Converts the indicated filename, assumed to be a valid file name on the
local host, to its corresponding netfilename format. A netfilename can be
passed to other hosts on a network and then converted back to a path
relative to the other host, using the tt_netfile_file command.

tt_netfile_file variable status netfilename

Converts the indicated netfilename to a path name that is valid on the
local host.

tt_host_file_netfile variable status host filename

Converts the indicated file, assumed to be resident on the specified host,
into its corresponding netfilename format.

tt_host_netfile_file variable status host netfilename

Converts the indicated netfilename into a valid path on the indicated
host.

ttdt open variable status var2 toolname vendor version sendStarted

Opens a ToolTalk communications endpoint. It returns in the variable
argument the proclD associated with this connection. It returns the file
descriptor associated with this connection in var2; this file descriptor can
be used to register an alternate Xt input handler. The sendStarted
argument is a value and if set to true, causes a Started message to be
automatically sent.

Any proclDs returned by ttdt_ open contain embedded spaces. To

dtksh Commands 81

82

prevent kshell from interpreting the proclD as a multiple parameter
(versus a single parameter with embedded spaces), you should always
enclose any references to the environment variable containing the proclD
within double quotes, as shown:

ttdt_close STATUS “$PROC_ID” ““ True
tttk_Xt_input_handler proclD source id

For the ToolTalk messages to be received and processed, the shell script
must register an Xt input handler for the file descriptor returned by the
call to ttdt open . The Xt input handler is registered using the
XtAddinput command, and the handler must be registered as a raw
input handler. The input handler that the shell script registers should
invoke tttk_Xt_input_handler to get the message received and
processed. The following code block demonstrates how this is done:

ttdt_open PROC_ID STATUS FID “Tool” “HP” “1.0” True XtAddInput
INPUT_ID -r $FID “ProcessTTInput \"'$PROC_ID\"”

ProcessTTInput()

{
tttk_Xt_input_handler $1 $INPUT_SOURCE $INPUT_ID

}

Refer to the description of the XtAddinput command for more details
about alternate Xt input handlers.

Note that the \” (backslash and double quotation mark) characters
before and after the reference to the proclD environment variable are
necessary, because the value contained in the proclD environment
variable contains embedded spaces and could be misinterpreted unless
escaped as shown.

ttdt_close status proclD newProcld sendStopped

Closes the indicated communications connection and optionally sends a
Stopped notice, if the sendStopped argument is set to true.

Because the proclD returned by the call to ttdt open contains
embedded spaces, it is necessary to enclose any references to the proclD
environment variable within double quotation marks:

ttdt_close STATUS “$PROC_ID” “$NEW_PROC_ID" False

Desktop KornShell User’s Guide

A

ttdt_session_join variable status sessld shellWidgetHandle join

Joins the session indicated by the sessld argument as a good desktop
citizen, by registering patterns and default callbacks for many standard
desktop message interfaces. If the sessld argument does not specify a
value (that is, it is an empty string), then the default session is joined. If
the shellWidgetHandle argument specifies a widget handle (that is, it is
not an empty string), then it should refer to a mappedWhenManaged
applicationShellWidget . The join argument is a Boolean and should
be set to true or false. This command returns an opaque pattern handle
in the variable argument; when no longer needed, this handle can be
destroyed using the ttdt_session_quit command.

ttdt_session_quit status sessld sessPatterns quit

Destroys the message patterns specified by the sessPatterns argument
and, if the quit argument is set to true, quits the session indicated by the
sessld argument or quits the default session if sessld is empty.

ttdt_file_join variable status pathName scope join ksh-command

Registers interest in the deleted, modified, reverted, moved, and saved
messages for the indicated file in the indicated scope. An opaque pattern
handle is returned in the variable argument. When no longer interested
in monitoring messages for the indicated file, this should be destroyed by
calling ttdt_file_quit

The requested ksh-command is evaluated anytime one of the messages is
received for the indicated file. When this kshell command is evaluated,
the following environment variables are defined and provide additional
information about the received message:

DT _TT_MSG Gntains the opaque handle for the incoming
message
DT _TT_OP Contains the string representing the operation

to be performed; that is, TTDT_DELETED,
TTDT_MODIFIED, TTDT_REVERTED,
TTDT_MOVEDr TTDT_SAVED

DT _TT_PATHNAME Contains the pathname for the file to which
this message pertains.

dtksh Commands 83

DT_TT_SAME_EUID_EGID Set to True if the message was sent by an
application operating with the same effective
user ID (euid) and effective group ID (egid) as
this process.

DT _TT_SAME_PROCID Set to True if the message was sent by an
application with the same proclD (as returned
by ttdt_open).

When the callback completes, it must indicate whether the passed-in
message was “consumed” (replied-to, failed, or rejected). If the callback
returns the message (as passed-in in the DT_TT_MSGenvironment
variable), then it is assumed that the message was not consumed. If the
message was consumed, then the callback should return 0, or one of the
values returned by the tt_error_pointer command. The callback can
return its value in the following fashion:

return $DT_TT_MSG (or) return O
ttdt_file_quit status patterns quit

Destroys the message patterns specified by the patterns argument and
unregisters interest in the path name that was passed to the
ttdt_file_join command, if quit is set to true. The patterns argument
should be the value that was returned by the call to the

ttdt_file_join command.

ttdt_file_event status op patterns send

Creates, and optionally sends, a ToolTalk notice announcing an event
pertaining to a file. The file is indicated by the path name that was
passed to the ttdt_file_join command when patterns was created.
The op argument indicates what should be announced for the indicated
file, and it can be set to TTDT_MODIFIED, TTDT_SAVEDor
TTDT_REVERTEDIf op is set to TTDT_MODIFIED then this command
registers to handle Get_Modified, Save and Revert messages in the scope
specified when the patterns were created. If op is set to TTDT_SAVEDor
TTDT_REVERTEDthis command unregisters from handling Get_Modified,
Save, and Revert messages for this file. If the send argument is set to
true, then the indicated message is sent.

Desktop KornShell User’s Guide

A

ttdt_Get_Modified pathName scope timeout

Sends a Get_Modified request in the indicated scope and waits for a
reply or for the specified timeout (in milliseconds) to elapse. A
Get_Modified request asks other ToolTalk clients if they have any
changes pending on pathname that they intend to make persistent.
Returns a value which can be used in a conditional statement. A value
of true is returned if an affirmative reply is received within the specified
timeout; otherwise, false is returned.

ttdt_ Save status pathName scope timeout

Sends a Save request in the indicated scope and waits for a reply or for
the indicated timeout (in milliseconds) to elapse. A Save request asks the
handling ToolTalk client to save any changes pending for the file
specified in the pathName argument. A status of TT_OKis returned if an
affirmative reply is received before the timeout elapses. Otherwise, one
of the standard Tt_status error values is returned.

ttdt_Revert status pathName scope timeout

Sends a Revert request in the indicated scope and waits for a reply or for
the indicated timeout (in milliseconds) to elapse. A Revert request asks
the handling ToolTalk client to discard any changes pending for the file
specified in the pathName argument. A status of TT_OKis returned if an
affirmative reply is received before the timeout elapses. Otherwise, one
of the standard Tt_status error values is returned.

The following commands are typically used by the callback registered with
the ttdt_file_join command. They serve as the mechanism for
consuming and destroying a message. A message is consumed by either
rejecting, failing, or replying to it. tt_error_pointer can be used by the
callback to obtain a return pointer for indicating an error condition.

tt_error_pointer variable ttStatus

Returns a “magic value,” which is used by ToolTalk to represent an
invalid pointer. The magic value returned depends upon the ttStatus
value passed-in. Any of the valid Tt status values may be specified.

tttk_message_destroy status msg

Destroys any patterns that may have been stored on the message
indicated by the msg argument, and then destroys the message.

dtksh Commands 85

tttk_message_reject status msg msgStatus msgStatusString destroy

Sets the status and the status string for the indicated request message,
and then rejects the message. It then destroys the passed-in message, if
the destroy argument is set to True . This command is one way in which
the callback specified with the ttdt_file_join command can consume
a message. It is typically safe to destroy the message, using
tttk_message_destroy , after rejecting the message.

tttk_message_fail status msg msgStatus msgStatusString destroy

Sets the status and the status string for the indicated request message,
and then fails the message. It then destroys the passed-in message, if
the destroy argument is set to True . This command is one way in which
the callback specified with the ttdt_file_join command can consume
a message. It is typically safe to destroy the message, using
tttk_message_destroy , after failing the message.

tt_message_reply status msg

Informs the ToolTalk service that the shell script has handled the
message and filled in all return values. The ToolTalk service then sends
the reply back to the sending process, filling in the state as TT_HANDLED
After replying to a message, it is typically safe to destroy the message,
using the tttk_message_destroy command.

Desktop KornShell User’s Guide

dtksh Convenience Functions B

The dtksh utility includes a file of convenience functions. This file is itself
a shell script containing shell functions that may be useful to a shell
programmer. The shell functions perform operations that dtksh
programmers frequently have to do for themselves. These include functions
for quickly creating certain kinds of dialogs (help, error, warning, and so
on), a function for easily creating a collection of buttons, and functions that
make it easier to configure the constraint resources for a child of a form
widget. It is not a requirement that shell script writers use these
convenience functions; they are supplied to make it easier for developers to
write shorter and more readable shell scripts.

Before a shell script can access these functions, it must first include the file
containing the convenience functions. The convenience functions are
located in the file /usr/dt/scripts/DtFuncs.sh. Use the following
notation to include them in a shell script:

. lusr/dt/lib/dtksh/DtFuncs.dtsh

87

B

DtkshAddButtons

88

DtkshAddButtons adds one or more buttons of the same kind into a
composite widget. It is most often used to add a collection of buttons into a
menupane or menubar.

Usage:

DtkshAddButtons parent widgetClass labell callbackl
[label2 callback? ...]
DtkshAddButtons [-w] parent widgetClass variablel labell callbackl1\

[variable2 label2 callback? ...]

The -w option indicates that the convenience function should return the
widget handle for each of the buttons it creates. The widget handle is
returned in the specified environment variable. The widgetClass
parameter can be set to any of the following, but it defaults to
XmPushButtonGadget if nothing is specified.

XmPushButton
XmPushButtonGadget
XmToggleButton
XmToggleButtonGadget
XmCascadeButton
XmCascadeButtonGadget

Examples:

DtkshAddButtons $SMENU XmPushButtonGadget Open do_Open Save do_Save
Quit exit

DtkshAddButtons -w $MENU XmPushButtonGadget B1 Open do_Open B2 Save
do_Save

Desktop KornShell User’s Guide

o
1]

DtkshSetReturnKeyControls

DtkshSetReturnKeyControls configures a text widget within a form
widget so that the Return key does not activate the default button within
the form, but instead moves the focus to the next text widget within the
form. This is useful if you have a window that contains a series of text
widgets, and the default button should not be activated until the user
presses the Return key while the focus is in the last text widget.

Usage:

DtkshSetReturnKeyControls textWidget nextTextWidget formWidget
defaultButton

The textWidget parameter specifies the widget to be configured to catch the
Return key and force the focus to move to the next text widget (as indicated
by the nextTextWidget parameter). The formWidget parameter specifies the
form containing the default button and should be the parent of the two text
widgets. The defaultButton parameter indicates which component is to be
treated as the default button within the form widget.

Examples:

DtkshSetReturnKeyControls $TEXT1 $TEXT2 $FORM $OK
DtkshSetReturnKeyControls $TEXT2 $TEXT3 $FORM $OK

dtksh Convenience Functions 89

DtkshUnder, DtkshOver, DtkshRightOf, and DtkshLeftOf

90

These convenience functions simplify the specification of certain classes of
form constraints. They provide a way of attaching a component to one edge
of another component. They are used when constructing the resource list
for a widget. This behavior is accomplished using the ATTACH_WIDGET
constraint.

Usage:

DtkshUnder widgetld [offset]
DtkshOver widgetld [offset]
DtkshRightOf widgetld [offset]
DtkshLeftOf widgetld [offset]

The widgetld parameter specifies the widget to which the current
component is to be attached. The offset value is optional and defaults to 0
if not specified.

Example:

XtCreateManagedWidget BUTTON4 button4 XmPushButton $FORM \
labelString:"Exit" \
$(DtkshUnder $BUTTON2) \
$(DtkshRightOf $BUTTONS3)

Desktop KornShell User’s Guide

o
1]

DtkshFloatRight, DtkshFloatLeft, DtkshFloatTop, and DtkshFloatBottom

These convenience functions simplify the specification of certain classes of
form constraints. They provide a way of positioning a component,
independent of the other components within the form. As the form grows
or shrinks, the component maintains its relative position within the form.
The component may still grow or shrink, depending upon the other form
constraints specified for the component. This behavior is accomplished
using the ATTACH_POSITIONconstraint.

Usage:

DtkshFloatRight [position]
DtkshFloatLeft [position]
DtkshFloatTop [position]
DtkshFloatBottom [position]

The optional position parameter specifies the relative position to which the
indicated edge of the component is positioned. The position value is
optional and defaults to O if one is not specified.

Example:

XtCreateManagedWidget BUTTONL1 buttonl XmPushButton $FORM \
labelString:"Ok" \
$(DtkshUnder $SEPARATOR) \
$(DtkshFloatLeft 10) \
$(DtkshFloatRight 40)

dtksh Convenience Functions 91

DtkshAnchorRight, DtkshAnchorLeft, DtkshAnchorTop, and DtkshAnchorBottom

92

These convenience functions simplify the specification of certain classes of
form constraints. They provide a way of attaching a component to one of
the edges of a form widget in such a way that, as the form grows or shrinks,
the component's position does not change. However, depending upon the
other form constraints set on this component, it may still grow or shrink in
size. This behavior is accomplished using the ATTACH_FORMonstraint.

Usage:

DtkshAnchorRight [offset]
DtkshAnchorLeft [offset]
DtkshAnchorTop [offset]
DtkshAnchorBottom [offset]

The optional offset parameter specifies how far from the edge of the form
widget the component should be positioned. If an offset is not specified,
then 0O is used.

Example:

XtCreateManagedWidget BUTTON1 buttonl XmPushButton $FORM \
labelString:"Ok" \
$(DtkshUnder $SEPARATOR) \
$(DtkshAnchorLeft 10) \
$(DtkshAnchorBottom 10)

Desktop KornShell User’s Guide

o
1]

DtkshSpanWidth and DtkshSpanHeight

These convenience functions simplify the specification of certain classes of
form constraints. They provide a way of configuring a component so that it
spans either the full height or width of the form widget. This behavior is
accomplished by attaching two edges of the component (top and bottom for
DtSpanHeight , and left and right for DtSpanWidth) to the form widget.
The component typically resizes whenever the form widget is resized. The
ATTACH_FORMonstraint is used for all attachments.

Usage:

DtkshSpanWidth [leftOffset rightOffset]

DtkshSpanHeight [topOffset bottomOffset]

The optional offset parameters specify how far from the edges of the form
widget the component should be positioned. If an offset is not specified,
then 0 is used.

Example:

XtCreateManagedWidget SEP sep XmSeparator $FORM \
$(DtkshSpanWidth 1 1)

dtksh Convenience Functions 93

B

DtkshDisplaylnformationDialog, DtkshDisplayQuestionDialog,
DtDisplayWarningDialog, DtkshDisplayWorkingDialog, and
DtkshDisplayErrorDialog

These convenience functions create a single instance of each of the Motif
feedback dialogs. If an instance of the requested type of dialog already
exists, then it is reused. The parent of the dialog is obtained from the
environment variable $TOPLEVEL which should be set by the calling shell
script, and then should not be changed. The handle for the requested
dialog is returned in one of the following environment variables:

_DTKSH_ERROR_DIALOG_HANDLE
_DTKSH_QUESTION_DIALOG_HANDLE
_DTKSH_WORKING_DIALOG_HANDLE
_DTKSH_WARNING_DIALOG_HANDLE
_DTKSH_INFORMATION_DIALOG_HANDLE

Note - If you are attaching your own callbacks to the dialog buttons, do
not destroy the dialog when you are done with it. Unmanage the dialog, so
that it can be used again at a later time. If it is necessary to destroy the
dialog, then be sure to clear the associated environment variable so the
convenience function does not attempt to reuse the dialog.

Usage:

DtkshDisplay< name>Dialog title message [okCallback closeCallback
helpCallback dialogStyle]

The Ok button is always managed, and by default unmanages the dialog.
The Cancel and Help buttons are only managed when a callback is supplied
for them. The dialogStyle parameter accepts any of the standard resource
settings supported by the associated bulletin board resource.

Example:

DtkshDisplayErrorDialog "Read Error" "Unable to read the file"
"OkCallback" \
"CancelCallback" " DIALOG_PRIMARY_APPLICATION_MODAL

94 Desktop KornShell User’s Guide

o
1]

DtkshDisplayQuickHelpDialog and DtkshDisplayHelpDialog

These convenience functions create a single instance of each of the help
dialogs. If an instance of the requested type of help dialog already exists,
then it is reused. The parent of the dialog is obtained from the
environment variable $TOPLEVEL which should be set by the calling shell
script, and then should not be changed. The handle for the requested
dialog is returned in one of the following environment variables:

* DTKSH_HELP_DIALOG_HANDLE
* DTKSH_QUICK_HELP_DIALOG_HANDLE

Note — If it is necessary to destroy a help dialog, then be sure to clear the
associated environment variable so that the convenience function does not
attempt to reuse the dialog.

Usage:
DtkshDisplay*HelpDialog title helpType helpinformation [locationld]

The meaning of the parameters is dependent upon the value specified for
the helpType parameter. Their meanings are:

® helpType = HELP_TYPE_TOPIC
* helpInformation = help volume name
« locationld = help topic location 1D

® helpType = HELP_TYPE_STRING
* helplnformation = help string
* locationld = <not used>

* helpType = HELP_TYPE_DYNAMIC_STRING
* helpInformation = help string
* locationld = <not used>
® helpType = HELP_TYPE_MAN_PAGE
* helplnformation = manual page name
* locationld = <not used>
® helpType = HELP_TYPE_FILE
« helpInformation = help file name
* locationld = <not used>

dtksh Convenience Functions 95

96

Example:

DtkshDisplayHelpDialog "Help On Dtksh" HELP_TYPE_FILE
"helpFileName"

Desktop KornShell User’s Guide

Listing for script_find

The script_find Script C

This appendix contains the complete listing of script_find described in
Chapter 4, “A Complex Script.” The script executes a second script called
Find.sticky , which is listed after script_find . There is also a file called
Find.help , which is a text file accessed when the user clicks the Help
button on the main script window. See Chapter 4 for more information on
this script.

#! Jusr/dt/bin/dtksh
set -u

. lusr/dt/lib/dtksh/DtFuncs.dtsh

#

This sample shell script provides a graphical interface to the
‘find’ command. Each time it is executed, it will attempt to

restore the dialog to the last set of values entered by the user.
#When the ‘find’ command is initiated, the output will be displayed
in a dtterm window.

#

#

Post an# error dialog. The main application window is disabled
until the error dialog is unposted. The message to be displayed
in the # error dialog is passed in as $1

#

PostErrorDialog()

97

{
DtDisplayErrorDialog “Find Error” “$1” \
DIALOG_PRIMARY_APPLICATION_MODAL
}
#

This is both the 'Ok’ and the ‘Apply’ callback; in the case of the
'Ok’ callback, it unposts the main application window, and then
exits, if the dialog contains valid information. For both ‘Ok’ and
‘Apply’, the set of search directories is first validated; if any
of the paths are not valid, then an error dialog is posted.
Otherwise, the ‘find’ process is started in a terminal window.
#
OkCallback()
{
RetrieveAndSaveCurrentValues
if [“$SD_VAL" =““]; then
PostErrorDialog “You must specify a directory to search”
else
foriin $SD_VAL ; do
if [1-d$i];then
MSG="The following search directory does not exist:

$i"
PostErrorDialog “$MSG”
return 1
fi
done

if [$CB_WIDGET = $OK | ; then
XtPopdown $TOPLEVEL
fi

CMD="/bin/find $SD_VAL"
if [1 “BFNP_VAL” = “] : then

CMD=$CMD"” -name $FNP_VAL”
fi

if | $(XmToggleButtonGetState $T1); then
CMD=$CMD" -xdev”
fi

if $(XmToggleButtonGetState $T3); then

CMD=$CMD” -hidden”
fi

Desktop KornShell User’s Guide

@
1]

if $(XmToggleButtonGetState $T4); then
CMD=$CMD” -follow”
fi

if $(XmToggleButtonGetState $T5); then
CMD=$CMD" -depth”
fi

case $FSTYPE_VAL in
$NFS) CMD=$CMD" -fsonly nfs” ;;
$CDFS) CMD=$CMD” -fsonly cdfs” ;;
$HFS) CMD=$CMD” -fsonly hfs” ;;
)5

esac

case $FILETYPE_VAL in
$REGULAR) CMD=$CMD” -type ' ;;
$DIRECTORY) CMD=$CMD” -type d” ;;
$BLOCK) CMD=$CMD" -type b";;
$CHAR) CMD=$CMD” -type c" ;;
$FIFO) CMD=$CMD" -type p” ;
$SYMLINK) CMD=$CMD” -type I ;;
$SOCKET) CMD=$CMD” -type s” ;;
$NET) CMD=$CMD" -type n" ;;
$MOUNT) CMD=$CMD" -type M" ;;
$HIDDEN) CMD=$CMD" -type H" ;;
D)5

esac

if $(XmToggleButtonGetState $T2); then
CMD=$CMD” -print”
fi

/usr/dt/bin/dtterm -title “Find A File” -e /usr/dt/bin/dtexec
-open -1 $CMD &

if [$CB_WIDGET = $OK] ; then
exit 0
fi
fi

#
This function attempt to load in the previous dialog values.
Each line read from the file is then interpreted as a ksh command.

The script_find Script 99

100

#
LoadStickyValues()
{
if [-r “./Find.sticky”] ; then
exec 6< “./Find.sticky”
XtAddInput FID 6 “EvalCmd”
fi

}

#

This function is invoked for each line in the ‘sticky’ valuesfile.
It will evalutate each line as a dtksh command.

#

EvalCmd()

if [${#INPUT_LINE} -gt 0]; then
eval “$INPUT_LINE”
fi

if [“$INPUT_EOF” = ‘true’ |; then
XtRemovelnput $INPUT_ID
eval exec $SINPUT_SOURCE'<&-’
fi

}

#
This function retrieves the current values, and then saves them
off into a file, so that they can be restored the next time the
dialog is displayed. Itis called anytime the user selects either
the “OK” or “Apply” buttons.
#
RetrieveAndSaveCurrentValues()
{
XmTextGetString SD_VAL $SD
XmTextGetString FNP_VAL $FNP
XtGetValues $FSTYPE menuHistory:FSTYPE_VAL
XtGetValues $FILETYPE menuHistory:FILETYPE_VAL

exec 3> “./Find.sticky”
if [1 “$SD_VAL” = “]; then
print -u 3 “XmTextSetString \$SD \"$SD_VAL\"
print -u 3 “XmTextFieldSetInsertionPosition \$SD ${#SD_VAL}"
fi
if [! “$FNP_VAL" = “]; then

Desktop KornShell User’s Guide

@
1]

print -u 3 “XmTextSetString \$FNP \"$FNP_VAL\™
print -u 3 “XmTextFieldSetinsertionPosition \$FNP ${#FNP_VAL}"
fi

case $FSTYPE_VAL in
$NFS) FST="\$NFS";;
$CDFS) FST="$CDFS" ;;
$HFS) FST="\$HFS";;
*) FST="$NODIR" ;;
esac
print -u 3 “XtSetValues \$FSTYPE menuHistory:$FST”

case $FILETYPE_VAL in
$REGULAR) FT="\$REGULAR” ;;
$DIRECTORY) FT="\$DIRECTORY" ;;
$BLOCK) FT="\$BLOCK" ;;
$CHAR) FT="\$CHAR" ;;
$FIFO) FT="$FIFO" ;;
$SYMLINK) FT="$SYMLINK" ;;
$SOCKET) FT="$SOCKET" ;;
$NET) FT="\$NET" ;;
$MOUNT) FT="\$MOUNT" ;;
$HIDDEN) FT="\$HIDDEN" ;;
*) FT="\$NOTYPE" ;;

esac

print -u 3 “XtSetValues \$FILETYPE menuHistory:$FT”

if $(XmToggleButtonGetState $T1); then
print -u 3 “XmToggleButtonSetState \$T1 true false”
fi

if $(XmToggleButtonGetState $T2); then
print -u 3 “XmToggleButtonSetState \$T2 true false”
fi

if $(XmToggleButtonGetState $T3); then
print -u 3 “XmToggleButtonSetState \$T3 true false”
fi

if $(XmToggleButtonGetState $T4); then
print -u 3 “XmToggleButtonSetState \$T4 true false”
fi

if $(XmToggleButtonGetState $T5); then

print -u 3 “XmToggleButtonSetState \$T5 true false”
fi

The script_find Script 101

102

exec 3<&-

}

A Create the Main Ul #HHHHEHHHHHHHIH

set -f
Xtlnitialize TOPLEVEL find Dtksh $0 “${@:-}"
XtSetValues $TOPLEVEL title:"Find Files”

XtCreateManagedWidget FORM form XmForm $TOPLEVEL

XtCreateManagedWidget SDLABEL sdlabel XmLabel $SFORM \
labelString:"Search Directory:” \
$(DtkshAnchorTop 12) \
$(DtkshAnchorLeft 10)

XtCreateManagedWidget SD sd XmText $FORM \
columns:30\
value:”.” \
$(DtkshAnchorTop 6) \
$(DtkshRightOf $SDLABEL 10) \
$(DtkshAnchorRight 10) \
navigationType:EXCLUSIVE_TAB_GROUP
XmTextFieldSetinsertionPosition $SD 1

XtCreateManagedWidget FNPLABEL fnpabel XmLabel $FORM \
labelString:"Filename Pattern:” \
$(DtkshUnder $SDLABEL 24) \
$(DtkshAnchorLeft 10)

XtCreateManagedWidget FNP fnp XmText $FORM \
columns:30\
$(DtkshUnder $SD 8) \
$(DtkshRightOf $FNPLABEL 10) \
$(DtkshAnchorRight 10) \
navigationType:EXCLUSIVE_TAB_GROUP

XtCreateManagedWidget SEP sep XmSeparator $FORM \
separatorType:SINGLE_DASHED_LINE \
$(DtkshUnder $FNP 10) \
$(DtkshSpanWwidth)

XtCreateManagedWidget RC rc XmRowColumn $FORM \

Desktop KornShell User’s Guide

@
1]

orientation:HORIZONTAL \

numColumns:3\

packing:PACK_COLUMN \
$(DtkshUnder $SEP 10) \
$(DtkshSpanWidth 10 10) \
navigationType:EXCLUSIVE_TAB_GROUP

DtkshAddButtons -w $RC XmToggleButtonGadget \
T1 “Cross Mount Points” “\
T2 “Print Matching Filenames” ““\
T3 “Search Hidden Subdirectories” ““\
T4 “Follow Symbolic Links” “\
T5 “Descend Subdirectories First” ““

XtCreateManagedWidget SEP2 sep XmSeparator $FORM \
separatorType:SINGLE_DASHED_LINE \
$(DtkshUnder $RC 10) \
$(DtkshSpanWwidth)

XmCreatePulldownMenu PANE $FORM pane
DtkshAddButtons -w $PANE XmPushButtonGadget \
NODIR “no restrictions” “\
NFS “nfs” “\
CDFS “cdfs” “\
HFS “hfs”

XmCreateOptionMenu FSTYPE $FORM fstype \
labelString:"Restrict Search To File System Type:” \
menuHistory:3NODIR \
subMenuld:$PANE \

$(DtkshUnder $SEP2 20) \
$(DtkshSpanWwidth 10 10) \
navigationType:EXCLUSIVE_TAB_GROUP

XtManageChild $FSTYPE

XmCreatePulldownMenu PANE2 $FORM pane2
DtkshAddButtons -w $PANE2 XmPushButtonGadget \
NOTYPE “no restrictions” ““\
REGULAR “regular” “\
DIRECTORY “directory” “\
BLOCK “block special” ““
CHAR “character special” ““\

FIFO “fifo” “\

SYMLINK “symbolic link” *“\
SOCKET “socket” “\
NET “network special” “\

The script_find Script 103

104

MOUNT “mount point” “\
HIDDEN *“hidden directory” ““

XmCreateOptionMenu FILETYPE $FORM filetype \
labelString:"Match Only Files Of Type:”\
menuHistory:$NOTYPE \
subMenuld:$PANE2 \

$(DtkshUnder $FSTYPE 10) \
$(DtkshSpanWidth 10 10) \
navigationType:EXCLUSIVE_TAB_GROUP

XtManageChild $FILETYPE

XtSetValues $FILETYPE spacing:90

XtCreateManagedWidget SEP3 sep3 XmSeparator $FORM \
$(DtkshUnder $FILETYPE 10) \
$(DtkshSpanWidth)

XtCreateManagedWidget OK ok XmPushButton $FORM \
labelString:"Ok” \
$(DtkshUnder $SEP3 10) \
$(DtkshFloatLeft 4) \
$(DtkshFloatRight 24) \
$(DtkshAnchorBottom 10)
XtAddCallback $OK activateCallback “OkCallback”

XtCreateManagedWidget APPLY apply XmPushButton $FORM \
labelString:"Apply” \
$(DtkshUnder $SEP3 10) \
$(DtkshFloatLeft 28) \
$(DtkshFloatRight 48) \
$(DtkshAnchorBottom 10)
XtAddCallback $APPLY activateCallback “OkCallback”

XtCreateManagedWidget CLOSE close XmPushButton $FORM \
labelString:"Close” \
$(DtkshUnder $SEP3 10) \
$(DtkshFloatLeft 52) \
$(DtkshFloatRight 72) \
$(DtkshAnchorBottom 10)
XtAddCallback $CLOSE activateCallback “exit 1"

XtCreateManagedWidget HELP help XmPushButton $FORM \
labelString:"Help” \
$(DtkshUnder $SEP3 10) \
$(DtFloatLeft 76) \
$(DtkshFloatRight 96) \

Desktop KornShell User’s Guide

@
1]

Find.sticky

Find.help

$(DtkshAnchorBottom 10)
XtAddCallback $HELP activateCallback \
“DtkshDisplayQuickHelpDialog ‘Using The Find Command’
HELP_TYPE_FILE\
“./Find.help’ “

XtSetValues $FORM \
initialFocus:$SD \
defaultButton:$OK \
cancelButton:$CLOSE \
navigationType:EXCLUSIVE_TAB_GROUP

DtkshSetReturnKeyControls $SD $FNP $FORM $OK
LoadStickyValues

XtRealizeWidget $TOPLEVEL
XtMainLoop

The following script, Find.sticky is executed by script_find
Find.sticky remembers the file and directory names used in the most
recent execution of script_find

XmTextSetString $SD “/users/dim”
XmTextFieldSetInsertionPosition $SD 10
XmTextSetString $FNP “elmbug”
XmTextFieldSetInsertionPosition $FNP 6
XtSetValues $FSTYPE menuHistory:$NODIR
XtSetValues $FILETYPE menuHistory:$DIRECTORY
XmToggleButtonSetState $T1 true false
XmToggleButtonSetState $T2 true false

Find.help is a text file that is displayed on screen when the user clicks
the Help button in the main script_find window.

This dialog presents a graphical interface to the
UNIX “find’ command. The only required field is
the name of the directory to be searched,;

all other fields are optional. Once the fields have
been set to the desired values, you can use the

The script_find Script 105

106

‘Ok’ or ‘Apply’ button to initiate the find operation.
The results of the find operation are displayed
in a dtterm terminal window.

Desktop KornShell User’s Guide

Index

A

action commands, 75
app-defaults file, 14
application help commands, 71
applications, Motif, 11

B

Boolean Values, 16
bulletin board, 24

C

callback, 20, 25

pass data to, 21

register, 20

script_find, 42

workspace, 28
category 1, 16
category 2, 16
category 3, 17
category 4, 17
CB_CALL_DATA, 21
command

CDE application help, 71

commands, 51
action, 75

data-typing, 76

libDt, 78

libdt, 76

libDt session management, 73

localization, 72

message set, 78

Motif, 59

workspace management, 74

Xt Intrinsics, 54
context variable

event handler, 27

input, 29

translation, 28

workspace callback, 28
convenience functions, 87
create form widget, 45
create menu, 47
create separator widget, 46
create widget, 19

D

data-typing commands, 76
Defined Values, 15
drawing functions, 36
DtDisplayWarningDialog, 94
dtksh

definition, 11

107

108

relationshipt to ksh-93, 11
Dtksh, app-defaults file, 14
DtkshAddButtons, 47, 88
DtkshAnchorBottom, 92
DtkshAnchorLeft, 92
DtkshAnchorRight, 92
DtkshAnchorTop, 92
DtkshDisplayErrorDialog, 42, 94
DtkshDisplayHelpDialog, 95
DtkshDisplaylnformationDialog, 94
DtkshDisplayQuestionDialog, 94
DtkshDisplayQuickHelpDialog, 95
DtkshDisplayWorkingDialog, 94
DtkshFloatBottom, 91
DtkshFloatLeft, 91
DtkshFloatRight, 91
DtkshFloatTop, 91
DtkshLeftOf, 90
DtkshOver, 90
DtkshRightOf, 90
DtkshSetReturnKeyControls, 89
DtkshSpanHeight, 93
DtkshSpanWidth, 93
DtkshUnder, 90

E

event handler, 27
event subfield, 30

F

Find.sticky, 105
functions
supported, 11

H
handle, 19

immediate return value, 17

CDE Desktop KornShell User’s Guide

initialize, 24

initialize Xt Intrinsics, 18
input context variable, 29
input mode, 29

K
ksh-93, 11

L

libDt commands, 76, 78
libDt session management
commands, 73
libraries, required, 11
localization commands, 72
localized script, 35

M

menu, create, 47

message set commands, 78
Motif applications, 11
Motif commands, 59
mwmFunctions, 13

P

parameters, variable number, 12
pushbutton, 25

R

register callback, 20
required linbraries, 11
resource
unsupported, 13
resources, 12
return value
category 1, 16
category 2, 16
category 3, 17
category 4, 17
immediate, 17

Return Values, 16 X

XmCreateForm, 20

S XmCreatelLabel, 20
sample script, 23 XmCreateOptionMenu, 48
script XmCreatePulldownMenu, 47
localized, 35 XmCreatePushButton, 19
sample, 23 XmNtopShadowColor, 12
writing, 23 XmTextFieldSetlnsertionPosition, 43,
script, complex, 39 46
script_find, 39, 97 XmTextSetString, 43
session manager save state notice, 32 XmToggleButtonSetState, 43
supported functions, 11 Xt Intrinsics
initialize, 18
T Xt Intrinsics commands, 54
toplevel widget, 24 XtAddCallback, 20, 49, 54
topShadowColor, 12 XtAddEventHandler, 54
translation, 28, 37 XtAddInput, 29, 54
XtCreateApplicationShell, 19
U XtCreateManagedWidget, 19, 20, 23,45,
46, 47, 48, 55
unsupported resources, 13 XtCreatePopupShell, 19
XtCreateWidget, 19
Vv XtDisplay, 56
variable values, 15 XtGetValues, 12,13
VendorShell, 13 XtlInitialize, 18, 23, 44
XtMainLoop, 23, 25, 49
W XtManageChild, 48
. XtRealizeWidget, 23, 49
widget . .
bulletin board, 24 XtrealizeWidget, 25
create, 19 XtRemovelnput, 29
form, 45 XtSetValues, 13, 23, 43, 49
handle, 19

pushbutton, 25
separator, 46
toplevel, 24
translations, 37

window manager close notice, 31
workspace callback, 28

workspace management, 35
workspace management commands, 74

Index 109

110 CDE Desktop KornShell User’s Guide

