
Tru64 UNIX
System Configuration Supplement: OEM
Platforms

Part Number: AA-RJ1UC-TE

April 2000

Product Version: Tru64 UNIX Version 5.0A or higher

This manual provides information needed to set up OEM platforms
running the HP Tru64 UNIX operating system. It helps system and
network administrators configure PCI/ISA modular single-board
computers (SBCs), Alpha VME SBCs, and VMEbus backplane (vb)
networks in which SBCs operate as Ethernet nodes.

Hewlett-Packard Company
Palo Alto, California

© 2000 Hewlett-Packard Company

Motif®, OSF/1®, UNIX®, X/Open®, and The Open Group™ are trademarks of The Open Group in the
U.S. and/or other countries. All other product names mentioned herein may be the trademarks of their
respective companies.

Confidential computer software. Valid license from Compaq Computer Corporation, a wholly owned
subsidiary of Hewlett-Packard Company, required for possession, use, or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial
license.

None of Compaq, HP, or any of their subsidiaries shall be liable for technical or editorial errors or omissions
contained herein. The information is provided “as is” without warranty of any kind and is subject to
change without notice. The warranties for HP or Compaq products are set forth in the express limited
warranty statements accompanying such products. Nothing herein should be construed as constituting
an additional warranty.

Contents

About This Manual

1 OEM Platform Requirements and Restrictions
1.1 PCI/ISA Modular Single-Board Computers

(SMARTengine/Alpha and EBMnn) 1–1
1.1.1 Verifying CPU Version 1–1
1.1.2 Firmware Requirements 1–2
1.1.3 Installing Tru64 UNIX 1–2
1.1.4 Restrictions and Known Problems 1–2
1.1.4.1 Option Card Restrictions 1–2
1.1.4.2 PBXGB-AA (TGA2 PowerStorm 3D30) Video Card

Restrictions 1–4
1.1.4.2.1 EV5 Alias Jumper Setting (SMARTengine/Alpha

21264 and EBM2n Only) 1–4
1.1.4.2.2 VGAEN Jumper Settings 1–4
1.1.4.2.3 X Server DMA Writes Must Be Disabled for Some

Configurations 1–4
1.1.4.3 Operator Control Panel and Watchdog Timer

Supported Only in Hardware and Firmware 1–6
1.1.4.4 IDE Device Mapping Potentially Impacts 21264 SBC

Upgrades 1–6
1.1.5 Configuring PCI/ISA Modular 8-Headed Graphics

Systems 1–7
1.1.5.1 Hardware and Software Requirements 1–7
1.1.5.2 Hardware Setup 1–8
1.1.5.3 Software Setup 1–8
1.1.6 Writing PCI Bus Device Drivers 1–9
1.2 Alpha VME 4/nnn and 5/nnn Single-Board Computers

(EBVnn) 1–10
1.2.1 Verifying CPU Version 1–10
1.2.2 Firmware Requirements 1–10
1.2.3 Installing Tru64 UNIX 1–11
1.2.4 Configuring the VMEbus 1–11
1.2.5 Restrictions and Known Problems 1–11
1.2.5.1 VMEbus Autovectors Not Supported 1–11
1.2.5.2 Network Port Termination Required 1–11

Contents iii

1.2.5.3 Some TGA Video Card Configurations Require
Disabling X Server DMA Writes 1–11

1.2.5.4 Master Block Transfer Restrictions 1–13
1.2.6 Writing VMEbus Device Drivers 1–13
1.3 AXPvme Single-Board Computers 1–14
1.3.1 Firmware Upgrade Required 1–14
1.3.2 Master Block Transfer Restrictions 1–14

2 Configuring the VMEbus for Alpha VME Systems
2.1 VMEbus Support Overview 2–1
2.2 Configuring VIP/VIC-Based Alpha VME SBCs 2–2
2.2.1 Configuring the vba_vipvic Subsystem 2–3
2.2.1.1 Specifying the VMEbus Request Level 2–6
2.2.1.2 Specifying the VIC Arbitration Mode 2–6
2.2.1.3 Specifying the VMEbus Fairness Timer Value 2–6
2.2.1.4 Specifying Bus Timeout Periods 2–7
2.2.1.5 Specifying the VMEbus Release Mode 2–7
2.2.1.6 Specifying System Controller VMEbus Resets 2–7
2.2.1.7 Special Considerations for VMEbus Resets 2–8
2.2.1.8 Specifying VMEbus Master Write Posting 2–9
2.2.1.9 Specifying the VMEbus DMA Interleave Gap 2–10
2.2.1.10 Specifying Limits on VMEbus DMA Reads 2–11
2.2.1.11 Specifying Limits on VMEbus DMA Writes 2–11
2.2.1.12 Specifying the DMA Method for SMP 2–12
2.2.2 Configuring VMEbus A32 and A24 Address Spaces 2–12
2.2.2.1 Specifying A32 and A24 Address Space Overlapping . . 2–12
2.2.2.2 Configuring A32 and A24 Window Sizes 2–13
2.2.2.3 Specifying the A32 Base Address 2–14
2.2.2.4 Specifying the A24 Base Address 2–14
2.2.3 Configuring the VMEbus A16 Address Space 2–17
2.2.4 Configuring VMEbus Interrupts 2–17
2.2.4.1 VMEbus Interrupt Request Levels 2–17
2.2.4.2 Setting VMEbus Interrupt Vector Parameters 2–19
2.2.4.3 Specifying Autovector Interrupt Vectors 2–19
2.2.4.4 Specifying Module Switch Interrupt Vectors 2–20
2.2.4.5 Specifying Global Switch Interrupt Vectors 2–21
2.2.5 Using VMEbus Hardware Byte-Swapping Modes 2–21
2.2.6 Sharing Memory Between Big Endian and Little Endian

Processors 2–23
2.2.7 Performing VMEbus Slave Block Transfers 2–23
2.2.8 Performing VMEbus Master Block Transfers with Local

DMA 2–24

iv Contents

2.2.8.1 Routines for Master Block-Mode Transfers 2–25
2.2.8.2 Restrictions on VMEbus Master Block Transfers 2–26
2.2.9 Using the Realtime Interrupt-Handling Routine

rt_post_callout 2–27
2.3 Configuring UNIVERSE II–Based Alpha VME SBCs 2–28
2.3.1 Configuring the vba_univ Subsystem 2–29
2.3.1.1 Specifying the Adapter Interrupt Dispatch Policy 2–38
2.3.1.2 Specifying the Adapter PCI Scatter/Gather Maximum

Size 2–38
2.3.1.3 Specifying the Adapter DMA Window Maximum Size 2–38
2.3.1.4 Specifying the PCI Coupled Window Timer Value 2–39
2.3.1.5 Specifying the PCI Maximum Retries 2–39
2.3.1.6 Specifying the PCI Posted Write Transfer Count 2–40
2.3.1.7 Specifying the PCI Aligned Burst Size 2–40
2.3.1.8 Specifying the VMEbus Request Level 2–41
2.3.1.9 Specifying the VMEbus Request Mode 2–41
2.3.1.10 Specifying the VMEbus Release Mode 2–41
2.3.1.11 Specifying the VMEbus Timeout Period 2–41
2.3.1.12 Specifying the VMEbus Arbitration Mode 2–42
2.3.1.13 Specifying the VMEbus Arbitration Timeout Period . . 2–42
2.3.1.14 Specifying System Controller VMEbus Resets 2–42
2.3.1.15 Special Considerations for VMEbus Resets 2–43
2.3.1.16 Specifying the VMEbus On and Off Counters for

MBLTs 2–44
2.3.2 Configuring PCI-to-VME Address Spaces 2–45
2.3.2.1 Enabling or Disabling a PCI-to-VME Window 2–47
2.3.2.2 Specifying a PCI-to-VME Window VMEbus Base

Address 2–47
2.3.2.3 Specifying a PCI-to-VME Window Size 2–47
2.3.2.4 Specifying PCI-to-VME Window VMEbus Address

Modifiers 2–48
2.3.2.5 Specifying a PCI-to-VME Window VMEbus Maximum

Data Width 2–48
2.3.2.6 Specifying PCI-to-VME Window Write Posting 2–49
2.3.2.7 Specifying a PCI-to-VME Window VMEbus Cycle

Type 2–49
2.3.3 Configuring a Special A24/A16 PCI-to-VME Window 2–49
2.3.3.1 Enabling or Disabling the A24/A16 Window 2–50
2.3.3.2 Specifying A24/A16 Window Write Posting 2–51
2.3.3.3 Specifying the A24/A16 Window VMEbus Maximum

Data Width 2–51
2.3.4 Configuring VME-to-PCI Address Spaces 2–51

Contents v

2.3.4.1 Enabling or Disabling a VME-to-PCI Window 2–53
2.3.4.2 Specifying a VME-to-PCI Window VMEbus Base

Address 2–53
2.3.4.3 Specifying a VME-to-PCI Window Size 2–53
2.3.4.4 Specifying VME-to-PCI Window VMEbus Address

Modifiers 2–53
2.3.4.5 Specifying VME-to-PCI Window Write Posting 2–54
2.3.4.6 Specifying VME-to-PCI Window Prefetch Reads 2–54
2.3.4.7 Specifying VME-to-PCI Window 64-Bit PCI Bus

Transactions 2–55
2.3.5 Mapping UNIVERSE II CSRs to the VMEbus 2–55
2.3.5.1 Enabling or Disabling the CSR Window 2–56
2.3.5.2 Specifying a CSR Window VMEbus Base Address 2–56
2.3.5.3 Specifying CSR Window VMEbus Address Modifiers . 2–56
2.3.6 Mapping a Location Monitor Window to the VMEbus 2–57
2.3.6.1 Enabling or Disabling the Location Monitor Window . 2–58
2.3.6.2 Specifying a Location Monitor Window VMEbus Base

Address 2–58
2.3.6.3 Specifying Location Monitor Window VMEbus Address

Modifiers 2–58
2.3.7 Configuring VMEbus Interrupts 2–59
2.3.7.1 VMEbus Interrupt Request Levels 2–59
2.3.7.2 Setting VMEbus Interrupt Vector Parameters 2–60
2.3.7.3 Specifying Module Switch Interrupt Vectors 2–60
2.3.7.4 Specifying Location Monitor Interrupt Vectors 2–61
2.3.8 Using VMEbus Software Byte Swapping 2–62
2.3.9 Sharing Memory Between Big Endian and Little Endian

Processors 2–62
2.3.10 Performing VMEbus Slave Block Transfers 2–63
2.3.11 Performing VMEbus Master Block Transfers with Local

DMA 2–63
2.3.11.1 Routines for Master Block-Mode Transfers 2–64
2.3.11.2 Restriction on VMEbus Master Block Transfers 2–66
2.3.12 Using the Realtime Interrupt-Handling Routine

rt_post_callout 2–66

3 Configuring a VMEbus Backplane (vb) Network
3.1 VMEbus Backplane (vb) Network Overview 3–2
3.1.1 VMEbus Addresses Used for Client Communication 3–2
3.1.2 VMEbus Addresses Used for Interrupting 3–4
3.1.3 Box Manager Node 3–5
3.1.4 Network Participation 3–7

vi Contents

3.2 Configuring vb Network Nodes 3–8
3.3 Modifying vb Driver Attributes 3–9
3.3.1 Modifying Per-Node vb Attributes 3–12
3.3.2 Modifying Per-Network vb Attributes 3–17
3.4 Modifying vba_vipvic Adapter Attributes 3–19
3.5 Modifying vba_univ Adapter Attributes 3–20
3.6 VIP/VIC Two-Node Network Example 3–22
3.7 UNIVERSE II Two-Node Network Example 3–25
3.8 Related ioctl Commands 3–32
3.9 Diagnostic Messages 3–33
3.10 Errors 3–34
3.10.1 System Startup Error Messages 3–34
3.10.2 Post-Startup Error Messages 3–35

Index

Tables
1–1 Supported PCI/ISA Backplanes and Kernels 1–3
1–2 PCI/ISA Options Supported Behind the Bridge 1–3
2–1 VIP/VIC VMEbus Adapter Defaults 2–4
2–2 VIP/VIC VMEbus Interrupt Initial Defaults 2–5
2–3 VIP/VIC VMEbus Interrupt Request Levels 2–18
2–4 UNIVERSE II VMEbus Adapter Defaults 2–30
2–5 UNIVERSE II VMEbus Interrupt Initial Defaults 2–37
2–6 UNIVERSE II VMEbus Interrupt Request Levels 2–59
3–1 VMEbus Backplane (vb) Network Driver Defaults 3–10
3–2 VIP/VIC VMEbus Address Space Defaults 3–20

Contents vii

About This Manual

This manual provides information needed to set up OEM platforms running
the HP Tru64 UNIX operating system. It helps system and network
administrators configure PCI/ISA modular single-board computers (SBCs),
Alpha VME SBCs, and VMEbus backplane (vb) networks in which SBCs
operate as Ethernet nodes.

Audience

This manual is for experienced system and network administrators who are
thoroughly familiar with their platform’s I/O bus and with the operating
system concepts, commands, and configurations.

Organization
This manual contains the following chapters.

Chapter 1 OEM Platform Requirements and Restrictions
Provides notes about the use of OEM platforms, with a section
devoted to each platform family.

Chapter 2 Configuring the VMEbus for Alpha VME Systems
Explains how to configure VMEbus adapters for OEM platforms,
with a section devoted to each major adapter type.

Chapter 3 Configuring a VMEbus Backplane (vb) Network
Explains how to set up a VMEbus backplane–based network in which
Alpha VME single-board computers (SBCs) operate as Ethernet
nodes.

Related Documents

The following documents are relevant to setting up OEM platforms:

• System Configuration and Tuning

• System Administration

• Network Administration: Connections

• Network Administration: Services

• Your platform’s hardware documentation

• The sys_attrs_vba_vipvic(7) kernel subsystem reference page

About This Manual ix

• The sys_attrs_vba_univ(7) kernel subsystem reference page

• The sys_attrs_vme_vba(7) kernel subsystem reference page

• The sys_attrs(5) reference page

• The sysconfigdb(8) reference page

• Release Notes Processor-Specific Notes

• Installation Guide platform-specific instructions for booting

• Guide to Realtime Programming

• Device Driver Kit manual Writing VMEbus Device Drivers

• Device Driver Kit manual Writing PCI Bus Device Drivers

Icons on Tru64 UNIX Printed Manuals

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the manuals to help specific audiences quickly find the manuals
that meet their needs. (You can order the printed documentation from HP.)
The following list describes this convention:

G Manuals for general users

S Manuals for system and network administrators

P Manuals for programmers

R Manuals for reference page users

Some manuals in the documentation help meet the needs of several
audiences. For example, the information in some system manuals is also
used by programmers. Keep this in mind when searching for information
on specific topics.

The Documentation Overview provides information on all of the manuals in
the Tru64 UNIX documentation set.

x About This Manual

Reader’s Comments

HP welcomes any comments and suggestions you have on this and other
Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

Please include the following information along with your comments:

• The full title of the manual and the order number. (The order number
appears on the title page of printed and PDF versions of a manual.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate HP technical support office. Information
provided with the software media explains how to send problem reports to
HP.

About This Manual xi

Conventions

This manual uses the following conventions:

% A percent sign represents the C shell system prompt.

A number sign represents the default superuser prompt.

>>> Three right angle brackets represent the console
subsystem prompt.

% cat Boldface type in interactive examples indicates typed user input.

file Italic (slanted) type indicates variable values, placeholders,
and routine argument names.

...
A vertical ellipsis indicates that a portion of an example
that would normally be present is not shown.

cat(1) A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat(1)
indicates that you can find information on the cat command
in Section 1 of the reference pages.

xii About This Manual

1
OEM Platform Requirements and

Restrictions

This chapter provides notes about the use of OEM platforms, with a section
devoted to each platform family:

• PCI/ISA modular single-board computers [SMARTengine/Alpha and
EBMnn] (Section 1.1)

• Alpha VME 4/nnn and 5/nnn single-board computers [EBVnn]
(Section 1.2)

• AXPvme single-board computers (Section 1.3)

1.1 PCI/ISA Modular Single-Board Computers
(SMARTengine/Alpha and EBMnn)

The SMARTengine/Alpha 21264 single-board computer (SBC) and its
predecessors, the EBM2n and EBM4n SBCs, are members of a family of
PCI/ISA-based modular computing components. (The PCI/ISA systems
and components product family was formerly known as DIGITAL Modular
Computing Components, or DMCC).

The SMARTengine/Alpha 21264 PCI/ISA SBC is a PICMG-compliant
processor card based on the Alpha 21264 CPU. The EBM2n and EBM4n
SBCs are PICMG-compliant processor cards based on the Alpha 21164 and
21064A CPUs, respectively.

The following notes are specific to PCI/ISA modular SBCs.

1.1.1 Verifying CPU Version

You can use the sizer utility to identify SMARTengine/Alpha 21264,
EBM2n, and EBM4n SBCs. The sizer -c command displays the following
output for SMARTengine/Alpha 21264 SBCs:

sysname> sizer -c
cpu "DMCCEV6"

The sizer -c command displays the following output for EBM2n SBCs:

sysname> sizer -c
cpu "DECEV56_PBP"

OEM Platform Requirements and Restrictions 1–1

The sizer -c command displays the following output for EBM4n SBCs:

sysname> sizer -c
cpu "DECEV45_PBP"

1.1.2 Firmware Requirements

Before installing the operating system, make sure that your system has
the correct firmware version. The minimum firmware version required
for SMARTengine/Alpha 21264 SBCs is Version 5.6-6903 or higher. The
minimum firmware version required for EBM2n and EBM4n SBCs is
Version 4.7 or higher. If you have an earlier firmware version, update your
firmware before installing the operating system software. For information
on how to update your firmware, see the firmware documentation.

To determine the version of firmware on your system, enter the following
console firmware command at the prompt:

>>> show version

1.1.3 Installing Tru64 UNIX

For information about installing the operating system on a
SMARTengine/Alpha 21264, EMB2n, or EBM4n SBC, see the Tru64 UNIX
Installation Guide. The Installation Guide provides platform-specific
instructions for booting. For the SMARTengine/Alpha 21264 SBC, follow the
same instructions as for the EBM2n and EBM4n SBCs.

1.1.4 Restrictions and Known Problems

The following restrictions and known problems apply to PCI/ISA modular
SBCs.

1.1.4.1 Option Card Restrictions

You can use the SMARTengine/Alpha 21264, EBM2n, and EBM4n SBCs on
PCI/ISA backplanes in the ETMXB/ETMAB family and in corresponding
kernels (platforms) in the ETMnn family. Table 1–1 lists the currently
supported PCI/ISA backplanes and kernels. Not every SBC is supported in
every backplane and kernel; see the current PCI/ISA components order
configuration guide for details.

1–2 OEM Platform Requirements and Restrictions

Table 1–1: Supported PCI/ISA Backplanes and Kernels
Backplane Kernel Description

ETMXB-BA ETM05-xx 5-slot PICMG (2 PCI, 1 PCI/ISA, 1 ISA, 1 SBC)

ETMXB-DA ETM27-SA,
3X-ETM17-xx

7-slot PICMG (3 PCI, 1 PCI/ISA, 1 ISA, 2
SBC [1 SBC slot usable at a time])

ETMAB-CA ETM25-xx,
3X-ETM15-xx

10-slot PICMG (6 PCI, 1 PCI/ISA, 1 ISA, 2
SBC [1 SBC slot usable at a time])

ETMAB-EA ETM29-xx,
3X-ETM19-xx

10-slot PICMG (4 PCI/ISA, 4 ISA, 2 SBC
[1 SBC slot usable at a time])

ETMAB-AB ETM31-CA 14-slot PICMG (7 PCI, 6 ISA, 1 SBC)

ETMAB-BB ETM33-CA 14-slot PICMG (10 PCI, 3 ISA, 1 SBC)

ETMAB-AC ETM42-CA 19-slot PICMG (10 PCI, 7 ISA, 2 SBC [1
SBC slot usable at a time])

ETMAB-BC ETM44-CA 19-slot PICMG (13 PCI, 4 ISA, 2 SBC [1
SBC slot usable at a time])

____________________ Table Note ____________________

All ETMAB backplanes use PCI-to-PCI bridge (PPB) technology
to provide both primary (in front of the bridge) and secondary
(behind the PPB) slots. All ETMAB backplanes are compliant
with PCI Version 2.1.

The option cards shown in Table 1–2, in addition to working in front of the
bridge, work behind the bridge. You can plug these cards into any available
slot.

Table 1–2: PCI/ISA Options Supported Behind the Bridge
Option Type Part Number Description

Graphics SN-PBXGB-AA TGA2 2MB PowerStorm 3D30

Graphics SN-PBXGK-BB Elsa GLoria Synergy

SCSI KZPBA-CB Qlogic PCI Ultra Wide differential
SCSI controller

SCSI KZPCM-DA Dual-channel PCI to Ultra SCSI
adapter with Ethernet controller

SCSI KZPSA-BB PCI differential SCSI adapter

SCSI SN-KZPBA-CA Qlogic PCI-SCSI Ultra Wide
adapter (supports both narrow
and wide drives)

OEM Platform Requirements and Restrictions 1–3

Table 1–2: PCI/ISA Options Supported Behind the Bridge (cont.)

Option Type Part Number Description

SCSI KZPAA-AA PCI-SCSI host bus adapter

Network DE450-CA PCI NIC (TP, TW, AUI)

Network DE500-BA PCI NIC (TP)

___________________ Table Notes ___________________

• The SN-PBXGB-AA (TGA2 PowerStorm 3D30) video card will
work behind a bridge in multiple configurations if the first
card is within the primary bus. For restrictions on jumper
settings and X server DMA for the PowerStorm 3D30 card,
see Section 1.1.4.2.

• When used with EBM2n SBCs, the SN-KZPBA-CA (PCI-SCSI
Ultra Wide adapter) requires the following console parameter
to be set:

>>> set pci_prefetch SMS

1.1.4.2 PBXGB-AA (TGA2 PowerStorm 3D30) Video Card Restrictions

The following restrictions apply to the PBXGB-AA (TGA2 PowerStorm
3D30) video card (listed in Table 1–2).

1.1.4.2.1 EV5 Alias Jumper Setting (SMARTengine/Alpha 21264 and EBM2n Only)

For SMARTengine/Alpha 21264 and EBM2n SBCs only, you must set the
EV5 Alias jumper on the PowerStorm 3D30 card to On.

1.1.4.2.2 VGAEN Jumper Settings

Only one PowerStorm 3D30 card can have its VGAEN jumper set to On.
This card must be positioned in a primary PCI slot for the SRM Console to
be displayed. All other PowerStorm 3D30 cards must have their VGAEN
jumpers set to Off but may be positioned in any PCI slot. For more
information about the jumpers, see the PBXGB-AA/CA PCI Graphics Option
Owner’s Guide, provided with the card.

1.1.4.2.3 X Server DMA Writes Must Be Disabled for Some Configurations

Some configurations of PowerStorm 3D30 cards on SMARTengine/Alpha
21264, EBM2n, and EBM4n SBCs require that you disable X server direct
memory access (DMA) write operations. Specifically, you must disable these
operations if the system contains multiple PowerStorm 3D30 cards, or if

1–4 OEM Platform Requirements and Restrictions

any PowerStorm 3D30 graphics card is installed behind the PCI-to-PCI
bridge (PPB).

The general procedure for disabling X server DMA write operations is as
follows:

1. Bring the system to single-user mode.

If you are able to use the shutdown command, execute the following
command as superuser:

/usr/sbin/shutdown +2 "Disabling graphics DMA writes"

If you cannot use the shutdown command (for example, if the X server
on the video card is hung), you must halt your system by pressing the
hardware halt button and then reboot your system to single-user mode
by entering the following command:

>>> boot -fl s

2. Mount all local file systems.

After your system is in single-user mode, mount all of your local file
systems by entering the following command:

bcheckrc

3. Change the directory to /usr/var/X11 by entering the following
command:

cd /usr/var/X11

4. Save a copy of the Xserver.conf file by entering a command such
as the following:

cp Xserver.conf Xserver.conf.old

5. Edit the Xserver.conf file to add the text -I -ffbDoDMA 4 to the
command line arguments section. For example, if the command line
arguments section is in its initial default state, it appears as follows:

! you specify command line arguments here
args <

-pn
>

Insert the text -I -ffbDoDMA 4 after -pn as follows:

! you specify command line arguments here
args <

-pn -I -ffbDoDMA 4
>

6. Return the system to multiuser mode by executing the following
command:

init 3

OEM Platform Requirements and Restrictions 1–5

With this change, the video card and X server will run correctly on the SBC
in multiuser mode.

1.1.4.3 Operator Control Panel and Watchdog Timer Supported Only in Hardware
and Firmware

The operating system does not support the operator control panel or
watchdog timer. These server management features are supported only
in the hardware and the firmware.

1.1.4.4 IDE Device Mapping Potentially Impacts 21264 SBC Upgrades

The operating system identifies the IDE controllers on the
SMARTengine/Alpha 21264 SBC as SCSI devices, which affects the naming
of all other SCSI devices in the system. Even though the operating system
does not support IDE drives on the 21264 SBC, the IDE controllers are
configured during the system boot, causing the disk numbering to be shifted
as if two SCSI controllers were added to the configuration.

This is not a significant issue for deploying new systems on the 21264 SBC or
for SBC upgrades performed with a new operating system installation, but it
can cause problems for SBC upgrades performed without a new operating
system installation.

The altered naming of SCSI devices can create problems with /etc/fstab
file entries and Logical Storage Manager (LSM) features that rely on a
previous installation’s device naming.

After a 21264 SBC upgrade, if the existing system disk has been renumbered
(for example, from rz0 to rz16), the existing system will not boot from the
existing system disk. The root, usr, and swap partitions to which fstab
points no longer exist. To resolve the problem, you must edit the fstab file,
changing device name references (for example, from rz0 to rz16). As the
swap partition is not accessible, the root partition cannot be made writable.
Thus you must modify the fstab file before the existing system is upgraded,
or you must boot the Tru64 UNIX distribution CD-ROM in single-user
mode to edit the file.

If LSM features were used in connection with the existing operating system
installation, further steps may be necessary. After a 21264 SBC upgrade,
LSM volume data on any renumbered disk no longer matches the physical
configuration. In particular, if a system disk containing LSM volumes is
renumbered, changes similar to the following will be required before the
upgraded system will boot into multiuser mode:

1. Before the SBC upgrade, disable LSM volumes on the system disk; see
the volunroot -a command in the volunroot(8) reference page. You

1–6 OEM Platform Requirements and Restrictions

must also edit /etc/fstab to remove the LSM mount point. (See the
fstab(4) reference page.)

2. Update /etc/fstab entries to reflect device name changes resulting
from the SBC upgrade. As previously mentioned, you must make these
changes either before the SBC upgrade or while booted in single-user
mode from the operating system CD-ROM.

3. After the SBC upgrade, reconvert disk partitions on the system disk to
LSM volumes as desired. (See the volencap(8) reference page.)

1.1.5 Configuring PCI/ISA Modular 8-Headed Graphics Systems

This section describes how to configure a PCI/ISA modular system to run
8-headed graphics.

You can configure PCI/ISA platforms that contain a EBM2n-AZ Alpha
PICMG single-board computer (SBC) and multiple PowerStorm 3D30
graphics cards to run multiheaded graphics, controlling up to eight monitors
at a time.

1.1.5.1 Hardware and Software Requirements

Running 8-headed graphics requires the following:

• An EBM2n-AZ Alpha PICMG SBC and eight PowerStorm 3D30 graphics
cards within a fully configured PCI/ISA system.

• A PCI/ISA backplane and enclosure with at least 10 PCI slots, 512 MB
main memory, a supported Ethernet card, and all the other storage
and I/O options normally required for such a system. (See the current
PCI/ISA components order configuration guide.)

• Correct card placement: the SBC occupies an SBC slot and the graphics
cards occupy eight PCI slots, in the order described in Section 1.1.5.2.

• Version 4.0E or higher of the operating system.

• The latest DMCC SRM code from Version 5.2 or higher of the Firmware
CD-ROM.

The following PCI/ISA system configuration has been qualified for running
8-headed graphics under Tru64 UNIX:

• PCI/ISA Alpha 21164/366 MHz SBC with 2 MB cache and Tru64 UNIX
license (EBM21-AZ)

• 512 MB main memory (2 x EBXMA-HC, for a total of four 128 MB
DIMMs)

• Desktop enclosure with 14-slot PICMG backplane: 10 PCI, 3 ISA, 1 SBC
(ETM33-BD)

OEM Platform Requirements and Restrictions 1–7

• Eight PowerStorm 3D30 graphics cards (8 x SN-PBXGB-AA)

• PCI Ethernet card (DE450-CA)

• PCI fast/narrow SCSI controller (KZPAA-AA)

• Mandatory or associated options such as floppy drives, hard drives,
CD-ROM drives, cable kit for PICMG enclosure, and power cord

• Tru64 UNIX Version 4.0E or higher

• DMCC SRM code from the Version 5.2 Firmware CD-ROM

1.1.5.2 Hardware Setup

When you configure the PCI/ISA 15-slot platform for 8-headed graphics,
placement of the graphics cards is critical.

The qualified configuration (described in Section 1.1.5.1) uses an ETM33-BD
desktop enclosure with a 14-slot backplane. Within that enclosure, the PCI
option cards must be placed into PCI slots in top-to-bottom order as follows:

• Secondary 32-bit PCI bus connectors

– KZPAA SCSI card

– PowerStorm graphics card: SCREEN 2

– PowerStorm graphics card: SCREEN 3

– PowerStorm graphics card: SCREEN 4

– DE450 Ethernet card

– PowerStorm graphics card: SCREEN 5

– PowerStorm graphics card: SCREEN 6

– PowerStorm graphics card: SCREEN 7

• Primary 64-bit PCI bus connectors

– PowerStorm graphics card: SCREEN 0 (VGA ENABLED)

– PowerStorm graphics card: SCREEN 1

For reference, the power connector is situated above the PCI slots, and the
SBC and ISA connectors are below.

All PowerStorm cards must have their Alias jumper IN and VGA EN jumper
OUT, except the SCREEN 0 card, which must be VGA-enabled.

1.1.5.3 Software Setup

After you complete hardware configuration for the 8-headed system, you can
set up the operating system to operate the eight screens as one row of eight
screens (8x1) or two rows of four screens (4x2).

1–8 OEM Platform Requirements and Restrictions

By default in a multiheaded configuration, the screens are operated as 8x1.
To set up the screens in a 4x2 combination, you must edit your system’s X
Window System server configuration file, /usr/var/X11/Xserver.conf.
Instructions for editing this file to customize the X server configuration are
provided in the Xserver(1X) reference page.

To set up 4x2 operation, you need to specify -edge_top, -edge_bottom,
-edge_right, and -edge_left command line arguments that arrange and
attach the screens as you wish them. Each argument takes scr1 and scr2
values, which are the numbers of the screens you are attaching.

For example, you could arrange the eight screens as follows:

ZK-1559U-AI

4 5 6 7

0 1 2 3

To achieve this combination, add the appropriate command line arguments
to the command line arguments section of Xserver.conf, as follows:

! you specify command line arguments here
args <

-pn
-edge_top0 4 -edge_top1 5 -edge_top2 6 -edge_top3 7
-edge_bottom4 0 -edge_bottom5 1 -edge_bottom6 2 -edge_bottom7 3
-edge_right0 1 -edge_right1 2 -edge_right2 3
-edge_right4 5 -edge_right5 6 -edge_right6 7
-edge_left1 0 -edge_left2 1 -edge_left3 2
-edge_left5 4 -edge_left6 5 -edge_left7 6

>

1.1.6 Writing PCI Bus Device Drivers

For information about writing PCI bus device drivers, see the Tru64 UNIX
Device Driver Kit (DDK), which is orderable separately from the base
operating system.

You can browse a subset of device driver writing materials at the Tru64
UNIX Publications web site, currently located at the following URL:

http://www.tru64unix.compaq.com/docs/

OEM Platform Requirements and Restrictions 1–9

______________________ Note _______________________

The Tru64 UNIX Publications web site also provides the latest
DDK technical updates. DDK customers should check for
potential DDK technical updates whenever they install a new
version of the operating system.

1.2 Alpha VME 4/nnn and 5/nnn Single-Board Computers
(EBVnn)

The Alpha VME 4/nnn and 5/nnn platforms are members of a family of
VMEbus-based single-board computers (SBCs). The part numbers for these
SBCs are EBV14-xx (Alpha VME 4/nnn) and EBV16-xx (Alpha VME 5/nnn).

Support for the VIP/VIC64 VMEbus adapter on the Alpha VME 4/nnn and
5/nnn SBCs is consistent with the support for this adapter on AXPvme SBCs
and Alpha VME 2100 systems.

The following notes are specific to Alpha VME 4/nnn and 5/nnn SBCs.

1.2.1 Verifying CPU Version

You can use the sizer utility to identify the Alpha VME 4/nnn and 5/nnn
SBCs. The sizer -c command displays the following output for Alpha
VME 4/224 and 4/288 SBCs:

sysname> sizer -c
cpu "DECALPHAVME_224"

The sizer -c command displays the following output for Alpha VME 5/352
and 5/480 SBCs:

sysname> sizer -c
cpu "DECALPHAVME_320"

1.2.2 Firmware Requirements

Before installing the operating system, make sure that your system has the
correct firmware version. The minimum firmware versions required are
Version 1.2 or higher for an Alpha VME 4/224 or 4/288 SBC, and Version
1.0 or higher for an Alpha VME 5/352 or 5/480 SBC. If you have an earlier
firmware version, update your firmware before installing the operating
system software. For information on how to update your firmware, see the
firmware documentation.

To determine the version of firmware on your system, enter the following
command at the console firmware prompt:

1–10 OEM Platform Requirements and Restrictions

>>> show version

1.2.3 Installing Tru64 UNIX

For information about installing the operating system on an Alpha
VME 4/nnn or 5/nnn SBC, see the Tru64 UNIX Installation Guide. The
Installation Guide provides platform-specific instructions for booting.

1.2.4 Configuring the VMEbus

For information about configuring the VMEbus for an Alpha VME SBC,
see Chapter 2.

For information about setting up a VMEbus backplane–based network in
which Alpha VME SBCs operate as Ethernet nodes, see Chapter 3.

1.2.5 Restrictions and Known Problems

The following restrictions apply to Alpha VME 4/nnn and 5/nnn SBCs.

1.2.5.1 VMEbus Autovectors Not Supported

The Alpha VME 4/nnn and 5/nnn SBCs do not support VMEbus autovectors.

1.2.5.2 Network Port Termination Required

An Alpha VME 4/nnn or 5/nnn SBC that has the network configured in an
up state must have its external network connection properly terminated. If
the network connection is unplugged or not properly terminated, then the
network software will periodically time out and perform a network reset.
This is normal for an unterminated Alpha VME system. However, it will
cause high system latencies during the reset period, resulting in delays of
about 10 milliseconds, which can affect the realtime performance of the
system.

Note that a loopback connector is not sufficient to terminate the network
connection.

1.2.5.3 Some TGA Video Card Configurations Require Disabling X Server DMA
Writes

To use TGA video cards in some Alpha VME configurations, you must disable
X server direct memory access (DMA) write operations. This restriction
applies to the following configurations:

• EBVXG (TGA) video cards on Alpha 4/nnn and 5/nnn SBCs; note that
the EBVXG video card is always installed behind the PCI-to-PCI bridge
(PPB)

OEM Platform Requirements and Restrictions 1–11

• TGA8 and TGA24 video cards on Alpha 5/nnn SBCs

The general procedure for disabling X server DMA write operations is as
follows:

1. Bring the system to single-user mode.

If you are able to use the shutdown command, execute the following
command as superuser:

/usr/sbin/shutdown +2 "Disabling graphics DMA writes"

If you cannot use the shutdown command (for example, if the X server
on the video card is hung), you must halt your system by pressing the
hardware halt button and then reboot your system to single-user mode
by entering the following command:

>>> boot -fl s

2. Mount all local file systems.

After your system is in single-user mode, mount all of your local file
systems by entering the following command:

bcheckrc

3. Change the directory to /usr/var/X11 by entering the following
command:

cd /usr/var/X11

4. Save a copy of the Xserver.conf file by entering a command such
as the following:

cp Xserver.conf Xserver.conf.old

5. Edit the Xserver.conf file to add the text -I -ffbDoDMA 4 to the
command line arguments section. For example, if the command line
arguments section is in its initial default state, it appears as follows:

! you specify command line arguments here
args <

-pn
>

Insert the text -I -ffbDoDMA 4 after -pn as follows:

! you specify command line arguments here
args <

-pn -I -ffbDoDMA 4
>

1–12 OEM Platform Requirements and Restrictions

6. Return the system to multiuser mode by executing the following
command:

init 3

With this change, the video card and X server will run correctly on the SBC
in multiuser mode.

1.2.5.4 Master Block Transfer Restrictions

For restrictions that apply to performing VMEbus master block transfers
(MBLTs) using hardware DMA engines, see the discussion of MBLTs
in Section 2.2.8 (VIP/VIC-based Alpha VME SBCs) or Section 2.3.11
(UNIVERSE II–based Alpha VME SBCs).

1.2.6 Writing VMEbus Device Drivers

For information about writing VMEbus device drivers, see the Tru64 UNIX
Device Driver Kit (DDK), which is orderable separately from the base
operating system.

You can browse a subset of device driver writing materials at the Tru64
UNIX Publications web site, currently located at the following URL:

http://www.tru64unix.compaq.com/docs/

OEM Platform Requirements and Restrictions 1–13

______________________ Note _______________________

The Tru64 UNIX Publications web site also provides the latest
DDK technical updates. DDK customers should check for
potential DDK technical updates whenever they install a new
version of the operating system.

1.3 AXPvme Single-Board Computers

The following notes are specific to the AXPvme single-board computers
(SBCs). The part numbers for these SBCs include EBV10-xx (AXPvme 100)
and EBV12-xx (AXPvme 166 and 230).

1.3.1 Firmware Upgrade Required

AXPvme SBCs must upgrade to Version 17.0 or higher of the AXPvme
firmware to run the current version of the operating system.

1.3.2 Master Block Transfer Restrictions

The following restriction applies to the VIP/VIC adapter used on AXPvme
SBCs and Alpha VME 2100 systems. Performing master block transfers
(MBLTs) with a data width of D64 can produce unpredictable results in the
following cases:

• If D64 slave access is performed before memory has been mapped to
the VMEbus.

• If memory access does not coincide with the appropriate access mode,
such as attempting user access to memory specified as supervisory-mode
access.

• If the AXPvme SBC or Alpha VME 2100 system is a VMEbus interrupter
and is targeted for D64 slave access. The interrupt vector presented
by the VMEbus interrupter may not be the vector specified in the
vba_post_irq routine.

Memory must be mapped to the VMEbus prior to D64 slave access.
Access to memory must coincide with the appropriate access mode. If
supervisory-mode access is specified when memory is mapped, memory
accesses must use supervisory mode. If user-mode access is specified, both
supervisory and user access are allowed.

See Section 2.2.7 and Section 2.2.8 for more information on slave and master
block transfers, including additional restrictions that apply to MBLTs.

1–14 OEM Platform Requirements and Restrictions

2
Configuring the VMEbus for Alpha VME

Systems

This chapter explains how to configure the VMEbus for OEM platforms
running Tru64 UNIX. The chapter provides an overview followed by sections
that address groups of platforms based on their VMEbus adapter type:

• VMEbus support overview (Section 2.1)

• Configuring VIP/VIC-based Alpha VME SBCs (Section 2.2)

• Configuring UNIVERSE II–based Alpha VME SBCs (Section 2.3)

2.1 VMEbus Support Overview

The Tru64 UNIX operating system includes a generic VMEbus interface
layer that provides customers with a consistent interface to VMEbus devices
across Alpha workstation and server platforms and Alpha VME single-board
computers (SBCs).

The operating system supports the following PCI/VMEbus adapters:

• UNIVERSE II PCI64-to-VME64 adapter

• VIP/VIC PCI32-to-VME64 adapter

• DWP64 PCI32-to-VME64 adapter

• DWPVC PCI32-to-VME32 adapter

Alpha VME SBCs provide an integrated PCI/VMEbus adapter: either
VIP/VIC or UNIVERSE II. The DWP64 and DWPVC adapters are provided
in layered product kits for use with Alpha workstation and server platforms.

For information about the VMEbus-based systems supported by the
operating system, see the Tru64 UNIX Software Product Description (SPD).

This chapter provides information about configuring the VMEbus on the
Alpha VME family of SBCs. To configure a VMEbus backplane (vb) network
with Alpha VME SBCs in the same backplane communicating as network
nodes, see Chapter 3.

To write VMEbus device drivers, you must obtain the Tru64 UNIX Device
Driver Kit (DDK), which is available separately from the base operating

Configuring the VMEbus for Alpha VME Systems 2–1

system. The DDK provides a detailed VMEbus device driver example that
you can run on the Alpha VME SBCs.

To write VMEbus device drivers for Alpha workstation and server platforms
with DWP64 or DWPVC adapters, you must have the associated adapter
driver software and documentation in addition to the DDK. Be sure to
check for the required processor and hardware configurations. For more
information about the DWP64 and DWPVC adapters, see the PCI32/VME64
Adapter Driver SPD and the PCI/VME Adapter Driver SPD.

2.2 Configuring VIP/VIC-Based Alpha VME SBCs

This section describes how to set up VIP/VIC-based Alpha VME systems for
use on the VMEbus, including how to modify attributes of the vba_vipvic
kernel subsystem.

VMEbus setup allows you to run the operating system on the following
VIP/VIC-based AXPvme and Alpha VME systems:

• AXPvme single-board computers (SBCs)

• Alpha VME 4/224 and 4/228 SBCs

• Alpha VME 5/352 and 5/480 SBCs

• Alpha VME 2100 system

For information about installing the operating system on the listed systems,
see the Installation Guide.

For information about setting up UNIVERSE II–based Alpha VME systems
for use on the VMEbus, see Section 2.3.

This section addresses the following topics relating to the use of the VMEbus
on the listed systems:

• Configuring the vba_vipvic subsystem (Section 2.2.1)

• Configuring VMEbus A32 and A24 address spaces (Section 2.2.2)

• Configuring the VMEbus A16 address space (Section 2.2.3)

• Configuring VMEbus interrupts (Section 2.2.4)

• Using VMEbus hardware byte-swapping modes (Section 2.2.5)

• Sharing memory between big endian and little endian processors
(Section 2.2.6)

• Performing VMEbus slave block transfers (Section 2.2.7)

• Performing VMEbus master block transfers with local DMA
(Section 2.2.8)

2–2 Configuring the VMEbus for Alpha VME Systems

• Using the realtime interrupt-handling routine rt_post_callout
(Section 2.2.9)

2.2.1 Configuring the vba_vipvic Subsystem

This section describes how to configure the vba_vipvic kernel subsystem
in order to prepare VIP/VIC-based AXPvme and Alpha VME systems for
use on the VMEbus.

You configure the VIP/VIC adapter by examining the default (or
current) attributes supplied for the vba_vipvic subsystem, determining
which attributes (if any) you want to change, then modifying
the /etc/sysconfigtab file on your machine. After modifying
/etc/sysconfigtab, you must shut down and reboot the system.

______________________ Note _______________________

Do not directly edit /etc/sysconfigtab. Instead, use the
sysconfigdb facility, as described in the sysconfigdb(8)
reference page. It is recommended that you maintain private
sysconfigtab file fragments for vba_vipvic attributes and use
sysconfigdb switches to add (-a -f), delete (-d), or merge (-m
-f) vba_vipvic attribute values. The example in Section 3.6
illustrates this approach. The sys_attrs(5) reference page
provides additional guidelines for editing kernel subsystem
attributes. You must always reboot after changing vba_vipvic
subsystem attributes.

Common modifications to the vba_vipvic subsystem default attributes
are to reconfigure the A32, A24, and A16 address spaces. For example,
you could use sysconfigdb to edit the following modifications into
/etc/sysconfigtab:

vba_vipvic:
A32_Base = 0x10000000
A32_Size = 0x08000000
A24_Base = 0x00A00000
A24_Size = 0x200000
A16_Base = 0x00000000

In this example, the A24 inbound DMA window base address is modified
from the default 0x00C00000 to 0x00A0000; the A24 window size from the
default 4 MB to 2 MB; and the A16 interprocessor communication base
address from the default 0x00000100 to 0x00000000.

Configuring the VMEbus for Alpha VME Systems 2–3

You can modify values for the following VIP/VIC adapter attributes; each list
item corresponds to a later subsection:

VMEbus request level (Section 2.2.1.1)
VIC arbitration mode (Section 2.2.1.2)
VMEbus fairness timer value (Section 2.2.1.3)
Local bus and VMEbus timeout periods (Section 2.2.1.4)
VMEbus release mode (Section 2.2.1.5)
System controller VMEbus resets (Section 2.2.1.6 and Section 2.2.1.7)
VIC master write posting (Section 2.2.1.8)
VMEbus DMA interleave gap (Section 2.2.1.9)
VMEbus DMA read limit (Section 2.2.1.10)
VMEbus DMA write limit (Section 2.2.1.11)
DMA method (hardware or emulated) for SMP systems (Section 2.2.1.12)

You can also modify the following values for the A32, A24, and A16 address
spaces that the VMEbus hardware architecture defines; each list item
corresponds to a later subsection:

A32 and A24 overlapping address configuration (Section 2.2.2.1)
A32 and A24 DMA inbound window sizes (Section 2.2.2.2)
A32 DMA inbound window base address (Section 2.2.2.3)
A24 DMA inbound window base address (Section 2.2.2.4)
A16 base for interprocessor communication facilities (Section 2.2.3)

Table 2–1 lists the defaults supplied for various VMEbus parameters. The
default values specified should provide proper VMEbus operation for most
applications. Be careful when modifying these values; not all adapters
support all fields.

Table 2–1: VIP/VIC VMEbus Adapter Defaults
Parameter Default Meaning

VME_Br_Lev 0x03 Bus request level 3 for master cycles

VIC_Arb_Mode 0x00 Arbitration mode is round robin

VME_Fair_Req 0x00 VMEbus fair requester disabled

VIC_Loc_Bus_To 0x05 Local bus timeout period is 256
microseconds

VME_Bus_To 0x06 VMEbus timeout period is 512
microseconds

VIC_Rel_Mode 0 Release mode is release on request (ROR)

VIC_Syscon 1 System controller VMEbus reset
is enabled

VIC_Wrt_Post 0 Disable VIC master write posting

2–4 Configuring the VMEbus for Alpha VME Systems

Table 2–1: VIP/VIC VMEbus Adapter Defaults (cont.)

Parameter Default Meaning

VIC_DMA_Intrlv 15 DMA interleave gap is 3.75 microseconds
(value * 250 nanoseconds)

Lmt_DMA_Rd 0 No DMA read limit

Lmt_DMA_Wrt 0 No DMA write limit

Frce_Hw_DMA 0 Do not force hardware DMA engine
on SMP systems

A32_Base 0x08000000 A32 inbound DMA window base address

A32_Size 0x8000000 A32 window size (128 MB)

A24_Base 0x00C00000 A24 inbound DMA window base address

A24_Size 0x400000 A24 window size (4 MB)

A16_Base 0x00000100 A16 interprocessor communication
base address

A16_Mask 0x00000000 A16 interprocessor communication mask

A24_A32_Ovrlap 1 Inbound A24/A32, if same space, overlap

Table 2–2 lists VMEbus interrupt parameters and their initial defaults.
These defaults are later overwritten by system priority level (SPL) values
supplied by the platform. See the SPL values listed in Table 2–3, or query
the values at run time using the command sysconfig -q vba_vipvic.

Table 2–2: VIP/VIC VMEbus Interrupt Initial Defaults
Parameter Default Meaning

Irq0_SPL 3 VMEbus IRQ level to system SPL map

Irq1_SPL 3 VMEbus IRQ 1 to SPL SPLDEVLOW

Irq2_SPL 3 VMEbus IRQ 2 to SPL SPLDEVLOW

Irq3_SPL 3 VMEbus IRQ 3 to SPL SPLDEVLOW

Irq4_SPL 3 VMEbus IRQ 4 to SPL SPLDEVLOW

Irq5_SPL 3 VMEbus IRQ 5 to SPL SPLDEVLOW

Irq6_SPL 3 VMEbus IRQ 6 to SPL SPLDEVLOW

Irq7_SPL 3 VMEbus IRQ 7 to SPL SPLDEVLOW

Adapt_Blk_SPL 3 Adapter resource blocking SPL
SPLDEVLOW

DMA_Access_Space 0 Adapter MBLT I/O access: sparse

Configuring the VMEbus for Alpha VME Systems 2–5

2.2.1.1 Specifying the VMEbus Request Level

You can specify one of the following values for the VMEbus request
level (parameter VME_Br_lev). The value is stored in the VIC64
Arbiter/Requester Configuration Register (ARCR).

0x00 VMEbus request level BR0

0x01 VMEbus request level BR1

0x02 VMEbus request level BR2

0x03 VMEbus request level BR3 (default)

2.2.1.2 Specifying the VIC Arbitration Mode

You can specify one of the following values for the VMEbus arbitration mode
(parameter VIC_Arb_Mode). The VMEbus arbitration mode is stored in the
VIC64 Arbiter/Requester Configuration Register (ARCR). This parameter is
applicable only when the VMEbus adapter is configured to be the system
controller.

0x00 VIC performs round-robin VMEbus arbitration (default)

0x01 VIC performs priority VMEbus arbitration

2.2.1.3 Specifying the VMEbus Fairness Timer Value

You can specify one of the following values for the Arbiter/Requester fair
request timeout (parameter VME_Fair_Req). The fair request timeout value
is stored in the VIC64 Arbiter/Requester Configuration Register (ARCR).

0x00 Fairness disabled (default)

0x01 Fair request timeout = 2 microseconds

0x02 Fair request timeout = 4 microseconds

0x03 Fair request timeout = 6 microseconds

0x04 Fair request timeout = 8 microseconds

0x05 Fair request timeout = 10 microseconds

0x06 Fair request timeout = 12 microseconds

0x07 Fair request timeout = 14 microseconds

0x08 Fair request timeout = 16 microseconds

0x09 Fair request timeout = 18 microseconds

0x0A Fair request timeout = 20 microseconds

2–6 Configuring the VMEbus for Alpha VME Systems

0x0B Fair request timeout = 22 microseconds

0x0C Fair request timeout = 24 microseconds

0x0D Fair request timeout = 26 microseconds

0x0E Fair request timeout = 28 microseconds

0x0F Fair request timeout = none

2.2.1.4 Specifying Bus Timeout Periods

You can specify one of the following values for the local bus timeout
period (parameter VIC_Loc_Bus_To) and for the VMEbus timeout period
(parameter VME_Bus_To). Each value is stored in the VIC64 Transfer
Timeout Register (TTR). The local bus timeout period must be shorter than
the VMEbus timeout period.

0x00 Timeout = 4 microseconds

0x01 Timeout = 16 microseconds

0x02 Timeout = 32 microseconds

0x03 Timeout = 64 microseconds

0x04 Timeout = 128 microseconds

0x05 Timeout = 256 microseconds (default for local bus)

0x06 Timeout = 512 microseconds (default for VMEbus)

0x07 Timeouts disabled

2.2.1.5 Specifying the VMEbus Release Mode

You can specify one of the following values for the release mode (parameter
VIC_Rel_Mode). The release-mode value is stored in the VIC64 Release
Control Register (RCR).

0 Release on request (ROR) — the default

1 Release when done (RWD)

2.2.1.6 Specifying System Controller VMEbus Resets

You can specify one of the following values to indicate whether or not the
adapter should issue VMEbus resets if it is the system controller (parameter
VIC_Syscon).

For AXPvme SBCs and Alpha VME 4/nnn and 5/nnn SBCs, in addition to
specifying a value from this list, you must set the configuration switches to
indicate whether or not the SBC is the VMEbus system controller. See the

Configuring the VMEbus for Alpha VME Systems 2–7

SBC’s installation guide for information on setting the module configuration
switches.

The Alpha VME 2100 adapter is always the VMEbus system controller.
There are no module configuration switches to disable it from being the
system controller.

The VMEbus backplane must have only one system controller. The system
controller must be electrically the first module in the VMEbus backplane
and in most systems must be in the first VMEbus slot.

0 Do not issue VMEbus resets if system controller

1 Issue VMEbus resets if system controller (default)

The values specified interact with the VMEbus initialization code to
determine whether a VMEbus reset is issued when the VMEbus adapter is
being configured. If the value is set to 1 and the system being booted is
the system controller, as determined by the VMEbus initialization code, a
VMEbus reset is issued. If you do not want a VMEbus reset issued during
VMEbus adapter configuration, set the value to 0 (zero). These values
pertain only to the system controller.

If the system controller is configured to issue a VMEbus reset during adapter
initialization, and other processor modules are installed in the VMEbus
backplane, boot the system controller first to allow devices and processor
modules to perform their bus reset actions.

2.2.1.7 Special Considerations for VMEbus Resets

The system controller should always be the initiator of VMEbus resets.
However, under certain error conditions, other VMEbus adapter modules
may invoke a VMEbus reset. Modules installed in the VMEbus backplane
react to bus resets differently. Some modules, if configured, perform a
module reset. Some may have their VMEbus interface reset to a power-up
state without notification to the operating system. This could leave the
VMEbus adapters in an unconfigured state, cause unwanted effects to
the operating system and its device drivers, and cause VMEbus errors to
occur. Other VMEbus adapters on the VMEbus may accept VMEbus resets
and attempt to reconfigure themselves to the hardware context they were
running before the bus reset occurred. However, device drivers expecting
interrupts may not receive them and I/O hardware operations may be
canceled by the VMEbus reset without notification to the device driver.
There is also a potential for data corruption to occur when the VMEbus
adapter is reset during an I/O operation.

It is recommended that the system controller be the initiator of VMEbus
resets during adapter initialization. If the system controller is not controlled

2–8 Configuring the VMEbus for Alpha VME Systems

by a processor, then a power-up sequence should cause all VMEbus adapters
and devices to be reset. All modules on the VMEbus should perform a
module reset upon detection of a bus reset. VMEbus adapters that are not
the system controller and that are running an operating system should be
shut down in an orderly fashion prior to the system controller being booted.
These VMEbus adapters should be rebooted after the system controller has
been booted, providing that the system controller is to be used and controlled
by a processor.

For Alpha VME 2100 systems, the VMEbus adapter can be the initiator
of VMEbus resets only. Upon receipt of a bus reset, its VMEbus interface
(VIC64) is reset. The reset state of the VMEbus interface (VIC64) is not
the VMEbus adapter’s configured state. The operating system and device
drivers are not notified that a bus reset has occurred. If the adapter is
accessed or if an I/O operation is invoked following a bus reset, the access
may result in an adapter error, misoperation, or system crash.

For AXPvme SBCs and Alpha VME 4/nnn and 5/nnn SBCs, it is
recommended that nodes that are not the system controller have their
module configuration switch 3 set to Closed (resets the SBC module in
response to a VMEbus reset signal). When the VMEbus is reset, and
the module switch is set to accept a VMEbus reset, nonsystem controller
modules take a boot action and are reset to a powered state.

If the SBC module configuration switch 3 is set to Open (does not reset the
SBC module in response to a VMEbus reset signal), the VMEbus adapter
software will receive a VMEbus reset interrupt upon detection of a bus reset.
The VMEbus reset signal initializes the VMEbus adapter (VIC64) to its
power-up state. The VMEbus reset interrupt service interface displays the
following message on the console terminal:

vba0 reset_inter: VMEbus reset detected

The interrupt service interface then initializes the VMEbus adapter to its
defaults and enables any previously enabled interrupt enable bits.

Do not set the SBC module configuration switch 3 to Open without
considering the following side effects of receiving a VMEbus reset: device
drivers expecting interrupts may not receive them and I/O hardware
operations may be canceled by the VMEbus reset without notification to the
device drivers. There is potential risk of data corruption depending upon I/O
activity at the time a bus reset occurred.

2.2.1.8 Specifying VMEbus Master Write Posting

Master write posting is not currently supported. Do not change the value
from the default of 0 (zero) or unpredictable results may occur.

Configuring the VMEbus for Alpha VME Systems 2–9

2.2.1.9 Specifying the VMEbus DMA Interleave Gap

You can specify one of the following values for the DMA interleave gap
(parameter VIC_DMA_Intrlv), which is the time period between master
block transfer (MBLT) DMA bursts. The DMA interleave gap value is stored
in the VIC64 Block Transfer Control Register (BTCR) at the start of a master
block transfer DMA. This parameter is applicable only when you use the
VMEbus adapter’s hardware DMA engine to perform the DMA.

15 Interleave gap = 3.75 microseconds (default)

14 Interleave gap = 3.50 microseconds

13 Interleave gap = 3.25 microseconds

12 Interleave gap = 3.00 microseconds

11 Interleave gap = 2.75 microseconds

10 Interleave gap = 2.50 microseconds

9 Interleave gap = 2.25 microseconds

8 Interleave gap = 2.00 microseconds

7 Interleave gap = 1.75 microseconds

6 Interleave gap = 1.50 microseconds

5 Interleave gap = 1.25 microseconds

4 Interleave gap = 1.00 microseconds

3 Interleave gap = 0.75 microseconds

2 Interleave gap = 0.50 microseconds

1 Interleave gap = 0.25 microseconds

0 Interleave gap = 0.00 microseconds

2–10 Configuring the VMEbus for Alpha VME Systems

_____________________ Caution _____________________

You must not specify the value 0 (zero) if D64 master block
transfers are to be performed. Unpredictable errors and possible
data corruption may result if you specify 0 (zero) with D64
transfers.

During the DMA interleave gap, stalled or new programmed I/O (PIO),
VMEbus IACK cycles, or slave DMAs may obtain the bus to perform the
required I/O operation. The VIC64 is enabled for dual paths to allow these
I/O operations to occur during the DMA interleave gap. Changing this
parameter arbitrarily may cause unwanted side effects.

Decreasing the value from the default increases DMA throughput. However,
as the number approaches 0 (zero), outstanding PIO operations, VMEbus
IACKs, and slave DMAs may be held off from obtaining the bus until the
DMA in progress is completed. These operations might have occurred during
the DMA interleave gaps if the default value had been used.

Specifying a small DMA interleave gap may result in PCI retry timeouts,
poor PIO performance, increased interrupt response time, other PCI
transactions being held off, and possible system time loss. Beware of these
side effects when specifying a new value for the DMA interleave gap.

2.2.1.10 Specifying Limits on VMEbus DMA Reads

You can specify one of the following values to enable or disable an 8 KB limit
on DMA read operations (parameter Lmt_DMA_Rd). Placing an 8 KB limit
on DMA reads can enhance throughput when the bus is busy. Transfers
relinquish the bus after each 8 KB or less.

0 No DMA read limit (default)

1 Limit DMA reads to 8 KB or less

2.2.1.11 Specifying Limits on VMEbus DMA Writes

You can specify one of the following values to enable or disable an 8 KB limit
on DMA write operations (parameter Lmt_DMA_Wrt). Placing an 8 KB limit
on DMA writes can enhance throughput when the bus is busy. Transfers
relinquish the bus after each 8 KB or less.

0 No DMA write limit (default)

1 Limit DMA writes to 8 KB or less

Configuring the VMEbus for Alpha VME Systems 2–11

2.2.1.12 Specifying the DMA Method for SMP

You can specify one of the following values to enable or disable use of the
hardware DMA engine on an SMP system (parameter Frce_Hw_DMA). Note
that in an SMP system, you would enable use of the hardware DMA engine
only if the system was known to be quiescent, with no other PIO, DMA, or
interrupt activity occurring on the bus.

0 Use emulated DMA on SMP system (default)

1 Force hardware MBLT on SMP system

2.2.2 Configuring VMEbus A32 and A24 Address Spaces

As part of configuring the vba_vipvic kernel subsystem, you can configure
the VMEbus 32-bit address space (A32) and 24-bit address space (A24) for
your system. A32 and A24 space are used for direct memory access (DMA)
inbound windows.

The A32 space has a maximum size of 4 GB and can be partitioned into
32 128 MB windows. You can further partition each 128 MB window in
increments as small as 16 MB. Valid window segments are 16, 32, and 64
MB.

The A24 space has a maximum size of 16 MB, and the base address is always
zero (0x00000000). This means that you can partition the address space but
cannot move it. The default window size is 4 MB and the base address for a
window must be a multiple of the window size. The default inbound window
is the top 4 MB of the 16 MB space.

You can specify whether the A24 and A32 addresses can reside within the
same addressing range or whether they must be unique.

2.2.2.1 Specifying A32 and A24 Address Space Overlapping

Read this section if the A32 direct memory access (DMA) inbound window
will be configured with a base address of zero (0x00000000), overlapping the
A24 address space. A24 inbound windows are always configured within the
first 16 MB of the 4 GB VMEbus address space.

Typically, VMEbus A24 and A32 address spaces overlap each other such
that addresses in each address space are unique to that address space. As
an example, address 0x200 in A32 address space is not the same address as
0x200 in A24 address space. This is the default configuration, selected if you
leave the A24_A32_Ovrlap parameter at its default value of 1.

You can configure some VMEbus devices to recognize the same VMEbus
address in both A24 and A32 address spaces. These devices treat the two

2–12 Configuring the VMEbus for Alpha VME Systems

address spaces as a single entity. Consult the VMEbus hardware device
manuals to determine if any devices installed on the VMEbus follow this
model. If so, you must configure the autoconfiguration software to disallow
A32 DMA allocations within the first 16 MB of VMEbus address space.
If you do not do this, an A32 direct memory access to the first 16 MB of
VMEbus address space by another VMEbus device may not only select the
AXPvme or Alpha VME module but also select the device that treats the
address spaces as a single entity.

Configure the first 16 MB of VMEbus address space as a single entity by
setting the A24_A32_Overlap parameter to 0 (zero).

The values for overlapping and unique address spaces are as follows. These
values are valid only when the A32 and A24 address spaces are configured
to overlap each other; that is, when the A32 base address equals zero
(0x00000000).

0 A24 and A32 addresses must be unique

1 A24 and A32 addresses can overlap each other (default)

2.2.2.2 Configuring A32 and A24 Window Sizes

You can specify the DMA inbound window size for the A32 address space
(parameter A32_Size) and the A24 address space (parameter A24_Size).

If you specify an invalid base address in relation to a window size, the
autoconfiguration code adjusts the base address to match the window size.
The base address is adjusted downward to the next appropriate boundary
for the window size.

The window size values are as follows:

0x10000 64 KB

0x20000 128 KB

0x40000 256 KB

0x80000 512 KB

0x100000 1024 KB (1 MB)

0x200000 2048 KB (2 MB)

0x400000 4096 KB (4 MB) [A24 default]

0x800000 8192 KB (8 MB)

0x1000000 16384 KB (16 MB)

0x2000000 32768 KB (32 MB)

Configuring the VMEbus for Alpha VME Systems 2–13

0x4000000 65536 KB (64 MB)

0x8000000 131072 KB (128 MB) [A32 default]

2.2.2.3 Specifying the A32 Base Address

You specify the A32 base address using the A32_Base parameter. The
following table lists the values used for partitioning 128 MB windows in the
A32 address space. Note that the base value is contained in bits 24 through
31, with bits 27 through 31 indicating the window and bits 24 through 26
indicating the partition size.

Base (Bits 31-24) Bus Address (A32_Base) Bus Offset

128 MB window:

0000 0000 0x00000000 0 MB

64 MB windows:

0000 0000 0x00000000 0 MB

0000 0100 0x04000000 64 MB

32 MB windows:

0000 0000 0x00000000 0 MB

0000 0010 0x02000000 32 MB

0000 0100 0x04000000 64 MB

0000 0110 0x06000000 96 MB

16 MB windows:

0000 0000 0x00000000 0 MB

0000 0001 0x01000000 16 MB

0000 0010 0x02000000 32 MB

0000 0011 0x03000000 48 MB

0000 0100 0x04000000 64 MB

0000 0101 0x05000000 80 MB

0000 0110 0x06000000 96 MB

0000 0111 0x07000000 112 MB

2.2.2.4 Specifying the A24 Base Address

You specify the A24 base address using the A24_Base parameter. The
following table lists the base address values for windows in the A24 address

2–14 Configuring the VMEbus for Alpha VME Systems

space. The base address is stored in bits 16 through 23. The table has been
truncated for the smaller window sizes.

Base (Bits 23-16) Bus Address (A24_Base) Bus Offset

16 MB window:

0000 0000 0x00000000 0 MB

8 MB windows:

0000 0000 0x00000000 0 MB

1000 0000 0x00800000 16 MB

4 MB windows:

0000 0000 0x00000000 0 MB

0100 0000 0x00400000 4 MB

1000 0000 0x00800000 8 MB

1100 0000 0x00C00000 12 MB

2 MB windows:

0000 0000 0x00000000 0 MB

0010 0000 0x00200000 2 MB

0100 0000 0x00400000 4 MB

0110 0000 0x00600000 6 MB

1000 0000 0x00800000 8 MB

1010 0000 0x00A00000 10 MB

1100 0000 0x00C00000 12 MB

1110 0000 0x00E00000 14 MB

1 MB windows:

0000 0000 0x00000000 0 MB

0001 0000 0x00100000 1 MB

0010 0000 0x00200000 2 MB

0011 0000 0x00300000 3 MB

0100 0000 0x00400000 4 MB

0101 0000 0x00500000 5 MB

0110 0000 0x00600000 6 MB

0111 0000 0x00700000 7 MB

1000 0000 0x00800000 8 MB

Configuring the VMEbus for Alpha VME Systems 2–15

Base (Bits 23-16) Bus Address (A24_Base) Bus Offset

1001 0000 0x00900000 9 MB

1010 0000 0x00A00000 10 MB

1011 0000 0x00B00000 11 MB

1100 0000 0x00C00000 12 MB

1101 0000 0x00D00000 13 MB

1110 0000 0x00E00000 14 MB

1111 0000 0x00F00000 15 MB

512 KB windows:

0000 0000 0x00000000 0 KB

0000 1000 0x00080000 512 KB

0001 0000 0x00100000 1024 KB

0001 1000 0x00180000 1536 KB

0010 0000 0x00200000 2048 KB

...

1111 1000 0x00F80000 15872 KB

256 KB windows:

0000 0000 0x00000000 0 KB

0000 0100 0x00040000 256 KB

0000 1000 0x00080000 512 KB

0000 1100 0x000C0000 786 KB

0001 0000 0x00100000 1024 KB

...

1111 1100 0x00FC0000 16128 KB

128 KB windows:

0000 0000 0x00000000 0 KB

0000 0010 0x00020000 128 KB

0000 0100 0x00040000 256 KB

0000 0110 0x00060000 384 KB

0000 1000 0x00080000 512 KB

...

1111 1110 0x00FE0000 16256 KB

2–16 Configuring the VMEbus for Alpha VME Systems

Base (Bits 23-16) Bus Address (A24_Base) Bus Offset

64 KB windows:

0000 0000 0x00000000 0 KB

0000 0001 0x00010000 64 KB

0000 0010 0x00020000 128 KB

0000 0011 0x00030000 192 KB

0000 0100 0x00040000 256 KB

...

1111 1111 0x00FF0000 16320 KB

2.2.3 Configuring the VMEbus A16 Address Space

As part of configuring the vba_vipvic kernel subsystem, you can configure
the VMEbus 16-bit address space (A16) for your system. A16 space is used
for interprocessor communication and to communicate with A16 VMEbus
devices.

The A16 space has a maximum size of 64 KB and runs from VMEbus
address 0000 hexadecimal to FFFF hexadecimal. You can configure the
VMEbus Interprocessor Communication Facilities (ICF) of the AXPvme
SBC, Alpha VME 4/nnn or 5/nnn SBC, or Alpha VME 2100 system on any
256-byte boundary within the VMEbus A16 address space. The default base
address (parameter A16_Base) is 0x00000100. The mask value (parameter
A16_Mask) must be left at zero (0x00000000).

2.2.4 Configuring VMEbus Interrupts

This section addresses VMEbus interrupt request levels and how to
configure VMEbus interrupts in the software.

2.2.4.1 VMEbus Interrupt Request Levels

Table 2–3 lists the system priority levels (SPLs) at which VMEbus and
VMEbus adapter interrupt requests are delivered to the operating system
and device drivers. You can query your system’s VMEbus SPLs at run time
by issuing the command sysconfig -q vba_vipvic.

Configuring the VMEbus for Alpha VME Systems 2–17

Table 2–3: VIP/VIC VMEbus Interrupt Request Levels
Interrupt Request Name AXPvme SBC

SPLs
Alpha VME SBC
SPLs

Alpha VME 2100
SPLs

VMEbus IRQ 1 SPLDEVLOW SPLDEVLOW SPLDEVLOW

VMEbus IRQ 2 SPLDEVLOW SPLDEVLOW SPLDEVLOW

VMEbus IRQ 3 SPLDEVLOW SPLDEVLOW SPLDEVLOW

VMEbus IRQ 4 SPLDEVHIGH SPLDEVHIGH SPLDEVLOW

VMEbus IRQ 5 SPLDEVHIGH SPLDEVHIGH SPLDEVLOW

VMEbus IRQ 6 SPLDEVHIGH SPLDEVHIGH SPLDEVLOW

VMEbus IRQ 7 SPLDEVRT SPLDEVRT SPLDEVLOW

Autovector IRQ 1 SPLDEVLOW

Autovector IRQ 2 SPLDEVLOW

Autovector IRQ 3 SPLDEVLOW

Autovector IRQ 4 SPLDEVHIGH

Autovector IRQ 5 SPLDEVHIGH

Autovector IRQ 6 SPLDEVHIGH

Autovector IRQ 7 SPLDEVRT

VMEbus Reset SPLDEVRT SPLDEVRT

Module Switches SPLDEVRT SPLDEVRT SPLDEVLOW

VMEbus IACK SPLDEVLOW SPLDEVLOW SPLDEVLOW

DMA Status SPLDEVRT SPLDEVRT SPLDEVLOW

The Alpha VME 4/nnn and 5/nnn SBCs do not support autovector requests.
The Alpha VME 2100 system does not support autovector or VMEbus reset
interrupt requests.

As Table 2–3 indicates, AXPvme and Alpha VME SBCs generate interrupt
requests that higher-level interrupt requests can preempt, while Alpha VME
2100 interrupt requests are all delivered at the same SPL and cannot be
preempted.

On the AXPvme and Alpha VME SBCs, device drivers must use the
rt_post_callout routine for interrupts delivered at SPLDEVRT.
Interrupt requests for which this is needed are VMEbus IRQ7, Autovector
IRQ7, and any of the four module switch interrupts. Device drivers written
for the SBCs that use the rt_post_callout routine will also run on the
Alpha VME 2100 system without modifications.

2–18 Configuring the VMEbus for Alpha VME Systems

______________________ Note _______________________

VMEbus device drivers written for Alpha VME 2100 systems,
or for other platforms that deliver VMEbus interrupts at a
single SPL, may be affected when run on the AXPvme or Alpha
VME SBC platforms. If these device drivers are using SPLs to
protect common resources between thread and interrupt service
interfaces, the preempted interrupts of the SBC systems may
have unwanted effects on the drivers. If these device drivers
are servicing interrupts for VMEbus IRQ7, Autovector IRQ7, or
module switch interrupts, then the drivers must be modified to
use the rt_post_callout routine. Device drivers cannot invoke
normal thread wakeup mechanisms at SPLDEVRT.

2.2.4.2 Setting VMEbus Interrupt Vector Parameters

You specify vectors and interrupt requests (IRQs) for a device driver using
the Vector and Bus_Priority fields of a VBA_Option entry in the
/etc/sysconfigtab file or in a sysconfigtab file fragment.

Device drivers are passed this information in the controller structure
elements ivnum and bus_priority.

VMEbus interrupt vectors 24 to 255 are available to device drivers. Vectors
0 to 23 are reserved by the VMEbus adapter. When you specify a vector to
the Vector field of VBA_Option, you must also use the Bus_Priority field
to specify an IRQ. Valid IRQ specifications are values 1 through 7. These
values correspond to VMEbus levels IRQ1 through IRQ7.

Note that if a VMEbus device uses an IRQ, that same IRQ cannot be used
for autovectored interrupts.

See the Autoconfiguration Support section of Writing VMEbus Device Drivers
(available in the Device Driver Kit) for an example of adding and enabling
VMEbus interrupts. See the vme_handler_info structure in Writing
VMEbus Device Drivers for interrupt handler information.

2.2.4.3 Specifying Autovector Interrupt Vectors

The Alpha VME 4/nnn, 5/nnn, and 2100 platforms do not support
autovectors.

VMEbus devices of the type Release of Register Access (RORA) use
autovectors. RORA devices are incapable of presenting a status/ID vector in
the manner of Release On Acknowledge (ROAK) VMEbus devices.

RORA devices present an interrupt request to the system at a specified
VMEbus IRQ level. Upon receipt of the interrupt request, the system

Configuring the VMEbus for Alpha VME Systems 2–19

provides a system-defined status/ID vector and dispatches it to the interrupt
service interface installed for the autovector. The device driver is responsible
for dismissing the RORA device’s interrupt request by performing a read or
write access to the device. See the hardware manual for the RORA device to
determine what type of access is needed to dismiss the interrupt request.

To select an autovector, use the Vector and Bus_Priority fields of
VBA_Option. Specify a vector value of 0 (zero) and an IRQ value of 1
through 7, corresponding to VMEbus levels IRQ1 through IRQ7.

If an IRQ is used for an autovector, the same IRQ cannot be used for
VMEbus interrupt vectors.

2.2.4.4 Specifying Module Switch Interrupt Vectors

Specify one of the following vectors in the Vector field of VBA_Option to
select the module switch interrupt you want. Use the Bus_Priority field
to specify 7 as the IRQ level.

Module switch 0 Vector 0x1140 [A16 offset 0x21]

Module switch 1 Vector 0x1150 [A16 offset 0x23] (default)

Module switch 2 Vector 0x1160 [A16 offset 0x25]

Module switch 3 Vector 0x1170 [A16 offset 0x27]

Module switch interrupt vectors allow a module to issue an interrupt to
itself or to another module. The autoconfiguration software provides control
and status registers (CSRs) for use in module switch interrupts. You can
specify two CSRs in a VBA_Option entry in the /etc/sysconfigtab file
or in a sysconfigtab file fragment. At boot time, the system searches
for the specified CSRs.

The autoconfiguration software performs the appropriate bus mapping and
provides io_handle_t values in the addr and addr2 members of the
driver’s controller structure. The addr argument is passed to the driver’s
probe routine, while the addr2 value must be obtained from the addr2
member of the controller structure.

For example, the following VBA_Option entry specifies a CSR for the base
address of the A16 Interprocessor Communication Facilities (ICF). The
module switch 1 CSR is an offset from this A16 address.

VBA_Option = Csr1 - 0x100, ..., Vector - 0x1150, Bus_Priority - 7, ...

The driver structure allows you to specify the size, address type, and
swap mode for the CSRs. For example, the following members in a driver
structure indicate that the first CSR has a size of 256 bytes, is in the A16
address space, and is set to noswap mode:

2–20 Configuring the VMEbus for Alpha VME Systems

int addr1_size 256
int addr1_atype VME_A16_SUPER_ACC | VME_BS_NOSWAP

For more information, see the Device Driver Kit manuals Writing Device
Drivers and Writing VMEbus Device Drivers, especially the sections on
the addr and addr2 members of the controller structure and on the
addr1_size, addr1_atype, addr2_size, and addr2_atype members of
the driver structure.

In addition, you can use the vba_map_csr routine to provide module switch
interrupts. After using the vba_map_csr routine to create an I/O handle,
you write to an address derived from the base address plus an offset. Two
write operations are performed, one signifying a clear and one a set. The
following code fragment shows how the I/O handle is created:

io_handle_t ioh; /* Define type of ioh */
vme_addr_t A16base=0x100; /* Base CSR address */
ioh = vba_map_csr(ctlr, A16base, 256,

(VME_A16_SUPER_ACC |
VME_BS_NOSWAP));

The following code fragment shows how the module switch interrupts are
issued:

write_io_port(ioh+0x22, 1, 0, 0) /* Write to A16 base address
plus the offset to clear
module switch 1 */

mb();
write_io_port(ioh+0x23, 1, 0, 0) /* Write to A16 base address

plus the offset to set
module switch 1 */

mb();

2.2.4.5 Specifying Global Switch Interrupt Vectors

Global switch interrupts are not currently supported.

2.2.5 Using VMEbus Hardware Byte-Swapping Modes

Alpha processors are little endian, while the VMEbus is big endian. The
default byte-swapping mode, VME_BS_NOSWAP, causes the transfer of
bytes between Alpha processors and the VMEbus to be arranged correctly.
If, however, a 16-bit or 32-bit number is needed in a VMEbus register, the
VME_BS_NOSWAP mode rearranges the bytes within the transfer such
that the bytes are reversed in significance. Two other modes are provided
to handle these situations: VME_BS_BYTE and VME_BS_LWORD. A
third mode for swapping words within longwords, VME_BS_WORD, is not
portable across VMEbus adapters and is provided for convenience. The
definitions for these modes are in the io/dec/vme/vbareg.h file. The
flags for these modes are used in vba_map_csr, in dma_map_alloc or
dma_map_load, and in the driver structure.

Configuring the VMEbus for Alpha VME Systems 2–21

VME_BS_NOSWAP mode provides a hardware mechanism for data
coherency for byte-data transfers from Alpha processors (little endian) to the
VMEbus (big endian). The address of any byte as seen on the two buses
remains the same. Block transfers of byte information use 16- or 32-bit
transfers. The transfer sizes are 8-, 16-, or 32-bits of byte information.
Noswap-mode byte addressing is as follows:

ZK-1560U-AI

Byte Address

Little Endian

Big Endian

0 1 2 3

A B C D

A B C D

VME_BS_BYTE mode provides a hardware mechanism for data coherency
for 16-bit data transfers across the VMEbus, such as loading a 16-bit
counter on a VMEbus device. In this mode, bytes within words are swapped.
For portability, use only 16-bit aligned transfers. Byte swap-mode byte
addressing is as follows:

ZK-1561U-AI

Byte Address

Little Endian

Big Endian

0 1 2 3

A B C D

B A D C

VME_BS_WORD mode provides a hardware mechanism for swapping words
within longwords on certain VMEbus adapters. This mode is not portable
across VMEbus adapters; on other VMEbus adapters, byte swapping may
be dependent on data size. For AXPvme and Alpha VME platforms, system
word swap-mode byte addressing is as follows:

ZK-1562U-AI

Byte Address

Little Endian

Big Endian

0 1 2 3

A B C D

C D A B

VME_BS_LWORD mode provides a hardware mechanism for data coherency
for 32-bit data transfers across the VMEbus, such as loading a 32-bit

2–22 Configuring the VMEbus for Alpha VME Systems

VMEbus address register. In this mode, bytes within words are swapped and
words within longwords are swapped. The transfer size is 32 bits only. For
portability, use only 32-bit transfers. Longword swap-mode byte addressing
is as follows:

ZK-1563U-AI

Byte Address

Little Endian

Big Endian

0 1 2 3

A B C D

D C B A

2.2.6 Sharing Memory Between Big Endian and Little Endian
Processors

In a shared memory environment, where packed data structures in common
memory are shared between an Alpha processor (little endian) and a big
endian processor, software byte swapping is required to arrange bytes
properly for 16- or 32-bit quantities (such as 16-bit counter values or 32-bit
VMEbus address values).

The following combination is recommended: VME_BS_NOSWAP with
software byte swapping on nonbyte data for the Alpha processor; and no
swapping on the big endian processor.

You could implement software swapping with read/write macros that
perform the swap with the following code. The purpose here is to provide
code that would run on both little endian and big endian machines that
have shared memory.

#define read_word/long(iohandle,data) /
data = read_io_port(iohandle,sizeof(word/long),0);/

#ifdef LITTLEENDIAN /
swap_xx(data); /

#else /* BIGENDIAN */ /
#endif
#define write_word/long(iohandle,data) /
#ifdef LITTLEENDIAN /

swap_xx(data); /
#else /* BIGENDIAN */ /

write_io_port(iohandle,sizeof(word/long),0,data); /
#endif

2.2.7 Performing VMEbus Slave Block Transfers

The AXPvme and Alpha VME platforms are configured during adapter
initialization to accept slave block transfers (SBLTs) with data widths of
D16, D32, or D64. After the SBC has mapped its memory onto the VMEbus
by using the dma_map_alloc and dma_map_load routines, no other user

Configuring the VMEbus for Alpha VME Systems 2–23

interaction is needed. For information on calling the dma_map_alloc and
dma_map_load routines, see the corresponding reference pages in the
Device Driver Kit (available separately from the base operating system).

Memory must be mapped to the VMEbus prior to D64 slave access.

Access to memory must coincide with the appropriate access mode. If
you specify supervisory-mode access when memory is mapped, memory
accesses must use supervisory mode. If you specify user-mode access, both
supervisory and user access are allowed.

2.2.8 Performing VMEbus Master Block Transfers with Local DMA

The VMEbus interfaces for the AXPvme and Alpha VME platforms provide
a block-mode DMA engine. This DMA engine is capable of transferring up
to 64 KB of data without processor intervention, in VMEbus data widths
of D16, D32, or D64.

The DMA engine transfers data from the VMEbus to system memory (read)
or from system memory to the VMEbus (write). The hardware interface
handles the segmentation of the transfer. This ensures that the VMEbus
specification is not violated in relation to crossing VMEbus 256-byte
boundaries for D16 and D32 or 2-KB boundaries for D64.

The DMA engine is configured to give up the VMEbus during the transfer
and to rearbitrate for the VMEbus again to continue the DMA. The time
between when the DMA engine gives up the bus and rearbitrates for the bus
is called the interleave period. During the interleave period, single-cycle
VMEbus cycles, receipt of slave block transfers (SBLTs), or other operations
may be performed.

The master block transfer (MBLT) hardware interface presents address
modifiers of user block or supervisory block to the VMEbus, based on
parameters passed in the software programming interface. The device or
system on the VMEbus must be able to interpret these address modifiers;
otherwise, bus errors may occur.

You can use the MBLT hardware interface to:

• Transfer data to and from those VMEbus devices that do not have their
own DMA engine

• Move data between VMEbus device memory and system memory

• Transfer data to and from other systems that have their memory mapped
to the VMEbus

The MBLT hardware interface supports DMA block-mode transfers to and
from VMEbus A24 and A32 address space only.

2–24 Configuring the VMEbus for Alpha VME Systems

2.2.8.1 Routines for Master Block-Mode Transfers

To use master block transfers (MBLTs) with the local hardware DMA engine,
you must invoke the following routines and supply specific flag values:

vba_set_dma_addr
dma_map_alloc
dma_map_load
vba_dma
dma_map_unload
dma_map_dealloc

For information on calling these routines, see the corresponding reference
pages in the Device Driver Kit (available separately from the base operating
system).

The flag values DMA_IN and DMA_OUT have specific meaning for VMEbus
support with respect to the dma_map_alloc, dma_map_load, and vba_dma
routines. These flags indicate to the low-level VMEbus dma_map_alloc,
dma_map_load, and vba_dma routines that the MBLT hardware DMA
engine is to be used and the direction of the transfer.

Specifying DMA_IN implies a read from the VMEbus to system memory.
Specifying DMA_OUT implies a write from system memory to the VMEbus.
You use the vba_set_dma_addr routine to pass the flag values and the
VMEbus address at which the transfer is to occur.

The VMEbus block-mode DMA engine on the VMEbus adapter is a single
entity that must be shared among various device drivers. Specifying
DMA_SLEEP causes the device driver to block in the vba_dma routine if the
DMA engine is already being used. If DMA_SLEEP is not specified and the
DMA engine is being used, vba_dma returns an error.

The following sample code shows how to invoke the MBLT hardware DMA
engine for a block-mode read operation. The code uses a VMEbus transfer
width of D32 to invoke a 256 KB transfer from VMEbus address A24
0x400000 to system memory. The code also allocates resources to handle
transfers up to 1 MB in size. This allows dma_map_load and vba_dma to be
invoked multiple times with varying size buffers. You can change the code to
perform writes by substituting DMA_OUT for DMA_IN.
struct controller *ctlr;
vme_addr_t vme_addr = 0x40000;
unsigned long max_bc = (1024*1024);
unsigned long rtn_bc;
char *buffer;
unsigned long buffer_bc = (1024 * 256);
sglist_t dma_handle = (sglist_t)NULL;
vme_atype_t flags = (VME_A24_UDATA_D32|DMA_IN|DMA_SLEEP);
int rtn_flags;
/*
* Allocate a buffer (256 KB) to be used for the transfer

Configuring the VMEbus for Alpha VME Systems 2–25

*/
MALLOC(buffer,(char *),buffer_bc,M_DEVBUF,M_WAITOK);
/*
* Specify a VMEbus address of 0x40000
* Specify flags
* A24 address space
* User mode
* Select DMA engine for a read (DMA_IN) and
* wait for DMA engine (DMA_SLEEP)
*/
rtn_flags = (int)vba_set_dma_addr(ctlr,flags,vme_addr);
/*
* Allocate DMA resources for up to 1 Mbyte transfer
* Specify flags returned from vba_set_dma_addr() above
* The return value from dma_map_alloc() should equal max_bc
*/
rtn_bc = dma_map_alloc(max_bc,ctlr,&dma_handle,rtn_flags);
/*
* Call dma_map_load() to load the resources for the
* DMA block-mode engine
* Specify the dma_handle returned from dma_map_alloc()
* Specify flags returned from vba_set_dma_addr()
* The return value from dma_map_load() should equal buffer_bc
*/
rtn_bc = dma_map_load(buffer_bc,

(vm_offset_t)buffer,
0,
ctlr,
&dma_handle,
0,
rtn_flags);

/*
* Call vba_dma() to start up and monitor the VME adapter’s block-mode
* DMA engine. Specify the dma_handle returned from dma_map_alloc.
* The return value from vba_dma() is the actual bytes transferred.
* This value should be the same as value buffer_bc. If not, then
* an error was detected during the transfer.
*/
rtn_bc = vba_dma(ctlr,dma_handle);
/*
* Unload and free DMA resources
*/
dma_map_unload(0,dma_handle)
dma_map_dealloc(dma_handle)

2.2.8.2 Restrictions on VMEbus Master Block Transfers

The following restrictions apply to using master block transfers (MBLTs)
on the Alpha VME and AXPvme platforms. Failure to adhere to these
restrictions may result in data loss during DMA transfers. These restrictions
are listed by DMA transfer data width.

• D16, D32, and D64 restrictions

The VMEbus address and the memory address must be longword aligned
(quadword aligned for D64), and the lowest 8 address bits [7:0] must
match exactly.

The requested byte count must be in multiples of the data size (multiples
of 2, 4, and 8 for D16, D32, and D64, respectively).

2–26 Configuring the VMEbus for Alpha VME Systems

• Further D64 restrictions

If the VMEbus address is aligned on a 2 KB boundary, the memory
address must also be aligned on a 2 KB boundary. This restriction will be
removed in a future release of the operating system.

Note that you can use the valloc function to allocate memory aligned to a
page boundary, as described in the valloc(3) reference page.

For the best DMA performance, the VMEbus address and the memory
address should be aligned to a 256-byte boundary for D16 and D32 DMA
transfers, or to a 2048-byte boundary for D64 DMA transfers.

The Alpha VME 2100 system in an SMP environment emulates DMA
transfers using PIO operations instead of using an MBLT hardware DMA
engine. The VMEbus adapter on this system requires three I/O accesses
to be atomic to start the DMA engine. These I/O operations cannot be
guaranteed to be atomic in an SMP environment. Uniprocessor systems use
the MBLT hardware DMA engine.

2.2.9 Using the Realtime Interrupt-Handling Routine rt_post_callout

Interrupt service interfaces (ISIs) executing at SPLDEVRT (SPL 6) must
not call kernel routines directly. The rt_post_callout routine allows the
calling process to defer execution of a function until a time when kernel
routines can be invoked. The function invoked by rt_post_callout runs
at an elevated SPL and is subject to the same restrictions as an ISI.

The syntax for the function invoked by rt_post_callout is as follows:
int (*function)(),
long arg1,
long arg2);

The parameters for the rt_post_callout routine are as follows:

function Name of the function to be invoked

arg1 The first argument passed to the function

arg2 The second argument passed to the function

If rt_post_callout is called again with the same function and arguments
specified, then the duplicate invocation is dismissed before the first
invocation has executed.

The following example is for an interrupt service interface (ISI) that runs
at SPLDEVRT:
rt_dev_intr(unit)

int unit;
{
register struct rt_softc *sc = rt_softc[unit];

Configuring the VMEbus for Alpha VME Systems 2–27

rt_post_callout(user_wakeup_interface, /* User wakeup function */
(long) &sc->error_recovery_flag, /* Event to wake*/
(long) NULL); /* Unused argument */

return;
}

The following example shows a user-written function to wake up an event
called by the rt_post_callout routine:

void user_wakeup_interface (arg1, arg2)
long arg1;
long arg2;
{

thread_wakeup((vm_offset_t) arg1);
}

2.3 Configuring UNIVERSE II–Based Alpha VME SBCs

This section describes how to set up UNIVERSE II–based Alpha VME
systems for use on the VMEbus, including how to modify attributes of the
vba_univ kernel subsystem.

VMEbus UNIVERSE II setup allows you to run the operating system on
UNIVERSE II–based Alpha VME systems. For information about installing
the operating system on these systems, see the Installation Guide.

For information about setting up VIP/VIC-based Alpha VME systems for
use on the VMEbus, see Section 2.2.

This section addresses the following topics relating to the use of the VMEbus
on UNIVERSE II–based Alpha VME systems:

• Configuring the vba_univ subsystem (Section 2.3.1)

• Configuring PCI-to-VME address spaces (Section 2.3.2)

• Configuring a special A24/A16 PCI-to-VME window (Section 2.3.3)

• Configuring VME-to-PCI address spaces (Section 2.3.4)

• Mapping UNIVERSE II CSRs to the VMEbus (Section 2.3.5)

• Mapping a location monitor window to the VMEbus (Section 2.3.6)

• Configuring VMEbus interrupts (Section 2.3.7)

• Using VMEbus software byte swapping (Section 2.3.8)

• Sharing memory between big endian and little endian processors
(Section 2.3.9)

• Performing VMEbus slave block transfers (Section 2.3.10)

• Performing VMEbus master block transfers with local DMA
(Section 2.3.11)

2–28 Configuring the VMEbus for Alpha VME Systems

• Using the realtime interrupt-handling routine rt_post_callout
(Section 2.3.12)

2.3.1 Configuring the vba_univ Subsystem

This section describes how to configure the vba_univ kernel subsystem in
order to prepare UNIVERSE II–based Alpha VME systems for use on the
VMEbus.

You configure the UNIVERSE II adapter by examining the default (or
current) attributes supplied for the vba_univ subsystem, determining
which attributes (if any) you want to change, then modifying
the /etc/sysconfigtab file on your machine. After modifying
/etc/sysconfigtab, you must shut down and reboot the system.

______________________ Note _______________________

Do not directly edit /etc/sysconfigtab. Instead, use the
sysconfigdb facility, as described in the sysconfigdb(8)
reference page. It is recommended that you maintain private
sysconfigtab file fragments for vba_univ attributes and use
sysconfigdb switches to add (-a -f), delete (-d), or merge
(-m -f) vba_univ attribute values. The example in Section 3.7
illustrates this approach. The sys_attrs(5) reference page
provides additional guidelines for editing kernel subsystem
attributes. You must always reboot after changing vba_univ
subsystem attributes.

You can modify values for the following UNIVERSE II adapter attributes;
each list item corresponds to a later subsection:

Adapter interrupt dispatch policy (Section 2.3.1.1)
Adapter PCI scatter/gather maximum size (Section 2.3.1.2)
Adapter DMA window maximum size (Section 2.3.1.3)
PCI coupled window timer value (Section 2.3.1.4)
PCI maximum retries (Section 2.3.1.5)
PCI posted write transfer count (Section 2.3.1.6)
PCI aligned burst size (Section 2.3.1.7)
VMEbus request level (Section 2.3.1.8)
VMEbus request mode (Section 2.3.1.9)
VMEbus release mode (Section 2.3.1.10)
VMEbus timeout period (Section 2.3.1.11)
VMEbus arbitration mode (Section 2.3.1.12)
VMEbus arbitration timeout period (Section 2.3.1.13)
System controller VMEbus resets (Section 2.3.1.14 and Section 2.3.1.15)
VMEbus on and off counters for MBLTs (Section 2.3.1.16)

Configuring the VMEbus for Alpha VME Systems 2–29

You can also configure VMEbus windows in the following ways; each list
item corresponds to a later subsection:

Configuring PCI-to-VME address spaces (Section 2.3.2)
Configuring a special A24/A16 PCI-to-VME window (Section 2.3.3)
Configuring VME-to-PCI address spaces (Section 2.3.4)
Mapping UNIVERSE II CSRs to the VMEbus (Section 2.3.5)
Mapping a location monitor window to the VMEbus (Section 2.3.6)

Table 2–4 lists the defaults supplied for various VMEbus parameters. The
default values specified should provide proper VMEbus operation for most
applications. Be careful when modifying these values; not all adapters
support all fields.

Table 2–4: UNIVERSE II VMEbus Adapter Defaults
Parameter Default Meaning

VBA_ISR_Dispatch_Policy 1 Adapter interruupt dispatch policy
is to process all interrupts for
the current SPL (only)

VBA_Max_PCI_Sg_Size 0x20000000 Maximum PCI scatter/gather
size is 512 MB

VBA_Max_DMA_Wndw_Size 0x4000000 Maximum DMA window size
is 64 MB

PCI_Coupled_Wndw_Tmr 0x2 Coupled Window Timer set to hold
VMEbus for 32 PCI clock cycles
after a coupled transaction

PCI_Max_Retry 0xF PCI maximum retries before
signaling error set to 960 (value*64)

PCI_Posted_Wrt_On_Cnt 0x0 PCI posted write transfer count
is 128 bytes

PCI_Aligned_Burst_Size 0x1 PCI aligned burst size is 64 bytes

VME_Br_Lev 0x3 Bus request level 3 for master cycles

VME_Fair_Req 0x1 VMEbus request mode is fair
(not demand)

VME_Rel_Mode 0x1 Release mode is release on
request (ROR)

VME_Bus_To 0x6 VMEbus timeout period is 512
microseconds

VME_Arb_Mode 0x0 Arbitration mode is round robin

VME_Arb_To 0x1 VMEbus arbitration timeout period
is 16 microseconds

2–30 Configuring the VMEbus for Alpha VME Systems

Table 2–4: UNIVERSE II VMEbus Adapter Defaults (cont.)

Parameter Default Meaning

VME_Syscon 0x1 System controller VMEbus
reset is enabled

VME_Von_D64 0x4 VMEbus On counter for D64 MBLT:
hold bus tenure for 2048 bytes

VME_Voff_D64 0x9 VMEbus Off counter for D64 MBLT:
DMA interleave is 4 microseconds

VME_Von_D32 0x2 VMEbus On counter for D32 MBLT:
hold bus tenure for 512 bytes

VME_Voff_D32 0x9 VMEbus Off counter for D32 MBLT:
DMA interleave is 4 microseconds

For the special A24/A16 PCI-to-VME (PCI slave) window:

VME_A24_A16_Wnd_Ena 1 Special A24/A16 PCI-to-VME
window (64 MB) is enabled

VME_A24_A16_Wnd_WP_Ena 1 Write posting enabled to the
A24/A16 window

VME_A24_A16_Wnd_Dwdth 0xF A24/A16 window maximum data
width is D32 (all quadrants)

PCI_SLSI_Base 0 Stores A24/A16 (64 MB) window base
address (obtained from firmware)

VME_A24_Size 0xFF0000 Stores the size of each A24 address
space within the A24/A16 window;
obtainable via sysconfig -q,
default is 16MB-64KB

VME_A16_Size 0x10000 Stores the size of each A16 address
space within the A24/A16 window;
obtainable via sysconfig -q,
default is 64KB

For PCI-to-VME (PCI slave) windows 0 through 7:

PCI_LSI_Base 0 Stores base address of the contiguous
PCI dense space available for
PCI-to-VME windows (obtained
from firmware)

PCI_Mem_Avail 0 Stores number of bytes allocated by
firmware for PCI-to-VME windows

PCI_Mem_Free 0 Stores number of bytes available
for further PCI-to-VME window
allocations

VME_Wnd0_Ena 1 Window 0 is enabled:

VME_Wnd0_VME_Address 0x80000000 VMEbus base address is 0x80000000

Configuring the VMEbus for Alpha VME Systems 2–31

Table 2–4: UNIVERSE II VMEbus Adapter Defaults (cont.)

Parameter Default Meaning

VME_Wnd0_Size 0x08000000 Size is 128 MB

VME_Wnd0_AM_Space 2 A32 space

VME_Wnd0_AM_Usr_Sprvsr 1 User mode

VME_Wnd0_AM_Data_Prg 1 Data access

VME_Wnd0_Dwdth 2 Maximum data width is D32

VME_Wnd0_WP_Ena 1 Write posting is enabled

VME_Wnd0_Cycle_Sel 0 VMEbus single cycles only

VME_Wnd1_Ena 1 Window 1 is enabled:

VME_Wnd1_VME_Address 0x80000000 VMEbus base address is 0x80000000

VME_Wnd1_Size 0x08000000 Size is 128 MB

VME_Wnd1_AM_Space 2 A32 space

VME_Wnd1_AM_Usr_Sprvsr 1 User mode

VME_Wnd1_AM_Data_Prg 2 Program access

VME_Wnd1_Dwdth 2 Maximum data width is D32

VME_Wnd1_WP_Ena 1 Write posting is enabled

VME_Wnd1_Cycle_Sel 0 VMEbus single cycles only

VME_Wnd2_Ena 1 Window 2 is enabled:

VME_Wnd2_VME_Address 0x80000000 VMEbus base address is 0x80000000

VME_Wnd2_Size 0x08000000 Size is 128 MB

VME_Wnd2_AM_Space 2 A32 space

VME_Wnd2_AM_Usr_Sprvsr 2 Supervisory mode

VME_Wnd2_AM_Data_Prg 1 Data access

VME_Wnd2_Dwdth 2 Maximum data width is D32

VME_Wnd2_WP_Ena 1 Write posting is enabled

VME_Wnd2_Cycle_Sel 0 VMEbus single cycles only

VME_Wnd3_Ena 1 Window 3 is enabled:

VME_Wnd3_VME_Address 0x80000000 VMEbus base address is 0x80000000

VME_Wnd3_Size 0x08000000 Size is 128 MB

VME_Wnd3_AM_Space 2 A32 space

VME_Wnd3_AM_Usr_Sprvsr 2 Supervisory mode

2–32 Configuring the VMEbus for Alpha VME Systems

Table 2–4: UNIVERSE II VMEbus Adapter Defaults (cont.)

Parameter Default Meaning

VME_Wnd3_AM_Data_Prg 2 Program access

VME_Wnd3_Dwdth 2 Maximum data width is D32

VME_Wnd3_WP_Ena 1 Write posting is enabled

VME_Wnd3_Cycle_Sel 0 VMEbus single cycles only

VME_Wnd4_Ena 1 Window 4 is enabled:

VME_Wnd4_VME_Address 0x00FF0000 VMEbus base address is 0xFF0000

VME_Wnd4_Size 0x00010000 Size is 64 KB

VME_Wnd4_AM_Space 1 A24 space

VME_Wnd4_AM_Usr_Sprvsr 1 User mode

VME_Wnd4_AM_Data_Prg 1 Data access

VME_Wnd4_Dwdth 2 Maximum data width is D32

VME_Wnd4_WP_Ena 1 Write posting is enabled

VME_Wnd4_Cycle_Sel 0 VMEbus single cycles only

VME_Wnd5_Ena 1 Window 5 is enabled:

VME_Wnd5_VME_Address 0x00FF0000 VMEbus base address is 0xFF0000

VME_Wnd5_Size 0x00010000 Size is 64 KB

VME_Wnd5_AM_Space 1 A24 space

VME_Wnd5_AM_Usr_Sprvsr 2 Supervisory mode

VME_Wnd5_AM_Data_Prg 1 Data access

VME_Wnd5_Dwdth 2 Maximum data width is D32

VME_Wnd5_WP_Ena 1 Write posting is enabled

VME_Wnd5_Cycle_Sel 0 VMEbus single cycles only

VME_Wnd6_Ena 0 Window 6 is disabled by default:

VME_Wnd6_VME_Address 0x0

VME_Wnd6_Size 0x0

VME_Wnd6_AM_Space 0 A16 space

VME_Wnd6_AM_Usr_Sprvsr 1 User mode

VME_Wnd6_AM_Data_Prg 1 Data access

VME_Wnd6_Dwdth 2 Maximum data width is D32

VME_Wnd6_WP_Ena 1 Write posting is enabled

Configuring the VMEbus for Alpha VME Systems 2–33

Table 2–4: UNIVERSE II VMEbus Adapter Defaults (cont.)

Parameter Default Meaning

VME_Wnd6_Cycle_Sel 0 VMEbus single cycles only

VME_Wnd7_Ena 0 Window 7 is disabled by default:

VME_Wnd7_VME_Address 0x0

VME_Wnd7_Size 0x0

VME_Wnd7_AM_Space 0 A16 space

VME_Wnd7_AM_Usr_Sprvsr 1 User mode

VME_Wnd7_AM_Data_Prg 1 Data access

VME_Wnd7_Dwdth 2 Maximum data width is D32

VME_Wnd7_WP_Ena 1 Write posting is enabled

VME_Wnd7_Cycle_Sel 0 VMEbus single cycles only

For VME-to-PCI (VMEbus slave) windows 0 through 7:

PCI_Wnd0_Ena 1 Window 0 is enabled:

PCI_Wnd0_VME_Address 0x00C00000 VMEbus base address is 0xC00000

PCI_Wnd0_Size 0x00400000 Size is 4 MB

PCI_Wnd0_AM_Space 1 A24 space

PCI_Wnd0_AM_Usr_Sprvsr 3 Both user and supervisory mode

PCI_Wnd0_AM_Data_Prg 3 Both data and program access

PCI_Wnd0_WP_Ena 1 Write posting is enabled

PCI_Wnd0_Pre_Rd_Ena 1 Prefetch reads are enabled

PCI_Wnd0_PCI64_Ena 1 PCI64 transactions are enabled

PCI_Wnd0_PCI_Lock_Ena 0 Lock is disabled (not modifiable)

PCI_Wnd1_Ena 1 Window 1 is enabled:

PCI_Wnd1_VME_Address 0x08000000 VMEbus base address is 0x8000000

PCI_Wnd1_Size 0x08000000 Size is 128 MB

PCI_Wnd1_AM_Space 2 A32 space

PCI_Wnd1_AM_Usr_Sprvsr 3 Both user and supervisory mode

PCI_Wnd1_AM_Data_Prg 3 Both data and program access

PCI_Wnd1_WP_Ena 1 Write posting is enabled

PCI_Wnd1_Pre_Rd_Ena 1 Prefetch reads are enabled

PCI_Wnd1_PCI64_Ena 1 PCI64 transactions are enabled

2–34 Configuring the VMEbus for Alpha VME Systems

Table 2–4: UNIVERSE II VMEbus Adapter Defaults (cont.)

Parameter Default Meaning

PCI_Wnd1_PCI_Lock_Ena 0 Lock is disabled (not modifiable)

PCI_Wnd2_Ena 0 Window 2 is disabled by default:

PCI_Wnd2_VME_Address 0x0

PCI_Wnd2_Size 0x0

PCI_Wnd2_AM_Space 1 A24 space

PCI_Wnd2_AM_Usr_Sprvsr 3 Both user and supervisory mode

PCI_Wnd2_AM_Data_Prg 3 Both data and program access

PCI_Wnd2_WP_Ena 1 Write posting is enabled

PCI_Wnd2_Pre_Rd_Ena 1 Prefetch reads are enabled

PCI_Wnd2_PCI64_Ena 1 PCI64 transactions are enabled

PCI_Wnd2_PCI_Lock_Ena 0 Lock is disabled (not modifiable)

PCI_Wnd3_Ena 0 Window 3 is disabled by default:

PCI_Wnd3_VME_Address 0x0

PCI_Wnd3_Size 0x0

PCI_Wnd3_AM_Space 1 A24 space

PCI_Wnd3_AM_Usr_Sprvsr 3 Both user and supervisory mode

PCI_Wnd3_AM_Data_Prg 3 Both data and program access

PCI_Wnd3_WP_Ena 1 Write posting is enabled

PCI_Wnd3_Pre_Rd_Ena 1 Prefetch reads are enabled

PCI_Wnd3_PCI64_Ena 1 PCI64 transactions are enabled

PCI_Wnd3_PCI_Lock_Ena 0 Lock is disabled (not modifiable)

PCI_Wnd4_Ena 0 Window 4 is disabled by default:

PCI_Wnd4_VME_Address 0x0

PCI_Wnd4_Size 0x0

PCI_Wnd4_AM_Space 1 A24 space

PCI_Wnd4_AM_Usr_Sprvsr 3 Both user and supervisory mode

PCI_Wnd4_AM_Data_Prg 3 Both data and program access

PCI_Wnd4_WP_Ena 1 Write posting is enabled

PCI_Wnd4_Pre_Rd_Ena 1 Prefetch reads are enabled

PCI_Wnd4_PCI64_Ena 1 PCI64 transactions are enabled

Configuring the VMEbus for Alpha VME Systems 2–35

Table 2–4: UNIVERSE II VMEbus Adapter Defaults (cont.)

Parameter Default Meaning

PCI_Wnd4_PCI_Lock_Ena 0 Lock is disabled (not modifiable)

PCI_Wnd5_Ena 0 Window 5 is disabled by default:

PCI_Wnd5_VME_Address 0x0

PCI_Wnd5_Size 0x0

PCI_Wnd5_AM_Space 1 A24 space

PCI_Wnd5_AM_Usr_Sprvsr 3 Both user and supervisory mode

PCI_Wnd5_AM_Data_Prg 3 Both data and program access

PCI_Wnd5_WP_Ena 1 Write posting is enabled

PCI_Wnd5_Pre_Rd_Ena 1 Prefetch reads are enabled

PCI_Wnd5_PCI64_Ena 1 PCI64 transactions are enabled

PCI_Wnd5_PCI_Lock_Ena 0 Lock is disabled (not modifiable)

PCI_Wnd6_Ena 0 Window 6 is disabled by default:

PCI_Wnd6_VME_Address 0x0

PCI_Wnd6_Size 0x0

PCI_Wnd6_AM_Space 1 A24 space

PCI_Wnd6_AM_Usr_Sprvsr 3 Both user and supervisory mode

PCI_Wnd6_AM_Data_Prg 3 Both data and program access

PCI_Wnd6_WP_Ena 1 Write posting is enabled

PCI_Wnd6_Pre_Rd_Ena 1 Prefetch reads are enabled

PCI_Wnd6_PCI64_Ena 1 PCI64 transactions are enabled

PCI_Wnd6_PCI_Lock_Ena 0 Lock is disabled (not modifiable)

PCI_Wnd7_Ena 0 Window 7 is disabled by default:

PCI_Wnd7_VME_Address 0x0

PCI_Wnd7_Size 0x0

PCI_Wnd7_AM_Space 1 A24 space

PCI_Wnd7_AM_Usr_Sprvsr 3 Both user and supervisory mode

PCI_Wnd7_AM_Data_Prg 3 Both data and program access

PCI_Wnd7_WP_Ena 1 Write posting is enabled

PCI_Wnd7_Pre_Rd_Ena 1 Prefetch reads are enabled

PCI_Wnd7_PCI64_Ena 1 PCI64 transactions are enabled

2–36 Configuring the VMEbus for Alpha VME Systems

Table 2–4: UNIVERSE II VMEbus Adapter Defaults (cont.)

Parameter Default Meaning

PCI_Wnd7_PCI_Lock_Ena 0 Lock is disabled (not modifiable)

For UNIVERSE II CSR and location monitor window mapping:

CSR_Ena 1 UNIVERSE II CSR mapping
is enabled:

CSR_VME_Address 0xFFFF0000 VMEbus base address is
0xFFFF0000

CSR_AM_Space 2 A32 space

CSR_AM_Usr_Sprvsr 2 Supervisory mode

CSR_AM_Data_Prg 3 Both program and data access

LM_Ena 0 Location monitor mapping is
disabled by default:

LM_VME_Address 0xFFFF1000 VMEbus base address is
0xFFFF1000

LM_AM_Space 2 A32 space

LM_AM_Usr_Sprvsr 2 Supervisory mode

LM_AM_Data_Prg 3 Both program and data access

Table 2–5 lists VMEbus interrupt parameters and their initial defaults.
These defaults are later overwritten by system priority level (SPL) values
supplied by the platform. See the SPL values listed in Table 2–6, or query
the values at run time using the command sysconfig -q vba_univ.

Table 2–5: UNIVERSE II VMEbus Interrupt Initial Defaults
Parameter Default Meaning

Irq0_SPL 4 VMEbus IRQ level to system SPL map

Irq1_SPL 4 VMEbus IRQ 1 to SPL SPLDEVHIGH

Irq2_SPL 4 VMEbus IRQ 2 to SPL SPLDEVHIGH

Irq3_SPL 4 VMEbus IRQ 3 to SPL SPLDEVHIGH

Irq4_SPL 4 VMEbus IRQ 4 to SPL SPLDEVHIGH

Irq5_SPL 4 VMEbus IRQ 5 to SPL SPLDEVHIGH

Irq6_SPL 4 VMEbus IRQ 6 to SPL SPLDEVHIGH

Irq7_SPL 4 VMEbus IRQ 7 to SPL SPLDEVHIGH

Adapt_Blk_SPL 4 Adapter resource blocking SPL SPLDEVHIGH

Configuring the VMEbus for Alpha VME Systems 2–37

2.3.1.1 Specifying the Adapter Interrupt Dispatch Policy

You can specify one of the following values for the adapter interrupt dispatch
policy (parameter VBA_ISR_Dispatch_Policy):

1 Process all interrupts for the current SPL (default)

2 Process all interrupts for the current SPL, then check for
and process additional interrupts once

2.3.1.2 Specifying the Adapter PCI Scatter/Gather Maximum Size

You can specify a multiple of 64 KB (0x10000) up to 512 MB (0x20000000)
for the adapter PCI scatter/gather maximum size (parameter
VBA_Max_PCI_Sg_Size). The default is 512 MB.

If the combined amount of scatter/gather resources needed to map all
enabled VME-to-PCI windows exceeds the value of VBA_Max_PCI_Sg_Size,
the adapter will not be configured. You can use the VBA_Max_PCI_Sg_Size
parameter to constrain the consumption of PCI scatter/gather resources.

2.3.1.3 Specifying the Adapter DMA Window Maximum Size

You can specify one of the following values for the adapter DMA window
maximum size (parameter VBA_Max_DMA_Wndw_Size). This value
determines the amount of scatter/gather resources allocated for the DMA
engine during adapter initialization. If the amount of scatter/gather
resources needed for a requested DMA transfer exceeds the value of
VBA_Max_DMA_Wndw_Size, the DMA transfer will be broken up into
segments and the scatter/gathers will be reloaded for each segment.

You can use the VBA_Max_DMA_Wndw_Size parameter to constrain the
consumption of DMA scatter/gather resources or to throttle DMA transfers
(reducing granularity to force reloads).

This software resource constraint is independent of the adapter’s hardware
constraint on transfer size (up to 16 MB minus 2 KB of data without
processor intervention).

0x2000 8 KB

0x4000 16 KB

0x8000 32 KB

0x10000 64 KB

0x20000 128 KB

0x40000 256 KB

2–38 Configuring the VMEbus for Alpha VME Systems

0x80000 512 KB

0x100000 1 MB

0x200000 2 MB

0x400000 4 MB

0x800000 8 MB

0x1000000 16 MB

0x2000000 32 MB

0x4000000 64 MB (default)

0x8000000 128 MB

0x10000000 256 MB

2.3.1.4 Specifying the PCI Coupled Window Timer Value

You can specify one of the following values for the PCI coupled window timer
value (parameter PCI_Coupled_Wndw_Tmr). This value is stored in the
PCI Miscellaneous Register (LMISC).

The Universe II adapter uses the coupled window timer to determine how
long to hold ownership of the VMEbus on behalf of the PCI Slave Channel
after processing a coupled transaction. The timer is restarted each time the
Universe II processes a coupled transaction. If this timer expires, then the
PCI Slave Channel releases the VME Master Interface.

0x0 Disable Coupled Window Timer (CWT)

0x1 CWT = 16 PCI clock cycles

0x2 CWT = 32 PCI clock cycles (default)

0x3 CWT = 64 PCI clock cycles

0x4 CWT = 128 PCI clock cycles

0x5 CWT = 256 PCI clock cycles

0x6 CWT = 512 PCI clock cycles

2.3.1.5 Specifying the PCI Maximum Retries

You can specify one of the following values for the number of PCI maximum
retries before signaling errors (parameter PCI_Max_Retry). This value is
stored in the Master Control Register (MAST_CTL).

0x0 Retry forever (on PCI)

0x1 Retry 64 times

Configuring the VMEbus for Alpha VME Systems 2–39

0x2 Retry 128 times

0x3 Retry 192 times

0x4 Retry 256 times

0x5 Retry 320 times

0x6 Retry 384 times

0x7 Retry 448 times

0x8 Retry 512 times

0x9 Retry 576 times

0xA Retry 640 times

0xB Retry 704 times

0xC Retry 768 times

0xD Retry 832 times

0xE Retry 896 times

0xF Retry 960 times (default)

2.3.1.6 Specifying the PCI Posted Write Transfer Count

You can specify one of the following values for the PCI posted write transfer
count (parameter PCI_Posted_Wrt_On_Cnt). This value is stored in the
Master Control Register (MAST_CTL).

0x0 Posted write transfer count = 128 bytes (default)

0x1 Posted write transfer count = 256 bytes

0x2 Posted write transfer count = 512 bytes

0x3 Posted write transfer count = 1024 bytes

0x4 Posted write transfer count = 2048 bytes

0x5 Posted write transfer count = 4096 bytes

2.3.1.7 Specifying the PCI Aligned Burst Size

You can specify one of the following values for the PCI aligned burst size
(parameter PCI_Aligned_Burst_Size). This value is stored in the Master
Control Register (MAST_CTL).

0x0 PCI aligned burst size = 32 bytes

0x1 PCI aligned burst size = 64 bytes (default)

0x2 PCI aligned burst size = 128 bytes

2–40 Configuring the VMEbus for Alpha VME Systems

2.3.1.8 Specifying the VMEbus Request Level

You can specify one of the following values for the VMEbus request level
(parameter VME_Br_Lev). This value is stored in the Master Control
Register (MAST_CTL).

0x0 VMEbus request level BR0

0x1 VMEbus request level BR1

0x2 VMEbus request level BR2

0x3 VMEbus request level BR3 (default)

2.3.1.9 Specifying the VMEbus Request Mode

You can specify one of the following values for the VMEbus request mode
(parameter VME_Fair_Req). This value is stored in the Master Control
Register (MAST_CTL).

0x0 Request mode is demand

0x1 Request mode is fair (default)

2.3.1.10 Specifying the VMEbus Release Mode

You can specify one of the following values for the release mode (parameter
VME_Rel_Mode). This value is stored in the Master Control Register
(MAST_CTL).

0x0 Release when done, RWD

0x1 Release on request, ROR (default)

2.3.1.11 Specifying the VMEbus Timeout Period

You can specify one of the following values for the VMEbus timeout period
(parameter VME_Bus_To). This value is stored in the Miscellaneous Control
Register (MISC_CTL).

0x0 Timeouts are disabled

0x1 Timeout = 16 microseconds

0x2 Timeout = 32 microseconds

0x3 Timeout = 64 microseconds

0x4 Timeout = 128 microseconds

Configuring the VMEbus for Alpha VME Systems 2–41

0x5 Timeout = 256 microseconds

0x6 Timeout = 512 microseconds (default)

2.3.1.12 Specifying the VMEbus Arbitration Mode

You can specify one of the following values for the VMEbus arbitration mode
(parameter VME_Arb_Mode). This value is stored in the Miscellaneous
Control Register (MISC_CTL). This parameter is applicable only when the
VMEbus adapter is configured to be the system controller.

0x0 UNIVERSE II performs round-robin VMEbus ar-
bitration (default)

0x1 UNIVERSE II performs priority VMEbus arbitration

2.3.1.13 Specifying the VMEbus Arbitration Timeout Period

You can specify one of the following values for the VMEbus arbitration
timeout period (parameter VME_Arb_To). This value is stored in the
Miscellaneous Control Register (MISC_CTL).

0x0 Timeouts are disabled

0x1 Timeout = 16 microseconds (default)

0x2 Timeout = 256 microseconds

2.3.1.14 Specifying System Controller VMEbus Resets

You can specify one of the following values to indicate whether or not the
adapter should issue VMEbus resets if it is the system controller (parameter
VME_Syscon). This value is stored in the Miscellaneous Control Register
(MISC_CTL).

For Alpha VME SBCs, in addition to specifying a value from this list, you
must set the configuration switches to indicate whether or not the SBC is the
VMEbus system controller. See the SBC’s installation guide for information
on setting the module configuration switches.

The VMEbus backplane must have only one system controller. The system
controller must be electrically the first module in the VMEbus backplane
and in most systems must be in the first VMEbus slot.

0x0 Do not issue VMEbus resets if system controller

0x1 Issue VMEbus resets if system controller (default)

2–42 Configuring the VMEbus for Alpha VME Systems

The values specified interact with the VMEbus initialization code to
determine whether a VMEbus reset is issued when the VMEbus adapter is
being configured. If the value is set to 1 and the system being booted is
the system controller, as determined by the VMEbus initialization code, a
VMEbus reset is issued. If you do not want a VMEbus reset issued during
VMEbus adapter configuration, set the value to 0 (zero). These values
pertain only to the system controller.

If the system controller is configured to issue a VMEbus reset during adapter
initialization, and other processor modules are installed in the VMEbus
backplane, boot the system controller first to allow devices and processor
modules to perform their bus reset actions.

2.3.1.15 Special Considerations for VMEbus Resets

The system controller should always be the initiator of VMEbus resets.
However, under certain error conditions, other VMEbus adapter modules
may invoke a VMEbus reset. Modules installed in the VMEbus backplane
react to bus resets differently. Some modules, if configured, perform a
module reset. Some may have their VMEbus interface reset to a power-up
state without notification to the operating system. This could leave the
VMEbus adapters in an unconfigured state, cause unwanted effects to
the operating system and its device drivers, and cause VMEbus errors to
occur. Other VMEbus adapters on the VMEbus may accept VMEbus resets
and attempt to reconfigure themselves to the hardware context they were
running before the bus reset occurred. However, device drivers expecting
interrupts may not receive them and I/O hardware operations may be
canceled by the VMEbus reset without notification to the device driver.
There is also a potential for data corruption to occur when the VMEbus
adapter is reset during an I/O operation.

It is recommended that the system controller be the initiator of VMEbus
resets during adapter initialization. If the system controller is not controlled
by a processor, then a power-up sequence should cause all VMEbus adapters
and devices to be reset. All modules on the VMEbus should perform a
module reset upon detection of a bus reset. VMEbus adapters that are not
the system controller and that are running an operating system should be
shut down in an orderly fashion prior to the system controller being booted.
These VMEbus adapters should be rebooted after the system controller has
been booted, providing that the system controller is to be used and controlled
by a processor.

For Alpha VME SBCs, it is recommended that nodes that are not the system
controller have their module configuration switch 3 set to Closed (resets the
SBC module on VMEbus reset signal). When the VMEbus is reset, and
the module switch is set to accept a VMEbus reset, nonsystem controller
modules take a boot action and are reset to a powered state.

Configuring the VMEbus for Alpha VME Systems 2–43

If the SBC module configuration switch 3 is set to Open (does not reset
the SBC module on VMEbus reset signal), the VMEbus adapter software
will receive a VMEbus reset interrupt upon detection of a bus reset. The
VMEbus reset signal initializes the VMEbus adapter to its power-up state.
The VMEbus reset interrupt service interface displays the following message
on the console terminal:

vba0 reset_inter: VMEbus reset detected

The interrupt service interface then initializes the VMEbus adapter to its
defaults and enables any previously enabled interrupt enable bits.

Do not set the SBC module configuration switch 3 to Open without
considering the following side effects of receiving a VMEbus reset: device
drivers expecting interrupts may not receive them and I/O hardware
operations may be canceled by the VMEbus reset without notification to the
device drivers. There is potential risk of data corruption depending upon I/O
activity at the time a bus reset occurred.

2.3.1.16 Specifying the VMEbus On and Off Counters for MBLTs

You can specify one of the following values for the VMEbus On Counter for
D64 MBLTs (parameter VME_Von_D64) or the VMEbus On Counter for D32
MBLTs (parameter VME_Von_D32). This value is stored in the DMA General
Control and Status Register (DGCS).

0x0 All bytes transferred until done

0x1 256-byte boundary

0x2 512-byte boundary (D32 MBLT default)

0x3 1024-byte boundary

0x4 2048-byte boundary (D64 MBLT default)

0x5 4096-byte boundary

0x6 8192-byte boundary

0x7 16384-byte boundary

You can specify one of the following values for the VMEbus Off Counter for
D64 MBLTs (parameter VME_Voff_D64) or the VMEbus Off Counter for
D32 MBLTs (parameter VME_Voff_D32). This value is stored in the DMA
General Control and Status Register (DGCS).

0x0 0 microseconds between VMEbus tenures

0x1 16 microseconds between VMEbus tenures

0x2 32 microseconds between VMEbus tenures

2–44 Configuring the VMEbus for Alpha VME Systems

0x3 64 microseconds between VMEbus tenures

0x4 128 microseconds between VMEbus tenures

0x5 256 microseconds between VMEbus tenures

0x6 512 microseconds between VMEbus tenures

0x7 1024 microseconds between VMEbus tenures

0x8 2 microseconds between VMEbus tenures

0x9 4 microseconds between VMEbus tenures (default)

0xA 8 microseconds between VMEbus tenures

2.3.2 Configuring PCI-to-VME Address Spaces

As part of configuring the vba_univ kernel subsystem, you can configure up
to eight PCI-to-VME (PCI slave) windows, numbered 0 through 7, for your
system. Additionally, you can map a special 64 MB window for VMEbus
A24 and A16 accesses.

By default, the following PCI-to-VME windows are provided on your system:

Window 0 - enabled VMEbus base address 0x80000000, 128
MB, A32 user data

Window 1 - enabled VMEbus base address 0x80000000, 128
MB, A32 user program

Window 2 - enabled VMEbus base address 0x80000000, 128 MB,
A32 supervisory data

Window 3 - enabled VMEbus base address 0x80000000, 128 MB,
A32 supervisory program

Window 4 - enabled VMEbus base address 0x00FF0000, 64
KB, A24 user data

Window 5 - enabled VMEbus base address 0x00FF0000, 64 KB,
A24 supervisory data

Window 6 - disabled VMEbus base address 0x00000000, 0, A16 user data

Window 7 - disabled VMEbus base address 0x00000000, 0, A16 user data

A24/A16 window - enabled 64 MB (four equal quadrants for user data, user
program, supervisory data, supervisory program),
top 64 KB per quadrant window is A16 (only
quadrants 0 and 2 used for A16)

Firmware allocates between 512 MB (minimum) and 960 MB (maximum)
of contiguous PCI dense space for PCI-to-VME windows 0 through 7, based
on what is configured in the system, and an additional, separate 64 MB for
the special A24/A16 window.

Configuring the VMEbus for Alpha VME Systems 2–45

The default windows 0 through 3 consume 512 MB; the default windows
4 and 5 consume 128 KB. Windows 6 and 7 can be used to map to other
VMEbus address spaces, module switches, semaphores, location monitors,
and so on. (However, if your configuration requires more PCI resources than
are available, the adapter will not be configured.)

Between the special 64 MB A24/A16 window and the eight other windows,
all of A16 and A24 space is available for access. The CPU can access a 128
MB window of A32 space with the default configuration. You have the
ability to increase or decrease the size of the windows, change the VMEbus
addresses and modifiers, and specify additional VMEbus windows.

______________________ Note _______________________

When configuring PCI-to-VME address spaces, you must ensure
that all VMEbus devices to which the CPU will perform I/O are
configured within one or more of the PCI-to-VME windows. If
window sizes, VMEbus addresses, or VMEbus address modifiers
are changed at a later point, you must ensure that the VMEbus
devices remain within the PCI-to-VME windows.

During system initialization, if the special A24/A16 PCI-to-VME window
is enabled (vba_univ parameter VME_A24_A16_Wnd_Ena equals 1), the
UNIVERSE II adapter support code obtains (from firmware) the PCI address
of the 64 MB window that will be used for VMEbus A24 and A16 accesses
and configures the window to match your vba_univ attribute settings. For
more information about configuring the A24/A16 PCI-to-VME window, see
Section 2.3.3.

The UNIVERSE II adapter support code then obtains (from firmware) the
PCI start and end addresses of the contiguous PCI dense space available for
mapping PCI-to-VME windows 0 through 7. If enough PCI dense space is
available, windows 0 through 7 are then configured to match your vba_univ
attribute settings.

For hardware reasons, PCI-to-VME windows 0 and 4 must be configured on
a 4 KB boundary, and their sizes must be a multiple of 4 KB. The remaining
six windows must be configured on a 64 KB boundary, and their sizes must
be a multiple of 64 KB. The sizes of all windows together must not exceed
the limit provided in firmware.

Each PCI-to-VME window has the following configurable parameters, which
you can modify in the form of vba_univ subsystem attributes:

Window enabled or disabled (Section 2.3.2.1)
VMEbus base address (Section 2.3.2.2)
Window size (Section 2.3.2.3)

2–46 Configuring the VMEbus for Alpha VME Systems

VMEbus address modifiers (Section 2.3.2.4)
VMEbus maximum data width (Section 2.3.2.5)
Write posting enabled or disabled (Section 2.3.2.6)
VMEbus cycle type (Section 2.3.2.7)

When mapping to the VMEbus to fulfill a request, UNIVERSE II support
code searches PCI-to-VME windows 0 through 7 in numerically ascending
order, comparing the VMEbus address attributes in the request to the
configured attributes of each window. The first window that satisfies the
request is used. If none of the windows 0 through 7 satisfies the request, the
support code checks against the special A24/A16 PCI-to-VME window.

Note that for A24 and A16 access, the support code’s VMEbus mapping
algorithm allows windows 0 through 7 to take precedence over the special
A24/A16 window. If you want to guarantee that CSR accesses are mapped
through the special A24/A16 window, you must manipulate your system’s
PCI-to-VME window attributes such that the CSR mappings fall through
to the special window.

2.3.2.1 Enabling or Disabling a PCI-to-VME Window

To enable or disable a PCI-to-VME window, you can specify one of the
following values to the VME_Wndn_Ena attribute for that window. This value
is stored in the PCI Slave Image Control Register corresponding to the
PCI-to-VME window number (LSIn_CTL).

0x0 Window is disabled (default for windows 6 and 7)

0x1 Window is enabled (default for windows 0 through 5)

2.3.2.2 Specifying a PCI-to-VME Window VMEbus Base Address

To establish the VMEbus base address for a PCI-to-VME window, you specify
a hexadecimal address value to the VME_Wndn_VME_Address attribute for
that window. The value can be in the range 0x0 to 0xFFFFFFFF, but the
window base address and its associated size (VME_Wndn_Size) must fall
within the addressable range of the VMEbus address space (A32, A24, or
A16) selected for that window.

Windows 0 and 4 must be configured on 4 KB boundaries; the remaining six
windows must be configured on 64 KB boundaries.

2.3.2.3 Specifying a PCI-to-VME Window Size

To establish the size for a PCI-to-VME window, you specify a hexadecimal
size value to the VME_Wndn_Size attribute for that window. The value
can be in the range 0x0 to 0xFFFFFFFF, but the window base address
(VME_Wndn_VME_Address) and its associated size must fall within the

Configuring the VMEbus for Alpha VME Systems 2–47

addressable range of the VMEbus address space (A32, A24, or A16) selected
for that window.

Windows 0 and 4 must be sized to a multiple of 4 KB; the remaining six
windows must be sized to a multiple of 64 KB.

2.3.2.4 Specifying PCI-to-VME Window VMEbus Address Modifiers

To select the VMEbus address space for a PCI-to-VME window, you can
specify one of the following values to the VME_Wndn_AM_Space attribute
for that window, 0 through 7, to select the VMEbus address space for that
window. This value is stored in the PCI Slave Image Control Register
corresponding to the PCI-to-VME window number (LSIn_CTL).

0x0 A16 address space

0x1 A24 address space

0x2 A32 address space

To select user or supervisory mode for a PCI-to-VME window, you can specify
one of the following values to the VME_Wndn_AM_Usr_Sprvsr attribute for
that window. This value is stored in the PCI Slave Image Control Register
corresponding to the PCI-to-VME window number (LSIn_CTL).

0x1 User mode

0x2 Supervisory mode

To select data or program access for a PCI-to-VME window, you can specify
one of the following values to the VME_Wndn_AM_Data_Prg attribute for
that window. This value is stored in the PCI Slave Image Control Register
corresponding to the PCI-to-VME window number (LSIn_CTL).

0x1 Data access

0x2 Program access

2.3.2.5 Specifying a PCI-to-VME Window VMEbus Maximum Data Width

To select the VMEbus maximum data width for a PCI-to-VME window, you
can specify one of the following values to the VME_Wndn_AM_Dwdth attribute
for that window. This value is stored in the PCI Slave Image Control
Register corresponding to the PCI-to-VME window number (LSIn_CTL).

0x0 VMEbus maximum data width = 8 bits

0x1 VMEbus maximum data width = 16 bits

2–48 Configuring the VMEbus for Alpha VME Systems

0x2 VMEbus maximum data width = 32 bits (default)

0x3 VMEbus maximum data width = 64 bits

2.3.2.6 Specifying PCI-to-VME Window Write Posting

To enable or disable write posting for a PCI-to-VME window, you can
specify one of the following values to the VME_Wndn_WP_Ena attribute for
that window. This value is stored in the PCI Slave Image Control Register
corresponding to the PCI-to-VME window number (LSIn_CTL).

0x0 Write posting is disabled

0x1 Write posting is enabled (default)

2.3.2.7 Specifying a PCI-to-VME Window VMEbus Cycle Type

To select the VMEbus cycle type for a PCI-to-VME window, you can specify
one of the following values to the VME_Wndn_Cycle_Sel attribute for that
window. This value is stored in the PCI Slave Image Control Register
corresponding to the PCI-to-VME window number (LSIn_CTL).

0x0 Single cycles only (default)

0x1 Single cycles and block transfers

2.3.3 Configuring a Special A24/A16 PCI-to-VME Window

As part of configuring the vba_univ kernel subsystem, you can configure
up to eight PCI-to-VME (PCI slave) windows for your system. Additionally,
you can map a special A24/A16 PCI-to-VME window, 64 MB in size, for
VMEbus A24 and A16 accesses.

The 64 MB window (64 MB aligned) is subdivided into four 16 MB windows.
The top 64 KB of each 16 MB quadrant is allocated for VMEbus A16
accesses. The remaining 16 MB minus 64 KB of each quadrant is allocated
for VME A24 accesses.

By default, the four quadrants of the 64 MB window are set up with the
following VMEbus address-modifier attributes. Note that only quadrants 0
and 2 are used for A16 access.

Configuring the VMEbus for Alpha VME Systems 2–49

Quadrant 3 16 MB

16 MB

16 MB

16 MB

Low

High

Quadrant 2

Quadrant 1

Quadrant 0

A16 Supervisory Program (not used)

A16 Supervisory Data (64 KB)

A16 User Program (not used)

A16 User Data (64 KB)

A24 Supervisory Program

A24 Supervisory Data

A24 User Program

A24 User Data

ZK-1564U-AI

For example, an A16 supervisory data access would map to the top 64 KB
of quadrant 2. An A24 user data access would map to the bottom 16 MB
minus 64 KB of quadrant 0.

The special A24/A16 PCI-to-VME window has the following configurable
parameters, which you can modify in the form of vba_univ subsystem
attributes:

Window enabled or disabled (Section 2.3.3.1)
Write posting enbled or disabled (Section 2.3.3.2)
VMEbus maximum data width (Section 2.3.3.3)

During system initialization, if the special A24/A16 PCI-to-VME window
is enabled (vba_univ parameter VME_A24_A16_Wnd_Ena equals 1), the
UNIVERSE II adapter interface obtains (from firmware) the PCI address of
the 64 MB window that will be used for VMEbus A24 and A16 accesses and
configures the window to match your vba_univ attribute settings.

2.3.3.1 Enabling or Disabling the A24/A16 Window

You can specify one of the following values to the VME_A24_A16_Wnd_Ena
attribute to enable or disable the special A24/A16 PCI-to-VME window. This
value is stored in the Special PCI Slave Image Register (SLSI).

2–50 Configuring the VMEbus for Alpha VME Systems

0x0 A24/A16 window is disabled

0x1 A24/A16 window is enabled (default)

2.3.3.2 Specifying A24/A16 Window Write Posting

You can specify one of the following values to the VME_A24_A16_Wnd_WP_Ena
attribute to enable or disable write posting to the A24/A16 window. This
value is stored in the Special PCI Slave Image Register (SLSI).

0x0 Write posting is disabled

0x1 Write posting is enabled (default)

2.3.3.3 Specifying the A24/A16 Window VMEbus Maximum Data Width

You can specify a 4-bit value from 0x0 to 0xF to the VME_A24_A16_Wnd_Dwdth
attribute to select the A24/A16 window VMEbus maximum data width for
each quadrant. This value is stored in the Special PCI Slave Image Register
(SLSI).

Each bit selects D16 (0) or D32 (1) width for the corresponding quadrant, as
follows:

ZK-1565U-AI

16-bit data width (D16)

32-bit data width (D32)

Q3 Q2 Q1 Q0

0 0 0 0

1 1 1 1

For example, the value 0x0 (bit value 0000) selects D16 for all quadrants
and the value 0xA (1010) selects D16 for quadrants 0 and 2 and D32 for
quadrants 1 and 3. The default, 0xF (1111), selects D32 for all quadrants.

2.3.4 Configuring VME-to-PCI Address Spaces

As part of configuring the vba_univ kernel subsystem, you can configure up
to eight VME-to-PCI (VMEbus slave) windows, numbered 0 through 7, to be
used for VMEbus slave accesses in your system.

By default, the following VME-to-PCI windows are provided on your system:

Configuring the VMEbus for Alpha VME Systems 2–51

Window 0 - enabled VMEbus base address 0x00C00000, 4 MB, A24
user/supervisory data/program; write posting,
prefetching, and PCI64 enabled

Window 1 - enabled VMEbus base address 0x08000000, 128 MB, A32
user/supervisory data/program; write posting,
prefetching, and PCI64 enabled

Window 2 - disabled VMEbus base address 0x00000000, 0, A24 user/supervisory
data/program; write posting, prefetching, and PCI64 enabled

Window 3 - disabled VMEbus base address 0x00000000, 0, A24 user/supervisory
data/program; write posting, prefetching, and PCI64 enabled

Window 4 - disabled VMEbus base address 0x00000000, 0, A24 user/supervisory
data/program; write posting, prefetching, and PCI64 enabled

Window 5 - disabled VMEbus base address 0x00000000, 0, A24 user/supervisory
data/program; write posting, prefetching, and PCI64 enabled

Window 6 - disabled VMEbus base address 0x00000000, 0, A24 user/supervisory
data/program; write posting, prefetching, and PCI64 enabled

Window 7 - disabled VMEbus base address 0x00000000, 0, A24 user/supervisory
data/program; write posting, prefetching, and PCI64 enabled

Other windows can be enabled, or enabled windows can be reconfigured.
All windows must be at least 64 MB in size. Windows 0 and 4 must be
configured on an 8 KB boundary and must be sized to a multiple of 8 KB
(minimum 64 KB), in order to line up with the PCI scatter/gather mapping
register on Alpha based platforms. The remaining six windows must be
configured on a 64 KB boundary and must be sized to a multiple of 64 KB.
The sizes of all windows together must not exceed the total amount of
resources available in the system for VME-to-PCI mapping. The number of
VME-to-PCI windows enabled in the system, their sizes, and the amount of
memory in the system determines the PCI resources needed. The maximum
memory provided for VME-to-PCI mapping resources is determined by the
VBA_Max_PCI_Sg_Size adapter attribute; the default is 512 MB.

Each VME-to-PCI window has the following configurable parameters, which
you can modify in the form of vba_univ subsystem attributes:

Window enabled or disabled (Section 2.3.4.1)
VMEbus base address (Section 2.3.4.2)
Window size (Section 2.3.4.3)
VMEbus address modifiers (Section 2.3.4.4)
Write posting enabled or disabled (Section 2.3.4.5)
Prefetch reads enabled or disabled (Section 2.3.4.6)
64-bit PCI bus transactions enabled or disabled (Section 2.3.4.7)

2–52 Configuring the VMEbus for Alpha VME Systems

2.3.4.1 Enabling or Disabling a VME-to-PCI Window

To enable or disable a VME-to-PCI window, you can specify one of the
following values to the PCI_Wndn_Ena attribute for that window. This value
is stored in the VMEbus Slave Image Control Register corresponding to the
VME-to-PCI window number (VSIn_CTL).

0x0 Window is disabled (default for windows 2 through 7)

0x1 Window is enabled (default for windows 0 and 1)

2.3.4.2 Specifying a VME-to-PCI Window VMEbus Base Address

To establish the VMEbus base address for a VME-to-PCI window, you specify
a hexadecimal address value to the PCI_Wndn_VME_Address attribute for
that window. The value can be in the range 0x0 to 0xFFFFFFFF, but the
window base address and its associated size (PCI_Wndn_Size) must fall
within the addressable range of the VMEbus address space (A32 or A24)
selected for that window.

Windows 0 and 4 must be configured on 8 KB boundaries to line up with the
PCI scatter/gather mapping register on Alpha based systems; the remaining
six windows must be configured on 64 KB boundaries.

2.3.4.3 Specifying a VME-to-PCI Window Size

To establish the size for a VME-to-PCI window, you specify a hexadecimal
size value to the PCI_Wndn_Size attribute for that window. The value
can be in the range 0x0 to 0xFFFFFFFF, but the window base address
(PCI_Wndn_VME_Address) and its associated size must fall within the
addressable range of the VMEbus address space (A32 or A24) selected for
that window.

All windows must be at least 64 KB in size. Windows 0 and 4 must be
sized to a multiple of 8 KB; the remaining six windows must be sized to
a multiple of 64 KB.

2.3.4.4 Specifying VME-to-PCI Window VMEbus Address Modifiers

To select the VMEbus address space for a VME-to-PCI window, you can
specify one of the following values to the PCI_Wndn_AM_Space attribute
for that window. This value is stored in the VMEbus Slave Image Control
Register corresponding to the VME-to-PCI window number (VSIn_CTL).

0x1 A24 address space

0x2 A32 address space

Configuring the VMEbus for Alpha VME Systems 2–53

You can specify one of the following values to the PCI_Wndn_AM_Usr_Sprvsr
attribute for a VME-to-PCI window (0 through 7) to select user mode,
supervisory mode, or both for that window. This value is stored in the
VMEbus Slave Image Control Register corresponding to the VME-to-PCI
window number (VSIn_CTL).

0x1 User mode

0x2 Supervisory mode

0x3 Both user and supervisory mode (default)

You can specify one of the following values to the PCI_Wndn_AM_Data_Prg
attribute for a VME-to-PCI window (0 through 7) to select data access,
program access, or both for that window. This value is stored in the VMEbus
Slave Image Control Register corresponding to the VME-to-PCI window
number (VSIn_CTL).

0x1 Data access

0x2 Program access

0x3 Both data and program access (default)

2.3.4.5 Specifying VME-to-PCI Window Write Posting

To enable or disable write posting for a VME-to-PCI window, you can specify
one of the following values to the PCI_Wndn_WP_Ena attribute for that
window. This value is stored in the VMEbus Slave Image Control Register
corresponding to the VME-to-PCI window number (VSIn_CTL).

0x0 Write posting is disabled

0x1 Write posting is enabled (default)

2.3.4.6 Specifying VME-to-PCI Window Prefetch Reads

To enable or disable prefetch reads for a VME-to-PCI window, you can specify
one of the following values to the PCI_Wndn_Pre_Rd_Ena attribute for that
window. This value is stored in the VMEbus Slave Image Control Register
corresponding to the VME-to-PCI window number (VSIn_CTL).

0x0 Prefetch reads are disabled

0x1 Prefetch reads are enabled (default)

2–54 Configuring the VMEbus for Alpha VME Systems

2.3.4.7 Specifying VME-to-PCI Window 64-Bit PCI Bus Transactions

To enable or disable 64-bit PCI bus transactions for a VME-to-PCI window,
you can specify one of the following values to the PCI_Wndn_PCI64_Ena
attribute for that window. This value is stored in the VMEbus Slave
Image Control Register corresponding to the VME-to-PCI window number
(VSIn_CTL).

0x0 64-bit PCI bus transactions are disabled

0x1 64-bit PCI bus transactions are enabled (default)

______________________ Note _______________________

In order for 64-bit PCI bus transactions to be enabled, the PCI
Bus Size (LCLSIZE) bit must be set in the Miscellaneous Status
Register (MISC_STAT). If LCLSIZE is clear, the value of the
PCI_Wndn_PCI64_Ena attribute is ignored.

2.3.5 Mapping UNIVERSE II CSRs to the VMEbus

As part of configuring the vba_univ kernel subsystem, you can map
UNIVERSE II CSRs (control and status registers) to the VMEbus for your
system. UNIVERSE II CSRs occupy a 4 KB window and can be enabled to
support four module switches and eight semaphores.

_____________________ Caution _____________________

The default vba_univ adapter configuration maps UNIVERSE II
CSRs to the VMEbus for VMEbus backplane (vb) network driver
use. Other drivers should not access the CSRs on the VMEbus
except with extreme caution, because register changes may affect
adapter code.

The default configuration of the UNIVERSE II CSRs window on the VMEbus
is as follows:

CSR window - enabled VMEbus base address 0xFFFF0000, 4KB, A32
supervisory data/program

You determine where in VMEbus space the UNIVERSE II CSRs are
configured by modifying the following vba_univ subsystem attributes:

CSR window enabled or disabled (Section 2.3.5.1)
VMEbus base address (4 KB aligned) (Section 2.3.5.2)
VMEbus address modifiers (Section 2.3.5.3)

Configuring the VMEbus for Alpha VME Systems 2–55

2.3.5.1 Enabling or Disabling the CSR Window

You can specify one of the following values to the CSR_Ena attribute to
enable or disable the CSR window. This value is stored in the VMEbus
Register Access Control Register (VRAI_CTL).

0x0 CSR window is disabled

0x1 CSR window is enabled (default)

2.3.5.2 Specifying a CSR Window VMEbus Base Address

To establish the VMEbus base address for the CSR window, you specify
a hexadecimal address value to the CSR_VME_Address attribute. The
value can be in the range 0x0 to 0xFFFFFFFF, but must fall within the
addressable range of the VMEbus address space (A32, A24, or A16) selected
for that window. The CSR window must be configured on a 4 KB boundary.

2.3.5.3 Specifying CSR Window VMEbus Address Modifiers

You can specify one of the following values to the CSR_AM_Space attribute to
select the VMEbus address space for the CSR window. This value is stored
in the VMEbus Register Access Control Register (VRAI_CTL).

0x0 A16 address space

0x1 A24 address space

0x2 A32 address space (default)

You can specify one of the following values to the CSR_AM_Usr_Sprvsr
attribute to select user mode, supervisory mode, or both for the CSR window.
This value is stored in the VMEbus Register Access Control Register
(VRAI_CTL).

0x1 User mode

0x2 Supervisory mode (default)

0x3 Both user and supervisory mode

You can specify one of the following values to the CSR_AM_Data_Prg
attribute to select data access, program access, or both for the CSR window.
This value is stored in the VMEbus Register Access Control Register
(VRAI_CTL).

2–56 Configuring the VMEbus for Alpha VME Systems

0x1 Data access

0x2 Program access

0x3 Both data and program access (default)

2.3.6 Mapping a Location Monitor Window to the VMEbus

As part of configuring the vba_univ kernel subsystem, you can map a 4 KB
location monitor window to the VMEbus for your system. Any read/write
access to this window triggers interrupts for all UNIVERSE II–based
VMEbus modules mapping the window (usable for implementing a global
interrupt facility).

______________________ Note _______________________

Only UNIVERSE II–based systems can access UNIVERSE II
location monitors. Accesses from VIP/VIC-based or other systems
will cause bus errors.

The default configuration of the location monitor window on the VMEbus
is as follows:

Location monitor window
- disabled

VMEbus base address 0xFFFF1000, 4KB, A32
supervisory data/program

This window cannot reside within the VME-to-PCI windows you configure.

You determine where in VMEbus space the location monitor window is
configured by modifying the following vba_univ subsystem attributes:

Location monitor window enabled or disabled (Section 2.3.6.1)
VMEbus base address (4 KB aligned) (Section 2.3.6.2)
VMEbus address modifiers (Section 2.3.6.3)

No specific operating system support exists for the location monitor registers
and interrupts. To connect to location monitor interrupts, device drivers
must install interrupt service interfaces for the location monitor interrupts
and enable or disable location monitor interrupts.

After the location monitor interrupts are connected, any VMEbus read or
write access to the UNIVERSE II location monitor window mapped to the
VMEbus causes the appropriate location monitor interrupt to be generated
to all interrupt-connected modules.

Device drivers must reference the location monitor window specifying
matching VMEbus base address and modifiers. The device driver is

Configuring the VMEbus for Alpha VME Systems 2–57

responsible for knowing the location monitor window’s VMEbus base address
and VMEbus address modifiers.

2.3.6.1 Enabling or Disabling the Location Monitor Window

You can specify one of the following values to the LM_Ena attribute to enable
or disable the location monitor window. This value is stored in the Location
Monitor Control Register (LM_CTL).

0x0 Location monitor window is disabled (default)

0x1 Location monitor window is enabled

2.3.6.2 Specifying a Location Monitor Window VMEbus Base Address

To establish the VMEbus base address for the location monitor window, you
specify a hexadecimal address value to the LM_VME_Address attribute.
The value can be in the range 0x0 to 0xFFFFFFFF, but must fall within
the addressable range of the VMEbus address space (A32, A24, or A16)
selected for that window. The location monitor window must be configured
on a 4 KB boundary.

2.3.6.3 Specifying Location Monitor Window VMEbus Address Modifiers

You can specify one of the following values to the LM_AM_Space attribute
to select the VMEbus address space for the location monitor window. This
value is stored in the Location Monitor Control Register (LM_CTL).

0x0 A16 address space

0x1 A24 address space

0x2 A32 address space (default)

You can specify one of the following values to the LM_AM_Usr_Sprvsr
attribute to select user mode, supervisory mode, or both for the location
monitor window. This value is stored in the Location Monitor Control
Register (LM_CTL).

0x1 User mode

0x2 Supervisory mode (default)

0x3 Both user and supervisory mode

You can specify one of the following values to the LM_AM_Data_Prg attribute
to select data access, program access, or both for the location monitor window.
This value is stored in the Location Monitor Control Register (LM_CTL).

2–58 Configuring the VMEbus for Alpha VME Systems

0x1 Data access

0x2 Program access

0x3 Both data and program access (default)

2.3.7 Configuring VMEbus Interrupts

This section addresses VMEbus interrupt request levels and how to specify
VMEbus interrupt parameters to the software.

2.3.7.1 VMEbus Interrupt Request Levels

Table 2–6 lists the system priority levels (SPLs) at which VMEbus and
VMEbus adapter interrupt requests are delivered to the operating system
and device drivers. You can query your system’s VMEbus SPLs at run time
by issuing the command sysconfig -q vba_univ.

Table 2–6: UNIVERSE II VMEbus Interrupt Request Levels
Interrupt Request Name Alpha VME SBC SPLs

VMEbus IRQ 1 SPLDEVLOW

VMEbus IRQ 2 SPLDEVLOW

VMEbus IRQ 3 SPLDEVLOW

VMEbus IRQ 4 SPLDEVHIGH

VMEbus IRQ 5 SPLDEVHIGH

VMEbus IRQ 6 SPLDEVHIGH

VMEbus IRQ 7 SPLDEVRT

VMEbus Reset SPLDEVRT

Module Switches SPLDEVRT

Location Monitors SPLDEVRT

Adapter Errors SPLDEVRT

VMEbus IACK SPLDEVLOW

DMA Status SPLDEVRT

Alpha VME SBCs do not support autovector requests.

As Table 2–6 indicates, Alpha VME SBCs generate interrupt requests that
higher-level interrupt requests can preempt.

On the Alpha VME SBCs, device drivers must use the rt_post_callout
routine for interrupts delivered at SPLDEVRT. Interrupt requests for which

Configuring the VMEbus for Alpha VME Systems 2–59

this is needed are VMEbus IRQ7, any of the four module switch interrupts,
and any of the four location monitor interrupts.

2.3.7.2 Setting VMEbus Interrupt Vector Parameters

You specify vectors and interrupt requests (IRQs) for a device driver using
the Vector and Bus_Priority fields of a VBA_Option entry in the
/etc/sysconfigtab file or in a sysconfigtab file fragment.

Device drivers are passed this information in the controller structure
elements ivnum and bus_priority.

VMEbus interrupt vectors 24 to 255 are available to device drivers. Vectors
0 to 23 are reserved by the VMEbus adapter. When you specify a vector to
the Vector field of VBA_Option, you must also use the Bus_Priority field
to specify an IRQ. Valid IRQ specifications are values 1 through 7. These
values correspond to VMEbus levels IRQ1 through IRQ7.

See the Autoconfiguration Support section of Writing VMEbus Device Drivers
(available in the Device Driver Kit) for an example of adding and enabling
VMEbus interrupts. See the vme_handler_info structure in Writing
VMEbus Device Drivers for interrupt handler information.

2.3.7.3 Specifying Module Switch Interrupt Vectors

Specify one of the following vectors in the Vector field of VBA_Option to
select the module switch interrupt you want. Use the Bus_Priority field
to specify 7 as the IRQ level.

Module switch 0 Vector 0x1140 [CSR offset 0x348]

Module switch 1 Vector 0x1150 [CSR offset 0x34C] (default)

Module switch 2 Vector 0x1160 [CSR offset 0x350]

Module switch 3 Vector 0x1170 [CSR offset 0x354]

Module switch interrupt vectors allow a module to issue an interrupt to
itself or to another module. The autoconfiguration software provides control
and status registers (CSRs) for use in module switch interrupts. You can
specify two CSRs in a VBA_Option entry in the /etc/sysconfigtab file
or in a sysconfigtab file fragment. At boot time, the system searches
for the specified CSRs.

The autoconfiguration software performs the appropriate bus mapping and
provides io_handle_t values in the addr and addr2 members of the
driver’s controller structure. The addr argument is passed to the driver’s
probe routine, while the addr2 value must be obtained from the addr2
member of the controller structure.

2–60 Configuring the VMEbus for Alpha VME Systems

For example, the following VBA_Option entry specifies an A32 window
address as the CSR base address. The module switch 1 CSR is an offset
from this A32 address.

VBA_Option = Csr1 - 0xFFFF0000, ..., Vector - 0x1150, Bus_Priority - 7, ...

The driver structure allows you to specify the size and address type for
the CSRs. For example, the following members in a driver structure
indicate that the first CSR has a size of 4096 (x1000) bytes and is in the
A32 supervisory data address space:

int addr1_size 4096
int addr1_atype VME_A32_SDATA

For more information, see the Device Driver Kit manuals Writing Device
Drivers and Writing VMEbus Device Drivers, especially the sections on
the addr and addr2 members of the controller structure and on the
addr1_size, addr1_atype, addr2_size, and addr2_atype members of
the driver structure.

In addition, you can use the vba_map_csr routine to provide module switch
interrupts. After using the vba_map_csr routine to create an I/O handle,
you write to an address derived from the base address plus an offset. The
following code fragment shows how the I/O handle is created:

io_handle_t ioh; /* Define type of ioh */
vme_addr_t VME_base=0xFFFF0000; /* Base CSR address */
ioh = vba_map_csr(ctlr, VME_base, 4096,

(VME_A32_SDATA));

The following code fragment shows how the module switch interrupts are
issued:

write_io_port(ioh+0x34C, 1, 0, data) /* Write to CSR base address
plus the offset to cause
module switch 1 interrupt */

mb();

2.3.7.4 Specifying Location Monitor Interrupt Vectors

The location monitor interrupt vectors are as follows:

Location monitor 0 Vector 0x1100

Location monitor 1 Vector 0x1110

Location monitor 2 Vector 0x1120

Location monitor 3 Vector 0x1130

No specific operating system support exists for the location monitor registers
and interrupts. To connect to location monitor interrupts, device drivers
must install interrupt service interfaces for the location monitor interrupts
and enable or disable location monitor interrupts.

Configuring the VMEbus for Alpha VME Systems 2–61

When location monitor interrupts are connected, any VMEbus read or write
access to the UNIVERSE II location monitor window mapped to the VMEbus
causes the appropriate location monitor interrupt to be generated to all
interrupt-connected modules.

For more information about configuring the UNIVERSE II location monitor
window, see Section 2.3.6.

2.3.8 Using VMEbus Software Byte Swapping

Alpha processors are little endian, while VMEbus is big endian. The default
operation of the UNIVERSE II adapter causes the transfer of bytes between
Alpha processors and VMEbus to be arranged correctly. If, however, a 16-bit
or 32-bit number is needed in a VMEbus register, the default operation
rearranges the bytes within the transfer such that the bytes are reversed
in significance.

For UNIVERSE II–based Alpha VME systems, software byte swapping must
be used to handle these situations. (By contrast, VIP/VIC-based Alpha VME
systems use hardware byte-swapping modes.)

For VMEbus device drivers, the Device Driver Kit (DDK) provides a VMEbus
example device driver, DMAEX, and accompanying user code that offers a
model for how you can implement software byte swapping. You can obtain
VMEbus driver-writing documentation by purchasing a DDK, or you can
browse a subset of DDK materials at the Tru64 UNIX Publications web site,
currently located at the following URL:

http://www.tru64unix.compaq.com/docs/

Be sure to check for the latest DDK technical updates at the same location.

If your VMEbus device driver code must be portable across both
VIP/VIC-based and UNIVERSE II–based Alpha VME systems, you can
code the driver to use hardware or software byte swapping according to
the system type.

2.3.9 Sharing Memory Between Big Endian and Little Endian
Processors

In a shared memory environment, where packed data structures in common
memory are shared between an Alpha processor (little endian) and a big
endian processor, software byte swapping is required to arrange bytes
properly for 16- or 32-bit quantities (such as 16-bit counter values or 32-bit
VMEbus address values).

2–62 Configuring the VMEbus for Alpha VME Systems

The following combination is recommended: UNIVERSE II default operation
with software byte swapping on nonbyte data for the Alpha processor, and
no swapping on the big endian processor.

You could implement software swapping with read/write macros that
perform the swap with the following code. The purpose here is to provide
code that would run on both little endian and big endian machines that
have shared memory.

#define read_word/long(iohandle,data) /
data = read_io_port(iohandle,sizeof(word/long),0);/

#ifdef LITTLEENDIAN /
swap_xx(data); /

#else /* BIGENDIAN */ /
#endif
#define write_word/long(iohandle,data) /
#ifdef LITTLEENDIAN /

swap_xx(data); /
#else /* BIGENDIAN */ /

write_io_port(iohandle,sizeof(word/long),0,data); /
#endif

2.3.10 Performing VMEbus Slave Block Transfers

Alpha VME platforms are configured during adapter initialization to accept
slave block transfers (SBLTs) with data widths of D08, D16, D32, or D64.
After the SBC has mapped its memory onto the VMEbus by using the
dma_map_alloc and dma_map_load routines, no other user interaction is
needed. For information on calling the dma_map_alloc and dma_map_load
routines, see the corresponding reference pages in the Device Driver Kit
(available separately from the base operating system).

Memory must be mapped to the VMEbus prior to D64 slave access.

Access to memory must coincide with the configured access mode. By
default, all access is allowed (supervisory and user, program and data).
You can constrain access by modifying the default window mappings. See
Section 2.3.4 for more information about configuring VME-to-PCI address
spaces.

2.3.11 Performing VMEbus Master Block Transfers with Local DMA

The VMEbus interfaces for Alpha VME platforms provide a block-mode
DMA engine. This DMA engine is capable of transferring up to 16 MB
minus 2 KB of data without processor intervention, in VMEbus data widths
of D08, D16, D32, or D64.

The DMA engine transfers data from the VMEbus to system memory (read)
or from system memory to the VMEbus (write). The hardware interface
handles the segmentation of the transfer. This ensures that the VMEbus

Configuring the VMEbus for Alpha VME Systems 2–63

specification is not violated in relation to crossing VMEbus 256-byte
boundaries for D16 and D32 or 2 KB boundaries for D64.

The DMA engine is configured to give up the VMEbus during the transfer
and to rearbitrate for the VMEbus again to continue the DMA. The time
between when the DMA engine gives up the bus and rearbitrates for the bus
is called the interleave period. During the interleave period, single-cycle
VMEbus cycles, receipt of slave block transfers (SBLTs), or other operations
may be performed.

The master block transfer (MBLT) hardware interface presents address
modifiers of user block or supervisory block to the VMEbus, based on
parameters passed in the software programming interface. The device or
system on the VMEbus must be able to interpret these address modifiers;
otherwise, bus errors may occur.

You can use the MBLT hardware interface to:

• Transfer data to and from those VMEbus devices that do not have their
own DMA engine

• Move data between VMEbus device memory and system memory

• Transfer data to and from other systems that have their memory mapped
to the VMEbus

The MBLT hardware interface supports DMA block-mode transfers to and
from VMEbus A24 and A32 address space only.

2.3.11.1 Routines for Master Block-Mode Transfers

To use master block transfers (MBLTs) with the local hardware DMA engine,
you must invoke the following routines and supply specific flag values:

vba_set_dma_addr
dma_map_alloc
dma_map_load
vba_dma
dma_map_unload
dma_map_dealloc

For information on calling these routines, see the corresponding reference
pages in the Device Driver Kit (available separately from the base operating
system).

The flag values DMA_IN and DMA_OUT have specific meaning for VMEbus
support with respect to the dma_map_alloc, dma_map_load, and vba_dma
routines. These flags indicate to the low-level VMEbus dma_map_alloc,
dma_map_load, and vba_dma routines that the MBLT hardware DMA
engine is to be used and the direction of the transfer.

2–64 Configuring the VMEbus for Alpha VME Systems

Specifying DMA_IN implies a read from the VMEbus to system memory.
Specifying DMA_OUT implies a write from system memory to the VMEbus.
You use the vba_set_dma_addr routine to pass the flag values and the
VMEbus address at which the transfer is to occur.

The VMEbus block-mode DMA engine on the VMEbus adapter is a single
entity that must be shared among various device drivers. Specifying
DMA_SLEEP causes the device driver to block in the vba_dma routine if the
DMA engine is already being used. If DMA_SLEEP is not specified and the
DMA engine is being used, vba_dma returns an error.

The following sample code shows how to invoke the MBLT hardware DMA
engine for a block-mode read operation. The code uses a VMEbus transfer
width of D32 to invoke a 256 KB transfer from VMEbus address A24
0x400000 to system memory. The code also allocates resources to handle
transfers up to 1 MB in size. This allows dma_map_load and vba_dma to be
invoked multiple times with varying size buffers. You can change the code to
perform writes by substituting DMA_OUT for DMA_IN.
struct controller *ctlr;
vme_addr_t vme_addr = 0x40000;
unsigned long max_bc = (1024*1024);
unsigned long rtn_bc;
char *buffer;
unsigned long buffer_bc = (1024 * 256);
sglist_t dma_handle = (sglist_t)NULL;
vme_atype_t flags = (VME_A24_UDATA_D32|DMA_IN|DMA_SLEEP);
int rtn_flags;
/*
* Allocate a buffer (256 KB) to be used for the transfer
*/
MALLOC(buffer,(char *),buffer_bc,M_DEVBUF,M_WAITOK);
/*
* Specify a VMEbus address of 0x40000
* Specify flags
* A24 address space
* User mode
* Select DMA engine for a read (DMA_IN) and
* wait for DMA engine (DMA_SLEEP)
*/
rtn_flags = (int)vba_set_dma_addr(ctlr,flags,vme_addr);
/*
* Allocate DMA resources for up to 1 Mbyte transfer
* Specify flags returned from vba_set_dma_addr() above
* The return value from dma_map_alloc() should equal max_bc
*/
rtn_bc = dma_map_alloc(max_bc,ctlr,&dma_handle,rtn_flags);
/*
* Call dma_map_load() to load the resources for the
* DMA block-mode engine
* Specify the dma_handle returned from dma_map_alloc()
* Specify flags returned from vba_set_dma_addr()
* The return value from dma_map_load() should equal buffer_bc
*/
rtn_bc = dma_map_load(buffer_bc,

(vm_offset_t)buffer,
0,
ctlr,
&dma_handle,

Configuring the VMEbus for Alpha VME Systems 2–65

0,
rtn_flags);

/*
* Call vba_dma() to start up and monitor the VME adapter’s block-mode
* DMA engine. Specify the dma_handle returned from dma_map_alloc.
* The return value from vba_dma() is the actual bytes transferred.
* This value should be the same as value buffer_bc. If not, then
* an error was detected during the transfer.
*/
rtn_bc = vba_dma(ctlr,dma_handle);
/*
* Unload and free DMA resources
*/
dma_map_unload(0,dma_handle)
dma_map_dealloc(dma_handle)

2.3.11.2 Restriction on VMEbus Master Block Transfers

The following restriction applies to using master block transfers (MBLTs) on
UNIVERSE II–based Alpha VME platforms: The data buffer address and
the VMEbus transfer address must be aligned exactly; that is, the 2 lowest
bits must match.

For the best DMA performance, the data buffer address and the VMEbus
transfer address should be word-aligned for D16, longword-aligned for D32,
or quadword-aligned for D64.

2.3.12 Using the Realtime Interrupt-Handling Routine rt_post_callout

Interrupt service interfaces (ISIs) executing at SPLDEVRT (SPL 6) must
not call kernel routines directly. The rt_post_callout routine allows the
calling process to defer execution of a function until a time when kernel
routines can be invoked. The function invoked by rt_post_callout runs
at an elevated SPL and is subject to the same restrictions as an ISI.

The syntax for the function invoked by rt_post_callout is as follows:

int (*function)(),
long arg1,
long arg2);

The parameters for the rt_post_callout routine are as follows:

function Name of the function to be invoked

arg1 The first argument passed to the function

arg2 The second argument passed to the function

If rt_post_callout is called again with the same function and arguments
specified, then the duplicate invocation is dismissed before the first
invocation has executed.

2–66 Configuring the VMEbus for Alpha VME Systems

The following example is for an interrupt service interface (ISI) that runs
at SPLDEVRT:

rt_dev_intr(unit)
int unit;

{
register struct rt_softc *sc = rt_softc[unit];
rt_post_callout(user_wakeup_interface, /* User wakeup function */

(long) &sc->error_recovery_flag, /* Event to wake*/
(long) NULL); /* Unused argument */

return;
}

The following example shows a user-written function to wake up an event
called by the rt_post_callout routine:

void user_wakeup_interface (arg1, arg2)
long arg1;
long arg2;
{

thread_wakeup((vm_offset_t) arg1);
}

Configuring the VMEbus for Alpha VME Systems 2–67

3
Configuring a VMEbus Backplane (vb)

Network

This chapter explains how to set up a VMEbus backplane–based network in
which Alpha VME single-board computers (SBCs) operate as Ethernet nodes.

The VMEbus backplane (vb) interface provides access to an Ethernet
network through the VMEbus backplane driver, which acts as an Ethernet
Datalink Layer driver. This interface allows VMEbus-based systems to
communicate directly over the VMEbus to other VMEbus-based systems on
the same backplane, or on other Ethernet-connected systems outside the
backplane through a gateway node on the backplane.

Both the Tru64 UNIX and VxWorks for Alpha (Version 3.1 or higher)
software support the vb driver as well as communication between these
systems on the same backplane. The Tru64 UNIX vb driver is supported on
AXPvme and Alpha VME SBCs and on Alpha VME 2100 systems.

The VMEbus backplane interface requires you to modify the
/etc/sysconfigtab file on your AXPvme or Alpha VME system in order
to configure the vb driver and to map VMEbus windows for the system.
Mapping the VMEbus windows on one node requires knowledge about every
node in the vb network.

______________________ Note _______________________

Do not modify any vme_vba kernel subsystem attributes. To
configure a vb network node, you modify attributes of the vb
driver (vb:) and the system’s VMEbus adapter (vba_vipvic: or
vba_univ:).

This chapter addresses the following topics relating to the use of the vb
interface on Alpha VME systems:

• VMEbus backplane (vb) network overview (Section 3.1)

• Configuring vb network nodes (Section 3.2)

• Modifying vb driver attributes (Section 3.3)

• Modifying vba_vipvic adapter attributes (Section 3.4)

• Modifying vba_univ adapter attributes (Section 3.5)

Configuring a VMEbus Backplane (vb) Network 3–1

• VIP/VIC two-node network example (Section 3.6)

• UNIVERSE II two-node network example (Section 3.7)

• Related ioctl commands (Section 3.8)

• Diagnostic messages (Section 3.9)

• Errors (Section 3.10)

3.1 VMEbus Backplane (vb) Network Overview

Tru64 UNIX provides a VMEbus backplane (vb) driver that allows systems
to communicate over a VMEbus backplane using Ethernet protocols.

The backplane driver is compatible with the other parts of the network
subsystem; that is, all higher-level network protocols are immediately
available over the backplane, just as they are over the Ethernet. Socket
communication, remote login, remote file access, NFS, and remote
procedure calls are all simultaneously available to and from any processor
on the backplane. Using these network facilities over the backplane is
indistinguishable from using any other network medium.

By default, the vb driver is not configured to run when the system is booted
and must be explicitly turned on for the node to participate in the backplane
network.

Configuring nodes in a vb network can be simple or complex, depending on
the specific system needs. At a minimum, you must configure the vb driver
to be turned on and you must specify the Ethernet hardware address of the
target system. By default, an unconfigured driver will not start up.

You can use all other default vb characteristics without change, as long as
you configure the necessary system VMEbus window space correctly. You
can also tailor several backplane node characteristics to meet specific system
and application needs.

VMEbus addresses are used in two ways in the vb driver:

• To map local memory onto the VMEbus for client message queues

• To interrupt nodes on the vb network when data is sent

The following subsections describe how VMEbus addresses are used for
client communication and for interrupting nodes on the vb network.

3.1.1 VMEbus Addresses Used for Client Communication

A vb network is made up of two or more nodes in a VMEbus backplane cage
that communicate by way of local memory mapped onto the VMEbus. Nodes
that participate in the vb network provide local memory for client message

3–2 Configuring a VMEbus Backplane (vb) Network

queues. Other backplane nodes map to this memory over the VMEbus and
write data to this local memory; this is what is meant by "sending" messages
to a node on the backplane network.

The VMEbus has three different basic address spaces to which system
VMEbus windows may be mapped: A16, A24, and A32. Each system in a
VMEbus backplane must configure a client communication VMEbus window
(and a mailbox-interrupt VMEbus window, discussed later) in a unique
manner, such that the windows do not overlap across the backplane. See
Section 2.2 (VIP/VIC-based Alpha VME systems) or Section 2.3 (UNIVERSE
II–based Alpha VME systems) for more information on configuring VMEbus
address spaces.

The vb driver uses either A24 or A32 space to map its client communication
queues (data) to the VMEbus. You specify the following information
regarding the queues for each backplane node:

• The address space in which to map the queues (A24 or A32) as well as
other address space modifiers (supervisory/user, program/data)

• The address within A24 or A32 space at which the queues will be mapped
to the VMEbus, specified as an offset from the base of the queues’ chosen
system VMEbus window

• The total size of the area needed to map the communication queues

Default values are defined for these items, but you can reconfigure your
vb and VMEbus characteristics by adding or modifying values in the
/etc/sysconfigtab file, as described in Section 3.2.

Whatever you configure the values to be, you must modify the client
communication window to accommodate the chosen values. The window
(A24 or A32) base and size specified must be unique across the backplane,
and its size must be big enough to fit the queue size specified, starting at the
offset specified.

You can configure VMEbus windows on a per-system basis by adding or
modifying values for each window’s VMEbus base address and size in the
/etc/sysconfigtab file. See Section 2.2 (VIP/VIC-based Alpha VME
systems) or Section 2.3 (UNIVERSE II–based Alpha VME systems) for more
information on modifying the base address and size of VMEbus windows.

Configuring a VMEbus Backplane (vb) Network 3–3

______________________ Note _______________________

If you do not uniquely configure the client communication
VMEbus windows for the backplane nodes on the vb network,
unpredictable behavior may occur. An error message similar
to the following prints to the console of a node whose client
communication VMEbus window overlaps that of a node that has
mapped the window and is actively communicating through it,
even if it is with a device other than the vb driver:

vba0 errors_inter: VIP/VIC errors detected
VIC BESR 0x50 - VIP BESR 0x40400 VIC DMASR 0x8
VMEbus timeout
local bus error - LBERR* asserted to VIC
Inbound error - invalid s/g or VMEbus slave access error

3.1.2 VMEbus Addresses Used for Interrupting

Module-switch (mailbox-interrupt) settings regulate interrupt activity in the
vb backplane network. When a node sends data to another node, the sending
node generates an interrupt on the receiving node by using module switches.

An interrupt is generated by writing to a particular offset from the base of
a mailbox-interrupt window, which is an A16 (VIP/VIC) or A16/A24/A32
(UNIVERSE II) VMEbus window on the node to be interrupted. The offset
determines the particular module switch to use for interrupting a node.

You must configure each node’s mailbox-interrupt window to be unique
across the nodes in the VMEbus backplane. You can configure VMEbus
windows on a per-system basis by adding or modifying values for
each window’s VMEbus base address and associated attributes in the
/etc/sysconfigtab file. See Section 2.2 (VIP/VIC-based Alpha VME
systems) or Section 2.3 (UNIVERSE II–based Alpha VME systems) for more
information on modifying the base address and size of VMEbus windows.

Four module switches are associated with each node’s mailbox-interrupt
window. You specify the module switch to use for interrupting by adding or
modifying values for the following driver attributes in /etc/sysconfigtab:

• A module-switch offset value in VB_Mailbox_Offset

• A module-switch vector number in the Vector field of the VBA_Option
entry

• For UNIVERSE II–based Alpha VME systems, VMEbus address
modifiers for the mailbox-interrupt window in VB_Mailbox_Addr_Type

Additionally, you must verify that the VB_Interrupt_Interface attribute
is set to 1 to select interrupt mode over polling mode.

3–4 Configuring a VMEbus Backplane (vb) Network

If you prefer, you can use the default module-switch offset and vector values,
which select module switch 1. Adapter-specific offset and vector values are
listed in Section 3.3.

Whatever you configure the values to be, you must modify the A16 (VIP/VIC)
or A16/A24/A32 (UNIVERSE II) mailbox-interrupt window base address to
be unique among the nodes in the VMEbus backplane for interrupting to
work. (Only one node in the backplane can use the default mailbox-interrupt
window base address.)

However, you can configure the module switch used to interrupt a particular
node individually on a per-node basis (not necessarily uniquely).

3.1.3 Box Manager Node

Because a vb network is made up of two or more nodes in a VMEbus
backplane cage that communicate via local memory mapped onto the
VMEbus, information about which nodes are participating in the network
must be stored so that all nodes can access this information. The information
is stored in the local memory of a single backplane node, called the box
manager.

The box manager node is a special client in that it maps this global
information onto the VMEbus in addition to mapping its client
communication queues.

The box manager maps the global information onto the VMEbus at an
address that is known to all other nodes in the backplane network (the
well-known address). When non-box-manager nodes boot, they read
information from the well-known address to see what other nodes are
in the network. The well-known address must reside in the particular
system VMEbus window (A24 or A32) with modifiers (supervisory/user,
program/data) that are also well known to other nodes in the vb network.
The combination of the address and its modifier uniquely specifies where the
box manager global data resides on the VMEbus for all nodes to see.

The well-known address is configurable through /etc/sysconfigtab and
defaults to 0xBC0000. The address space that it is mapped to (A24 or A32) is
also configurable and defaults to A24 address space, supervisory mode, and
data space. (For more information on configuring the well-known address
and modifiers, see Section 3.3.2.)

The network administrator must configure only one node to be the box
manager node. A node is a box manager if the well-known address is
contained within the node’s system VMEbus window (either A24 or A32,
depending on the configured value of the box manager address modifier).
No other switch or value specification is needed to identify a box manager.
Note that you do not have to set the base VMEbus window address to the

Configuring a VMEbus Backplane (vb) Network 3–5

well-known address; the well-known address must simply be contained
within a valid VMEbus system window.

When a node boots, it determines whether or not it is the box manager node
by comparing the well-known address to its configured system VMEbus
window range. A node that is not the box manager node is called a client
node.

The box manager node is also just another network client, and it has local
communication queues mapped to the VMEbus just like any other client.
The difference is in the placement of those queues mapped onto the VMEbus.
The box manager has two sets of data that must be mapped to the VMEbus:
the box manager global data and the client communication queues.

By default, box manager global data and client communication queues are
mapped to the same address space, A24. In the default case:

• The offset of the communication queues from the base window specified
in /etc/sysconfigtab for the queues is ignored.

• The communication queues are mapped directly following the global data
starting at the well-known address.

In addition, the combined size of the global data and the communication
queues is adjusted to be equal to the configured size of the communication
queues (the default for which is 0x40000, or 256 KB). You do not need to deal
with the size of the box manager global data when you determine what your
system VMEbus window size should be for the box manager node.

However, you can configure the global data and the communication
queues to be mapped to different spaces (A24 and A32). In this case, the
communication queues are mapped like any other client node. They are
mapped at the configured offset from the base of its configured window. The
global data is mapped to the well-known address, for a size of 0x6000 bytes.
You must be sure that both system windows, A24 and A32, will accommodate
either the well-known address or the communication queues.

The box manager node must be the first node in the backplane to boot, so
that the global memory is mapped to the well-known address before other
nodes attempt to read from it.

You must boot the VMEbus system controller for the VMEbus crate (set
by the appropriate jumper on the module) before any other node that is
participating in the vb backplane and before any other node that is using the
VMEbus. This is because when the system controller is booted, it can reset
the VMEbus registers of all other nodes. If the VMEbus system controller
is not the box manager, ensure that the system controller boots before the
box manager node, or that the system controller is not booted while the vb

3–6 Configuring a VMEbus Backplane (vb) Network

network is up and running. Note that if the the system controller is not the
box manager, the system controller cannot participate in the vb network.

3.1.4 Network Participation

Nodes in a backplane network communicate via memory mapped onto the
VMEbus. If this memory becomes unmapped, or if the VMEbus is reset for
any reason, the mapping is no longer valid. Any read or write operations to a
remote node that uses the invalid mapping could cause a panic or machine
check on the system performing the read or write. To reduce the possibility
of this occurring, the nodes in the vb network maintain liveness with the
rest of the network.

To maintain liveness, when a node enters the vb network, it begins
continually updating a counter in the global memory called its heartbeat.
In addition, all nodes on the network continually check the vb heartbeat of
other nodes, including the box manager node, to see if they are still alive and
able to participate in the network in a timely manner.

If the heartbeat of a remote node is no longer being updated, communication
to that node must stop in anticipation of the remote node’s VMEbus mapping
becoming invalid. For example, if a node is rebooted, its heartbeat ceases
to be updated and the rest of the backplane nodes eventually lose liveness
with that node and stop communicating with it.

When a node is shut down in a controlled manner (using
/usr/sbin/shutdown), the vb driver notifies the other vb nodes that it is
shutting down, so that they can stop communicating. If a node is shut down
in an uncontrolled manner (panic or halt), the current VMEbus mappings
remain valid until you reinitialize the system. This allows time for other vb
network nodes to lose liveness with the node before an invalid mapping
reference occurs.

After you fully reboot the shutdown node, it can reenter the vb network and
be seen by the other vb network nodes again.

If node A loses liveness with node B, node B cannot reenter the vb network
without rebooting. You cannot restart the vb driver without rebooting. This
restriction is due to the need for the restarting node to probe the well-known
address to see if a box manager memory is mapped to the well-known
address. This probing is supported only during the booting stage.

Response time is an important aspect of liveness. Even if a node is not shut
down, it may respond too slowly to vb network traffic to be considered alive.
In these cases, it may be in the best interest of the rest of the vb network
to cease communication with that node. For example, a node may have a
realtime application running at a realtime priority above that of the vb
network driver, and in fact higher than many system functions. Without

Configuring a VMEbus Backplane (vb) Network 3–7

network traffic being processed in a timely manner, backups or message loss
could occur on any node attempting to send data to the node.

The liveness feature of the drivers allows remote nodes to notice that
the node’s heartbeat is not being updated (because the node is devoted
to the realtime application) and stop attempting to communicate with it.
In addition, you could use a long liveness interval in a stable network
configuration (one that does not expect frequent shutdowns) to allow a light
load on the vb network to continue in the midst of expectedly high realtime
priority usage.

3.2 Configuring vb Network Nodes
To configure a vb network node, you perform the following steps:

1. Examine the default or current configuration attributes of the vb
driver (vb:) and of the system’s VMEbus adapter (vba_vipvic: or
vba_univ:).

If an existing vba_vipvic: or vba_univ: entry in
/etc/sysconfigtab indicates that adapter defaults have already been
modified for other VMEbus device drivers in the system, you must factor
the needs of other drivers into any changes you make for the vb driver.

2. As needed, modify the /etc/sysconfigtab file to add or modify
values for vb driver and VMEbus adapter attributes. You must turn
on the vb driver and you must specify the node’s Ethernet hardware
address. Also, as part of modifying VMEbus adapter attributes, you
need to configure each node’s VMEbus system windows with the other
participating nodes’ VMEbus window configurations in mind. Sections
that follow describe these tasks in detail.

____________________ Note _____________________

Do not directly edit /etc/sysconfigtab. Instead, use the
sysconfigdb facility, as described in the sysconfigdb(8)
reference page. It is recommended that you maintain private
sysconfigtab file fragments for vb and VMEbus adapter
attributes and use sysconfigdb switches to add (-a -f),
delete (-d), or merge (-m -f) attribute values for a particular
subsystem. The examples in Section 3.6 and Section 3.7
illustrate this approach.

3. Reboot the vb node. You must always reboot after modifying driver
or adapter subsystem attributes.

4. When a configured vb node boots, you must use the netsetup command
to register the vb driver as a new network driver. Assign each vb node a

3–8 Configuring a VMEbus Backplane (vb) Network

unique IP address that is a subnet used exclusively by the vb network,
to differentiate between the Ethernet network and the vb network.
The participating nodes must be specified in the /etc/hosts file. For
information on setting up a new network, see Network Administration:
Connections and Network Administration: Services.

You must configure and boot the box manager node before configuring and
booting any other nodes. Also, if the box manager is not the VMEbus system
controller, the VMEbus system controller module must boot before the box
manager. Otherwise, when the system controller is booted, it may reset the
entire VMEbus backplane network.

When you boot each configured node, the VMEbus backplane driver becomes
available. During the boot, the console displays diagnostic messages prefixed
with the string VB:. The box manager displays the following message at
startup:

VB: This is the box manager node

A client (non-box-manager) node displays the following message at startup:

VB: Box mgr address space is not configured for this system,
thus this node is not the box manager node (OK). Be sure
that there is a box manager in the network.

_____________________ Caution _____________________

Make sure that only one node comes up as the box manager. If
more than one node comes up as the box manager, it means that
the system VMEbus address window has been configured to
contain the well-known address (whose default is 0xBC0000) on
more than one node. This results in unpredictable behavior and,
at a minimum, causes the vb network to fail.

3.3 Modifying vb Driver Attributes

The vb driver attributes are configurable on a per-node or per-vb-network
basis, as described in detail in this section.

First you examine the default or current configuration attributes of the vb
driver and the system’s VMEbus adapter. Table 3–1 lists the default values
for vb driver parameters.

Configuring a VMEbus Backplane (vb) Network 3–9

Table 3–1: VMEbus Backplane (vb) Network Driver Defaults
Parameter Default Meaning

Per-node vb attributes:

Module_Config_Name vb Driver name is vb

VB_Startup_State 0 Driver is off

VB_Client_Addr_Type 0x7 Client communication window
address modifiers: A24 space,
supervisory mode, and data access

VB_Client_Vme_Window_Size 0x40000 Size of communication queues
area is 256 KB

VB_Client_Vme_Win-
dow_Offset

0x0 Map client queues at offset 0x0
from the client communication
window base address

VB_Interrupt_Interface 1 Message response is interrupt
driven

VB_Liveness_Timeout 10000 Remote liveness tests are 10000
milliseconds (10 seconds) apart

VB_Mailbox_Addr_Type 0xE (UNIVERSE II only) Client
mailbox-interrupt window address
modifiers: A16 space, supervisory
mode, and data access

VB_Mailbox_Offset 0x23 or
0x34C

Module switch 1 is selected by
offset 0x23 (VIP/VIC) or 0x34C
(UNIVERSE II)

VB_Maxnodes 10 Maximum nodes allowed in the
vb network is 10

VB_Netid — Ethernet hardware address of
the node must be supplied for
the network to start up

VB_Give_Up 1 Time out if the VB_Probe_Period
is exceeded

VB_Probe_Period 1 Number of minutes to probe the
box manager’s well-known address
before exiting driver is 1

VB_Census_Change 0 Do not display node mapping
state changes

VB_Transfer_Type 0 Use only programmed I/O (PIO)
transfers over the bus

VB_DMA_Threshold 256 If VB_Transfer_Type equals 1,
transfers equal to or exceeding
256 bytes will use direct memory
access (DMA) rather than PIO

3–10 Configuring a VMEbus Backplane (vb) Network

Table 3–1: VMEbus Backplane (vb) Network Driver Defaults (cont.)

Parameter Default Meaning

VB_DMA_Dwidth 0 If VB_Transfer_Type equals 1,
the D16 data width will be used for
DMA transfers over the bus

Per-network vb attributes:

VB_Box_Mgr_WK_Addr 0xBC0000 Box manager’s well-known
VMEbus address is 0xBC0000
(must match on every node)

VB_Box_Mgr_WK_Addr_Type 0x7 Box manager global data address
modifiers: A24 space, supervisory
mode, and data access (must
match on every node)

VB_Maxmtu 1500 Maximum transfer unit (mtu) size
is 1500 bytes (configurable on the
box manager node only)

Table 2–1 and Table 2–4 list the parameter defaults for the VIP/VIC and
UNIVERSE II VMEbus adapters, respectively.

If the existing vb: entry in /etc/sysconfigtab indicates that vb driver
defaults have already been modified, you may need to factor the previous
changes into your new changes. If an existing vba_vipvic: or vba_univ:
entry in /etc/sysconfigtab indicates that adapter defaults have already
been modified for other VMEbus device drivers in the system, you must
factor the needs of other drivers into any changes you make for the vb driver.

If you wish to change a vb driver attribute from its default or current
value, you enter the attribute and its new value after the label vb: in the
/etc/sysconfigtab file or in a sysconfigtab file fragment.

______________________ Note _______________________

Do not directly edit /etc/sysconfigtab. Instead, use the
sysconfigdb facility, as described in the sysconfigdb(8)
reference page. It is recommended that you maintain a
private sysconfigtab file fragment for vb attributes and use
sysconfigdb switches to add (-a -f), delete (-d), or merge
(-m -f) vb attribute values. The examples in Section 3.6 and
Section 3.7 illustrate this approach. You must always reboot after
changing vb driver attributes.

You must also add or modify vba_vipvic: or vba_univ: adapter attribute
values to map unique VMEbus windows for client communication and
mailbox interrupts, as described in Section 3.4 and Section 3.5, respectively.

Configuring a VMEbus Backplane (vb) Network 3–11

The following code example shows a sample vb: entry in the
/etc/sysconfigtab file or in a sysconfigtab file fragment, including
the associated VBA_Option bus configuration structure. Line breaks have
been added to the VBA_Option entry for clarity.

In this example, only the VB_Startup_State and VB_Netid parameters
have been modified from their defaults. These modifications enable the vb
driver to start up and participate in a vb network. After you complete your
vb driver and VMEbus adapter modifications, you must reboot the system.

vb:
#
%%%VB
#

VB_Startup_State = 1
VB_Netid = 08-00-2b-e2-48-48
VBA_Option = Manufact_Name - ’Digital’,

Product_Name - ’VME Backplane Network Driver’,
Bus_Instance - 0, Driver_Name - vb, Driver_Instance - 0,
Csr1 - 0, Csr2 - 0, Vector - 0x1150, Bus_Priority - 7,
Type - C, Adpt_Config - N

3.3.1 Modifying Per-Node vb Attributes

The following vb driver attributes are configurable on a per-node basis in
sysconfigtab; values can differ on each node:

• Module_Config_Name

Specifies the driver name as an unquoted ASCII string. The default
value is vb.

• VB_Startup_State

Specifies the startup state of this driver. The default value is 0 (off). You
must change this value to 1 (on) to start up the vb network.

• VB_Client_Addr_Type

Specifies address modifiers for the VMEbus address space used for the
client node’s message queues. You must specify the numerical equivalent
of the desired set of address modifier (AM_) flags, among the following:
AM_A24 (0x1), AM_SUPER (0x2), and AM_DATA (0x4).

You can map a node’s client communication queue memory to the
VMEbus in either the A24 or A32 address space (AM_A24 set or clear),
either in supervisory mode or user mode (AM_SUPER set or clear), and
either in data or program space (AM_DATA set or clear). The default
is AM_A24|AM_SUPER|AM_DATA, which equals 0x7. A32 program
space in user mode would be represented as 0x0 (no flags set).

• VB_Client_Vme_Window_Size

Specifies the size (in bytes) of an area within the client communication
window (as characterized by VB_Client_Addr_Type) to be used by

3–12 Configuring a VMEbus Backplane (vb) Network

the vb driver for its communication queues. The bigger the size, the
greater the number of message packets that will be preallocated for
communication.

The default size is 0x40000 (256 KB). If the maximum transfer unit
(VB_Maxmtu) and maximum nodes (VB_Maxnodes) parameters,
described below, are left at their default values of 1500 bytes and 10
nodes, the 256 KB window size is enough for approximately 150 packets
to be reserved for the queues. With a maximum of 10 nodes in the
network, this default allows for approximately 15 packets per node to be
devoted exclusively to communication between the local node and each of
the other nodes. Increasing VB_Maxmtu would decrease the number of
packets available per node.

• VB_Client_Vme_Window_Offset

Specifies the offset from the client communication window base address
(A24 or A32, as characterized by VB_Client_Addr_Type) at which to
map client queues for other nodes to see. The default is 0x0, which maps
the queues at the beginning of the base address.

You must be able to adjust queue mappings because, if other VMEbus
drivers in the system map memory to specific VMEbus addresses, there
may be conflicts. In the event of a conflict, you can either adjust a system
VMEbus window base address or modify the offset value such that the
queues start at a different VMEbus address.

Although the default offset of 0x0 works well, you should
consider changing the offset to a value equal to the A24 or A32
window size minus the size of the client communication queues
(VB_Client_Vme_Window_Size defaults to 256 KB, 0x40000). For
example, in a 2 MB (0x200000) A24 window, specify an offset of
0x1C0000. This moves the client communication queues to the top of the
window, which reduces fragmentation within the window and minimizes
potential conflict with the memory needs of other VMEbus drivers.

If you change the offset, make sure the value is on a page boundary
(0x2000 bytes).

• VB_Interrupt_Interface

Specifies an interface for determining whether messages have been sent
to the vb driver’s queues: interrupt (1) or polled (0). You should use the
default value of 1 for better performance. The vb driver uses module
switch interrupts.

If you use the interrupt interface, you must ensure that the base
address for the VMEbus window that maps the inbound mailbox
interrupts is unique among the nodes in the backplane, as configured
in sysconfigtab.

• VB_Liveness_Timeout

Configuring a VMEbus Backplane (vb) Network 3–13

Specifies the interval in milliseconds between remote node liveness tests.
By default, a node checks whether a remote node is still alive every
10000 milliseconds (10 seconds).

Be careful if you modify this value. An interval that is too short could
cause nodes to lose liveness with each other too easily, and a lost node
must be rebooted to resume communication. An interval that is too
long (or 0, which specifies no liveness checking) could cause delays in
determining that a remote node has gone down. The node could attempt
to communicate with a shut-down node after the VMEbus mapping is
no longer valid.

• VB_Mailbox_Addr_Type (UNIVERSE II only)

For UNIVERSE II–based Alpha VME systems only, specifies address
modifiers for the VMEbus address space used to map the client node’s
inbound mailbox interrupts. You must specify the numerical equivalent
of the desired set of address modifier (AM_) flags, among the following:
AM_A24 (0x1), AM_SUPER (0x2), AM_DATA (0x4), and AM_A16 (0x8).

On UNIVERSE II–based nodes, you can map a node’s mailbox interrupts
to the VMEbus in A16, A24, or A32 address space. Specifying AM_A16
set and AM_A24 clear selects A16; specifying AM_A24 set and
AM_A16 clear selects A24; and specifying both AM_A16 and AM_A24
clear selects A32. You also can map the mailbox interrupts either in
supervisory mode or user mode (AM_SUPER set or clear), and either
in data or program space (AM_DATA set or clear). The default is
AM_A16|AM_SUPER|AM_DATA, which equals 0xE. A32 program
space in user mode would be represented as 0x0 (no flags set).

For UNIVERSE II–based nodes, the VMEbus address modifiers
you specify for this attribute must match the adapter’s CSR
window attributes. See the descriptions of the CSR_AM_Space,
CSR_AM_Usr_Sprvsr, and CSR_AM_Data_Prg attributes in Section 2.3.

For VIP/VIC-based Alpha VME systems, do not specify this attribute;
the VMEbus window that maps inbound mailbox interrupts is always
A16 data space in supervisory mode.

• VB_Mailbox_Offset

Selects a mailbox for inbound interrupts by specifying an offset from the
mailbox-interrupt window base address.

You use module switches to create vb driver interrupts on the backplane.
You can use any of four module switches for interrupts in each
mailbox-interrupt window. For each module switch, you must specify a
particular offset value for VB_Mailbox_Offset and specify a particular
vector number in the Vector field of the VBA_Option entry.

For VIP/VIC-based Alpha VME systems, the offset and vector values are:

3–14 Configuring a VMEbus Backplane (vb) Network

Module switch 0 A16 offset 0x21, VBA_Option vector 0x1140

Module switch 1 A16 offset 0x23, VBA_Option vector 0x1150 (default)

Module switch 2 A16 offset 0x25, VBA_Option vector 0x1160

Module switch 3 A16 offset 0x27, VBA_Option vector 0x1170

The default is module switch 1. Remote nodes can use offset 0x23 added
to a target node’s mailbox-interrupt window base address (see examples
in Section 2.2.4.4 and Section 3.6) to cause an interrupt on the target
node when the vb driver writes to the address.

For UNIVERSE II–based Alpha VME systems, the offset and vector
values are:

Module switch 0 Offset 0x348, VBA_Option vector 0x1140

Module switch 1 Offset 0x34C, VBA_Option vector 0x1150 (default)

Module switch 2 Offset 0x350, VBA_Option vector 0x1160

Module switch 3 Offset 0x354, VBA_Option vector 0x1170

The default is module switch 1. Remote nodes can use offset 0x34C
added to a target node’s mailbox-interrupt window base address (see
examples in Section 2.3.7.3 and Section 3.7) to cause an interrupt on the
target node when the vb driver writes to the address.

The mailbox-interrupt window base address must be unique among all
nodes in the backplane. However, the offset need not be unique.

If you change the module switch from the default of 1, this change must
be reflected in both the VB_Mailbox_Offset attribute and the Vector
field of the VBA_Option entry for interrupts to work on the system.

• VB_Maxnodes

Specifies the maximum number of nodes allowed in the vb network.
The default value is 10. The maximum you specify cannot exceed 32.
This value is examined by the vb box manager only, and determines the
maximum number of nodes that may enter the vb network while the box
manager is booted.

All other client nodes adjust their maximum-nodes value according to
the box manager’s value and do not have to know the box manager’s
value ahead of time.

• VB_Netid

Specifies the Ethernet hardware address of the node as an unquoted
ASCII string; for example, 08-00-2b-e2-48-48. You must fill in this field
with the correct Ethernet hardware address. The vb network address is
derived from the unique Ethernet hardware address and is the shadow

Configuring a VMEbus Backplane (vb) Network 3–15

Ethernet address. If this value is not filled in, the vb driver does not
start up and an error message is displayed.

One way to obtain the Ethernet hardware address of a running system
is netstat -I ln0 (or tu0 or other Ethernet device). You can also
obtain the Ethernet address at the console prompt of a nonbooted system
as follows:

>>> show dev

• VB_Give_Up

Specifies whether the vb driver’s probing of the box manager’s
well-known address should time out after the number of minutes
specified in VB_Probe_Period or continue until the box manager comes
up. The default is to time out (1). You can modify the value to continue
probing indefinitely (0).

• VB_Probe_Period

Specifies the number of minutes to probe the box manager’s well-known
address before timing out and exiting the driver. The default value is 1
minute. This value is ignored if VB_Give_Up is set to 0.

• VB_Census_Change

Specifies whether to display information whenever the driver maps to
a new node or unmaps from a node. The default is not to display state
changes (0). If the vb driver starts up with this value set to 1, you can
track state changes beginning at startup.

• VB_Transfer_Type (requires Tru64 UNIX Version 5.0A or higher)

Specifies whether transfers over the bus use only programmed I/O (0) or
can select between programmed I/O and direct memory access based on
the transfer size (1). The default is 0, programmed IO only.

If you set VB_Transfer_Type to 1, direct memory access (DMA)
transfers will be performed whenever the transfer size equals or exceeds
the value of VB_DMA_Threshold (256 by default); for smaller transfer
sizes, programmed I/O (PIO) transfers will be performed.

You can produce significant performance gains by allowing DMA
transfers over the bus, particularly if you select the D64 data width with
the VB_DMA_Dwidth parameter, described below. Furthermore, if all vb
nodes in your network are running Tru64 UNIX 5.0A or higher, you
potentially can realize even greater performance gains by modifying the
per-network parameter VB_Maxmtu, which is described in Section 3.3.2.

Before you enable vb DMA transfers on a node, you should consider the
potential impact on your system, such as increased contention for DMA
between the vb driver and devices in the system.

• VB_DMA_Threshold (requires Tru64 UNIX Version 5.0A or higher)

3–16 Configuring a VMEbus Backplane (vb) Network

If DMA transfers over the bus are enabled (VB_Transfer_Type equals
1), this parameter defines the threshold (a transfer size, in bytes) at
which DMA transfers are used. Whenever a transfer size equals or
exceeds VB_DMA_Threshold (256 bytes by default), DMA is used for the
transfer; otherwise PIO is used.

• VB_DMA_Dwidth (requires Tru64 UNIX Version 5.0A or higher)

If DMA transfers over the bus are enabled (VB_Transfer_Type
equals 1), this parameter defines the data width to be used for the
DMA transfers. The value 0 (the default) selects D16, 1 selects D32,
and 2 selects D64. If DMA is enabled, you can realize the maximum
performance gain by selecting the D64 data width.

• VB_Developer_Debug

Reserved for future use

3.3.2 Modifying Per-Network vb Attributes

The following vb driver attributes are configurable on a per-network basis in
sysconfigtab; values must match exactly on every node that participates
in the vb network:

• VB_Box_Mgr_WK_Addr

Specifies the well-known VMEbus address of the box manager, to which
the box manager maps 256 KB of global VMEbus data. This address
and its associated 256 KB size must fit within the adapter’s configured
inbound VMEbus address space. The default is 0xBC0000. Be careful
when modifying this value, as it must match on every node in the vb
network for communication to occur.

______________________ Note _______________________

The VB_Box_Mgr_WK_Addr default of 0xBC0000 differs from
the default used in previous vb driver versions, 0xA40000. The
new default places the vb box manager well-known address near
the top of what is assumed to be a 2 MB A24 or A32 window:
0xC00000 (window top) minus 0x040000 (256 KB size) equals
0xBC0000. This reduces fragmentation within the window and
minimizes potential conflict with other VMEbus drivers on the
same node allocating memory in the same window.

______________ UNIVERSE II Restriction ______________

Section 3.7, UNIVERSE II Two-Node Network Example, uses
the value 0xFC0000 for VB_Box_Mgr_WK_Addr. This suggested
value does not fit into the UNIVERSE II adapter’s default special

Configuring a VMEbus Backplane (vb) Network 3–17

A24/A16 outbound window, due to the allocation of the A24/A16
window’s top 64 KB for A16 space. UNIVERSE II vb nodes should
either adjust the box manager well-known address down by 64
KB (x10000) to 0xFB0000 to allow use of the A24/A16 window, or
instead use an outbound PCI-to-VME 256 KB (or larger) window
to map the 0xFC0000 value. Note that doing the latter can boost
performance by allowing use of block transfers (BLTs) and a
wider data path, at the cost of the added PCI resources used to
map the window.

• VB_Box_Mgr_WK_Addr_Type

Specifies address modifiers for the box manager’s well-known VMEbus
address. You must specify the numerical equivalent of the desired set
of address modifier (AM_) flags, among the following: AM_A24 (0x1),
AM_SUPER (0x2), and AM_DATA (0x4).

You can map the box manager’s global data to the VMEbus in
either the A24 or A32 address space (AM_A24 set or clear), either in
supervisory mode or user mode (AM_SUPER set or clear), and either
in data or program space (AM_DATA set or clear). The default is
AM_A24|AM_SUPER|AM_DATA, which equals 0x7. Be careful when
modifying this value, as it must match on every node in the vb network.
If you modify this value, make sure the address is on a page boundary
(0x2000 bytes).

• VB_Maxmtu

Specifies the maximum transmit unit (mtu) size, in bytes. Before Version
5.0A of Tru64 UNIX, this value was not configurable. Beginning with
Tru64 UNIX 5.0A, and provided all nodes in your vb network are running
Tru64 UNIX 5.0A or higher, you can modify this value from its default
of 1500 bytes up to a maximum of 16384 (16K) bytes. (Values less than
1500 or greater than 16K default to 1500.) Specifying a larger mtu
increases the size of transfer packets, resulting in fewer (but larger)
packets on the transfer queues.

You modify this value on the box manager node only; on client nodes,
leave the value at its default. Client nodes obtain the mtu size from the
box manager during node registration.

Modifying VB_Maxmtu alone can produce significant performance gains
in programmed I/O (PIO) transfers. However, using VB_Maxmtu in
conjunction with the VB_Transfer_Type, VB_DMA_Theshold, and
VB_DMA_Dwidth parameters allows you to take advantage of direct
memory access (DMA) transfers over the bus and potentially realize
even greater performance gains.

3–18 Configuring a VMEbus Backplane (vb) Network

Note that increasing the mtu size has a significant effect on the allocation
of memory resources for the complete vb network. For example, if you
specify 16K as the mtu, that increase is multiplied times VB_Maxnodes,
the maximum number of nodes in the system. If your system design
allows, you may be able to reduce the maximum number of nodes in the
system (modify VB_Maxnodes), thereby increasing the memory resources
available per node.

3.4 Modifying vba_vipvic Adapter Attributes

On each node in a vb network, you must modify VMEbus adapter attributes
in /etc/sysconfigtab to configure unique system VMEbus windows for
client communication and mailbox interrupts. If the node is VIP/VIC-based,
you add or modify values for vba_vipvic kernel subsystem attributes, such
as A32_Base, A32_Size, A24_Base, A24_Size, and A16_Base. Section 2.2
describes these attributes.

______________________ Note _______________________

Do not directly edit /etc/sysconfigtab. Instead, use the
sysconfigdb facility, as described in the sysconfigdb(8)
reference page. It is recommended that you maintain private
sysconfigtab file fragments for vba_vipvic attributes and use
sysconfigdb switches to add (-a -f), delete (-d), or merge (-m
-f) vba_vipvic attribute values. The example in Section 3.6
illustrates this approach.

Each system participating in the vb network must map its client
communication queues to either A24 or A32 space in a unique manner.
Allocated system VMEbus window space must be sufficient to accommodate
the size devoted to the communication queues. In addition, the system
VMEbus window of the box manager node must encompass the well-known
address (default of 0xBC0000).

Although the address modifiers of the box manager well-known address
and of the client communication queues are the same by default
(A24/Supervisor/Data), they need not be the same. If they are not the same,
configure the box manager node so that its system windows accommodate
both sets of data. If they are the same, configure the box manager node
so that the chosen system VMEbus window accommodates both sets of
data, starting at the well-known address, for a size equal to the size of the
communication queues.

For interrupting, the A16 system VMEbus window base address must also
be unique for all nodes in the backplane, but the size is always 0x100.

Configuring a VMEbus Backplane (vb) Network 3–19

Table 3–2 lists the VMEbus address space parameters you can modify in
/etc/sysconfigtab and their defaults.

Table 3–2: VIP/VIC VMEbus Address Space Defaults
Parameter Default Meaning

A32_Base 0x08000000 A32 inbound DMA window base address

A32_Size 0x08000000 A32 window size (128 MB)

A24_Base 0x00C00000 A24 inbound DMA window base address

A24_Size 0x00400000 A24 window size (4 MB)

A16_Base 0x00000100 A16 interprocessor communication base
address (size is always 0x100)

See the VIP/VIC Two-Node Network Example in Section 3.6 for examples
of how to modify /etc/sysconfigtab for VIP/VIC-based nodes in a vb
network.

______________________ Note _______________________

The size of the system VMEbus window for a node should exceed
what the vb driver needs. If the vb driver uses the entire system
VMEbus window, no window space remains for other VMEbus
devices on the system to use.

A system administrator must carefully configure all nodes on
the backplane to have large enough system VMEbus windows to
accommodate the needs of each, but not so much that there is
little room left for other nodes. The system administrator should
make a roadmap of each system’s VMEbus device addresses and
sizes and fit the vb needs around the needs of the other devices,
because the vb characteristics are user configurable.

3.5 Modifying vba_univ Adapter Attributes

On each node in a vb network, you must modify VMEbus adapter attributes
in /etc/sysconfigtab to configure unique system VMEbus windows for
client communication and mailbox interrupts. If the node is UNIVERSE
II–based, you add or modify values for vba_univ kernel subsystem
attributes that configure VMEbus windows. Section 2.3 describes these
attributes.

3–20 Configuring a VMEbus Backplane (vb) Network

______________________ Note _______________________

Do not directly edit /etc/sysconfigtab. Instead, use the
sysconfigdb facility, as described in the sysconfigdb(8)
reference page. It is recommended that you maintain private
sysconfigtab file fragments for vba_univ attributes and use
sysconfigdb switches to add (-a -f), delete (-d), or merge
(-m -f) vba_univ attribute values. The example in Section 3.7
illustrates this approach.

Each system participating in the vb network must map its client
communication queues to either A24 or A32 space in a unique manner.
Allocated system VMEbus window space must be sufficient to accommodate
the size devoted to the communication queues. In addition, the system
VMEbus window of the box manager node must encompass the well-known
address (default of 0xBC0000).

Although the address modifiers of the box manager well-known address
and of the client communication queues are the same by default
(A24/Supervisor/Data), they need not be the same. If they are not the same,
configure the box manager node so that its system windows accommodate
both sets of data. If they are the same, configure the box manager node
so that the chosen system VMEbus window accommodates both sets of
data, starting at the well-known address, for a size equal to the size of the
communication queues.

For interrupting, you must map the node’s VMEbus adapter CSRs, including
mailbox-interrupt CSRs, to a VMEbus system window. On UNIVERSE
II–based nodes, extra work is required to also map the VME adapter
CSRs (including mailbox-interrupt CSRs) of each vb partner node. On
UNIVERSE II–based nodes, VMEbus device CSRs are not constrained to
A16/Supervisor/Data space and potentially could vary widely in address
space and characteristics from node to node. For mapping purposes, you
should organize the VMEbus device CSRs for all nodes in the vb network into
a carefully designed region of VMEbus space, such that each UNIVERSE
II–based node can map them using a dedicated window with consistent
VMEbus attributes. You then modify vba_univ adapter attributes on each
UNIVERSE II node to map partner-node CSRs with a dedicated window.

See the UNIVERSE II Two-Node Network Example in Section 3.7 for
examples of how to modify /etc/sysconfigtab for UNIVERSE II–based
nodes in a vb network.

Configuring a VMEbus Backplane (vb) Network 3–21

______________________ Note _______________________

The size of the system VMEbus window for a node should be
larger than what the vb driver needs. If the vb driver uses the
entire system VMEbus window, no window space remains for
other VMEbus devices on the system to use.

A system administrator must carefully configure all nodes on
the backplane to have large enough system VMEbus windows to
accommodate the needs of each, but not so much that there is
little room left for other nodes. The system administrator should
make a roadmap of each system’s VMEbus device addresses and
sizes and fit the vb needs around the needs of the other devices,
because the vb characteristics are user configurable.

3.6 VIP/VIC Two-Node Network Example

The following steps show an easy way to configure two VIP/VIC nodes to run
in a VMEbus backplane (vb) network: Node 0 and Node 1.

For each node, most of the VIP/VIC and vb default values listed in Table 2–1
and Table 3–1 are retained. In particular, the well-known VMEbus
address of the box manager remains at its 0xBC0000 default. You should
examine the attribute defaults listed in Table 2–1 and Table 3–1, invoke
sysconfigdb -l vba_vipvic and sysconfigdb -l vb on each node to
uncover any previous changes to those defaults, and decide which attribute
values require further modification.

In this example, VIP/VIC and vb parameters that must be modified include
the following:

• The A24 base address and size

• The A16 base address

• The startup state

• The node’s Ethernet hardware address

• The client queues offset from the base of the node’s A24 system VMEbus
window

Configure the box manager node first. Make sure that it is either the
VMEbus system controller node or that the system controller node is already
up.

To configure Node 0, perform the following steps:

1. On Node 0, create a sysconfigtab file fragment in a private directory;
for example, /mypath/vipvic_sysconfigtab. Insert the label

3–22 Configuring a VMEbus Backplane (vb) Network

vba_vipvic: at the beginning of the file. In the next few steps, you
will construct an indented list, immediately following the label, of the
vba_vipvic attributes you wish to modify and their values.

This example assumes /etc/sysconfigtab contains no previous
vba_vipvic entry. If such an entry exists, you can either remove
the old entry (sysconfigdb -d) before adding the new, or merge
the new attributes in with the old (sysconfigdb -m -f). You may
need to factor the earlier vba_vipvic attribute values into your new
modifications.

2. Change the A24 base address (vba_vipvic parameter A24_Base)
from the default of 0xC00000 to something that encompasses the box
manager data well-known address of 0xBC0000. For example, set the
A24 base address to 0xA00000, and change the A24 size (parameter
A24_Size) to 2 MB (value 0x200000), which brings the window to just
below the default window address of 0xC00000. The box manager node
now has an A24 window of 0xA00000 to 0xBFFFFF.

3. Change the A16 base address (parameter A16_Base) to something other
than the default of 0x100; for example, 0x000.

4. The /mypath/vipvic_sysconfigtab file fragment now contains the
following text:

vba_vipvic:
A24_Base = 0x00A00000
A24_Size = 0x200000
A16_Base = 0x00000000

Close the file, then add its contents to /etc/sysconfigtab by issuing
the following command:

sysconfigdb -a -f /mypath/vipvic_sysconfigtab vba_vipvic

5. Create a sysconfigtab file fragment for vb attributes; for example,
/mypath/vb_sysconfigtab. (If you want to use the default vb: entry
provided by /etc/sysconfigtab as a starting point, you can copy the
existing entry into the file fragment using the command sysconfigdb
-l vb > /mypath/vb_sysconfigtab.)

In the next few steps, you will construct an indented list, immediately
following the label vb:, of the vb attributes you wish to modify and
their values.

6. Change the VB startup state (vb parameter VB_Startup_State) from
0 (off) to 1 (on).

7. Specify the VB node’s Ethernet hardware address (vb parameter
VB_Netid). For example, if the node’s Ethernet address is
08-00-26-E2-48-47, you would specify that address as an unquoted
ASCII string.

Configuring a VMEbus Backplane (vb) Network 3–23

8. Modify the client communication queues offset, VB_Client_Vme_Win-
dow_Offset, to map client queues at the top of the A24 window,
as previously configured with the vba_vipvic attributes A24_Base
and A24_Size. Mapping at the top of a window reduces window
fragmentation and minimizes potential conflicts with the memory needs
of other VMEbus drivers. Specify the value 0x1C0000, which equals
the A24 window size (0x200000) minus the 256 KB needed for client
queues (0x040000).

9. The /mypath/vb_sysconfigtab file fragment now contains the
following text:
vb:

VB_Startup_State = 1
VB_Netid = 08-00-26-e2-48-47
VB_Client_Vme_Window_Offset = 0x1C0000

Close the file, then merge its contents into /etc/sysconfigtab by
issuing the following sysconfigdb command:
sysconfigdb -m -f /mypath/vb_sysconfigtab vb

10. Reboot the vb box manager node. During the boot, the vb driver
becomes available and prints VB: messages on the console, including
the following message:
VB: This is the box manager node

When you configure Node 1, do not modify any VMEbus A24 or A16 window
attributes in /etc/sysconfigtab, except for the A24 client communication
queues offset. For A24_Base, A24_Size, and A16_Base, use the defaults,
which do not overlap with the values reconfigured for the box manager node.
This will produce the following setup for Node 0 and Node 1:

A24 Base Client Queues
A24 Address

A24 End A16 Base

Node 0: 0xA00000 0xBC0000 0xBFFFFF (2 MB) 0x000

Node 1: 0xC00000 0xFC0000 0xFFFFFF (4 MB) 0x100

To configure Node 1, perform the following steps:

1. Create a vb_sysconfigtab file fragment corresponding to Node
0’s for Node 1, changing the VB startup state (vb parameter
VB_Startup_State) from 0 (off) to 1 (on).

2. Specify the VB node’s Ethernet hardware address (vb parameter
VB_Netid). For example, if the node’s Ethernet address is
08-00-26-E2-24-50, you would specify that address as an unquoted
ASCII string.

3. Modify the client communication queues offset, VB_Client_Vme_Win-
dow_Offset, to map client queues at the top of the A24 window, based

3–24 Configuring a VMEbus Backplane (vb) Network

on Node 1’s A24 window size. Specify the value 0x3C0000, which equals
the default A24 window size (0x400000) minus the 256 KB needed for
client queues (0x040000).

4. The /mypath/vb_sysconfigtab file fragment for Node 1 now contains
the following text:
vb:

VB_Startup_State = 1
VB_Netid = 08-00-26-e2-24-50
VB_Client_Vme_Window_Offset = 0x3C0000

Close the file, then merge its contents into /etc/sysconfigtab by
issuing the following sysconfigdb command:

sysconfigdb -m -f /mypath/vb_sysconfigtab vb

5. Reboot Node 1. You should see VB: messages printed on the console,
including the following message:

VB: Box mgr address space is not configured for this system,
thus this node is not the box manager node (OK). Be sure
that there is a box manager in the network.

______________________ Note _______________________

Because Node 1 is using the system defaults for the VMEbus A24
window, you must make sure that if you bring up an additional
node (Node 2), you modify the addresses such that the defaults
are not used. Even if Node 2 does not turn on the backplane
driver, its inbound window overlaps with Node 1. Accesses to the
window could cause a system crash or could cause error messages
to be printed to the screen of Node 2, because Node 2 is receiving
inbound VMEbus accesses from other nodes on addresses to
which it has not mapped inbound.

In summary, you should always reconfigure the VMEbus addresses to be
unique, no matter how you plan to use the VMEbus.

3.7 UNIVERSE II Two-Node Network Example

The following steps show an easy way to configure two UNIVERSE II nodes
to run in a VMEbus backplane (vb) network: Node 0, which is the box
manager and the system controller, and Node 1.

For each node, most of the UNIVERSE II and vb defaults listed in Table 2–4
and Table 3–1 are retained, including most inbound and outbound window
characteristics. You should examine the attribute defaults listed in Table 2–4
and Table 3–1, invoke sysconfigdb -l vba_univ and sysconfigdb -l
vb on each node to uncover any previous changes to those defaults, and
decide which attribute values require further modification.

Configuring a VMEbus Backplane (vb) Network 3–25

In this example, UNIVERSE II and vb parameters that must be modified
include the following:

• Inbound and outbound window base addresses

• Mailbox-interrupt window attributes

• The startup state

• The node’s Ethernet hardware address

• The client queues offset from the client communication window base
address

• The box manager node’s well-known VMEbus address

Configure the box manager node first. This example assumes that the box
manager node is the VMEbus system controller node.

To configure Node 0, perform the following steps:

1. On Node 0, create a sysconfigtab file fragment in a private
directory; for example, /mypath/univ_sysconfigtab. Insert the
label vba_univ: at the beginning of the file. In the next few steps, you
will construct an indented list, immediately following the label, of the
vba_univ attributes you wish to modify and their values.

This example assumes /etc/sysconfigtab contains no previous
vba_univ entry. If such an entry exists, you can either remove the
old entry (sysconfigdb -d) before adding the new, or merge the
new attributes in with the old (sysconfigdb -m -f). You may
need to factor the earlier vba_univ attribute values into your new
modifications.

2. Verify that inbound VME-to-PCI (VMEbus slave) windows 0 and 1
are configured at their default VMEbus base addresses, 0x00C00000
and 0x08000000. Node 1’s corresponding windows will be relocated to
different VMEbus addresses (0x00800000 and 0x10000000). For both
Node 0 and Node 1, all other attributes of these windows are left at
their defaults.

In step 12, you will modify the box manager’s well-known VMEbus
address to map box manager data at the top of VME-to-PCI window 0.

3. Relocate outbound PCI-to-VME (PCI slave) windows 0 through 3
to VMEbus base address 0x10000000, leaving all other window
attributes at their defaults. You do this by entering the value
0x10000000 for the vba_univ parameters VME_Wnd0_VME_Address,
VME_Wnd1_VME_Address, VME_Wnd2_VME_Address, and
VME_Wnd3_VME_Address.

4. Configure the outbound PCI-to-VME windows 4 and 5 to encompass all
of A24 address space for user-data and supervisory-data accesses to

3–26 Configuring a VMEbus Backplane (vb) Network

other nodes in the system. Because the windows are set up by default
for user data and supervisory data, respectively, you only need to specify
a new base address, 0x00000000, and a new size, 16 MB, for each. Set
VME_Wnd4_VME_Address and VME_Wnd5_VME_Address to the value
0x00000000, and set VME_Wnd4_Size and VME_Wnd5_Size to the value
0x01000000. In addition to providing a complete view of A24 address
space for supervisory-data and user-data access, this mapping allows
use of MBLTs and data widths up to D64.

5. Configure the outbound PCI-to-VME window 6 as a mailbox-interrupt
window. To do this, you design a region of VMEbus space that
encompasses the UNIVERSE II adapter CSRs (4 KB per node), including
mailbox-interrupt CSRs, for both Node 0 and the partner node, Node 1.

In this case, the base address of the mailbox-interrupt window will be
0xFFFF0000, its size will be 64 KB, and Node 0 and Node 1 will map
their adapter CSRs at 0xFFFF0000 and 0xFFFF1000, respectively.
(If location monitors were in use, you could place adapter CSRs at
0xFFFF0000 and 0xFFFF2000, and location monitors at 0xFFFF1000.)

Set VME_Wnd6_Ena to the value 1, set VME_Wnd6_VME_Address
to the value 0xFFFF0000, and set the window size (parameter
VME_Wnd6_Size) to 64 KB (value 0x00010000).

Additionally, you must modify the mailbox-interrupt window’s
attributes to be compatible with the address modifier attributes of the
node’s CSR window, which will be mapped in the next step. Set the
VME_Wnd6_AM_Space parameter to specify A32 space (value 2) and set
the VME_Wnd6_AM_Usr_Sprvsr parameter to specify supervisory mode
(value 2). Data access remains selected by default.

6. Configure the node’s CSR window in accordance with the design of the
mailbox-interrupt window configured in the previous step. For node 0,
retain all CSR window defaults, including the VMEbus base address
of 0xFFFF0000, A32 space, supervisory mode, and both program and
data access.

7. The /mypath/univ_sysconfigtab file fragment now contains the
following text:
vba_univ:

PCI_Wnd0_VME_Address = 0x00C00000
PCI_Wnd1_VME_Address = 0x08000000
VME_Wnd0_VME_Address = 0x10000000
VME_Wnd1_VME_Address = 0x10000000
VME_Wnd2_VME_Address = 0x10000000
VME_Wnd3_VME_Address = 0x10000000
VME_Wnd4_VME_Address = 0x00000000
VME_Wnd4_Size = 0x01000000
VME_Wnd5_VME_Address = 0x00000000
VME_Wnd5_Size = 0x01000000
VME_Wnd6_Ena = 1
VME_Wnd6_VME_Address = 0xFFFF0000
VME_Wnd6_Size = 0x00010000

Configuring a VMEbus Backplane (vb) Network 3–27

VME_Wnd6_AM_Space = 2
VME_Wnd6_AM_Usr_Sprvsr = 2

Close the file, then add its contents to /etc/sysconfigtab by issuing
the following command:

sysconfigdb -a -f /mypath/univ_sysconfigtab vba_univ

8. Create a sysconfigtab file fragment for vb attributes; for example,
/mypath/vb_sysconfigtab. (If you want to use the default vb: entry
provided by /etc/sysconfigtab as a starting point, you can copy the
existing entry into the file fragment using the command sysconfigdb
-l vb > /mypath/vb_sysconfigtab.)

In the next few steps, you will construct an indented list, immediately
following the label vb:, of the vb attributes you wish to modify and
their values.

9. Change the VB startup state (vb parameter VB_Startup_State) from
0 (off) to 1 (on).

10. Specify the VB node’s Ethernet hardware address (vb parameter
VB_Netid). For example, if the node’s Ethernet address is
08-00-26-E2-48-47, you would specify that address as an unquoted
ASCII string.

11. Modify the client communication queues offset, VB_Client_Vme_Win-
dow_Offset, to map client queues at the top of a 4 MB window.
Mapping at the top of a window reduces window fragmentation and
minimizes potential conflicts with the memory needs of other VMEbus
drivers. Specify the value 0x003C0000, which equals the window size
(0x00400000) minus the 256 KB needed for client queues (0x00040000).

12. Modify the box manager well-known address, VB_Box_Mgr_WK_Addr,
to map box manager data at the top of VME-to-PCI window 0. In step 2,
VME-to-PCI window 0 was configured to encompass the box manager
well-known address that is shared among all nodes. Specify the value
0x00FC0000, which equals the VME-to-PCI window 0 base address
(0x00C00000), plus its size (0x00400000), minus the 256 KB needed for
the box manager’s VMEbus global data (0x00040000).

13. Mailboxes reside within the CSR window. You must modify the vb
mailbox-interrupt address type parameter, VB_Mailbox_Addr_Type,
to match the address modifier attributes associated with the CSR
window you configured. Specify A32 address space, supervisory mode,
and data access (value 0x6).

14. The /mypath/vb_sysconfigtab file fragment now contains the
following text:

vb:
VB_Startup_State = 1
VB_Netid = 08-00-26-e2-48-47

3–28 Configuring a VMEbus Backplane (vb) Network

VB_Client_Vme_Window_Offset = 0x003C0000
VB_Box_Mgr_WK_Addr = 0x00FC0000
VB_Mailbox_Addr_Type = 0x6

Close the file, then merge its contents into /etc/sysconfigtab by
issuing the following sysconfigdb command:

sysconfigdb -m -f /mypath/vb_sysconfigtab vb

15. Reboot the vb box manager node. During the boot, the vb driver
becomes available and prints VB: messages on the console, including
the following message:

VB: This is the box manager node

When you configure Node 1, you should specify UNIVERSE II and vb
parameter values that you have carefully selected to fit well with the values
specified for Node 0, and try to anticipate the needs of any additional nodes
that might be added to the vb network later. For example, the values
specified in this example produce the following setup for Node 0 and Node 1:

Parameter Node 0 Node 1

VME-to-PCI (inbound) window 0 address 0x00C00000 0x00800000

VME-to-PCI (inbound) window 1 address 0x08000000 0x10000000

PCI-to-VME (outbound) window 0 address 0x10000000 0x08000000

PCI-to-VME (outbound) window 1 address 0x10000000 0x08000000

PCI-to-VME (outbound) window 2 address 0x10000000 0x08000000

PCI-to-VME (outbound) window 3 address 0x10000000 0x08000000

PCI-to-VME (outbound) window 4 address 0x00000000 0x00000000

PCI-to-VME window 4 size 0x01000000 0x01000000

PCI-to-VME (outbound) window 5 address 0x00000000 0x00000000

PCI-to-VME window 5 size 0x01000000 0x01000000

PCI-to-VME (mailbox-interrupt)
window 6 address

0xFFFF0000 0xFFFF0000

PCI-to-VME window 6 size 0x00010000 0x00010000

PCI-to-VME window 6 address modifiers 2 (A32),
2 (supervisory),
1 (data)

2 (A32),
2 (supervisory),
1 (data)

CSR window address 0xFFFF0000 0xFFFF1000

Box manager well-known address 0x00FC0000 0x00FC0000

Client queues offset (assumes a 4 MB window) 0x003C0000 0x003C0000

Configuring a VMEbus Backplane (vb) Network 3–29

To configure Node 1, perform the following steps:

1. On Node 1, create a sysconfigtab file fragment corresponding to Node
0’s in a private directory; for example, /mypath/univ_sysconfigtab.
Insert the label vba_univ: at the beginning of the file. In the next few
steps, you will construct an indented list, immediately following the
label, of the vba_univ attributes you wish to modify and their values.

2. Relocate inbound VME-to-PCI (VMEbus slave) windows 0 and 1 to
VMEbus locations that differ from those used by Node 0’s corresponding
windows, leaving all other window attributes at their defaults.
Node 0 used the default VMEbus base addresses 0x00C00000 and
0x08000000 for its VME-to-PCI windows 0 and 1. For Node 1, enter
the values 0x00800000 and 0x10000000 for the vba_univ parameters
PCI_Wnd0_VME_Address and PCI_Wnd1_VME_Address.

3. Relocate outbound PCI-to-VME (PCI slave) windows 0 through 3
to VMEbus base address 0x08000000, leaving all other window
attributes at their defaults. Enter the value 0x08000000 for the
parameters VME_Wnd0_VME_Address, VME_Wnd1_VME_Address,
VME_Wnd2_VME_Address, and VME_Wnd3_VME_Address.

4. As with Node 0, configure Node 1’s outbound PCI-to-VME windows
4 and 5 to encompass all of A24 address space for user-data and
supervisory-data accesses to other nodes in the system. Because the
windows are set up by default for user data and supervisory data,
respectively, you only need to specify a new base address, 0x00000000,
and a new size, 16 MB, for each. Set VME_Wnd4_VME_Address
and VME_Wnd5_VME_Address to the value 0x00000000, and set
VME_Wnd4_Size and VME_Wnd5_Size to the value 0x01000000.
In addition to providing a complete view of A24 address space for
supervisory-data and user-data access, this mapping allows use of
MBLTs and data widths up to D64.

5. Configure the outbound PCI-to-VME window 6 as a mailbox-interrupt
window, adhering to the design established during Node 0 configuration.
As with Node 0, the base address of the mailbox-interrupt window will
be 0xFFFF0000 and its size 64 KB. Node 0 and Node 1 will map their
adapter CSRs at 0xFFFF0000 and 0xFFFF1000, respectively.

Set VME_Wnd6_Ena to the value 1, set VME_Wnd6_VME_Address
to the value 0xFFFF0000, and set the window size (parameter
VME_Wnd6_Size) to 64 KB (value 0x00010000). As with Node
0, you must modify the mailbox-interrupt window’s attributes to
be compatible with the address modifier attributes of the node’s
CSR window, which will be mapped in the next step. Set the
VME_Wnd6_AM_Space parameter to specify A32 space (value 2) and set
the VME_Wnd6_AM_Usr_Sprvsr parameter to specify supervisory mode
(value 2). Data access remains selected by default.

3–30 Configuring a VMEbus Backplane (vb) Network

6. Configure the node’s CSR window in accordance with the design of
the mailbox-interrupt window configured in the previous step. In
this case, only the VMEbus base address needs modification; set
CSR_VME_Address to the value 0xFFFF1000. Retain defaults for all
other CSR window attributes, including A32 space, supervisory mode,
and both program and data access.

7. The /mypath/univ_sysconfigtab file fragment now contains the
following text:

vba_univ:
PCI_Wnd0_VME_Address = 0x00800000
PCI_Wnd1_VME_Address = 0x10000000
VME_Wnd0_VME_Address = 0x08000000
VME_Wnd1_VME_Address = 0x08000000
VME_Wnd2_VME_Address = 0x08000000
VME_Wnd3_VME_Address = 0x08000000
VME_Wnd4_VME_Address = 0x00000000
VME_Wnd4_Size = 0x01000000
VME_Wnd5_VME_Address = 0x00000000
VME_Wnd5_Size = 0x01000000
VME_Wnd6_Ena = 1
VME_Wnd6_VME_Address = 0xFFFF0000
VME_Wnd6_Size = 0x00010000
VME_Wnd6_AM_Space = 2
VME_Wnd6_AM_Usr_Sprvsr = 2
CSR_VME_Address = 0xFFFF1000

Close the file, then add its contents to /etc/sysconfigtab by issuing
the following command:

sysconfigdb -a -f /mypath/univ_sysconfigtab vba_univ

8. Create a sysconfigtab file fragment corresponding to Node 0’s for
vb attributes; for example, /mypath/vb_sysconfigtab. (If you
want to use the default vb: entry provided by /etc/sysconfigtab
as a starting point, you can copy the existing entry into the
file fragment using the command sysconfigdb -l vb >
/mypath/vb_sysconfigtab.)

In the next few steps, you will construct an indented list, immediately
following the label vb:, of the vb attributes you wish to modify and
their values.

9. Change the VB startup state (vb parameter VB_Startup_State) from
0 (off) to 1 (on).

10. Specify the VB node’s Ethernet hardware address (vb parameter
VB_Netid). For example, if the node’s Ethernet address is
08-00-26-E2-24-50, you would specify that address as an unquoted
ASCII string.

11. Modify the client communication queues offset, VB_Client_Vme_Win-
dow_Offset, to map client queues at the top of a 4 MB window.
Mapping at the top of a window reduces window fragmentation and
minimizes potential conflicts with the memory needs of other VMEbus

Configuring a VMEbus Backplane (vb) Network 3–31

drivers. Specify the value 0x003C0000, which equals the window size
(0x00400000) minus the 256 KB needed for client queues (0x00040000).

12. Modify the box manager well-known address, VB_Box_Mgr_WK_Addr,
to map box manager data at the top of Node 0’s VME-to-PCI window 0.
Node 0’s VME-to-PCI window 0 was configured to encompass the box
manager well-known address that is shared among all nodes. Specify
the value 0x00FC0000, which equals Node 0’s VME-to-PCI window 0
base address (0x00C00000), plus its size (0x00400000), minus the 256
KB needed for the box manager’s VMEbus global data (0x00040000).

13. As with Node 0, you must modify the vb mailbox-interrupt address type
parameter, VB_Mailbox_Addr_Type, to match the address modifier
attributes associated with the CSR window you configured. Specify A32
address space, supervisory mode, and data access (value 0x6).

14. The /mypath/vb_sysconfigtab file fragment now contains the
following text:

vb:
VB_Startup_State = 1
VB_Netid = 08-00-26-e2-24-50
VB_Client_Vme_Window_Offset = 0x003C0000
VB_Box_Mgr_WK_Addr = 0x00FC0000
VB_Mailbox_Addr_Type = 0x6

Close the file, then merge its contents into /etc/sysconfigtab by
issuing the following sysconfigdb command:

sysconfigdb -m -f /mypath/vb_sysconfigtab vb

15. Reboot Node 1. You should see VB: messages printed on the console,
including the following message:

VB: Box mgr address space is not configured for this system,
thus this node is not the box manager node (OK). Be sure
that there is a box manager in the network.

3.8 Related ioctl Commands

The host’s Internet address is specified at boot time with an SIOCSIFADDR
ioctl command. The vb interface employs the address resolution protocol
described in arp(7) to map dynamically between Internet and Ethernet
addresses on the local network.

Use the SIOCRPHYSADDR ioctl command to read the physical address of
the VMEbus backplane node. The SIOCSPHYSADDR command cannot be
used to change the physical address of the VMEbus backplane node. The
VMEbus backplane network does not support DECnet.

Use the SIOCADDMULTI and SIOCDELMULTI ioctl commands to add
or delete multicast addresses. The VMEbus backplane driver recognizes a
maximum of 64 multicast addresses.

3–32 Configuring a VMEbus Backplane (vb) Network

Use the SIOCRDCTRS and SIOCRDZCTRS ioctl commands to read or
"read and clear" the Ethernet driver counters. The argument to these two
commands is a pointer to a counter structure, ctrreq, found in <net/if.h>.

Use the SIOCENABLBACK and SIOCDISABLBACK ioctl commands to
enable and disable the interface loopback mode.

To obtain the physical address of the adapter, use the SIOCRPHYSADDR
command as in the following program example:

#include <stdio.h> /* Standard I/O */
#include <errno.h> /* Error numbers */
#include <sys/socket.h> /* Socket definitions */
#include <sys/ioctl.h> /* ioctl commands */
#include <net/if.h> /* Generic interface structures */

main()
{
int s,i;
static struct ifdevea devea;
/* Get a socket */
s = socket(AF_INET,SOCK_DGRAM,0);
if (s < 0) {

perror("socket");
exit(1);

}
strcpy(devea.ifr_name,"vb0");
if (ioctl(s,SIOCRPHYSADDR,&devea) < 0) {

perror(&devea.ifr_name[0]);
exit(1);

}
printf("Address is ");
for (i = 0; i < 6; i++)

printf("%X ", devea.default_pa[i] & 0xff);
printf("\\n");
close(s);

}

3.9 Diagnostic Messages

The following diagnostic messages contain relevant information provided by
the VMEbus backplane driver, and are not errors:

VB: VME Backplane Driver
The backplane driver is not configured to run.
Reconfigure the VB_Startup_State attribute to 1
in the vb: backplane driver subsystem in sysconfigtab.
Driver exiting....

The VMEbus backplane driver is not configured on this system. This is the
initial default state of the VMEbus driver, before you configure it to run
by setting VB_Startup_State to 1.

VB: VME Backplane Driver
Mailbox interrupts are configured to use A24 space
AND A16 space, which is illegal.
Defaulting to A16 SUPER DATA space for mailbox interrupts.

Configuring a VMEbus Backplane (vb) Network 3–33

The vb driver attributes specified in /etc/sysconfigtab use an illegal
combination of address modifiers for the VMEbus window that maps mailbox
interrupts. The driver has reverted to a default set of address modifiers: A16
address space, supervisory mode, and data space.
VB: VME Backplane Driver
VB_MAXMTU is outside the allowable range
Setting VB_MAXMTU = 1500

The value specified for the vb driver attribute VB_Maxmtu is less than 1500
or greater than 16K and has been reset to the default value, 1500.
VB: VB_Maxmtu changed to match the Box manager’s MTU n

This message is displayed during vb client registration if the vb driver
attribute VB_Maxmtu on the client is not equal to VB_Maxmtu on the box
manager node. The client value is reset to match the box manager value.
VB: This is the box manager node

This node’s VMEbus address space contains the user-configured address for
the box manager node as specified in the sysconfigtab file. Therefore, this
is the box manager node. One and only one node in a backplane network
should have this message appear at startup.
VB: network started

This message will appear on a node that has successfully entered the
backplane network.
VB: shutdown

This message will appear when a node in the VMEbus backplane network is
shut down. This is a normal diagnostic message.

3.10 Errors
This section lists and describes error messages displayed during and after
system startup.

3.10.1 System Startup Error Messages

The following error messages may appear at system startup:
VB: Ethernet address contains all zeroes! DRIVER EXITING...

The backplane driver has been configured to be turned on, but the Ethernet
address in the file sysconfigtab has not been changed to reflect the
Ethernet hardware address of the node. This information must be supplied
in order for the node to be entered in the VMEbus backplane network.
VB: Incorrect ident in box manager memory.

Another device is mapped to the address specified as the box manager
well-known address in the sysconfigtab file. Be sure to reconfigure the

3–34 Configuring a VMEbus Backplane (vb) Network

box manager address such that it does not overlap another device’s CSR
address range.

VB: VME Backplane Driver
Doorbell interrupts are configured to use A16 space, which
is not the case on this system.
Reconfigure the VB_Mailbox_Addr_Type attribute in sysconfigtab to
use the correct address space according to this system’s setup.
Driver exiting....

Reconfigure mailbox interrupts as instructed.

3.10.2 Post-Startup Error Messages

The following error messages may appear after system startup:

VB: MALLOC failure on box mgr memory
VB: MALLOC failure on l3 queues

These messages indicate that the vb driver was unable to allocate memory
for internal data structures.

VB: Error in dma_get_maps.

The vb driver was unable to obtain VMEbus slave window mapping
information.

VB: Error mapping box mgr memory inbound on the VME.
VB: Error mapping l3 queues inbound on VME.
VB: Error mapping outbound to box mgr
VB: Error mapping outbound to node %d

These VMEbus mapping errors are generally caused by misconfigured
systems on the backplane network.

vb%d: initialization error

The vb driver was unable to initialize the network interface.

vb%d SIOCADDMULTI fail, multicast list full

Too many multicast requests have been made.

Configuring a VMEbus Backplane (vb) Network 3–35

Index

A
Alpha 21264 PCI/ISA single-board

computer, 1–1
Alpha PCI/ISA (DMCC)

single-board computer, 1–1
Alpha VME 2100 system

configuring, 2–2
restrictions, 1–14

Alpha VME single-board
computer, 2–2, 2–28
configuring UNIVERSE II–based,

2–28
configuring VIP/VIC-based, 2–2
requirements and restrictions,

1–10
AXPvme single-board computer

configuring, 2–2
requirements and restrictions,

1–14

E
EBM2n and EBM4n single-board

computers, 1–1
EBV10 and EBV12 single-board

computers, 1–14
EBV14 and EBV16 single-board

computers, 1–10
Ethernet interface

(See vb network)

N
network

vb, 3–1

O
OEM platforms, 1–1

vb network configuration, 3–1
VMEbus configuration, 2–1

P
PCI/ISA (DMCC) Alpha

single-board computer, 1–1
PCI/ISA Alpha 21264 single-board

computer, 1–1

R
rt_post_callout routine, 2–27,

2–66

S
SMARTengine/Alpha 21264

PCI/ISA single-board computer,
1–1

V
vb interface

(See vb network)
vb network

configuration, 3–1
driver, 3–1
Ethernet interface, 3–1

VMEbus
configuring, 2–2, 2–28

Index–1

interrupt handling with
rt_post_callout, 2–27, 2–66

master block transfers, 2–24, 2–63
networking over, 3–1

operating system support, 2–1
slave block transfers, 2–23, 2–63

VMEbus backplane network
(See vb network)

Index–2

