
Tru64 UNIX
Programming Support Tools

Part Number: AA-RH9WB-TE

September 2002

Product Version: Tru64 UNIX Version 5.1B or higher

This manual describes HP Tru64 UNIX commands and utilities that you
can use for program development.

Hewlett-Packard Company
Palo Alto, California

© 2002 Hewlett-Packard Company

The Open Group™, and UNIX® are trademarks of The Open Group in the U.S. and/or other countries. All
other product names mentioned herein may be the trademarks of their respective companies.

Confidential computer software. Valid license from Compaq Computer Corporation, a wholly owned
subsidiary of Hewlett-Packard Company, required for possession, use, or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial
license.

None of Compaq, HP, or any of their subsidiaries shall be liable for technical or editorial errors or omissions
contained herein. The information is provided “as is” without warranty of any kind and is subject to
change without notice. The warranties for HP or Compaq products are set forth in the express limited
warranty statements accompanying such products. Nothing herein should be construed as constituting
an additional warranty.

Contents

About This Manual

1 Finding Information with Regular Expressions and the grep
Command

1.1 Forming Regular Expressions 1–1
1.1.1 Basic Regular Expressions 1–2
1.1.2 Extended Regular Expressions 1–4
1.1.3 Matching Multiple Occurrences of a Regular Expression . 1–5
1.1.4 Matching Only Selected Characters 1–7
1.1.5 Specifying Multiple Regular Expressions 1–7
1.1.6 Special Collating Considerations in Regular Expressions . 1–8
1.2 Using the grep Command 1–9

2 Matching Patterns and Processing Information with awk
2.1 Running the awk Program 2–2
2.2 Printing in awk 2–5
2.3 Using Variables in awk 2–6
2.3.1 Simple Variables 2–6
2.3.2 Field Variables 2–7
2.3.3 Array Variables 2–7
2.3.4 Built-In awk Variables 2–9
2.4 More About Using Regular Expressions as Patterns 2–10
2.5 Using Relational Expressions and Combined Expressions as

Patterns 2–11
2.6 Using Pattern Ranges 2–12
2.7 Actions in awk 2–13
2.8 Using Operators in an Action 2–13
2.9 Using Functions Within an Action 2–15
2.10 Using Control Structures in awk 2–18
2.11 Performing Actions Before or After Processing the Input 2–21
2.12 Concatenating Strings 2–21
2.13 Redirection and Pipes 2–22

Contents iii

3 Editing Files with the sed Editor
3.1 Overview of the sed Editor 3–1
3.2 Running the sed Editor 3–2
3.3 Selecting Lines for Editing 3–4
3.4 Summary of sed Commands 3–6
3.5 String Replacement 3–10

4 Creating Input Language Analyzers and Parsers
4.1 How the Lexical Analyzer Works 4–2
4.2 Writing a Lexical Analyzer Program with lex 4–3
4.3 The lex Specification File 4–4
4.3.1 Defining Substitution Strings 4–4
4.3.2 Rules 4–5
4.3.2.1 Regular Expressions 4–6
4.3.2.2 Matching Rules 4–7
4.3.2.2.1 Using Wildcard Characters to Match a String 4–8
4.3.2.2.2 Finding Strings Within Strings 4–8
4.3.2.3 Actions 4–9
4.3.2.3.1 Null Action 4–9
4.3.2.3.2 Using the Same Action for Multiple Expressions . . 4–10
4.3.2.3.3 Printing a Matched String 4–10
4.3.2.3.4 Finding the Length of a Matched String 4–10
4.3.2.3.5 Getting More Input 4–11
4.3.2.3.6 Returning Characters to the Input 4–11
4.3.3 Using or Overriding Standard Input/Output Routines 4–12
4.3.4 End-of-File Processing 4–13
4.3.5 Passing Code to the Generated Program 4–14
4.3.6 Start Conditions 4–14
4.4 Generating a Lexical Analyzer 4–15
4.5 Using lex with yacc 4–16
4.6 Creating a Parser with yacc 4–18
4.6.1 The main and yyerror Functions 4–19
4.6.2 The yylex Function 4–19
4.7 The Grammar File 4–20
4.7.1 Declarations 4–21
4.7.1.1 Defining Global Variables 4–22
4.7.1.2 Start Symbols 4–22
4.7.1.3 Token Numbers 4–23
4.7.2 Grammar Rules 4–23
4.7.2.1 Null String 4–24

iv Contents

4.7.2.2 End-of-Input Marker 4–24
4.7.2.3 Actions in yacc Parsers 4–24
4.7.3 Programs 4–26
4.7.4 Guidelines for Using Grammar Files 4–26
4.7.4.1 Using Comments 4–26
4.7.4.2 Using Literal Strings 4–26
4.7.4.3 Guidelines for Formatting the Grammar File 4–27
4.7.4.4 Using Recursion in a Grammar File 4–27
4.7.4.5 Errors in the Grammar File 4–28
4.7.5 Error Handling by the Parser 4–28
4.7.5.1 Providing for Error Correcting 4–29
4.7.5.2 Clearing the Look-Ahead Token 4–29
4.8 Parser Operation 4–30
4.8.1 The shift Action 4–30
4.8.2 The reduce Action 4–31
4.8.3 Ambiguous Rules and Parser Conflicts 4–32
4.9 Turning on Debug Mode 4–34
4.10 Creating a Simple Calculator Program 4–34
4.10.1 Parser Source Code 4–35
4.10.2 Lexical Analyzer Source Code 4–38

5 Using m4 Macros in Your Programs
5.1 Using Macros 5–1
5.2 Defining Macros 5–2
5.2.1 Using the Quote Characters 5–4
5.2.2 Macro Arguments 5–5
5.3 Using Other m4 Macros 5–6
5.3.1 Changing the Comment Characters 5–9
5.3.2 Changing the Quote Characters 5–9
5.3.3 Removing a Macro Definition 5–9
5.3.4 Checking for a Defined Macro 5–10
5.3.5 Using Integer Arithmetic 5–10
5.3.6 Manipulating Files 5–11
5.3.7 Redirecting Output 5–11
5.3.8 Using System Programs in a Program 5–12
5.3.9 Using Unique File Names 5–12
5.3.10 Using Conditional Expressions 5–12
5.3.11 Manipulating Strings 5–13
5.3.12 Printing 5–14

Contents v

6 Revision Control: Managing Source Files with RCS or SCCS
6.1 Overview of Revision Control 6–1
6.2 Version Control Concepts 6–3
6.3 Managing Multiple Versions of Files 6–6
6.4 Creating a Version Control Library 6–8
6.5 Using RCS 6–8
6.5.1 Placing New Files in an RCS Library 6–10
6.5.2 Recording File-Identification Information with RCS 6–11
6.5.3 Getting Files from an RCS Library 6–12
6.5.4 Checking Edited Files Back into an RCS Library 6–12
6.5.5 Working with Multiple Versions of Files 6–13
6.5.6 Displaying Differences in RCS Files 6–14
6.5.7 Reporting Revision Histories of RCS Files 6–15
6.5.8 Configuration Control Concepts 6–16
6.6 Using SCCS 6–17
6.6.1 Placing New Files in an SCCS Library 6–19
6.6.2 Recording File-Identification Information with SCCS 6–20
6.6.3 Getting Files from an SCCS Library 6–21
6.6.3.1 Getting Files for Purposes Other Than Editing 6–21
6.6.3.2 Getting Files for Editing 6–22
6.6.3.3 Managing Multiple Files and New Releases 6–22
6.6.4 Checking Edited Files Back into an SCCS Library 6–23
6.6.5 Working with Multiple Versions of Files 6–23
6.6.6 Displaying Differences in SCCS Files 6–24
6.6.7 Reporting Revision Histories of SCCS Files 6–25
6.6.8 Performing Administrative Functions 6–26
6.6.9 Using SCCS Options 6–28
6.6.10 Summary of Individual SCCS Commands 6–29
6.7 Functional Comparison of RCS and SCCS Commands 6–30

7 Building Programs with the make Utility
7.1 Operation of the make Utility 7–1
7.2 Description Files 7–3
7.2.1 Format of a Description File Entry 7–4
7.2.2 Using Commands in a Description File 7–5
7.2.3 Preventing the make Utility from Echoing Commands 7–7
7.2.4 Preventing the make Utility from Stopping on Errors 7–7
7.2.5 Defining Default Conditions 7–7
7.2.6 Preventing make from Deleting Files 7–7
7.2.7 Simple Description File 7–8

vi Contents

7.2.8 Making the Description File Simpler 7–8
7.2.9 Defining Macros 7–9
7.2.10 Using Macros in a Description File 7–9
7.2.10.1 Macro Substitution 7–10
7.2.10.2 Conditional Macros 7–12
7.2.11 Calling the make Utility from a Description File 7–13
7.2.12 Internal Macros 7–13
7.2.12.1 Internal Target File Name Macro 7–13
7.2.12.2 Internal Label Name Macro 7–14
7.2.12.3 Internal Younger Files Macro 7–15
7.2.12.4 Internal First Out-of-Date File Macro 7–15
7.2.12.5 Internal Current File Name Prefix Macro 7–15
7.2.13 How make Uses Environment Variables 7–15
7.2.14 Internal Rules 7–16
7.2.14.1 Single Suffix Rules 7–18
7.2.14.2 Overriding Built-In make Macros 7–19
7.2.15 Including Other Files 7–20
7.2.16 Testing Description Files 7–20
7.2.17 Description File 7–21

Glossary

Index

Examples
4–1 Parser Source Code for a Calculator 4–35
4–2 Lexical Analyzer Source Code for a Calculator 4–39
7–1 A Simple Description File 7–8
7–2 Default Rules File 7–18
7–3 The makefile for the make Utility 7–21

Figures
2–1 Sequence of awk Processing 2–5
3–1 Sequence of sed Processing 3–4
4–1 Simple Finite State Model 4–3
4–2 Producing an Input Parser with lex and yacc 4–17
6–1 Contents of a Version Control File 6–4
6–2 A Typical RCS Library 6–5
6–3 A Typical SCCS Library 6–6

Contents vii

6–4 A Version Control File’s Tree of Deltas 6–7

Tables
1–1 Rules for Basic Regular Expressions 1–2
1–2 Rules for Extended Regular Expressions 1–4
1–3 Behavior of the grep Command 1–9
1–4 Flags for the grep Command 1–10
2–1 Flags for the awk Command 2–2
2–2 Built-In Variables in awk 2–9
2–3 Operators for awk Actions 2–13
2–4 Built-In awk Mathematical Functions 2–15
2–5 Built-In awk String Functions 2–16
2–6 Built-In awk Miscellaneous Functions 2–17
2–7 Control Structures in awk 2–19
3–1 Flags for the sed Command 3–2
3–2 Special Regular Expressions Recognized by sed 3–5
3–3 Text Editing and Movement Commands 3–6
3–4 Buffer Manipulation Commands 3–9
3–5 Flow-of-Control Commands 3–9
4–1 Regular Expression Operators for lex 4–6
4–2 Options for the lex Command 4–16
4–3 Processing-Condition Definition Keywords in yacc 4–22
5–1 Built-In m4 Macros 5–7
6–1 Features of RCS and SCCS 6–2
6–2 Summary of RCS Command Functions 6–9
6–3 RCS ID Keywords 6–11
6–4 Summary of sccs Command Functions 6–17
6–5 SCCS ID Keywords 6–20
6–6 SCCS admin Command Options 6–26
6–7 Flags for the admin Command 6–27
6–8 SCCS Command Options 6–28
6–9 Individual SCCS Commands 6–29
6–10 Functional Comparison: RCS and SCCS Commands 6–30
7–1 Internal make Macros 7–13

viii Contents

About This Manual

This manual describes several HP Tru64 UNIX commands and utilities,
including facilities for text and string manipulation, macro and program
generation, and source file management.

Audience
Although this manual is intended primarily for programmers, much of the
material about grep (Chapter 1), awk (Chapter 2), sed (Chapter 3), and RCS
and SCCS (Chapter 6) is useful for moderately experienced users.

New and Changed Features
The following changes have been made since the Version 5.0 release:

• Chapter 2 has been updated to address and clarify matching patterns
and processing of information with awk.

– Section 2.3.3 describes hash table support used by awk to maintain
array elements as supported by Tru64 UNIX.

– Section 2.3.4, Table 2–2 update examples.

– Section 2.4 clarified use of regular expressions in awk.

– Section 2.8, Table 2–3 expanded table to include missing operations
and include precedence.

– Section 2.9, Table 2–4 clarified examples.

– Section 2.9, Table 2–5 clarification of regular expressions.

– Section 2.9, Table 2–6 moved the delete function to Section 2.10,
Table 2–7 and provided example.

– Section 2.10, Table 2–7 clarified use of else if and if statements.

– Section 2.11 clarified use of END pattern in awk.

– Section 2.13 included an example for redirection and pipe.

• Chapter 6, Section 6.5.2 corrected example.

Previous versions of this manual are available on the World Wide Web at
http://www.tru64unix.compaq.com/docs/

See the New and Changed features section of those versions to learn the
evolution of this manual.

About This Manual ix

Organization

This manual is organized as follows:

Chapter 1 Introduces the concept of regular expressions and describes the
rules for forming them, and describes grep, a command that
uses regular expressions for searching text files.

Chapter 2 Describes the awk command and its text-processing language.

Chapter 3 Describes the sed stream editor, a noninteractive tool for rapidly
performing complex and repetitive editing tasks.

Chapter 4 Describes the lex and yacc programs for generating lexical analyzers
and parsers for processing input to a program.

Chapter 5 Describes the m4 macro preprocessor and explains how to
create macros that can be used in programs or in other
files such as documentation source.

Chapter 6 Describes how to manage libraries of source files by using the Source
Code Control System (SCCS) or the Revision Control System (RCS).

Chapter 7 Describes how to use the make utility to build and maintain
complex programs and applications.

Related Documentation

This manual is an adjunct to the Programmer’s Guide; neither manual
requires that you have the other in order to use its contents.

The Tru64 UNIX documentation is available on the World Wide Web at the
following URL:

http://www.tru64unix.compaq.com/docs/

Icons on Tru64 UNIX Printed Manuals

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the manuals to help specific audiences quickly find the manuals
that meet their needs. (You can order the printed documentation from HP.)
The following list describes this convention:

G Manuals for general users

S Manuals for system and network administrators

P Manuals for programmers

R Manuals for reference page users

Some manuals in the documentation help meet the needs of several
audiences. For example, the information in some system manuals is also

x About This Manual

used by programmers. Keep this in mind when searching for information
on specific topics.

The Documentation Overview provides information on all of the manuals in
the Tru64 UNIX documentation set.

Reader’s Comments

HP welcomes any comments and suggestions you have on this and other
Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

Please include the following information along with your comments:

• The full title of the manual and the order number. (The order number
appears on the title page of printed and PDF versions of a manual.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate HP technical support office. Information
provided with the software media explains how to send problem reports to
HP.

Conventions

The following typographical conventions are used in this manual:

%

$ A percent sign represents the C shell system prompt.
A dollar sign represents the system prompt for the
Bourne, Korn, and POSIX shells.

A number sign represents the superuser prompt.

About This Manual xi

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[|]

{ | } In syntax definitions, brackets indicate items that
are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

. . .
In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

cat(1) A cross-reference to a reference page includes
the appropriate section number in parentheses.
For example, cat(1) indicates that you can find
information on the cat command in Section 1 of
the reference pages.

Return In an example, a key name enclosed in a box
indicates that you press that key.

Ctrl/x This symbol indicates that you hold down the
first named key while pressing the key or mouse
button that follows the slash. In examples, this
key combination is enclosed in a box (for example,
Ctrl/C).

xii About This Manual

1
Finding Information with Regular

Expressions and the grep Command

This chapter describes regular expressions and how to use them. Regular
expressions are most commonly used in the context of pattern matching with
the grep command, but they also are used with virtually all text-processing
or filtering utilities and commands. A more thorough discussion of the grep
command follows the introduction of regular expressions.

This chapter contains the following:

• Forming regular expressions (Section 1.1)

• Using the grep command (Section 1.2)

1.1 Forming Regular Expressions

This section contains the following:

• Basic regular expressions (Section 1.1.1)

• Extended regular expressions (Section 1.1.2)

• Matching multiple occurrences of a regular expression (Section 1.1.3)

• Matching only selected characters (Section 1.1.4)

• Specifying multiple regular expressions (Section 1.1.5)

• Special collating considerations in regular expressions (Section 1.1.6)

A regular expression specifies a set of strings to be matched. It contains
ordinary text characters and operator characters. Ordinary characters
match the corresponding characters in the strings being compared. Operator
characters specify repetitions, choices, and other features. Regular
expressions fall into two groups:

• Basic regular expressions

• Extended regular expressions

Section 1.1.1 and Section 1.1.2 describe the two types of regular expressions.
In addition to the constructs described in these two sections, there are three
special expression types related to character classes, collating sequences,
and equivalence classes. See Section 1.1.6 for more information on these

Finding Information with Regular Expressions and the grep Command 1–1

classes. The order of precedence of the regular expression operators
discussed in these three sections is as follows:

1. Collation-related bracket symbols: [= =], [. .], and [: :]

2. Escaped operator characters: \char

3. Bracket expressions: [expr]

4. Subexpressions and back-reference expressions: \(expr\), \n in basic
regular expressions; (expr) only in extended regular expressions

5. Duplication: *, \{i\}, \{i,\}, \{i,j\} in basic regular expressions;
*, ?, +, {i}, {i,}, {i,j} in extended regular expressions

6. Concatenation

7. Anchoring: ^, $

8. Alternation in extended regular expressions: |

1.1.1 Basic Regular Expressions

Basic regular expressions are built by concatenating simpler basic regular
expressions. The letters of the alphabet are ordinary characters. An
ordinary character is an expression that always matches itself and nothing
else. (Usually, digits are also ordinary characters, but a digit preceded by a
backslash forms a back-reference expression; see Table 1–1.) For example,
the expression rabbit matches the string rabbit, and the expression a57D
matches the string a57D.

Ordinary characters and operator characters together make up the set
of simple basic regular expressions. You can concatenate any number or
combination of simple expressions to create a compound expression that will
match any sequence of characters that corresponds to the concatenated
simple expressions. Table 1–1 describes the rules for creating basic regular
expressions.

Table 1–1: Rules for Basic Regular Expressions
Expression Name Description

Letters, numbers,
most punctuation

Ordinary
character

Matches itself.

. Period (dot) Matches any single character except
the newline character.

* Asterisk Matches any number of occurrences of the
preceding simple expression, including none.

1–2 Finding Information with Regular Expressions and the grep Command

Table 1–1: Rules for Basic Regular Expressions (cont.)

Expression Name Description

\{i,j\} Interval
expression

Matches a more restricted number
of instances of the preceding simple
expression; for example, ab\{3\}c matches
only abbbc, while ab\{2,3\}c matches
abbc or abbbc, but not abc or abbbbc.

\(expr\) Subexpression
(hold delimiters)

Matches expr, causing basic regular
expression operators to treat it as a
unit; for example, a\(bc\)\{2,3\}d
matches abcbcd or abcbcbcd but not
abcd or abcbcbcbcd. Additionally, the
subexpression is saved into a numbered
holding space (up to nine per expression)
for reuse later in the expression to specify
another match on the same subexpression.

\n Back-reference
expression

Repeats the contents of the nth
subexpression in the regular expression.

[chars] Bracket
expression

Matches a single instance of any one
of the characters within the brackets.
Ranges of characters can be abbreviated by
using a hyphen. For example, [0−9a−z]
matches any single digit or lowercase
letter. Within brackets, all characters are
ordinary characters except the hyphen
(when used in a range abbreviation) and
the circumflex (when used as the first
character inside the brackets).

^ Circumflex When used at the beginning of a regular
expression (or a subexpression), matches
the beginning of a line (‘anchors’ the
expression to the beginning of the line).
When used as the first character inside
brackets, excludes the bracketed characters
from being matched. Otherwise, has
no special properties.

$ Dollar sign When used at the end of a regular
expression, matches the end of a line
(‘anchors’ the expression to the end of the
line). Otherwise, has no special properties.

\char Backslash Except within a bracket expression, escapes
the next character to permit matching on
explicit instances of characters that are
usually basic regular expression operators.

expr expr ... Concatenation Matches any string that matches all of the
concatenated expressions in sequence.

Finding Information with Regular Expressions and the grep Command 1–3

1.1.2 Extended Regular Expressions

In general, extended regular expressions are like the basic regular
expressions described in Section 1.1.1. However, extended regular
expressions comprise a larger set that is used by certain programs, such
as awk, that can perform more powerful file-manipulation and filtering
operations than programs such as grep (when used without its −E flag) or
sed. It is better, then, to consider extended regular expressions separately
from basic regular expressions despite the fact that the two types of
expressions share many constructs. Table 1–2 lists the rules for forming
extended regular expressions.

Table 1–2: Rules for Extended Regular Expressions
Expression Name Description

Letters, numbers,
most punctuation

Ordinary
character

Matches itself.

. Period (dot) Matches any single character except
the newline character.

* Asterisk Matches any number of occurrences of the
preceding simple expression, including none.

? Question mark Matches zero or one occurrence of the
preceding simple expression.

+ Plus sign Matches one or more occurrences of the
preceding simple expression.

{i,j} Interval
expression

Matches a more restricted number
of instances of the preceding simple
expression; for example, ab{3}c matches
only abbbc, while ab{2,3}c matches abbc
or abbbc, but not abc or abbbbc. Basic
regular expression interval expressions
are delimited by escaped braces. To
match a literal expression that has the
form of an interval expression using an
extended regular expression, escape the
left brace. For example, \{2,3} matches
the explicit string {2,3}.

(expr) Subexpression Matches expr, causing extended regular
expression operators to treat it as a
unit; for example, a(bc)?d matches
ad or abcd but not abcbcd, abcbcbcd,
or other similar strings. Basic regular
expression subexpressions are delimited
by escaped parentheses. To match a
literal parenthesized expression using an
extended regular expression, escape the
left parenthesis. For example, \(abc)
matches the explicit string (abc).

1–4 Finding Information with Regular Expressions and the grep Command

Table 1–2: Rules for Extended Regular Expressions (cont.)

Expression Name Description

[chars] Bracket
expression

Matches a single instance of any one
of the characters within the brackets.
Ranges of characters can be abbreviated by
using a hyphen. For example, [0−9a−z]
matches any single digit or lowercase
letter. Within brackets, all characters are
ordinary characters except the hyphen
(when used in a range abbreviation) and
the circumflex (when used as the first
character inside the brackets).

^ Circumflex When used at the beginning of an expression
(or a subexpression), matches the beginning
of a line (anchors the expression to the
beginning of the line). When used as the
first character inside brackets, excludes the
bracketed characters from being matched.
Otherwise, has no special properties.

$ Dollar sign When used at the end of an expression,
matches the end of a line (anchors the
expression to the end of the line). Otherwise,
has no special properties.

\char Backslash Except within a bracket expression, escapes
the next character to permit matching on
explicit instances of characters that usually
are extended regular expression operators.

expr expr ... Concatenation Matches any string that matches all of the
concatenated expressions in sequence.

expr|expr ... Vertical bar
(alternation)

Separates multiple extended regular
expressions; matches any of the
bar-separated expressions.

1.1.3 Matching Multiple Occurrences of a Regular Expression

An asterisk (*) acts on the simple regular expression immediately preceding
it, causing that expression to match any number of occurrences of a matching
pattern, even none. When an asterisk follows a period, the combination
indicates a match on any sequence of characters, even none. A period and an
asterisk always match as much text as possible; for example:

% echo "A B C D" | sed ’s/^.* /E/’
ED

The sed stream editor command in the previous example indicates that
sed is to match the expression between the first and second slashes and
replace the matching pattern with the string between the second and third

Finding Information with Regular Expressions and the grep Command 1–5

slashes. This regular expression will match any string that starts at the
beginning of the line, contains any sequence of characters, and ends in a
space. Nominally, the string “A ” satisfies this expression; but the longest
matching pattern is “A B C ”, so sed replaces “A B C ” with “E” to yield ED as
the output. See Chapter 3 for more information on the sed stream editor.

An asterisk matches any number of instances of the preceding regular
expression (both basic and extended). To limit the number of instances
that a particular extended regular expression will match, use a plus sign
(+) or a question mark (?). The plus sign requires at least one instance of
its matching pattern. The question mark refuses to accept more than one
instance. The following chart illustrates the matching characteristics of the
asterisk, plus sign, and question mark:

Regular Expression Matching Strings

ab?c ac abc

ab*c ac abc abbc, abbbc, ...

ab+c abc abbc, abbbc, ...

You can also specify more restrictive numbers of instances of the regular
expression with an interval expression. The following list illustrates the
various forms of interval expressions in basic regular expressions:

• expr\{i\} Matches exactly i instances of anything expr matches. For
example, ab\{3\}c matches abbbc but does not match either abbc
or abbbbc.

• \{i,\} Matches at least i instances. For example, ab\{3,\}c matches
abbbc, abbbbc, and so on, but not ac, abc, or abbc.

• \{i,j\} Matches any number of instances from i to j, inclusive. For
example, ab\{2,4\}c matches abbc, abbbc, or abbbbc but not abc or
abbbbbc. You can use 0 (zero) for i.

For extended regular expressions, omit the backslashes, making the previous
examples ab{3}c, ab{3,}c, and ab{2,4}c.

Using the subexpression delimiters, you can save up to nine basic regular
expression subexpression patterns on a line. Counting from left to right
on the line, the first pattern saved is placed in the first holding space, the
second pattern is placed in the second holding space, and so on.

The back-reference character sequence \n (where n is a digit from 1 to
9) matches the nth saved pattern. Consider the following basic regular
expression:

\(A\)\(B\)C\2\1

1–6 Finding Information with Regular Expressions and the grep Command

This expression matches the string ABCBA. You can nest patterns to be saved
in holding spaces. Whether the enclosed patterns are nested or in a series,
n refers to the nth occurrence, counting from the left, of the subexpression
delimiters. You can also use \n back-reference expressions in replacement
strings as well as address patterns for editors such as ed and sed. Extended
regular expressions do not support back-referencing.

1.1.4 Matching Only Selected Characters

A period in an expression matches any character except the newline
character. To restrict the characters to be matched, place the characters
inside brackets ([]). Each string of bracketed characters is a
single-character expression that matches any one of the bracketed
characters. Except for the circumflex (^), regular expression operators
within brackets are interpreted literally, without special meaning. The
circumflex excludes the bracketed characters if it is the first character in the
brackets; otherwise, it has no special meaning.

When you specify a range of characters with a hyphen (for example,
[a−z]), the characters that fall within the range are determined by the
current collating sequence defined by the current setting of the LC_CTYPE
environment variable. See Command and Shell User’s Guide for more
information on using internationalization and collating sequences features.
The hyphen has no special meaning if it is the first or last character in a
bracketed string or in a range expression in a bracketed string, or if it
immediately follows a circumflex that is the first character in a bracketed
string. To include a right bracket in a bracket expression, place it first or
after the initial circumflex.

You can use the grep command’s −i flag to perform a case insensitive
match. (The −y flag is an exact synonym for −i.) To create an expression
that is not case sensitive for other utilities, or to form an expression that is
only partially case insensitive, use a bracket expression consisting of just the
uppercase and lowercase versions of the character you want. For example:

% grep ’[Jj]ones’ group-list

1.1.5 Specifying Multiple Regular Expressions

Some utilities, such as grep (with its −E flag) and awk, permit you to
specify multiple alternative extended regular expressions simultaneously by
separating the individual expressions with a vertical bar. For example:

% awk ’/[Bb]lack|[Ww]hite/ {print NR ":", $0}’ .Xdefaults
55: sm.pointer_foreground: black
56: sm.pointer_background: white

Finding Information with Regular Expressions and the grep Command 1–7

1.1.6 Special Collating Considerations in Regular Expressions

Bracket expressions can include three special types of expressions called
classes:

• Character class

Specifies a general type of character, such as uppercase letters.

• Collating-symbol class

In internationalized usages, specifies multicharacter strings that sort
as single characters.

• Equivalence class

In internationalized usages, specifies collections of characters that have
the same primary sort value.

When not used within a bracket expression, all of the constructs described in
this section are interpreted literally as the explicit sequences of characters
that make them up.

A character class name enclosed in bracket-colon delimiters, [: and :],
matches any of the set of characters in the named class. Members of
each of the sets are determined by the current setting of the LC_CTYPE
environment variable. The supported classes are alnum, alpha, cntrl,
digit, graph, lower, print, punct, space, upper, and xdigit. For
example, [[:lower:]] matches any lowercase letter in the current locale.

Some collating sequences include multicharacter strings that must be
sorted as if they were single characters. For example, in Hungarian, the
strings cs, dz, and others are each collating symbols. (The Hungarian
primary sort order is a, á, b, c, cs, d, dz, e, ...). These special strings are
called collating symbols, and they are indicated by being enclosed within
bracket-period delimiters, [. and .]. The bracket-period delimiters in the
regular expression syntax distinguish multicharacter collating elements
from a list of the individual characters that make up the element. When
using Hungarian collation rules, for example, [[.cs.]] is treated as an
expression matching the sequence cs, while [cs] is treated as an expression
matching c or s. In addition, [a-[.cs.]] matches a, á, b, c, and cs.

A collating sequence can define equivalence classes for characters. An
equivalence class is a set of collating elements that all sort to the same
primary location. They are enclosed within bracket-equal delimiters,
[= and =]. An equivalence class generally is designed to deal with
primary-secondary sorting; that is, for languages like French that define
groups of characters as sorting to the same primary location, and then have
a tie-breaking, secondary sort. For example, if e, é, and ê belong to the
same equivalence class, then [[=e=]fg], [[=é=]fg], and [[=ê=]fg] are
each equivalent to [eéêfg]. See the Command and Shell User’s Guide

1–8 Finding Information with Regular Expressions and the grep Command

for more information on collating sequences and their use, and on using
internationalization features.

1.2 Using the grep Command

The name of the grep command is an acronym for global regular expression
printer. The egrep and fgrep commands, allied to grep, are obsolescent
and should be replaced with grep −E and grep −F, respectively. The
differences in the way grep behaves when used with these flags are
summarized in Table 1–3.

Table 1–3: Behavior of the grep Command
grep Version Description

grep Basic grep patterns (for grep with neither the −E nor the
−F flag) are interpreted as basic regular expressions.

grep −E (egrep) Extended grep patterns are interpreted as ex-
tended regular expressions.

grep −F (fgrep) Fixed grep patterns are fixed strings; all regular expression
operators are interpreted literally.

All forms of the grep command let you specify more than one expression
as a multiline list. Surround the list with apostrophes, and separate the
expressions with newline characters, as in this example using the Bourne
shell:

$ strings hpcalc | grep -F ’math.h
> fatal.h’

In the C shell, you must enter a backslash before each newline character:

% strings hpcalc | grep -F ’math.h\
fatal.h’

You also can use the −e flag to specify multiple expressions on one line.
For example:

% grep -e ’ab*c’ -e ’de*f’ myfile

By default, the grep command finds each line containing a match for the
expression or expressions you specify. Table 1–4 describes command line
flags that let you specify other results from your searches.

Finding Information with Regular Expressions and the grep Command 1–9

Table 1–4: Flags for the grep Command
Flag Description

-b Precedes each output line with its disk block number.
This flag is of use primarily to programmers who are
trying to identify specific blocks on a disk by searching
for the information contained in them.

-c Counts matching lines and prints only the count.

-e pattern_list Specifies matching on pattern_list; multiple
patterns must be separated with newlines. Useful if
pattern_list begins with a minus sign (−).

-f pattern_file Uses the contents of pattern_file to supply the
expressions to be matched. Specify one expression
per line in pattern_file.

-h Suppresses reporting of file names when multiple
files are processed.

-l Lists only the names of files containing matching
lines. Each file name is listed only once, even if the
file contains multiple matches. If standard input is
specified among the files to be processed with this flag,
grep returns the parenthesized phrase (standard
input) for the file name on relevant matches.

-n Precedes each matching line with its line number.

-p paragraph_sep Uses paragraph_sep as a paragraph separator, and
displays the entire paragraph containing each matched
line. Does not display the paragraph separator lines.
The default paragraph separator is a blank line.

-q Operates in quiet mode, printing nothing except
error messages.a

-s Suppresses error messages arising from nonexistent or
unreadable files. Other error messages are still displayed.a

-v Outputs only lines that do not match the
specified expressions.

-w expr Matches only if expr is found as a separate word
in the text. A word is any string of alphanumeric
characters (letters, numbers, and underscores) delimited
by nonalphanumeric characters (punctuation or white
space) or by the beginning or end of the line. For
example, word1 is a word; A+B is not a word.

-x Outputs only lines matched in their entirety.

-y Exact synonym for −i.
a To suppress all output for cases in which only success or failure status is wanted, as in a shell script, close
standard output and standard error or redirect them both to /dev/null.

See grep(1) for more information about regular expressions.

1–10 Finding Information with Regular Expressions and the grep Command

2
Matching Patterns and Processing

Information with awk

This chapter describes the awk command, a tool with the ability to match
lines of text in a file and a set of commands that you can use to manipulate
the matched lines. In addition to matching text with the full set of extended
regular expressions described in Chapter 1, awk treats each line, or record,
as a set of elements, or fields, that can be manipulated individually or in
combination. Thus, awk can perform more complex operations, such as:

• Writing selected fields of a record

• Reordering or replacing the contents of a record; for example, to change
syntax in a program source file or change system calls when porting
from one system to another

• Processing input to find numeric counts, sums, or subtotals

• Verifying that a given field contains only numeric information

• Checking to see that delimiters are balanced in a programming file

• Processing data contained in fields within records

• Changing data from one program into a form that can be used by a
different program

This chapter contains the following sections:

• Running the awk program (Section 2.1)

• Printing in awk (Section 2.2)

• Using variables in awk (Section 2.3)

• More about using regular expressions as patterns (Section 2.4)

• Using relational expressions and combined expressions as patterns
(Section 2.5)

• Using pattern ranges (Section 2.6)

• Actions in awk (Section 2.7)

• Using operators in an action (Section 2.8)

• Using Functions within an Action (Section 2.9)

• Using Control Structures in awk (Section 2.10)

Matching Patterns and Processing Information with awk 2–1

• Performing actions before or after processing the input (Section 2.11)

• Concatenating strings (Section 2.12)

• Redirections and pipes (Section 2.13)

2.1 Running the awk Program

The awk command has the following syntax:

awk [[−F ERE]] [[−v var= val]] { [−f prog_file] | [prog_text]} [file1 [file2 ...]]

Table 2–1 describes the flags for the awk command.

Table 2–1: Flags for the awk Command
Flag Description

−FERE Specifies an extended regular expression to be used as a field
separator. By default, awk uses white space (any number of
adjacent tabs or spaces) to separate fields in a record. To
specify an alternate separator containing white space or a
shell metacharacter, enclose the entire flag in apostrophes.
For example:

%echo $PATH | awk -F’:’
’{for(n=1;n<=NF;n++)print $n}’

−v var=val Assigns the value val to a variable named var; such
assignments are available to the BEGIN block of a program.
The awk command accepts multiple −v flags.

−f prog_file Specifies the name of a file containing an awk program. This
flag requires a file name as an argument. The awk command
accepts multiple −f flags, concatenating all the program
files and treating them as a single program.

You can specify the awk program to be executed either with the −f
prog_file flag or as a program on the command line. Enclose a
command-line program with apostrophes (’ ’) or quotation marks (" ") as
needed to control file name expansion and variable substitution. It makes
the awk program easier to read if you use apostrophes (’ ’) and use the -v
var=val option to pass any shell variables into the awk program.

Usually, you create an awk program file before running awk. The program
file is a series of statements that look like the following:

pattern { action }

In this structure, a pattern is one or more expressions that define the text
to be matched. Patterns can consist of the following:

• BEGIN or END

2–2 Matching Patterns and Processing Information with awk

• Boolean combinations of regular expressions using the operators !
(NOT) , || (Logical OR), and && (AND), with parentheses for grouping
expressions

• Boolean combinations of relational operations on strings, numbers,
fields, and variables

• Ranges of records, specified in this way:

pattern1,pattern2

An action is one or more steps to be executed, designated with awk
commands, operands, and operators. Actions can consist of the following:

• Assignment statements

• Statements to format and print data

• Tests to alter the flow of control

• Control structures, such as if-else, while, and for statements

• Redirection of output to one or more output streams besides standard
output

• Piping of output and input
The braces ({}) are delimiters separating the action from the search
pattern. Actions can be specified on a single line, or on multiple lines to
give a visual structure to the program. If you place an action consisting of
several commands on one line, separate the commands with semicolons (;).
For example, either of the two following programs will find every record
containing either ‘Gunther’ or ‘gunther’. For each matching record, it will
print two lines, first the number of the record on which the match was made
and then the first two fields of the matched record:

Program 1:

/[Gg]unther/ { print "Record:", NR ; print $1, $2 }

Program 2:

/[Gg]unther/ {
print "Record:", NR
print $1, $2

}

Output from these programs might look like the following:

Record: 382
Schuller Gunther
Record: 397
schwarz gunther

Both the pattern and the action are optional elements of a program line. If
you omit the pattern, awk performs the action on every record in the file;

Matching Patterns and Processing Information with awk 2–3

if you omit the action, awk copies the record to standard output. A null
program passes its input unmodified to the output.

After you create the program file, enter the awk command on the command
line as follows:

$ awk -f progfile infile > outfile

This command uses the program in progfile to process infile, and writes
the output to outfile. The input file is not changed.

With a short program, you can accomplish the same job by entering the
program on the command line before the name of the input file. For example:

$ awk ’/[Gg]unther/ { print $1, $2 }’ infile

When you use awk in this way, enclose the program in apostrophes (’ ’)
and use the -v var=val option to pass in any shell variables.

When you start awk, it reads the program, checking for syntax. It then
reads the first record of the input file, testing the record against each of the
patterns in the program file in order of their appearance. When awk finds a
pattern that matches the record, it performs the associated action. Then awk
continues to search for matches in the program file. When it has compared
the first input record against all patterns in the program file and performed
all the actions required for that record, awk reads the next input record and
repeats the program with that record. Processing continues in this manner
until the end of the input file is reached. Figure 2–1 is a flowchart of this
sequence. Compare the operation of awk with the very similar operation of
the sed editor, shown in Figure 3–1.

2–4 Matching Patterns and Processing Information with awk

Figure 2–1: Sequence of awk Processing

ZK0471UR

End

Start

Read
line

Yes

No

Pattern
match?

End of
file?

Yes

No

Apply
actions

2.2 Printing in awk

You can use either the print command or the printf command to
produce output in awk. The print command syntax allows arguments to
be separated by commas or spaces. Arguments separated by commas are
printed using the current output field separator (OFS; default is a space).
Arguments separated by a space are concatenated as they are printed. For
example:

awk ’BEGIN{ x=22; print "ABC" x, "DEF" }’
ABC22 DEF

printf("format", value1 [, value2 , ...])

This command prints the arguments value1, value2, and so on, formatted
as defined by the format string. See awk(1) and printf(3) for information
on constructing format specifiers.

Matching Patterns and Processing Information with awk 2–5

2.3 Using Variables in awk

The awk program uses variables to manipulate information. Variables are
of the following types:

• Simple variables (Section 2.3.1)

• Field variables (Section 2.3.2)

• Array variables (Section 2.3.3)

• Built-In awk variables (Section 2.3.4)

The awk language supports the set of built-in variables described in
Section 2.3.4. You also can create and modify variables of all three types.
For example, the following assignment statement creates a variable named
var whose value is the sum of the third and fourth field variables in the
current record:

var = $3 + $4

You can use variables as part of a pattern, and you can manipulate them in
actions. For example, the following program assigns a value to a variable
named tst and then uses tst as part of a pattern for further actions:

{ tst = $1 }
tst == $3 { print }

Section 2.3.1, Section 2.3.2, and Section 2.3.3 discuss the three types of
variables and how to use them. Some of the examples in these sections
illustrate the use of other awk features; beginning with Section 2.4, the
remaining sections in the chapter provide more detailed information about
these features.

2.3.1 Simple Variables

You can create any number of simple (scalar) variables, assigning values to
them as required. If you refer to a variable before explicitly assigning a value
to it, awk creates the variable and assigns it an empty string value ("").
Variables can have numeric (floating-point) values or string values depending
on their use in the action expression. For example, in the expression x = 1,
x is a numeric variable. Similarly, in the expression x = "smith", x is a
string variable. However, awk converts freely between strings and numbers
when needed. Therefore, in the expression x = "3"+"4", awk assigns a
value of 7 (numeric) to x, even though the arguments are literal strings. If
you use a variable containing a nonnumeric value in a numeric expression,
awk assigns it a numeric value of 0. For example:

y = 0
z = "ABC"
x = y+z

2–6 Matching Patterns and Processing Information with awk

print x, z

This sequence prints “0 0” because y is assigned a value of 0 and z assumes
a value of 0 when used numerically.

You can force a variable to be treated as a string by concatenating the null
string ("") to the variable; for example, x = 2 "". (See Section 2.12
for information on concatenating strings.) You can force a variable to be
treated numerically by adding zero to it. Forcing variables to be treated as
particular types can be useful. For example, if x is “0100” and y is “1”, awk
usually treats both variables as numerics and considers that x is greater
than y. Forcing both variables to be treated as strings causes x to be less
than y because “0” precedes “1” in standard character collating sequences.

2.3.2 Field Variables

Fields in the current record, also called field variables, share the properties
of simple variables. They can be used in arithmetic or string operations and
can be assigned numeric or string values. You can modify the current record
($0) explicitly in awk. The following action replaces the first field with the
record number and then prints the resulting record:

{ $1 = NR; print }

The next example adds the second and third fields and stores the result
in the first field:

{ $1 = $2 + $3; print $0 }

(Printing $0 is identical to printing with no arguments.)

You can use numeric expressions for field references; the following example
prints the first, second, and sixth fields:

i = 1
n = 5
{ print $i, $(i+1), $(i+n) }

As described in Section 2.3.1, awk converts between string and numeric
values. How you use a field determines whether awk treats it as a string
or numeric value. If it cannot tell how a given field is used, awk treats it
as a string.

The awk program splits input records into fields as needed.

2.3.3 Array Variables

Like field variables, array variables share the properties of simple variables.
They can be used in arithmetic or string operations and can be assigned
numeric or string values. You do not need to declare or initialize array
elements; awk creates them and initializes them to an empty string ("")

Matching Patterns and Processing Information with awk 2–7

upon first reference. The delete statement can be used to remove unwanted
array elements see Table 2–7 for additional information.

Subscripts are indicated by being enclosed in brackets. You can use any
value that is not null, including a string value, for a subscript. An example
of a numeric subscript follows:

x[NR] = $0

This expression creates the NRth element of the array x and assigns the
contents of the current input record to it. The following example illustrates
using string subscripts:

/apple/ { x["apple"]++ }
/orange/ { x["orange"]++ }
END { print x["apple"], x["orange"] }

For each input record containing apple, this program increments the
appleth element of array x (and similarly for orange), thereby producing
and printing a count of the records containing each of these words. (This is
not a count of the number of occurrences, because a word can appear more
than once in a record.)

Problems can occur when you use an if or while statement to locate an
array element. (See Section 2.10 for information on using these and other
control structures.) If the array subscript does not exist, the statement adds
the subscript as a new hash table entry with the array element having a null
value. For example:

if (exists[$2] == 1) print i

To avoid this type of problem, use code similar to the following, in which i is
printed only if the array element exists and array element’s value is 1:

if (i in exists) {
if (exists[i]== 1) print i

}

All the elements of an array can be processed in a for loop as follows:

for(i in exists) {
print exists[i]

}

Also use this type of coding when while is used with a relational operator.

You can split any literal string or string variable into an array by using
the split function. For example:

n = split("Thu Mar 18 11:19:40 EST 1999", array1)
m = split(array1[4], array2, ":")

2–8 Matching Patterns and Processing Information with awk

The first line in this example splits the literal string into elements of an
array named array1, creating array1[1] to array1[n] where n is the
number of fields in the string. The second line splits the variable array1[4]
using colon (":") as the separator into array2 (see Section 2.9).

2.3.4 Built-In awk Variables

The awk programs recognize the set of built-in variables listed in Table 2–2.

Table 2–2: Built-In Variables in awk
Variable Description

$0 The contents of the current record.

$n The contents of field n of the input record. In awk you
can modify the entire record ($0).

ARGC A count of the arguments given to awk. This variable
is modifiable. Does not include the command name,
flags preceded by minus signs, the script file name
(if any), or variable assignments.

ARGV An array from ARGV[0] to ARGV[ARGC-1] containing
the command name followed by the arguments given to
awk. The elements of this array are modifiable. Does
not include flags preceded by minus signs, the script file
name (if any), or variable assignments.

CONVFMT The conversion format for numbers (by default, %.6g).

ENVIRON A modifiable array containing the current set of environment
variables; accessible by ENVIRON["name"], where "name" is
a variable or literal containing the name of the environmental
variable. Changing an element in this array does not affect
the environment passed to commands that awk spawns by
redirection, piping, or the system() function.

FILENAME The name of the current input file. If no input file was
named, FILENAME contains a single minus sign. Inside
a BEGIN action, FILENAME is undefined. Inside an END
action, FILENAME reflects the last file read.

FNR The number of the current record within the current file.
Differs from NR if multiple files are being processed and
the current file is not the first file read.

FS The character or expression used for a field separator. By
default, any amount of white space. In awk, field separators
can be multibyte regular expressions and can be multiply
defined. For example, the following statement defines either a
comma followed by any amount of white space or at least one
white-space character as the field separator:

FS = ",[\t]*|[\t]+"

Matching Patterns and Processing Information with awk 2–9

Table 2–2: Built-In Variables in awk (cont.)

Variable Description

NF The number of fields in the current record.

NR The number of the current record, counted sequentially
from the beginning of the first file read. Differs from
FNR if multiple files are being processed and the
current file is not the first file read.

OFMT The format specification for numbers on output
(by default, %.6g).

OFS The output field separator; or string inserted between fields
when the data is written. By default, a space character.

ORS The character used for the output record separator (the
character between records when the data is written).
By default, a newline character.

RLENGTH The length of the string matched by match();
set to −1 if no match.

RS Input character used for a record separator.

RSTART The index (position within the string) of the first character
matched by match(); set to 0 if no match.

SUBSEP The separator for multiple subscripts in array elements
(by default \034, the ASCII FS character).

See awk(1) for more information about these variables.

2.4 More About Using Regular Expressions as Patterns
The simplest regular expression is a literal string of characters. Regular
expressions in awk must be enclosed in slashes. To include a slash as
part of an expression, escape the slash with a backslash. For example,
/\/usr\/share/ is an expression that matches the string /usr/share.

Following is an example of an awk program that prints all records containing
the string the.

/the/

Because this expression does not specify blanks or other qualifiers, the
program displays records containing “the” as a separate word and records
containing the string as part of words such as “northern”. Regular
expressions are case sensitive. To find either “The” or “the”, use a bracketed
expression as follows:

/[Tt]he/

The awk language supports the full set of extended regular expressions
described in Chapter 1. Additionally, in awk the circumflex (^) and dollar

2–10 Matching Patterns and Processing Information with awk

sign ($) can apply to a specific field or variable as well as to the entire line.
The following example will match a field consisting of the word, cat, or the
word, cats, but will not match any word containing these strings (such as
concatenate):

{ for (i=1;i<=NF;i++) if ($i ~ /^cats?$/) print }

2.5 Using Relational Expressions and Combined
Expressions as Patterns
Relational expressions let you restrict a match to a specific field of a record
or to make other tests, either numeric or string-related. One example earlier
in this chapter (in Section 2.3) illustrates the use of relational expressions
in patterns. The awk program defines the following relational operators
for use in building patterns:

== Equivalent

!= Not equivalent

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal

~ Matches regular expression

!~ Does not match regular expression

Use the == (equivalent) and != (not equivalent) operators to test literal
strings and numeric values. For example:

str == "literal string"
num != 23
$NF == 1991

The last line in this example uses the $n syntax combined with the built-in
variable NF to test the value of the last field of a record. To test against
regular expressions, use the ~ (matches regular expression) and !~ (does not
match regular expression) operators as follows:

str ~ /[Ll]iteral/

You can test relational expressions against built-up expressions. For
example, the following pattern finds all records whose second field ($2) is at
least 100 greater than the first field ($1):

$2 > $1 + 100

The following pattern finds records that contain an even number of fields:

NF % 2 == 0

Matching Patterns and Processing Information with awk 2–11

Use the operators listed in Section 2.8 to build expressions.

You can use magnitude-comparison operators to test strings. For example,
the following pattern finds records that begin with s or any character that
appears after it to the end of the character set:

$0 >= "s"

You can combine two or more patterns by using the following Boolean
operators:

&& AND

|| Logical OR

! NOT

For example, to prevent nonalphanumeric matches in the preceding
example, you can combine two expressions as follows:

($0 >= "s" && $0 < "{")

(The left brace is the character immediately following the letter z in the
ASCII code.)

2.6 Using Pattern Ranges
You can use a pattern range to select a group of records to operate on. A
pattern range consists of two patterns separated by a comma; the first
pattern specifies the start of the range, and the second pattern specifies
the end of the range. The awk program performs the associated action on
all records in the range, including the records that match the two patterns.
For example:

NR==100,NR==200 { print }

This program prints 101 records from the input file, beginning with record
100 and ending with record 200.

Using a pattern range does not disable other patterns from matching records
within the range. However, because the input file is processed record by
record, with each record being subject to all the actions appropriate to it
before the next record is considered, the actions taken can appear to be out
of sequence. For example:

2,4 { print }
/share/ { print "Found share" }

Apply this program to the following input file:

This is a test file
Line two
Try to share things
Line four

2–12 Matching Patterns and Processing Information with awk

Last line of file

When this file is processed by awk, the output is as follows:

Line two
Try to share things
Found share
Line four

The second action is applied to record 3 before record 4 is examined to see if
it matches the first pattern.

2.7 Actions in awk

An action can be a single command, such as print, or it can be a series of
commands. An action can include tests to select records or parts of records;
you also can create a program that has no explicit patterns, relying instead
on relational comparisons within its actions. Such a program can bear a
strong resemblance to a C program; for example:

{
if ($1 == 0) {

print;
printf("%5.2f\n", $2+$3)

} else {
printf("%5.2f\n", $1+$2)

}
}

______________________ Note _______________________

The semicolon after the print command, which would be
required in a C program, is not required by awk, but it does not
cause an error.

2.8 Using Operators in an Action

Use the operators shown in Table 2–3 to build expressions within the action
statement.

Table 2–3: Operators for awk Actions
Prece-
dence

Operator Description Example

1 () Parentheses 3+x*4 = 3+(x*4)

2 $ Field reference $(NF-1) = next to last field

3 ++ Increment See the description below

Matching Patterns and Processing Information with awk 2–13

Table 2–3: Operators for awk Actions (cont.)

Prece-
dence

Operator Description Example

3 -- Decrement See the description below

4 ^ Exponentiation 2^3 = 8

5 ! Logical negation !x is not equal to x

6 + Unary plus +4 = 4

6 - Unary minus -4 is negative 4

7 * Multiplication 2*4 = 8

7 / Division 6/3 = 2

7 % Modulo
(Remaindering)

7%3 = 1

8 + Addition 2+3 = 5

8 - Subtraction 7−3 = 4

9 space Concatenation "a" "b" = "ab"

10 < Less than 5 < 6

10 > Greater than "qrs" > "abc"

10 <= Less than or
Equal to

3 <= 3

10 >= Greater than or
Equal to

4 >= 2

10 == Equal 9 == 9

10 != Not Equal "xyz != "abc"

11 ~ Match regular expr "tmp.c" ~ /[a-z]+\.[ch]/

11 !~ Not Match regular
expr

"tmp.o" !~ /[a-z]+\.[ch]/

12 in Array Membership for (j in arr) print arr[j]

13 && Logical AND X

14 || Logical OR X

15 ?: Conditional
Expression

x == -1 ? "error" : "OK"

16 = Assignment x = 3

16 ^= Exponentiation
by value

x^=3 is equivalent to x = x^3

16 *= Multiply by value x*=y is equivalent to x = x*y

2–14 Matching Patterns and Processing Information with awk

Table 2–3: Operators for awk Actions (cont.)

Prece-
dence

Operator Description Example

16 /= Divide by value x/=y is equivalent to x = x/y

16 %= Modulo by value x%=y is equivalent to x = x%y

16 += Increment by value x+=y is equivalent to x = x+y

16 -= Decrement by value x-=y is equivalent to x = x-y

The following example prints the sum of all the first fields and the sum of all
the second fields in the input file:

{ s1 += $1; s2 += $2 }
END { print s1,s2 }

The position of the increment and decrement operators affects their
interpretation. The expression i++ evaluates the current contents of i and
then increments i. The expression ++i causes awk to increment i before
evaluation. For example:

$ echo "3 3" | awk ’{
> print "$1 =", $1 "; $1++ =", $1++ "; new $1 =", $1
> print "$2 =", $2 "; ++$2 =", ++$2 "; new $2 =", $2
> }’
$1 = 3; $1++ = 3; new $1 = 4
$2 = 3; ++$2 = 4; new $2 = 4

2.9 Using Functions Within an Action
The awk language includes the built-in mathematical functions listed in
Table 2–4.

Table 2–4: Built-In awk Mathematical Functions
Function Description

atan2(x,y) Returns the arctangent of the value specified by x/y.

cos(expr) Returns the cosine of the value (in radians)
specified by expr.

exp(arg) Returns the natural antilogarithm (base ε) of arg. For
example, exp(0.693147) returns 2. See log(arg).

int(arg) Returns the integer part of arg.

log(arg) Returns the natural logarithm (base ε) of arg. For
example, log(2) returns 0.693147. See exp(arg).

rand Returns a pseudorandom number (0 ≤ n < 1).

Matching Patterns and Processing Information with awk 2–15

Table 2–4: Built-In awk Mathematical Functions (cont.)

Function Description

sin(arg) Returns the sine of the value (in radians)
specified by arg.

sqrt(arg) Returns the square root of arg.

srand(seed) Uses seed as the seed for a pseudorandom number
sequence for subsequent calls to rand. If no
seed is specified, the time of day is used. The
return value is the previous seed.

The awk language includes the built-in string functions listed in Table 2–5.

Table 2–5: Built-In awk String Functions
Function Description

gsub(expr,s1,s2) Replaces every sequence of characters in string s2
that matches the regular expression expr with the
string specified by s1. If s2 is not supplied, the
current input record is used. Regular expression
expr is reevaluated for each match. This function
returns a value representing the number of
replacements. See also sub(expr,s1,s2).

index(s1,s2) Returns the character position in string s1
where string s2 occurs. If s2 is not in s1,
this function returns a zero.

length Returns the length in characters of the current record.

length(arg) Returns the length in characters of the string
specified by arg. See length.

match(s,expr) Returns the character position in string s where
a match is found for the regular expression expr;
sets the variable RSTART to the character position
at which the match begins and RLENGTH to a value
representing the length of the matched string. If no
match is found, this function returns a zero.

split(s,array,sep) Splits string s into consecutive elements of
array[1]...[n] and returns the number of
elements. The optional sep argument specifies a
field separator other than the one currently in force
(the default is the contents of the FS variable).

sprintf(f,e1,e2 ,...) Returns (but does not print) a string containing the
arguments e1 and so on, formatted in the same
manner as by the printf command.

2–16 Matching Patterns and Processing Information with awk

Table 2–5: Built-In awk String Functions (cont.)

Function Description

sub(expr,s1,s2) Replaces the first sequence of characters in string
s2 that matches the regular expression expr with
the string specified by s1. If s2 is not supplied, the
current input record is used. This function returns
a value representing the number of replacements
(0 or 1). See also gsub(expr,s1,s2).

substr(s,m,n) Returns the substring of s that begins at character
position m and is n characters long. The first
character in s is at position 1. If n is omitted or if
the string is not long enough to supply n characters,
the rest of the string is returned.

tolower(s) Translates all uppercase letters in string s to
lowercase. If there is no argument, the function
operates on the current record.

toupper(s) Translates all lowercase letters in string s to
uppercase. If there is no argument, the function
operates on the current record.

The awk language includes the built-in miscellaneous functions listed in
Table 2–6.

Table 2–6: Built-In awk Miscellaneous Functions
Function Description

close(arg) Closes the file or pipe named by arg.

system("command") Executes the system command specified and returns
its exit status. The entire command must be enclosed
in quotation marks to prevent awk from attempting
to interpret it as one or more variable names.

The awk language also lets you create functions by using the following
syntax:

function name(parameter-list) {
statements

}

The word func can be used in place of function. For functions that you
create, the left parenthesis both in the function’s definition and in its use
must immediately follow the function name with no intervening space. The
names in the function declaration’s parameter list are the formal parameters
for use within the function. When you call a function, awk replaces these
formal parameters with the values you supply in the calling statement.
Functions can be recursive.

Matching Patterns and Processing Information with awk 2–17

You can define local variables for a given function by declaring them as extra
formal parameters; upon function entry, all local variables are initialized
as empty strings or the number 0. To avoid visual confusion between real
parameters and local variables, you can separate the local variables with
extra spaces in the function declaration. For example:

function foo(in, out, local1, local2) {
local1 = "foo"
local2 = "bar"

...

}

2.10 Using Control Structures in awk

The awk language provides the control structures listed in Table 2–7. Except
where noted, these structures work exactly as they do in the C language. To
perform several statements in a single control structure’s action, enclose the
statements in braces. If only a single statement is to be performed, the braces
are optional. Each of the first two if structures in the following example
includes a single statement to be executed; these structures are equivalent:

{
if (x == y) print
if (x == y) {

print
}
if (x == y) {

print $3
printf("Sum = %d\n", x+z)

}
}

2–18 Matching Patterns and Processing Information with awk

Table 2–7: Control Structures in awk
Structure Description

if-else The condition in parentheses in an if-else structure is
evaluated. If true, the statements following the if are
performed. If false, the statements following the optional else
keyword are performed. Cascading if statements may be
specified with else if statements.
The order that "else" and "if" appear is important. As in:

if ($1 == "abc") {

print("found abc\n");
}
else if ($1 == "qrs") {

print("found qrs\n");
}
else if ($1 == "xyz") {

print("found xyz\n");
}
else {

print("did not find "abc", "qrs", or "xyz"\n");
}

delete Array elements may be deleted using the delete statement.
for example:

{
for(j in x)

delete x[j]
}

will remove all the elements of the array x.

while The statements following the while statement are performed
as long as the tested condition is true. The following example
prints all the fields in the input records, one field per line:

{
i = 1
while(i<=NF) print $i++

}

Matching Patterns and Processing Information with awk 2–19

Table 2–7: Control Structures in awk (cont.)

Structure Description

for The for(expr1;expr2;expr3) statements structure is
equivalent to the following while construct:

{
expr1
while(expr2) {

statements
expr3

}
}

The previous while example could also be written as follows:

{
for(i=1;i<=NF;++i) print $i

}

The for(i in array) statement processes all the elements
in an array:

$2=="="{name_value_pairs[$1]=$3}
end{

for (i in name_value_pairs)
print name_value_pairs[i]

}

break The break statement causes an immediate exit from
an enclosing while or for loop.

Comments Include comments in an awk program file to explain program
logic. Comments begin with the number sign (#) and end with
the end of the line. For example:

{
print x,y # This is a comment

}

continue The continue statement causes the next iteration
of an enclosing loop to begin.

getline The getline statement causes awk to discard the current
input record, read the next input record, and continue
scanning patterns from the present location.
By using getline var, you can assign the getline input to
a variable; without var, the input is assigned to the current
record.

2–20 Matching Patterns and Processing Information with awk

Table 2–7: Control Structures in awk (cont.)

Structure Description

next The next statement causes awk to discard the current input
record, read the next input record, and begin scanning
patterns from the start of the program file.

exit The exit statement causes the program to stop as
if the end of the input occurred.

2.11 Performing Actions Before or After Processing the
Input

The awk program recognizes two special pattern keywords that define the
beginning (BEGIN) and the end (END) of the input file. BEGIN matches
the beginning of the input before reading the first record. Therefore, awk
performs any actions associated with this pattern once, before processing
the input file. For example, to change the field separator to a colon (:)
for all records in the file, include the following line as the first line of the
program file:

BEGIN { FS = ":" }

This example action works the same as using the −F: flag on the command
line.

Similarly, END matches the end of the input file after processing the last
record. Therefore, awk performs any actions associated with this pattern
once, after processing the input file. For example, to print the total number
of records in the input file, include the following line in the program file:

END { print NR }

2.12 Concatenating Strings

You concatenate strings by placing their variable names together in an
expression. For example, the command print $1 $2 prints a string
consisting of the first two fields from the current record, with no space
between them. You can use variables, numeric operators, and functions when
concatenating strings. (See Section 2.3.1 and Section 2.8 for information on
variables and numeric operators.) The function length($1 $2 $3) returns
the length in characters of the first three fields. (See Section 2.9 for a list
of the functions in awk.) If the strings you want to concatenate are field
variables (see Section 2.3.2), you are not required to separate the names
with white space; the expression $1$2 is identical to $1 $2.

Matching Patterns and Processing Information with awk 2–21

2.13 Redirection and Pipes

Unless otherwise specified, print and printf statements write their
output to the standard output file. You can redirect the output of any
printing statement by using standard redirection operators. For example:

print $0, $3, amt >> "reportfile"

This example appends its output to a file named reportfile instead of
writing to the standard output. (If reportfile does not exist before the
first instance of redirection, it is created.) The output file name in this
example is enclosed in quotation marks. The quotation marks are required
to distinguish the file name from a variable name. You can mix writing to
named files with writing to the standard output.

The print and printf statements always send their output to stdout. The
following example sends output to stderr:

print "oops: did not find expected input" | " cat 1>&2"

You also can pipe printed output through other commands. The following
example pipes awk’s output through the tr command to convert all
uppercase letters to lowercase letters:

print | "tr ’[A-Z]’ ’[a-z]’"

As with redirection, the command to which you pipe the output must be
enclosed in quotation marks. In awk you can redirect the input to getline
using standard redirection operators, and you can supply the input to
getline from a pipe. For example:

expr | getline

Here, expr is interpreted as a system command.

The following example reads the output from a system command:

BEGIN {
cmd = "ps aux"
while(cmd | getline > 0) {
if ($2 == "PID") continue
unique_users[$1]++
}
close(cmd)

for(i in unique_users) {
printf("%3d %s\n", unique_users[i], i)
}

}

Only a limited number of files can be open for output. The awk program uses
your default open file descriptor limit. For efficiency, however, you can use

2–22 Matching Patterns and Processing Information with awk

the close(arg) statement to close files that you have opened for output
and no longer need. For example:

{
if (cur_file != "/tmp/" $1) {

close(cur_file)
cur_file = "/tmp/" $1

}
print $2 >cur_file
}
END { close(cur_file) }

Matching Patterns and Processing Information with awk 2–23

3
Editing Files with the sed Editor

This chapter describes the sed stream editor, which is a program that works
much like the interactive ed program, but you do not need to know how to
use the ed line editor to use the material presented here. The following
sections explain the sed editor:

• Overview of the sed editor (Section 3.1)

• Running the sed editor (Section 3.2)

• Selecting lines for editing (Section 3.3)

• Summary of sed commands (Section 3.4)

• String replacement (Section 3.5)

Unlike ed, sed edits files by using a prepared list of commands, called a
script, instead of interacting with the user. This method of operation makes
sed particularly well suited for tasks like the following:

• Editing large files

• Performing complex editing operations many times without extensive
retyping and cursor positioning

• Performing global changes in one pass through the input

3.1 Overview of the sed Editor

The sed stream editor receives its input from standard input or from a
named file, changes that input as directed by commands in a command file
or on the command line, and writes the resulting stream to standard output.
If you specify more than one input file, sed processes each file in sequence
and concatenates the results to standard output. If you do not provide a
command file and do not use any with the sed command flags, sed copies
standard input to standard output without change. The editor keeps only
a few lines of the file being edited in memory at one time and does not use
temporary files. Therefore, the size of the file to be edited is limited only
by the available disk space.

The command script for sed can be a file that you create before running the
editor, a series of commands you enter as a command flag, or both. The
editor cannot process more than 99 commands in a single invocation; for this

Editing Files with the sed Editor 3–1

reason or to accomplish certain extremely complex editing tasks, you might
need to pipe the output from sed into another instance of sed.

3.2 Running the sed Editor

The syntax for the sed command is as follows:

sed [[−n]] [[[−e]] [script]] [[−f script_file]] [[source_file1] [[source-file2 ...]]]

Table 3–1 describes the flags for the sed command.

Table 3–1: Flags for the sed Command
Flag Description

−e script Adds the editing commands specified by the string script to the
end of the script of editing commands. If you are using just one
−e flag and no −f flag, you can omit the −e flag and include the
single script on the command line as an argument to sed.

−f script_file Uses script_file as the source of the edit script.
The script_file is a set of editing commands
to be applied to the input.

−n Suppresses all information usually written to standard output.

The order of presentation of the −e and −f options is important. Usually,
you create a command file containing the editing commands before running
sed. The sed editor’s command set is powerful and requires little typing.
Each command in the command file can be on a separate line, or you can
place multiple commands on one line by separating them with semicolons
(;). For example, either of the following two scripts will delete all lines
beginning with .ne, .RE, or .RS:

Script 1:

/^\.ne/d
/^\.R[ES]/d

Script 2:

/^\.ne/d;/^\.R[ES]/d

After you create the command file (cmdfile in the following example), enter
the sed command as in this example:

$ sed -f cmdfile infile > outfile

This command edits infile using the commands contained in cmdfile,
and writes the output to outfile. The input file is not changed.

With a short editing script, you can accomplish the same job by entering the
editing commands as an argument to the −e flag on the command line:

3–2 Editing Files with the sed Editor

$ sed -e ’/^\.ne/d;/^\.R[ES]/d’ infile > outfile

If you use the −e and −f flags together on a command line, sed applies
all the commands specified by both flags, in the order in which the flags
appear. For example:

$ echo "s/line/foo/" > sedx
$ echo "Test line" | sed -f sedx -e ’s/line/bar/’
Test foo
$ echo "Test line" | sed -e ’s/line/bar/’ -f sedx
Test bar

You can use the −e and −f flags more than once with a given sed command.
For example:

$ sed -f script1 -e ’s/foo/bar/’ -f script2 msgs > msgs2

When you start sed, the editor reads and compiles the command script,
checking for syntax and organizing the commands for efficiency. It then
reads the input file one line at a time into an area of memory called the
pattern space. The editor then tries to match the addresses specified by the
commands in the script, one after another, to the lines in the pattern space.
Whenever a command’s address matches any line or lines in the pattern
space, sed applies that editing command to the matched text.

Commands are applied in sequence to the text, and the results of each
command are used as the input for subsequent commands. When no more
commands match a given line in the pattern space, sed writes that line
to the output, reads more input, and repeats the process. Figure 3–1 is a
flowchart of this sequence. Compare the operation of sed with the very
similar operation of the awk program, shown in Figure 2–1.

Editing Files with the sed Editor 3–3

Figure 3–1: Sequence of sed Processing

ZK0453UR

End

Start

Read
line

Yes

No

Pattern
match?

Write
line

End of
file?

Yes

No

Apply
editing

commands

Some editing commands change the way the editing process operates by
causing the editor to bypass other script commands, by inhibiting the writing
of certain lines (by deleting them), or by ending the process prematurely.

3.3 Selecting Lines for Editing

The sed editor identifies lines to be edited by matching addresses. An
address can be either a line number or a context address:

• Line numbers: The first line in the input stream is line 1, and each
successive line increments the line counter by one. The dollar sign ($)
is a shorthand way to specify the last line of the input stream. If you
edit more than one file in a single invocation of sed, the line counter is
cumulative across all the files edited; for example, if the first file contains
100 lines, the first line of the second file is line 101.

3–4 Editing Files with the sed Editor

• Context addresses: A context address is a regular expression enclosed in
pattern delimiters (usually slashes); for example, /^\.R[ES]/ matches
any line beginning with either .RE or .RS.

You can specify any character as a pattern delimiter for a given command by
preceding the first use of the character with a backslash. For example, the
following two patterns are interpreted identically:

/abc/
\xabcx

In the second pattern, the letter x is used as the pattern delimiter. If you
use an alternative pattern delimiter in this way, you can match a literal
occurrence of that character by preceding it with a backslash; the pattern
\x\xyzx matches the string “xyz”.

The sed editor recognizes the standard set of basic regular expressions
described in Chapter 1. In addition to these expressions, sed recognizes the
special expressions shown in Table 3–2.

Table 3–2: Special Regular Expressions Recognized by sed
Expression Name Rule

\n Embedded newline (a
backslash followed by the
letter n)

Matches an embedded newline
character in a line formed by
joining multiple lines.

// Empty pattern delimiters
(slashes by default)

Matches the text that matched
the most recently specified
regular expression.

Some sed commands do not accept addresses. Commands that accept
addresses behave differently depending on the number of addresses, as
follows:

• If no address is specified, the command is applied to every line in the
input stream.

• If one address is specified, the command is applied to each line that
matches the address.

• If two addresses are specified, the command is applied to a group of lines
starting with a line that matches the first address and ending with the
first subsequent line that matches the second address. The editor then
tries to match the first address again to find another range.

Editing Files with the sed Editor 3–5

______________________ Note _______________________

If two addresses are specified but sed cannot find a line matching
the ending address, sed operates on every line from the first
address to the end of the file.

3.4 Summary of sed Commands

Each sed command consists of a single letter with optional addresses. Some
commands require arguments and accept qualifiers that alter their behavior.
Do not include any space between the addresses and the letter. If you use
two addresses with a command, separate them with a comma. The r and w
commands and the w flag for the s command require a single space between
the letter and the argument; otherwise, do not include any space between
the letter and the argument.

In the tables below, the following conventions apply:

• The term, range of lines, can mean a single line, a group of lines, or all
lines, as specified by the number of addresses given to the command.

• Brackets [] enclose optional elements. Nested brackets indicate that
the nested element can be used only if the enclosing element is present.

• Italic (slanted) type indicates a general name for an object that you
specify; for example, file represents a command argument that must
be the name of a file.

The following example illustrates a correctly formed s command with all
optional elements:

1,/^$/s/vizier//g

This example processes the header of a mail message (line 1 to the first
completely blank line), replacing the string vizier with nothing wherever
the string occurs on any line in the specified range.

Table 3–3 describes the text editing and movement sed commands, showing
the syntaxes.

Table 3–3: Text Editing and Movement Commands
Command Description

Append text

[addr1]a\
text[\
text...]

Writes the specified texta to the output after the line
specified by addr1. See also the i command.

Change lines

3–6 Editing Files with the sed Editor

Table 3–3: Text Editing and Movement Commands (cont.)

Command Description

[addr1[,addr2]]c\
text[\
text...]

Deletes the addressed range of lines and writes the
specified texta to the output in its place.b

Delete lines

[addr1[,addr2]]d Deletes the specified range of lines.b

Delete the first line of the pattern space

[addr1[,addr2]]D Deletes all text in the pattern space up to and
including the first newline character. If only one line
is in the pattern space, this command reads another
line from the input into the pattern space. After
these operations, the command starts the complete
list of editing commands again from the beginning.

Insert lines

[addr1]i\
text[\
text...]

Writes the specified texta to the output before the line
specified by addr1. See also the a command.

Advance in the file

[addr1[,addr2]]n Writes the indicated range from the pattern space (if
not deleted) to the output and then reads the next
line from the input into the pattern space.

Join lines

[addr1[,addr2]]N Joins the indicated lines together as a single line with
embedded newline characters. If only one address
is given, the command joins the specified line to
the next line in the input stream. Pattern matches
for addressing or for string replacement can extend
across embedded newline characters. Use \n to
indicate an embedded newline character for matching.

Print lines

[addr1[,addr2]]p Writes the specified range of lines to the output
at the point in the editing process where the
p command appears. This command can be
used to reorder sections of a file.

Print the first line in the pattern space

[addr1[,addr2]]P Writes all text in the pattern space, up to
and including the first newline character, to
the output at the point in the editing process
where the P command appears.

Read and append a file

Editing Files with the sed Editor 3–7

Table 3–3: Text Editing and Movement Commands (cont.)

Command Description

[addr1]r file Reads the named filec and writes the file’s
contents to the output after addr1.

Substitute text

[addr1[,addr2]]s/expr/string/[flags]

Searches the indicated lines for a string of characters
matching the expression defined by expr, and
replaces that set of characters with string. This
command’s operation is modified by the g, p, and
w file flags. If either expr or string includes a
slash (/), you must escape the literal slash with a
backslash (s/path/path\/file/) or use alternative
delimiters such as the at sign (@) or question
mark (?). For example, s@path@path/file@
replaces path with path/file.d

Write a named file

[addr1[,addr2]]w file Writes the specified range of lines to the named
filee at the point in the editing process where
the w command appears.

Print line number

[addr1]= Writes the line number of the indicated
line to the output.

a If the text to be written consists of multiple lines, each line except the last must have a backslash (\) before
the terminal newline character. The text always is written regardless of anything subsequent commands
do to the line that caused it to be written, including deletion of that line. It is neither scanned for address
matches nor affected by subsequent editing commands, and it has no effect on the editor’s line counter.
b If no addresses are given, the d command deletes all lines in the pattern space; unless constrained by a
range controlling a group of commands in braces, the command deletes the entire contents of the file.
c Include exactly one space between the r command and the file name. If file cannot be accessed, sed
behaves as if it had read an empty file and gives no abnormal indication. A combined maximum of 10 files
can be named for reading or writing in any given editing process.
d See Section 3.5 for descriptions of the s command’s optional flags.
e Include exactly one space between the w command and the file name. If file exists, it is overwritten; if not,
it is created. A combined maximum of 10 files can be named for reading or writing in any given editing process.

Table 3–4 describes the buffer manipulation sed commands, showing the
syntaxes.

3–8 Editing Files with the sed Editor

Table 3–4: Buffer Manipulation Commands
Command Description

Retrieve text from hold area

[addr1[,addr2]]g

[addr1[,addr2]]G

Copies the contents of the hold area to the pattern
space indicated by addr1 and addr2, if present.
The g command destroys the existing contents of
the pattern space; the G command appends the
held text to the contents of the pattern space,
separating the previous text from the appended
text with a newline character.

Move text to the hold area

[addr1[,addr2]]h

[addr1[,addr2]]H

Copies the indicated range from the pattern space to
the hold area. The h command destroys the existing
contents of the hold area; the H command appends
the text in the pattern space to the contents of the
hold area, separating the previous text from the
appended text with a newline character.

Exchange pattern space and hold area

[addr1[,addr2]]x Exchanges the contents of the pattern space
with those of the hold area.

Table 3–5 describes the flow of control sed commands, showing the syntaxes.

Table 3–5: Flow-of-Control Commands
Command Description

Range negation

[addr1[,addr2]]!cmd The exclamation point (!) instructs sed to apply the
command following it on the same line to the parts
of the input file that are not selected by addr1 and
addr2 instead of applying it to the selected range.

Command grouping

[addr1[,addr2]]{
nested commands
}

The left and right braces enclose a group of commands
to be applied as a set to the range specified by addr1
and addr2. The first command in the set can be
on the line following the left brace, as illustrated
in this table, or it can be on the same line with the
brace. The right brace must be on a line by itself.
Groups can be nested within other groups.

Label

:label Marks a place in the stream of editing commands
to be used as a destination of a branch command.
The label is a string of up to 8 bytes. Each
label in the editing stream must be unique. See
sed(1) for more information.

Editing Files with the sed Editor 3–9

Table 3–5: Flow-of-Control Commands (cont.)

Command Description

Branch

blabel Branches to the point in the editing script indicated
by label and continues processing the current
input line with the commands following the label. If
label is null, the b command bypasses the rest of
the editing script, reads a new input line, and starts
the editing script over from the beginning.

Conditional branch

tlabel If any successful substitutions were made on the
current input line, branches to label; otherwise,
the command does not branch. In either case, the
command clears the flag that indicates a substitution
was made. This flag is also cleared at the start of
each new input line. If label is null and the branch
is taken, the t command bypasses the rest of the
editing script, reads a new input line, and starts
the editing script over from the beginning.

Stop

[addr1]q Stops editing in an orderly fashion by writing the
current line to the output, writing any appended or
read text to the output, and then exiting.

3.5 String Replacement
The s command performs string replacement on the indicated lines in the
input file. If the editor finds a string of characters in the input file that
satisfies the pattern expression expr, it replaces that string with the set
of characters specified in string. The string argument is not a regular
expression, and it is not scanned or otherwise interpreted except as follows:

• Any backslash characters (\) appearing in string must be escaped.
See Table 3–3 for an explanation of how to handle slash characters (/)
in string.

• The following two special symbols can be used in string:

– Ampersand (&) This symbol in string is replaced by the exact string
of characters in the input lines that matched expr. For example,
apply the command s/[Bb]oy/&s/ to the following line:

The boy watched the game.

This command tells sed to find either Boy or boy in the input line
and copy whichever pattern it finds to the output with an appended
s. Because the command finds boy, it transfers that string to the
output with the modification, and the result is as follows:

3–10 Editing Files with the sed Editor

The boys watched the game.

– Back-reference expression (\n) The number n is a single
digit. This symbol in string is replaced by the string in
the input line that matches the nth subexpression in expr.
Subexpressions in basic regular expressions are delimited by
backslash-parentheses sets, \(and \). For example, apply the
command s/\(stu\)\(dy\)/\1r\2/ to the following line:

The study chair.

This command tells sed to find study in the input line and copy
that pattern to the output with an r inserted in the middle. The
result is as follows:

The sturdy chair.

You can modify the behavior of the s command with flags, as follows:

• Usually, only the first matching string in each line of the range is
replaced. The g (global) flag causes sed to make the substitution for
all matching strings anywhere on any line in the range. The matching
strings do not have to be identical; the expression expr is evaluated
again for each potential match.

• The p (print) flag instructs sed to write the indicated lines explicitly
after making any substitutions; this writing action is in addition to sed’s
normal operation.

• The w file (write) flag instructs sed to write the indicated lines to the
named file after making any substitutions. Include exactly one space
between the w flag and the file name.

Any or all of these flags can be used with a given s command; in
combinations, the w flag must be the last flag specified.

Editing Files with the sed Editor 3–11

4
Creating Input Language Analyzers and

Parsers

If a program needs to receive and process input, there must be a means of
analyzing the input before it is processed. You can analyze input with one
or more routines within the program, or with a separate program designed
to filter the input before passing it to the main program. The complexity of
the input interface depends on the complexity of the input; complicated
input can require significant code to parse it (break it into pieces that are
meaningful to the program).

This chapter describes the following two tools that help develop input
interfaces:

• The lex tool uses a set of rules to generate a program, called a lexical
analyzer, which analyzes input and breaks it into categories, such as
numbers, letters, or operators.

• The yacc tool uses a set of rules to generate a program, called a parser,
which analyzes input using the categories identified by the lexical
analyzer and determines what to do with the input. The yacc tool
generates left-associative, left-recursive (LALR) parsers. For further
information about LALR grammars, refer to a compiler book such as
Compilers: Principles, Techniques, and Tools, by Alfred Aho, Ravi Sethi,
and Jeffrey Ullman.1

To avoid confusion between the lex and yacc programs and the programs
they generate, lex and yacc are referred to throughout this chapter as tools.

This chapter contains the following information:

• How the lexical analyzer works (Section 4.1)

• Writing a lexical analyzer program with lex (Section 4.2)

• The lex specification file (Section 4.3)

• Generating a lexical analyzer (Section 4.4)

• Using lex with yacc (Section 4.5)

• Creating a parser with yacc (Section 4.6)

1 Alfred Aho, Ravi Sethi, and Jeffrey Ullman. Compilers: Principles, Techniques, and Tools,
Reading, MA, U.S.A.: Addison-Wesley Publishing Co., 1986.

Creating Input Language Analyzers and Parsers 4–1

• The grammar file (Section 4.7)

• Parser operation (Section 4.8)

• Turning on debug mode (Section 4.9)

• Creating a simple calculator program (Section 4.10)

4.1 How the Lexical Analyzer Works

The lexical analyzer that lex generates is a deterministic finite-state
automaton. This design provides for a limited number of states that the
lexical analyzer can exist in, along with the rules that determine what
state the lexical analyzer moves to upon reading and interpreting the next
input character.

The compiled lexical analyzer performs the following functions:

• Reads an input stream of characters.

• Copies the input stream to an output stream.

• Breaks the input stream into smaller strings that match the regular
expressions in the lex specification file.

• Executes an action for each regular expression that it recognizes. Actions
are C language program fragments in the lex specification file. An
action fragment does not have to be complete within itself; it can call
subroutines or other actions.

Figure 4–1 illustrates a simple lexical analyzer that has three states:
start, good, and bad. The program reads an input stream of characters.
It begins in the start condition. When it receives the first character, the
program compares the character with the rule. If the character is alphabetic
(according to the rule), the program changes to the good state; if it is not
alphabetic, the program changes to the bad state. The program stays in the
good state until it finds a character that does not match its conditions, and
then it moves to the bad state, which terminates the program.

4–2 Creating Input Language Analyzers and Parsers

Figure 4–1: Simple Finite State Model

exit

ZK0454UR

input == AZ azor
input == AZ azor

Other
characters

Other
characters

bad

start

good

The automaton allows the generated lexical analyzer to look ahead more
than one or two characters in an input stream. For example, suppose the
lex specification file defines a rule that looks for the string, ab, and another
rule that looks for the string, abcdefg. If the lexical analyzer gets an input
string of abcdefh, it reads enough characters to attempt a match on abcdefg.
When the h disqualifies a match on abcdefg, the analyzer returns to the rule
that looks for ab. The first two characters of the input match ab, so the
analyzer performs any action specified in that rule and then begins trying to
find another match using the remaining input, cdefh.

4.2 Writing a Lexical Analyzer Program with lex

The lex tool helps write a C language lexical analyzer program that can
receive character stream input and translate that input into program
actions. To use lex, you must write a specification file that contains the
following parts:

• Regular expressions − Character patterns that the generated lexical
analyzer will recognize

• Action statements − C language program fragments that define how
the generated lexical analyzer is to react to regular expressions that it
recognizes

The actual format and logic allowed in the specification file are discussed in
Section 4.3.

The lex tool uses the information in the specification file to generate the
lexical analyzer. The tool names the created analyzer program yy.lex.c.
The yy.lex.c program contains a set of standard functions together with
the analysis code that is generated from the specification file. The analysis
code is contained in the yylex function. Lexical analyzers created by lex
recognize simple grammar structures and regular expressions. You can
compile a simple lex analyzer program with the following command:

Creating Input Language Analyzers and Parsers 4–3

% cc -ll yy.lex.c

The −ll option tells the compiler to use the lex function library. This
command yields an executable lexical analyzer. If your program uses
complex grammar rules, or if it uses no grammar rules, you should create a
parser (by combining the lex and yacc tools) to ensure proper handling of
the input. (See Section 4.6.)

The yy.lex.c output file can be moved to any other system having a C
compiler that supports the lex library functions.

4.3 The lex Specification File

The format of the lex specification file is as follows:

[{ definitions }]
%%
[{ rules }]
[%%
{user subroutines }]

Except for the first pair of percent signs (%%), which mark the beginning of
the rules, all parts of the specification file are optional. The minimum lex
specification file contains no definitions, no rules, and no user subroutines.
Without a specified action for a pattern match, the lexical analyzer copies the
input pattern to the output without changing it. Therefore, this minimum
specification file produces a lexical analyzer that copies all input to the
output unchanged.

The following sections describe:

• Defining substitution strings (Section 4.3.1)

• Rules (Section 4.3.2)

• Using or overriding standard input/output routines (Section 4.3.3)

• End-of-file processing (Section 4.3.4)

• Passing code to the generated program (Section 4.3.5)

• Start conditions (Section 4.3.6)

4.3.1 Defining Substitution Strings

You can define string macros before the first pair of percent signs in the lex
specification file. The lex tool expands these macros when it generates the
lexical analyzer. Any line in this section that begins in column 1 and that
does not lie between %{ and %} delimiters defines a lex substitution string.
Substitution string definitions have the following general format:

name translation

4–4 Creating Input Language Analyzers and Parsers

The name and translation elements are separated by at least one blank or
tab, and name begins with a letter. When lex finds the string name enclosed
in braces ({ }) in the rules part of the specification file, it changes name to
the string defined in translation and deletes the braces.

For example, to define the names D and E, place the following definitions
before the first %% delimiter in the specification file:

D [0-9]
E [DEde][-+]{D}+

These definitions can be used in the rules section to make identification of
integers and real numbers more compact:

{D}+ printf("integer");
{D}+"."{D}*({E})?|
{D}*"."{D}+({E})?|
{D}+{E} printf("real");

You also can include the following items in the definitions section:

• Character set table (described in Section 4.3.3)

• List of start conditions (described in Section 4.3.6)

• Changes to size of arrays to accommodate larger source programs

4.3.2 Rules

The rules section of the specification file contains control decisions that
define the lexical analyzer that lex generates. The rules are in the form of a
two-column table. The left column of the table contains regular expressions;
the right column of the table contains actions, one for each expression.
Actions are C language program fragments that can be as simple as a
semicolon (the null statement) or as complex as needed. The lexical analyzer
that lex creates contains both the expressions and the actions; when it finds
a match for one of the expressions, it executes the corresponding action.

For example, to create a lexical analyzer to look for the string, integer, and
print a message when the string is found, define the following rule:

integer printf ("found keyword integer");

This example uses the C language library function printf to print a
message string. The first blank or tab character in the rule indicates the
end of the regular expression. When you use only one statement in an
action, put the statement on the same line and to the right of the expression
(integer in this example). When you use more than one statement, or if
the statement takes more than one line, enclose the action in braces, as in a
C language program. For example:

integer {
printf ("found keyword integer");

Creating Input Language Analyzers and Parsers 4–5

hits++;
}

A lexical analyzer that changes some words in a file from British spellings to
the American spellings would have a specification file that contains rules
such as the following:

colour printf("color");

mechanise printf("mechanize");

petrol printf("gas");

This specification file is not complete, however, because it changes the word
petroleum to gaseum.

4.3.2.1 Regular Expressions

With a few specialized additions, lex recognizes the standard set of extended
regular expressions described in Chapter 1. Table 4–1 lists the expression
operators that are special to lex.

Table 4–1: Regular Expression Operators for lex
Operator Name Description

{name} Braces When braces enclose a name, the name
represents a string defined earlier in the
specification file. For example, {digit}
looks for a defined string named digit
and inserts that string at the point in the
expression where {digit} occurs. Do not
confuse this construct with an interval
expression; both are recognized by lex.

" " Quotation marks Encloses literal strings to interpret as text
characters. For example, "$" prevents
lex from interpreting the dollar sign as
an operator. You can use quotation marks
for only part of a string; for example,
both "abc++" and abc"++" match the
literal string “abc++”.

a/<b Slash Enables a match on the first expression
(a) only if the second expression (b)
follows it immediately. For example,
dog/cat matches dog if, and only if,
cat immediately follows dog.

4–6 Creating Input Language Analyzers and Parsers

Table 4–1: Regular Expression Operators for lex (cont.)

Operator Name Description

<x> Angle brackets Encloses a start condition. Executes the
associated action only if the lexical analyzer
is in the indicated start condition <x>. If
the condition of being at the beginning
of a line is start condition ONE, then the
circumflex (^) operator would be the
same as the expression <ONE>.

\n Newline character Do not use the actual newline character
in an expression. Do not confuse the
\n construct with the \n back-reference
operator used in basic regular expressions.

\t Tab Matches a literal tab character (09
hexadecimal))

\b Backspace Matches a literal backspace (08 hexadecimal)

\\ Backslash Matches a literal backslash.

\digits Digits The character whose encoding is represented
by the three digit octal number.

\xdigits xDigits The character whose encoding is
represented by the hexadecimal integer.

Usually, white space (blanks or tabs) delimits the end of an expression
and the start of its associated action. However, you can enclose blanks or
tab characters in quotation marks (" ") to include them in an expression.
Use quotation marks around all blanks in expressions that are not already
within sets of brackets ([]).

4.3.2.2 Matching Rules

When more than one expression in the rules section of a specification file can
match the current input, the lexical analyzer chooses which rule to apply
using the following criteria:

1. The longest matching string of characters

2. Among rules that match the same number of characters, the rule that
occurs first

For example, consider the following rules:

integer printf("found int keyword");
[a-z]+ printf("found identifier");

If the rules are given in this order and integers is the input word, the
analyzer calls the input an identifier because [a-z]+ matches all eight
characters of the word while integer matches only seven. However, if the

Creating Input Language Analyzers and Parsers 4–7

input is integer, both rules match. In this case, lex selects the keyword rule
because it occurs first. A shorter input, such as int, does not match the
expression integer, so lex selects the identifier rule.

4.3.2.2.1 Using Wildcard Characters to Match a String

Because the lexical analyzer chooses the longest match first, you must
be careful not to use an expression that is too powerful for your intended
purpose. For example, a period followed by an asterisk and enclosed in
apostrophes (’.*’) might seem like a good way to recognize any string
enclosed in apostrophes. However, the analyzer reads far ahead, looking
for a distant apostrophe to complete the longest possible match. Consider
the following text:

’first’ quoted string here, ’second’ here

Given this input, the analyzer will match on the following string:

’first’ quoted string here, ’second’

Because the period operator does not match a newline character, errors
of this type are usually not far reaching. Expressions like .* stop on the
current line. Do not try to defeat this action with expressions like the
following:

[.\n]+

Given this expression, the lexical analyzer tries to read the entire input file,
and an internal buffer overflow occurs.

The following rule finds the smaller quoted strings ‘first’ and ‘second’ from
the preceding text example:

’[^’\n]*’"

This rule stops after matching ‘first’ because it looks for an apostrophe
followed by any number of characters except another apostrophe or a newline
character, then followed by a second apostrophe. The analyzer then begins
again to search for an appropriate expression, and it will find ‘second’ as it
should. This expression also matches an empty quoted string (’ ’).

4.3.2.2.2 Finding Strings Within Strings

Usually, the lexical analyzer program partitions the input stream. It does
not search for all possible matches of each expression. Each character is
accounted for exactly once. For example, to count occurrences of both ‘she’
and ‘he’ in an input text, consider the following rules:

she s++;
he h++;
\n ;
. ;

4–8 Creating Input Language Analyzers and Parsers

The last two rules ignore everything other than the two strings of interest.
However, because ‘she’ includes ‘he’, the analyzer does not recognize the
instances of ‘he’ that are included within ‘she’.

A special action, REJECT, is provided to override this behavior. This directive
tells the analyzer to execute the rule that contains it and then, before
executing the next rule, restore the position of the input pointer to where it
was before the first rule was executed. For example, to count the instances
of ‘he’ that are included within ‘she’, use the following rules:

she {s++; REJECT;}
he {h++; REJECT;}
\n ;
. ;

After counting an occurrence of ‘she’, the analyzer rejects the input stream
and then counts the included occurrence of ‘he’. In this example, ‘she’
includes ‘he’ but the reverse is not true, and you can omit the REJECT
action on ‘he’. In other cases, such as when a wildcard regular expression
is being matched, determining which input characters are in both classes
can be difficult.

In general, REJECT is useful whenever the purpose is not to partition the
input stream but rather to detect all examples of some items in the input
where the instances of these items can overlap or include each other.

4.3.2.3 Actions

When the lexical analyzer matches one of the expressions in the rules
section of the specification file, it executes the action that corresponds to
the expression. Without rules to match all strings in the input stream, the
lexical analyzer copies the input to standard output. Therefore, do not create
a rule that only copies the input to the output. Use this default output to
find conditions not covered by the rules.

When you use a lex-generated analyzer to process input for a parser that
yacc produces, provide rules to match all input strings. Those rules must
generate output that yacc can interpret. For information on using lex
with yacc, see Section 4.5.

4.3.2.3.1 Null Action

To ignore the input associated with an expression, use a semicolon (;), the C
language null statement, as an action. For example:

[\t\n] ;

This rule ignores the three spacing characters (blank, tab, and newline
character).

Creating Input Language Analyzers and Parsers 4–9

4.3.2.3.2 Using the Same Action for Multiple Expressions

To use the same action for several different expressions, create a series of
rules (one for each expression except the last) whose actions consist of only
a vertical bar character (|). For the last expression, specify the action
as you usually would specify it. The vertical bar character indicates that
the action for the rule containing it is the same as the action for the next
rule. For example, to ignore blank, tab, and newline characters (shown in
Section 4.3.2.3.1), you could use the following set of rules:

" " |
"\t" |
"\n" ;

The quotation marks around the special character sequences (\n and \t)
in this example are not mandatory.

4.3.2.3.3 Printing a Matched String

To find out what text matched an expression in the rules section of the
specification file, include a C language printf function as one of the actions
for that expression. When the lexical analyzer finds a match in the input
stream, the program puts that matched string in an external character array,
called yytext. To print the matched string, use a rule like the following:

[a-z]+ printf("%s", yytext);

Printing the output in this way is common. You can define an expression
like this printf statement as a macro in the definitions section of the
specification file. If this action is defined as ECHO, then the rules section
entry looks like the following:

[a-z]+ ECHO;

See Section 4.3.1 for information on defining macros.

4.3.2.3.4 Finding the Length of a Matched String

To find the number of characters that the lexical analyzer matched for a
particular expression, use the external variable yyleng. For example, the
following rule counts both the number of words and the number of characters
in words in the input:

[a-zA-Z]+ {words++; chars += yyleng;}

This action totals the number of characters in the words matched and
assigns that value to the chars variable.

The following expression finds the last character in the string matched:

yytext[yyleng-1]

4–10 Creating Input Language Analyzers and Parsers

4.3.2.3.5 Getting More Input

The lexical analyzer can run out of input before it completely matches an
expression in a rules file. In this case, include a call to the lex function
yymore in the action for that rule. Usually, the next string from the input
stream overwrites the current entry in yytext. The yymore action appends
the next string from the input stream to the end of the current entry in
yytext. For example, consider a language that includes the following
syntax:

• A string is any set of characters between quotation marks (" ").

• A backslash (\) escapes the next character to make that character
part of the string. For example, the combination of a backslash and
a quotation mark (\) indicates that the quotation mark is part of the
string instead of being the closing delimiter for the string.

The following rule processes these lexical characteristics:

\"[^"]* {
if (yytext[yyleng-l] == ’\\’)

yymore();
else

... normal user processing
}

When this lexical analyzer receives a string such as "abc\"def" (with the
quotation marks exactly as shown), it first matches the first five characters,
"abc\. The backslash causes a call to yymore to add the next part of the
string, "def, to the end. The part of the action code labeled “normal user
processing” must process the quotation mark that ends the string.

4.3.2.3.6 Returning Characters to the Input

In some cases the lexical analyzer does not need all of the characters that
are matched by the currently successful regular expression; or it might need
to return matched characters to the input stream to be checked again for
another match.

To return characters to the input stream, use the yyless(n) call, where
n is the number of characters of the current string that you want to keep.
Characters beyond the nth character in the stream are returned to the input
stream. This function provides the same type of look-ahead that the slash
operator (/) uses, but yyless allows more control over the look-ahead.
Using yyless(0) is equivalent to using REJECT.

Use the yyless function to process text more than once. For example, a C
language expression such as x=-a is ambiguous. It could mean x = -a,
or it could be an obsolete representation of x -= a, which is evaluated as
x = x − a. To treat this ambiguous expression as x = -a and print a
warning message, use a rule such as the following:

Creating Input Language Analyzers and Parsers 4–11

=-[a-zA-Z] {
printf("Operator (=-) ambiguous\n");
yyless(yyleng-1);
... action for =-...
}

4.3.3 Using or Overriding Standard Input/Output Routines

The lex program provides a set of input/output (I/O) routines for the
lexical analyzer to use. Include calls to the following routines in the C code
fragments in your specification file:

• input − Returns the next input character

• output(c) − Writes the character c on the output

• unput(c) − Pushes the character c back onto the input stream to be
read later by input

These routines are provided as macro definitions. You can override them by
writing your own code for routines of the same names in the user subroutines
section. These routines define the relationship between external files and
internal characters. If you change them, change them all in the same way.
They should follow these rules:

• All routines must use the same character set.

• The input routine must return a value of 0 to indicate end-of-file.

If you write your own code, you must undefine these macros in the definitions
section of the specification file before the code for your own definitions:

%{
#undef input
#undef unput
#undef output
}%

______________________ Note _______________________

Changing the relationship of unput to input causes the
look-ahead functions not to work.

When you are using a lex-generated lexical analyzer as a simple
transformer/recognizer for piping from standard input to standard output,
you can avoid writing the framework by using the lex library (libl.a).
This library contains the main routine, which calls the yylex function for
you. The standard lex library lets the lexical analyzer back up a maximum
of 100 characters.

4–12 Creating Input Language Analyzers and Parsers

If you need to be able to read an input file containing the NUL character (00
hexadecimal), you must create a different version of the input routine. The
standard version of input returns a value of 0 when reading a null, and the
analyzer interprets this value as indicating the end of the file.

The lexical analyzers that lex generates process character I/O through
the input, output, and unput routines. Therefore, to return values in
yytext, the analyzer uses the character representation that these routines
use. Internally, however, each character is represented with a small integer.
With the standard library, this integer is the value of the bit pattern that the
computer uses to represent the character.

Usually, the letter ,a, is represented in the same form as the character
constant a. If you change this interpretation with different I/O routines, you
must include a translation table in the definitions section of the specification
file. The translation table begins and ends with lines that contain only the
%T keyword, and it contains lines of the following form:

[{ integer} { character string}]

The following example shows table entries that associate the letter ,A, and
the digit ,0, (zero) with their standard values:

%T
{65} {A}
{48} {0}
%T

4.3.4 End-of-File Processing

When the lexical analyzer reaches the end of a file, it calls a library routine
named yywrap. This routine returns a value of 1 to indicate to the lexical
analyzer that it should continue with normal wrap-up (operations associated
with the end of processing). However, if the analyzer receives input from
more than one source, you must change the yywrap function. The new
function must get the new input and return a value of 0 to the lexical
analyzer. A return value of 0 indicates that the program should continue
processing.

Multiple files specified on the command line are treated as a single input file
for the purpose of end-of-file handling.

You also can include code to print summary reports and tables in a special
version of yywrap. The yywrap function is the only way to force yylex to
recognize the end of the input.

Creating Input Language Analyzers and Parsers 4–13

4.3.5 Passing Code to the Generated Program

You can define variables in either the definitions section or the rules section
of the specification file. When you process a specification file, lex changes
statements in the file into a lexical analyzer. Any line in the specification
file that lex cannot interpret is passed unchanged to the lexical analyzer.
The following four types of entries can be passed to the lexical analyzer
in this manner:

• Lines beginning with a blank or tab that are not a part of a lex rule are
copied into the lexical analyzer. If this entry occurs before the first pair
of percent signs (%%) in the specification file, the entry is external to any
function in the code. If the entry occurs after the first %%, it must be a
C language program fragment that defines a variable. You must define
these statements before the first lex rule in the specification file.

• Lines beginning with a blank or tab that are program comments are
included as comments in the generated lexical analyzer. The comments
must be in the C language format for comments.

• Any lines that lie between lines containing only %{ and %} are copied
to the lexical analyzer. The symbols %{ and %} are not copied. Use this
format to enter preprocessor statements that must begin in column 1, or
to copy lines that do not look like program statements.

• Any lines occurring after the third %% delimiter are copied to the lexical
analyzer without format restrictions.

4.3.6 Start Conditions

Any rule can be associated with a start condition; the lexical analyzer
recognizes that rule only when the analyzer is in that start condition. You
can change the current start condition at any time.

You define start conditions in the definitions section of the specification file
by using a line with the following format:

% Start [name1] [[name2 ...]]

The name1 and name2 symbols represent conditions. There is no limit to the
number of conditions, and they can appear in any order. You can abbreviate
Start to either S or s. Start-condition names cannot be reserved words in
C, nor can they be declared as the names of variables, fields, and so on.

When using a start condition in the rules section of the specification file,
enclose the name of the start condition in angle brackets (< >) at the
beginning of the rule. The following format defines a rule with a start
condition:

[< name1] [[, name2 ...]] [> expression]

4–14 Creating Input Language Analyzers and Parsers

The lexical analyzer recognizes expression only when the analyzer is in
the condition corresponding to one of the names. To put lex in a particular
start condition, execute the following action statement (in the action part of
a rule):

BEGIN name;

This statement changes the start condition to name. To resume the normal
state, use the following action:

BEGIN 0;

As shown in the preceding syntax diagram, a rule can be active in several
start conditions. For example:

<start1,start2,start3> [0-9]+ printf("integer");

This rule prints integer only if it finds an integer while in one of the three
named start conditions. Any rule that does not begin with a start condition
is always active.

4.4 Generating a Lexical Analyzer

Generating a lex-based lexical analyzer program is a two-step process, as
follows:

1. Run lex to change the specification file into a C language program. The
resulting program is in a file named lex.yy.c.

2. Process lex.yy.c with the cc -ll command to compile the program
and link it with a library of lex subroutines. The resulting executable
program is named a.out.

For example, if the lex specification file is called lextest, enter the
following commands:

% lex lextest
% cc lex.yy.c -ll

Although the default lex I/O routines use the C language standard library,
the lexical analyzers that lex generates do not require them. You can
include different copies of the input, output, and unput routines to avoid
using those in the library. (See Section 4.3.3.)

Table 4–2 describes the options for the lex command.

Creating Input Language Analyzers and Parsers 4–15

Table 4–2: Options for the lex Command
Option Description

-n Suppresses the statistics summary that is produced by default when
you set your own table sizes for the finite state machine. See lex(1)
for information about specifying the state machine.

-t Writes the generated lexical analyzer code to standard output
instead of to the lex.yy.c file.

-v Provides a one-line summary of the general finite state
machine statistics.

Because lex uses fixed names for intermediate and output files, you can
have only one lex-generated program in a given directory unless you use
the −t option to specify an alternative file name.

4.5 Using lex with yacc

When used alone, the lex tool creates a lexical analyzer that recognizes
simple one-word input or receives statistical input. You also can use lex
with a parser generator, such as yacc. The yacc tool generates a program,
called a parser, that analyzes the construction of multiple-word input. This
parser program operates well with lexical analyzers that lex generates;
these lexical analyzers recognize only regular expressions and format them
into character packages called tokens.

A token is the smallest independent unit of meaning as defined by either
the parser or the lexical analyzer. A token can contain data, a language
keyword, an identifier, or other parts of a language syntax. A token can be
any string of characters; it can be part or all of a word or series of words.
The yacc tool produces parsers that recognize many types of grammar
with no regard to context. These parsers need a preprocessor, such as a
lex-generated lexical analyzer, to recognize input tokens.

When a lex-generated lexical analyzer is used as the preprocessor for a
yacc-generated parser, the lexical analyzer partitions the input stream. The
parser assigns structure to the resulting pieces. Figure 4–2 shows how lex
and yacc generate programs and how the programs work together. You also
can use other programs along with those generated by lex or yacc.

4–16 Creating Input Language Analyzers and Parsers

Figure 4–2: Producing an Input Parser with lex and yacc

ZK0455UR

Compiler

yacc

Lexical
Rules

Grammar
Rules

lex.yy.clex

cc

y.tab.c

a.out

Program
Generators

Source
Files

Generated
Output Files

Compiled
Program

Input

Parsed Input for
Another Program

The parser program requires that its preprocessor (the lexical analysis
function) be named yylex. This is the name lex gives to the analysis code
in a lexical analyzer it generates. If a lexical analyzer is used by itself, the
default main program in the lex library calls the yylex routine, but if a
yacc-generated parser is loaded and its main program is used, the parser
calls yylex. In this case, each lex rule should end with the following line,
where the appropriate token value is returned:

return(token);

To find the names for tokens that yacc uses, compile the lexical analyzer
(the lex output file) as part of the parser (the yacc output file) by placing
the following line in the last section of the yacc grammar file:

#include lex.yy.c

Alternatively, you can include the yacc output (the y.tab.h file) into
your lex program specification file, and use the token names that
y.tab.h defines. For example, if the grammar file is named good and the
specification file is named better, the following command sequence creates
the final program:

% yacc good
% lex better
% cc y.tab.c -ly -ll

To get a main program that invokes the yacc parser, load the yacc library
(−ly in the preceding example) before the lex library. You can generate lex
and yacc programs in either order.

Creating Input Language Analyzers and Parsers 4–17

4.6 Creating a Parser with yacc

To generate a parser with yacc, you must write a grammar file that
describes the input data stream and what the parser is to do with the data.
The grammar file includes rules describing the input structure, code to be
invoked when these rules are recognized, and a routine to do the basic input.

The yacc tool uses the information in the grammar file to generate yyparse,
a program that controls the input process. This is the parser that calls the
yylex input routine (the lexical analyzer) to pick up tokens from the input
stream. The parser organizes these tokens according to the structure rules
in the grammar file. The structure rules are called grammar rules. When
the parser recognizes a grammar rule, it executes the user code (action)
supplied for that rule. Actions return values and use the values returned
by other actions.

In addition to the specifications that yacc recognizes and uses, the grammar
file also can contain the following functions:

• main − A C language function that contains, as a minimum, a call to the
yyparse function, which yacc generates. A limited form of this function
is in the yacc library.

• yyerror − A C language function to handle errors that can occur during
parser operation. A limited form of this function is in the yacc library.

• yylex − A C language function to perform lexical analysis on the input
stream and pass tokens (with values, if required) to the parser. The
function must return an integer that represents the kind of token that
was read. The integer is called the token number. In addition, if a value
is associated with the token, the lexical analyzer must assign that value
to the external variable yylval. See Section 4.7.1.3 for more information
on token numbers. To build a lexical analyzer that works well with the
parser that yacc generates, use the lex tool (see Section 4.3).

The yacc tool processes a grammar file to generate a file of C language
functions and data, named y.tab.c. When compiled using the cc command,
these functions form a combined function named yyparse. This yyparse
function calls yylex, the lexical analyzer, to get input tokens.

The analyzer continues providing input until the parser detects an error
or the analyzer returns an endmarker token to indicate the end of the
operation. If an error occurs and yyparse cannot recover, yyparse returns
a value of 1 to the main function. If it finds the endmarker token, yyparse
returns a value of 0 to main.

Use the C programming language to write the action code and other
subroutines. The yacc program uses many of the C language syntax
conventions for the grammar file.

4–18 Creating Input Language Analyzers and Parsers

4.6.1 The main and yyerror Functions

You must provide function routines named main and yyerror in the
grammar file. To ease the initial effort of using yacc, the yacc library
provides simple versions of the main and yyerror routines. You can include
these routines by using the -ly option to the loader or the cc command. The
source code for the main library function is as follows:

main()
{

yyparse();
}

The source code for the yyerror library function follows:

#include <stdio.h>

void yyerror(s)
char *s;

{
fprintf(stderr, " %s\n" ,s);

}

The argument to yyerror is a string containing an error message, usually
the string syntax error.

These are very limited programs. You should provide more sophistication in
these routines, such as keeping track of the input line number and printing
it along with the message when a syntax error is detected. You can use the
value of the external integer variable yychar. This variable contains the
look-ahead token number at the time the error was detected.

4.6.2 The yylex Function

The yylex program input routine that you supply must be able to do the
following:

• Read the input stream

• Recognize basic patterns in the input stream

• Pass the patterns to yyparse along with tokens that identify them

A token is a symbol or name that tells yyparse which pattern is being sent
to it by the input routine. A symbol can be in one of the following two classes:

• Terminal symbols − Values returned by yylex to represent the primitive
building blocks of the grammar, as bricks are the primitive elements of
a wall.

Creating Input Language Analyzers and Parsers 4–19

• Nonterminal symbols − The composite symbols that are used by the
yacc grammar to describe more complex orderings or aggregations of
the terminal symbols, as a wall is an assembly of bricks.

For example, if the lexical analyzer recognizes any numbers, names, and
operators, these elements are taken to be terminal symbols. Nonterminal
symbols that the yacc grammar recognizes are elements like EXPR, TERM,
and FACTOR. Suppose the input routine separates an input stream into the
tokens of WORD, NUMBER, and PUNCTUATION. Consider the input sentence “I
have 9 turkeys.” The analyzer could pass the following strings and tokens
to the parser:

String Token

I WORD

have WORD

9 NUMBER

turkeys WORD

. PUNCTUATION

The yyparse function must contain definitions for the tokens that the input
routine passes to it. The yacc command’s −d option causes the program
to generate a list of tokens in a file named y.tab.h. This list is a set of
#define statements that let yylex use the same tokens as the parser.

To avoid conflict with the parser, do not use names that begin with the
letters yy. You can use lex to generate the input routine, or you can write it
in the C language. See Section 4.3 for information about using lex.

4.7 The Grammar File

A yacc grammar file consists of the following three sections:

• Declarations (Section 4.7.1)

• Rules (Section 4.7.2)

• Programs (Section 4.7.3)

Two percent signs (%%) that appear together separate the sections of the
grammar file. To make the file easier to read, put the percent signs on a line
by themselves. A grammar file has the following format:

[declarations]
%%
rules
[%%
programs]

4–20 Creating Input Language Analyzers and Parsers

Except for the first pair of percent signs (%%), which mark the beginning
of the rules, and the rules themselves, all parts of the grammar file are
optional. The minimum yacc grammar file contains no definitions and no
programs, as follows:

%%
rules

Except within names or reserved symbols, the yacc program ignores
blanks, tabs, and newline characters in the grammar file. You can use these
characters to make the grammar file easier to read. Do not use blanks, tabs,
or newline characters in names or reserved symbols.

4.7.1 Declarations

The declarations section of the yacc grammar file contains the following
elements:

• Declarations for any variables or constants used in other parts of the
grammar file

• The #include statements to call in other files as part of this file (used
for library header files)

• Statements that define processing conditions for the generated parser

Declarations for variables or constants conform to the syntax of the C
programming language, as follows:

type-specifier declarator;

In this syntax, type-specifier is a data type keyword and declarator
is the name of the variable or constant. Names can be any length and can
consist of letters, dots, underscores, and digits. A name cannot begin with a
digit. Uppercase and lowercase letters are distinct. The names used in the
body of a grammar rule can represent tokens or nonterminal symbols.

If you do not declare a name in the declarations section, you can use that
name only as a nonterminal symbol. Define each nonterminal symbol
by using it as the left side of at least one rule in the rules section. The
#include statements are identical to C language syntax and perform the
same function.

The yacc tool has a set of keywords, listed in Table 4–3, that define
processing conditions for the generated parser. Each of the keywords begins
with a percent sign (%) and is followed by a list of tokens.

Creating Input Language Analyzers and Parsers 4–21

Table 4–3: Processing-Condition Definition Keywords in yacc
Keyword description

%left Identifies tokens that are left-associative with other tokens.

%nonassoc Identifies tokens that are not associative with other tokens.

%right Identifies tokens that are right-associative with other tokens.

%start Identifies a name for the start symbol.

%token Identifies the token names that yacc accepts. Declare
all token names in the declarations section.

All tokens listed on the same line have the same precedence level and
association; lines appear in the file in order of increasing precedence or
binding strength. For example:

%left ’+’ ’-’
%left ’*’ ’/’

This example describes the precedence and associativity of the four
arithmetic operators. The addition (+) and subtraction (−) operators are
left-associative and have lower precedence than the multiplication (*) and
division (/) operators, which are also left-associative.

4.7.1.1 Defining Global Variables

You can define global variables to be used by some or all parser actions,
as well as by the lexical analyzer, by enclosing the declarations for those
variables in matched pairs of symbols consisting of a percent sign and a
brace (%{ and %}). For example, to make the var variable available to all
parts of the complete program, place the following entry in the declarations
section of the grammar file:

%{ int var = 0; %}

4.7.1.2 Start Symbols

The parser recognizes a special symbol called the start symbol. The start
symbol is the name assigned to the grammar rule that describes the most
general structure of the language to be parsed. Because it is the most
general structure, it is the structure where the parser starts in its top-down
analysis of the input stream. You declare the start symbol in the declarations
section by using the %start keyword. If you do not declare a start symbol,
the parser uses the name of the first grammar rule in the file.

For example, in parsing a C language procedure, the following is the most
general structure for the parser to recognize:

main()
{

4–22 Creating Input Language Analyzers and Parsers

code_segment
}

The start symbol should point to the rule that describes this structure. All
remaining rules in the file describe ways to identify lower-level structures
within the procedure.

4.7.1.3 Token Numbers

Token numbers are nonnegative integers that represent the names of tokens.
Because the lexical analyzer passes the token number to the parser instead
of the actual token name, the programs must assign the same numbers to
the tokens.

You can assign numbers to the tokens used in the yacc grammar file. If
you do not assign numbers to the tokens, yacc assigns numbers using the
following rules:

• A literal character is assigned the numeric value of the character in the
ASCII character set.

• Other names are assigned token numbers starting at 257.

______________________ Note _______________________

Do not assign a token number of 0 (zero). This number is assigned
to the endmarker token. You cannot redefine it.

To assign a number to a token (including literals) in the declarations section
of the grammar file, put a nonzero positive integer immediately after the
token name in the %token line. This integer is the token number of the
name or literal. Each number must be unique. Any lexical analyzer used
with yacc must return either 0 (zero) or a negative value for a token when
the end of the input is reached.

4.7.2 Grammar Rules

The rules section of the yacc grammar file contains one or more grammar
rules. Each rule describes a structure and gives it a name. A grammar
rule has the following format:

[nonterminal-name : BODY ;]

In this syntax, BODY is a sequence of zero or more names and literals. The
colon and the semicolon are required yacc punctuation.

If there are several grammar rules with the same nonterminal name, use
the vertical bar (|) to avoid rewriting the left side. In addition, use the

Creating Input Language Analyzers and Parsers 4–23

semicolon (;) only at the end of all rules joined by vertical bars. The two
following sets of grammar rules are equivalent:

Set 1

A : B C D ;
A : E F ;
A : G ;

Set 2

A : B C D
| E F
| G
;

4.7.2.1 Null String

To indicate a nonterminal symbol that matches the null string, use a
semicolon by itself in the body of the rule, as follows:

nullstr : ;

4.7.2.2 End-of-Input Marker

When the lexical analyzer reaches the end of the input stream, it sends
a special token, called endmarker, to the parser. This token signals the
end of the input and has a token value of 0. When the parser receives an
endmarker token, it checks to see that it has assigned all of the input
to defined grammar rules and that the processed input forms a complete
unit (as defined in the yacc grammar file). If the input is a complete unit,
the parser stops. If the input is not a complete unit, the parser signals an
error and stops.

The lexical analyzer must send the endmarker token at the correct time,
such as the end of a file, or the end of a record.

4.7.2.3 Actions in yacc Parsers

With each grammar rule, you can specify actions to be performed each time
the parser recognizes the rule in the input stream. Actions return values
and obtain the values returned by previous actions. The lexical analyzer
can also return values for tokens.

An action is a C language statement that does input and output, calls
subprograms, and alters external vectors and variables. You specify an
action in the grammar file with one or more statements enclosed in braces
({ }). For example, the following are grammar rules with actions:

A : ’(’B’)’
{

4–24 Creating Input Language Analyzers and Parsers

hello(1, "abc");
};

XXX : YYY ZZZ
{
printf("a message\n");
flag = 25;
}

An action can receive values generated by other actions by using numbered
yacc parameter keywords ($1, $2, and so on). These keywords refer to the
values returned by the components of the right side of a rule, reading from
left to right. For example:

A : B C D ;

When this code is executed, $1 has the value returned by the rule that
recognized B, $2 the value returned by the rule that recognized C, and $3
the value returned by the rule that recognized D.

To return a value, the action sets the pseudovariable $$ to some value. For
example, the following action returns a value of 1:

{ $$ = 1;}

By default, the value of a rule is the value of the first element in it ($1).
Therefore, you do not need to provide actions for rules that have the
following form:

A : B ;

To get control of the parsing process before a rule is completed, write an
action in the middle of a rule. If this rule returns a value through the $n
parameters, actions that come after it can use that value. The action can
use values returned by actions that come before it. Therefore, the following
rule sets x to 1 and y to the value returned by C:

A : B
{

$$ =1;
}

C
{

x = $2;
y = $3;

}
;

Internally, yacc creates a new nonterminal symbol name for the action
that occurs in the middle, and it creates a new rule matching this name to
the null string. Therefore, yacc treats the preceding program as if it were
written in the following form, where $ACT is an empty action:

Creating Input Language Analyzers and Parsers 4–25

$ACT : /* null string */
{
$$ = 1;
}
;

A : B $ACT C
{

x = $2;
y = $3;

}
;

4.7.3 Programs

The programs section of the yacc grammar file contains C language
functions that can be used by the actions in the rules section. In addition, if
you write a lexical analyzer (yylex, the input routine to the parser), include
it in the programs section.

4.7.4 Guidelines for Using Grammar Files

The following sections describe some general guidelines for using yacc
grammar files. They provide information on the following:

• Using comments (Section 4.7.4.1)

• Using literal strings (Section 4.7.4.2)

• Formatting grammar files (Section 4.7.4.3)

• Using recursion (Section 4.7.4.4)

• Correcting errors (Section 4.7.4.5)

4.7.4.1 Using Comments

Comments in the grammar file explain what the program is doing. You
can put comments anywhere in the grammar file that you can put a name.
However, to make the file easier to read, put the comments on lines by
themselves at the beginning of functional blocks of rules. Comments in a
yacc grammar file have exactly the same form as comments in a C language
program; that is, they begin with a slash and an asterisk (/*) and end with
an asterisk and a slash (*/). For example:

/* This is a comment on a line by itself. */

4.7.4.2 Using Literal Strings

A literal string is one or more characters enclosed in apostrophes, or single
quotation marks (’ ’). As in the C language, the backslash (\) is an escape

4–26 Creating Input Language Analyzers and Parsers

character within literals, and all the C language special-character sequences
are recognized, as follows:

\n Newline character

\r Return

\’ Apostrophe, or single quote

\\ Backslash

\t Tab

\b Backspace

\f Form feed

\nnn The value nnn in octal

Never use \0 or 0 (the null character) in grammar rules.

4.7.4.3 Guidelines for Formatting the Grammar File

The following guidelines will help make the yacc grammar file more
readable:

• Use uppercase letters for token names and lowercase letters for
nonterminal symbol names.

• Put grammar rules and actions on separate lines to allow for changing
either one without changing the other.

• Put all rules with the same left side together. Enter the left side once
and use vertical bars (|) to begin the rest of the rules for that left side.

• For each set of rules with the same left side, enter the semicolon (;)
once on a line by itself following the last rule for that left side. You can
then add new rules easily.

• Indent rule bodies by two tab stops and action bodies by three tab stops.

4.7.4.4 Using Recursion in a Grammar File

Recursion is the process of using a function to define itself. In language
definitions, these rules usually take the following form:

rule : end case
| rule, end case

The simplest case of rule is the end case, but rule also can be made up of
more than one occurrence of end case. The entry in the second line that
uses rule in the definition of rule is the instance of recursion. Given this
rule, the parser cycles through the input until the stream is reduced to the
final end case.

Creating Input Language Analyzers and Parsers 4–27

The yacc tool supports left-recursive grammar, not right-recursive. When
you use recursion in a rule, always put the call to the name of the rule as the
leftmost entry in the rule (as it is in the preceding example). If the call to
the name of the rule occurs later in the line, as in the following example, the
parser can run out of internal stack space and crash:

rule : end case
| end case, rule

4.7.4.5 Errors in the Grammar File

The yacc tool cannot produce a parser for all sets of grammar specifications.
If the grammar rules contradict themselves or require matching techniques
different from those that yacc has, yacc will not produce a parser. In
most cases, yacc provides messages to indicate the errors. To correct these
errors, redesign the rules in the grammar file or provide a lexical analyzer to
recognize the patterns that yacc cannot handle.

4.7.5 Error Handling by the Parser

When the parser reads an input stream, that input stream can fail to match
the rules in the grammar file. If there is an error-handling routine in the
grammar file, the parser can allow for entering the data again, skipping
over the bad data, or for a cleanup and recovery action. When the parser
finds an error, for example, it might need to reclaim parse tree storage,
delete or alter symbol table entries, and set switches to avoid generating any
further output.

When an error occurs, the parser stops unless you provide error-handling
routines. To continue processing the input to find more errors, restart the
parser at a point in the input stream where the parser can try to recognize
more input. One way to restart the parser when an error occurs is to discard
some of the tokens following the error, and try to restart the parser at that
point in the input stream.

The yacc tool has a special token name, error, to use for error handling.
Put this token in your grammar file at places where an input error might
occur so that you can provide a recovery routine. If an input error occurs in
a position protected by the error token, the parser executes the action for
the error token rather than the normal action.

To prevent a single error from producing many error messages, the parser
remains in an error state until it successfully processes three tokens
following an error. If another error occurs while the parser is in the error
state, the parser discards the input token and does not produce a message.
You can also specify a point at which the parser should resume processing by
providing an argument to the error action. For example:

4–28 Creating Input Language Analyzers and Parsers

stat : error ’;’

This rule tells the parser that, when there is an error, it should skip over
the token and all following tokens until it finds the next semicolon. All
tokens after the error and before the next semicolon are discarded. When
the parser finds the semicolon, it reduces this rule and performs any cleanup
action associated with it.

4.7.5.1 Providing for Error Correcting

You can allow the person entering the input stream in an interactive
environment to correct any input errors by reentering a line in the data
stream. For example:

input : error ’\n’
{

printf(" Reenter last line: ");
}
input
{
$$ = $4;

}
;

In the previous example the parser stays in the error state for three input
tokens following the error. If an error is encountered in the first three
tokens, the parser deletes the tokens and does not display a message. Use
the yyerrok; statement for recovery. When the parser encounters the
yyerrok; statement, it leaves the error state and begins normal processing.
Following is the recovery example:

input : error ’\n’
{

yyerrok;
printf("Reenter last line: ");

}
input
{
$$ = $4

}
;

4.7.5.2 Clearing the Look-Ahead Token

The look-ahead token is the next token to be examined by the parser. When
an error occurs, the look-ahead token becomes the token at which the error
was detected. However, if the error recovery action includes code to find
the correct place to start processing again, that code must also change the
look-ahead token. To clear the look-ahead token, include the yyclearin;
statement in the error recovery action.

Creating Input Language Analyzers and Parsers 4–29

4.8 Parser Operation

The yacc program turns the grammar file into a C language program that,
when compiled and executed, parses the input according to the grammar
rules.

The parser is a finite state machine with a stack. The parser can read and
remember the next input token (the look-ahead token). The current state
is always the state that is on the top of the stack. The states of the finite
state machine are represented by small integers. Initially, the machine is
in state 0 (zero), the stack contains only 0 (zero), and no look-ahead token
has been read.

The machine can perform one of the following four actions:

shift n The parser pushes the current state onto the stack, makes n the
current state, and clears the look-ahead token.

reduce r The r argument is a rule number. When the parser finds a token
sequence matching rule number r in the input stream, the parser
replaces that sequence with the rule number in the output stream.

accept The parser has looked at all input, matched it to the grammar
specification, and recognized the input as satisfying the highest
level structure (defined by the start symbol). This action appears
only when the look-ahead token is the end marker and indicates
that the parser has done its job successfully.

error The parser cannot continue processing the input stream and
still successfully match it with any rule defined in the grammar
specification. The input tokens it looked at, together with the
look-ahead token, cannot be followed by anything that would
result in a legal input. The parser reports an error and attempts
to recover the situation and resume parsing.

The parser performs the following actions during one process step:

1. Based on its current state, the parser decides whether it needs a
look-ahead token to decide the action to take. If it needs one and does
not have one, it calls yylex to obtain the next token.

2. Using the current state and the look-ahead token if needed, the
parser decides on its next action and carries it out. This can result in
states being pushed onto the stack or popped off the stack and in the
look-ahead token being processed or left alone.

4.8.1 The shift Action

The shift action is the most common action the parser takes. Whenever
the parser does a shift, there is always a look-ahead token. Consider the
following parser action rule:

4–30 Creating Input Language Analyzers and Parsers

IF shift 34

When the parser is in the state that contains this rule and the look-ahead
token is IF, the parser performs the following steps:

1. Pushes the current state down on the stack

2. Makes state 34 the current state (puts it on the top of the stack)

3. Clears the look-ahead token

4.8.2 The reduce Action

The reduce action prevents the stack from growing too large. The parser
uses reducing actions after it has matched the right side of a rule with the
input stream and is ready to replace the tokens in the input stream with the
left side of the rule. The parser might have to use the look-ahead token to
decide if the pattern is a complete match.

Reducing actions are associated with individual grammar rules. Because
grammar rules also have small integer numbers, you can easily confuse the
meanings of the numbers in the shift and reduce actions. For example,
the first of the two following actions refers to grammar rule 18; the second
refers to machine state 34:

reduce 18
IF shift 34

For example, consider reducing the following rule:

A : x y z ;

The parser pops off the top three states from the stack. The number of states
popped equals the number of symbols on the right side of the rule. These
states are the ones put on the stack while recognizing x, y, and z. After
popping these states, the parser uncovers the state the parser was in before
beginning to process the rule (the state that needed to recognize rule A to
satisfy its rule). Using this uncovered state and the symbol on the left side of
the rule, the parser performs a goto action, which is similar to a shift of A.
A new state is obtained and pushed onto the stack, and parsing continues.

The goto action is different from an ordinary shift of a token. The
look-ahead token is cleared by a shift but is not affected by a goto. When
the three states are popped in this example, the uncovered state contains an
entry such as the following:

A goto 20

This entry causes state 20 to be pushed onto the stack and become the
current state.

The reduce action is also important in the treatment of user-supplied
actions and values. When a rule is reduced, the parser executes the code

Creating Input Language Analyzers and Parsers 4–31

that you included in the rule before adjusting the stack. In addition to the
stack holding the states, another stack running in parallel with it holds the
values returned from the lexical analyzer and the actions. When a shift
takes place, the external variable yylval is copied onto the value stack.
After executing the code that you provide, the parser performs the reduction.
When the parser performs the goto action, it copies the external variable
yylval onto the value stack. The yacc variables whose names begin with a
dollar sign ($) refer to the value stack.

4.8.3 Ambiguous Rules and Parser Conflicts

A set of grammar rules is ambiguous if any possible input string can be
structured in two or more different ways. For example:

expr : expr ’-’ expr

This rule forms an arithmetic expression by putting two other expressions
together with a minus sign between them, but this grammar rule does not
specify how to structure all complex inputs. For example:

expr - expr - expr

Using the preceding rule, a program could structure this input as either
left-associative or right-associative:

(expr - expr) - expr

or

expr - (expr - expr)

These two forms produce different results when evaluated.

When the parser tries to handle an ambiguous rule, it can become confused
over which of its four actions to perform when processing the input. The
following two types of conflicts develop:

Shift/reduce conflict A rule can be evaluated correctly using either a shift
action or a reduce action, with different results.

Reduce/reduce conflict A rule can be evaluated correctly using one
of two different reduce actions, producing
two different actions.

A shift/shift conflict is not possible.

These conflicts result when a rule is not as complete as it could be. For
example, consider the following input and the preceding ambiguous rule:

a - b - c

After reading the first three parts of the input, the parser has the following:

a - b

4–32 Creating Input Language Analyzers and Parsers

This input matches the right side of the grammar rule. The parser can
reduce the input by applying this rule. After applying the rule, the input
becomes the following:

expr

This is the left side of the rule. The parser then reads the final part of the
input, as follows:

- c

The parser now has the following:

expr - c

Reducing this input produces a left-associative interpretation.

However, the parser also can look ahead in the input stream. If, after
receiving the first three parts of the input, it continues reading the input
stream until it has the next two parts, it then has the following input:

a - b - c

Applying the rule to the rightmost three parts reduces b - c to expr. The
parser then has the following:

a - expr

Reducing the expression once more produces a right-associative
interpretation.

Therefore, at the point where the parser has read the first three parts, it can
take one of two legal actions: a shift or a reduce. If the parser has no rule
by which to decide between the actions, a shift/reduce conflict results.

A similar situation occurs if the parser can choose between two valid reduce
actions. That situation is called a reduce/reduce conflict.

When shift/reduce or reduce/reduce conflicts occur, yacc produces
a parser by selecting a valid step wherever it has a choice. If you do not
provide a rule to make the choice, yacc uses the following rules:

• In a shift/reduce conflict, shift.

• In a reduce/reduce conflict, reduce by the grammar rule that can be
applied at the earliest point in the input stream.

Using actions within rules can cause conflicts if the action must be done
before the parser can be sure which rule is being recognized. In these cases,
using the preceding rules leads to an incorrect parser. For this reason, yacc
reports the number of shift/reduce and reduce/reduce conflicts that it
has resolved by applying its rules.

Creating Input Language Analyzers and Parsers 4–33

4.9 Turning on Debug Mode

For normal operation, the external integer variable yydebug is set to 0.
However, if you set it to any nonzero value, the parser generates a running
description of the input tokens that it receives and the actions that it takes
for each token. You can set the yydebug variable in one of the following
two ways:

• Use the yydebug function by including the following C language
statement in the declarations section of the yacc grammar file:

yydebug = 1;

• Use a debugger to execute the final parser, and set the yydebug
variable on or off using debugger commands. For further details about
using debuggers, such as dbx, see the reference pages for the various
debuggers.

4.10 Creating a Simple Calculator Program

You can use the programs for a lex-generated lexical analyzer and a
yacc-generated parser, shown in Example 4–1 and Example 4–2, to create
a simple desk calculator program that performs addition, subtraction,
multiplication, and division operations. The calculator program also lets you
assign values to variables (each designated by a single lowercase letter) and
then use the variables in calculations. The files that contain the programs
are as follows:

• calc.l − The lex specification file that defines the lexical analysis rules

• calc.y − The yacc grammar file that defines the parsing rules, and
calls the yylex function created by lex to provide input

By convention, lex and yacc programs use the letters .l and .y
respectively as file name suffixes. Example 4–1 and Example 4–2 contain
the program fragments exactly as they should be entered.

The following processing instructions assume that the files are in your
current directory; perform the steps in the order shown to create the
calculator program using lex and yacc:

1. Process the yacc grammar file by using the following command. The
−d option tells yacc to create a file that defines the tokens it uses in
addition to the C language source code.

% yacc -d calc.y

This command creates the following files:

• y.tab.c − The C language source file that yacc created for the
parser

4–34 Creating Input Language Analyzers and Parsers

• y.tab.h − A header file containing define statements for the
tokens used by the parser

2. Process the lex specification file by using the following command:

% lex calc.l

This command creates the lex.yy.c file, containing the C language
source file that lex created for the lexical analyzer.

3. Compile and link the two C language source files by using the following
command:

% cc -o calc y.tab.c lex.yy.c

4. Use the ls command to verify that the following files were created:

• y.tab.o − The object file for y.tab.c

• lex.yy.o − The object file for lex.yy.c

• calc − The executable program file

You can run the program by entering the calc command. You can then
enter numbers and operators in algebraic fashion. After you press Return,
the program displays the result of the operation. You can assign a value to
a variable as follows:

m=4

You can use variables in calculations as follows:

m+5
9

4.10.1 Parser Source Code

Example 4–1 shows the contents of the calc.y file. This file has entries in
all three of the sections of a yacc grammar file: declarations, rules, and
programs. The grammar defined by this file supports the usual algebraic
hierarchy of operator precedence.

Descriptions of the various elements of the file and their functions follow
the example.

Example 4–1: Parser Source Code for a Calculator

%{
#include <stdio.h> 1

int regs[26]; 2
int base;

%}

Creating Input Language Analyzers and Parsers 4–35

Example 4–1: Parser Source Code for a Calculator (cont.)

%start list 3

%token DIGIT LETTER 4

%left ’|’ 5
%left ’&’
%left ’+’ ’-’
%left ’*’ ’/’ ’%’
%left UMINUS /*supplies precedence for unary minus */

%% /* beginning of rules section */

list: /*empty */
| list stat’\n’
| list error’\n’
{

yyerrok;
}
;

stat: expr
{

printf("%d\n",$1);
}
|
LETTER ’=’ expr
{

regs[$1] = $3;
}
;

expr: ’(’ expr ’)’
{

$$ = $2;
}
|
expr ’*’ expr
{

$$ = $1 * $3;
}
|
expr ’/’ expr
{

$$ = $1 / $3;
}
|
expr ’%’ expr
{

$$ = $1 % $3;

4–36 Creating Input Language Analyzers and Parsers

Example 4–1: Parser Source Code for a Calculator (cont.)

}
|
expr ’+’ expr
{

$$ = $1 + $3;
}
|
expr ’-’ expr
{

$$ = $1 - $3;
}
|
expr ’&’ expr
{

$$ = $1 & $3;
}
|
expr ’|’ expr
{

$$ = $1 | $3;
}
|
’-’ expr %prec UMINUS
{

$$ = -$2;
}
|
LETTER
{

$$ = regs[$1];
}
|
number
;

number: DIGIT
{

$$ = $1;
base = ($1==0) ? 8:10;

}
|
number DIGIT
{

$$ = base * $1 + $2;
}
;

%%
main()

Creating Input Language Analyzers and Parsers 4–37

Example 4–1: Parser Source Code for a Calculator (cont.)

{
return(yyparse());
}

yyerror(s)
char *s;
{
fprintf(stderr," %s\n",s);

}

yywrap()
{
return(1);

}

The declarations section contains entries that perform the following
functions:

1 Include standard I/O header file

2 Define global variables

3 Define the rule list as the place to start processing

4 Define the tokens used by the parser

5 Define the operators and their precedence

The rules section defines the rules that parse the input stream.

The programs section contains the following routines. Because these
routines are included in this file, you do not need to use the yacc library
when processing this file.

• main() − The required main program that calls yyparse() to start
the program

• yyerror(s) − The error-handling routine, which prints a syntax error
message

• yywrap() − The wrap-up routine that returns a value of 1 when the
end of input occurs

4.10.2 Lexical Analyzer Source Code

Example 4–2 shows the contents of the calc.l file. This file contains
#include statements for standard input and output and for the y.tab.h
file, which is generated by yacc before you run lex on calc.l. The

4–38 Creating Input Language Analyzers and Parsers

y.tab.h file defines the tokens that the parser program uses. Also, calc.l
defines the rules to generate the tokens from the input stream.

Example 4–2: Lexical Analyzer Source Code for a Calculator

%{

#include <stdio.h>
#include "y.tab.h"
int c;
extern int yylval;
%}
%%
" " ;
[a-z] {

c = yytext[0];
yylval = c - ’a’;
return(LETTER);

}
[0-9] {

c = yytext[0];
yylval = c - ’0’;
return(DIGIT);

}
[^a-z0-9\b] {

c = yytext[0];
return(c);

}

Creating Input Language Analyzers and Parsers 4–39

5
Using m4 Macros in Your Programs

This chapter describes the m4 macro preprocessor, a front-end filter that
lets you define macros by placing m4 macro definitions at the beginning
of your source files. You can use the m4 preprocessor with either program
source files or document source files.

This chapter contains the following information on Macros:

• Using macros (Section 5.1)

• Defining macros (Section 5.2)

• Using other m4 macros (Section 5.3)

5.1 Using Macros
Macros ease your programming or writing tasks by allowing you to
substitute a simple word or two for a great amount of material. Macro calls
in a source file have the following form:

name[(arg1[,arg2])]

For example, suppose you have a C program in which you want to print
the same message at several points. You could code a series of printf
statements like the following:

printf("\nThese %d files are in %s:\n",cnt,dir);

As your program evolves, you decide to change the wording; but you have
to edit each instance of the message. Defining a macro like the following
will save you a great deal of work:

define(filmsg,‘printf("\nThese %d files are in %s:\n",$1,$2)’)

Then, everywhere you want to output this message, you use the macro this
way:

filmsg(cnt,dir);

With this implementation, you only need to edit the message in one place.

A macro definition consists of a symbolic name (called a token) and the
character string that is to replace it. A token is any string of alphanumeric
characters (letters, numbers, and underscores) beginning with a letter or an
underscore and delimited by nonalphanumeric characters (punctuation or
white space). For example, N12 and N are both tokens but A+B is not a token.
When you process your file through m4, each occurrence of a recognized

Using m4 Macros in Your Programs 5–1

macro is replaced by its definition. In addition to replacing symbolic names
with text, m4 also can perform the following operations:

• Arithmetic calculation

• File manipulation

• Conditional macro expansion

• String and substring functions

• System command execution

The m4 program reads each token in the file and determines if the token
is a macro name. Macro names that are embedded in other tokens are
not recognized; for example, m4 does not interpret N12 as containing an
occurrence of the token N. If the token is a macro name, m4 replaces it with
its defining text and pushes the resulting string back onto the input to be
rescanned.

Macro expansion is thus recursive; macro definitions can include nested
occurrences of other macros to any depth of nesting. You can call macros with
arguments, in which case the arguments are collected and substituted into
the right places in the defining text before the defining text is rescanned.

The m4 preprocessor is a standard UNIX filter. It accepts input from
standard input or from a list of input files and writes its output to standard
output. The following lines illustrate correct m4 usage:

% grep -v ’#include’ file1 file2 | m4 > outfile
% m4 file1 file2 | cc

The m4 program processes each argument in order. If there are no
arguments, or if an argument is a minus sign (−), m4 reads standard input
as its input file.

5.2 Defining Macros

You create a macro definition with the define command, one of about 20
built-in macros provided by m4. For example:

define(N,100)

The open parenthesis must follow the word define with no intervening
space.

Given this macro definition, the token N will be replaced by 100 wherever it
appears in the file being processed. The defining text can be any text, except
that if the text contains parentheses, the number of open (left) parentheses
must match the number of close (right) parentheses unless you protect an
unmatched parenthesis by quoting it. See Section 5.2.1 for an explanation of
quoting.

5–2 Using m4 Macros in Your Programs

Built-in and user-defined macros work the same way except that some of
the built-in macros change the state of the process. See Section 5.3 for a
list of the built-in macros.

You can define macros in terms of other macros. For example:

define(N,100)
define(M,N)

This example defines both M and N to be 100. If you later change the
definition of N and assign it a new value, M retains the value of 100, not the
new value you give N. The value of M does not track that of N because the
m4 preprocessor expands macro names into their defining text as soon as
possible. The overall result, as far as M is concerned, is the same as using the
following input in the first place: define(M,100) If you want the value of M to
track the value of N, you can reverse the order of the definitions, as follows:

define(M,N)
define(N,100)

Now M is defined to be the string N. When the value of M is requested later,
the M is replaced by N, which is then rescanned and replaced by whatever
value N has at that time.

Macro definitions made with the define command do not delete characters
following the close parenthesis. For example:

Now is the time for all good persons.
define(N,100)
Testing N definition.

This example produces the following result:

Now is the time for all good persons.

Testing 100 definition.

The blank line results from the presence of a newline character at the end of
the line containing the define macro. The built-in dnl macro deletes all
characters that follow it, up to and including the next newline character.
Use this macro to delete empty lines. For example:

Now is the time for all good persons.
define(N,100)dnl
Testing N definition.

This example produces the following result:

Now is the time for all good persons.
Testing 100 definition.

This section contains the following information:

• Using the Quote Characters (Section 5.2.1)

• Macro Arguments (Section 5.2.2)

Using m4 Macros in Your Programs 5–3

5.2.1 Using the Quote Characters

To delay the expansion of a define macro’s arguments, enclose them in
a matched pair of quote characters. The default quote characters are left
and right single quotation marks (‘ and ’), but you can use the built-in
changequote macro to specify different characters. (See Section 5.3.) Any
text surrounded by quote characters is not expanded immediately, but the
quote characters are removed. The value of a quoted string is the string with
the quote characters removed. Consider the following example:

define(N,100)
define(M,‘N’)

The quote characters around the N are removed as the argument is being
collected. The result of using quote characters is to define M as the string N,
not 100. This example makes the value of M track that of N, and it is thus
another way to accomplish the effect of the following definitions, shown in
Section 5.2:

define(M,N)
define(N,100)

The general rule is that m4 always strips off one level of quote characters
whenever it evaluates something. This is true even outside macros. For
example, to make the word, define, appear in the output, enter the word in
quote characters, as follows:

‘define’ = 1

Because of the way m4 handles quoted strings, you must be careful about
nesting macros. For example:

define(dog,canine)
define(cat,animal chased by ‘dog’)
define(mouse,animal chased by cat)

When the definition of cat is processed, dog is not expanded to canine
immediately because it is quoted. But when mouse is processed, the
definition of cat (animal chased by dog) is used; this time, dog is not
quoted, and the definition of mouse becomes animal chased by animal
chased by canine. If the previous example is included in a file named
infile:

% cat infile
define(dog,canine)
define(cat,animal chased by ‘dog’)
define(mouse,animal chased by cat)

dog
cat
mouse
% m4 infile
canine

5–4 Using m4 Macros in Your Programs

animal chased by canine
animal chased by animal chased by canine

When you redefine an existing macro, you must quote the first argument
(the macro name), as follows:

define(N,100)
...

define(‘N’,200)

Without the quote characters, the second define macro sees N, recognizes
it, and substitutes its value, producing the following result:

define(100,200)

The m4 program ignores this statement because it only can define names,
not numbers.

5.2.2 Macro Arguments

The simplest form of macro processing is replacing one string with another
(fixed) string as illustrated in the previous sections. However, macros can
also have arguments, so that you can use a given macro in different places
with different results. To indicate where an argument is to be used within
the replacement text for a macro (the second argument of its definition), use
the symbol $n to indicate the nth argument. For example, the symbol $1
refers to the first argument of a macro. When the macro is used, m4 replaces
the symbol with the value of the indicated argument. For example:

define(bump,$1=$1+1)
...

bump(x);

In this example, m4 will replace the bump(x) statement with x=x+1.

A macro can have as many arguments as needed. However, you can access
only nine arguments by using the $n symbols ($1 through $9). To access
arguments past the ninth argument, use the shift macro, which drops the
first argument and reassigns the remaining arguments to the $n symbols
(second argument to $1, third to $2, and so on). Using the shift macro
more than once allows access to all arguments used with the macro.

The symbol $0 returns the name of the macro. Arguments that are not
supplied are replaced by null strings, so that you can define a macro that
concatenates its arguments as follows:

define(cat,$1$2$3$4$5$6$7$8$9)
...

Using m4 Macros in Your Programs 5–5

cat(x,y,z)

This example replaces the cat(x,y,z) statement with xyz. Arguments
$4 through $9 in this example are null because corresponding arguments
were not provided.

When scanning a macro, the m4 program discards leading unquoted blanks,
tabs, or newline characters in arguments, but keeps all other white space.
For example:

define(a, "$1 $2$3")
...

a(b,
c,
d)

This example expands the a macro to be b cd. In the define macro,
however, newline characters are meaningful. For example:

define(a,$1
$2$3)
...

a(b,c,d)

This latter example expands the a macro as follows:

b
cd

Macro arguments are separated by commas. Use parentheses to enclose
arguments containing commas, so that the commas are not misinterpreted
as ending the arguments containing them. For example, the following
statement has only two arguments:

define(a, (b,c))

The first argument is a, and the second is (b,c). To use a single parenthesis
in an argument, enclose it in quote characters:

define(a,b‘)’c)

In this example, b)c is the second argument.

5.3 Using Other m4 Macros
The m4 program provides a set of macros that already are defined (built-in
macros). Table 5–1 lists all of these macros and describes them briefly.

The following sections further explain many of the macros and how to use
them:

• Changing the comment characters (Section 5.3.1)

5–6 Using m4 Macros in Your Programs

• Changing the quote characters (Section 5.3.2)

• Removing a macro definition (Section 5.3.3)

• Checking for a defined macro (Section 5.3.4)

• Using integer arithmetic (Section 5.3.5)

• Manipulating files (Section 5.3.6)

• Redirecting output (Section 5.3.7)

• Using system programs in a program (Section 5.3.8)

• Using unique file names (Section 5.3.9)

• Using conditional expressions (Section 5.3.10)

• Manipulating strings (Section 5.3.11)

• Printing (Section 5.3.12)

Table 5–1: Built-In m4 Macros
Macro Description

changecom(l,r) Changes the left and right comment
characters to the characters represented by l
and r. The two characters must be different.

changequote(l,r) Changes the left and right quote characters
to the characters represented by l and r.
The two characters must be different.

decr(n) Returns the value of n−1.

define(name,replacement) Defines a new macro, named name, with
a value of replacement.

defn(name) Returns the quoted definition of name.

divert(n) Changes the output stream to the
temporary file number n.

divnum Returns the number of the currently
active temporary file.

dnl Deletes text up to a newline character.

dumpdef(‘name’[,‘name’...]) Prints the names and current definitions
of the named macros.

errprint(str) Prints str to the standard error file.

eval(expr) Evaluates expr as a 32-bit arithmetic
expression.

ifdef(‘name’,arg1,arg2) If macro name is defined, returns arg1;
otherwise, returns arg2.

Using m4 Macros in Your Programs 5–7

Table 5–1: Built-In m4 Macros (cont.)

Macro Description

ifelse(str1,str2,arg1,arg2) Compares the strings str1 and str2. If they
match, ifelse returns the value of arg1;
otherwise, it returns the value of arg2.

include(file)
sinclude(file)

Returns the contents of file. The
sinclude macro does not report an error
if it cannot access the file.

incr(n) Returns the value of n+1.

index(str1,str2) Returns the character position in string
str1 where str2 starts, or −1 if str1
does not contain str2.

len(str) dlen(str) Returns the number of characters in
str. The dlen macro operates on strings
containing 2-byte representations of
international characters.

m4exit(code) Exits m4 with a return code of code.

m4wrap(name) Runs macro name before exiting, after
completing all other processing.

maketemp(strXXXXXstr) Creates a unique file name by replacing
the literal string XXXXX in the argument
string with the current process ID.

popdef(name) Replaces the current definition of name
with the previous definition, saved
with the pushdef macro.

pushdef(name,replacement) Saves the current definition of name and
then defines name to be replacement
in the same way as define.

shift(param_list) Shifts the parameter list leftward one
position, destroying the original first
element of the list.

substr(string,pos,len) Returns the substring of string that
begins at character position pos and
is len characters long.

syscmd(command) Executes the specified system command
with no return value.

sysval Gets the return code from the last use
of the syscmd macro.

traceoff(macro_list) Turns off trace for any macro in the list. If
macro_list is null, turns off all tracing.

traceon(name) Turns on trace for the named macro. If name
is null, turns trace on for all macros.

5–8 Using m4 Macros in Your Programs

Table 5–1: Built-In m4 Macros (cont.)

Macro Description

translit(string,set1,set2) Replaces any characters from set1 that
appear in string with the corresponding
characters from set2.

undefine(‘name’) Removes the definition of the named macro.

undivert(n,n[,n...]) Appends the contents of the indicated
temporary files to the current temporary file.

5.3.1 Changing the Comment Characters

To include comments in your m4 programs, delimit the comment lines with
the comment characters. The default left comment character is the number
sign (#); the default right comment character is the newline character. If
these characters are not convenient, use the built-in changecom macro.
For example:

changecom({,})

This example makes the left and right braces the new comment characters.
To restore the original comment characters, use changecom as follows:

changecom(#,
)

Using changecom with no arguments disables commenting.

5.3.2 Changing the Quote Characters

The default quote characters are the left and right single quotation marks (‘
and ’). If these characters are not convenient, change the quote characters
with the built-in changequote macro. For example:

changequote([,])

This example makes the left and right brackets the new quote characters. To
restore the original quote characters, use changequote without arguments,
as follows:

changequote

5.3.3 Removing a Macro Definition

The undefine macro removes macro definitions. For example:

undefine(‘N’)

This example removes the definition of N. You must quote the name of the
macro to be undefined. You can use undefine to remove built-in macros,

Using m4 Macros in Your Programs 5–9

but once you remove a built-in macro, you cannot recover that macro for
later use.

5.3.4 Checking for a Defined Macro

The built-in ifdef macro determines if a macro is currently defined. The
ifdef macro accepts three arguments. If the first argument is defined, the
value of ifdef is the second argument. If the first argument is not defined,
the value of ifdef is the third argument. If there is no third argument,
the value of ifdef is null.

5.3.5 Using Integer Arithmetic

The m4 program provides the following built-in functions for doing arithmetic
on integers only:

incr Increments its numeric argument by 1

decr Decrements its numeric argument by 1

eval Evaluates an arithmetic expression

For example, you can create a variable N1 such that its value always will be
one greater than N, as follows:

define(N,100)
define(N1,‘incr(N)’)

The eval function can evaluate expressions containing the following
operators (listed in decreasing order of precedence):

• unary + (plus), unary − (minus)

• ** or ^ (exponentiation)

• *, /, % (modulo)

• +, −

• ==, !=, <, <=, >, >=

• ! (NOT)

• & or && (logical AND)

• | or || (logical OR)
Use parentheses to group operations where needed. All operands of an
expression must be numeric. The numeric value of a true relation such as
1>0 is 1, and false is 0 (zero). The precision in eval is 32 bits. For example,
to define M as 2==N+1, use eval as follows:

define(N,3)
define(M,‘eval(2==N+1)’)

5–10 Using m4 Macros in Your Programs

Use quote characters around the text that defines a macro, unless the text is
simple and contains no instances of macro names.

5.3.6 Manipulating Files

To merge a new file in the input, use the built-in include macro as follows:

include(myfile)

This example inserts the contents of myfile in place of the include
command. As the included file is read, m4 scans it for macros as if it were
part of the primary input.

With the include macro, a fatal error occurs if the named file cannot be
accessed. To avoid an error, use the alternative form, sinclude (silent
include). The sinclude macro continues without error if the named file
cannot be accessed.

5.3.7 Redirecting Output

You can redirect the output of m4 to temporary files during processing, and
the collected material can be output upon command. The m4 program can
maintain up to nine temporary files, numbered 1 through 9. To redirect
output, use the divert macro as in the following example:

divert(4)

When this command is encountered, m4 begins writing its output to the end
of temporary file 4. The m4 program discards the output if you redirect the
output to a temporary file other than 1 through 9; you can use this feature to
make m4 omit a portion of the input file. Use divert(0) or divert with no
argument to return the output to the standard output stream.

At the end of its processing, m4 writes all redirected output to the standard
output stream, reading from the temporary files in numeric order and then
destroying the temporary files.

To retrieve the information from all temporary files in numeric order at
any time before processing is completed, use the built-in undivert macro
with no arguments. To retrieve selected temporary files in a specified
order, use undivert with arguments. When using undivert, m4 discards
the temporary files that are recovered and does not search the recovered
information for macros.

The value of undivert is not the diverted text.

The built-in divnum macro returns the number of the currently active
temporary file. If you do not change the output file with the divert macro,
m4 puts all output in temporary file 0 (zero).

Using m4 Macros in Your Programs 5–11

5.3.8 Using System Programs in a Program

You can run any program in the operating system from a program by using
the built-in syscmd macro. If the system command returns information,
that information is the value of the syscmd macro; otherwise, the macro’s
value is null. For example:

syscmd(date)

5.3.9 Using Unique File Names

Use the built-in maketemp macro to make a unique file name from a
program. If the literal string XXXXX is present in the macro’s argument, m4
replaces the XXXXX with the process ID of the current process. For example:

maketemp(myfileXXXXX)

If the current process ID is 23498, this example returns myfile23498. You
can use this string to name a temporary file.

5.3.10 Using Conditional Expressions

The built-in ifelse macro performs conditional testing. The simplest form
is the following:

ifelse(a,b,c,d)

This example compares the two strings a and b. If they are identical,
ifelse returns string c. If they are not identical, it returns string d. For
example, you can define a macro called compare to compare two strings and
return yes if they are the same or no if they are different, as follows:

define(compare, ‘ifelse($1,$2,yes,no)’)

The quote characters prevent the evaluation of ifelse from occurring too
early. If the fourth argument is missing, it is treated as empty.

The ifelse macro can have any number of arguments, and it therefore
provides a limited form of multiple path decision capability. For example:

ifelse(a,b,c,d,e,f,g)

This statement is logically the same as the following fragment:

if(a == b) x = c;
else if(d == e) x = f;
else x = g;
return(x);

If the final argument is omitted, the result is null.

5–12 Using m4 Macros in Your Programs

5.3.11 Manipulating Strings

The built-in len macro returns the byte length of the string that makes up
its argument. For example, len(abcdef) is 6, and len((a,b)) is 5.

The built-in dlen macro returns the length of the displayable characters in
a string. In certain international usages, 2-byte codes are displayed as one
character. Thus, if the string contains any 2-byte international character
codes, the result of dlen will differ from the result of len.

The built-in substr macro returns the substring (beginning at the character
position specified by the second argument) from a specified string (first
argument). The third argument specifies the length in bytes of the returned
substring. For example:

substr(Krazy Kat,6,5)

This example returns “Kat”, which is the 3-character substring beginning
at character position 6 of the string “Krazy Kat”. The first character in the
string is at position 0 (zero). If the third argument is omitted or if the string
is not long enough to satisfy the third argument, as in this example, the
rest of the string is returned.

The built-in index macro returns the byte position, or index, in a string (first
argument) where a substring (second argument) begins. If the substring is
not present, index returns −1. As with substr, the origin for strings is 0
(zero). For example:

index(Krazy Kat,Kat)

This example returns 6.

The built-in translit macro performs one-for-one character substitution,
or transliteration. The first argument is a string to be processed. The second
and third arguments are lists of characters. Each instance of a character
from the second argument that is found in the string is replaced by the
corresponding character from the third argument. For example:

translit(the quick brown fox jumps over the lazy dog,aeiou,AEIOU)

This example returns the following:

thE qUIck brOwn fOx jUmps OvEr thE lAzy dOg

If the third argument is shorter than the second argument, characters from
the second argument that are not in the third argument are deleted. If the
third argument is missing, all characters present in the second argument
are deleted.

Using m4 Macros in Your Programs 5–13

______________________ Note _______________________

The substr, index, and translit macros do not differentiate
between 1- and 2-byte displayable characters and can return
unexpected results in some international usages.

5.3.12 Printing

The built-in errprint macro writes its arguments to the standard error
file. For example:

errprint (‘error’)

The built-in dumpdef macro dumps the current names and definitions
of items named as arguments. Names must be quoted. If you supply no
arguments, dumpdef prints all current names and definitions. The dumpdef
macro writes to the standard error file.

5–14 Using m4 Macros in Your Programs

6
Revision Control: Managing Source Files

with RCS or SCCS

This chapter describes how to keep your program or documentation source
files well organized by using a version control system. A version control
system automates the storage, retrieval, logging, identification, and merging
of document revisions. Version control is most useful for text that is revised
frequently, such as programs, documentation, graphics, papers, and so on.
The operating system provides the following two version control systems
with slightly different features:

• Revision Control System (RCS)

• Source Code Control System (SCCS)

This chapter introduces basic version control concepts, describes how to use
the RCS and SCCS commands and utilities, and provides more advanced
information about using each system:

• Overview of revision control (Section 6.1)

• Version control concepts (Section 6.2)

• Managing multiple versions of files (Section 6.3)

• Creating a version control library (Section 6.4)

• Using RCS (Section 6.5)

• Using SCCS (Section 6.6)

• Functional comparision of RCS and SCCS commands (Section 6.7)

Examples in this chapter describe a hypothetical kit for a product called
“Orpheus Authoring Tools.” The example kit is considered to be one of several
Orpheus products. Because this particular kit is a document builder, the kit
name is abbreviated as DCB and the main project directory is dcb_tools.

6.1 Overview of Revision Control

Using the Revision Control System (RCS) or the Source Code Control
System (SCCS) lets you keep your source files in a common library and
maintain control over them. Both systems provide easy-to-use, command
line interfaces. Knowing the basic commands lets you check in the source
file to be modified into a version control file that contains all of the revisions

Revision Control: Managing Source Files with RCS or SCCS 6–1

of that source file. When you want to check out a version control file for
editing, the system retrieves the revision or revisions you specify from the
library and creates a working file for you to use.

Using more advanced interface commands lets you do the following:

• Identify the current status of any file, including the name of the person
editing it.

• Reconstruct earlier versions of your files. For each version, the system
stores the changes made to produce that version, the name of the person
making the changes, and the reasons for the changes.

• Prevent the problems that can occur when two people change a file at
the same time without each other’s knowledge.

• Maintain multiple branch versions of your files. Branched versions can
be merged back into the original sequence.

• Protect files from unauthorized modification.

• RCS also allows for release and configuration control. Revisions can be
assigned symbolic names and marked according to the state of the file
(for example, released, stable, experimental, and so on).

Depending on your development environment and unique revision control
requirements, you can select either RCS or SCCS as your version control
system. Your choice depends on the amount of security and versatility
you require. Table 6–1 summarizes some of the more widely used features
of each system.

Table 6–1: Features of RCS and SCCS
Feature Comments

Stores and retrieves multiple
revisions of text.

Both systems provide a simple way
to store and retrieve all changes
made to a file. In addition, RCS can
retrieve revisions based on ranges of
revision numbers, symbolic names,
dates, authors, and states.

Maintains a complete history of changes. Both systems log changes automatically.
Besides the text of each revision, both
systems store the author, date and
time of the checkin, and a log message
summarizing the changes.

Resolves access conflicts. Both systems prevent two people
from modifying a file without each
other’s knowledge.

Maintains tree of revisions. Both systems can maintain separate
lines of development for each file.

6–2 Revision Control: Managing Source Files with RCS or SCCS

Table 6–1: Features of RCS and SCCS (cont.)

Feature Comments

Merges revised files with conflict
resolution.

Both systems provide a way to merge
changes to a file from two separate
lines of development. RCS also alerts
the user if there are overlapping
changes to the file versions.

Allows for release and configuration
control. (RCS only)

RCS can assign symbolic names to
revisions so that configurations of
modules can be described simply
and directly.

Automates identification of each revision. Both systems use keywords to tag
revisions of files with name, revision
number, time, author, and so on.

6.2 Version Control Concepts

RCS and SCCS store files in a reserved directory, called a version control
library. The contents of each source file are stored as a single version control
file (called an RCS file in RCS or an s-file in SCCS). A version control file
contains the original file (called a g-file in SCCS) together with all the
changes, or deltas, that have been applied to it. Each delta is described by
text telling who made the change and why. The change information itself
is stored in the form of marked lines of text. Every line that is deleted or
changed is marked as deleted but is not actually removed. New lines can be
either edited versions of old lines or completely new material inserted at the
appropriate places and marked. Your version control system can reconstruct
any version of the file by applying all the deletions and additions for versions
up to the desired version and by ignoring all later versions.

In RCS, RCS files are identified by the suffix ,v added to their names; for
example, attr,v would be the RCS-file for the source file named attr.

In SCCS, s-files are identified by the prefix s. added to their names;
for example, s.attr would be the s-file for the source file named attr.
Figure 6–1 illustrates the contents of a typical version control file. RCS and
SCCS files contain the same kinds of information, but their organization
is different.

Revision Control: Managing Source Files with RCS or SCCS 6–3

Figure 6–1: Contents of a Version Control File

Creation comment

ZK0456UR

Original version

First edit comment

and checksum
File identification

Second edit comment

First revision

Second revision

A version identification number is applied to a particular revision of
the version control file. In SCCS, this number is called an SID. The
identification number for SCCS can contain up to four elements; RCS
provides for additional elements. The first two elements are the release
number and the level number within that release, and the third and
fourth represent the same items of information (called the branch and the
sequence) for a branched version of the file. (See Section 6.3.) Release
identification numbers begin at 1. Level identification numbers within a
release begin at .1 and advance by .1, so that the first version of a file is 1.1,
the second version is 1.2, and so on. Figure 6–4 (in Section 6.3) illustrates
the numbering sequence for one file’s deltas.

A version control library is a directory in which all the version control files
for a given project are stored. When you retrieve a file from the library, both
RCS and SCCS provide a locking mechanism that prevents two people from
accessing the file at the same time. File locking is discussed in detail in
the following sections.

Usually, but not always, the library is given the name RCS or SCCS,
depending on the system you use. Figure 6–2 and Figure 6–3 illustrate how
a project’s directory tree might appear with the RCS or SCCS library placed
below the project’s main directory.

6–4 Revision Control: Managing Source Files with RCS or SCCS

Figure 6–2: A Typical RCS Library

ZK0621UR

dcb_tools

datasrc output

dcbchintro,v

docbld,v

attr,v

RCSattr

Figure 6–2 shows three RCS files. When a file is checked out of the library
for editing, RCS correlates all the deltas and delivers a copy of the specified
version, as illustrated here with the attr file. RCS also edits the RCS-file
to insert the name of the person checking out the file. This information is
stored in the $Locker$ keyword. See Section 6.5.2 for more information
about using keywords in RCS.

RCS differs from SCCS in that file locking is enforced at checkin time. A
file can be checked out by more than one person, but only the first person
to check it out (the one holding the lock) can check it back in to the library.
Even if a revision is locked, it can still be checked out for reading, compiling,
and so on. Locking ensures that only one developer at a time can check in
the next update of the file. In other words, locking prevents a checkin by
anybody but the locker (the first person to check out the file).

If your RCS file is private and you will be the only person making revisions
to it, you can turn off the strict locking feature of RCS. When a file is
checked back in, RCS removes the user’s name from the $Locker$ keyword.
If strict locking is turned off, the owner of the file does not need to have a
lock for checkin, but all others do. Use the following commands to turn
strict locking off and on:

% rcs -U filename

and

% rcs -L filename

For more detailed information on file locking, see Section 6.5.3, Section 6.5.5,
and co(1).

Revision Control: Managing Source Files with RCS or SCCS 6–5

Figure 6–3 illustrates three s-files and one other file, named p.attr, in the
SCCS library. When a file is checked out of the library for editing, SCCS
correlates all the deltas and delivers a copy of the specified version, as
illustrated here with the attr file. SCCS also creates a lock file, called a
p-file. If another person tries to check out the same file for editing, SCCS
reports that the file is being edited and refuses to give access to the second
person. A p-file has the letter p added as a prefix to its name. When a file is
checked back in to the library, SCCS removes the p-file.

Figure 6–3: A Typical SCCS Library

ZK0457UR

dcb_tools

datasrc output

s.dcbchintro

s.docbld

s.attr

SCCS

p.attr

attr

6.3 Managing Multiple Versions of Files

Usually, file versions progress in a straight line, with only one current
version. In this case, file identification numbers contain two elements and
progress by steps of .1, so that the first version number applied to a file is 1.1
and the eighth, for example, is 1.8.

Projects running in parallel to develop new versions of the same basic
program can use the same version control file. As the different versions
are put into the library, a tree develops. For example, suppose two teams
begin development on separate versions of a file or module, starting from the
most recent revision.

As the two development streams continue, a complex tree of deltas can be
created, as illustrated in Figure 6–4.

6–6 Revision Control: Managing Source Files with RCS or SCCS

Figure 6–4: A Version Control File’s Tree of Deltas

ZK0458UR

1.5

1.1

1.2

1.3

1.2.1.1

1.3.1.1

1.4 1.2.2.1

1.2.1.2

1.2.1.3

1.2.1.4

To get or edit a file from one of the branches, you must specify its branch
number. Figure 6–4 shows a tree for a version control file that consists
of a main trunk (contains revisions numbers 1.1, 1.2, 1.3, and so on) and
branches. For the delta numbers shown, the first two elements reflect the
version number from which it is branched, and the second two elements
reflect the new element’s version number.

As an example, suppose the two development teams are working with
revision number 1.2 of a file. Both RCS and SCCS will allocate a number
of 1.3 to the first team to access the file. For the second team, the version
control system will create a delta numbered 1.2.1.1. Because this is the first
delta along this 1.2 branch, the last two elements of this version number
are shown as 1.1.

As the two versions are developed, they can themselves be branched from;
for example, a programmer might branch a new file from revision number
1.2.1.3 after revision number 1.2.1.4 has been created.

For more information and specific examples on branching in RCS and SCCS,
see Section 6.5.5 and Section 6.6.5.

Revision Control: Managing Source Files with RCS or SCCS 6–7

6.4 Creating a Version Control Library

After you have selected the version control system you want to use for your
development project, you should create a directory in which you will place
the RCS or SCCS files. Depending on the size and complexity of your
development project, you might want to involve your system administrator,
who can help you determine ownership and protection settings for the
directory and source files.

When setting up your directory, you might want to assign ownership of the
directory to the rcs or sccs user ID and set its permissions to prevent
users other than rcs or sccs from writing to it. This method provides good
security in that only RCS or SCCS can directly manipulate the files in the
library.

If you are going to use the sccs command, the library’s directory should be
named SCCS, as illustrated in Figure 6–3. If the library directory is not
named SCCS, you must use the −d option with the sccs command to access
files in the library. (See Table 6–8.) For RCS, the directory should be named
RCS; otherwise, you must specify a complete path (absolute or relative) to
the RCS-file.

6.5 Using RCS
The following sections explain the different features of RCS:

• Placing new files in an RCS library

• Recording file-identification information with RCS

• Getting files from an RCS library

• Checking edited files back into an RCS library

• Working with multiple versions of files

• Displaying differences in RCS files

• Reporting revision histories of RCS files

• Configuration control concepts

The RCS system provides a set of UNIX commands that assist in the task
of version control for your text files. It is designed for both production and
development environments where flexibility and file access control are high
priorities. In production environments, access controls can detect update
conflicts and prevent overlapping changes. In fast-changing development
environments, where such strong controls may not be appropriate, users can
easily modify the controls to suit individual project needs.

The RCS system comprises a set of independent commands. Table 6–2 lists
the RCS commands provided. The sections following the table provide more

6–8 Revision Control: Managing Source Files with RCS or SCCS

information on some of these commands. See the appropriate reference page
for additional information on the available command options.

Table 6–2: Summary of RCS Command Functions
Command Description

Checks in revisions. Stores the contents of a working file in
the corresponding RCS file as a new revision.

Option Description

-u or -l Using one of these options prevents a working file
from being deleted at checkin time.

-r Assigns a revision number to the file being checked in.

ci

-k Searches the checked-in file for identification
markers, and assigns them to new revisions.

Checks out revisions. Retrieves revisions according to revision
number, date, author, and state attributes. Always expands
the identification markers (keywords).

Option Description

co

-l Locks the revision during file checkout to
prevent overlapping modifications if several
people work on the same file.

ident Extracts the identification markers from a file and prints them. The
identification markers (keywords) are always expanded by co.

Changes RCS file attributes. Changes (as an administrative
operation) access lists, modifies file locking attributes, sets
state attributes and symbolic revision numbers, changes the
description, and deletes revisions. A revision only can be
deleted if it is not the fork of a side branch.

Option Description

-L Sets the strict file locking mode. This means that the
owner of an RCS file must lock the file at checkin. This
default is determined by the system administrator.

rcs

-U Sets the nonstrict file locking mode. This means
that the owner of the file does not need to lock
the file at checkin. This default is determined
by the system administrator.

rcsclean Cleans your working directory. Removes working files that
were checked out but never changed.

rcsdiff Compares two revisions and prints out their differences, using the
diff command. One of the revisions compared can be checked out.
This command is useful for finding out about changes.

Revision Control: Managing Source Files with RCS or SCCS 6–9

Table 6–2: Summary of RCS Command Functions (cont.)

Command Description

rcsfreeze Freezes a configuration. Assigns the same symbolic revision
number to a given revision in all RCS files. This command is
useful for accurately recording a configuration.

Merges two revisions, rev1 and rev2, with respect to a
common ancestor. A three-way file comparison determines
the parts of lines that are the same in all three revisions, the
same in two revisions, or different in all three. Overlapping
changes are flagged and reported to the user.

Option Description

rcsmerge

-p Prints the result of the merged files to the
standard output; otherwise, the resulting merged
file overwrites the working file.

Reads log messages. Prints the log messages and other information in
an RCS file, for example: RCS file name, working file name, head (the
number of the latest revision on the trunk), default branch, access
list, locks, symbolic names, number of revisions and descriptive text.

Option Description

-h Prints only the RCS file name, working file
name, head, default branch, access list, locks,
symbolic names, and suffix.

rlog

-t Prints the same information as does -h,
plus the descriptive text.

6.5.1 Placing New Files in an RCS Library

You can use the ci command to place new files in a library. The following
example assumes that you are in the library’s parent directory and want
to add the attr file to the library:

% ci attr
RCS/attr,v <---- attr
enter description, terminateted with single ’.’ or end of file:
>> Orpheus Authoring Tools attr command
>> .
initial revision: 1.1
done

The ci command creates the RCS file attr,v and stores attr in it as
revision 1.1. The command prompts you for a description, which should be a
synopsis of the contents of the file. All later checkin commands will prompt
you for a log entry, which should summarize the changes you made.

You can enter a series of files in a single operation. For example:

% ci attr docbld dcb.ch-intro

6–10 Revision Control: Managing Source Files with RCS or SCCS

6.5.2 Recording File-Identification Information with RCS

The RCS system provides a syntax for including keywords or ID markers
in source files to provide file-identification information. An ID marker
consists of a keyword enclosed within dollar signs ($). When you retrieve a
file from the RCS library, RCS expands the keyword by replacing it with the
appropriate information, such as the file name or revision number.

RCS lets you use keyword markers anywhere in your
file as literal strings or comments to identify a revi-
sion. For example, if you place the marker $Header$
into your text file, RCS (with the co command) will replace this
keyword with the following information:

$Header: full_pathname/filename rev_num yyyy/mm/dd HH:mm:ss author state $

Table 6–3 lists the RCS keywords and their corresponding values.

Table 6–3: RCS ID Keywords
Keyword Description

$Author$ The login name of the user who checked in the revision.

$Date$ The date and time the revision was checked in.

$Header$ A standard header containing the full pathname of the
RCS file, the revision number, the date, the author,
the state, and the locker (if locked).

Id Same as the full standard header except that the
RCS file name is without a path.

$Locker$ The login name of the user who locked the revi-
sion (empty if unlocked).

Log The log message supplied during checkin, preceded by a
header containing the RCS file name, the revision number, the
author, and the date. Existing log messages are not replaced;
instead, the new log message is inserted after $Log:…$.

$RCSfile$ The name of the RCS file without path.

$Revision$ The revision number assigned to the revision.

$Source$ The full pathname of the RCS file.

$State$ The state assigned to the revision with the -s
option of rcs or ci.

The ident command finds and extracts keywords from any file, even object
files and dumps. It searches the files you specify for all occurrences of the
pattern $keyword :… $. For example, suppose the C program myfile.c
contains the following information:

char resid [] = "$Header: Header information$"

Revision Control: Managing Source Files with RCS or SCCS 6–11

The command ident will print the following:

myfile.c : $Header: Header information$"

See co(1) for more detailed information on using keywords in RCS.

6.5.3 Getting Files from an RCS Library

To retrieve a file revision from an RCS file, check it out of the RCS library by
using the co command. The co command retrieves a revision from the RCS
file and stores it in a corresponding working file.

Revisions of an RCS file can be checked out locked or unlocked. Locking a
revision prevents overlapping updates. When you check out a file for reasons
other than editing (reading or processing, for example), the revision need
not be locked. (A revision checked out for editing and later checkin usually
must be locked.) For example:

% cd /usr/projects/dcb_tools

% co -u attr
RCS/attr,v ----> attr
revision 1.6 (unlocked)
done

This command creates a copy of the most recent version of the RCS file
(with keyword information included) and places it in your current directory
(/usr/projects/dcb_tools in this example). The −u option prevents
RCS from locking the file. To get a copy of any earlier version, use the −r
option. For example, to retrieve version 1.5 of a file that is now at version
1.8, you would use a command like the following:

% cd /usr/projects/dcb_tools

% co -r1.5 attr
RCS/attr,v ----> attr
revision 1.5
done

You can also retrieve a series of files with a single co command. For example:

% co attr unstamp
RCS/attr,v ----> attr
revision 1.5
done

RCS/unstamp,v ----> unstamp
revision 1.2
done

6.5.4 Checking Edited Files Back into an RCS Library

To replace one or more edited files, use the ci command. This command
places the contents of each working file in the corresponding RCS file.

6–12 Revision Control: Managing Source Files with RCS or SCCS

Usually, RCS checks whether the revision to be deposited in the library is
different from the preceding one, and alerts the user.

Also, because the ci command deletes your working files during checkin,
you may want to use either the −l option or the −u option to preserve your
working files by performing an implicit checkout operation. Use the ci
command with the -l or -u option if you want to save the current revisions
and continue editing.

6.5.5 Working with Multiple Versions of Files

Section 6.3 provides an overview of branching concepts in a version control
system. The following discussion provides specific examples that illustrate
how RCS handles branching of multiple files.

RCS arranges file revisions in a tree of deltas. Each file in a revision tree
contains the following kinds of information: a revision number, a checkin
time and date, the author’s identification, a log entry, a state, and the actual
text. All of these file attributes are determined at the time the revision is
checked in to the library. The ‘state’ attribute indicates the status of the
revision, which is set to ‘experimental’ during checkin, but which can be
later changed to stable or released.

The ci command creates a revision tree with a root revision that is usually
numbered 1.1. Unless you specify a revision number explicitly, ci assigns
new revision numbers by incrementing the level number of the previous
revision (1.2, 1.3, 1.4, and so on). To begin a new release, use the following
command:
% ci -r2.1 unstamp

or
% ci -r2 unstamp

This action assigns the number 2.1 to the new revision. Checking in the file
to the library without the -r option automatically assigns the numbers 2.2,
2.3, and so on, to the later revisions of the file.

Suppose two development teams begin development on separate releases of
the unstamp command, beginning from revision number 1.2. At this point,
both teams can check out the latest revision by using the co command with
the -l option as follows:
% co -l unstamp

After editing the file, the first team can check in the file by using the ci
command, and will be alerted by RCS that the new revision number is 1.3.
For example:
% ci unstamp
RCS/unstamp,v <---- unstamp

Revision Control: Managing Source Files with RCS or SCCS 6–13

new revision 1.3; previous revision 1.2
enter log message:
(terminate with a ^D or single ’.’)
>> Changed defaults check.
>> .
done

However, if the second team tries to check in the file with the same action,
RCS will issue the following message:
RCS/unstamp,v <----- unstamp
ci error: no lock set by user-name

At this point, the second team can create a branch by using the ci command
as follows:
% ci -r1.3.1 unstamp

This action results in a branch with revision number 1.3.1.1. To continue
development along this branch, the second team should use the current
branch revision number on all subsequent checkouts of the file. For example:
% co -r1.3.1.1 unstamp

Creating new branches in RCS is accomplished through the use of the ci
command; to continue development along a particular branch, use the -r
option with the co command.

The preceding discussion describes how RCS handles revisions of individual
files; the system also lets you work with groups (or sets) of files that
you specify. See Section 6.5.8 for more information on working with file
configurations in RCS.

6.5.6 Displaying Differences in RCS Files

You can examine an RCS file for differences between versions with the
rcsdiff command.

The rcsdiff command runs diff to compare two revisions of each RCS file
given. For example, to find the differences between the latest version of the
attr file (1.8, being edited to become 1.9) and the immediately preceding
version (1.7), you would use the following command:
% rcsdiff -r1.7 attr
=====================================
RCS file: RCS/attr,v
retrieving revision 1.7
diff -r1.7 attr
31d30
<# and is version linked to the docbld command

To check the differences between versions 1.3 and 1.4 of the attr file, you
would use the following command:
% rcsdiff -r1.3 -r1.4 attr
====================================

6–14 Revision Control: Managing Source Files with RCS or SCCS

RCS file: RCS/attr,v
retrieving revision 1.3
retrieving revision 1.4
diff -r1.3 -r1.4
5a6
< uts=-04

> uts=-05

6.5.7 Reporting Revision Histories of RCS Files

Use the rlog command to examine the revision history of a file. For example,
the rlog command provides you with the following detailed information:

% rlog unstamp
RCS file: RCS/unstamp,v; Working file: unstamp
head: 1.2
branch:
locks: ; strict
access list:
symbolic names:
comment leader: "# "
total revisions: 2; selected revisions: 2
description:
unstamp source file

revision 1.2
date: 92/06/09 15:51:16; author:gunther; state:Exp; lines
added/del:
Fixed copyright notice

revision 1.1
date: 92/06/09 15:49:16; author:gunther; state:Exp;
Initial revision

Note the type and amount of information that is available to you using the
rlog command. RCS prints the following information for each RCS file:

• RCS file name

• Working file name

• Head (the number of the latest revision on the trunk)

• Default branch

• Access list

• Locks on the file

• Symbolic names (if any)

• Suffix

• Total number of revisions

• Number of revisions selected for printing

• Descriptive text

Revision Control: Managing Source Files with RCS or SCCS 6–15

This information is followed by entries for the selected revisions in reverse
chronological order for each branch. If entered without specifying options,
rlog prints complete information for the file you select. See rlog(1) for more
information on using options to restrict the output of the rlog command.

6.5.8 Configuration Control Concepts

A configuration in RCS refers to a group or set of file revisions, in which
each revision comes from a different file revision group. File revisions can be
selected (checked out) according to certain criteria. You can check out sets of
files from an RCS library based on the following selection criteria:

• Default selection: You can choose the latest revision of all files by default.
For example, the following command retrieves the latest revision on the
default branch of each RCS file in the library:

% co *,v

• Release-based selection: You also can specify a release or branch number
to select the latest revision in that release or branch. For example, the
following command retrieves the latest revision with release number 2
from each RCS file:

% co -r2 *,v

• State and author-based selection: You can select files according to state
attributes. For example, suppose you want to retrieve the latest revision
with release number 2 whose state attribute is ‘Released.’ This can be
accomplished by issuing the following command:

% co -r2 -sReleased *,v

You also can select a revision by author, by using the -w option.

• Date-based selection: You can also select revisions by date. Suppose a
release of an entire system was completed and current as of June 15, at
2:00 p.m. The following command checks out all files of that release, with
the -d option specifying the cutoff date as June 15:

% co -d "June 15,2:00 pm" *,v

• Name-based selection (using symbolic names): You can assign symbolic
names to revisions and branches. In large systems and development
efforts, a single release number or date may not be sufficient to collect
all the appropriate revisions from all groups. For example, suppose you
need to combine release 2 of one subsystem with release 10 of another.
Most likely, the creation dates of these revisions will be different, so
passing a single revision number or date to the co command will not be
appropriate in this case. Using symbolic revision names can help solve
this problem; each RCS file can contain a set of symbolic names that are
mapped to the numeric revision numbers. For instance, suppose you set
the symbolic name IFT2 to release number 2 in the file attr,v and to

6–16 Revision Control: Managing Source Files with RCS or SCCS

revision number 10.2 in unstamp,v. In this case, a single co command
retrieves the latest revision of release 2 from attr,v and revision 10.2
from unstamp,v as follows:

% co -rIFT2 attr,v unstamp,v

You can use the rcsfreeze command to assign a symbolic revision
name to a set of RCS files that form a configuration. To assign a unique
symbolic revision name to the most recent revision of each RCS file of
the main trunk, use the rcsfreeze command each time a new version
is checked in. For more information on assigning symbolic names to
RCS-files, see rcsfreeze(1). For large software development efforts, the
ability to retrieve all revisions with one command makes configuration
management an organized and efficient task.

6.6 Using SCCS

The SCCS system is composed of several independent commands, each
of which can be used independently. The sccs command is a unified
interface that simplifies the usage of the most common SCCS commands
and provides several additional functions by combining the operations of
multiple commands. It does not support all of the functions of the individual
commands.

Each form of the sccs command includes the keyword sccs and the name of
one function, such as edit, followed by options and the names of the file or
files to be manipulated. Table 6–4 lists the sccs commands. The sections
following the table provide more information on some of these commands.
In these discussions, command options are omitted except where required.
Commands that are also individual low level commands are indicated in the
table. The complete list of individual commands is summarized in Table 6–9;
for detailed information on their use, along with descriptions of their options,
see their individual reference pages.

Table 6–4: Summary of sccs Command Functions
Command
Name

Low
Level Description

admin Yes Creates an s-file or changes some characteristic
of an existing s-file.

check No Reports on files being edited and the names of the
users editing them. Differs from info in that check
returns a meaningful exit status and displays no
report if no files are being edited.

clean No Removes from your directory all files that can be
regenerated from the named s-file.

create No Creates an s-file without removing the g-file.

Revision Control: Managing Source Files with RCS or SCCS 6–17

Table 6–4: Summary of sccs Command Functions (cont.)

Command
Name

Low
Level Description

deledit No Performs a delta operation followed by an edit
operation on the same file.

delget No Performs a delta operation followed by a get
operation on the same file.

delta Yes Checks an edited g-file back into the library, recording the
changes made and their history. Removes the p-file.

diffs No Compares a g-file that is checked out for editing with an
earlier version reconstructed from the s-file.

edit No Checks out an s-file for editing; regenerates the g-file
and places it in your directory. Creates a p-file.

fix No Removes the most recent delta and presents the g-file for
reediting. Same as entering rmdel followed by edit.

get Yes Regenerates a g-file, usually but not always for a purpose
other than editing. (The sccs edit command, which
duplicates the function of sccs get −e, is the usual
way to regenerate a g-file for editing.)

help Yes Given a command name or an SCCS message number,
displays information about that item. (The individual
command’s form is sccshelp.) Each SCCS message
has an identification code; for example, the “no ID
keywords” message’s code is cm7. The sccs help
cm7 command displays a description of this error.
The sccshelp delta command returns a syntax
diagram for the delta command.

info No Reports on files being edited and the names of
the users editing them.

print No Displays the revision histories of the named file or
files, then displays the SCCS file, with ID information
added to the beginning of each line.

prs Yes Displays the revision histories of the named file or files.

prt No Same as prs.

rmdel Yes Removes the most recent delta from the specified
branch of a named s-file.

sccsdiff Yes Compares two versions of the s-file. Requires explicit
specification of the s-file name.

tell No Reports on files being edited. Differs from info in
that only file names are reported.

6–18 Revision Control: Managing Source Files with RCS or SCCS

Table 6–4: Summary of sccs Command Functions (cont.)

Command
Name

Low
Level Description

unedit No Aborts editing of a g-file. Deletes the p-file, releasing
the s-file so that other users can check it out. If the
g-file is present in your working directory, sccs unedit
removes it and performs a get command on the s-file;
if no g-file is present, no get command is executed.
(Equivalent to the unget command.)

what Yes Searches a file for an SCCS ID pattern and displays
the text that follows it.

6.6.1 Placing New Files in an SCCS Library

You can use the sccs create command to place new files in a library. The
following example assumes that you are in the library’s parent directory and
want to add the attr file to the library:
% sccs create attr
attr:
1.1
141 lines

Do not include the prefix s. in the file name you specify; SCCS applies
it automatically.

You can enter a series of files in a single operation. For example:
% sccs create attr docbld dcb.ch-intro

After creating the s-file in the library, the sccs create command adds a
comma as a prefix to the name of the original file; for example, attr becomes
,attr. This action preserves the original g-file with its keywords (if any)
unexpanded. Then SCCS fetches a copy of the file by using a get command;
this fetched version is ready for distribution.

You also can insert files in the library with the sccs admin −i command,
using the following syntax:

sccs admin −i [[path/]] [input-file] [[path/]] [s-filename]

For example:
% sccs admin -iunstamp unstamp

The name path/input-file specifies the input file. Regardless of the
name of this file, the s-file will be named s.s-filename. Do not include
any white space between the −i option and path/input-file. Do not
include the prefix s. in s-filename; SCCS applies it automatically. Using
the admin −i command avoids the renaming of the original g-file and the
fetching of a version with expanded keywords. See Section 6.6.8 for more
information on using the admin command.

Revision Control: Managing Source Files with RCS or SCCS 6–19

You can use the admin −i option to enter several files with a short shell
script; the following command-line example is implemented in csh:
% foreach x (attr docbld dcb.ch-intro)

? sccs admin -i$x $x

? end

6.6.2 Recording File-Identification Information with SCCS

The SCCS system provides a syntax for including ID keywords in source
files to provide file-identification information. An ID keyword consists of a
single letter enclosed within percent signs (%). When you retrieve a file
for any purpose other than editing, SCCS expands each ID keyword by
replacing it with the appropriate information, such as the SID or the file
name. Table 6–5 lists the SCCS ID keywords.

Table 6–5: SCCS ID Keywords
Keyword Description

%B% The branch number of a retrieved g-file

%C% The current line number in the file, intended to identify
messages output by a program

%D% The retrieval date of a g-file retrieved by a get com-
mand in the form yy/ mm/ dd

%E% The creation date of a delta, in the form yy/ mm/ dd

%F% The file name of the s-file

%G% The creation date of a delta, in the form mm/ dd/ yy

%H% The retrieval date of a g-file retrieved by a get com-
mand, in the form mm/ dd/ yy

%I% The highest SID applied to the file retrieved

%L% The level number of a retrieved g-file

%M% The current module (file) name; for example, prog.c

%P% The full pathname of the s-file

%Q% The value of the q flag in the s-file

%R% The release number of a retrieved g-file

%S% The sequence number of a retrieved g-file

%T% The retrieval time of a g-file retrieved by a get command,
in the form hh: mm: ss

%U% The creation time of a delta, in the form hh: mm: ss

%W% A shorthand for %Z%%M% Tab %I%

6–20 Revision Control: Managing Source Files with RCS or SCCS

Table 6–5: SCCS ID Keywords (cont.)

Keyword Description

%Y% A placeholder for the value of the t flag (set by the admin
command); not meaningful to SCCS itself

%Z% A placeholder that expands to the string @(#) for
the what command to find

SCCS handles ID keywords anywhere in a file. The purpose of the SCCS
what command is to find and display expanded ID keywords in a file. The
what command searches for lines containing the string @(#), which is
generated by the %Z% keyword or the %W% shorthand keyword, and displays
those lines. For example:
% what /usr/bin/attr
/usr/bin/attr:

attr 1.8 of 4/15/92

The line displayed in this example is part of a shell script and was coded as
follows:
SCCSID: %Z%%M% %I% of %G%

If your file does not contain ID keywords, SCCS reports that fact when you
put the file in the library and when you retrieve it. You can set the file’s i
flag to specify that this condition will be a fatal error. (See Section 6.6.8
for a description of file flags.) The purpose of the i flag is to prevent a
delta command from merging a g-file with expanded keywords (or with
no keywords) with the s-file.

6.6.3 Getting Files from an SCCS Library

There are two reasons to get files from an SCCS library: for any use except
editing, such as distribution, or for editing.

You can edit a file as part of the straight-line progress of its version history,
or you can create a branching tree. Section 6.6.5 describes how to create a
tree wherein multiple parallel versions are stored together in the same s-file.

6.6.3.1 Getting Files for Purposes Other Than Editing

For any use except editing, you get SCCS files with the sccs get command.
For example:
% cd /usr/projects/dcb_tools

% sccs get attr
1.8
126 lines

This command creates a copy of the most recent version of the s-file with
SCCS keywords expanded (see Table 6–5) and places it in your current

Revision Control: Managing Source Files with RCS or SCCS 6–21

directory (/usr/projects/dcb_tools in this example). To get a copy of
any earlier version, use the −rSID option. For example, to retrieve version
1.5 of a file that is now at version 1.8, you would use a command like the
following:

% cd /usr/projects/dcb_tools

% sccs get -r1.5 attr
1.5
128 lines

See Section 6.6.5 for information on managing more complex trees of SCCS
files.

You can use the −p option to retrieve a file and write it to standard output
instead of implicitly creating a g-file with the same name as the s-file. See
get(1) for more information.

6.6.3.2 Getting Files for Editing

To edit a file, check it out of the library with the sccs edit command. For
example:

% sccs edit attr
1.8
new delta 1.9
126 lines

This command creates a copy of the most recent version of the s-file with
SCCS keywords unexpanded (see Table 6–5) and places it in your directory
for editing. The command also creates a p-file identifying the person who
checked out the file for editing.

You can check on the status of files with the sccs info command. For
example:

% sccs info
unstamp: is being edited: 1.4 1.5 gunther 99/03/07 10:42:19

You can also use the get −e command to retrieve a file for editing.

6.6.3.3 Managing Multiple Files and New Releases

You can retrieve a series of files with a single get or edit command. For
example:

% sccs get attr unstamp
SCCS/s.attr:
1.8
126 lines

SCCS/s.unstamp:
1.2
55 lines

6–22 Revision Control: Managing Source Files with RCS or SCCS

If you specify the name SCCS instead of one or more file names, SCCS
retrieves every s-file in the library.

To create a new release of a file, you fetch it using the −r option to specify the
new release number in the sccs edit command. For example, the following
command initiates Release 2 of the docbld file:

% sccs edit -r2 SCCS
SCCS/s.docbld:
1.50
new delta 2.1
1042 lines

SCCS/s.dcb_defaults:
1.50
new delta 2.1
63 lines

SCCS/s.dcb_diag.sed:
1.50
new delta 2.1
188 lines

6.6.4 Checking Edited Files Back into an SCCS Library

To replace a file in the library you have edited, use the sccs delta
command. SCCS prompts you for a comment. For example:

% sccs delta attr

Comments? (^D to end)

Changed defaults check. Now looks only for "flc="

Ctrl/D

1.9
4 inserted
4 deleted
124 unchanged

If you specify the name SCCS instead of one or more file names, SCCS
performs a delta on every s-file in the library. Coupled with a similar
edit command, this function is useful for sets of files that must be kept in
version synchronization even when not all of them are edited. SCCS asks for
comments only once and applies the same comment to each file.

The sccs delget and sccs deledit commands perform a delta followed
by a get or an edit operation respectively.

6.6.5 Working with Multiple Versions of Files

Section 6.3 provides an overview of branching concepts in a version control
system. The following section provides specific examples that illustrate how
SCCS handles branching of multiple versions of files.

Revision Control: Managing Source Files with RCS or SCCS 6–23

Suppose two development teams begin development on separate versions
of the unstamp file, beginning from SID 1.2. To enable branching, run the
sccs admin −fb command as follows:
% sccs admin -fb unstamp

The first team uses an edit command to create version 1.3 as follows:
% sccs edit unstamp
1.2
new delta 1.3
55 lines

The second team uses an edit −b command to create a branch as follows:
% sccs edit -b unstamp
1.2
new delta 1.2.1.1
55 lines

Consider now a tree for the unstamp file with a main trunk and branches
numbered 1.2.1, 1.2.2, and 1.3.1. To get the latest version from branch 1.2.2
for distribution, you would use the following command:
% sccs get -r1.2.2 unstamp
1.2.2.1
55 lines

As an SCCS tree becomes more complex, ensuring that you have the latest
delta for editing can become cumbersome because you must know the delta
you want to retrieve. You can use the −t option to the sccs get and sccs
edit commands to specify the absolute latest delta regardless of its SID.

You can merge a branched SCCS file back into the main trunk by using
the sccs edit −i command and by specifying the version or versions you
want to merge. For example, the following command creates version 1.5 of
the unstamp command, including all the deltas in the range from 1.2.1.1 to
1.2.1.3. The deltas are correlated so that the result is the accumulation of
all specified changes.
% sccs edit -i1.2.1.1-1.2.1.3 unstamp
Included:
1.2.1.1
1.2.1.2
1.2.1.3
1.4
new delta 1.5
55 lines

6.6.6 Displaying Differences in SCCS Files

You can examine an SCCS file for differences between versions with either
the sccs diffs command or the sccsdiff command, depending on what
forms of the file are available.

The sccs diffs command compares the g-file with the specified version of
the s-file. For example, to find the differences between the latest version of

6–24 Revision Control: Managing Source Files with RCS or SCCS

the attr file (1.8, being edited to become 1.9) and the immediately preceding
version (1.7) you would use the following command:
% sccs diffs -r1.7 attr

------- attr -------
31d30
<# and is version-linked to the docbld command

To check the differences between versions 1.3 and 1.4 of the attr file, you
would use the following command:
% sccs sccsdiff -r1.3 -r1.4 SCCS/s.attr
< uts=-04

> uts=-05

As this example shows, you can enter a pathname for the s-file itself.
Because of this design, you can use this command from any directory instead
of having to change to the directory containing the SCCS library.

6.6.7 Reporting Revision Histories of SCCS Files

Use the sccs prs command to examine the revision history of a file. For
example:
% sccs prs unstamp
SCCS/s.unstamp:

D 1.2 99/03/20 11:23:36 gunther 2 1 00000/00006/00055 1
MRs: 2
COMMENTS: 3
Fixed copyright notice

D 1.1 99/03/19 09:39:11 gunther 1 0 00061/00000/00000
MRs:
COMMENTS:
date and time created 99/03/19 09:39:11 by gunther

The D, MRs, and COMMENTS keywords indicated by callouts in this display are
part of the complete set of SCCS keywords. Use the sccs help command to
display a list of the keywords and their meanings.

1 The D keyword marks delta information. The two numbers after
gunther(the programmer’s user name) indicate the new and old
revision levels. The slash-separated numbers indicate the numbers of
lines added, deleted, and left unchanged.

2 The MRs keyword lists major revisions; the major revision is the first
element of a file’s SID.

3 The COMMENTS keyword provides a place for historical information in
freeform text format.

Use the sccs get −m command to retrieve a copy of the file with SID
numbers added as a prefix to each line. A file retrieved in this way shows

Revision Control: Managing Source Files with RCS or SCCS 6–25

you what delta produced every line in the retrieved version. Keep in mind
that a given delta can be overlaid by later deltas; you might need to use the
−r option to find particular changes.

6.6.8 Performing Administrative Functions

The sccs admin command performs several administrative functions. Each
function is specified by an option to the admin command, as described in
Table 6–6.

______________________ Note _______________________

Your system administrator can set permissions so that only the
administrator can use the admin command.

Table 6–6: SCCS admin Command Options
Option Description

−auser s-file Adds the specified user to the list of users allowed to
make changes to the named s-file. The user name can
be a group ID; all users in that group are added.

−dflag s-file Turns off (deletes) the named flag in the s-file.

−euser s-file Removes the specified user from the list of
users allowed to make changes to the named
s-file. The user name can be a group ID; all
users in that group are removed.

−fflag s-file Turns on the named flag in the s-file.

−h s-file Checks the structure of the named s-file and compares
a newly computed checksum with the checksum that
is stored in the s-file. This option helps you detect both
accidental damage and damage caused by modifying
SCCS files directly with non-SCCS commands.

−iinput-file s-file Creates SCCS/s.s-file, using input-file as the
initial contents. Differs from sccs create in that
admin −i does not rename the g-file or fetch a copy of
the s-file; the g-file is left untouched in your directory.

−mMR-list s-file Specifies a list of Modification Request (MR)
numbers to be inserted into the SCCS file as the
reason for creating the initial delta.

−ns-file Creates an empty s-file.

−rSID s-file Specifies the initial SID when creating an s-file.

6–26 Revision Control: Managing Source Files with RCS or SCCS

Table 6–6: SCCS admin Command Options (cont.)

Option Description

−tfile s-file Adds the contents of file to the s-file, flagging it
as added text. If file is omitted, any such added
text is deleted. Useful for including documentation
to ensure its distribution with the s-file.

−y"comment" s-file Inserts the comment text in the initial delta in
a manner identical to the workings of the delta
command. The default comment, if the −y option is
not used, is a line giving the date and time of the file’s
creation and the name of the user who created it.

−z s-file Recomputes the s-file’s checksum in case the
file has been corrupted.

_____________________ Caution _____________________

Using the val and admin -z commands to repair damaged
s-files is risky and should be left to your system administrator or
to a designated SCCS librarian.

The flags for the admin −f and admin −d options are described in Table 6–7.

Table 6–7: Flags for the admin Command
Flag Description

b Allows branches to be made using the −b flag to the edit command.

cSID Specifies SID as the highest delta that a get −e command can use.

dSID Specifies the default SID to be used on a get or edit command.

fSID Specifies SID as the lowest delta that a get −e command can use.

i Causes the “no Id keywords” error message to be a fatal
error rather than a warning.

j Permits editing of the s-file by more than one person concurrently.

lSID [,SID..
]

Locks the specified SIDs from being retrieved for editing.
You can lock all deltas with the −fla flag, and you can
unlock specific deltas with the −d flag.

mname Substitutes name for all occurrences of the %M% keyword when
keywords are expanded by a get command. The default
name is the s-file’s name without the s prefix.

Revision Control: Managing Source Files with RCS or SCCS 6–27

Table 6–7: Flags for the admin Command (cont.)

Flag Description

n Causes the delta command to create a null delta in any
releases that are skipped when a delta is made in a new release.
For example, if you make delta 5.1 after delta 2.7, releases
3 and 4 will be null. The resulting null deltas can serve as
points from which to build branch deltas. Without this flag,
skipped releases do not appear in the s-file.

q"text" Substitutes text for all occurrences of the %Q% keyword when
keywords are expanded by a get command.

ttype Substitutes type for all occurrences of the %Y% keyword when
keywords are expanded by a get command.

v[program] Makes delta prompt for Modification Request (MR) numbers
as the reason for creating a delta. The name program
specifies the name of an MR number validity-checking
program. See delta(1) for more information.

For example, the following command uses the contents of an existing text
file to create an s-file beginning at SID 2.1 and identified with a comment.
The s-file’s i flag is set. The command places the resulting s-file in the SCCS
library under the user’s working directory.

% sccs admin -iunstamp -fi -r2 -y"Initial release" unstamp

This example does not destroy the original file.

6.6.9 Using SCCS Options

The sccs command supports the options listed in Table 6–8. These options
must include the SCCS function command keyword as shown in the
examples in the table. Do not include any space between the options and
their arguments.

Table 6–8: SCCS Command Options
Option Description

−ddirname Specifies a directory to use as the SCCS library’s parent. Allows
access to SCCS libraries without requiring that your working
directory be the parent. For example:

% pwd
/usr/users/gunther
% sccs -d/usr/src/dcb_tools get
attr
1.8
126 lines

6–28 Revision Control: Managing Source Files with RCS or SCCS

Table 6–8: SCCS Command Options (cont.)

Option Description

−ppath Adds path to the final element of the pathname for the file you
specify. By default, SCCS adds SCCS so that the path specified in
the −d example resolves to /usr/src/dcb_tools/SCCS/s.attr.
If your SCCS library is not named SCCS, use the −d option
to modify this component of the path.

−r Runs with the real user’s UID instead of changing to the sccs
UID. For security purposes, SCCS usually sets the ownership
of files in an SCCS library so that they belong to the sccs
UID. This option is useful if you are using SCCS to manage
a library for yourself only; you can create the SCCS directory
with normal permissions, and the −r option will cause SCCS
to manipulate files therein using your own UID.

6.6.10 Summary of Individual SCCS Commands

Table 6–9 provides a brief description of the individual SCCS commands.
Some of these commands are not supported by the sccs command. See the
appropriate command’s reference page for more detailed information.

Table 6–9: Individual SCCS Commands

Command
Supported

by sccs
Command

Description

admin Yes Creates an s-file or changes some characteristic
of an existing s-file.

cdc No Changes the comments associated with a delta.

comb No Combines two or more consecutive deltas of an
s-file into a single delta. Combining deltas can
reduce storage requirements.

delta Yes Checks an edited g-file back into the library,
recording the changes made and their history.
Removes the p-file.

get Yes Gets a specified version of an s-file. Use this
command to get a copy of a file to edit or compile.
For editing, use the get −e command, which checks
out an s-file for editing, regenerates the g-file and
places it in your directory, and creates a p-file.

prs Yes Displays the revision histories of the named
s-file or s-files.

rmdel Yes Removes the most recent delta from the specified
branch of a named s-file.

Revision Control: Managing Source Files with RCS or SCCS 6–29

Table 6–9: Individual SCCS Commands (cont.)

Command
Supported

by sccs
Command

Description

sccsdiff Yes Compares two versions of the s-file. Requires
explicit specification of the s-file name.

sccshelp No Provides an explanation of a diagnostic message
or of an SCCS command name.

unget No Removes the effect of a previous use of the get −e
command by deleting the p-file and replacing the
g-file with a copy having its ID keywords expanded.
(Equivalent to the sccs unedit command.)

val No Computes a checksum on an s-file to see if the
result matches the checksum stored in the file. Use
this command with the sccs admin −z command
to detect and repair corrupted files.

what Yes Searches a file for an SCCS ID pattern and
displays the text that follows it. Use this command
to find identifying information describing the
source versions (kept under SCCS control)
used to construct a program.

_____________________ Caution _____________________

Using the val and admin -z commands to repair damaged
s-files is risky and should be left to your system administrator or
to a designated SCCS librarian.

6.7 Functional Comparison of RCS and SCCS Commands

Table 6–10 provides a brief comparison of the operations of RCS and SCCS
and the commands that are used to achieve similar functions. See the
reference pages for detailed information on using the individual commands.

Table 6–10: Functional Comparison: RCS and SCCS Commands
Tasks RCS Command SCCS Commands

Create a new
file from your
original.

ci file sccs create file
sccs admin -isfile gfile
admin -ipath/sfile gfile

Get a copy of a file
with expanded
keywords.

co -u file sccs get file
get file

6–30 Revision Control: Managing Source Files with RCS or SCCS

Table 6–10: Functional Comparison: RCS and SCCS Commands (cont.)

Tasks RCS Command SCCS Commands

Get a copy of a file
with unexpanded
keywords.

sccs get -k file
get -k file

Check out a file. co -l file sccs edit file
get -e file

Check in an
edited file.

ci file sccs delta file
delta file

Show revision
histories of a file.

rlog file sccs prs file
prs file

Examine
differences
between file
revisions.

rcsdiff -rrev
file

sccs diffs -rrev file
sccsdiff -rrev -rrev file

Merge file
revisions.

rcsmerge -rrevs
file

sccs edit -irevs file

Find identifying
information.

ident sccs what
what

Perform
administrative
tasks.

rcs admin

Clean up
your directory.
(Remove
unchanged files.)

rcsclean sccs clean

Revision Control: Managing Source Files with RCS or SCCS 6–31

7
Building Programs with the make Utility

The make utility builds up-to-date versions of programs. It is most useful
for large programming projects in which multiple source files are combined
to form a single program or for building a set of programs that are part
of a single product or application.

This chapter explains the following information:

• Operation of the make utility (Section 7.1)

• Description files (Section 7.2)

The make command accepts options to control or modify how the building
process is performed. The make utility does not address the problem of
maintaining more than one version of the same source file.

By using the make utility to maintain programs, you can do the following:

• Combine the instructions for creating a large program in a single file

• Define macros to use within the make description file

• Use shell commands

• Create or update libraries

• Include files from other programs

The operating system provides several versions of the make command; this
chapter describes the default version, make(1). The other versions, both of
which offer features provided by make(1), are make(1u) and make(1p). In
addition to its extended feature set, the make(1p) version is POSIX compliant.

The make(1) and make(1u) versions are included in the base operating system
subsets. The make(1p) version is included in the “Software Development
Environment (Software Development)” subset.

See make(1), make(1u) and make(1p) for more information.

7.1 Operation of the make Utility

The make utility works by comparing the creation date of a program to be
built, called the target or target file, with the dates of the files that make
it up, called dependency files or dependents. If any of a given target’s
dependents are newer than the target, make considers that the target is out

Building Programs with the make Utility 7–1

of date. In this case, make rebuilds the target by performing the necessary
compiling, linking, or other steps. Each dependent can also be a target; for
example, an executable program is made from object modules, which are in
turn made from source files. Dependents that are newer than the target are
called younger files.

The make utility uses the following sources of information:

• A description file that you create

• File names

• Time stamps of the files from the file system

• A set of rules that tell make how to build files

The make utility depends on files’ time stamps. For make to work properly
on a distributed system, the date and time on all systems in the network
must be synchronized.

The make utility creates a target file using the following step-by-step
procedure:

1. Finds the name of the target file in the description file

2. Finds a line that describes the dependents of the target, called a
dependency line

3. Ensures that all the target’s dependency files exist and are up to date

4. Determines if the target is current with respect to its dependents

5. Creates the target by one of the following methods if the target or one
of the dependents is out of date:

• Executes commands from the description file

• Uses internal rules to create the file (if they apply)

• Uses default rules from the description file

If all files described on the dependency line are up to date when make is
run, make indicates that the target is up to date and then stops. If any
dependents are newer than their targets, make recreates only those targets
that are out of date. Any missing files are deemed to be out of date.

If a given target has no dependents, it is always out of date, and make
rebuilds it every time you run make. The make process works from the top
down in determining what targets need to be rebuilt and from the bottom up
in the actual rebuilding stage.

When the make utility runs commands to create a target, it replaces macros
with their values, echoes each command line to the standard output, and
then runs the command. (See Section 7.2.9 for information about macros.)

7–2 Building Programs with the make Utility

The make utility runs commands that it can execute directly, such as rm or
cc, without invoking a new shell. The utility invokes each command line
that includes shell functions, such as pipes or redirection, in a new shell.

You start the make utility in the directory that contains the description file.
The syntax of the make command is as follows:

make [[−f] makefile] [options] [targets] [macro definitions]

The make utility examines the command line entries to determine what
to do. First, it assigns values for the macro definitions on the command
line (entries containing equal signs), if there are any, and for the macro
definitions in the description file. If there is a definition on the command
line for a macro name that is also defined in the description file, make uses
the command line definition and ignores the definition in the description file.

Next, make looks at the options. See make(1) for a complete list of the options
that make supports.

The make utility interprets the remaining command line entries as the
names of targets. It processes the targets in left-to-right order. If there are
no targets on the command line, make processes the first target named in
the description file and then stops.

7.2 Description Files

The description file tells make how to build the target by defining what
dependencies are involved and what their relationships are to the other files
in the procedure. The description file contains the following information:

• Definitions of macros in the description file

• One or more target names

• Dependency file names that make up the target files

• Commands that create the target files from the dependents

• Any of the pseudotargets .DEFAULT, .IGNORE, .PRECIOUS, .SILENT, or
.SUFFIXES. These identifiers are called pseudotargets because they are
not real targets. They are built-in names that make interprets in special
ways. For example, the .SILENT pseudotarget instructs make not to
echo command lines as it runs them. Do not use any of these names for a
real target. See make(1) for more information on pseudotargets.

The make utility determines what files to create to get an up-to-date copy of
the target by checking the dates of the dependency files. If any dependency
file was changed more recently than the target, make creates all the files
that are affected by the change, including the target. In most cases, the
description file is easy to write and does not change often.

Building Programs with the make Utility 7–3

The make utility usually looks for a description file named either makefile
or Makefile. If you name the description file makefile or Makefile and
are working in the directory containing that description file, you enter the
make command without any options or arguments to bring the first target
and its dependency files up to date, regardless of the number of files that
were changed since the last time make created the target file. You can
override the default file name by using the −f option to the make utility to
specify the name of the description file you want, as in the following example:

% make -f my_makefile

This option lets you keep several description files in the same directory.

This section explains the description file:

• Format of a description file entry (Section 7.2.1)

• Using commands in a description file (Section 7.2.2)

• Preventing the make utility from echoing commands (Section 7.2.3)

• Preventing the make utility from stopping on errors (Section 7.2.4)

• Defining default conditions (Section 7.2.5)

• Preventing make from deleting files (Section 7.2.6)

• Simple description file (Section 7.2.7)

• Making the description file simpler (Section 7.2.8)

• Defining macros (Section 7.2.9)

• Using macros in a description file (Section 7.2.10)

• Calling the make utility from a description file (Section 7.2.11)

• Internal macros (Section 7.2.12)

• How the utility make uses environment variables (Section 7.2.13)

• Internal rules (Section 7.2.14)

• Including other files (Section 7.2.15)

• Testing description files (Section 7.2.16)

• Description file (Section 7.2.17)

7.2.1 Format of a Description File Entry

The general format of a description file entry is as follows:

[target1 [target2...]] [:] [[:]] [[dependent...]] [[;] commands] [[#
] comment...]

The items inside brackets are optional. Targets and dependents are file
names (strings of letters, numbers, periods, and slashes). The make

7–4 Building Programs with the make Utility

command recognizes wildcard characters, such as asterisks (*) and question
marks (?). Each line in the description file that contains a target name is
called a dependency line. The dependency line is followed by one or more
command lines that specify the process steps to create the target.

Because make uses the dollar sign ($) to designate a macro, you must not
use this character in file names of targets and dependencies. Similarly, do
not use the dollar sign in commands in the description file unless you are
referring to a defined make macro. (Macros are described in Section 7.2.9,
Section 7.2.10, and Section 7.2.12.)

To place comments in the description file, use a number sign (#) to begin the
comment text. The make utility ignores the number sign and all characters
on the same line after the number sign. The make utility also ignores blank
lines.

You can enter lines that are longer than the line width of the input device
by putting a backslash (\) at the end of the line that is to be continued. Do
not extend comment lines in this way; begin each new comment line with
its own number sign.

7.2.2 Using Commands in a Description File

A command is any string of characters, except a number sign or a newline
character. Commands can appear after a semicolon (;) on a dependency line
or on lines immediately following a dependency line. Each command line
after the dependency line must begin with a single tab character.

When you define command sequences for the targets in the description file,
either specify one command sequence for each target or specify separate
command sequences for special sets of dependencies.

To use one command sequence for every use of the target, use a single colon
(:) following the target name on the dependency line. For example, the
following lines define a target, test, with a set of dependency files and a set
of commands to create the target:

test: dependency list1...
command list...

...

test: dependency list2...

As shown here, a target name can appear in several places in the description
file with different dependency lists, but there can be only one command list
associated with the target name. The make utility finds all the dependency
lines for a given target and concatenates all their dependency lists into a

Building Programs with the make Utility 7–5

single list. When any of the dependents have been changed, make can run
the commands in the one command list to create the target.

To specify more than one set of commands to create a particular target file,
enter more than one dependency definition. Each dependency line must
have the target name followed by two colons (::), a dependency list, and
a command list that make uses if any of the files in the dependency list
changes. For example, the following lines define two separate processes to
create the target file test:

test:: dependency list1...
command list1...

...

test:: dependency list2...
command list2...

If any of the files in dependency list1 changes, make runs command list1;
if any of the files in dependency list2 changes, make runs command list2.
To avoid conflicts, a given dependency file cannot appear in both dependency
list1 and dependency list2.

______________________ Note _______________________

Because make runs the commands on each command line
independently of preceding or subsequent command lines, be
careful when using certain commands (for example, cd). In the
following example, the cd command has no effect on the cc
command that follows it:

test: test.o
cd /u/tom/newtest
cc main.o subs.o -o test

To make the cd command affect the cc command, place both
commands on the same line, separated by a semicolon. For
example:

test: test.o
cd /u/tom/newtest; cc main.o subs.o -o test

You can simulate a multiline shell script by using backslashes
on continued lines:

test: test.o
cd /u/tom/newtest; \
cc main.o subs.o -o test

This example works exactly the same as the one immediately
before it. Each line continued with a backslash (the cd line in this
example) must have a semicolon before the backslash.

7–6 Building Programs with the make Utility

7.2.3 Preventing the make Utility from Echoing Commands

To prevent make from echoing the commands that it is executing to standard
output, use any one of the following procedures:

• Use the -s flag on the command line when you enter the make command.

• Put the pseudotarget name .SILENT: on a line by itself in the
description file. See Section 7.2 for an explanation of pseudotargets.

• Put an at sign (@) in the first character position (after the tab) of each
command line in the description file that make should not echo.

7.2.4 Preventing the make Utility from Stopping on Errors

The make utility usually stops if any command returns a nonzero status code
to indicate an error.

To prevent make from stopping on errors, use any of the following procedures:

• Use the -i flag on the command line when you enter the make command.

• Put the pseudotarget name .IGNORE: on a line by itself in the
description file. See Section 7.2 for an explanation of pseudotargets.

• Put a hyphen (-) in the first character position (after the tab) of each
command line in the description file where make should not stop on
errors.

7.2.5 Defining Default Conditions

When make creates a target but cannot find either explicit command lines
or internal rules to create the file, it looks at the description file for default
conditions. To define the commands that make performs in this case, use the
.DEFAULT: pseudotarget name in the description file, entering the default
command sequence as for any other target.

Use the .DEFAULT: pseudotarget for an error recovery routine or for a
general procedure to create all files in the program that are not defined by
an internal rule of the make utility.

7.2.6 Preventing make from Deleting Files

To prevent completion of a build using potentially corrupted target files,
make usually removes target files if an error is returned during the build.
To prevent make from removing files when an error is detected, use the
.PRECIOUS: pseudotarget in the description file. After the pseudotarget
name, list the target names to be saved. If you specify the -u option on
the command line, make does not remove any RCS files it checked out. See
make(1) for more information on how make interacts with RCS.

Building Programs with the make Utility 7–7

7.2.7 Simple Description File

In Example 7–1, a program named prog is made by compiling and loading
three C language files: x.c, y.c, and z.c. The files x.c and y.c share
some declarations in a file named defs. The z.c file does not share those
declarations.

Example 7–1: A Simple Description File

Make prog from 3 object files
prog: x.o y.o z.o
Use the cc program to make prog

cc x.o y.o z.o -o prog

Make x.o from 2 other files
x.o: x.c defs
Use the cc program to make x.o

cc -c x.c

Make y.o from 2 other files
y.o: y.c defs
Use the cc program to make y.o

cc -c y.c

Make z.o from z.c
z.o: z.c
Use the cc program to make z.o

cc -c z.c

If this file is called makefile, you can enter the make command with no
options or arguments to make an up-to-date copy of prog after making
changes to any of the four source files x.c, y.c, z.c, or defs.

7.2.8 Making the Description File Simpler

To make the description file simpler, use the internal rules of the make utility.
Using file system naming conventions, make knows that there are three .c
files corresponding to the needed .o files. It also knows how to generate
an object from a source file (that is, issue a cc -c command). By taking
advantage of these internal rules, the description file becomes the following:

Make prog from 3 object files
prog: x.o y.o z.o
Use the cc program to make prog

cc x.o y.o z.o -o prog

Use the file defs and the appropriate .c file
when making x.o and y.o

7–8 Building Programs with the make Utility

x.o y.o: defs

Section 7.2.14 describes the internal rules used by make.

7.2.9 Defining Macros

A macro is a name to use in place of one or more other names. It is a
shorthand way of using the longer string of characters. You can define
macros in the description file or on the command line. To define a macro in
the description file, do the following:

1. Start a new line with the name of the macro.

2. Follow the name with an equal sign (=).

3. To the right of the equal sign, enter the string of characters that the
macro name represents. The string can contain blanks.

The macro definition can contain blanks before and after the equal sign
without affecting the result. The macro definition cannot contain a colon (:)
or a tab before the equal sign. The make utility ignores leading and trailing
blanks in the defining string. The following examples are macro definitions:

Macro ABC has a value of "ls -la"
ABC = ls -la

Macro LIBES has a null value
LIBES =

Macro DIRECT includes the definition of macro ROOT
The expanded value of DIRECT is "/usr/home/fred"
ROOT = /usr/home
DIRECT = $(ROOT)/fred

The DIRECT macro in this example uses another definition as part of its own
definition. See Section 7.2.10 for instructions on using macros.

To define a macro on a command line, follow the same syntax as for defining
macros in the description file, but include all of your macro definitions on
the same line. When you define a macro with blanks from the command
line, enclose the definition in quotation marks ("name = definition").
Without the quotation marks, the shell interprets the blanks as parameter
separators and not as part of the macro.

7.2.10 Using Macros in a Description File

After you define a macro in a description file, refer to the macro’s value in
the description file by putting a dollar sign ($) before the name of the macro.
If the macro name is longer than one character, put parentheses or braces
around it, as illustrated by the following examples:

Building Programs with the make Utility 7–9

$(CFLAGS)
${xy}
$Z
$(Z)

The effect of the last two examples is identical.

7.2.10.1 Macro Substitution

You can substitute a different value for part or all of a macro’s defined value.
The three forms of macro substitution are as follows:

• The first form replaces every occurrence of string1 in the defined value
of MACRO with string2:

[$(MACRO: string1= string2)]

For example:

Define macro MAC1
MAC1 = xxx yyy zzz

...

Evaluate MAC1
project:

@ echo $(MAC1:yyy=abc)

When you run make with this description file, make substitutes abc for
the occurrence of yyy, and displays the following line:

xxx abc zzz

• The second form applies a substitution to each word in the defined
value. The location parameter specifies what portion of the word is to
be replaced with string:

[$(MACRO/ location/ string)]

The location parameter is restricted to the following values:

– Circumflex (^) - The string value is added as a prefix to each
defined word. For example:

Define macro MAC1
MAC1 = abc def ghi

...

Evaluate MAC1
project:

@ echo $(MAC1/^/xyz)

When you run make with this description file, make adds xyz to the
beginning of each defined word and displays the following line:

xyzabc xyzdef xyzghi

7–10 Building Programs with the make Utility

– Asterisk (*) − The string value replaces all of each defined word.
For example:

Define macro MAC1
MAC1 = abc def ghi

...

Evaluate MAC1
project:

@ echo $(MAC1/*/xyz)

When you run make with this description file, make substitutes xyz
for each defined word and displays the following line:

xyz xyz xyz

With the asterisk, you can use an ampersand (&) in the string
value. The ampersand represents the defined word that is being
substituted for, and it causes that word to be interpolated in the
result. For example:

Define macro MAC1
MAC1 = abc def ghi

...

Evaluate MAC1
project:

@ echo $(MAC1/*/x&z)

When you run make with this description file, make substitutes
x&z for each defined word, interpolating the defined word for the
ampersand, and displays the following line:

xabcz xdefz xghiz

– Dollar sign ($) - The string value is appended to each defined
word. For example:

Define macro MAC1
MAC1 = abc def ghi

...

Evaluate MAC1
project:

@ echo $(MAC1/$/xyz)

When you run make with this description file, make appends xyz to
the end of each defined word and displays the following line:

abcxyz defxyz ghixyz

• The third form makes one of two possible substitutions depending on
whether MACRO is defined:

Building Programs with the make Utility 7–11

[$(MACRO? string1: string2)]

If MACRO is defined, string1 is substituted for the entire defined value.
If MACRO is not defined, string2 is used. For example:

Define macro MAC1
MAC1 = abc def ghi

...

Evaluate MAC1 and MAC2. MAC2 is not defined.
project:

@ echo $(MAC1?uvw:xyz)
@ echo $(MAC2?123:456)

When you run make with this description file, make substitutes uvw for
the value of MAC1 and 456 for the undefined MAC2, and displays the
following lines:

uvw
456

The first two forms of substitution produce a null string if MACRO is
undefined.

7.2.10.2 Conditional Macros

The value of a macro can be assigned based on a preexisting condition.
This type of macro is a conditional macro. You cannot define conditional
macros on the command line; all conditional macro definitions must be in
the description file. The syntax of the conditional macro is as follows:

[target:= MACRO = string]

The macro is assigned the value of the string if the specified target is the
current target of the make command. Otherwise, the macro’s value is null.
The following description file uses a conditional substitution for MAC1:

Define the conditional macro MAC1
target2:=MAC1 = xxx yyy xxxyyy
...

#list targets and command lines
#
target1:;@echo $(MAC1)
target2:;@echo $(MAC1)

When you run make with this description file, you get the following results:

% make target1
% make target2
xxx yyy xxxyyy

7–12 Building Programs with the make Utility

7.2.11 Calling the make Utility from a Description File

You can nest calls to the make utility within a make description file by
including the $(MAKE) macro in one of the command lines in the file. If this
macro is present, make executes another copy of make, even if the -n option
is set. See Section 7.2.16 for a description of the -n option.

7.2.12 Internal Macros

The make utility has built-in macro definitions for use in the description file.
These macros help specify variables in the description file. The make utility
replaces the macros with the values indicated in Table 7–1.

Table 7–1: Internal make Macros
Macro Valuex

$@ The name of the current target file

$$@ The target names on the dependency line

$? The names of the dependency files that have changed
more recently than the target

$< The name of the out-of-date file that caused a target file to be created

$* The name of the current dependency file without the suffix

Each of these macros resolves to a single file name at the time make is
actually using it. You can modify the interpretation of any of these macros
by using a D suffix to indicate that you want only the directory portion of the
name. For example, if the current target is /u/tom/bin/fred, the $(@D)
macro returns only the /u/tom/bin portion of the name. Similarly, an F
suffix returns only the file name portion. For example, the $(@F) macro
returns fred if given the same target. All internal macros except the $?
macro can take the D or F suffix.

Before using any internal macros on a distributed file system, you must
ensure that the system clocks show the same date and time for all nodes
that contain files for make to process.

The make utility replaces these symbols only when it runs commands from
the description file to create the target file. The following sections explain
these macros in more detail.

7.2.12.1 Internal Target File Name Macro

The make utility substitutes the full name of the current target for every
occurrence of the $@ macro in the command sequence for building the target.
The replacement is made before running the command. For example:

Building Programs with the make Utility 7–13

/u/tom/bin/test: test.o
cc test.o -o $@

This example produces an executable file named /u/tom/bin/test.

7.2.12.2 Internal Label Name Macro

If the $$@ macro is used on the right side of the colon on a dependency line
in a description file, make replaces this symbol with the label name that is
on the left side of the colon in the dependency line. This name could be a
target name or the name of another macro. For example:

cat: $$@.c

The make utility interprets this line as follows:

cat: cat.c

Use this macro to build a group of files, each of which has only one source
file. For example, to maintain a directory of system commands, use a
description file like the following:

Define macro CMDS as a series of command names
CMDS = cat dd echo date cc cmp comm ar ld chown

Each command depends on a .c file
$(CMDS): $$@.c

Create the new command set by compiling the out of
date files ($?) to the current target file name ($@)

cc -O $? -o $@

The make utility changes the $$(@F) macro to the file part of $@ when
it runs. For example, you could use this symbol when maintaining the
usr/include directory while using a description file in another directory.
That description file would look like the following example:

Define directory name macro INCDIR
INCDIR = /usr/include

Define a group of files in the directory
with the macro name INCLUDES
INCLUDES = \

$(INCDIR)/stdio.h \
$(INCDIR)/pwd.h \
$(INCDIR)/dir.h \
$(INCDIR)/a.out.h

Each file in the list depends on a file
of the same name in the current directory
$(INCLUDES): $$(@F)

Copy the younger files from the current

7–14 Building Programs with the make Utility

directory to /usr/include
cp $? $@

Set the target files to read only status
chmod 0444 $@

This description file creates a file in the /usr/include directory when the
corresponding file in the current directory has been changed.

7.2.12.3 Internal Younger Files Macro

If the $? macro is in the command sequence in the description file, make
replaces the symbol with a list of dependency files that have been changed
since the target file was last changed.

7.2.12.4 Internal First Out-of-Date File Macro

If the $< macro is in the command sequence in the description file, make
replaces the macro with the name of the first file that started the file
creation. This file name is the name of the specific dependency file that
was out of date with the target file and therefore caused make to create
the target file again. This is different from the $? macro, which returns a
complete list of younger files.

The make utility replaces this symbol only when it runs commands from
its internal rules or from the .DEFAULT: list. The symbol has no effect in
an explicitly stated command line.

7.2.12.5 Internal Current File Name Prefix Macro

If the $* macro is in the command sequence in the description file, make
replaces the symbol with the file name part (without the suffix) of the
dependency file that make is currently using to generate the target file. For
example, if make is building the target test.c, the $* symbol represents
the file name test.

The make utility replaces this symbol only when it runs commands from
its internal rules or from the .DEFAULT: list. The symbol has no effect in
an explicitly stated command line.

7.2.13 How make Uses Environment Variables

Each time make runs, it reads the current environment variables and adds
them to its defined macros. In addition, it creates a new macro called
MAKEFLAGS. This macro is a collection of all the options that were entered on
the command line. Command line options and assignments in the description
file also can change the value of the MAKEFLAGS macro. When make starts

Building Programs with the make Utility 7–15

another process, it exports MAKEFLAGS to that process. See Section 7.2.16 for
a discussion of how the MAKEFLAGS macro affects recursive make processes.

The make utility assigns macro definitions in the following order with later
steps overriding earlier ones where there are conflicts:

1. Reads the MAKEFLAGS environment variable to set options specified
by the variable. If MAKEFLAGS is not present or is null, make sets its
internal MAKEFLAGS macro to the null string. Otherwise, make assumes
that each letter in MAKEFLAGS is an input option. The make utility uses
these options (except for −f, −p, and −r) to determine its operating
conditions.

2. Reads and sets the input flags from the command line. Any options
specified explicitly on the command line are added to the settings from
the MAKEFLAGS environment variable.

3. Reads macro definitions from the command line. These definitions
override any definitions for the same names in the description file.

4. Reads the internal macro definitions.

5. Reads the environment, including the MAKEFLAGS macro. The make
utility treats all environment variables as macro definitions and passes
them to shells it invokes to execute commands.

7.2.14 Internal Rules

The make utility has a set of internal rules that it uses to determine how to
build a target. You can override these rules by invoking make with the -r
option; in this case, you must supply any rules that are required to build the
targets in your description file. The internal rules contain a list of file name
suffixes defined using the pseudotarget .SUFFIXES:, along with the rules
that tell make how to create a file with one suffix from a file with another
suffix. To see the complete list of conversions supported by make’s internal
rules, run the following command:

% make -p | more

If you do not change the list by default, make understands the following
suffixes:

Suffix File Type

.o Object file

.c C source file

.e efl source file

.r Ratfor source file

.f or .F FORTRAN source file

7–16 Building Programs with the make Utility

Suffix File Type

.s Assembler source file

.y yacc C source grammar

.yr yacc Ratfor source grammar

.ye yacc efl source grammar

.l lex source grammar

.out Executable file

.p Pascal source file

.sh Bourne shell script

.csh C shell script

.h C header file

You can add suffixes to this list by including a .SUFFIXES: line in the
description file with one or more space-separated suffixes. For example,
the following line adds the suffixes .f77 and .ksh to the existing list. For
example:

.SUFFIXES: .f77 .ksh

To erase make’s default list of suffixes, include a .SUFFIXES: line with no
names on it. You can replace the default list with a completely new list by
using first an empty list and then your new list:

.SUFFIXES:

.SUFFIXES: .o .c .p .sh .ksh .csh

Because make looks at the suffixes list in left-to-right order, the order of the
entries is important. The preceding example ensures that make will look
first for an object file, then a C source file, and so on.

The make utility uses the first entry in the list that satisfies the following
two requirements:

• The entry matches input and output suffix requirements.

• The entry has a rule assigned to it.

If you add suffixes to the list that make recognizes, you must provide rules
that describe how to build a target from its dependents. A rule looks like a
dependency line and the corresponding series of commands. The make utility
creates the name of the rule from the two suffixes of the files that the rule
defines. For example, the name of the rule to transform a .r file to a .o file
is .r.o. Example 7–2 illustrates a portion of the standard default rules file.

Building Programs with the make Utility 7–17

Example 7–2: Default Rules File

Create a .o file from a .c
file with the cc program
.c.o

$(CC) $(CFLAGS) -c $<

Create a .o file from either a
.e , a .r , or a .f
file with the efl compiler

$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c $<

Create a .o file from
a .s file with the assembler
.s.o:

$(AS) -o $@ $<

.y.o:
Use yacc to create an intermediate file

$(YACC) $(YFLAGS) $<
Use cc compiler

$(CC) $(CFLAGS) -c y.tab.c
Erase the intermediate file

rm y.tab.c
Move to target file

mv y.tab.o $@

.y.c:
Use yacc to create an intermediate file

$(YACC) $(YFLAGS) $<
Move to target file

mv y.tab.c $@

7.2.14.1 Single Suffix Rules

The make utility also has a set of single suffix rules to create targets with no
suffixes, such as command files. The make utility has rules to change the
following source files with a suffix to object files without a suffix:

7–18 Building Programs with the make Utility

Suffix Source File Type

.c From a C language source file

.sh From a shell file

For example, to maintain a program like cat if all of the needed files are in
the current directory, enter the following command:

% make cat

7.2.14.2 Overriding Built-In make Macros

The make utility uses macro definitions in its internal rules. To change these
macro definitions, enter new definitions for those macros on the command
line or in the description file. For commands and language processors, the
make utility uses the following macro names:

Command or Function
Command
Macro

Command Options or Other
Macros

Archive program (ar) AR ARFLAGS

Archive table of contents creation RANLIB

Assembler AS ASFLAGS

C Compiler CC CFLAGS

C libraries LOADLIBS

RCS checkout CO COFLAGS

The copy command (cp) CP CPFLAGS

efl compiler EC EFLAGS

Linker command (ld) LD LDFLAGS

The lex command LEX LFLAGS

The lint command LINT LINTFLAGS

The make command MAKE

Recursive make calling flags MAKEFLAGS

The mv command MV MVFLAGS

The pc command PC PFLAGS

The f77 compiler RC FFLAGS

Ratfor compiler flags RFLAGS

The rm command RM RMFLAGS

For locating files related
to dependency

VPATH

Building Programs with the make Utility 7–19

Command or Function
Command
Macro

Command Options or Other
Macros

The yacc command YACC YFLAGS

The yacc -e command YACCE YFLAGS

The yacc -r command YACCR YFLAGS

For example, the following command runs make, substituting the newcc
program in place of the previously defined C language compiler:

% make CC=newcc

Similarly, the following command tells make to optimize the final object code
produced by the C language compiler.

% make "CFLAGS=-O"

To look at the internal rules that make uses, enter the following command
from the Bourne shell:

$ make -fp -< /dev/null 2>/dev/null

The output appears on the standard output.

7.2.15 Including Other Files

You can include files in addition to the current description file by using the
word include as the first word on any line in the description file. Follow
the word with a blank or a tab and then the set of file names for make to
include in the operation. For example:

include /u/tom/temp /u/tom/sample

7.2.16 Testing Description Files

To test a description file, run make with the -n command option. This
option instructs make to echo command lines without executing them. Even
commands preceded by at signs (@) are echoed so that you can see the
entire process as make would execute it. When the -n option is in effect, the
$(MAKE) macro, unlike all other commands, is actually executed.

If the description file includes an instance of the $(MAKE) macro, make calls
the new copy of make with the MAKEFLAGS macro’s value set to the list of
options, including -n, that you entered on the command line. The new copy of
make observes that the -n option is set, and it bypasses command execution
in the same way as the copy that called it. You can test a set of description
files that use recursive calls to make by entering a single make command.

7–20 Building Programs with the make Utility

7.2.17 Description File

Example 7–3 shows the description file that maintains the make utility. The
source code for make is contained in a number of C language source files and
a yacc grammar file. For more information on yacc, see Chapter 4.

Example 7–3: The makefile for the make Utility

Description file for the Make program

Macro def: send to be printed
P = lpr

Macro def: source file names used
FILES = Makefile version.c defs main.c

doname.c misc.c files.c
dosy.c gram.y lex.c gcos.c

Macro def: object file names used
OBJECTS = version.o main.o doname.o \

misc.o files.o dosys.o gram.o

Macro def: lint program and flags
LINT = lint -p
Macro def: C compiler flags
CFLAGS = -O

make depends on the files specified
in the OBJECTS macro definition
make: $(OBJECTS)
Build make with the cc program

cc $(CFLAGS) $(OBJECTS) -o make
Show the file sizes

size make

The object files depend on a file
named defs
$(OBJECTS): defs

The file gram.o depends on lex.c
uses internal rules to build gram.o
gram.o: lex.c

Clean up the intermediate files
clean:

rm *.o gram.c

Copy the newly created program
to /usr/bin and deletes the program

Building Programs with the make Utility 7–21

Example 7–3: The makefile for the make Utility (cont.)

from the current directory
install:

cp make /usr/bin/make ; rm make

Empty file ’’print’’ depends on the
files included in the macro FILES
print: $(FILES)
Print the recently changed files

lpr $?
Change the date on the empty file,
print, to show the date of the last
printing

touch print

Check the date of the old
file against the date
of the newly created file
test:

make -dp | grep -v TIME >1zap
/usr/bin/make -dp | grep -v TIME >2zap
diff 1zap 2zap
rm 1zap 2zap

The program, lint, depends on the
files that are listed
lint: dosys.c doname.c files.c main.c misc.c \

version.c gram.c
Run lint on the files listed
LINT is an internal macro

$(LINT) dosys. doname.c files.c main.c \
misc.c version.c gram.c
rm gram.c

Archive the files that build make
arch:

ar uv /sys/source/s2/make.a $(FILES)

7–22 Building Programs with the make Utility

Glossary

This glossary defines terms used in this manual.

C

carriage return
A character that forces all following text to the left margin of the next line
or that signals the end of user input. The Return key usually is used to
produce a carriage return. The carriage return character is the default
record separator for record-oriented programs such as awk.

check in
In the Revision Control System (RCS), to store a file or revision in the RCS
library.

check out
In the Revision Control System (RCS), to retrieve a file or revision from
the RCS library.

collating symbol
In a regular expression, a name that defines a particular subset of the
available characters, such as lowercase characters, in a collating sequence
that uses multicharacter strings to represent single characters.

D

delta
In a Revision Control System (RCS) or Source Code Control System (SCCS)
file, the set of changes that constitute a specific version of the file.

dependency file
See dependent

dependency line
In the make utility, a line in the description file that describes the dependents
on which a given target depends.

dependent
Also called a dependency file. In the make utility, an entity on which a file to
be built (the target) depends. A source file is a dependent of an object module.

Glossary–1

F

field
In awk, one element of an input record; fields are separated by a field
separator, which can be specified and is by default any amount of white
space. The beginning and end of the record are also field separators.

See also record

field variable
In awk, a variable that is a field of the input record; field variables can be
manipulated as any other variable.

G

g-file
In the Source Code Control System (SCCS), the file whose contents are used
to create the s-file or to apply a delta to it.

I

ID keyword
In the Source Code Control System (SCCS), a symbol composed of a single
letter enclosed by percent signs (%). In the Revision Control System (RCS),
a symbol composed of a keyword name enclosed by dollar signs ($). In
expanded form, a keyword provides identification information about the file,
such as its date, version number, or name.

L

lexical analyzer
A program or program fragment for analyzing input and assigning elements
of it to categories to assist in parsing the input. The lex program assists
in the creation of lexical analyzers.

See also parser

locking
In a version control system, the creation and use of information flagging a
version control file as being checked out for editing.

locking mechanism
In a version control system, a way to prevent overlapping and concurrent
changes to a file. SCCS uses p-files to indicate which files are currently
out for editing; RCS creates locks by editing the RCS file to insert lock
information.

Glossary–2

M

macro definition
For the m4 macro processor or the make utility, a statement creating a macro
name and defining the text and argument substitutions for which the macro
stands.

O

operator
In regular expressions, a character that is interpreted to mean something
other than its literal meaning. For example, a pair of brackets ([]) form an
operator that enables a single-character match on any one of the characters
enclosed by the brackets.

P

p-file
In the Source Code Control System (SCCS), a lock file whose presence
indicates that the s-file of the same name is currently being edited.

parser
A program or program fragment for interpreting input and determining how
to act upon it. The yacc program assists in the creation of parsers.

pattern space
In the sed editor, the range of lines currently being edited; the pattern space
is selected by an address or pair of addresses.

R

RCS file
In the Revision Control System (RCS), a file stored in the RCS library,
containing the text of the original file and the list of deltas that have been
applied to it.

RCS (Revision Control System)
A set of programs for managing program and documentation source files so
that any revision of a given file can be retrieved. Revisions to a file are
stored as a series of incremental changes (deltas) applied to the original
version instead of as complete copies of all the versions. The system provides
locking mechanisms so that only a single user can apply changes to a given
file at any one time.

See also SCCS (Source Code Control System)

Glossary–3

RCS file
A file stored in the Revision Control System (RCS) library containing the
text of the original file and the list of deltas that have been applied to it.

RCS library
The directory in which Revision Control System (RCS) files are stored.

record
In awk, the information between two consecutive occurrences of the record
separator, which can be specified and is by default a newline character. For
most purposes, a record can be thought of as a line from the input file. The
beginning and end of the file are also record separators.

S

s-file
In the Source Code Control System (SCCS), a file stored in the SCCS library,
containing the text of the original file and the list of deltas that have been
applied to it.

SCCS (Source Code Control System)
A set of programs for managing program and documentation source files so
that any revision of a given file can be retrieved. Revisions to a file are
stored as a series of incremental changes (deltas) applied to the original
version instead of as complete copies of all the versions. The system provides
locking mechanisms so that only a single user can apply changes to a given
file at any one time.

See also RCS (Revision Control System)

SCCS library
The directory in which Source Code Control System (SCCS) s-files and
p-files are stored.

script
In the sed editor, a list of editing commands to be applied to the input file.

SID
In SCCS, the numeric identification applied to a particular delta.

See also SCCS (Source Code Control System)

Source Code Control System
See SCCS (Source Code Control System)

Glossary–4

T

target
Also called a target file. In the make utility, an entity to be built from its
dependents. An executable program is a target that is built from one or
more object modules.

token
For the m4 macro processor, a recognizable entity that can be a macro name.
A token consists of alphanumeric characters delimited by nonalphanumeric
characters and cannot contain other tokens. For lex-generated lexical
analyzers and yacc-generated parsers, the smallest independent unit of
meaning as defined by either the parser or the lexical analyzer. A token can
contain data, a language keyword, an identifier, or other parts of a language
syntax.

V

version control file
In a version control system, a file that consists of original text and a set of
revisions (deltas) that have been made to it. In the Revision Control System
(RCS), this file is called an RCS-file; in the Source Code Control System
(SCCS), an s-file.

version control library
A directory that contains files that are organized and maintained under a
version control system such as the Revision Control System (RCS) or the
Source Code Control System (SCCS).

version control system
A software tool that aids in the organization and maintenance of file
revisions and configurations. In particular, it automates the storing, logging,
retrieval, and identification of revisions to source programs, documentation,
and data files.

Y

younger file
For the make utility, a dependency file that has changed more recently
than its target.

Glossary–5

Index

Numbers and Special
Characters

$
(See dollar sign)

*
(See asterisk)

+
(See plus sign)

.
(See period)

/
(See slash)

:
(See colon)

?
(See question mark)

@
(See at sign)

\
(See backslash)

^
(See circumflex)

|
(See vertical bar)

()
(See parentheses)

[]
(See brackets)

{ }
(See braces)

<>
(See angle brackets)

A
action

in awk, 2–3, 2–13
lexical analyzer, 4–2, 4–3, 4–5,

4–9
multiple actions for one

expression, 4–10
null action, 4–9

in yacc
ambiguous, 4–32
ambiguous, resolving, 4–33
conflicts, 4–32
conflicts, resolving, 4–33
reduce, 4–31
shift, 4–30

yacc parsers, 4–18, 4–24
address, sed editor, 3–4
admin command, 6–19, 6–26
ampersand

in make, 7–11
in sed, 3–10

&
(See ampersand)

angle brackets
in lex, 4–6
in make, 7–15

archiving source files
(See RCS, SCCS)

arithmetic, in m4, 5–10
array, in awk, 2–7, 2–8
asterisk

in basic regular expressions, 1–2
in extended regular expressions,

1–4
in regular expressions, 1–5
in make, 7–5, 7–11

in $* macro, 7–15
at sign

Index–1

in make, 7–7
in $@ macro, 7–13
in $$@ macro, 7–14

awk utility, 2–1
action, 2–3, 2–13

before or after processing the file,
2–21

omitting, 2–3
action operator, 2–13
backslash, 2–10
BEGIN statement, 2–21
beginning of a field in an expression,

2–10
command-line syntax, 2–2
comments in programs, 2–18
concatenating strings, 2–21
control structure, 2–18
end of a field in an expression, 2–10
END statement, 2–21
field separator, 2–2
field variable, 2–7
fields in, 2–1
flag, 2–2
function

mathematical, 2–15
miscellaneous, 2–17
string, 2–16

functions, 2–15
pattern

omitting, 2–3
regular expressions, 2–10
to specify ranges of records, 2–12

patterns, 2–2
pipe, 2–22
print command, 2–5
printf command, 2–5
program, 2–2

entering on the command line,
2–4e

syntax, 2–2
program structure, 2–3
ranges of records, 2–12
records in, 2–1

redirection, 2–22
regular expressions as patterns,

2–10
relational expression, 2–11
semicolons in a program, 2–3, 2–13
separating patterns from actions,

2–3
sequence of operations, 2–4, 2–12
slash, 2–10
split function, 2–8
string manipulation, 2–8, 2–12,

2–21
variable, 2–6

array, 2–7, 2–8
built-in, 2–9
creating, 2–6
field, 2–7
internal, 2–9
RLENGTH, 2–16
RSTART, 2–16
simple, 2–6
string, 2–6
treatment of, 2–6, 2–7
value if uninitialized, 2–6

B
backslash

in awk, 2–10
in basic regular expressions, 1–2
in extended regular expressions,

1–4
in regular expressions, 1–2
in sed, 3–6, 3–10

basic regular expression, 1–2
BEGIN statement

in awk, 2–21
in lex, 4–15

blank characters in macros, in
m4, 5–6

blank lines (spurious) in m4
output, 5–3

braces

Index–2

in awk, 2–3
in basic regular expressions, 1–2
in extended regular expressions,

1–4
in lex, 4–4, 4–5, 4–14
in make, 7–9
in yacc, 4–22

brackets
in basic regular expressions, 1–2
in extended regular expressions,

1–4
building programs

(See lex program, make utility,
yacc program)

built-in macro
(See macro)

C
caret

(See circumflex)
changecom macro, in m4, 5–9
changequote command

in m4, 5–4
changequote macro, in m4, 5–9
character class

in regular expressions, 1–7, 1–8
ci command, 6–10, 6–12
circumflex

in awk, 2–10
in basic regular expressions, 1–2
in extended regular expressions,

1–4
in make, 7–10

collating sequence
in regular expressions, 1–7, 1–8

collating symbol
in regular expressions, 1–8

colon, in yacc, 4–23
comment characters, in m4, 5–9
conditional action

in m4, 5–12

in make, 7–12
context address

in sed, 3–5
control structure

in awk, 2–18
in sed, 3–9

controlling revisions of source
files
(See RCS, SCCS)

create command, 6–19
creating a new release

RCS, 6–13
SCCS, 6–23

D
declaration, in yacc, 4–21
define command, in m4, 5–2
defining macros

(See m4 macro preprocessor,
make utility)

deledit command, 6–23
delget command, 6–23
delta, 6–3
delta command, 6–23
dependency file

defined, 7–1
dependent

(See dependency file)
description file, in make, 7–21e

command, 7–9, 7–13
commands in, 7–5
echoing commands in, 7–2, 7–3,

7–7
stopping on errors, 7–7
testing, 7–20

diffs command, 6–24
divert macro, in m4, 5–11
divnum macro, in m4, 5–11
dlen macro, in m4, 5–13
dnl command, in m4, 5–3
dollar sign

Index–3

in awk, 2–10
in basic regular expressions, 1–2
in extended regular expressions,

1–4
in m4, 5–5
in make, 7–5, 7–11
in sed, 3–4

dumpdef macro, in m4, 5–14

E
echoing commands in make, 7–2,

7–3, 7–7
edit command, 6–22

merging branches with, in SCCS,
6–24

−r option, 6–23
editing of files, simultaneous,

management of
by RCS, 6–5
by SCCS, 6–6

editor
(See sed editor)

egrep
(See grep utility)

embedded newline character
in sed, 3–5

end of file
in lex, 4–13
in sed, 3–4

endmarker token, 4–18, 4–24
value of, 4–23

environment variable, in make,
7–15

error token, in yacc, 4–28
escape character

in basic regular expressions, 1–2
in extended regular expressions,

1–4
in lex, 4–6, 4–7
in sed, 3–10

eval macro, in m4, 5–10
extended regular expression, 1–4

F
fgrep

(See grep utility)
field

in awk, 2–1, 2–7
file

creating
in RCS, 6–10
in SCCS, 6–19

editing, SCCS, 6–22
getting multiple, in SCCS, 6–22
getting status of, in SCCS, 6–22
getting, SCCS, 6–21
names in RCS, 6–10
names in SCCS, 6–19
versions of, in RCS or SCCS, 6–3

file name
SCCS, 6–19

finite-state automaton, 4–2, 4–30
stack usage, 4–30

flag
in sed, 3–11

flags in SCCS files, 6–21
list of, 6–27

functions in awk, 2–15

G
g-file, defined, 6–3
get command, 6–21

−p option, 6–22
getting files from an RCS library,

6–12
specifying version, 6–12

getting files from an SCCS library,
6–21
for editing, 6–22
specifying version, 6–22
writing to standard output, 6–22

getting multiple SCCS files, 6–22
getting status of SCCS files, 6–22
grammar file, in yacc, 4–20

contents of, 4–20

Index–4

declarations section, 4–21
error, 4–28
guidelines, 4–27
programs section, 4–26
rules section, 4–23

grep utility, 1–9

H
help command, in SCCS, 6–25

I
ID keywords in SCCS, 6–20

(See also SCCS; percent sign)
ifdef macro, in m4, 5–10
ifelse macro, in m4, 5–12
include macro, in m4, 5–11
index macro, in m4, 5–13
info command, 6–22
input/output routines, in lex, 4–12

null character in, 4–13
overriding, 4–12
translation table for, 4–13

internal macro
(See macro)

K
keyword, processing, in yacc,

4–21
associativity, 4–22
precedence, 4–22

L
LC_TYPE environment variable

(See collating sequence)
len macro, in m4, 5–13
lex library, 4–4, 4–12
lex program, 4–1

(See also lexical analyzer)
calculator example, 4–34
escape character, 4–6, 4–7
finding substrings, 4–8
matching wildcards, 4–8
quote characters, 4–6, 4–7
REJECT action, 4–9

alternative to, 4–11
returning input to the input stream,

4–9
using, 4–15
using with yacc, 4–16
yyless function action, 4–11

lex utility
macro, 4–4

expansion, 4–5
substitution string, 4–4

lexical analyzer, 4–1, 4–2
(See also lex program)
action, 4–2, 4–3, 4–5, 4–9

multiple for one expression, 4–10
null, 4–9
with yacc parsers, 4–9

action if no rule specified, 4–4
BEGIN statement, 4–15
default action, 4–4
end of file, 4–13
endmarker token, 4–18
file name, 4–3, 4–16
generating, 4–15
getting more input, 4–11
input look-ahead, 4–3
input/output routines, 4–12

null character in, 4–13
overriding, 4–12
translation table for, 4–13

length of a matched string, 4–10
lex library, 4–4, 4–12
passing code to generated program,

4–14
printf function, 4–10

Index–5

printing a matched string, 4–10
regular expressions in, 4–3, 4–5,

4–6, 4–8
return statement, 4–17
returning input to the input stream,

4–11
extent of, 4–12

rule, 4–5
conflicts in, 4–7
matching input, 4–7

specification file
definitions section, 4–4
definitions section, using y.tab.h

in, 4–17
elements of, 4–3
format of, 4–4
incomplete, 4–6
lines lex cannot interpret, 4–14
matching input, 4–7
rules section, 4–5

start condition, 4–14
setting, 4–15

translation table, 4–13
yyleng variable, 4–10
yylval variable, 4–18
yymore function, 4–11
yytext variable, 4–10
yywrap function, 4–13

library, RCS
(See RCS)

library, SCCS
(See SCCS)

line number
in sed, 3–4

literal string, in yacc, 4–26
look-ahead

lexical analyzer, 4–3
look-ahead token, in yacc

clearing, 4–29
number, 4–19

M
m4 macro preprocessor, 5–1

arithmetic, 5–10
blank characters in macros, 5–6
changecom macro, 5–9
changequote macro, 5–9
conditional action, 5–12
defining macros, 5–2

in terms of other macros, 5–3e
to track other macros, 5–3

divert macro, 5–11
divnum macro, 5–11
dlen macro, 5–13
dnl macro, 5–3
dumpdef, 5–14
eval macro, 5–10
ifdef macro, 5–10
ifelse macro, 5–12
including a file, 5–11
index macro, 5–13
len macro, 5–13
macro

built-in, 5–7
internal, 5–7

macro argument, 5–5, 5–6
macro syntax, 5–1
maketemp macro, 5–12
print macro, 5–14
printing, 5–14
quote characters, 5–4
quoting in nested macros, 5–4
recursion, 5–2
redefining macros, 5–5
redirection, 5–11
spurious blank lines in output, 5–3
string manipulation, 5–13
substr macro, 5–13
temporary file, 5–11, 5–12
translit macro, 5–13
undefine macro, 5–9
undivert macro, 5–11
using system programs, 5–12

macro, 5–1, 7–9
(See also m4 macro

preprocessor; make utility)

Index–6

arguments, in m4, 5–5, 5–6
built-in

in m4, 5–7
in make, 7–13

checking for definition of, in m4,
5–10

defined, for m4, 5–1
defining

in make, 7–9
defining, in m4, 5–2

in terms of another macro, 5–3e
to track another macro, 5–3

definition, in make, 7–3
expansion, in m4

delaying, 5–4
recursive nature of, 5–2

internal
in m4, 5–7
in make, 7–13, 7–14, 7–15

in lex, 4–4
expansion of, 4–5

nested, in m4
quoting in, 5–4

precedence of definitions in make,
7–3

redefining, in m4, 5–5
removing, in m4, 5–9
substitution, in make, 7–10

main function, in yacc, 4–17,
4–18, 4–19

$(MAKE) macro, 7–13
testing description files with, 7–20

make utility, 7–1
command execution by, 7–3
command syntax, 7–3
conditional action, 7–12
creating files, 7–2
defining macros, 7–9, 7–12
dependency list, 7–6
description file, 7–3, 7–4, 7–9,

7–21e
example, 7–8, 7–21

environment variable, 7–15
including other files, 7–20
internal macro, 7–13

file name prefix, 7–15
first out-of-date file, 7–15
out-of-date file list, 7–15
target file name, 7–13
target file name, on dependency

line, 7–14
macro definition, 7–3
macro substitution, 7–10
nested call, 7–13
on distributed system, 7–2
operation of, 7–1
out-of-date file, 7–2, 7–15
recursion, 7–13
rules

defining, 7–17
internal, 7–7, 7–16
internal, simplifying, 7–8
single suffix, 7–18

rules file example, 7–18e
shell invocation by, 7–3
suffixes, 7–16

adding, 7–17
replacing, 7–17

target file creation process, 7–2
target files with no dependents, 7–2
testing description files, 7–20
updating files, 7–2

MAKEFLAGS macro, 7–15
maketemp macro, in m4, 5–12
merging branches of an SCCS file,

6–24
multiple matches in the sed

editor, 3–11

N
\n

Index–7

(See embedded newline
character)

noninteractive editing
(See sed editor)

nonterminal symbol, 4–20, 4–21,
4–24
internal, 4–25

null character
grammar rule, 4–27
in lex, 4–13

null string, in yacc, 4–24

O
operator

action, in awk, 2–13
Boolean, in awk, 2–3, 2–12
regular expression, defined for, 1–1
relational, in awk, 2–11

P
p-file, 6–6
parentheses

in awk, 2–3
in basic regular expressions, 1–2
in extended regular expressions,

1–4
in m4, 5–6, 5–10
in make, 7–9

parser, 4–18, 4–19
(See also yacc program)
action, 4–24
ambiguous action, 4–32

resolving, 4–33
conflicting actions, 4–32

resolving, 4–33
controlling during a rule’s action,

4–25
endmarker token, 4–18, 4–24
error handling, 4–28

to allow correction, 4–29
including the yylex function, 4–26

main function, 4–17, 4–19
reduce action, 4–31
shift action, 4–30
using with a lexical analyzer, 4–16
yychar variable, 4–19
yyerror function, 4–18, 4–19
yylex function, 4–18
yylval variable, 4–18

pattern, 3–10
(See also regular expression)
in awk, 2–2, 2–3, 2–10

ranges of records, 2–12
in sed, 3–5, 3–10

pattern space, 3–3
percent sign

in lex, 4–4, 4–14
SCCS, 6–20
in yacc, 4–20, 4–22

period
in basic regular expressions, 1–2
in extended regular expressions,

1–4
pipes, in awk, 2–22
placing files in an RCS library,

6–10
placing files in an SCCS library,

6–19
plus sign

in extended regular expressions,
1–4

in regular expressions, 1–6
print command

in awk, 2–5
print macro, in m4, 5–14
printf command

in awk, 2–5
processing text files

(See awk utility, m4 macro
preprocessor, sed editor)

prs command, 6–25

Q
question mark

Index–8

in extended regular expressions,
1–4

in regular expressions, 1–6
in make, 7–5

in $? macro, 7–15
quote characters, in m4, 5–9
quoting strings

in lex, 4–6, 4–7
in m4, 5–4

R
RCS, 6–1

ci command, 6–10, 6–12
creating a new release, 6–13
file names, 6–10
file storage, 6–3
getting files from the library, 6–12

specifying version, 6–12
ID keywords, 6–11
library, 6–3

creating, 6–8
getting files from, 6–12
getting files from, specifying

version, 6–12
name of, 6–4
placing files in, 6–10
security, 6–8

placing files in the library, 6–10
preventing simultaneous editing of

files, 6–5
rcsdiff command, 6–14
versions of files, 6–3

rcs command
functions, 6–9

RCS-file, 6–3
illustrated, 6–3

rcsdiff command, 6–14
record

in awk, 2–1
recursion

in m4, 5–2
in make, 7–13
in yacc, 4–27

redefining macros, in m4, 5–5
redirection

in awk, 2–22
in m4, 5–11

reduce action, in yacc, 4–31
regular expression, 1–1

in awk, 2–10
basic

escape character in, 1–2
rules, 1–2
saving and reusing patterns, 1–6

character classes, 1–7, 1–8
collating considerations, 1–7, 1–8
collating sequences, 1–8
concatenating multiple, 1–2
equivalence classes in, 1–8
extended

escape character in, 1–4
rules, 1–4

internationalized usage, 1–7, 1–8
length of attempted match, 1–5
in lex, 4–3, 4–5, 4–6, 4–8
matching selected characters, 1–7,

1–8
precedence of operators in, 1–2
restricting matches, 1–7, 1–8
restricting matches in, 1–6
rules, for sed editor, 3–5
specifying multiple, 1–7

REJECT action, in lex, 4–9
alternative to, 4–11

relational expression
in awk, 2–11

release, creating new
RCS, 6–13
SCCS, 6–23

removing a macro, in m4, 5–9
repeating matches in the sed

editor, 3–11

Index–9

return statement, in lex, 4–17
Revision Control System

(See RCS)
RLENGTH variable, in awk, 2–16
RSTART variable, in awk, 2–16
rule

in lex, 4–5
conflicts in, 4–7
matching input, 4–7

in make, 7–2
internal, 7–7

in yacc, 4–23

S
s-file, 6–3
SCCS, 6–1

admin command, 6–19, 6–26
commands, 6–29
create command, 6–19
creating a new release, 6–23
deledit command, 6–23
delget command, 6–23
delta command, 6–23
diffs command, 6–24
edit command, 6–22

merging branches with, 6–24
−r option, 6–23

file names, 6–19
file storage, 6–3
g-file, 6–3
get command, 6–21

−p option, 6–22
getting files from the library, 6–21

for editing, 6–22
specifying version, 6–22
writing to standard output, 6–22

getting multiple files, 6–22
getting status of files, 6–22
help command, 6–25
ID keywords, 6–20

locating, 6–21
requiring, 6–21

info command, 6–22
library, 6–3

creating, 6–8
getting files from, 6–21
getting files from, for editing,

6–22
getting files from, specifying

version, 6–22
getting files from, writing to

standard output, 6–22
name of, 6–4, 6–8
placing files in, 6–19
security, 6–8, 6–28
specifying path to, 6–8

p-file, 6–6
placing files in the library, 6–19
preventing simultaneous editing of

files, 6–6
prs command, 6–25
s-file, 6–3
sccsdiff command, 6–25
versions of files, 6–3

sccs command, 6–17
−d option, 6–8
functions, 6–17
options, list of, 6–28

sccsdiff command, 6–25
script

(See sed editor, command
script)

searching for text with grep, 1–9
security for RCS libraries, 6–8
security for SCCS libraries, 6–8,

6–28
sed editor, 3–1

address, 3–4
limitations on using, 3–5

combining flags, 3–3
command

buffer manipulation, 3–8
editing, 3–6
flow-of-control, 3–9

command script, 3–1

Index–10

command syntax, 3–6
multiple, using together, 3–3
on the command line, 3–3e

command-line syntax, 3–2
context address, 3–5
control structure, 3–9
escape character, 3–10
flag, 3–2
hold area, 3–8
input and output, 3–1
input file, treatment of, 3–2
limitations of, 3–1
line number, 3–4
order of operations, 3–3
pattern space, 3–3
patterns in, 3–5, 3–10
printing lines

after substituting text, 3–11
repeating matches, 3–11
selecting lines for editing, 3–4
string manipulation, 3–10
substituting text

modifying command behavior,
3–11

using flags, 3–11
using an ampersand, 3–10
using backslashes, 3–6, 3–10
using semicolons, 3–2
using slashes, 3–5
using the hold area, 3–8
writing a file, 3–11

semicolon
in awk, 2–3, 2–13
in lex, 4–5
in sed, 3–2
in yacc, 4–23

;
(See semicolon)

shift action, in yacc, 4–30
shift command, in m4, 5–5

SID, 6–4
simultaneous editing of files,

management of
by RCS, 6–5
by SCCS, 6–6

sincldue macro, in m4, 5–11
slash

in awk, 2–10
in sed, 3–5, 3–6

Source Code Control System
(See SCCS)

specification file, in lex, 4–3
definitions section

using y.tab.h in, 4–17
Definitions section, 4–4
format of, 4–4
incomplete, 4–6
lines lex cannot interpret, 4–14
matching input, 4–7
rules section, 4–5

split function, in awk, 2–8
start condition, in lex, 4–14

setting, 4–15
start symbol, in yacc, 4–22
stopping on errors in make, 7–7
stream editor

(See sed editor)
string manipulation

in awk, 2–8, 2–12, 2–21
in lex, 4–4
in m4, 5–13
in sed, 3–10

string variable, in awk, 2–6
substr macro, in m4, 5–13
substring, 4–8
symbol, in yacc, 4–19, 4–20, 4–21

start, 4–22
syntax

(See individual utility entries)
syscmd macro, in m4, 5–12

Index–11

T
target file

creation process in make, 7–2
defined, 7–1
without dependents, 7–2

temporary file, in m4, 5–11, 5–12
terminal symbol, 4–19
time stamp

used by make utility, 7–2
token

in m4
defined, 5–1
interpretation of, 5–2

in yacc
defined, 4–16
finding names of, 4–17
list of, 4–20

token number, in yacc, 4–23
translation table, in lex, 4–13
translit macro, in m4, 5–13

U
undefine macro, in m4, 5–9
undivert macro, in m4, 5–11

V
variable

in awk, 2–6
array, 2–7, 2–8
built-in, 2–9
creating, 2–6
field, 2–7
internal, 2–9
numeric, 2–6
simple, 2–6
treatment of, 2–6, 2–7
value if uninitialized, 2–6

global, in yacc, 4–22
vertical bar

in extended regular expressions,
1–4

in lex, 4–10
in yacc, 4–23

W
what command, 6–21

Y
y.tab.c file, 4–18
y.tab.h file, 4–35, 4–38

list of tokens, 4–20
using in lex specification file, 4–17

yacc program, 4–16, 4–19
(See also parser)
calculator example, 4–34
debug mode, 4–34
declaration, 4–21
finding token names, 4–17
global variable, 4–22
grammar file, 4–20

declarations section, 4–21
error, 4–28
guidelines, 4–27
programs section, 4–26
rules section, 4–23

library routines, 4–19
look-ahead token, clearing, 4–29
null character, 4–27
null string, 4–24
parameter keywords, 4–25

default values, 4–25
processing keywords, 4–21

associativity, 4–22
precedence, 4–22

recursion, 4–27
start symbol, 4–22
token number, 4–23
using with lex, 4–16

younger file
defined, 7–2

yy.lex.c file, 4–3, 4–16
yychar variable, 4–19

Index–12

yyerror function, 4–18, 4–19
yyleng variable, 4–10
yyless function, in lex, 4–11
yylex function, 4–3, 4–18

called by yyparse, 4–18
including in a parser, 4–26
requirements, 4–19

yylval variable, 4–18, 4–32
yymore function, 4–11
yyparse function, 4–18
yytext variable, 4–10
yywrap function

in lex, 4–13

Index–13

