Tru64 UNIX

Asynchronous Transfer Mode

Part Number: AA-RH9KC-TE

September 2002

Product Version: Tru64 UNIX Version 5.1B or higher

This manual is for experienced UNIX kernel programmers responsible for
writing Asynchronous Transfer Mode (ATM) device drivers and kernel
modules. It describes the HP Tru64 UNIX ATM subsystem, how to
configure the subsystem, and how to use the ATM kernel interfaces.

Hewlett-Packard Company
Palo Alto, California

© 2002 Hewlett-Packard Company

Microsoft® and Windows NT® are trademarks of Microsoft Corporation. UNIX® and The Open Group™
are trademarks of The Open Group.All other product names mentioned herein may be the trademarks
of their respective companies.

Confidential computer software. Valid license from Compaq Computer Corporation, a wholly owned
subsidiary of Hewlett-Packard Company, required for possession, use, or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial
license.

None of Compaq, HP, or any of their subsidiaries shall be liable for technical or editorial errors or omissions
contained herein. The information is provided “as is” without warranty of any kind and is subject to
change without notice. The warranties for HP or Compaq products are set forth in the express limited
warranty statements accompanying such products. Nothing herein should be construed as constituting

an additional warranty.

Contents

About This Manual

1 Overview of ATM Architecture

1.1 ATM Subsystemcooiiiiiiiiiiiiiiii i 1-1
111 Connection Management Module 1-3
11.2 CMM Interfacesc.oveviiiiiiiiieiiiiiiiiiieeeaeeaiinnnn, 1-3
1.2 ATM Subsystem Configurationcooovviiiiiii... 1-4
2 ATM Subsystem General Features
2.1 Header Filesoooiiiiiiiiii e 2-1
2.2 ATM Module Configurationcccevviiiiiiiiiieneeiinn... 2-2
2.3 Error Codesooiiiiiiii i 2-2
2.4 Data Formats ...t 2-2
2.4.1 Raw ATM Cells ..o 2-3
2.4.2 Cooked Dataccovviiiiiiiiiiiii i 2-3
2.4.3 How the DataIs Carriedcooviiiiiiiiiiiiniiin... 2-3
244 Time-Stampingc.veiiiiiiiiiiii i 2-4
25 Physical Point of Attachment ..., 2-5
251 Permanent Virtual Circuit PPAs ..., 2-6
252 Switched Virtual Circuit PPAs ..., 2-7
2.6 Memory Allocationccoeviiiiiiiieeeiiiiiiiiiieeeeeeaiiannn. 2-8
2.7 ATM Locking MacCroSvvviiieiiiiiiieeeieeeiiiiiieeeeeeaiannnns 2-9
271 Locking Guidelinescooiiiiiiiiiiiiiiiiiiiineiiinnn.. 2-10
2.7.2 Types of Locking Methodscoooiiiiiiiins 2-10
2.7.3 Order of Locking Macroscccevvviiiiiiiiienineannnnn.. 2-11
274 Creation of ATM Threadsccoovviiiiiiiiiiiinniiinnn... 2-13
2.8 Types of Circuitsoooviiiiiiiiiiiiii e 2-13
2.9 Global Data Structuresccoiiiiiiiiiiiii i 2-14
291 The atm_ve Structurecoooiiiiiiiiiiiiiiiiiiin... 2-14
29.1.1 The conv_ppl and conv_pp2 Members 2-16
29.1.2 The sig_ppl, sig_pp2, drv_pp1l, and drv_pp2 Members 2-16
2.9.1.3 The ves Memberccooiiiiiiiiiii i 2-16
29.1.4 The call_reference Membercceevvviinnn. 2-16
2.9.15 The errno Membercooiiiiiiiiiiiiiiieaannn 2-16
2.9.1.6 The vci and vpi Membersccooiiiiiiiiiiiinan, 2-17

Contents i

29.1.7
29.18
29.1.9
29.2
29.21
29.2.2
2.9.2.3
29.24
2.9.2.5
2.9.2.6
29.2.7
2.9.2.8
2.9.2.9
2.9.2.10
29.2.11
29.2.12
2.9.2.13

29.2.14
2.9.2.15
2.9.2.16
29.2.17
293
29.3.1
2.9.3.2
2.9.3.3
2934
2.9.3.5

2.9.3.6
2.9.3.7
2.9.3.8
2.9.3.9
2.9.3.10
2.9.3.11
2.9.3.12
2.9.3.13
29.3.14
2.9.3.15
294
294.1
294.2

iv Contents

The ppa Member

The selector Membercoviiiiiiiiiiiiiiniiiinnnnn.
The direction Memberccooviviiiiiiiiiniiiinnnnn.
The atm_addr Structurecooiiiiiiiiiiiiiiiiiinnea.

The vc Member .
The address Mem
The ton Member

The anpi Member

ber o

The subaddress Membercooiiiiiinat
The subaddress_type Membero..l
The eprtype Membercccoiviiiiiiiiiiiiineeaannn
The endpoint Memberccccvviiiiiiiiiiineinnns
The state Membercccoiiiiiiiiiiiiiiie e,
The atm_error Memberccooviiiiiiiiiiniinnn.

The setup Membe

2

The connect Membercooeviiiiiiiiiiiininnainnn.
The location, cause, diag_length, and diagnostic

Members

The endstate Memberc.cccoiiiiiiiiiiiin..
The conv_p1 and conv_p2 Members
The sig_pl and sig_p2 Membersccccevennn..
Allocating the atm_addr Structure
The atm_vc_services Structurecoocviiii..

The ve Member .
The fqos and bqgos

Membersccooviiiiiiiiiiiii

The fmtu and bmtu Members
The valid_rates Memberccooiiiiiieiinnn.
The fpeaker, bpeaker, fsuster, bsuster, fourster, and

bburster Membersc.c.coviiiiiiiiiiiiiiiiiieaa
The flags Membercooiiiiiiiiiiiiiiiiieeaaa

The aal Member

The queue Membercooiiiiiiiiiiiiiiiie e,
The bearer_class Member
The lerrstat Member ...,
The nerrstat MemberoooooiiLL.
The cam_drv_handle Member

The drv_resource

Memberooooiiiiiiiii

The converge_handle Member
Allocating the atm_vc_services Structure
The atm_uni_call_ie Structureooeel.
The ie_type Membercccovviiiiiiiiiiiinnnannnn.

The last Member

NNNNNNNNNNNNDNDNDDNDDN

PUURERRLNY) |
NRNRONRNNRONNNNRN NNNNRPRRPRPRPRPRRPERRRRP R
EREW0OWRPRPPPPO OO0OOO®©I®O©I®IOIOIW®®OONNN

I\)I\)I\)I\)I\)I\)II\)I\)I\)I\)I\)I\)I\)I\)
WWWNNNNNNNNDNDDNDN
NNOOOOOONNNO OO

2.9.4.3 The aal_params Memberoooiiiiiiiinnn, 2-32
29.4.4 The bb_high_layer and bb_low_layer Members 2-32
2.9.45 Allocating the atm_uni_call_ie Structure 2-32
2.9.4.6 Setting Fields in the atm__uni_call_ie Structure 2-34
295 The atm_ppa Structureccooiiiiiiiiiiiiiiiinn... 2-35
295.1 The driver Membercooiiiiiiiiiiiiiiie e, 2-36
2.95.2 The sig Memberc.ccoviiiiiiiiiie e 2-36
2953 The ppas_id Memberccooiiiiiiiiiiiieeaann 2-36
2954 The ton Memberc.oooiiiiiiiiiiiiiiiiiiie e 2-36
2955 The anpi Membercooiiiiiiiiiiiiiiiiiie e 2-36
2.95.6 The addrlen Memberccoviiiiiiiiiiniiinn, 2-36
2.95.7 The address Memberccooeviiiiiiiiiiinniinns, 2-37
2.95.8 The uni Memberooiiiiiiiii e 2-37
2.95.9 The type Memberc.cooiiiiiiiiiiiiiiiiiiie e 2-37
2.9.5.10 The esi_arg Membercooeviiiiiiiiiiiineeeennnn, 2-37
2.9.6 The atm_esi Structurecooviiiiiiiiiiii ... 2-37
2.9.6.1 The esi and esilen Memberscoeeeeiinnn 2-38
2.9.6.2 The driver Membercooiiiiiiiiiiiiiiiie i 2-38
2.9.6.3 The sigpl and sigp2 Membersc.cccevviieienn... 2-38
2.9.7 The atm_cause_info Structureooel. 2-38
29.7.1 The cause Memberccoiiiiiiiiiiiiiiiiiineeeannnn, 2-39
2.9.7.2 The location Membercccoeviiiiiiiiiinneeainnn 2-39
2.9.7.3 The module_name Memberceeiennn 2-40
29.7.4 The reason Membercooiiiiiiiiiiiiiineinnan 2-40
2.9.75 The diag_length Membercooiiiiiiiiiiinnn. 2-40
2.9.7.6 The diag Memberc..ooiiiiiiiiiiiiiiiiiiiee e 2-40
3 Device Driver Interface
3.1 Registering the Device Driverccccviiiiiiiiiiiiinn... 3-1
3.2 Receiving Data Packets and Cellsooooviiiiiin... 3-2
3.3 Reporting Errorsooeuiiiiiiiiii 3-2
34 Unregistering the Device Driverccooviiiiiin... 3-2
35 Using ATM Device Driver Interface Structures 3-3
3.5.1 The atm_drv_params Structuree. 3-3
3.51.1 The name membercooiiiiiiiiiiiieeniinnn 3-4
3.5.1.2 The unit Membercooiiiiiii i 3-4
3.5.1.3 The type Membercooiiiiiiiiiiiiiiiiiiie e 3-4
3.5.1.4 The num_ve Memberccoeviiiiiiiiiiiinenannnn. 3-4
3.5.1.5 The max_vcib and max_vpib Members 3-4
3.5.1.6 The max_vci and max_vpi Members 3-4
3.5.1.7 The sent Membercooiiiiiiiiiiiiiiiiiiie e 3-5

Contents v

3.5.1.8
3.5.1.9
3.5.1.10
3.5.1.11
3.5.1.12
3.5.1.13
3.5.1.14
3.5.1.15
3.5.1.16
3.5.1.17
3.5.2
3.5.21
3.5.2.2
3.5.2.3
3.5.24

The received Memberccoviiiiiiiiiiiinneeannnn,
The dropped Memberccoeviiiiiiiiiiiiinnannnn.
The num_vci and num_vpi Members
The hard_mtu Memberccooiiiiiiiiiiniiinnn,

The nqueue Memb

L= S N

The flowcontrol Membercoooiiiiiiiiiiinnn..

The rates Member
The capabilities M

eMbeT ...t

The numid Membercoooviiiiiiiiiiiiiiiniiininnn.

The ids Member .

The atm_queue_param Structure

The ve Member ..

The glength Membercoooviiiiiiiiiiieaainn,
The qtime Membercccoiiiiiiiiiiiiiiiieeaaan,

The flags Member

4 Signaling Module Interface

4.1 Registering the Signaling Modulecooiiiiiiel.
4.2 Receivinga New Callccoooiiiiiiiiiieeee
4.3 Reporting a VC Activationoooeviviiiiiiiiiiiiiiiinnnnn...
4.4 Activating a Connectioncoooieiiiiiiiiiiiiiiiiiiiaan..
45 Reporting a Connection Failurecoooiiiiiine..
4.6 Releasing a Connectionooovvviviiiiiiiiiieinniiinnnnnnn.
4.7 Dropping an Endpointccooiiiiiiiiiiii
4.8 Deleting a Connectionccevvviieiiiiiiiiiiiieeinieeannen.
4.9 Restarting a Virtual Circuitcooviiiiiiiiiiiiiiii...
4.10 Reporting a Completed Restartcooiiiiiiiii ..
4.11 Reporting a Completed Status Enquiry
4.12 Requesting Endpoint Informationooo
4.13 Adding a PPA
4.14 Deleting a PPA ... i
4.15 Requesting VC Statusccoviiiiiiiiiiiiiiiii e
4.16 Using the atm_sig_params Structure
4.16.1 The sig_setup Memberccoiiiiiiiiiiiiiiiiiiinn.n.
4.16.2 The sig_release Memberccccooiiiiiiiiiiiiiiinn.n.
4.16.3 The sig_add Memberccoiiiiiiiiiiiiiiiiii e,
4.16.4 The sig_drop Membercccoiiiiiiiiiiiiiiiiiiiians
4.16.5 The sig_enquery Memberccooviiiiiiiiiiiiinn.n.
4.16.6 The sig_restart Memberccoooiiiiiiiiiiiiiiiiinn.
4.16.7 The sig_exception Memberccooeiiiiiiiiiinn..
4.16.8 The sig_mmi Memberccooviiiiiiiiiiiiiiineaninn...

vi Contents

mmmmmmmcrommmwwww
VOO ~NN~NO O OTororororOn

4.16.9 The sig_mib Membercocoiiiiiiiiiiiii i
4.16.10 The reservedl, reserved2, and reserved3 Members

5 Convergence Module Interface

5.1 Registering a Convergence Moduleoooeiiee. 5-1
5.2 Receiving Data ... 5-2
5.2.1 Receiving Exception Notificationsooeveeein 5-2
5.2.2 Connecting to the ATM Module Management Interface ... 5-3
5.3 Unregistering a Convergence Module 5-3
5.4 Requesting Interface Parametersccoviiiiin... 5-3
5.5 Reserving Resources for CBR Circuitse. 5-4
5.6 Releasing Reserved Resourcescoovviiiiiiiiinnninnn... 5-4
5.7 Requesting a Connection to a Remote System 5-5
5.8 Adding an Endpoint to a Connectioncooieiinn... 5-5
5.9 Requesting a Connection Be Torn Downccooeeee. 5-5
5.10 Dropping an Endpoint from a Connection 5-5
5.11 Transmitting Data on an Established VC 5-6
5.12 Modifying VC Parametersccoovieiiiiiiiiniiiininiinnannn.. 5-6
5.13 Requesting Endpoint Connection State Information 5-6
514 Bindingtoa PPA i 5-6
5.15 Receiving a Connection Notificationc.oooeinie. 5-7
5.16 Unbinding from a PPA i 5-8
5.17 Accepting an Incoming CallciiiiiiiiiiL. 5-8
5.18 Rejecting an Incoming Call ..., 5-8
519 Adding a New ATM Addressccooveviiiiiiiiiiiiininiienannn.. 5-8
520 Deleting an ATM Addressccceeviiiiiiiiiiiiniiieeenieeannns. 5-9
5.21 Requesting VC Statisticsccoiviiiiiiiiiiiiiiiiiiii . 5-9
5.22 Using ATM Convergence Module Interface Structures 5-9
5.22.1 The atm_vc_stats Structure ... 5-9
5.22.2 The atm_cmi_addr Unionccooeviiiiiiiiiiiiinn., 5-10
5.22.2.1 The addr Memberccooiiiiiiiiiiiiiiiiiiiin.. 5-10
5.22.2.2 The ven Membercooiiiiiiiiiiiiiiiiiiiiii .. 5-11
5.22.3 The atm_cvg_params Structureooeeeee. 5-11
5.22.3.1 The receive Memberccooiiiiiiiiiiiiiiiiiinn.. 5-12
5.22.3.2 The exception Membercccoviiiiiiiiiieeiinnn. 5-12
5.22.3.3 The mmi_manage Memberccevvinnin 5-12
5.22.3.4 The endpt_receive Membercoeevviiinnnn. 5-12
5.22.35 The reservedl, reserved2, and reserved3 Members 5-12

Contents vii

6 Connections

6.1 Making Outgoing Connectionsovveviiiiieeeeeeennnnn... 6-1
6.1.1 Making the Callcciiiiiiiii e 6-1
6.1.2 Adding Parties to an Existing Connection 6-4
6.2 Accepting Connectionsoooeviviiiiiiiiiiiiiiieiiiie e, 6-4
6.3 Controlling the Aging of Connectionsccovvven.... 6-6
6.4 Releasing a Connectionccooviiiiiiiiiiiiieeeinaaninnn... 6-7
6.4.1 Release by a Convergence Module 6-8
6.4.2 Release by Network or Endpoint 6-8
6.5 Creating Permanent Virtual Circuitsccoieii 6-9
6.6 Creating Signaling Virtual Circuitsccooviiiinn.. 6-10
7 Module Management Interface
7.1 Creatingan MMI Pathoo i 7-2
7.2 Verifying the ioctl Versioncooiiiiiiiiiiiiiiiiiin.. 7-3
7.3 Defining New MMI ioctl Commandsccevvvieiennne... 7-4
7.4 Using MMI Calling Conventionsccovvvvviiiiiiennnn... 7-5
7.5 Using the Device Driver MMIccoiiiiiiiiiiiiiinin... 7-6
7.6 Using the Signaling Module MMIcooiviiiiinn... -7
1.7 Using the Convergence Module MMIooooee. -7
8 Queuing Guidelines
8.1 Queuing in Device Driversccooiiiiiiiiiiiiiiiiiiiinn.. 8-1
8.1.1 Device Driver Transmit Queuingceevennnn.. 8-1
8.1.2 Device Driver Receive Queuingcoevviinnnn... 8-3
8.2 Queuing in Convergence Modulescoviiiinnn.... 8-3
8.2.1 Convergence Module Transmit Queuing 8-3
8.2.2 Convergence Module Receive Queuing 8-4
9 Flow Control
9.1 Hardware Flow Controlccoooiiiiiiiiiiiiiiii., 9-1
9.2 Software Flow Controlocoiiiiiiiiiiiiiiiiiiia 9-2
9.2.1 High-Water Markccoooiiiiiiiiiiiiiiiiii e 9-2
9.2.2 Low-Water Markccooiiiiiiiiiii e 9-3
9.3 Convergence Module Flow Controlooooiiii 9-3
A CMM Routines
At M CNM ACCEPL oot i A-2

viii Contents

atmecenmactivate Coniiiiiiiiiiiiiiie e A-3

atmenmadd ... A-5
atmcenmadi _Set _CaUSE ..oiiviiiiiiieiiiiiiie e A-7
atmcemmadi _Set _10g oo A-9
atmcecmmal loc_addr ... A-11
atmemmal 1 0C i€ i A-12
atmcnmal 1 0C_Servicesooviiiiiiiiiiiiiie i, A-14
atmemmbind info ... A-15
atmcmmeon_deleted oo A-20
atmcmmeon_failed ... A-22
at M CNM CON_rel @aSEe it A-24
at M CMM CONNECT ..ttt A-26
F 0l 0 Il 0100 00 G20 | G- VI A-30
atmemmdel _eSi oo A-32
atm cemm del _PPpa .o A-33
F= Ul 0] 010 0 S] o T A-35
Al M CNMM BNQUET Y ottt i et ee e A-36
atmenmm ep_add ... e A-37
atmcnmm ep_dropped ... A-39
= U o 0 10 1= o 0] A-41
atmemmfindaddr ... A-43
atmemmfind driver ... A-45
atmemmfree addr ... A-46
atmeMmM free i@ . A-47
atmcecnmmfree ServicCes ...ooviiiiiiiiiiiiiiie i A-48
At M CNMM gr @i N2CT et ee e eeeeeaaeans A-50
atmemmnew call ..o A-51
At M CNMMN NEW ST ottt e A-54
Al M CNIMN NEW _PPA oettiiiiiie et iie et e iaee e ee e A-56
atmecmmnew threadoooooiiiiiiiiiiii A-58
At M CMM NEXT _CAUSE .iiiiiiiiie i e iiieiieiieeeaiaas A-60
At M CNM 0AM FECEI VE ittt e A-62
atm cmm ppa_bi nd ... A-63
atmemmppa_info .o A—-66
atmcmm ppa_unbind ... A-70
AL M CNIMN F BCEI VB ottt e e A-71
atm CNMM regi Ster _CVQ uuuuiiiiiiiiiieiiiaiiaeaaaaaannns A-74
atmcemmregister _dd ... A-77
atmceMmMregi Ster _Sig .oovveviiiiiiiiiiiiiiiiiieaiaaaaaannns A-79
oLl 0 I 000 =T =T S A-82
At M CNM r el BASE oottt A-83
oL g o 010 =T o1 Y2 A-85
atmM CMM I €SErvVe ESOUIMCES ..iiiiiiiiieeeeiiaenaaannns A-87

Contents ix

atmemmrestart ..o i A-89

atmemmerestart _ack ... A-91
At M CNM SENd .. A-93
At M CMM Sel _CaAUSE .iiitiiiiiit it ciee et A-95
At M CNMM SEE 1 00 uviiiiiee e A-97
atm CcNM S _Set _CAUSE ...uuiiiiieiiiiiiiaieaeaaaaaannns A-99
atmemmsmi _Set _10g oo A-101
atmcemmstatus _done ... A-103
atm cnm unregi Ster _CVQ uueviiiiiiiiiiiiiiieeaaaaannn. A-104
atmcmmunregister_ddooiiiiiiiiii A-106
atmenmuve _control ..o A-107
At M CNMM VC_geT oot i A-109
At M CMM VC_Stat s iiiiiiiii it A-110
XXX A oo e A-111
D0 & G o 01 1 1> o A-112
o 0 G ¢ | o] o T A-117
XXX_endpt _FeCei Veoovviiiiiiiiiiii e A-118
DO O Q=] 1o [V1= Y A-121
DO O = o1 = | A-122
DO O G 1 0> =Y [A-128
Do O 1 111 P A-131
DO G =YX =Y IV R P A-133
XXX LBl BaASE ittt e e A-136
D0 O G =11 - 1 S S A-137
D0 = X = N U1 A-139
e O D 4 11 1 S P A-141

B Connection Programming Examples

B.1 Making a Callooiiiiiii i B-1
B.2 Adding More Parties to a Point-to-Multipoint Connection B-3
B.3 Processing an Incoming Call ..o, B-5

C ATM Cause Codes

Index

Examples
2-1 The atm_uni_call_ie Structure Definition 2-30
4-1 The atm_sig_params Structure Definition 4-6
5-1 The atm_cvg_params Structure Definition 5-11

x Contents

Making a Call Code Fragmentccoooeiiiiiiiin... B-1

B-1
B-2 Adding Parties to a Point-to-Multipoint Connection Code
Fragment ... B-4

B-3 Incoming Call Processing Code Fragment B-5
Figures

1-1 ATM Subsystemccoiiiiiiiiiiiiiiii e 1-2
Tables

2-1 The atm_ve Structure Memberscooeviiiiiiiiinn... 2-15

2-2 The atm_addr Structure Memberscevviiiinin.... 2-18

2-3 The atm_vc_services Structure Members 2-23

2-4 Information Element Macrosc.cooovvviiiiiiiiiiinnnnn..n. 2-34

2-5 The atm_ppa Structure Membersccoeeviiiiiinnn... 2-35

2-6 The atm_esi Structure Memberscooeeviiiiiinn... 2-38

2-7 The atm_cause_info Structure Members 2-39

3-1 The atm_drv_params Structure Members 3-3

3-2 The atm_queue_param Structure Members 3-8

5-1 The atm_vc_stats Structure Members 5-9

6-1 Aging Parameter Valuesccooiiiiiiiiiiiiiiiiiiiii ., 6-7

7-1 The atm_mmi_path Structure Members 7-3

Contents xi

About This Manual

This manual describes the Tru64 UNIX Asynchronous Transfer Mode (ATM)
subsystem and how to use the ATM kernel interfaces. This document does
not describe the application programming interface (API) that user-level
applications would use to access the ATM subsystem. Also, this manual

is not an ATM networking tutorial.

After reading this manual, you should be able to:
¢ Understand the ATM subsystem architecture
¢ Understand how the different kernel interfaces operate

e Write a kernel module

Audience

This manual is for experienced UNIX kernel programmers responsible for
writing device drivers and kernel modules. These programmers should be
familiar with the following:

e ATM technology
e ATM Forum User-Network Interface (UNI) Version 3.0 specification

¢ (C language programming

The secondary audience is system administrators responsible for configuring
network software. These system administrators should be familiar with
the following:

e ATM technology
e (language
¢ Programming interfaces for UNIX operating systems

New and Changed Features

This manual has been revised, and includes the following changes:

e Appendix A has been revised to include a new routine for unregistering
device driver modules.

Organization

This manual is organized into nine chapters and three appendixes.

About This Manual xiii

Chapter 1 Provides an overview of the Tru64 UNIX Asynchronous Transfer
Mode (ATM) architecture and its kernel interfaces.

Chapter 2 Describes the ATM header files, generic data structures,
macros, and return codes that ATM modules use.

Chapter 3 Describes the ATM device driver interface, its tasks and
routines, and associated data structures.

Chapter 4 Describes the ATM signaling module interface, its tasks
and routines, and associated data structures.

Chapter 5 Describes the ATM convergence module interface, its tasks
and routines, and associated data structures.

Chapter 6 Describes how ATM connections are initiated and terminated,
and includes some code fragments that show how these
tasks are implemented in software.

Chapter 7 Describes the ATM Module Management Interface (MMI).
Chapter 8 Describes queuing information that kernel mod-

ule writers require.
Chapter 9 Describes the flow control in the ATM subsystem.
Appendix A Describes the ATM CMM routines in reference-page format.
Appendix B Contains programming code fragments that show

certain connection-related tasks.

Appendix C Contains ATM cause and diagnostic codes, their message
strings, and brief descriptions.

Related Documents
For information about Tru64 UNIX device driver programming, refer to the
following manuals that are part of the Device Driver Documentation kit:
o Writing Device Drivers
® Reference Pages, Section 9r, Device Drivers (Volume 1)
® Reference Pages, Section 9s, 9u, and 9v, Device Drivers (Volume 2)
e Writing Network Device Drivers
e Writing TURBOchannel Device Drivers
e Writing EISA and ISA Bus Device Drivers
e Writing VMEbus Device Drivers
e Writing PCI Bus Device Drivers
e Writing Device Drivers for the SCSI/CAM Architecture Interfaces

For information on kernel module programming, refer to the Writing Kernel
Modules manual.

xiv About This Manual

For additional information about ATM, refer to the ATM User-Network
Interface Specification, Version 3.0 ISBN 0-13-225863-3 and the ATM

User-Network Interface Specification, Version 3.1 ISBN 0-13-393828-X, both
published by Prentice Hall.

For information on installing a HP ATM adapter and its device driver, see

the documentation that comes with the adapter.

For information about administering networking interfaces, refer to
the System Administration manual and the Network Administration:

Connections manual. For information on configuring the ATM subsystem,

see

the Network Administration: Connections manual.

Icons on Tru64 UNIX Printed Manuals

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the manuals to help specific audiences quickly find the manuals
that meet their needs. (You can order the printed documentation from HP.)

The following list describes this convention:

G

S
P
R

Manuals for general users
Manuals for system and network administrators
Manuals for programmers

Manuals for reference page users

Some manuals in the documentation help meet the needs of several
audiences. For example, the information in some system manuals is also
used by programmers. Keep this in mind when searching for information
on specific topics.

The Documentation Overview provides information on all of the manuals in
the Tru64 UNIX documentation set.

Reader’s

Comments

HP welcomes any comments and suggestions you have on this and other
Tru64 UNIX manuals.

You can send your comments in the following ways:

Fax: 603-884-0120 Attn: UBPG Publications, ZK03-3/Y32
Internet electronic mail: r eaders_commrent @k3. dec. com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/ readers_coment .t xt

About This Manual

XV

Please include the following information along with your comments:

e The full title of the manual and the order number. (The order number
appears on the title page of printed and PDF versions of a manual.)

¢ The section numbers and page numbers of the information on which
you are commenting.

e The version of Tru64 UNIX that you are using.

e Ifknown, the type of processor that is running the Tru64 UNIX software.
The Tru64 UNIX Publications group cannot respond to system problems or

technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate HP technical support office. Information

provided with the software media explains how to send problem reports to
HP.

Conventions

This document uses the following typographic conventions:

%

$ A percent sign represents the C shell system prompt.
A dollar sign represents the system prompt for the
Bourne, Korn, and POSIX shells.

A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[]]

{]} In syntax definitions, brackets indicate items that

are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

xvi About This Manual

cat (1) A cross-reference to a reference page includes
the appropriate section number in parentheses.
For example, cat (1) indicates that you can find
information on the cat command in Section 1 of
the reference pages.

In an example, a key name enclosed in a box
indicates that you press that key.

Ctrl/x This symbol indicates that you hold down the
first named key while pressing the key or mouse
button that follows the slash. In examples, this
key combination is enclosed in a box (for example,

Ctrl/C)).

About This Manual xvii

1

Overview of ATM Architecture

Asynchronous Transfer Mode (ATM) networks promise to become the
dominant network interconnect because they provide the following
capabilities:

Speeds from 25 M/bps to up to 622 M/bps or greater through
cell-switching.

Multiple qualities of service.

Connection-oriented interconnection with resource reservation for
individual connections. These connections might be for conversations
between two applications or for a connection over which many
conversations between many applications and protocols are multiplexed.

Presently, interest in implementing ATM networks, particularly in the local
area, comes from applications that need the high speed and the low latency
(switched, full duplex network infrastructure) that ATM networks provide.

1.1 ATM Subsystem

The ATM subsystem is a separately configurable kernel subsystem with
the following characteristics:

Provides a set of ATM-related services to kernel and user applications.
These applications, in turn, must provide their own interface to ATM.

Provides a well-defined set of interfaces for using these services.
Chapter 2 through Chapter 9 describe the interfaces and services.

Is optimized for ATM functions; does not provide support for a specific
set of user protocols.

Is flexible and easy to expand and adapt to changing requirements.

Provides an open interface for ATM hardware designers and for software
developers to interface new or existing protocols to ATM.

The ATM subsystem consists of the following parts:

Connection Management Module (CMM)

This module handles all communications between the various elements
of the ATM subsystem as well as managing all virtual circuits (VCs) and
communications with protocol stacks that use ATM.

Overview of ATM Architecture 1-1

¢ One or more ATM hardware adapter device drivers

These device drivers handle the hardware-specific details for controlling
specific adapters.

¢ One or more signaling protocol modules

These modules implement specific protocols for communicating
connection management information between the end system and the
switch. In this implementation, UNI 3.0/3.1 is the default signaling
protocol module that the ATM subsystem uses.

Figure 1-1 illustrates the ATM subsystem.

Figure 1-1: ATM Subsystem

Protocol Protocol
Convergence|e e e Convergence
Module 1 Module n

‘ 'l N\ ATM Convergence

Module Interface

ATM Signaling
Module Interface

Connection Management Module
(CMM)

Signaling
Module 1

Signaling
Module n

ATM Device
Driver Interface

Device Device
Driver 1 Driver n

ZK-1022U-Al

The ATM subsystem supports any number of ATM device drivers and
signaling protocol modules as long as the actions of these modules do not
interfere with each other. ATM modules should communicate only with the
CMM as the CMM coordinates all communications between ATM modules.
ATM modules should never bypass the CMM and communicate with each
other directly.

The three elements of the ATM subsystem provide only raw ATM services.
They do not implement any specific protocol for carrying data over the ATM

1-2 Overview of ATM Architecture

network. That is, the ATM subsystem is entirely protocol independent. If
a specific protocol wants to use the ATM network to transport data, the
protocol must provide an interface into the ATM subsystem.

The programs that provide the interface between the ATM subsystem and
specific protocols are called convergence modules. These modules, using the
ATM subsystem interface Kernel Programming Interface (KPI), control the
creation and use of ATM virtual circuits (VCs) in a manner appropriate

for the protocol. Since different protocols have different requirements, the
ATM subsystem leaves the adaptation of the protocol to use ATM entirely
up to the protocol implementor. The ATM subsystem does not provide any
protocol-specific services.

1.1.1 Connection Management Module

The CMM is the central module in the ATM subsystem and has the following
duties:

e Manages all activities of the ATM subsystem, including subsystem
configuration. All data to and from the ATM networks must pass through
the CMM to get properly routed to the correct destination.

e Handles all circuit connection requests from protocol modules
(convergence modules) and manages all VCs from the time they are
created until they are torn down.

* Provides interface points for other elements of the ATM subsystem, as
well as the interfaces for accessing the ATM subsystem from kernel
protocol stacks. These interfaces permit the modular addition of drivers,
signaling modules, management modules, and protocol stack interfaces
without having to make changes to the CMM.

¢ Provides the only interface into the ATM subsystem from the kernel.
ATM modules are accessed only through the CMM.

1.1.2 CMM Interfaces

The CMM provides the following interfaces:
e ATM device driver interface

ATM adapter device drivers use this interface to access the ATM
subsystem. See Chapter 3 for more information.

¢ Signaling module interface

Modules that implement ATM signaling protocols use this interface.
This interface allows multiple signaling modules to provide services to
protocol stacks on a per-VC basis, as long the signaling modules do not
conflict on the ATM network. See Chapter 4 for more information.

Overview of ATM Architecture 1-3

¢ Convergence module interface

Kernel protocol stacks use this external interface to the ATM subsystem
to gain access to the ATM subsystem services. See Chapter 5 for more
information.

These interfaces are registration-type interfaces. Each makes calls to the
CMM to inform the CMM of its presence. The CMM places no limit on the
number of each type of module that may register, the total number being
limited only by system resources.

1.2 ATM Subsystem Configuration

Before you communicate on the ATM network, you must install a HP ATM
adapter and configure the ATM software. See the installation and service
documentation shipped with the adapter for information on installing the
ATM adapter, and the Network Administration: Connections manual for
information on configuring the ATM software.

1-4 Overview of ATM Architecture

2

ATM Subsystem General Features

This chapter describes the following ATM features that writers of ATM
device drivers, signaling modules, and protocol convergence modules can use:

Header files

Module configuration management
Error codes

Data formats

Physical point of attachment
Memory allocation

ATM locking macros

Types of circuits

Global data structures

2.1 Header Files

When building kernel modules to interface with the ATM subsystem,
your application must include the following header files (located in the
{usr/include/iolatn sys directory):

at m h — Common ATM subsystem structures, function prototypes, and
ATM error codes (required by all ATM kernel modules)

at m adi . h — Device driver interface function prototypes and structures
(required by all ATM device drivers)

at m sm . h — Signaling protocol module interface function prototypes
and structure definitions (required by all signaling protocol modules)

at m cm . h — Protocol convergence module interface function prototypes
and structure definitions (required by all protocol convergence modules)

at m osf. h — Macros and constants for services that ATM subsystem
modules use

In addition, the protocol convergence module code must include any
signaling protocol-specific module header files that define structures used by
protocol convergence modules.

ATM Subsystem General Features 2-1

The at m h header file defines all the global data structures as well as the
revision level of these structures. The ATM REVI SI ON constant, which

is defined in this file, is passed to the CMM by device drivers, signaling
modules, and convergence modules during their registration process. The
CMM uses this constant to determine which version of global structures the
modules use; it should not be changed.

2.2 ATM Module Configuration

All ATM modules should use the standard configuration management
routine for initializing and configuring modules. This routine also provides
the sysconfi g utility, which allows you to tune ATM modules without
having to use a data file or recompile code. See the Writing Kernel Modules
and sysconf i g(8) for information on the configuration routine and
sysconfi g utility, respectively. See sys_at t r s_at m5) for information on
tuning the ATM subsystem.

2.3 Error Codes

The / usr/ sys/incl ude/i o/ at nf sys/ at m h header file contains
ATM-specific error codes that are returned by all modules within the ATM
subsystem to indicate the result of an operation. These codes consist of
standard User-Network Interface (UNI) 3.0/3.1 error numbers and error
numbers specific to this operating system.

When a function call is completed with no errors, the function must return
the value ATM_CAUSE_GOOD. Unsuccessful completion is indicated by the
return of some other value. Only the values listed in the at m h header
file can be returned. Routines returning error codes to system calls or
management routines must return standard error codes as defined in the
sys/ errno. h file.

All ATM subsystem routines use type at m error _t to indicate the outcome
of an operation and all ATM subsystem modules must also do so. An

atm error _t can take on one of the values listed in at m h. The ATM
signaling modules are responsible for translating values to external network
representations when necessary.

2.4 Data Formats

The type of data transmitted and received on a virtual circuit (VC) depends
on the type of ATM Adaption Layer (AAL) protocol the convergence module
specifies when setting up the VC.

The type of data a convergence module and the CMM exchange depends
on the Segmentation and Reassembly (SAR) capabilities of the underlying
device driver and hardware adapter. Convergence modules must be prepared

2-2 ATM Subsystem General Features

either to handle drivers of differing capabilities or to recognize a driver
that does not support the capabilities required by the convergence module.
The convergence module interfaces provide a mechanism for convergence
modules to obtain a driver’s capabilities for making this determination.

Some device drivers or adapters implement some SAR functions in hardware
or in a combination of hardware and software. This makes sending and
receiving specific types of data more efficient. For example, TURBOchannel
and Peripheral Component Interconnect (PCI) ATM adapters implement
AALS5 in hardware. Other hardware may implement AAL3/4 or may be
able to handle only raw ATM cells. Since the ATM subsystem is designed

to accommodate a wide variety of drivers, it provides mechanisms for
dealing with drivers of varying capabilities. It is the convergence module’s
responsibility to use the capabilities of a driver or an ATM interface in the
best way possible for the protocol it is implementing.

The ATM subsystem can handle the following types of ATM data:
e Raw ATM cells (full ATM cells, including cell headers)
e (Cooked packet Protocol Data Units (PDUs)

2.4.1 Raw ATM Cells

If a convergence module needs to transmit raw ATM cells, it should first
determine if the underlying driver supports this service (some drivers

may support only cooked data). If the driver cannot handle raw cells, the
convergence module should not make or accept connections over the interface
controlled by the driver. The convergence module should use the driver only
if the driver provides compatible capabilities.

2.4.2 Cooked Data

If a convergence module needs to transmit cooked data (data packets, such
as AALS5, rather than individual cells), it should first determine if the
underlying driver supports this service (some drivers may support only raw
data or may not cook the data in the needed AAL format). The convergence
module should use the driver if the driver provides compatible capabilities.
If a driver does not support the required capabilities, but does support raw
cells, the convergence module can perform the SAR functions internally and
then send and receive raw cells. Otherwise, the convergence module should
not accept or make connections over the interface controlled by the driver.

2.4.3 How the Data Is Carried

Both cell and packet data in the ATM subsystem are carried in a chain of
mbufs. The routines for allocating and manipulating the mbufs are the same
as those the networking subsystem uses. The data representation within

ATM Subsystem General Features 2-3

the mbuf chain depends on the type of data (raw or cooked) being carried by
the mbufs. When an mbuf chain contains raw cells, each mbuf in the chain

contains exactly one ATM cell, a full 53-byte cell with Generic Flow Control
(GFC) and Payload Type Indicator (PTI) bits set.

An mbuf chain can contain one or more ATM cells, each in its own mbuf.
When an mbuf chain is carrying packet Protocol Data Units (PDUs) (AAL3/4
or AAL5 PDUs), the mbuf chain will contain exactly one packet PDU. On
outgoing packets, the number of bytes in the packet must be less than

or equal to the maximum transmission unit (MTU) of the VC on which
the packet is transmitted. The mbuf chain must contain the appropriate
headers and trailers (the AAL3/4 or AAL5 Convergence Sublayer Protocol
Data Unit (CS-PDU) headers and trailers). If the device driver or adapter
adds headers and trailers, the driver must strip off this extra information
on outgoing packets. The drivers must include the CS-PDU headers and
trailers on received packets.

2.4.4 Time-Stamping

When a driver receives raw ATM cells, the driver must be capable of
optionally time-stamping the incoming cells to assist convergence modules
or other protocol modules in determining intercell intervals; this might be
required when processing constant bit rate (CBR) or variable bit rate (VBR)
traffic. If a convergence module enables time-stamping of incoming data,
the device driver must add an 8-byte time-stamp immediately after the cell
bytes in the mbuf, increasing the mbuf length to 61 bytes.

On Tru64 UNIX systems, the time-stamp is the value read from the
free-running system clock at the time the packet was received by the driver.
This value has a 10-nanosecond resolution, but the value is accurate to only
a few microseconds. This is because the time-stamp is not generated by
the hardware when the packet arrives, but by the driver during its receive
interrupt processing.

The driver can also optionally indicate lost or corrupted cells in the data
stream. Cell loss can be due to hardware errors, the failure of cyclical
redundancy checks (CRC), or insufficient resources to hold the incoming cell.
The actual cause of local cell loss can vary between drivers. To indicate a
lost cell in the data stream, the driver should insert a 0 length mbuf in the
data stream where the cell was lost. Only one of these needs to be inserted
if multiple sequential cells are lost. If time-stamping is enabled, the lost
cell indicator will be an 8-byte mbuf with the time-stamp indicating the
temporal position of the lost cell. The protocol convergence module can use
this information for clock recovery, if necessary.

2-4 ATM Subsystem General Features

2.5 Physical Point of Attachment

The physical point of attachment (PPA) is a network services endpoint. It is
the point at which the network services are provided and to which network
services users attach to the network services. Each PPA represents a unique
addressable entity on the network, identifying a provider of network services
on both the local system and the network. When a call is placed on an
ATM network, only the PPA is addressed; the PPA’s address is registered
with the ATM switch.

Although the network can address the PPA through the PPA address, the
network cannot use the same address to address individual network services
users attached to the PPA. For this, the ATM network uses ATM End System
Addresses (AESAs). An AESA uniquely identifies both the network services
endpoint and a specific network services user attached to that endpoint.

UNTI 3.0/3.1 AESA-format ATM addresses consist of the following parts:
e A prefix — Assigned by the switch
¢ End system identifier (ESI) — Assigned by the local host

e A selector byte — Used by the network services provider on the end
system to route a call to a specific network services user attached to a
PPA

The first two parts together are registered with the ATM switch and
network, and uniquely identify a PPA to which network services users may
attach. Both the host and the switch must combine these two pieces of
information to form complete addresses. This is done through the Integrated
Local Management Interface (ILMI) protocol when new addresses are added
or deleted. The CMM, in cooperation with signaling modules, keeps track of
these two parts so that all addresses associated with either a prefix or an
ESI are properly managed. Since the prefix is assigned by the switch, the
CMM leaves the management of the prefixes up to the address registration
and management portion of the signaling module.

ESI values have the following sources:
¢ The ESIs configured in the ATM adapter’s read-only memory (ROM)

e ESIs configured by the system or network administrator, who uses the
at nconfi g command

e ESIs configured by convergence modules that need to create their own
ATM addresses

The first two ESIs are considered global or public ESIs. All PPAs created
from global ESIs are available to all convergence modules. Only the system
or network administrator can delete global ESIs. ESIs that convergence
modules create are considered private. All PPAs created from private ESIs

ATM Subsystem General Features 2-5

are available only to the convergence module that configured the ESI on
the system. These ESIs can be deleted by either the system or network
administrator or by the creating convergence module. The CMM keeps track
of ESI sources (in the at m esi structure) to assure that only the correct
entity can remove an ESI (and all associated PPAs and the VCs associated
with those PPAs).

Since ATM permits an arbitrary number of ESIs and prefixes to be registered
for a specific connection to the network, an end system can have an arbitrary
number of PPAs. Users of the ATM network services (convergence modules)
can attach their service to any combination of PPAs to make their service
available on the network. The process of attaching a service to a PPA is
called binding, and creates a full AESA that uniquely identifies a specific
instance of a service on the network. In the Tru64 UNIX ATM architecture,
all calls must be placed and received through bind points that represent
valid AESAs.

In the ATM subsystem, PPAs are created whenever an address is successfully
registered with the local network switch. When a PPA comes into existence,
convergence modules are notified and may bind their services to the PPAs.
Each PPA contains three pieces of information that uniquely identify it
among the different networks to which the host may be attached. Associated
with each PPA is a device driver (representing the physical connection to a
network), a signaling module (representing the protocol that controls the
administration of the PPA), and the PPA’s address on the network to which
it is attached. This permits PPAs on separate, disjoint networks to have the
same logical address, but to still be unique on the local system.

The ATM subsystem has two types of PPAs:
e Permanent virtual circuit (PVC) PPAs, which manage PVCs
e Switched virtual circuit (SVC) PPAs, which manage SVCs

You can specify as many services for PVC connections as for SVC connections.

2.5.1 Permanent Virtual Circuit PPAs

When an interface becomes active on a network, the CMM automatically
creates a special PPA for use in connecting PVCs to network services users.
A PVC PPA is a special PPA that has no network address and no associated
signaling module. It represents a path between the network and a network
services user. There is exactly one PVC PPA for each interface that is
operational. PVC PPAs are destroyed only when a driver is taken down or
unregistered with the CMM. PVC PPAs remain in place throughout network
disruptions.

Since PVC PPAs have no associated address, you must decide how to bind
a specific network services user to a PPA and how to uniquely identify the

2-6 ATM Subsystem General Features

user on that PPA. Since PVCs are created locally either with the at nconfi g
administration command or by convergence modules, and do not have any
identifying characteristic that is unique on the network, you can assign an
arbitrary addressing scheme to PPA bindings. The only requirements are
that each network services user be uniquely identifiable and that there be a
large enough address space to accommodate as many services as all the SVC
PPAs can bind. See at ntonf i g(8) for more information.

In the ATM subsystem, a PVC bind point is identified not by an AESA,

but by values unique to each network services user (convergence module)
that binds to a PVC PPA. These values are the convergence module’s

name (provided when the convergence module registers with the CMM)
and a selector value used to specify a specific instance of a service on the
convergence module. Thus, a PVC network services user is identified by

a driver/convergence/selector tuple that identifies a specific instance of a
specific service on a specific network. The selector space for PVC bind points
is 31-bits wide and is local to each convergence module; each convergence
module has complete control over the selector values used to access instances
of its service. This provides a large enough bind space to enable convergence
modules to create a PVC binding for every SVC binding and to accommodate
both PVC and SVC access to its services.

2.5.2 Switched Virtual Circuit PPAS

When an ATM network interface is brought up, the signaling protocol that
uses the interface must contact the local switch to register the end system
with the network. For UNI 3.0/3.1, this involves exchanging addressing
information with the switch to create full ATM addresses, minus the selector
values. Each ATM address comprises a prefix value, which is assigned by
the network, and an ESI, which identifies the end system. ATM permits
the switch to assign an arbitrary number of prefixes and the end system

to provide an arbitrary number of ESIs, within reason and subject to
implementation-specific limitation. Each combination of prefix and ESI
forms an ATM address, or a network services endpoint (PPA).

When an address is registered with a switch, the registering signaling
module informs the CMM that a new network services endpoint exists. The
CMM then creates a PPA for the new address and notifies each convergence
module or the network services users of the new PPA so that they can create
AESA bindings, if necessary. Calls to remote systems are given the calling
party number of the bind point and PPA through which the call is placed.
Incoming calls are routed to bind points based on the called party’s AESA
address. Therefore, all SVC activity must use a bind point as the local
endpoint object. Calls received for an unbound AESA are rejected, and no
calls can be placed without first creating a bind point and calling party’s
AESA.

ATM Subsystem General Features 2-7

The bind space for SVC PPAs is 8 bits long, the size of an AESA selector.

If a convergence module needs a larger binding space, it can create more
PPAs to which it can bind additional instances of its services. A convergence
module can create an SVC PPA for its private use by defining a new ESI

to the system. By defining a new ESI, one or more new PPAs are created
with the new ESI and the current prefixes provided by the switch. The
ATM subsystem recognizes PPAs made with ESIs created by a convergence
module and makes the new PPAs available only to the module that created
the ESI. This allows convergence modules to create their own address space
on the ATM network.

ESIs taken from an adapter’s ROM and ESIs created by using the

at nrconfi g command are considered global. All resulting PPAs are not
restricted to specific convergence modules. All other ESIs and their resulting
PPAs are considered private.

When a driver is taken down or a connection to the network is lost, the CMM
destroys all SVC PPAs, along with any bind points and VCs associated with
the PPAs. If the connection to the network is reestablished, the signaling
module must reregister all the ESIs; only the creator of the ESI or the system
administrator, using the at nconf i g command, can remove ESIs. The PPAs
are then recreated. The convergence modules must bind to the new PPAs.

2.6 Memory Allocation

All modules that allocate memory for use in the ATM subsystems should use
the same allocation mechanism. This enables the system to keep track of
memory allocated for use by ATM and provides a consistent programming
model. The following macros for allocating and freeing memory can be safely
called in any context:

ATM_MALLOC(pointer,cast,size)
ATM_MALLOCW(pointer,cast,size)
ATM_MALLOC_VAR(pointer,cast,size)
ATM_MALLOCW_VAR(pointer,cast,size)
ATM_FREE(pointer)

The ATM_MALLOC and ATM_MALLOCWmacros allocate memory of at least

si ze bytes. They place the address of the allocated memory into poi nt er,
casting it with the type of cast . The allocated memory is correctly aligned
for any operation. You should use these macros if the size of the allocation is
determined at compile time, as they are optimized for that purpose.

The ATM_MALLOC VAR and ATM_MALLOCW VAR macros perform the same
function as ATM _MALLCOC and ATM_MALLOCW You should use these macros
when the allocation size is computed at run time.

2-8 ATM Subsystem General Features

The ATM_MALLOC and ATM MALLOC VAR macros do not block if the requested
memory is not available, but return NULL. You should use these macros in
the majority of cases since any routine called by the ATM Subsystem is not
allowed to block (except Module Management Interface (MMI) calls).

The ATM_MALLOCWand ATM_MALLOCW VAR macros block until the requested
memory is available. However, they can still return NULL if an error occurs
during the allocation processing. Use these macros only in contexts that
can block (system calls and private kernel threads). All memory allocated
by these macros is mapped in kernel virtual memory and can be passed to
any kernel function.

The ATM_FREE macro frees memory allocated previously by any ATM_MALLOC
macro. The value of poi nt er must be identical to that returned from the
ATM_MALLCC macro. Once memory is freed, do not reference it again.

The macros return NULL if no memory is available. All modules must check
the return value before dereferencing them to assure that memory was
successfully allocated. Modules should also be prepared to handle situations
where memory is not available; this should not be a fatal error.

The following code fragment shows how to use these macros:

struct my_struct *nsp;

ATM _MALLOC(msp, struct my_struct *,sizeof (struct ny_struct));
if(msp == NULL)
{

/* allocation failed */
return ATM CAUSE NOVEM

}

/* use menory referenced by nsp */
ATM _FREE(msp) ;

2.7 ATM Locking Macros

The base ATM subsystem is symmetric multiprocessing (SMP) and
realtime (RT) safe. The CMM is highly parallelized and supports fine-grain
concurrency in all attached modules. ATM modules that are included with
the base ATM subsystem are either parallelized or funnel to the master
processor. Therefore, any user-created ATM module must be both SMP and
RT safe. The module must at least use funneling to force the module to run
on the master processor. The module can also use fine-grain concurrency
and locking.

The following section provides a brief overview of locking as it applies to
ATM modules. See the Writing Kernel Modules manual for a complete
description of locking within the kernel.

ATM Subsystem General Features 2-9

2.7.1 Locking Guidelines

Because of the way in which the ATM subsystem operates, you should write
all routines of any ATM module that is called by the CMM to execute on an
interrupt stack. Many ATM functions execute either off a device interrupt,
the system soft clock, or an internal ATM thread. This means that no ATM
routine that the CMM calls can block (with the exception of the xxx_nm
routine described in Appendix A). Therefore, all locks must be nonblocking
simple locks. You can use blocking locks only from within a module’s private
thread, or when in a system call context.

No ATM module should hold a simple lock when calling outside the module
(in general, simple locks should be held the minimum amount of time).
Thus, when calling any CMM routine or any other kernel routine, no locks
should be held. When the CMM calls any module’s routine, no CMM locks
are held across the call.

Finally, before taking a simple lock, raise the processor priority to spl i np so
that interrupts are blocked if the locking thread happens to be running on
the master processor.

2.7.2 Types of Locking Methods

Modules that do not implement high levels of parallelism can implement one
of the following locking methods (in increasing order of preference):

¢ Coarse-grain locking
¢ Funneling

e Using threads

Coarse-grain locking uses one lock (or perhaps a few) to lock a large code
path or an entire module. Avoid this type of locking because it requires
that a simple lock be held for long periods of time, possibly causing all
other processors to block while waiting on the lock. Also, if the lock is held
through function calls outside the module, locking hierarchy violations or
deadlocks could result.

Funneling forces the module’s thread of execution onto a single CPU.

Since the module runs only on the master, it is effectively running in a
uniprocessor environment. Once funneled, all calls outside the module

also run on the master processor even though the called routine may

be parallelized. Funneling causes severe context switch overhead that
adversely affects module, ATM, and system performance. This is because
the module’s thread is suspended on the slave and then placed in the master
processor’s scheduling queue.

To funnel a thread, place the uni x_mast er () function call at the start of
and the uni x_r el ease() function call at the end of the code block to be

2-10 ATM Subsystem General Features

funneled. There must be a corresponding uni x_r el ease() call for every
uni x_mast er () call. You must account for this when designing error paths
through a code block.

Creating a thread for the module and then queuing work to the thread is the
preferred option. All the module’s work is performed in the thread that can
run on only one processor (any processor in a multiprocessor environment).
Thus, within the thread’s code path no locks are required. Only the queuing
mechanism, which enqueues and dequeues requests to the thread, requires
locking.

Using this strategy, all module routines that can be called from outside

the module would allocate some queue structure, take the arguments to

the routine along with some identifier to identify the routine that has

been called, place them in this structure, and then enqueue the structure

to a service queue (locking service queue access). Once the structure is
enqueued, the module’s thread would be scheduled through one of the
thread-management calls. Then, when the thread is run, it would dequeue a
request from the service queue (again, locking the service queue) and process
the request in the thread’s context. The thread would run until there were
no more requests on the service queue. This does incur the overhead of a
context switch on a uniprocessor system, but on a multiprocessor system the
enqueuing could take place on one processor at the same time the thread is
being run on another.

2.7.3 Order of Locking Macros

The ATM locking functions are actually macros that invoke other macros,
and are defined in the at m osf . h file. The following sequence of steps lists
the locking macros and the order in which you call them in your module:

1. Declare and initialize the lock information structure.

atm_lock_info(, lock_info_name);

This declares the lock information structure and allocates storage for
it. Lock information structures are declared as globals, so this macro
should appear outside all functions. When creating a lock for structures
that are dynamically allocated, you need only a single lock information
structure that can be applied to all instances of the structure.

2. Declare a lock.

atm_lock_decl(lock_name)

Note

Do not put a semicolon at the end of the declaration.

ATM Subsystem General Features 2-11

This declares the lock and allocates storage for it. You can use the macro
within a structure declaration or by itself in a global context.

3. Initialize the lock.

atm_lock_setup(&lock_name,& lock_info_name);

Be sure to pass the address of the lock and lock information structures
in this macro.

4. Take the lock.

atm_lock(& lock_name);

Be sure to raise the processor priority immediately before taking the
lock.

5. Release the lock.

atm_unlock(& lock_name);

Be sure to lower the processor priority immediately after releasing the
lock. Do not lower the processor priority while the lock is held.

6. If the lock is no longer needed, (for example, when storage for a
structure with an embedded lock is being released), terminate the lock.

atm_lock_terminate(&lock_name);

Once terminated, you can no longer use the lock unless you reinitialize
it.

The following code fragment shows the sequence of calls in creating and
using a lock:

atm | ock_decl (some_I ock)
atm | ock_i nfo(, some_| ock_i nfo);
int oldpri;

/* initialize the lock */
atm | ock_set up(&sone_| ock, &one_| ock_i nf o) ;

/* take the | ock */

ol dpri = splinp();
atm | ock(&sone_| ock);

/* release | ock */
atm | ock(&somne_| ock);
spl x(ol dpri);

/* terminate the lock when it will no | onger be used */
atm | ock_t erm nat e(&one_| ock) ;

2-12 ATM Subsystem General Features

2.7.4 Creation of ATM Threads

ATM modules can create kernel threads for the following reasons:

e To schedule work in the module to be performed in a context that is
private to that module. For example, a module may process incoming
data from a thread rather than on the interrupt stack (incoming data is
passed to convergence modules on the driver’s interrupt stack).

e To perform functions that have to occur at periodic intervals such as
protocol timeouts or garbage collection.

The operating system’s kernel provides many kernel thread primitives that
modules are free to call directly. These are described in greater detail in the
Writing Kernel Modules manual. However, to create a thread for use by

an ATM module, the ATM subsystem provides the at m cnm new_t hr ead
function. This function combines many of the operating system’s thread
primitives to provide an easier interface for ATM modules. See Appendix A
for a description and format of this function.

2.8 Types of Circuits

The ATM subsystem supports the following circuits:
e Unspecified bit rate (UBR)
¢ Constant bit rate (CBR)

A circuit in which both end systems and the network dedicate the
resources necessary to handle transmission and reception of the circuit’s
traffic at the specified bit rate. CBR circuits requiring end-to-end timing
are not supported because the drivers and adapters do not support the
AAL1 capability.

¢ Pacing

A circuit that allows convergence modules to specify that the local
driver perform cell pacing on non-CBR circuits. The sending system
ensures that traffic is injected onto the network at a rate no greater
than the specified bit rate. A pacing circuit has local significance only.
To the network and target system, the pacing circuit is a best-effort
UBR connection. You can use pacing circuits, for example, to limit the
local host’s transmission rate without having both end systems and the
network treat the circuit as CBR.

The default best-effort UBR connections and pacing connections do not
require the end systems to dedicate resources (such as bandwidth) to the
connections. However, CBR connections require the end systems to dedicate
resources to those connections. These resources can either be allocated
transparently at the time the connection is made or received, or they can
be reserved in advance by the sending or receiving convergence module and

ATM Subsystem General Features 2-13

later applied to a connection setup or incoming call. See Section 6.1 and
Section 6.2 for information on reserving resources for connections.

2.9 Global Data Structures

The following data structures are visible to all modules of the ATM
subsystem and to the protocol convergence module:

e atmyvc

e atm addr

e atmyvc_services
e atmuni _call ie
e atm ppa

e atmesi

e atmcause_info

The ATM subsystem uses these structures to keep track of information for
each VC, such as VC service parameters, connection endpoint addresses,
VC numbers, and traffic statistics. When a module other than the CMM
must allocate memory for a structure, the CMM provides a function call or
macro to allocate structure memory in a consistent manner, to properly
initialize the structures, and to allocate the correct version of the structure.
Module writers must not use any routines other than those that the CMM
supplies to allocate structure memory. The following sections describe these
data structures.

2.9.1 The atm_vc Structure

The ATM subsystem uses the at m vc structure to reference a VC. A VC

is the object on which data is sent and received. VCs are associated with
one or more local endpoints and one or more remote endpoints. An action
performed on a VC usually affects all the endpoints associated with the VC.
For example, transmitting data on a VC sends the data to all endpoints
currently connected to the VC.

The at m vc structure has the following characteristics:
¢ Only the CMM allocates and frees the structure.

e The CMM and other ATM modules use the structure for keeping track
of an active VC. The CMM also uses it to maintain all per-VC state
information.

® Some structure members are reserved for use by the various modules
in the ATM subsystem. This enables all ATM modules to use a common

2-14 ATM Subsystem General Features

reference for a specific VC. All modules use the pointer to this structure
as the handle for a specific VC.

e Each module of the ATM subsystem can write only those members of the
structure that are assigned for its use. All other structure members
should be considered read-only.

e The structure’s size and members might change in the future, but the
arrangement of the per-module structure members should