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About This Manual

This manual discusses topics related to writing kernel modules for computer
systems running the HP Tru64 UNIX operating system.

Audience

This manual is intended for systems engineers who:

Understand the design and implementation of the Tru64 UNIX operating
system and desire to enhance the functionality of the / vimuni x kernel
with kernel modules that they write

Understand the basics of the CPU hardware architecture, including
interrupts, direct memory access (DMA) operations, and I/O

Use standard library routines to develop programs in the C language

Know the Bourne or some other shell based on the UNIX operating
system

Understand basic UNIX operating system concepts, such as kernel, shell,
process, configuration, and autoconfiguration

Understand how to use the Tru64 UNIX programming tools, compilers,
and debuggers

Develop programs in an environment that involves dynamic memory
allocation, linked list data structures, and multitasking

This manual assumes that you have a strong background in operating
systems based on the UNIX operating system. It also assumes that you
have a strong background in systems and C programming. In addition, the
manual assumes that you have no source code licenses.

New and Changed Features

The following list summarizes changes and additions that have been made
since the last release of this manual:

Information about kernel threads routines for RAD/NUMA systems has been
added to the Kernel Threads chapter.

Throughout this book, by Tru64 UNIX documentation convention, the word
“option” replaces “flag” (for example, compiler flag becomes compiler option).
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Scope of the Manual

This manual is for users of the Tru64 UNIX operating system on computer
systems developed by the Hewlett-Packard Corporation. It describes how to
develop a kernel module and presents examples where kernel modules can
be used. The manual also presents examples that show how to use routines
that are for symmetric multiprocessing and kernel threads.

The manual assumes that you are new to writing kernel modules but may
have experience writing device drivers or programming in the UNIX kernel.

Organization

The manual contains ten chapters and a glossary:

Chapter 1 Provides an overview of the information in this manual.
Defines kernel modules, presents a high-level model for using
kernel modules, presents reasons for writing a kernel module,
and describes general rules for writing a kernel module.

Chapter 2 Describes how to initialize a kernel module using
the confi gur e routine.
Chapter 3 Describes setting module attributes and the mod-
ule attribute table.
Chapter 4 Describes the boot timeline and how to implement
callbacks in a kernel module.
Chapter 5 Describes programming capabilities available in kernel mode.
Chapter 6 Provides an overview of the SMP environment, including

guidelines for selecting a locking method.

Chapter 7 Describes how to define and use simple locks in
an SMP environment.

Chapter 8 Describes how to define and use complex locks in
an SMP environment.

Chapter 9 Provides an introduction to multithreaded programming for
kernel modules and discusses using kernel threads.

Chapter 10 Describes key steps for creating a single binary
module (. rod file).

Glossary

Related Documentation

Icons on Tru64 UNIX Printed Manuals

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the manuals to help specific audiences quickly find the manuals
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that meet their needs. (You can order the printed documentation from HP.)
The following list describes this convention:

G Manuals for general users

S Manuals for system and network administrators
P Manuals for programmers

R Manuals for reference page users

Some manuals in the documentation help meet the needs of several
audiences. For example, the information in some system manuals is also
used by programmers. Keep this in mind when searching for information
on specific topics.

The Documentation Overview provides information on all of the manuals in
the Tru64 UNIX documentation set.

Writing kernel modules is a complex task; writers require knowledge in a
variety of areas. One way to acquire this knowledge is to have at least the
following categories of documentation available:

e Hardware documentation

e Bus-specific device driver documentation

e Operating system overview documentation
¢ Programming tools documentation

e Network programming documentation

The following sections list the documentation for each of these categories.

Hardware Documentation

If your kernel module is a device driver, have the hardware manual available
for the device whose module you are coding. Also have access to the manual
that describes the architecture for the CPU on which the driver operates, for
example, the Alpha Architecture Reference Manual.

Bus-Specific Device Driver Documentation

Writing Device Drivers is the core manual for developing device driver kernel
modules on the Tru64 UNIX Version 5.1B operating system. It contains
information needed to develop modules on any bus that operates on HP
platforms.

The Device Driver Reference Pages describe the routines, data structures,
and global variables that device drivers use. These reference pages are
available online in HTML format at the following location:
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http://ww. t ru64uni x. conmpag. com docs/ dev_doc/ DOCUVENTA-
TI OV HTM./ DDK_R2/ DOCS/ HTM./ REF_LI B. HTM

The following manuals provide information about writing device drivers
for a specific bus:

e  Writing PCI Bus Device Drivers

This manual provides information for systems engineers who write
device drivers for the PCI bus. The manual describes PCI bus-specific
topics, including PCI bus architecture and data structures that PCI bus
device drivers use.

e  Writing VMEbus Device Drivers

This manual contains information that systems engineers need to write
device drivers that operate on the VMEbus. The manual describes
VMEDbus-specific topics, including VMEbus architecture and routines
that VMEbus device drivers use.

Operating System Overview Documentation

See the Technical Overview for a technical introduction to the Tru64 UNIX
operating system.

This manual provides a technical overview of the Tru64 UNIX system,
focusing on the networking subsystem, the file system, virtual memory,
and the development environment. This manual does not supersede the
Software Product Description (SPD), which is the definitive description of
the Tru64 UNIX system.

Programming Tools Documentation

To create your kernel modules, you use a number of programming
development tools. Make sure that you have on hand the manuals that
describe how to use these tools. The following manuals provide information
related to programming tools that are used in the Tru64 UNIX operating
system environment:

e Kernel Debugging

This manual provides information about debugging kernels. The manual
describes how to use use the dbx, kdbx, and kdebug debuggers to

find problems in kernel code. It also describes how to write a kdbx
utility extension and how to create and analyze a crash dump file. This
manual is for system administrators who are responsible for modifying,
rebuilding, and debugging the kernel configuration. It is also for system
programmers who need to debug their kernel space programs.

e Programming Support Tools
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This manual describes several commands and utilities in the Tru64
UNIX system, including facilities for text manipulation, macro and
program generation, and source file management. The commands and
utilities that this manual describes are primarily for programmers, but
some of them (such as gr ep, awk, sed, and the Source Code Control
System (SCCS)) are useful for other users. This manual assumes that
you are a moderately experienced user of UNIX systems.

e  Programmer’s Guide

This manual describes the programming environment of the Tru64 UNIX
operating system, with an emphasis on the C programming language.
This manual is for all programmers who use the Tru64 UNIX operating
system to create or maintain programs in any supported language.

System Management Documentation

See the System Administration manual for information about building a
kernel and for general information on system administration.

This manual describes how to configure, use, and maintain the Tru64 UNIX
operating system. It includes information on general day-to-day activities
and tasks, changing your system configuration, and locating and eliminating
sources of trouble. This manual is for the system administrators who are
responsible for managing the operating system. It assumes a knowledge of
operating system concepts, commands, and configurations.

Reader's Comments

HP welcomes any comments and suggestions you have on this and other
Tru64 UNIX manuals.

You can send your comments in the following ways:
e Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32
¢ Internet electronic mail: r eaders_comment @k3. dec. com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/ readers_coment .t xt

Please include the following information along with your comments:

e The full title of the manual and the order number. (The order number
appears on the title page of printed and PDF versions of a manual.)

¢ The section numbers and page numbers of the information on which
you are commenting.

e The version of Tru64 UNIX that you are using.
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e Ifknown, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate HP technical support office. Information
provided with the software media explains how to send problem reports to

HP.

Conventions

This manual uses the following conventions:

file

buf

[]
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A vertical ellipsis indicates that a portion of an
example that would normally be present is not
shown.

In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

Italic type indicates variable values, placeholders,
and function argument names.

In function definitions and syntax definitions used in
module configuration, this typeface indicates names
that you must type exactly as shown.

In formal parameter declarations in function
definitions and in structure declarations, brackets
indicate arrays. Brackets also specify ranges for
device minor numbers and device special files in file
fragments. However, for syntax definitions, these
brackets indicate items that are optional.

Vertical bars that separate items in syntax
definitions indicate that you choose one item from
among those listed.



Introduction to Kernel Modules

This chapter presents an overview of kernel modules by discussing the
following topics:

¢ Definition of kernel module (Section 1.1)

¢ Purpose of a kernel module (Section 1.1.1)

¢ The kernel module environment (Section 1.1.2)
¢ Designing a kernel module (Section 1.1.3)

e Writing a kernel module (Section 1.2)

1.1 What Is a Kernel Module?
A kernel module is a binary image that contains code and data structures
that runs in the UNIX kernel. It has the following characteristics:

e s statically loaded as part of / vimuni x or dynamically loaded into
memory

¢ Runs in kernel mode
¢ Has a file name that ends with the extension . nod

e (Contains a well-defined routine that executes first to initialize the
module

e May be a device driver when it performs any one of these additional
tasks:

— Handles interrupts from hardware devices

— Accepts I/O requests from applications

The kernel contains many modules, some of which are device drivers. In
this manual, a kernel module is defined more broadly than a device driver
because it can be used to perform a variety of functions, including:

e Management functions

¢ Common functions shared by other modules

Introduction to Kernel Modules 1-1



1.1.1 Purpose of a Kernel Module

The kernel consists of a set of kernel modules that interact with each other,
each of which performs a specific function. Some kernel modules perform
software functions exclusively, while others (such as device drivers) control
the operation of system hardware components.

A purpose for writing a kernel module is to provide a middle layer of code, or
common code, which increases the efficiency of your system by combining
similar tasks in a single area and eliminating redundant code.

For example, assume that you need to write a SCSI driver for disk and tape
peripheral devices. You can write two monolithic drivers — one for each
hardware device — but this means replicating a majority of the code, while
only a small amount differs. By writing a kernel that module contains
common code, you eliminate this redundancy (see Figure 1-1). One class
driver might handle SCSI tapes and another handle SCSI disks. Both call
the kernel module, which sends the I/O request to a variety of port drivers.
The port drivers send requests to the SCSI controller. As you add more disk
or tape drives to your system, the kernel module seamlessly manages the
expansion, while controller-specific code is confined to the new port drivers.
Similarly, you can add a different SCSI device (for example, a scanner)

by writing a new class driver. The kernel module maintains a consistent
interface to the other kernel modules and make adding the new driver easier.

1.1.2 Kernel Module Environment

Figure 1-1 shows a kernel module in relationship to other modules in the
kernel. As a binary image, a kernel module can be loaded statically as part
of / vmuni x or dynamically loaded into memory. In this example, the kernel
module is part of a driver subsystem.
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Figure 1-1: Kernel Module Environment
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The following list describes the main components in Figure 1-1.
Application

A user-mode program that, in the context of this manual, makes
various requests to the kernel modules. If a kernel module is part
of a device driver, these requests typically perform I/O operations to
hardware components. Another term for application is utility.

Bus

A hardware component that connects multiple buses and controllers
to the system.
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Class/Port Driver

The class/port driver comprises two drivers. The class driver
supports user interfaces while the port driver supports the hardware
and handles interrupts. The driver model is always made of more
than one module and it can have multiple class drivers, multiple port
drivers, and some common code in a middle layer. The structure of this
driver eliminates code duplication.

Controller

A hardware component that performs a specific function, such as
communicate on the network or control the graphics monitor.

Device

A hardware component that is connected to a controller.

Device Driver

A kernel module that supports one or more hardware components.
There are two driver models: the monolithic driver model and the
class/port driver model.

Interrupt
A signal from a hardware component that eventually causes the
interrupt handler in the appropriate driver to be called.

Kernel Module
A . nod file residing in the kernel that executes common code. In
Figure 1-1, the kernel module is part of a device driver.

Kernel Space

Activities that happen within the UNIX kernel. Modules may be
statically loaded as part of / vimuni x or dynamically loaded as needed.
The module framework, which Figure 1-1 depicts as the background
area of kernel space, loads modules, unloads modules, makes
management requests, and keeps track of the modules in kernel space.

Library

User-mode code applications call. Libraries contain routines that
perform common functions that many applications use.
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Monolithic Driver

Kernel module code that is all-inclusive; supporting everything from
user requests to processing interrupts from hardware.

Pseudodevice driver

A driver, such as the pt y terminal driver, structured like other drivers
but does not operate on a bus and does not control hardware. A
pseudodevice driver does not register itself in the hardware topology
(system configuration tree). Instead, it relies on the device driver
method of the cf gngr framework to create the associated device
special files.

Switch Table

A data structure in the kernel where the block and character I/O
interface entry points are stored.

System Routines

Routines in the kernel that can be called from user mode (applications
and libraries).

User Space

User application level or command-line interface to the operating
system.

1.1.3 Designing a Kernel Module

Consider the following guidelines when you design a kernel module:

A kernel module is best written as a single binary image that can be
statically loaded as part of / viruni x or dynamically loaded into memory.

When you write your kernel module, it is important to design your code
correctly with regard to dispatch points along the boot timeline.
These are points along the boot path (timeline) that are reached as the
operating system boots. When a dispatch point is reached, certain things
are configured and made available. As a single binary image, your kernel
module can be statically loaded as part of / viruni x or dynamically loaded
into memory; therefore, any callbacks that you register must reflect the
proper order of dispatch along the boot timeline (see Chapter 2).

If you support dynamically loaded kernel modules, plan to write features
that support dynamic unloading as well, for these reasons:

— Unloading a module will free up resources.
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— Dynamic unloading allows you to replace an old version of a kernel
module with a new version without rebooting.

1.2 Writing a Kernel Module — Key Tasks

This section is organized so that key tasks for writing a kernel module are
logically grouped:

e Section 1.2.1 describes required tasks that all kernel module writers
need to perform to develop a kernel module.

e Section 1.2.2 describes optional tasks for writers whose modules run in
an SMP environment or use kernel threads.

e Section 1.2.3 describes how to build a kernel module.

1.2.1 Required Tasks

All kernel module writers need to understand module initialization, creating
the module attribute table, using callbacks, and working in kernel mode.
The following sections describe these tasks.

1.2.1.1 Initializing a Kernel Module

Kernel module initialization occurs in both static and dynamic mode.
Kernel module writers must understand the concept of a single binary
image, the build-load-initialize sequence, and how to use the confi gure
routine to perform initialization tasks to add a kernel module (make it
known to the kernel) or to remove it. Chapter 2 describes these concepts and
the required tasks for coding your kernel module to initialize properly. It
also describes how to unload dynamically loaded modules.

1.2.1.2 Creating the Attribute Table

All kernel modules must contain an attribute table. Chapter 3 describes a
variety of tasks you can perform on the module attribute table to retrieve
data from the table and set data in the table.

1.2.1.3 Using Callbacks

1-6

Kernel modules contain one or more callback routines that perform
different aspects of initialization along the boot timeline. Coding callback
routines in a kernel module is a key task for creating a kernel module that
may function as a single binary image. Chapter 4 describes the rules for
using callbacks in a kernel module. It discusses callbacks in relation to
dispatch points along the boot timeline, and how the kernel calls the kernel
module’s callback routine.
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1.2.1.4 Working in Kernel Modules

You can perform many tasks in kernel mode. Chapter 5 describes how to:
e  Work with string routines

e Use data copying routines

¢ Use kernel-related routines

e  Work with system time

e Use kernel threads

e Use locks

1.2.2 Additional Tasks

If your kernel module executes in a symmetric multiprocessing (SMP)
environment or uses kernel threads, you must perform additional tasks, as
described in the following sections.

1.2.2.1 Working in an SMP Environment

Selecting a locking methodology and coding the correct type of lock in your
kernel module are key tasks for writing kernel modules that execute in an
SMP environment. Chapter 6 through Chapter 8 describe how to:

¢ Choose a locking methodology
e Use simple lock routines

e Use complex lock routines

1.2.2.2 Working with Kernel Threads
Chapter 9 describes the key concepts and tasks for developing kernel
modules that use kernel threads. These include:
e Advantages of using kernel threads
e Kernel threads operations
e Kernel threads data structures

¢ Creating, starting, blocking, unblocking, and terminating thread
processes

1.2.3 Building a Kernel Module
After you have written your kernel module, the next task is to build the

executable module (a . nod file). Chapter 10 walks you through steps to
build your kernel module.
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Module Initialization

Kernel module initialization refers to the tasks necessary to incorporate a
kernel module into the kernel and make it available for use by the system.
After you write your kernel module, you create a single binary image (a file
with the . nod extension) from the kernel module source file (usually a C
file). This file is loaded into memory and its conf i gur e routine is called to
perform initialization. Module initialization consists primarily of allocating
and initializing data structures and calling on other kernel modules to
inform them that your module is loaded and available.

The conf i gur e routine manages initialization. This chapter describes how
this routine performs a variety of initialization tasks, including:

e Initializing the kernel module at system startup or at run time

¢ Preparing the kernel module for removal from the system

Other requests to the conf i gur e routine, such as reconfiguring the kernel
module when an attribute value changes and returning information from the
attribute table, are covered in Chapter 3.

2.1 The configure Routine

The conf i gur e routine handles requests that are targeted at the kernel
module and performs the required actions. The conf i gur e routine’s
structure is the same for all kernel modules, regardless of the function that
they perform and whether or not the kernel module is a device driver.

The naming convention for the conf i gur e routine requires that the name of
the routine be the module name followed by _conf i gur e. This convention
allows the module framework to locate the routine and call it. For example,
for the kernel module exanpl e. nod, the conf i gur e routine is named
exanpl e_confi gure.

If your module does not contain a properly named conf i gur e routine, one of
the following conditions will occur:

¢ For statically loaded modules, the / vimuni x kernel will not be able to
build.

¢ For dynamically loaded modules, the module will not be able to load
into memory.
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2.1.1 Parameters

The conf i gur e routine accepts the following parameters:
op (cfg_op_t)

The module framework sets this parameter to one of several request
codes that describe the operation for the module to perform:

e Initialize the module — CFG_OP_CONFI GURE

e Obtain attribute values — CFG_OP_QUERY

e Change attribute values — CFG_OP_RECONFI GURE

e Prepare the module for unloading — CFG_OP_UNCONFI GURE

These operations are described in Section 2.1.2.

indata (cfg_attr_t *)

Specifies a pointer to an array of data structures that contain
information about the attributes in your kernel module attribute
table, plus status information. The module framework determines the
validity of attribute values when it copies attributes into memory, and
it sets the status to indicate whether the value passes those tests.

i ndatal en (size_t)

Specifies the number of structures in the i ndat a array.

outdata (cattr_t)

Specifies a pointer to a module-specific output data structure when the
op parameter specifies a subsystem-defined operation. Otherwise, its
value is NULL.

out datal en (size_t)

Specifies the size of the out dat a parameter in bytes.

Typically, the conf i gur e routine is written as a sw t ch statement,
with one case statement to handle each operation.

For example:

int exanple_configure (cfg_op_t op,
cfg_attr_t *indata,
size_t indatal en,
cattr_t *outdata,
size_t outdatal en)

int status;.

switch(op) {
case CFG_OP_CONFI GURE:
st at us=val ue;
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break;
case CFG_OP_QUERY:
st at us=val ue;

break;
case CFG_OP_UNCONFI GURE:
st at us=val ue;

break;
case CFG_OP_RECONFI GURE:
st at us=val ue;

break;

defaul t:

st at us=ENOTSUP;
break;

}

return (status);
}
The ENOTSUP error return value indicates that the kernel module does
not support the requested operation. Otherwise, the routine returns
a status value appropriate for the request. (See Section 2.1.3 for
information on return status values.)

2.1.2 Request Codes

The conf i gur e routine accepts several parameters. (See Section 2.1.1

for a list of all parameters accepted by the confi gur e routine.) The op
parameter takes one of the following request codes, which describe the

specific operation for the module to perform:

CFG_OP_CONFI GURE

When the module framework calls the confi gur e routine with

the CFG_OP_CONFI GURE request code, the kernel module begins
initialization. In this way, the confi gur e routine functions similarly
to the mai n() routine in a user program. Your kernel module must be
initialized whether it is loaded dynamically or statically. Section 2.2.1
describes this operation in more detail.

CGF_OP_QUERY

This request code retrieves values of attributes defined in the module
attribute table. The kernel module initializes the values of attributes
that are stored in the module attribute table so that the proper values
are retrieved. (See Chapter 3 for more information.)
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e CFG_OP_RECONFI GURE

This request code specifies that values for some attributes in the module
attribute table have been set and that the kernel module operates
based on changes to the values of the attributes. (See Chapter 3 for
more information.)

e CFG_OP_UNCONFI GURE

This request code specifies that an attempt to unload your module has
been requested, which results in either module cleanup or a return error.
In effect, this request code asks that your module undo the initialization
tasks that CFG_OP_CONFI GURE performed and prepare it for removal
from the system. (See Section 2.2.2 for more information.)

2.1.3 Return Status Values

The conf i gur e routine may return any standard status value from the
file / usr/incl ude/ errno. h as ani nt to the module framework. The
following list defines the most common return status values:

e ESUCCESS — Indicates success.
e ENOVEM— Indicates insufficient memory.
e ENOTSUP — Indicates that the operation is not supported.

e ENOSYS — Indicates that the operation is not supported at this time. It
may have been called too early and is supported later in the boot timeline.

e El NVAL — Indicates that an unrecognized parameter was passed (for
example, i ndat a, i ndat al en).

The return status value is later appended to the higher 16 bits of a final
return that is returned to the caller. The module framework status resides
in the lower 16 bits of the return status.

2.2 Module Initialization

Before a kernel module can be useful, it typically needs to initialize

data structures and inform other kernel modules that it exists and

is available. The module framework calls the confi gur e routine

with the CFG_OP_CONFI GURE request code to alert the module to
perform initialization. Likewise, the module framework passes the
CFG_OP_UNCONFI GURE request code to alert the kernel module to prepare
for removal from the system. These codes are described in detail in the
following sections.
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2.2.1 Receiving the CFG_OP_CONFIGURE Request

The module framework calls the conf i gur e routine with the
CFG_OP_CONFI GURE request code to request that the module perform

its one-time initialization. This is always the first call into the module,
regardless of whether it is statically or dynamically loaded. If the kernel
module is statically loaded, the module framework calls the confi gur e
routine very early in the boot timeline. Because of this, the kernel module
typically registers callback routines to execute immediately or at specific
dispatch points to perform initialization tasks. These tasks include:

e Allocating data structures
¢ Initializing locks
e Starting kernel threads

e Registering with other subsystems

When you code your kernel module initialization process using callbacks, the
result is a single binary image that can be loaded statically or dynamically.
Otherwise, your kernel module will be either a static module or a dynamic
module, but not both. Chapter 4 expands on this concept by discussing the
relationship between callbacks and dispatch points. The following sections
present further considerations for modules that are loaded either statically
or dynamically.

2.2.1.1 Implementing Statically or Dynamically Loaded Kernel Modules

When a kernel module is statically loaded, it is linked as part of / vuni x
and loaded into memory as part of the kernel. The module framework
must call the conf i gur e routine with the CFG_OP_CONFI GURE request
code before memory can be allocated, locks can be used, and subsystems
can be used. As a result, a statically loaded module typically is not able
to perform initialization when its conf i gur e routine is called with the
CFG_OP_CONFI GURE request code. Instead, it registers callbacks that are
invoked when these resources become available as the system boots. In
contrast, a dynamically loaded module is linked as its own image and loaded
into memory on its own. If you used callbacks in a dynamically loaded
module, the initialization still occurs properly.

To overcome the problem of resources not being available for a statically
loaded module, the conf i gur e routine registers callback routines to be
called at specific dispatch points, as described in Chapter 4. Initialization
takes place when these callback routines are called. Callbacks enable your
module to be a single binary image that can be statically or dynamically
loaded.
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2.2.1.2 Tracking the Configuration

To handle initialization correctly, whether your module is statically loaded or
dynamically loaded, global variables keep track of the following information:

¢  Whether the kernel module has already been initialized

A kernel module receives the CFG_OP_CONFI GURE request code only
once. Therefore, you define a global variable to keep track of this
information and set the variable’s initial value to FALSE. When the
conf i gur e routine successfully accepts the CFG_OP_CONFI GURE
request, set this value to TRUE. For example, for a kernel module that is
named exanpl e. nod, the module defines the exanpl e_confi g global
variable as follows to indicate whether the module has been initialized:

int exanple_init_config = FALSE;
e  Whether the module was dynamically or statically loaded

The module framework returns the current configuration state when you
call the cf gngr _get _st at e routine. The cf gngr _get _st at e routine
returns SUBSYSTEM STATI CALLY_CONFI GURED if the module was
statically loaded. It returns SUBSYSTEM DYNAM CALLY_CONFI GURED if
the module was dynamically loaded. Your module can call this routine if
it needs to know how it was loaded. Typically, you write a kernel module
so that it does not need to call this routine.

¢  Whether the module’s callback routines completed successfully

When the kernel module is configured at startup, callback routines run
at different times along the boot timeline. Therefore, global variables
are the only way to communicate the success or failure of the callback
routines. For example, you do not want to perform any postconfiguration
operations if the preconfiguration callback routine failed.

In this example, the following global variable is defined to hold the
callback status:

int exanpl e_i ni t ed=EFAI L;

The global variable is defined with an error status. When the kernel
module is loaded, the callback routine has not yet been called. The
callback routine stores its status in this global variable before it returns
to the caller. This status is available to the remainder of the source code
in the module for the purpose of determining the status of the callback
routine (that is, it determines whether the module has been successfully
initialized).

2.2.1.3 Allocating Memory for Data Structures

Your kernel module may need to allocate memory for data structures during
initialization. You must wait until the CFG_PT_VM AVAI L dispatch point
occurs. When you are ready to allocate memory, use the MALLOC macro.
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(Use the FREE macro to deallocate memory.) See Section 5.3.7 for more
information about allocating memory.

2.2.2 Receiving the CFG_OP_UNCONFIGURE Request

The module framework calls the conf i gur e routine with the
CFG_OP_UNCONFI GURE request code to have both statically loaded and
dynamically loaded kernel modules prepare to go off line. When modules are
brought off line, they are not available for use by any other module in the
kernel. Only dynamically loaded kernel modules can actually be unloaded.
Statically loaded modules remain loaded after they are brought off line. (See
Section 2.2.1.2 to determine how the kernel module was loaded.)

When a module (static or dynamic) has successfully gone off line, it returns
ESUCCESS.

To prepare to go off line, the kernel module must accomplish the following
tasks before returning a success status value to the module framework:

e Deallocate all data structures
e Deinitialize locks
e Terminate all kernel threads

¢ Unregister with other kernel subsystems

A kernel module (static or dynamic) can determine that it cannot be
unloaded. In this case, the module returns an error to the module framework
to keep it from attempting to unload the module.
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Module Attributes

This chapter describes the module attribute table and the operations that
can be performed on it to:

¢ Retrieve data from the table

e Set data in the table

It also describes entries in the table and how to manipulate the values of
the attributes.

3.1 The Attribute Table

Every kernel module must have one attribute table that defines some of
the data for the kernel module. The system administrator can use settable
attributes in the attribute table to tune the module.

Note

If your kernel module does not have any defined attributes, you
must still provide an attribute table with one terminating NULL
entry.

The name of the attribute table is the module name followed by
_attributes. For example, for the exanpl e. nod kernel module, the
attribute table is named exanpl e_at tri but es.

The attribute table is an array of the data structure cf g_subsys_attr _t
(defined in / usr/i ncl ude/ sys/ sysconfi g. h). Each cfg_sub-
sys_attr _t data structure defines an attribute for your module. There are
no required attributes for this table.

An attribute table entry comprises one instance of the
cfg_subsys_attr_t data structure. The last table entry must be all zeros.
Section 3.2 describes the fields in an attribute table entry.
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3.2 Attribute Table Entry

An attribute table entry is one instance of the cf g_subsys_attr_t data
structure. An entry is composed of many fields, which are defined in the
following list:

addr (caddr_t)

Specifies the kernel address of the location that holds the value of

the attribute. Using this address, the module framework returns the
attribute’s value during a CFG_OP_QUERY request and changes the value
with a CFG_OP_RECONFI GURE request. As a result, the confi gure
routine does not need to do additional processing. If you do not provide
an address, the conf i gur e routine must separately handle value
retrieval and deposit.

If the attribute supports the CFG_OP_CONFI GURE or CFG_OP_RECON-
Fl GURE request operation, then the address given in this field must be a
writable location. That is, do not make it a location of the type const .

nane (char [])

Specifies the ASCII name of the attribute. The name must be between
two and CFG_ATTR_NAME_SZ characters in length, including the
terminating null character.

To create a name for your attribute, follow these conventions:

— Use lowercase letters, unless capitals make better sense (for
example, when using an acronym in the attribute name, such as
MAC _addr ess).

— Use an underscore to separate parts of the name.
— Create intuitive names; do not overabbreviate names.

— Do not begin the name of the attribute with either Met hod_ or
Devi ce_. The module framework reserves names that begin with
these strings.

m n_val and nex_val (ul ong)

Define the mininum and maximum allowed values for the attributes.
The module framework interprets the contents of these two fields
differently, depending on the data type of the attribute. If the attribute
is one of the integer data types, these fields contain the minimum

and maximum integer values the attribute can have. For attributes
with the CFG_ATTR_STRTYPE data type, these fields contain the
minimum and maximum lengths of the string. For attributes with the
CFG_ATTR_BI NTYPE data type, these fields contain the minimum and
maximum numbers of bytes allowed.
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e val _size (ul ong)

If the attribute is a binary type, this field contains the current size (in
bytes) of the attribute value. This field is not used if the attribute is
an integer or string.

e type (uchar)

Specifies the data type of the value for this attribute. See Section 3.2.1
for a list of values for this field.

e operation (uchar)

Specifies the operations that the module allows on this attribute (for
example, initialize or query). This field is a bit mask. See Section 3.2.2
for a list of values for this field.

3.2.1 Attribute Data Types
The following data types are supported for attribute table entries:

CFG_ATTR_STRTYPE — A null-terminated array of characters
CFG_ATTR_|I NTTYPE — A 32-bit signed integer

CFG_ATTR_UlI NTTYPE — A 32-bit unsigned integer
CFG_ATTR_LONGTYPE — A 64-bit signed integer
CFG_ATTR_ULONGTYPE — A 64-bit unsigned integer

CFG_ATTR_BI NTYPE — An array of bytes

CFG_ATTR_UCHARTYPE — An 8-bit unsigned char (byte)
CFG_ATTR_USHORTTYPE — A 16-bit unsigned short

CFG_ATTR_| NTARRAYTYPE — An array of 32-bit signed integers
CFG_ATTR_U NTARRAYTYPE — An array of 32-bit unsigned integers
CFG_ATTR_LONGARRAYTYPE — An array of 64-bit signed longs
CFG_ATTR_ULONGARRAYTYPE — An array of 64-bit unsigned longs
CFG_ATTR_STRARRAYTYPE — An array of pointers to null-terminated
strings

3.2.2 Operations Allowed on an Attribute

You can set the oper ati on field in an attribute table entry to any
combination of the following request codes:

CFG_OP_CONFI GURE

The value of the attribute can be modified during initialization using
a data value from the / et ¢/ sysconfi gt ab file. (Section 10.1.5
describes how to create the / et ¢/ sysconfi gt ab file.) If the kernel
address for the attribute is specified in the attribute table, the
initialization occurs before the module framework calls the kernel
module’s conf i gur e routine with the CFG_OP_CONFI GURE request
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code. If the attribute’s address is not specified, the conf i gur e routine
must perform the modification itself.

Setting this option in the operator field allows the system administrator
to set the value of the attribute through the / et c/ sysconfi gt ab file.
This gives the system administrator the ability to tune your module
each time that it is loaded.

CFG_OP_QUERY

Setting this option allows users or applications to retrieve the value
of the attribute. The module framework can read the attribute and
return it to applications. The attribute’s value is retrieved after the
module framework calls the kernel module’s conf i gur e routine with
the CFG_OP_QUERY request code. (See Section 3.3.)

CFG_OP_RECONFI GURE

Setting this option allows users or applications to modify the value of
the attribute at any time after the kernel module is up and running.
The module framework sets the value before it calls the confi gure
routine with the CFG_OP_RECONFI GURE request code. (See Section 3.4.)

CFG_H DDEN_ATTR

Setting this option prevents the attribute from being displayed in the
output of a cf g_subsys_query_al | operation.

Note

If you do not specify the kernel address of an attribute in the
attribute table, the confi gur e routine must handle the setting,
resetting, and retrieval of the attribute value by itself. The
module framework cannot perform these actions automatically
unless you supply the kernel address of the attribute.

3.3 Attribute Get Requests

When an application wants to get attribute values of a kernel module, it calls
the cf g_subsys_quer y( 3) routine or the cf g_subsys_query_al | (3)
routine in the / usr/ccs/ i b/ i bcfg. a library. The library makes the
request to the module framework.

The module framework validates the requests to get the valid attribute
values. After successful validation, the module framework calls the

conf i gur e routine with the CFG_OP_QUERY request code. Figure 3—1 shows
these relationships.
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Figure 3-1: Attribute Get Requests
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The following list presents the sequence of steps in an attribute get request:

B [ B

o] [0

The application requests specific attributes or all attributes by calling
the appropriate library routine in / usr/ccs/ i b/ li bcfg. a.

The library passes the request to the module framework.

The module framework calls the conf i gur e routine with
CFG_OP_QUERY.

The conf i gur e routine handles returning values for the requested
attributes whose address is not specified in the attribute table.

The conf i gur e routine returns control to the module framework.

The module framework handles returning values for the requested
attributes whose address is specified in the attribute table.
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Consider the following when you use attribute get requests:

¢ You do not have to process a CFG_OP_QUERY request in your confi gure
routine; you can simply return ESUCCESS.

e Ifyou do not keep some or all of your attributes up to date, you may bring
them up to date when you receive the CFG_OP_QUERY request.

¢ To determine which attributes are being requested, use the i ndat a
parameter. The st at us field of each cfg_attr_t data structure
whose address is available to the module framework will be set to
CFG_ATTR_PENDI NG during the CFG_OP_QUERY request; whereas the
st at us field for each attribute that cannot be handled by the module
framework will be set to CFG_ATTR_ESUBSYS.

3.4 Attribute Set Requests

When an application wants to set attribute values of a kernel module, it
calls the cf g_subsys_reconfi g routine in the / usr/ccs/lib/libcfg. a
library. The library makes the request to the module framework.

The module framework sets the values of the requested attributes, then calls
the conf i gur e routine with the CFG_OP_RECONFI GURE request code. The
kernel module evaluates these values and functions accordingly. Figure 3-2
shows these relationships.
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Figure 3—-2: Attribute Set Requests
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The following list presents the sequence of steps in an attribute set request:

The application requests to set the values of specific attributes.
The library passes the request to the module framework.

The module framework determines whether the new value falls within
the range that is specified in the attribute table, and sets the status
of each attribute. If the value determination succeeds, the module
framework sets the attribute’s value to the new value.

The module framework calls the conf i gur e routine with
CFG_OP_RECONFI GURE.

The kernel module evaluates the new values and executes based on
those values.
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Dispatch Point Callbacks

This chapter describes callbacks in relation to dispatch points along the boot
timeline and the rules for implementing them in your kernel module. Kernel
modules may contain one or more callback routines, which perform different
tasks at different dispatch points. The kernel interacts with the callback
routines to perform these tasks at the appropriate time.

This chapter contains the following information:

¢ Understanding the UNIX boot timeline and how callbacks are affected
(Section 4.1)

¢  Why to use callbacks in your kernel module (Section 4.2)

¢ Understanding dispatch points along the UNIX boot timeline
(Section 4.3)

¢ How to implement callbacks in your kernel module (Section 4.4)

4.1 Understanding the UNIX Boot Timeline

To understand why callbacks are needed and how to implement them, you
need to understand some details of the UNIX boot timeline.

The boot timeline represents all code that executes while the system boots.
Key to the boot process are dispatch points indicating certain functions can
be done. While the system is booting, dispatch points occur in a specifically
ordered manner (see Section 4.3). For example, the kernel-mode dispatch
point CFG_PT_VM AVAI L indicates the point where virtual memory can

be allocated. Any activity that your module performs that requires the
allocation of virtual memory must happen at or after this dispatch point.
After single-user mode is reached, the dispatch points are more loosely
ordered.

Callbacks are the mechanism for ensuring that the code in your module
executes at the right point along the boot timeline. Section 4.4 describes
ways that you can code your callback routine and, consequently, register
the callback in your kernel module.

Figure 4-1 shows the boot timeline and the associated dispatch points.
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Figure 4-1: Dispatch Points Along the Boot Timeline
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The arrows along the timeline depict the dispatch points. The routines that
are shown in the example can be called at any time at or after the dispatch
point is reached, but not before.

4.2 Why Use Callbacks?

Many kernel modules are dynamic modules — that is, they are dynamically
loaded into memory as needed. Other kernel modules are statically loaded
as part of / viruni x early in the boot timeline. For a kernel module to be a
single binary image, it must be able to load statically as part of / vimuni x or
load dynamically as needed.

As explained in Chapter 2, when a module is loaded into memory, the
only routine in the module that is known to the operating system is the
confi gur e routine. The module framework has access to the confi gure
routine because of the predetermined name of the routine. (The module
framework knows to look for a routine name that ends with _confi gure).
The framework calls the conf i gur e routine at initialization so that the
kernel module can register its other routines with the rest of the operating
system.

When static kernel modules are called to initialize themselves, they cannot
allocate memory, initialize locks, or call any routine that is not yet available
on the boot timeline. For example, the call to initialize a kernel module
(well before CFG_PT_VM AVAI L) occurs early in the boot timeline, while the
dispatch point for locking (CFG_PT_LOCK_AVAI L) occurs later (Figure 4-1).
To avoid the problem of calling routines that are not yet available, the
kernel module can register a callback routine that will be called later in
the boot timeline. When that routine is called, it will perform the required
initialization correctly because the routines it requires will be available.

Callbacks, then, are the mechanism for implementing kernel modules as
single binary images. Statically loaded kernel modules register callbacks
that the module framework can execute at a later time. For a static
configuration, callbacks are registered to execute at dispatch points along
the boot timeline.

4-2 Dispatch Point Callbacks



For example, the device switch subsystem is statically configured. It
registers a callback routine to initialize the in-memory copy of the
database after virtual memory is available (at the dispatch point called
CFG_PT_VM AVAI L). It registers another callback routine to update the
on-disk database files, if necessary. This callback occurs after the root file
system becomes writable (at dispatch point CFG_PT_ROOTFS_WR) because
the subsystem’s files reside on the root file system.

For a dynamically loaded module, callback routines that register with

the dispatch points along the boot timeline are called directly from the

regi st er _cal | back routine because the dispatch point has already
occurred. This behavior is particular to dispatch points up to and including
CFG_PT_ENTER_SUSER. All higher numbered dispatch points represent
run-time (as opposed to boot-time) events. Their associated callback routines
are invoked only whent the event reoccurs (or reoccurs).

Kernel modules call the r egi st er _cal | back routine to register their own
callback routine. The kernel calls this routine when the specified dispatch
point occurs.

4.3 Dispatch Points on the Boot Timeline

This section presents a list of dispatch points as they occur on the boot
timeline. During system boot-up (prior to single-user mode), the dispatch
points occur in a strict chronological order.

CFG PT HAL INIT
Description: Hardware architecture layer is initialized.

CFG PT_UNI XTBL_AVAI L
Description: Dynamically sized tables have been allocated.

CFG_PT_VM AVAI L
Description: Virtual memory is available.
Common routines available: Device switch routines.

CFG_PT_LOCK_AVAI L
Description: Locking is available.
Common routines available: Routines that handle hardware registration.

CFG PT_PRECONFI G
Description: Scan for hardware and preconfigure.
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CFG_PT_TOPOLOGY_CONF
Description: The topology configuration point. The operating system
can create threads, timeouts begin working, kernel event management is
available, and the system begins incrementing time.

CFG_PT_PLATFORM CONF
Description: The platform-specific configuration is about to occur.

CFG_PT_POSTCONFI G
Description: Postscan the hardware. Tasks that require completion of
hardware configuration can be performed at this dispatch point. Hardware
events are posted.

CFG PT_CLU_CONF
Description: Cluster subsystem configuration may now be performed.

CFG_PT_GLROOTFS_AVAI L
Description: Global root file system has been mounted.

CFG_PT_ROOTFS_AVAI L
Description: Root file system has been mounted read-only. Tasks that
require completion of the root file system mount operation can be performed
at this dispatch point. Dynamic device registration can occur.

CFG PT_ENTER SUSER
Description: Enter single-user mode.

CFG PT_ROOTFS WR
Description: The root file system has become writable.

4.4 Implementing Callbacks in Your Kernel Module

This section describes how you code callbacks in your kernel module.

4.4.1 Coding Callbacks

To implement callbacks in your kernel module, you must:
e Call the regi st er_cal | back routine

e Write a callback routine in your kernel module that will be passed
parameters from the kernel’s callback subsystem

Section 4.4.1.1 describes the first step in this process, registering your
callback routine. It defines the parameters that are passed to the callback
subsystem when you register callbacks. Section 4.4.1.2 describes how to
write a callback routine in your kernel module that receives information
from the callback subsystem prior to performing some task. Figure 4-2
shows how the kernel module uses the kernel’s callback subsystem.
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Figure 4—-2: Using the Kernel Callback Subsystem
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Some routine, typically the confi gur e routine, calls

regi st er_cal | back because it needs the kernel module callback
routine (abc_dowor k in the example) called at some later point. When
you call r egi st er _cal | back to register your callback routine, you pass
several parameters: the dispatch point, the priority, the address of the
callback routine, and an argument to be passed to the callback routine.

When r egi st er _cal | back is called, it does either step 2 or step 3:

The r egi st er _cal | back routine calls abc_dowor k directly if the
kernel dispatch point is on the boot timeline and it has already occurred.
This completes the callback sequence.

The r egi st er _cal | back routine saves information about the callback
and proceeds to the next step in the callback sequence. (This is the
normal operation.)

The routine di spat ch_cal | back calls the kernel module callback
routine abc_dowor k at the appropriate dispatch point.

The kernel module callback routine executes.

4.4.1.1 Calling the register_callback Routine

The r egi st er _cal | back routine enables your kernel module to execute its
callback routine by storing callback information until the correct dispatch
point. The r egi st er _cal | back routine has the following format:

int

regi ster_cal | back(void (*func)(), int point, int order, ulong arg);
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where

¢ The f unc parameter is the name of the callback routine that you want
called at a particular dispatch point.

e The poi nt parameter is the value of the dispatch point at which you
want your callback routine called (for example, CFG_PT_VM AVAI L).

e The or der parameter is used to order multiple callback requests that are
registered for the same dispatch point. A request with a smaller order
value is executed before a request with a larger value. A kernel module
may use this to coordinate among other modules. The order constant
that is most useful to kernel module writers is CFG_ORD_DONTCARE. This
constant registers the callback with no specific order priority.

If you are a device driver writer, consider using one of the following
order constants:

CFG_ORD_NOM NAL — Registers the callback with lowest order
priority.

CFG_ORD_MAXI MUM— Registers the callback with the highest order
priority.

e The ar g parameter is used by the kernel module to communicate
information to the callback routine. Pass the integer OL to indicate that
you do not want to pass an argument.

When you call r egi st er _cal | back to register your callback routine, the
information you pass says, in effect, “At this dispatch point, with this priority,
call the kernel module callback routine with this argument.” Normally, the
callback will occur later than the r egi st er _cal | back call. There is one
exception: if the callback being registered is for a dispatch point along the
boot timeline that has already passed, the callback occurs immediately.

Upon successful completion, the r egi st er _cal | back routine returns the
status value ESUCCESS. Otherwise, it returns one of the following error
status values:

ENOVEM — The system limit on the maximum number of registered
callbacks was exceeded. You can correct this error by increasing the
value of the max_cal | backs attribute in the cmsubsystem and then
rebooting the system. (See System Configuration and Tuning for details.)
El NVAL — The value that you passed as the poi nt argument is outside
of the minimum and maximum range.

A kernel module calls the unr egi st er _cal | back routine to undo the
registration of a callback. It has the following format:

int unregister_callback(void (*func)(), int point, int order, ulong arg);

4-6 Dispatch Point Callbacks



where the parameters are identical to those used by r egi st er _cal | back.
Some callbacks may never be unregistered.

4.4.1.2 Writing the Callback Routine

When a callback occurs, the kernel executes the callback routine that you
specified in the call to r egi st er _cal | back. The callback routine does all
the callback processing and implements whatever action that you require
when the callback occurs. The callback routine is most often written as
part of your kernel module. It can be statically linked to the kernel as part
of / vimuni x or dynamically loaded at run time. The requirement is that it
exists in the kernel prior to when the callback occurs.

The callback routine that you write in your kernel module is passed the
dispatch point, order, and argument parameters when it is called.

A kernel module callback routine must conform to the following format:

voi d xx_cal | back(int point, int order, ulong arg, ulong arg2);

where the parameters are defined as follows:

e The poi nt parameter is the value for the dispatch point. The value from
the same parameter in the corresponding call to r egi st er _cal | back is
passed.

e The order parameter specifies the order in which the callback routine is
being called. The value from the same parameter in the corresponding
call toregi ster_cal | back is passed.

e The ar g parameter specifies the argument that the kernel module
requested to pass to the callback routine. The value from the same
parameter in the corresponding call to r egi st er _cal | back is passed.

e The ar g2 parameter is an additional value supplied by the callback
dispatcher. It is used to communicate point-specific information to the
callback routine. For many dispatch points, this parameter is not used.

4.4.2 Registering Callbacks

To code callbacks in your kernel module, register all the callbacks

in your confi gur e routine. The following pseudocode fragment for
abc_conf i gur e. nod registers two callbacks from within the confi gure
routine:
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abc_configure (opcode, ...){
switch (opcode) {
case CFG_OP_CONFI GURE:
regi ster_cal | back (abc_vm CFG PT_VM AVAIL, CFG ORD DONTCARE, argl)
regi ster_cal | back (abc_post, CFG PT_POST_CONFI G CFG ORD DONTCARE, arg2)
}

abc_vm (int point, int priority, int arg){

abc_post (int point, int priority, int arg){

Note

Because there are a limited number of callbacks that you can
use, we recommend that you do not register a large number of
callback entries.

4.4.3 Nesting Callbacks and Unregistering Callbacks

A kernel module can register multiple callbacks, possibly at different
callback points, by calling r egi st er _cal | back() many times. Callbacks
may not, however, be nested — calling r egi st er _cal | back() from within
a callback routine is illegal.

To enable deregistration, call unr egi st er _cal | back() from within a

callback routine. Doing so allows a callback to unregister itself or other
callbacks.

4.4.4 Defining New Dispatch Points in Your Kernel Module

You can write a kernel module that uses the predefined dispatch points (see
Section 4.3), or you can write a module that defines and uses new ones. The
following steps describe how to define a new kernel dispatch point:

1. Choose and reserve a unique number for the new dispatch point.

The valid range for developer-defined dispatch points is listed in the
{usr/include/ sys/sysconfi g. h file, along with the values for the
system-defined dispatch points.
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Values for developer-defined run-time dispatch points that
are triggered within the kernel must be within the range of
these values: CFG_PT_RUNTI ME_KERN_M N_EXT (20000) to
CFG_PT_RUNTI ME_KERN MAX_EXT (29999).

Values for developer-defined run-time dispatch points that are
triggered outside the kernel (user mode) must be within the
following range: CFG_PT_RUNTI ME_USER_M N_EXT (30000) to
CFG_PT_RUNTI ME_USER_MAX_EXT (39999).

Trigger the callback.

All kernel callbacks triggered within the kernel are activated by the
di spat ch_cal | back() routine, which has the following format:

di spat ch_cal | back (CFG_PT_MYPO NT, arg2)

where CFG_PT_MYPQO NT is the unique value for the dispatch point you
define and ar g2 communicates point-specific information to the callback
routine. Therefore, when you define a dispatch point that is triggered
from the kernel, you need to insert the di spat ch_cal | back() call at
the appropriate place within your kernel module.

In contrast, when you define a dispatch point triggered from user space,
you do not need to supply the di spat ch_cal | back() call in the kernel
module. A callback that is triggered from user mode is accomplished by
setting the value of the user _cf g_pt attribute in the generic subsystem
to the value of the dispatch point. For example, if you define a dispatch
point that is triggered in user mode with a value of 35600, the following
command triggers callbacks that are registered for this dispatch point:

sysconfig -r generic user_cfg_pt=35600

To trigger the callback, you execute the command from within a
script or from the user prompt. Alternately, you could call the

cf g_subsys_reconfi g routine from within a program to achieve the
same result.
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5

Kernel-Mode Capabilities

Tru64 UNIX offers several kernel-mode programming capabilities. This
chapter describes the tasks that you can do in kernel mode:

Work with string routines (Section 5.1)
Use data copying routines (Section 5.2)
Use kernel-related routines (Section 5.3)
Manage system time (Section 5.4)

Use kernel threads (Section 5.5)

Use locks (Section 5.6)

This chapter discusses the routines most commonly used and provides
code fragments to show how to call them in a kernel module. These code
fragments and associated descriptions supplement the reference page
descriptions for these routines.

5.1 Using String Routines

String routines allow kernel modules to:

Compare two null-terminated strings (Section 5.1.1)

Compare two strings by using a specified number of characters
(Section 5.1.2)

Copy a null-terminated character string (Section 5.1.3)

Copy a null-terminated character string with a specified limit
(Section 5.1.4)

Return the number of characters in a null-terminated string
(Section 5.1.5)

The following sections describe the routines that perform these tasks.

5.1.1 Comparing Two Null-Terminated Strings

To compare two null-terminated character strings, call the st r cnp routine.
The following code fragment shows a call to st r cnp:

regi ster struct device *device;
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struct controller *ctlr;
if (strcnp(device->ctlr_nane, ctlr->ctlr_name)) {[1]

}

Shows that the st r cnp routine takes two arguments:

e The first argument specifies a pointer to a string (an array of
characters terminated by a null character). In this example, this
argument is the controller name pointed to by the ct | r _nane field
of the pointer to the devi ce structure.

¢ The second argument also specifies a pointer to a string. In the
example, this argument is the controller name pointed to by the
ct | r_nane field of the pointer to the cont rol | er structure.

The code fragment sets up a condition statement that performs tasks that
are based on the results of the comparison. Figure 5-1 shows how strcnp
compares two sample character-string values in the code fragment. In item
1, st r cnp compares the two controller names and returns the value 0 (zero)
because the two strings were identical.

In item 2, st r cnp returns an integer that is less than zero because the
lexicographical comparison indicates that the characters in the first
controller name, f b, come before the letters in the second controller name,
i pi . In other words, the first pair of letters — in the same position in both
strings — that do not match are f and i, and f isless thani .

Figure 5-1: Results of the strcmp Routine

Strings are equal
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@ if (strcmp (device > ctlr_name, ctlr > ctlr_name))
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5.1.2 Comparing Two Strings by Using a Specified Number of
Characters

To compare two strings by using a specified number of characters, call the
st rncnp routine. The following code fragment shows a call to st r ncnp:

regi ster struct device *device;

i f( (strncnp(device->dev_nanme, "rz", 2) == 0))[1]

Shows that the st r ncnp routine takes three arguments:

e The first argument specifies a pointer to a string. In the example,
this argument is the device name pointed to by the dev_nane field
of the pointer to the devi ce structure.

¢ The second argument also specifies a pointer to a string. In the
example, this argument is the character string r z.

¢ The third argument specifies the number of bytes to be compared.
In the example, the number of bytes to compare is 2.

The code fragment sets up a condition statement that performs tasks that
are based on the results of the comparison. Figure 5-2 shows how st rncnp
compares two sample character-string values in the code fragment. In item
1, st r ncnp compares the first two characters of the device name none with
the string r z. It then returns an integer less than the value 0 (zero), because
st r ncnp makes a lexicographical comparison between the two strings and
the string no comes before the string r z.

In item 2, st r ncnp compares the first two characters of the device name

r za with the string r z and returns the value 0 (zero), because st r ncnp
makes a lexicographical comparison between the two strings and the string
rz is equal to the string r z.
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Figure 5-2: Results of the strncmp Routine
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5.1.3 Copying a Null-Terminated Character String

To copy a null-terminated character string, call the st r cpy routine. The
following code fragment shows a call to st rcpy:

struct tc_slot tc_slot[ TC IOSLOTS];
char curr_nodul e_name[ TC_ROWAM.EN + 1] ;

strcpy(tc_slot[i]. nodul ename, curr_nodul e_nane);

Declares an array of t ¢c_sl ot structures of size TC | OSLOTS.

Declares a variable to store the module name from the ROM of a device
on the TURBOchannel bus.

Shows that the st r cpy routine takes two arguments:

e The first argument specifies a pointer to a buffer large enough
to hold the string to be copied. In the example, this buffer is the
nodul enane field of the t ¢c_sl ot structure for the specified bus.

¢ The second argument specifies a pointer to a string. This is the
string to be copied to the buffer that the first argument specifies.

5-4 Kernel-Mode Capabilities



In the example, this is the module name from the ROM, which is
stored in the cur r _nodul e_nane variable.

Figure 5-3 shows how st rcpy copies a sample value in the code
fragment. The routine copies the string CB (the value that is contained in
curr _nodul e_nane) to the modul enane field of the t ¢c_sl ot structure for
the specified bus. This field is presumed large enough to store the character
string. The st r cpy routine returns the pointer to the location following the
end of the destination buffer.

Figure 5-3: Results of the strcpy Routine
cbslot
L g cB |

strcpy (tc_slot[i].modulename,|curr_module_name);

struct tc_slot cbslot{

v
char modulename[TC_ROMNAMELEN+1]

}
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5.1.4 Copying a Null-Terminated Character String with a Specified
Limit

To copy a null-terminated character string with a specified limit, call the
st rncpy routine. The following code fragment shows a call to st r ncpy:

regi ster struct device *device;
char * buffer;

strncpy(buffer, device->dev_nane, 2);
if (buffer == soneval ue)

Shows that st r ncpy takes three arguments:

¢ The first argument specifies a pointer to a buffer of at least the same
number of bytes as specified in the third argument. In the example,
this is the pointer to the buf f er variable.
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¢ The second argument specifies a pointer to a string. This is the
character string to be copied, and in the example is the value pointed
to by the dev_nane field of the pointer to the devi ce structure.

e The third argument specifies the number of characters to copy,
which in the example is two characters.

The code fragment sets up a condition statement that performs some tasks
that are based on the characters stored in the pointer to the buf f er variable.

Figure 5-4 shows how st r ncpy copies a sample value in the code fragment.
The routine copies the first two characters of the string none (the value

pointed to by the dev_nane field of the pointer to the devi ce structure). The
st rncpy routine stops copying after it copies a null character or the number
of characters that are specified in the third argument, whichever comes first.

The figure also shows that st r ncpy returns a pointer to the / NULL character
at the end of the first string (or to the location following the last copied
character if there is no NULL). The copied string will not be null terminated
if its length is greater than or equal to the number of characters that are
specified in the third argument.

Figure 5—-4: Results of the strncpy Routine
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5.1.5 Returning the Number of Characters in a Null-Terminated String

To return the number of characters in a null-terminated character string, call
the st rl en routine. The following code fragment shows a call tostr| en:

char *strptr;

if ((strlen(strptr)) > 1)[1]

Shows that the st rl en routine takes one argument: a pointer to a
string. In the example, this pointer is the variable strptr.
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The code fragment sets up a condition statement that performs some
tasks that are based on the length of the string. Figure 5-5 shows how
strl en determines the number of characters in a sample string in the code
fragment. As the figure shows, st rl en returns the number of characters
that the st r pt r variable points to, which in the code fragment is four. The
st rl en routine does not count the terminating null character.

Figure 5-5: Results of the strlen Routine
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5.2 Using Data Copying Routines

The data copying routines allow kernel modules to:

Copy a series of bytes with a specified limit (Section 5.2.1)

Zero a block of kernel memory (Section 5.2.2)

Zero a block of memory in user space (Section 5.2.3)

Copy data from user address space to kernel address space (Section 5.2.4)
Copy data from kernel address space to user address space (Section 5.2.5)

Move data between user virtual space and system virtual space
(Section 5.2.6)

The following sections describe the routines that perform these tasks.

5.2.1 Copying a Series of Bytes with a Specified Limit

To copy a series of bytes with a specified limit, call the bcopy routine. The
following code fragment shows a call to bcopy:

struct tc_slot tc_slot[TC IOSLOTS];

char *cp;

bcopy(tc_slot[index]. nodul ename, cp, TC ROWAMEN + 1);
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Declares an array of t ¢c_sl ot structures of size TC | OSLOTS.

Declares a pointer to a buffer that stores the bytes of data that are
copied from the first argument.

Shows that the bcopy routine takes three arguments:

e The first argument is a pointer to a byte string (an array of
characters). In the example, this array is the nodul enane field of
the t c_sl ot structure for this bus.

¢ The second argument is a pointer to a buffer that is at least the size
that is specified in the third argument. In the example, this buffer is
represented by the pointer to the cp variable.

e The third argument is the number of bytes to be copied. In
the example, the number of bytes is the value of the constant
TC_ROWNAM_EN plus 1.

Figure 5-6 shows how bcopy copies a series of bytes by using a sample value
in the code fragment. As the figure shows, bcopy copies the characters CB to
the buffer cp without searching for null bytes. The copy is nondestructive;
that is, the address ranges of the first two arguments can overlap.

Figure 5-6: Results of the bcopy Routine
[

I cB |
bcopy(tc_slot[index].modulename, cp, TC_ROMNAMELEN+1);

struct tc_slot cbslot{

char modulename[TC_ROMNAMELEN+1] buffer cp
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3
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5.2.2 Zeroing a Block of Memory in Kernel Address Space

To zero a block of memory in kernel address space, call the bzer o routine.
The following code fragment shows a call to bzer o:

struct bus *new_bus

bzer o(new_bus, sizeof (struct bus));

Shows that the bzer o routine takes two arguments:

e The first argument is a kernel address at which the zeroing
operation starts. In the example, the first argument is a pointer
to a bus structure.

¢ The second argument is the number of bytes to be zeroed. In the
example, this size is expressed through the use of the si zeof
operator, which returns the size of a bus structure.

In the example, bzer o is used to zero the number of bytes that are associated

with the size of the bus structure, starting at the address specified by
new_bus.

5.2.3 Zeroing a Block of Memory in User Address Space

To zero a block of memory in user address space, call the uzer o routine. The
following code fragment shows a call to uzer o:

voi d *user_addr
size_t cnt;

int err;

if (err = uzero(user_addr, cnt))[1]

Shows that the uzer o routine takes two arguments:

e The first argument is a user address at which the zeroing operation
starts.

¢ The second argument is the number of bytes to be zeroed.
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In the example, uzer o is used to zero cnt bytes starting at address

user _addr . It returns the value 0 (zero) upon successful completion. If the
address in user address space cannot be accessed, uzer o returns the error
EFAULT.

5.2.4 Copying Data from User Address Space to Kernel Address
Space

To copy data from the unprotected user address space to the protected kernel
address space, call the copyi n routine. The following code fragment shows a
call to copyi n:

struct buf *bp;
int err;

voi d* buff_addr;
voi d* kern_addr;

if (err = copyin(buff_addr, kern_addr, bp->b_resid)) {[1]

Shows that the copyi n routine takes three arguments:

¢ The first argument specifies the address in user space of the data to
be copied. In the example, this address is the user buffer’s address.

¢ The second argument specifies the address in kernel space to which
to copy the data. In the example, this address is the address of
the kernel buffer.

¢ The third argument specifies the number of bytes to copy. In the
example, the number of bytes is contained in the b_r esi d field of
the pointer to the buf structure.

The code fragment sets up a condition statement that performs tasks that
are based on whether copyi n executes successfully. Figure 5-7 shows
how copyi n copies data from user address space to kernel address space
by using sample data.

As Figure 5-7 shows, copyi n copies the data from the unprotected user
address space (specified by buf f _addr ) to the protected kernel address
space (specified by ker n_addr ). The b_r esi d field indicates the number
of bytes. The figure also shows that copyi n returns the value 0 (zero)
upon successful completion. If the address in user address space cannot be
accessed, copyi n returns the error EFAULT.
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Figure 5-7: Results of the copyin Routine
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5.2.5 Copying Data from Kernel Address Space to User Address
Space

To copy data from the protected kernel address space to the unprotected
user address space, call the copyout routine. The following code fragment
shows a call to copyout :

regi ster struct buf *bp;
int err;

void * buff_addr;

void * kern_addr;

if (err = copyout (kern_addr, buff_addr, bp->b_resid)) {[1]

Shows that the copyout routine takes three arguments:

¢ The first argument specifies the address in kernel space of the data
to be copied. In the example, this address is the kernel buffer’s
address, which is stored in the ker n_addr argument.

¢ The second argument specifies the address in user space to which
to copy the data. In the example, this address is the user buffer’s
virtual address, which is stored in the buf f _addr argument.

¢ The third argument specifies the number of bytes to copy. In the
example, the number of bytes is contained in the b_r esi d field of
the pointer to the buf structure.

Figure 5-8 shows the results of copyout , based on the code fragment. As
the figure shows, copyout copies the data from the protected kernel address
space (specified by ker n_addr ) to the unprotected user address space
(specified by buf f _addr ). The number of bytes is indicated by the b_r esi d
field. The figure also shows that copyout returns the value 0 (zero) upon
successful completion. If the address in kernel address space cannot be
accessed or if the number of bytes to copy is invalid, copyout returns the
error EFAULT.
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Figure 5-8: Results of the copyout Routine
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5.2.6 Moving Data Between User Virtual Space and System Virtual
Space

To move data between user virtual space and system virtual space, call the
ui onove routine. The following code fragment shows a call to ui onove:

struct uio *uio;
void * kern_addr;
int err;

long cnt;

err = ui onove(kern_addr, cnt, uio);

Shows that the ui onpve routine takes three arguments:

e The first argument specifies a pointer to the kernel buffer in system
virtual space.

e The second argument specifies the number of bytes of data to be
moved. In this example, the number of bytes to be moved is stored
in the cnt variable.
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¢ The third argument specifies a pointer to a ui 0 structure. This
structure describes the current position within a logical user buffer
in user virtual space.

5.3 Using Kernel-Related Routines

The kernel-related routines allow kernel modules to:

¢ Print text to the console and error logger (Section 5.3.1)

e Put a calling process to sleep (Section 5.3.2)

e Wake up a sleeping process (Section 5.3.3)

e Initialize a timer (callout) queue element (Section 5.3.4)

¢ Remove the scheduled routine from the timer queues (Section 5.3.5)
e Set the interrupt priority mask (Section 5.3.6)

e Allocate memory (Section 5.3.7)

The following sections describe the routines that perform these tasks.

5.3.1 Printing Text to the Console and Error Logger

To print text to the console terminal and the error logger, call the pri nt f
routine. The kernel pri nt f routine is a scaled-down version of the C library
printf routine. The pri ntf routine prints diagnostic information directly
on the console terminal and writes ASCII text to the error logger. Because
printf is not interrupt driven, all system activities are suspended when
you call it. Only a limited number of characters (currently 128) can be sent
to the console display during each call to pri nt f because the characters
are formatted into a fixed-size buffer whose address may be handed off

to the primary CPU for console output. If more than 128 characters are
generated in a single call to pri nt f, all characters following the first 128
will be discarded.

If you need to see the results on the console terminal, limit the message
size to the maximum of 128 whenever you send a message from within the
module. However, pri ntf also stores the messages in an error log file.
You can use the uer f command to view the text of this error log file. See
pri nt f (9) for more information. The messages are easier to read if you
use uer f with the - 0 t er se option.
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The following code fragment shows a call to this routine:

printf("CBprobe ctlr = 9%8x\n",ctlr);

The code example shows a typical use for the pri ntf routine in the
debugging of kernel modules. In the example, pri nt f takes two arguments:

e The first argument specifies a pointer to a string that contains two types
of objects. One object is ordinary characters such as, “hello, world,”
which are copied to the output stream. The other object is a conversion
specification, such as %d. (Supported conversion specifications include
%c, %d, %ld, %lx, %o, %s, and %x. See pri nt f (9) for explanations of
these specifications.)

e The second argument specifies the value to be formatted in place of the
%8x specifier in the format string. In this example, the argumentisct|r.

The operating system also supports the upri nt f routine. The upri nt f
routine prints to the current user’s terminal. Never have interrupt service
routines call upri nt f. Do not use this routine to print verbose messages.
The upri nt f routine does not log messages to the error logger.

5.3.2 Putting a Calling Process to Sleep

To put a calling process to sleep in a symmetric multiprocessing (SMP)
environment, call the npsl eep routine. The npsl eep routine blocks the
current kernel thread until a wakeup is issued (see Section 5.3.3).

Generally, kernel modules call this routine to wait for the transfer to
complete an interrupt from the device. That is, the wr i t e routine of the
kernel module sleeps on the address of a known location, and the device’s
interrupt service routine wakes the process when the device interrupts. The
wakened process determines whether the condition for which it was sleeping
has been removed. The following code fragment shows a call to this routine:

npsl eep((vm of fset _t)&sc->error_recovery_flag, PCATCH,
"ftaerr", 0, &sc->lk_fta_kern_str,
MS_LOCK_SI MPLE | MS_LOCK_ON_ERROR))

Calls the npsl eep routine to block the current kernel thread. The
npsl eep routine takes several arguments:

e The channel argument specifies an address to associate with the
calling kernel thread to be put to sleep. In this example, the address
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(or event) associated with the current kernel thread is stored in the
error_recovery_fl ag field.

e The pri argument specifies whether the sleep request is
interruptible. Setting this argument to the PCATCH option causes
the process to sleep in an interruptible state (that is, the kernel
thread can take asynchronous signals). Not setting the PCATCH
option causes the process to sleep in an uninterruptible state (that
is, the kernel thread cannot take asynchronous signals).

e The wresg argument specifies the wait message. In this call,
fta_error_recovery passes the string ft aerr.

e Theti np argument specifies the maximum amount of time that the
kernel thread should block. If you pass the value 0 (zero), npsl eep
assumes there is no timeout.

e The | ockp argument specifies a pointer to a simple or complex
lock. You pass a simple or complex lock structure pointer if you
want to release the lock. Pass the value 0 (zero) if you do not want
to release the lock.

e The fl ags argument specifies the lock type. You can pass
the bitwise inclusive OR of the valid lock bits defined in
[usr/sys/include/sys/ param h.

5.3.3 Waking Up a Sleeping Process

To wake up all processes that are sleeping on a specified address, call the
wakeup routine. The following code fragment shows a call to this routine:

wakeup( &t | r->bus_nane) ;

Shows that the wakeup routine takes one argument: the address on
which the wakeup is to be issued. In the example, this address is the
bus name for the bus to which this controller is connected. This address
was specified in a previous call to the nmpsl eep routine. All processes
that are sleeping on this address are awakened.

5.3.4 Initializing a Timer (Callout) Queue Element

To initialize a timer queue element, call the t i meout routine. The following
code fragment shows a call to this routine:
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#define NONEI ncSec 1
cb = &none_unit[unit];

ti meout (nonei ncl ed, (caddr_t)none, NONEI ncSec*hz);

Shows that the t i meout routine takes three arguments:

e The first argument specifies a pointer to the routine to be called. In
the example, t i meout will call the nonei ncl ed routine on the
interrupt stack (not in processor context) as dispatched from the
sof t cl ock routine.

¢ The second argument specifies a single argument to be passed to
the called routine. In the example, this argument is the pointer to
the NONE device’s none_uni t data structure. This argument is
passed to the nonei ncl ed routine. Because the data types of the
arguments are different, the code fragment performs a type-casting
operation that converts the argument type to be of type caddr _t .

e The third argument specifies the amount of time to delay before
calling the specified routine. You express time as ticks of the
system clock. To obtain a particular time in seconds, you multiply
the number of ticks times hz (hz contains the number of ticks per
second).

In the example, the constant NONEI ncSec is used with the hz global
variable to determine the amount of time before ti meout calls
nonei ncl ed. The global variable hz contains the number of clock
ticks per second. This variable is a second’s worth of clock ticks. The
example shows a 1-second delay.

5.3.5 Removing Scheduled Routines from the Timer (Callout) Queue

To remove the scheduled routines from the timer queue, call the unt i neout
routine. The following code fragment shows a call to this routine:
Lmti nmeout (nonei ncl ed, (caddr_t)none);

Shows that the unt i neout routine takes two arguments:
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e The first argument specifies a pointer to the routine to be removed
from the timer queue. In the example, unt i mreout removes the
nonei ncl ed routine from the timer queue. This routine was placed
on the timer queue in a previous call to the t i meout routine.

¢ The second argument specifies a single argument to be passed to the
called routine. In the example, this argument is the pointer to the
NONE device’s none_uni t data structure. It matches the parameter
that was passed in a previous call to t i meout . Because the data
types of the arguments are different, the code fragment performs
a type-casting operation that converts the argument type to be of

type caddr _t .

The two arguments uniquely identify which timeout entry to remove.
This is useful if more than one thread has called ti meout with the

same routine argument.

5.3.6 Setting the Interrupt Priority Mask

To set the interrupt priority level (IPL) mask to a specified level, call one
of the spl routines. Table 5—1 summarizes the uses for the different spl

routines.

Table 5-1: Uses for spl Routines

spl Routine

Meaning

spl extrene

splrt

spl cl ock

spl hi gh

spl devhi gh

spl bio

splinp
spl vm

spl net

spl sof t cl ock
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Highest priority; blocks everything except
halt interrupts (for example, real-time
devices, machine checks, and so forth).

Blocks real-time devices but allows
machine checks and halt interrupts.

Masks all hardware clock and
lower-level interrupts.

Masks all interrupts except clock
interrupts, real-time devices, machine
checks, and halt interrupts.

Masks all device and software interrupts.

Masks all disk and tape controller
interrupts.

Masks all LAN hardware interrupts.

Masks all interrupts that affect virtual
memory operations.

Masks all network software interrupts.

Masks all software clock interrupts.



Table 5-1: Uses for spl Routines (cont.)

spl Routine Meaning

spl x Resets the CPU priority to the level
specified by the argument.

spl none Unmasks (enables) all interrupts.

The spl routines set the CPU priority to various interrupt levels. The
current CPU priority level determines which types of interrupts are masked
(disabled) and which are unmasked (enabled). Historically, seven levels

of interrupts were supported, with eight different spl routines to handle
the possible cases. For example, calling spl 0 unmasked all interrupts and
calling spl 7 masked all interrupts. Calling an spl routine between 0 and 7
masked all interrupts at that level and at all lower levels.

Specific interrupt levels were assigned for different device types. For
example, before it handled a given interrupt, a kernel module set the CPU
priority level to mask all other interrupts of the same level or lower. This
setting meant that the kernel module could be interrupted only by interrupt
requests from devices of a higher priority.

The operating system currently supports the naming of spl routines to
indicate the associated device types. Named spl routines make it easier to
determine which routine to use to set the priority level for a given device

type.

The following code fragment shows the use of spl routines as part of a disk
str at egy routine:

int S,
s = splbio(); [1]

[Code to deal with data that can be nodified by the disk interrupt
code]

spl x(s);

Calls the spl bi o routine to mask (disable) all disk interrupts. This
routine does not take an argument.

Calls the spl x routine to reset the CPU priority to the level that the
s argument specifies. The argument associated with spl x is a CPU
priority level, which in the example is the value that spl bi o returns.
(The spl x routine is the only one of the spl routines that takes an
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argument.) Upon successful completion, each spl routine returns an
integer value that represents the CPU priority level that existed before
it was changed by a call to the specified spl routine.

5.3.7 Allocating Memory

A kernel module may need to declare a significant number of data structures
to contain a large amount of data. For example, a kernel module that is a
device driver may need to support a large number of disks and controllers.
Statically allocating the maximum number of data structures wastes

space. Dynamically allocating memory for the required data structures is

a better use of system resources, especially when working with temporary
or transient data.

To dynamically allocate memory, you need to:
e Use the MALLOC macro to allocate the data structures

e Use the FREE macro to free up the dynamically allocated data structures

The following sections describe these steps.

5.3.7.1 Allocating Data Structures with MALLOC

5-20

Use the MALLOC macro to dynamically allocate a variable-size section of
kernel virtual memory. The MALLOC macro maintains a pool of preallocated
memory for quick allocation and returns the address of the allocated
memory. The MALLOC macro is actually a wrapper that calls nal | oc. Do not
allow a kernel module to directly call the mal | oc routine.
The syntax for the MALLOC macro is as follows:
MALLOC(

addr ,

cast,

u_l ong si ze,

int type,
int flags );

Call the MALLOC macro with the following parameters:
addr

Specifies the memory location that points to the allocated memory. You
specify the addr argument’s data type in the cast argument.

cast

Specifies the data type of the addr argument and the type of the
memory pointer that MALLOC returns.
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size

Specifies the size, in byte,s of the memory to allocate. Typically, you
pass the size as a constant to speed up the memory allocation.

type

Specifies the purpose for which the memory is being allocated. The
memory types are defined in the sys/ mal | oc. h file. Typically, kernel
modules use the constant M DEVBUF to indicate that kernel module
memory is being allocated (or freed).

flags

Specifies one of the following constants that are defined in
[usr/sys/include/sys/malloc. h:

M WAl TOK

M _NOWAI T

M_ZERO

Allocates memory from the virtual memory
subsystem if there is not enough memory in
the preallocated pool. This constant signifies
that MALLCC can block.

Does not allocate memory from the virtual
memory subsystem if there is not enough
memory in the preallocated pool. This constant
signifies that MALLOC cannot block. M_NOMI T
must be used when calling MALLCC from an
interrupt context or if the caller is holding a
simple lock. Otherwise, a system panic will
occur.

Allocates zero-filled memory. You pass this bit
value using the OR operator with M_WAI TCK or
M _NOWAI T.

The following example shows how to allocate memory using the MALLOC

macro:

struct foo *fool;
struct foo *foo2;

struct bar *bar[];

MALLOC( f ool, struct foo *,
M DEVBUF, M NOWAI T| M_ZERO)

if (1fool) {

si zeof (struct foo),
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return{2]
}

MALLOC(f 002, struct foo *,
nfoo * sizeof (struct foo), M DEVBUF,
M WAl TOK| M_ZERO)

MALLOC( bar, struct bar **,
nbar * sizeof(struct bar *), M DEVBUF,
M WAl TOK| M_ZERO) [4]

MALLOC(bar[1], struct bar *, sizeof(struct bar),
M _DEVBUF, M WAI TOK|] M_ZERO)

Allocates a single data structure.

] [=]

Because M_NOWAI T is specified, examines the return value to determine
whether the allocation failed.

Allocates an array of structures with nf 0o elements.

Allocates an array of pointers to structures.

@ B [«

Allocates a structure to the second element of bar .

5.3.7.2 Freeing Up Dynamically Allocated Memory
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When a block of memory that is allocated through MALLCC is no longer
needed it, free it back to the system using the FREE macro. The FREE macro
takes two arguments:

e The first argument specifies the memory pointer that points to the
allocated memory to be freed. You must have previously set this
argument in the call to MALLOC.

¢ The second argument specifies the purpose for which the memory
is being allocated. The memory types are defined in the file
{usr/sys/include/sys/ nall oc. h. Typically, kernel modules that
are device drivers use the constant M_DEVBUF to indicate that memory is
being allocated (or freed).
The following example shows how to use the FREE macro:
FREE(f 001, M DEVBUF);
/ *
* Free the second elenment fromthe array of pointers
%l

FREE(bar[ 1], M DEVBUF);
bar[1] = NULL;
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5.4 Working with System Time

This section describes considerations for working with system time.
Information in this section explains the following concepts:

Understanding system time concepts (Section 5.4.1)

Fetching time (Section 5.4.2)

Modifying a timestamp (Section 5.4.3)

Enabling an application to convert time to a string (Section 5.4.4)

Delaying a routine a specified number of microseconds (Section 5.4.5)

5.4.1 Understanding System Time Concepts

This section discusses concepts for working with system time:

How a kernel module fetches or modifies time

How time is created

5.4.1.1 How a Kernel Module Uses Time

Kernel modules can save timestamps that can be passed to applications on
request for many purposes. For example:

When a bus was last scanned
When the last error on a disk occurred

When the last interrupt for the some device (for example, a line printer)
occurred

When the system booted

When the file system was mounted on a particular disk

The application then needs to print the date and time. Your kernel module
code must determine several things for each timestamp that it wants to
preserve:

When it needs to fetch time

Whether or not the time value that was fetched needs modification to
reflect accurate time

How to pass the time value to the application

5.4.1.2 How System Time is Created

System time, which is platform-dependent, is defined as ticks of the system
clock, measured as units of hertz (hz). The operating system makes system
time available to kernel modules. The representation of system time is not
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based on the current calendar time of day because the actual time value
does not become available to the operating system until you are partially
through the boot sequence.

From the beginning of a boot sequence to dispatch point
CFG_PT_TOPOLOGY_CONF, the operating system time value is O (zero).
In Tru64 UNIX, zero is equivalent to January 1, 1970, 00:00:00, UTC.
At dispatch point CFG_PT_TOPOLOGY_CONF, the operating system
begins incrementing system time from zero. Later, at the dispatch point
CFG_PT_ROOT_FS_AVAI L, system time is set to the actual time of day.

The time between CFG_PT_TOPOLOGY_CONF and CFG_PT_ROOT_FS_AVAI L
is called the boot delta. Figure 5-9 shows these concepts.

Figure 5-9: When Time Becomes Available During a System Boot

Boot Timeline

CFG_PT_TOPOLOGY_CONF CFG_PT_ROOT_FS_AVAIL
———————— |———————————|————————*
00000000000000000123456...
4— — — BootDelta — —»
ZK-1566U-Al

At the start of a boot sequence, the value is 0 (zero).

At CFG_PT_TOPOLOGY_CONF, the kernel starts incrementing time.
The initial date and time is recorded as 00:00:00 UTC 1 Jan 1970 (the
Epoch).

At CFG_PT_ROOT_FS_AVAI L, the kernel sets the time to the correct
calendar date and time.

If your kernel module fetches time before CFG_PT_ROOT_FS_AVAI L is
reached, the time value it fetches is incorrect and you will need to modify
that timestamp later (see Section 5.4.3).

5.4.2 Fetching System Time

A kernel module decides when to fetch system time. When it performs a
fetch operation, it also needs a way to fetch system time. The TI ME_READ
macro provides a way for your kernel module to fetch the current time. The
following code fragment shows how to use this macro in your kernel module:
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#i ncl ude <sys/time. h>[1]
extern struct timeval tine;

{ struct tineval ny_tinme;[3]

TI ME_READ( ny_ti ne) ; [4]

Includes the t i me. h header file.
Declares the global time variable as external.

Declares your own storage for your timestamp.

I NI

Fetches the current time and stores it in your own time variable
using the TI ME_READ macro. TI ME_READ takes one parameter, which
specifies the memory location to store the current time. Its type is
struct tineval.

5.4.3 Modifying a Timestamp

If your kernel module fetches time before the operating system sets the
current time at CFG_PT_ROOT_FS_AVAI L, you must modify the timestamp
you fetched and stored. For example, assume your kernel module keeps
track of when it last scanned the bus. Because scanning the bus takes
place prior to CFG_PT_ROOT_FS_AVAI L, the fetched time is interpreted as
approximately Jan. 1, 1970, 00:00:00. (This is because time was not set to
the proper value when you fetched it.) The global variable boot del t a keeps
track of how many seconds and microseconds have been counted between
the two configuration points.

To modify a timestamp, follow these steps:

1. Register a callback for CFG_PT_ROOT_FS_AVAI L in your kernel module.
2. Use the following algorithm to modify the timestamp:

a. Subtract the number of seconds (t v_sec) and microseconds
(t v_usec) that were counted before time was set to the actual time.
b. Add the number of seconds and microseconds that were counted to
the point where the kernel module fetched time.

The following code example subtracts boot del t a seconds and adds
ny_ti me seconds:

#i ncl ude <sys/tine. h>

Kernel-Mode Capabilities 5-25



extern struct tineval bootdelta;

struct timeval tenp_tineg;
TI ME_READ(tenp_tine);

tenp_tinme.tv_sec -= (bootdelta.tv_sec - ny_tinme.tv_sec);

if (bootdelta.tv_usec > tenp_tine.tv_usec) {
tenp_tine.tv_usec = 1000000 -
(bootdelta.tv_usec - tenp_tine.tv_usec);
tenp_tine.tv_sec--;
} else {
tenp_tine.tv_usec -= bootdelta.tv_usec;

tenp_time.tv_usec += ny_time.tv_usec; [4]

if (tenp_tinme.tv_usec >= 1000000) {
tenp_tine.tv_usec -= 1000000;
tenp_tine.tv_sec++;

nmy_time = tenp_tine; [6]

Obtains the current time, which is set to the actual time of day.

] [=]

Subtracts boot del t a seconds from the current time and adds the
number of seconds in the timestamp.

Subtracts boot del t a microseconds; make sure its value is not negative.
Adds my_t i ne microseconds.

Fixes any microseconds that may have wrapped.

e [ &l [

Stores the results into the time variable.

5.4.4 Enabling Applications to Convert a Kernel Timestamp to a
String

A user application can receive a timestamp from a kernel module in a variety
of ways. The standard way is for a kernel module to pass a timestamp to the
application as a struct tineval.

For an application to convert the timestamp it received from

the kernel module, it uses the cti me function that is defined in
{usr/include/sys/time.h. This function converts time values between
t mstructures, ti me_t type variables, and strings.
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The ct i me function expresses time in units by converting the ti me_t
variable, to which thet i mer parameter points, into a string with

the five-field format. The ti me_t variable, which is also defined in
{usr/include/sys/time. h, contains the number of seconds since the
Epoch, 00:00:00 UTC 1 Jan 1970. For example:

Tue Jul 11 15:37:29 2000

For more information on converting timestamps to strings, see ct i me(3).

5.4.5 Delaying the Calling Routine a Specified Number of
Microseconds

To delay the calling routine a specified number of microseconds, use the
DELAY macro. The following code fragment shows how to use this macro:

DELAY( 10000)

Shows that the DELAY macro takes one argument: the number of
microseconds for the calling thread to spin.

The DELAY macro delays the routine by a specified number of
microseconds. DELAY spins while it waits for the specified number of
microseconds to pass before continuing execution. The example shows a
10000-microsecond (10-millisecond) delay. The range of delays is system
dependent, due to its relation to the granularity of the system clock. The
system defines the number of clock ticks per second in the hz variable.
Specifying any value smaller than 1/hz to the DELAY macro results in
an unpredictable delay. For any delay value, the actual delay may vary
by plus or minus one clock tick.

We do not recommend using the DELAY macro because the processor
will be consumed for the specified time interval; therefore it will be
unavailable to service other threads. In cases where kernel modules
need timing mechanisms, use the sl eep and t i meout routines instead
of the DELAY macro. The most common usage of the DELAY macro

is in the system boot path. Using DELAY in the boot timeline is often
acceptable because there are no other threads in contention for the
processor.

5.5 Using Kernel Threads

A kernel thread is a single sequential flow of control within a kernel module
or other systems-based program. The kernel module or other systems-based
program makes use of the routines (instead of a threads library package
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such as POSIX Threads Library) to start, terminate, and delete threads, and
to perform other kernel thread operations.

Kernel threads execute within (and share) a single address space. Therefore,
kernel threads read and write to the same memory locations.

You use kernel threads to improve the performance of a kernel module.
Multiple kernel threads are useful in a multiprocessor environment, where
kernel threads run concurrently on separate CPUs. However, multiple
kernel threads also improve kernel module performance on single-processor
systems by permitting the overlap of input, output, or other slow operations
with computational operations.

Kernel threads allow kernel modules to perform other useful work while
waiting for a device to produce its next event, such as the completion of
a disk transfer or the receipt of a packet from the network. For more
information on using kernel threads, see Chapter 9.

5.6 Using Locks

In a single-processor environment, kernel modules need not protect the
integrity of a resource from activities that result from the actions of another
CPU. However, in a symmetric multiprocessing (SMP) environment, the
kernel module must protect (lock) the resource from multiple CPU access to
prevent corruption. A resource, from the kernel module’s standpoint, is data
that more than one kernel thread can manipulate. Locks are the mechanism
for sharing resources in an SMP enviroment.

See Chapter 6 for an overview of symmetric multiprocessing and the two
locking methods that you can use when your kernel modules execute in an
SMP environment. Chapter 7 provides information for using simple locks in
your kernel module. Chapter 8 provides information for using complex locks.
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6

Symmetric Multiprocessing and Locking
Methods

Symmetric multiprocessing (SMP) describes a computer environment that
uses two or more central processing units (CPUs). In an SMP environment,
software applications and the associated kernel modules can operate on
two or more of these CPUs simultaneously. To ensure the integrity of the
data manipulated by kernel modules in this multiprocessor environment,
you must perform additional design and implementation tasks beyond those
discussed in Writing Device Drivers. One of these tasks involves choosing

a locking method. Tru64 UNIX provides you with two methods to write
SMP-safe kernel modules: simple locks and complex locks.

This chapter presents information that will help you decide which items
(variables, data structures, and code blocks) must be locked in the kernel
module and then choose the appropriate locking method (simple or complex).
Specifically, the chapter describes the following topics associated with
designing and developing a kernel module that can operate safely in an
SMP environment:

¢ Understanding hardware issues related to synchronization (Section 6.1)
¢ Understanding the need for locking in an SMP environment (Section 6.2)
e Comparing simple locks and complex locks (Section 6.3)

¢ (Choosing a locking method (Section 6.4)

¢ Choosing the resources to lock in a kernel module (Section 6.5)

The following sections discuss each of these topics. You do not need an
intimate understanding of kernel threads to learn about writing kernel
modules in an SMP environment. Chapter 9 discusses kernel threads and
the associated routines that kernel modules use to create and manipulate
them.

6.1 Understanding Hardware Issues Related to
Synchronization

Alpha CPUs provide several features to assist with hardware-level

synchronization. Even though all instructions that access memory are
noninterruptible, no single one performs an atomic read-modify-write
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operation. A kernel-mode thread of execution can raise the interrupt priority
level (IPL) to block other kernel threads on that CPU while it performs

a read-modify-write sequence or while it executes any other group of
instructions. Code that runs in any access mode can execute a sequence of
instructions that contains load-locked (LDx_L) and store-conditional (STx_C)
instructions to perform a read-modify-write sequence that appears atomic to
other kernel threads of execution.

Memory barrier instructions order a CPU’s memory reads and writes from
the viewpoint of other CPUs and I/O processors. The locking mechanisms
(simple and complex locks) that are provided in the operating system take
care of the idiosyncracies that are related to read-modify-write sequences
and memory barriers on Alpha CPUs. Therefore, you need not be concerned
about these hardware issues when you implement SMP-safe kernel modules
that use simple and complex locks.

The rest of this section describes the following hardware-related issues:
e Atomicity (Section 6.1.1)

e Alignment (Section 6.1.2)

e Granularity (Section 6.1.3)

6.1.1 Atomicity

Software synchronization refers to the coordination of events so that only
one event happens at a time. This kind of synchronization is a serialization
or sequencing of events. Serialized events are assigned an order and
processed one at a time in that order. While a serialized event is being
processed, no other event in the series is allowed to interrupt it.

By imposing order on events, software synchronization allows reading and
writing of several data items indivisibly, or atomically, to obtain a consistent
set of data. For example, all of process A’s writes to shared data must happen
before or after process B’s writes or reads, but not during process B’s writes
or reads. In this case, all of process A’s writes must happen indivisibly for
the operation to be correct. This includes process A’s updates — reading of a
data item, modifying it, and writing it back (read-modify-write sequence).
Other synchronization techniques ensure the completion of an asynchronous
system service before the caller tries to use the results of the service.

Atomicity is a type of serialization that refers to the indivisibility of a small
number of actions, such as those that occur during the execution of a single
instruction or a small number of instructions. With more than one action,
no single action can occur by itself. If one action occurs, then all the actions
occur. Atomicity must be qualified by the viewpoint from which the actions
appear indivisible: an operation that is atomic for kernel threads that run on
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the same CPU can appear as multiple actions to a kernel thread of execution
that runs on a different CPU.

An atomic memory reference results in one indivisible read or write of a data
item in memory. No other access to any part of that data can occur during
the course of the atomic reference. Atomic memory references are important
for synchronizing access to a data item that is shared by multiple writers or
by one writer and multiple readers. References need not be atomic to a data
item that is not shared or to one that is shared but is only read.

6.1.2 Alignment

Alignment refers to the placement of a data item in memory. For a data
item to be naturally aligned, its lowest-addressed byte must reside at an
address that is a multiple of the size of the data item (in bytes). For example,
a naturally aligned longword has an address that is a multiple of 4. The
term naturally aligned is usually shortened to “aligned.”

An Alpha CPU allows atomic access only to an aligned longword or an
aligned quadword. Reading or writing an aligned longword or quadword of
memory is atomic with respect to any other kernel thread of execution on the
same CPU or on other CPUs.

6.1.3 Granularity

Granularity of data access refers to the size of neighboring units of memory
that can be written independently and atomically by multiple CPUs.
Regardless of the order in which the two units are written, the results must
be identical.

Alpha systems have longword and quadword granularity. That is, only
adjacent aligned longwords or quadwords can be written independently.
Because Alpha systems support only instructions that load or store
longword-sized and quadword-sized memory data, the manipulation of
byte-sized and word-sized data on Alpha systems requires that the entire
longword or quadword that contains the byte-sized or word-sized item be
manipulated. Therefore, simply because of its proximity to an explicitly
shared data item, neighboring data might become shared unintentionally.
Manipulation of byte-sized and word-sized data on Alpha systems requires
multiple instructions that:

Fetch the longword or quadword that contains the byte or word
Mask the nontargeted bytes
Manipulate the target byte or word

Ll e

Store the entire longword or quadword
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Because this sequence is interruptible, operations on byte and word data are
not atomic on Alpha systems. Also, this change in the granularity of memory
access can affect the determination of which data is actually shared when

a byte or word is accessed.

The absence of byte and word granularity on Alpha systems has important
implications for access to shared data. In effect, any memory write of a
data item other than an aligned longword or quadword must be done as a
multiple-instruction read-modify-write sequence. Also, because the amount
of data read and written is an entire longword or quadword, you must ensure
that all accesses to fields within the longword or quadword are synchronized
with each other.

6.2 Locking in a Symmetric Multiprocessing Environment

In a single-processor environment, kernel modules do not need to protect the
integrity of a resource from activities that result from the actions of another
CPU. However, in an SMP environment, the kernel module must protect the
resource from multiple CPU access to prevent corruption. A resource, from
the kernel module’s standpoint, is data that more than one kernel thread
can manipulate. You can store the resource in variables (global) and in data
structure fields. The top half of Figure 6-1 shows a typical problem that can
occur in an SMP environment. The figure shows that the resource called i is
a global variable whose initial value is 1.

Furthermore, the figure shows that the kernel threads from CPU1 and
CPU2 increment resource i . A kernel thread is a single sequential flow of
control within a kernel module or other systems-based program. The kernel
module or other systems-based program makes use of the routines (instead
of a threads library package such as the POSIX Threads Library) to start,
terminate, delete, and perform other kernel threads—related operations.
These kernel threads cannot increment this resource simultaneously. By
locking the global variable when one kernel thread is incrementing it, you
ensure that the integrity of the data that is stored in this resource is not
compromised in the SMP environment.

To protect the integrity of the data, you must enforce order on the accesses of
the data by multiple CPUs. One way to establish the order of CPU access to
the resource is to establish a lock. As the bottom half of the figure shows,
the kernel thread from CPU1 locks access to resource i , which prevents
access by kernel threads from CPU2. This guarantees the integrity of the
value stored in this resource.
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Figure 6-1: Why Locking Is Needed in an SMP Environment
Initial value of resource i is 1

CPU 1 Thread CPU 2 Thread
Does i=2? “_ i++] Does i=3?

CPU 2 Thread

Access allowed /

CPU 1 Thread

Then i=2
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The vertical line in the bottom half of the figure represents a barrier that
prevents the kernel thread from CPU2 from accessing resource i until the
kernel thread from CPU1 unlocks it. For simple locks, this barrier indicates
that the lock is exclusive. That is, no other kernel thread can gain access
to the lock until the kernel thread currently controlling it has released
(unlocked) it.

For complex write locks, this barrier represents a wait hash queue that
collects all of the kernel threads that are waiting to gain write access to a
resource. With complex read locks, all kernel threads have read-only access
to the same resource at the same time.

6.3 Comparing Simple Locks and Complex Locks

The operating system provides two ways to lock specific resources (global
variables and data structures) that are referenced in code blocks in the
kernel module: simple locks and complex locks. Simple and complex locks
allow kernel modules to:
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e Synchronize access to a resource or resources. Kernel threads from
multiple CPUs can safely update the count of global variables, add
elements to or delete elements from linked lists, and update or read
time elements.

e Ensure a consistent view of state transitions (run to block and block to
run) across multiple CPUs.

e Make the operating system behave as though it were running on a
single CPU.

The following sections briefly describe simple locks and complex locks.

6.3.1 Simple Locks

A simple lock is a general-purpose mechanism for protecting resources in
an SMP environment. Figure 6—2 shows that simple locks are spin locks.
That is, the routines that implement the simple lock do not return until
the lock has been obtained.

As the figure shows, the CPU1 kernel thread obtains a simple lock on
resource i . After the CPU1 kernel thread obtains the simple lock, it has
exclusive access over the resource to perform read and write operations on
the resource. The figure also shows that the CPU2 kernel thread spins while
waiting for the CPU1 kernel thread to unlock (free) the simple lock.

Figure 6—2: Simple Locks Are Spin Locks
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You need to understand the tradeoffs in performance and real-time
preemption latency that are associated with simple locks before you use
them. However, kernel modules must often use simple locks. For example,
kernel modules must use simple locks and spl routines to synchronize with
interrupt service routines. Section 6.4 provides guidelines to help you choose
between simple locks and complex locks.

Table 6-1 lists the data structure and routines for simple locks. Chapter 7
discusses how to use the data structure and routines to implement simple

locks in a kernel module.

Table 6—1: Data Structure and Routines Associated with Simple Locks

Structure/Routines

Description

sl ock

decl _sinpl e_| ock_dat a
sinpl e_l ock
sinmple_lock_init
sinple_l ock_term nate
sinple_lock_try

si npl e_unl ock

Contains simple lock—specific information.
Declares a simple lock structure.

Asserts a simple lock.

Initializes a simple lock structure.
Terminates using a simple lock.

Tries to assert a simple lock.

Releases a simple lock.
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6.3.2 Complex Locks

A complex lock is a mechanism for protecting resources in an SMP
environment. A complex lock achieves the same results as a simple lock.
However, use complex locks (not simple locks) for kernel modules if there are
blocking conditions.

The routines that implement complex locks synchronize access to kernel data
between multiple kernel threads. The following describes the characteristics
of complex locks:

e Multiple reader access

e Thread blocking (sleeping) if the write lock is asserted

Figure 6-3 shows that complex locks are not spin locks, but blocking
(sleeping) locks. That is, the routines that implement the complex lock block
(sleep) until the lock is released. Therefore, unlike for simple locks, do not
use complex locks to synchronize with interrupt service routines. Because of
the blocking characteristic of complex locks, they are active on both single
and multiple CPUs to serialize access to data between kernel threads.

As the figure shows, the CPU1 kernel thread asserts a complex lock with
write access on resource i . The CPU2 kernel thread also asserts a complex
lock with write access on resource i . Because the CPU1 kernel thread asserts
the write complex lock on resource i first, the CPU2 kernel thread blocks,
waiting until the CPU1 kernel thread unlocks (frees) the complex write lock.

Figure 6—3: Complex Locks Are Blocking Locks
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Like simple locks, complex locks present tradeoffs in performance and
real-time preemption latency that you should understand before you use
them. However, kernel modules must often use complex locks. For example,
kernel modules must use complex locks when there are blocking conditions
in the code block. On the other hand, you must not take a complex lock
while holding a simple lock or when using the t i neout routine. Section 6.4
provides guidelines to help you choose between simple locks and complex
locks.

Table 6-2 lists the data structure and routines for complex locks. Chapter 8
discusses how to use the data structure and routines to implement complex
locks in a kernel module.

Table 6—2: Data Structure and Routines Associated with Complex Locks

Structure/Routines Description

| ock Contains complex lock—specific
information.

| ock_done Releases a complex lock.

lock_init Initializes a complex lock.

| ock_read Asserts a complex lock with
read-only access.

l ock_term nate Terminates, using a complex lock.

lock_try_read Tries to assert a complex lock with

read-only access.

lock_try wite Tries to assert a complex lock with
write access.

lock_wite Asserts a complex lock with write access.

6.4 Choosing a Locking Method

You can make your kernel modules SMP-safe by implementing a simple
or complex locking method.

This section provides guidelines to help you choose the appropriate locking
method (simple or complex). In choosing a locking method, consider the
following SMP characteristics:

e  Who has access to a particular resource

e Prevention of access to the resource while a kernel thread sleeps
¢ Length of time the lock is held

e Execution speed

¢ Size of code blocks
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The following sections discuss each of these characteristics. See Section 6.4.6
for a summary comparison table of the locking methods that you can use to
determine which items to lock in your kernel modules.

6.4.1 Who Has Access to a Particular Resource

To choose the appropriate lock method, you must understand the entity
that has access to a particular resource. Possible entities that can access a
resource are kernel threads, interrupt service routines, and exceptions. If
you need a lock for resources that multiple kernel threads access, use simple
or complex locks. Use a combination of spl routines and simple locks to lock
resources that kernel threads and interrupt service routines access.

For exceptions, use complex locks if the exception involves blocking
conditions. If the exception does not involve blocking conditions, use simple
locks.

6.4.2 Prevention of Access to a Resource While a Kernel Thread
Sleeps

You must determine if it is necessary to prevent access to the resource while
a kernel thread blocks (sleeps). One example is waiting for disk I/O to a
buffer. If you need a lock to prevent access to the resource while a kernel
thread blocks (sleeps) and there are no blocking conditions, use simple or
complex locks. Otherwise, if there are blocking conditions, use complex locks.

6.4.3 Length of Time the Lock Is Held

You must estimate the length of time that the lock is held to determine

the appropriate lock method. In general, use simple locks when the entity
accesses are bounded and small. One example of a bounded and small access
is some entity that accesses a system time variable. Use complex locks when
the entity accesses might take a long time or a variable amount of time. One
example of a variable amount of time is some entity scanning linked lists.
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6.4.4 Execution Speed

You must account for execution speed in choosing the appropriate lock
method. The following factors influence execution speed:

The way complex locks work

Complex locks are slightly more than twice as expensive (in terms of
execution speed) as simple locks because complex locks use the simple
lock routines to implement the lock. Therefore, it takes two lock and
unlock pairs to protect a resource or code block with a complex lock as
opposed to one pair for the simple lock.

Memory space used

Complex locks use more memory space than simple locks because
the complex lock structure, | ock, contains a pointer to a simple lock
structure in addition to other data to implement the complex lock.

Busy wait time

Busy wait time is the amount of CPU time that is expended on waiting
for a simple lock to become free. If the kernel module initiates a simple
lock on a resource and the code block is long (or there are numerous
interrupts), a lot of CPU time could be wasted waiting for the simple lock
to become free. If this is the case, use complex locks to allow the current
kernel thread to block (sleep) on the busy resource. This action allows
the CPU to execute a different kernel thread.

Real-time preemption

Real-time preemption cannot occur when a simple lock is held. The use
of complex locks (which can block) improves the performance that is
associated with real-time preemption.

6.4.5 Size of Code Blocks

In general, use complex locks for resources that are contained in long
code blocks. Also, use complex locks in cases where the resource must be
prevented from changing when a kernel thread blocks (sleeps).

Use simple locks for resources that are contained in short, nonblocking code
blocks or when synchronizing with interrupt service routines.

6.4.6 Summary of Locking Methods

Table 6—3 summarizes the SMP characteristics for choosing the appropriate
lock method to make your kernel module SMP safe. The first column of the
table presents an SMP characteristic and the second and third columns
present the lock methods.
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The following list describes the possible entities that can appear in the
second and third columns:

e Yes — The lock method is suitable for the characteristic.
e No — The lock method is not suitable for the characteristic.
e Better — This lock method is the most suitable for the characteristic.

e  Worse — This lock method is not the most suitable for the characteristic.

(The numbers before each Characteristic item appear for easy reference
in later descriptions.)

Table 6-3: SMP Characteristics for Locking

Simple Complex
Characteristic Lock Lock
1. Kernel threads can access this resource. Yes Yes
2. Interrupt service routines can access this resource. Yes No
3. Exceptions can access this resource. Yes Yes
4. You need to prevent access to this resource while a Yes Yes
kernel thread blocks and there are no blocking conditions.
5. You need to prevent access to this resource while a No Yes
kernel thread blocks and there are blocking conditions.
6. You need to protect resources between kernel Yes No
threads and interrupt service routines.
7. You need to have maximum execution speed Yes No
for this kernel module.
8. The module references and updates this resource in Worse Better
long code blocks (implying that the length of time that the
lock is held on this resource is not bounded and long).
9. The module references and updates this resource Better Worse
in short nonblocking code blocks (implying that
the length of time that the lock is held on this
resource is bounded and short).
10. You need to minimize memory usage by the Yes No
lock-specific data structures.
11. You need to synchronize with interrupt Yes No
service routines.
12. The module can afford busy wait time. Yes No
13. The module implements real-time preemption. Worse Better
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Use the following steps to analyze your kernel module to determine which
items to lock and which locking method to choose:

1. Identify all of the resources in your kernel module that you could
potentially lock. Section 6.5 discusses some of these resources.

2. Identify all of the code blocks in your kernel module that manipulate
the resource.

3. Determine which locking method is appropriate. Use Table 6-3 as a
guide to help you choose the locking method. Section 6.5.5 describes
how to use this table for choosing a locking method for the example
device register offset definition resources.

4. Determine the granularity of the lock. Section 6.5.5 describes how to
determine the granularity of the locks for the example device register
offset definitions.

6.5 Choosing the Resources to Lock in the Module

Section 6.4 presents the SMP characteristics to consider when you choose
a locking method. You need to analyze each section of the kernel module
(in device drivers, for example, the open and close device section, the read
and write device section, and so forth) and apply those SMP characteristics
to the following resource categories:

e Read-only resources (Section 6.5.1)

e Device control status register (CSR) addresses (Section 6.5.2)

¢ Module-specific global resources (Section 6.5.3)

e System-specific global resources (Section 6.5.4)

The following sections discuss each of these categories. See Section 6.5.5 for

an example that walks you through the steps for analyzing a kernel module
to determine which resources to lock.

6.5.1 Read-Only Resources

Analyze each section of your kernel module to determine if the access to a
resource is read only. In this case, resource refers to module and system
data that is stored in global variables or data structure fields. You do not
need to lock resources that are read only because there is no way to corrupt
the data in a read-only operation.

6.5.2 Device Control Status Register Addresses

Analyze each section of your kernel module to determine accesses to a
device’s control status register (CSR) addresses. Many kernel modules that
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are based on the UNIX operating system use the direct method; that is, they
access a device’s CSR addresses directly through a device register structure.
This method involves declaring a device register structure that describes
the device’s characteristics, which include a device’s control status register.
After declaring the device register structure, the kernel module accesses the
device’s CSR addresses through the field that maps to it.

Some CPU architectures do not allow you to access the device CSR addresses
directly. Make kernel modules that need to operate on these types of CPUs
use the indirect method. In fact, kernel modules that operate on Alpha
systems must use the indirect method. Therefore, the discussion of locking a
device’s CSR addresses focuses on the indirect method.

The indirect method involves defining device register offset definitions
(instead of a device register structure) that describe the device’s
characteristics, which include a device’s control status register. The method
also includes the use of the following categories of routines:

e CSR I/O access routines

read_i o_port — Reads data from a device register
write_io_port — Writes data to a device register

e /O copy routines

i 0_copyi n— Copies data from bus address space to system memory
i o_copyi o— Copies data from bus address space to bus address
space

i o_copyout — Copies data from system memory to bus address
space

Using these routines makes your kernel module more portable across
different bus architectures, different CPU architectures, and different CPU
types within the same architecture. For examples of how to use these
routines when writing device drivers, see Writing Device Drivers. The
following example shows the device register offset definitions that some xx
kernel module defines for some XX device:

#define XX_ADDER 0x0 /* 32-bit read/wite DVA address register */
#define XX_DATA O0x4 /* 32-bit read/wite data register */

#define XX_CSR 0x8 /* 16-bit read/wite CSR/LED register */
#define XX_TEST Oxc /* Go bit register. Wite sets. Read clears */

6.5.3 Module-Specific Global Resources

Analyze the declarations and definitions sections of your kernel module to
identify the following global resources:

6-14 Symmetric Multiprocessing and Locking Methods



e Module-specific global variables

e Module-specific data structures

Module-specific global variables can store a variety of information, including
flag values that control execution of code blocks and status information. The
following example shows the declaration and initialization of some typical
module-specific global variables. Use this example to help you locate similar
module-specific global variables in your kernel module.

int numxx = 0;

int xx_is_dynamc = 0;

Module-specific data structures contain fields that can store such information
as whether a device is attached, whether it is opened, the read/write mode,
and so forth. The following example shows the declaration and initialization
of some typical module-specific data structures. Use this example to help
you locate similar module-specific data structures in your kernel modules.

struct driver xxdriver = {

cfg_subsys_attr_t xx_attributes[] = {

struct xx_kern_str {

} xx_kern_str[NXX];

struct cdevsw xx_cdevsw entry = {
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After you identify the module-specific global variables and module-specific
data structures, locate the code blocks in which the kernel module references
them. Use Table 6-3 to determine which locking method is appropriate.
Also, determine the granularity of the lock.

6.5.4 System-Specific Global Resources
Analyze the declarations and definitions sections of your kernel module to
identify the following global resources:
e System-specific global variables

e System-specific data structures

System-specific variables include the global variables hz, cpu, and | bol t .
The following example shows the declaration of one system-specific global
variable:

extern int hz;

System-specific data structures include control | er, buf ,andi handl er _t.
The following example shows the declaration of some system-specific data
structures:

struct controller *info[ NXX];

struct buf cbbuf[ NCB];

After you identify the system-specific global variables and system-specific
data structures, locate the code blocks in which the module references them.
Use Table 6-3 to determine which locking method is appropriate. Also,
determine the granularity of the lock.
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Note

To lock buf structure resources, use the BUF_LOCK and
BUF_UNLCOCK routines instead of the simple and complex lock
routines. For descriptions of these routines, see BUF_LOCK(9) and
BUF _UNLOCK(9).

6.5.5 How to Determine the Resources to Lock

Use the following steps to determine which resources to lock in your kernel
modules:
Identify all resources that you might lock.

2. Identify all of the code blocks in the kernel module that manipulate
each resource.

3. Determine which locking method is appropriate.
4. Determine the granularity of the lock.

The following sections provide an example that walks you through an
analysis of which resources to lock for the xx module.

6.5.5.1 Step 1: Identify All Resources That You Might Lock
Table 6-4 summarizes the resources that you might lock in your kernel
module according to the following categories:
e Device control status register (CSR) addresses
e Module-specific global variables
e Module-specific data structures
e System-specific global variables

e System-specific global data structures

Table 6-4: Kernel Module Resources for Locking

Category Associated Resources

Device control status register N/A
(CSR) addresses.

Module-specific global variables. Variables that store flag values to control
execution of code blocks. Variables
that store status information.

Module-specific global data structures. ~ dsent, cfg_subsys_attr_t,
driver, and the kernel module’s
kern_str structure.

Symmetric Multiprocessing and Locking Methods 6-17



Table 6-4: Kernel Module Resources for Locking (cont.)

Category Associated Resources

System-specific global variables cpu, hz, I bol t, and page_si ze.

System-specific global data structures control I er and buf.

One resource that the xx module must lock is the device CSR addresses.
This module also needs to lock the hz global variable. The example analysis
focuses on the following device register offset definitions for the xx module:

#define XX_ADDER 0x0 /* 32-bit read/wite DVA address register */
#define XX_DATA O0x4 /* 32-bit read/wite data register */

#define XX_CSR 0x8 /* 16-bit read/wite CSR/ LED register */
#define XX_TEST Oxc /* Go bit register. Wite sets. Read clears */

6.5.5.2 Step 2: Identify All of the Code Blocks in the Module That Manipulate the
Resource

Identify all of the code blocks that manipulate the resource. If the code block
accesses the resource read only, you might not need to lock the resources that
it references. However, if the code block writes to the resource, you need to
lock the resource by calling the simple or complex lock routines.

The xx module accesses the device register offset definition resources in the

open and close device section and the read and write device section.

6.5.5.3 Step 3: Determine Which Locking Method Is Appropriate

Table 6-5 shows how to analyze the locking method that is most suitable
for the device register offset definitions for some xx module. (The
numbers before each Characteristic item appear for easy reference in later
descriptions.)
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Table 6-5: Locking Device Register Offset Definitions

Applies to Simple Complex
Characteristic This Module Lock Lock
1. Kernel threads can access this resource. Yes Yes Yes
2. Interrupt service routines can No N/A N/A
access this resource.
3. Exceptions can access this resource. No N/A N/A
4. You need to prevent access to this Yes Yes Yes

resource while a kernel thread blocks and
there are no blocking conditions.

5. You need to prevent access to this No N/A N/A
resource while a kernel thread blocks and
there are blocking conditions.

6. You need to protect resources Yes Yes No
between kernel threads and interrupt
service routines.

7. You need to have maximum execution Yes Yes No
speed for this kernel module.
8. The module references and updates this No N/A N/A

resource in long code blocks (implying that
the length of time that the lock is held on
this resource is not bounded and long).

9. The module references and updates Yes Better Worse
this resource in short nonblocking code

blocks (implying that the length of time

that the lock is held on this resource

is bounded and short).

10. You need to minimize memory usage Yes Yes No
by the lock-specific data structures.

11. You need to synchronize with No N/A N/A
interrupt service routines.

12. The module can afford busy wait time.  Yes Yes No
13. The module implements real-time No N/A N/A
preemption.

The locking analysis table for the device register offset definitions shows
the following:

e Seven of the SMP characteristics (numbers 1, 4, 6, 7, 9, 10, and 12) apply
to the xx module.

e Simple and complex locks are suitable for SMP characteristics 1 and 4.

e Simple locks are better suited than complex locks for SMP characteristic
9.
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¢ Simple locks (not complex locks) are suitable for SMP characteristics
6, 7, 10, and 12.

Based on the previous analysis, the xx module uses the simple lock method.

6.5.5.4 Step 4: Determine the Granularity of the Lock

After you choose the appropriate locking method for the resource, determine
the granularity of the lock. For example, in the case of the device register
offset resource, you can determine the granularity by answering the
following questions:

1. Is a simple lock needed for each device register offset definition?

2. Is one simple lock needed for all of the device register offset definitions?
Table 6-5 indicates that minimizing memory usage is important to the xx
module; therefore, creating one simple lock for all of the device register offset

definitions saves the most memory. The following code fragment shows how
to declare a simple lock for all of the device register offset definitions:

#i ncl ude <kern/ | ock. h>

decl _sinpl e_l ock_data( , slk_xxdevoffset)

If the preservation of memory were not important to the xx module, declaring
a simple lock for each device register offset definition might be more
appropriate. The following code fragment shows how to declare a simple lock
structure for each of the example device register offset definitions:

#i ncl ude <kern/ I ock. h>

decl _sinple_l ock_data( , slk_xxaddr)

decl _sinple_l ock_data( , slk_xxdata)

decl _sinple_l ock_data( , slk_xxcsr)
_sinple_lock_data( , slk_xxtest)

decl

After declaring a simple lock structure for an associated resource, you must
initialize it (only once) by calling si npl e_I ock_i ni t . Use the simple lock
routines in code blocks that access the resource. Chapter 7 discusses the
simple lock—related routines.
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Simple Lock Routines

After you decide that the simple lock method is the appropriate method for
locking specific resources, you use the simple lock routines to accomplish the
locking. To use simple locks in a kernel module, perform the following tasks:

e Declare a simple lock data structure (Section 7.1)

e Initialize a simple lock (Section 7.2)

e Assert exclusive access on a resource (Section 7.3)

e Release a previously asserted simple lock (Section 7.4)
e Try to obtain a simple lock (Section 7.5)

e Terminate a simple lock (Section 7.6)

e Use the spl routines with simple locks (Section 7.7)

To illustrate the use of these routines, the chapter uses code from an example
kernel module called xx that operates on some XX device. This example
module locks a ker n_str structure resource called xx_kern_str.

7.1 Declaring a Simple Lock Data Structure

Before you use a simple lock, declare a simple lock data structure for the
resource that you want to lock by using the decl _si npl e_| ock_dat a macro.
The following code fragment shows a call to decl _si npl e_| ock_dat a in
the xx kernel module:

#incl ude <kern/lock. h>[1]

struct xx_kern_str {
int sc_openf; /* Open flag */
int sc_count; /* Count of characters witten to device */
decl _sinple_lock_data( , Ik_xx_kern_str); /* SWMP lock for xx_kern_str */

}xx_kern_str[ NNONE] ;

Includes the header file / usr/ sys/i ncl ude/ ker n/ | ock. h. The
| ock. h file defines the simple spin lock and complex lock structures
that the kernel modules use for synchronization on single-processor
and multiprocessor systems.
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Declares an array of ker n_str structures and calls it xx_kern_str.
The xx module uses the decl _si npl e_I| ock_dat a macro to declare a
simple lock structure as a field of the xx_kern_str structure.

The decl _si npl e_| ock_dat a macro declares a simple lock
structure, sl ock, of the specified narme. You declare a simple lock
structure to protect kernel module data structures and device register
access. You use decl _si npl e_| ock_dat a to declare a simple

lock structure and then pass it to the following simple lock-specific
routines: si nmpl e_l ock_init,sinple_lock,sinple_|ock try,

si npl e_unl ock, and si npl e_| ock_t er m nat e.

The decl _si npl e_| ock_dat a macro can take two arguments:

¢ The first argument (not passed in this call) specifies the class of the
declaration. For example, you pass the ext er n keyword if you want
to declare the simple lock structure as an external structure. This
argument is specified in this call if | k_xx_ker n_str is declared in
another program module.

¢ The second argument specifies the name that you want the
decl _si npl e_I ock_dat a routine to assign to the declaration of
the simple lock structure. In this call to the routine, the name for
the simple lock structure is | k_xx_kern_str.

Do not follow an invocation to the decl _si npl e_I ock_dat a macro
with a semicolon.

You can also declare a simple lock structure by using the typedef
si npl e_l ock_dat a_t, as in the following example:

struct xx_kern_str {
int sc_openf; /* Open flag */
int sc_count; /* Count of characters witten to device */
sinmple_lock_data_t |k_xx_kern_str; /* SWMP lock for xx_kern_str */

}xx_kern_str[ NNONE] ;

Declares an array of ker n_str structures and calls it xx_kern_str.
The xx module declares a simple lock structure as a field of the
xx_kern_str structure to protect the integrity of the data that is
stored in the sc_openf and sc_count fields. A kernel module’s
ker n_str structure is one resource that often requires protection in
an SMP environment because kernel module routines use it to share
data. More than one kernel thread might need to access the fields of an
xX_kern_str structure.

7.2 Initializing a Simple Lock

After declaring the simple lock data structure, you initialize it by calling
the si npl e_l ock_i ni t routine. The following code fragment shows a call
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to si npl e_l ock_i ni t by the xx kernel module’s xxcat t ach routine.

The xxcat t ach routine performs the tasks that are necessary to establish
communication with the actual device. One of these tasks is to initialize any
global data structures. Therefore, the xxcat t ach routine initializes the
simple lock structure | k_xx_kern_str.

The code fragment also shows the declaration of the simple lock structure in
the xx_kern_str structure.

#incl ude <kern/lock. h>[1]

struct xx_kern_str {
int sc_openf; /* Open flag */
int sc_count; /* Count of characters witten to device */
sinmple_lock_data_t |k_xx_kern_str; /* SWMP lock for xx_kern_str */

}xx_kern_str[ NNONE] ;

xxcattach(struct controller *ctlr)

{

regi ster struct xx_kern_str *sc = &x_kern_str[ctlr->ctlr_nuni;

/* Tasks to performcontroller-specific initialization */
sinpl e_l ock_init (&sc->l k_xx_kern_str);

/* Performany other controller-specific initialization tasks */

}

Includes the / usr/ sys/ i ncl ude/ ker n/ | ock. h header file. The
| ock. h file defines the simple spin lock and complex lock structures
that the kernel modules use for synchronization on single-processor
and multiprocessor systems.

Declares an array of ker n_str structures and calls it xx_kern_str.
The xx kernel module declares a simple lock structure as a field of
the xx_ker n_str structure to protect the integrity of the data that
is stored in the sc_openf and sc_count fields. A kernel module’s
ker n_str structure is one resource that often requires protection in
an SMP environment because kernel module routines use it to share
data. More than one kernel thread might need to access the fields of an
xX_kern_str structure.

Calls the si npl e_| ock_i ni t routine to initialize the simple lock
structure called | k_xx_kern_str.

The si npl e_I| ock_i ni t routine takes one argument: a pointer to
a simple lock structure. You can declare this simple lock structure
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by using the decl _si npl e_| ock_dat a macro. In this call, the

xxcat t ach routine passes the address of the | k_xx_kern_str field of
the xx_ker n_st r structure pointer. You need to initialize the simple
lock structure only once.

7.3 Asserting Exclusive Access on a Resource

After you declare and initialize the simple lock data structure, you can
assert exclusive access by calling the si npl e_| ock routine. The following
code fragment shows a call to si npl e_I ock by the xx kernel module’s
Xxxopen routine.

The xxopen routine is called as the result of an open system call.

The xxopen routine performs the following tasks:
e Ensures that the open is unique
e Marks the device as open

e Returns the value 0 (zero) to the open system call to indicate success

The code fragment also shows the declaration of the simple lock structure
in the xx_ker n_str structure and the initialization of the simple lock
structure by thel module’s xxcat t ach routine. See Section 7.2 for
explanations of these tasks.

#i ncl ude <kern/ | ock. h>

struct xx_kern_str {
int sc_openf; /* Open flag */
int sc_count; /* Count of characters witten to device */
sinple_lock_data_t |k_xx_kern_str; /* SWMP lock for xx_kern_str */

}xx_kern_str[ NXX];

xxcattach(struct controller *ctlr)

{

regi ster struct xx_kern_str *sc = &x_kern_str[ctlr->ctlr_nuni;

/* Tasks to performcontroller-specific initialization */

sinple_lock_init(&sc->l k_xx_kern_str);

xxopen(dev, flag, format)
dev_t dev;
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}

int flag;
int format;

register int unit = ninor(dev);
struct controller *ctlr = xxinfo[unit];
struct xx_kern_str *sc = &x_kern_str[unit];

if(unit >= NXX)

return ENCDEV; [1]

si npl e_l ock(&sc->l k_xx_kern_str);
if (sc->sc_openf == DN_OPEN)
{

If the number of device units on the system is greater than NXX, returns
the error code ENODEV, which indicates that no such device exists on the
system. This example test ensures that a valid device exists.

Calls the si npl e_| ock routine to assert an exclusive access on the
following code block.

The si npl e_| ock routine takes one argument: a pointer to a simple
lock structure. You can declare this simple lock structure by using the
decl _si npl e_I ock_dat a macro. In this call, the xxopen routine
passes the address of the | k_xx_kern_str field of the xx_kern_str
structure pointer.

Figure 7-1 shows what happens when two instances of the xx kernel
module execute on two CPUs. As the figure shows, the kernel thread
from CPU1 obtains the simple lock on the code block that follows item 2
in the code fragment before the kernel thread from CPU2. The reason
for locking this code block is to prevent data corruption of any future
writes to the xx_kern_str structure. The CPU2 kernel thread spins
while it waits for the CPU1 kernel thread to free the simple lock.
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Figure 7—1: Two Instances of the xx Module Asserting an Exclusive Lock

CPU1 CPU2
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Obtains simple lock

Spins while waiting for kernel module
executing on CPUL to free simple lock

si mpl e_| ock(&sc->l k_xx_kern_str);

/*code to open device
reads and wites to nenbers
of xx_kern_str structure*/
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7.4 Releasing a Previously Asserted Simple Lock

After you assert a simple lock (with exclusive access), you must release the
lock by calling the si npl e_unl ock routine. The following code fragment
shows calls to si npl e_unl ock by the xx kernel module’s xxopen routine.

The xxopen routine is called as the result of an open system call.
The xxopen routine performs the following tasks:

e Ensures that the open is unique

e Marks the device as open

e Returns the value 0 (zero) to the open system call to indicate success

The code fragment also shows the declaration of the simple lock structure
in the xx_ker n_str structure and the initialization of the simple lock
structure by the kernel module’s xxcat t ach routine.
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#i ncl ude <kern/ | ock. h>

struct xx_kern_str {
int sc_openf; /* Open flag */
int sc_count; /* Count of characters witten to device */
sinmple_lock_data_t |k_xx_kern_str; /* SWMP lock for xx_kern_str */

}xx_kern_str[ NXX];

xxcattach(struct controller *ctlr)

{

regi ster struct xx_kern_str *sc = &x_kern_str[ctlr->ctlr_nuni;

/* Tasks to performcontroller-specific initialization */

sinple_lock_init(&sc->l k_xx_kern_str);

xxopen(dev, flag, format)
dev_t dev;
int flag;
int format;

register int unit = ninor(dev);
struct controller *ctlr = xxinfo[unit];
struct xx_kern_str *sc = &x_kern_str[unit];

Pf(unit >= NXX)
return ENODEV;
si npl e_l ock(&sc->l k_xx_kern_str);
if (sc->sc_openf == DN_OPEN)
{
si mpl e_unl ock(&sc->l k_xx_kern_str);
return (EBUSY);

}
if ((ctlr 1=0) && (ctlr->alive & ALV_ALI VE)) [4]
{

sc->sc_openf = DN_OPEN,
si npl e_unl ock(&sc->l k_xx_kern_str);

return(0);

}

el se

{
si npl e_unl ock(&sc->l k_xx_kern_str);
return(ENX O ;

}
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If the number of device units on the system is greater than NXX, returns
the error code ENODEV, which indicates that no such device exists on the
system. This example test ensures that a valid device exists.

Calls the si npl e_| ock routine to assert an exclusive access on the
following code block.

The si npl e_| ock routine takes one argument: a pointer to a simple
lock structure. You can declare this simple lock structure by using the
decl _si npl e_I ock_dat a macro. In this call, the xxopen routine
passes the address of the | k_xx_kern_str field of the xx_kern_str
structure pointer.

If the sc_openf field of the sc pointer is equal to DN_OPEN, calls the
si mpl e_unl ock routine and returns the error code EBUSY, which
indicates that the NONE device has already been opened. This example
test ensures that only one unit of the kernel module can be opened at a
time. This type of open is referred to as an exclusive access open.

The si npl e_unl ock routine releases a simple lock for the resource
that is associated with the specified simple lock structure pointer.
This simple lock was previously asserted by calling the si npl e_I ock
or si mpl e_l ock_t ry routine. In this call, the locked resource is
referenced in the code block beginning with item 3.

The si npl e_unl ock routine takes one argument: a pointer to a simple
lock structure. You can declare this simple lock structure by using the
decl _si npl e_I ock_dat a macro. In this call, the xxopen routine
passes the address of the | k_xx_kern_str field of the xx_kern_str
structure pointer.

If the ct | r pointer is not equal to 0 (zero) and the al i ve field of ct I r
has the ALV_ALI VE bit set, then the device exists. If this is the case, the
xxopen routine sets the sc_openf field of the sc pointer to the open bit
DN_OPEN, calls si npl e_unl ock to free the lock, and returns the value
0 (zero) to indicate a successful open.

If the device does not exist, xxopen calls si npl e_unl ock to free the
lock and returns the error code ENXI O which indicates that the device
does not exist.

Figure 7-2 shows what happens when one instance of the xx kernel
module releases a previously asserted exclusive lock on the code block
that opens the device. In Figure 7-1, the CPU1 kernel thread obtained
the simple lock on the code block that opens the device. The CPU2
kernel thread spun while it waits for the simple lock to be freed. After
CPU 1 released the simple lock, CPU2 obtained the lock. In Figure 7-2,
the CPU1 kernel thread makes another attempt to lock the code block
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that opens the device. This time it spins until the CPU2 kernel thread
releases the simple lock.

Figure 7—2: One Instance of the xx Module Releasing an Exclusive Lock

CPU1 CPU2

xx.mod xx.mod

Obtains simple lock

si npl e_|l ock( &sc->l k_xx_kern_str);

Spins while waiting for kernel module .
executing on CPU2 to free simple lock /*code to open device

reads and wites to nenbers
of the xx_kern_str structure*/

| si mpl e_unl ock( &sc- >l k_xx_kern_str);
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7.5 Trying to Obtain a Simple Lock

In addition to explicitly asserting a simple lock, you can also try to assert the
simple lock by calling the si nmpl e_I ock_t ry routine. The main difference
between si npl e_| ock and si npl e_| ock_try isthat si mpl e_l ock_try
returns immediately if the resource is already locked, while si npl e_| ock
spins until the lock has been obtained. Therefore, call si npl e_Il ock_try
when you need a simple lock but the code cannot spin until the lock is
obtained.

The following code fragment shows a call to si npl e_| ock_t ry by the xx
kernel module’s xxopen routine.

The xxopen routine is called as the result of an open system call.

The xxopen routine performs the following tasks:
e Ensures that the open is unique
e Marks the device as open

e Returns the value 0 (zero) to the open system call to indicate success
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The code fragment also shows the declaration of the simple lock structure
in the xx_ker n_str structure and the initialization of the simple lock
structure by the kernel module’s xxcat t ach routine.

#i ncl ude <kern/Il ock. h>

struct xx_kern_str {
int sc_openf; /* Open flag */
int sc_count; /* Count of characters witten to device */
sinmple_lock_data_t |k_xx_kern_str; /* SWMP lock for xx_kern_str */

}xx_kern_str[ NXX];

xxcattach(struct controller *ctlr)

{

regi ster struct xx_kern_str *sc = &x_kern_str[ctlr->ctlr_nuni;

/* Tasks to performcontroller-specific initialization */

sinple_lock_init(&sc->l k_xx_kern_str);

xxopen(dev, flag, format)
dev_t dev;
int flag;
int format;

register int unit = nminor(dev);

struct controller *ctlr = xxinfo[unit];
struct xx_kern_str *sc = &x_kern_str[unit];
bool ean_t try ret_val;

if(unit >= NXX)
return ENODEV,
try_ret_val = sinple_lock_try(&sc->lk_xx_kern_str);

if (try _ret_val == TRUE) [4]
if (sc->sc_openf == DN_OPEN)
el se
/* Performsonme other tasks if sinple_lock_try fails *
* to assert an exclusive access */

Declares a variable to store the return value from the si npl e_I ock_try
routine.
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The si mpl e_I ock_t ry routine returns one of the following values:

TRUE The si npl e_| ock_t ry routine successfully
asserted the simple lock.

FALSE The si npl e_| ock_t ry routine failed to assert
the simple lock.

If the number of device units on the system is greater than NXX, returns
the error code ENODEV, which indicates that no such device exists on the
system. This example test ensures that a valid device exists.

Calls the si npl e_| ock_t ry routine to try to assert an exclusive access
on the following code block.

The si npl e_| ock_t ry routine takes one argument: a pointer to a
simple lock structure. You can declare this simple lock structure by
using the decl _si npl e_| ock_dat a macro. In this call, the xxopen
routine passes the address of the | k_xx_kern_str field of the
xX_kern_str structure pointer.

If the return from si npl e_| ock_t ry is TRUE, examines the sc_openf
field to determine whether this is a unique open. Otherwise, if the
return from si npl e_| ock_t ry is FALSE, performs some other tasks.

Figure 7-3 shows what happens when two instances of the xx kernel
module try to assert an exclusive lock on the code block that opens the
device. As the figure shows, the CPU1 and CPU2 kernel threads try to
assert an exclusive lock on the code block that opens the device. In
this case, the CPU1 kernel thread successfully obtains the lock. To
indicate this success, si npl e_| ock_t ry returns the value TRUE. At
the same time, the CPU2 kernel thread fails to obtain the lock and

si mpl e_| ock_t ry immediately returns the value FALSE to indicate
this.
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Figure 7-3: The xx Module Trying to Assert an Exclusive Lock
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7.6 Terminating a Simple Lock

After you unlock a simple lock (with exclusive access) and know that you are
finished using the lock for this resource, you can terminate the lock by calling
the si npl e_| ock_t er m nat e routine. Typically, you terminate any locks in
the kernel module’s controller (or device) unat t ach routine. These routines
are associated with loadable modules (for example, drivers). One task that is
associated with a controller or device unat t ach routine is to terminate any

locks that are initialized in the kernel module’s unat t ach routine.

The following code fragment shows a call to si npl e_| ock_t er m nat e by
the xx kernel module’s xx_ct | r_unatt ach routine. The code fragment also
shows the declaration of the simple lock structure in the xx_kern_str

structure, the initialization of the simple lock structure by the kernel

module’s xxcat t ach routine, and the unlocking of the simple lock structure

by the module’s xxopen routine.
#i ncl ude <ker n/1 ock. h>[1]

struct xx_kern_str {
int sc_openf; /* Open flag */
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int sc_count; /* Count of characters witten to device */
sinmple_lock_data_t |k_xx_kern_str; /* SWMP lock for xx_kern_str */

}xx_kern_str[ NXX;

xxcattach(struct controller *ctlr)

{

regi ster struct xx_kern_str *sc = &x_kern_str[ctlr->ctlr_nuni;

/* Tasks to performcontroller-specific initialization */

sinpl e_l ock_i nit(&sc->k_xx_kern_str);[3]

xxopen(dev, flag, format)
dev_t dev;
int flag;
int format;

register int unit = ninor(dev);
struct controller *ctlr = xxinfo[unit];
struct xx_kern_str *sc = &x_kern_str[unit];

if(unit >= NXX)
return ENODEV; [4]
si npl e_l ock(&sc->l k_xx_kern_str);
if (sc->sc_openf == DN_OPEN) [6]
{
si mpl e_unl ock(&sc->l k_xx_kern_str);
return (EBUSY);

}
if ((ctlr 1=0) && (ctlr->alive & ALV_ALIVE)) [7]
{

sc->sc_openf = DN_OPEN,
si npl e_unl ock(&sc->l k_xx_kern_str);

return(0);

}

el se[8]

{
si mpl e_unl ock(&sc->l k_xx_kern_str);
return(ENX O ;

}

xx_ctlr_unattach(bus, ctlr)
struct bus *bus;
struct controller *ctlr;

{
register int unit = ctlr->ctlr_num
if ((unit > numxx) || (unit < 0) {
return(l);

}

if (xx_is_dynamic == 0) {
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return(l);

/* Performs controller unattach tasks */

sinpl e_l ock_termi nat e( &c->l k_xx_kern_str); [9]

Includes the / usr/ sys/ i ncl ude/ ker n/ | ock. h header file. The
| ock. h file defines the simple spin lock and complex lock structures
that the kernel modules use for synchronization on single-processor
and multiprocessor systems.

Declares an array of ker n_str structures and calls it xx_kern_str.
The xx kernel module declares a simple lock structure as a field of
the xx_ker n_str structure to protect the integrity of the data that
is stored in the sc_openf and sc_count fields. A kernel module’s
ker n_str structure is one resource that often requires protection in
an SMP environment because kernel module routines use it to share
data. More than one kernel thread might need to access the fields of an
xX_kern_str structure.

Calls the si npl e_| ock_i ni t routine to initialize the simple lock
structure called | k_xx_kern_str.

The si nmpl e_I| ock_i ni t routine takes one argument: a pointer to

a simple lock structure. You can declare this simple lock structure

by using the decl _si npl e_| ock_dat a macro. In this call, the

xxcat t ach routine passes the address of the | k_xx_ker n_str field of
the xx_ker n_st r structure pointer. You need to initialize the simple
lock structure only once. After initializing a simple lock structure,
kernel modules can call si npl e_I ock to assert exclusive access on the
associated resource or si npl e_I ock_t ry to attempt to assert exclusive
access on the associated resource.

If the number of device units on the system is greater than NXX, returns
the error code ENODEV, which indicates that no such device exists on the
system. This example test ensures that a valid device exists.

Calls the si npl e_I ock routine to assert an exclusive access on the
following code block.

The si npl e_| ock routine takes one argument: a pointer to a simple
lock structure. You can declare this simple lock structure by using the
decl _si npl e_I ock_dat a macro. In this call, the xxopen routine
passes the address of the | k_xx_kern_str field of the xx_kern_str
structure pointer.

[6] Ifthe sc_openf field of the sc pointer is equal to DN_OPEN, calls the
si mpl e_unl ock routine and returns the error code EBUSY, which
indicates that the NONE device has already been opened. This example
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test ensures that only one unit of the module can be opened at a time.
This type of open is referred to as an exclusive access open.

The si npl e_unl ock routine releases a simple lock for the resource
that is associated with the specified simple lock structure pointer.
This simple lock was previously asserted by calling the si npl e_I ock
or si mpl e_l ock_t ry routine. In this call, the locked resource is
referenced in the code block beginning with item 6.

The si nmpl e_unl ock routine takes one argument: a pointer to a simple
lock structure. You can declare this simple lock structure by using the
decl _si npl e_I ock_dat a macro. In this call, the xxopen routine
passes the address of the | k_xx_kern_str field of the xx_kern_str
structure pointer.

If the ct | r pointer is not equal to 0 (zero) and the al i ve field of ct I r
has the ALV_ALI VE bit set, then the device exists. If this is the case, the
xxopen routine sets the sc_openf field of the sc pointer to the open bit
DN_OPEN, calls si npl e_unl ock to free the lock, and returns the value
0 (zero) to indicate a successful open.

If the device does not exist, xxopen calls si npl e_unl ock to free the
lock and returns the error code ENXI O which indicates that the device
does not exist.

[9] Calls the si npl e_| ock_t er m nat e routine to determine that the xx
module is permanently done using this simple lock.

The si npl e_I ock_t er mi nat e routine takes one argument: a
pointer to a simple lock structure. You can declare this simple lock
structure by using the decl _si npl e_| ock_dat a macro. In this
call, the xx_ctl r_unatt ach routine passes the address of the

| k_xx_kern_str field of the xx_ker n_str structure pointer. In
calling si npl e_| ock_t er m nat e, the xx kernel module must not
reference this simple lock again.

7.7 Using the spl Routines with Simple Locks
The spl routines block out asynchronous events on the CPU on which the
spl call is performed. Simple locks block out other CPUs. You need to use
both the spl routines and the simple lock routines when you synchronize

with kernel threads and interrupt service routines. The following code
fragment shows calls to the spl and simple lock routines:

#incl ude <kern/lock. h>[1]

struct tty_kern_str {
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decl _sinple_lock_data( , Ik_tty kern_str); /* SMP lock for tty_kern_str */
}tty_kern_str[ NSOVEDEVI CE] ;
sinmple_lock_init(&sc->k_tty_kern_str);

s = spltty(); [3]
sinple_lock(& k_tty_kern_str); [4]

/* Manipul ate resource */

sinple_unlock(& k_tty kern_str);
spl x(s); [6]

Includes the / usr/ sys/ i ncl ude/ ker n/ | ock. h header file. The
| ock. h file defines the simple spin lock and complex lock structures
that the kernel modules use for synchronization on single-processor
and multiprocessor systems.

Declares an array of kern_str structures and calls
it | k_tty kern_str. This example module uses the
decl _si npl e_I ock_dat a macro to declare a simple lock structure as
a field of the tty_kern_str structure.

Calls the spl t t y routine to mask out all tty (terminal device) interrupts.
The spl tty routine takes no arguments.

The spl tty routine returns an integer value that represents the CPU
priority level that existed before the call. The routine masks out all tty
interrupts on the CPU on which it is called.

Calls the si nmpl e_| ock routine to assert a lock with exclusive access
for the resource that is associated with the sl ock structure pointer,
which in this example is | k_tty_kern_str. The routine ensures that
no other kernel thread that runs on other CPUs can gain access to this
resource. This contrasts with the spl routines, which block out kernel
threads running on this CPU.

After manipulating the resource, calls si npl e_unl ock to release
the simple lock. This makes the resource available to kernel threads
running on other CPUs.
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[6] Calls the spl x routine to reset the CPU priority to the level specified
by the value returned by spl tty.

The spl x routine takes one argument: a CPU priority level. This level
must be a value returned by a previous call to one of the spl routines, in
this example spl t t y. Calling spl x releases the priority on this CPU.
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8

Complex Lock Routines

After you decide that the complex lock method is the appropriate method
for locking specific resources, use the complex lock routines to accomplish
the locking. To use complex locks in a kernel module, perform the following
tasks:

e Declare a complex lock data structure (Section 8.1)

e Initialize a complex lock (Section 8.2)

e Perform access operations on a complex lock (Section 8.3)
e Terminate a complex lock (Section 8.4)

To show the use of these routines, the chapter uses code from an example
kernel module called i f _ft a, which operates on some FTA device.

8.1 Declaring a Complex Lock Data Structure

Before you use a complex lock, declare a complex lock data structure for
the resource that you want to lock. The following code fragment shows
how to declare a complex lock data structure for a specific field of the
fta_kern_str structure:

#i ncl ude <kern/ | ock. h>[1]

struct cnd_buf {
u_l ong *req_buf;
u_l ong *rsp_buf;
short tineout;
struct cnmd_buf *next;

b 2]

struct fta_kern_str {
struct cmd_buf *q_first; /* first in the request queue */
struct cmd_buf *q_last; /* last in the request queue */

lock_data_t cnd_buf_q_lock; /* lock for the conmand */
/* request queue */

}; 3]

Complex Lock Routines 8-1



Includes the / usr/ sys/ i ncl ude/ ker n/ | ock. h header file. The
| ock. h file defines the simple spin lock and complex lock structures
that the kernel modules use for synchronization on single-processor
and multiprocessor systems.

Defines a cnd_buf data structure. The ft a_kern_str structure
declares two instances of cnd_buf . This structure describes a command
queue and is a candidate for locking in a symmetric multiprocessing
(SMP) environment. You must protect the integrity of the data that is
stored in the command queue from multiple writes by more than one
kernel thread.

Defines an ft a_kern_str data structure. The example shows only
those fields that are related to the discussion of complex locks.

In this example, the ft a_ker n_str structure contains the following
fields:

e qg_first

Specifies a pointer to a cnd_buf data structure. This field
represents the first command queue in the linked list.

e (_last

Specifies a pointer to a cnd_buf data structure. This field
represents the last command queue in the linked list.

e cnd_buf_qg_l ock

Declares a lock structure called cnd_buf _qg_| ock. The purpose
of this lock is to protect the integrity of the data that is stored in
the linked list of cnd_buf data structures. The alternate name

| ock_dat a_t declares the complex lock structure. Embedding the
complex lock in the ft a_ker n_st r structure protects the cnd_buf
structure for any number of instances.

8.2 Initializing a Complex Lock

After you declare the complex lock data structure, you initialize it by
calling the | ock_i ni t routine. The following code fragment shows a call to
lock_init bytheif_ ftamodule’sftaattach routine. The ftaattach
routine performs the tasks that establish communication with the actual
device. One of these tasks is to initialize any global data structures.
Therefore, the f t aat t ach routine initializes the complex lock data structure
cmd_buf _g_I ock.

The code fragment also shows the include file that is associated with complex
locks, definitions of the cnmd_buf and fta_kern_str structures, and the
declaration of the complex lock.
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#incl ude <kern/lock. h> “struct cnd_buf {

I

u_l ong *req_buf;

u_l ong *rsp_buf;
short tineout;
struct cnmd_buf *next;

struct fta_kern_str {

struct cmd_buf *q_first; /* first in the request queue */
struct cmd_buf *q_last; /* last in the request queue */
lock_data_t cnd_buf_q_lock; /* lock for the conmand */

b

/* request queue */

ftaattach(struct controller *ctlr)

{

struct fta_kern_str *sc = & ta_kern_str[ctlr->ctlr_nuni;

/* Tasks to performcontroller-specific initialization */

| ock_init(&sc->cnd_buf _q_lock, TRUE); [4]

/* Perform other tasks */

}

Includes the / usr/ sys/ i ncl ude/ ker n/ | ock. h header file. The

| ock. h file defines the simple spin lock and complex lock structures
that the kernel modules use for synchronization on single-processor
and multiprocessor systems.

Defines a cnd_buf data structure. The ft a_kern_str structure
declares two instances of cnd_buf . This structure describes a command
queue and is a candidate for locking in an SMP environment. You must
protect the integrity of the data that is stored in the command queue
from multiple writes by more than one kernel thread.

Defines an ft a_kern_str data structure. The example shows only
those fields that are related to the discussion of complex locks.

In this example, the ft a_ker n_str structure contains the following
fields:

e g _first
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Specifies a pointer to a cnd_buf data structure. This field
represents the first command queue in the linked list.

e (_last

Specifies a pointer to a cnd_buf data structure. This field
represents the last command queue in the linked list.

e cnd_buf_qg_l ock

Declares a lock structure called cnd_buf _q_I ock. This lock
protects the integrity of the data that is stored in the linked list

of cmd_buf data structures. The alternate name | ock_dat a_t
declares the complex lock structure. Embedding the complex lock in
the ft a_kern_str structure protects the cnmd_buf structure for
any number of instances.

Calls the | ock_i ni t routine to initialize the simple lock structure
called cnd_buf _q_I ock.

The | ock_i ni t routine takes two arguments:

¢ The first argument specifies a pointer to the complex lock structure.
In this call, the ft aat t ach routine passes the address of the
crmd_buf _g_I ock field of the ft a_ker n_st r structure pointer. You
need to initialize the complex lock structure only once.

e The second argument specifies a Boolean value that indicates
whether to allow kernel threads to block (sleep) if the complex lock is
asserted. You can pass to this argument only the value TRUE (allow
kernel threads to block if the lock is asserted).

8.3 Performing Access Operations on a Complex Lock
After you declare and initialize the complex lock data structure, you can
perform the following access operations on the complex lock:
e Assert a complex lock (Section 8.3.1)
¢ Release a previously asserted complex lock (Section 8.3.2)

e Try to assert a complex lock (Section 8.3.3)

Each of these tasks is discussed in the following sections.

8.3.1 Asserting a Complex Lock

After you declare and initialize the complex lock data structure, you can
assert a complex lock with read-only access or a complex lock with write
access by calling the | ock_read or | ock_wri t e routine. The following
sections describe how to use these routines.
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8.3.1.1 Asserting a Complex Lock with Read-Only Access

The | ock_r ead routine asserts a lock with read-only access for the resource
that is associated with the specified | ock structure pointer. The following
code fragment shows a call to| ock_read by thei f _fta module’sftai octl
routine.

The ft ai oct | routine is called as the result of an i oct| system call.

The f t ai oct | routine performs the following tasks:
e Determines the type of request

e Executes the request

¢ Returns data

e Returns the value 0 (zero) to the i oct| system call to indicate success

The code fragment also shows the include file that is associated with complex
locks, definitions of the cnd_buf and fta_kern_str structures, the
declaration of the complex lock structure in the ft a_kern_str structure,
and the initialization of the complex lock structure by the kernel module’s
ft aat t ach routine. Section 8.2 provides descriptions of these tasks.

#i ncl ude <kern/ | ock. h>

struct cnmd_buf {
u_l ong *req_buf;
u_l ong *rsp_buf;
short tineout;
struct cnmd_buf *next;

struct fta_kern_str {

struct cmd_buf *q_first; /* first in the request queue */
struct cnmd_buf *qg_last; /* last in the request queue */
lock_data_t cnd_buf_q_lock; /* lock for the conmand */

/* request queue */

ftaattach(struct controller *ctlr)

{

struct fta_kern_str *sc = & ta_kern_str[ctlr->ctlr_nuni;

/* Tasks to performcontroller-specific initialization */
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lock_init(&sc->cnd_buf_q_Il ock, TRUE);

/* Perform other tasks */

}

ftaioctl(register struct ifnet *ifp,
unsi gned int cnd,
caddr _t dataifp)

struct fta_kern_str *sc = & ta_kern_str[ifp->if_unit];

switch (cmd) {
case S| OCENABLBACK: {

if (ifp->if_flags & | FF_RUNNING {[1]
| ock_read( &sc->cnd_buf _q_I ock);

/* Performs read operation on the resource */
if(sc->q_first->req_buf = (u_l ong*)(data);

}

Calls the | ock_r ead routine if the | FF_RUNNI NGbit option is set in the
i f_f1lags field of the i f p structure pointer.

The | ock_r ead routine takes one argument: a pointer to the complex

lock structure | ock. This lock structure is associated with the resource
on which you want to assert a complex lock with read-only access. The

ftai octl routine passes the address of the cnd_buf _qg_| ock field of

the ft a_kern_str structure pointer.

Figure 8-1 shows what happens when multiple instances of thei f _fta
kernel module assert a read-only complex lock on the specified code
block. As the figure shows, kernel threads from the i f _ft a kernel
module that are executing on CPU1, CPU2, and CPU3 assert read-only
complex locks on the specified code block. The | ock_r ead routine
allows multiple kernel threads to have read-only access to the resource
at the same time. When a read lock is asserted, the protected resource
is guaranteed not to change. In this case, the cnmd_buf resource is
guaranteed not to change.
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Figure 8-1: Three Instances of the if_fta Module Asserting a Read-Only
Complex Lock

CPU1 CPU2 CPU3

if_fta.mod if_fta.mod if fta.mod

| ock_read(&sc->cnd_buf _q_I ock);
/*Code that reads the nmenber
of cmd_buf struct *\

if (sc->q_first->req_buf=(u_l ong*)(data);
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8.3.1.2 Asserting a Complex Lock with Write Access

The | ock_wri t e routine asserts a lock with exclusive write access for the
resource that is associated with the specified | ock structure pointer. After a
write lock is asserted, no other kernel thread can gain read or write access
to the resource until it is released.

The following code fragment shows a call tol ock_write by theif _fta
module’s f t ai oct| routine.

The ft ai oct | routine is called as the result of an i oct| system call.
The f t ai oct | routine performs the following tasks:

e Determines the type of request

e Executes the request

¢ Returns data

e Returns the value 0 (zero) to the i oct| system call to indicate success
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The code fragment also shows the include file that is associated with complex
locks, definitions of the cnd_buf and fta_kern_str structures, the
declaration of the complex lock structure in the ft a_kern_str structure,
and the initialization of the complex lock structure by the kernel module’s
ft aat t ach routine. Section 8.2 provides descriptions of these tasks.

#i ncl ude <kern/ | ock. h>

struct cnmd_buf {
u_l ong *req_buf;
u_long *rsp_buf;
short tineout;
struct cnmd_buf *next;

struct fta_kern_str {
struct cmd_buf *q_first; /* first in the request queue */
struct cnmd_buf *q_last; /* last in the request queue */

lock_data_t cnd_buf_q_lock; /* lock for the conmand /*
/* request queue */

ftaattach(struct controller *ctlr)

{

struct fta_kern_str *sc = & ta_kern_str[ctlr->ctlr_nuni;
/* Tasks to performcontroller-specific initialization */
lock_init(&sc->cnd_buf_q_Il ock, TRUE);

/* Perform other tasks */

}

ftaioctl(register struct ifnet *ifp,
unsi gned int cnd,
caddr_t data)

struct fta_kern_str *sc = & ta_kern_str[ifp->if_unit];

switch (cmd) {
case S| OCENABLBACK: {
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if (ifp->if_flags & | FF_RUNNING {[1]
l ock_write(&sc->cnd_buf _q_l ock);
sc->q_first->req_buf = (u_long*) (data);

Calls the | ock_wri t e routine if the | FF_RUNNI NG bit option is set in
thei f _fl ags field of the i f p structure pointer.

The | ock_wri t e routine takes one argument: a pointer to the complex
lock structure | ock. This lock structure is associated with the resource
on which you want to assert a complex lock with write access. The
ftai octl routine passes the address of the cnd_buf _qg_| ock field of
the ft a_kern_str structure pointer.

Figure 8-2 shows what happens when multiple instances of thei f _fta
kernel module assert a write complex lock on the specified code block.
As the figure shows, kernel threads from the i f _ft a module that are
executing on CPU1, CPU2, and CPU3 assert write complex locks on the
specified code block. The kernel thread from CPU3 asserts the write
complex lock before the kernel threads from CPU1 and CPU2. The
kernel thread from CPU3 writes to the r eq_buf field.

The | ock_wri t e routine blocks (puts to sleep) the kernel threads from
CPU1 and CPU2 by placing the requests on a lock queue. This example
shows that after | ock_wri t e successfully asserts a complex write lock,
no other kernel thread can gain read or write access to the resource
until the resource is released.

Complex Lock Routines 8-9



Figure 8-2: Three Instances of the if_fta Module Asserting a Write

Complex Lock

CPU1

CPU2

if_fta.mod

CPU3

if_fta.mod

if_fta.mod

Wait queue

| ock_write(&sc->cnd_buf_g_Il ock);
/*Code that wites to nmenber
of cnd _buf struct *\

sc->q_first->req_buf=(u_l ong*) (data);

8.3.2 Releasing a Previously Asserted Complex Lock
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After you finish manipulating the resource that is associated with the
complex lock, you need to release the lock. To release a complex lock that
you previously asserted with a call to | ock_read or | ock_wri t e, call the

| ock_done routine. The following code fragment shows a call to | ock_done
by the i f _ft a kernel module’s ft ai oct| routine.

The f t ai oct | routine is called as the result of an i oct| system call.

The f t ai oct | routine performs the following tasks:

¢ Determines the type of request

e Executes the request

e Returns data

e Returns the value 0 (zero) to the i oct| system call to indicate success
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The code fragment also shows the include file that is associated with complex
locks, definitions of the cnd_buf and fta_kern_str structures, the
declaration of the complex lock structure in the ft a_kern_str structure,
the initialization of the complex lock structure by the module’s f t aat t ach
routine, and the assertion of a complex write lock on the code block by the
kernel module’s f t ai oct| routine. Section 8.2 and Section 8.3.1.2 provide
descriptions of these tasks.

#i ncl ude <kern/ | ock. h>

struct cnmd_buf {
u_l ong *req_buf;
u_long *rsp_buf;
short tineout;
struct cnmd_buf *next;

struct fta_kern_str {

struct cmd_buf *q_first; /* first in the request queue */
struct cmd_buf *q_last; /* last in the request queue */
lock_data_t cnd_buf_q_l ock; /* lock for the conmand */

/* request queue */

ftaattach(struct controller *ctlr)

{

struct fta_kern_str *sc = & ta_kern_str[ctlr->ctlr_nuni;
/* Tasks to performcontroller-specific initialization */
lock_init(&sc->cnd_buf_q_Il ock, TRUE);

/* Perform other tasks */

}

ftaioctl(register struct ifnet *ifp,
unsi gned int cnd,
caddr_t data)

struct fta_kern_str *sc = & ta_kern_str[ifp->if_unit];
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switch (cmd) {
case S| OCENABLBACK: {

if (ifp->if_flags & | FF_RUNNING {
l ock_write(&sc->cnd_buf _q_l ock);
sc->q_first->req_buf = (u_long*) (data);

| ock_done(&sc->cmd_buf _g_I ock);

}

Calls the | ock_done routine to release the complex write lock that
| ock_wri t e previously asserted.

The | ock_done routine takes one argument: a pointer to the complex
lock structure | ock. This lock structure is associated with the resource
on which you want to assert a complex lock with write access. The
ftai octl routine passes the address of the cnd_buf _qg_| ock field of
the ft a_kern_str structure pointer.

Figure 8-3 shows what happens when one instance of the i f _fta
module releases a previously asserted complex write lock on the code
block that writes to the command buffer queue. As the figure shows, the
CPUS3 kernel thread releases the complex write lock on the code block
that writes to the command buffer queue. The CPU1 and CPU2 kernel
threads are blocked, waiting on the wait queue for the complex write
lock to be freed. Because the CPU1 kernel thread is first on the wait
queue, it now obtains the complex write lock. Furthermore, the figure
shows that the CPU3 kernel thread makes another attempt to assert
a complex write lock on the code block. This time | ock_wri t e blocks
(puts to sleep) the CPU3 kernel thread by placing it on the wait queue
behind the CPU2 kernel thread.

8-12 Complex Lock Routines



Figure 8-3: One Instance of the if_fta Module Releasing a Complex Write

Lock
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[ X
\ l ock_write(&sc->cmd_buf _q_l ock)
\\ /*Code that wites to nmenber
T~ of cnd_buf struct *\

| ock_done( &sc->cnmd_buf _q_I ock);

ZK-0975U-Al

8.3.3 Trying to Assert a Complex Lock

After you declare and initialize the complex lock data structure, you can
try to assert a complex lock with read-only access or a complex lock with
write access by calling the |l ock_try readorl ock_try_write routine.
Unlike the | ock_read or | ock_writ e routines, the |l ock_try_read and
| ock_try_write routines do not block if another kernel thread owns the
lock associated with the resource.

The following sections describe how to use these routines.

8.3.3.1 Trying to Assert a Complex Lock with Read-Only Access

To try to assert a complex lock with read-only access, call the
| ock_try_read routine. The | ock_try_read routine tries to assert a
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complex lock (without blocking) with read-only access for the resource that is
associated with the specified | ock structure pointer.

The following code fragment shows a call tol ock_try_read by theif _fta
module’s ft ai oct| routine. The code fragment also shows the include

file that is associated with complex locks, definitions of the crd_buf and
fta_kern_str structures, the declaration of the complex lock structure

in the ft a_kern_str structure, and the initialization of the complex

lock structure by the module’s ft aatt ach routine. Section 8.2 provides
descriptions of these tasks. In addition, the code fragment shows a call to

| ock_done if the complex read-only lock is successfully asserted.

#i ncl ude <kern/ | ock. h>

struct cnmd_buf {
u_l ong *req_buf;
u_long *rsp_buf;
short tineout;
struct cnmd_buf *next;

struct fta_kern_str {

struct cnmd_buf *q_first; /* first in the request queue */
struct cmd_buf *q_last; /* last in the request queue */
lock_data_t cnd_buf_q_lock; /* lock for the conmand */

/* request queue */

ftaattach(struct controller *ctlr)

{

struct fta_kern_str *sc = & ta_kern_str[ctlr->ctlr_nuni;
/* Tasks to performcontroller-specific initialization */
lock_init(&sc->cnd_buf_q_Il ock, TRUE);

/* Perform other tasks */

}
ftaioctl(register struct ifnet *ifp,
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}

unsi gned int cnd,
caddr_t data)

struct fta_kern_str *sc = & ta_kern_str[ifp->if_unit];
bool ean_t try ret_val;

switch (cmd) {
case S| OCENABLBACK: {

if (ifp->if_flags & | FF_RUNNING {[2]
try_ret_val = lock_try_read(&sc->cnmd_buf_qg_I ock);
if (try_ret_val == TRUE) {[3]
if (sc->q_first->req_buf == (u_long*) (data)) {

| ock_done( &sc->cnd_buf _q_I ock) ; [4]
}
}
}

el se[5 |

/* Code that executes when try_ret_val == FALSE */

Declares a variable to store one of the following return values from the
| ock_try_read routine:

TRUE The attempt to acquire the read-only complex
lock was successful.

FALSE The attempt to acquire the read-only complex
lock was unsuccessful.

Calls the | ock_try_r ead routine if the | FF_RUNNI NG bit option is set
in thei f_fl ags field of the i f p structure pointer.

The | ock_try_read routine takes one argument: a pointer to the
complex lock structure | ock. This lock structure is associated with
the resource on which you want to try to assert a complex lock with
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read-only access. The ftai oct| routine passes the address of the
crmd_buf _g_I ock field of the ft a_ker n_str structure pointer.

If the return from | ock_t ry_r ead is TRUE, obtains the read-only
complex lock on the code block that performs the read operation.

After completing the read operation, releases the read-only complex
lock by calling | ock_done.

If the return from | ock_try_read is FALSE, did not obtain the
read-only complex lock on the code block that performs the read
operation. In this case, it is not necessary to call | ock_done.

Figure 8-4 shows what happens when two instances of the i f _fta
module attempt to assert a read-only complex lock on the code block
that performs a read operation on the resource. As the figure shows,
both the CPU1 and CPU2 kernel threads try to assert a read-only
complex lock on the code block that performs a read operation on the
command buffer queue. Because this is a read-only operation, the CPU1
and CPU2 kernel threads obtain the read-only complex lock, and as a
result, | ock_try_read returns the value TRUE in both cases.

Figure 8-4: The if_fta Module Trying to Assert a Complex Read-Only Lock

CPU1 CPU2

if_fta.mod if_fta.mod

Returns . .
TRUE Tries to obtain

complex read-only
lock and is successful

Tries to obtain
complex read-only
lock and is successful

Returns
TRUE
if(ifp->if_flags& FF_RUNNI NG {
try_ret_val =l ock_try_read(&sc->cnd_buf _q_l ock);
if(try_ret_val =TRUE)
if(sc->q_first->req_buf=(u_l ong*)(data);
| ock_done( &sc- >cnd_buf _q_I ock);
el se
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8.3.3.2 Trying to Assert a Complex Lock with Write Access

To try to assert a complex lock with write access, call the | ock_try_wite
routine. The | ock_try_w it e routine tries to assert a complex lock
(without blocking) with write access for the resource that is associated with
the specified | ock structure pointer.

The following code fragment shows a call to | ock_try_write by the

i f_ftamodule’s ftaioctl routine. The code fragment also shows the
include file that is associated with complex locks, definitions of the cnd_buf
and fta_kern_str structures, the declaration of the complex lock structure
in the ft a_kern_str structure, and the initialization of the complex

lock structure by the module’s ft aat t ach routine. Section 8.2 provides
descriptions of these tasks. In addition, the code fragment shows a call to

| ock_done if the complex write lock is successfully asserted.

#i ncl ude <kern/ | ock. h>

struct cnmd_buf {
u_l ong *req_buf;
u_long *rsp_buf;
short tineout;
struct cnmd_buf *next;

struct fta_kern_str {

struct cmd_buf *q_first; /* first in the request queue */
struct cmd_buf *q_last; /* last in the request queue */
lock_data_t cnd_buf_q_lock; /* lock for the conmand */

/* request queue */

ftaattach(struct controller *ctlr)

{

struct fta_kern_str *sc = & ta_kern_str[ctlr->ctlr_nuni;
/* Tasks to performcontroller-specific initialization */
lock_init(&sc->cnd_buf_q_Il ock, TRUE);

/* Perform other tasks */
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ftaioctl(register struct ifnet *ifp,
unsi gned int cnd,
caddr_t data)

struct fta_kern_str *sc = & ta_kern_str[ifp->if_unit];
bool ean_t try ret_val;

switch (cmd) {
case S| OCENABLBACK: {

if (ifp->if_flags & | FF_RUNNING {[2]
try_ret_val = lock_try_wite(&sc->cnd_buf_q_l ock);
if (try_ret_val == TRUE) {[3]

sc->q_first->req_buf = (u_long*) (data);

| ock_done( &sc->cnd_buf _q_I ock) ; [4]

el se[5]

/* Code that executes when try_ret_val == FALSE */

Declares a variable to store one of the following return values from the
lock_try write routine:

TRUE The attempt to acquire the write complex lock
was successful.

FALSE The attempt to acquire the write complex lock
was unsuccessful.

Calls the | ock_try_w it e routine if the | FF_RUNNI NGbit option is set
in the i f _fl ags field of the i f p structure pointer.
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The | ock_try_writ e routine takes one argument: a pointer to the
complex lock structure | ock. This lock structure is associated with
the resource on which you want to try to assert write access. The
ftai octl routine passes the address of the cnd_buf _qg_| ock field of
the ft a_kern_str structure pointer.

If the return from | ock_try_wr it e is TRUE, obtains the write complex
lock on the code block that performs the write operation.

After completing the write operation, releases the write complex lock by
calling | ock_done.

If the return from | ock_try_wri t e is FALSE, did not obtain the write
complex lock on the code block that performs the write operation. In
this case, it is not necessary to call | ock_done.

Figure 8-5 shows what happens when two instances of the i f _fta
module attempt to assert a write complex lock on the code block that
performs a write operation on the resource. As the figure shows, both
the CPU1 and CPU2 kernel threads try to assert a write complex lock on
the code block that performs a write operation on the command buffer
queue. The CPU1 kernel thread obtains the write complex lock first
and as aresult | ock_try_wr it e returns the value TRUE. Because the
CPU2 kernel thread was not successful in obtaining the write complex
lock, | ock_try_write immediately returns (does not block the kernel
thread) the value FALSE.
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Figure 8-5: The if_fta Module Trying to Assert a Complex Write Lock

.

CPU1 CPU2
if fta.mod if fta.mod

Returns

Returns FALSE

TRUE Tries to obtain
complex write lock
and is successful

Tries to obtain
complex write lock
and is unsuccessful

if(ifp->if_flags& FF_RUNNING){

try_ret_val =l ock_try wite(&sc->cmd_buf_q_I ock);
if(try_ret_val =TRUE)

(sc->q_first->req_buf=(u_l ong*) (data);

I ock_done(&sc->cnmd_buf _g_I ock);

el se
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8.4 Terminating a Complex Lock

After you unlock a complex read or write lock and know that you are finished
using the lock for this resource, you can terminate the lock by calling the

| ock_t er mi nat e routine. Typically, you terminate any locks in the kernel
module’s controller (or device) unat t ach routine. These routines are
associated with loadable kernel modules. One task that is associated with a
controller or device unat t ach routine is to terminate any locks initialized in
the kernel module’s at t ach routine.

The following code fragment shows a call tol ock_term natebytheif _fta
module’s ft a_ct|r_unattach routine. The code fragment also shows the
include file that is associated with complex locks, definitions of the cnd_buf
and fta_kern_str structures, the declaration of the complex lock structure
in the ft a_ker n_str structure, and the initialization of the complex lock
structure by the kernel module’s f t aat t ach routine. Section 8.2 provides
descriptions of these tasks. In addition, the code fragment shows calls to

| ock_write and | ock_done.
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#i ncl ude <kern/ | ock. h>

struct cmd_buf {
u_l ong *req_buf;
u_long *rsp_buf;
short tineout;
struct cnmd_buf *next;

struct fta_kern_str {

struct cmd_buf *q_first; /* first in the request queue */
struct cnmd_buf *q_last; /* last in the request queue */
lock_data_t cnd_buf_q_l ock; /* lock for the conmand */

/* request queue */

ftaattach(struct controller *ctlr)

{

struct fta_kern_str *sc = & ta_kern_str[ctlr->ctlr_nuni;
/* Tasks to performcontroller-specific initialization */
lock_init(&sc->cnd_buf_q_Il ock, TRUE);

/* Perform other tasks */

}

ftaioctl(register struct ifnet *ifp,
unsi gned int cnd,
caddr_t data)

struct fta_kern_str *sc = & ta_kern_str[ifp->if_unit];

switch (cmd) {
case S| OCENABLBACK: {

if (ifp->if_flags & | FF_RUNNING {
l ock_write(&sc->cnd_buf _q_l ock);
sc->q_first->req_buf = (u_long*) (data);
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| ock_done( &sc->cnd_buf _q_I ock);

fta_ctlr_unattach(struct bus *bus,
struct controller *ctlr)

{

register int unit = ctlr->ctlr_num

if ((unit > numfta) || (unit < 0) {
return(l);

}

if (fta_is_dynamic == 0) {
return(l);

}

/* Performs controller unattach tasks */

| ock_t erm nat e( &c->cnd_buf _q_I ock);

}

Calls the | ock_t er mi nat e routine to determine that thei f _fta
module is permanently done using this complex lock.

The | ock_t er mi nat e routine takes one argument: a pointer to the
complex lock structure | ock. In this call, thefta_ctlr_unattach
routine passes the address of the cnd_buf _qg_I ock field of the
fta_kern_str structure pointer. In calling | ock_t er m nat e, the
i f_ftamodule must not reference this complex lock again.
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9

Kernel Threads

This chapter discusses the following topics associated with kernel threads:
e The advantages of using kernel threads (Section 9.1)

¢ Kernel threads execution (Section 9.1.1)

e Issues related to using kernel threads (Section 9.1.2)

e Kernel threads operations (Section 9.1.3)

e Thethread and t ask data structures (Section 9.2)

In addition, this chapter discusses the routines that allow you to perform
kernel thread operations. Specifically, these routines allow you to:

¢ Create and start a kernel thread (Section 9.3)

¢ Block (put to sleep) a kernel thread (Section 9.4)
¢ Unblock (wake up) kernel threads (Section 9.5)
e Terminate a kernel thread (Section 9.6)

e Set a timer for the current kernel thread (Section 9.7)

9.1 Using Kernel Threads in Kernel Modules

A thread is a single, sequential flow of control within a program. Within
a single thread is a single point of execution. Applications use threads

to improve their performance (throughput, computational speed, and
responsiveness). To start, terminate, delete, and perform other operations
on threads, the application programmer calls the routines that the POSIX
Threads Library provides.

The term kernel thread distinguishes between the threads that applications
use. A kernel thread is a single sequential flow of control within a kernel
module or other systems-based program. The kernel module or other
systems-based program uses the routines (instead of a threads library
package such as the POSIX Threads Library) to start, terminate, delete, and
perform other kernel thread operations.

Kernel threads execute within (and share) a single address space. Therefore,
kernel threads read from and write to the same memory locations.
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You use kernel threads to improve the performance of a kernel module.
Multiple kernel threads are useful in a multiprocessor environment, where
kernel threads run concurrently on separate CPUs. However, multiple
kernel threads also improve kernel module performance on single-processor
systems by permitting the overlap of input, output, or other slow operations
with computational operations.

Kernel threads allow kernel modules to perform other useful work while
waiting for a device to produce its next event, such as the completion of a
disk transfer or the receipt of a packet from the network.

Typically, you use kernel threads in kernel modules when:
¢ The kernel module must perform a long operation

One example of a long operation is the reset sequences for a multistep
device.

One reason for creating a kernel thread to perform a long operation is
to prevent the kernel module from running at a high interrupt priority
level (IPL) for long periods of time.

e The resource or resources for that operation are not available

This situation refers to allocating memory or accessing address space
that might cause a page fault.

e The operation to be performed on the resource (for example, blocking) is
illegal.

For example, access to a data item is not allowed at an elevated IPL,
such as the pr oc structure.

Figure 9-1 shows one example of the previously described situations. As
the figure shows, a kernel module must verify a number of device state
changes. One of these device state changes searches for an adapter fatal
error condition. If the fatal error condition occurs, the kernel module must
reset the adapter. The code that resets the adapter must block to accomplish
the adapter reset operation. Furthermore, the only time this error can occur
is during a device interrupt.

It is not legal to block in an interrupt service routine. Therefore, the figure
shows that the interrupt service routine for the kernel module calls an
xxst at e routine that handles all of the state changes. This routine creates
a kernel thread called xxerr that starts up when the adapter becomes
operational. The job of this kernel thread is to reset the adapter when a fatal
error occurs. It is legal for this kernel thread to perform blocking operations.
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Figure 9-1: Using Kernel Threads in a Kernel Module
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You can view multiple kernel threads in a program as executing
simultaneously. However, you cannot make any assumptions about the
relative start or finish times of kernel threads or the sequence in which
they execute. You can influence the scheduling of kernel threads by setting
scheduling and policy priority.

Each kernel thread has its own unique thread identifier. This thread
identifier is a pointer to the t hr ead data structure for the kernel thread.
The kernel threads creation routines return this t hr ead data structure
pointer to the kernel module after they successfully create and start the
kernel thread. Kernel modules use this pointer as a handle to a specific
kernel thread in calls to other kernel thread routines.

A kernel thread changes states during the course of its execution and is
always in one of the following states:

Waiting

The kernel thread is not eligible to execute because it is synchronizing
with another kernel thread or with an external event, such as I/O.

Ready

The kernel thread is eligible for a CPU to execute.

Running

A CPU is currently executing a kernel thread.

Terminated

The kernel thread has completed all of its work.
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9.1.2 Issues Related to Using Kernel Threads

When you design and code a kernel module that uses the kernel thread
routines, consider the following issues:

¢ Interplay among kernel threads

Using kernel threads can simplify the coding and designing of a kernel
module. However, you need to be sure that the synchronization and
interplay among kernel threads are correct. You use simple and complex
locks to synchronize access to data.

¢ Race conditions

A race condition is a programming error that causes unpredictable
and erroneous program behavior. Specifically, the error occurs when
two or more kernel threads perform an operation and the result of the
operation depends on unpredictable timing factors, for example, when
each kernel thread executes and waits and when each kernel thread
completes the operation.

e Deadlocks

A deadlock is a programming error that causes two or more kernel
threads to be blocked indefinitely. Specifically, the error occurs when a
kernel thread holds a resource while it waits for a resource that another
kernel thread holds and that kernel thread is also waiting for the first
kernel thread’s resource.

¢ Priority inversion

Priority inversion occurs when the interaction among three or more
kernel threads blocks the highest-priority kernel thread from executing.
For example, a high-priority kernel thread waits for a resource that a
low-priority kernel thread has locked, and the low-priority kernel thread
waits while a middle-priority kernel thread executes. The high-priority
kernel thread is made to wait while a kernel thread of lower priority (the
middle-priority kernel thread) executes.

To avoid priority inversion, associate a priority with each resource that
is at least as high as the highest-priority kernel thread that will use it,
and force any kernel thread that uses that object to first raise its priority
to that of the object.

9.1.3 Kernel Threads Operations

Table 9-1 lists the routines for kernel threads, and describes the operations
they perform.
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Table 9-1: Summary of Operations That Kernel Thread Routines Perform

Routines

Description

Creating kernel threads

kernel _isrthread

kernel _isrthread_w_ arg

rad_kernel _isrthread

kernel _thread

kernel _thread_w arg

rad_kernel thread

Blocking kernel threads

assert_wait_mesg

t hr ead_bl ock

Unblocking kernel threads

t hr ead_wakeup

t hr ead_wakeup_one

Terminating kernel threads

thread_terninate

thread_halt_self

Miscellaneous

current _task

t hread_set _ti neout

Starts a fixed-priority kernel thread
dedicated to interrupt service.

Starts a fixed-priority kernel thread
with an argument.

Starts a fixed-priority thread on a
specified RAD; takes an argument for
the thread that can be passed as NULL.

Starts a timeshare kernel thread
without a calling argument.

Starts a timeshare kernel thread with
a calling argument passed in.

Starts a timeshare kernel thread on
a specified RAD; takes an argument
that can be passed as NULL.

Asserts that the current kernel thread
is about to block (sleep).

Blocks (puts to sleep) the current
kernel thread.

Wakes up all kernel threads waiting
for the specified event.

Wakes up the first kernel thread
waiting on a channel.

Prepares to stop or stops execution of
the specified kernel thread.

Handles asynchronous traps for
self-terminating kernel threads.

Returns a pointer to the t ask structure
for the currently running kernel thread.

Sets a timer for the current kernel thread.
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9.2 Using the thread and task Data Structures

This section discusses the two data structures that the kernel thread
routines use: t hr ead and t ask. The t hr ead data structure contains
kernel thread information. Kernel modules typically use the wai t _resul t
field (along with the current _t hr ead routine) to determine the result of
the wait. The / usr/ sys/i ncl ude/ ker n/ t hr ead. h header file shows a

t ypedef statement that assigns the alternate name t hr ead_t for a pointer
to the t hr ead structure. Many of the kernel thread routines operate on
these pointers to t hr ead structures.

The t hr ead structure is an opaque data structure; that is, the operating
system, not the user of kernel threads, references and manipulates all
associated fields (except for the wai t _resul t field) .

The t ask data structure contains task-related information. The

[ usr/sys/includel/ kern/task. h header file shows a t ypedef statement
that assigns the alternate name t ask_t for a pointer to the t ask structure.
Some of the kernel thread routines require that you pass a pointer to the

t ask structure.

The t ask structure is an opaque data structure; that is, the operating
system, not the user of kernel threads, references and manipulates all of
its associated fields.

9.3 Creating and Starting a Kernel Thread

You can create and start a kernel thread with any of the functions listed in
the Creating kernel threads section of Table 9-1.

Section 9.3.1 and Section 9.3.2 show examples using ker nel _t hread_w_arg
and ker nel _i srt hread. You can also adapt these examples to create a
kernel timeshare thread without passing arguments and/or on a specific
RAD. Additionally, you can create a ker nel _i srt hr ead with an argument
and/or on a specific RAD.

Note

All of the kernel thread functions listed in Table 9—1 operate

as wrappers around the corresponding r ad_ker nel _t hr ead

or rad_kernel _i st hr ead function. Kernel threads that were
created with the older kernel thread functions are created on
the current RAD for Non-Uniform Memory Access (NUMA)
systems or on the only RAD for non-NUMA systems. Both the
rad_ker nel _t hr ead function and the r ad_ker nel _i st hread
function take an argument to the thread function that can be
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specified as NULL if your thread function does not need an
argument.

9.3.1 Creating and Starting a Kernel Thread with an Argument and
Timeshare Scheduling Policy

To create and start a kernel thread with an argument and timeshare policy,

call the ker nel _t hread_w_ar g routine. If you do not need an argument for
the thread, call the ker nel _t hr ead routine. If you want to create the thread
on a specific RAD in a NUMA system, call the r ad_ker nel _t hr ead routine.

The ker nel _t hr ead_w_ar g routine creates and starts a kernel thread in
a specified task at a specified entry point. It passes a specified argument
to the newly created kernel thread and creates and starts a kernel thread
with timeshare scheduling. A kernel thread that is created with timeshare
scheduling means that its priority degrades if it consumes an inordinate
amount of CPU resources.

Note

Ensure that a kernel module calls ker nel _t hr ead_w_ar g only
for long-running tasks.

The following code fragment shows a call to kernel _thread_w arg

by the i f_fta module’s fta transition_state routine. The
fta_transition_stat e routine changes the state of the kernel module by
performing certain fixed functions for any given state.

#i ncl ude <kern/thread. h>[1]

#defi ne ADAP "fta"

fextern task_t first_task;

struct fta_kern_str {

short reinit_thread_started; /* reinit thread running? */
]l*;

struct ifnet {
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short if_unit; /* subunit for lower-level driver */

fta_transition_state(struct fta_kern_str *sc,
short unit,
short state)

switch(state) {

case Pl _OPERATI ONAL: {
int s;
NODATA_CMD *req_buf f;
thread_t thread; [4]

if (sc->reinit_thread_started == FALSE) {[5]

thread = kernel _thread_w arg(first_task,
fta_error_recovery,

(void *)sc); [6]
if (thread == NULL) {[7]
printf("%%: Cannot start error recovery thread.\n",
ADAP, ifp->if_unit);
}

sc->reinit_thread_started = TRUE;

Includes the / usr/ sys/i ncl ude/ ker n/ t hr ead. h header file. The
t hr ead. h file defines structures that the kernel thread routines use.

Declares a pointer to at ask structure and calls it fi r st _t ask. Every
kernel thread must be part of a task. You pass this pointer to the
ker nel _t hread_w_ar g routine.

Defines an ft a_ker n_st r data structure. The example shows only the
field that is related to the discussion of the kernel _thread_w arg
routine.

Declares a pointer to a t hr ead structure and calls it t hr ead.
This variable stores the t hr ead structure pointer that
kernel _t hread_w_ar g returns.

If the reinitialized kernel thread evaluates to FALSE (the reinit kernel
thread is not running), it calls the ker nel _t hread_w_ar g routine.

[6] Calls the ker nel _t hread_w_ar g routine.

The ker nel _t hr ead_w_ar g routine takes three arguments:
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e The first argument specifies a pointer to a t ask structure. The
t ask structure is maintained only for source compatibility only and
should be ignored. Instead, specify NULL.

In the example, the ft a_transi ti on_st at e routine passes at ask
structure called fi rst_t ask.

¢ The second argument specifies a pointer to a routine that is the entry
point for the newly created kernel thread. In this call, the entry point
for the newly created kernel thread is the ft a_error_recovery
routine. The ft a_error_recovery routine is a kernel thread that
starts up when the adapter becomes operational. This kernel thread
is responsible for resetting the adapter in the event of a fatal error.

e The third argument specifies an argument that ker -
nel _thread_w_ar g passes to the entry point that the second
argument specifies. In this call, the fta transition_state
routine passes a pointer to the ft a_kern_str structure. The
fta_error_recovery routine performs a variety of tasks that
require the ft a_kern_str structure.

Upon successful completion, ker nel _t hr ead_w_ar g returns a pointer
to the t hr ead structure for the kernel thread that started at the
specified entry point. Kernel modules can use this pointer as a handle
to a specific kernel thread in calls to other kernel thread routines.

Thefta_transition_state routine inspects the return. If the return
is NULL, ker nel _t hread_w_ar g did not create the error recovery
kernel thread. The fta_transi ti on_st at e routine calls pri ntf to
display an appropriate message on the console terminal. If the return is
not NULL,fta transition_statesetsthereinit_thread started
field to the value TRUE to indicate that the error recovery kernel thread
is started.

9.3.2 Creating and Starting a Fixed-Priority Kernel Thread Dedicated
to Interrupt Service

To create and start a fixed-priority kernel thread that is dedicated to
interrupt service, call the ker nel _i srt hr ead routine. If you need an
argument for the thread, call the ker nel _i srt hread_w_ar g routine. If
you want to create the thread on a specific RAD in a NUMA system, call the
rad_kernel _i srt hread routine.

The following example code fragment shows a call to ker nel _i srt hr ead by
the i f _fta module’s ft apr obe routine. This kernel thread handles only
interrupt service requests in the specified task and at the specified priority
level. Make sure that a kernel module always attaches a kernel thread

to the first task.

Kernel Threads 9-9



In the example code fragment, the f t apr obe routine determines if the
adapter exists, fills in a variety of register values, and initializes a variety of
descriptors.

#incl ude <kern/thread. h>[1]
extern task_t first_task;

ftaprobe(io_handle_t reg,
struct controller *ctlr)
{

thread = kernel _isrthread(first_task,
fta_rec_intr,
BASEPRI _SYSTEM ;

Includes the / usr/ sys/i ncl ude/ ker n/ t hr ead. h header file. The
t hr ead. h file defines structures that kernel thread routines use.

Declares a pointer to at ask structure and calls it fi r st _t ask. Every
kernel thread must be part of a task. You pass this pointer to the
kernel _i srt hread routine.

Calls the ker nel _i srt hr ead routine.
The ker nel _i srt hr ead routine takes three arguments:

¢ The first argument specifies a pointer to a t ask structure. The t ask
structure is maintained for source compatibility only and should be
ignored. Instead, specify NULL.

In the example, the ft apr obe routine passes a t ask structure
called first_task.

¢ The second argument specifies a pointer to a routine that is the entry
point for the newly created kernel thread. In this call, the entry point
for the newly created kernel thread is the ft a_rec_i ntr routine.
The fta_rec_i ntr routine is a kernel thread that starts up when
the kernel module discovers a receive type device interrupt. This
kernel thread is responsible for handling the receive type interrupt.

e The third argument specifies the scheduling priority level for the
newly created kernel thread.

The following priority usage table describes the possible scheduling
priorities. The first column shows a range of priorities. The second
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column shows an associated scheduling priority constant that is
defined in <sr ¢/ ker nel / ker n/ sched. h> (if applicable). The third
column describes the usage of the priority ranges. To specify a
scheduling priority of 38, you pass the constant BASEPRI _ SYSTEM
as shown in the example. To specify a scheduling priority of 33, you
can pass the following: BASEPRI _HI GHEST + 1.

Priority Constant Usage

0—31 N/A Real-time kernel
threads

32—38 BASEPRI _HI GHEST — BASEPRI _ SYSTEM Operating system
kernel threads

44—64 BASEPRI _USER — BASEPRI _LOWNEST User kernel threads

9.4 Blocking (Putting to Sleep) a Kernel Thread

The routines that you use to block (put to sleep) a kernel thread depend on
whether or not the block (sleep) can be interrupted. For interruptible sleep
(that is, the kernel thread can take asynchronous signals), you must call the
symmetric multiprocessor (SMP) sleep call, mps| eep (see Section 9.4.2).

For uninterruptible sleep, use one of the following routines:
e assert_wait_nesg

Call this routine to assert that the current kernel thread is about to
block until some specified event occurs. You use this routine with the

t hr ead_bl ock routine, which actually blocks (puts to sleep) the current
kernel thread.

e thread_bl ock

Call this routine to block the current kernel thread and select the next
kernel thread to start.

These routines are described in the following sections.

9.4.1 Asserting That the Current Kernel Thread Is About to Block
Until the Specified Event Occurs

To assert that the current kernel thread is about to block until some specified
event occurs, call the assert _wai t _nmesg routine. To actually block (put to
sleep) the current kernel thread, call t hr ead_bl ock.

The following code fragment shows a call to assert _wai t _nmesg and
thread_bl ock by the i f_fta module’sfta_error_recovery routine.
The fta_error_recovery routine is a kernel thread that starts up when
the adapter becomes operational. This kernel thread resets the adapter if a
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fatal error occurs. The code fragment also shows the code that contains the
call to kernel _t hread_w_ar g, which callsfta_error_recovery.

ai#i ncl ude <kern/thread. h>[1]

al#defi ne ADAP "fta"

fextern task_t first_task;

lstruct fta_kern_str {

short reinit_thread_started; /* reinit thread running? */
short error_recovery_flag; /* flag to wake up a process */
].*;

lstruct ifnet {

short if_unit; /* subunit for lower-level driver */

fta_transition_state(struct fta_kern_str *sc,
short unit,
short state)

switch(state) {

case Pl _OPERATI ONAL: {
int s;
NODATA_CMD *req_buf f;
thread_t thread; [4]

if (sc->reinit_thread_started == FALSE) {[5]

thread = kernel _thread_w arg(first_task,
fta_error_recovery,

(void *)sc); [6]
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if (thread == NULL) {[7]
printf("%%: Cannot start error recovery thread.\n",
ADAP, ifp->if_unit);
}

sc->reinit_thread_started = TRUE;

void fta_error_recovery(struct fta_kern_str *sc)

{

struct ifnet *ifp;

/*
* Collect the argunent left by the kernel _thread_w arg().
*
/
ifp = &c->is_if;
for(;;) {[2]
assert_wait_mesg((vmoffset_t)&sc->error_recovery_flag,

TRUE, "ftaerr");
t hread_bl ock();

/* Performs tasks to reset the adapter */

Includes the / usr/ sys/i ncl ude/ ker n/ t hr ead. h header file. The
t hr ead. h file defines structures that kernel thread routines use.

Declares a pointer to at ask structure and calls it fi r st _t ask. Every
kernel thread must be part of a task. You pass this pointer to the
kernel _t hread_w_ar g routine.

Defines an ft a_ker n_st r data structure. The example shows only the
fields that are related to the discussion of the ker nel _t hread_w _ar g,
assert_wai t_nesg, and t hr ead_bl ock routines.

Declares a pointer to a t hr ead structure and calls it t hr ead.
This variable stores the t hr ead structure pointer that
kernel _t hread_w_ar g returns.

If the reinitialized kernel thread evaluates to FALSE (the r ei ni t kernel
thread is not running), calls the ker nel _t hr ead_w_ar g routine.

[6] Calls the ker nel _t hread_w_ar g routine.
The ker nel _t hr ead_w_ar g routine takes three arguments:

e The first argument specifies a pointer to a t ask structure. This
pointer identifies the task in which the kernel _thread_w arg
routine starts the newly created kernel thread. In this call, the
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fta_transition_state routine passes a t ask structure called
first_task.

¢ The second argument specifies a pointer to a routine that is the entry
point for the newly created kernel thread. In this call, the entry point
for the newly created kernel thread is the ft a_error_recovery
routine. The ft a_error _recovery routine is a kernel thread that
starts up when the adapter becomes operational. This kernel thread
is responsible for resetting the adapter in the event of a fatal error.

e The third argument specifies an argument that ker -
nel _thread_w_ar g passes to the entry point that the second
argument specifies. In this call, the fta transition_state
routine passes a pointer to the ft a_kern_str structure. The
fta_error_recovery routine performs a variety of tasks that
require the ft a_kern_str structure.

Upon successful completion, ker nel _t hr ead_w_ar g returns a pointer
to the t hr ead structure for the kernel thread started at the specified
entry point. Kernel modules can use this pointer as a handle to a
specific kernel thread in calls to other kernel thread routines.

Thefta_transition_st at e routine checks the return. If the return is
NULL, ker nel _t hread_w_ar g did not create the error recovery kernel
thread. The fta_transiti on_st at e routine calls pri ntf to display
an appropriate message on the console terminal. If the return is not
NULL,fta transition_state setsthereinit_thread started
field to the value TRUE to indicate that the error recovery kernel thread
is started.

The fta_error_recovery routine is a kernel thread that starts up
when the adapter becomes operational. This kernel thread resets the
adapter if a fatal error occurs.

A fatal error requires resetting the adapter; this error is discovered
during a device interrrupt. It is necessary to block in the interrupt
service routine while resetting the adapter. Because it is not legal to
block in an interrupt service routine, the ft a_t ransi ti on_st at e calls
this kernel thread to perform the reset operation on the adapter.

The ker nel _t hr ead_w_ar g routine passes the ker n_str structure
pointer tofta_error_recovery.

[©]

Sets up an infinite loop that executes when the adapter becomes
operational.

Calls the assert _wai t _nesg routine to assert that the current kernel
thread is about to block (sleep).

The assert_wai t _nesg routine takes three arguments:
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¢ The first argument specifies the event to associate with the current
kernel thread. In this call, the event that is associated with the
current kernel thread is stored in the error _recovery_fI ag field.

¢ The second argument specifies a Boolean value that indicates how
the kernel thread is awakened. You can pass one of the following

values:

TRUE The current kernel thread is interruptible.
This value means that a signal can awaken
the current kernel thread.

FALSE The current kernel thread is not

interruptible. This value means that only
the specified event can awaken the current
kernel thread.

In this call, the value TRUE is passed.

¢ The third argument specifies a mnemonic for the type of wait. The
/ bi n/ ps command uses this mnemonic to print out more meaningful
messages about a process. In this call, thefta_error_recovery
routine passes the string ft aerr.

The assert_wai t _nmesg routine does not return a value.

Calls the t hr ead_bl ock routine. The t hr ead_bl ock routine blocks
(puts to sleep) the current kernel thread and selects the next kernel
thread to start (run). The routine schedules the next kernel thread
onto this CPU.

The t hr ead_bl ock routine does not return a value.

9.4.2 Using the Symmetric Multiprocessor Sleep Routine

To block the current kernel thread, call the nmpsl eep routine — the
symmetric multiprocessor (SMP) sleep call. The following code fragment
shows a call to npsl eep by the i f _fta module’sfta_error_recovery
routine. The fta_error _recovery routine is a kernel thread that starts
when the adapter becomes operational. This kernel thread resets the
adapter if a fatal error occurs. The code fragment also shows the use of a
simple lock with the npsl eep routine.

struct fta_kern_str {

short error_recovery_flag; /* flag to wake up a process */
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int is_state;
sinple_lock_data_t |k _fta kern_str;

void fta_error_recovery(struct fta_kern_str *sc)

{

struct ifnet *ifp;

/*
* Collect the argunent left by the kernel _thread_w arg().
*/
ifp = &c->is_if;
sinple_l ock (&sc->k_fta_kern_str);
while (sc->is_state == RUN_NOT) {[4]
for(;;) {[&]
npsl eep ((vmoffset_t)&sc->error_recovery_flag, PCATCH,
"ftaerr", 0, &sc->lk_fta_kern_str,
MB_LOCK_SI MPLE | MS_LOCK_ON_ERROR)) [6 ]

/* Performs tasks to reset the adapter */

Declares a field to hold state options.

] [=]

Declares a simple lock structure pointer as a field of the ft a_kern_str
structure to protect the integrity of the data that is stored in the fields
of this structure. Assume that this simple lock was initialized in the
example kernel module’s at t ach routine. Thefta_error_recovery
routine passes this simple lock structure pointer to the npsl| eep routine.

]

Calls the si npl e_| ock routine to assert an exclusive access on the
following code block.

(=]

While the i s_st at e option is equal to the RUN_NOT option, execute
the for loop.

(@]

Sets up an infinite loop that executes when the i s_st at e option is
equal to the RUN_NOT option.

Calls the npsl eep routine to block (put to sleep) the current kernel
thread.

The npsl eep routine takes six arguments:

]

e A channel argument
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The channel argument specifies an address to associate with the
calling kernel thread to be put to sleep. In this call, the address (or
event) that is associated with the current kernel thread is stored in
the error_recovery_fl ag field.

e Apri argument

The pri argument specifies whether the sleep request is
interruptible. Setting this argument to the PCATCH option causes
the process to sleep in an interruptible state (that is, the kernel
thread can take asynchronous signals). Not setting the PCATCH
option causes the process to sleep in an uninterruptible state (that
is, the kernel thread cannot take asynchronous signals).

In this call, ft a_error_recovery passes the value PCATCH.
e A wresg argument

The wresg argument specifies the wait message.

In this call, fta_error_recovery passes the string ft aerr.
e Atinpargument

The t i nD argument specifies the maximum amount of time for
the kernel thread to block (sleep). If you pass the value 0 (zero),
npsl eep assumes there is no timeout.

In this call, fta_error_recovery passes the value 0 (zero) to
indicate there is no timeout.

e Al ockp argument

The | ockp argument specifies a pointer to a simple or complex lock
structure. You pass a simple or complex lock structure pointer if
you want to release the lock. If you do not want to release a lock,
pass the value 0 (zero).

In this call,ft a_error_recovery passes the address of the simple
lock.

e Aflags argument

The f | ags argument specifies the lock type. You can pass the
bitwise inclusive OR of the valid lock bits that are defined in
[usr/sys/include/sys/ param h.

In this call, ft a_error _recovery passes the bitwise inclusive OR
of the lock bits M5_LOCK_SI MPLE (calls npsl eep with a simple lock
asserted) and M5_LOCK_ON_ERROR (forces npsl eep to relock the
lock on failure). You specify these bits only if you pass a simple or
complex lock.

The npsl eep routine blocks (puts to sleep) the current kernel thread
until a wakeup is issued on the address that you specified in the
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channel argument. The kernel thread blocks a maximum of t i no
divided by hz seconds. The value 0 (zero) means there is no timeout.

If you pass the PCATCH option to the pri argument, npsl eep examines
signals before and after blocking. Otherwise, nps| eep does not examine
signals.

The npsl eep routine allows you to specify a pointer to a simple or
complex lock structure for some resource. This routine unlocks this
resource prior to blocking. The f | ags argument specifies the lock type.
The npsl eep routine releases the lock when the current kernel thread
successfully performs an assert wait on the specified channel.

The npsl eep routine returns the value 0 (zero) if awakened (success)
and r et urns EWOULDBLOCK if the timeout specified in the t i no
argument expires (failure). On success, mps| eep relocks the lock if you
did not set M5_LOCK_NO RELOCK in f | ags. On failure, it leaves the
lock unlocked. If you set the f| ags argument to M5_LOCK_ON_ERROR,
npsl| eep relocks the lock on failures.

9.5 Unblocking (Awakening) Kernel Threads

You can unblock (awaken) a kernel thread with the following routines:
e thread_wakeup_one

Call this routine to unblock the first kernel thread on the specified event.
e thread_wakeup

Call this routine to unblock all kernel threads on the specified event.

Note

If the thread was blocked using the npsl eep routine (see
Section 9.4.2), use the wakeup routine passing the same “channel”
argument that is passed to npsl eep. This approach is the same
as the technique for blocking and awakening a process (see
Section 5.3.2 and Section 5.3.3). Blocking and awakening a
process is actually blocking and awakening a thread, perhaps
the only thread, of the process.

The following code fragment compares the calls to t hr ead_wakeup_one and
t hr ead_wakeup by the i f _fta module’s f t ai nt r routine:

ftaintr(int unit)

{
fta_transition_state(sc, unit, Pl_OPERATI ONAL);
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[ **
*

* %

}

LR R

Code fragnment 1: Shows call to thread_wakeup_one *

KRk kkkkkkkkkkkhkkkhkhhkkhhkhhkhkkhkkhhkkkkkkkhkkkkkkkk* [

t hr ead_wakeup_one((vm of fset _t)&sc->error_recovery_flag);

This code fragment shows the call tofta_transition_state. The

fta_transition_state routine changes the state of the kernel
module by performing certain fixed functions for any given state.

After fta_transition_state performs its tasks, it returns to
ftai ntr, which calls t hr ead_wakeup_one. This routine takes an
event as the first argument.

The code fragment shows that the first argument for each of the routines
specifies the event to associate with the current kernel thread. It passes
the address of the value that is stored in the error _recovery_fl ag
field.

The kernel module’s ft a_error _recovery routine is the kernel
thread that was created and started to perform error recovery tasks.
The fta_error_recovery routine blocked on the event stored in the
error_recovery_fl ag field.

ftaintr(int unit)

{

[ **
*

* %

}

fta_transition_state(sc, unit, Pl_OPERATI ONAL);

LR

Code fragnment 2: Shows call to thread_wakeup *

KRk kkkkkkkkkkkhkkkhkhhkkhhkhhkhhkhkkhhkkhkkkkhkkhkkkkk* [

thread_wakeup((vm of fset _t)&sc->error_recovery_flag);

This code fragments shows the call tofta_transiti on_state. The
fta_transition_state routine changes the state of the kernel
module by performing certain fixed functions for any given state.

After fta_transition_state performs its tasks, it returns to
ft ai ntr, which calls t hr ead_wakeup. This routine takes an event as
the first argument.

The code fragment shows that the first argument for each of the routines
specifies the event to associate with the current kernel thread. It passes
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the address of the value that is stored in the error _recovery_fl ag
field.

The kernel module’s ft a_error _recovery routine is the kernel
thread that was created and started to perform error recovery tasks.
The fta_error_recovery routine blocked on the event stored in the
error_recovery_fl ag field.

The t hr ead_wakeup_one routine wakes up only the first kernel thread in
the hash chain waiting for the event that the event argument specifies. This
routine is actually a convenience wrapper for the t hr ead_wakeup_pri m
routine with the one_t hr ead argument set to TRUE (wake up only the

first kernel thread) and the r esul t argument set to THREAD_AWAKENED
(wakeup is normal).

The t hr ead_wakeup routine wakes up all kernel threads that are waiting
for the event that the event argument specifies. This routine is actually
a convenience wrapper for the t hr ead_wakeup_pri mroutine with the
one_t hr ead argument set to FALSE (wake up all kernel threads) and the
resul t argument set to THREAD AWAKENED (wakeup is normal).

9.6 Terminating a Kernel Thread

To terminate a kernel thread, call the t hr ead_t er m nat e routine. The

t hr ead_t er mi nat e routine prepares to stop or permanently stops execution
of the specified kernel thread. You created and started this kernel thread

in a previous call to the ker nel _i srt hread or kernel _thread_w arg
routine. These routines return a pointer to the t hr ead structure that

is associated with the newly created and started kernel thread. Kernel
modules use this pointer as a handle to identify the specific kernel thread
that t hr ead_t er m nat e stops executing.

Typically, a kernel thread terminates itself. However, one kernel thread can
terminate another kernel thread. A kernel thread that terminates itself must
callt hread_hal t _sel f immediately after the call tot hr ead_t er mi nat e,
because t hr ead_t er m nat e only prepares the self-terminating kernel
thread to stop execution. The t hread_hal t _sel f routine completes the
work that is needed to stop execution by performing the appropriate cleanup
work of the self-terminating kernel thread.

You do not need to terminate every kernel thread that you create. Do not
terminate a kernel thread that is waiting for some event. The basic rule is
— terminate only those kernel threads that you do not need anymore. For
example, if a dynamically configured kernel module uses kernel threads,
terminate them in the CFG_OP_UNCONFI GURE entry point of the loadable
kernel module’s conf i gur e routine. The kernel threads are no longer
needed after the kernel module is unconfigured.
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The t hr ead_t er m nat e routine (for kernel threads that terminate other
kernel threads) not only permanently stops execution of the specified kernel
thread, but it also frees any resources that are associated with the kernel
thread; therefore, this kernel thread can no longer be used.

The following code fragment shows how the i f _ft a kernel module’s
fta_error_recovery kernel thread terminates itself by calling
thread_term nate andthread_halt_sel f.

The fta_error_recovery routine is a kernel thread that starts up when
the adapter becomes operational. This kernel thread resets the adapter if a
fatal error occurs. The code fragment also shows the code that contains the
call to kernel _t hread_w_ar g, which callsfta_error_recovery.

a:#i ncl ude <kern/thread. h>

al#defi ne ADAP "fta"

extern task_t first_task;

struct fta_kern_str {

short reinit_thread_started; /* reinit thread running? */

short error_recovery_flag; /* flag to wake up a process */

struct ifnet {

short if_unit; /* subunit for lower-level driver */

fta_transition_state(struct fta_kern_str *sc,
short unit,
short state)
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switch(state) {

case Pl _OPERATI ONAL: {
int s;
NODATA_CMD *req_buf f;
thread_t err_recov_thread;

if (sc->reinit_thread_started == FALSE) {

err_recov_thread = kernel _thread_w_ arg(first_task,
fta_error_recovery,
(void *)sc);
if (err_recov_thread == NULL) {
printf("%%: Cannot start error recovery thread.\n",
ADAP, ifp->if_unit);
}

sc->reinit_thread_started = TRUE;

/* Performother cases */

void fta_error_recovery(struct fta_kern_str *sc)

{

struct ifnet *ifp;
int ret_val;

/*
* Collect the argunent left by the kernel _thread_w arg().
*/
ifp = &c->is_if;
for(;:) {
assert_wait_mesg((vmoffset_t)&sc->error_recovery_flag,
TRUE, "ftaerr");
t hread_bl ock();
if (current_thread()->wait_result == THREAD SHOULD TERM NATE) {
ret_val = thread_terninate(err_recov_thread);
thread_halt_sel f();
}

/* Performs tasks to reset the adapter */

If the wai t _resul t field of the t hr ead structure pointer for the
current kernel thread is set to the THREAD SHOULD TERM NATE
constant, you do not need to keep this error recovery kernel thread. The
fta_error_recovery routine uses the current _t hr ead routine to
obtain the pointer to the currently running kernel thread.
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The current _t hr ead routine is a pointer to the currently running
kernel thread. Typically, kernel modules use this routine to reference
the wai t _result field of the t hr ead structure pointer tht is
associated with the currently running kernel thread. A kernel
module calls current _t hr ead after calls to assert _wai t _nmesg
and t hr ead_bl ock. If the kernel module needs to set a timeout,
then it calls current _t hr ead after calls to assert _wai t _nesg,
thread_set _tinmeout, andt hr ead_bl ock.

Calls the t hr ead_t er mi nat e routine to terminate the error recovery
kernel thread.

The t hr ead_t er mi nat e routine takes a thread_to_term nate
argument, which is a pointer to the t hr ead structure for the kernel
thread that you want to terminate. This pointer was returned in a
previous call to the kernel _i srt hread or kernel _thread_w arg
routine.

The ker nel _t hread_w_ar g routine returns this pointer to
the err_recov_t hr ead variable. This variable is passed to
t hread_t erm nate.

Upon successfully terminating the specified kernel thread,

t hr ead_t er mi nat e returns the constant KERN_SUCCESS. If the

t hr ead structure pointer passed to the thread_to_termi nate
argument does not identify a valid kernel thread, t hr ead_t er m nat e
returns the constant KERN_| NVALI D_ARGUVENT. On any other error,

t hr ead_t er mi nat e returns the constant KERN_FAI LURE.

A kernel thread that terminates itself must call t hr ead_hal t _sel f
immediately after the call to t hr ead_t er m nat e, because
t hr ead_t er m nat e only prepares the self-terminating kernel thread
to stop execution. The t hr ead_hal t _sel f routine completes the work
that is needed to stop execution of the self-terminating kernel thread
by performing the appropriate cleanup work.

The following code fragment shows how the i f _ft a module’s
fta_transition_stat e routine terminates another kernel thread

(in this example, the error recovery kernel thread) by calling only
thread_term nate. Thefta_transition_state routine changes the
state of the kernel module by performing certain fixed tasks for a given state.

#i ncl ude <kern/thread. h>
#define ADAP "fta"

extern task_t first_task;
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struct fta_kern_str {

short reinit_thread_started; /* reinit thread running? */

short error_recovery_flag; /* flag to wake up a process */

struct ifnet {

short if_unit; /* subunit for lower-level driver */

fta_transition_state(struct fta_kern_str *sc,
short unit,
short state)

int ret_val;

switch(state) {

case Pl _OPERATI ONAL: {
int s;
NODATA_CMD *req_buf f;
thread_t err_recov_thread;

if (sc->reinit_thread_started == FALSE) {

err_recov_thread = kernel _thread_w arg(first_task,
fta_error_recovery,
(void *)sc);
if (err_recov_thread == NULL) {
printf("%%: Cannot start error recovery thread.\n",
ADAP, ifp->if_unit);
}

sc->reinit_thread_started = TRUE;

/* Perform other cases */
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/* After performing all other cases, no nore need for the */

/

*

kernel thread */

case Pl _SHUTDOM: {[1]

ret_val = thread_terninate(err_recov_thread);

void fta_error_recovery(sc)

{

struct fta_kern_str *sc;

struct ifnet *ifp;

/*
* Collect the argunent left by the kernel _thread_w arg().
*
/
ifp = &c->is_if;

for(;:) {
assert_wait_mesg((vmoffset_t)&sc->error_recovery_flag,
TRUE, "ftaerr");
t hread_bl ock();

/* Performs tasks to reset the adapter */

}

After the ft a_error _recovery routine completes its work and returns
tofta_transition_state,you donot need to keep this error recovery
kernel thread. The fta_transiti on_st at e routine sets up a case

statement to handle the termination of the error recovery kernel thread.

Calls the t hr ead_t er mi nat e routine to terminate the error recovery
kernel thread.

The t hr ead_t er mi nat e routine takes a thread_to_term nate
argument, which is a pointer to the t hr ead structure associated with
the kernel thread that you want to terminate. This pointer was returned
in a previous call to the ker nel _i srt hread orkernel _thread_w arg
routine.

The ker nel _t hread_w_ar g routine returns this pointer to
the err _recov_t hr ead variable. This variable is passed to
t hread_t erm nate.

Upon successfully terminating the specified kernel thread,

t hr ead_t er mi nat e returns the constant KERN_SUCCESS. If the

t hr ead structure pointer passed to the thread_to_t erm nate
argument does not identify a valid kernel thread, t hr ead_t er m nat e
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returns the constant KERN_| NVALI D_ARGUVENT. On any other error,
t hr ead_t er mi nat e returns the constant KERN_FAI LURE.

9.7 Setting a Timer for the Current Kernel Thread

To set a time delay on the current kernel thread, call the
t hread_set _ti meout routine.

You must call the t hr ead_set _ti meout routine as follows:

Lock the resource.

2. Call assert_wai t _nesg to assert that the current kernel thread is
about to block.

3. Unlock the resource.

Call t hread_set _ti meout to set the time of delay for the current
kernel thread.

5. Callt hread_bl ock to block (put to sleep) the current kernel thread.

The following code fragment shows a call to t hr ead_set _t i neout by the
i f_ftamodule’s fta_cnmd_req routine. This routine puts a DMA request
onto the request queue of the adapter.

#incl ude <kern/thread. h>[1]
struct fta_kern_str {

struct cmd_buf *q_first; /* first in the request queue */
struct cmd_buf *qg_last; /* last in the request queue */
lock_data_t cnd_buf_q_lock; /* lock for the cndreq queue */

b 2]

short fta_cnmd_req(cndbuf, sc, command)
struct cnd_buf *cndbuf;

struct fta_kern_str *sc;

short conmand;

{
l ock_write(&sc->cmi_buf_q_| ock);

assert_wait_mesg((vmoffset_t)cndbuf, TRUE, "dmareq");[4]
| ock_done( &sc->cnd_buf _g_I ock);
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}

thread_set _tineout (hz * 2);[6]
thread_bl ock();

Includes the / usr/ sys/ i ncl ude/ ker n/ t hr ead. h header file. The
t hr ead. h file defines structures that kernel thread routines use.

Defines an ft a_kern_str data structure.

In this example, the ft a_ker n_str structure contains the following
fields:

e g _first

Specifies a pointer to a cnd_buf data structure. This field
represents the first command queue in the linked list.

e (_last

Specifies a pointer to a cnd_buf data structure. This field
represents the last command queue in the linked list.

e cnd_buf_g_l ock

Declares a lock structure called cnd_buf _g_| ock. The purpose
of this lock is to protect the integrity of the data that is stored in
the linked list of cnd_buf data structures. The alternate name

| ock_dat a_t declares the complex lock structure. Embedding the
complex lock in the ft a_ker n_st r structure protects the cnd_buf
structure for any number of instances.

Calls the | ock_wri t e routine to lock the command request queue.

The | ock_wri t e routine takes one argument: a pointer to the complex
lock structure | ock. This lock structure is associated with the resource
on which you want to assert a complex lock with write access. The
fta_cmd_r eq routine passes the address of the cnd_buf _qg_| ock field
of the fta_kern_str structure pointer.

Calls the assert _wai t _nesg routine to assert that the current kernel
thread is about to block.

The assert _wai t _nesg routine takes three arguments:

¢ The first argument specifies the event to associate with the current
kernel thread. In this call, the event that is associated with the
current kernel thread is the cndbuf structure pointer.

¢ The second argument specifies a Boolean value that indicates how
the kernel thread is awakened. You can pass one of the following
values:
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TRUE The current kernel thread is interruptible.
This value means that a signal can awaken
the current kernel thread.

FALSE The current kernel thread is not
interruptible. This value means that only
the specified event can awaken the current
kernel thread.

The code fragment shows that f t a_cmd_r eq passes the value TRUE.

¢ The third argument specifies a mnemonic for the type of wait.
The / bi n/ ps command uses this mnemonic to print out more
meaningful messages about a process. The code fragment shows
that ft a_cnd_r eq passes the string drmar eq.

Calls the | ock_done routine to unlock the command request queue.

The | ock_done routine takes one argument: a pointer to the complex
lock structure | ock. The fta_cnd_r eq routine passes the address of
the cmd_buf _q_I ock field of the ft a_ker n_st r structure pointer.

[6] Callsthet hread set tinmeout routine to set a timer for the current
kernel thread.

The t hr ead_set _ti nmeout routine takes one argument: the amount
of time to wait for an event. The time is used in conjunction with the
assert_wai t routine. The ft a_cnd_r eq routine passes the value
hz * 2.

The time that you specify to wait for the event is automatically canceled
when the kernel thread awakes.

The t hr ead_set _ti nmeout routine does not return a value.

Calls the t hr ead_bl ock routine to block (put to sleep) the current
kernel thread.
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10

Building a Kernel Module

This chapter discusses how to build a kernel module that you can statically
link or dynamically load into the kernel:

Build a kernel module from your source code (Section 10.1)
Add module attributes (Section 10.2)

Statically link a kernel module into a / viruni x kernel (Section 10.3)

¢ Dynamically load a kernel module (Section 10.4)

Change attribute values at run time (Section 10.5)

10.1 Procedure for Building a Kernel Module

10.1.1

A kernel module has a file extension of . mod. It must contain a
nodul e_nane_confi gur e routine and a nodul e_nane_at tri but es table,
as described in Chapter 2.

Before you can statically link or dynamically load a kernel module, you must
build it. To build a kernel module, follow these steps:

Create a directory to contain the source files.

Copy the source files.

Create afi | es file fragment.

Create a Bl NARY. | i st file.

Create a sysconfi gt ab file fragment.

Create a Makefil e.

Build the kernel module.

N o ok W

The following sections discuss each of these steps.

Step 1: Create a Directory to Contain the Source Files

Use the nkdi r command to create a directory to contain the source files
for the kernel module:

# nkdir /usr/sys/Exanphod
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The directory path must start with / usr/ sys. In this example, you create a
directory called / usr/ sys/ ExanpMod to contain the files for the exanpl e
kernel module. You perform the work at the superuser prompt.

When you create your directory, replace ExanpMod with a directory that
reflects a specific name for your organization or company.

10.1.2 Step 2: Copy the Source Files

Use the cp command to copy the source and header files to the directory
that you created in Section 10.1.1:

# cd /usr/sys/ ExanpMd

# cp /usr/sys/ nydevel opnent/exanple.c .

# cp /usr/sys/ mydevel opnent/exanpl e_util.c
# cp /usr/sys/ nydevel opnent/exanple.h .

The / usr/ sys/ nmydevel opnent directory is where you initially created the
source files (exanpl e. c, exanpl e_util . c, and exanpl e. h).

10.1.3 Step 3: Create a files File Fragment

The fi | es file fragment describes the source files (. ¢), the kernel module
name, and characteristics.

Use an editor such as vi to create a fil es file fragment in the directory
that you created in Section 10.1.1:
# vi /usr/sys/ExanpMd/files

The basic syntax for the fi | es file fragment is as follows:
MODULE/ STATI C/ nodul e_nane st andar d| opti onal [ options] Binary
path/file_nanme.c nodul e nodul e_name flags[flag_|ist]

Declares a kernel module.

The keywords MODULE/ STATI C specify that you can statically link or
dynamically load the module into the kernel.

The keyword st andar d indicates that the module will be included in
every kernel.

The keyword opt i onal indicates that the module will be included in
the kernel only if the opt i ons are present in the kernel configuration
file. The keyword opt i ons can be anything such as the module name,
the bus name, or the platform name.

The keyword Bi nary causes the sour ceconfi g program to generate
the build rules in the Bl NARY Makef i | e. When you run this Makefi | e,
it builds the kernel module and places it in the / usr/ sys/ Bl NARY
directory.

Includes a source file in the specified kernel module.
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The keyword pat h is the pathname that you created in Section 10.1.1.
The build process adds / usr/ sys/ to the front of the path by default.
Therefore, you do not include / usr/ sys/ in your path.

The keyword nodul e_nane is the name of the kernel module that you
are building.

The most common keyword is f | ags, followed by one or more compiler
options. For more information on valid compiler options, see cc(1).

The following example shows the fi | es file fragment for the exanpl e
kernel module using the keyword st andar d:

# This is the files file fragnent for the exanpl e kernel nodul e

# using the keyword standard

#

MODULE/ STATI C/ exanpl e standard Binary

ExanpMd/ exanpl e. ¢ nodul e exanpl e
ExanpMd/ exanpl e_util.c nodul e exanpl e

This fragment instructs the build facility to compile the exanpl e. ¢ and
exanpl e_uti | . c source files and put them in the exanpl e. rod module.

The following example shows the fi | es file fragment for the exanpl e
kernel module using the keyword opt i onal :

# This is the files file fragnent for the exanpl e kernel nodul e

# using the keyword optional

#

MODULE/ STATI C/ exanpl e optional exanple Binary

ExanpMd/ exanpl e. ¢ nodul e exanpl e flags -g3
ExanpMd/ exanpl e_util.c nodul e exanple flags -g3

This instructs the build facility to compile the exanpl e. ¢ and

exanpl e_util . c source files using the - g3 compiler option and put the
source files in the exanpl e. mbd module. The module will be linked in the
kernel only if the option exanpl e is in the configuration file.

10.1.4 Step 4: Create a BINARY.list File

The Bl NARY. | i st file contains the location of products that are not part of
the standard operating system. Use an editor such as vi to edit or create a
Bl NARY. | i st file in the / usr/ sys/ conf directory:

# cd /usr/sys/conf
# vi BINARY.Iist

The following example shows the typical contents of the Bl NARY. | i st file
that you create:

[ usr/ sys/ Exanphbd

The file contains the directory path that you created in Section 10.1.1. You
must follow the path name with a colon (:), as shown in the example.
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10.1.5 Step 5: Create the sysconfigtab File Fragment

The sysconf i gt ab file fragment is optional but most device drivers require
one. It contains the module name and attributes. Use an editor such as vi
to create a sysconfi gt ab file fragment in the directory that you created
in Section 10.1.1:

# cd /usr/sys/ Exanphd
# vi sysconfigtab

The syntax for a sysconfi gt ab file entry follows the st anza(4) syntax:

#The following illustrates a sysconfigtab entry.

modul e_nane:
Attributel_nane
Attribute2_nane
Attribute3_nane

Attributel_val ue
Attribute2_val ue
Attribute3_val ue

Includes comments at the beginning or at the end of a kernel module
sysconfi gt ab entry. Comments are not allowed within the body of
the sysconfi gt ab entry.

Specifies the name of the kernel module followed by a colon (:). Typically,
each module contains a separate sysconfi gt ab file entry.

Specifies an attribute and its value. A valid sysconfi gt ab entry
consists of an attribute name, an equal sign (=), and one or more values.
Put each attribute name and value pair on a separate line.

In our example, the sysconfi gt ab file fragment for the exanpl e kernel
module would be as follows:

# The following illustrates a sysconfigtab entry
# in the sysconfigtab file fragnent for the exanple driver.
exanpl e: [1]

PCl _Option = PCI_SE Rev - 0x210, Vendor_ld - 0x1002, Device_ld - 0x4354,
Rev - 0, Base - 0, Sub - 0, Pif - 0 Sub_Vid - 0, Sub_Did - O,
Vid_M_Flag - 1, Did_M_Flag - 1, Rev_Mv_Flag - 0, Base_M_Flag - O,
Sub_Mo_Flag - 0, Pif_M_Flag - 0, Sub_Vid_M_Flag - O,
Sub_Did_M_Flag - 0, Driver_Nane - exanple, Type - C, Adpt_Config - N
EXAMPLE_Devel oper _Debug = 1

Indicates that the attributes that follow belong to the exanpl e module.

Initializes the PCI adapter information attribute to allow identification
of the exanpl e PCI adapters by the driver framework code. You must
insert an attribute’s value on one line, which may wrap to subsequent
lines. However, you cannot embed new-line characters.

Initializes the EXAMPLE_Devel oper _Debug attribute to 1, which turns
on debugging messages.
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10.1.6

10.1.7

You can specify any configurable attributes in / et ¢/ sysconfi gt ab and
declare the module’s attributes in the nodul e_nane_at t ri but e table in
one of the module’s source files.

Although not all attributes in the module’s attribute table need to appear
in the sysconfi gt ab file fragment, all attributes that appear in the
sysconfi gt ab file fragment must be in the module’s attribute table.

A module can have no attributes or it can have attributes that do not need to
be modified. In those cases, the sysconfi gt ab file fragment is optional.

If you create a file fragment, it only contains the module name followed

by a colon (3).

For more information, see sysconfi gt ab(4).

Step 6: Create a Makefile

To create a Makef il e, run the sour ceconfi g program from the
[ usr/ sys/ conf directory:

# cd /usr/sys/conf
# ./sourceconfig BINARY[1]

Invoke the sour ceconfi g program followed by the Bl NARY
configuration file name. This generates a new Makefi | e in the
[ usr/ sys/ Bl NARY directory. This Makef i | e contains the information
to compile the standard Tru64 UNIX modules as well as the kernel
module or modules that are defined in the Bl NARY. | i st file.

Step 7: Build the Kernel Module

Run the nake program from the / usr/ sys/ Bl NARY directory to create
your kernel module:

# cd /usr/sys/ Bl NARY
# make exanpl e. mod[1]

Invoke the make program followed by the name of your kernel module
plus the . nod extension. This step creates the kernel module in
the / usr/ sys/ Bl NARY directory. In this example, exanpl e. nod
is the kernel module for the exanpl e module, created in the
[ usr/ sys/ Bl NARY directory. This step also creates a link from the
/ usr/ sys/ Bl NARY directory to the directory that you created in
Section 10.1.1.

Invoke the make program for each module that you want to compile. The
appropriate links are created as described in the previous paragraph.

You now have a kernel module that can be statically linked or dynamically
loaded into the kernel.
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10.2 Adding Your Module’s Attributes

The sysconfi gdb utility appends the sysconfi gt ab file fragment to the
existing / et ¢/ sysconfi gt ab file. Using sysconf i gdb ensures that users
never manually edit the et c/ sysconfi gt ab file.

If you have a sysconfi gt ab file fragment, run the sysconfi gdb utility. In
this example, the sysconf i gdb utility is invoked with the following options:

# sysconfigdb -a -f /usr/sys/ExanpMd/ sysconfigtab exanple
e The - a option

Specifies that sysconfi gdb adds the kernel module entry to the
/ et c/ sysconfi gt ab database.

e The-f fil enane option

Specifies the file name of the file fragment to be added. This option is
used with the - a option.

The kernel module name

Specifies the name of the kernel module, exanpl e. Replace exanpl e
with the name of your kernel module.

For more information, see sysconfi gdb(8).

10.3 Statically Link a Kernel Module into a /vmunix Kernel

To statically link a kernel module into a / vimuni x kernel, follow the steps
in Section 10.1 to build your kernel module. After your kernel module is
created, follow the steps outlined in this section.

10.3.1 Step 1: Create a Kernel Build Directory

To test your kernel module, create a new kernel build directory by
running the doconf i g program and specifying a new name for the target
configuration file. This example uses the name CONRAD: est .

1. Run the doconfi g program from the / usr/ sys/ conf directory:

# cd /usr/sys/ conf
# doconfig

2. Enter the new name for the target configuration at the following prompt:

*** KERNEL CONFI GURATI ON AND BUI LD PROCEDURE ***
Enter a nane for the kernel configuration file. [CONRAD] CONRADt est

By specifing a new target configuration file name, the pre-existing
configuration (CONRAD in this example) remains intact so that a working
configuration is always available.

10-6 Building a Kernel Module



10.3.2

10.3.3

3.  When you are prompted for kernel options, select any options or select
none. In response to the following prompt, indicate that you do not want
to edit the target configuration file:

Do you want to edit the configuration file? (y/n) [n]: n

The doconf i g program will now proceed to build a new kernel in the
[ usr/ sys/ CONRADt est directory.

Step 2: Create a NAME.list File

To extend the basic kernel to include your new module, you need to create a
NAME. | i st file where NAME is the name of the new kernel build directory.
In the example, this file is called CONRAD: est . | i st because the build
directory name we entered in Section 10.3.1 was CONRADt est .

Use an editor such as vi to edit or create a CONRADt est . | i st file in the
[ usr/sys/ conf directory:

# cd /usr/sys/conf
# vi CONRADt est.|i st

The CONRAD! est . | i st file contains the pathname of the directory where
the module files are located. This is the same directory which was created in
Section 10.1.1. For our example, this is:

[ usr/ sys/ Exanphbd:

You must follow the pathname with a colon (:), as shown in the example. It is
important that there is only one CONRADt est . | i st file that can exist for
the CONRAD est configuration. This file must specify all additional products
and modules to be linked into the kernel. In this example, we only have one
module. If you have more than one module or product to test, add each
pathname on its own line, followed by a colon.

Step 3: Run the doconfig Program

The doconfi g program takes the configuration information from the

[ usr/ sys/ conf/ CONRADt est file along with the information from the
[ usr/sys/ conf/ CONRADt est . | i st file and produces a kernel. The
resulting kernel will have the new module linked into it.

Run the doconf i g program from the / usr/ sys/ conf directory. Use the
new kernel configuration name that you created in Section 10.3.1:

# cd /usr/sys/conf
# doconfig -c CONRAD: est

If you specified the keyword st andar d in the fi | es file fragment, take
the defaults for all prompts. If you specified the keyword opti onal in
the fi |l es file fragment, answer yes when you are prompted to edit the
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10.3.4

10.3.5

configuration file. Doing so opens the configuration file. Add the following
at the end of the file:

config_driver exanple

Replace exanpl e with the name of your module to include it in the linked
kernel.

The doconfi g program will now proceed to build a new kernel in the
[ usr/ sys/ CONRAD: est directory.

Step 4: Copy the New Kernel to the Root Directory

Copy the new kernel from the kernel build directory to the root directory. We
strongly recommend that you leave the existing and working / viruni x in the
root directory and that you not overwrite it. Rather, assign a new name to
the new kernel as shown in this example:

# cp /usr/sys/ CONRADt est/vmuni x /vmuni x. exanpl e

The kernel name vmuni x. exanpl e shows that the new kernel includes
the exanpl e module.

Step 5: Shut Down and Boot the System

To test the new module, you must shut down and reboot the system with the
new kernel. Make sure to specify the name of your new kernel when booting:

# shutdown -h now
>>> poot -fi "vnuni x. exanpl e"

The kernel module is now part of this new kernel and can be tested with the
appropriate utilities.

10.4 Dynamically Load a Kernel Module

10.4.1

To dynamically load a kernel module into a / viruni x kernel, follow the steps
in Section 10.1 to build your kernel module. After your kernel module is
created, follow the steps outlined in this section.

Step 1: Create the Appropriate Links

From the / var/ subsys directory, create the following symbolic links:

# cd /var/subsys
# In -s [usr/sys/ Bl NARY/ exanpl e. nod exanpl e. nod[1]
# In -s /subsys/device.nth exanple. nth[2]

Create a symbolic link to the kernel module exanpl e. nod in the
[ usr/ sys/ Bl NARY directory. The symbolic link has the same name
as the kernel module exanpl e. nbd. Replace exanpl e. nod with the
name of your kernel module.
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Create a symbolic link to the kernel method file. The devi ce. nt h
file should already exist in the / subsys directory. The symbolic link
has the same name as the kernel module but with a . it h extension,
exanpl e. nt h. Replace exanpl e with the name of your kernel module.

10.4.2 Step 2: Load the Kernel Module

Use the sysconfi g utility with the - ¢ option to load and configure the
kernel module:

# sysconfig -c exanple

Replace exanpl e with the name of your kernel module. The - ¢ option
dynamically loads the kernel module and configures it into the running
kernel. If your module is a device driver, its device special files are also
created at this time.

10.5 Changing Attribute Values at Run Time

Users, especially system administrators, may want to change attributes.
You may also need to change an attribute value during kernel module
development to test features of the kernel module. The sysconf i g program
allows you and your users to reconfigure a kernel module with new attribute
values.

You can modify attributes at run time whether the kernel module was
statically linked or dynamically loaded into the kernel.

For example, the exanpl e kernel module from Section 10.1.5 initializes
the EXAMPLE_Devel oper _Debug attribute to 1 by default, which turns
debugging messages on. To turn the messages off, call the sysconfig
program as follows:

# sysconfig -r exanpl e EXAMPLE Devel oper _Debug=0

The - r option directs the exanpl e module to be reconfigured with the new
EXAMPLE_Devel oper _Debug attribute value of 0.

Not all attributes can be changed with sysconfi g. To allow an attribute to
change at run time, you must assign the CFG_OP_RECONFI GURE constant to
the oper at i on field of the attribute’s cf g_subsys_attr _t data structure.
The sysconf i g program returns an error if you try to change an attribute
that does not have this oper at i on value.

The sysconfi g program calls the module framework to change the value
stored in memory. The module framework then calls the kernel module’s
confi gur e request code to perform any other operations that are required
to reconfigure the module.

Building a Kernel Module 10-9






Glossary

alignment
The placement of a data item in memory. For a data item to be aligned, its

lowest-addressed byte must reside at an address that is a multiple of the
size of the data item (in bytes).

API
Application programming interface.

application

A user-mode program that, in the context of this manual, makes various
requests to the kernel modules. If a kernel module is part of a device driver,
these requests typically perform I/O operations to hardware components.

argument

A variable or constant that is associated with some value that is passed to a
routine. Also called a parameter.

atomicity

A type of serialization that refers to the indivisibility of a small number of
actions, such as those that occur during the execution of a single instruction
or a small number of instructions.

attribute table

An array of the cf g_subsys_attr_t data structure, where each instance
of cf g_subsys_attr_t represents one table entry that defines some data
item for the kernel module.

boot timeline

The series of events and dispatch points that occur as the system boots. For
example, at dispatch point CFG_PT_VM AVAI L virtual memory is available.
See also dispatch point.

callback routine

The mechanism for implementing kernel modules as single binary images.
Using callback routines avoids the problem of calling routines that are not
yet available — statically loaded kernel modules register a callback routine
that will be called later in the boot timeline. (For a static configuration,
callback routines are registered to execute at dispatch points along the
boot timeline.) When the routine is called, it will perform the required
initialization correctly because the routines it requires will be available.
See also static mode.
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class/port driver

The class/port driver comprises two drivers. The class driver supports

user interfaces while the port driver supports the hardware and handles
interrupts. The driver model is always made of more than one module and it
can have multiple class drivers, multiple port drivers, and some common code
in a middle layer. The structure of this driver eliminates code duplication.

complex lock

A mechanism for protecting resources in an SMP environment. A complex
lock achieves the same result as a simple lock but is used when there are
blocking conditions. Routines that implement complex locks synchronize
access to kernel data between multiple kernel threads. See also simple lock.

device driver

A kernel module that supports one or more hardware components. There are
two driver models: the monolithic driver and the class/port driver.

dispatch point

Points along the boot timeline and post-boot that mark when certain
resources or capabilities are available. Dispatch points that are initiated
from user space can occur in any order. In kernel mode, these points are in
strict chronological order. For example, the dispatch point that indicates
that virtual memory is available (CFG_PT_VM AVAI L) always occurs before
locks are available (CFG_PT_LOCKAVAI L).

dynamic mode

The ability to add or remove software or hardware while the system is
operational. For example, dynamic hardware configuration and dynamic
module loading occur late in the boot timeline after these features are
enabled. Contrast with static mode.

entry point
The address of a routine.

granularity

The size of neighboring units of memory that can be written independently
and atomically by multiple CPUs. See also atomicity.

initialization

The tasks that incorporate a kernel module into the kernel after it has been
loaded and make it available for use by the system.

interface

A collection of routine definitions and data structures that perform related
functions. There are kernel interfaces and user interfaces. For example,
the kernel set management (KSM) interface consists of a variety of

cf g_ksm xxx library routines that allow applications to manage the kernel
sets. See also routine.
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kernel module

The code and data structures in a . nod file, either statically linked into
/ vuni x or dynamically loaded as part of the kernel.

kernel thread
A single, sequential flow of control within a program.

load

The process of bringing a kernel module into memory and calling its
conf i gur e routine with the CFG_OP_CONFI GURE request code.

lock

A means of protecting a resource from multiple CPU access in an SMP
environment. See also simple lock and complex lock.

module
See kernel module.

module framework

The subsystem in the kernel that loads, unloads, makes other management
requests, and generally keeps track of modules in the kernel.

monolithic driver

Kernel module code that is all-inclusive; supporting everything from user
requests to processing interrupts from hardware.

parameter

A variable or constant that is associated with some value that is passed to a
routine. Also called an argument.

pseudodevice driver

A driver, such as the pty terminal driver, structured like other drivers

but that does not operate on a bus and does not control hardware. A
pseudodevice driver does not register itself in the hardware topology (system
configuration tree). Instead, it relies on the device driver method of the

cf gngr framework to create the associated device special files.

RAD

On Tru64 UNIX systems, the building blocks that make up a Non-Uniform
Memory Access (NUMA) system are mapped to structures called Resource
Affinity Domains (RADs). A RAD identifies the set of CPUs, memory arrays,
and I/O busses that, when used together, allow the system to work most
efficiently.

routine
Code that can be called to perform a function. See also interface.
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scan

The process of looking for hardware components for the purpose of
configuring hardware that is not currently configured.

simple lock

A general-purpose mechanism for protecting resources in an SMP
environment. A simple lock is a spin lock. That is, routines that implement
simple locks do not return until the lock has been returned. See also
complex lock.

single binary image
A single . nod file that can be statically loaded as part of / viruni x or
dynamically loaded into the kernel any time after a system boots.

SMP
See symmetric multiprocessing.

software synchronization

The coordination of events in such a way that only one event happens at
a time.

static mode

The permanent and nonremovable parts of the kernel. Contrast with
dynamic mode.

string
An array of characters that terminates with a null character.

subsystem

A collection of code that provides one or more interfaces or performs one or
more functions.

symmetric multiprocessing

A computer environment that uses two or more CPUs. Software applications
and the associated kernel modules can operate on two or more of these CPUs.

thread
See kernel thread.

utility
See application.
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A

alignment, 6-3
Alpha CPU

accessing CSR addresses, 614

alignment, 6—3

granularity of data access, 6—3

hardware-level synchronization,

6-1

application

converting kernel timestamps to a

string, 5—26

assert_wait_mesg routine, 9-11
atomicity, 62
attribute

operations allowed on, 3—3
attribute data types, 3-3
attribute table, 3—1

creating, 1-6

entry, 3—-1, 3-2

get request, 3—4

operation field, 3—3

set request, 3—6

B

Index

( See boot timeline )
boot timeline, 4—1
dispatch point, 4—3
understanding, 4—1
buf data structure, 6-16
BUF_LOCK routine, 6-16
BUF_UNLOCK routine, 6-16
busy wait time, 6-11
byte string
copying bcopy routine, 5—7
bzero routine, 5-9
explanation of code fragment, 5-9

C

b_resid field
use as argument with copyin
routine, 5-10
bcopy routine, 57
explanation of code fragment, 5—8
results of example calls, 5—8
blocking conditions
using complex locks, 6—8
blocking lock, 6—8
boot path

callback, 1-6

coding, 4—4, 4-7

dispatch point, 4—1

nesting, 4-8

unregistering, 4—8

using, 4-2

writing, 47
calling process

putting to sleep, 5—15
cfg_attr_t routine, 3—1
CFG_OP_CONFIGURE, 2-3, 2-5
CFG_OP_QUERY, 2-3
CFG_OP_RECONFIGURE, 2-3
CFG_OP_UNCONFIGURE, 2-3,

2-7
cfg_subsys_attr_t routine, 3—2
class/port driver, 1-3
code block

choosing lock method by size of,

6-11
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identifying those that manipulate
resource, 6—18
complex lock, 6-8, 8-1
access operations, 8—4
asserting, 8—4
read-only access, 8—5
write access, 87
choosing when to use, 6-9
declaring data structure, 8—1
execution speed, 6-11
initializing, 82
releasing previously asserted, 8—10
terminating, 8—20
trying to assert, 8—13
read-only access, 8—13
write access, 8—17
complex lock data structure, 6—9
declaring, 8-1
initializing, 82
complex lock routine, 6-9, 8—1
configuration point
( See dispatch point )
configure routine, 2—1, 3-3
call with CFG_OP_QUERY, 3-4
called by module framework, 4—2
parameters, 2—2
console
printing text to, 5—14
control status register
(See CSR)
controller data structure, 6-16
copyin routine
explanation of code fragment, 5—10
results of example call, 5-10
copyout routine
explanation of code fragment, 5—12
results of example call, 5—12
cpu global variable, 6-16
CSR
access methods, 6—13
CSR I/O access routines
read_io_port, 6-14
write_io_port, 614
ctime function, 5-26
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D

data
granularity, 6—3
integrity, 6—4
natural alignment, 6—3
data copying routines, 5—7
data structure
allocating memory, 2—6
complex lock, 6-9, 8—1
kernel thread, 9-6
module-specific, 6-14, 6-17
simple lock, 7-1
system-specific, 6-16, 6-17
used by kernel thread routines, 9—6
data type
attribute, 3—3
deadlock
and kernel threads, 9—4
decl_simple_lock_data macro, 7-1
DELAY macro
explanation of code fragment, 5—27
device control status register
( See CSR.)
device driver, 1-1
device register offset definitions
locking, 6-19t
direct method
accessing CSR addresses, 6—13
dispatch point, 1-5
along boot timeline, 4-3
callback, 4—-1
CFG_PT_ENTER_SUSER, 4-3
CFG_PT_GLROOTFS_AVAIL, 4-3
CFG_PT_HAL_INIT, 4-3
CFG_PT LOCK_AVAIL, 4-2, 4-3
CFG_PT_OLD_CONF_ALL, 4-3
CFG_PT_POSTCONFIG, 4-3
CFG_PT PRECONFIG, 4-3
CFG_PT_ROOTFS_WR, 4-2
CFG_PT_TOPOLOGY_CONF, 4-3
CFG_PT VM_AVAIL, 2-6, 4-1,
4-2,4-3
defining in a kernel module, 4—8



definitions, 4—3

developer-defined, 4-8
dispatch point callback, 4—1
dynamic kernel module, 2-5

E

error logger
printing text to, 5—14

F

fetching time, 5—24

G

global resource
module-specific, 6-14
system-specific, 6—16
global variable
cpu, 6-16
hz, 6-16
Ibolt, 6-16
module-specific, 6-15
system-specific, 6—16
granularity, 6—3
of data access, 6—3
of lock, 6-20

H

indata parameter, 2—2
indatalen parameter, 2—2
indirect method
accessing CSR addresses, 614
initialization, 1-6, 2—-1
kernel module, 2—4
initializing a timer queue element,
5-16
interrupt priority level
( See IPL)
interrupt priority mask
setting, 5—18
interrupt service routine
using simple lock to synchronize
with, 67
IPL, 5-18

K

hardware issues, 61
hz global variable, 6—16

/O copy routines, 6-14
io_copyin, 6—14
io_copyio, 6-14
io_copyout, 6-14

ihandler_t data structure, 6-16

kernel address space
copying from with copyout routine,
5-12
kernel mode capabilities, 5—1
kernel module
attributes, 3—1
building, 10-1
choosing resources to lock, 6-13
defining new dispatch point, 4—8
definition of, 1-1
designing, 1-5
developing, 1-6
dynamically loaded, 2—5
environment, 1-2
initializing, 1-6, 2—1, 2—4
introduction, 1-1
kernel mode capabilities, 5—1
making safe in SMP environment
using complex locks, 8—1
using simple locks, 7—-1
multithreaded programming, 9-1
procedure for building, 10-1
purpose of, 1-2
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required tasks for writing, 1-6
statically loaded, 2—5
working with time, 5-23
kernel thread, 6—4
advantages of using, 9-1
blocking, 9-11
asserting current is about to
block, 9-11
mpsleep routine, 9-15
creating and starting, 9-6, 9-7
fixed-priority dedicated to
interrupt service, 9-9
distinguishing between threads
applications use, 9-1
execution, 9-3
issues related to using, 9—4
operations, 9—4
setting a timer for current, 9-26
states, 9-3
summary of routine operations, 9—4
terminating, 9-20
unblocking, 9-18
using, 5-27
kernel thread routine, 9-1
( See also kernel thread )
data structures, 9—6
task, 9—6
thread, 9—-6
operations, 9—1
kernel thread sleep
prevention of access to resource,
6-10
kernel_isrthread routine, 9-6
called for fixed-priority kernel
thread, 9-9
kernel_thread_w_arg routine, 9-6
call to create timeshare policy, 9-7

L

Ibolt global variable, 6-16
libefg.a library
cfg_subsys_query routine, 3—4
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cfg_subsys_reconfig routine, 3—6
lock, 6—4

complex, 6-8, 8-1

simple, 6-6, 7—1
lock_done routine, 8—10
lock_init routine, 8—2
lock_read routine, 8-5
lock_terminate routine, 820
lock_try_read routine, 8—13
lock_try_write routine, 8—17
lock_write routine, 8—7
locking, 5-28

access to a resource, 6—10

choosing method, 6-9

choosing resources, 6—13

kernel module resources for, 6—17

length of time held, 6-10

SMP characteristics, 6—12
locking device register offset

definitions, 6-19t
locking methods

choosing, 69

comparing simple and complex

locks, 6-5

complex lock, 6-1

simple lock, 6—1

summary of, 6-11

M

macro

decl_simple_lock_data, 7-1
memory

allocating, 2—6, 5-20

zeroing with bzero routine, 5—9

zeroing with uzero routine, 5-9
memory block

zeroing in kernel address space,

5-9

zeroing in user address space, 5—9
memory space

used by locks, 6-11
modifying a timestamp, 5-25
module attribute table



( See attribute table )
module framework, 3—3
module initialization, 2—1
monolithic driver, 1-2
mpsleep routine, 5-15, 9-15
multithreaded application
developing, 9-1
multithreaded programming, 9-1

N

R

nesting callbacks, 4-8

null-terminated character string,
54
comparing with stremp routine, 5—1
copying with strepy routine, 5—4
copying with strncpy routine, 5—5
returning with strlen routine, 5—6

null-terminated string routine,
5-1

O

op parameter, 2—2
outdata parameter, 2—2
outdatalen parameter, 2—2

P

parameters
for configure routine, 2—2
POSIX Threads Library, 9-1
printf routine, 5-14, 5-15
explanation of code fragment, 5—15
printing text to the console, 5-14
priority inversion
and kernel threads, 9—4
process
waking up a sleeping, 5—16

race condition
and kernel threads, 9—4
rad_kernel_isthread routine, 9-6
rad_kernel_thread routine, 9-6
real-time preemption, 6-11
register_callback routine, 4—4,
4-5
parameters, 4—6
request code, 2—3
CFG_OP_CONFIGURE, 2-3, 2-5,
2-6, 3-3
CFG_OP_QUERY, 2-3, 3-3, 3-4
CFG_OP_RECONFIGURE, 2-3,
3-3, 3-6
CFG_OP_UNCONFIGURE, 2-3,
2-7
resource, 6—4
asserting exclusive access on, 7—4
choosing to lock in a module, 6-13
determining which to lock, 6-17
global, 6-14
module-specific, 6-14
system-specific, 6—16
locking, 6-5
read-only, 6-13
return status values, 2—4
routine
associated with complex locks, 6—9
callback, 4—7
commonly used by kernel modules,
5-1
complex lock, 81
CSR 1/O access, 6—14
data copying, 57
delaying a calling, 5-27
1/0 copy, 614
kernel thread
summary of operations, 9—4
kernel-related, 5—14
lock_done, 8-10
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mpsleep, 9-15 using complex locks, 8—1

simple_unlock, 7—6 using simple locks, 7—1
string, 5-1 putting a calling process to sleep,
thread_block, 9-11 5-15
sleep call, 9-15
S software synchronization, 6—2
spin lock
serialization, 6-2 ( See simple lock )
shared data spl routines
access to, 64 summarized list of, 5-19
simple lock, 7-1 uses for, 5—18
asserting exclusive access on using, 7-15
resource, 7—4 splbio routine, 5-18
choosing when to use, 6—9 explanation of code fragment, 5—19
declaring data structure, 7—1 splclock routine, 5-18
description of, 6-6 spldevhigh routine, 5-18
execution speed, 6-11 splextreme routine, 5-18
initializing, 7—2 splhigh routine, 5-18
releasing previously asserted, 7—6 splimp routine, 5-18
terminating, 7—12 splnet routine, 5-18
trying to obtain, 7-9 splnone routine, 5-18
using spl routines, 7-15 splrt routine, 5-18
simple lock data structure, 6-7t splsoftclock routine, 5-18
declaring spltty routine, 7-16
decl _sinpl e_l ock_data, 7-1 splvm routine, 5-18
simple_lock_data_t, 7—2 splx routine, 5-18, 7-17
initializing, 7—2 explanation of code fragment, 5—19
reason for declaring, 7-2 static kernel module, 2-5
simple lock routine, 7-1 status
simple lock routines, 6-7t return values, 2—4
simple_lock routine, 7—4 strcmp routine, 5-1, 5-2
simple_lock_init routine, 7—2 explanation of code fragment, 5—2
simple_lock_terminate routine, results of example calls, 5-2
7-12 strcpy routine, 5—4
simple_lock_try routine, 7-9 explanation of code fragment, 5—4
simple_unlock routine, 7-6 results of example call, 5-5
single binary image, 42 string operation
sleeping lock comparing null-terminated
( See blocking lock ) character string using stremp
SMP environment, 6—1 routine, 5-1
characteristics of, 6-12t comparing two strings using
locking, 5—28, 6—4, 6-9 strnemp routine, 5—3

making kernel module safe
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copying null-terminated character
string using strepy routine, 5—4
copying null-terminated character
string using strncpy routine, 5—5
returning number of characters
using strlen routine, 5—6
string routine, 5-1
comparing two null-terminated,
5-1
comparing two strings, 5—3
copying a null-terminated
character, 5—4
copying with specified limit, 5—5
returning the number of characters
using strl en, 5-6
using, 5-1
strlen routine, 5—6
explanation of code fragment, 5—6
results of example call, 5-7
strnemp routine, 5-3
explanation of code fragment, 5—3
results of example calls, 5—3
strncpy routine, 5-5
explanation of code fragment, 5—5
results of example call, 5-6
structure
( See data structure )
subsystem, 1-2
symmetric multiprocessing
environment
( See SMP environment )
synchronization, 6-1
hardware issues related to, 6—1
sysconfigtab file fragment
creating, 10—4
system time
concepts, 5—23
creating, 5—23
fetching, 524
how a kernel module uses, 5—23
working with, 5—23

T

task data structure, 9—6
thread

( See kernel thread )
thread data structure, 9-3, 9—6
thread_block routine, 9—11
thread_halt_self routine, 9-20
thread_set_timeout routine, 9-26
thread_terminate routine, 9-20
thread_wakeup routine, 9-18
thread_wakeup_one routine, 9-18
time

( See system time )
TIME_READ macro, 5-24, 5-25
timeout routine, 5-16, 5-17

explanation of code fragment, 5—17
timer queue

removing scheduled routine from,

5-17

timer queue element

initializing, 5—16
timestamp

converting to a string, 5—26

modifying, 5—25

U

uiomove routine, 5-13

explanation of code fragment, 5—13
unregistering callbacks, 4—8
untimeout routine, 5-17

explanation of code fragment, 5—17
user address space

copying from, with copyin routine,

5-10

uzero routine, 5-9

explanation of code fragment, 5-9

Vv

virtual space

Index—7



moving data between user and W

system with uiomove routine, .
5-13 wakeup routine, 5-16

/vmunix. 2-5. 4-92 explanation of code fragment, 5-16
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