
Tru64 UNIX
Assembly Language Programmer’s Guide

Part Number: AA-RH9LC-TE

August 2000

Product Version: Tru64 UNIX Version 5.1 or higher

This manual describes the assembly language supported by the Tru64
UNIX compiler system.

Hewlett-Packard Company
Palo Alto, California

© 2000 Hewlett-Packard Company

Microsoft® and Windows® are trademarks of Microsoft Corporation in the U.S. and/or other countries.
UNIX® and The Open Group™ are trademarks of The Open Group in the U.S. and/or other countries. All
other product names mentioned herein may be trademarks of their respective companies.

Portions of this document © MIPS Computer Systems, Inc., 1990.

Confidential computer software. Valid license from Compaq Computer Corporation, a wholly owned
subsidiary of Hewlett-Packard Company, required for possession, use, or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial
license.

None of Compaq, HP, or any of their subsidiaries shall be liable for technical or editorial errors or omissions
contained herein. The information is provided “as is” without warranty of any kind and is subject to
change without notice. The warranties for HP or Compaq products are set forth in the express limited
warranty statements accompanying such products. Nothing herein should be construed as constituting
an additional warranty.

Contents

About This Manual

1 Architecture-Based Considerations
1.1 Registers 1–1
1.1.1 Integer Registers 1–1
1.1.2 Floating-Point Registers 1–2
1.2 Bit and Byte Ordering 1–2
1.3 Addressing 1–3
1.3.1 Aligned Data Operations 1–4
1.3.2 Unaligned Data Operations 1–4
1.4 Exceptions 1–5
1.4.1 Main Processor Exceptions 1–5
1.4.2 Floating-Point Processor Exceptions 1–5

2 Lexical Conventions
2.1 Blank and Tab Characters 2–1
2.2 Comments 2–1
2.3 Identifiers 2–1
2.4 Constants 2–2
2.4.1 Scalar Constants 2–2
2.4.2 Floating-Point Constants 2–2
2.4.3 String Constants 2–3
2.5 Multiple Lines Per Physical Line 2–4
2.6 Statements 2–5
2.6.1 Labels 2–5
2.6.2 Null Statements 2–5
2.6.3 Keyword Statements 2–5
2.6.4 Relocation Operands 2–6
2.7 Expressions 2–8
2.7.1 Expression Operators 2–8
2.7.2 Expression Operator Precedence Rules 2–9
2.7.3 Data Types 2–10
2.7.4 Type Propagation in Expressions 2–11
2.8 Address Formats 2–12

Contents iii

3 Main Instruction Set
3.1 Load and Store Instructions 3–2
3.1.1 Load Instruction Descriptions 3–3
3.1.2 Store Instruction Descriptions 3–6
3.2 Arithmetic Instructions 3–8
3.3 Logical and Shift Instructions 3–14
3.4 Relational Instructions 3–16
3.5 Move Instructions 3–17
3.6 Control Instructions 3–18
3.7 Byte-Manipulation Instructions 3–21
3.8 Special-Purpose Instructions 3–24

4 Floating-Point Instruction Set
4.1 Background Information on Floating-Point Operations 4–2
4.1.1 Floating-Point Data Types 4–2
4.1.2 Floating-Point Control Register 4–3
4.1.3 Floating-Point Exceptions 4–4
4.1.4 Floating-Point Rounding Modes 4–5
4.1.5 Floating-Point Instruction Qualifiers 4–7
4.2 Floating-Point Load and Store Instructions 4–9
4.3 Floating-Point Arithmetic Instructions 4–10
4.4 Floating-Point Relational Instructions 4–13
4.5 Floating-Point Move Instructions 4–14
4.6 Floating-Point Control Instructions 4–15
4.7 Floating-Point Special-Purpose Instructions 4–16

5 Assembler Directives

6 Programming Considerations
6.1 Calling Conventions 6–1
6.2 Program Model 6–2
6.3 General Coding Concerns 6–2
6.3.1 Register Use 6–3
6.3.2 Using Directives to Control Sections and Location

Counters 6–4
6.3.3 The Stack Frame 6–6
6.3.4 Coding Examples 6–10
6.4 Developing Code for Procedure Calls 6–13
6.4.1 Calling a High-Level Language Procedure 6–14

iv Contents

6.4.2 Calling an Assembly Language Procedure 6–15
6.5 Memory Allocation 6–17

A Instruction Summaries

B 32-Bit Considerations
B.1 Canonical Form B–1
B.2 Longword Instructions B–1
B.3 Quadword Instructions for Longword Operations B–2
B.4 Logical Shift Instructions B–3
B.5 Conversions to Quadword B–3
B.6 Conversions to Longword B–3

C Basic Machine Definition
C.1 Implicit Register Use C–1
C.2 Addresses C–2
C.3 Immediate Values C–3
C.4 Load and Store Instructions C–3
C.5 Integer Arithmetic Instructions C–4
C.6 Floating-Point Load Immediate Instructions C–4
C.7 One-to-One Instruction Mappings C–4

D PALcode Instruction Summaries
D.1 Unprivileged PALcode Instructions D–1
D.2 Privileged PALcode Instructions D–1

Index

Examples
6–1 Nonleaf Procedure 6–11
6–2 Leaf Procedure Without Stack Space for Local Variables 6–12
6–3 Leaf Procedure with Stack Space for Local Variables 6–12

Figures
1–1 Byte Ordering 1–3
4–1 Floating-Point Data Formats 4–3
4–2 Floating-Point Control Register 4–4

Contents v

6–1 Sections and Location Counters for Nonshared Object Files .. . 6–5
6–2 Stack Organization 6–8
6–3 Default Layout of Memory (User Program View) 6–18

Tables
2–1 Backslash Conventions 2–4
2–2 Expression Operators 2–9
2–3 Operator Precedence 2–10
2–4 Data Types 2–10
2–5 Address Formats 2–12
3–1 Load and Store Formats 3–2
3–2 Load Instruction Descriptions 3–4
3–3 Store Instruction Descriptions 3–6
3–4 Arithmetic Instruction Formats 3–8
3–5 Arithmetic Instruction Descriptions 3–10
3–6 Logical and Shift Instruction Formats 3–14
3–7 Logical and Shift Instruction Descriptions 3–15
3–8 Relational Instruction Formats 3–17
3–9 Relational Instruction Descriptions 3–17
3–10 Move Instruction Formats 3–18
3–11 Move Instruction Descriptions 3–18
3–12 Control Instruction Formats 3–19
3–13 Control Instruction Descriptions 3–19
3–14 Byte-Manipulation Instruction Formats 3–21
3–15 Byte-Manipulation Instruction Descriptions 3–22
3–16 Special-Purpose Instruction Formats 3–24
3–17 Special-Purpose Instruction Descriptions 3–25
4–1 Qualifier Combinations for Floating-Point Instructions 4–8
4–2 Load and Store Instruction Formats 4–9
4–3 Load and Store Instruction Descriptions 4–10
4–4 Arithmetic Instruction Formats 4–10
4–5 Arithmetic Instruction Descriptions 4–12
4–6 Relational Instruction Formats 4–13
4–7 Relational Instruction Descriptions 4–14
4–8 Move Instruction Formats 4–14
4–9 Move Instruction Descriptions 4–15
4–10 Control Instruction Formats 4–15
4–11 Control Instruction Descriptions 4–16
4–12 Special-Purpose Instruction Formats 4–16
4–13 Control Register Instruction Descriptions 4–16
5–1 Summary of Assembler Directives 5–1

vi Contents

6–1 Integer Registers 6–3
6–2 Floating-Point Registers 6–4
6–3 Argument Locations 6–10
A–1 Main Instruction Set Summary A–2
A–2 Floating-Point Instruction Set Summary A–7
A–3 Rounding and Trapping Modes A–10
D–1 Unprivileged PALcode Instructions D–1
D–2 Privileged PALcode Instructions D–2

Contents vii

About This Manual

This manual describes the assembly language supported by the HP Tru64
UNIX compiler system, its syntax rules, and how to write some assembly
programs. For information about assembling and linking a program written
in assembly language, see the as(1) and ld(1) reference pages.

The assembler converts assembly language statements into machine code. In
most assembly languages, each instruction corresponds to a single machine
instruction; however, in the assembly language for the Tru64 UNIX compiler
system, some instructions correspond to multiple machine instructions.

The assembler’s primary purpose is to produce object modules from the
assembly instructions generated by some high-level language compilers. As
a result, the assembler lacks many functions that are normally present
in assemblers designed to produce object modules from source programs
coded in assembly language. It also includes some functions that are not
found in such assemblers because of special requirements associated with
the high-level language compilers.

Audience
This manual assumes that you are an experienced assembly language
programmer.

It is recommended that you use the assembler only when you need to
perform programming tasks such as the following:

• Maximize the efficiency of a routine — for example, a low-level I/O
driver — in a way that might not be possible in C, Fortran-77, Pascal, or
another high-level language.

• Access machine functions unavailable from high-level languages or
satisfy special constraints such as restricted register usage.

• Change the operating system.

• Change the compiler system.

New and Changed Features
The major technical changes to the manual are as follows:

• The following directives are no longer supported and their descriptions
have been deleted from Chapter 5: .alias, .bgnb, .endb, .gjsrlive,
.gjsrsaved, .livereg, .noalias, .ugen, and .vreg.

About This Manual ix

• Descriptions of the following new directives have been added to
Chapter 5: .ident, .tlscomm, .tlsdate, and .tlslcomm.

Organization
This manual is organized as follows:

Chapter 1 Describes the format for the general registers, the special
registers, and the floating-point registers. It also describes
how addressing works and the exceptions you might
encounter with assembly programs.

Chapter 2 Describes the lexical conventions that the assembler follows.

Chapter 3 Describes the main processor’s instruction set, including
notation, load and store instructions, computational instructions,
and jump and branch instructions.

Chapter 4 Describes the floating-point instruction set.

Chapter 5 Describes the assembler directives.

Chapter 6 Describes calling conventions for all supported high-level languages.
It also discusses memory allocation and register use.

Appendix A Summarizes all assembler instructions.

Appendix B Describes issues related to the processing of 32-bit data.

Appendix C Describes instructions that generate more than one
machine instruction.

Appendix D Describes the PALcode (privileged architecture library code)
instructions required to support an Alpha system.

Related Documents
The following manuals provide additional information on many of the topics
addressed in this manual:

• Programmer’s Guide

• The Alpha Architecture Reference Manual, 3rd Edition
(Butterworth-Heinemann Press, ISBN:1-55558-202-8)

• Calling Standard for Alpha Systems

• Object File/Symbol Table Format Specification (This manual is available
as an HTML or PDF document on the documentation CD-ROM; it is
not available in hardcopy.)

Icons on Tru64 UNIX Printed Manuals

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the manuals to help specific audiences quickly find the manuals

x About This Manual

that meet their needs. (You can order the printed documentation from HP.)
The following list describes this convention:

G Manuals for general users

S Manuals for system and network administrators

P Manuals for programmers

R Manuals for reference page users

Some manuals in the documentation help meet the needs of several
audiences. For example, the information in some system manuals is also
used by programmers. Keep this in mind when searching for information
on specific topics.

The Documentation Overview provides information on all of the manuals in
the Tru64 UNIX documentation set.

Reader’s Comments

HP welcomes any comments and suggestions you have on this and other
Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

Please include the following information along with your comments:

• The full title of the manual and the order number. (The order number
appears on the title page of printed and PDF versions of a manual.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate HP technical support office. Information
provided with the software media explains how to send problem reports to
HP.

About This Manual xi

Conventions

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[|]

{ | } In syntax definitions, brackets indicate items that
are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

. . .
In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

cat(1) A cross-reference to a reference page includes
the appropriate section number in parentheses.
For example, cat(1) indicates that you can find
information on the cat command in Section 1 of
the reference pages.

xii About This Manual

1
Architecture-Based Considerations

This chapter describes programming considerations that are determined by
the Alpha system architecture. It addresses the following topics:

• Registers (Section 1.1)

• Bit and byte ordering (Section 1.2)

• Addressing (Section 1.3)

• Exceptions (Section 1.4)

1.1 Registers

This section discusses the registers that are available on Alpha systems
and describes how memory organization affects them. See Section 6.3 for
information on register use and linkage.

Alpha systems have the following types of registers:

• Integer registers (Section 1.1.1)

• Floating-point registers (Section 1.1.2)

You must use integer registers where the assembly instructions expect
integer registers and floating-point registers where the assembly
instructions expect floating-point registers. If you confuse the two, the
assembler issues an error message.

The assembler reserves all register names (see Section 6.3.1). All register
names start with a dollar sign ($) and all alphabetic characters in register
names are lowercase.

1.1.1 Integer Registers

Alpha systems have 32 integer registers, each of which is 64 bits wide.
Integer registers are sometimes referred to as general registers in other
system architectures.

The integer registers have the names $0 to $31.

By including the file regdef.h (use #include <alpha/regdef.h>) in
your assembly language program, you can use the software names of all of
the integer registers, except for $28, $29, and $30. The operating system

Architecture-Based Considerations 1–1

and the assembler use the integer registers $28, $29, and $30 for specific
purposes.

______________________ Note _______________________

If you need to use the registers reserved for the operating system
and the assembler, you must specify their alias names in your
program, not their regular names. The alias names for $28, $29,
and $30 are $at, $gp, and $sp, respectively. To prevent you
from using these registers unknowingly and thereby producing
potentially unexpected results, the assembler issues warning
messages if you specify their regular names in your program.

The $gp register (integer register $29) is available as a general
register on some non-Alpha compiler systems when the -G 0
compilation option is specified. It is not available as a general
register on Alpha systems under any circumstances.

Integer register $31 always contains the value 0. All other integer registers
can be used interchangeably, except for integer register $30, which is
assumed to be the stack pointer by certain PALcode instructions. See
Table 6–1 for a description of integer register assignments. See Appendix D
and the Alpha Architecture Handbook for information on PALcode (Privileged
Architecture Library code).

1.1.2 Floating-Point Registers

Alpha systems have 32 floating-point registers, each of which is 64 bits
wide. Each register can hold one single-precision (32-bit) value or one
double-precision (64-bit) value.

The floating-point registers have the names $f0 to $f31.

Floating-point register $f31 always contains the value 0.0. All other
floating-point registers can be used interchangeably. See Table 6–2 for a
description of floating-point register assignments.

1.2 Bit and Byte Ordering

A system’s byte-ordering scheme, or endian scheme, affects memory
organization and defines the relationship between address and byte position
of data in memory:

• Big-endian systems store the sign bit in the lowest address byte.

• Little-endian systems store the sign bit in the highest address byte.
Alpha systems use the little-endian scheme. Byte-ordering is as follows:

1–2 Architecture-Based Considerations

• The bytes of a quadword are numbered from 7 to 0. Byte 7 holds the sign
and most significant bits.

• The bytes of a longword are numbered from 3 to 0. Byte 3 holds the sign
and most significant bits.

• The bytes of a word are numbered from 1 to 0. Byte 1 holds the sign
and most significant bits.

The bits of each byte are numbered from 7 to 0, using the format shown
in Figure 1–1. (Bit numbering is a software convention; no assembler
instructions depend on it.)

Figure 1–1: Byte Ordering

ZK-0732U-AI

byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0

sign and most
significant bits

sign and most
significant bits

sign and most
significant bits

most
significant bit

least
significant bit

byte 7

byte 3

byte 1

Bit: 63 ... 56 55 ... 48 47 ... 40 39 ... 32 31 ... 24 23 ... 16 15 ... 8 7 ... 0

Bit: 31 ... 24 23 ... 16 15 ... 8 7 ... 0

Bit: 15 ... 8 7 ... 0

Bit: 7 6 5 4 3 2 1 0

Quadword

Longword

Word

Byte

1.3 Addressing

This section describes the byte-addressing schemes for load and store
instructions. (Section 2.8 describes the formats in which you can specify
addresses.)

Architecture-Based Considerations 1–3

1.3.1 Aligned Data Operations

All Alpha systems use the following byte-addressing scheme for aligned data:

• Access to words requires alignment on byte boundaries that are evenly
divisible by two.

• Access to longwords requires alignment on byte boundaries that are
evenly divisible by four.

• Access to quadwords requires alignment on byte boundaries that are
evenly divisible by eight.

Any attempt to address a data item that does not have the proper alignment
causes an alignment exception.

The following instructions load or store aligned data:

• Load quadword (ldq)

• Store quadword (stq)

• Load longword (ldl)

• Store longword (stl)

• Load word (ldw)

• Store word (stw)

• Load word unsigned (ldwu)

1.3.2 Unaligned Data Operations

The assembler’s unaligned load and store instructions operate on arbitrary
byte boundaries. They all generate multiple machine-code instructions.
They do not raise alignment exceptions.

The following instructions load and store unaligned data:

• Unaligned load quadword (uldq)

• Unaligned store quadword (ustq)

• Unaligned load longword (uldl)

• Unaligned store longword (ustl)

• Unaligned load word (uldw)

• Unaligned store word (ustw)

• Unaligned load word unsigned (uldwu)

• Load byte (ldb)

• Store byte (stb)

• Load byte unsigned (ldbu)

1–4 Architecture-Based Considerations

1.4 Exceptions

The Alpha system detects some exceptions directly, and other exceptions are
signaled as a result of specific tests that are inserted by the assembler.

The following sections describe exceptions that you may encounter during
the execution of assembly programs. Only those exceptions that occur most
frequently are described.

1.4.1 Main Processor Exceptions

The following exceptions are the most common to the main processor:

• Address error exceptions occur when an address is invalid for the
executing process or, in most instances, when a reference is made to a
data item that is not properly aligned.

• Overflow exceptions occur when arithmetic operations compute signed
values and the destination lacks the precision to store the result.

• Bus exceptions occur when an address is invalid for the executing
process.

• Divide-by-zero exceptions occur when a divisor is zero.

1.4.2 Floating-Point Processor Exceptions

The following exceptions are the most common floating-point exceptions:

• Invalid operation exceptions include the following:

– Magnitude subtraction of infinities, for example, (+INF) - (+INF).

– Multiplication of 0 by INF with any signs.

– Division of 0 by 0 or INF by INF with any signs.

– Conversion of a binary floating-point number to an integer format,
that is, only in those cases in which the conversion produces an
overflow or an operand value of infinity or NaN. (The cvttq
instruction converts floating-point numbers to integer formats.)

– Comparison of predicates that have unordered operands and involve
Less Than or Less Than or Equal.

– Any operation on a signaling NaN. (See the introduction of Chapter 4
for a description of NaN symbols.)

• Divide-by-zero exceptions occur when a divisor is zero.

• Overflow exceptions occur when a rounded floating-point result exceeds
the destination format’s largest finite number.

Architecture-Based Considerations 1–5

• Underflow exceptions occur when a result has lost accuracy and also
when a nonzero result is between ±2Emin (plus or minus 2 to the
minimum expressible exponent).

• Inexact exceptions occur if the infinitely precise result differs from the
rounded result.

For additional information on floating-point exceptions, see Section 4.1.3.

1–6 Architecture-Based Considerations

2
Lexical Conventions

This chapter describes lexical conventions associated with the following
items:

• Blank and tab characters (Section 2.1)

• Comments (Section 2.2)

• Identifiers (Section 2.3)

• Constants (Section 2.4)

• Physical lines (Section 2.5)

• Statements (Section 2.6)

• Expressions (Section 2.7)

• Address formats (Section 2.8)

2.1 Blank and Tab Characters
You can use blank and tab characters anywhere between operators,
identifiers, and constants. Adjacent identifiers or constants that are not
otherwise separated must be separated by a blank or tab.

These characters can also be used within character constants; however, they
are not allowed within operators and identifiers.

2.2 Comments
The number sign character (#) introduces a comment. Comments that start
with a number sign extend through the end of the line on which they appear.
You can also use C language notation (/*...*/) to delimit comments.

Do not start a comment with a number sign in column one; the assembler
uses cpp (the C language preprocessor) to preprocess assembler code, and
cpp interprets number signs in the first column as preprocessor directives.

2.3 Identifiers
An identifier consists of a case-sensitive sequence of alphanumeric
characters (A-Z, a-z, 0-9) and the following special characters:

• . (period)

Lexical Conventions 2–1

• _ (underscore)

• $ (dollar sign)
Identifiers can be up to 31 characters long, and the first character cannot
be numeric (0-9).

If an undefined identifier is referenced, the assembler assumes that the
identifier is an external symbol. The assembler treats the identifier like a
name specified by a .globl directive (see Chapter 5).

If the identifier is defined to the assembler and the identifier has not been
specified as global, the assembler assumes that the identifier is a local
symbol.

2.4 Constants

The assembler supports the following constants:

• Scalar constants (Section 2.4.1)

• Floating-point constants (Section 2.4.2)

• String constants (Section 2.4.3)

2.4.1 Scalar Constants

The assembler interprets all scalar constants as two’s complement numbers.
Scalar constants can be any of the digits 0123456789abcdefABCDEF.

Scalar constants can be either decimal, hexadecimal, or octal constants:

• Decimal constants consist of a sequence of decimal digits (0-9) without
a leading zero.

• Hexadecimal constants consist of the characters 0x (or 0X) followed by a
sequence of hexadecimal digits (0-9abcdefABCDEF).

• Octal constants consist of a leading zero followed by a sequence of octal
digits (0-7).

2.4.2 Floating-Point Constants

Floating-point constants can appear only in floating-point directives (see
Chapter 5) and in the floating-point load immediate instructions (see
Section 4.2). Floating-point constants have the following format:

±d1[.d2][e|E±d3]

d1

A decimal integer that denotes the integral part of the floating-point
value.

2–2 Lexical Conventions

d2

A decimal integer that denotes the fractional part of the floating-point
value.

d3

A decimal integer that denotes a power of 10.

The + symbol (plus sign) is optional.

For example, the number .02173 can be represented as follows:

21.73E-3

The floating-point directives, such as .float and .double, may optionally
use hexadecimal floating-point constants instead of decimal constants. A
hexadecimal floating-point constant consists of the following elements:

[+|-]0x[1|0].<hex-digits>h0x<hex-digits>

The assembler places the first set of hexadecimal digits (excluding the 0 or
1 preceding the decimal point) in the mantissa field of the floating-point
format without attempting to normalize it. It stores the second set of
hexadecimal digits in the exponent field without biasing them. If the
mantissa appears to be denormalized, it checks to determine whether the
exponent is appropriate. Hexadecimal floating-point constants are useful for
generating IEEE special symbols and for writing hardware diagnostics.

For example, either of the following directives generates the single-precision
number 1.0:

.float 1.0e+0

.float 0x1.0h0x7f

The assembler uses normal (nearest) rounding mode to convert floating-point
constants.

2.4.3 String Constants

All characters except the newline character are allowed in string constants.
String constants begin and end with double quotation marks (").

The assembler observes most of the backslash conventions used by the C
language. Table 2–1 shows the assembler’s backslash conventions.

Lexical Conventions 2–3

Table 2–1: Backslash Conventions
Convention Meaning

\a Alert (0x07)

\b Backspace (0x08)

\f Form feed (0x0c)

\n Newline (0x0a)

\r Carriage return (0x0d)

\t Horizontal tab (0x09)

\v Vertical feed (0x0b)

\\ Backslash (0x5c)

\" Quotation mark (0x22)

\’ Single quote (0x27)

\nnn Character whose octal value is nnn (where n is 0-7)

\Xnn Character whose hexadecimal value is nn
(where n is 0-9, a-f, or A-F)

Deviations from C conventions are as follows:

• The assembler does not recognize “\?”.

• The assembler does not recognize the prefix “L” (wide character constant).

• The assembler limits hexadecimal constants to two characters.

• The assembler allows the leading “x” character in a hexadecimal
constants to be either uppercase or lowercase; that is, both \xnn and
\Xnn are allowed.

For octal notation, the backslash conventions require three characters when
the next character could be confused with the octal number.

For hexadecimal notation, the backslash conventions require two characters
when the next character could be confused with the hexadecimal number.
Insert a 0 (zero) as the first character of the single-character hexadecimal
number when this condition occurs.

2.5 Multiple Lines Per Physical Line

You can include multiple statements on the same line by separating the
statements with semicolons. Note, however, that the assembler does not
recognize semicolons as separators when they follow comment symbols
(# or /*).

2–4 Lexical Conventions

2.6 Statements
The assembler supports the following types of statements:

• Null statements

• Keyword statements

Each keyword statement can include an optional label, an operation code
(mnemonic or directive), and zero or more operands (with an optional
comment following the last operand on the statement):

[label] : opcode operand [; opcode operand; ...] [# comment]

Some keyword statements also support relocation operands (see
Section 2.6.4).

2.6.1 Labels

Labels can consist of label definitions or numeric values:

• A label definition consists of an identifier followed by a colon. (See
Section 2.3 for the rules governing identifiers.) Label definitions assign
the current value and type of the location counter to the name. An error
results when the name is already defined.

Label definitions always end with a colon. You can put a label definition
on a line by itself.

• A numeric label is a single numeric value (1-255). Unlike label
definitions, the value of a numeric label can be applied to any number
of statements in a program. To reference a numeric label, put an f
(forward) or a b (backward) immediately after the referencing digit in an
instruction, for example, br 7f (which is a forward branch to numeric
label 7). The reference directs the assembler to look for the nearest
numeric label that corresponds to the specified number in the lexically
forward or backward direction.

2.6.2 Null Statements

A null statement is an empty statement that the assembler ignores. Null
statements can have label definitions. For example, the following line has
three null statements in it:

label: ; ;

2.6.3 Keyword Statements

A keyword statement contains a predefined keyword. The syntax for the rest
of the statement depends on the keyword. Keywords are either assembler
instructions (mnemonics) or directives.

Lexical Conventions 2–5

Assembler instructions in the main instruction set and the floating-point
instruction set are described in Chapter 3 and Chapter 4, respectively.
Assembler directives are described in Chapter 5.

2.6.4 Relocation Operands

Relocation operands are generally useful in only two situations:

• In application programs in which the programmer needs precise control
over scheduling

• In source code written for compiler development

Some macro instructions (for example, ldgp) require special coordination
between the machine-code instructions and the relocation sequences given
to the linker. By using the macro instructions, the assembler programmer
relies on the assembler to generate the appropriate relocation sequences.

In some instances, the use of macro instructions may be undesirable. For
example, a compiler that supports the generation of assembly language
files may not want to defer instruction scheduling to the assembler. Such a
compiler will want to schedule some or all of the machine-code instructions.
To do this, the compiler must have a mechanism for emitting an object file’s
relocation sequences without using macro instructions. The mechanism for
establishing these sequences is the relocation operand.

A relocation operand can be placed after the normal operand on an assembly
language statement:

opcode operand relocation_operand

The relocation_operand has the following form:

! relocation_type! sequence_number

relocation_type

Any one of the following relocation types can be specified:

literal
lituse_base
lituse_bytoff
lituse_jsr
gpdisp
gprelhigh
gprellow
tlsliteral
tlshigh
tlslow

2–6 Lexical Conventions

The relocation types must be enclosed within a pair of exclamation
points (!) and are not case-sensitive. See the Symbol Table/Object
File Specification manual for descriptions of the different types of
relocation operations.

sequence_number

The sequence number is a numeric constant with a value range of 1 to
2147483647. The constant can be base 8, 10, or 16. Bases other than
10 require a prefix (see Section 2.4.1).

The following examples contain relocation operands in the source code:

• Example 1 — Referencing multiple lituse_base relocations:

Equivalent C statement:
sym1 += sym2 (Both external)

Assembly statements containing macro instructions:
ldq $1, sym1
ldq $2, sym2
addq $1, $2, $3
stq $3, sym1

Assembly statements containing machine-code instructions
requiring relocation operands:
ldq $1, sym1($gp)!literal!1
ldq $2, sym2($gp)!literal!2

ldq $3, sym1($1)!lituse_base!1
ldq $4, sym2($1)!lituse_base!2
addq $3, $4, $3
stq $3, sym1($1)!lituse_base!1

The assembler stores the sym1 and sym2 address constants in the .lita
section.

In this example, the code with relocation operands provides better
performance than the other code because it saves on register usage and
on the length of machine-code instruction sequences.

• Example 2 — Referencing an ldgp sequence that is scheduled inside a
lituse_base relocation:

Assembly statements containing macro instructions:
beq $2, L
stq $31, sym
ldgp $gp, 0($27)

Assembly statements containing machine-code instructions that
require relocation operands:
ldq $at, sym($gp)!literal!1

Lexical Conventions 2–7

beq $2, L # crosses basic block boundary
ldah $gp, 0($27)!gpdisp!2
stq $31, sym($at)!lituse_base!1
lda $gp, 0($gp)!gpdisp!2

In this example, the programmer has elected to schedule the load of the
address of sym before the conditional branch.

• Example 3 — A routine call:

Assembly statements containing macro instructions:
jsr sym1
ldgp $gp, 0($ra)

.extern sym1

.text

Assembly statements containing machine-code instructions that
require relocation operands:
ldq $27, sym1($gp)!literal!1
jsr $26, ($27), sym1!lituse_jsr!1
as1 puts in an R_HINT for the jsr instruction
ldah $gp, 0($ra)!gpdisp!2
lda $gp, 0($gp)!gpdisp!2

In this example, the code with relocation operands does not provide any
significant gains over the other code. This example is only provided to
show the different coding methods.

2.7 Expressions
An expression is a sequence of symbols that represents a value. Each
expression and its result have data types. The assembler does arithmetic
in two’s complement integers with 64 bits of precision. Expressions follow
precedence rules and consist of the following elements:

• Operators

• Identifiers

• Constants

You can also use a single character string in place of an integer within
an expression. For example, the following two pairs of statements are
equivalent:

.byte "a" ; .word "a"+0x19

.byte 0x61 ; .word 0x7a

2.7.1 Expression Operators

The assembler supports the operators shown in Table 2–2.

2–8 Lexical Conventions

Table 2–2: Expression Operators
Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder

<< Shift left

>> Shift right (sign is not extended)

^ Bitwise EXCLUSIVE OR

& Bitwise AND

| Bitwise OR

- Minus (unary)

+ Identity (unary)

~ Complement

2.7.2 Expression Operator Precedence Rules

For the order of operator evaluation within expressions, you can rely on the
precedence rules or you can group expressions with parentheses. Unless
parentheses enforce precedence, the assembler evaluates all operators
of the same precedence strictly from left to right. Because parentheses
also designate index registers, ambiguity can arise from parentheses in
expressions. To resolve this ambiguity, put a unary + in front of parentheses
in expressions.

The assembler has three precedence levels. Table 2–3 lists the precedence
rules from lowest to highest.

Lexical Conventions 2–9

Table 2–3: Operator Precedence
Precedence Operators

Least binding, lowest precedence Binary +, -

.

. Binary *, /, %, <<, >>, ^, &, |

.

Most binding, highest precedence Unary -, +, ~

______________________ Note _______________________

The assembler’s precedence scheme differs from that of the C
language.

2.7.3 Data Types

Each symbol you reference or define in an assembly program belongs to one
of the type categories shown in Table 2–4.

Table 2–4: Data Types
Type Description

undefined Any symbol that is referenced but not defined becomes
global undefined. (Declaring such a symbol in a .globl
directive merely makes its status clearer.)

absolute A constant defined in an assignment (=) expression.

text Any symbol defined while the .text directive is in
effect belongs to the text section. The text section
contains the program’s instructions, which are not
modifiable during execution.

data Any symbol defined while the .data directive is in effect
belongs to the data section. The data section contains
memory that the linker can initialize to nonzero values
before your program begins to execute.

sdata The type sdata is similar to the type data, except that defining
a symbol while the .sdata (“small data”) directive is in effect
causes the linker to place it within the small data section. This
increases the chance that the linker will be able to optimize
memory references to the item by using gp-relative addressing.

2–10 Lexical Conventions

Table 2–4: Data Types (cont.)

Type Description

rdata and rconst Any symbol defined while the .rdata or .rconst directives
are in effect belongs to this category. The only difference
between the types rdata and rconst is that the former is
allowed to have dynamic relocations and the latter is not.
(The types rdata and rconst are also similar to the type data
but, unlike data, cannot be modified during execution.)

bss and sbss Any symbol defined in a .comm or .lcomm directive belongs
to these sections, except that a .data, .sdata, .rdata, or
.rconst directive can override a .comm directive. The .bss
and .sbss sections consist of memory that the kernel loader
initializes to zero before your program begins to execute.
If a symbol’s size is less than the number of bytes specified by
the -G compilation option (which defaults to eight), it belongs
to .sbss section (small bss section), and the linker places it
within the small data section. This increases the chance that
the linker will be able to optimize memory references to the
item by using gp-relative addressing.
Local symbols in the .bss or .sbss sections defined by
.lcomm directives are allocated memory by the assembler,
global symbols are allocated memory by the linker, and
symbols defined by .comm directives are overlaid upon
like-named symbols (in the fashion of Fortran COMMON
blocks) by the linker.

Symbols in the undefined category are always global; that is, they are
visible to the linker and can be shared with other modules of your program.
Symbols in the absolute, text, data, sdata, rdata, rconst, bss, and sbss type
categories are local unless declared in a .globl directive.

2.7.4 Type Propagation in Expressions

For any expression, the result’s type depends on the types of the operands
and the operator. The following type propagation rules are used in
expressions:

• If an operand is undefined, the result is undefined.

• If both operands are absolute, the result is absolute.

• If the operator is a plus sign (+) and the first operand refers to an
undefined external symbol or a relocatable symbol in a .text section,
.data section, or .bss section, the result has the first operand’s type
and the other operand must be absolute.

• If the operator is a minus sign (-) and the first operand refers to a
relocatable symbol in a .text section, .data section, or .bss section,
the type propagation rules can vary:

Lexical Conventions 2–11

– The second operand can be absolute (if it was previously defined) and
the result has the first operand’s type.

– The second operand can have the same type as the first operand
and the result is absolute.

– If the first operand is external undefined, the second operand must
be absolute.

• The operators *, /, %, <<, >>, ~, ^, &, and | apply only to absolute
symbols.

2.8 Address Formats

The assembler accepts addresses expressed in the formats described in
Table 2–5.

Table 2–5: Address Formats
Format Address Description

(base−register) Specifies an indexed address, which
assumes a zero offset. The base register’s
contents specify the address.

expression Specifies an absolute address. The
assembler generates the most locally
efficient code for referencing the value
at the specified address.

expression(base−register) Specifies a based address. To get the
address, the value of the expression is
added to the contents of the base register.
The assembler generates the most locally
efficient code for referencing the value
at the specified address.

relocatable−symbol Specifies a relocatable address. The
assembler generates the necessary
instructions to address the item and
generates relocation information
for the linker.

relocatable−symbol±expression Specifies a relocatable address. To get the
address, the value of the expression, which
has an absolute value, is added or subtracted
from the relocatable symbol. The assembler
generates the necessary instructions to
address the item and generates relocation
information for the linker. If the symbol
name does not appear as a label anywhere
in the assembly, the assembler assumes
that the symbol is external.

2–12 Lexical Conventions

Table 2–5: Address Formats (cont.)

Format Address Description

relocatable−symbol(index−register) Specifies an indexed relocatable address.
To get the address, the index register
is added to the relocatable symbol’s
address. The assembler generates the
necessary instructions to address the
item and generates relocation information
for the linker. If the symbol name does
not appear as a label anywhere in the
assembly, the assembler assumes that
the symbol is external.

relocatable−symbol±expression(index−register) Specifies an indexed relocatable address.
To get the address, the assembler adds
or subtracts the relocatable symbol, the
expression, and the contents of index
register. The assembler generates the
necessary instructions to address the
item and generates relocation information
for the link editor. If the symbol name
does not appear as a label anywhere in
the assembly, the assembler assumes
that the symbol is external.

Lexical Conventions 2–13

3
Main Instruction Set

The assembler’s instruction set consists of a main instruction set and a
floating-point instruction set. This chapter describes the main instruction
set; Chapter 4 describes the floating-point instruction set. For details on the
instruction set beyond the scope of this manual, see the Alpha Architecture
Reference Manual.

The assembler’s main instruction set contains the following classes of
instructions:

• Load and store instructions (Section 3.1)

• Arithmetic instructions (Section 3.2)

• Logical and shift instructions (Section 3.3)

• Relational instructions (Section 3.4)

• Move instructions (Section 3.5)

• Control instructions (Section 3.6)

• Byte-manipulation instructions (Section 3.7)

• Special-purpose instructions (Section 3.8)

Tables in this chapter show the format of each instruction in the main
instruction set. The tables list the instruction names and the forms of
operands that can be used with each instruction. The specifiers used in the
tables to identify operands have the following meanings:

Operand Specifier Description

address A symbolic expression whose effective value is
used as an address.

b_reg Base register. An integer register containing a base
address to which is added an offset (or displacement)
value to produce an effective address.

d_reg Destination register. An integer register that receives
a value as a result of an operation.

d_reg/s_reg One integer register that is used as both a destination
register and a source register.

label A label that identifies a location in a program.

Main Instruction Set 3–1

Operand Specifier Description

no_operands No operands are specified.

offset An immediate value that is added to the contents of a
base register to calculate an effective address.

palcode A value that determines the operation performed
by a PALcode instruction.

s_reg, s_reg1,
s_reg2

Source registers whose contents are to be used
in an operation.

val_expr An expression whose value is used as an absolute value.

val_immed An immediate value that is to be used in an operation.

jhint An address operand that provides a hint of where a jmp
or jsr instruction will transfer control.

rhint An immediate operand that provides software with a hint
about how a ret or jsr_coroutine instruction is used.

3.1 Load and Store Instructions

Load and store instructions load immediate values and move data between
memory and general registers. This section describes the general-purpose
load and store instructions supported by the assembler.

Table 3–1 lists the mnemonics and operands for instructions that perform
load and store operations. The table is divided into groups of instructions.
The operands specified within a particular group apply to all of the
instructions contained in that group.

Table 3–1: Load and Store Formats
Instruction Mnemonic Operands

Load Address ldaa d_reg, address

Load Byte ldb

Load Byte Unsigned ldbu

Load Word ldw

Load Word Unsigned ldwu

Load Sign Extended Longword ldla

Load Sign Extended Longword Locked ldl_la

Load Quadword ldqa

Load Quadword Locked ldq_la

Load Quadword Unaligned ldq_ua

3–2 Main Instruction Set

Table 3–1: Load and Store Formats (cont.)

Instruction Mnemonic Operands

Unaligned Load Word uldw (See previous page)

Unaligned Load Word Unsigned uldwu

Unaligned Load Longword uldl

Unaligned Load Quadword uldq

Load Address High ldaha d_reg, offset(b_reg)

Load Global Pointer ldgp

Load Immediate Longword ldil d_reg, val_expr

Load Immediate Quadword ldiq

Store Byte stb s_reg, address

Store Word stw

Store Longword stla

Store Longword Conditional stl_ca

Store Quadword stqa

Store Quadword Conditional stq_ca

Store Quadword Unaligned stq_ua

Unaligned Store Word ustw

Unaligned Store Longword ustl

Unaligned Store Quadword ustq
a In addition to the normal operands that can be specified with this instruction, relocation operands can also
be specified (see Section 2.6.4).

Section 3.1.1 describes the operations performed by load instructions and
Section 3.1.2 describes the operations performed by store instructions.

3.1.1 Load Instruction Descriptions

Load instructions move values (addresses, values of expressions, or contents
of memory locations) into registers. For all load instructions, the effective
address is the 64-bit two’s-complement sum of the contents of the index
register and the sign-extended offset.

Instructions whose address operands contain symbolic labels imply an index
register, which the assembler determines. Some assembler load instructions
can produce multiple machine-code instructions (see Section C.4).

Main Instruction Set 3–3

______________________ Note _______________________

Load instructions can generate many code sequences for which
the linker must fix the address by resolving external data items.

Table 3–2 describes the operations performed by load instructions.

Table 3–2: Load Instruction Descriptions
Instruction Description

Load Address (lda) Loads the destination register with the effective address
of the specified data item.

Load Byte (ldb) Loads the least significant byte of the destination register with the
contents of the byte specified by the effective address. Because
the loaded byte is a signed value, its sign bit is replicated to fill
the other bytes in the destination register. (The assembler uses
temporary registers AT and t9 for this instruction.)

Load Byte Unsigned (ldbu) Loads the least significant byte of the destination register with the
contents of the byte specified by the effective address. Because
the loaded byte is an unsigned value, the other bytes of the
destination register are cleared to zeros. (The assembler uses
temporary registers AT and t9 for this instruction — unless the
setting of the .arch directive or the −arch flag on the cc or as
command line causes the assembler to generate a single machine
instruction in response to the ldbu instruction.)

Load Word (ldw) Loads the two least significant bytes of the destination register with
the contents of the word specified by the effective address. Because
the loaded word is a signed value, its sign bit is replicated to fill the
other bytes in the destination register.
If the effective address is not evenly divisible by two, a data-alignment
exception may be signaled. (The assembler uses temporary registers
AT and t9 for this instruction.)

Load Word Unsigned (ldwu) Loads the two least significant bytes of the destination register with
the contents of the word specified by the effective address. Because the
loaded word is an unsigned value, the other bytes of the destination
register are cleared to zeros.
If the effective address is not evenly divisible by two, a data alignment
exception may be signaled. (The assembler uses temporary registers
AT and t9 for this instruction — unless the setting of the .arch
directive or the −arch flag on the cc or as command line causes the
assembler to generate a single machine instruction in response to the
ldwu instruction.)

Load Sign Extended
Longword (ldl)

Loads the four least significant bytes of the destination register
with the contents of the longword specified by the effective address.
Because the loaded longword is a signed value, its sign bit is replicated
to fill the other bytes in the destination register.
If the effective address is not evenly divisible by four, a data-alignment
exception is signaled.

3–4 Main Instruction Set

Table 3–2: Load Instruction Descriptions (cont.)

Instruction Description

Load Sign Extended
Longword Locked (ldl_l)

Loads the four least significant bytes of the destination register
with the contents of the longword specified by the effective address.
Because the loaded longword is a signed value, its sign bit is replicated
to fill the other bytes in the destination register.
If the effective address is not evenly divisible by four, a data-alignment
exception is signaled.
If an ldl_l instruction executes without generating an exception,
the processor records the target physical address in a per-processor
locked-physical-address register and sets the per-processor lock flag.
If the per-processor lock flag is still set when a stl_c instruction is
executed, the store occurs; otherwise, it does not occur.

Load Quadword (ldq) Loads the destination register with the contents of the quadword
specified by the effective address. All bytes of the register are replaced
with the contents of the loaded quadword.
If the effective address is not evenly divisible by eight, a
data-alignment exception is signaled.
If a literal relocation type is specified in the ldq instruction, one
machine instruction is generated and the symbol and offset are stored
in the .lita section. Other relocation types generate a sequence of
instructions and the symbol and offset are stored in that sequence.

Load Quadword Locked
(ldq_l)

Loads the destination register with the contents of the quadword
specified by the effective address. All bytes of the register are replaced
with the contents of the loaded quadword.
If the effective address is not evenly divisible by eight, a
data-alignment exception is signaled.
If an ldq_l instruction executes without generating an exception,
the processor records the target physical address in a per-processor
locked-physical-address register and sets the per-processor lock flag.
If the per-processor lock flag is still set when a stq_c instruction is
executed, the store occurs; otherwise, it does not occur.

Load Quadword Unaligned
(ldq_u)

Loads the destination register with the contents of the quadword
specified by the effective address (with the three low-order
bits cleared). The address does not have to be aligned on an
8-byte boundary; it can be any byte address.

Unaligned Load Word (uldw) Loads the two least significant bytes of the destination register with
the word at the specified address. The address does not have to be
aligned on a 2-byte boundary; it can be any byte address. Because
the loaded word is a signed value, its sign bit is replicated to fill
the other bytes in the destination register. (The assembler uses
temporary registers AT, t9, and t10 for this instruction.)

Unaligned Load Word
Unsigned (uldwu)

Loads the two least significant bytes of the destination register
with the word at the specified address. The address does not have
to be aligned on a 2-byte boundary; it can be any byte address.
Because the loaded word is an unsigned value, the other bytes of
the destination register are cleared to zeros. (The assembler uses
temporary registers AT, t9, and t10 for this instruction.)

Main Instruction Set 3–5

Table 3–2: Load Instruction Descriptions (cont.)

Instruction Description

Unaligned Load Longword
(uldl)

Loads the four least significant bytes of the destination register
with the longword at the specified address. The address does
not have to be aligned on a 4-byte boundary; it can be any byte
address in memory. (The assembler uses temporary registers
AT, t9, and t10 for this instruction.)

Unaligned Load Quadword
(uldq)

Loads the destination register with the quadword at the specified
address. The address does not have to be aligned on an 8-byte
boundary; it can be any byte address in memory. (The assembler uses
temporary registers AT, t9, and t10 for this instruction.)

Load Address High (ldah) Loads the destination register with the effective address of the
specified data item. In computing the effective address, the signed
constant offset is multiplied by 65536 before adding to the base
register. The signed constant must be in the range −32768 to 32767.

Load Global Pointer (ldgp) Loads the destination register with the global pointer value for the
procedure. The sum of the base register and the sign-extended
offset specifies the address of the ldgp instruction.

Load Immediate Longword
(ldil)

Loads the destination register with the value of an expression that can
be computed at assembly time. The value is converted to canonical
longword form before being stored in the destination register; bit 31
is replicated in bits 32 though 63 of the destination register. (See
Appendix B for additional information on canonical forms.)

Load Immediate Quadword
(ldiq)

Loads the destination register with the value of an expression
that can be computed at assembly time.

3.1.2 Store Instruction Descriptions

For all store instructions, the effective address is the 64-bit two’s-complement
sum of the contents of the index register and the sign-extended 16-bit offset.

Instructions whose address operands contain symbolic labels imply an index
register, which the assembler determines. Some assembler store instructions
can produce multiple machine-code instructions (see Section C.4).

Table 3–3 describes the operations performed by store instructions.

Table 3–3: Store Instruction Descriptions
Instruction Description

Store Byte (stb) Stores the least significant byte of the source register in the memory
location specified by the effective address. (The assembler uses
temporary registers AT, t9, and t10 for this instruction — unless
the setting of the .arch directive or the −arch flag on the cc or as
command line causes the assembler to generate a single machine
instruction in response to the stb instruction.)

3–6 Main Instruction Set

Table 3–3: Store Instruction Descriptions (cont.)

Instruction Description

Store Word (stw) Stores the two least significant bytes of the source register in the
memory location specified by the effective address.
If the effective address is not evenly divisible by two, a data-alignment
exception may be signaled. (The assembler uses temporary registers
AT, t9, and t10 for this instruction — unless the setting of the .arch
directive or the −arch flag on the cc or as command line causes the
assembler to generate a single machine instruction in response to
the stw instruction.)

Store Longword (stl) Stores the four least significant bytes of the source register in the
memory location specified by the effective address.
If the effective address is not evenly divisible by four, a data-alignment
exception is signaled.

Store Longword Conditional
(stl_c)

Stores the four least significant bytes of the source register in the
memory location specified by the effective address, if the lock flag is
set. The lock flag is returned in the source register and is then set
to zero.
If the effective address is not evenly divisible by four, a data-alignment
exception is signaled.

Store Quadword (stq) Stores the contents of the source register in the memory location
specified by the effective address.
If the effective address is not evenly divisible by eight, a
data-alignment exception is signaled.

Store Quadword Conditional
(stq_c)

Stores the contents of the source register in the memory location
specified by the effective address, if the lock flag is set. The lock flag is
returned in the source register and is then set to zero.
If the effective address is not evenly divisible by eight, a
data-alignment exception is signaled.

Store Quadword Unaligned
(stq_u)

Stores the contents of the source register in the memory location
specified by the effective address (with the three low-order bits cleared).

Unaligned Store Word (ustw) Stores the two least significant bytes of the source register in
the memory location specified by the effective address. The
address does not have to be aligned on a 2-byte boundary; it can
be any byte address. (The assembler uses temporary registers
AT, t9, t10, t11, and t12 for this instruction.)

Unaligned Store Longword
(ustl)

Stores the four least significant bytes of the source register in
the memory location specified by the effective address. The
address does not have to be aligned on a 4-byte boundary; it can
be any byte address. (The assembler uses temporary registers
AT, t9, t10, t11, and t12 for this instruction.)

Unaligned Store Quadword
(ustq)

Stores the contents of the source register in a memory location specified
by the effective address. The address does not have to be aligned on
an 8-byte boundary; it can be any byte address. (The assembler uses
temporary registers AT, t9, t10, t11, and t12 for this instruction.)

Main Instruction Set 3–7

3.2 Arithmetic Instructions

Arithmetic instructions perform arithmetic operations on values in registers.
(Floating-point arithmetic instructions are described in Section 4.3.)

Table 3–4 lists the mnemonics and operands for instructions that perform
arithmetic operations. The table is divided into groups of instructions. The
operands specified within a particular group apply to all of the instructions
contained in that group.

Table 3–4: Arithmetic Instruction Formats
Instruction Mnemonic Operands

Clear clr d_reg

Absolute Value Longword absl

Absolute Value Quadword absq

Negate Longword (without overflow) negl

Negate Longword (with overflow) neglv

Negate Quadword (without overflow) negq

Negate Quadword (with overflow) negqv

Sign-Extension Byte sextb

Sign-Extension Longword sextl

Sign-Extension Word sextw

s_reg, d_reg or d_reg/s_reg
or val_immed, d_reg

3–8 Main Instruction Set

Table 3–4: Arithmetic Instruction Formats (cont.)

Instruction Mnemonic Operands

Add Longword (without overflow) addl

Add Longword (with overflow) addlv

Add Quadword (without overflow) addq

Add Quadword (with overflow) addqv

Scaled Longword Add by 4 s4addl

Scaled Quadword Add by 4 s4addq

Scaled Longword Add by 8 s8addl

Scaled Quadword Add by 8 s8addq

Multiply Longword (without overflow) mull

Multiply Longword (with overflow) mullv

Multiply Quadword (without overflow) mulq

Multiply Quadword (with overflow) mulqv

Subtract Longword (without overflow) subl

Subtract Longword (with overflow) sublv

Subtract Quadword (without overflow) subq

Subtract Quadword (with overflow) subqv

Scaled Longword Subtract by 4 s4subl

Scaled Quadword Subtract by 4 s4subq

Scaled Longword Subtract by 8 s8subl

Scaled Quadword Subtract by 8 s8subq

Unsigned Quadword Multiply High umulh

Divide Longword divl

Divide Longword Unsigned divlu

Divide Quadword divq

Divide Quadword Unsigned divqu

Longword Remainder reml

Longword Remainder Unsigned remlu

Quadword Remainder remq

Quadword Remainder Unsigned remqu

s_reg1, s_reg2, d_reg or
d_reg/s_reg1, s_reg2 or
s_reg1, val_immed, d_reg or
d_reg/s_reg1, val_immed

Table 3–5 describes the operations performed by arithmetic instructions.

Main Instruction Set 3–9

Table 3–5: Arithmetic Instruction Descriptions
Instruction Description

Clear (clr) Sets the contents of the destination register to zero.

Absolute Value Longword
(absl)

Computes the absolute value of the contents of the source register
and places the result in the destination register. If the value in the
source register is -2147483648, an overflow exception is signaled.

Absolute Value Quadword
(absq)

Computes the absolute value of the contents of the source register and
places the result in the destination register. If the value in the source
register is -9223372036854775808, an overflow exception is signaled.

Negate Longword (without
overflow) (negl)

Negates the integer contents of the four least significant bytes
in the source register and places the result in the destination
register. An overflow occurs if the value in the source register is
-2147483648, but the overflow exception is not signaled.

Negate Longword (with
overflow) (neglv)

Negates the integer contents of the four least significant bytes
in the source register and places the result in the destination
register. If the value in the source register is -2147483648,
an overflow exception is signaled.

Negate Quadword (without
overflow) (negq)

Negates the integer contents of the source register and places the result
in the destination register. An overflow occurs if the value in the source
register is -2147483648, but the overflow exception is not signaled.

Negate Quadword (with
overflow) (negqv)

Negates the integer contents of the source register and places the
result in the destination register. An overflow exception is signaled
if the value in the source register is -9223372036854775808.

Sign-Extension Byte (sextb) Moves the least significant byte of the source register into the
least significant byte of the destination register. Because the
moved byte is a signed value, its sign bit is replicated to fill
the other bytes in the destination register.

Sign-Extension Word (sextw) Moves the two least significant bytes of the source register into
the two least significant bytes of the destination register. Because
the moved word is a signed value, its sign bit is replicated to
fill the other bytes in the destination register.

Sign-Extension Longword
(sextl)

Moves the four least significant bytes of the source register into
the four least significant bytes of the destination register. Because
the moved longword is a signed value, its sign bit is replicated
to fill the other bytes in the destination register.

Add Longword (without
overflow) (addl)

Computes the sum of two signed 32-bit values. This instruction
adds the contents of s_reg1 to the contents of s_reg2 or the
immediate value and then places the result in the destination
register. Overflow exceptions never occur.

Add Longword (with overflow)
(addlv)

Computes the sum of two signed 32-bit values. This instruction
adds the contents of s_reg1 to the contents of s_reg2 or the
immediate value and then places the result in the destination
register. If the result cannot be represented as a signed 32-bit
number, an overflow exception is signaled.

Add Quadword (without
overflow) (addq)

Computes the sum of two signed 64-bit values. This instruction
adds the contents of s_reg1 to the contents of s_reg2 or the
immediate value and then places the result in the destination
register. Overflow exceptions never occur.

3–10 Main Instruction Set

Table 3–5: Arithmetic Instruction Descriptions (cont.)

Instruction Description

Add Quadword (with
overflow) (addqv)

Computes the sum of two signed 64-bit values. This instruction
adds the contents of s_reg1 to the contents of s_reg2 or the
immediate value and then places the result in the destination
register. If the result cannot be represented as a signed 64-bit
number, an overflow exception is signaled.

Scaled Longword Add by 4
(s4addl)

Computes the sum of two signed 32-bit values. This instruction
scales (multiplies) the contents of s_reg1 by four and then adds the
contents of s_reg2 or the immediate value. The result is stored in
the destination register. Overflow exceptions never occur.

Scaled Quadword Add by 4
(s4addq)

Computes the sum of two signed 64-bit values. This instruction
scales (multiplies) the contents of s_reg1 by four and then adds the
contents of s_reg2 or the immediate value. The result is stored in
the destination register. Overflow exceptions never occur.

Scaled Longword Add by 8
(s8addl)

Computes the sum of two signed 32-bit values. This instruction
scales (multiplies) the contents of s_reg1 by eight and then adds
the contents of s_reg2 or the immediate value. The result is stored
in the destination register. Overflow exceptions never occur.

Scaled Quadword Add by 8
(s8addq)

Computes the sum of two signed 64-bit values. This instruction
scales (multiplies) the contents of s_reg1 by eight and then adds
the contents of s_reg2 or the immediate value. The result is stored
in the destination register. Overflow exceptions never occur.

Multiply Longword (without
overflow) (mull)

Computes the product of two signed 32-bit values. This
instruction places either the 32-bit product of s_reg1 and
s_reg2 or the immediate value in the destination register.
Overflows are not reported.

Multiply Longword (with
overflow) (mullv)

Computes the product of two signed 32-bit values. This instruction
places either the 32-bit product of s_reg1 and s_reg2 or the
immediate value in the destination register. If an overflow
occurs, an overflow exception is signaled.

Multiply Quadword (without
overflow) (mulq)

Computes the product of two signed 64-bit values. This instruction
places either the 64-bit product of s_reg1 and s_reg2 or the
immediate value in the destination register. Overflow is not reported.

Multiply Quadword (with
overflow) (mulqv)

Computes the product of two signed 64-bit values. This instruction
places either the 64-bit product of s_reg1 and s_reg2 or the
immediate value in the destination register. If an overflow
occurs, an overflow exception is signaled.

Subtract Longword (without
overflow) (subl)

Computes the difference of two signed 32-bit values. This instruction
subtracts either the contents of s_reg2 or an immediate value
from the contents of s_reg1 and then places the result in the
destination register. Overflow exceptions never happen.

Subtract Longword (with
overflow) (sublv)

Computes the difference of two signed 32-bit values. This instruction
subtracts either the contents of s_reg2 or an immediate value from
the contents of s_reg1 and then places the result in the destination
register. If the true result’s sign differs from the destination
register’s sign, an overflow exception is signaled.

Main Instruction Set 3–11

Table 3–5: Arithmetic Instruction Descriptions (cont.)

Instruction Description

Subtract Quadword (without
overflow) (subq)

Computes the difference of two signed 64-bit values. This instruction
subtracts the contents of s_reg2 or an immediate value from the
contents of s_reg1 and then places the result in the destination
register. Overflow exceptions never occur.

Subtract Quadword (with
overflow) (subqv)

Computes the difference of two signed 64-bit values. This instruction
subtracts the contents of s_reg2 or an immediate value from the
contents of s_reg1 and then places the result in the destination
register. If the true result’s sign differs from the destination
register’s sign, an overflow exception is signaled.

Scaled Longword Subtract by
4 (s4subl)

Computes the difference of two signed 32-bit values. This instruction
subtracts the contents of s_reg2 or the immediate value from
the scaled (by 4) contents of s_reg1. The result is stored in the
destination register. Overflow exceptions never occur.

Scaled Quadword Subtract by
4 (s4subq)

Computes the difference of two signed 64-bit values. This instruction
subtracts the contents of s_reg2 or the immediate value from
the scaled (by 4) contents of s_reg1. The result is stored in the
destination register. Overflow exceptions never occur.

Scaled Longword Subtract by
8 (s8subl)

Computes the difference of two signed 32-bit values. This instruction
subtracts the contents of s_reg2 or the immediate value from
the scaled (by 8) contents of s_reg1. The result is stored in the
destination register. Overflow exceptions never occur.

Scaled Quadword Subtract by
8 (s8subq)

Computes the difference of two signed 64-bit values. This instruction
subtracts the contents of s_reg2 or the immediate value from
the scaled (by 8) contents of s_reg1. The result is stored in the
destination register. Overflow exceptions never occur.

Unsigned Quadword Multiply
High (umulh)

Computes the product of two unsigned 64-bit values. This instruction
multiplies the contents of s_reg1 by the contents of s_reg2 or
the immediate value and then places the high-order 64 bits of
the 128-bit product in the destination register.

Divide Longword (divl) Computes the quotient of two signed 32-bit values. This instruction
divides the contents of s_reg1 by the contents of s_reg2 or the
immediate value and then places the quotient in the destination
register.
The divl instruction rounds toward zero. If the divisor is zero, an
error is signaled. Overflow is signaled when dividing -2147483648
by -1. A call_pal PAL_gentrap instruction may be issued for
divide-by-zero and overflow exceptions.

Divide Longword Unsigned
(divlu)

Computes the quotient of two unsigned 32-bit values. This instruction
divides the contents of s_reg1 by the contents of s_reg2 or the
immediate value and then places the quotient in the destination
register.
If the divisor is zero, an exception is signaled and a call_pal
PAL_gentrap instruction may be issued. Overflow exceptions never
occur. (The assembler uses temporary registers AT, t9, t10, t11, and
t12 for the divlu instruction.)

3–12 Main Instruction Set

Table 3–5: Arithmetic Instruction Descriptions (cont.)

Instruction Description

Divide Quadword (divq) Computes the quotient of two signed 64-bit values. This instruction
divides the contents of s_reg1 by the contents of s_reg2 or the
immediate value and then places the quotient in the destination
register.
The divq instruction rounds toward zero. If the divisor is
zero, an error is signaled. Overflow is signaled when dividing
-9223372036854775808 by -1. A call_pal PAL_gentrap instruction
may be issued for divide-by-zero and overflow exceptions. (The
assembler uses temporary registers AT, t9, t10, t11, and t12 for the
divq instruction.)

Divide Quadword Unsigned
(divqu)

Computes the quotient of two unsigned 64-bit values. This instruction
divides the contents of s_reg1 by the contents of s_reg2 or the
immediate value and then places the quotient in the destination
register.
If the divisor is zero, an exception is signaled and a call_pal
PAL_gentrap instruction may be issued. Overflow exceptions never
occur. (The assembler uses temporary registers AT, t9, t10, t11, and
t12 for the divqu instruction.)

Longword Remainder (reml) Computes the remainder of the division of two signed 32-bit values.
The remainder reml(i,j) is defined as i-(j*divl(i,j)), where
j!=0. This instruction divides the contents of s_reg1 by the contents
of s_reg2 or by the immediate value and then places the remainder
in the destination register.
The reml instruction rounds toward zero, for example,
divl(5,-3)=-1 and reml(5,-3)=2.
For divide-by-zero, an error is signaled and a call_pal PAL_gentrap
instruction may be issued. (The assembler uses temporary registers
AT, t9, t10, t11, and t12 for the reml instruction.)

Longword Remainder
Unsigned (remlu)

Computes the remainder of the division of two unsigned 32-bit values.
The remainder remlu(i,j) is defined as i-(j*divlu(i,j)), where
j!=0. This instruction divides the contents of s_reg1 by the contents
of s_reg2 or the immediate value and then places the remainder in
the destination register.
For divide-by-zero, an error is signaled and a call_pal PAL_gentrap
instruction may be issued. (The assembler uses temporary registers
AT, t9, t10, t11, and t12 for the remlu instruction.)

Main Instruction Set 3–13

Table 3–5: Arithmetic Instruction Descriptions (cont.)

Instruction Description

Quadword Remainder (remq) Computes the remainder of the division of two signed 64-bit values.
The remainder remq(i,j) is defined as i-(j*divq(i,j)) where
j!=0. This instruction divides the contents of s_reg1 by the contents
of s_reg2 or the immediate value and then places the remainder in
the destination register.
The remq instruction rounds toward zero, for example,
divq(5,-3)=-1 and remq(5,-3)=2.
For divide-by-zero, an error is signaled and a call_pal PAL_gentrap
instruction may be issued. (The assembler uses temporary registers
AT, t9, t10, t11, and t12 for the remq instruction.)

Quadword Remainder
Unsigned (remqu)

Computes the remainder of the division of two unsigned 64-bit values.
The remainder remqu(i,j) is defined as i-(j*divqu(i,j)) where
j!=0. This instruction divides the contents of s_reg1 by the contents
of s_reg2 or the immediate value and then places the remainder in
the destination register.
For divide-by-zero, an error is signaled and a call_pal PAL_gentrap
instruction may be issued. (The assembler uses temporary registers
AT, t9, t10, t11, and t12 for the remqu instruction.)

3.3 Logical and Shift Instructions

Logical and shift instructions perform logical operations and shifts on values
in registers.

Table 3–6 lists the mnemonics and operands for instructions that perform
logical and shift operations. The table is divided into groups of instructions.
The operands specified within a particular group apply to all of the
instructions contained in that group.

Table 3–6: Logical and Shift Instruction Formats
Instruction Mnemonic Operands

Logical Complement — NOT not s_reg, d_reg or d_reg/s_reg
or val_immed, d_reg

3–14 Main Instruction Set

Table 3–6: Logical and Shift Instruction Formats (cont.)

Instruction Mnemonic Operands

Logical Product — AND and

Logical Sum — OR bis

Logical Sum — OR or

Logical Difference — XOR xor

Logical Product with Complement
— ANDNOT

bic

Logical Product with Complement
— ANDNOT

andnot

Logical Sum with Complement — ORNOT ornot

Logical Equivalence — XORNOT eqv

Logical Equivalence — XORNOT xornot

Shift Left Logical sll

Shift Right Logical srl

Shift Right Arithmetic sra

s_reg1, s_reg2, d_reg or
d_reg/s_reg1, s_reg2 or
s_reg1, val_immed, d_reg
or d_reg/s_reg1, val_immed

Table 3–7 describes the operations performed by logical and shift
instructions.

Table 3–7: Logical and Shift Instruction Descriptions
Instruction Description

Logical Complement — NOT
(not)

Computes the logical NOT of a value. This instruction performs
a complement operation on the contents of s_reg1 and places
the result in the destination register.

Logical Product — AND (and) Computes the logical AND of two values. This instruction
performs an AND operation between the contents of s_reg1 and
either the contents of s_reg2 or the immediate value and then
places the result in the destination register.

Logical Sum — OR (bis) Computes the logical OR of two values. This instruction
performs an OR operation between the contents of s_reg1 and
either the contents of s_reg2 or the immediate value and then
places the result in the destination register.

Logical Sum — OR (or) Synonym for bis.

Logical Difference — XOR
(xor)

Computes the XOR of two values. This instruction performs
an XOR operation between the contents of s_reg1 and either
the contents of s_reg2 or the immediate value and then places
the result in the destination register.

Logical Product with
Complement — ANDNOT
(bic)

Computes the logical AND of two values. This instruction performs
an AND operation between the contents of s_reg1 and the one’s
complement of either the contents of s_reg2 or the immediate value
and then places the result in the destination register.

Main Instruction Set 3–15

Table 3–7: Logical and Shift Instruction Descriptions (cont.)

Instruction Description

Logical Product with
Complement — ANDNOT
(andnot)

Synonym for bic.

Logical Sum with Complement
— ORNOT (ornot)

Computes the logical OR of two values. This instruction performs
an OR operation between the contents of s_reg1 and the one’s
complement of either the contents of s_reg2 or the immediate value
and then places the result in the destination register.

Logical Equivalence —
XORNOT (eqv)

Computes the logical XOR of two values. This instruction performs
an XOR operation between the contents of s_reg1 and the one’s
complement of either the contents of s_reg2 or the immediate value
and then places the result in the destination register.

Logical Equivalence —
XORNOT (xornot)

Synonym for eqv.

Shift Left Logical (sll) Shifts the contents of a register left (toward the sign bit) and inserts
zeros in the vacated bit positions. Register s_reg1 contains the value
to be shifted, and either the contents of s_reg2 or the immediate
value specifies the shift count. If s_reg2 or the immediate value
is greater than 63 or less than zero, s_reg1 shifts by the result
of the following AND operation: s_reg2 AND 63.

Shift Right Logical (srl) Shifts the contents of a register to the right (toward the least
significant bit) and inserts zeros in the vacated bit positions.
Register s_reg1 contains the value to be shifted, and either the
contents of s_reg2 or the immediate value specifies the shift
count. If s_reg2 or the immediate value is greater than 63 or
less than zero, s_reg1 shifts by the result of the result of the
following AND operation: s_reg2 AND 63.

Shift Right Arithmetic (sra) Shifts the contents of a register to the right (toward the least significant
bit) and inserts the sign bit in the vacated bit position. Register
s_reg1 contains the value to be shifted, and either the contents of
s_reg2 or the immediate value specifies the shift count. If s_reg2
or the immediate value is greater than 63 or less than zero, s_reg1
shifts by the result of the following AND operation: s_reg2 AND 63.

3.4 Relational Instructions

Relational instructions compare values in registers.

Table 3–8 lists the mnemonics and operands for instructions that perform
relational operations. Each of the instructions listed in the table can take an
operand in any of the forms shown.

3–16 Main Instruction Set

Table 3–8: Relational Instruction Formats
Instruction Mnemonic Operands

Compare Signed Quadword Equal cmpeq

Compare Signed Quadword Less Than cmplt

Compare Signed Quadword Less Than or Equal cmple

Compare Unsigned Quadword Less Than cmpult

Compare Unsigned Quadword Less Than or Equal cmpule

s_reg1, s_reg2, d_reg or
d_reg/s_reg1, s_reg2 or
s_reg1, val_immed, d_reg or
d_reg/s_reg1, val_immed

Table 3–9 describes the operations performed by relational instructions.

Table 3–9: Relational Instruction Descriptions
Instruction Description

Compare Signed Quadword
Equal (cmpeq)

Compares two 64-bit values. If the value in s_reg1 equals the value in
s_reg2 or the immediate value, this instruction sets the destination
register to one; otherwise, it sets the destination register to zero.

Compare Signed Quadword
Less Than (cmplt)

Compares two signed 64-bit values. If the value in s_reg1
is less than the value in s_reg2 or the immediate value, this
instruction sets the destination register to one; otherwise,
it sets the destination register to zero.

Compare Signed Quadword
Less Than or Equal (cmple)

Compares two signed 64-bit values. If the value in s_reg1 is
less than or equal to the value in s_reg2 or the immediate
value, this instruction sets the destination register to one;
otherwise, it sets the destination register to zero.

Compare Unsigned Quadword
Less Than (cmpult)

Compares two unsigned 64-bit values. If the value in s_reg1
is less than either the value in s_reg2 or the immediate value,
this instruction sets the destination register to one; otherwise,
it sets the destination register to zero.

Compare Unsigned Quadword
Less Than or Equal (cmpule)

Compares two unsigned 64-bit values. If the value in s_reg1 is
less than or equal to either the value in s_reg2 or the immediate
value, this instruction sets the destination register to one;
otherwise, it sets the destination register to zero.

3.5 Move Instructions

Move instructions move data between registers.

Table 3–10 lists the mnemonics and operands for instructions that perform
move operations. The table is divided into groups of instructions. The
operands specified within a particular group apply to all of the instructions
contained in that group.

Main Instruction Set 3–17

Table 3–10: Move Instruction Formats
Instruction Mnemonic Operands

Move mov s_reg, d_reg or val_immed,
d_reg

Move if Equal to Zero cmoveq

Move if Not Equal to Zero cmovne

Move if Less Than Zero cmovlt

Move if Less Than or Equal to Zero cmovle

Move if Greater Than Zero cmovgt

Move if Greater Than or Equal to Zero cmovge

Move if Low Bit Clear cmovlbc

Move if Low Bit Set cmovlbs

s_reg1, s_reg2, d_reg or
d_reg/s_reg1, s_reg2 or
s_reg1, val_immed, d_reg or
d_reg/s_reg1, val_immed

Table 3–11 describes the operations performed by move instructions.

Table 3–11: Move Instruction Descriptions
Instruction Description

Move (mov) Moves the contents of the source register or the immediate
value to the destination register.

Move if Equal to Zero (cmoveq) Moves the contents of s_reg2 or the immediate value to the
destination register if the contents of s_reg1 is equal to zero.

Move if Not Equal to Zero
(cmovne)

Moves the contents of s_reg2 or the immediate value to the
destination register if the contents of s_reg1 is not equal to zero.

Move if Less Than Zero
(cmovlt)

Moves the contents of s_reg2 or the immediate value to the
destination register if the contents of s_reg1 is less than zero.

Move if Less Than or Equal to
Zero (cmovle)

Moves the contents of s_reg2 or the immediate value to the destination
register if the contents of s_reg1 is less than or equal to zero.

Move if Greater Than Zero
(cmovgt)

Moves the contents of s_reg2 or the immediate value to the
destination register if the contents of s_reg1 is greater than zero.

Move if Greater Than or Equal
to Zero (cmovge)

Moves the contents of s_reg2 or the immediate value to the destination
register if the contents of s_reg1 is greater than or equal to zero.

Move if Low Bit Clear
(cmovlbc)

Moves the contents of s_reg2 or the immediate value to the
destination register if the low-order bit of s_reg1 is equal to zero.

Move if Low Bit Set (cmovlbs) Moves the contents of s_reg2 or the immediate value to the
destination register if the low-order bit of s_reg1 is not equal to zero.

3.6 Control Instructions

Control instructions change the control flow of an assembly program. They
affect the sequence in which instructions are executed by transferring
control from one location in a program to another.

3–18 Main Instruction Set

Table 3–12 lists the mnemonics and operands for instructions that perform
control operations. The table is divided into groups of instructions. The
operands specified within a particular group apply to all of the instructions
contained in that group.

Table 3–12: Control Instruction Formats
Instruction Mnemonic Operands

Branch if Equal to Zero beq s_reg, label

Branch if Not Equal to Zero bne

Branch if Less Than Zero blt

Branch if Less Than or Equal to Zero ble

Branch if Greater Than Zero bgt

Branch if Greater Than or Equal to Zero bge

Branch if Low Bit is Clear blbc

Branch if Low Bit is Set blbs

Branch br d_reg, label or label

Branch to Subroutine bsr

Jump jmpa

Jump to Subroutine jsra

d_reg, (s_reg), jhint or
d_reg, (s_reg) or (s_reg),
jhint or (s_reg) or d_reg,
address or address

Return from Subroutine ret

Jump to Subroutine Return jsr_coroutinea

d_reg, (s_reg), rhint or
d_reg, (s_reg) or d_reg,
rhint or d_reg or (s_reg),
rhint or (s_reg) or rhint
or no_operands

a In addition to the normal operands that can be specified with this instruction, relocation operands can also be specified
(see Section 2.6.4).

Table 3–13 describes the operations performed by control instructions. For
all branch instructions described in the table, the branch destinations must
be defined in the source being assembled, not in an external source file.

Table 3–13: Control Instruction Descriptions
Instruction Description

Branch if Equal to Zero (beq) Branches to the specified label if the contents of the
source register is equal to zero.

Branch if Not Equal to Zero
(bne)

Branches to the specified label if the contents of the source
register is not equal to zero.

Branch if Less Than Zero (blt) Branches to the specified label if the contents of the source
register is less than zero. The comparison treats the source
register as a signed 64-bit value.

Main Instruction Set 3–19

Table 3–13: Control Instruction Descriptions (cont.)

Instruction Description

Branch if Less Than or Equal
to Zero (ble)

Branches to the specified label if the contents of the source
register is less than or equal to zero. The comparison treats
the source register as a signed 64-bit value.

Branch if Greater Than Zero
(bgt)

Branches to the specified label if the contents of the source
register is greater than zero. The comparison treats the
source register as a signed 64-bit value.

Branch if Greater Than or
Equal to Zero (bge)

Branches to the specified label if the contents of the source
register is greater than or equal to zero. The comparison treats
the source register as a signed 64-bit value.

Branch if Low Bit is Clear
(blbc)

Branches to the specified label if the low-order bit of the
source register is equal to zero.

Branch if Low Bit is Set (blbs) Branches to the specified label if the low-order bit of the
source register is not equal to zero.

Branch (br) Branches unconditionally to the specified label. If a destination
register is specified, the address of the instruction following
the br instruction is stored in that register.

Branch to Subroutine (bsr) Branches unconditionally to the specified label and stores the
return address in the destination register. If a destination register
is not specified, register $26 (ra) is used.

Jump (jmp) Unconditionally jumps to a specified location. A symbolic address
or the source register specifies the target location. If a destination
register is specified, the address of the instruction following the
jmp instruction is stored in the specified register.

Jump to Subroutine (jsr) Unconditionally jumps to a specified location and stores the return
address in the destination register. If a destination register is not
specified, register $26 (ra) is used. A symbolic address or the source
register specifies the target location. The instruction jsr procname
transfers to procname and saves the return address in register $26.

Return from Subroutine (ret) Unconditionally returns from a subroutine. If a destination register is
specified, the address of the instruction following the ret instruction
is stored in the specified register. The source register contains the
return address. If the source register is not specified, register $26 (ra)
is used. If a hint is not specified, a hint value of one is used.

Jump to Subroutine Return
(jsr_coroutine)

Unconditionally returns from a subroutine and stores the
return address in the destination register. If a destination
register is not specified, register $26 (ra) is used. The source
register contains the target address. If the source register is
not specified, register $26 (ra) is used.

All jump instructions (jmp, jsr, ret, and jsr_coroutine) perform
identical operations. They differ only in hints to possible branch-prediction
logic. See the Alpha Architecture Reference Manual for information about
branch-prediction logic.

3–20 Main Instruction Set

3.7 Byte-Manipulation Instructions

Byte-manipulation instructions perform byte operations on values in
registers.

Table 3–14 lists the mnemonics and operands for instructions that perform
byte-manipulation operations. Each of the instructions listed in the table
can take an operand in any of the forms shown.

Table 3–14: Byte-Manipulation Instruction Formats
Instruction Mnemonic Operands

Compare Byte cmpbge

Extract Byte Low extbl

Extract Word Low extwl

Extract Longword Low extll

Extract Quadword Low extql

s_reg1, s_reg2, d_reg or
d_reg/s_reg1, s_reg2 or s_reg1,
val_immed, d_reg or d_reg/s_reg1,
val_immed

Extract Word High extwh

Extract Longword High extlh

Extract Quadword High extqh

Insert Byte Low insbl

Insert Word Low inswl

Insert Longword Low insll

Insert Quadword Low insql

Insert Word High inswh

Insert Longword High inslh

Insert Quadword High insqh

Mask Byte Low mskbl

Mask Word Low mskwl

Mask Longword Low mskll

Mask Quadword Low mskql

Mask Word High mskwh

Mask Longword High msklh

Mask Quadword High mskqh

Zero Bytes zap

Zero Bytes NOT zapnot

Main Instruction Set 3–21

Table 3–15 describes the operations performed by byte-manipulation
instructions.

Table 3–15: Byte-Manipulation Instruction Descriptions
Instruction Description

Compare Byte (cmpbge) Performs eight parallel unsigned byte comparisons between
corresponding bytes of register s_reg1 and s_reg2 or the immediate
value. A bit is set in the destination register if a byte in s_reg1
is greater than or equal to the corresponding byte in s_reg2 or the
immediate value.
The results of the comparisons are stored in the eight low-order bits of
the destination register; bit 0 of the destination register corresponds
to byte 0 and so forth. The 56 high-order bits of the destination
register are cleared.

Extract Byte Low (extbl) Shifts the register s_reg1 right by 0-7 bytes, inserts zeros into
the vacated bit positions, and then extracts the low-order byte
into the destination register. The seven high-order bytes of the
destination register are cleared to zeros. Bits 0-2 of register s_reg2
or the immediate value specify the shift count.

Extract Word Low (extwl) Shifts the register s_reg1 right by 0-7 bytes, inserts zeros into the
vacated bit positions, and then extracts the two low-order bytes and
stores them in the destination register. The six high-order bytes of
the destination register are cleared to zeros. Bits 0-2 of register
s_reg2 or the immediate value specify the shift count.

Extract Longword Low (extll) Shifts the register s_reg1 right by 0-7 bytes, inserts zeros into the
vacated bit positions, and then extracts the four low-order bytes and
stores them in the destination register. The four high-order bytes
of the destination register are cleared to zeros. Bits 0-2 of register
s_reg2 or the immediate value specify the shift count.

Extract Quadword Low
(extql)

Shifts the register s_reg1 right by 0-7 bytes, inserts zeros into
the vacated bit positions, and then extracts all eight bytes and
stores them in the destination register. Bits 0-2 of register s_reg2
or the immediate value specify the shift count.

Extract Word High (extwh) Shifts the register s_reg1 left by 0-7 bytes, inserts zeros into the
vacated bit positions, and then extracts the two low-order bytes and
stores them in the destination register. The six high-order bytes of
the destination register are cleared to zeros. Bits 0-2 of register
s_reg2 or the immediate value specify the shift count.

Extract Longword High
(extlh)

Shifts the register s_reg1 left by 0-7 bytes, inserts zeros into the
vacated bit positions, and then extracts the four low-order bytes and
stores them in the destination register. The four high-order bytes
of the destination register are cleared to zeros. Bits 0-2 of register
s_reg2 or the immediate value specify the shift count.

Extract Quadword High
(extqh)

Shifts the register s_reg1 left by 0-7 bytes, inserts zeros into
the vacated bit positions, and then extracts all eight bytes and
stores them in the destination register. Bits 0-2 of register s_reg2
or the immediate value specify the shift count.

Insert Byte Low (insbl) Shifts the register s_reg1 left by 0-7 bytes, inserts the byte into a field
of zeros, and then places the result in the destination register. Bits 0-2
of register s_reg2 or the immediate value specify the shift count.

3–22 Main Instruction Set

Table 3–15: Byte-Manipulation Instruction Descriptions (cont.)

Instruction Description

Insert Word Low (inswl) Shifts the register s_reg1 left by 0-7 bytes, inserts the word into a field
of zeros, and then places the result in the destination register. Bits 0-2
of register s_reg2 or the immediate value specify the shift count.

Insert Longword Low (insll) Shifts the register s_reg1 left by 0-7 bytes, inserts the longword into a
field of zeros, and then places the result in the destination register. Bits
0-2 of register s_reg2 or the immediate value specify the shift count.

Insert Quadword Low (insql) Shifts the register s_reg1 left by 0-7 bytes, inserts the quadword into a
field of zeros, and then places the result in the destination register. Bits
0-2 of register s_reg2 or the immediate value specify the shift count.

Insert Word High (inswh) Shifts the register s_reg1 right by 0-7 bytes, inserts the word into a
field of zeros, and then places the result in the destination register. Bits
0-2 of register s_reg2 or the immediate value specify the shift count.

Insert Longword High (inslh) Shifts the register s_reg1 right by 0-7 bytes, inserts the
longword into a field of zeros, and then places the result in
the destination register. Bits 0-2 of register s_reg2 or the
immediate value specify the shift count.

Insert Quadword High (insqh) Shifts the register s_reg1 right by 0-7 bytes, inserts the
quadword into a field of zeros, and then places the result in
the destination register. Bits 0-2 of register s_reg2 or the
immediate value specify the shift count.

Mask Byte Low (mskbl) Sets a byte in register s_reg1 to zero and stores the result
in the destination register. Bits 0-2 of register s_reg2 or the
immediate value specify the offset of the byte.

Mask Word Low (mskwl) Sets a word in register s_reg1 to zero and stores the result
in the destination register. Bits 0-2 of register s_reg2 or the
immediate value specify the offset of the word.

Mask Longword Low (mskll) Sets a longword in register s_reg1 to zero and stores the result
in the destination register. Bits 0-2 of register s_reg2 or the
immediate value specify the offset of the longword.

Mask Quadword Low (mskql) Sets a quadword in register s_reg1 to zero and stores the result
in the destination register. Bits 0-2 of register s_reg2 or the
immediate value specify the offset of the quadword.

Mask Word High (mskwh) Sets a word in register s_reg1 to zero and stores the result
in the destination register. Bits 0-2 of register s_reg2 or the
immediate value specify the offset of the word.

Mask Longword High (msklh) Sets a longword in register s_reg1 to zero and stores the result
in the destination register. Bits 0-2 of register s_reg2 or the
immediate value specify the offset of the longword.

Mask Quadword High (mskqh) Sets a quadword in register s_reg1 to zero and stores the result
in the destination register. Bits 0-2 of register s_reg2 or the
immediate value specify the offset of the quadword.

Main Instruction Set 3–23

Table 3–15: Byte-Manipulation Instruction Descriptions (cont.)

Instruction Description

Zero Bytes (zap) Sets selected bytes of register s_reg1 to zero and places the
result in the destination register. Bits 0-7 of register s_reg2 or
an immediate value specify the bytes to be cleared to zeros. Each
bit corresponds to one byte in register s_reg1; for example, bit
0 corresponds to byte 0. A bit with a value of one indicates its
corresponding byte should be cleared to zeros.

Zero Bytes NOT (zapnot) Sets selected bytes of register s_reg1 to zero and places the
result in the destination register. Bits 0-7 of register s_reg2 or
an immediate value specify the bytes to be cleared to zeros. Each
bit corresponds to one byte in register s_reg1; for example, bit
0 corresponds to byte 0. A bit with a value of zero indicates its
corresponding byte should be cleared to zeros.

3.8 Special-Purpose Instructions

Special-purpose instructions perform miscellaneous tasks.

Table 3–16 lists the mnemonics and operands for instructions that perform
special operations. The table is divided into groups of instructions. The
operands specified within a particular group apply to all of the instructions
contained in that group.

Table 3–16: Special-Purpose Instruction Formats
Instruction Mnemonic Operands

Call Privileged Architecture Library call_pal palcode

Architecture Mask amask s_reg, d_reg or
val_immed, d_reg

Prefetch Data fetch offset(b_reg)

Prefetch Data, Modify Intent fetch_m

Read Process Cycle Counter rpcc d_reg or d_reg, reg

Implementation Version implver d_reg

No Operation nop no_operands

Universal No Operation unop

Trap Barrier trapb

Exception Barrier excb

Memory Barrier mb

Write Memory Barrier wmb

Count Leading Zero ctlz s_reg, d_reg

3–24 Main Instruction Set

Table 3–16: Special-Purpose Instruction Formats (cont.)

Instruction Mnemonic Operands

Count Population ctpop (See previous page)

Count Trailing Zero cttz

Table 3–17 describes the operations performed by special-purpose
instructions.

Table 3–17: Special-Purpose Instruction Descriptions
Instruction Description

Call Privileged Architecture
Library (call_pal)

Unconditionally transfers control to the exception handler. The
palcode operand is interpreted by software conventions.

Architecture Mask (amask) The value of the contents of s_reg or the immediate value represent
a mask of architectural extensions that are being requested. Bits
are cleared if they correspond to architectural extensions that are
present, and the result is placed in the destination register.

Prefetch Data (fetch) Indicates that the 512-byte block of data specified by
the effective address should be moved to a faster-access
part of the memory hierarchy.

Prefetch Data, Modify Intent
(fetch_m)

Indicates that the 512-byte block of data specified by the
effective address should be moved to a faster-access part of
the memory hierarchy. In addition, this instruction is a hint
that part or all of the data may be modified.

Read Process Cycle Counter
(rpcc)

Returns the contents of the process cycle counter in the destination
register. If reg is specified, the rpcc instruction is not issued until all
previous instructions that generate a result in reg are completed. If
R31 is specified as the reg operand, the reg operand is ignored and
the rpcc instruction does not wait for any preceding computation.

Implementation Version
(implver)

A small integer is placed in the destination register. This integer
specifies the major implementation version of the processor on which
it is executed. This information can be used to make code-scheduling
or tuning decisions. The returned small integer can have the values 0,
1, or 2. 0 indicates EV4, EV45, LCA, and LCA-45 Alpha chips (that is,
21064, 21064A, 21066, 21068, and 21066A, respectively); 1 indicates
an EV5 Alpha chip (21164); and 2 indicates an EV6 Alpha chip (21264).

No Operation (nop) Has no effect on the machine state.

Universal No Operation (unop) Has no effect on the machine state.

Trap Barrier (trapb) Guarantees that all previous arithmetic instructions are completed,
without incurring any arithmetic traps, before any instructions
after the trapb instruction are issued.

Exception Barrier (excb) Guarantees that all previous instructions complete any
exception-related behavior or rounding-mode behavior before any
instructions after the excb instruction are issued.

Memory Barrier (mb) Used to serialize access to memory. See the Alpha Architecture
Reference Manual for additional information on memory barriers.

Main Instruction Set 3–25

Table 3–17: Special-Purpose Instruction Descriptions (cont.)

Instruction Description

Write Memory Barrier (wmb) Guarantees that all previous store instructions access memory before
any store instructions issued after the wmb instruction.

Count Leading Zeros (ctlz) Counts the number of leading zeros in s_reg, starting at the most
significant bit position, and writes that count to d_reg.

Count Population (ctpop) Counts the number of ones in s_reg and writes the count to d_reg.

Count Trailing Zeros (cttz) Counts the number of trailing zeros in s_reg, starting at the least
significant bit position, and writes the count to d_reg.

3–26 Main Instruction Set

4
Floating-Point Instruction Set

This chapter describes the assembler’s floating-point instructions. See
Chapter 3 for a description of the integer instructions. For details on the
instruction set beyond the scope of this manual, see the Alpha Architecture
Reference Manual.

This chapter addresses the following topics:

• Background information on floating-point operations — data types, the
control register, exceptions, rounding modes, and qualifiers (Section 4.1)

• The instructions in the assembler’s floating-point instruction set, which
consists of the following classes:

– Load and store instructions (Section 4.2)

– Arithmetic instructions (Section 4.3)

– Relational instructions (Section 4.4)

– Move instructions (Section 4.5)

– Control instructions (Section 4.6)

– Special-purpose instructions (Section 4.7)

A particular floating-point instruction may be implemented in hardware,
software, or a combination of hardware and software.

Tables in this chapter show the format for each instruction in the
floating-point instruction set. The tables list the instruction names and the
forms of operands that can be used with each instruction. The specifiers
used in the tables to identify operands have the following meanings:

Operand Specifier Description

address A symbolic expression whose effective value
is used as an address.

d_reg Destination register. A floating-point register
that receives a value as a result of an operation.

2d_reg/ s_reg One floating-point register that is used as both a
destination register and a source register.

label A label that identifies a location in a program.

Floating-Point Instruction Set 4–1

Operand Specifier Description

s_reg, s_reg1, s_reg2 Source registers. Floating-point registers whose
contents are to be used in an operation.

val_expr An expression whose value is a floating-
point constant.

The following terms are used to discuss floating-point operations:

Term Meaning

Infinite A value of +INF or −INF.

Infinity A symbolic entity that represents values with magnitudes greater
than the largest magnitude for a particular format.

Ordered The usual result from a comparison, namely: less than
(<), equal to (=), or greater than (>).

NaN Symbolic entities that represent values not otherwise available in
floating-point formats. (NaN is an acronym for not-a-number.)

Unordered The condition that results from a floating-point comparison
when one or both operands are NaNs.

There are two kinds of NaNs:

• Quiet NaNs represent unknown or uninitialized values.

• Signaling NaNs represent symbolic values and values that are too big
or too precise for the format. Signaling NaNs raise an invalid-operation
exception whenever an operation is attempted on them.

4.1 Background Information on Floating-Point Operations

Topics addressed in the following sections include:

• Floating-point data types (Section 4.1.1)

• The floating-point control register (Section 4.1.2)

• Floating-point exceptions (Section 4.1.3)

• Floating-point rounding modes (Section 4.1.4)

• Floating-point instruction qualifiers (Section 4.1.5)

4.1.1 Floating-Point Data Types

Floating-point instructions operate on the following data types:

• D_floating (VAX double precision, limited support)

• F_floating (VAX single precision)

• G_floating (VAX double precision)

4–2 Floating-Point Instruction Set

• S_floating (IEEE single precision)

• T_floating (IEEE double precision)

• Longword integer and quadword integer

Figure 4–1 shows the memory formats for the single- and double-precision
floating-point data types.

Figure 4–1: Floating-Point Data Formats

ZK-0734U-AI

Exponent

Exponent

Exponent

Sign

Sign

Sign
Fraction

(low)
Fraction
(high)

Fraction

Fraction

31 30 23 22 0

31 16 15 14 7 6 0

63 62 52 51 0

63 48 47 32 31 16 15 14 7 6 0

63 48 47 32 31 16 15 14 4 3 0

S_floating

T_floating

F_floating

D_floating

G_floating

Sign
Fraction

(low)
Fraction
(mid-low)

Fraction
(mid-high)

Fraction
(high)Exponent

Sign
Fraction

(low)
Fraction
(mid-low)

Fraction
(mid-high)

Fraction
(high)Exponent

4.1.2 Floating-Point Control Register

The floating-point control register (FPCR) contains status and control
information. It controls the arithmetic rounding mode of instructions that
specify dynamic rounding (d qualifier — see Section 4.1.5 for information
on instruction qualifiers) and gives a summary for each exception type of
the exception conditions detected by the floating-point instructions. It also
contains an overall summary bit indicating whether an exception occurred.

Figure 4–2 shows the format of the floating-point control register.

Floating-Point Instruction Set 4–3

Figure 4–2: Floating-Point Control Register

ZK-0735U-AI

63 62 60 59 58 57 56 55 54 53 52 51 0

sum
raz/
ign dyn iov ine unf ovf dze inv raz/ign

The fields of the floating-point control register have the following meaning:

Bits Name Description

63 sum Summary — records the bitwise OR of the FPCR
exception bits (bits 57 to 52).

62-60 raz/ign Read-As-Zero — ignored when written.

59-58 dyn Dynamic Rounding Mode — indicates the current
rounding mode to be used by an IEEE floating-point
instruction that specifies dynamic mode qualifier).
The bit assignments for this field are as follows:

00 - Chopped rounding mode
01 - Minus infinity
10 - Normal rounding
11 - Plus infinity

57 iov Integer overflow.

56 ine Inexact result.

55 unf Underflow.

54 ovf Overflow.

53 dze Division by zero.

52 inv Invalid operation.

51-0 raz/ign Read-As-Zero — ignored when written.

The floating-point exceptions associated with bits 57 to 52 are described
in Section 4.1.3.

4.1.3 Floating-Point Exceptions

Six exception conditions can result from the use of floating-point instructions.
All of the exceptions are signaled by an arithmetic exception trap. The
exceptions are as follows:

• Invalid Operation — An invalid-operation exception is signaled if
any operand of a floating-point instruction, other than cmptxx, is
noninfinite. (The cmptxx instruction operates normally with plus and
minus infinity.) This trap is always enabled. If this trap occurs, an
unpredictable value is stored in the destination register.

4–4 Floating-Point Instruction Set

• Division by Zero — A division-by-zero exception is taken if the numerator
does not cause an invalid-operation trap and the denominator is zero.
This trap is always enabled. If this trap occurs, an unpredictable value is
stored in the destination register.

• Overflow — An overflow exception is signaled if the rounded result
exceeds the largest finite number of the destination format. This trap
is always enabled. If this trap occurs, an unpredictable value is stored
in the destination register.

• Underflow — An underflow exception occurs if the rounded result is
smaller than the smallest finite number of the destination format. This
trap can be disabled. If this trap occurs, a true zero is always stored
in the destination register.

• Inexact Result — An inexact-result exception occurs if the infinitely
precise result differs from the rounded result. This trap can be disabled.
If this trap occurs, the normal rounded result is still stored in the
destination register.

• Integer Overflow — An integer-overflow exception occurs if the
conversion from a floating-point or integer format to an integer format
results in a value that is outside of the range of values that the
destination format can represent. This trap can be disabled. If this
trap occurs, the true result is truncated to the number of bits in the
destination format and stored in the destination register.

4.1.4 Floating-Point Rounding Modes

If a true result can be exactly represented in a floating-point format, all
rounding modes map the true result to that value.

The following abbreviations are used in the descriptions of rounding modes
provided in this section:

• LSB (least significant bit) — For a positive representable number, A,
whose fraction is not all ones: A + 1 LSB is the next-larger representable
number, and A + 1/2 LSB is exactly halfway between A and the
next-larger representable number.

• MAX — The largest noninfinite representable floating-point number.

• MIN — The smallest nonzero representable normalized floating-point
number.

For VAX floating-point operations, two rounding modes are provided and are
specified in each instruction:

• Normal rounding (biased):

Floating-Point Instruction Set 4–5

– Maps the true result to the nearest of two representable results, with
true results exactly halfway between mapped to the larger in absolute
value. (Sometimes referred to as biased rounding away from zero.)

– Maps true results ≥ MAX + 1/2 LSB in magnitude to an overflow

– Maps true results < MIN - 1/2 LSB in magnitude to an underflow

• Chopped rounding:

– Maps the true result to the smaller in magnitude of two surrounding
representable results

– Maps true results ≥ MAX + 1 LSB in magnitude to an overflow

– Maps true results < MIN in magnitude to an underflow

For IEEE floating-point operations, four rounding modes are provided:

• Normal rounding (unbiased round to nearest):

– Maps the true result to the nearest of two representable results,
with true results exactly halfway between being mapped to the
one whose fraction ends in 0 (sometimes referred to as unbiased
rounding to even)

– Maps true results ≥ MAX + 1/2 LSB in magnitude to an overflow

– Maps true results < MIN - 1/2 LSB in magnitude to an underflow

• Rounding toward minus infinity:

– Maps the true results to the smaller of two surrounding representable
results

– Maps true results > MAX in magnitude to an overflow

– Maps positive true results < +MIN to an underflow

– Maps negative true results ≥ -MIN + 1 LSB to an underflow

• Chopped rounding (round toward zero):

– Maps the true result to the smaller in magnitude of two surrounding
representable results

– Maps true results ≥ MAX + 1 LSB in magnitude to an overflow

– Maps nonzero true results < MIN in magnitude to an underflow

• Rounding toward plus infinity:

– Maps the true results to the larger of two surrounding representable
results

– Maps true results > MAX in magnitude to an overflow

– Maps positive results ≤= +MIN - 1 LSB to an underflow

– Maps negative true results > -MIN to an underflow

4–6 Floating-Point Instruction Set

The first three of the IEEE rounding modes can be specified in the
instruction. The last mode, rounding toward plus infinity, can be obtained
by setting the floating-point control register (FPCR) to select it and then
specifying dynamic rounding mode in the instruction.

Dynamic rounding mode uses the IEEE rounding mode selected by the
FPCR. It can be used with any of the IEEE rounding modes. (Dynamic
rounding mode is described in Section 4.1.2.)

Alpha IEEE arithmetic does rounding before detecting overflow or underflow.

4.1.5 Floating-Point Instruction Qualifiers

Many of the floating-point instructions accept a qualifier that specifies
rounding and trapping modes.

The following table lists the rounding mode qualifiers. See Section 4.1.4 for
a detailed description of the rounding modes.

Rounding Mode Qualifier

VAX Rounding Mode

Normal rounding (no modifier)

Chopped c

IEEE Rounding Mode

Normal rounding (no modifier)

Plus infinity d (ensure that the dyn field of the FPCR is 11)

Minus infinity m

Chopped c

The following table lists the trapping mode qualifiers. See Section 4.1.3 for a
detailed description of the exceptions.

Trapping Mode Qualifier

VAX Trap Mode

Imprecise, underflow disabled (no modifier)

Imprecise, underflow enabled u

Software, underflow disabled s

Software, underflow enabled su

VAX Convert-to-Integer Trap Mode

Imprecise, integer overflow disabled (no modifier)

Floating-Point Instruction Set 4–7

Trapping Mode Qualifier

Imprecise, integer overflow enabled v

Software, integer overflow disabled s

Software, integer overflow enabled sv

IEEE Trap Mode

Imprecise, underflow disabled,
inexact disabled

(no modifier)

Imprecise, underflow enabled,
inexact disabled

u

Software, underflow enabled, inexact
disabled

su

Software, underflow enabled, inexact
enabled

sui

IEEE Convert-to-integer Trap Mode

Imprecise, integer overflow disabled,
inexact disabled

(no modifier)

Imprecise, integer overflow enabled,
inexact disabled

v

Software, integer overflow enabled,
inexact disabled

sv

Software, integer overflow enabled,
inexact enabled

svi

Table 4–1 lists the qualifier combinations that are supported by one or
more of the individual instructions. The values in the Number column are
referenced in subsequent sections to identify the combination of qualifiers
accepted by the various instructions.

Table 4–1: Qualifier Combinations for Floating-Point Instructions
Number Qualifiers

1 c, u, uc, s, sc, su, suc

2 c, m, d, u, uc, um, ud, su, suc, sum, sud, sui, suic, suim, suid

3 s

4 su

5 sv, v

6 c, v, vc, s, sc, sv, svc

7 c, v, vc, sv, svc, svi, svic, d, vd, svd, svid

4–8 Floating-Point Instruction Set

Table 4–1: Qualifier Combinations for Floating-Point Instructions (cont.)

Number Qualifiers

8 c

9 c, m, d, sui, suic, suim, suid

4.2 Floating-Point Load and Store Instructions

Floating-point load and store instructions load values and move data
between memory and floating-point registers.

Table 4–2 lists the mnemonics and operands for instructions that perform
floating-point load and store operations. The table is divided into groups of
functionally related instructions. The operands specified within a particular
group apply to all of the instructions contained in that group.

Table 4–2: Load and Store Instruction Formats
Instruction Mnemonic Operands

Load F_floating ldfa d_reg, address

Load G_floating (Load D_floating) ldga

Load S_floating (Load Longword) ldsa

Load T_floating (Load Quadword) ldta

Load Immediate F_floating ldif d_reg,
val_expr

Load Immediate D_floating ldid

Load Immediate G_floating ldig

Load Immediate S_floating (Load Longword) ldis

Load Immediate T_floating (Load Quadword) ldit

Store F_floating stfa s_reg, address

Store G_floating (Store D_floating) stga

Store S_floating (Store Longword) stsa

Store T_floating (Store Quadword) stta

a In addition to the normal operands that can be specified with this instruction, relocation operands can also
be specified (see Section 2.6.4).

Table 4–3 describes the operations performed by floating-point load and
store instructions.

The load and store instructions are grouped by function. See Table 4–2 for
the instruction names.

Floating-Point Instruction Set 4–9

Table 4–3: Load and Store Instruction Descriptions
Instruction Description

Load Instructions
(ldf, ldg, lds, ldt,
ldif, ldid, ldig,
ldis, ldit)

Load eight bytes (G_, D_, and T_floating formats) or
four bytes (F_ and S_floating formats) from the specified
effective address into the destination register. The address
must be quadword aligned for 8-byte load instructions and
longword aligned for 4-byte load instructions.

Store Instructions
(stf, stg, sts, stt)

Store eight bytes (G_, D_, and T_floating formats)
or four bytes (F_ and S_floating formats) from the
source floating-point register into the specified effective
address. The address must be quadword aligned
for 8-byte store instructions and longword aligned
for 4-byte store instructions.

4.3 Floating-Point Arithmetic Instructions

Floating-point arithmetic instructions perform arithmetic and logical
operations on values in floating-point registers.

Table 4–4 lists the mnemonics and operands for instructions that perform
floating-point arithmetic and logical operations. The table is divided into
groups of functionally related instructions. The operands specified within a
particular group apply to all of the instructions contained in that group.

The Qualifiers column in Table 4–4 refers to one or more trap or rounding
modes as specified in Table 4–1.

Table 4–4: Arithmetic Instruction Formats
Instruction Mnemonic Qualifiers Operands

Floating Clear fclr — d_reg

Floating Absolute Value fabs —

Floating Negate fneg —

Negate F_floating negf 3

Negate G_floating negg 3

Negate S_floating negs 4

Negate T_floating negt 4

s_reg, d_reg or d_reg/s_reg

4–10 Floating-Point Instruction Set

Table 4–4: Arithmetic Instruction Formats (cont.)

Instruction Mnemonic Qualifiers Operands

Add F_floating addf 1

Add G_floating addg 1

Add S_floating adds 2

Add T_floating addt 2

Divide F_floating divf 1

Divide G_floating divg 1

Divide S_floating divs 2

Divide T_floating divt 2

Multiply F_floating mulf 1

Multiply G_floating mulg 1

Multiply S_floating muls 2

Multiply T_floating mult 2

Subtract F_floating subf 1

Subtract G_floating subg 1

Subtract S_floating subs 2

Subtract T_floating subt 2

s_reg1, s_reg2, d_reg or
d_reg/s_reg1, s_reg2

Convert Quadword to Longword cvtql 5

Convert Longword to Quadword cvtlq —

Convert G_floating to Quadword cvtgq 6

Convert T_floating to Quadword cvttq 7

Convert Quadword to F_floating cvtqf 8

Convert Quadword to G_floating cvtqg 8

Convert Quadword to S_floating cvtqs 9

Convert Quadword to T_floating cvtqt 9

Convert D_floating to G_floating cvtdg 1

Convert G_floating to D_floating cvtgd 1

Convert G_floating to F_floating cvtgf 1

Convert T_floating to S_floating cvtts 2

Convert S_floating to T_floating cvtst 3

s_reg, d_reg or d_reg/s_reg

Table 4–5 describes the operations performed by floating-point load and
store instructions. The arithmetic instructions are grouped by function. See
Table 4–4 for the instruction names.

Floating-Point Instruction Set 4–11

Table 4–5: Arithmetic Instruction Descriptions
Instruction Description

Clear Instruction
(fclr)

Clears the destination register.

Absolute Value
Instruction (fabs)

Computes the absolute value of the contents of
the source register and puts the floating-point
result in the destination register.

Negate Instructions
(fneg, negf, negg,
negs, negt)

Computes the negative value of the contents of
s_reg or d_reg and puts the specified precision
floating-point result in d_reg.

Add Instructions
(addf, addg, adds,
addt)

Adds the contents of s_reg or d_reg to the contents of
s_reg2 and puts the result in d_reg. When the sum of
two operands is exactly zero, the sum has a positive sign
for all rounding modes except round toward −INF. For
that rounding mode, the sum has a negative sign.

Divide Instructions
(divf, divg, divs,
divt)

Computes the quotient of two values. These instructions
divide the contents of s_reg1 or d_reg by the
contents of s_reg2 and put the results in d_reg.
If the divisor is a zero, an error is signaled if the
divide-by-zero exception is enabled.

Multiply Instructions
(mulf, mulg, muls,
mult)

Multiplies the contents of s_reg1 or d_reg with the
contents of s_reg2 and puts the result in d_reg.

Subtract Instructions
(subf, subg, subs,
subt)

Subtracts the contents of s_reg2 from the contents
of s_reg1 or d_reg and puts the result in d_reg.
When the difference of two operands is exactly zero,
the difference has a positive sign for all rounding
modes except round toward −INF. For that rounding
mode, the sum has a negative sign.

Conversion Between
Integer Formats
Instructions (cvtql,
cvtlq)

Converts the integer contents of s_reg to the specified
integer format and puts the result in d_reg. If an integer
overflow occurs, the truncated result is stored in d_reg
and, if enabled, an arithmetic trap occurs.

Conversion from
Floating-Point to
Integer Format
Instructions (cvtgq,
cvttq)

Converts the floating-point contents of s_reg to the
specified integer format and puts the result in d_reg. If
an integer overflow occurs, the truncated result is stored
in d_reg and, if enabled, an arithmetic trap occurs.

4–12 Floating-Point Instruction Set

Table 4–5: Arithmetic Instruction Descriptions (cont.)

Instruction Description

Conversion
from Integer to
Floating-Point
Format Instructions
(cvtqf, cvtqg, cvtqs,
cvtqt)

Converts the integer contents of s_reg to the specified
floating-point format and puts the result in d_reg.

Conversion Between
Floating-Point
Formats Instructions
(cvtdg, cvtgd, cvtgf,
cvtts, cvtst)

Converts the contents of s_reg to the specified precision,
round according to the rounding mode, and puts the result
in d_reg. If an overflow occurs, an unpredictable value is
stored in d_reg and a floating-point trap occurs.

4.4 Floating-Point Relational Instructions

Floating-point relational instructions compare two floating-point values.

Table 4–6 lists the mnemonics and operands for instructions that perform
floating-point relational operations. Each of the instructions can take an
operand in any of the forms shown.

The Qualifiers column in Table 4–6 refers to one or more trap or rounding
modes as specified in Table 4–1.

Table 4–6: Relational Instruction Formats
Instruction Mnemonic Qualifiers Operands

Compare G_floating Equal cmpgeq 3

Compare G_floating Less Than cmpglt 3

Compare G_floating Less
Than or Equal

cmpgle 3

Compare T_floating Equal cmpteq 4

Compare T_floating Less Than cmptlt 4

Compare T_floating Less
Than or Equal

cmptle 4

Compare T_floating Unordered cmptun 4

s_reg1, s_reg2, d_reg or
d_reg/s_reg1, s_reg2

Table 4–7 describes the relational instructions supported by the assembler.
The relational instructions are grouped by function. See Table 4–6 for the
instruction names.

Floating-Point Instruction Set 4–13

Table 4–7: Relational Instruction Descriptions
Instruction Description

Compare Equal Instructions
(cmpgeq, cmpteq)

Compare the contents of s_reg1 with the contents of s_reg2. If
s_reg1 equals s_reg2, a nonzero value is written to the destination
register; otherwise, a true zero value is written to the destination.
Exceptions are not signaled for unordered values.

Compare Less Than
Instructions (cmpglt, cmptlt)

Compare the contents of s_reg1 with the contents of s_reg2. If
s_reg1 is less than s_reg2, a nonzero value is written to the
destination register; otherwise, a true zero value is written to the
destination. Exceptions are not signaled for unordered values.

Compare Less Than or Equal
Instructions (cmpgle, cmptle)

Compare the contents of s_reg1 with the contents of s_reg2. If
s_reg1 is less than or equal to s_reg2, a nonzero value is written to
the destination register; otherwise, a true zero value is written to the
destination. Exceptions are not signaled for unordered values.

Compare Unordered
Instruction (cmptun)

Compare the contents of s_reg1 with the contents of s_reg2. If either
s_reg1 or s_reg2 is unordered, a nonzero value is written to the
destination register; otherwise, a true zero value is written to the
destination. Exceptions are not signaled for unordered values.

4.5 Floating-Point Move Instructions

Floating-point move instructions move data between floating-point registers.

Table 4–8 lists the mnemonics and operands for instructions that perform
floating-point move operations. The table is divided into groups of
functionally related instructions. The operands specified within a particular
group apply to all of the instructions contained in that group.

Table 4–8: Move Instruction Formats
Instruction Mnemonic Operands

Floating Move fmov s_reg, d_reg

Copy Sign cpys

Copy Sign Negate cpysn

Copy Sign and Exponent cpyse

Move If Equal to Zero fcmoveq

Move If Not Equal to Zero fcmovne

Move If Less Than Zero fcmovlt

Move If Less Than or Equal to Zero fcmovle

Move If Greater Than Zero fcmovgt

Move If Greater Than or Equal to Zero fcmovge

s_reg1, s_reg2, d_reg
or d_reg/s_reg1, s_reg2

4–14 Floating-Point Instruction Set

Table 4–9 describes the operations performed by move instructions. The
move instructions are grouped by function. See Table 4–8 for the instruction
names.

Table 4–9: Move Instruction Descriptions
Instruction Description

Move Instruction
(fmov)

Moves the contents of s_reg to d_reg.

Copy Sign
Instruction (cpys)

Fetches the sign bit of s_reg1 or d_reg, combines
it with the exponent and fraction of s_reg2, and
copies the result to d_reg.

Copy Sign Negate
Instruction (cpysn)

Fetches the sign bit of s_reg1 or d_reg, complements
it, combines it with the exponent and fraction of
s_reg2, and copies the result to d_reg.

Copy Sign
and Exponent
Instruction (cpyse)

Fetches the sign and exponent of s_reg1 or d_reg,
combines them with the fraction of s_reg2, and
copies the result to d_reg.

Move If Instructions
(fcmoveq, fcmovne,
fcmovlt, fcmovle,
fcmovgt, fcmovge)

Compares the contents of s_reg1 or d_reg against zero.
If the specified condition is true, the contents of s_reg2
are copied to d_reg; otherwise, d_reg is unchanged.

4.6 Floating-Point Control Instructions

Floating-point control instructions test floating-point registers and
conditionally branch.

Table 4–10 lists the mnemonics and operands for instructions that perform
floating-point control operations. The specified operands apply to all of the
instructions listed in the table.

Table 4–10: Control Instruction Formats
Instruction Mnemonic Operands

Branch Equal to Zero fbge s_reg, label

Branch Not Equal to Zero fbne

Branch Less Than Zero fblt

Branch Less Than or Equal to Zero fble

Branch Greater Than Zero fbgt

Branch Greater Than or Equal to Zero fbge

Floating-Point Instruction Set 4–15

Table 4–11 describes the operations performed by control instructions. The
control instructions are grouped by function. See Table 4–10 for instruction
names.

Table 4–11: Control Instruction Descriptions
Instruction Description

Branch Instructions (fbeq,
fbne, fblt, fble, fbgt,
fbge)

The contents of the source register are compared
with zero. If the specified relationship is true, a
branch is made to the specified label.

4.7 Floating-Point Special-Purpose Instructions

Floating-point special-purpose instructions perform miscellaneous tasks.

Table 4–12 lists the mnemonics and operands for instructions that perform
floating-point special-purpose operations.

Table 4–12: Special-Purpose Instruction Formats
Instruction Mnemonic Operands

Move from FP Control Register mf_fpcr d_reg

Move to FP Control Register mt_fpcr s_reg

No Operation fnop (none)

Table 4–13 describes the operations performed by floating-point
special-purpose instructions.

Table 4–13: Control Register Instruction Descriptions
Instruction Description

Move to FPCR
Instruction (mf_fpcr)

Copies the value in the specified source register to
the floating-point control register (FPCR).

Move from FPCR
Instruction (mt_fpcr)

Copies the value in floating-point control register
(FPCR) to the specified destination register.

No Operation
Instruction (fnop)

This instruction has no effect on the machine state.

4–16 Floating-Point Instruction Set

5
Assembler Directives

Assembler directives are instructions to the assembler to perform various
bookkeeping tasks, storage reservation, and other control functions. To
distinquish them from other instructions, directive names begin with a
period. Table 5–1 lists the assembler directives by category.

Table 5–1: Summary of Assembler Directives
Category Directives

Compiler-Use-Only Directives .err
.file
.lab
.loc
.option

Location Control Directives .align
.data
.lit4
.lit8
.rconst
.rdata
.sdata
.space
.text
.tlsdata

Symbol Declaration Directives .extern
.globl
.struct
symbolic equate
.weakext

Routine Entry Point Definition Directives .aent
.ent

Assembler Directives 5–1

Table 5–1: Summary of Assembler Directives (cont.)

Category Directives

Data Storage Directives .ascii
.asciiz
.byte
.comm
.double
.d_floating
.extended
.float
.f_floating
.gprel32
.g_floating
.lcomm
.long
.quad
.s_floating
.tlscomm
.tlslcomm
.t_floating
.word
.x_floating

Repeat Block Directives .endr
.repeat

Assembler Option Directive .set

Procedure Attribute Directives .edata
.eflag
.end
.fmask
.frame
.mask
.prologue
.save_ra

Version Control Directive .ident
.verstamp

Scheduling and Architecture Subset
Directives

.arch

.tune

The following list contains descriptions of the assembly directives (in
alphabetical order):

.aent name

Sets an alternate entry point for the current procedure. Use this
information when you want to generate information for the debugger.
This directive must appear between a pair of .ent and .end directives.

5–2 Assembler Directives

.align expression

Sets low-order bits in the location counter to zero. The value of
expression establishes the number of bits to be set to zero. The
maximum value for expression is 16 (which produces 64K alignment).

If the .align directive advances the location counter, the assembler
fills the skipped bytes with zeros in data sections and nop instructions
in text sections.

Normally, the .word, .long, .quad, .float, .double, .extended,
.d_floating, .f_floating, .g_floating, .s_floating,
.t_floating, and .x_floating directives automatically align their
data appropriately. For example, .word does an implicit .align 1,
and .double does an implicit .align 3.

You can disable the automatic alignment feature with .align 0. The
assembler reinstates automatic alignment at the next .text, .data,
.rdata, or .sdata directive that it encounters.

Labels immediately preceding an automatic or explicit alignment are
also realigned. For example:

foo: .align 3
.word 0

This is equivalent to:

.align 3
foo: .word 0

.arch model

Specifies the version of the Alpha architecture that the assembler is
to generate instructions for. The valid values for model are identical
to those you can specify with the −arch flag on the cc command line.
See cc(1) for details.

.ascii string [, string] ...

Assembles each string from the list into successive locations. The
.ascii directive does not pad the string with null characters. You
must put double quotation marks (") around each string. You can
optionally use the backslash escape characters. For a list of the
backslash characters, see Section 2.4.3.

.asciiz string [, string] ...

Assembles each string in the list into successive locations and adds a
null character. You can optionally use the backslash escape characters.
For a list of the backslash characters, see Section 2.4.3.

Assembler Directives 5–3

.byte expression1 [,expression2] [expressionN]

Truncates the values of the expressions specified in the
comma-separated list to 8-bit values, and assembles the values in
successive locations. The values of the expressions must be absolute.

The operands for the .byte directive can optionally have the following
form:

expressionVal [: expressionRep]

The expressionVal is an 8-bit value. The optional expressionRep
is a non-negative expression that specifies how many times to replicate
the value of expressionVal. The expression value (expressionVal)
and repetition count (expressionRep) must be absolute.

.comm name, expression1[,expression2]

Unless defined elsewhere, name becomes a global common symbol at
the head of a block of at least expression1 bytes of storage. The
linker overlays like-named common blocks, using the expression value
of the largest block as the byte size of the overlay. The expression2
operand has the same effect on alignment as the operand for the
.align directive.

.data

Directs the assembler to add all subsequent data to the .data section.

.d_floating expression1 [,expression2] [expressionN]

Initializes memory to double-precision (64-bit) VAX D_floating
numbers. The values of the expressions must be absolute.

The operands for the .d_floating directive can optionally have the
following form:

expressionVal [: expressionRep]

The expressionVal is a 64-bit value. The optional expressionRep
is a non-negative expression that specifies how many times to replicate
the value of expressionVal. The expression value (expressionVal)
and repetition count (expressionRep) must be absolute.

The .d_floating directive automatically aligns its data and any
preceding labels on a double-word boundary. You can disable this
feature with the .align 0 directive.

.double expression1 [,expression2] [expressionN]

Synonym for .t_floating.

5–4 Assembler Directives

.edata 0

.edata 1 lang-handler relocatable-expression

.edata 2 lang-handler constant-expression

Marks data related to exception handling.

If the flag is 0, the assembler adds all subsequent data to the .xdata
section.

If the flag is 1 or 2, the assembler creates a function table
entry for the next .ent directive. The function table entry
contains the language-specific handler (lang-handler) and data
(relocatable-expression or constant-expression).

.eflag flags

Encodes exception-related flags to be stored in the PDSC_RPD_FLAGS
field of the procedure’s run-time procedure descriptor. See the Calling
Standard for Alpha Systems for a description of the individual flags.

.end [proc_name]

Sets the end of a procedure. The .ent directive sets the beginning of
a procedure. Use the .ent and .end directives when you want to
generate information for the debugger.

.endr

Signals the end of a repeat block. The .repeat directive starts a
repeat block.

.ent proc_name [lex-level]

Sets the beginning of the procedure proc_name. Use this directive
when you want to generate information for the debugger. The .end
directive sets the end of a procedure.

The lex-level operand indicates the number of procedures that
statically surround the current procedure. This operand is only
informational. It does not affect the assembly process; the assembler
ignores it.

.err

For use only by compilers.This directive causes the assembler to signal
an error. Any compiler frontend that detects an error condition puts
this directive in the input stream. When the assembler encounters a
.err directive, it issues an error message and ceases to assemble the
source file. This prevents the assembler from continuing to process a
program that is incorrect.

Assembler Directives 5–5

.extended expression1 [,expression2] [expressionN]

Synonym for .x_floating.

.extern [(THREADS)] name [number]

Indicates that the specified symbol is global and external; that is, the
symbol is defined in another object module and cannot be defined until
link time. The name operand is a global undefined symbol and number
is the expected size of the external object. If the THREADS argument
is specified, the symbol is treated as a tls (thread local storage) global
undefined symbol.

.f_floating expression1 [,expression2] [expressionN]

Initializes memory to single-precision (32-bit) VAX F_floating numbers.
The values of the expressions must be absolute.

The operands for the .f_floating directive can optionally have the
following form:

expressionVal [: expressionRep]

The expressionVal is a 32-bit value. The optional expressionRep
is a non-negative expression that specifies how many times to replicate
the value of expressionVal. The expression value (expressionVal)
and repetition count (expressionRep) must be absolute.

The .f_floating directive automatically aligns its data and
preceding labels on a longword boundary. You can disable this feature
by using the .align 0 directive.

.file file_number file_name_string

For use only by compilers. Specifies the source file from which the
assembly instructions that follow originated. This directive causes
the assembler to stop generating line numbers that are used by the
debugger. A subsequent .loc directive causes the assembler to resume
generating line numbers.

.float expression1 [,expression2] [expressionN]

Synonym for .s_floating.

.fmask mask offset

Sets a mask with a bit turned on for each floating-point register that
the current routine saved. The least-significant bit corresponds to
register $f0. The offset is the distance, in bytes, from the virtual
frame pointer to where the floating-point registers are saved.

5–6 Assembler Directives

You must use .ent before .fmask, and you can use only one .fmask
for each .ent. Space should be allocated for those registers specified
in the .fmask.

.frame frame-reg frame-size return_pc-reg [local_offset]

Describes a stack frame. The first register is the frame register,
andframe-size is the size of the stack frame, that is, the number of
bytes between the frame register and the virtual frame pointer. The
second register specifies the register that contains the return address.
The local_offset parameter, which is for use only by compilers,
specifies the number of bytes between the virtual frame pointer and
the local variables.

You must use .ent before .frame, and you can use only one .frame
for each .ent. No stack traces can be done in the debugger without
the .frame directive.

.g_floating expression1 [,expression2] [expressionN]

Initializes memory to double-precision (64-bit) VAX G_floating
numbers. The values of the expressions must be absolute.

The operands for the .g_floating directive can optionally have the
following form:

expressionVal [: expressionRep]

The expressionVal is a 64-bit value. The optional expressionRep
is a non-negative expression that specifies how many times to replicate
the value of expressionVal. The expression value (expressionVal)
and repetition count (expressionRep) must be absolute.

The .g_floating directive automatically aligns its data and any
preceding labels on a quadword boundary. You can disable this feature
with the .align 0 directive.

.globl name

Identifies name as an external symbol. If the name is otherwise defined
(for example, by its appearance as a label), the assembler exports the
symbol; otherwise, it imports the symbol. In general, the assembler
imports undefined symbols; that is, it gives them the UNIX storage
class “global undefined” and requires the linker to resolve them.

.gprel32 address1[, address2] [,addressN]

Truncates the signed displacement between the global pointer value
and the addresses specified in the comma-separated list to 32-bit
values, and assembles the values in successive locations.

Assembler Directives 5–7

The operands for the .gprel32 directive can optionally have the
following form:

addressVal [: addressRep]

The addressVal is the address value. The optional addressRep is
a non-negative expression that specifies how many times to replicate
the value of addressVal. The expression value (addressVal) and
repetition count (addressRep) must be absolute.

The .gprel32 directive automatically aligns its data and preceding
labels on a longword boundary. You can disable this feature with the
.align 0 directive.

.ident string

Allows the specification of a string that the assembler stores in the .o
file created during assembly. This string can be searched for in a .o
file or in an executable using the what(1) command.

.lab label_name

For use only by compilers. Associates a named label with the current
location in the program text.

.lcomm name, expression1[,expression2]

Gives the named symbol (name) a data type of bss. The assembler
allocates the named symbol to the bss area, and expression1 defines
the named symbol’s length. If a .globl directive also specifies the
name, the assembler allocates the named symbol as an external
symbol. The expression2 operand has the same effect on alignment
as the operand for the .align directive. If expression2 is not
specified, the alignment defaults to quadword alignment.

The assembler puts bss symbols in one of two bss areas. If the defined
size is less than or equal to the size specified by the assembler or
compiler’s -G command-line option, the assembler puts the symbols in
the sbss area.

.lit4

Allows 4-byte constants to be generated and placed in the lit4 section.
This directive is only valid for .long (with nonrelocatable expressions),
.f_floating, .float, and .s_floating.

5–8 Assembler Directives

.lit8

Allows 8-byte constants to be generated and placed in the lit8 section.
This directive is only valid for .quad (with nonrelocatable expressions),
.d_floating, .g_floating, .double, and .t_floating.

.loc file_number line_number

For use only by compilers. Specifies the source file and the line within
it that corresponds to the assembly instructions that follow. The
assembler ignores the file number when this directive appears in the
assembly source file. Then, the assembler assumes that the directive
refers to the most recent .file directive.

.long expression1 [,expression2] [expressionN]

Truncates the values of the expressions specified in the
comma-separated list to 32-bit values, and assembles the values in
successive locations. The values of the expression can be relocatable.

The operands for the .long directive can optionally have the following
form:

expressionVal [: expressionRep]

The expressionVal is a 32-bit value. The optional expressionRep
is a non-negative expression that specifies how many times to replicate
the value of expressionVal. The expression value (expressionVal)
and repetition count (expressionRep) must be absolute.

The .long directive automatically aligns its data and preceding labels
on a longword boundary. You can disable this feature with the .align
0 directive.

.mask mask, offset

Sets a mask with a bit turned on for each general-purpose register
that the current routine saved. The least significant bit corresponds
to register $0. The offset is the distance, in bytes, from the virtual
frame pointer to where the registers are saved.

You must use .ent before .mask, and you can use only one .mask
for each .ent. Space should be allocated for those registers specified
in the .mask.

.option options

For use only by compilers. Instructs the assembler to replace an
optimization level that was specified on the command with the
one specified in the options argument. Valid entries for this new
optimization level are O, O1 – O4.

Assembler Directives 5–9

.prologue flag

Marks the end of the prologue section of a procedure.

A flag of 0 indicates that the procedure does not use $gp; the caller
does not need to set up $pv prior to calling the procedure or restore
$gp on return from the procedure.

A flag of 1 indicates that the procedure does use $gp; the caller must
set up $pv prior to calling the procedure and restore $gp on return
from the procedure.

If flag is not specified, the behavior is as if a value of 1 was specified.

.quad expression1 [,expression2] [expressionN]

Truncates the values of the expressions specified in the
comma-separated list to 64-bit values, and assembles the values in
successive locations. The values of the expressions can be relocatable.

The operands for the .quad directive can optionally have the following
form:

expressionVal [: expressionRep]

The expressionVal is a 64-bit value. The optional expressionRep
is a non-negative expression that specifies how many times to replicate
the value of expressionVal. The expression value (expressionVal)
and repetition count (expressionRep) must be absolute.

The .quad directive automatically aligns its data and preceding labels
on a quadword boundary. You can disable this feature with the .align
0 directive.

.rconst

Instructs the assembler to add subsequent data into the .rconst
section. (This is the same as the .rdata directive except that the
entries cannot be relocatable.)

.rdata

Instructs the assembler to add subsequent data into the .rdata
section.

.repeat expression

Repeats all instructions or data between the .repeat and .endr
directives. The expression defines how many times the enclosing text
and data repeats. With the .repeat directive, you cannot use labels,
branch instructions, or values that require relocation in the block. Also
note that nesting .repeat directives is not allowed.

5–10 Assembler Directives

.save_ra saved_ra_register

Specifies that saved_ra_register is the register in which the return
address is saved during the execution of the procedure. If .save_ra is
not used, the saved return address register is assumed to be the same
as the return_pc_register argument of the frame directive. The
.save_ra directive is valid only for register frame procedures.

.sdata

Instructs the assembler to add subsequent data to the .sdata section.

.set option

Instructs the assembler to enable or disable certain options. The
assembler has the following default options: reorder, macro, move,
novolatile, and at. Only one option can be specified by a single .set
directive. The effects of the options are as follows:

• The reorder option permits the assembler to reorder
machine-language instructions to improve performance.

The noreorder option prevents the assembler from reordering
machine-language instructions. If a machine-language instruction
violates the hardware pipeline constraints, the assembler issues a
warning message.

• The macro option permits the assembler to generate multiple
machine-language instructions from a single assembler instruction.

The nomacro option causes the assembler to print a warning
whenever an assembler operation generates more than one
machine-language instruction. You must select the noreorder
option before using the nomacro option; otherwise, an error results.

• The at option permits the assembler to use the $at register for
macros, but generates warnings if the source program uses $at.

When you use the noat option and an assembler operation requires
the $at register, the assembler issues a warning message; however,
the noat option does permit source programs to use $at without
warnings being issued.

• The nomove options instructs the assembler to mark each
subsequent instruction so that it cannot be moved during
reorganization. The assembler can still move instructions from
below the nomove region to above the region or vice versa. The
nomove option has part of the effect of the “volatile” C declaration;
it prevents otherwise independent loads or stores from occurring in
a different order than intended.

The move option cancels the effect of nomove.

Assembler Directives 5–11

• The volatile option instructs the assembler that subsequent load
and store instructions may not be moved in relation to each other
or removed by redundant load removal or other optimization. The
volatile option is less restrictive than noreorder; it allows the
assembler to move other instructions (that is, instructions other
than load and store instructions) without restrictions.

The novolatile option cancels the effect of the volatile option.

.s_floating expression1 [,expression2] [expressionN]

Initializes memory to single-precision (32-bit) IEEE floating-point
numbers. The values of the expressions must be absolute.

The operands for the .s_floating directive can optionally have the
following form:

expressionVal [: expressionRep]

The expressionVal is a 32-bit value. The optional expressionRep
is a non-negative expression that specifies how many times to replicate
the value of expressionVal. The expression value (expressionVal)
and repetition count (expressionRep) must be absolute.

The .s_floating directive automatically aligns its data and
preceding labels on a longword boundary. You can disable this feature
with the .align 0 directive.

.space expression

Advances the location counter by the number of bytes specified by the
value of expression. The assembler fills the space with zeros.

.struct expression

Permits you to lay out a structure using labels plus directives such as
.word or .byte. It ends at the next segment directive (.data, .text,
and so forth). It does not emit any code or data, but defines the labels
within it to have values that are the sum of expression plus their
offsets from the .struct itself.

symbolic equate

Takes one of the following forms: name = expression or
name = register. You must define the name only once in the
assembly, and you cannot redefine it. The expression must be
computable when you assemble the program, and the expression must
involve only operators, constants, or equated symbols. You can use the
name as a constant in any later statement.

5–12 Assembler Directives

.text

Instructs the assembler to add subsequent code to the .text section.
(This is the default.)

.tlscomm name,expression

The name operand becomes a global tls common symbol at the head of a
block of expression bytes of storage. This directive is analogous to
the .comm directive.

.tlsdata

Directs the assembler to add all subsequent data to the .tlsdata
section. This directive is analogous to the .data directive.

.tlslcomm name,expression

The name operand becomes a symbol of type tlsbss. The assembler
allocates the symbol to the tlsbss section and the expression defines the
named symbol’s length. If a .globl directive also specifies the symbol
name, the assembler allocates the named symbol as an external symbol.

Unlike non-tls symbols, thread local storage’s bss data is allocated in
only one area. There is no sbss area for tls symbols. This directive is
analogous to the .lcomm directive.
.tlslcomm b 8 /* TlsBss stStatic */
.lcomm B 8 /* SBss stStatic */

.globl c /* TlsBss stGlobal */

.tlslcomm c 8

.globl C /* SBss stGlobal */

.lcomm C 8

.t_floating expression1 [,expression2] [expressionN]

Initializes memory to double-precision (64-bit) IEEE floating-point
numbers. The values of the expressions must be absolute.

The operands for the .t_floating directive can optionally have the
following form:

expressionVal [: expressionRep]

The expressionVal is a 64-bit value. The optional expressionRep
is a non-negative expression that specifies how many times to replicate
the value of expressionVal. The expression value (expressionVal)
and repetition count (expressionRep) must be absolute.

The .t_floating directive automatically aligns its data and any
preceding labels on a quadword boundary. You can disable this feature
with the .align 0 directive.

Assembler Directives 5–13

.tune option

Selects processor-specific instruction tuning for various
implementations of the Alpha architecture. Regardless of the setting
of the .arch directive, the generated code will run correctly on all
implementations of the Alpha architecture. The valid values for
option are identical to those you can specify with the −arch flag on
the cc command line. See cc(1) for details.

.verstamp major minor

Specifies the major and minor version numbers; for example, version
0.15 would be .verstamp 0 15.

.weakext name1 [,name2]

Sets name1 to be a weak symbol during linking. If name2 is specified,
name1 is created as a weak symbol with the same value as name2.
Weak symbols can be silently redefined at link time.

.word expression1 [,expression2] [expressionN]

Truncates the values of the expressions specified in the
comma-separated list to 16-bit values, and assembles the values in
successive locations. The values of the expressions must be absolute.

The operands for the .word directive can optionally have the following
form:

expressionVal [: expressionRep]

The expressionVal is a 16-bit value. The optional expressionRep
is a non-negative expression that specifies how many times to replicate
the value of expressionVal. The expression value (expressionVal)
and repetition count (expressionRep) must be absolute.

The .word directive automatically aligns its data and preceding labels
on a word boundary. You can disable this feature with the .align
0 directive.

.x_floating expression1 [,expression2] [expressionN]

Initializes memory to quad-precision (128-bit) IEEE floating-point
numbers. The values of the expressions must be absolute.

The operands for the .x_floating directive can optionally have the
following form:

expressionVal [: expressionRep]

The expressionVal is a 128-bit value. The optional expressionRep
is a non-negative expression that specifies how many times to replicate

5–14 Assembler Directives

the value of expressionVal. The expression value (expressionVal)
and repetition count (expressionRep) must be absolute.

The .x_floating directive automatically aligns its data and
preceding labels on an octaword boundary. You can disable this feature
with the .align 0 directive.

Assembler Directives 5–15

6
Programming Considerations

This chapter gives rules and examples to follow when creating an assembly
language program.

The chapter addresses the following topics:

• Why your assembly programs should use the calling conventions
observed by the C compiler (Section 6.1)

• An overview of the composition of executable programs (Section 6.2)

• The use of registers, section and location counters, and stack frames
(Section 6.3)

• A technique for coding an interface between an assembly language
procedure and a procedure written in a high-level language (Section 6.4)

• The default memory-allocation scheme used by the Alpha system
(Section 6.5)

This chapter does not address coding issues related to performance or
optimization. See Appendix A of the Alpha Architecture Reference Manual
for information on how to optimize assembly code.

6.1 Calling Conventions

When you write assembly language procedures, you should use the same
calling conventions that the C compiler observes. The reasons for using the
same calling conventions are as follows:

• Often your code must interact with compiler-generated code, accepting
and returning arguments or accessing shared global data.

• The symbolic debugger gives better assistance in debugging programs
that use standard calling conventions.

The conventions observed by the Tru64 UNIX compiler system are more
complicated than those of some other compiler systems, mostly to enhance
the speed of each procedure call. Specifically:

• The C compiler uses the full, general calling sequence only when
necessary; whenever possible, it omits unneeded portions of the
sequence. For example, the C compiler does not use a register as a frame
pointer if it is unnecessary to do so.

Programming Considerations 6–1

• The C compiler and the debugger observe certain implicit rules instead of
communicating by means of instructions or data at execution time. For
example, the debugger looks at information placed in the symbol table
by a .frame directive at compilation time. This technique enables the
debugger to tolerate the lack of a register containing a frame pointer at
execution time.

• The linker performs code optimizations based on information that is
not available at compile time. For example, the linker can, in some
cases, replace the general calling sequence to a procedure with a single
instruction.

6.2 Program Model

A program consists of an executable image and zero or more shared images.
Each image has an independent text and data area.

Each data segment contains a global offset table (GOT), which contains
address constants for procedures and data locations that the text segment
references. The GOT provides the means to access arbitrary 64-bit addresses
and allows the text segment to be position-independent.

The size of the GOT is limited only by the maximum image size. However,
because only 64 KB can be addressed by a single memory-format instruction,
the GOT is segmented into one or more sections of 64 KB or less.

In addition to providing efficient access to the GOT, the gp register is also
used to access global data within ±2 GB of the global pointer. This area of
memory is known as the global data area.

A static executable image is not a special case in the program model. It is
simply an executable image that uses no shared libraries. However, it is
possible for the linker to perform code optimizations. In particular, if a static
executable image’s GOT is less than or equal to 64 KB (that is, has only one
segment), the code to load, save, and restore the gp register is not necessary
because all procedures will access the same GOT segment.

6.3 General Coding Concerns

This section describes three general areas of concern to the assembly
language programmer:

• Usable and restricted registers (Section 6.3.1)

• Control of section and location counters with directives (Section 6.3.2)

• Stack frame requirements on entering and exiting a procedure
(Section 6.3.3)

6–2 Programming Considerations

Another general coding consideration is the use of data structures to
communicate between high-level language procedures and assembly
procedures. In most cases, this communication is handled by means of simple
variables: pointers, integers, Booleans, and single- and double-precision real
numbers. Describing the details of the various high-level data structures
that can also be used — arrays, records, sets, and so on — is beyond the
scope of this manual.

6.3.1 Register Use

The main processor has 32 64-bit integer registers. The uses and restrictions
of these registers are described in Table 6–1.

The floating-point coprocessor has 32 floating-point registers. Each register
can hold either a single-precision (32 bit) or double-precision (64 bit) value.
See Table 6–2 for details.

Table 6–1: Integer Registers
Register Name Software Name

(from regdef.h)
Use

$0 v0 Used for expression evaluations and to
hold the integer function results. Not
preserved across procedure calls.

$1-8 t0-t7 Temporary registers used for expression
evaluations. Not preserved across
procedure calls.

$9-14 s0-s5 Saved registers. Preserved across
procedure calls.

$15 or $fp s6 or fp Contains the frame pointer (if needed);
otherwise, a saved register.

$16-21 a0-a5 Used to pass the first six integer type
actual arguments. Not preserved
across procedure calls.

$22-25 t8-t11 Temporary registers used for expression
evaluations. Not preserved across
procedure calls.

$26 ra Contains the return address. Preserved
across procedure calls.

$27 pv or t12 Contains the procedure value and
used for expression evaluation. Not
preserved across procedure calls.

$28 or $at AT Reserved for the assembler. Not
preserved across procedure calls.

Programming Considerations 6–3

Table 6–1: Integer Registers (cont.)

Register Name Software Name
(from regdef.h)

Use

$29 or $gp gp Contains the global pointer. Not
preserved across procedure calls.

$30 or $sp sp Contains the stack pointer. Preserved
across procedure calls.

$31 zero Always has the value 0.

Table 6–2: Floating-Point Registers
Register Name Use

$f0-f1 Used to hold floating-point type function results ($f0) and
complex type function results ($f0 has the real part and $f1
has the imaginary part). Not preserved across procedure calls.

$f2-f9 Saved registers. Preserved across procedure calls.

$f10-f15 Temporary registers used for expression evaluation.
Not preserved across procedure calls.

$f16-f21 Used to pass the first six single- or double-precision actual
arguments. Not preserved across procedure calls.

$f22-f30 Temporary registers used for expression evaluations.
Not preserved across procedure calls.

$f31 Always has the value 0.0.

6.3.2 Using Directives to Control Sections and Location Counters

Assembled code and data are stored in the object file sections shown in
Figure 6–1. Each section has an implicit location counter that begins at zero
and increments by one for each byte assembled in the section. Location
control directives (.align, .data, .rconst, .rdata, .sdata, .space, and
.text) can be used to control what is stored in the various sections and
to adjust location counters.

The assembler always generates the text section before other sections.
Additions to the text section are done in 4-byte units.

The bss (block started by symbol) section holds data items (usually variables)
that are initialized to zero. If a .lcomm directive defines a variable, the
assembler assigns that variable to either the .bss section or the .sbss
(small bss) section, depending on the variable’s size.

The default size for variables in the .sbss section is eight or fewer bytes.
You can change the size using the -G compilation option for the C compiler

6–4 Programming Considerations

or the assembler. Items smaller than or equal to the specified size go in the
.sbss section. Items greater than the specified size go in the .bss section.

At run time, the $gp register points into the area of memory occupied by the
.lita section. The .lita section is used to hold address literals for 64-bit
addressing.

Figure 6–1: Sections and Location Counters for Nonshared Object Files

text section

read-only data section

data
segment

small data section

small bss section

ZK-0733U-AI

.text

.pdata

.data

.lit8

.lit4

.sdata

.sbss

.bss

.lita

bss (block started by symbol)
section

read-only constant section.rconst

.rdata

.xdata

.fini

.init

bss
segment

text
segment

.tlsinit

See the Symbol Table/Object File Specification manual for more information
on section data. (This manual is available as an HTML or PDF document
on the Tru64 UNIX Version 5.1 Documentation CD-ROM; it is not available
in hardcopy.)

Programming Considerations 6–5

6.3.3 The Stack Frame

The C compiler classifies each procedure into one of the following categories:

• Nonleaf procedures. These procedures call other procedures.

• Leaf procedures. These procedures do not themselves call other
procedures. Leaf procedures are of two types: those that require stack
storage for local variables and those that do not.

You must decide the procedure category before determining the calling
sequence.

To write a program with proper stack frame usage and debugging
capabilities, you should observe the conventions presented in the following
list of steps. Steps 1 through 6 describe the code you must provide at the
beginning of a procedure, step 7 describes how to pass parameters, and steps
8 through 12 describe the code you must provide at the end of a procedure:

1. Regardless of the type of procedure, you should include a .ent directive
and an entry label for the procedure:

.ent procedure_name
procedure_name:

The .ent directive generates information for the debugger, and the
entry label is the procedure name.

2. If you are writing a procedure that references static storage, calls other
procedures, uses constants greater than 31 bits in size, or uses floating
constants, you must load the $gp register with the global pointer value
for the procedure:

ldgp $gp,0($27)

Register $27 contains the procedure value (the address of this procedure
as supplied by the caller).

3. If you are writing a leaf procedure that does not use the stack, skip to
step 4. For a nonleaf procedure or a leaf procedure that uses the stack,
you must adjust the stack size by allocating all of the stack space that
the procedure requires:

lda $sp,-framesize($sp)

The framesize operand is the size of frame required, in bytes, and
must be a multiple of 16. You must allocate space on the stack for the
following items:

• Local variables.

• Saved general registers. Space should be allocated only for those
registers saved. For nonleaf procedures, you must save register $26,

6–6 Programming Considerations

which is used in the calls to other procedures from this procedure. If
you use registers $9 to $15, you must also save them.

• Saved floating-point registers. Space should be allocated only for
those registers saved. If you use registers $f2 to $f9, you must
also save them.

• Procedure call argument area. You must allocate the maximum
number of bytes for arguments of any procedure that you call from
this procedure; this area does not include space for the first six
arguments because they are always passed in registers.

____________________ Note _____________________

Once you have modified register $sp, you should not modify
it again in the remainder of the procedure.

4. To generate information used by the debugger and exception handler,
you must include a .frame directive:

.frame framereg,framesize,returnreg

The virtual frame pointer does not have a register allocated for it. It
consists of the framereg ($sp, in most cases) added to the framesize
(see step 3). Figure 6–2 shows the stack components.

Programming Considerations 6–7

Figure 6–2: Stack Organization

framesize

stack
pointer ($sp)

virtual frame
pointer ($fp)

frameoffset

(high memory)

(low memory)

example of saved registers

saved $9
saved $10

saved $26 (ra)

nth argument

7th argument

local & temporaries

saved registers

argument build

.

.

.

returnreg(including)

.

.

.

ZK-0736U-AI

The returnreg argument for the .frame directive specifies the
register that contains the return address (usually register $26). The
usual values may change if you use a varying stack pointer or are
specifying a kernel trap procedure.

5. If the procedure is a leaf procedure that does not use the stack, skip to
step 11. Otherwise, you must save the registers for which you allocated
space in step 3.

Saving the general registers requires the following operations:

• Specify which registers are to be saved using the following .mask
directive:

.mask bitmask,frameoffset

The bit settings in bitmask indicate which registers are to be saved.
For example, if register $9 is to be saved, bit 9 in bitmask must be
set to 1. The value for frameoffset is the offset (negative) from the
virtual frame pointer to the start of the register save area.

• Use the following stq instruction to save the registers specified in
the mask directive:

stq reg,framesize+frameoffset+N($sp)

6–8 Programming Considerations

The value of N is the size of the argument build area for the first
register and is incremented by 8 for each successive register.
If the procedure is a nonleaf procedure, the return address
register ($26) is the first register to be saved; it must be saved at
framesize+frameoffset+0($sp) for exception handling. For
example, a nonleaf procedure that saves register $9 and $10 would
use the following stq instructions:

stq $26,framesize+frameoffset($sp)
stq $9,framesize+frameoffset+8($sp)
stq $10,framesize+frameoffset+16($sp)

(Figure 6–2 shows the order in which the registers in the preceding
example would be saved.)

Then, save any floating-point registers for which you allocated space
in step 3:

.fmask bitmask,frameoffset
stt reg,framesize+frameoffset+N($sp)

Saving floating-point registers is identical to saving integer registers
except you use the .fmask directive instead of .mask, and the
storage operations involve single- or double-precision floating-point
data. (The previous discussion about how to save integer registers
applies here as well.)

6. The final step in creating the procedure’s prologue is to mark its end
as follows:

.prologue flag

The flag is set to 1 if the prologue contains an ldgp instruction (see
step 2); otherwise, it is set to zero.

7. This step describes parameter passing: how to access arguments
passed into your procedure and how to pass arguments correctly to
other procedures. For information on high-level, language-specific
constructs (call-by-name, call-by-value, string or structure passing), see
the programmer’s guides for the high-level languages used to write the
procedures that interact with your program.

General registers $16 to $21 and floating-point registers $f16 to $f21
are used for passing the first six arguments. All nonfloating-point
arguments in the first six arguments are passed in general registers.
All floating-point arguments in the first six arguments are passed in
floating-point registers.

Stack space is used for passing the seventh and subsequent arguments.
The stack space allocated to each argument is an 8-byte multiple and is
aligned on an 16-byte boundary.

Programming Considerations 6–9

Table 6–3 summarizes the location of procedure arguments in the
register or stack.

Table 6–3: Argument Locations
Argument
Number

Integer Register Floating-Point
Register

Stack

1 $16 (a0) $f16

2 $17 (a1) $f17

3 $18 (a2) $f18

4 $19 (a3) $f19

5 $20 (a4) $f20

6 $21 (a5) $f21

7-n 0($sp)..(n -7)*8($sp)

8. On procedure exit, you must restore registers that were saved in step 5.
To restore general purpose registers:

ldq reg,framesize+frameoffset+N($sp)

To restore the floating-point registers:

ldt reg,framesize+frameoffset+N($sp)

(See step 5 for a discussion of the value of N.)

9. Get the return address:

ldq $26,framesize+frameoffset($sp)

10. Clean up the stack:

lda $sp,framesize($sp)

11. Return:

ret $31,($26),1

12. End the procedure:

.end procedurename

6.3.4 Coding Examples

The examples in this section show procedures written in C and the
equivalent procedures written in assembly language.

Example 6–1 shows a nonleaf procedure. Note that it creates a stack frame
and saves its return address. It saves its return address because it must put
a new return address into register $26 when it makes a procedure call.

6–10 Programming Considerations

Example 6–1: Nonleaf Procedure

int
nonleaf(i, j)
int i, *j;
{
int abs();
int temp;

temp = i - *j;
return abs(temp);
}

.globl nonleaf
1 int
2 nonleaf(i, j)
3 int i, *j;
4 {

.ent nonleaf 2
nonleaf:

ldgp $gp, 0($27)
lda $sp, -16($sp)
stq $26, 0($sp)
.mask 0x04000000, -16
.frame $sp, 16, $26, 0
.prologue 1
addl $16, 0, $18

5 int abs();
6 int temp;
7
8 temp = i - *j;

ldl $1, 0($17)
subl $18, $1, $16

9 return abs(temp);
jsr $26, abs
ldgp $gp, 0($26)
ldq $26, 0($sp)
lda $sp, 16($sp)
ret $31, ($26), 1
.end nonleaf

Example 6–2 shows a leaf procedure that does not require stack space for
local variables. Note that it does not create a stackframe and does not save a
return address.

Programming Considerations 6–11

Example 6–2: Leaf Procedure Without Stack Space for Local Variables

int
leaf(p1, p2)
int p1, p2;
{
return (p1 > p2) ? p1 : p2;
}

.globl leaf
1 leaf(p1, p2)
2 int p1, p2;
3 {

.ent leaf 2
leaf:

ldgp $gp, 0($27)
.frame $sp, 0, $26, 0
.prologue 1
addl $16, 0, $16
addl $17, 0, $17

4 return (p1 > p2) ? p1 : p2;
bis $17, $17, $0
cmplt $0, $16, $1
cmovne $1, $16, $0
ret $31, ($26), 1
.end leaf

Example 6–3 shows a leaf procedure that requires stack space for local
variables. Note that it creates a stack frame but does not save a return
address.

Example 6–3: Leaf Procedure with Stack Space for Local Variables

int
leaf_storage(i)
int i;
{
int a[16];
int j;
for (j = 0; j < 10; j++)

a[j] = ’0’ + j;
return a[i];
}

.globl leaf_storage
1 int
2 leaf_storage(i)
3 int i;

6–12 Programming Considerations

Example 6–3: Leaf Procedure with Stack Space for Local Variables (cont.)

4 {
.ent leaf_storage 2

leaf_storage:
ldgp $gp, 0($27)
lda $sp, -80($sp)
.frame $sp, 80, $26, 0
.prologue 1
addl $16, 0, $1

5 int a[16];
6 int j;
7 for (j = 0; j < 10; j++)

ldil $2, 48
stl $2, 16($sp)
ldil $3, 49
stl $3, 20($sp)
ldil $0, 2
lda $16, 24($sp)

$32:
8 a[j] = ’0’ + j;

addl $0, 48, $4
stl $4, 0($16)
addl $0, 49, $5
stl $5, 4($16)
addl $0, 50, $6
stl $6, 8($16)
addl $0, 51, $7
stl $7, 12($16)
addl $0, 4, $0
addq $16, 16, $16
subq $0, 10, $8
bne $8, $32

9 return a[i];
mull $1, 4, $22
addq $22, $sp, $0
ldl $0, 16($0)
lda $sp, 80($sp)
ret $31, ($26), 1
.end leaf_storage

6.4 Developing Code for Procedure Calls

The rules and parameter requirements for passing control and exchanging
data between procedures written in assembly language and procedures
written in other languages are varied and complex. The simplest approach

Programming Considerations 6–13

to coding an interface between an assembly procedure and a procedure
written in a high-level language is to do the following:

• Use the high-level language to write a skeletal version of the procedure
that you plan to code in assembly language.

• Compile the program using the -S option, which creates an assembly
language (.s) version of the compiled source file.

• Study the assembly language listing and then, using the code in the
listing as a guideline, write your assembly language code.

Section 6.4.1 and Section 6.4.2 describe techniques you can use to create
interfaces between procedures written in assembly language and procedures
written in a high-level language. The examples show what to look for in
creating your interface. Details such as register numbers will vary according
to the number, order, and data types of the arguments. In writing your
particular interface, you should write and compile realistic examples of the
code you want to write in assembly language.

6.4.1 Calling a High-Level Language Procedure

The following steps show an approach to use in writing an assembly
language procedure that calls atof(3), a procedure written in C that converts
ASCII characters to numbers:

1. Write a C program that calls atof. Pass global variables instead
of local variables; this makes them easy to recognize in the assembly
language version of the C program (and ensures that optimization does
not remove any of the code on the grounds that it has no effect).

The following C program is an example of a program that calls atof:

char c[] = "3.1415";
double d, atof();
float f;
caller()

{
d = atof(c);
f = (float)atof(c);
}

2. Compile the program using the following compiler options:

cc -S -O caller.c

The -S option causes the compiler to produce the assembly language
listing; the -O option, though not required, reduces the amount of code
generated, making the listing easier to read.

6–14 Programming Considerations

3. After compilation, examine the file caller.s. The comments in the file
show how the parameters are passed, the execution of the call, and how
the returned values are retrieved:

.globl c

.data
c:

.ascii "3.1415\X00"

.comm d 8

.comm f 4

.text

.globl caller
1 char c[] = "3.1415";
2 double d, atof();
3 float f;
4 caller()
5 {

.ent caller 2
caller:

ldgp $gp, 0($27)
lda $sp, -16($sp)
stq $26, 0($sp)
.mask 0x04000000, -16
.frame $sp, 16, $26, 0
.prologue 1

6 d = atof(c);
lda $16, c
jsr $26, atof
ldgp $gp, 0($26)
stt $f0, d

7 f = (float)atof(c);
lda $16, c
jsr $26, atof
ldgp $gp, 0($26)
cvtts $f0, $f10
sts $f10, f

8 }
ldq $26, 0($sp)
lda $sp, 16($sp)
ret $31, ($26), 1
.end caller

6.4.2 Calling an Assembly Language Procedure

The following steps show an approach to use in writing an assembly language
procedure that can be called by a procedure written in a high-level language:

1. Using a high-level language, write a facsimile of the assembly language
procedure you want to call. In the body of the procedure, write
statements that use the same arguments you intend to use in the final

Programming Considerations 6–15

assembly language procedure. Copy the arguments to global variables
instead of local variables to make it easy for you to read the resulting
assembly language listing.

The following C program is a facsimile of the assembly language
program:

typedef char str[10];
typedef int boolean;

float global_r;
int global_i;
str global_s;
boolean global_b;

boolean callee(float *r, int i, str s)
{
global_r = *r;
global_i = i;
global_s[0] = s[0];
return i == 3;
}

2. Compile the program using the following compiler options:

cc -S -O callee.c

The -S option causes the compiler to produce the assembly language
listing; the -O option, though not required, reduces the amount of code
generated, making the listing easier to read.

3. After compilation, examine the file callee.s. The comments in the file
show how the parameters are passed, the execution of the call, and how
the returned values are retrieved:

.comm global_r 4

.comm global_i 4

.comm global_s 10

.comm global_b 4

.text

.globl callee
10 {

.ent callee 2
callee:

ldgp $gp, 0($27)
.frame $sp, 0, $26, 0
.prologue 1
addl $17, 0, $17

11 global_r = *r;
lds $f10, 0($16)
sts $f10, global_r

12 global_i = i;
stl $17, global_i

6–16 Programming Considerations

13 global_s[0] = s[0];
ldq_u $1, 0($18)
extbl $1, $18, $1
.set noat
lda $28, global_s
ldq_u $2, 0($28)
insbl $1, $28, $3
mskbl $2, $28, $2
bis $2, $3, $2
stq_u $2, 0($28)
.set at

14 return i == 3;
cmpeq $17, 3, $0
ret $31, ($26), 1
.end callee

6.5 Memory Allocation

The default memory allocation scheme used by the Alpha system gives
every process two storage areas that can grow without bounds. A process
exceeds virtual storage only when the sum of the two areas exceeds virtual
storage space. By default, the linker and assembler use the scheme shown in
Figure 6–3.

Programming Considerations 6–17

Figure 6–3: Default Layout of Memory (User Program View)

Not accessible

Can be mapped by program

Heap
(grows up)

bss segment

Data segment

Text segment

Stack
(grows toward zero)

Can be mapped by program

Not accessible
(by convention)

(64 KB)

0xffff ffff ffff ffff

0xffff fc00 0000 0000
0xffff fbff ffff ffff

0x0000 0400 0000 0000
0x0000 03ff ffff ffff

$gp

$sp

0x0000 0000 0001 0000
0x0000 0000 0000 ffff

0x0000 0000 0000 0000

1

2

3

4

Reserved for kernel

1

0x0000 0001 2000 0000
0x0000 0001 1fff ffff

Reserved for dynamic loader

Reserved for shared libraries

0x0000 03ff 8000 0000
0x0000 03ff 7fff ffff

ZK-0738U-AI

1. This area is not allocated until a user requests it. (The same behavior is
observed in System V shared memory regions.)

2. The heap is reserved for sbrk and brk system calls, and it is not always
present.

3. See the Symbol Table/Object File Specification manual for details on
the sections contained within the bss, data, and text segments. (This
manual is available as an HTML or PDF document on the Tru64 UNIX
Version 5.1 Documentation CD-ROM; it is not available in hardcopy.)

4. The stack is used for local data in C programs.

6–18 Programming Considerations

A
Instruction Summaries

The tables in this appendix summarize the assembly language instruction
set:

• Table A–1 summarizes the main instruction set.

• Table A–2 summarizes the floating-point instruction set.

• Table A–3 summarizes the rounding and trapping modes supported by
some floating-point instructions.

Most of the assembly language instructions translate into single instructions
in machine code.

The tables in this appendix show the format of each instruction in the main
instruction set and the floating-point instruction set. The tables list the
instruction names and the forms of operands that can be used with each
instruction. The specifiers used in the tables to identify operands have the
following meanings:

Operand Specifier Description

address A symbolic expression whose effective value
is used as an address.

b_reg Base register. A register containing a base address
to which is added an offset (or displacement)
value to produce an effective address.

d_reg Destination register. A register that receives
a value as a result of an operation.

d_reg/s_reg One register that is used as both a destination
register and a source register.

label A label that identifies a location in a program.

no_operands No operands are specified.

offset An immediate value that is added to the contents
of a base register to calculate an effective address.

palcode A value that determines the operation performed
by a PAL instruction.

s_reg, s_reg1, s_reg2 Source registers. Registers whose contents
are to be used in an operation.

Instruction Summaries A–1

Operand Specifier Description

val_expr An expression whose value is used as
an absolute value.

val_immed An immediate value that is to be used
in an operation.

jhint An address operand that provides a hint of where
a jmp or jsr instruction will transfer control.

rhint An immediate operand that provides software
with a hint about how a ret or jsr_coroutine
instruction is used.

The tables in this appendix are segmented into groups of instructions that
have the same operand options; the operands specified within a particular
segment of the table apply to all of the instructions contained in that
segment.

Table A–1: Main Instruction Set Summary
Instruction Mnemonic Operands

Load Address ldaa

Load Byte ldb

Load Byte Unsigned ldbu

Load Word ldw

Load Word Unsigned ldwu

Load Sign Extended Longword ldla

Load Sign Extended Longword Locked ldl_la

Load Quadword ldqa

Load Quadword Locked ldq_la

Load Quadword Unaligned ldq_ua

Load Unaligned Word uldw

Load Unaligned Word Unsigned uldwu

Load Unaligned Longword uldl

Load Unaligned Quadword uldq

d_reg, address

Store Byte stb s_reg, address

Store Word stw

Store Longword stla

Store Longword Conditional stl_ca

Store Quadword stqa

A–2 Instruction Summaries

Table A–1: Main Instruction Set Summary (cont.)

Instruction Mnemonic Operands

Store Quadword Conditional stq_ca (See previous page)

Store Quadword Unaligned stq_ua

Store Unaligned Word ustw

Store Unaligned Longword ustl

Store Unaligned Quadword ustq

Load Address High ldaha

Load Global Pointer ldgp

d_reg,offset (b_reg)

Load Immediate Longword ldil d_reg,val_expr

Load Immediate Quadword ldiq

Branch if Equal to Zero beq s_reg,label

Branch if Not Equal to Zero bne

Branch if Less Than Zero blt

Branch if Less Than or Equal to Zero ble

Branch if Greater Than Zero bgt

Branch if Greater Than or Equal to Zero bge

Branch if Low Bit is Clear blbc

Branch if Low Bit is Set blbs

Branch br

Branch to Subroutine bsr

d_reg,label or label

Jump jmpa

Jump to Subroutine jsra

d_reg,(s_reg),jhint
or d_reg,(s_reg) or
(s_reg),jhint or (s_reg) or
d_reg,address or address

Return from Subroutine ret

Jump to Subroutine Return jsr_coroutinea

d_reg,(s_reg),rhint
or d_reg,(s_reg) or
d_reg,rhint or d_reg or
(s_reg),rhint or (s_reg) or
rhint or no_operands

Architecture Mask amask s_reg,d_reg or
val_immed,d_reg

Clear clr d_reg

Implementation Version implver

Instruction Summaries A–3

Table A–1: Main Instruction Set Summary (cont.)

Instruction Mnemonic Operands

Absolute Value Longword absl

Absolute Value Quadword absq

Move mov

Negate Longword (without overflow) negl

Negate Longword (with overflow) neglv

Negate Quadword (without overflow) negq

Negate Quadword (with overflow) negqv

Logical Complement (NOT) not

Sign-Extension Byte sextb

Sign-Extension Longword sextl

Sign-Extension Word sextw

s_reg,d_reg or d_reg/s_reg
or val_immed,d_reg

Add Longword (without overflow) addl

Add Longword (with overflow) addlv

Add Quadword (without overflow) addq

Add Quadword (with overflow) addqv

Scaled Longword Add by 4 s4addl

Scaled Quadword Add by 4 s4addq

Scaled Longword Add by 8 s8addl

Scaled Quadword Add by 8 s8addq

s_reg1,s_reg2,d_reg or
d_reg/s_reg1,s_reg2 or
s_reg1,val_immed,d_reg or
d_reg/s_reg1,val_immed

Compare Signed Quadword Equal cmpeq

Compare Signed Quadword Less Than cmplt

Compare Signed Quadword Less
Than or Equal

cmple

Compare Unsigned Quadword Less Than cmpult

Compare Unsigned Quadword Less
Than or Equal

cmpule

Multiply Longword (without overflow) mull

Multiply Longword (with overflow) mullv

Multiply Quadword (without overflow) mulq

Multiply Quadword (with overflow) mulqv

Subtract Longword (without overflow) subl

Subtract Longword (with overflow) sublv

A–4 Instruction Summaries

Table A–1: Main Instruction Set Summary (cont.)

Instruction Mnemonic Operands

Subtract Quadword (without overflow) subq (See previous page)

Subtract Quadword (with overflow) subqv

Scaled Longword Subtract by 4 s4subl

Scaled Quadword Subtract by 4 s4subq

Scaled Longword Subtract by 8 s8subl

Scaled Quadword Subtract by 8 s8subq

Scaled Quadword Subtract by 8 s8subq

Unsigned Quadword Multiply High umulh

Divide Longword divl

Divide Longword Unsigned divlu

Divide Quadword divq

Divide Quadword Unsigned divqu

Longword Remainder reml

Longword Remainder Unsigned remlu

Quadword Remainder remq

Quadword Remainder Unsigned remqu

Logical Product (AND) and

Logical Sum (OR) bis

Logical Sum (OR) or

Logical Difference (XOR) xor

Logical Product with Complement (ANDNOT) bic

Logical Product with Complement (ANDNOT) andnot

Logical Sum with Complement (ORNOT) ornot

Logical Equivalence (XORNOT) eqv

Logical Equivalence (XORNOT) xornot

Move if Equal to Zero cmoveq

Move if Not Equal to Zero cmovne

Move if Less Than Zero cmovlt

Move if Less Than or Equal to Zero cmovle

Move if Greater Than Zero cmovgt

Move if Greater Than or Equal to Zero cmovge

Move if Low Bit Clear cmovlbc

Instruction Summaries A–5

Table A–1: Main Instruction Set Summary (cont.)

Instruction Mnemonic Operands

Move if Low Bit Set cmovlbs (See previous page)

Shift Left Logical sll

Shift Right Logical srl

Shift Right Arithmetic sra

Compare Byte cmpbge

Extract Byte Low extbl

Extract Word Low extwl

Extract Longword Low extll

Extract Quadword Low extql

Extract Word High extwh

Extract Longword High extlh

Extract Quadword High extqh

Insert Byte Low insbl

Insert Word Low inswl

Insert Longword Low insll

Insert Quadword Low insql

Insert Word High inswh

Insert Longword High inslh

Insert Quadword High insqh

Mask Byte Low mskbl

Mask Word Low mskwl

Mask Longword Low mskll

Mask Quadword Low mskql

Mask Word High mskwh

Mask Longword High msklh

Mask Quadword High mskqh

Zero Bytes zap

Zero Bytes NOT zapnot

Call Privileged Architecture Library call_pal palcode

Prefetch Data fetch offset (b_reg)

Prefetch Data, Modify Intent fetch_m

Read Process Cycle Counter rpcc d_reg or d_reg, reg

A–6 Instruction Summaries

Table A–1: Main Instruction Set Summary (cont.)

Instruction Mnemonic Operands

No Operation nop no_operands

Universal No Operation unop

Trap Barrier trapb

Exception Barrier excb

Memory Barrier mb

Write Memory Barrier wmb

Count Leading Zeros ctlz s_reg, d_reg

Count Population ctpop

Count Trailing Zeros cttz

a In addition to the normal operands that can be specified with this instruction, relocation operands can also be specified
(see Section 2.6.4).

A number of the floating-point instructions in Table A–2 support qualifiers
that control rounding and trapping modes. Table notes identify the qualifiers
that can be used with a particular instruction. (The notes also identify the
instructions on which relocation operands can be specified.)

Qualifiers are appended as suffixes to the particular instructions that
support them; for example, the instruction cvtdg with the sc qualifier
would be coded cvtdgsc.

The qualifier suffixes consist of one or more characters, with each character
identifying a particular rounding or trapping mode. Table A–3 defines the
rounding or trapping modes associated with each character.

Table A–2: Floating-Point Instruction Set Summary
Instruction Mnemonic Operands

Load F_Floating ldfa d_reg,address

Load G_Floating (Load D_Floating) ldga

Load S_Floating (Load Longword) ldsa

Load T_Floating (Load Quadword) ldta

Store F_Floating stfa s_reg,address

Store G_Floating (Store D_Floating) stga

Store S_Floating (Store Longword) stsa

Store T_Floating (Store Quadword) stta

Load Immediate F_Floating ldif d_reg, val_expr

Load Immediate D_Floating ldid

Instruction Summaries A–7

Table A–2: Floating-Point Instruction Set Summary (cont.)

Instruction Mnemonic Operands

Load Immediate G_Floating ldig

Load Immediate S_Floating ldis

Load Immediate T_Floating ldit (See previous page)

Branch Equal to Zero fbeq

Branch Not Equal to Zero fbne

Branch Less Than Zero fblt

Branch Less Than or Equal to Zero fble

Branch Greater Than Zero fbgt

Branch Greater Than or Equal to Zero fbge

s_reg, label or label

Floating Clear fclr d_reg

Floating Move fmov

Floating Negate fneg

Floating Absolute Value fabs

Negate F_Floating negfb

Negate G_Floating neggb

Negate S_Floating negsc

Negate T_Floating negtc

s_reg, d_reg or
d_reg/s_reg

Copy Sign cpys s_reg1, s_reg2, d_reg
or d_reg/s_reg1,
s_reg2

Copy Sign Negate cpysn

Copy Sign and Exponent cpyse

Move if Equal to Zero fcmoveq

Move if Not Equal to Zero fcmovne

Move if Less Than Zero fcmovlt

Move if Less Than or Equal to Zero fcmovle

Move if Greater Than Zero fcmovgt

Move if Greater Than or Equal to Zero fcmovge

Add F_Floating addfd

Add G_Floating addgd

Add S_Floating addse

Add T_Floating addte

Compare G_Floating Equal cmpgeqb

A–8 Instruction Summaries

Table A–2: Floating-Point Instruction Set Summary (cont.)

Instruction Mnemonic Operands

Compare G_Floating Less Than cmpgltb

Compare G_Floating Less Than or Equal cmpgleb

Compare T_Floating Equal cmpteqc (See previous page)

Compare T_Floating Less Than cmptltc

Compare T_Floating Unordered cmptunc

Compare T_Floating Less Than or Equal cmptlec

Divide F_Floating divfd

Divide G_Floating divgd

Divide S_Floating divse

Divide T_Floating divte

Multiply F_Floating mulfd

Multiply G_Floating mulgd

Multiply S_Floating mulse

Multiply T_Floating multe

Subtract F_Floating subfd

Subtract G_Floating subgd

Subtract S_Floating subse

Subtract T_Floating subte

Convert Quadword to Longword cvtqlf

Convert Longword to Quadword cvtlq

Convert G_Floating to Quadword cvtgqg

Convert T_Floating to Quadword cvttqh

Convert Quadword to F_Floating cvtqfi

Convert Quadword to G_Floating cvtqgi

Convert Quadword to S_Floating cvtqsj

Convert Quadword to T_Floating cvtqtj

Convert D_Floating to G_Floating cvtdgd

Convert G_Floating to D_Floating cvtgdd

Convert G_Floating to F_Floating cvtgfd

Convert T_Floating to S_Floating cvttse

Convert S_Floating to T_Floating cvtstb

s_reg, d_reg or
d_reg/s_reg

Move From FP Control Register mf_fpcr d_reg

Instruction Summaries A–9

Table A–2: Floating-Point Instruction Set Summary (cont.)

Instruction Mnemonic Operands

Move To FP Control Register mt_fpcr s_reg

Floating No Operation fnop no_operands

a In addition to the normal operands that can be specified with this instruction, relocation operands can also be specified
(see Section 2.6.4).
b s
c su
d c, u, uc, s, sc, su, suc
e c, m, d, u, uc, um, ud, su, suc, sum, sud, sui, suic, suim, suid
f sv, v
g c, v, vc, s, sc, sv, svc
h c, v, vc, sv, svc, svi, svic, d, vd, svd, svid
i c
j c, m, d, sui, suic, suim, suid

See the text immediately preceding Table A–2 for a description of the table
notes.

Table A–3: Rounding and Trapping Modes

Suffix Description

(no suffix) Normal rounding

c Chopped rounding

d Dynamic rounding

m Minus infinity rounding

s Software completion

u Underflow trap enabled

v Integer overflow trap enabled

i Inexact trap enabled

A–10 Instruction Summaries

B
32-Bit Considerations

The Alpha architecture is a quadword (64-bit) architecture, with limited
backward compatibility for longword (32-bit) operations. The Alpha
architecture’s design philosophy for longword operations is to use the
quadword instructions wherever possible and to include specialized longword
instructions for high-frequency operations.

B.1 Canonical Form

Longword operations deal with longword data stored in canonical form in
quadword registers. The canonical form has the longword data in the low 32
bits (0-31) of the register, with bit 31 replicated in the high 32 bits (32-63).
Note that the canonical form is the same for both signed and unsigned
longword data.

To create a canonical form operand from longword data, use the ldl, ldl_l,
or uldl instruction.

To create a canonical form operand from a constant, use the ldil instruction.
The ldil instruction is a macro instruction that expands into a series of
instructions, including the lda and ldah instructions.

B.2 Longword Instructions

The Alpha architecture includes the following longword instructions:

• Load Longword (ldl)

• Load Longword Locked (ldl_l)

• Store Longword (stl)

• Store Longword Conditional (stl_c)

• Add Longword (addl, addlv)

• Subtract Longword (subl, sublv)

• Multiply Longword (mull, mullv)

• Scaled Longword Add (s4addl, s8addl)

• Scaled Longword Subtract (s4subl, s8subl)

32-Bit Considerations B–1

In addition, the assembler provides the following longword macro
instructions:

• Divide Longword (divl, divlu)

• Remainder Longword (reml, remlu)

• Negate Longword (negl, neglv)

• Unaligned Load Longword (uldl)

• Load Immediate Longword (ldil)

• Absolute Value Longword (absl)

• Sign-Extension Longword (sextl)

All longword instructions, with the exception of stl and stl_c, generate
results in canonical form.

All longword instructions that have source operands produce correct results,
regardless of whether the data items in the source registers are in canonical
form.

See Chapter 3 for a detailed description of the longword instructions.

B.3 Quadword Instructions for Longword Operations

The following quadword instructions, if presented with two canonical
longword operands, produce a canonical longword result:

• Logical AND (and)

• Logical OR (bis)

• Logical Exclusive OR (xor)

• Logical OR NOT (ornot)

• Logical Equivalence (eqv)

• Conditional Move (cmovxx)

• Compare (cmpxx)

• Conditional Branch (bxx)

• Arithmetic Shift Right (sra)

Note that these instructions, unlike the longword instructions, must have
operands in canonical form to produce correct results.

See Chapter 3 for a detailed description of the quadword instructions.

B–2 32-Bit Considerations

B.4 Logical Shift Instructions

No instructions, either machine or macro, exist for performing logical shifts
on canonical longwords.

To perform a logical shift left, use the following instruction sequence:

sll $rx, xx, $ry # noncanonical result
addl $ry, 0, $ry # sign-extend bit-31

To perform a logical shift right, use the following instruction sequence:

zap $rx, 0xf0, $ry # noncanonical result
srl $ry, xx, $ry # if xx >= 1, bring in zeros
addl $ry, 0, $ry # sign-extend bit-31

Note that the addl instruction is not needed if the shift count in the previous
sequence is guaranteed to be nonzero.

B.5 Conversions to Quadword

A signed longword value in canonical form is also a proper signed quadword
value and no conversions are needed.

An unsigned longword value in canonical form is not a proper unsigned
quadword value. To convert an unsigned longword to a quadword, use the
following instruction sequence:

zap $rx, 0xf0, $ry # clear bits 32-63

B.6 Conversions to Longword

To convert a quadword value to either a signed or unsigned longword, use
the following instruction sequence:

addl $rx, 0, $ry # sign-extend bit-31

32-Bit Considerations B–3

C
Basic Machine Definition

The assembly language instructions described in this manual are a superset
of the actual machine-code instructions. Generally, the assembly language
instructions match the machine-code instructions; however, in some cases
the assembly language instructions are macros that generate more than one
machine-code instruction (the division instructions in assembly language
are examples). This appendix describes the assembly language instructions
that generate more than one machine-code instruction.

You can, in most instances, consider the assembly language instructions as
machine-code instructions; however, for routines that require tight coding
for performance reasons, you must be aware of the assembly language
instructions that generate more than one machine-code instruction.

C.1 Implicit Register Use

Register $28 ($at) is reserved as a temporary register for use by the
assembler.

Some assembly language instructions require additional temporary
registers. For these instructions, the assembler uses one or more of the
general-purpose temporary registers (t0 − t12). The following table lists
the instructions that require additional temporary registers and the specific
registers that they use:

Instruction Registers Used

ldb AT,t9

ldbu AT,t9a

ldw AT,t9

ldwu AT,t9a

stb AT,t9,t10a

stw AT,t9,t10a

ustw AT,t9,t10,t11,t12

ustl AT,t9,t10,t11,t12

ustq AT,t9,t10,t11,t12

uldw AT,t9,t10

Basic Machine Definition C–1

Instruction Registers Used

uldwu AT,t9,t10

uldl AT,t9,t10

uldq AT,t9,t10

divl AT,t9,t10,t11,t12

divq AT,t9,t10,t11,t12

divlu AT,t9,t10,t11,t12

divqu AT,t9,t10,t11,t12

reml AT,t9,t10,t11,t12

remq AT,t9,t10,t11,t12

remlu AT,t9,t10,t11,t12

remqu AT,t9,t10,t11,t12
a Use of registers depends on the setting of the .arch directive or the −arch flag on the cc command line.

The registers that equate to the software names (from regdef.h) in the
preceding table are as follows:

Software Name Register

AT $28 or $at

t9 $23

t10 $24

t11 $25

t12 or pv $27

______________________ Note _______________________

The div and rem instructions destroy the contents of t12 only if
the third operand is a register other than t12. See Section C.5
for more details.

C.2 Addresses
If you use an address as an operand and it references a data item that does
not have an absolute address in the range -32768 to 32767, the assembler
may generate a machine-code instruction to load the address of the data
(from the literal address section) into $at.

The assembler’s ldgp (load global pointer) instruction generates an lda and
ldah instruction. The assembler requires the ldgp instruction because
ldgp couples relocation information with the instruction.

C–2 Basic Machine Definition

C.3 Immediate Values

If you use an immediate value as an operand and the immediate value falls
outside the range -32768 to 32767 for the ldil and ldiq instructions or
the range 0 − 255 for other instructions, multiple machine instructions are
generated to load the immediate value into the destination register or $at.

C.4 Load and Store Instructions

On most processors that implement the Alpha architecture, loading and
storing unaligned data or data less than 32 bits is done with multiple
machine-code instructions. Except on EV56 Alpha processors, the following
assembler instructions generate multiple machine-code instructions:

• Load Byte (ldb)

• Load Byte Unsigned (ldbu)

• Load Word (ldw)

• Load Word Unsigned (ldwu)

• Unaligned Load Word (uldw)

• Unaligned Load Word Unsigned (uldwu)

• Unaligned Load Longword (uldl)

• Unaligned Load Quadword (uldq)

• Store Byte (stb)

• Store Word (stw)

• Unaligned Store Word (ustw)

• Unaligned Store Longword (ustl)

• Unaligned Store Quadword (ustq)

Signed loads may require one more instruction than an unsigned load.

On EV56 Alpha processors, the following instructions from the preceding list
generate a single instruction:

• Load Byte Unsigned (ldbu)

• Load Word Unsigned (ldwu)

Basic Machine Definition C–3

• Store Byte (stb)

• Store Word (stw)

C.5 Integer Arithmetic Instructions

Multiply operations using constant powers of two are turned into sll or
scaled add instructions.

There are no machine instructions for performing integer division (divl,
divlu, divq, and divqu) or remainder operations (reml, remlu, remq,
and remqu). The machine instructions generated for these assembler
instructions depend on the operands specified on the instructions.

Division and remainder operations involving constant values are replaced
by an instruction sequence that depends on the data type of the numerator
and the value of the constant.

Division and remainder operations involving nonconstant values are
replaced with a procedure call to a library routine to perform the operation.
The library routines are in the C run-time library (libc). The library
routines use a nonstandard parameter passing mechanism. The first
operand is passed in register t10 and the second operand is passed in t11.
The result is returned in t12. If the operands specified are other than
those just described, the assembler moves them to the correct registers.
The library routines expect the return address in t9; therefore, a routine
that uses divide instructions does not need to save register ra just because
it uses divide instructions.

The absl and absq (absolute value) instructions generate two machine
instructions.

C.6 Floating-Point Load Immediate Instructions

There are no floating-point instructions that accept an immediate value
(except for 0.0). Whenever the assembler encounters a floating-point load
immediate instruction, the immediate value is stored in the data section and
a load instruction is generated to load the value.

C.7 One-to-One Instruction Mappings

Some assembler instructions generate single machine instructions. Such
assembler instructions are sometimes referred to as pseudoinstructions.
The following table lists these assembler instructions and their equivalent
machine instructions:

C–4 Basic Machine Definition

Assembler Instruction Machine Instruction

andnot $rx,$ry,$rz bic $rx,$ry,$rz

clr $rx bis $31,$31,$rx

fabs $fx,$fy cpys $f31,$fx,$fy

fclr $fx cpys $f31,$f31,$fx

fmov $fx,$fy cpys $fx,$fx,$fy

fneg $fx,$fy cpysn $fx,$fx,$fy

fnop cpys $f31,$f31,$f31

mov $rx,$ry bis $rx,$rx,$ry

mov val_immed,$rx bis $31,val_immed,$rx

negf $fx,$fy subf $f31,$fx,$fy

negfs $fx,$fy subfs $f31,$fx,$fy

negg $fx,$fy subg $f31,$fx,$fy

neggs $fx,$fy subgs $f31,$fx,$fy

negl $rx,$ry subl $31,$rx,$ry

neglv $rx,$ry sublv $31,$rx,$ry

negq $rx,$ry subq $31,$rx,$ry

negqv $rx,$ry subqv $31,$rx,$ry

negs $fx,$fy subs $f31,$fx,$fy

negssu $fx,$fy subssu $f31,$fx,$fy

negt $fx,$fy subt $f31,$fx,$fy

negtsu $fx,$fy subtsu $f31,$fx,$fy

nop bis $31,$31,$31

not $rx,$ry ornot $31,$rx,$ry

or $rx,$ry,$rz bis $rx,$ry,$rz

sextl $rx,$ry addl $rx,0,$ry

unop ldq_u $31,0($sp)

xornot $rx,$ry,$rz eqv $rx,$ry,$rz

Basic Machine Definition C–5

D
PALcode Instruction Summaries

This appendix summarizes the Privileged Architecture Library (PALcode)
instructions that are required to support an Alpha system.

By including the file pal.h (use #include <alpha/pal.h>) in your
assembly language program, you can use the symbolic names for the
PALcode instructions.

D.1 Unprivileged PALcode Instructions

Table D–1 describes the unprivileged PALcode instructions.

Table D–1: Unprivileged PALcode Instructions
Symbolic Name Number Operation and Description

PAL_bpt 0x80 Break Point Trap — switches mode to kernel
mode, builds a stack frame on the kernel stack,
and dispatches to the breakpoint code.

PAL_bugchk 0x81 Bugcheck — switches mode to kernel mode,
builds a stack frame on the kernel stack, and
dispatches to the breakpoint code.

PAL_callsys 0x83 System call — switches mode to kernel mode,
builds a callsys stack frame, and dispatches
to the system call code.

PAL_gentrap 0xaa Generate Trap — switches mode to kernel,
builds a stack frame on the kernel stack, and
dispatches to the gentrap code.

PAL_imb 0x86 I-Stream Memory Barrier — makes the I-cache
coherent with main memory.

PAL_rduniq 0x9e Read Unique — returns the contents of
the process unique register.

PAL_wruniq 0x9f Write Unique — writes the process
unique register.

D.2 Privileged PALcode Instructions

The privileged PALcode instructions can be called only from kernel mode.
They provide an interface to control the privileged state of the machine.

PALcode Instruction Summaries D–1

Table D–2 describes the privileged PALcode instructions.

Table D–2: Privileged PALcode Instructions
Symbolic Name Number Operation and Description

PAL_halt 0x00 Halt Processor — stops normal instruction
processing. Depending on the halt action
setting, the processor can either enter console
mode or the restart sequence.

PAL_rdps 0x36 Read Process Status — return the current
process status.

PAL_rdusp 0x3a Read User Stack Pointer — reads the user stack
pointer while in kernel mode and returns it.

PAL_rdval 0x32 Read System Value — reads a 64-bit per-processor
value and returns it.

PAL_rtsys 0x3d Return from System Call — pops the return
address, the user stack pointer, and the user
global pointer from the kernel stack. It then
saves the kernel stack pointer, sets mode to
user mode, enables interrupts, and jumps to
the address popped off the stack.

PAL_rti 0x3f Return from Trap, Fault, or Interrupt — pops
certain registers from the kernel stack. If the
new mode is user mode, the kernel stack is
saved and the user stack is restored.

PAL_swpctx 0x30 Swap Privileged Context — saves the current
process data in the current process control
block (PCB). Then it switches to the PCB and
loads the new process context.

PAL_swpipl 0x35 Swap IPL — returns the current IPL value
and sets the IPL.

PAL_tbi 0x33 TB Invalidate — removes entries from the
instruction and data translation buffers when
the mapping entries change.

PAL_whami 0x3c Who Am I — returns the process number
for the current processor. The processor
number is in the range 0 to the number of
processors minus one (0..numproc-1) that can
be configured into the system.

PAL_wrfen 0x2b Write Floating-Point Enable — writes a bit to
the floating-point enable register.

PAL_wrkgp 0x37 Write Kernel Global Pointer — writes the kernel
global pointer internal register.

PAL_wrusp 0x38 Write User Stack Pointer — writes a value to the
user stack pointer while in kernel mode.

D–2 PALcode Instruction Summaries

Table D–2: Privileged PALcode Instructions (cont.)

Symbolic Name Number Operation and Description

PAL_wrval 0x31 Write System Value — writes a 64-bit
per-processor value.

PAL_wrvptptr 0x2d Write Virtual Page Table Pointer — writes a
pointer to the virtual page table pointer (vptptr).

PALcode Instruction Summaries D–3

Index

A
absl instruction, 3–8, 3–10
absq instruction, 3–8, 3–10
addf instruction, 4–11, 4–12
addg instruction, 4–11, 4–12
addl instruction, 3–9, 3–10
addlv instruction, 3–9, 3–10
addq instruction, 3–9, 3–10
addqv instruction, 3–9, 3–11
address formats, 2–12
addresses

special handling, C–2
adds instruction, 4–11, 4–12
addt instruction, 4–11, 4–12
.aent directive, 5–2
.align directive, 5–3
amask instruction, 3–24, 3–25
and instruction, 3–15
andnot instruction, 3–15, 3–16
.arch directive, 5–3
arithmetic instructions

floating-point instruction set, 4–10
main instruction set, 3–8

.ascii directive, 5–3

.asciiz directive, 5–3
assembler directives, 5–1

B
backslash escape character, 2–3
beq instruction, 3–19
bge instruction, 3–19, 3–20
bgt instruction, 3–19, 3–20
bic instruction, 3–15
big-endian

byte ordering, 1–2
bis instruction, 3–15
blbc instruction, 3–19, 3–20
blbs instruction, 3–19, 3–20
ble instruction, 3–19, 3–20
blt instruction, 3–19
bne instruction, 3–19
br instruction, 3–19, 3–20
bsr instruction, 3–19, 3–20
.bss section, 6–4
.byte directive, 5–4
byte ordering

big-endian, 1–2
little-endian, 1–2

byte-manipulation instructions
main instruction set, 3–21

C
C programs

-S compilation option, 6–14
call_pal instruction, 3–24, 3–25
calling conventions, 6–1
chopped rounding (IEEE), 4–6
chopped rounding (VAX), 4–6
clr instruction, 3–8
cmoveq instruction, 3–18
cmovge instruction, 3–18
cmovgt instruction, 3–18
cmovlbc instruction, 3–18
cmovlbs instruction, 3–18
cmovle instruction, 3–18
cmovlt instruction, 3–18
cmovne instruction, 3–18
cmpbge instruction, 3–21, 3–22

Index–1

cmpeq instruction, 3–17
cmpgeq instruction, 4–13, 4–14
cmpgle instruction, 4–13, 4–14
cmpglt instruction, 4–13, 4–14
cmple instruction, 3–17
cmplt instruction, 3–17
cmpteq instruction, 4–13, 4–14
cmptle instruction, 4–13, 4–14
cmptlt instruction, 4–13, 4–14
cmptun instruction, 4–13, 4–14
cmpule instruction, 3–17
cmpult instruction, 3–17
code optimization, 6–1
.comm directive, 5–4
comments, 2–1
compilation options

-S option, 6–14
constant

floating-point, 2–2
scalar, 2–2
string, 2–3

control instructions
floating-point instruction set, 4–15
main instruction set, 3–18

counters, 6–4
cpys instruction, 4–14, 4–15
cpyse instruction, 4–14, 4–15
cpysn instruction, 4–14, 4–15
ctlz instruction, 3–24, 3–26
ctpop instruction, 3–25, 3–26
cttz instruction, 3–25, 3–26
cvtdg instruction, 4–11, 4–13
cvtgd instruction, 4–11, 4–13
cvtgf instruction, 4–11, 4–13
cvtgq instruction, 4–11, 4–12
cvtlq instruction, 4–11, 4–12
cvtqf instruction, 4–11, 4–13
cvtqg instruction, 4–11, 4–13
cvtql instruction, 4–11, 4–12
cvtqs instruction, 4–11, 4–13
cvtqt instruction, 4–11, 4–13
cvtst instruction, 4–11, 4–13
cvttq instruction, 4–11, 4–12

cvtts instruction, 4–11, 4–13

D
.d_floating directive, 5–4
.data directive, 5–4
data type

types supported, 2–10
directive

assembler directives, 5–1
divf instruction, 4–11, 4–12
divg instruction, 4–11, 4–12
divl instruction, 3–9, 3–12
divlu instruction, 3–9, 3–12
divq instruction, 3–9, 3–13
divqu instruction, 3–9, 3–13
divs instruction, 4–11, 4–12
divt instruction, 4–11, 4–12
.double directive, 5–4
dynamic rounding mode, 4–3

E
.edata directive, 5–5
.eflag directive, 5–5
.end directive, 5–5
.endr directive, 5–5
.ent directive, 5–5
eqv instruction, 3–15, 3–16
.err directive, 5–5
escape character, backslash, 2–3
excb instruction, 3–24
exception

floating-point, 1–5
main processor, 1–5

expression operator, 2–8
expressions

operator precedence rules, 2–9
type propagation rules, 2–11

extbl instruction, 3–21, 3–22
.extended directive, 5–6
.extern directive, 5–6
extlh instruction, 3–21, 3–22

Index–2

extll instruction, 3–21, 3–22
extqh instruction, 3–21, 3–22
extql instruction, 3–21, 3–22
extwh instruction, 3–21, 3–22
extwl instruction, 3–21, 3–22

F
.f_floating directive, 5–6
fabs instruction, 4–10, 4–12
fbeq instruction, 4–16
fbge instruction, 4–15, 4–16
fbgt instruction, 4–15, 4–16
fble instruction, 4–15, 4–16
fblt instruction, 4–15, 4–16
fbne instruction, 4–15, 4–16
fclr instruction, 4–10, 4–12
fcmoveq instruction, 4–14, 4–15
fcmovge instruction, 4–14, 4–15
fcmovgt instruction, 4–14, 4–15
fcmovle instruction, 4–14, 4–15
fcmovlt instruction, 4–14, 4–15
fcmovne instruction, 4–14, 4–15
fetch instruction, 3–24, 3–25
fetch_m instruction, 3–24, 3–25
.file directive, 5–6
.float directive, 5–6
floating-point constant, 2–2
floating-point control register

(See FPCR)
floating-point directives

.d_floating (VAX D_floating), 5–4

.f_floating (VAX F_floating), 5–6

.g_floating (VAX G_floating), 5–7

.s_floating (IEEE single precision),
5–12

.t_floating (IEE double precision),
5–13

.x_floating (IEE quad precision),
5–14

floating-point exception traps,
4–4

floating-point instruction
qualifiers
rounding mode qualifiers, 4–7
trapping mode qualifiers, 4–7

floating-point instruction set, 4–1
floating-point instructions

arithmetic instructions, 4–10
control instructions, 4–15
load instructions, 4–9
move instructions, 4–14
relational instructions, 4–13
special-purpose instructions, 4–16
store instructions, 4–9

floating-point rounding modes,
4–5

.fmask directive, 5–6
fmov instruction, 4–14, 4–15
fneg instruction, 4–10, 4–12
fnop instruction, 4–16
FPCR, 4–3
.frame directive, 5–7

G
.g_floating directive, 5–7
global offset table

(See GOT)
.globl directive, 5–7
GOT, 6–2
.gprel32 directive, 5–7
.ident directive, 5–8

I
identifier

syntax, 2–1
immediate values, C–3
implicit register use, C–1
implver instruction, 3–24, 3–25
infinity

Index–3

rounding toward plus or minus
infinity, 4–6

insbl instruction, 3–21, 3–22
inslh instruction, 3–21, 3–23
insll instruction, 3–21, 3–23
insqh instruction, 3–21, 3–23
insql instruction, 3–21, 3–23
instruction qualifiers,

floating-point
rounding mode qualifiers, 4–7
trapping mode qualifiers, 4–7

instruction set summaries, A–1
inswh instruction, 3–21, 3–23
inswl instruction, 3–21, 3–23
integer arithmetic instructions,

C–4

J
jmp instruction, 3–19, 3–20
jsr instruction, 3–19, 3–20
jsr_coroutine instruction, 3–19,

3–20

K
keyword statement, 2–5

L
.lab directive, 5–8
label definition, 2–5
language interfaces, 6–2
.lcomm directive, 5–8, 6–4
lda instruction, 3–2, 3–4
ldah instruction, 3–3, 3–6
ldb instruction, 3–2, 3–4
ldbu instruction, 3–2, 3–4
ldf instruction, 4–9, 4–10
ldg instruction, 4–9, 4–10
ldgp instruction, 3–3, 3–6
ldid instruction, 4–9, 4–10
ldif instruction, 4–9, 4–10

ldig instruction, 4–9, 4–10
ldil instruction, 3–3, 3–6
ldiq instruction, 3–3, 3–6
ldis instruction, 4–9, 4–10
ldit instruction, 4–9, 4–10
ldl instruction, 3–2, 3–4t
ldl_l instruction, 3–2, 3–5
ldq instruction, 3–2, 3–5
ldq_l instruction, 3–2, 3–5
ldq_u instruction, 3–2, 3–5
lds instruction, 4–9, 4–10
ldt instruction, 4–9, 4–10
ldw instruction, 3–2, 3–4
ldwu instruction, 3–2, 3–4
linkage conventions

examples, 6–10
general, 6–3
language interfaces, 6–14
memory allocation, 6–17

.lit4 directive, 5–8

.lit8 directive, 5–9

.lita section, 6–5
little-endian

byte ordering, 1–2
load and store instructions, C–3
load instructions

floating-point instruction set, 4–9
main instruction set, 3–2

.loc directive, 5–9
logical instructions

descriptions of, 3–15
formats, 3–14

.long directive, 5–9

M
.mask directive, 5–9
mb instruction, 3–24, 3–25
mf_fpcr instruction, 4–16
minus infinity

rounding toward (IEEE), 4–6
mnemonic

definition, 2–5
mov instruction, 3–18

Index–4

move instructions
floating-point instruction set, 4–14
main instruction set, 3–17

mskbl instruction, 3–21, 3–23
msklh instruction, 3–21, 3–23
mskll instruction, 3–21, 3–23
mskqh instruction, 3–21, 3–23
mskql instruction, 3–21, 3–23
mskwh instruction, 3–21, 3–23
mskwl instruction, 3–21, 3–23
mt_fpcr instruction, 4–16
mulf instruction, 4–11, 4–12
mulg instruction, 4–11, 4–12
mull instruction, 3–9, 3–11
mullv instruction, 3–9, 3–11
mulq instruction, 3–9, 3–11
mulqv instruction, 3–9, 3–11
muls instruction, 4–11, 4–12
mult instruction, 4–11, 4–12

N
negf instruction, 4–10, 4–12
negg instruction, 4–10, 4–12
negl instruction, 3–8, 3–10
neglv instruction, 3–8, 3–10
negq instruction, 3–8, 3–10
negqv instruction, 3–8, 3–10
negs instruction, 4–10, 4–12
negt instruction, 4–10, 4–12
nop instruction, 3–24, 3–25
normal rounding (IEEE)

unbiased round to nearest, 4–6
normal rounding (VAX)

biased, 4–5
not instruction, 3–14, 3–15
null statement, 2–5

O
operator evaluation order

precedence rules, 2–9
operator, expression, 2–8
optimization

optimizing assembly code, 6–1
.option directive, 5–9
or instruction, 3–15
ornot instruction, 3–15, 3–16

P
PALcode

instruction summaries, D–1
performance

optimizing assembly code, 6–1
plus infinity

rounding toward (IEEE), 4–6
precedence rules

operator evaluation order, 2–9
program model

memory layout, 6–2
program optimization, 6–1
.prologue directive, 5–10
pseudoinstructions, C–4

Q
.quad directive, 5–10

R
.rconst directive, 5–10
.rdata directive, 5–10
register use, 6–3
registers

floating-point, 1–2, 6–4t
general, 1–1
integer, 1–1, 6–3

relational instructions
floating-point instruction set, 4–13
main instruction set, 3–16

relocation operand
syntax and use, 2–6

Index–5

reml instruction, 3–9, 3–13
remlu instruction, 3–9, 3–13
remq instruction, 3–9, 3–14
remqu instruction, 3–9, 3–14
.repeat directive, 5–10
ret instruction, 3–19, 3–20
rounding mode

chopped rounding (IEEE), 4–6
chopped rounding (VAX), 4–6
dynamic rounding qualifier, 4–3
floating-point instruction qualifiers,

4–7
floating-point rounding modes, 4–5
FPCR control, 4–3
normal rounding (IEEE, unbiased),

4–6
normal rounding (VAX, biased), 4–5
rounding toward minus infinity

(IEEE), 4–6
rounding toward plus infinity

(IEEE), 4–6
rpcc instruction, 3–24, 3–25

S
-S compilation option, 6–14
.s files, 6–14
.s_floating directive, 5–12
s4addl instruction, 3–9, 3–11
s4addq instruction, 3–9, 3–11
s4subl instruction, 3–9, 3–12
s4subq instruction, 3–9, 3–12
s8addl instruction, 3–9, 3–11
s8addq instruction, 3–9, 3–11
s8subl instruction, 3–9, 3–12
s8subq instruction, 3–9, 3–12
.save_ra directive, 5–11
.sbss section, 6–4
scalar constant, 2–2
.sdata directive, 5–11
.set directive, 5–11
sextb instruction, 3–8, 3–10
sextl instruction, 3–8, 3–10

sextw instruction, 3–8, 3–10
shift instructions

descriptions of, 3–15
formats, 3–14

sll instruction, 3–15, 3–16
.space directive, 5–12
special-purpose instructions

floating-point instruction set, 4–16
main instruction set, 3–24

sra instruction, 3–15, 3–16
srl instruction, 3–15, 3–16
stack organization, 6–7
statement, 2–5
stb instruction, 3–3, 3–6
stf instruction, 4–9, 4–10t
stg instruction, 4–9, 4–10t
stl instruction, 3–3, 3–7
stl_c instruction, 3–3, 3–7
store instructions

floating-point instruction set, 4–9
main instruction set, 3–2

stq instruction, 3–3, 3–7
stq_c instruction, 3–3, 3–7
stq_u instruction, 3–3, 3–7
string constant, 2–3
.struct directive, 5–12
sts instruction, 4–9, 4–10t
stt instruction, 4–9, 4–10t
stw instruction, 3–3, 3–7
subf instruction, 4–11, 4–12
subg instruction, 4–11, 4–12
subl instruction, 3–9, 3–11
sublv instruction, 3–9, 3–11
subq instruction, 3–9, 3–12
subqv instruction, 3–9, 3–12
subs instruction, 4–11, 4–12
subt instruction, 4–11, 4–12
symbolic equate, 5–12

T
.t_floating directive, 5–13
.text directive, 5–13

Index–6

thread local storage
(See .tls* directives)

.tlscomm directive, 5–13

.tlsdata directive, 5–13

.tlslcomm directive, 5–13
trapb instruction, 3–24, 3–25
trapping mode

floating-point instruction qualifiers,
4–7

.tune directive, 5–14
type propagation rules

in expressions, 2–11

U
uldl instruction, 3–3, 3–6
uldq instruction, 3–3, 3–6
uldw instruction, 3–3, 3–5
uldwu instruction, 3–3, 3–5
umulh instruction, 3–9, 3–12
unop instruction, 3–24, 3–25
ustl instruction, 3–3, 3–7
ustq instruction, 3–3, 3–7

ustw instruction, 3–3, 3–7

V
.verstamp directive, 5–14

W
.weakext directive, 5–14
wmb instruction, 3–24, 3–26
.word directive, 5–14

X
.x_floating directive, 5–14
xor instruction, 3–15
xornot instruction, 3–15, 3–16

Z
zap instruction, 3–21, 3–24
zapnot instruction, 3–21, 3–24

Index–7

