
DIGITAL UNIX33333333333333333
Common Desktop Environment:
Internationalization Programmer’s Guide
Order Number: AA-QTM2A-TE

March 1996

Product Version: DIGITAL UNIX Version 4.0 or higher

33333333333333333
Digital Equipment Corporation
Maynard, Massachusetts

Please
Recycle

Copyright  1995 Digital Equipment Corporation
Copyright  1994, 1995 Hewlett-Packard Company
Copyright  1994, 1995 International Business Machines Corp.
Copyright  1994, 1995 Sun Microsystems, Inc.
Copyright  1994, 1995 Novell, Inc.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the
restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

The code and documentation for the DtComboBox and DtSpinBox widgets were contributed by Interleaf, Inc. Copyright
1993, Interleaf, Inc.

Portions of Chapter 4,“Motif Dependencies,” are derived from the OSF/Motif Programmer’s Guide and are subject to the
following copyright:

Copyright  1989, 1990, 1993 Open Software Foundation, Inc.

Portions of Chapter 5,“Xt and Xlib Dependencies,“ are derived from XLIB - C Language Interface Version X11 Release
5 and X Toolkit Intrinsics - C Language Interfaces Version X11 Release 5 and are subject to the following copyright:

Copyright  1985, 1986, 1987, 1988, 1989, 1991 Massachusetts Institute of Technology, Cambridge, Massachusetts
and Digital Equipment Corporation, Maynard, Massachusetts. All rights reserved.

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted,
provided that this copyright, permission, and disclaimer notice appear on all copies and that the names of M.I.T. or
Digital not be used in advertising or publicity pertaining to this documentation without specific prior permission.
M.I.T. and Digital make no representations about the suitability of this documentation for any purpose. It is provided
“as is” without express or implied warranty.

UNIX is a trademark exclusively licensed through X/Open Company, Ltd.

OSF/Motif and Motif are trademarks of Open Software Foundation, Ltd.

X Window System is a trademark of X Consortium, Inc.

iii

Contents

1. Contents . iii

 Preface. xv

2. Introduction to Internationalization. 1

Overview of Internationalization . 2

Current State of Internationalization. 4

Internationalization Standards. 4

Common Internationalization System 5

Locales . 7

Fonts, Font Sets, and Font Lists. 8

Font Specification . 9

Font Set Specification . 9

Font List Specification. 10

Example Font List Specification. 10

 Base Font Name List Specification 11

Text Drawing . 12

iv CDE: Internationalization Programmer’s Guide

Input Methods . 13

Preedit Area . 15

OffTheSpot . 15

OverTheSpot (Default) . 16

Root . 18

Status Area . 18

Auxiliary Area . 19

MainWindow Area . 19

Focus Area . 19

Interclient Communications Conventions (ICCC) 19

3. Internationalization and the Common Desktop
Environment. 21

Locale Management . 21

Font Management . 23

Matching Fonts to Character Sets 23

Font Objects . 24

Font Sets . 24

Fonts . 25

Font Lists . 25

Font Set and Font List Syntax . 26

Font Functions . 27

Font Charsets. 28

Default Font Set Per Language Group 28

Latin ISO8859-1 Fonts . 29

Contents v

Other ISO8859 Fonts . 29

JIS Japanese Font. 29

KSC Korean Font . 29

CNS Traditional Chinese Font 30

GB Simplified Chinese Font 30

Drawing Localized Text. 31

Simple Text . 31

XmString (Compound String) . 32

Inputting Localized Text . 34

Basic Prompts and Dialogs . 34

Input within a DrawingArea Widget. 35

Application-Specific and Language-Specific Intermediate
Feedbacks . 35

Text and TextField Widget. 35

Character Input within Customized Widgets Not Using
Text[Field] Widgets . 36

XIM Management . 39

XIM Event Handling . 40

XIM Callback . 40

Extracting Localized Text . 41

Resource Files . 41

Message Catalogs. 42

Private Files. 42

Message Guidelines. 42

Message Extraction Functions . 43

vi CDE: Internationalization Programmer’s Guide

XPG4/Universal UNIX Messaging Functions. 43

XPG4 Messaging Examples . 43

Xlib Messaging Functions . 44

Xlib Message and Resource Facilities 45

Localized Resources. 45

Labels and Buttons . 46

List Resources . 48

Title . 48

Text Widget . 49

Input Method (Keyboards). 50

Pixmap (Icon) Resources . 50

Font Resources. 52

Operating System Internationalized Functions. 52

4. Internationalization and Distributed Networks 55

Interchange Concepts . 55

iconv Interface . 56

Stateful and Stateless Conversions. 59

Stateful Encodings . 59

Stateless Encodings . 59

Simple Text Basic Interchange . 60

iconv Conversion Functions. 60

X Interclient (ICCCM) Conversion Functions 61

Window Titles . 61

Mail Basic Interchange . 62

Contents vii

Encodings and Code Sets . 63

 Code Set Strategy . 63

Code Set Structure. 64

Control Characters . 65

Graphic Characters . 65

Single-Byte Code Sets . 65

Multibyte Code Sets . 66

Extended UNIX Code (EUC) Code Set 66

ISO EUC Code Sets . 67

ISO646-IRV . 67

ISO8859-1 . 67

Other ISO8859 Code Sets . 68

eucJP . 69

eucTW . 70

eucKR . 72

5. Motif Dependencies . 73

Locale Management . 73

Font Management . 75

Font List Structure . 75

Font Lists Examples . 77

Obtaining a Font . 77

Obtaining a Font Set. 77

Specifying a Font When the Font List Element Tag Is
Absent . 78

viii CDE: Internationalization Programmer’s Guide

Specifying a Font Set When the Font List Element Tag
Is Absent . 78

Font List Syntax . 78

Drawing Localized Text. 80

Compound String Components . 80

Compound Strings and Resources 81

Setting a Compound String Programmatically . . . 81

Setting a Compound String in a Defaults File. . . . 82

Compound Strings and Font Lists 82

Text and TextField Widgets and Font Lists 87

Inputting Localized Text . 87

Geometry Management . 89

Focus Management . 90

Internationalized User Interface Language 92

Programming for Internationalized User Interface
Language . 92

String Literals . 92

Font Sets . 93

Font Lists . 93

Creating Resource Files . 94

Setting the Environment . 94

default_charset Character Set in UIL. 96

Example: uil_sample . 96

Compound Strings in UIL . 98

6. Xt and Xlib Dependencies . 101

Contents ix

 Locale Management . 101

X Locale Management . 101

Locale and Modifier Dependencies 102

Xt Locale Management . 104

XtSetLanguageProc. 104

XtDisplayInitialize . 107

Font Management . 109

Creating and Freeing a Font Set. 109

Obtaining Font Set Metrics . 110

Drawing Localized Text. 111

Inputting Localized Text . 111

Xlib Input Method Overview . 112

Input Method Architecture 114

Input Contexts. 116

Keyboard Input . 118

Xlib Focus Management . 118

Xlib Geometry Management 119

Event Filtering . 120

Callbacks . 121

X Server Keyboard Protocol. 122

Interclient Communications Conventions for Localized Text 123

Owner of Selection . 124

Requester of Selection . 124

XmClipboard . 125

x CDE: Internationalization Programmer’s Guide

Passing Window Title and Icon Name to Window Managers
125

Messages . 127

A. Message Guidelines . 129

File-Naming Conventions . 129

Cause and Recovery Information . 130

Comment Lines for Translators . 130

Programming Format . 131

Writing Style . 131

Usage Statements . 133

Standard Messages . 135

Regular Expression Standard Messages 136

Sample Messages. 137

xi

Figures

Figure 1-1 Information external to the application. 3

Figure 1-2 Common internationalized system . 6

Figure 1-3 Example of VendorShell widget with auxiliary (Japanese). 14

Figure 1-4 Example of OffTheSpot preediting with the VendorShell widget
(Japanese). 16

Figure 1-5 Example of OverTheSpot preediting with the VendorShell widget
(Japanese). 17

Figure 1-6 Example of Root preediting with the VendorShell widget
(Japanese). 18

Figure 4-1 Relationships between compound strings, font sets, and font lists
when the font list element tag is not
XmFONTLIST_DEFAULT_TAG . 84

Figure 4-2 Relationships between compound strings, font sets, and font lists
when a font list element tag is set to
XmFONTLIST_DEFAULT_TAG . 86

Figure 4-3 Japanese preediting example . 91

Figure 4-4 Sample UIL program on English and Japanese environments 96

Figure 5-1 Input method and input contexts . 117

xii CDE: Internationalization Programmer’s Guide

xiii

Tables

Table 1-1 Locale Categories . 7

Table 2-1 Font Set and Font List Syntax . 26

Table 2-2 XIM Callbacks . 41

Table 2-3 Localized Resources . 46

Table 2-4 Resources Used for Reading Lists. 48

Table 2-5 Resources Used for Setting Titles and Icon Names 48

Table 2-6 Locale-Sensitive Text[Field] Resources 49

Table 2-7 Localized Resources for Input Method Customization 50

Table 2-8 Pixmap Resources . 50

Table 2-9 Localized Font Resources . 52

Table 2-10 Base Operating System Internationalized Functions 53

Table 3-1 Using iconv to Perform Conversions 58

Table 3-2 Code Set Overview . 65

Table 3-3 Encoding for eucJP. 69

Table 3-4 Encoding for eucTW. 70

Table 3-5 16 Planes of the CNS 11643-1992 Standard 71

xiv CDE: Internationalization Programmer’s Guide

Table 3-6 Encoding for eucKR.. 72

Table 5-1 Locale and Modifier Dependencies 103

xv

 Preface

The Common Desktop Environment: Internationalization Programmer’s
Guide provides information for internationalizating the desktop, enabling
applications to support various languages and cultural conventions in a
consistent user interface.

Specifically, this guide:

• Provides guidelines and hints for developers on how to write applications
for worldwide distribution.

• Provides an overall view of internationalization topics that span
different layers within the desktop.

• Provides pointers to reference and more detailed documentation. In some
cases, standard documentation is referenced.

This guide is not intended to duplicate the existing reference or conceptual
documentation but rather to provide guidelines and conventions on specific
internationalization topics. This document focuses on internationalization
topics and not on any specific component or layer in an open software
environment.

Who Should Use This Book

This book provides various levels of information for the application
programmer and developer and related fields.

xvi CDE: Internationalization Programmer’s Guide

How This Book Is Organized

Explanations of the contents of this book follow:

Chapter 1, “Introduction to Internationalization,” provides an
overview of internationalization and localizing within the desktop,
including locales, fonts, drawing, inputting, interclient communication, and
extracting user visual text. Information on the significance of
internationalization standards is also provided.

Chapter 2, “Internationalization and the Common Desktop
Environment,” covers the set of topics that developers commonly need to
consider when internationalizing their applications, including locale
management, localized resources, font management, localized text tasks,
interclient communication for localized text, and internationalized
functions.

Chapter 3, “Internationalization and Distributed Networks,”
discusses topics related to handling encoded characters in distributed
networks. Basic principles and examples for interclient interoperability are
provided to guide developers in internationalized distributed environments.

Chapter 4, “Motif Dependencies,” topics include internationalized
applicaitons, locale management, localized text, international User
Interface Language (UIL), and localized applications.

Chapter 5, “Xt and Xlib Dependencies,” topics include locale
management, localized text tasks, font set metrics, interclient
communications conventions for localized text, and charset and font set
encoding and registry information.

Appendix A, “Message Guidelines,” is a set of guidelines for writing
messages.

Preface xvii

Related Publications

See the following documentation for additional information on topics
presented in this book:

• ISO C: ISO/IEC 9899:1990, Programming Languages --- C (technically
identical to ANS X3.159-1989, Programming Language C).

• ISO/IEC 9945-1: 1990, (IEEE Standard 1003.1) Information Technology -
Portable Operating System Interface (POSIX) - Part 1: System
Application Program Interface (API) [C Language].

• ISO/IEC DIS 9945-2: 1992, (IEEE Standard 1003.2-Draft) Information
Technology - Portable Operating System Interface (POSIX) - Part 2: Shell
and Utilities.

• OSF/Motif 1.2: OSF Motif 1.2 Programmer’s Reference, Revision 1.2,
Open Software Foundation, Prentice Hall, 1992, ISBN: 0-13-643115-1.

• Scheifler, W. R., X Window System, The Complete Reference to Xlib,
Xprotocol, ICCCM, XLFD - X Version 11, Release 5, Digital Press, 1992,
ISBN: 1-55558-088-2.

• X/Open: X/Open CAE Specification System Interface Definition, Issue 4,
X/Open Company Ltd., 1992, ISBN: 1-872630-46-4.

• X/Open: X/Open CAE Specification Commands and Utilities, Issue 4,
X/Open Company Ltd., 1992, ISBN: 1-872630-48-0.

• X/Open: X/Open CAE Specification System Interface and Headers, Issue
4, X/Open Company Ltd., 1992, ISBN: 1-872630-47-2.

• X/Open: X/Open Internationalization Guide, X/Open Company Ltd.,
1992, ISBN: 1-872630-20-0.

• ISO/IEC 10646-1:1993 (E): Information Technology - Universal Multi-
Octet Coded Character Set (UCS). Part 1: Architecture and Basic
Multilingual Plane.

xviii CDE: Internationalization Programmer’s Guide

What Typographic Changes and Symbols Mean

Table P-1 describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface
or Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Code samples are included in boxes and may display the following:

% UNIX C shell prompt system%

$ UNIX Bourne and Korn shell
prompt

system$

Superuser prompt, all shells system#

1

Introduction to
Internationalization 1

Internationalization is the designing of computer systems and applications
for users around the world. Such users have different languages and may
have different requirements for the functionality and user interface of the
systems they operate. In spite of these differences, users want to be able to
implement enterprise-wide applications that run at their sites worldwide.
These applications must be able to interoperate across country boundaries,
run on a variety of hardware configurations from multiple vendors, and be
localized to meet local users’ needs. This open, distributed computing
environment is the reasoning behind common open software environments.
The internationalization technology identified within this specification
provides these benefits to a global market.

Overview of Internationalization 2

Locales 7

Fonts, Font Sets, and Font Lists 8

Text Drawing 12

Input Methods 13

Interclient Communications Conventions (ICCC) 19

2 CDE: Internationalization Programmer’s Guide

1

Overview of Internationalization

Multiple environments may exist within a common open system for support
of different national languages. Each of these national environments is
called a locale, which considers the language, its characters, fonts, and the
customs used to input and format data. The Common Desktop Environment
is fully internationalized such that any application can run using any locale
installed in the system.

A locale defines the behavior of a program at run time according to the
language and cultural conventions of a user’s geographical area.
Throughout the system, locales affect the following:

• Encoding and processing of text data

• Identifying the language and encoding of resource files and their text
values

• Rendering and layout of text strings

• Interchanging text that is used for interclient text communication

• Selecting the input method (which code set will be generated) and the
processing of text data

• Encoding and decoding for interclient text communication

• Bitmap/icon files

• Actions and file types

• User Interface Definition (UID) files

An internationalized application contains no code that is dependent on the
user’s locale, the characters needed to represent that locale, or any formats
(such as date and currency) that the user expects to see and interact with.
The desktop accomplishes this by separating language- and culture-
dependent information from the application and saving it outside the
application.

Introduction to Internationalization 3

1

Figure 1-1 shows the kinds of information that should be external to an
application to simplify internationalization.

Figure 1-1 Information external to the application

By keeping the language- and culture-dependent information separate from
the application source code, the application does not need to be rewritten or
recompiled to be marketed in different countries. Instead, the only
requirement is for the external information to be localized to accommodate
local language and customs.

An internationalized application is also adaptable to the requirements of
different native languages, local customs, and character-string encodings.
The process of adapting the operation to a particular native language, local
custom, or string encoding is called localization. A goal of
internationalization is to permit localization without program source
modifications or recompilation.

Any string to
be displayed:

Application
Source CodeData

Presentation
Format

Numeric
Format

Currency
Format

Collation
Order

Time
Format

Date
Format

Geometry Icons

Bitmaps

Menu Items
Help Text
Prompt
Labels

4 CDE: Internationalization Programmer’s Guide

1

For a quick overview of internationalization, refer to X/Open CAE
Specification System Interface Definition, Issue 4, X/Open Company Ltd.,
1992, ISBN: 1-872630-46-4.

Current State of Internationalization

Previously, the industry supplied many variants of internationalization
from proprietary functions to the new set of standard functions published
by X/Open. Also, there have been different levels of enabling, such as
simple ASCII support, Latin/European support, Asian multibyte support,
and Arabic/Hebrew bidirectional support.

The interfaces defined within the X/Open specification are capable of
supporting a large set of languages and territories, including:

Script Description

Latin Language Americas, Eastern/Western European

Greek Greece

Turkish Turkey

East Asia Japanese, Korean, and Chinese

Indic Thai

Bidirectional Arabic and Hebrew

Furthermore, the goal of the Common Desktop Environment is that
localization of these technologies (translation of messages and
documentation and other adaptation for local needs) be done in a consistent
way, so that a supported user anywhere in the world will find the same
common localized environment from vendor to vendor. End users and
administrators can expect a consistent set of localization features that
provide a complete application environment for support of global software.

Internationalization Standards

Through the work of many companies, the functionality of the
internationalization application program interface has been standardized
over time to include additional requirements and languages, particularly
those of East Asia. This work has been centered primarily in the Portable

Introduction to Internationalization 5

1

Operating System Interface for Computer Environments (POSIX) and
X/Open specifications. The original X/Open specification was published in
the second edition of the X/Open Portability Guide (XPG2) and was based
on the Native Language Support product released by Hewlett-Packard. The
latest published X/Open internationalization standard is referred to as
XPG4.

It is important that each layer within the desktop use the proper set of
standards interfaces defined for internationalization to ensure end users
get a consistent, localized interface. The definition of a locale and the
common open set of locale-dependent functions are based on the following
specifications:

• X Window System, The Complete Reference to Xlib, Xprotocol, ICCCM,
XLFD - X Version, Release 5, Digital Press, 1992, ISBN 1-55558-088-2.

• ANSI/IEEE Standard Portable Operating System Interface for Computer
Environments, IEEE.

• OSF Motif 1.2 Programmer’ Reference, Revision 1.2, Open Software
Foundation, Prentice Hall, 1992, ISBN 0-13-643115-1.

• X/Open CAE Specification Commands and Utilities, Issue 4, X/Open
Company Ltd., 1992, ISBN 1-872630-48-0.

Within this environment, software developers can expect to develop
worldwide applications that are portable, can interoperate across
distributed systems (even from different vendors), and can meet the diverse
language and cultural requirements of multinational users supported by
the desktop standard locales.

Common Internationalization System

Figure 1-2 on page 6 shows a view of how internationalization is pervasive
across a specific single-host system. The goal is that the applications
(clients) are built to be shipped worldwide for the set of locales supported in
the underlying system. Using standard interfaces improves access to global
markets and minimizes the amount of localization work needed by
application developers. In addition, country representatives can be ensured
of consistent localization within systems adhering to the principles of the

6 CDE: Internationalization Programmer’s Guide

1

desktop.

Figure 1-2 Common internationalized system

Conversion Subsystem

libXm

Vendor Shell

Xt

Xlib

XmIm
API

ISO8859

PC Codes

EUC

Latin - ISO

Latin - PC Codes
Japan

Others? ISV

(Geometry Mgmt)

SJIS->JS
eucJP->JIS

Drawing

Text

Client

Text
Icon
Audio
Image

Customization
Printing
Terminal Emulator
...

Window Manager
File Manager
Session Manager
...

 Editors System Utilities Managers

GUI

Applications

Database
Object Media
DME
...

I18N Text Input
Latin

Ideographic

Others

Local

XIM Protocol

Vendor

Input Method EngineLocale Subsystem

Output Method Subsystem

Resource
Management

Locale Mgmt

Interclient
Communication

Menus Text
Drawing

Text Input
Text
Cut/Paste Text Input

Title Name
Icon Name

XmString

XmFontList

List

Buttons

Label

Input Method Subsystem

PC Code->88591

88591->PC Code

Internationalization Framework

Introduction to Internationalization 7

1

Locales

Most single-display clients operate in a single locale that is determined at
run time from the setting of the environment variable, which is usually
$LANG or the xnlLanguage resource. Locale environment variables, such
as LC_ALL, LC_CTYPE, and LANG, can be used to control the environment.
See “Xt Locale Management” on page 104 for more information.

The LC_CTYPE category of the locale is used by the environment to identify
the locale-specific features used at run time. The fonts and input method
loaded by the toolkit are determined by the LC_CTYPE category.

Programs that are enabled for internationalization are expected to call the
XtSetLanguageProc() function (which calls setlocale() by default) to
set the locale desired by the user. None of the libraries call the
setlocale() function to set the locale, so it is the responsibility of the
application to call XtSetLanguageProc() with either a specific locale or
some value loaded at run time. If applications are internationalized and do
not use XtSetLanguageProc() , obtain the locale name from one of the
following prioritized sources to pass it to the setlocale() function:

• A command-line option
• A resource
• The empty string (“”)

The empty string makes the setlocale() function use the $LC_* and
$LANG environment variables to determine locale settings. Specifically,
setlocale (LC_ALL, ““) specifies that the locale should be checked and taken
from environment variables in the order shown in Table 1-1 for the various
locale categories.

Table 1-1 Locale Categories

Category 1st Env. Var. 2nd Env. Var. 3rd Env. Var.

LC_CTYPE: LC_ALL LC_TYPE LANG

LC_COLLATE: LC_ALL LC_COLLATE LANG

LC_TIME: LC_ALL LC_TIME LANG

LC_NUMERIC: LC_ALL LC_NUMERIC LANG

LC_MONETARY: LC_ALL LC_MONETARY LANG

LC_MESSAGES: LC_ALL LC_MESSAGES LANG

8 CDE: Internationalization Programmer’s Guide

1

The toolkit already defines a standard command-line option (-lang) and a
resource (xnlLanguage). Also, the resource value can be set in the server
RESOURCE_MANAGER, which may affect all clients that connect to that
server.

Fonts, Font Sets, and Font Lists

All X clients use fonts for drawing text. The basic object used in drawing
text is XFontStruct , which identifies the font that contains the images to
be drawn.

The desktop already supports fonts by way of the XFontStruct data
structure defined by Xlib; yet, the encoding of the characters within the
font must be known to an internationalized application. To communicate
this information, the program expects that all fonts at the server are
identified by an X Logical Font Description (XLFD) name. The XLFD name
enables users to describe both the base characteristics and the charset
(encoding of font glyphs). The term charset is used to denote the encoding of
glyphs within the font, while the term code set means the encoding of
characters within the locale. The charset for a given font is determined by
the CharSetRegistry and CharSetEncoding fields of the XLFD name. Text
and symbols are drawn as defined by the codes in the fonts.

A font set (for example, an XFontSet data structure defined by Xlib) is a
collection of one or more fonts that enables all characters defined for a
given locale to be drawn. Internationalized applications may be required to
draw text encoded in the code sets of the locale where the value of an
encoded character is not identical to the glyph index. Additionally, multiple
fonts may be required to render all characters of the locale using one or
more fonts whose encodings may be different than the code set of the locale.
Since both code sets and charsets may vary from locale to locale, the
concept of a font set is introduced through XFontSet .

While fonts are identified by their XLFD name, font sets are identified by a
list of XLFD names. The list can consist of one or more XLFD names with
the exception that only the base characteristics are significant; the
encoding of the desired fonts is determined from the locale. Any charsets
specified in the XLFD base name list are ignored and users need only
concentrate on specifying the base characteristics, such as point size, style,

Introduction to Internationalization 9

1

and weight. A font set is said to be locale-sensitive and is used to draw text
that is encoded in the code set of the locale. Internationalized applications
should use font sets instead of font structs to render text data.

A font list is a libXm Toolkit object that is a collection of one or more font
list entries. Font sets can be specified within a font list. Each font list entry
designates either a font or a font set and is tagged with a name. If there is
no tag in a font list entry, a default tag (XmFONTLIST_DEFAULT_TAG) is
used. The font list can be used with the XmString functions found in the
libXm Toolkit library. A font list enables drawing of compound strings that
consist of one or more segments, each identified by a tag. This allows the
drawing of strings with different base characteristics (for example, drawing
a bold and italic string within one operation). Some non-XmString -based
widgets, such as XmText of the libXm library, use only one font list entry in
the font list. Motif font lists use the suffix : (colon) to identify a font set
within a font list.

The user is generally asked to specify either a font list (which may contain
either a font or font set) or a font set. In an internationalized environment,
the user must be able to specify fonts that are independent of the code set
because the specification can be used under various locales with different
code sets than the character set (charset) of the font. Therefore, it is
recommended that all font lists be specified with a font set.

Font Specification
The font specification can be either an X Logical Function Description
(XLFD) name or an alias for the XLFD name. For example, the following
are valid font specifications for a 14-point font:

-dt-application-medium-r-normal-serif-*-*-*-*-p-*-iso8859-1

OR

-*-r-*-14-*iso8859-1

Font Set Specification
The font set specification is a list of names (XLFD names or their aliases)
and is sometimes called a base name list. All names are separated by
commas, with any blank spaces before or after the comma being ignored.
Pattern-matching (wildcard) characters can be specified to help shorten
XLFD names.

10 CDE: Internationalization Programmer’s Guide

1

Remember that a font set specification is determined by the locale that is
running. For example, the ja_JP Japanese locale defines three fonts
(character sets) necessary to display all of its characters; the following
identifies the set of Gothic fonts needed.

• Example of full XLFD name list:

-dt-mincho-medium-r-normal--14-*-*-m-*-jisx0201.1976-0,

-dt-mincho-medium-r-normal--28-*-*-*-m-*-jisx0208.1983-0:

• Example of single XLFD pattern name:

-dt-*-medium-*-24-*-m-*:

The preceding two cases can be used with a Japanese locale as long as fonts
exist that match the base name list.

Font List Specification

A font list specification can consist of one or more entries, each of which can
be either a font specification or a font set specification.

Each entry can be tagged with a name that is used when drawing a
compound string. The tags are application-defined and are usually names
representing the expected style of font; for example, bold , italic ,
bigbold . A null tag is used to denote the default entry and is associated
with the XmFONTLIST_DEFAULT_TAG identifier used in XmString
functions.

A font tag is identified when it is prefixed with an = (equal sign); for
example, =bigbold (this matches the first font defined at the server). If an
= is specified but there is no name following it, the specification is
considered the default font list entry.

A font set tag is identified when it is prefixed with a : (colon); for example,
:bigbold (this matches the first server set of fonts that satisfy the locale).
If a : is specified but no name is given, the specification is considered the
default font list entry. Within a font list entry specification, a base name
list is separated by ; (semicolons) rather than by , (commas).

Example Font List Specification

For the Latin 1 locales, enter:

-*-r-*-14-*: ,\# default font list entry

Introduction to Internationalization 11

1

-*-b-*-18-*:bigbold# Large Bold fonts

 Base Font Name List Specification

The base font name list is a list of base font names associated with a font
set as defined by the locale. The base font names are in a comma-separated
list and are assumed to be characters from the portable character set;
otherwise, the result is undefined. Blank space immediately on either side
of a separating comma is ignored.

Use of XLFD font names permits international applications to obtain the
fonts needed for a variety of locales from a single locale-independent base
font name. The single base font name specifies a family of fonts whose
members are encoded in the various charsets needed by the locales of
interest.

An XLFD base font name can explicitly name the font’s charset needed for
the locale. This enables the user to specify an exact font for use with a
charset required by a locale, fully controlling the font selection.

If a base font name is not an XLFD name, an attempt is made to obtain an
XLFD name from the font properties for the font.

The following algorithm is used to select the fonts that are used to display
text with font sets.

For each charset required by the locale, the base font name list is searched
for the first of the following cases that names a set of fonts that exist at the
server.

• The first XLFD-conforming base font name that specifies the required
charset or a superset of the required charset in its CharSetRegistry and
CharSetEncoding fields.

• The first set of one or more XLFD-conforming base font names that
specify one or more charsets that can be remapped to support the
required charset. The Xlib implementation can recognize various
mappings from a required charset to one or more other charsets and use
the fonts for those charsets. For example, JIS Roman is ASCII with the
~ (tilde) and \ (backslash) characters replaced by the yen and overbar
characters; Xlib can load an ISO8859-1 font to support this character set
if a JIS Roman font is not available.

12 CDE: Internationalization Programmer’s Guide

1

• The first XLFD-conforming font name, or the first non-XLFD font name
for which an XLFD font name can be obtained, combined with the
required charset (replacing the CharSetRegistry and CharSetEncoding
fields in the XLFD font name). In the first instance, the implementation
can use a charset that is a superset of the required charset.

• The first font name that can be mapped in some locale-dependent
manner to one or more fonts that support imaging text in the charset.

For example, assume a locale requires the following charsets:

• ISO8859-1
• JISX0208.1983
• JISX0201.1976
• GB2312-1980.0

You can supply a base font name list that explicitly specifies the charsets,
ensuring that specific fonts are used if they exist, as shown in the following
example:

“-dt-mincho-Medium-R-Normal-*-*-*-*-*-M-*-JISX0208.1983-0,\
-dt-mincho-Medium-R-Normal-*-*-*-*-*-M- \
*-JISX0201.jisx0201\.1976-1,\
-dt-song-Medium-R-Normal-*-*-*-*-*-M-*-GB2312-1980.0,\
-*-default-Bold-R-Normal-*-*-*-*-M-*-ISO8859-1"

You can supply a base font name list that omits the charsets, which selects
fonts for each required code set, as shown in the following example:

“-dt-Fixed-Medium-R-Normal-*-*-*-*-*-M-*,\
-dt-Fixed-Medium-R-Normal-*-*-*-*-*-M-*,\
-dt-Fixed-Medium-R-Normal-*-*-*-*-*-M-*,\
-*-Courier-Bold-R-Normal-*-*-*-*-M-*”

Alternatively, the user can supply a single base font name that selects from
all available fonts that meet certain minimum XLFD property
requirements, as shown in the following example:

“-*-*-*-R-Normal--*-*-*-*-*-M-*”

Text Drawing

The desktop provides various functions for rendering localized text,
including simple text, compound strings, and some widgets. These include
functions within the Xlib and Motif libraries.

Introduction to Internationalization 13

1

Input Methods

The Common Desktop Environment provides the ability to enter localized
input for an internationalized application that is using the Xm Toolkit.
Specifically, the XmText[Field] widgets are enabled to interface with
input methods provided by each locale. In addition, the dtterm client is
enabled to use input methods.

By default, each internationalization client that uses the libXm Toolkit uses
the input method associated with a locale specified by the user. The
XmNinputMethod resource is provided as a modifier on the locale name to
allow a user to specify any alternative input method.

The user interface of the input method consists of several elements. The
need for these areas is dependent on the input method being used. They are

14 CDE: Internationalization Programmer’s Guide

1

usually needed by input methods that require complex input processing
and dialogs. See Figure 1-3 for an illustration of these areas.

Figure 1-3 Example of VendorShell widget with auxiliary (Japanese)

 Label widget

Text widget

MainWindow

Status

Application=ApplicationShell
 area widget

 (VendorShell)

preedit Area

Auxiliary
(ZENKOUHO)

Introduction to Internationalization 15

1

Preedit Area

A preedit area is used to display the string being preedited. The input
method supports four modes of preediting: OffTheSpot, OverTheSpot
(default), Root, and None.

Note – A string that has been committed cannot be reconverted. The status
of the string is moved from the preedit area to the location where the user
is entering characters..

OffTheSpot

In OffTheSpot mode preediting using an input method, the location of
preediting is fixed at just below the MainWindow area and on the right side
of the status area as shown in Figure 1-4. A Japanese input method is used
for the example.

16 CDE: Internationalization Programmer’s Guide

1

Figure 1-4 Example of OffTheSpot preediting with the VendorShell widget
(Japanese)

In the system environment, when preediting using an input method, the
preedit string being preedited may be highlighted in some form depending
on the input method.

To use OffTheSpot mode, set the XmNpreeditType resource of the
VendorShell widget either with the XtSetValues() function or with a
resource file. The XmNpreeditType resource can also be set as the resource
of a TopLevelShell, ApplicationShell , or DialogShell widget, all of
which are subclasses of the VendorShell widget class.

OverTheSpot (Default)

In OverTheSpot mode, the location of the preedit area is set to where the
user is trying to enter characters (for example, the insert cursor position of
the Text widget that has the current focus). The characters in a preedit
area are displayed at the cursor position as an overlay window, and they
can be highlighted depending on the input method.

Introduction to Internationalization 17

1

Although a preedit area may consist of multiple lines in OverTheSpot
mode. The preedit area is always within the MainWindow area and cannot
cross its edges in any direction.

Keep in mind that although the preEdit string under construction may be
displayed as though it were part of the Text widget’s text, it is not passed
to the client and displayed in the underlying edit screen until preedit ends.
See Figure 1-5 on page 17 for an illustration.

To use OverTheSpot mode explicitly, set the XmNpreeditType resource of
the VendorShell widget either with the XtSetValues() function or with
a resource file. The XmNpreeditType resource can be set as the resource of
a TopLevelShell , ApplicationShell , or DialogShell widget because
these are subclasses of the VendorShell widget class.

Figure 1-5 Example of OverTheSpot preediting with the VendorShell widget
(Japanese)

18 CDE: Internationalization Programmer’s Guide

1

Root

In Root mode, the preedit and status areas are located separate from the
client’s window. The Root mode behavior is similar to OffTheSpot. See
Figure 1-6 for an illustration.

Figure 1-6 Example of Root preediting with the VendorShell widget (Japanese)

Status Area

A status area reports the input or keyboard status of the input method to
the users. For OverTheSpot and OffTheSpot styles, the status area is
located at the lower left corner of the VendorShell window.

• If Root style, the status area is placed outside the client window.

• If the preedit style is OffTheSpot mode, the preedit area is displayed to
the right of the status area.

The VendorShell widget provides geometry management so that a status
area is rearranged at the bottom corner of the VendorShell window if the
VendorShell window is resized.

Introduction to Internationalization 19

1

Auxiliary Area

An auxiliary area helps the user with preediting. Depending on the
particular input method, an auxiliary area can be created. The Japanese
input method in Figure 1-3 on page 14 creates the following types of
auxiliary areas:

• ZENKOUHO
• JIS NUMBER
• Switching conversion method

• SAKIYOMI-REN-BUNSETSU
• IKKATSU-REN-BUNSETSU
• TAN-BUNSETSU
• FUKUGOU-GO

MainWindow Area

A MainWindow area is the widget used as the working area of the input
method. In the system environment, the sole child of the VendorShell
widget is the MainWindow widget. It can be any container widget, such as
a RowColumn widget. The user creates the container widget as the child of
the VendorShell widget.

Focus Area

A focus area is any descendant widget under the MainWindow widget
subtree that currently has focus. The Motif application programmer using
existing widgets does not need to worry about the focus area. The
important information to remember is that only one widget can have input
method processing at a time. The input method processing moves to the
window (widget) that currently has the focus.

Interclient Communications Conventions (ICCC)

The Interclient Communications Conventions (ICCC) defines the
mechanism used to pass text between clients. Because the system is
capable of supporting multiple code sets, it may be possible that two
applications that are communicating with each other are using different
code sets. ICCC defines how these two clients agree on how the data is

20 CDE: Internationalization Programmer’s Guide

1

passed between them. If two clients have incompatible character sets (for
example, Latin1 and Japanese (JIS)), some data may be lost when
characters are transported.

However, if two clients have different code sets but compatible character
sets, ICCC enables these clients to pass information with no data lost. If
code sets of the two clients are not identical, CompoundText encoding is
used as the interchange with the COMPOUND_TEXT atom used. If data being
communicated involves only portable characters (7-bit, ASCII, and others)
or the ISO8859-1 code set, the data is communicated as is with no
conversion by way of the XA_STRING atom.

Titles and icon names need to be communicated to the Window Manager
using the COMPOUND_TEXT atom if nonportable characters are used;
otherwise, the XA_STRING atom can be used. Any other encoding is limited
to the ability to convert to the locale of the Window Manager. The Window
Manager runs in a single locale and supports only titles and icon names
that are convertible to the code set of the locale under which it is running.

The libXm library and all desktop clients should follow these conventions.

21

Internationalization and the
Common Desktop Environment 2

Multiple environments may exist within a common open system for support
of different national languages. Each of these national environments is
called a locale, which considers the language, its characters, fonts, and the
customs used to input and format data. The Common Desktop Environment
is fully internationalized such that any application can run using any locale
installed in the system.

Locale Management

For the desktop, most single-display clients operate in a single locale that
is determined at run time from the setting of the environment variable,
which is usually $LANG. The Xm library (libXm) can only support a single

Locale Management 21

Font Management 23

Drawing Localized Text 31

Inputting Localized Text 34

Extracting Localized Text 41

Localized Resources 45

Operating System Internationalized Functions 52

22 CDE: Internationalization Programmer’s Guide

2

locale that is used at the time each widget is instantiated. Changing the
locale after the Xm library has been initialized may cause unpredictable
behavior.

All internationalized programs should set the locale desired by the user as
defined in the locale environment variables. For programs using the
desktop toolkit, the programs call the XtSetLanguageProc() function
prior to calling any toolkit initialization function; for example,
XtAppInitialize() . This function does all of the initialization necessary
prior to the toolkit initialization. For nondesktop programs, the programs
call the setlocale() function to set the locale desired by the user at the
beginning of the program.

Locale environment variables (for example, LC_ALL, LC_CTYPE, and LANG)
are used to control the environment. Users should be aware that the
LC_CTYPE category of the locale is used by the X and Xm libraries to
identify the locale-specific features used at run time. Yet, the LC_MESSAGES
category is used by the message catalog services to load locale-specific text.
Refer to “Extracting Localized Text” on page 41 for more information.
Specifically, the fonts and input method loaded by the toolkit are
determined by the setting of the LC_CTYPE category.

String encoding (for example, ISO8859-1 or Extended UNIX Code (EUC), in
an application’s source code, resource files, and User Interface Language
(UIL) files) should be the same as the code set of the locale where the
application runs. If not, code conversion is required.

All components are shipped as a single, worldwide executable and are
required to support the R5 sample implementation set of locales:
US, Western/Eastern Europe, Japan, Korea, China, and Taiwan.

Applications should be written so that they are code-set-independent and
include support for any multibyte code set.

The following are the functions used for locale management:

• XtSetLanguageProc()
• setlocale()
• XSupportsLocale()
• XSetLocaleModifiers()

Internationalization and the Common Desktop Environment 23

2

Font Management

When rendering text in an X WindowsTM client, at least two aspects are
sensitive to internationalization:

• Obtaining the localized text itself

• Selecting the one or more fonts that contain all the glyphs needed to
render the characters in the localized text.

“Extracting Localized Text” on page 41 describes how to choose the correct
fonts to render localized text.

Matching Fonts to Character Sets

A font contains a set of glyphs used to render the characters of a locale.
However, you may also want to do the following for a given locale:

• Determine the fonts needed
• Specify the necessary fonts
• Determine the charset of a font in a resource file
• Choose multiple fonts per locale

The last two fields of a font XFLD identify which glyphs are contained in a
font and which value is used to obtain a specific glyph from the set. These
last two fields identify the encoding of the glyphs contained in the font.

For example:

-adobe-courier-medium-r-normal--24-240-75-75-m-150-iso8859-1

The last two fields of this XLFD name are iso8859 and 1. These fields
specify that the ISO8859-1 standard glyphs are contained in the font.
Further, it specifies that the character code values of the ISO8859-1
standard are used to index the corresponding glyph for each character.

The font charset used by the application to render data depends on the
locale you select. Because the font charset of the data changes is based on
the choice of locale, the font specification must not be hardcoded by the
application. Instead, it should be placed in a locale-specific app-defaults
file, allowing localized versions of the app-defaults file to be created.

24 CDE: Internationalization Programmer’s Guide

2

Further, the font should be specified as a fontset. A fontset is an Xlib
concept in which an XLFD is used to specify the fonts. The font charset
fields of the XLFD are specified by the Xlib code that creates the fontset
and fills in these fields based on the locale that the user has specified.

For many languages (such as Japanese, Chinese, and Korean), multiple
font charsets are combined to support single encoding. In these cases,
multiple fonts must be opened to render the character data. Further, the
data must be parsed into segments that correspond to each font, and in
some cases, these segments must be transformed to convert the character
values into glyphs indexes. The XFontset , which is a collection of all fonts
necessary to render character data in a given locale, also deals with this set
of problems. Further, a set of rendering and metric routines are provided
that internally take care of breaking strings into character-set-consistent
segments and transforming values into glyph indexes. These routines
relieve the burden of the application developer, who needs only the user
fontsets and the new X11R5 rendering and metric application program
interfaces (APIs).

Font Objects

This section describes the following font objects:

• Font sets
• Fonts
• Font lists

Font Sets

Generally, all internationalized programs expecting to draw localized text
using Xlib are required to use an XmFontSet for specifying the locale-
dependent fonts. Specific fonts within a font set should be specified using
XLFD naming conventions without the charset field specified. The resource
name for an XFontset is *fontSet . Refer to “Localized Resources” on
page 45 for a list of font resources.

Applications directly using Xlib to render text (as opposed to using
XmString functions or widgets) may take advantage of the string-to-
fontSet converter provided by Xt. For example, the following code fragment

Internationalization and the Common Desktop Environment 25

2

shows how to obtain a fontset when using Xt and when not using Xt:

/* pardon the double negative... means "If using Xt..." */
#ifndef NO_XT
typedef struct {

XFontSet fontset;
char *foo;

} ApplicationData, *ApplicationDataPtr;
static XtResource my_resources[] = {

{ XtNfontSet, XtCFontSet, XtRFontSet, sizeof (XFontSet),
XtOffset (ApplicationDataPtr, fontset), XtRString,
 "*-18-*"}}

#endif /* NO_XT */
...
#ifdef NO_XT
fontset = XCreateFontSet (dpy, "*-18-*", &missing_charsets,

&num_missing_charsets. &default_string);
if (num_missing_charsets > 0) {

(void) fprintf(stderr, "&s: missing charsets.\n",
program_name);

XFreeStringList(missing_charsets);
}
#else
XtGetApplicationResources(toplevel, &data, my_resources,

 XtNumber(my_resources), NULL, 0);
fontset = data.fontset;
#endif /* NO_XT */

Fonts

Internationalized programs should avoid using fonts directly, that is,
XFontStruct , unless they are being used for a specific charset and a
specific character set. Use of XFontStruct may be limiting if the server
you are connecting to does not support the specific charsets needed by a
locale. The resource name for an XFontStruct is *font .

Font Lists

All programs using widgets or XmString to draw localized text are
required to specify an XFontList name for specifying fonts. A font list is a
list of one or more fontsets or fonts, or both. It is used to convey the list of
fonts and fontsets a widget should use to render text. For more complicated
applications, a font list may specify multiple font sets with each font set

26 CDE: Internationalization Programmer’s Guide

2

being tagged with a name; for example, Bold, Large, Small, and so on. The
tags are to be associated with a tag of an XmString segment. A tag may be
used to identify a specific font or fontset within a font list.

Font Set and Font List Syntax

Table 2-1 shows the syntax for a font set and font list.

Here are some examples of font resource specifications:

app_foo*fontList: -adobe-courier-medium-r-normal--24-240-75-75-m-\
150-*:

The preceding fontList specifies a fontset, consisting of one or more 24-
point Adobe Courier fonts, as appropriate for the user’s locale.

app_foo*fontList: -adobe-courier-medium-r-normal--18-*; *-gothic-\
-18-:

This fontList specifies a fontset consisting of an 18-point Courier font (if
available) for some characters in the users data, and an 18-point Gothic
font for the others.

Motif-based applications sometimes need direct access to the font set
contained in a font list. For example, an application that uses a
DrawingArea widget may want to label one of the images drawn there.
The following sample code shows how to extract a font set from a font list.
In this example, the tag XmFONTLIST_DEFAULT_TAG looks for the font set
because this is the tag that says “codeset of the locale.” Applications should
use the tag XmFONTLIST_DEFAULT_TAG for any string that could contain
localized data.

Table 2-1 Font Set and Font List Syntax

Resource Type XLFD Separator Terminator FontEntry Separator

*fontSet:
(Xlib)

comma None None

*fontList:
(Motif)

semicolon colon comma

Internationalization and the Common Desktop Environment 27

2

XFontSet FontList2FontSet(XmFontList fontlist)
{
XmFontContext context;
XmFontListEntry next_entry;
XmFontType type_return = XmFONT_IS_FONT;
char* font_tag;
XFontSet fontset;
XFontSet first_fontset;
Boolean have_font_set = False;

if (!XmFontListInitFontContext(&context, fontlist)) {
XtWarning(“fl2fs: can’t create fontlist context...”);
exit 0;

}

while ((next_entry = XmFontListNextEntry(context) != NULL) {

fontset = (XFontSet) XmFontListEntryGetFont(next_entry,
&type_return);

 if (type_return == XmFONT_IS_FONTSET) {

font_tag = XmFontListEntryGetTag(next_entry);

if (!strcmp(XmFONTLIST_DEFAULT_TAG, font_tag) {
return fontset;

}
/* Remember the 1st fontset, just in case... */
if (!have_font_set) {

first_fontset = fontset;
have_font_set = True;

}
 }
}
if (have_font_set)
 return first_fontset;
return (XFontSet)NULL;
}

Font Functions

The following Xlib font management API functions are available:

• XCreateFontSet()
• XLocaleOfFontSet()
• XFontsOfFontSet()

28 CDE: Internationalization Programmer’s Guide

2

• XBaseFontNameListOfFontSet()
• XFreeFontSet()

The following Motif FontListAPI functions are available:

• XmFontListEntryCreate()
• XmFontListEntryAppend()
• XmFontListEntryFree()
• XmFontListEntryGetTag()
• XmFontListEntryGetFont()
• XmFontListEntryLoad()

Font Charsets

To improve basic interchange, fonts are organized according to the standard
X-Consortium font charsets.

Default Font Set Per Language Group

Selecting base font names of a font set associated with a developer’s
language is usually easy because the developer is familiar with the
language and the set of fonts needed.

Yet, when selecting the base font names of a font set for various locales,
this task can be difficult because an XLFD font specification consists of 15
fields. For localized usage, the following fields are critical for selecting font
sets:

• FAMILY_NAME %F

• WEIGHT_NAME %W

• SLANT %S

• ADD_STYLE %A

• SPACING %SP

This simplifies the number of fields, yet the possible values for each of
these fields may vary per locale. The actual point size (POINT_SIZE) may
vary across platforms.

Throughout this documentation, the following convention should be used
when specifying localized fonts:

Internationalization and the Common Desktop Environment 29

2

-dt- %F- %W- %S-normal- %A-*-*-*- %SP-*

The following describes the minimum set of recommended values for each
field to be used within the desktop for the critical fields when specifying
font sets in resource (app-defaults) files.

Latin ISO8859-1 Fonts

FOUNDRY ‘dt’

FAMILY_NAME ‘interface user’
‘interface system’
‘application’

WEIGHT_NAME medium or bold

SLANT r or i

ADD_STYLE sans or serif

SPACING p or m

Other ISO8859 Fonts

The same values defined for ISO8859-1 are recommended.

JIS Japanese Font

FOUNDRY ‘dt’

FAMILY_NAME Gothic or Mincho

WEIGHT_NAME medium or bold

SLANT r

ADD_STYLE *

SPACING m

KSC Korean Font

FOUNDRY ‘dt’

FAMILY_NAME Totum or Pathang

30 CDE: Internationalization Programmer’s Guide

2

WEIGHT_NAME medium or bold

SLANT r

ADD_STYLE *

SPACING m

Note – The FAMILY_NAME values may change depending on the official
romanization of the two common font families in use. As background,
Totum corresponds to fonts typically shipped as Gothic, Kodig, or Dotum;
Pathang corresponds to fonts typically shipped as Myungo or Myeongjo.

CNS Traditional Chinese Font

FOUNDRY ‘dt’

FAMILY_NAME Sung and Kai

WEIGHT_NAME medium or bold

SLANT r

ADD_STYLE *

SPACING m

GB Simplified Chinese Font

FOUNDRY ‘dt’

FAMILY_NAME Song and Kai

WEIGHT_NAME medium or bold

SLANT r

ADD_STYLE *

SPACING m

Internationalization and the Common Desktop Environment 31

2

Drawing Localized Text

There are several mechanisms provided to render a localized string,
depending on the Motif or Xlib library being used. The following discusses
the interfaces that are recommended for internationalized applications. Yet,
it is recommended that all localized data be externalized from the program
using the simple text.

Simple Text

The following Xlib multibyte (char*) drawing functions are available for
internationalization:

• XmbDrawImageString()
• XmbDrawString()
• XmbDrawText()

The following Xlib wide character (wchar_t*) drawing functions are
available for internationalization:

• XwcDrawImageString()
• XwcDrawString()
• XwcDrawText()

The following Xlib multibyte (char*) font metric functions are available for
internationalization:

• XExtentsOfFontSet()
• XmbTextEscapement()
• XmbTextExtents()
• XmbTextPerCharExtents

The following Xlib wide character (char_t*) font metric functions are
available for internationalization:

• XExtentsOfFontSet()
• XwcTextEscapement()
• XwcTextExtents()
• XwcTextPerCharExtents

32 CDE: Internationalization Programmer’s Guide

2

XmString (Compound String)

For the Xm library, localized text should be inserted into XmString
segments using XmStringCreateLocalized() . The tag associated with
localized text is XmFONTLIST_DEFAULT_TAG, which is used to match an
entry in a font list. Applications that mix several fonts within a compound
string using XmStringCreate() should use XmFONTLIST_DEFAULT_TAG
as the tag for any localized string.

More importantly, for interclient communications, the
XmStringConvertToCT() function associates a segment tagged as
XmFONTLIST_DEFAULT_TAG as being encoded in the code set of the locale.
Otherwise, depending on the tag name used, the Xm library may not be
able to properly identify the encoding on interclient communications for
text data.

A localized string segment inside an XmString can be drawn with a font
list having a font set with XmFONTLIST_DEFAULT_TAG. Use of a localized
string is recommended for portability.

The following is an example of creating a font list for drawing a localized
string:
XmFontList CreateFontList(Display* dpy, char* pattern)
}

SmFontListEntry font_entry;
XmFontList fontlist;
font_entry = XmFontListEntryLoad(dpy, pattern,

XmFONT_IS_FONTSET,
XmFONTLIST_DEFAULT_TAG);

fontlist = XmFontListAppendEntry(NULL, font_entry);
/* XmFontListEntryFree(font_entry); */

if (fontlist == NULL) {
XtWarning(“fl2fs: can’t create fontlist...”);
exit (0);

}

return fontlist;
}

int main(argc,argv)
int argc;

Internationalization and the Common Desktop Environment 33

2

char **argv;
}

Display *dpy; /* Display */
XtAppContext app_context;/* Application Context */

XmFontList fontlist;
XmFontSet fontset;
XFontStruct** fontstructs;
char** fontnames;
int i,n;

char *progrname; /* program name without the full pathname */

if (progname=strrchr(argv[0], ‘/’)){
progname++;

}
else {

progname = argv[0];
}

/* Initialize toolkit and open display.
*/

XtSetLanguageProc(NULL, NULL, NULL);
XtToolkitInitialize():
app_context = XtCreateApplicationContext();
dpy = XtOpenDisplay(app_context, NULL, progname, “XMdemos”,

NULL, 0, &argc, argv);
if (!dpy) {

XtWarning(“fl2fs: can’t open display, exiting...”);
exit(0);

}

fontlist = CreateFontList(dpy, argv[1]);
fontset = FontList2FontSet(fontlist);

/*
* Print out BaseFontNames of Fontset
*/

n = XFontsOfFontSet(fontset, &fontstructs, &fontnames);

printf(“Fonts for %s is %d\n”, argv[1], n);

for (i = 0 ; i < n ; ++i) printf(“font[%d} - %s\n”, i,\
fontnames[i]);

34 CDE: Internationalization Programmer’s Guide

2

exit(1);

}

A localized string can be written in resource files because a compound
string specified in resource files has a locale-encoded segment with
Xm_FONTLIST_DEFAULT_TAG. For example, the fontList resource in the
following example is automatically associated with
XmFONTLIST_DEFAULT_TAG.

labelString:Japanese string

fontList:-dt-interface system-medium-r-normal-L-*-*-*-*-*-*:

The following set of XmString functions is recommend for
internationalization:

• XmStringCreateLocalized()
• XmStringDraw()
• XmStringDrawImage()
• XmStringDrawUnderline()

The following set of XmString functions is not recommend for
internationalization because it takes a direction that may not work with
languages not covered:

• XmStringCreateLtoR()
• XmStringSegementCreate()

Inputting Localized Text

Input for localized text is typically done by using either the local input
method or the network-based input method.

The local input method means that the input method is built in the Xlib. It
is typically used for a language that can be composed using simple rules
and that does not require language-specific features. The network-based
input method means that the actual input method is provided as separate
servers, and Xlib communicates with them through the XIM protocol to do
the language-specific composition.

Basic Prompts and Dialogs

It is strongly recommended that applications use the Text widget to do all
text input.

Internationalization and the Common Desktop Environment 35

2

Input within a DrawingArea Widget

Many applications do their own drawing within a widget based on input. To
provide consistency within the desktop environment, XmIm functions are
recommended because the style and geometry management needed for an
input method is managed by the VendorShell widget class. The
application need only worry about handling key events, focus, and
communicating the current input location within the drawing area. Using
these functions requires some basic knowledge of the underlying Xlib input
method architecture, but a developer need only be concerned with the XmIm
pieces of information.

Application-Specific and Language-Specific Intermediate Feedbacks

Some applications may need to directly display intermediate feedback
during preediting, such as when an application exceeds the functions
supplied by Xlib. Examples of this include for PostScriptTM rendering or
using vertical writing.

The core Xlib provides the common set of interfaces that allow an
application to display intermediate feedback during preediting. By
registering the application's callbacks and setting the preediting style to
XNPreeditCallbacks , an application can get the intermediate preediting
data from the input method and can draw whatever it needs.

Applications intended to do sophisticated language processing may
recognize extensions within a specific XIM implementation and its input
method engines. Such applications are on the leading edge and will require
familiarity with details of the XIM functions.

Text and TextField Widget

For basic prompts and dialogs, the Text or TextField widget is
recommended. Besides resources, all of the XmTextField and XmText
functions are available for getting and for setting localized text inside a
Text[Field] widget.

36 CDE: Internationalization Programmer’s Guide

2

Most XmText functions are based on the number of characters, not on the
number of bytes. For example, all XmTextPosition() function positions
are character positions, not byte positions. The XmTextGetMaxLength()
function returns the number of bytes. When in doubt, remember that
positions are always in character units.

The width of a Text or TextField widget is determined by the resource
value of XmNcolumns. But, this value means the number of the widest
characters in the font set, not the number of bytes or columns. For
example, suppose that you have selected a variable-width font for the Text
widget. The character i may have a width of 1 pixel, while the character W
may have a width of 7 pixels. When a value of 10 is set for XmNcolumns,
this is considered a request to make the Text widget wide enough to be
able to display at least 10 characters. So the Text widget must use the
width of the widest character to determine the pixel width of its core
widget. With this example, it may be able to display 10 W characters in the
widget, or 70 i characters. This structure for XmNcolumns may cause
problems in locales whose code set is a multibyte and a multicolumn
encoding. As such, this value should be set within a localized resource.

The following section identifies the set of functions available for
applications that are used to manage input methods. For applications that
use the Text and TextField widgets, refer to “Input Method (Keyboards)”
on page 50.

Character Input within Customized Widgets Not Using Text[Field] Widgets

In some cases, an application may obtain character input from the user but
does not use a TextField or Text widget to do so. For example, an
application using a DrawingArea widget may allow the user to type in text
directly into the DrawingArea. In this case, the application could use the
Xlib XIM functions as described in later sections, or alternatively, the
application may use the XmIm functions of Motif 1.2. The XmIm functions
allow an application to connect to and interact with an input method with a
minimum of code. Further, it allows the Motif VendorShell widget to take
care of geometry management for the input method on the application’s
behalf.

Internationalization and the Common Desktop Environment 37

2

Although the XmIm functions are shipped in all implementations of Motif
1.2, the functions are not documented in Motif 1.2. OSF has announced its
intention to augment and document the XmIm functions for Motif 2.0. The
functions described here are the Motif 1.2 XmIm functions.

Note – The Motif 1.2 XmIm functions do not support preedit callback style
or status callback style input methods. The preedit callback can be used by
the Xlib API. For more information, see “XIM Management” on page 39.

Following are the XmIm functions you can safely use in a Motif 1.2-based
application. The formal description of the parameters and types can be
found in the Xm.h header file.

Function Name Description

XmImRegister() Performs XOpenIM() and queries the input method
for supported styles.

XmImSetValues() Negotiates and selects the preedit and status styles.

XmImSetFocusValues()

Creates the XIC, if one does not exist. Notifies the
input method that the widget has gained the focus.
Sets the values passed to the XIC.

XmImUnsetFocus() Notifies the input method that the widget has lost
the focus.

XmImMbLookupString()

Xm equivalent of XmbLookupString() ; converts
one or more key events into a character. Return
value is identical to XmbLookupString() .

XmImUnregister() Disconnects the input method and the widget,
allowing connection to a new input method. Does not
necessarily close the input method (implementation-
dependent).

The XmImSetValues() and XmImSetFocusValues() functions allow the
application to pass information needed by the input method. It is important
for the application to pass all values even though not all values are needed
(for each supports preedit and status style). This is because the application
can never be sure which style has been selected by the user or the

38 CDE: Internationalization Programmer’s Guide

2

VendorShell widget. Following are the arguments and data types of each
value that should be passed in each call to the XmImSet[Focus]Values()
function.

Argument Name Data Type

XmNbackground Pixel

XmNforeground Pixel

XmNbackgroundPixmap

Pixmap

XmNspotLocation XPoint

XmNfontList Motif fontlist

XmNlineSpace int (pixel height between consecutive baselines)
The XmIm functions are used in the following manner:

• Before initializing the toolkit, the application should call
XtSetLanguageProc(NULL, NULL, NULL) to initialize the locale.

• After creating the widget where character input is desired, the
application should call XmImRegister(widget) to open the input
method and establish a connection.

• After establishing a connection to the input method, the application
should pass the initial XIC values to the input method by calling
XmImSetValues() and passing all of the values listed above. This
function takes an arg_list and a number_args argument. The arglist is
loaded by calling XtSetArg() .

• Add an event handler, through the XtAddEventHandler() function, for
the manager widget of the widget obtaining input from the input
method. The event handler is for the FocusChangeMask mask. The
handler should call XmImSetFocusValues() when gaining focus and
should call XmImUnsetFocus() when losing focus. When setting focus
for the input method, pass the full set of values listed above.

• Add a DestroyCallback for the widget obtaining input from the input
method. In the destroy callback, call XmImUnregister() to notify the
input method that you are breaking the connection between the widget
and the input method.

Internationalization and the Common Desktop Environment 39

2

• Use XmImSetValues() to notify the input method any time one or more
of the input method values listed above change (for example,
spotLocation).

XIM Management
Following are the XIM management functions.

Function Name Description

XOpenIM() Establishes a connection to an input method.

XCloseIM() Removes a connection to an input method previously
established with a call to XOpenIM() .

XGetIMValues() Queries the input method for a list of properties.
Currently, the only standard argument in Xlib is
XNQueryInputStyle .

XDisplayOfIM() Returns the display associated with an input
method.

XLocaleOfIM() Returns a string identifying the locale of the input
method. There are no standard strings; the value
returned by this call is implementation-defined.

XCreateIC() Creates an input context. The input context contains
both the data required (if any) by an input method
and the information required to display that data.

XDestroyIC() Destroys an input context, freeing any associated
memory.

XIMOfIC() Returns the input method currently associated with
a given input context.

XSetICValues() Passes zero or more values to an input context to
control input of character data, or control display of
preedit or status information. A table of all valid
input context value arguments can be found in the
X11R5 specification.

XGetICValues() Queries an input context to get zero or more input
context values. A table of all valid input context
value arguments can be found in the X11R5
specification.

40 CDE: Internationalization Programmer’s Guide

2

XIM Event Handling

Following are the XIM event handling functions:

Function Name Description

XmbLookupString() Converts keypress events into characters.

XwcLookupString() Converts keypress events into wide characters.

XmbResetIC() Resets an input context to its initial state. Any input
pending on that context is deleted. Returns the
current preedit value as a char* string. Depending
on the implementation of the input method, the
return value may be NULL.

XwcResetIC() Resets an input context to its initial state. Any input
pending on that context is deleted. Returns the
current preedit value as a wchar_t* string.

XFilterEvent() Allows the input method to process any incoming
events to the clients before the application processes
them.

XSetICFocus() Notifies the input method that the focus window
attached to the specified input context has received
keyboard focus.

XUnsetICFocus() Notifies the input method that the specified input
context has lost the keyboard focus and that no more
input is expected on the focus window attached to
that context.

XIM Callback

X Input Methods (XIMs) provide three categories of callbacks. One is
preedit callbacks, which allow applications to display the intermediate
feedbacks during preediting. The second is geometry callbacks, which allow
applications and XIM to negotiate the geometry to be used for XIM. The
third is status callbacks, which allow applications to display the internal
status of XIM.

Internationalization and the Common Desktop Environment 41

2

Extracting Localized Text

Although there are different methods to localize an application, the general
rule is that any language-dependent information is outside the application
and is stored in separate directories identified by a locale name.

This section describes how the user, the application developer, and the
implementation combine to establish the language environment of the
application. Two general approaches to localizing applications are also
discussed. The following three methods can be used:

• Resource files
• Message catalogs
• Private files

Resource Files

This is the GUI toolkit mechanism for customizing all sorts of information
about an application. The Intrinsic library (libXt) provides a sophisticated
mechanism for merging the command-line options, application-defined
resources, and user-defined resources. Resource files can be used for
extracting localized text. The difference between resource files and message
catalogs is that the resource database is compiled each time it is loaded. As
such, care should be taken when deciding which strings to place in resource
files and which to place in message catalogs.

Table 2-2 XIM Callbacks

XIM Preedit Callbacks XIM Status Callbacks XIM Preedit Caret
Callbacks

XIM Geometry
Callbacks

(*PreeditStart-
Callback)()

(*StatusStart-
Callback)()

(*PreeditCaret-
Callback)()

(*GeometryCall-
back)()

(*PreeditDone-
Callback)()

(*StatusDone-
Callback)()

(*PreeditDraw-
Callback)()

(*StatusDraw-
Callback)()

42 CDE: Internationalization Programmer’s Guide

2

Also note that the Xm library functions do not depend on the
LC_MESSAGE category when specifying the location from which localized
resources are loaded. Refer to the XtSetLanguageProc() man page for
more information.

Message Catalogs

This is the traditional operating system mechanism for accessing external
databases containing localized text. These functions load a precompiled
catalog file that is ready to be accessed. They also provide defaults within
the actual program for cases when no catalogs may be found.

The messaging support is based on both the XPG4 and System V Release 4
(SVR4) interfaces for accessing message catalogs.

Private Files

Private databases can be used by applications to provide generic,
customized databases for more than just localization text. Usually, such
databases do contain text. It is recommended that if the database is to be
spread out over many files, some run-time indirect access of localized text
be provided. Without this access, localization for the average user is a
difficult effort. Generally, such private file formats are discouraged by
groups doing localization. But problems are reduced if a tool is provided
specifically for localization of text only.

Message Guidelines

Message guidelines foster consistent formatting of message and help
information. They also promote creation and maintenance of messages that
can be easily understood by inexperienced English-speaking end users, as
well as by inexperienced translators. Use these guidelines to create
message files that are consistent in language and clear in meaning.
Distribution of these guidelines enable programmers and writers to
coordinate their message-writing efforts. Default messages, external
message files, and planned delivery of translatable messages are required
for each executable to fully implement international language support.

Internationalization and the Common Desktop Environment 43

2

Message Extraction Functions

One of the requirements of internationalizing programs (basic commands
and utilities inclusive) is that the messages displayed on the output devices
be in the language of the user. As these programs may be used in many
countries (international locales), the messages must be translated into the
various languages of these countries.

There are two sets of message extraction functions in the desktop
environment: XPG4 functions and Xlib functions.

XPG4/Universal UNIX Messaging Functions

The XPG4 message facility consists of several components: message source
files, catalog generation facilities, and programming interfaces. Following
are the XPG4/Universal UNIXTM message functions:

• catopen()
• catgets()
• catclose()

XPG4 Messaging Examples

There are three parts to this example which demonstrates how to retrieve a
message from a catalog. The first part shows the message source file and
the second part shows the method used to generate the catalog file. The
third part shows an example program using this catalog.

Message Source File
The message catalog can be specified as follows:
example.msg file:
$quote “
$ every message catalog should have a beginning set number.
$set 1 This is the set 1 of messages
1 “Hello world\n”
2 “Good Morning\n”
3 “example: 1000.220 Read permission is denied for the file
%s.\n“
$set 2
1 “Howdy\n”

44 CDE: Internationalization Programmer’s Guide

2

Generation of Catalog File
This file is input to the gencat utility to generate the message catalog
example.cat as follows:

gencat example example.msg

Accessing the Catalog in a Program
#include <locale.h>
#include <nl_types.h>
char *MF_EXAMPLE = "example.cat"

main()
{

nl_catd catd;
int error;

(void)setlocale(LC_ALL, “”);

catd = catopen(MF_EXAMPLE, 0);
/* Get the message number 1 from the first set.*/

printf(catgets(catd,1,1,“Hello world\n”));
/* Get the message number 1 from the second set.*/

printf(catgets(catd, 2, 1,“Howdy\n”));
/* Display an error message.*/

printf(catgets(catd, 1, 4,“example: 100.220
Permission is denied to read the file %s.\n“) ,
MF_EXAMPLE);

catclose(catd);
}

Xlib Messaging Functions

The following Xlib messaging functions provide a similar input/output (I/O)
operation to the resources.

• XrmPutFileDatabase()
• XrmGetFileDatabase()
• XrmGetStringDatabase()
• XrmLocaleOfDatabase()

Internationalization and the Common Desktop Environment 45

2

They are described in X Window System, The Complete Reference to Xlib,
Xprotocol, ICCCM, XLFD - X Version 11, Release 5.

Xlib Message and Resource Facilities

Part of internationalizing a system environment, toolkit-based application
is not having any locale-specific data hardcoded within the application
source. One common locale-specific item is messages (error and warning)
returned by the application of the standard I/O.

In general, for any error or warning messages to be displayed to the user
through a system environment toolkit widget or gadget, externalize the
messages through message catalogs.

For dialog messages to be displayed through a toolkit component,
externalize the messages through localized resource files. This is done in
the same way as localizing resources, such as the XmLabel and
XmPushButton classes’ XmNlabelString resource or window titles.

For example, if a warning message is to be displayed through an
XmMessageBox widget class, the XmNmessageString resource cannot be
hardcoded within the application source code. Instead, the value of this
resource must be retrieved from a message catalog. For an
internationalized application expected to run in different locales, a distinct
localized catalog must exist for each of the locales to be supported. In this
way, the application need not be rebuilt.

Localized resource files can be put in the /usr/lib/X11/%L/appdefaults
subdirectories, or they can be pointed to by the XENVIRONMENT
environment variable. The %L variable is replaced with the name of the
locale used at run time.

Localized Resources

This section describes which widget and gadget resources are locale-
sensitive. The information is organized by related functionality. For
example, the first section describes those resources that are locale-sensitive
for widgets used to display labels or to provide push-button functionality.

46 CDE: Internationalization Programmer’s Guide

2

Labels and Buttons

Table 2-3 lists the localized resources that are used as labels. Many of them
are of type XmString . The rest are of type color or char*. See the Motif 1.2
Reference Manual for detailed descriptions of these resources. In each case,
the application should not hardcode these resources. If resource values
need to be specified by the application, it should be done with the app-
defaults file, ensuring that the resource can be localized.

Only the widget class resources are listed here; subclasses of these widgets
are not listed. For example, the XmDrawnButton widget class does not
introduce any new resources that are localized. However, it is a subclass of
the XmLabelWidget widget class; therefore, its accelerator resource,
acceleratorText resource, and so on, are also localized and should not be
hardcoded by an application.

Table 2-3 Localized Resources

Widget Class Resource Name

Core *background: 1

XmCommand *command:

XmCommand *promptString:

XmFileSelectionBox *dirListLabelString:

XmFileSelectionBox *fileListLabelString:

XmFileSelectionBox *filterLabelString:

XmFileSelectionBox *noMatchString:

XmLabel[Gadget] *accelerator:

XmLabel[Gadget] *acceleratorText:

XmLabel[Gadget] *labelString:

XmLabel[Gadget] *mnemonic:

XmList *stringDirection:

XmManager *stringDirection:

XmMessageBox *cancelLabelString:

XmMessageBox *helpLabelString:

XmMessageBox *messageString:

Internationalization and the Common Desktop Environment 47

2

Note that the XmRowColumn widget has additional string resources that
may be localized. These resources are listed in the XmRowColumn man page,
under the heading “Simple Menu Creation Resource Set.” As the title
implies, these resources affect only RowColumn widgets created with the
XmCreateSimpleMenu() function. The resources affected are:
*buttonAccelerators , *buttonAcceleratorText ,
*buttonMnemonics , *optionLabel , and *optionMnemonic . These
resources are not included in Table 2-3 because they are rarely used and
apply to RowColumn only when creating a simple menu.

1. The foreground and background colors are not localized due to restrictions in the X protocol that require
color names to be limited to the portable character set. Localized color names are left to applications to
provide a localized database to map to a name encoded with the portable character set.

XmMessageBox *okLabelString:

XmPrimitive *foreground: 1

XmRowColumn *labelString:

XmRowColumn *menuAccelerator:

XmRowColumn *mnemonic:

XmRowColumn(SimpleMenu*) *buttonAccelerators:

XmRowColumn *mnemonic:

XmRowColumn *mnemonic:

XmRowColumn *mnemonic:

XmRowColumn *mnemonic:

XmSelectionBox *applyLabelString:

XmSelectionBox *cancelLabelString:

XmSelectionBox *helpLabelString:

XmSelectionBox *listLabelString:

XmSelectionBox *okLabelString:

XmSelectionBox *selectionLabelString:

XmSelectionBox *textAccelerators:

Table 2-3 Localized Resources (Continued)

Widget Class Resource Name

48 CDE: Internationalization Programmer’s Guide

2

List Resources
Several widgets allow applications to set or read lists of items in the
widget. Table 2-4 shows which widgets allow this and the resources they
use to set or read these lists. Because the list items may need to be
localized, do not hardcode these lists. Rather, they should be set as
resources in app-defaults files, allowing them to be localized. The type
for each list is XmStringList .

Title
Table 2-5 lists the resources used for setting titles and icon names.
Normally, an application need only set the *title: and *iconName:
resources. The encoding of each is automatically detected for clients doing
proper locale management. All of these are of type char or XmString .

1. This resource should not be set by the application. If the application calls XtSetLanguagePro c, the
default value (None) of this resource will automatically be set, ensuring that localized text can be used for
the title.

Table 2-4 Resources Used for Reading Lists

Widget Class Resource Name

XmList *items:

XmList *selectedItems:

XmSelectionBox *listItems:

Table 2-5 Resources Used for Setting Titles and Icon Names

Widget Class Resource Name

TopLevelShell *iconName:

TopLevelShell *iconNameEncoding: 1

WmShell *title:

WmShell *titleEncoding: 1

XmBulletinBoard *dialogTitle:

XmScale *titleString:

Internationalization and the Common Desktop Environment 49

2

Text Widget

Table 2-6 lists the Text[Field] resources that are locale-sensitive or
about which the developer of an internationalized application should know.

1. The *columns resource specifies the initial width of the Text[Field] widget in terms of the number of
characters to be displayed. In the case of a variable width font or in a locale where the size of a character
varies significantly, a column is the amount of space required to display the widest character in that
locale’s character repertoire. For example, a column width of 10 guarantees that at least 10 characters of
the current locale can be displayed; it is possible (likely) that more than that number of characters can be
displayed in the allocated space.

Table 2-6 Locale-Sensitive Text[Field] Resources

Widget Class Resource Name

XmSelectionBox *textColumns :1

XmSelectionBox *textString:

XmText *columns: 1

XmText *modifyVerifyCallback:

XmText *modifyVerifyCallbackWcs:

XmText *value:

XmText *valueWcs:

XmTextField *columns: 1

XmTextField *modifyVerifyCallback:

XmTextField *modifyVerifyCallbackWcs:

XmTextField *value:

XmTextField *valueWcs:

50 CDE: Internationalization Programmer’s Guide

2

Input Method (Keyboards)
Table 2-7 lists localized resources for customizing the input method. These
resources allow the user or the application to control which input method
will be used for the specified locale and which preedit style (if applicable
and available) will be used.

Pixmap (Icon) Resources
Table 2-8 lists pixmap resources. In some cases, a different pixmap may be
needed for a given locale.

A pixmap is a screen image that is stored in memory so that it can be
recalled and displayed when needed. The desktop has a number of pixmap
resources that allow the application to supply pixmaps for backgrounds,
borders, shadows, label and button faces, drag icons, and other uses. As
with text, some pixmaps may be specific to particular language
environments; these pixmaps must be localized.

Table 2-7 Localized Resources for Input Method Customization

Widget Class Resource Name

VendorShell *inputMethod:

VendorShell *preeditType:

Table 2-8 Pixmap Resources

Widget Class Resource Name

Core *backgroundPixmap:

WMShell *iconPixmap:

XmDragIcon *pixmap:

XmDropSite *animation[Mask|Pixmap]:

XmLabel[Gadget] *labelInsensitivePixmap:

XmLabel[Gadget] *labelPixmap:

XmMessageBox *symbolPixmap:

XmPushButton[Gadget] *armPixmap:

XmToggleButton[Gadget] *selectInsensitivePixmap:

XmToggleButton[Gadget] *selectPixmap:

Internationalization and the Common Desktop Environment 51

2

The desktop maintains caches of pixmaps and images. The
XmGetPixmapByDepth() function searches these caches for a requested
pixmap. If the requested pixmap is not in the pixmap cache and a
corresponding image is not in the image cache, the
XmGetPixmapByDepth() function searches for an X bitmap file whose
name matches the requested image name. The XmGetPixmapByDepth()
function calls the XtResolvePathname() function to search for the file. If
the requested image name is an absolute path name, that path name is the
search path for the XtResolvePathname() function. Otherwise, the
XmGetPixmapByDepth() function constructs a search path in the following
way:

• If the XBMLANGPATH environment variable is set, the value of that
variable is the search path.

• If XBMLANGPATH is not set but XAPPLRESDIR is set, the
XmGetPixmapByDepth() function uses a default search path with
entries that include $XAPPLRESDIR, the user’s home directory, and
vendor-dependent system directories.

• If neither XBMLANGPATH nor XAPPLRESDIR is set, the
XmGetPixmapByDepth() function uses a default search path with
entries that include the user’s home directory and vendor-dependent
system directories.

These paths may include the %B substitution field. In each call to the
XtResolvePathname() function, the XmGetPixmapByDepth() function
substitutes the requested image name for %B. The paths may also include
other substitution fields accepted by the XtResolvePathname() function.
In particular, the XtResolvePathname() function substitutes the display’s
language string for %L, and it substitutes the components of the display’s
language string (in a vendor-dependent way) for %l, %t, and %c. The
substitution field %T is always mapped to bitmaps, and %S is always
mapped to Null.

Because there is no string-to-pixmap converter supplied by default,
pixmaps are generally set by the application at creation time by first
retrieving the pixmap with a call to XmGetPixmap() . XmGetPixmap() uses
the current locale to determine where to locate the pixmap. (See the
XmGetPixmap() man page for a description of how locale is used to locate
the pixmap.)

52 CDE: Internationalization Programmer’s Guide

2

Font Resources

Table 2-9 lists the localized font resources. All XmFontList resources are of
type XmFontList . In almost all cases, a fontset should be used when
specifying a fontlist element. The only exception is when displaying
character data that does not appear in the character set of the user (for
example, displaying math symbols or dingbats).

Operating System Internationalized Functions

Table 2-10 lists the base operating system internationalized functions in a
common open software environment.

Table 2-9 Localized Font Resources

Widget Class Resource Name

VendorShell *buttonFontList:

VendorShell *defaultFontList:

VendorShell *labelFontList:

VendorShell *textFontList:

XmBulletinBoard *buttonFontList:

XmBulletinBoard *defaultFontList:

XmBulletinBoard *labelFontList:

XmBulletinBoard *textFontList:

XmLabel[Gadget] *fontList:

XmList *fontList:

XmMenuShell *buttonFontList:

XmMenuShell *defaultFontList:

XmMenuShell *labelFontList:

XmText *fontList:

XmTextField *fontList:

Internationalization and the Common Desktop Environment 53

2

Applications should perform proper locale management with the
assumption that a locale may have from 1 to 4 bytes per coded character.

Table 2-10Base Operating System Internationalized Functions

Locale Management Single-byte Multibyte Wide Character

Convert mb <-> wc mbtowc
mbstowcs

wctomb
wcstombs

Classification isalpha
is*

isalpha
isw*
wctype

Case Mapping tolower
toupper

towlower
towupper

Format Miscellaneous localeconv
nl_langinfo

Format of Numeric strtol
strtod

wcstol
wcstod
wcstoi

Format Time/Monetary strftime
strptime
strfmon

wcsftime

String Copy strcat
strcpy
strncat
strncpy

wcscat
wcsncat
wcscpy
wcsncpy

String Collate strcoll wcscoll
wcsxfrm

String Misc strlen mblen wcscmp
wcsncmp

String Search strchr
strcspn
strpbrk
strrchr
strspn
strtok

wcschr
wcscspn
wcspbrk
wcsrchr
wcsspn
wcstok
wcswcs
wcscspn

I/O Display Width wcwidth 1

wcswidth

54 CDE: Internationalization Programmer’s Guide

2

1. These functions are provided for applications using terminals. Graphical user interface (GUI)
applications should not use these functions; instead, they should use font metric functions listed on
page 31 to determine spacing.

I/O Printf printf
vprintf
sprintf
vsprint
fprintf
vfprint

printf
vprintf
sprintf
vsprint
frpintf
vfprint

I/O Scan scanf
sscanf
fscanf

scanf
sscanf
fscanf

I/O Character getc
gets
putc
puts

fgetwc
fgetws
fputwc
fputws
ungetwc

Message gettxt
catopen
catgets
catclose

Convert Codeset iconv_open
iconv
iconv_close

Table 2-10Base Operating System Internationalized Functions (Continued)

Locale Management Single-byte Multibyte Wide Character

55

 Internationalization and
Distributed Networks 3

This chapter discusses tasks related to internationalization and distributed
networks.

Interchange Concepts

This section describes the way 8-bit user names and 8-bit data can be
communicated on a network for communications utilities, such as ftp, mail,
or interclient communication between the desktop clients.

There are three primary considerations for communicating data:

• Sender’s code set and the receiver’s code set.

• Whether the communications protocol allows 8-bit data or is limited to 7-
bit coded data (for example, the Japanese JUNET passes Japanese
Industrial Standard (JIS) coded data over 7-bit protocols).

• Type of interchange encoding available, per protocol rules. The actual
conversion needed is dependent on the specific protocol used.

Interchange Concepts 55

Simple Text Basic Interchange 60

Mail Basic Interchange 62

Encodings and Code Sets 63

56 CDE: Internationalization Programmer’s Guide

3

If the remote host uses the same code set as the local host, the following is
true:

• If the protocol allows 8-bit data, no conversions are needed.

• If the protocol allows only 7-bit data, a method is needed to map the 8-
bit code points to 7-bit ASCII values. This could be accomplished using
the iconv framework and one of the following types of 7-bit encoded
methods:
• Map 8-bit data as specified in the POSIX.2 specification for uuencode

and uudecode algorithms.
• Optionally, the 8-bit data may be mapped to a 7-bit interchange

encoding as defined by the protocol; for example, 7-bit ISO2022 in Xlib
or base64 in Multipurpose Internet Message Extensions (MIME).

If the remote host’s code set is different from that of the local host, the
following two cases may apply. The conversion needed is dependent on the
specific protocol used.

• If the protocol allows 8-bit data, the protocol will need to specify which
side does the iconv conversion and to specify the encoding on the wire.
In some protocols, an 8-bit interchange encoding is recommended that is
capable of encoding all possible code sets and identifying character
repertoire.

• If the protocol allows only 7-bit data, a 7-bit interchange encoding is
needed, as is the identifying character repertoire.

iconv Interface

In a network environment, the code sets of the communicating systems and
the protocols of communication determine the transformation of user-
specified data so that it can be sent to the remote system in a meaningful
way. The user data (not user names) may need to be transformed from the
sender’s code set to the receiver’s code set, or 8-bit data may need to be
transformed into a 7-bit form to conform to protocols. A uniform interface is
needed to accomplish this.

In the following examples, using the iconv interface is illustrated by
explaining how to use iconv_open() , iconv(), and iconv_close() . To
do the conversion, iconv_open() must be followed by iconv() . The
terms 7-bit interchange and 8-bit interchange are used to refer to any
interchange encoding used for 7-bit and 8-bit data, respectively.

Internationalization and Distributed Networks 57

3

Sender and Receiver Use the Same Code Sets:
• If the protocol allows 8-bit data, use 8-bit data because the same code set

is being used. No conversion is needed.

• If the protocol allows only 7-bit data, use iconv :
• Sender

cd = iconv_open(locale_codeset, uuencoded);

• Receiver

cd = iconv_open("uucode", locale_codeset);

Sender and Receiver Use Different Code Sets:
• If the protocol allows 8-bit data:

• Sender

cd = iconv_open(locale_codeset, 8-bitinterchange);

• Receiver

cd = iconv_open(8-bitinterchange, locale_codeset);

• If the protocol allows only 7-bit data, do the following:
• Sender

cd = iconv_open(locale_codeset, 7-bitinterchange);

• Receiver

cd = iconv_open(7-bitinterchange, locale_codeset);

The locale_codeset refers to the code set being used locally by the
application. Note that while the nl_langinfo(CODESET) function may be
used to obtain the code set associated with the current locale, it is
implementation-dependent whether any conversion names match the
return from the nl_langinfo(CODESET) function.

58 CDE: Internationalization Programmer’s Guide

3

The Table 3-1 outlines how iconv can be used to perform conversions for
various conditions. Specific protocols may dictate other conversions needed.

Table 3-1 Using iconv to Perform Conversions

1. Invalid means the interchange encoding should not be used for the choice of code set and type of protocol.

Communication with
system using the same
code set (for example,
XYZ)

Communication with system
using different code sets or
receiver’s code set is
unknown

Conversion
 to Use

7-bit
Protocol

8-bit
Protocol

7-bit
Protocol 8-bit Protocol

code XYZ Invalid Best Choice Invalid Invalid if
remote code set
is unknown

7-bit
Interchange
ISO2022

OK OK Best Choice OK

8-bit
Interchange
ISO2022
ISO 10646

Invalid1 OK Invalid Best Choice

7-bit
Untagged
quoted-
printable
uucode

OK OK Requires
code set
identification

Requires
code set
identification

8-bit
Untagged
base64

Invalid OK Requires
code set
identification

Requires
code set
identification

Internationalization and Distributed Networks 59

3

Stateful and Stateless Conversions

Code sets can be classified into two categories: stateful encodings and
stateless encodings.

Stateful Encodings

Stateful encoding uses sequences of control codes, such as shift-in/shift-out,
to change character sets associated with specific code values.

For instance, under compound text, the control sequence "ESC$(B" can be
used to indicate the start of Japanese 16-bit data in a data stream of
characters, and "ESC(B" can be used to indicate the end of this double-byte
character data and the start of 8-bit ASCII data. Under this stateful
encoding, the bit value 0x43 could not be interpreted without knowing the
shift state. The EBCDIC Asian code sets use shift-in/shift-out controls to
swap between double- and single-byte encodings, respectively.

Converters that are written to do the conversion of stateful encodings to
other code sets tend to be a little complex due to the extra processing
needed.

Stateless Encodings

Stateless code sets are those that can be classified as one of two types:

• Single-byte code sets, such as the ISO8859 family
• Multibyte code sets, such as PC codes for Japanese and Shift-JIS (SJIS)

The term multibyte code sets is also used to refer to any code set that needs
one or more bytes to encode a character; multibyte code sets are considered
stateless.

Note – Conversions are meaningful only if the code sets represent the same
character set.

60 CDE: Internationalization Programmer’s Guide

3

Simple Text Basic Interchange

When a program communicates data to another program residing on a
remote host, a need may arise for conversion of data from the code set of
the source machine to that of the receiver. For example, this happens when
a PC system using PC codes needs to communicate with a workstation
using an International Organization for Standardization/Extended UNIX
Code (ISO/EUC) encoding. Another example occurs when a program obtains
data in one code set but has to display this data in another code set. To
support these conversions, a standard program interface is provided based
on the XPG4 iconv() function definitions.

All components doing code set conversion should use the iconv functions
as their interface to conversions. Systems are expected to provide a wide
variety of conversions, as well as a mechanism to customize the default set
of conversions.

iconv Conversion Functions

The common method of conversions from one code set to another is through
a table-driven method. In some cases, these tables may be too large, hence
an algorithmic method may be more desirable. To accommodate such
diverse requirements, a framework is defined in XPG4 for code set
conversions. In this framework, to convert from one code set to another,
open a converter, perform the conversions, and close the converter. The
iconv functions are iconv_open() , iconv() , and iconv_close() .

Code set converters are brought under the framework of the
iconv_open() , iconv() , and iconv_close() set of functions. With
these functions, it is possible to provide and to use several different types of
converters. Applications can call these functions to convert characters in
one code set into characters in another code set. With the advent of the
iconv framework, converters can be provided in a uniform manner. The
access and use of these converters is being standardized under X/Open
XPG4.

Internationalization and Distributed Networks 61

3

X Interclient (ICCCM) Conversion Functions

Xlib provides the following functions for doing conversions.

Note – The libXm library does provide the XmStringConvertToCT()
and XmStringConvertFromCT() functions; however, these are not
recommended because there are some hardcoded assumptions about certain
XmString tags. For example, if the tag is bold , XmStringConvertToCT()
is implementation-dependent. Across various platforms, the behavior of this
function cannot be guaranteed in all international regions.

Refer to “Interclient Communications Conventions for Localized Text” on
page 123 for more information.

Window Titles

The standard way for setting titles is to use resources. But for applications
that set the titles of their windows directly, a localized title must be sent to
the Window Manager. Use the XCompoundTextStyle encoding defined in
XICCEncodingStyle , as well as the following guidelines:

• Compound text can be created either by
XmbTextListToTextProperty() or
XwcTextListToTextProperty() .

• Localized titles can be displayed using the XmNtitle and
XmNtitleEncoding resources of the WMShell widget. Localized icon
names can be displayed using the XmNiconName and
XmNiconNameEncoding resources of the TopLevelShell widget.

• Localized titles of dialog boxes can also be displayed using the
XmNdialogTitle resource of the XmBulletinBoard widget.

• Window Manager should have an appropriate fontlist for displaying
localized strings.

X ICCCM Multibyte Functions ICCCM Wide Character
Functions

XmbTextPropertyToTextList() XwcTextPropertyToTextList()
XmbTextListToTextProperty() XwcTextListToTextProperty()

62 CDE: Internationalization Programmer’s Guide

3

Following is an example of displaying a localized title and icon name.
Compound text is made from the compound string in this example.
include <nl_types.h>
Widget toplevel;
Arg al[10];
int ac;
XTextProperty title;
char *localized_string;
nl_catd fd;

XtSetLanguageProc(NULL, NULL, NULL);
fd = catopen("my_prog", 0);
localized_string = catgets(fd, set_num, mes_num, " defaulttitle");
XmbTextListToTextProperty(XtDisplay(toplevel), &localized_string,
 1, XCompoundTextStyle, &title);
ac = 0;
XtSetArg(al[ac], XmNtitle, title.value); ac++;
XtSetArg(al[ac], XmNtitleEncoding, title.encoding); ac++;
XtSetValues(toplevel, al, ac);

If you are using a window rather than widgets, the
XmbSetWMProperties() function automatically converts a localized string
into the proper XICCEncodingStyle .

Mail Basic Interchange

In general, electronic mail (email) strategy has been one of turning email
into a canonical, labeled format as opposed to optimizing a message given
knowledge of the receiver’s locale. This means that in the email world, you
should always assume that the receiver may be in a different locale. In the
desktop world, the default email transport is Simple Mail Transfer Protocol
(SMTP), which only supports 7-bit transmission channels.

With this understanding, the email strategy for the desktop is as follows:

• The sending agents, by default (unless instructed otherwise by the user),
converts a body part into a standard format for the sending transmission
channel and labels the body part with the character encoding used.

• The receiving agent looks at the body part to see if it can support the
character encoding; if it can, it converts it into the local character set.

Internationalization and Distributed Networks 63

3

In addition, because the MIME format is used for messages, any 8-bit to 7-
bit transformations are done using the built-in MIME transport encodings
(base64 or quoted-printable). See the Request for Comments (RFC) 1521
MIME standard specification.

Encodings and Code Sets

To understand code sets, it is necessary to first understand character sets.
A character set is a collection of predefined characters based on the specific
needs of one or more languages without regard to the encoding values used
to represent the characters. The choice of which code set to use depends on
the user's data processing requirements. A particular character set can be
encoded using different encoding schemes. For example, the ASCII
character set defines the set of characters found in the English language.
The Japanese Industrial Standard (JIS) character set defines the set of
characters used in the Japanese language. Both the English and Japanese
character sets can be encoded using different code sets.

The ISO2022 standard defines a coded character set as a group of precise
rules that defines a character set and the one-to-one relationship between
each character and its bit pattern. A code set defines the bit patterns that
the system uses to identify characters.

A code page is similar to a code set with the limitation that a code-page
specification is based on a 16-column by 16-row matrix. The intersection of
each column and row defines a coded character.

 Code Set Strategy

The common open software environment code set support is based on
International Organization for Standardization (ISO) and industry-
standard code sets providing industry-standard code sets that satisfy the
data processing needs of users.

Each locale in the system defines which code set it uses and how the
characters within the code set are manipulated. Because multiple locales
can be installed on the system, multiple code sets can be used by different
users on the system. While the system can be configured with locales using
different code sets, all system utilities assume that the system is running
under a single code set.

64 CDE: Internationalization Programmer’s Guide

3

Most commands have no knowledge of the underlying code set being used
by the locale. The knowledge of code sets is hidden by the code-set-
independent library subroutines (Internationalization libraries), which pass
information to the code-set-dependent subroutines.

Because many programs rely on ASCII, all code sets include the 7-bit
ASCII code set as a proper subset. Because the 7-bit ASCII code set is
common to all supported code sets, its characters are sometimes referred to
as the portable character set.

The 7-bit ASCII code set is based on the ISO646 definition and contains the
control characters, punctuation characters, digits (0-9), and the English
alphabet in uppercase and lowercase.

Code Set Structure

Each code set is divided into two principle areas:

• Graphic Left (GL) Columns 0-7
• Graphic Right (GR) Columns 8-F

The first two columns of each code set are reserved by ISO standards for
control characters. The terms C0 and C1 are used to denote the control
characters for the Graphic Left and Graphic Right areas, respectively.

Note – The PC code sets use the C1 control area to encode graphic
characters.

The remaining six columns are used to encode graphic characters (see
Table 3-2 on page 65). Graphic characters are considered to be printable
characters, while the control characters are used by devices and
applications to indicate some special function

Internationalization and Distributed Networks 65

3

Table 3-2 Code Set Overview

Control Characters

Based on the ISO definition, a control character initiates, modifies, or stops
a control operation. A control character is not a graphic character, but can
have graphic representation in some instances. The control characters in
the ISO646-IRV character set are present in all supported code sets,and the
encoded values of the C0 control characters are consistent throughout the
code sets.

Graphic Characters

Each code set can be considered to be divided into one or more character
sets, such that each character is given a unique coded value. The ISO
standard reserves six columns for encoding characters and does not allow
graphic characters to be encoded in the control character columns.

Single-Byte Code Sets

Code sets that use all 8 bits of a byte can support European, Middle
Eastern, and other alphabetic languages. Such code sets are called single-
byte code sets. This provides a limit of encoding 191 characters, not
including control characters.

C0 (Graphic Left) C1 (Graphic Right)

Code
Set
Unique

C
o
n
t
r
o
l
s

7-Bit ASCII

C
o
n
t
r
o
l
s

0 1 2 3 4 5 6 7 8 9 A B C D E F

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

66 CDE: Internationalization Programmer’s Guide

3

Multibyte Code Sets

The term multibyte code sets is used to refer to all possible code sets
regardless of the number of bytes needed to encode any specific character.
Because the operating system should be capable of supporting any number
of bits to encode a character, a multibyte code set may contain characters
that are encoded with 8, 16, 32, or more bits. Even single-byte code sets are
considered to be multibyte code sets.

Extended UNIX Code (EUC) Code Set

The EUC code set uses control characters to identify characters in some of
the character sets. The encoding rules are based on the ISO2022 definition
for the encoding of 7-bit and 8-bit data. The EUC code set uses control
characters to separate some of the character sets.

The term EUC denotes these general encoding rules. A code set based on
EUC conforms to the EUC encoding rules but also identifies the specific
character sets associated with the specific instances. For example, eucJP
for Japanese refers to the encoding of the JIS characters according to the
EUC encoding rules.

The first set (CS0) always contains an ISO646 character set. All of the
other sets must have the most-significant bit (MSB) set to 1, and they can
use any number of bytes to encode the characters. In addition, all
characters within a set must have:

• Same number of bytes to encode all characters
• Same column display width (number of columns on a fixed-width

terminal)

Each character in the third set (CS2) is always preceded with the control
character SS2 (single-shift 2, 0x8e). Code sets that conform to EUC do not
use the SS2 control character other than to identify the third set.

Each character in the fourth set (CS3) is always preceded with the control
character SS3 (single-shift 3, 0x8f). Code sets that conform to EUC do not
use the SS3 control character other than to identify the fourth set.

Internationalization and Distributed Networks 67

3

ISO EUC Code Sets

The following code sets are based on definitions set by the International
Organization for Standardization (ISO).

• ISO646-IRV
• ISO8859-1
• ISO8859-x
• eucJP
• eucTW
• eucKR

ISO646-IRV

The ISO646-IRV code set defines the code set used for information
processing based on a 7-bit encoding. The character set associated with this
code set is derived from the ASCII characters.

ISO8859-1

ISO8859-1 encoding is a single-byte encoding that is based on and is
compatible with other ISO, American National Standards Institute (ANSI),
and European Computer Manufacturer's Association (ECMA) code
extension techniques. The ISO8859 encoding defines a family of code sets
with each member containing its own unique character sets. The 7-bit
ASCII code set is a proper subset of each of the code sets in the ISO8859
family.

The ISO8859-1 code set is called the ISO Latin-1 code set and consists of
two character sets:

• ISO646-IRV Graphic Left, 7-bit ASCII character set
• ISO8859-1 Graphic Right (Latin) character set

These character sets combined include the characters necessary for
Western European languages such as Danish, Dutch, English, Finnish,
French, German, Icelandic, Italian, Norwegian, Portuguese, Spanish, and
Swedish.

While the ASCII code set defines an order for the English alphabet, the
Graphic Right (GR) characters are not ordered according to any specific
language. The language-specific ordering is defined by the locale.

68 CDE: Internationalization Programmer’s Guide

3

Other ISO8859 Code Sets

This section lists the other significant ISO8859 code sets. Each code set
includes the ASCII character set plus its own unique characters.

ISO8859-2
Latin alphabet, No. 2, Eastern Europe

• Albanian
• Czechoslovakian
• English
• German
• Hungarian
• Polish
• Rumanian
• Serbo-Croatian
• Slovak
• Slovene

ISO8859-5
Latin/Cyrillic alphabet

• Bulgarian
• Byelorussian
• English
• Macedonian
• Russian
• Ukrainian

ISO8859-6
Latin/Arabic alphabet

• English
• Arabic

ISO8859-7
Latin/Greek alphabet

• English
• Greek

Internationalization and Distributed Networks 69

3

ISO8859-8
Latin/Hebrew alphabet

• English
• Hebrew

ISO8859-9
Latin/Turkish alphabet

• Danish
• Dutch
• English
• Finnish
• French
• German
• Irish
• Italian
• Norwegian
• Portuguese
• Spanish
• Swedish
• Turkish

eucJP

The EUC for Japanese consists of single-byte and multibyte characters (2
and 3 bytes). The encoding conforms to ISO2022 and is based on JIS and
EUC definitions, see .Table 3-3.

Table 3-3 Encoding for eucJP

CS Encoding Character Set

cs0 0xxxxxxx ASCII

cs1 1xxxxxxx 1xxxxxxx JIS X0208-1990

cs2 0x8E 1xxxxxxx JIS X0201-1976

cs3 0x8F 1xxxxxxx 1xxxxxxx JIS X0212-1990

70 CDE: Internationalization Programmer’s Guide

3

JIS X0208-1990
A code of the Japanese graphic character set for information interchange
(1990 version) that contains 147 special characters, 10 numeric digits, 83
Hiragana characters, 86 Katakana characters, 52 Latin characters, 48
Greek characters, 66 Cyrillic characters, 32 line-drawing elements, and
6355 Kanji characters.

JIS X0201

A code for information interchange that contains 63 Katakana characters.

JIS X0212-1990

A code of the supplementary Japanese graphic character set for information
interchange (1990 version) that contains 21 additional special characters,
21 additional Greek characters, 26 additional Cyrillic characters, 27
additional Latin characters, 171 Latin characters with diacritical marks,
and 5801 additional Kanji characters.

eucTW

The EUC for Traditional Chinese is an encoding consisting of characters
that contain single-byte and multibyte (2 and 4 bytes) characters. The EUC
encoding conforms to ISO2022 and is based on the Chinese National
Standard (CNS) as defined by the Republic of China and the EUC
definition, see Table 3-4.

Table 3-4 Encoding for eucTW

CS Encoding Character Set

cs0 0xxxxxxx ASCII

cs1 1xxxxxxx 1xxxxxxx CNS 11643.1992 - plane 1

cs2 0x8EA2 1xxxxxxx 1xxxxxxx CNS 11643.1992 - plane 2

cs3 0x8EA3 1xxxxxxx 1xxxxxxx CNS 11643.1992 - plane 3

0x8EB0 1xxxxxxx 1xxxxxxx CNS 11643.1992 - Plane 16

Internationalization and Distributed Networks 71

3

CNS 11643-1992 defines 16 planes for the Chinese Standard Interchange
Code, each plane can support up to 8836 characters (94x94). Currently, only
planes 1 through 7 have characters assigned. Table 3-5 shows the 16 planes
of the CNS 11643-1992 standard.

Table 3-5 16 Planes of the CNS 11643-1992 Standard

Plan
e Definition

of
Character EUC Encoding

1 Most frequently used 6085 A1A1-FDCB

2 Secondary frequently 7650 8EA2 A1A1 - 8EA2 F2C4

3 Exec.Yuen EDP 1 center 6148 8EA3 A1A1 - 8EA3 E2C6

4 RIS2, Vendor defined 7298 8EA4 A1A1 - 8EA4
EEDC

5 Rarely used by MOE3 8603 8EA5 A1A1 - 8EA5
FCD1

6 Variation char set 1 by MOE 6388 8EA6 A1A1 - 8EA6
E4FA

7 Variation char set 2 by MOE 6539 8EA7 A1A1 - 8EA7
E6D5

8 Undefined 0 8EA8 A1A1 - 8EA8
FEFE

9 Undefined 0 8EA9 A1A1 - 8EA9
FEFE

10 Undefined 0 8EAA A1A1 - 8EAA
FEFE

11 Undefined 0 8EAB A1A1 - 8EAB
FEFE

12 User Defined Character
(UDC)

0 8EAC A1A1 - 8EAC
FEFE

13 UDC 0 8EAD A1A1 - 9EAD
FEFE

14 UDC 0 8EAE A1A1 - 8EAE
FEFE

72 CDE: Internationalization Programmer’s Guide

3

eucKR

The EUC for Korean is an encoding consisting of single-byte and multibyte
characters (shown in Table 3-6). The encoding conforms to ISO2022 and is
based on Korean Standard Code (KSC) set and EUC definitions.

KSC 5601-1992 (code of the Korean character set for information
interchange, 1992 version) contains 432 special characters, 30 Arabic and
Roman numeral characters, 94 Hangul alphabet characters, 52 Roman
characters, 48 Greek characters, 27 Latin characters, 169 Japanese
characters, 66 Russian characters, 68 line-drawing elements, 2344
precomposed Hangul characters, and 4888 Hanja characters.

One Hangul character can be comprised of several consonants and vowels.
Most Hangul words can be expressed in Hanja words. Hanja is a set of
Traditional Chinese characters, which is currently used by Korean people.
Each Hanja character has its own meaning and is thus more specific than
Hangul most of the time.

15 UDC 0 8EAF A1A1 - 8EAF
FEFE

16 UDC 0 8EB0 A1A1 - 8EB0
FEFE

1. EDP: Center of Directorate, General of Budget, Accounting, and Statistics

2. RIS: Residence Information System

3. MOE: Ministry of Education

Table 3-6 Encoding for eucKR.

CS Encoding Character Set

cs0 0xxxxxxx ASCII

cs1 1xxxxxxx 1xxxxxxx KS C 5601-1992

cs2 Not used

cs3 Not used

Table 3-5 16 Planes of the CNS 11643-1992 Standard

Plan
e Definition (Continued)

of
Character EUC Encoding

73

 Motif Dependencies 4

This chapter discusses tasks related to internationalizing with Motif.

Locale Management

The term language environment refers to the set of localized data that the
application needs to run correctly in the user-specified locale. A language
environment supplies the rules associated with a specific language. In
addition, the language environment consists of any externally stored data,
such as localized strings or text used by the application. For example, the
menu items displayed by an application might be stored in separate files for
each language supported by the application. This type of data can be stored
in resource files, User Interface Definition (UID) files, or message catalogs
(on XPG3-compliant systems).

Locale Management 73

Font Management 75

Font List Syntax 78

Drawing Localized Text 80

Inputting Localized Text 87

Internationalized User Interface Language 92

74 CDE: Internationalization Programmer’s Guide

4

A single language environment is established when an application runs.
The language environment in which an application operates is specified by
the application user, often either by setting an environment variable (LANG
or LC_* on POSIX-based systems) or by setting the xnlLanguage resource.
The application then sets the language environment based on the user’s
specification. The application can do this by using the setlocale()
function in a language procedure established by the
XtSetLanguageProc() function. This causes Xt to cache a per-display
language string that is used by the XtResolvePathname() function to find
resource, bitmap, and User Interface Language (UIL) files.

An application that supplies a language procedure can either provide its
own procedure or use an Xt default procedure. In either case, the
application establishes the language procedure by calling the
XtSetLanguageProc() function before initializing the toolkit and before
loading the resource databases (such as by calling the
XtAppInitialize() function). When a language procedure is installed, Xt
calls it in the process of constructing the initial resource database. Xt uses
the value returned by the language procedure as its per-display language
string.

The default language procedure performs the following tasks:

• Sets the locale. This is done by using:

setlocale(LC_ALL, language);

where language is the value of the xnlLanguage resource, or the empty
string (“”) if the xnlLanguage resource is not set. When the
xnlLanguage resource is not set, the locale is generally derived from an
environment variable (LANG on POSIX-based systems).

• Calls the XSupportsLocale() function to verify that the locale just set
is supported. If not, a warning message is issued and the locale is set to
C.

• Calls the XSetLocaleModifiers() function specifying the empty
string.

• Returns the value of the current locale. On ANSI C-based systems, this
is the result of calling:

setlocale(LC_ALL, NULL);

The application can use the default language procedure by making the call
to the XtSetLanguageProc() function in the following manner:

Motif Dependencies 75

4

XtSetLanguageProc(NULL, NULL, NULL);
.
.

toplevel = XtAppInitialize(...);

By default, Xt does not install any language procedure. If the application
does not call the XtSetLanguageProc() function, Xt uses as its
per-display language string the value of the xnlLanguage resource if it is
set. If the xnlLanguage resource is not set, Xt derives the language string
from the LANG environment variable.

Note – The per-display language string that results from this process is
implementation-dependent, and Xt provides no public means of examining
the language string once it is established.

By supplying its own language procedure, an application can use any
procedure it wants for setting the language string.

Font Management

The desktop uses font lists to display text. A font defines a set of glyphs
that represent the characters in a given character set. A font set is a group
of fonts that are needed to display text for a given locale or language. A font
list is a list of fonts, font sets, or a combination of the two, that may be
used. Motif has convenience functions to create a font list.

Font List Structure

The desktop requires a font list for text display. A font list is a list of font
structures, font sets, or both, each of which has a tag to identify it. A font
set ensures that all characters in the current language can be displayed.
With font structures, the responsibility for ensuring that all characters can
be displayed rests with the programmer (including converting from the code
set of the locale to glyph indexes).

Each entry in a font list is in the form of a {tag, element} pair, where
element can be either a single font or a font set. The application can create
a font list entry from either a single font or a font set. For example, the
following code segment creates a font list entry for a font set:

76 CDE: Internationalization Programmer’s Guide

4

char font1[] =
"-adobe-courier-medium-r-normal--10-100-75-75-M-60";

font_list_entry = XmFontListEntryLoad (displayID, font1,
XmFONT_IS_FONTSET, “font_tag”);

The XmFontListEntryLoad() function loads a font or creates and loads a
font set. The following are the four arguments to the function:

displayID Display on which the font list is to be used.

fontname A string that represents either a font name or a base font
name list, depending on the nametype argument.

nametype A value that specifies whether the fontname argument
refers to a font name or a base font name list.

tag A string that represents the tag for this font list entry.

If the nametype argument is XmFONT_IS_FONTSET, the
XmFontListEntryLoad() function creates a font set in the current locale
from the value in the fontname argument. The character sets of the fonts
specified in the font set are dependent on the locale. If nametype is
XmFONT_IS_FONT, the XmFontListEntryLoad() function opens the font
found in fontname. In either case, the font or font set is placed into a font
list entry.

The following code example creates a new font list and appends the entry
font_list_entry to it:
XmFontList font_list;
XmFontListEntry font_list_entry;

.

.
font_list = XmFontListAppendEntry (NULL, font_list_entry);
XmFontListEntryFree (font_list_entry);

Once a font list has been created, the XmFontListAppendEntry()
function adds a new entry to it. The following example uses the
XmFontListEntryCreate() function to create a new font list entry for an
existing font list.
XFontSet font2;
char *font_tag;
XmFontListEntry font_list_entry2;

.

.
font_list_entry2 = XmFontListEntryCreate (font_tag,

 XmFONT_IS_FONTSET, (XtPointer)font2);

Motif Dependencies 77

4

The font2 parameter specifies an XFontSet returned by the
XCreateFontSet() function. The arguments to the
XmFontListEntryCreate() function are font_tag ,
XmFONT_IS_FONTSET, and font2 , which are the tag, type, and font,
respectively. The tag and the font set are the {tag, element} pair of the font
list entry.

To add this entry to the font list, use the XmFontListAppendEntry()
function again, only this time, its first parameter specifies the existing font
list.

font_list = XmFontListAppendEntry(font_list, font_list_entry2);
XmFontListEntryFree(font_list_entry2);

Font Lists Examples

The syntax for specifying a font list in a resource file depends on whether
the list contains fonts, font sets, or both.

Obtaining a Font

To obtain a font, specify a font and an optional font list element tag.

• If the tag is present, it should be preceded by an = (equal sign).
• If the tag is not present, do not use an = (equal sign).

Entries specifying more than one font are separated by a , (comma).

Obtaining a Font Set

To obtain a font set, specify a base font list and an optional font list
element tag.

• If the tag is present, it should be preceded by a : (colon) instead of an =
(equal sign).

• If the tag is not present, the colon must still be present as this is what
distinguishes a font from a font set in the resource declaration.

Fonts specified in the base font list are separated by a ; (semicolon). Entries
specifying more than one font set are separated by a , (comma).

78 CDE: Internationalization Programmer’s Guide

4

Specifying a Font When the Font List Element Tag Is Absent

If the font list element tag is not present, the default
XmFONTLIST_DEFAULT_TAG is used. Here are some examples.

• Specifying a font using the default font list element tag:

*fontList: fixed
*fontList: \
 -adobe-courier-medium-r-normal--10-100-75-75-M-60-iso8859-1

• Specifying a font list element tag:

*fontList: fixed=ROMAN, 8x13bold= BOLD

• Specifying two fonts, one with the default font list element tag and one
with an explicit tag:

*fontList: fixed, 8x13bold= BOLD

Specifying a Font Set When the Font List Element Tag Is Absent

If the font list element tag is not present, the default
XmFONTLIST_DEFAULT_TAG is used. Here are some examples of specifying
a font set.

• Let Xlib select the fonts without specifying a font list element tag:

fontList: -dt-application-medium-r-normal--m*-*-*-*-m-*

• Let Xlib select the fonts and specify a font list element tag as MY_TAG:

fontList: -dt-application-medium-r-normal--m*-*-*-*-m*: MY_TAG

• Let Xlib select the fonts, specify a font list element tag for bold fonts,
and use the default font list element tag for the others:

fontList:-dt-application-medium-r-normal--m*-*-*-*-m-*:,\
-dt-application-medium-r-normal-style2-m*-*-*-*-m-*: BOLD

Font List Syntax

The XmFontList() data type can contain one or more entries that are
associated with one of the following elements:

XFontStruct An X font that can be used to draw text encoded in
the charset of the font, that is, font-encoded text.

XFontSet A collection of XFontStruct fonts used to draw text
encoded in a locale, that is, localized text.

Motif Dependencies 79

4

The following syntax is used by the string-to-XmFontList converter:

XmFontList := <fontentry> {’, ’fontentry}

fontentry := <fontname><fontid>
| <baselist><fontsetid>

baselist := <fontname>{’;’<fontname>}

fontsetid := ’:’<string> | <defaultfontset>

fontname := <XLFD string>

fontid := ’=’<string> | <defaultfont>

XLFD string := refer to XLFD Specification
defaultfont := NULL
defaultfontset:= ’:’NULL
string := any character from ISO646IRV, except newline

A fontentry with a given XmFontList can specify either a font or a font
set. In either case, the ID (fontid or fontsetid) can be referenced by a
segment within a compound string (XmString).

Both defaultfont and defaultfontset can define the default
fontentry , yet there can only be one default per XmFontList .

The XmFONTLIST_DEFAULT_TAG identifier always references the default
fontentry when XmString is drawn. If the default fontentry is not
specified, the first fontentry is used to draw.

The resource converter operates under a single locale so that all font sets
created are associated with the same locale.

Note – Some implementations reserve the code set name of a locale as a
special charset ID (fontsetid and fontid) within an XmFontList string.
For this reason, application developers are cautioned not to use code set
names if they want their applications to be portable across platforms.

80 CDE: Internationalization Programmer’s Guide

4

Drawing Localized Text

A compound string is a means of encoding text so that it can be displayed
in many different fonts without changing anything in the program. The
desktop uses compound strings to display all text except that in the Text
and TextField widgets. This section explains the structure of a compound
string, the interaction between it and a font list (which determines how the
compound string is displayed), and focuses on those aspects that are
important to the internationalization process.

Compound String Components

A compound string is an internal encoding, consisting of tag-length-value
segments. Semantically, a compound string has components that contain
the text to be displayed, a tag (called a font list element tag) that is
matched with an element of a font list, and an indicator denoting the
direction in which it is to be displayed.

A compound string component can be one of the following four types:

• A font list element tag.
• The font list element tag XmFONTLIST_DEFAULT_TAGindicates that

the text is encoded in the code set of the current locale.
• Other font list element tags are used later to match text with

particular entries in a font list.

• A direction identifier.

• The text of the string. For internationalized applications, the text falls
into two broad categories: either the text requires localized treatment or
it does not.

• A separator.

The following describes each of the compound string components:

Font list element tag Indicates a string value that correlates the text
component of a compound string to a font or a font
set in a font list.

Direction Indicates the relationship between the order in
which characters are entered on the keyboard and
the order in which the characters are displayed on

Motif Dependencies 81

4

the screen. For example, the display order is left-to-
right in English, French, German, and Italian, and
right-to-left in Hebrew and Arabic.

Text Indicates the text to be displayed.

Separator Indicates a special form of a compound string
component that has no value. It is used to separate
other segments.

The desktop uses the specified font list element tag identified in the text
component to display the compound string. A specified font list element tag
is used until a new font list element tag is encountered. The desktop
provides a special font list element tag, XmFONTLIST_DEFAULT_TAG, that
matches a font that is correct for the current code set. It identifies the
default entry in a font list. See “Compound Strings and Font Lists” on
page 82 for more information.

The direction segment of a compound string specifies the direction in which
the text is displayed. Direction can be left-to-right or right-to-left.

Compound Strings and Resources

Compound strings are used to display all text except that in the Text and
TextField widgets. The compound string is set into the appropriate
widget resource so that it can be displayed. For example, the label for the
PushButton widget is inherited from the Label widget, and the resource
is XmNlabelString , which is of type XmString . This means that the
resource expects a value that is a compound string. A compound string can
be created with a program or defined in a resource file.

Setting a Compound String Programmatically

An application can set this resource programmatically by creating the
compound string using the XmStringCreateLocalized() compound
string convenience function.

This function creates a compound string in the encoding of the current
locale and automatically sets the font list entry tag to
XmFONTLIST_DEFAULT_TAG.

82 CDE: Internationalization Programmer’s Guide

4

The following code segment shows one way to set the XmNlabelString
resource for a push button using a program.

#include <nl_types.h>
Widget button;
Args args[10];
int n;
XmString button_label;
nl_msg my_catd;
(void)XtSetLanguageProc(NULL,NULL,NULL);

.

.
button_label = XmStringCreateLocalized (catgets(my_catd, 1, 1,

 "default label"),
 XmFONTLIST_DEFAULT_TAG);

/* Create an argument list for the button */
n = 0;
XtSetArg (args[n], XmNlabelString, button_label); n++;

/* Create and manage the button */
button = XmCreatePushButton (toplevel, "button”, args, n);
XtManageChild (button);
XmStringFree (button_label);

Setting a Compound String in a Defaults File

In an internationalized program, the label string for the button label
should be obtained from an external source. For example, the button label
can come from a resource file instead of the program. For this example,
assume that the push button is a child of a Form widget called form1 .

*form1.button.labelString: Push Here

Here, the desktop’s string-to-compound-string converter produces a
compound string from the resource file text. This converter always uses
XmFONTLIST_DEFAULT_TAG.

Compound Strings and Font Lists

When the desktop displays a compound string, it associates each segment
with a font or font set by means of the font list element tag for that
segment. The application must have loaded the desired font or font set,

Motif Dependencies 83

4

created a font list that contains that font or font set and its associated font
list element tag, and created the compound string segment with the same
tag.

The desktop follows a set search procedure when it binds a compound
string to a font list entry in this way:

1. The desktop searches the font list for an exact match with the font list
element tag specified in the compound string. If it finds a match, the
compound string is bound to that font list entry.

2. If this does not provide a binding between the compound string and the
font list, the desktop binds the compound string to the first element in
the font list, regardless of its font list element tag.

For backward compatibility, if an exact match is not found, a value of
XmFONTLIST_DEFAULT_TAG in either a compound string or a font list
matches the tag that results from creating a compound string or font list
entry with a tag of XmSTRING_DEFAULT_CHARSET.

Figure 4-1 on page 84 shows the relationships between a compound string,
a font set, and a font list when the font list element tag is set to something
other than XmFONTLIST_DEFAULT_TAG.

84 CDE: Internationalization Programmer’s Guide

4

Figure 4-1 Relationships between compound strings, font sets, and font lists when
the font list element tag is not XmFONTLIST_DEFAULT_TAG

The following example shows how to use a tag called tagb .

XFontSet *font1;
XmFontListEntryfont_list_entry;
XmFontList font_list;
XmString label_text;
char** missing;
int missing_cnt;
char* del_string;
char *tagb; /* Font list element tag */
char *fontx; /* Initialize to XLFD or font alias */
char *button_label;/* Contains button label text */

.

.
font1 = XCreateFontSet (XtDisplay(toplevel), fontx, & missing,

& missing_cnt, & def_string);
font_list_entry = XmFontListEntryCreate (tagb, XmFONT_IS_FONTSET,

(XtPointer)font1);
font_list = XmFontListAppendEntry (NULL, font_list_entry);

Font List
Element Tag Text

. . .

tagb “Push Here” . . .

Compound String Components

Font List

taga
tagb
tagc
tagd

Font_Set_A
Font_Set_B
Font_Set_C
Font_Set_D

Motif Dependencies 85

4

XmFontListEntryFree (font_list_entry);

label_text = XmStringCreate (button_label, tagb);

The XCreateFontSet() function loads the font set and the
XmFontListEntryCreate() function creates a font list entry. The
application must create an entry and append it to an existing font list or
create a new font list. In either case, use the XmFontListAppendEntry()
function. Because there is no font list in place, the preceding code example
has a NULL value for the font list argument. The
XmFontListAppendEntry() function creates a new font list called
font_list with a single entry, font_list_entry . To add another entry to
font_list , follow the same procedure but supply a nonnull font list
argument.

86 CDE: Internationalization Programmer’s Guide

4

Figure 4-2 shows the relationships between a compound string, a font set,
and a font list when the font list element tag is set to
XmFONTLIST_DEFAULT_TAG. In this case, the value field is locale text.

Figure 4-2 Relationships between compound strings, font sets, and font lists when
a font list element tag is set to XmFONTLIST_DEFAULT_TAG

Here, the default tag points to Font_Set_C, which in turn identifies the
fonts needed to display the characters in the language.

Font List Element Tag Text . . .

XmFONTLIST_DEFAULT_TAG “Push Here” . . .

Compound String Components

Font List

taga
tagb
XmFONTLIST_DEFAULT_TAG
tagc

Font_Set_C

font1C
font2C
font3C

Font_Set_A

Font_Set_C
Font_Set_D

Font_Set_B

Motif Dependencies 87

4

Text and TextField Widgets and Font Lists

The Text and TextField widgets display text information. To do so, they
must be able to select the correct font in which to display the information.
The Text and TextField widgets follow a set search pattern to find the
correct font as follows:

1. The widget searches the font list for an entry that is a font set and has a
font list element tag of XmFONTLIST_DEFAULT_TAG. If a match is found,
it uses that font list entry. No further searching occurs.

2. The widget searches the font list for an entry that specifies a font set. It
uses the first one found.

3. If no font set is found, the widget uses the first font in the font list.

Using a font set ensures that there are glyphs for every character in the
locale.

Inputting Localized Text

In the system environment, the VendorShell widget class is enhanced to
provide the interface to the input method. While the VendorShell class
controls only one child widget in its geometry management, an extension
has been added to the VendorShell class to enhance it for managing all
components necessary in the interface to an input method. These
components include the status area, preedit area, and the MainWindow
area.

When the input method requires a status area or a preedit area or both, the
VendorShell widget automatically instantiates the status and preedit
areas and manages their geometry layout. Any status area or preedit area
is managed by the VendorShell widget internally and is not accessible by
the client. The widget instantiated as the child of the VendorShell widget
is called the MainWindow area.

The input method to be used by the VendorShell widget is determined by
the XmNinputMethod resource; for example, @im=alt . The default value of
Null indicates to choose the default input method associated with the locale
at the time that VendorShell is created. As such, the user can affect which
input method is selected by either setting the locale, setting the
XmNinputMethod resource, or setting both. The locale name is

88 CDE: Internationalization Programmer’s Guide

4

concatenated with the XmNinputMethod resource to determine the input
method name. The locale name must not be specified in this resource. The
modifier name for the XmNinputMethod resource needs to be in the form
@im=modifier, where modifier is the string used to qualify which input
method is selected.

The VendorShell widget can support multiple widgets that can share the
input method. Yet only one widget can have the keyboard focus (for
example, receive key press events and send them to an input method) at
any given time. To support multiple widgets (such as Text widgets), the
widgets need to be descendants of the VendorShell widget.

Note – The VendorShell widget class is a superclass of the
TransientShell and TopLevelShell widget classes. As such, an
instantiation of a TopLevelShell or a DialogShell is essentially an
instantiation of a VendorShell widget class.

The VendorShell widget behaves as an input manager only if one of its
descendants is an XmText[Field] instance. As soon as an
XmText[Field] instance is created as a descendant of the VendorShell
widget, VendorShell creates the necessary areas required by the
particular input methods dictated by the current locale. Even if an
XmText[Field] instance is not mapped but just created, VendorShell has
the geometry management behavior as described previously.

A VendorShell widget does the following:

• Enables applications to process multibyte character input and output
that is supported by the locales installed in the system.

• Manages an input method instance as defined in the XmIm reference
functions.

• Supports preediting within a preedit area in either OffTheSpot,
OverTheSpot, Root, or None mode. Localized text can be entered into any
Text child widget in a multiple Text children widget tree by changing
the focus.

• Provides geometry management for descendant child widgets.

Motif Dependencies 89

4

Geometry Management

The VendorShell widget provides geometry management and focus
management for the input method’s user interface components, as
necessary. If the locale warrants it (for example, if the locale is a Japanese
Extended UNIX Code (EUC) locale), the VendorShell widget
automatically allocates and manages the geometry of any required preedit
area or status area or both.

Depending on the current preediting being done, an auxiliary area may be
required. If so, the VendorShell widget also instantiates and manages the
auxiliary area. Typically, the child of the VendorShell widget is a
container widget (such as the XmBulletinBoard or XmRowColumnwidgets)
that can manage multiple Text and TextField widgets, which allow
multibyte character input from the user. In this scenario, all Text widgets
share the same input method.

Note – The status, preedit, and auxiliary areas are not accessible to the
application programmer. For example, it is not intended for the application
programmer to access the window ID of the status area. The user does not
need to worry about the instantiation or management of these components
as they are managed as required by the VendorShell widget class.

The application programmer has some control over the behavior of the
input method user interface components through XmNpreeditType
resources of the VendorShell widget class. See “Input Methods” on
page 13 for a description of OffTheSpot and OverTheSpot modes.

Geometry management extends to all input method user interface
components. When the application program window (a TopLevelShell
widget) is resized, the input method user interface components are resized
accordingly, and the preedited strings in them are rearranged as required.
Of course, this assumes that the shell window has a resize policy of True.

When the VendorShell widget is created, if a specific input method
requires a status area, preedit area, or both, the size of the VendorShell
considers the areas required by these components. The extra areas required
by the preedit and status areas are part of the VendorShell widget’s area.
They are also managed by the VendorShell widget, if resizing is
necessary.

90 CDE: Internationalization Programmer’s Guide

4

Because of the potential instantiation of these areas (status and preedit),
depending on the input method currently being used, the size of the
VendorShell widget area does not necessarily grow or shrink to
accommodate exactly the size of its child. The size of the VendorShell
widget area grows or shrinks to accommodate both its child’s geometry and
the geometry of these input method user interface areas. There may be a
difference (for example, of 20 pixels) in height between the VendorShell
widget and its child widget (the MainWindow area). The width geometry is
not affected by the input method user interface components.

In summary, the requested size of the child is honored if possible; the
actual size of the VendorShell may be larger than its child.

The requests to specify the geometry of the VendorShell widget and its
child are honored as long as they do not conflict with each other or are
within the constraint of the VendorShell widget’s ability to resize. When
they do conflict, the child’s widget geometry request has higher precedence.
For example, if the size of the child widget is specified as 100x100, the size
of VendorShell is also specified as 100x100. The resulting VendorShell has a
size of 100x120, while its child widget gets a size of 100x100. If the size of
the child widget is not specified, the VendorShell shrinks its child widget if
necessary to honor its own size specification. For example, if the size of
VendorShell is specified as 100x100 and no size is specified for its child, the
child widget has a size of 100x80. If the VendorShell widget is disabled
from resizing, regardless of what the geometry request of its child is, the
VendorShell widget honors only its own geometry specification.

Focus Management

Languages with large numbers of characters (such as Japanese and
Chinese) require an input method that allows the user to compose
characters in that language interactively. This is because, for these
languages, there are many more characters than can be reasonably mapped
to a terminal keyboard.

The interactive process of composing characters in such languages is called
preediting. The preediting itself is handled by the input method. However,
the user interface of the preediting is determined by the system
environment. An interface needs to exist between the input method and the
system environment. This is done through the VendorShell widget of the
system environment.

Motif Dependencies 91

4

Figure 4-3 illustrates a case with Japanese preediting. The string shown in
reverse video is the string in preediting. This string can be moved across
different windows by giving focus to the particular window. However, only
one preediting session can occur at one time.

Figure 4-3 Japanese preediting example

For an example of focus management, suppose a TopLevelShell widget (a
subclass of the VendorShell widget) has an XmBulletinBoard widget
child (MainWindow area), which has five XmText widgets as children.
Assume the locale requires the preedit area, and assume the OverTheSpot
mode is specified. Because the VendorShell widget manages only one
instance of an input method, you can run only one preedit area at a time
inside the TopLevelShell widget. If the focus is moved from one Text
widget to another, the current preedit string under construction is also
moved on top of the Text widget that currently has focus. Processing of

92 CDE: Internationalization Programmer’s Guide

4

keys to the old Text widget is suspended temporarily. Subsequent interface
of the input method, such as the delivery of the string at preedit
completion, is made to the new, focused Text widget.

The string being preedited can be moved to the location of the focus; for
example, by clicking the mouse.

A string that the end user is finished preediting and that is already
confirmed cannot be reconverted. Once the string is composed, it is
committed. Committing a string means that it is moved from the preedit
area to the focus point of the client.

Internationalized User Interface Language

The capability to parse a multibyte character string as a string literal has
been added to the User Interface Language (UIL). Creation of a UIL file is
performed by using the characteristics of the target language and writing
the User Interface Definition (UID) file.

Programming for Internationalized User Interface Language

The UIL compiler parses nonstandard charsets as locale text. This requires
the UIL compiler to be run in the same locale as any locale text.

If the locale text of a widget requires a font set (more than one font), the
font set must be specified within the resource file. The font parameter does
not support font sets.

To use a specific language with UIL, a UIL file is written according to
characteristics of the target language and compiled into a UID file. The
UIL file that contains localized text needs to be compiled in the locale in
which it is to run.

String Literals

The following shows examples of literal strings. The cur_charset value is
always set to the default_charset value, which allows the string literal to
contain locale text.

Motif Dependencies 93

4

To set locale text in the string literal with the default_charset value, enter
the following:

XmNlabelString = ’ XXXXXX’;

OR

XmNlabelString = #default_charset“ XXXXXX”;

Compile the UIL file with the LANG environment variable matching the
encoding of the locale text. Otherwise, the string literal is not compiled
properly.

Font Sets

The font set cannot be set through UIL source programming. Whenever the
font set is required, you must set it in the resource file as the following
example shows:

fontList: --r-*-20-*:

Font Lists

UIL has three functions that are used to create font lists: FONT, FONTSET,
and FONT_TABLE. The FONT and FONTSET functions create font list entries.
The FONT_TABLE function creates a font list from these font list entries.

The FONT function creates a font list entry containing a font specification.
The argument is a string representing an XLFD font name. The FONTSET
function creates a font list entry containing a font set specification. The
argument is a comma-separated list of XLFD font names representing a
base name font list.

Both FONT and FONTSET have optional CHARACTER_SET declaration
parameters that specify the font list element tag for the font list entry. In
both cases, if no CHARACTER_SET declaration parameter is specified, UIL
determines the font list element tag as follows:

• If the module contains no CHARACTER_SET declaration and if the uil
command was called with the -s option or the Uil() function was
started with use_setlocale_flag set, the font list element tag is
XmFONTLIST_DEFAULT_TAG.

94 CDE: Internationalization Programmer’s Guide

4

• Otherwise, the font list element tag is the code set component of the
LANG environment variable, if it is set in the UIL compilation
environment; or it is the value of XmFALLBACK_CHARSET if the LANG
environment variable is not set or has no code set.

The FONT_TABLE function creates a font list from a comma-separated list of
font list entries created by FONT or FONTSET. The resulting font list can be
used as the value of a font list resource. If a single font list entry is
supplied as the value for such a resource, UIL converts the entry to a font
list.

Creating Resource Files

If necessary, set the input method-related resources in the resource file as
shown in the following example:

*preeditType: OverTheSpot , OffTheSpot , Root , or None

Setting the Environment

For a locale-sensitive application, set the UID file to the appropriate
directory. Set the UIDPATH or XAPPLRESDIR environment variable to the
appropriate value.

For example, to run the uil_sample program with an English
environment (LANG environment variable is en_US), set uil_sample.uid
with Latin characters at the $HOME/en_USdirectory, or set
uil_sample.uid to a directory and set the UIDPATH environment variable
to the full path name of the uil_sample.uid file.

To run the uil_sample program with a Japanese environment (LANG
environment variable is ja_JP), create a uil_sample.uid file with
Japanese (multibyte) characters at the $HOME/ja_JP directory, or place
uil_sample.uid to a unique directory and set the UIDPATH environment
variable to the full path name of the uil_sample.uid file. The following
list specifies the possible variables:

%U Specifies the UID file string.

%N Specifies the class name of the application.

%L Specifies the value of the xnlLanguage resource or
LC_CTYPE category.

Motif Dependencies 95

4

%l Specifies the language component of the
xnlLanguage resource or the LC_CTYPE category.

If the XAPPLRESDIR environment variable is set, the
MrmOpenHierarchy() function searches the UID file in the following
order:

1. UID file path name

2. $UIDPATH

3. %U

4. $XAPPLRESDIR/%L/uid/ %N/ %U

5. $XAPPLRESDIR/%l/uid/ %N/ %U

6. $XAPPLRESDIR/uid/ %N/ %U

7. $XAPPLRESDIR/%L/uid/ %U

8. $XAPPLRESDIR/%l/uid/ %U

9. $XAPPLRESDIR/uid/ %U

10. $HOME/uid/ %U

11. $HOME/%U

12. /usr/lib/X11/ %L/uid/ %N/ %U

13. /usr/lib/X11/ %l/uid/ %N/ %U

14. /usr/lib/X11/uid/ %N/ %U

15. /usr/lib/X11/ %L/uid/ %U

16. /usr/lib/X11/ %l/uid/ %U

17. /usr/lib/X11/uid/ %U

18. /usr/include/X11/uid/ %U

If the XAPPLRESDIR environment variable is not set, the
MrmOpenHierarchy() function uses $HOME instead of the XAPPLRESDIR
environment variable.

96 CDE: Internationalization Programmer’s Guide

4

default_charset Character Set in UIL

With the default_charset string literal, any characters can be set as a valid
string literal. For example, if the LANG environment variable is el_GR , the
string literal with default_charset can contain any Greek character. If the
LANG environment variable is ja_JP , the default_charset string literal can
contain any Japanese character encoded in Japanese EUC.

If no character set is set to a string literal, the character set of the string
literal is set as cur_charset. And, in the system environment, the
cur_charset value is always set as default_charset.

Example: uil_sample

Figure 4-4 shows a UIL sample program on English and Japanese
environments.

Figure 4-4 Sample UIL program on English and Japanese environments

In the following sample program, LLL indicates locale text, which can be
Japanese, Korean, Traditional Chinese, Greek, French, or others.
uil_sample.uil
!
! sample uil file - uil_sample.uil
!
! C source file - uil_sample.c
!
! Resource file - uil-sample.resource

Motif Dependencies 97

4

!
module Test

version = ’v1.0’
names = case_sensitive
objects = {

XmPushButton = gadget;
}

!************************************
! declare callback procedure
!************************************
procedure

exit_CB ;
!***
! declare BulletinBoard as parent of PushButton and Text
!***
object

bb : XmBulletinBoard {
arguments{

XmNwidth = 500;
XmNheight = 200;

};
controls{

XmPushButton pb1;
XmText text1;

};
};

!****************************
! declare PushButton
!****************************
object

pb1 : XmPushButton {
arguments{

XmNlabelString = #Normal “ LLLexit button LLL”;
XmNx = 50;
XmNy = 50;

};
callbacks{

XmNactivateCallback = procedure exit_CB;
};

};
!*********************
! declare Text
!*********************

text1 : XmText {
arguments{

XmNx = 50;

98 CDE: Internationalization Programmer’s Guide

4

XmNy = 150;
};

};
end module;
*
* C source file - uil_sample.c
*
*/
#include <Mrm/MrmAppl.h>
#include <locale.h>
void exit_CB();
static MrmHierarchy hierarchy;
static MrmType *class;

/**/
/* specify the UID hierarchy list*/
/***/
static char *aray_file[]=

{“uil_sample.uid”
};

static int num_file = (sizeof aray_file / sizeof
aray_file[0]);
/**/
/* define the mapping between UIL procedure names*/
/* and their addresses */
/**/
static MRMRegisterArg reglist[]={

{“exit_CB”,(caddr_t) exit_CB}

Compound Strings in UIL

Three mechanisms exist for specifying strings in UIL files:

• As string literals, which may be stored in UID files as either null-
terminated strings or compound strings

• As compound strings

• As wide character strings

Both string literals and compound strings consist of text, a character set,
and a writing direction. For string literals and for compound strings with
no explicit direction, UIL infers the writing direction from the character
set. The UIL concatenation operator (&) concatenates both string literals
and compound strings.

Motif Dependencies 99

4

Regardless of whether UIL stores string literals in UID files as null-
terminated strings or as compound strings, it stores information about each
string’s character set and writing direction along with the text. In general,
UIL stores string literals or string expressions as compound strings in UID
files under the following conditions:

• When a string expression consists of two or more literals with different
character sets or writing directions

• When the literal or expression is used as a value that has a compound
string data type (such as the value of a resource whose data type is
compound string)

UIL recognizes a number of keywords specifying character sets. UIL
associates parsing rules, including parsing direction and whether
characters have 8 or 16 bits, for each character set it recognizes. It is also
possible to define a character set using the UIL CHARACTER_SETfunction.

The syntax of a string literal is one of the following:

• ’[character_string]’
• [#char_set]
• “[character_string]”

For each syntax, the character set of the string is determined as follows:

• For a string declared as ’character_string’, the character set is the code
set component of the LANG environment variable, if it is set in the UIL
compilation environment; or it is the value of XmFALLBACK_CHARSET if
the LANG environment variable is not set or has no code set. By default,
the value of XmFALLBACK_CHARSET is ISO8859-1, but vendors may
supply different values.

• For a string declared as #char_set “string”, the character set is char_set.

• For a string declared as “character_string”, the character set depends on
whether the module has a CHARACTER_SET clause and whether the UIL
compiler’s use_setlocale_flag is set.
• If the module has a CHARACTER_SET clause, the character set is the

one specified in that clause.
• If the module has no CHARACTER_SET clause but the uil command was

started with the -s option, or if the Uil() function was started with
use_setlocale_flag set , UIL calls the setlocale() function and
parses the string in the current locale. The character set of the
resulting string is XmFONTLIST_DEFAULT_TAG.

100 CDE: Internationalization Programmer’s Guide

4

• If the module has no CHARACTER_SET clause and the uil command
was started without the -s option, or if the Uil() function was started
without use_setlocale_flag , the character set is the code set
component of the LANG environment variable, if it is set in the UIL
compilation environment, or the character set is the value of
XmFALLBACK_CHARSET if LANG is not set or has no code set.

UIL always stores a string specified using the COMPOUND_STRING function
as a compound string. This function takes as arguments a string expression
and optional specifications of a character set, direction, and whether to
append a separator to the string. If no character set or direction is
specified, UIL derives it from the string expression, as described in the
preceding section.

Note – Certain predefined escape sequences, beginning with a \
(backslash), may be displayed in string literals, with the following
exceptions:

– A string in single quotation marks can span multiple lines, with
each new line character escaped by a backslash. A string in double
quotation marks cannot span multiple lines.

– Escape sequences are processed literally inside a string that is parsed
in the current locale (a localized string).

101

Xt and Xlib Dependencies 5

This chapter discusses tasks related to internationalizing with Xt and Xlib.

 Locale Management
The following defines support for the locale mechanism that controls all
locale-dependent Xlib and Common Desktop Environment functions.

X Locale Management
X locale supports one or more of the locales defined by the host environment.
The Xlib conforms to the American National Standards Institute (ANSI) C
library, and the locale announcement method is the setlocale() function.
This function configures the locale operation of both the host C library and
Xlib. The operation of Xlib is governed by the LC_CTYPE category; this is called
the current locale.

Locale Management 101

Font Management 109

Drawing Localized Text 111

Inputting Localized Text 111

Interclient Communications Conventions for Localized Text
123

Messages 127

102 CDE: Internationalization Programmer’s Guide

5

The XSupportsLocale() function is used to determine whether the current
locale is supported by X.

The client is responsible for selecting its locale and X modifiers. Clients should
provide a means for the user to override the clients’ locale selection at client
invocation. Most single-display X clients operate in a single locale for both X
and the host-processing environment. They configure the locale by calling
three functions: setlocale() , XSupportsLocale() , and
XSetLocaleModifiers() .

The semantics of certain categories of X internationalization capabilities can
be configured by setting modifiers. Modifiers are named by
implementation-dependent and locale-specific strings. The only standard use
for this capability at present is selecting one of several styles of keyboard input
methods.

The XSetLocaleModifiers() function is used to configure Xlib locale
modifiers for the current locale.

The recommended procedure for clients initializing their locale and modifiers
is to obtain locale and modifier announcers separately from one of the following
prioritized sources:

1. A command-line option

2. A resource

3. The empty string (“ ”)

The first of these that is defined should be used.

Note – When a locale command-line option or locale resource is defined, the
effect should be to set all categories to the specified locale, overriding any
category-specific settings in the local host environment.

Locale and Modifier Dependencies

The internationalized Xlib functions operate in the current locale configured by
the host environment and in the X locale modifiers set by the
XSetLocaleModifiers() function, or in the locale and modifiers configured
at the time some object supplied to the function was created. For each
locale-dependent function, Table 5-1 lists locale and modifier dependencies.

Xt and Xlib Dependencies 103

5

Table 5-1 Locale and Modifier Dependencies

Locale
from... Affects the Function... In the...

Locale Query/Configuration

setlocale XSupportsLocale
XSetLocaleModifiers

Locale queried
Locale modified

Resources

setlocale XrmGetFileDatabase
XrmGetStringDatabase

Locale of XrmDatabase

XrmDatabase XrmPutFileDatabase
XrmLocaleOfDatabase

Locale of XrmDatabase

Setting Standard Properties

setlocale XmbSetWMProperties Encoding of supplied
returned text (some WM_
property text in
environment locale)

setlocale XmbTextPropertyToTextList
XwcTextPropertyToTextList
XmbTextListToTextProperty
XwcTextListToTextProperty

Encoding of
supplied/returned text

Text Input

setlocale XOpenIM XIM input method

XIM XCreateIC

XLocaleOfIM , etc.

XIC input method
configuration
Queried locale

XIC XmbLookupText
XwcLookupText

Keyboard layout
Encoding of returned text

Text Drawing

setlocale XCreateFontSet Charsets of fonts in XFontSet

XFontSet XmbDrawText,
XwcDrawText , etc.
XExtentsOfFontSet , etc.
XmbTextExtents,
XwcTextExtents , etc.

Locale of supplied text
Locale of supplied text
Locale-dependent metrics

104 CDE: Internationalization Programmer’s Guide

5

Clients can assume that a locale-encoded text string returned by an X
function can be passed to a C library function, or the string result of a C
library function can be passed to an X function, if the locale is the same at
the two calls.

All text strings processed by internationalized Xlib functions are assumed
to begin in the initial state of the encoding of the locale, if the encoding is
state-dependent. All Xlib functions behave as if they do not change the
current locale or X modifier setting. (This means that any function,
provided within a library either by Xlib or by the application, that changes
the locale or calls the XSetLocaleModifiers() function with a nonnull
argument, must save and restore the current locale state on entry and
exit.) Also, Xlib functions on implementations that conform to the ANSI C
library do not alter the global state associated with the mblen() ,
mbtowc() , wctomb() , and strtok() ANSI C functions.

Xt Locale Management

Xt locale management includes the following two functions:

• XtSetLanguageProc()
• XtDisplayInitialize()

XtSetLanguageProc

Before the initialization of the Xt Toolkit, applications should normally call
the XtSetLanguageProc() function with one of the following functions:

XtSetLanguageProc (NULL, NULL, NULL)

Xlib Errors

setlocale XGetErrorDatabaseText
XGetErrorText

Locale of error message

Table 5-1 Locale and Modifier Dependencies (Continued)

Locale
from...

Affects the Function...
(Continued) (Continued) In the...

Xt and Xlib Dependencies 105

5

Note – The locale is not actually set until the toolkit is initialized (for
example, by way of the XtAppInitialize() function). Therefore, the
setlocale() function may be needed after the XtSetLanguageProc()
function and the initializing of the toolkit (for example, if calling the
catopen() function).

Resource databases are created in the current process locale. During
display initialization prior to creating the per-screen resource database, the
Intrinsics call to a specified application procedure to set the locale
according to options found on the command line or in the per-display
resource specifications.

The callout procedure provided by the application is of type
XtLanguageProc , as in the following syntax:
typedef String(*XtLanguageProc)(displayID, languageID, clientdata);
Display * displayID;
String languageID;
XtPointer clientdata;

displayID Passes the display.

languageID Passes the initial language value obtained from the
command line or server per-display resource
specifications.

clientdata Passes the additional client data specified in the call
to the XtSetLanguageProc() function.

The language procedure allows an application to set the locale to the value
of the language resource determined by the XtDisplayInitialize()
function. The function returns a new language string that is subsequently
used by the XtDisplayInitialize() function to establish the path for
loading resource files. This string is cached and is the locale of the display.

Initially, no language procedure is set by the intrinsics. To set the language
procedure for use by the XtDisplayInitialize() function, use the
XtSetLanguageProc() function:

XtLanguageProc XtSetLanguageProc(applicationcontext, procedure, clientdata)
XtAppContext applicationcontext;
XtLanguageProc procedure;
XtPointer clientdata;

106 CDE: Internationalization Programmer’s Guide

5

applicationcontext Specifies the application context in which the
language procedure is to be used or specifies a null
value.

procedure Specifies the language procedure.

clientdata Specifies additional client data to be passed to the
language procedure when it is called.

The XtSetLanguageProc() function sets the language procedure that is
called from the XtDisplayInitialize() function for all subsequent
displays initialized in the specified application context. If the
applicationcontext parameter is null, the specified language procedure is
registered in all application contexts created by the calling process,
including any future application contexts that may be created. If the
procedure parameter is null, a default language procedure is registered.
The XtSetLanguageProc() function returns the previously registered
language procedure. If a language procedure has not yet been registered,
the return value is unspecified; but if this return value is used in a
subsequent call to the XtSetLanguageProc() function, it causes the
default language procedure to be registered.

The default language procedure does the following:

• Sets the locale according to the environment. On ANSI C-based systems,
this is done by calling the setlocale (LC_ALL, “language”) function. If an
error is encountered, a warning message is issued with the
XtWarning() function.

• Calls the XSupportsLocale() function to verify that the current locale
is supported. If the locale is not supported, a warning message is issued
with the XtWarning() function and the locale is set to "C".

• Calls the XSetLocaleModifiers() function specifying the empty
string.

• Returns the value of the current locale. On ANSI C-based systems, this
is the return value from a final call to the setlocale (LC_CTYPE, NULL)
function.

A client can use this mechanism to establish a locale by calling the
XtSetLanguageProc() function prior to the XtDisplayInitialize()
function, as in the following example.

Xt and Xlib Dependencies 107

5

Widget top;
XtSetLanguageProc(NULL, NULL, NULL);
top = XtAppInitialize(...);
...

XtDisplayInitialize

The XtDisplayInitialize() function first determines the language
string to be used for the specified display and loads the application’s
resource database for this display-host-application combination from the
following sources in order of precedence:

1. Application command line (argv)

2. Per-host user environment resource file on the local host

3. Resource property on the server or user-preference resource file on the
local host

4. Application-specific user resource file on the local host

5. Application-specific class resource file on the local host

The XtDisplayInitialize() function creates a unique resource
database for each display parameter specified. When a database is created,
a language string is determined for the display parameter in a manner
equivalent to the following sequence of actions.

The XtDisplayInitialize() function initially creates two temporary
databases. The first database is constructed by parsing the command line.
The second database is constructed from the string returned by the
XResourceManagerString() function or, if the
XResourceManagerString() function returns a null value, the contents
of a resource file in the user’s home directory. The name for this
user-preference resource file is $HOME/.Xdefaults .

The database constructed from the command line is then queried for the
resource name.xnlLanguage , class class.XnlLanguage , where name and
class are the specified application name and application class. If this
database query is unsuccessful, the server resource database is queried; if
this query is also unsuccessful, the language is determined from the
environment. This is done by retrieving the value of the LANG environment
variable. If no language string is found, the empty string is used.

108 CDE: Internationalization Programmer’s Guide

5

The application-specific class resource file name is constructed from the
class name of the application. It points to a localized resource file that is
usually installed by the site manager when the application is installed. The
file is found by calling the XtResolvePathname() function with the
parameters (displayID, applicationdefaults, NULL, NULL, NULL, NULL,
0, NULL). This file should be provided by the developer of the application
because it may be required for the application to function properly. A
simple application that needs a minimal set of resources in the absence of
its class resource file can declare fallback resource specifications with the
XtAppSetFallbackResources() function.

The application-specific user resource file name points to a user-specific
resource file and is constructed from the class name of the application. This
file is owned by the application and typically stores user customizations. Its
name is found by calling the XtResolvePathname() function with the
parameters (displayID, NULL, NULL, NULL, path, NULL, 0, NULL),
where path is defined in an operating-system-specific manner. The path
variable is defined to be the value of the XUSERFILESEARCHPATH
environment variable if this is defined. Otherwise, the default is vendor-
defined.

If the resulting resource file exists, it is merged into the resource database.
This file can be provided with the application or created by the user.

The temporary database created from the server resource property or user
resource file during language determination is then merged into the
resource database. The server resource file is created entirely by the user
and contains both display-independent and display-specific user
preferences.

If one exists, a user’s environment resource file is then loaded and merged
into the resource database. This file name is user- and host-specific. The
user’s environment resource file name is constructed from the value of the
user’s XENVIRONMENT environment variable for the full path of the file. If
this environment variable does not exist, the XtDisplayInitialize()
function searches the user’s home directory for the .Xdefaults- host file,
where host is the name of the machine on which the application is running.
If the resulting resource file exists, it is merged into the resource database.
The environment resource file is expected to contain process-specific
resource specifications that are to supplement those user-preference
specifications in the server resource file.

Xt and Xlib Dependencies 109

5

Font Management

International text drawing is done using a set of one or more fonts, as
needed for the locale of the text.

The two methods of internationalized drawing within the system
environment allow clients to choose one of the static output widgets (for
example, XmLabel) or to choose the DrawingArea widget to draw with any
other primitive function.

Static output widgets require that text be converted to XmString .

The following information explains the mechanism for managing fonts
using the Xlib routines and functions.

Creating and Freeing a Font Set

Xlib international text drawing is done using a set of one or more fonts, as
needed for the locale of the text. Fonts are loaded according to a list of base
font names supplied by the client and the charsets required by the locale.
The XFontSet is an opaque type.

• The XCreateFontSet() function is used to create an international text
drawing font set.

• The XFontsOfFontSet() function is used to obtain a list of
XFontStruct structures and full font names given an XFontSet.

• To obtain the base font name list and the selected font name list given
an XFontSet , use the XBaseFontNameListOfFontSet() function.

• To obtain the locale name given an XFontSet , use the
XLocaleOfFontSet() function.

• The XLocaleOfFontSet() function returns the name of the locale
bound to the specified XFontSet as a null-terminated string.

• The XFreeFontSet() function frees the specified font set. The
associated base font name list, font name list, XFontStruct list, and
XFontSetExtents , if any, are freed.

110 CDE: Internationalization Programmer’s Guide

5

Obtaining Font Set Metrics

Metrics for the internationalized text drawing functions are defined in
terms of a primary draw direction, which is the default direction in which
the character origin advances for each succeeding character in the string.
The Xlib interface is currently defined to support only a left-to-right
primary draw direction. The drawing origin is the position passed to the
drawing function when the text is drawn. The baseline is a line drawn
through the drawing origin parallel to the primary draw direction.
Character ink is the pixels painted in the foreground color and does not
include interline or intercharacter spacing or image text background pixels.

The drawing functions are allowed to implement implicit text direction
control, reversing the order in which characters are rendered along the
primary draw direction in response to locale-specific lexical analysis of the
string.

Regardless of the character rendering order, the origins of all characters
are on the primary draw direction side of the drawing origin. The screen
location of a particular character image may be determined with the
XmbTextPerCharExtents() or XwcTextPerCharExtents() functions.

The drawing functions are allowed to implement context-dependent
rendering, where the glyphs drawn for a string are not simply a
combination of the glyphs that represent each individual character. A
string of two characters drawn with the XmbDrawString() function may
render differently than if the two characters were drawn with separate
calls to the XmbDrawString() function. If the client adds or inserts a
character in a previously drawn string, the client may need to redraw some
adjacent characters to obtain proper rendering.

The drawing functions do not interpret newline characters, tabs, or other
control characters. The behavior when nonprinting characters are drawn
(other than spaces) is implementation-dependent. It is the client’s
responsibility to interpret control characters in a text stream.

To find out about context-dependent rendering, use the
XContextDependentDrawing() function. The XExtentsOfFontSet()
function obtains the maximum extents structure given an XFontSet. The
XmbTextEscapement() and XwcTextEscapement() functions obtain the
escapement in pixels of the specified text as a value. The
XmbTextExtents() and XwcTextExtents() functions obtain the overall

Xt and Xlib Dependencies 111

5

bounding box of the string’s image and a logical bounding box
(overall_ink_return and overall_logical_return arguments respectively). The
XmbTextPerCharExtents() and XwcTextPerCharExtents() functions
return the text dimensions of each character of the specified text, using the
fonts loaded for the specified font set.

Drawing Localized Text

The functions defined in this section draw text at a specified location in a
drawable. They are similar to the XDrawText() , XDrawString() , and
XDrawImageString() functions except that they work with font sets
instead of single fonts, and they interpret the text based on the locale of the
font set instead of treating the bytes of the string as direct font indexes. If
a BadFont error is generated, characters prior to the offending character
may have been drawn.

The text is drawn using the fonts loaded for the specified font set; the font
in the graphics context (GC) is ignored and may be modified by the
functions. No validation that all fonts conform to some width rule is
performed.

Use the XmbDrawText() or XwcDrawText() function to draw text using
multiple font sets in a given drawable. To draw text using a single font set
in a given drawable, use the XmbDrawString() or XwcDrawString()
function. To draw image text using a single font set in a given drawable,
use the XmbDrawImageString() or XwcDrawImageString() function.

Inputting Localized Text

The following discusses the Xlib and desktop mechanisms used for
international text input. If you are using Motif Text[Field] widgets or
you are using the XmIm APIs for text input, this section provides
background information. However, it will not impact your application
design or coding practice. If you are not interested in how character input
is achieved from the keyboard with low-level Xlib calls, you can proceed to
“Interclient Communications Conventions for Localized Text” on page 123.

112 CDE: Internationalization Programmer’s Guide

5

Xlib Input Method Overview

This section provides definitions for terms and concepts used for
internationalized text input and a brief overview of the intended use of the
mechanisms provided by Xlib.

A large number of languages in the world use alphabets consisting of a
small set of symbols (letters) to form words. To enter text into a computer
in an alphabetic language, a user usually has a keyboard on which there
are key symbols corresponding to the alphabet. Sometimes, a few
characters of an alphabetic language are missing on the keyboard. Many
computer users who speak a Latin-alphabet-based language only have an
English-based keyboard. They need to press a combination of keystrokes to
enter a character that does not exist directly on the keyboard. A number of
algorithms have been developed for entering such characters, known as
European input methods, the compose input method, or the dead-keys
input method.

Japanese is an example of a language with a phonetic symbol set, where
each symbol represents a specific sound. There are two phonetic symbol
sets in Japanese: Katakana and Hiragana. In general, Katakana is used for
words that are of foreign origin, and Hiragana for writing native Japanese
words. Collectively, the two systems are called Kana. Hiragana consists of
83 characters; Katakana, 86 characters.

Korean also has a phonetic symbol set, called Hangul. Each of the 24 basic
phonetic symbols (14 consonants and 10 vowels) represent a specific sound.
A syllable is composed of two or three parts: the initial consonants, the
vowels, and the optional last consonants. With Hangul, syllables can be
treated as the basic units on which text processing is done. For example, a
delete operation may work on a phonetic symbol or a syllable. Korean code
sets include several thousands of these syllables. A user types the phonetic
symbols that make up the syllables of the words to be entered. The display
may change as each phonetic symbol is entered. For example, when the
second phonetic symbol of a syllable is entered, the first phonetic symbol
may change its shape and size. Likewise, when the third phonetic symbol is
entered, the first two phonetic symbols may change their shape and size.

Not all languages rely solely on alphabetic or phonetic systems. Some
languages, including Japanese and Korean, employ an ideographic writing
system. In an ideographic system, rather than taking a small set of symbols
and combining them in different ways to create words, each word consists

Xt and Xlib Dependencies 113

5

of one unique symbol (or, occasionally, several symbols). The number of
symbols may be very large: approximately 50,000 have been identified in
Hanzi, the Chinese ideographic system.

There are two major aspects of ideographic systems for their computer
usage. First, the standard computer character sets in Japan, China, and
Korea include roughly 8,000 characters, while sets in Taiwan have between
15,000 and 30,000 characters, which make it necessary to use more than
one byte to represent a character. Second, it is obviously impractical to
have a keyboard that includes all of a given language’s ideographic
symbols. Therefore a mechanism is required for entering characters so that
a keyboard with a reasonable number of keys can be used. Those input
methods are usually based on phonetics, but there are also methods based
on the graphical properties of characters.

In Japan, both Kana and Kanji are used. In Korea, Hangul and sometimes
Hanja are used. Now, consider entering ideographs in Japan, Korea, China,
and Taiwan.

In Japan, either Kana or English characters are entered and a region is
selected (sometimes automatically) for conversion to Kanji. Several Kanji
characters can have the same phonetic representation. If that is the case,
with the string entered, a menu of characters is presented and the user
must choose the appropriate option. If no choice is necessary or a
preference has been established, the input method does the substitution
directly. When Latin characters are converted to Kana or Kanji, it is called
a Romaji conversion.

In Korea, it is usually acceptable to keep Korean text in Hangul form, but
some people may choose to write Hanja-originated words in Hanja rather
than in Hangul. To change Hangul to Hanja, a region is selected for
conversion and the user follows the same basic method as described for
Japanese.

Probably because there are well-accepted phonetic writing systems for
Japanese and Korean, computer input methods in these countries for
entering ideographs are fairly standard. Keyboard keys have both English
characters and phonetic symbols engraved on them, and the user can
switch between the two sets.

114 CDE: Internationalization Programmer’s Guide

5

The situation is different for Chinese. While there is a phonetic system
called Pinyin promoted by authorities, there is no consensus for entering
Chinese text. Some vendors use a phonetic decomposition (Pinyin or
another), others use ideographic decomposition of Chinese words, with
various implementations and keyboard layouts. There are about 16 known
methods, none of which is a clear standard.

Also, there are actually two ideographic sets used: Traditional Chinese (the
original written Chinese) and Simplified Chinese. Several years ago, the
People’s Republic of China launched a campaign to simplify some
ideographic characters and eliminate redundancies altogether. Under the
plan, characters would be streamlined every five years. Characters have
been revised several times now, resulting in the smaller, simpler set that
makes up Simplified Chinese.

Input Method Architecture

As shown in the previous section, there are many different input methods
used today, each varying with language, culture, and history. A common
feature of many input methods is that the user can type multiple
keystrokes to compose a single character (or set of characters). The process
of composing characters from keystrokes is called preediting. It may require
complex algorithms and large dictionaries involving substantial computer
resources.

Input methods may require one or more areas in which to show the
feedback of the actual keystrokes, to show ambiguities to the user, to list
dictionaries, and so on. The following are the input method areas of
concern.

Status area Intended to be a logical extension of the
light-emitting diodes (LEDs) that exist on the
physical keyboard. It is a window that is intended to
present the internal state of the input method that
is critical to the user. The status area may consist of
text data and bitmaps or some combination.

Preedit area Intended to display the intermediate text for those
languages that are composing prior to the client
handling the data.

Xt and Xlib Dependencies 115

5

Auxiliary area Used for pop-up menus and customizing dialog boxes
that may be required for an input method. There
may be multiple auxiliary areas for any input
method. Auxiliary areas are managed by the input
method independent of the client. Auxiliary areas
are assumed to be a separate dialog that is
maintained by the input method.

There are various user interaction styles used for preediting. The following
are the preediting styles supported by Xlib.

OnTheSpot Data is displayed directly in the application window.
Application data is moved to allow preedit data to be
displayed at the point of insertion.

OverTheSpot Data is displayed in a preedit window that is placed
over the point of insertion.

OffTheSpot Preedit window is displayed inside the application
window but not at the point of insertion. Often, this
type of window is placed at the bottom of the
application window.

Root window Preedit window is the child of RootWindow.

It would require a lot of computing resources if portable applications had to
include input methods for all the languages in the world. To avoid this, a
goal of the Xlib design is to allow an application to communicate with an
input method placed in a separate process. Such a process is called an input
server. The server to which the application should connect is dependent on
the environment when the application is started up: what the user
language is and the actual encoding to be used for it. The input method
connection is said to be locale-dependent. It is also user-dependent; for a
given language, the user can choose, to some extent, the user-interface
style of input method (if there are several choices).

Using an input server implies communications overhead, but applications
can be migrated without relinking. Input methods can be implemented
either as a token communicating to an input server or as a local library.

The abstraction used by a client to communicate with an input method is
an opaque data structure represented by the XIM data type. This data
structure is returned by the XOpenIM() function, which opens an input
method on a given display. Subsequent operations on this data structure

116 CDE: Internationalization Programmer’s Guide

5

encapsulate all communication between client and input method. There is
no need for an X client to use any networking library or natural language
package to use an input method.

A single input server can be used for one or more languages, supporting one
or more encoding schemes. But the strings returned from an input method
are always encoded in the (single) locale associated with the XIM object.

Input Contexts

Xlib provides the ability to manage a multithreaded state for text input. A
client may be using multiple windows, each window with multiple text
entry areas, with the user possibly switching among them at any time. The
abstraction for representing the state of a particular input thread is called
an input context. The Xlib representation of an input context is an XIC. See
Figure 5-1 on page 117 for an illustration.

Xt and Xlib Dependencies 117

5

Figure 5-1 Input method and input contexts

An input context is the abstraction retaining the state, properties, and
semantics of communication between a client and an input method. An
input context is a combination of an input method, a locale specifying the
encoding of the character strings to be returned, a client window, internal
state information, and various layout or appearance characteristics. The
input context concept somewhat matches for input the graphics context
abstraction defined for graphics output.

Input
Method

Input
Context

 Input
 Context

Application
Window

Application
Window

118 CDE: Internationalization Programmer’s Guide

5

One input context belongs to exactly one input method. Different input
contexts can be associated with the same input method, possibly with the
same client window. An XIC is created with the XCreateIC() function,
providing an XIM argument, affiliating the input context to the input
method for its lifetime. When an input method is closed with the
XCloseIM() function, no affiliated input contexts should be used again
(and should preferably be deleted before closing the input method).

Considering the example of a client window with multiple text entry areas,
the application programmer can choose to implement the following:

• As many input contexts are created as text-entry areas. The client can
get the input accumulated on each context each time it looks up that
context.

• A single context is created for a top-level window in the application. If
such a window contains several text-entry areas, each time the user
moves to another text-entry area, the client has to indicate changes in
the context.

Application designers can choose a range of single or multiple input
contexts, according to the needs of their applications.

Keyboard Input

To obtain characters from an input method, a client must call the
XmbLookupString() function or XwcLookupString() function with an
input context created from that input method. Both a locale and display are
bound to an input method when they are opened, and an input context
inherits this locale and display. Any strings returned by the
XmbLookupString() or XwcLookupString() function are encoded in that
locale.

Xlib Focus Management

For each text-entry area in which the XmbLookupString() or
XwcLookupString() function is used, there is an associated input context.

When the application focus moves to a text-entry area, the application must
set the input context focus to the input context associated with that area.
The input context focus is set by calling the XSetICFocus() function with
the appropriate input context.

Xt and Xlib Dependencies 119

5

Also, when the application focus moves out of a text-entry area, the
application should unset the focus for the associated input context by
calling the XUnsetICFocus() function. As an optimization, if the
XSetICFocus() function is called successively on two different input
contexts, setting the focus on the second automatically unsets the focus on
the first.

Note – To set and unset the input context focus correctly, it is necessary to
track application-level focus changes. Such focus changes do not necessarily
correspond to X server focus changes.

If a single input context is used to do input for multiple text-entry areas, it
is also necessary to set the focus window of the input context whenever the
focus window changes.

Xlib Geometry Management

In most input method architectures (OnTheSpot being the notable
exception), the input method performs the display of its own data. To
provide better visual locality, it is often desirable to have the input method
areas embedded within a client. To do this, the client may need to allocate
space for an input method. Xlib provides support that allows the client to
provide the size and position of input method areas. The input method
areas that are supported for geometry management are the status area and
the preedit area.

The fundamental concept on which geometry management for input method
windows is based is the proper division of responsibilities between the
client (or toolkit) and the input method. The division of responsibilities is
the following:

• The client is responsible for the geometry of the input method window.

• The input method is responsible for the contents of the input method
window. It is also responsible for creating the input method window per
the geometry constraints given to it by the client.

An input method can suggest a size to the client, but it cannot suggest a
placement. The input method can only suggest a size: it does not determine
the size, and it must accept the size it is given.

120 CDE: Internationalization Programmer’s Guide

5

Before a client provides geometry management for an input method, it
must determine if geometry management is needed. The input method
indicates the need for geometry management by setting the
XIMPreeditArea() or XIMStatusArea() function in its XIMStyles value
returned by the XGetIMValues() function. When a client decides to
provide geometry management for an input method, it indicates that
decision by setting the XNInputStyle value in the XIC.

After a client has established with the input method that it will do
geometry management, the client must negotiate the geometry with the
input method. The geometry is negotiated by the following steps:

• The client suggests an area to the input method by setting the
XNAreaNeeded value for that area. If the client has no constraints for
the input method, it either does not suggest an area or sets the width
and height to 0 (zero). Otherwise, it sets one of the values.

• The client gets the XIC XNAreaNeeded value. The input method returns
its suggested size in this value. The input method should pay attention
to any constraints suggested by the client.

• The client sets the XIC XNArea value to inform the input method of the
geometry of the input method’s window. The client should try to honor
the geometry requested by the input method. The input method must
accept this geometry.

Clients performing geometry management must be aware that setting other
IC values may affect the geometry desired by an input method. For
example, the XNFontSet and XNLineSpacing values may change the
geometry desired by the input method. It is the responsibility of the client
to renegotiate the geometry of the input method window when it is needed.

In addition, a geometry management callback is provided by which an
input method can initiate a geometry change.

Event Filtering

A filtering mechanism is provided to allow input methods to capture X
events transparently to clients. It is expected that toolkits (or clients) using
the XmbLookupString() or XwcLookupString() function call this filter
at some point in the event processing mechanism to make sure that events
needed by an input method can be filtered by that input method. If there is

Xt and Xlib Dependencies 121

5

no filter, a client can receive and discard events that are necessary for the
proper functioning of an input method. The following provides a few
examples of such events:

• Expose events that are on a preedit window in local mode.

• Events can be used by an input method to communicate with an input
server. Such input server protocol-related events have to be intercepted
if the user does not want to disturb client code.

• Key events can be sent to a filter before they are bound to translations
such as Xt provides.

Clients are expected to get the XIC XNFilterEvents value and add to the
event mask for the client window with that event mask. This mask can be
0.

Callbacks

When an OnTheSpot input method is implemented, only the client can
insert or delete preedit data in place and possibly scroll existing text. This
means the echo of the keystrokes has to be achieved by the client itself,
tightly coupled with the input method logic.

When a keystroke is entered, the client calls the XmbLookupString() or
XwcLookupString() function. At this point, in the OnTheSpot case, the
echo of the keystroke in the preedit has not yet been done. Before returning
to the client logic that handles the input characters, the lookup function
must call the echoing logic for inserting the new keystroke. If the
keystrokes entered so far make up a character, the keystrokes entered need
to be deleted, and the composed character is returned. The result is that,
while being called by client code, input method logic has to call back to the
client before it returns. The client code, that is, a callback routine, is called
from the input method logic.

There are a number of cases where the input method logic has to call back
the client. Each of those cases is associated with a well-defined callback
action. It is possible for the client to specify, for each input context, which
callback is to be called for each action.

There are also callbacks provided for feedback of status information and a
callback to initiate a geometry request for an input method.

122 CDE: Internationalization Programmer’s Guide

5

X Server Keyboard Protocol

This section discusses the server and keyboard groups.

A keysym is the encoding of a symbol on a keycap. The goal of the server’s
keysym mapping is to reflect the actual key caps on the physical keyboards.
The user can redefine the keyboard by running the xmodmap command with
the new mapping desired.

X Version 11 Release 4 (X11R4) allows for definition of a bilingual keyboard
at the server. The following describes this capability.

A list of keysyms is associated with each key code. The following list
discusses the set of symbols on the corresponding key:

• If the list (ignoring trailing NoSymbol entries) is a single keysym K, the
list is treated as if it were the list K NoSymbol K NoSymbol .

• If the list (ignoring trailing NoSymbol entries) is a pair of keysyms K1
K2, the list is treated as if it were the list K1 K2 K1 K2 .

• If the list (ignoring trailing NoSymbol entries) is three keysyms K1 K2
K3, the list is treated as if it were the list K1 K2 K3 NoSymbol .

When an explicit void element is desired in the list, the VoidSymbol value
can be used.

The first four elements of the list are split into two groups of keysyms.
Group 1 contains the first and second keysyms; Group 2 contains the third
and fourth keysyms. Within each group, if the second element of the group
is NoSymbol, the group is treated as if the second element were the same
as the first element, except when the first element is an alphabetic keysym
K for which both lowercase and uppercase forms are defined. In that case,
the group is treated as if the first element is the lowercase form of K and
the second element is the uppercase form of K.

The standard rules for obtaining a keysym from an event make use of the
Group 1 and Group 2 keysyms only; no interpretation of other keysyms in
the list is given here. The modifier state determines which group to use.
Switching between groups is controlled by the keysym named MODE
SWITCH by attaching that keysym to some key code and attaching that
key code to any one of the modifiers Mod1 through Mod5. This modifier is
called the group modifier. For any key code, Group 1 is used when the
group modifier is off, and Group 2 is used when the group modifier is on.

Xt and Xlib Dependencies 123

5

Within a group, the keysym to use is also determined by the modifier state.
The first keysym is used when the Shift and Lock modifiers are off. The
second keysym is used when the Shift modifier is on, when the Lock
modifier is on, and when the second keysym is uppercase alphabetic, or
when the Lock modifier is on and is interpreted as ShiftLock. Otherwise,
when the Lock modifier is on and is interpreted as CapsLock, the state of
the Shift modifier is applied first to select a keysym; if that keysym is
lowercase alphabetic, the corresponding uppercase keysym is used instead.

No spatial geometry of the symbols on the key is defined by their order in
the keysym list, although a geometry might be defined on a vendor-specific
basis. The server does not use the mapping between key codes and
keysyms. Rather, it stores it merely for reading and writing by clients.

The KeyMask modifier named Lock is intended to be mapped to either a
CapsLock or a ShiftLock key, but which one it is mapped to is left as an
application-specific decision, user-specific decision, or both. However, it is
suggested that users determine mapping according to the associated
keysyms of the corresponding key code.

Interclient Communications Conventions for Localized Text

The following information explains how components use Interclient
Communications Conventions (ICCC) to communicate text data and is
offered as a guideline to understand how ICCC selections are performed.
The XmText widget , XmTextField widget, and the dtterm command
adhere to these guidelines.

The toolkit is enhanced for internationalized ICCC compliance. The
selection mechanism of XmText , XmTextField , and dtterm is enhanced to
ensure proper matching of data and data encoding in any selection
transaction. This includes standard cut-and-paste operations.

For developers who use the toolkit to write their applications, the toolkit
enables the application to be ICCC-compliant. However, for developers who
may use another non-ICCC-compliant toolkit to develop applications that
communicate with toolkit-based applications, the following may be helpful.

124 CDE: Internationalization Programmer’s Guide

5

Owner of Selection

Any owner returns at least the following atom list when XA_TARGETS is
requested on some localized text:

• Atom code set of current locale

• COMPOUND_TEXT

• XA_STRING

When XA_TEXT is requested, the owner returns its text as is with the
encoding type of the property set to the code set of the current locale (no
data conversion). An atom is created, representing the name of the code set
of the locale.

When COMPOUND_TEXT is requested, the owner converts its localized text to
compound text and passes it with the property type of COMPOUND_TEXT.

When XA_STRING is requested, the owner attempts to convert the localized
text to XA_STRING. If the text string contains characters that cannot be
converted to XA_STRING, the operation is unsuccessful.

Note – XA_STRING is defined to be ISO8859-1.

Requester of Selection

A requester first requests XA_TARGET when text data is to be
communicated with the selection owner.

The requester then searches for one of the following atoms in priority order:

• Atom for the code set of the requester’s locale

• COMPOUND_TEXT

• XA_STRING

• XA_TEXT

If the code set of the requester’s locale matches one of the targets, the
requester makes a request using the atom representing that code set. The
XA_TEXT atom is used only if none of the other atoms is found. Because the
owner returns a property with a type representing its encoding, the
requester attempts to convert to the code set of its locale.

Xt and Xlib Dependencies 125

5

If the type COMPOUND_TEXT or XA_STRING is requested, the requester
attempts to convert the text property to the code set of its current locale by
using the XmbTextPropertyToTextList() or
XwcTextPropertyToTextList() functions. These are used when the
owner client and requester client are running under different code sets.

When converting from COMPOUND_TEXT or XA_STRING, not all text data is
guaranteed to be converted; only those characters that are in common
between the owner and the requester will be converted.

XmClipboard

XmClipboard is also enhanced to be ICCC-compliant in conjunction with
the XmText and XmTextField widgets. When text is being put on the
clipboard by way of the XmText and XmTextField widgets, the following
ICCC protocol is implemented:

When text is being retrieved from the clipboard by way of the XmText and
XmTextField widgets, the text from the clipboard is converted to encoding
of the current locale from either COMPOUND_TEXT or XA_STRING. All text on
the clipboard is assumed to be in either the compound text format or the
string format.

Note – If text is put directly on the clipboard, the application needs to
specify the format, or encoding type in the form of an atom, along with the
text to put on the clipboard. Similarly, if text is retrieved directly from the
clipboard, the retrieving application needs to check the format to see what
encoding the data on the clipboard is encoded in and take the appropriate
action.

Passing Window Title and Icon Name to Window Managers

The default of the XtNtitleEncoding and XtNiconNameEncoding
resources for the VendorShell class is set to None. This is done only when
using the libXm.a library. The libXt.a library still retains XA_STRING as
the default for the resources.

126 CDE: Internationalization Programmer’s Guide

5

This is done so that, as a default case, the XmNtitle and XmNiconName
resources are converted to a standard ICCC interchange, such as compound
text, based on the assumption the text (title and icon name) is localized
text.

It is recommended that the user not set the XtNtitleEncoding and
XtNiconNameEncoding resources. Instead, ensure that the XtNtitle and
XtNiconName resources are strings encoded in the encoding of the
currently active locale of the running client. If the None value is used, the
toolkit converts the localized text to the standard ICCC style. (The
encoding communicated is COMPOUND_TEXT or XA_STRING.) If the
XtNtitleEncoding and XtNiconNameEncoding resources are set, the
XtNtitle and XtNiconName resources are not converted in any way and
are communicated to the Window Manager with the encoding specified.

Assuming the Window Manager being communicated with is
ICCC-compliant, that Window Manager is able to use the encoding type of
COMPOUND_TEXT or XA_STRING, or both.

When setting the XmNdialogTitle resource of the XmBulletinBoar d
widget class, remember that there is a restriction on the charset segment.
For charsets that are not X Consortium-standard compound text encodings
or XmFONTLIST_DEFAULT_TAG-associated, the text segment is treated as
localized text. Localized text is converted to either compound text or
ISO8859-1 before being communicated to the Window Manager.

The Window Manager is enhanced so that it always converts the client title
and icon name passed from clients to the encoding of its current locale, and
an XmString is created using the XmFONTLIST_DEFAULT_TAG identifier.
Thus, the client title and icon name are always drawn with the default font
list entry of the Window Manager font list.

Note – This allows clients running with different code sets but with similar
character sets to communicate their titles to the Window Manager. For
example, both a PC code client and an ISO8859-1 client can display their
titles regardless of the code set of the Window Manager.

Xt and Xlib Dependencies 127

5

Messages

Part of internationalizing a system environment toolkit-based application is
not to have any locale-specific data hardcoded within the application
source. One common locale-specific item is messages (error and warning)
returned by the application of the standard I/O (input/output).

In general, for any error or warning messages to be displayed to the user
through a system environment toolkit widget or gadget, the messages need
to be externalized through message catalogs.

For dialog messages to be displayed through a toolkit component, the
messages need to be externalized through localized resource files. This is
done in the same way as localizing resources, such as the XmLabel and
XmPushbutton classes’ XmNlabelString resource or window titles.

For example, if a warning message is to be displayed through an
XmMessageBox widget class, the XmNmessageString resource cannot be
hardcoded within the application source code. Instead, the value of this
resource needs to be retrieved from a message catalog. For an
internationalized application expected to run in different locales, a distinct
localized catalog must exist for each of the locales to be supported. In this
way, the application need not be rebuilt.

The localized resource files can be put in the /opt/dt/app-defaults/ %L
subdirectories or they can be pointed to by the XENVIRONMENT environment
variable. The %L variable indicates the locale used at run time.

The preceding two choices are left as design decisions for the application
developer.

128 CDE: Internationalization Programmer’s Guide

5

129

Message Guidelines A

Refer to the information in this appendix to write messages that are easily
internationlized.

File-Naming Conventions

The conventions used in naming files with user messages are discussed
here. Usually, the message source file has the suffix .msg ; the generated
message catalog has the suffix .cat . There may be other such files related
to messages. The following criteria must be met for a file to have these
suffixes:

• It is X/Open-compliant.
• It becomes a *.cat file through the use of the gencat command.

File-Naming Conventions 129

Cause and Recovery Information 130

Comment Lines for Translators 130

Writing Style 131

Usage Statements 133

Regular Expression Standard Messages 136

Sample Messages 137

130 CDE: Internationalization Programmer’s Guide

A

Cause and Recovery Information

Whenever possible, explain to users exactly what has happened and what
they can do to remedy the situation.

The message Bad arg is not very helpful. However, the following message
tells users exactly what to do to make the command work:

Do not specify more than 2 files on the command line

Similarly, the message Line too long does not giver users recovery
information. However, the following message gives users more specific
recovery information:

Line cannot exceed 20 characters

If detailed recovery information is necessary for a given error message, add
it to the appropriate place in online information or help.

See “Sample Messages” on page 137 for samples of original and rewritten
messages.

Comment Lines for Translators

A message source file should contain comments to help the translator in the
process of translation. These comments will not be part of the message
catalog generated. The comments are similar to C language comments to
help document a program. A dollar sign ($) followed by a space will be
interpreted by the translation tool and the gencat command as comments.
The following is an example of a comment line in a message source file.

$ This is a comment

Use comment lines to tell translators and writers what variables, such as
%s, %c, and %d, represent. For example, note whether the variable refers to
such things as a user, file, directory, or flag.

Place the comment line directly beneath the message to which it refers,
rather than at the bottom of the message catalog. Global comments for an
entire set can be placed directly below the $set directive in the source file.

Specify in a comment line any messages within the message catalog that
are obsolete.

Message Guidelines 131

A

Programming Format

For the programming format of messages, see the following list.

• Do not construct messages from clauses. Use flags or other means within
the program to pass information so that a complete message can be
issued at the proper time.

• Do not use hardcoded English text as a variable for a %s string in an
existing message. This is also the construction of messages and is not
translatable.

• Capitalize the first word of the sentence, and use a period at the end of
the sentence or phrase.

• End the last line of the message with \n (backslash followed by a
lowercase n, indicating a new line). This also applies to one-line
messages.

• Begin the second and remaining lines of a message with \t (backslash
followed by a lowercase t, indicating a tab).

• End all other lines with \n\ (backslash followed by a lowercase n,
followed by another backslash, indicating a new line).

• If, for some reason, the message should not end with a new line, use a
comment to tell the writers.

• Precede each message with the name of the command that called the
message, followed by a colon. The command name should precede the
component number in error messages. The command name is shown in
the following example as it should appear in a message:

OPIE “foo: Opening the file.”

Writing Style

The following guidelines on the writing style of messages include
terminology, punctuation, mood, voice, tense, capitalization, and other
usage questions.

• Use sentence format. One-line and one-sentence messages are
preferable.

• Add articles (a, an, the) when necessary to eliminate ambiguity.

• Capitalize the first word of the sentence and use a period at the end.

132 CDE: Internationalization Programmer’s Guide

A

• Use the present tense. Do not allow future tense in a message. For
example, use the sentence:

The foo command displays a calendar .

Instead of:

The foo command will display a calendar .

• Do not use the first person (I or we) anywhere in messages.

• Avoid using the second person.

Do not use the word you except in help and interactive text.

• Use active voice. The first line is the original message. The second line is
the preferred wording.

MYNUM “Month and year must be entered as numbers.”

MYNUM “foo: 7777-222 Enter month and year as numbers.\n”

7777-222 is the message ID.

• Use the imperative mood (command phrase) and active verbs: specify,
use, check, choose, and wait are examples.

• State messages in a positive tone. The first line is the original message.
The second line is the preferred wording.

BADL “Don’t use the f option more than once.”

BADL “foo: 7777-009 Use the -f flag only once.\n”

• Do not use nouns as verbs. Use words only in the grammatical categories
shown in the dictionary. If a word is shown only as a noun, do not use it
as a verb. For example, do not solution a problem (or, for that matter,
architect a system).

• Do not use prefixes or suffixes. Translators may not understand words
beginning with re-, un-, in-, or non-, and the translations of messages
that use these prefixes or suffixes may not have the meaning you
intended. Exceptions to this rule occur when the prefix is an integral
part of a commonly used word. The words previous and premature are
acceptable; the word nonexistent, is not.

Message Guidelines 133

A

• Do not use plurals. Do not use parentheses to show singular or plural, as
in error(s), which cannot be translated. If you must show singular and
plural, write error or errors. A better way is to condition the code so that
two different messages are issued depending on whether the singular or
plural of a word is required.

• Do not use contractions. Use the single word cannot to denote something
the system is unable to do.

• Do not use quotation marks. This includes both single and double
quotation marks. For example, do not use quotation marks around
variables such as %s, %c, and %d or around commands. Users may take
the quotation marks literally.

• Do not hyphenate words at the end of lines.

• Do not use the standard highlighting guidelines in messages, and do not
substitute initial or all caps for other highlighting practices.

• Do not use and/or. This construction does not exist in other languages.
Usually it is better to say or to indicate that it is not necessary to do
both.

• Use the 24-hour clock. Do not use a.m. or p.m. to specify time. For
example, write 1:00 p.m. as 1300.

• Avoid acronyms. Only use acronyms that are better known to your
audience than their spelled-out versions. To make a plural of an
acronym, add a lowercase s, without an apostrophe. Verify that it is not
a trademark before using it.

• Avoid the “no-no” words. Examples are abort, argument, and execute. See
the project glossary.

• Retain meaningful terminology. Keep as much of the original message
text as possible while ensuring that the message is meaningful and
translatable.

Usage Statements

The usage statement is generated by commands when at least one flag that
is not valid has been included in the command line. The usage statement
must not be used if only the data associated with a flag is missing or
incorrect. If this occurs, an error message unique to the problem is used.

134 CDE: Internationalization Programmer’s Guide

A

• Show the command syntax in the usage statement. For example, a
possible usage statement for the del command reads:

Usage: del {File ...|-}

• Clauses defining the purpose of a command are to be removed.

• Capitalize the first letter of such words (parameters) as File, Directory,
String, Number, and so on only when used in a usage statement.

• Do not abbreviate parameters on the command line. It may be perfectly
obvious to experienced users that Num means Number, but spell it out to
ensure correct translation.

• Use only the following delimiters in usage statements:

Delimiter Description

[] Parameter is optional.

{ } There is more than one parameter choice, but one of
the parameters is required. (See the following text.)

| Choose one parameter only. [a|b] indicates that you
can choose a or b or neither a nor b. {a|b} indicates
that you must choose either a or b.

.. Parameter can be repeated on the command line.
(Note that there is a space before the ellipsis.)

- Standard input.

• A usage statement parameter does not require square brackets or braces
if it is required and is the only choice, as in the following:

banner String

• In usage statements, put a space between flags that must be separated
on the command line. For example:

unget [-n] [-rSID] [-s] {File|-}

• If flags can be used together without a separating space, do not separate
them with a space on the command line. For example:

wc [-cwl] {File ...|-}

• When the order of flags on the command line does not make a difference,
put them in alphabetical order. If the case is mixed, put lowercase
versions first:

get -aAijlmM

Message Guidelines 135

A

• Some usage statements can be long and involved. Use your best
judgment to determine where you should end lines in the usage
statement. The following example shows an old-style usage statement for
the get command:

Usage: get [-e|-k] [-cCutoff] [-iList] [-rSID] [-wString] [xList]
[-b] [-gmnpst] [-l[p]] File ...
Retrieves a specified version of a Source Code Control System
(SCCS) file.

Standard Messages

Certain commands have standard errors defined in POSIX.2
documentation. Follow the guidelines set up in POSIX.2, if applicable.

• Tell the user to Press the ------ key to select a key on the
keyboard, including the specific key to press (such as, Press Ctrl-D).

• Unless the system is overloaded, there is no need to tell the user to Try
again later . That should be obvious from the message.

• When writing message text, use the word parameter to describe text on
the command line; use the word value to indicate numeric data.

• Use the word flag rather than the words command option.

• Do not use commas to set off the one-thousandth place in values.

• Do not use 1,000. Use 1000.

• If a message must be set off with an asterisk, use two asterisks at the
beginning of the message and two asterisks at the end of the message.

** Total **

• Use log in and log off as verbs.

Log in to the system; enter the data; then log off.

• Use user name, group name, and login as nouns.

The user name is sam.
The group name is staff.
The login directory is /u/sam.

• User number and group number refer to the number associated with the
user’s name and group.

• Do not use the term superuser. The root user may not have all privileges.

136 CDE: Internationalization Programmer’s Guide

A

• Use the words command string to describe the command with its
parameters.

• Many of the same messages occur frequently. Table A-1 lists the new
standard message that replaces the old message.

Regular Expression Standard Messages

Table A-2 lists the standard regular expression error messages, including
the message number associated with each regular expression error:

Table A-1 New Standard Messages

Use the Following Standard Messages
Instead of These
Messages

Cannot find or open the file . Can’t open filename .

Cannot find or access the file . Can’t access

The syntax of a parameter is not valid . syntax error

Table A-2 Regular Expression Standard Messages

Number Use These Standard Messages Instead of These Messages

11 Specify a range end point
that is less than 256.

Range end point too
large.

16 The character or characters
between \{ and \} must be
numeric.

Bad number.

25 Specify a \digit between 1
and 9 that is not greater
than the number of
subpatterns.

\digit out of range .

36 A delimiter is not correct
or is missing.

Illegal or missing
delimiter.

41 There is no remembered
search string .

No remembered search
string.

42 There is a missing \(or \). \(\) imbalance.

43 Do not use \(more than 9
times.

Too many \(.

Message Guidelines 137

A

Sample Messages

These are examples of original messages and rewritten messages. The
rewritten message follows each original message.

AFLGKEYLTRS “Too Many -a Keyletters (Ad9)”
AFLGKEYLTRS “foo: 7777-007 Use the -a flag less than 11 times.\n”

FLGTWICE “Flag %c Twice (Ad4)”
FLGTWICE “foo: 7777-004 Use the %c header flag once.\n”

ESTAT “can’t access %s.\n”
ESTAT “foo: 7777-031 Cannot find or access %s.\n”

EMODE “foo: invalid mode\n”
EMODE “foo: 7777-033 A mode flag or value is not correct.\n”

DNORG “-d has no argument (ad1)”
DNORG “foo: 7777-001 Specify a parameter after the -d flag.\n”

FLOORRNG “floor out of range (ad23)”
FLOORRNG “foo: 7777-021 Specify a floor value greater than 0\n\
\tand less than 10000.\n“

AFLGARG “bad -a argument (ad8)”
AFLGARG “foo: 7777-006 Specify a user name, group name, or\n\
\tgroup number after the -a flag.\n“

44 Do not specify more than 2
numbers between \{ and \}.

More than two numbers
given in \{ and \}.

45 An opening \{ must have a
closing \}.

} expected after \.

46 The first number cannot
exceed the second number
between \{ and \}.

First number exceeds
second in \{ and \}.

48 Specify a valid end point to
the range.

Invalid end point in
range expression.

49 For each [there must be a
].

[] imbalance .

50 The regular expression is
too large for internal
memory storage. Simplify
the regular expression.

Regular expression
overflow .

Table A-2 Regular Expression Standard Messages (Continued)

138 CDE: Internationalization Programmer’s Guide

A

BADLISTFMT “bad list format (ad27)”
BADLISTFMT “foo: 7777-025 Use numeric version and release\
\tnumbers.\n”

139

Index

A
app-defaults file 23
application programmer, controlling

input method components 89
application requirements 1
auxiliary area 19

B
base font name list 11
basic interchange in a network 55
button resources 45

C
callbacks, with Xlib 121
changing the locale 22
character set keywords 99
character sets, defining with UIL

CHARACTER_SET
function 99

charset segment, restriction 126
clipboard data encoding 125
CNS character definitions 71
code page 63
code segment, example using

XmNlabelString resource 82

code set name, portability 79
code sets

control characters 65
eucJP, description 69
eucKR, description 72
eucTW, description 70
extended UNIX code (EUC) 66
graphic characters 65
ISO EUC 67
ISO646-IRV, description 67
ISO8859, list of other 68
ISO8859-1, description 67
multibyte 66
network local hosts 56
network remote host 56
single-byte 65
stateful encodings 59
stateless encodings 59
strategy 63
structure 64

Common Desktop Environment
description 1
goal of 4
input area

auxiliary area 19
details of 13
focus area 19
MainWindow area 19
preedit area 15

140 CDE: Internationalization Programmer’s Guide

status area 18
input method interface 90
keyboard groups 122
National Language Support

input areas 13
setlocale function 7
using locales 7

window manager, ICCC
enhancements 126

common desktop environment
functions found in 52

Common Desktop Environment Toolkit
ICCC compliance 123
non-ICCC-compliant 123

communicating text data, ICCC 123
compound strings

components 80
in default files 82
directions 80
font list element tags 80
for international text display 80
relationship to font list 82
separator 80
setting programmatically 81
structures, interaction with font

lists 80
in UIL 98

conversions
iconv text 60
simple text 60
stateful code sets 60
stateless encodings 59
Xlib 61

customizing keyboard input,
localization 122

customizing the input method 50

D
data encoding, clipboard 125
default font list entry

drawing client title 126
drawing icon name 126

default, resource ICCC compliance 126

default_charset string literal 96
dependencies, modifier for

internationalization 102
determining language string with

XtDisplayInitialize
function 107

dialog message, toolkit 127
direction identifiers as compound string

components 80
distributed internationalization

guidelines 55
double-byte character set (DBCS) 101
drawing

a localized string 32
drawing text, Xlib routines and

functions 109
dtterm command

ICCC 20
ICCC compliance 123

E
encodings 63
environment, language 73
error message, see also message 127
eucJP code set 69
eucKR code set 72
eucTW code set 70
event filtering with Xlib 120
examples of displaying localized title

and icon name 62
externalizing dialog messages 127
extracting localized text

using message catalogs 42
using private files 42
using resource files 41

F
file, naming conventions 129
focus area 19
focus management

example description 92

Index 141

focus area 19
international text input 90
XMbLookupString or

XwcLookupString 118
font list entries, creating 85
font lists 25

description 87
element tags as compound string

components 80
internationalizing 10
relationship to compound strings 82
setting in resource files 77
structures 75
Text widgets 87
TextField widgets 87

font lists in UIL, creating functions
for 93

font management
choosing correct fonts 23
listing of functions 27

font selection algorithm, displaying text
with font sets 11

font sets
creating with Xlib 109
drawing text 111
internationalizing 9
metrics, obtaining with Xlib

interfaces 110
programming for international

UIL 93
specifying 78
specifying base name list 11

font-encoded text, definition 78
fonts

character code values 23
glyphs contained in 23
limitations with internationalized

programs 25
matching to character sets 23
for Motif-based applications 26
name tags 26
organization 28
rendering for an X Windows

client 23

resource specifications 26
syntax for a fontset 26

fonts, creating 76

G
geometry management

application programmer controls 89
international text input 89
Text widget 89
TextField widget 89
with Xlib 119
XmBulletinBoard widget 89
XmRowColumn widget 89

guidelines for window titles 61

H
help information guidelines 42

I
ICCC compliance

default for resources 126
dtterm command 123
for internationalization 123
passing icon name 125
passing window title 125
toolkit 123
window manager 125
XmClipboard 125
XmText widget 123
XmTextField widget 123

iconv
interface 56
text conversion functions 60

input method
Common Desktop Environment

interface 90
determining, XmNinputMethod

resource 88
international text input 87
multibyte characters 90
requirements 87
Text widget 89
VendorShell widget class 87

142 CDE: Internationalization Programmer’s Guide

XMbLookupString or
XwcLookupString 118

interfaces
between input method and Common

Desktop Environment 90
for network communications 55

international application in different
locales 127

international text drawing
XmFontList function 78
XmString 79

international text input
focus management 90
geometry management 89
input methods 87
multibyte characters 89
VendorShell widget operations 88

internationalization
common system 5
definition 1
goals of 3
ICCC compliance 123
input method architecture 114
managing locales 101
preediting supported by Xlib 115
specifications 5
specifying base name lists 11
supported languages 4
using Xlib for text input 112
X locales, managing 101
Xt locales, managing 104

ISO EUC code set 67
ISO646-IRV code set 67
ISO8859, other significant code sets 68
ISO8859-1 code set 67

J
Japanese Input Method

auxiliary area 19
preediting, reconverted strings 15

K
keyboards

customizing localization input 122
groups for Common Desktop

Environment 122
keys, code associated with keysym 122
keysyms

associated key code 122
definition 122

L
language environment

description 73
language procedure 74
languages 4
libXm library 20
list resources 48
loading fonts 76, 85
locale management

description 21
functions used 22

locales
behavior 2
definition 2, 21
environment variables 22
fonts for 23
managing 101
managing X 101
managing Xt 104
modifier dependencies 102
UIL compiler 92

localization
definition 3
results of 4

localized
catalog for each supported

locale 127
resource file, location 127

localized resources 45
customizing the input method 50
gadget 45
text 49
titles and icon names 48
widget 45

localized text

Index 143

definition 78
drawing compound 32
drawing simple 31
extracting 41
input methods 34
methods for establishing 41
writing in resource files 34

localizing
customizing keyboard input 122

location of localized resource files 127

M
MainWindow area 19
message

dialog, externalizing 127
error 127
internationalizing 127
warning 127

messages
cause and recovery information 130
comment lines for translators 130
extraction functions

requirements for
internationalization 43

Xlib set 44
XPG4 set 43

file-naming conventions 129
guidelines 42
option 136
programming format 131
punctuation and wording

guidelines 135
samples 137
usage statements in 133
writing style in 131

modes of preediting
OffTheSpot 15
OverTheSpot 16
Root 18

modifier dependencies for
internationalization 102

MrmOpenHierarchy function, searching
UID file 95

N
National Language Support

entering input 13
font lists 8
font sets 8
fonts 8
input areas 13
internationalized ICCC 19
programming for international use

international text input 111
Xt locale management 104

specifying
base name list 11

understanding
font lists 8
font sets 8
fonts 8

User Interface Language (UIL) 92
using input methods 13
Window Manager

communicating icon names 20
communicating titles 20

network-based input method 34
networks 55
non-ICCC-compliant toolkit

owner 124
requester 124
XmClipboard 125

O
OffTheSpot mode, preedit area 15
OS internationalized functions 52
OverTheSpot mode, preedit area 16
owner, non-ICCC-compliant toolkit 124

P
pixmaps, localizing 50
portability of code set names 79
preedit areas

default mode 16
description 15
OffTheSpot mode 15

144 CDE: Internationalization Programmer’s Guide

OverTheSpot mode 16
Root mode 18
VendorShell widget class 15

preediting 90
programming for international UIL 93,

94
programming for international use

ICCC compliance 123
international text input 111
messages 127
UIL 93, 94

locale text 92
parsing multibyte character

string 92
parsing nonstandard

charsets 92
string literals 92

Xt locale management 104

R
requester, non-ICCC-compliant

toolkit 124
resource files

creating for international UIL 94
localized, location 127
writing a localized string 34

resource files, creating 94
resources

button 45
locale sensitive 45
for reading lists 48
for setting lists 48
for setting titles 48
used as labels 46

Root mode, preedit area 18

S
separators as compound string

components 80
setlocale function

for internationalization 7
setting the environment

for international UIL 94

searching the UID file 95
setting the locale 22
simple text conversion functions 60
standard interfaces, benefit of using 5
standards 4, 5
stateful and stateless encodings,

conversion of 59
status area 18
string literals

default_charset in UIL 96
in UID files 99
programming for international

UIL 92
syntax 99

T
text input

in applications without Text
widget 36

intermediate feedback 35
managing with Xlib 116
prompts and dialogs 34
within a DrawingArea widget 35

text resources 49
Text widget font list search 87
Text widgets, input method 89
text, obtaining localized 23
TextField widget font list search 87
titles for windows 61
toolkit component, dialog messages 127

U
UID file search 95
UIL (User Interface Language)

sample Japanese and English
program 96

usage statements, delimiters 134
User Interface Language (UIL), see UIL
using

default encoding, ICCC-compliant
resources 126

Index 145

ICCC to communicate text data 123

V
VendorShell widget class

auxiliary area 19
child widget size 90
focus area 19
focus management 90
geometry management 87
as input manager 87
as interface 90
MainWindow area 19
managing components

MainWindow area 87
preedit area 87
status area 87

preedit area 15
size 90
status area 18

VendorShell widget operations
processing multibyte character

I/O 88

W
warning message, see also message 127
Window Manager

communicating titles and icon
names 20

window manager
converting client title 126
converting icon name 126
font list drawing client title 126
font list drawing icon name 126

X
X interclient (ICCCM) conversion

functions 61
X Logical Font Description (XLFD)

font names for international
locale 11

identifying glyphs 23
name fields 23

X/Open specifications 5
XFontStruct 78
XIM

callback 40
event handling 40
management functions 39

Xlib message/resource facilities 45
Xlib routines and functions, drawing

text 109
XLoadQueryFont 84
XmClipboard

ICCC compliance 125
non-ICCC-compliant toolkit 125
XmText widget 125
XmTextField widget 125

XmFontList functions, international
drawing 78

XmFontListEntryLoad 75
XmGetPixmapByDepth 50
XmIm functions 37
XmNinputMethod resource,

determining input method 88
XmNlabelString resource, code

segment 82
XmString functions 34
XmStringCreate

description 86
XmStringCreateLocalized 86
XmStringCreateLtoR 86
XmStringLoadQueryFont,

international text drawing,
example syntax 79

XmText functions 35
XmText widget class, ICCC

compliance 123
XmTextField widget class, ICCC

compliance 123
XPG4 messaging examples 43
Xt locale management

programming for international
use 104

XtAppSetFallbackResources
function 108

146 CDE: Internationalization Programmer’s Guide

XtDisplayInitialize function 107,
108

XtResolvePathname function 108
XtAppSetFallbackResources, Xt locale

management 108
XtDisplayInitialize function

description 107
locale management 107
managing locales with 107
Xt locale management 108

XtResolvePathname
Xt locale management 108

XtSetLanguageProc
default language 75
managing locales 104

