
Tru64 UNIX
X Window System Environment

Part Number: AA-RH9JC-TE

September 2002

Product Version: Tru64 UNIX Version 5.1B or higher

This manual contains information for system administrators and
programmers about the Tru64 UNIX implementation of the X Window
System Release 6.5 (X11 R6.5). This manual also contains information
about customizing the Tru64 UNIX window system workstation
environment.

Hewlett-Packard Company
Palo Alto, California

© 2002 Hewlett-Packard Company

Open Software Foundation, OSF®, OSF/1®, OSF/Motif®, and Motif® are trademarks of the Open Software
Foundation, Inc.

Adobe®, Acrobat Reader®, PostScript®, and Display PostScript® are registered trademarks of Adobe
Systems Incorporated.

Microsoft® and Windows NT® are trademarks of Microsoft Corporation in the U.S. and/or other countries.
Intel®, Pentium®, and Intel Inside® are trademarks of Intel Corporation in the U.S. and/or other countries.
UNIX® is a trademark of The Open Group™ in the U.S. and other countries. All other product names
mentioned herein may be the trademarks of their respective companies.

This manual is derived from MIT documentation, which contains the following permission notice:
Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that the name of MIT or
DIGITAL not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission. MIT and DIGITAL make no representations about the suitability of the software
described herein for any purpose. It is provided “as is,” without express or implied warranty.

Confidential computer software. Valid license from Compaq Computer Corporation, a wholly owned
subsidiary of Hewlett-Packard Company, required for possession, use, or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial
license.

None of Compaq, HP, or any of their subsidiaries shall be liable for technical or editorial errors or omissions
contained herein. The information is provided “as is” without warranty of any kind and is subject to
change without notice. The warranties for HP or Compaq products are set forth in the express limited
warranty statements accompanying such products. Nothing herein should be construed as constituting
an additional warranty.

Contents

About This Manual

1 X Window System Administration in the Tru64 UNIX Environment
1.1 Choosing the xdm or the dtlogin Display Manager 1–1
1.2 Locations of the X Window System Files 1–2
1.3 X Display Manager (xdm) and the Login Process 1–4
1.4 Security and xdm Authorization 1–9
1.4.1 Host-Based Security 1–9
1.4.2 User-Based Security 1–9
1.5 Solving X Window System Login Problems 1–10
1.5.1 Login Problems 1–10
1.5.2 Failsafe Mode 1–11
1.6 Managing the X Server 1–12
1.7 Graphics Adapters 1–16
1.8 Font Server Management 1–18
1.8.1 Using the Font Server 1–20
1.8.2 Font Server Client Utility Applications 1–21
1.9 Managing X Terminals 1–23
1.10 Memory Utilization by the X Server 1–24

2 Customizing the X Environment
2.1 Resource Definition Overview 2–1
2.1.1 Setting Resources 2–1
2.1.2 Resource Definition Precedence 2–2
2.1.3 Loading Resource Definitions 2–4
2.2 Using Command-Line Options 2–4
2.3 Using Resource Definitions 2–6
2.3.1 Resource Definition Structure 2–7
2.3.2 Resource Definition Files 2–8
2.4 Using Client Utilities for Customization 2–9
2.4.1 The editres Utility 2–10
2.4.2 The xset Utility 2–11
2.4.3 The xsetroot Utility 2–11
2.4.4 The xrdb Utility 2–11
2.4.5 The xmodmap Utility 2–12

Contents iii

2.4.6 Utilities Using the X Keyboard Extension 2–14
2.5 Using an X Session Script 2–16
2.6 Bypassing the Login Manager 2–19

3 Programming in the Tru64 UNIX X Window Environment
3.1 Extensions to the X Server 3–1
3.1.1 Application Group 3–2
3.1.2 BIG_REQUESTS 3–3
3.1.3 DPMS — Display Power Management Signaling 3–3
3.1.4 EVI — Extended Visual Information 3–3
3.1.5 Low Bandwidth Extension 3–3
3.1.6 MIT-SCREEN-SAVER Extension 3–4
3.1.7 MIT-SHM — MIT Shared Memory Extension 3–4
3.1.8 MIT-SUNDRY-NONSTANDARD Protocol Extension 3–4
3.1.9 Multibuffering Extension 3–4
3.1.10 OpenGL — Open Graphics Library Extension 3–4
3.1.11 PanoramiX Extension (Xinerama) 3–5
3.1.12 Remote Execution Extension (RX) 3–6
3.1.13 RCM — Resource Configuration Management 3–6
3.1.14 Security Extension 3–6
3.1.15 SHAPE − X11 Nonrectangular Window Shape Extension . 3–7
3.1.16 SMT − Shared Memory Transport Extension 3–7
3.1.17 SYNC − Synchronization Extension 3–7
3.1.18 TOG-CUP 3–8
3.1.19 XC-MISC 3–8
3.1.20 XIE — X Imaging Extension 3–8
3.1.21 X Input Extension 3–9
3.1.22 X Keyboard Extension for X11 R6 3–10
3.1.23 XKME — X Server Keyboard Management Extension 3–10
3.1.24 Xp (X Print Service Extension) 3–11
3.1.25 XTrap Extension 3–11
3.1.26 XTEST Extension 3–11
3.1.27 XV — X Video Extension 3–12
3.2 X Display Manager Greeter Module 3–12
3.3 Programming Updates 3–14
3.3.1 XChangeProperty and GetWindowProperty Functions 3–14
3.3.2 Link Order for Static X Clients 3–14
3.3.3 DECnet Transport for X Client/Server Connections 3–15

iv Contents

Index

Examples
1–1 Xserver.conf Resource File 1–13
1–2 Font Server config File 1–19
2–1 Session Script 2–17

Figures
1–1 The xdm Processes 1–5

Tables
2–1 Standard Command-Line Options 2–5

Contents v

About This Manual

The X Window System Environment manual discusses various aspects of
the X Window System (X11) Release 6.5 implementation on the HP Tru64
UNIX operating system.

Audience

This manual provides general information as well as specific information
about the X Window System as supplied by the Tru64 UNIX operating
system. The audience for this information includes end users, system
administrators, and applications programmers.

New and Changed Features

This manual has been revised to document X11 R6.5.

Organization

This document has three chapters:

Chapter 1 Discusses X Window System system administration
topics for Tru64 UNIX systems.

Chapter 2 Explains how to customize X environment resources and
keysyms on Tru64 UNIX systems.

Chapter 3 Discusses X server extensions that are part of the Tru64 UNIX
X Window System environment as well as other programming
topics that apply to Tru64 UNIX systems.

Related Documents

The information in the X Window System Environment manual supplements
information found in the following book:

• X Window System User’s Guide OSF/Motif 1.2 Edition, Valerie Quercia
and Tim O’Reilly, O’Reilly & Associates, Inc.

• X Window System, Scheifler and Gettys

• X Window System Toolkit, Asente and Swick, Digital Press

• Additional information can be found at the X.Org Web site at
http://www.x.org.

About This Manual vii

Icons on Tru64 UNIX Printed Manuals

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the manuals to help specific audiences quickly find the manuals
that meet their needs. (You can order the printed documentation from HP.)
The following list describes this convention:

G Manuals for general users

S Manuals for system and network administrators

P Manuals for programmers

R Manuals for reference page users

Some manuals in the documentation help meet the needs of several
audiences. For example, the information in some system manuals is also
used by programmers. Keep this in mind when searching for information
on specific topics.

The Documentation Overview provides information on all of the manuals in
the Tru64 UNIX documentation set.

Reader’s Comments

HP welcomes any comments and suggestions you have on this and other
Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

Please include the following information along with your comments:

• The full title of the manual and the order number. (The order number
appears on the title page of printed and PDF versions of a manual.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate HP technical support office. Information

viii About This Manual

provided with the software media explains how to send problem reports to
HP.

Conventions

This document uses the following typographical and symbol conventions:

%

$ A percent sign represents the C shell system prompt.
A dollar sign represents the system prompt for the
Bourne, Korn, and POSIX shells.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[|]

{ | } In syntax definitions, brackets indicate items that
are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

cat(1) A cross-reference to a reference page includes
the appropriate section number in parentheses.
For example, cat(1) indicates that you can find
information on the cat command in Section 1 of
the reference pages.

About This Manual ix

1
X Window System Administration in the

Tru64 UNIX Environment

This chapter provides information about administering the X Window
System environment for systems running the Tru64 UNIX operating
software.

This chapter includes information on the following topics:

• Display managers (Section 1.1)

• Locations of the X Window System files on Tru64 UNIX (Section 1.2)

• X Display Manager (xdm) and the login process (Section 1.3)

• Security and xdm authorization (Section 1.4)

• X Window System login problems (Section 1.5.1)

• X server management (Section 1.6)

• Graphics adapters (Section 1.7)

• Font server management (Section 1.8)

• X terminal management (Section 1.9)

• X server memory utilization (Section 1.10)

1.1 Choosing the xdm or the dtlogin Display Manager

You can configure your system to run either the standard X11 R6 display
manager, xdm, or the Common Desktop Environment (CDE) display
manager, dtlogin. Run the /usr/sbin/xsetup script to switch between
CDE and xdm. The xsetup script sets the value of the /etc/rc.config
variable XLOGIN to be xdm or cde and will optionally restart your X display
manager using the /sbin/init.d/xlogin script. When your system boots,
the /sbin/init.d/xlogin script uses the value of the /etc/rc.config
XLOGIN variable to determine whether to start xdm or CDE dtlogin(1).

If for any reason you need to restart your X display manager, use xsetup,
whether or not you choose to switch from one display manager to another.
Alternatively, the X display manager can be stopped, started, or restarted
using the /sbin/init.d/xlogin command with stop, start, or restart
specified as the parameter.

X Window System Administration in the Tru64 UNIX Environment 1–1

For more information on configuring CDE and dtlogin(1), see the Common
Desktop Environment: User’s Guide.

The information in the rest of this chapter primarily applies if you choose
to run xdm. While CDE is similar to xdm and uses the same methods and
concepts, there are important differences in the details.

1.2 Locations of the X Window System Files
The file locations shown in the following list reflect the locations of the X
Window System files as established by the installation kits.

Files Contents

/usr/bin/X11 X binaries. (In some previous X
implementations, some X binaries
were located in /usr/bin.)

/usr/bin/X11/demos Binaries of X demo programs.

/usr/examples Example files and (possibly)
program sources.

/usr/include/DXm DECwindows Motif widget header files.

/usr/include/Mrm Motif resource manager header files.

/usr/include/uil User Interface Language (UIL)
header files.

/usr/include/X11 X11 header files.

/usr/include/X11/bitmaps Bitmaps used by various window
managers and applications.

/usr/include/X11/extensions Header files for extensions to X11
R6. (The extensions are discussed
in Chapter 3.)

/usr/include/X11/ICE InterClient Exchange library
header files.

/usr/include/X11/SM Session management library
header files.

/usr/include/X11/Xaw Athena widget header files.

/usr/include/X11/Xmu X utility header files.

/usr/include/X11/Xserver Header files for loadable X server
libraries.

/usr/lib/lib* Developers’ libraries (static versions).

/usr/lib/X11/app-defaults Application default files used by
applications to define default interface
configurations and, in some cases,
the layout of applications.

1–2 X Window System Administration in the Tru64 UNIX Environment

Files Contents

/usr/lib/X11/locale/C Internationalization files.

/usr/lib/X11/config Configuration files that can be used
to build Makefiles from Imakefiles
so that developers can use more
generic build configurations for their
applications. These configuration
files define the proper configuration
parameters for the system.

/usr/lib/X11/fonts/100dpi The 100 dpi fonts from X.Org.

/usr/lib/X11/fonts/75dpi The 75 dpi fonts from X.Org.

/usr/lib/X11/fonts/decwin/100dpi The 100 dpi DECwindows fonts.

/usr/lib/X11/fonts/decwin/75dpi The 75 dpi DECwindows fonts.

/usr/lib/X11/fonts/misc Fonts from X.Org.

/usr/lib/X11/fonts/Speedo Speedo scalable fonts.

/usr/lib/X11/fonts/Type1 Type1 scalable fonts.

/usr/lib/X11/fonts/user/100dpi The 100 dpi fonts from layered products
and local installations.

/usr/lib/X11/fonts/user/75dpi The 75 dpi fonts from layered products
and local installations.

/usr/lib/X11/fonts/user/misc Other fonts from layered products
and local installations.

/usr/lib/X11/fs Font server configuration and
error log files.

/usr/lib/X11/help Directories in this directory contain the
help files for various applications.

/usr/lib/X11/ja Internationalization files.

/usr/lib/X11/japan Internationalization files.

/usr/lib/X11/locale Internationalization files.

/usr/lib/X11/keymaps Alternate keymaps for different
international keyboards.

/usr/lib/X11/nls Natural language support for native
character mappings.

/usr/lib/X11/nls/local_im_tbl Internationalization files.

/usr/lib/X11/rgb* Color database used by the
server to convert color names to
red-green-blue values.

/usr/lib/X11/system.mwmrc Default systemwide configuration
file for mwm.

X Window System Administration in the Tru64 UNIX Environment 1–3

Files Contents

/usr/lib/X11/twm Default configuration information
for twm.

/usr/lib/X11/uid User interface control files used
by some applications.

/usr/lib/X11/x11perfcomp Utility script for reformatting
x11perf output.

/usr/var/X11/xkb XKB keymap files.

/usr/lib/X11/xkb XKB keymap files.

/usr/bin/X11/xkbcomp XKB keymap compiler.

/usr/bin/X11/xkbprint XKB keymap to PostScript generator.

/usr/bin/X11/xkbdfltmap Determines the default keymap based
on the console, language, and keyboard.

/usr/bin/X11/dxkbledpanel Displays a graphical user interface
of the available XKB indicators.
Used primarily to show the current
keyboard group. Replaces the
kb_indicator application.

/var/X11/xdm X Display Manager configuration and
resource files, and the xdm error log.
(The file /usr/lib/X11/xdm is a
link to /var/X11/xdm.)

/usr/lib/X11/XErrorDB Error messages used by the X library.

/usr/lib/X11/XKeysymDB The keysym mappings for X toolkit
based applications.

/var/X11/Xserver.conf Configuration information file
for the X server. (The file
/usr/lib/X11/Xserver.conf is
a link to /var/X11/Xserver.conf.)

/usr/shlib Run-time shared libraries.

/usr/shlib/X11 Run-time shared libraries for the X
server, font server, and xdm.

/usr/shlib/_null Older versions of shareable libraries.

/var/X11/fs Font server configuration files. (The
file /usr/lib/X11/fs is a link to
/var/X11/fs.conf.)

1.3 X Display Manager (xdm) and the Login Process

The X Display Manager (xdm) manages user sessions on both local and
remote displays. On Tru64 UNIX systems, the xdm utility provides the

1–4 X Window System Administration in the Tru64 UNIX Environment

mechanism for logging in to the X display and then automatically starts
certain client applications .

The xdm utility creates child processes for each display both locally and
remotely. The xdm utility is an X client that manages user session elements,
such as logging in, authentication, and default resource set up. System
administrators can use xdm to make systemwide configurations of the X
Window System environment.

Figure 1–1 shows the kinds of processes that xdm manages.

Figure 1–1: The xdm Processes

xdm Parent Process

xdm Local
Display Process

X Terminal

User Session

Local X Server
xdm Remote

Display Process

User Session

ZK-1009U-AI

The xdm daemon starts when the system boots in multiuser mode, so it
is ready to manage the login process. The following list shows the steps
involved in the login process on Tru64 UNIX systems:

1. The system uses the following command during the booting procedure
to start the xdm daemon:

/sbin/init.d/xlogin start

On Tru64 UNIX systems, the xdm daemon is started by an initialization
script that is run using the following link:

/sbin/rc3.d/S95xlogin -> ../init.d/xlogin

X Window System Administration in the Tru64 UNIX Environment 1–5

2. The xdm program reads its main configuration file:

/usr/var/X11/xdm/xdm-config

3. The xdm program listens on its socket for requests from any X terminals.

4. The xdm program forks a child process for managing the local display.

5. The xdm program displays the login box (login widget) on the local
display. For this procedure, xdm executes the following steps:

a. Secures the display.

b. Loads Xresources from the X server resource database utility
xrdb. Loading the resources sets the display characteristics for
the xdm login box.

c. Runs the Xsetup_0 setup script on the local display.

d. Displays the login box (login widget) on the local display.

6. The user enters his or her name and password in the login box. User
authentication takes place to ensure that the user is allowed to access
this display.

7. The login widget is destroyed and xdm runs the GiveConsole startup
script on the local display using the root uid.

8. The X session starts up as a child process using the user’s ID (uid). The
startup action involves executing the /var/X11/xdm/Xsession script,
which either runs the user’s $HOME/.xsession script or dxsession.

9. The user exits the session.

10. The xdm program runs the /var/X11/xdm/TakeConsole script on
the local display using root’s UID.

11. The xdm local display process exits. At this point the workstation
returns to the state it was in at step 4, where xdm forks a child process
for managing the local display and displays the login widget. The
workstation is ready for a user to log in.

On Tru64 UNIX, the /var/X11/xdm directory contains the following files:

• GiveConsole

This script is run when xdm starts up and changes the ownership of the
console, /dev/console, from root to the user. The script only runs on
the local display. (It cannot be used with X terminals.)

• TakeConsole

This script is run when xdm is reset and returns ownership of the console,
/dev/console, from the user to root. The script only runs on the local
display. (It cannot be used with X terminals.)

1–6 X Window System Administration in the Tru64 UNIX Environment

• Xaccess

This configuration file controls how xdm responds to different queries
from the X Display Manager Control Protocol (XDMCP). This file is used
to manage X terminals.

• Xkeymaps

This file defines the mapping between language and keyboard and the
corresponding keymap file in the /usr/lib/X11/keymaps directory.
Whenever the server is started or reset, the keymap is loaded into the
X server by xdm using the xmodmap command.

The value of the console language variable and the keyboard type are
retrieved from the kernel and used as an index into the Xkeymaps table
to define the appropriate keymap.

• Xresources

This file contains resource specifications that are loaded into the X
server’s resource database before the login widget is displayed. These
resources affect the appearance of the login window and screen (either
dxlogin or xlogin), the background color of all clients, as well as
the appearance of the clients, which are started by xdm: xconsole,
dxconsole, and chooser

The dxlogin resources can control the following elements:

– Compaq logo pixmap, clipmask, foreground color, background color,
and login box position

– Root window color

– Greeting text, font, and color

– Prompt text as well as color and font for both the prompt and answer

• Xservers

This file defines the command that starts the server on the local display.
More entries for workstations or X terminals can be added as needed.

The default definition for the UNIX socket transport (DISPLAY :0) is:

:0 local /usr/bin/X11/X

The default definition for the Shared Memory Transport (SMT) (DISPLAY
local:0) is:

local:0 local /usr/bin/X11/X

This file can also be used to specify entries for X terminals that do not
support XDMCP.

• Xservers.fs

X Window System Administration in the Tru64 UNIX Environment 1–7

The file is read by file server systems that use the xdm-config.fs
configuration file. This file is used to specify entries for X terminals
that do not support XDMCP.

• Xsession

This initial startup script is executed under the user’s UID to run
the login session. If a $HOME/.xsession script is available, it runs.
Otherwise, xdm runs the default session, dxsession, which is the
DECwindows Session Manager.

• Xsetup_0

This script is used only to configure the local X server; it cannot be used
with remote X terminals. The script attempts to determine the display
resolution and uses that information to set the appropriate font path. It
also starts dxconsole, unless an alternate console is being used.

• keymap_default

The xdm program links to the appropriate keymap file in
/usr/lib/X11/keymaps.

• xdm-config

This configuration file contains the values for a number of
DisplayManager resources.

• xdm-config.fs

This version of the xdm_config file is for use by server systems that do
not have a local graphics display.

• xdm-errors

This file is an error log file. Both xdm and the X server write all error
messages to this file.

• xdm-pid

Once this file records the xdm process ID, it is locked to prevent multiple
invocations of xdm.

The following files are the default and alternate greeter modules. They are
located in the /usr/shlib/X11 directory:

libXdmDecGreet.so
libXdmGreet.so

The greeter module presents the login interface and authenticates the user
and is dynamically loaded by xdm. The libXdmDecGreet.so file uses
OSF/Motif style widgets. The libXdmGreet.so file uses Athena-style
widgets.

1–8 X Window System Administration in the Tru64 UNIX Environment

The OSF/Motif style greeter is the default. It displays the Tru64 UNIX logo
and login box. It uses the Security Integration Architecture (SIA) to provide
improved security.

The Athena style greeter uses the standard X.Org graphical user interface
(GUI). It does not use SIA; therefore, it cannot be used with enhanced C2
security.

1.4 Security and xdm Authorization

Because the X Window System runs in a networked environment, any other
host on the network can access an individual workstation unless some kind
of security mechanism is in place. The X Window System design makes it
possible for any client that is able to connect to a workstation’s X server
to have complete control over that workstation’s display. As a result, a
client can take control of the mouse or keyboard, send keystrokes to any
application running on the workstation, or kill windows in which other
applications are running.

This section presents a summary of the X security environment.

There are two approaches to X Window System security: host-based security
and user-based security. The following sections briefly discuss each type.

1.4.1 Host-Based Security

With host-based access control, only local clients are accepted by default. X
Window System administrators can use the /usr/bin/X11/xhost client
application to add or delete host names from a list of those allowed to
connect to the X server. The xhost program uses host names to limit host
connections. Therefore, there is no security among users on an individual
host, only security among hosts.

Another host-based security mechanism involves using the /etc/Xn.hosts
file to list systems that can access the local server, specified by n. However,
this method is not recommended because it is hard to maintain a truly
limited list of hosts if more than one user has access to the workstation
where the list resides and because the method allows access to the X server
at any time, even when the xdm login window appears.

1.4.2 User-Based Security

Tru64 UNIX supports two types of user-based X access control authorization
mechanisms: MIT-MAGIC-COOKIE-1 and XDM-AUTHORIZATION-1.

The xdm-config resources DisplayManager.DISPLAY.authorize
and DisplayManager.DISPLAY.authName control whether xdm uses

X Window System Administration in the Tru64 UNIX Environment 1–9

authorization for local displays. X terminals using XDMCP negotiate with
xdm to determine which mechanism to use.

When both the host workstation and the X server are configured to use
MIT-MAGIC-COOKIE-1 or XDM_AUTHORIZATION-1, a machine-readable
code is placed in the ~/.Xauthority file in your home directory every time
you log in under xdm control. The term used for this machine-readable code
is the magic cookie. The X server is informed of the same magic cookie for
the current session. The code is stored in a file in the /usr/lib/X11/xdm/
directory, which the X server reads using its −auth capability.

Whenever a client application starts, it must supply the correct magic cookie
code from the ~/.Xauthority file to the X server to open the display. Since
the permissions on this file are restricted to read/write for the user, only
clients that the user starts have permission to read the magic cookie code.
The assumption is that if the user starts the client application, he or she
wants that application to have permission to run on the user’s workstation.

You can use the xauth program to propagate the magic cookie code from one
host to another. This feature allows users to run client applications on other
workstations that do not share their home directory.

1.5 Solving X Window System Login Problems

This section describes some useful techniques for solving problems you
might encounter when trying to log in to the X Window System environment.
The first section discusses possible causes for login problems. The second
section describes using the failsafe mode to correct various login problems.

1.5.1 Login Problems

If you cannot log in at all to your workstation, check for errors in the
following places:

• $HOME/.xsession-errors

This file contains errors generated by your own user account.

• /usr/lib/X11/xdm-errors

This file contains xdm errors that are not limited to your own user
account.

The following list describes the most common login problems and likely
causes:

• After you enter your name and password in the login box, the screen
immediately resets, redisplaying the login box.

Possible causes for these problems are:

1–10 X Window System Administration in the Tru64 UNIX Environment

– There might be errors in the $HOME/.xsession script. For example,
if there is an ampersand (&) on the last command line in the file,
there would be no controlling process for the X session and the
session would exit immediately.

– Your user disk and /tmp file system are both more than 100 percent
full. You cannot log in because there is no space to write the
.Xauthority file.

– If the /usr/lib/X11/xdm/Xsession script was customized, errors
might have been introduced accidentally.

• You are able to log in, but only a single terminal window appears.

The Xsession script has resorted to failsafe mode. Possible causes are
as follows:

– The user disk is more than 100 percent full.

– The user’s home directory is not writable.

• No login box appears on the local display and there is no X server.

If you encounter this problem, check the /usr/lib/X11/xdm-errors
file for error messages. Possible causes for these error messages are
as follows:

– There are problems in the /usr/lib/X11/Xserver.conf file.

– There are problems in the /usr/lib/X11/xdm/xdm-config file or
the files that it references.

• You cannot log in to an X display as root.

For root login to an X display to be allowed, the name of the display
must be listed in the /etc/securettys file for your workstation. If the
display name is listed in that file, you can log in as root to the X display.

The /etc/securettys file usually includes the entries :0 and local:0
to allow root login to the local display. You can add entries for remote
X terminals or X displays so you can log in remotely as root from those
machines.

1.5.2 Failsafe Mode

When you have problems logging in to your workstation, you can use failsafe
mode to bring up a terminal window. You can use this terminal window to
perform operations that can solve some of the login problems outlined in
the previous section. Failsafe mode bypasses the .xsession script and
dxsession session manager to display a single dxterm window. You can
use this dxterm window to debug your .xsession script.

You can invoke the failsafe mode by pressing the F1 or F2 key after typing
your password in the login box. Do not press the Return key.

X Window System Administration in the Tru64 UNIX Environment 1–11

If you are able to log in, but only a single terminal window appears, you
are already in failsafe mode.

Once you are in failsafe mode, you can check the errors in the xdm-errors
file; check for errors in the xsession script, Xsession file, Xserver.conf
file, or xdm-config file; or delete files if the user disk is full.

1.6 Managing the X Server

The X server consists of loadable libraries. The dynamically loaded libraries
are in the following directory:

/usr/shlib/X11

There are libraries for device support as well as others for X server
extensions and font renderers. Section 3.1 provides descriptions of the X
server extensions that the Tru64 UNIX operating system supports.

You specify which libraries you want dynamically loaded in the
/usr/var/X11/Xserver.conf resource file.

On Tru64 UNIX systems, the X Window System programming extensions are
built and dynamically loaded as shareable libraries. The X protocol requires
that client applications must call the XQueryExtension function before
using an extension. The XQueryExtension function returns extension
information such as the base request number, number of requests, base
error number, number of errors, and version string.

With this mechanism in place, the X server can defer loading any extension
libraries until a client requests a specific extension. When the X server
receives an XQueryExtension protocol request, it loads and initializes the
appropriate extension library if that library has not previously been loaded.

In real time, this loading causes a slight delay in processing the first request
for an extension library. However, no such delay is experienced during
server start up. When the X server is shut down, it closes all libraries that
were loaded on demand.

The extension library on Tru64 UNIX consists of the following shareable
libraries. The first nine libraries (ibxkb.so through libxinput.so) are
loaded at server startup time; the remaining libraries are loaded on demand.

• libxkb.so

• liblbx.so

• liblbxutil.so

• libextshm.so

• libextAppgroup.so

1–12 X Window System Administration in the Tru64 UNIX Environment

• libextSecurity.so

• libpanoramiX.so

• lib_dec_smt.so

• libxinput.so

• libextdpms.so

• libextMultibuf.so

• libextTOG_CUP.so

• libextshape.so

• libextMITMisc.so

• libextScrnSvr.so

• libextxtest.so

• libextkme.so

• libextSync.so

• libextXCMisc.so

• libextbigreq.so

• libextxtrap.so

• libdixie.so

• libmixie.so

• libdbe.so

• libPcl.so

• libPs.so

• libextXp.so

• libxv.so

• libprinter.so

Example 1–1 shows the default Xserver.conf resource file that Tru64
UNIX provides.

Example 1–1: Xserver.conf Resource File

! Default configuration file for extensible X server

! no other sysyem files are needed
! no other core files are needed
!

! device <
! >

! You can set alternate library search paths here or supplement the
! default path.

X Window System Administration in the Tru64 UNIX Environment 1–13

Example 1–1: Xserver.conf Resource File (cont.)

! library_path < /newserver/fonts/lib/font:/usr/shlib >

! Add a few more extensions
extensions <

< extdpms libextdpms.so DPMSExtensionInit DPMS >
< dbe libdbe.so DbeExtensionInit DOUBLE-BUFFER >
< extshape libextshape.so ShapeExtensionInit SHAPE >
< extMultibuf libextMultibuf.so MultibufferExtensionInit Multi-Buffering >

! The KME extension is obsolete functionality that supports lock down
! and latching modifiers. It has been replaced by the XKB extension
! and is only provided here for interoperability with R5 servers.

< extkme libextkme.so KMEInit Keyboard-Management-Extension >
< extMITMisc libextMITMisc.so MITMiscExtensionInit MIT-SUND RY-NONSTANDARD >
< extScrnSvr libextScrnSvr.so ScreenSaverExtensionInit

MIT-SCREEN-SAVER >
< extSync libextSync.so SyncExtensionInit SYNC >
< extxtest libextxtest.so XTestExtensionInit XTEST >
< extbigreq libextbigreq.so BigReqExtensionInit BIG-REQUESTS >
< extXCMisc libextXCMisc.so XCMiscExtensionInit XC-MISC >
! add the xtrap extension
< extxtrap libextxtrap.so DEC_XTRAPInit DEC-XTRAP >
< extrecord libextrecord.so RecordExtensionInit RECORD >
< EVI libEVI.so EVIExtensionInit

Extended-Visual-
Information >

< TOG_CUP libTOG_CUP.so XcupExtensionInit TOG-CUP >

! add the video extension along with device specific handlers
! for the TX device
< xv libxv.so XvExtensionInit XVideo

< _dec_xv_tx lib_dec_xv_tx.so XvropScreenInit PMAG-RO >
< _dec_xv_tx lib_dec_xv_tx.so XvropScreenInit PMAG-JA >

>

! add the X imaging extension
!not R6 < _dec_xie lib_dec_xie.so Xie3Init Xie >

< dixie libdixie.so XieInit XIE
< mixie libmixie.so >

>

>

! Load Speedo and Type1 renderers and
! enable communication with a font server
font_renderers <

< fr_fs libfr_fs.so fs_register_fpe_functions >
< fr_Speedo libfr_Speedo.so SpeedoRegisterFontFileFunctions >
< fr_Type1 libfr_Type1.so Type1RegisterFontFileFunctions >

>

! Enable X Input Devices
!input <
! Dial and Button Box on port /dev/tty01
! < _dec_xi_pcm lib_dec_xi_pcm.so XiPcmInit /dev/tty01 >
!
! Serial Mouse. Use the following format for the last parameter:
!
! device:type:baud:emulate3:chordmid:samplerate:cleardtr:clearrts:core
!
! where
!
! device: The port the device is connectd to.
! For example, /dev/tty00. /dev/tty00 is the
! default.
!
! type: The mouse type. It must be one of the following
! strings (case does not matter): microsoft
! mousesystems mmseries logitech busmouse mouseman
! ps/2 mmhittab. mousesystems is the default.
!
! baud: The baud rate of the mouse. Mine is 1200, I think

1–14 X Window System Administration in the Tru64 UNIX Environment

Example 1–1: Xserver.conf Resource File (cont.)

! others will do 9600. 1200 is the default.
!
! emulate3: Either 0 or 1. 1 means emulate a 3 button mouse
! with a 2 button mouse. This is not implemented yet,
! though 0 is the default.
!
! chordmid: Either 0 or 1. Some 3 button mice treat MB2 kind of
! whacky. A value of 1 supports those meesers. 0 is
! the default.
!
! samplerate: The sample rate of the mouse. I don’t have a mouse
! that supports this, so I don’t know what it does.
! 150 is the default.
!
! cleardtr: Either 0 or 1. 1 means clear the DTR signal for
! the port before using the mouse. 0 is the default.
!
! clearrts: Either 0 or 1. 1 means clear the RTS signal for
! the port before using the mouse. 0 is the default.
!
! core: Either 0 or 1. 1 means make this emulate the core
! device. 0 means make it a two relative motion
! valuator, n-button X Input Device. 0 isn’t
! implemented yet. 1 is the default.
!
! < _dec_xi_serial_mouse lib_dec_xi_serial_mouse.so XiSerialMouseInit
/de
v/tty00:microsoft:1200:1 >
! CalComp Tablet entry
! < _dec_xi_db3 lib_dec_xi_db3.so XiDb3Init
/dev/tty00:1:12:12:16:
1:8:1000:1:1 >
!>
! transport and auth_protocol library loading is not yet supported

! you specify command line arguments here
args <

-pn
>

The following three Xserver command options are especially useful in
managing the X server. For more complete information on the Tru64 UNIX
Xdec and Xserver commands, see Xdec(1X).

• −terminate

This option causes the server to exit rather than to reset.

You can also achieve the same effect by setting the following xdm
resources in the xdm-config file:

– DisplayManager._0.terminateServer: true

– DisplayManager.local._0.terminateServer: true

• -edge_left scr1 scr2

• -edge_right scr1 scr2

You use one of these options to connect the edges of screens in a
multihead display configuration.

X Window System Administration in the Tru64 UNIX Environment 1–15

• -fpfontpath

You can use this option to set the default font path. The path consists of
a comma-separated list of directories for the X server to search to find
the font databases. Make sure that all components of the list are valid
font directories or else the X server will exit.

The X server has been modified to automatically query the kernel for
the language and keyboard of the console. Given this information, the X
server will examine the contents of the /usr/lib/X11/xkb/keymaps.dir
file to determine which default keymap to use. The X server will
then compile the keymap, place the compiled version in the directory
/usr/lib/X11/xkb/compiled, and load it. This feature has been enabled
by default. To disable it, add the -noloadxkb switch to the command line.
If you wish to disable the XKB extension altogether, add the -kb switch to
the command line. See Xdec(1X) or run Xdec with the -? option for more
information.

1.7 Graphics Adapters

This section lists many of the graphics adapters supported by Tru64 UNIX.
(Absence of any adapter from this list does not necessarily mean that the
adapter is not supported.) Some graphics adapters require their own support
kits for full three-dimensional support.

PB2GA-AA QVision Triton EISA
graphics adapter

PB2GA-AA Triton 72Hz 1024x768

Supported by lib_dec_triton.so

PB2GA-FA ATI Mach64 PCI VGA
graphics adapter

PB2GA-FA ATI Mach64 PCI VGA
graphics adapter

PB2GA-FA Mach64 72Hz 800X600

PB2GA-FA Mach64 70Hz 1024X768
(Default Hz and resolution)

PB2GA-FA Mach64 66Hz 1280X1024

PB2GA-FA Mach64 70Hz 1280X1024

PB2GA-FA Mach64 72Hz 1280X1024

Note that 1280X1024 is only available on
cards with at least 2 MB RAM

Supported by lib_dec_ati64.so or
lib_dec_ati64_linear.so

1–16 X Window System Administration in the Tru64 UNIX Environment

PB2GA-FB ATI Mach64 ISA VGA
graphics adapter

PB2GA-FB Mach64 72Hz 640X480

PB2GA-FB Mach64 72Hz 800X600

PB2GA-FB Mach64 70Hz 1024X768
(Default Hz and resolution)

PB2GA-FB Mach64 66Hz 1280X1024

PB2GA-FB Mach64 70Hz 1280X1024

PB2GA-FB Mach64 72Hz 1280X1024

Note that 1280X1024 is only available on
cards with at least 2 MB RAM

Supported by lib_dec_ati64.so or
lib_dec_ati64_linear.so

Cirrus 5422 VGA graphics adapter (embedded
on AlphaServer 1000)

Cirrus 5422 60Hz 640X480

Cirrus 5422 56Hz 800x600

Supported by lib_dec_cirrus.so

PB2GA-J S3 Trio64 VGA graphics adapter PB2GA-J Trio64 60Hz 640X480

PB2GA-J Trio64 72Hz 640X480

PB2GA-J Trio64 60Hz 800X600

PB2GA-J Trio64 72Hz 800X600

PB2GA-J Trio64 60Hz 1024X768

PB2GA-J Trio64 70Hz 1024X768 (default
hz & resolution)

PB2GA-J Trio64 72Hz 1024X768

PB2GA-J Trio64 60Hz 1280X1024

PB2GA-J Trio64 66Hz 1280X1024

PB2GA-J Trio64 72Hz 1280X1024

Note that 1280X1024 is only available on
cards with at least 2 MB RAM

Supported by lib_dec_s3.so or
lib_dec_s3_linear.so

PBXGA-A HX+ 8-Plane Smart Frame
Buffer Plus for PCI (SFB+)

PBXGA-A HX+ 72Hz 1280X1024

X Window System Administration in the Tru64 UNIX Environment 1–17

Supported by lib_dec_ffb.so

PBXGA-B HX+ 24-Plane Smart Frame Buffer
Plus for PCI with no Z-buffer(SFB+)

PBXGA-BA HX+ 72Hz 1280X1024

Supported by lib_dec_ffb.so or
lib_dec_ffb_ev5.so

PBXGA-C HX+ 24-Plane Smart Frame Buffer
Plus for PCI with Z-buffer(SFB+)

PBXGA-CA HX+ 72Hz 1280X1024

Supported by lib_dec_ffb.so or
lib_dec_ffb_ev5.so

PBXGB-A TGA2 8 MB Smart Frame
Buffer for PCI

PBXGB-AA TGA2 graphics adapter

Supported by lib_dec_ffb.so or
lib_dec_ffb_ev5.so

PBXGB-C TGA2 Smart Frame Buffer for PCI PBXGB-CA TGA2 graphics adapter

Supported by lib_dec_ffb.so or
lib_dec_ffb_ev5.so

PBXGF-AB 3dlabs Oxygen VX1 Supported by lib_dec_p3.so

PBXGK-BB Elsa GLoria Synergy Supported by lib_dec_comet.so

The following two families of boards have their own support kits:

Powerstorm 4D40T, 4D50T,4D60T,
4D51T (CatEyes series)

Supported by lib_dec_e3.so

Powerstorm 300, 350 (Peregrine series) Supported by lib_dec_ri.so

1.8 Font Server Management

In Tru64 UNIX, /usr/bin/X11/xfs is the X Window System font server.
The font server supplies fonts to the X Window System display servers.

For X11 R6, the font server was renamed from fs to xfs. For compatibility,
the symbolic link/usr/bin/X11/fs —> xfs is provided on Tru64 UNIX.
Most X11 R5 and X11 R6 X servers can communicate with a font server.

1–18 X Window System Administration in the Tru64 UNIX Environment

For Tru64 UNIX, the font server loads the following configuration file by
default:

/var/X11/fs/config

Example 1–2 shows the default configuration file. Note that on the Tru64
UNIX system, the catalogues and renderers lines are not separated as
shown in the example.

Example 1–2: Font Server config File

font server configuration file
$XConsortium: config.cpp,v 1.7 91/08/22 11:39:59 rws Exp $

clone-self = on
use-syslog = off
catalogue = /usr/lib/X11/fonts/decwin/100dpi/,

/usr/lib/X11/fonts/decwin/75dpi/,
/usr/lib/X11/fonts/misc/,
/usr/lib/X11/fonts/75dpi/,
/usr/lib/X11/fonts/100dpi/,
/usr/var/X11/fonts/user/misc/,
/usr/var/X11/fonts/user/100dpi/,
/usr/var/X11/fonts/user/75dpi/

error-file = /usr/var/X11/fs/fs-errors
in decipoints
default-point-size = 120
default-resolutions = 75,75,100,100
renderers = libfr_Type1.so;

Type1RegisterFontFileFunctions,libfr_Speedo.so;
SpeedoRegisterFontFileFunctions

The following list explains the elements in the file:

• clone-self

This line indicates whether the font server should try to clone itself or
use delegates when it reaches the limit for number of clients. By default,
the Tru64 UNIX font server clones itself when the limit is reached.

• use-syslog

This line indicates whether or not syslog() is used for font server
error logging. For Tru64 UNIX, the value is set to off, which means
that, by default, errors are logged to the error-file specified in this
configuration file.

• catalogue

This line contains the list of font directories that are available by default
from the Tru64 UNIX font server.

X Window System Administration in the Tru64 UNIX Environment 1–19

• error-file

This line lists the pathname of the error log file. This file is used instead
of syslog(). If you encounter problems after you have modified the
configuration file, check the /usr/lib/X11/fs/fs-errors log file to
debug your changes.

• default-point-size

This line indicates the default point size for any font request that does
not specify a point size. Note that the point size is specified in decipoints,
so that a value of 120 indicates a point size of 12.

• default-resolutions

This line lists the default resolutions supported by the Tru64 UNIX
font server. The values are given in pairs of horizontal and vertical
resolutions per inch.

• renderers

This line defines the dynamically loaded renderer libraries for scalable
fonts. These renderer libraries are the same font renderer libraries that
can be loaded by the X server.

1.8.1 Using the Font Server

To use the font server, you need to add the appropriate port to your font
path. For Tru64 UNIX, the default port number is 7100. The default port
number is the registered port 7100. (Note that many R5 implementations
used port 7000, which was not registered. Use the following syntax to add
the font server to your font path:

xset +fp tcp/hostname:7100

Replace the hostname variable with the name of the system where the font
server is running.

You can create a script that automatically starts the font server when you
boot your system in multiuser mode. Add a symbolic link to your script in
/sbin/rc3.d. For example:

/sbin/rc3.d/S94fs -> ../init.d/fs

For more details, see rc3(8).

The following example shows a sample font server initialization script:

#!/sbin/sh
PATH=/sbin:/usr/sbin:/usr/bin
export PATH
#
Control X font server
#

1–20 X Window System Administration in the Tru64 UNIX Environment

case $1 in

\’start\’)
if [-f /usr/bin/X11/xfs]
then

/usr/bin/X11/fs -config /usr/lib/X11/fs/config -port 7100
&

else
echo "WARNING: Font server not found."
exit 1

fi
;;

\’restart\’)

$0 stop
sleep 5
$0 start

;;
\’stop\’)

pid=‘/bin/ps -e | grep ’/usr/bin/X11/fs’ |
sed -e ’s/^ *//’ -e ’s/ .*//’ | head -1‘

if ["X$pid" != "X"]
then

/bin/kill $pid
fi
;;

esac

1.8.2 Font Server Client Utility Applications

Tru64 UNIX includes several font server client utilities: fsinfo,
fslsfonts, fstobdf, and showfont. The following list shows how to
invoke each utility and provides a brief description. See the reference page
for each utility for more information.

• fsinfo

The fsinfo utility displays information about an X font server. You can
use it to examine the capabilities of the server currently running on your
system. The display shows predefined values for various parameters that
are used for communication between clients and the server. The display
also lists the font catalogues and alternate servers that are available.

The following example shows the default fsinfo display for a Tru64
UNIX system named coffee:

% fsinfo −server tcp/coffee:7100
name of server: tcp/coffee:7100
version number: 2
vendor string: Hewlett-Packard Company Tru64 UNIX V5.1B
vendor release number: 6500

X Window System Administration in the Tru64 UNIX Environment 1–21

maximum request size: 16384 longwords (131072 bytes)
number of catalogues: 1

all
Number of alternate servers: 0
number of extensions: 0

• fslsfonts

You can use the fslsfonts utility to display a list of all the fonts served
by the current font server. The following example shows a partial display
for the default Tru64 UNIX font server on a system named coffee:

% fslsfonts −server tcp/coffee:7100
adobe-avantgarde-demi-i-normal--0-0-0-0-p-0-iso8859-1
adobe-avantgarde-demi-r-normal--0-0-0-0-p-0-iso8859-1
adobe-avantgarde-medium-i-normal--0-0-0-0-p-0-iso8859-1
adobe-avantgarde-medium-r-normal--0-0-0-0-p-0-iso8859-1
adobe-courier-bold-i-normal--0-0-0-0-p-0-iso8859-1

.

.

.

You can also use the fslsfonts utility to list the fonts that match a
specified pattern. See fslsfonts(1X) for details.

• fstobdf

The fstobdf utility reads a font from the font server and creates a
bitmap distribution format (BDF) file on the standard output that can be
used to re-create the font. You can use this utility to test font servers,
debug font metrics, and reproduce lost BDF files. However, be careful
to not violate any copyrights or licensing agreements that pertain to
the fonts.

The following command invokes the utility to create a BDF file for a bold
font using the font server on system coffee:

% fstobdf −server tcp/coffee:7100 −fn "*bold*" > boldfont.bdf

• showfont

You can use the showfont utility to display information about a
particular font that is served by the current font server.

Each of the following commands invokes the utility to display information
about the Adobe Avantgarde Demi font available from the font server
on system coffee:

% showfont −server tcp/coffee:7100 -fn\
"-adobe-avantgarde-demi-*-*--*-*-*-*-*-*-*-*"
% showfont −server tcp/coffee:7100 -fn\
"-adobe-avantgarde-demi-r-normal--0-0-0-0-p-0-iso8859-1"

1–22 X Window System Administration in the Tru64 UNIX Environment

1.9 Managing X Terminals
Like workstations, X terminals have monitors, pointers, and keyboards but
otherwise they resemble dumb ASCII terminals because they need to be
connected to a host computer to function. In most instances, the X terminal
reads the X server program at boot time from the host system over the
network. However, there are some X terminals that also have the X server
built directly into the terminal’s ROM.

For X terminals that have X11 R4, R5, or R6 installed, host systems use
the X Display Manager (xdm) and the X Display Manager Control Protocol
(XDMCP) to serve those terminals.

There are three types of XDMCP queries that an X11 R4, R5, or R6 terminal
uses to connect to a host:

• Direct

With a direct query, the X terminal requests a login from only one host.
The xdm program on the host responds and displays the login window.

• Indirect

With an indirect query, depending on the host’s Xaccess file, xdm either
forwards the query to another host or displays the chooser box, which
contains a list of available host nodes. If the chooser box is displayed, the
user selects a host. Next, the chooser client forwards the query to that
host. In either case, the second host then displays the login window.

• Broadcast

With a broadcast query, the X terminal requests a response from any xdm
host on the subnet. The X terminal can either request a direct connection
to the first xdm host that responds or collect responses for a period of
time and offer the list to the user to select one.

Once the connection between the X terminal and the host has been made,
the user has access to all the X Window System features that are available
on the host system.

You specify access control for XDMCP connections to X terminals in the
/usr/lib/X11/xdm/Xaccess file. This file is defined in the xdm-config
file by the DisplayManager.accessFile resource. The following list
contains examples of different types of connection queries:

• Direct or broadcast queries

disallow direct/broadcast service for xtra
!xtra.lcs.mit.edu

allow access from this particular display
mars.osf.org

X Window System Administration in the Tru64 UNIX Environment 1–23

allow access from any display in LCS
*.lcs.dec.com

• Indirect queries

define a macro, % HOSTS
%HOSTS expo.lcs.dec.com xenon.lcs.dec.com \
excess.lcs.dec.com kanga.lcs.dec.com

force extract to contact xenon
extract.lcs.dec.com xenon.lcs.dec.com

disallow indirect access from extra
!xtra.lcs.dec.com dummy

all others get to choose
*.lcs.dec.com %HOSTS

• Indirect queries from the chooser

offer a menu of these hosts
extract.lcs.dec.com CHOOSER %HOSTS

offer a menu of all hosts
xtra.lcs.dec.com CHOOSER BROADCAST

offer any host a menu of all hosts
* CHOOSER BROADCAST

Older X terminals with X11 R3 can be managed directly without XDMCP.
To use these X terminals, you must include a specific entry in the
/var/X11/xdm/Xservers file. For example, to manage an X terminal
named cream, include the following line in the Xservers file:

cream:0 foreign

With such a connection, the xdm utility immediately displays a login window
on the X terminal.

1.10 Memory Utilization by the X Server

Under normal operating conditions, the X server requires large amounts of
memory. Once memory is allocated to the X server, it is never freed to the
system. It can be reused, but never freed. This means that the X server
memory allocation may increase dramatically at startup and then become
fairly stable, unless you continue to start new and unique client applications
without terminating any of the earlier applications.

1–24 X Window System Administration in the Tru64 UNIX Environment

2
Customizing the X Environment

With the Tru64 UNIX operating software, you can use resource definitions to
customize and manage your workstation environment and certain elements
of X Window System, OSF/Motif, and DECwindows applications that you
are running. This chapter contains information about how to specify and
modify these resource definitions.

2.1 Resource Definition Overview
The term resources file refers to characteristics of X Window System
applications or applications built on X Window System technology. Resources
values define aspects of the X display on a workstation and the window
applications that run in the X Window System environment.

X resources are defined for display aspects of the Tru64 UNIX operating
system itself as well as for all the X client applications that are part of the
operating system. X applications that are installed on top of the operating
system also have resource definitions. Resources characteristics include
color specifications for various elements in a window display, presence of
scroll bars for a window, location of windows on the desk top area, font used
for text, and width of window borders.

Resource definitions are used in all applications based on the X Window
System, such as xterm, xclock, and even the X Display Manager xdm.
The Tru64 UNIX operating software provides default resource definitions
for the X Window System. Users can modify some resource definitions to
customize their workstation environment; for example, to set the colors and
positions of windows.

2.1.1 Setting Resources

System administrators can set systemwide resources to provide a more
uniform environment for the people working at the workstations or X
terminals for which they are responsible. Programmers rely on resource
specifications to create application windows, dialog boxes, and menus as well
as to establish a particular look and feel for their applications’ displays.

There are three ways to set resources:

• Using command-line options when invoking a particular client such as
dxterm, xterm, or xclock

Customizing the X Environment 2–1

Only a subset of resources can be set from the command-line, but the
advantage of this method is that you do not need to edit any files to apply
the definitions. Section 2.2 discusses this method.

• Defining resources in files that are processed whenever an X client
application starts

These files include $HOME/.Xdefaults-hostname and files to which the
XENVIRONMENT variable points. Resource definition files can be located
in the user’s home directory and in the /usr/lib/X11/app-defaults
directory, which is part of the operating software.

The system administrator can use systemwide files to establish uniform
settings for small or large groups of users; or special individual settings.
Section 2.3 discusses this method.

• Defining resources in client applications

Programmers who are writing X Window System client applications
include resource definitions in their code so that they control the look
and feel of the application. Section 2.4 describes some utilities that help
users and programmers specify resource definitions.

2.1.2 Resource Definition Precedence

Because of the variety of methods for setting resources, there could be times
when there are several definitions for a particular resource. For X Window
System environment resources, the definitions are applied in the following
order:

1. Systemwide application default resource definitions

Resource definitions for the Tru64 UNIX operating software clients are
located in the /usr/lib/X11/app-defaults/ClassName files. These
resources are used only by a client that runs on the local host, even if
the client appears on a remote X display.

2. User-specific default resource definitions

These definitions are usually located in files in the user’s home
directory, $HOME/ClassName. If several hosts share the home directory,
the definitions in the directory will also be shared by those same hosts.

3. Host-specific default resource definitions

Host-specific resource definitions are located in either the
$HOME/.Xdefaults-hostname file or a file pointed to by the
$XENVIRONMENT variable. These definitions are only used by
applications running on the host system and are not specific to the
display.

4. Resource database resource definitions

2–2 Customizing the X Environment

Some users use a resource database loaded by the X Server Resource
Database utility (xrdb) to specify display-specific default resource
settings.

5. .Xdefaults file resource definitions

If no resource database exists for the user, the X server applies the
resource definitions in the $HOME/.Xdefaults file.

6. Command-line options

Users can change some resource definitions by specifying the new
resource settings on the command-line when they invoke the client
application. Section 2.2 and X(1X) provide information on the standard
resources that can be set from the command line for most applications.
Client applications can create additional options that set resource
definitions that are specific to the particular application.

It is important to be aware of which resource definitions take precedence
of other definitions; hence, the use of ascending numbers in the preceding
list. System definitions are overridden by user definitions, which are,
in turn, overridden by host-specific definition. A definition supplied
through a command-line option overrides any existing definition for that
resource. However, only the 17 standard resources or resources for which
the client application has provided a command option can be defined using
command-line options. Other resources must be specified in definition files
or by using the −xrm option.

Note that host-specific and user-specific resource files do not necessarily
have to reside in the user’s home directory. There are several environment
variables that can be set to specify a search path for default files:

• XFILESEARCHPATH

This environment variable is used to set the path for systemwide
application-specific resource definition files.

• XUSERFILESEARCHPATH

This environment variable is used in place of $HOME for
application-specific user resource definition files.

• XAPPLRESDIR

If this environment variable is defined and XUSERFILESEARCHPATH
is not, the search path becomes:

$XAPPLRESDIR/%L/%N:$XAPPLRESDIR/%l/%N:$XAPPLRESDIR/%N:$HOME/%N

$XAPPLRESDIR is replaced by the value of that environment variable;
$HOME is replaced by the user’s home directory. If there is no definition
for $XAPPLRESDIR, the path is the user’s home directory:

$HOME/%L/%N:HOME/%l/%N:$HOME/%N

Customizing the X Environment 2–3

The %L element resolves to a full-locale name if one exists; %l resolves to
the language component element of the locale; %N resolves to the name of
the file being searched for. If no file exists in the locale or if no locale has
been defined, the path collapses to the next level.

2.1.3 Loading Resource Definitions

Using xrdb to load resource definitions directly into the X server promotes
consistency in the way applications run. In addition, because xrdb runs
the resource definition file through a C preprocessor, you can further
customize the environment by using #ifdef and #include commands in
the resource definition files. You can also use the −D (define symbol) and −U
(undefine symbol) options on the xrdb command line to set up different
environments on different hosts; so users can move among workstations
with different capabilities and maximize the special features on each one.
(See Section 2.4.4 for more information.)

To load resources using xrdb, use either the −load option (the default)
or the −merge option and specify a new resource definition file. With the
−load options, all previous resource definitions in the X server are deleted
and replaced with the new definitions in the specified file. If the new file
does not contain a definition for a resource that was defined previously, that
resource definition is either lost or reverts to a default. The −merge option
allows you to change and add resource definitions without losing existing
ones that you do not modify in the new definition file that you specify with
the xrdb command.

2.2 Using Command-Line Options

When you invoke a client application on your workstation, you can use
command-line options to specify certain characteristics for the appearance,
location, and features of the window display. There are a number of standard
options that are used with X Toolkit or Motif Toolkit applications. Not all
such applications use all the standard resource options, but many use most
of them. Programmers can also create application-specific options so that
users can set other resources for those applications.

Table 2–1 lists the standard command-line options and the resources they
modify.

2–4 Customizing the X Environment

Table 2–1: Standard Command-Line Options
Option Resource Description

−bg −background background Sets the background color
of the window.

−bd −bordercolor borderColor Sets the color of the
window border.

−bw −borderwidth borderWidth Sets the width of the window
border in pixels.

−display display Specifies the display on
which the client runs.

−fn −font font Sets the font used for
text display.

−fg −foreground foreground Sets the window’s
foreground color that is
used for the text or graphics.

−geometry geometry Specifies a geometry string
that sets the startup size and
placement of the window.

−iconic iconic Invokes the application in
the iconic state.

−name name Specifies the name of the
application. This name is
used for the window icon.

−rv −reverse reverseVideo Reverses the foreground and
background colors.

+rv reverseVideo Restores the foreground and
background colors to their
current specifications.

−selectionTimeout selectionTimeout Specifies the timeout period
in milliseconds. This value
determines the timeout
period within which two
communicating applications
must respond to one another
after a selection request.

−synchronous synchronous Enables synchronous
debugging mode.

+synchronous synchronous Disables synchronous
debugging mode.

−title title Specifies the application
title that is used in the
window’s title bar.

Customizing the X Environment 2–5

Table 2–1: Standard Command-Line Options (cont.)

Option Resource Description

−xnllanguage xnlLanguage Sets the language, territory,
and National Language
Support codeset.

−xrm Allows you to specify a
resource name and value to
override any defaults.

To modify an application resource definition, include the option on the
command line that invokes the application. Most options require a
parameter such as the name of a color, a file name, or a text string. The
reference page for the command that invokes the application lists the
appropriate options and their parameters.

The following examples show how some of these standard options are
specified when an application is invoked:

dxterm −bg "pale green" −fg "sandy brown" &

This example starts a DECterm window with a pale green background. The
text and graphics appear in sandy brown.

xterm −iconic −name Letters &

This example creates an xterm window, but places it immediately in the icon
state. The name of the icon is Letters.

dxcalc −geometry +0-0 &

This example invokes the DECwindows Calculator application and places
the window in the lower left corner of the screen.

2.3 Using Resource Definitions

Resources are defined in several places in the X Window System
environment. There are resource definition files such as local and groupwide
Xdefaults files that contain resource definitions for your X workstation
environment. Then there are resource definitions in window applications
based on the X Toolkit (including DECwindows and OSF/Motif Toolkit
applications) that determine the various visible aspects of the application.

Programmers need to understand resource definitions so they can use them
when they create their applications. System administrators use resource
definitions to set up a default working environment for the workstations
they maintain. End users can use resource definitions to customize their
workstation environment and even to customize some display characteristics
of applications they run.

2–6 Customizing the X Environment

This section explains the structure of resource definitions, gives examples of
how to create and modify the definitions, and describes the kinds of resource
definition files that you can edit to customize your environment.

2.3.1 Resource Definition Structure

The syntax for resource definitions is as follows:

object.subobject [.subobject]... .attribute: value

The parameters have the following definitions:

object The client program or a specific instance of the client
program. This parameter can specify any client,
such as a DECterm window or the clock application.

subobject A subobject is an element of the object client
program. A subobject corresponds to the widgets
that make up the client program. The number
of subobjects you need to include to reach the
particular resource you want to specify is determined
by the widget hierarchy of the client program.

attribute This parameter specifies the characteristic that you
want to define. The attribute must be a feature
of the last subobject you listed. The attribute
refers to such things as font, color, or location of the
subobject.

value This parameter specifies the definition for the
attribute. Definitions can include color names,
pixel coordinates, and Boolean values such as True
or False.

Specifying the object, attribute, and value parameters is relatively
straightforward. In general, the object parameter is the name of the client
program. The resource attribute refers to the characteristic you want
to modify, add, or delete. The second column in Table 2–1 contains the
names of some resource attributes. The description gives you an idea of
the kinds of values you can specify such as a color name for foreground,
pixel coordinates for geometry, a font string for font, and a locale for
xnlLanguage.

Creating resource definitions can be a bit more complex if you have to
deal with subobjects. When you want a value to apply to an attribute
throughout the application, you can use an asterisk (*) to indicate all the

Customizing the X Environment 2–7

subobjects. For example, if you want the background color to be light blue
for every dialog box, menu, message box, and so on in the AccessX client,
use the following resource definition:

accessx*background: lightblue

This kind of definition is known as a loose binding because the value applies
to all appropriate widgets in the hierarchy.

If you want to have a dark-blue background only for the status boxes, you
would use the following resource definition:

accessx.mousekeys.statusbox: darkblue

This definition requires that you know every element in the widget hierarchy
from the main widget, accessx to the status box widgets. This kind of
definition has a tight binding; that is, each subwidget between the accessx
widget and the statusbox widget is listed in order, separated by periods.

To determine the elements in the widget hierarchy for an application,
you need to use the editres utility. This utility creates a display of the
hierarchy and also provides a way to test your resource definition. See
Section 2.4.1 and editres(1X) for details.

2.3.2 Resource Definition Files

A resource definition file consists of lists of resource definitions and
comments. Comments are prefixed by an exclamation point (!). You can
use the exclamation point to disable a definition that you do not want to
use, but want to retain in the file.

If your resource definition file will be run through the C language
preprocessor, you can use #ifdef and #endif constructs to deal with
definitions that are to be applied under certain circumstances. For example,
you might have color definitions that would only be applied when you were
working at a workstation with a color monitor.

The /usr/lib/X11/app-defaults directory contains resource definition
files for many of the window client applications that are included with the
Tru64 UNIX operating software. These files are read-only, so users cannot
edit the contents to change or add resource definitions. However, you can use
some of these definitions as models for your own definitions in a resource file
or as part of the command line you issue to invoke the client. Note that many
of these definitions specify things that you would not want to customize,
such as the alignment of the buttons on the calculator application.

The files in the /usr/lib/X11/app-defaults directory do contain some
resource definitions that you might find useful as models for definitions you

2–8 Customizing the X Environment

create. For example, you could use the Clock-Color file to get some ideas
for color definitions.

More resource definition files are located in your $HOME directory. Some of
these files can be specific to applications that you run. For example, you
could create a file called XTerm in your $HOME directory that would be read
every time a new XTerm window was created on the display. Any definitions
for resources already defined in the /usr/lib/X11/app-defaults/XTerm
file would be overridden by the definitions in your personal XTerm file.

Host-specific resource definition files customize your display environment
and are read by all client applications running on your host. One such
file is called $HOME/.Xdefaults. You can set colors for the display
background and foreground as well as for various elements of the windows
that appear. You use this file to specify your default window manager. If
you usually work on a system with a color monitor, but occasionally use a
monochrome monitor, you can include color definitions in your .Xdefaults
file surrounded by #ifdef and #endif statements. These definitions will
only be processed if the COLOR C preprocessor symbol is defined. If you
use dxsession, the definitions in the .Xdefaults file will be loaded into
the X servers resource database. Otherwise, you can use the xrdb utility,
which automatically uses the C preprocessor to deal with such programming
constructs. Note that dxsession does not use the C preprocessor to process
the .Xdefaults file and dxsession only understands a limited number
of C preprocessor directives. You can use the xrdb -symbols command to
see which symbols xrdb has defined.

In general, you will want to use xrdb to load one or more resource definition
files into the X server’s database. The xrdb utility is usually invoked by
a session script such as $HOME/.xsession. See Section 2.4.4 for more
information on xrdb.

If you do not load the X server’s resource database either by using xrdb
or by using the Session Manager, each time an X application starts up, it
reads the .Xdefaults file and applies all relevant resource definitions. The
dxsession program processes the local .Xdefaults file and loads the
resource definitions into the X server’s database.

2.4 Using Client Utilities for Customization
The preceding section referred to some utilities that are useful in creating
and processing resource definitions. The following sections describe each of
the following client utilities that you can use to customize resources:

• editres

• xset

• xsetroot

Customizing the X Environment 2–9

• xrdb

• xmodmap

2.4.1 The editres Utility

The editres utility is a dynamic resource editor for use with X Toolkit
applications. Motif applications are also X Toolkit applications and also
work with editres. The utility allows users and application programmers
to view the full widget hierarchy of any X Toolkit client that understands
the editres protocol. You can use editres to apply resource definitions
to an application and see the results immediately. Users can save these
definitions by having editres append the definitions to an existing X
resource definitions file such as .Xdefaults.

The editres utility displays the widget hierarchy along with the names
and definitions of all the resources for a particular X client application. This
information enables a user or programmer to add, modify, or delete resource
definitions for the application. The editres utility can dynamically apply
the resource changes to the application. Thus, the user or programmer can
immediately see the results of the new definition and decide whether or not
to save the change, restore the original setting, or make another change.

The editres main window has four areas: Menu Bar, Panner, Message
Area, and Application Widget Tree display. You use the Menu Bar to access
the different editres features. The Panner provides an intuitive method
for scrolling through the Application Widget Tree display. The display area
shows the widget tree for the application specified through the Get Widget
Tree menu item.

The Show Resource Box menu item creates a pop-up window that contains
resource definitions for the widget that is currently selected in the
Application Widget Tree display.

You use the Set Resource pop-up window to enter a resource definition for all
the widgets currently selected in the Application Widget Tree display. (You
can use Tree menu commands to select more than one widget by specifying
such keywords as All, Children, Parents, Descendents, or Ancestors; or by
specifying a widget class.)

In most instances, you use the Resource Box to determine whether a
resource has been defined and what that definition is. You also use this
box to add, modify, or delete resource definitions and to indicate to which
widgets these changes apply. Once you have made your change, you use the
Apply button to see the effects of your change. Press the Save button to save
the change you have made. There is also a Save And Apply button, which
performs both operations at once.

2–10 Customizing the X Environment

Note that some client applications have hard-coded the attributes for certain
elements rather than use resource definitions. There is no way for editres
to modify hard-coded attribute specifications.

2.4.2 The xset Utility

The xset utility is described in its reference page as the “user preference
utility for X”. You can use this utility to set various user preference options
for your workstation’s display. These options include the following:

• Volume, pitch, and duration of the computer’s beep sound

• Whether the keyclick sound is enabled or disabled and what volume it
has

• Font path that specifies which fonts the X server can use

• Control of the use of LED lights for such things as Shift/Caps Lock

• Control of the mouse for such things as pointer acceleration and the
length of the delay time until the maximum acceleration speed is reached

• Pixel color values

• Whether the autorepeat feature for keys is enabled or disabled

• Screen save parameter settings

• Enable and disable DPMS

You can use the −q option with the xset command to display the current
settings for your workstation. To change a setting, issue the xset command
with the appropriate option. See the xset(1X) reference page for the
description of each option.

2.4.3 The xsetroot Utility

You can use the xsetroot utility to customize the attributes of the display
background on your workstation. These attributes include the color and
shape that the pointer cursor has, except in client windows where those
settings have been defined by the client applications, and the pattern and
colors of the display background; that is, the root window. You can use
xsetroot to do such things as create plaid display backgrounds or change
the shape of the pointer cursor to look like a hand or some other object.

The xsetroot command has a −def option that let you return the display to
its default settings. See xsetroot(1X) for more details about the utility.

2.4.4 The xrdb Utility

The xrdb utility manages the X server resource database. This utility gets
and sets the contents of the RESOURCE_MANAGER property for the display

Customizing the X Environment 2–11

window for screen 0 on your workstation, or the SCREEN_RESOURCES
property for the display window of any or all screens. This utility is generally
invoked from users’ X session scripts. Resource definitions are loaded
directly into the X server.

One of the features of the xrdb utility is that it uses a C preprocessor
when it loads the resource definition file. This feature allows you to have
#include and #ifdef statements and some other programming constructs
in your resource definition files. In addition, you can define and undefine
symbols by using the −D or −U options.

The following example shows how you might include an #ifdef directive
in your resource definition file that defines the colors to use for DECterm
windows on color workstation monitors and the black and white values to
use with noncolor monitors:

#ifdef COLOR
DXterm*background: lightblue
DXterm*foreground: darkblue
#else
DXterm*background: gray
DXterm*foreground: black
#endif

You can use the xrdb −query command to see the current settings for your
system. If you want to change some of these resources, you can create a
resource definition file and use the xrdb −merge filename command to
add or replace existing definitions with your changes. With the −merge
option, xrdb replaces resource definitions for resources that are already
defined for your system with those in the file you specify. If you have included
resource definitions in that file for previously undefined resources, those
new definitions are added. All other existing definitions remain the same.

There is also an xrdb −load filename command that you can use to erase
all previous resource definitions and only use those in the file you specify. By
default, xrdb behaves in this manner. Most of the time, you will probably
want to use the xrdb −merge filename command because you will not
want to lose the default settings for your environment.

For more information on the xrdb utility, see the X Window System User’s
Guide and xrdb(1X).

2.4.5 The xmodmap Utility

You can use the xmodmap utility to modify the mappings for keyboard keys
as well as mouse buttons.

The utility has three basic mapping functions:

2–12 Customizing the X Environment

• It reassigns a modifier function to a different key on the keyboard.
For example, to have the Right Shift key perform the Control modifier
function, use the following command:

xmodmap -e "Control_R = Shift_R"

• It reassigns a keyboard function to a different key on the keyboard. For
example, to have the exclamation point (!) be sent to the computer when
you press the vertical bar key, use the following command:

xmodmap -e "keycode 243 = slash exclam"

• It reassigns pointer functions to different mouse buttons. For example, if
you are left handed, you could use the following command to change the
order of the buttons on the mouse from 1 2 3 to 3 2 1:

xmodmap -e "pointer = 3 2 1"

You can issue xmodmap commands during your work session or include them
in an X session script. You can also create xmodmap definition files for the
utility to read at startup time or when you invoke the utility during your
work session.

The xmodmap command has the following syntax:

xmodmap [options] [filename]

When you use the xmodmap command with no options, it displays the
current modifier key map, the keys that can be used to modify other keys.
While this information can be helpful in some instances, most of the time
you do not want to change these key mappings. The following example
shows the xmodmap display:

xmodmap: up to 2 keys per modifier, (keycodes in parentheses)

shift Shift_R (0xab), Shift_L (0xae)
lock BadKey (0xb0)
control BadKey (0xaf)
mod1 Multi_key (0xad), Multi_key (0xb1)
mod2 Alt_L (0xac), Alt_R (0xb2)
mod3
mod4
mod5

The items in the left column are the logical key names for the modifier
keys. The items to the right are the keysym specifiers with the hardware
hexadecimal keycode in parentheses. For example, the logical key name
shift has two keys on the keyboard that perform the shift function. Their
keysyms are Shift_R and Shift_L. The hardware hexadecimal keycodes
for these keys are Oxab and Oxae respectively.

Customizing the X Environment 2–13

Using the xmodmap −pke command, you can see the decimal keycodes and
the keysym name or names that have been assigned to each keycode. Note
that keycode numbers vary depending on the keyboard model that you have
connected to your workstation.

When there are two names, the second one indicates which key function is
processed when the shift modifier key is pressed in combination with that
physical key. The following example shows a portion of the output:

keycode 242 = semicolon colon
keycode 243 = slash question
keycode 244 =
keycode 245 = equal plus
keycode 246 = bracketright braceright
stdin
keycode 247 = backslash bar
keycode 248 =
keycode 249 = minus underscore
keycode 250 = bracketleft braceleft
keycode 251 = apostrophe quotedbl

You use keycodes and keysyms in the xmodmap −e command to modify
the action that takes place when a particular keyboard key is pressed. For
example, you can change the Select key on HP LK201/401 keyboards to
perform the Delete function:

xmodmap -e "keysym Select = Delete"

You can have your own personal keymapping file by creating a file with
xmodmap definitions, such as the following:

! Make the comma shift be < and the period shift be >.
keysym comma = comma less
keysym period = period greater
! Replace the Help key with the escape function.
keysym 124 = escape

To have the file processed whenever you log in, include an xmodmap
command in your X session script. For example, if you named your key
definition file .Xmodmap and located it in your home directory, you could
include the following line in your X session script:

xmodmap $HOME/.Xmodmap

For more details about the xmodmap utility, see the X Window System User’s
Guide and xmodmap(1).

2.4.6 Utilities Using the X Keyboard Extension

Several applications that make use of XKB features are also new. These
applications include the following:

2–14 Customizing the X Environment

• xkbcomp

The xkbcomp utility is the XKB keymap compiler and converts XKB
keymap source files into one of several output formats. It will also
optionally load a keymap directly into the server if you specify the
display as the output file. Each of the xmodmap keymaps located in
/usr/lib/X11/keymaps for X11 R5 has been converted to XKB format
for X11 R6. These new keymaps are located in/usr/lib/X11/xkb. See
xkbcomp(1) or run xkbcomp with the -? switch for more information.

• xkbprint

The xkbprint utility creates a PostScript representation of an XKB
keymap. If you specify the display as the input file, it will read the XKB
geometry from the server. See xkbprint(1) or run xkbprint with the
-? switch for more information.

• xkbdfltmap

The xkbdfltmap utility queries the kernel for the language and
keyboard on the console. Given this information, Xdec will examine
the /usr/lib/X11/xkb/keymaps.dir file to determine the default
keymap to use. The xkbdfltmap utility will then display the appropriate
xkbcomp command to run to download the default XKB map to the
server. If xkbdfltmap is run with the -exec switch, it will automatically
execute the xkbcomp command for you. See xkbdfltmap(1) or run
xkbdfltmap with the -? switch for more information.

• dxkbledpanel

The dxkbledpanel utility displays the state of the keyboard indicators.
This is useful for monitoring and changing the state of indicators that
may not have keyboard LEDs. For example, the group indicator does not
always have an LED on every keyboard. See dxkbledpanel(1) or run
dxkbledpanel with the -? switch for more information.

• dxkeyboard

The dxkeyboard utility allows you to select a localized keymap based
upon your selection of language and keyboard type. The dxkeyboard
utility optionally saves your selections and will load them if it is run with
the -load switch. The dxkeyboard utility is available as the Keyboard
Options object under CDE’s Application Manager in the Desktop_Apps
folder. See dxkeyboard(1) or run dxkeyboard(1) with the -? switch
for more information.

• accessx

The accessx application for X11 R5 has been ported to use the XKB
protocol for X11 R6. See accessx()1 for further information.

Customizing the X Environment 2–15

2.5 Using an X Session Script

Once you have decided on how you want to customize the X Window System
on your workstation, an effective way to preserve that environment is to use
an X session script. X session scripts also work with CDE’s dtlogin(1)
manager.

You can use a session script to invoke certain applications when you log in
and place various windows on your display in specific positions. You can set
the window manager in your session script as well as specify colors, fonts,
and window features. The file can also contain xmodmap definitions or call
an xmodmap definition file.

You can use a script to define certain environment variables before
the session manager starts. For example, the following script defines
the PRINTER environment variable, sets the default path, and invokes
dxsession as the session manager.

#!/bin/csh
setenv $PRINTER ln08r
set path=($HOME/bin /bin /usr/bin /usr/bin/mh /usr/bin/X11 \

/usr/local /usr/local/bin)
exec dxsession

The next example invokes the xconsole program and starts an xterm
window as background processes. It then starts the twm window manager in
the foreground. The twm window manager becomes the session’s controlling
process; that is, the session will last as long as the twm process is running.
When twm exits, the .xsession script completes and the user’s X session is
over. If the last command line in the script had ended with an ampersand
(&), the .xsession script would immediately complete and exit, the X
session would be over, and xdm would cause the display to reset to the login
box.

#!/bin/sh
xconsole −geometry 480x130−0−0 −daemon −notify −verbose

−fn fixed −exitOnFail
xclock &
xterm −geometry 80x24+10+10 −ls &
exec twm

With the xconsole program running, messages that are usually sent
to /dev/console appear in the xconsole window on the display. The
xclock command places a clock client window on the display. The xterm
−geometry −ls command starts an xterm window at the screen location
specified with the −geometry option and starts the login shell in that
window.

2–16 Customizing the X Environment

You can include a wide variety of customizations in an X session script as
shown in the following example. The comments within the example explain
the code.

Example 2–1: Session Script

#!/bin/csh
#
Define environment variables, paths, and so on. Keeping these
definitions in a separate file is useful. That way, .login
and/or .cshrc can reference the same set of definitions.
#
source ~/.environ.csh
#
Create a pipe for dxconsole to read from, so it can display the
output of other commands.
#
setenv XSESSION_PIPE .xsession_pipe.$DISPLAY
if ! { test -p .xsession_pipe.$DISPLAY } then

/usr/sbin/mknod $XSESSION_PIPE p
endif
#
Use xrdb to load the resources in the .Xresources file into the
X server’s resource database.
#
if (-f .Xresources) then

xrdb -load -retain .Xresources
endif
#
Determine whether the display is the local graphics display,
that is, :0 or local:0 .
#
if ("‘echo $DISPLAY | cut -d’:’ -f1‘" == || \

"‘echo $DISPLAY | cut -d’:’ -f1‘" == "local") then
#
These applications are run only if the display is local.
#
dxconsole < $XSESSION_PIPE &
#
Figure out how many screens the display has.
#
set SCREENS=‘xdpyinfo | grep "number of screens" \

| cut -f 4- -d " "‘
#
The xset b flag sets the bell volume, pitch, and duration.
The xset c flag controls the key click.
The xset m flag controls the mouse acceleration and
threshold.
The xset s flag sets the screen save parameters.
#
xset b 18 400 100 c 22 m 7 5 s 600 600 >& $XSESSION_PIPE
#
For each screen, set the background color and the colors
and shape of the cursor. This example uses custom colors
defined in an Xcms data file as well as customized bitmaps
(created # with /usr/bin/X11/bitmap) to define the shape
of the cursor.
#
set SCREEN=0
while ($SCREEN < $SCREENS)

xsetroot -solid DarkBlueBackground -fg red -bg yellow \
-cursor cursor.bmp cursor_mask.bmp -display $DISPLAY.1 \
>& $XSESSION_PIPE

Customizing the X Environment 2–17

Example 2–1: Session Script (cont.)

@ SCREEN=($SCREEN + 1)
end

Set the SCREEN variable to the screen number of the highest
numbered screen.
#
@ SCREEN=($SCREENS - 1)
#
The xbiff command displays a small mailbox image that lets
you know when you have mail. This example uses the ’letters’
bitmap from /usr/include/X11/bitmaps as well as custom
bitmaps for the full and empty bitmaps and shape masks.
#
xbiff -shape -update 120 -geometry 60x60-0+0 \

-display $DISPLAY.0 -bg black -fg white \
-bd ’#191919195c5c’ -xrm "XBiff*fullPixmap: letters" \
-xrm "XBiff*emptyPixmap: $HOME/bitmaps/one.xbm" \
-xrm "XBiff*fullPixmapMask: $HOME/bitmaps/lettersmask.xbm" \
-xrm "XBiff*emptyPixmapMask: $HOME/bitmaps/one.xbm" \
>& $XSESSION_PIPE &

start oclock on screen 0
oclock >& $XSESSION_PIPE &
#
Start xcalendar, xload, and dxmail on the highest numbered
screen.
#
xcalendar -display $DISPLAY.$SCREEN >& $XSESSION_PIPE &
xload -geometry +0-0 \

-display $DISPLAY.$SCREEN >& $XSESSION_PIPE &
dxmail -display $DISPLAY.$SCREEN >& $XSESSION_PIPE &
#
Use xmodmap to reorder the mouse buttons and remap the Shift
Lock key on the LK401 or LK201 keyboard to be Escape.
#
xmodmap -e ’pointer = 2 3 1’ >& $XSESSION_PIPE
xmodmap -e "clear lock" >& $XSESSION_PIPE
xmodmap -e "keycode 176 = Escape" >& $XSESSION_PIPE
#
Start the Motif Window Manager as the controlling process.
When mwm exits, the X session will be over.
Using the shell’s built-in exec command saves the cost of
creating another process.
#
exec mwm -multiscreen >& $XSESSION_PIPE
#
End of Session
#

else
#
These applications are run only if the display is not local,
that is, the session is run on a remote X Terminal.
#
Invoking dxconsole is useful for displaying the stdout of
the commands that run, even though as a remote display,
the display console output will not actually be displayed.
#
dxconsole < $XSESSION_PIPE &
xset b 18 400 100 c 22 m 7 5 s 600 600 >& $XSESSION_PIPE
xsetroot -solid DarkBlueBackground -fg red -bg yellow \

-cursor cursor.bmp cursor_mask.bmp >& $XSESSION_PIPE
oclock&

2–18 Customizing the X Environment

Example 2–1: Session Script (cont.)

#
If the X Terminal is running its own local window manager,
mwm is likely to exit immediately, so it is not used as the
controlling process.
#
mwm >& $XSESSION_PIPE &
#
Instead, xterm is used as the controlling process. When
xterm exits, the X session will be over.
#
exec xterm
#
End of Session
#

endif

2.6 Bypassing the Login Manager

Although we do not recommend bypassing the xdm or dtlogin(1) login
manager, there are several ways you could accomplish this. The following
steps describe one method that you can use to disable the xdm or dtlogin(1)
login manager:

1. Disable automatic startup of xdm.

mv /sbin/rc3.d/S95xlogin /sbin/rc3.d/xS95xlogin

2. Write a script that will start the X server and then start your
application. For example:

#!/bin/csh
#
Start the X server.
Using the -ac option disables authentication checking.
#
/usr/bin/X11/X -ac &
#
define anything you might need in your environment
#
setenv DISPLAY :0
#
You may also configure the X server’s font path, keyboard, etc.
by calling Xsetup_0. This will also start dxconsole, but if
you don’t want that make your own customized version of
Xsetup_0 and use that. But bear in mind that the X server
will reset when its last connection is closed, so you may need
to hold open a connection, something like this:
#
/usr/bin/X11/xlogo&
/var/X11/xdm/Xsetup_0
#
Now start your application
#
/path-to-wherever/your-application &

Customizing the X Environment 2–19

3. Create a link to your script in rc3.d named S95*:

ln -s /path-to-wherever/my-startup-script /sbin/rc3.d/S95whatever

4. For a clean shutdown, disable stopping of xdm or dtlogin(1):

mv /sbin/rc0.d/K19xlogin /sbin/rc0.d/xK19xlogin

5. Write a shutdown script for your application and create a symbolic link
to it in /sbin/rc0.d/K19whatever. This step is optional and only
required if there is some cleanup you need to do in case the system is
shut down.

2–20 Customizing the X Environment

3
Programming in the Tru64 UNIX X

Window Environment

Use the X Window System and X Window System Toolkit manuals as the
primary references for information on how to program X Window System
applications.

However, information specific to the Tru64 UNIX X server is not covered in
those manuals. This chapter includes information on the following topics:

• Extensions to the X server (Section 3.1)

• X Display Manager greeter module (Section 3.2)

• Programming update (Section 3.3)

3.1 Extensions to the X Server

Tru64 UNIX supports a number of protocol X server extensions. Many of
these extensions are built and dynamically loaded as sharable libraries.
Section 1.6 lists the components of the Tru64 UNIX extension library and
explains the processes for loading and making calls to them.

The following list contains the X11 R6.5 protocol X server extensions that
Tru64 UNIX supports:

• Application Group (Section 3.1.1)

• BIG_REQUESTS (Section 3.1.2)

• Display Power Management Signaling (DPMS) (Section 3.1.3)

• Extended Visual Information (EVI) (Section 3.1.4)

• Low Bandwidth X Extension (LBX) (Section 3.1.5)

• MIT-SCREEN-SAVER (Section 3.1.6)

• MIT Shared Memory (MIT-SHM) (Section 3.1.7)

• MIT-SUNDRY-NONSTANDARD (Section 3.1.8)

• Multibuffering (Section 3.1.9)

• OpenGL (Open Graphics Library) — Support available with the Open3D
for Tru64 UNIX layered product (Section 3.1.10)

• PanoramiX (Section 3.1.11)

Programming in the Tru64 UNIX X Window Environment 3–1

• Remote Execution (RX) (Section 3.1.12)

• Resource Configuration (Section 3.1.13)

• Security (Section 3.1.14)

• SHAPE (X11 Nonrectangular Window Shape) (Section 3.1.15)

• Shared Memory Transport (SMT) (Section 3.1.16)

• Synchronization Extension (SYNC) (Section 3.1.17)

• TOG-CUP (Section 3.1.18)

• XC-MISC (Section 3.1.19)

• X Imaging Extension (XIE) (Section 3.1.20)

• X Input Extension (Section 3.1.21)

• X Keyboard Extensions (xkb) (Section 3.1.22)

• X Keyboard Management Extension (XKME) (Section 3.1.23)

• X Print Extension (Xp) (Section 3.1.24)

• XTrap (Section 3.1.25)

• XTEST (Section 3.1.26)

• X Video (XV) (Section 3.1.27)

Documentation on many of the extensions is available from X.org. You can
download the extensions from:

http://ftp.x.org/pub/R6.6/xc/doc/hardcopy/Xext.

Header files for several of the extensions are in the /usr/include/X11/ex-
tensions directory. The following sections provide brief descriptions of
each extension.

3.1.1 Application Group

The Application Group extension provides the framework that allows more
than one program to manage X applications on the desktop. Use of this
extension allows embedding or inserting X programs into the windows of
another program, such as a web browser.

An Application Group is a set of one or more applications that are managed
by an application that is known as the Application Group Leader. The
purpose of the Application Group is to share the Substructure-Redirect
attribute of the root window with the application manager and one or more
Application Group Leaders.

3–2 Programming in the Tru64 UNIX X Window Environment

3.1.2 BIG_REQUESTS

The standard X protocol only allows requests up to 218 bytes long.
BIG_REQUESTS, a new protocol extension, has been added. This extension
allows a client to extend the length field in protocol requests to be a 32–bit
value. This is useful for extensions that transmit complex information to
the server.

3.1.3 DPMS — Display Power Management Signaling

The Display Power Mangement Signaling extension supports powerdown
capable monitors.

Not all graphics adapters and monitors are DPMS capable. It is important to
check the equipment specifications of your monitors because monitors that
do not support DPMS can be damaged by the activation of the DPMS feature.

The time required for a monitor to return from the power saver state depends
on the amount of time the monitor has been in power saver state. This is
the result of the cooling of the monitor phosphor and the time required to
reheat the phosphor. It is not a function of the operating system or the X
Window system.

3.1.4 EVI — Extended Visual Information

The Extended Visual Information extension allows a client to determine
information about core X visuals, beyond those that the core protocol
provides, by quering the X server for additional visual information,
specifically for colormaps and framebuffer levels.

This extension exclusively supports X clients. It does not support X
extensions. Extensions that have an impact on visual information should
provide the mechanisms for delivering that information.

3.1.5 Low Bandwidth Extension

The Low Bandwidth X (LBX) extension defines compression and local
caching techniques that improve performance of X applications in wide area
networks (WANs) and across slow speed network connections. Performance
is improved by reducing the amount of protocol data that is transported
over the network and by reducing the number of client to server round trips
required for common application start-up operations.

This extension is implemented using an X server extension and a proxy
application. The X server extension provides a new optimized protocol. The
proxy application, lbxproxy, translates a normal client X protocol stream
into the LBX stream. This permits an existing application to benefit from
the optimized protocol without any changes to the application.

Programming in the Tru64 UNIX X Window Environment 3–3

The proxy is useful when multiple applications are running on a local area
network that is separated from the X server by a slower network. In this
case, the local cache is shared by each application using the same proxy
process.

3.1.6 MIT-SCREEN-SAVER Extension

The Screen Saver extension enables a client to receive notification when the
screen has been inactive for a specified amount of time or whenever it cycles.
The extension is useful to those writing screensaver programs.

3.1.7 MIT-SHM — MIT Shared Memory Extension

This extension allows images to be placed in shared memory segments
accessible by both the application and X server. Using shared memory
reduces the amount of bandwidth required to transfer the images between
the application and the server.

3.1.8 MIT-SUNDRY-NONSTANDARD Protocol Extension

This extension permits tolerance of old X bugs. See xset(1X) for a description
of the -bc option.

3.1.9 Multibuffering Extension

This extension enables a client application to perform the following
operations:

• Associate multiple image buffers with a window

• Paint in any image buffer associated with a window

• Display a series of image buffers in a window in rapid succession to
achieve smooth animation

• Request simultaneous display of different image buffers in different
windows

3.1.10 OpenGL — Open Graphics Library Extension

This extension provides a software interface to graphics hardware. The
interface consists of a set of procedures and functions that allows a
programmer to specify the objects and operations involved in producing
high-quality graphical images, specifically color images of three-dimensional
objects.

To the programmer, OpenGL is a set of commands that allows the
specification of geometric objects in two or three dimensions, together with
commands that control how these objects are rendered into the frame buffer.

3–4 Programming in the Tru64 UNIX X Window Environment

For the most part, OpenGL provides an immediate-mode interface, so that
specifying an object causes it to be drawn.

A typical program that uses OpenGL begins with calls to open a window in
the frame buffer into which the program will draw. Then, calls are made to
allocate a GL context and associate it with the window. Once a GL context is
allocated, the programmer can issue OpenGL commands. Some commands
are used to draw simple geometric objects for example, points, line segments,
and polygons. Other commands affect the rendering of these primitives,
including how they are lit or colored and how they are mapped from the
user’s two- or three-dimensional model space to the two-dimensional screen.
OpenGL also has commands that affect direct control of the frame buffer,
such as those that read and write pixels.

In the X Window System, OpenGL rendering is made available as an
extension to X in the formal X sense: connection and authentication are
accomplished with the normal X mechanisms. As with other X extensions,
there is a defined network protocol for the OpenGL rendering commands
that are encapsulated within the X byte stream.

Information on OpenGL is provided in the OpenGL Reference Manual
eddited by Dave Shreiner (Addison-Wesley).

3.1.11 PanoramiX Extension (Xinerama)

The PanoramiX extension allows a system configured with multiple video
monitors (a multiheaded system) to operate the monitors as a single large
screen. Windows can span multiple screens and can move from one screen
to another. This extension is only supported in homogeneous graphics
environments. That is, the environment must consist of common devices,
visuals, depths, resolutions, and so on.

Monitor configurations can easily be enhanced by enabling the PanoramiX
extension in combination with use of the -screenOrder option, which
allows screen ordering based on physical monitor location.

The Xnest and Xvbf servers are not configured to work with the PanoramiX
extension. In addition, the OpenGL layered product is supported with the
PanoramiX extension on the Peregrines (Powerstorm 300 and Powerstorm
350). This requires the installation of a separate kit.

The extension causes applications to display on multiple screens of a
workstation as if the workstation is supporting only a single screen (screen
:0). The size of the composite screen equals the size of the multiple screens
combined.

It is necessary to create multiple instances of some resources because these
resources are screen unique or they contain a back pointer to a ScreenPtr.

Programming in the Tru64 UNIX X Window Environment 3–5

These resources include GCs, windows, pixmaps, or colormaps. When the
server handles a client request that creates a resource, the extension creates
an equivalent instance of the resource for each physical screen. PanoramiX
uses linked lists to keep track of these resources. Each entry in the list
contains the following information:

• The client-requested resource identifier

• Additional resource identifiers created by the extension

• A Boolean used for freeing entries

3.1.12 Remote Execution Extension (RX)

The Remote Execution (RX) extension defines a MIME-type document and
defines how the document is used to execute a remote application from a
Web Browser. The document is provided to the browser so that the browser
can set up an environment for the application to run in. The RX document
can list both required and optional services, and allows the preferences of
the browser to determine which services to use. The RX plug-in is loaded as
a default application helper for the Netscape Web Browser.

3.1.13 RCM — Resource Configuration Management

The Resource Configuration Management extension modifies a resource for
a specific widget and each child widget in the hierarchy by changing the X
Intrinsics. There is no sourcing of the resource file, the application does
not have to be restarted for the new resource values to take effect, and the
changes occur immediately.

The RCM customizing hooks reside in the Intrinsics and are linked with
other toolkits such as Motif and the Athena widgets. This is the main
difference between RCM and the Editres protocol.

The Resource Configuration Management extension is not a standard part of
the X Toolkit Intrinsics (libXt).

3.1.14 Security Extension

The Security extension contains a new protocol that provides enhanced
X server security. This extension adds to the X protocol the concepts of
trusted and untrusted clients. The trust status of a client is determined by
the authorization used at connection setup. All clients using host-based
authorization are considered trusted. Clients using other authorization
protocols may be either trusted or untrusted, depending on the data included
in the connection authorization phase.

The requests in the security extension permit a trusted client to create
multiple authorization entries for a single authorization protocol. Each entry

3–6 Programming in the Tru64 UNIX X Window Environment

is tagged with the trust status to be associated with any client presenting
that authorization.

When a connection identifying an untrusted client is accepted, the client is
restricted from performing certain operations that would steal or modify
data that is held by the server for trusted clients. An untrusted client
performing a disallowed operation will receive protocol errors.

When a client is untrusted, the server will also limit the extensions that are
available to the client. Each X protocol extension is responsible for defining
what operations are permitted to untrusted clients. By default, the entire
extension is hidden.

3.1.15 SHAPE − X11 Nonrectangular Window Shape Extension

This extension provides arbitrary window and border shapes within the X11
protocol. The oclock program, for example, uses this extension to produce
a round clock-face display.

3.1.16 SMT − Shared Memory Transport Extension

The Shared Memory Transport (SMT) extension provides a completely
shared memory transport for requests. For many operations, performance
significantly increases when this extension is used. Unlike the MIT-SHM
(shared memory transport) extension which supports only image transfers,
the HP SMT supports the full protocol.

All requests are passed to the server by means of a shared memory queue.
The server and client control the flow by using X protocol requests over
UNIX Domain sockets. All events, replies, and errors are returned through
UNIX Domain sockets.

This transport is suitable only for high-bandwidth applications that typically
use large requests. Short requests may take longer to process with SMT
than with UNIX Domain sockets because of synchronization overhead. For
example, XNoOp requests will take twice as much time to execute.

The DISPLAY environment variable must be set to local:0 when SMT
is used.

When using SMT, the X server may not be able to allocate a shared memory
segment. This problem occurs if the system shared memory resources are
depleted; a warning message appears on the client side.

3.1.17 SYNC − Synchronization Extension

The synchronization extension, SYNC, provides primitive calls that allow
synchronization between clients to take place within the X server. This

Programming in the Tru64 UNIX X Window Environment 3–7

feature eliminates network errors that can arise when two communicating
systems are running a distributed application that requires both systems to
be synchronized.

With this extension, clients on different hosts running different operating
systems can be synchronized. Multimedia applications can use this
extension to synchronize audio, video, and graphics data streams. In
addition, the extension provides internal timers within the X server that can
be used to synchronize client requests. Using this feature, simple animation
applications can be implemented without having to use round-trip requests.
The extension allows applications to make the best use of buffering within
the client, server, and network.

3.1.18 TOG-CUP

The TOG-CUP extension provides a mechanism for a colormap manager to
recognize special colormap requirements, encourages colormap sharing and
reduces colormap flashing on low-end 8–bit frame buffers, and defines a
behavior in the X server color allocation scheme to reduce colormap flashing,
when colormaps are not shared.

A protocol that provides a method to query the server for a list of reserved
colormap entries, and one that initializes read-only (shareable) colormap
entries at specific locations in a colormap encourage colormap sharing and
accommodate special colormap requirements.

If the core protocol does not contain information about the pixel values
returned, and the TOG-CUP extension is in effect, the AllocColor and
AllocNamedColor request look in the default colormap for a matching color.
If a match is found in the default colormap, and the corresponding cell in
the private colormap is empty, the color is allocated to the corresponding
location in the private colormap rather than the first available location.
This minimizes colormap flashing when the root window’s default visual is
GrayScale, PseudoColor, or DirectColor, and the default visual is using a
private colormap.

3.1.19 XC-MISC

The XC-MISC protocol allows clients to get back ID ranges from the server.
Xlib handles this automatically, making this useful for long-running
applications that use many IDs over their lifetime.

3.1.20 XIE — X Imaging Extension

The X Imaging extension provides mechanisms for the transfer and display
of virtually any image on any X-capable hardware. Although this extension
is not intended to serve as a general-purpose imaging processor, it provides a

3–8 Programming in the Tru64 UNIX X Window Environment

large number of primitives for image rendering and image enhancement.
These primitives can be combined to form complex expressions. XIE also
includes facilities for importing and exporting images between clients and
servers, facilities for moving images between client and servers as well
as between core X modules and XIE modules, and facilities that enable
applications to access images as resources.

X.Org provides documentation for XIE in PostScript format. That
documentation is located on the Tru64 UNIX system in the /usr/doc/xie
directory. The following list describes the documents:

• X Image Extension Overview

This document provides general information about the X Image
Extension code. Topics covered are: XIE design goals, XIE historical
summary, XIE architecture, element definitions, and subsetting.

• XIElib Specification

This document contains reference descriptions of all the XIElib functions,
XIElib events, and XIElib errors. The Functions section covers the
following types of functions: startup, LUT, photomap, ROI, photoflo,
client data, abort and await, photoflo element, technique, and free.

• XIE Sample Implementation Architecture

This document is for X.Org members who have a working understanding
of the X Imaging Extension. It provides an architecture overview
as well as chapters on the following topics: extension initialization,
memory management, request dispatching, data representation, data
structures, protocol requests, DIXIE photoflo management, DDXIE
photoflo management, and photo elements.

• X Image Extension Protocol Reference Manual, Version 5.0

This document specifies the X wire protocol for the X Image Extension.
It defines the syntax, structure, and semantics of the XIE protocol
elements. Topics covered include syntax specification, parameter types,
resources, pipelined processing, import elements, process elements,
export elements, events and errors, techniques, service class, and
protocol encodings.

3.1.21 X Input Extension

This extension supports input devices other than the core X keyboard and
pointer. The extension is designed to handle request and event definitions
that are similar to core request and event definitions. This design allows
extension input devices to be individually distinguishable from each other
as well as from core input devices. The extension requests and events use a
device identifier and support the reporting of n-dimensional motion data as
well as other data that is not reportable through core input events.

Programming in the Tru64 UNIX X Window Environment 3–9

3.1.22 X Keyboard Extension for X11 R6

The X Keyboard Extension (XKB) server extension enhances control and
customization of the keyboard under the X Window System by providing
the following:

• Support for the ISO9996 standard for keyboard layouts

• Compatibility with the core X keyboard handling (no client modifications
are required)

• Standard methods for handling keyboard LEDs and locking modifiers
such as CapsLock and NumLock

• Support for keyboard geometry

In addition, the X11 R5 (for versions of Tru64 UNIX earlier than Version 4.0)
AccessX server extension for people with physical impairments has been
incorporated into the XKB server extension. These accessibility features
include StickyKeys, SlowKeys, BounceKeys, MouseKeys, and ToggleKeys, as
well as complete control over the autorepeat delay rate.

3.1.23 XKME — X Server Keyboard Management Extension

This extension enables an X client application to access the server
mode-switch modifier. The mode switch is designed to meet the needs of
character sets of languages that require native characters (for example,
Hebrew and Japanese). The mode switch enables a client application to
switch back and forth between character groups: Group 1 (ASCII characters)
and Group 2 (native characters).

The function of the mode switch is similar to that of the Shift or Shift
Lock key. These mechanisms both enable multiple symbols (keysym) to
be generated from single keys, with one symbol for one mode or shift or
shift/lock state and another symbol for the other state. For example, on the
American keyboard, 3 and # can be switched by the shift state.

The combination of the mode-switch and shift/lock mechanisms allows up to
four keysyms to be established for a single key.

The entry point XKMEDoKBModeSwitch is defined for the mode-switch
modifier and can be set to the following modes of operation:

LockDownModeSwitch Locks down the mode-switch modifier; that
is, switches to Group 2.

UnlockModeSwitch Unlocks the mode-switch modifier; that
is, switches to Group 1.

See dxkeycaps(1X) for information on how to access the shift modifier from
client applications and contains general information on keyboard mappings.

3–10 Programming in the Tru64 UNIX X Window Environment

3.1.24 Xp (X Print Service Extension)

X Print (Xp) service is an X extension that allows X imaging to nondisplay
devices such as printers and fax machines. The core of the X Print service
is the X Print Server.

Applications that require printing operations can make a connection to the
X Print Server and list the available printers using the GetPrinterList
request. After selecting a printer, an application creates and sets a print
context using the PrintCreateContext and PrintSetContext requests.

The print context is a fundamental X print service concept. The print context:

• Contains printer default capabilities

• Contains printer capabilities

• Maintains the state of the printer settings

• Maintains the state of rendering against a printer

• Maintains rendered output

A print context also affects how the DDX driver generates page description
language (PDL), and how the PDL is submitted to the spooler. It may also
affect fonts and other elements of the DDX layer of the X print server.

Printer capabilities are determined by attribute pools within the print
context. These pools can contain information related to a context’s server,
printer, job, document, and page options. PrintGetAttributes and
PrintSetAttributes are used to access and modify attribute pools.

PrintStartJob and PrintEndJob are used to delineate print jobs. A job is
a collection of documents defined by PrintStartDoc and PrintEndDoc.
Each document is a collection of pages. Upon completion of a job, the server
sends any resulting PDL to a print spooler, or makes it available for retrieval
by an application.

3.1.25 XTrap Extension

This extension allows a client application to track and use information about
input events occurring on a remote X server. XTrap also allows a client
application to provide input to the remote server.

3.1.26 XTEST Extension

This extension contains a minimal set of X client and server extensions that
are required to completely test the X11 server with no user intervention.
The extension is designed to meet the following goals:

Programming in the Tru64 UNIX X Window Environment 3–11

• Minimize portability problems by confining the extension to an
appropriate high level within the X server. In practice, this goal means
that the extension should be at the DIX level, use the DIX/DDX interface,
or both. This specification has effects, in particular, on the level at which
input synthesis can occur.

• Minimize the changes required in the rest of the X server.

• Minimize the performance penalties that running the test produces on
normal X server operation.

3.1.27 XV — X Video Extension

This extension performs the following functions:

• Lists available video adapters

• Identifies the number of ports each adapter supports

• Describes what drawable formats each adapter supports

• Describes what video encodings each adapter supports

• Displays video from a port to a drawable format

• Captures video from a drawable format to a port

• Reserves ports for exclusive use and unreserves them

• Sets and gets port attributes

• Delivers event notification

3.2 X Display Manager Greeter Module

In the X Display Manager (xdm), the greeter module is a separate
dynamically loadable library. The greeter collects identifying information
from the user (for example, name and password), authenticates the user, and
optionally starts the login session. Application programmers can customize
this module to suit the needs of their application.

The greeter library that is used is determined by the value of the
DisplayManager.greeterLib resource in the /var/X11/xdm/xdm-
config file. This library is required to define a function named
GreetUser().

The X Display Manager uses dlopen() to dynamically load the greeter
library. It uses dlsym() to find the GreetUser() function.

The GreetUser() function can either handle the user’s session itself or
allow xdm to do so. The return value of GreetUser() indicates to xdm
whether or not to start a session.

3–12 Programming in the Tru64 UNIX X Window Environment

The GreetUser() function is passed the xdm struct display pointer, a
pointer to a Display Struct (defined in /usr/include/X11/Xlib.h), and
pointers to greet and verify structures. If GreetUser() expects xdm to
run the session, it fills in the Display pointer and the fields of the greet
and verify structs.

Definitions of struct display, struct verify_info, and struct
greet_info are located in /usr/examples/xdm/dm.h. The GreetUser()
function prototype is defined in /usr/examples/xdm/greet.h.

Any greeter library compiled on a Tru64 UNIX system prior to Version 4.0
must be recompiled to integrate data structure changes made in X11 R6.
The use of a version field on these structs eliminates the need to recompile
for future versions of the operating system.

The GreetUser() function is defined in greet.h as follows:

int GreetUser(
struct display *d,
Display **dpy,
struct verify_info *verify,
struct greet_info *greet,
struct dlfuncs *dlfcns)

The parameters for the function are as follows:

• struct display *d [read-only]

This struct display is defined in /usr/examples/xdm/dm.h.

• Display **dpy [write]

The parameter returns the Display pointer from XtOpenDisplay() or
XOpenDisplay().

• struct verify_info *verify [write]

This struct is defined in /usr/examples/xdm/dm.h. The GreetUser()
function is passed a pointer to an existing verify-info struct. The
function is expected to write the fields of this struct. These fields include
the uid, gid, arguments to run the session; the environment variable for
the session; and the environment variable for startup and reset.

• struct greet_info *greet [write]

This struct is defined in /usr/examples/xdm/dm.h. The GreetUser()
function is passed a pointer to an existing verify-info struct. The
function is expected to write the user’s name and password into the
name and password fields, but these values are really needed only when
xdm is compiled with SECURE_RPC defined.

• struct dlfcns

Programming in the Tru64 UNIX X Window Environment 3–13

This struct is a set of function pointers to xdm functions that the
GreetUser () function is likely to need.

Note that on Tru64 UNIX using these function pointers is not necessary
since the symbols will be resolved by the dynamic loader.

The GreetUser() function returns an enumerated type, greet_user_rtn,
defined in greet.h.

Greet_Session_Over 0 session managed and over
Greet_Success 1 greet succeeded, session not managed
Greet_Failure -1 greet failed

3.3 Programming Updates

This section contains new information about programming in the X Window
System environment. The section covers the following topics:

• XChangeProperty and GetWindowProperty functions (Section 3.3.1)

• Link order for static X clients (Section 3.3.2)

• DECnet transport for client/server connections (Section 3.3.3)

3.3.1 XChangeProperty and GetWindowProperty Functions

X.Org has refined the behavior of the XChangeProperty and
GetWindowProperty functions. This refinement primarily affects programs
that have arrays of integers (int) with format 32. If you have used or plan
to use either function, use arrays of longwords (longs) instead.

Until recently, the data type used with a format of 32 was implied, not
specified. With the new refinements, the data that is provided in format 32 to
the XChangeProperty function or returned from the GetWindowProperty
function should be accessed as arrays of longwords or typedefs based on
longwords such as Window or Atom.

3.3.2 Link Order for Static X Clients

There are certain steps you must follow when compiling, loading, or linking
X client applications against a static or nonshared library.

Specify either the −ldnet_stub or −ldnet option when:

• Using the cc −non_shared command

• Using the ld −non_shared command

• Linking against the libX11.a static library

If you link your X client application to the nonshared version of the
/usr/lib/libDXm.a library, you must include libbkr in the link line.

3–14 Programming in the Tru64 UNIX X Window Environment

If you omit libbkr, the warning messages appear about the following
undefined symbols:

DXmHelpSystemClose
DXmHelpSystemDisplay
DXmHelpSystemOpen

3.3.3 DECnet Transport for X Client/Server Connections

The X server, X libraries, and various X clients use a DECnet transport
mechanism for client/server connections when the appropriate DECnet
product is installed on the system or on two systems, if the X client and X
server are running on different nodes. If DECnet is not installed, attempts
to make these client/server connections fail.

The loadable X server, as well as clients and libraries that directly execute
calls to DECnet functions, are built using the libdnet_stub.so shared
library in the ld command that links the object files. DECnet functions that
are commonly called include getnodename, dnet_addr, and dnet_conn.

X clients that are built fully static and include libX11.a or libXmu.a must
incorporate the libdnet_stub.a library if they do not use the DECnet
transport. If they do use the DECnet transport, they must incorporate the
libdnet.a library. One of these libdnet libraries must be included to
resolve function calls from within the libX11 or libXmu modules. If the
X client is not fully static, but is using libX11.a or libXmu.a for some
other reason, libdnet_stub.so should be included in the ld command
information so that the client can be used whether or not DECnet is installed.

Note that DECnet/OSI is not part of the Tru64 UNIX operating system.

Programming in the Tru64 UNIX X Window Environment 3–15

Index

A
access control authorization, 1–9
accessx, 2–15
adapters

graphics adapters, 1–16
app-defaults directory

location for resource definitions
files, 2–2, 2–8

authentication
at login time, 1–6

B
background resource, 2–4
borderColor resource, 2–4
borderWidth resource, 2–4
broadcast query

XDMCP, 1–23
examples of, 1–23

C
child process

created by xdm, 1–5
chooser., 1–7
client utilities

customization of, 2–9
console

ownership of, 1–6
console language variable, 1–7
customization

client utilities for, 2–9
customizing workstation

environment, 2–1

D
DECnet protocol

for X client/server connections,
3–15

DECwindows session manager
(See dxsession program)

direct query
XDMCP, 1–23

examples of, 1–23
display

customization of, 2–1
logging in, 1–5
managed by xdm, 1–4, 1–15
resource definitions with, 2–4, 2–9
starting, 1–7

Display power management
extension, 3–3

display resource, 2–4
DisplayManager resources

in xdm-config file, 1–8
dtlogin display manager, 1–1
dxconsole, 1–7, 1–8
dxkbledpanel, 2–15
dxkeyboard, 2–15
dxlogin, 1–7

resources for, 1–7
dxsession program, 1–6, 1–8

Xdefaults file, 2–9

E
editres utility, 2–10
error messages

in xdm-errors file, 1–8
EVI

Index–1

(See Extended visual extension)
Extended visual extension, 3–3
extensions

(See X server extensions)

F
failsafe mode, 1–11

using to fix login problems, 1–11
files

in xdm directory, 1–6
location of X Window System on

Tru64 UNIX systems, 1–2
font renderer

location of, 1–12
font server

client utility applications, 1–21
configuration file, 1–19
configuration file example, 1–19e
initialization script, 1–20
managing, 1–18
port number, 1–20
using, 1–20

fs
(See font server)

fsinfo utility, 1–21
fslsfonts utility, 1–22
fstobdf utility, 1–22

G
geometry resource, 2–4
GetWindowProperty function,

3–14
GiveConsole startup script, 1–6
graphics adapters, 1–16
greeter library

files for, 1–8
greeter module

Athena style, 1–9
in the X Display Manager (xdm),

3–12
Motif style, 1–9

GreetUser function, 3–12

H
HOME directory

location for resource definition files,
2–2

I
iconic resource, 2–4
imaging extension

(See X Imaging Extension)
indirect query

XDMCP, 1–23
example of, 1–24

input extension, 3–9

K
keyboard management extension,

3–10
keyboard mapping

keymaps directory, 1–7
with xmodmap utility, 2–12

keyboard type, 1–7
keymap file

linked to keymap_default, 1–8
keymap_default link, 1–8
keymaps directory, 1–7

L
library

X server extension, 1–12
local display

(See display)
logging in

failsafe mode, 1–11
problems with, 1–10
through xdm, 1–5

login box, 1–6, 1–7
provided by greeter library, 1–8

Index–2

M
memory utilization

X server, 1–24
MIT-MAGIC-COOKIE-1

authorization, 1–9
MIT-SCREEN-SAVER extension,

3–4
MIT-SHM extension, 3–4
MIT-SUNDRY-NONSTANDARD

extension, 3–4
multibuffering extension, 3–4
multiuser mode

set by xdm, 1–5

N
name resource, 2–4
Nonrectangular Window Shape

extension, 3–7

O
OpenGL (Open Graphics Library)

extension, 3–4

P
PanoramiX extension, 3–5
port number

for font server, 1–20
print service extension, 3–11

R
remote display

(See display)
resource configuration

management extension,
3–6

resource definitions, 2–1
command-line option examples, 2–6

command-line options, 2–3, 2–4
database, 2–2
editres utility, 2–10
host-specific, 2–2, 2–9
host-specific files, 2–3
loading, 2–4
precedence, 2–2
priority order, 2–2
session script examples, 2–16,

2–17e
setting, 2–1
specifying in the Xresources file,

1–7
syntax, 2–7
systemwide, 2–2
user-specific, 2–2
using, 2–6
XAPPLRESDIR environment

variable, 2–3
XFILESEARCHPATH environment

variable, 2–3
xmodmap utility, 2–12
xrdb utility, 2–11
xset utility, 2–11
xsetroot utility, 2–11
XUSERFILESEARCHPATH

environment variable, 2–3
RESOURCE_MANAGER

environment variable, 2–11
resources

(See resource definitions)
reverseVideo resource, 2–4

S
screen saver extension

(MIT-SCREEN-SAVER), 3–4
SCREEN_RESOURCES

environment variable, 2–12
securettys file

using with failsafe mode, 1–11

Index–3

security
host-based, 1–9
MIT-MAGIC-COOKIE-1

authorization, 1–9
user-based, 1–9
using Security Integration

Architecture (SIA), 1–9
xdm authorization, 1–9
XDM-AUTHORIZATION-1, 1–9
xhost application, 1–9

security extension, 3–6
Security Integration Architecture

(See SIA)
selectionTimeout resource, 2–4
session manager

(See dxsession program)
session script

example of, 2–16, 2–17e
using, 2–16

SHAPE extension, 3–7
shared memory extension

(MIT-SHM), 3–4
shared memory transport

default definition, 1–7
Shared Memory Transport

extension, 3–7
showfont utility, 1–22
SIA (Security Integration

Architecture), 1–9
socket transport

default definition, 1–7
static X clients

link order with, 3–14
SYNC extension, 3–7
synchronization extension, 3–7
synchronous resource, 2–4

T
TakeConsole reset script, 1–6
title resource, 2–4
TOG-CUP extension, 3–8
TOG-CUPextension, 3–8
transport connections

DECnet with X server and X client,
3–15

W
workstation environment

customizing, 2–1

X
X client

DECnet transport connections,
3–15

static, link order with, 3–14
X display

(See display)
X Display Manager

(See xdm, xdm utility)
X Display Manager Control

Protocol
(See XDMCP)

X files
locations of, 1–2

X Imaging Extension, 3–8
X Input extension, 3–9
X resources

(See resource definitions)
X server

DECnet transport connections,
3–15

error messages, 1–8
location of loadable libraries, 1–12
management, 1–12
memory utilization, 1–24

X server extensions, 3–1
DPMS (display power management

extension), 3–3
EVI (extended visual information),

3–3
locations of, 1–12
MIT-SCREEN-SAVER, 3–4
MIT-SHM, 3–4
MIT-SUNDRY-NONSTANDARD

Protocol, 3–4

Index–4

multibuffering, 3–4
OpenGL, 3–4
PanoramiX extension, 3–5
print service extension, 3–11
resource configuration

management, 3–6
security extension, 3–6
SHAPE, 3–7
SMT, 3–7
SYNC, 3–7
TOG-CUP, 3–8
X Video (XV), 3–12
XIE, 3–8
XKME (Keyboard Management

Extension), 3–10
XTrap, 3–11

X Server Resource Database
utility
(See xrdb)

X session
startup, 1–6

X session script
(See Xsession script)

X terminals
entries in Xservers.fs file, 1–8
managed by Xaccess file, 1–7
with xdm, 1–23

X Video (XV) extension, 3–12
X window

configuration, 1–1
customizing, 2–1
managing the environment, 1–1

X Window System
location of files on Tru64 UNIX

systems, 1–2
managing X terminals, 1–23

Xaccess file, 1–7
with X terminals, 1–7
with XDMCP connections, 1–23
XDMCP queries, 1–7

XAPPLRESDIR environment
variable, 2–3

Xauthority file
inability to write to, 1–11
security, 1–10

XChangeProperty function, 3–14
xconsole, 1–7
Xdefaults file

location for resource definitions,
2–2, 2–3, 2–6, 2–9

with dxsession, 2–9
xdm

greeter module, 3–12
xdm display manager, 1–1
xdm utility, 1–4

directory contents, 1–6
error messages, 1–8
greeter module, 1–8
login process, 1–5
multiuser mode, 1–5
process ID, 1–8
processes, 1–5
security, 1–10
user authorization, 1–9
with X terminals, 1–23

XDM-AUTHORIZATION-1, 1–9
xdm-config file, 1–8

problems with, 1–11
specifying greeter library in, 3–12
X server management, 1–15

xdm-config.fs file, 1–8
xdm-errors file, 1–8, 1–10, 1–11
xdm-pid file, 1–8
XDMCP

managing X terminals with, 1–23
queries, 1–23

XENVIRONMENT environment
variable
pointer to resource definition file,

2–2
XFILESEARCHPATH

environment variable, 2–3
xhost application, 1–9
XIE (X Imaging Extension), 3–8

Index–5

xie (X Input Extension), 3–9
XKB keyboard extension, 3–10
xkbcomp, 2–15
xkbdfltmap, 2–15
xkbprint, 2–15
Xkeymaps file, 1–7
Xkeymaps table, 1–7
XKME (Keyboard Management

Extension), 3–10
xlogin, 1–7
xmodmap command, 2–13

used by xdm to load keymaps, 1–7
xmodmap utility, 2–12
xnlLanguage resource, 2–4
Xp, 3–11
XQueryExtension function, 1–12
xrdb utility, 1–7, 2–3, 2–9, 2–11

loading resource definitions, 2–4
setting login box characteristics,

1–6
Xresources file, 1–7
xrm resource option, 2–4

Xserver command, 1–15
Xserver.conf file

example of, 1–13e
problems with, 1–11
specifying X server extensions in,

1–12
Xservers file, 1–7
Xservers.fs file

entries for X terminals, 1–7
.xsession script, 1–6, 1–8

errors in, 1–11
Xsession script, 1–6, 1–8

errors in, 1–11
xsession-errors file, 1–10
xset utility, 2–11
xsetroot utility, 2–11
Xsetup_0 script, 1–6, 1–8
XTEST extension, 3–11
XTrap extension, 3–11
XUSERFILESEARCHPATH

environment variable, 2–3

Index–6

